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Preface

In the ever-evolving field of seismology, the integration of machine-learning-based artificial

intelligence represents a groundbreaking advancement. This Special Issue is dedicated to exploring

the profound impact of AI on seismic data processing and the development of structured seismic

catalogs. Our aim is to delve into the transformative potential of AI technologies, which promise to

solve fundamental scientific challenges by identifying signals and patterns that traditional methods

often miss. Through this exploration, we seek to enhance our understanding of the physical processes

underlying earthquakes and improve our ability to predict and respond to seismic events.

The scope of this Special Issue encompasses a wide array of topics, including seismic data

processing, event location and discrimination, early warning systems, forecasting, and the application

of machine learning and deep learning in seismology. By presenting innovative ideas and the latest

findings, we hope to inspire further research and development in this critical area.

This work is addressed to researchers, practitioners, and students in the field of seismology and

related disciplines, who are eager to explore the cutting-edge applications of AI in their work. We

are privileged to have contributions from leading experts who share their insights and visions for the

future of earthquake monitoring and forecasting.

We extend our heartfelt gratitude to the reviewers whose meticulous evaluations have ensured

the quality and rigor of this Special Issue. Special thanks are due to Editor Sonya Qin for her

invaluable guidance and support throughout this endeavor. We also express our appreciation to

the authors of the included papers, whose pioneering research forms the foundation of this work.

Together, we embark on a journey to unlock the full potential of artificial intelligence in

seismology, striving for a future where our understanding of earthquakes is deeper, our predictions

more accurate, and our world safer.

Shiyong Zhou and Ke Jia

Guest Editors

ix





Citation: Jia, K.; Zhou, S. Machine

Learning Applications in Seismology.

Appl. Sci. 2024, 14, 7857. https://

doi.org/10.3390/app14177857

Received: 1 September 2024

Revised: 3 September 2024

Accepted: 3 September 2024

Published: 4 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Editorial

Machine Learning Applications in Seismology

Ke Jia 1,2,* and Shiyong Zhou 3,4,*

1 School of Automation, Northwestern Polytechnical University, Xi’an 710129, China
2 Shanghai Sheshan National Geophysical Observatory, Shanghai 201602, China
3 Department of Artificial Intelligence and Data Science, Guangzhou Xinhua University,

Guangzhou 510520, China
4 School of Earth and Space Science, Peking University, Beijing 100871, China
* Correspondence: jk@nwpu.edu.cn (K.J.); zsy@pku.edu.cn (S.Z.)

1. Introduction

The comprehension of earthquakes and natural hazards, including volcanic eruptions
and landslides, as well as explosions, through observational data is a pivotal activity within
the field of seismology. The rapid advancements in seismogram technology have resulted
in the accumulation of extensive seismic datasets, presenting significant opportunities for
the exploration of seismicity patterns, the physical processes underlying earthquakes, and
the elucidation of earthquake mechanisms [1–8]. The availability of such large-scale seismic
data can substantially enhance data-driven research endeavors in seismology [9–13]. These
data-rich resources can be employed for a variety of analytical and modeling initiatives,
thereby assisting seismologists in gaining insights into earthquake mechanisms, forecasting
seismic hazards, and formulating strategies for disaster prevention and mitigation.

Recent progress in seismic data acquisition and processing, particularly through the
application of machine learning techniques, has proven beneficial for seismologists in iden-
tifying signals or patterns that traditional methodologies may overlook [8,14]. For instance,
the automatic detection of seismic events via models such as PhaseNet [15] streamlines the
processing of seismic data [16–20]. Additionally, the classification of seismic events utiliz-
ing convolutional neural networks (CNN) demonstrates greater efficiency compared to
conventional feature-based methods [21–23]. Furthermore, machine learning approaches to
earthquake prediction and early warning systems offer alternative strategies for mitigating
earthquake hazards [4,24–26]. In summary, machine learning methodologies significantly
enhance the capabilities of seismologists in processing seismic data and uncovering the
physical mechanisms associated with earthquakes [27].

Over the past two years, we have compiled 15 articles for this Special Issue titled “Ma-
chine Learning Applications in Seismology”. These contributions encompass topics such
as seismic inversion, earthquake detection, ground motion simulation, focal mechanism
analysis, and earthquake early warning and forecasting systems. The articles underscore
the necessity of integrating machine learning into seismological research and provide
illustrative examples of its application within the discipline.

2. Summary of the Published Articles

The following overview of the published articles in this Special Issue is organized
chronologically by publication date.

Bilal et al. (Contribution 1) introduce an innovative approach to earthquake detection
that integrates batch normalization with graph convolutional neural networks (BNGCNN).
This study highlights the significance of hyper-parameter optimization in enhancing model
performance and demonstrates that the BNGCNN model effectively amalgamates local
and global features from seismic data, resulting in improved earthquake detection capa-
bilities. The experimental findings indicate that the BNGCNN surpasses existing models,
suggesting its potential utility in real-time earthquake monitoring systems.

Appl. Sci. 2024, 14, 7857. https://doi.org/10.3390/app14177857 https://www.mdpi.com/journal/applsci1
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Johora et al. (Contribution 2) investigate the use of non-destructive seismic wave
velocity measurements to predict geotechnical parameters, such as water content and
dry density, through artificial neural networks (ANNs). By incorporating seismic wave
velocity data, the ANN models exhibit enhanced predictability compared to traditional
multilinear regression models, thereby demonstrating the potential for increased efficiency
and accuracy in geotechnical evaluations.

Liu et al. (Contribution 3) utilize convolutional neural networks for the automatic
classification of filtered displacement time series derived from strong-motion records,
thereby improving efficiency over conventional visual inspection techniques. By employing
transfer learning with models such as VGG19 and ResNet50, this research work achieves
enhanced accuracy in determining high-pass cut-off frequencies, attaining a maximum
coefficient of determination (R2) of 0.82 with minimal prediction errors.

Merdasse et al. (Contribution 4) apply time series analysis to forecast earthquake
frequency and magnitude in northeastern Algeria, utilizing both parametric (autoregressive
integrated moving average, ARIMA) and non-parametric (singular spectrum analysis, SSA)
methodologies. Analyzing data from 1910 to 2019, the findings reveal that the SSA model
outperforms the ARIMA model. Their forecasts indicate that between 2020 and 2030, the
annual maximum magnitude will range from Mw 4.8 to Mw 5.1, with an expectation of
four to six earthquakes of at least Mw 4.0 occurring annually.

Li et al. (Contribution 5) propose FocMech-Flow, an automated workflow designed
for determining P-wave first-motion polarity and focal mechanism inversion, applied to
the 2021 Yangbi earthquake sequence. Utilizing the deep learning model DiTingMotion,
the method achieves an accuracy of 98.49% in polarity detection and provides 112 focal
mechanism solutions, thereby enhancing the understanding of fault structures and regional
stress fields in small to moderate earthquakes.

Agayan et al. (Contribution 6) present advancements in the FCAZ (fuzzy clustering
and zoning) method for identifying earthquake-prone regions through enhancements to its
mathematical algorithms and foundational principles. This study focuses on improving the
precision and reliability of high-seismicity area identification, exemplified by a case study
in California. By refining the FCAZ algorithm, closely linked small zones are consolidated
into larger, high-seismicity areas, thereby enhancing the efficacy of earthquake hazard
assessments.

Wang et al. (Contribution 7) explore the potential of machine learning techniques,
specifically random forest and long short-term memory (LSTM) neural networks, to predict
large earthquakes utilizing seismic catalog data from the Sichuan–Yunnan region. The
research addresses two critical questions: the likelihood of a significant earthquake oc-
curring within a year and the anticipated maximum magnitude. The results indicate that
the random forest method excels in classifying large earthquake occurrences, while LSTM
provides reasonable magnitude estimations. The findings suggest that small earthquakes
contain valuable predictive information, underscoring the promise of machine learning in
improving earthquake prediction accuracy.

Hu Junjun et al. (Contribution 8) propose a novel software application employing
machine learning to simulate ground motion by accurately matching amplitude, spectrum,
and duration characteristics specific to a region. By utilizing principal component analysis
and predictive equations, this software generates simulated ground motions that closely
align with the desired attributes, offering a more reliable input for structural design and
assessment.

Zhu et al. (Contribution 9) investigate anomalies in outgoing longwave radiation
(OLR) data preceding the Yangbi Ms6.4 and Luding Ms6.8 earthquakes using the bidirec-
tional long short-term memory (BILSTM) model. This study predicts OLR values prior
to the earthquakes, employing confidence intervals for anomaly detection. The authors
suggest that their method effectively captures seismic anomalies and may indicate a corre-
lation between OLR anomalies and earthquake occurrences, advocating for further research
involving additional earthquake cases to enhance predictive capabilities.
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Agathos et al. (Contribution 10) discuss the application of a specialized deep neural
network to identify earthquakes in environments characterized by significant background
noise from vehicular activity. To address this challenge, this study proposes utilizing a deep
neural network trained on both earthquake and vehicular signals to detect earthquakes
within low-cost sensor data contaminated by noise, demonstrating superior effectiveness
and efficiency compared to traditional models. This article emphasizes the critical role of
earthquake monitoring in disaster management, public safety, and scientific inquiry.

Tang et al. (Contribution 11) present a novel seismic inversion method that employs a
multi-scale super-asymmetric network (Cycle-JNet) to enhance the resolution and accu-
racy of seismic data interpretation. By integrating wavelet analysis with deep learning
techniques, the Cycle-JNet model effectively captures multi-scale data characteristics. The
model exhibits superior performance in identifying thin sandstone layers compared to
conventional approaches, achieving a prediction accuracy of 81.2%. The findings indicate
that the Cycle-JNet network serves as a reliable tool for seismic inversion, significantly
improving the identification of geological features in complex data environments.

Li et al. (Contribution 12) develop a high-resolution aftershock catalog for the 2014 Ms
6.5 Ludian earthquake in China utilizing deep learning methodologies, specifically the
deep learning phase-picking CERP model and seismic-phase association PALM technology.
A novel training strategy that combines traditional algorithms with artificial intelligence
enhances seismic phase detection and event localization, resulting in the identification of
3286 aftershock events with improved accuracy. This study underscores the effectiveness
of the retraining strategy in enhancing the generalization of AI models for seismic analysis
in specific tectonic contexts.

Li et al. (Contribution 13) present a deep learning approach for microseismic velocity
inversion, employing a Unet model in conjunction with data augmentation and hybrid
training strategies. This methodology effectively addresses challenges associated with low
signal-to-noise ratios in real microseismic data, enhancing inversion accuracy by integrating
synthetic and augmented datasets. The results demonstrate the model’s robustness and
potential for improved subsurface velocity predictions.

Zhao et al. (Contribution 14) introduce a novel approach for enhancing passive seismic
source reconstruction through the use of convolutional neural networks (CNN). The authors
tackle the challenges posed by randomly distributed and sparse seismic sources, which
often result in artifacts and coherent noise in virtual shot records. By incorporating an
adaptive attention mechanism into the CNN architecture, the proposed method effectively
suppresses noise and restores valid waveform features. The results demonstrate improved
signal clarity and continuity, highlighting the method’s applicability in passive seismic
exploration, particularly in scenarios characterized by uneven source distributions and
limited active sources.

Lu et al. (Contribution 15) investigate the application of machine learning for detecting
earthquake precursors through the analysis of seismic multi-parameter data across twelve
tectonic regions in western China. This study employs a sliding extreme value relevancy
method to analyze various seismic parameters, including the b value, earthquake frequency,
and intensity factors. Their findings indicate that significant anomalies frequently precede
target earthquakes, with high anomaly rates correlating with earthquake occurrences.
The results emphasize the effectiveness of a comprehensive multi-parameter approach in
enhancing earthquake prediction accuracy and spatial risk assessment, providing valuable
insights for future evaluations of seismic hazards in the investigated regions.

3. Conclusions

The adoption of artificial intelligence in scientific research has gained traction across
various disciplines, achieving notable success. The application of machine learning within
seismology has also garnered increasing attention. This collection of articles in this Special
Issue contribute to the field of seismology by presenting views and research examples
that illustrate the integration of machine learning into seismology. The topics covered in
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these articles include seismic inversion, earthquake detection, focal mechanism analysis,
ground motion simulation, earthquake early warning systems, and earthquake forecasting,
utilizing a diverse array of machine learning methods.

Moreover, these articles highlight interdisciplinary research that bridges seismology
and machine learning, offering innovative solutions to challenges associated with seismic
data and advancements in model interpretability. While limitations exist, there is a strong
expectation for future work to focus on enhancing model accuracy and generalizability, the
development of real-time applications in seismology and the exploration of the physical
mechanisms underlying earthquakes through machine learning methodologies.

In conclusion, we extend our heartfelt appreciation to the contributors, reviewers,
and the editorial team for their dedicated efforts in bringing this Special Issue to fruition.
Their contributions have significantly enriched the discourse on the application of machine
learning in seismology, paving the way for future advancements in the field.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The application of certain mathematical–statistical methods can quantitatively identify and
extract the abnormal characteristics from the observation data, and the comprehensive analysis of
seismic multi-parameters can study and judge the risk of the tectonic regions better than a single
parameter. In this study, the machine learning-based detection of seismic multi-parameters using the
sliding extreme value relevancy method, based on the earthquake-corresponding relevancy spectrum,
was calculated in the tectonic regions in the western Chinese mainland, and the R-value evaluation
was completed. Multi-parameter data included the b value, M value (missing earthquakes), η value
(the relationship between seismic magnitude and frequency), D value (seismic hazard), Mf value
(intensity factor), N value (earthquake frequency), and Rm value (modulation parameter). The
temporal results showed that the high-value anomalies appeared before most target earthquakes
during the training period. Moreover, some target earthquakes also occurred during the advantageous
extrapolation period with high-value anomalies. The spatial results showed that some months before
the target earthquakes, there was indeed a significant abnormal enhancement area that appeared near
the epicenter, and the anomaly gradually disappeared after the earthquakes. This study demonstrated
that machine learning techniques for detecting earthquake anomalies using seismic multi-parameter
data were feasible.

Keywords: machine learning; precursor detection; seismic multi-parameter; target earthquake

1. Introduction

Various seismological parameters may exhibit different degrees of precursor anomaly
characteristics before major earthquakes and reveal certain laws of earthquake development
from different perspectives. There were many studies on the b value within seismolog-
ical parameters [1–3]. The b value is a critical parameter in seismic hazard studies [4],
and a high b value indicates a larger proportion of small earthquakes, and vice versa. In
addition, earthquake frequency is also a commonly used seismological parameter interna-
tionally [5,6]. What would be the effect of integrating these seismic parameters for analysis?
There has been relatively little comprehensive study of seismic parameters, which could
solve the limitations of single parameter and method approaches [7]. The comprehensive
analysis of multiple methods based on the quantitative description of a single anomaly is
of great significance in earthquake research. Based on this idea, the study was conducted
on the quantitative identification and extraction of anomalies from observation data using
mathematical–statistical methods. For example, Wang Haitao [8] transformed the time
series of original data into a probability time series based on the corresponding relevancy
spectrum in different investigation durations, and used the multi-point cumulative moving
average method to obtain the time curve of average probability; then, the earthquake
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precursor anomalies were identified, providing quantitative single factor data for the
comprehensive method. Bo [9] used the multi-point group slope method and composite in-
formation flow method to convert the deformation data into the ‘standardized information
curve’. Wang [10] quantitatively identified and extracted anomalies from various seismic
parameter data in the western section of the southern Tianshan of Xinjiang by using the
multi-parameter sliding extreme-value relevancy based on the earthquake-corresponding
relevancy spectrum. Lu also conducted a long-term tracking study on the central and
southern sections of the Tanlu fault, utilizing the earthquake-corresponding relevancy spec-
trum of seismic multi-parameters, and found that the earthquake-corresponding efficiency
calculated by combining multiple advantageous parameters was indeed better than that of
a single parameter [11].

Some studies also found that although some calculated factors and models were
different, the regional scales of the predicted earthquake were consistent [12–15]. Perhaps
more earthquake factors could more easily predict the spatial–temporal and intensity
information of earthquakes. Therefore, it is possible to try combining multiple different
factors within a unified and reasonable physical framework for the extraction of seismic
anomalies. For example, establishing a physically reasonable framework that combines
the pattern informatics (PI) prediction method [16,17] with the load/unload response ratio
(LURR), state vector (SV), and accelerating moment release (AMR) method [18] could be
considered. Alternatively, the LURR method could be combined with other methods for
seismic hazard assessment [19]. Scholars have also attempted to use the LURR method to
study the electromechanical coupling process before large earthquakes, using geoelectric
data and Benioff strain data from small earthquakes as input [20], and the results were
both well. These studies fully demonstrated the advantages of using multiple different
factors and models for comprehensive calculation. Recently, there have been many studies
on the application of machine learning for earthquake precursor mining and analysis.
Possible precursors from the surface to the ionosphere using machine learning techniques
were analyzed [21]. And earthquake precursors could be detected by a novel machine
learning-based technique with GPS data [22].

The strongest earthquakes in China occur in the western part of the Chinese mainland.
This paper focuses on analyzing the characteristics of comprehensive anomalies before and
after target earthquakes in the study area through the calculation of the comprehensive
probability of seismic multi-parameters in several tectonic areas in the western Chinese
mainland. Moreover, the evaluations of the R-value for these tectonic areas were calculated,
and the effectiveness of corresponding earthquakes during the advantageous prediction
time for the regions with anomalies was tested.

2. Materials and Methods

2.1. Materials

The study areas mainly encompassed 12 tectonic regions in the western Chinese
mainland, including the western section of southern Tianshan, the middle of Tianshan, the
northwest of Yunnan, the east of the border between Sichuan and Yunnan, the western
portions of southern Xizang, Yutian, Xinjiang, and so on (Figure 1). The blue lines in Figure 1
represents the faults. Meanwhile, a completeness analysis and collation of earthquakes
since 1991 were carried out. The completeness of earthquake catalogs directly affects the
understanding of seismic activity patterns. For a certain tectonic zone, if the earthquake
catalog is basically complete in a certain period, the annual frequency of earthquakes in a
certain magnitude segment should basically be similar [23]. The seismic data in this study
primarily relied on the local magnitude (ML) and adopted the ≥ML3.0 earthquake catalog
from January 1991 to December 2021 provided by the China Earthquake Networks Center,
with good completeness.
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Figure 1. Research regions in the western Chinese mainland.

The appropriate earthquake catalogs for each region in the training database were
selected, and the multi-parameter sliding extreme-value relevancy of the training database
was calculated, combined with the target earthquakes. Then, the study extrapolated the
probability and advantageous time range of target earthquakes in each study area and
completed the calculation of the R-value evaluation for each study area.

2.2. Method

Assuming the observation sequence was x1, x2, . . ., xn, xmax was the maximum value
in the sequence, xmin was the minimum value. The mean value, x, and standard deviation,
σ, of the sequence xi (i = 1,2,. . ., n) could be calculated as follows:

x =
1
n

n

∑
i=1

xi (1)

σ =

√
n

∑
i=1

(xi − x)2/(n + 1) (2)

Based on the calculation of the mean value and standard deviations, the rules for the
value range distribution interval are defined as follows:

Dx0 ∈ (x − kσ, x + kσ)

Dx1 ∈ [x + kσ, x + 2kσ)

Dxm ∈ [x + mkσ, xmax] (3)

Dx−1 ∈ (x − 2kσ, x − kσ]

Dx−m ∈ [xmin, x − mkσ]

Dx0, Dx1, . . ., Dx−m in the formula represent the observed values in different value
ranges. Formula (3) calculates the frequency of the observed value sequence, xi, distributed
across different intervals, thereby constructing a range spectrum curve to define the dis-
tribution interval of the value ranges. Taking the range spectrum curve of the seismic
parameter, b, in the western section of southern Tianshan as an example (Figure 2), 0 on the
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horizontal axis corresponds to the value range of Dx0, which was near the mean. Value 4
corresponds to the value range Dx4, −4 corresponds to the value range Dx−4, and so on.
The vertical axis represents the frequency of data in the corresponding range.

 

Figure 2. The value range spectrum curve.

The range spectrum curve is similar to a normal distribution, indicating that the
range selection is appropriate. k and m are both parameters of the range spectrum curve,
where k could adjust the size of each range interval and m could adjust the number of
range intervals. This study conducted extensive data calculations and found that the best
results were achieved by uniformly using k = 0.35 and m = 6 to eliminate errors caused by
calculating with different parameters of the value range.

Based on the analysis of the value range spectrum, the earthquake-corresponding
relevancy spectra (ECRSs) in different value ranges could be solved. By using the ECRS, one
can analyze the basic abnormal characteristics of the original observation value sequence
and determine the abnormal reliability attributes of data in different value ranges. Firstly,
the target earthquakes for retrospective testing in different study areas must be determined.
Then, the data falling into the value range from Dx−m to Dxm (from low to high) are
counted, point by point, according to the time series of observation data. At the same time,
the method needs to count whether there are target earthquakes in different inspection
periods t separately.

According to the above rules, the corresponding number of occurred earthquakes,
nDxm, as well as the total number, NDxm, in the corresponding value range are determined
through the count of the observation value sequence, point by point. Then, the ratio
is calculated by PDxm = nDxm/NDxm. The ECRSs in different value ranges of the
observation value sequence could be obtained by counting the corresponding results of all
value ranges.

The time series of different seismic parameters based on the ECRS is xij (i = 1, 2, . . .,
n; j = 1, 2, . . ., k; k represent the different seismic parameter numbers). The relevancy time
sequence, pij, corresponding to different parameters, j, could be converted from the PDxm
in different value ranges, point-to-point. Then, the sliding average relevancy sequence
values, pij, of different seismic parameters, according to the lengths of different inspection
periods, t, are obtained by the multi-point cumulative average and point-by-point sliding
calculation methods.

Setting t = 12 (month) represents the different investigation durations. The sliding
average relevancy sequence, pij, for different seismic parameters is as follows:

pij = (pij + p(i+1)j + . . . + p(i+t−1)j)/t, i = 1, 2, . . . , n − t + 1 (4)

By analyzing the sliding average relevancy sequences, pij, of different seismic pa-
rameters, the precursor anomaly characteristics of individual seismic parameters could be
quantitatively identified and studied.
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Based on the above analysis, we could obtain the multi-point sliding extreme-value
relevancy sequence, Mij, of the sliding average relevancy sequence, pij, of different param-
eters, point by point, and finally, calculate the average value of the sliding extreme-value
relevancy sequences, Mj, of different parameters to obtain the multi-parameter sliding
extreme-value relevancy value, pc. In order to observe the curve changes more clearly, 6
points are selected as the sliding window lengths in this paper, and the comprehensive
results of sliding, point by point, are marked on the time coordinates of the last point.

Suppose that j = 1, 2, . . ., k (k represents the different seismic parameters), w = 6 (w
represents the sliding window lengths of different points).

Mij = Max
{

pij, p(i+1)j, . . . , p(i+w−1)j

}
, i = 1, 2, . . . , n − w + 1 (5)

Mj =
(

M1j, M2j, . . . , M(n−w+1)j

)
, j = 1, 2, . . . , k (6)

In the formula, Mij represents the multi-point sliding extreme-value relevancy for
different parameters; Mj represents the multi-point sliding extreme-value relevancy of a
single parameter, j.

Then, the multi-parameter sliding extreme-value relevancy value, pc, is calculated by
averaging the values of Mj from different parameters.

pc =
k

∑
j=1

Mj/k (7)

3. Results

3.1. Multi-Parameter Relevancy Spectrum Calculation

The most reasonable single parameter and its threshold settings, within the probability
spectrum of earthquake occurrence and the value range spectrum in each study area, were
analyzed through time scanning with different statistical window lengths and step sizes.
After years of analysis and experience summaries, the optimal seven parameters were
ultimately selected to participate in the calculation of each research area, namely, the b
value, M value (missing earthquake), and η Value—these three parameters could describe
the relationship between seismic magnitude and frequency; the D value describes seismic
hazard; the Mf value denotes the intensity factor; the N value denotes the earthquake
frequency, which describes the intensity changes of seismic activity; and the Rm value is
the environmental modulation parameter.

A large portion of the computational analysis was conducted across different research
areas. Using the three study areas of border region as examples, e.g., Qinghai and Xizang,
the western section of southern Tianshan, and the central and western sections of the Qilian
Mountains, different time scanning scales were applied for calculation: 3 months, 6 months,
and 12 months. The results showed that the curve did not change much, but the anomaly and
earthquake-corresponding rates of the three study areas were relatively high at the 12-month
scale (Table 1). Therefore, this study uniformly used a 12-month time scanning scale for all
study areas, and the seismic parameters and thresholds used in all study areas were also the
same, which could help to avoid errors caused by differences in the time scale and parameters.

Taking the abnormal changes in the border areas of Qinghai and Xizang, where
the Maduo M7.4 earthquake occurred on 22 May 2021, as an example, and based on
the previous summary and analysis that 12 months was a good sliding window length
for calculation, the window lengths of the time calculations for seven parameters were
all selected as 12 months, and the calculation step sizes were all 1 month. The 6-point
sliding average and 3-point sliding extreme-value algorithms were used to calculate the
multi-parameter sliding extreme-value relevancy of earthquake data from January 1991 to
December 2021. According to the time distribution of target earthquakes in the study area,
it is necessary to ensure that the training period had sufficient sample data and a certain
number of target earthquakes to test the extrapolation effect. Therefore, the deadline for
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the training period here was selected as December 2020, and the target earthquakes in the
study area were set as ML ≥ 6.3 earthquakes. The results that began in January 2021 were
extrapolation values after the machine learning, and the threshold of the probability curve
was taken as 0.5 times the standard deviation. The threshold line was obtained through
a large number of calculations in 12 study areas in the western Chinese mainland. It was
found that when 0.5 times the standard deviation of the multi-parameter probability result
was taken as the threshold line, the corresponding effect between the probability value
anomaly and the target earthquake was the best. Therefore, in order to eliminate the error
caused by using different threshold lines, all study areas uniformly used 0.5 times the
standard deviation as the threshold line.

Table 1. Anomaly-corresponding rate and earthquake-corresponding rate of different time scan-
ning scales.

Name Anomaly-Corresponding Rate (%) Earthquake-Corresponding Rate (%)

Time scanning scale (month) 3 6 12 3 6 12

Study region

Border regions of
Qinghai and Xizang 50.00 66.67 75.00 71.43 100.00 100.00

Western section of
southern Tianshan 50.00 66.67 100.00 71.43 85.71 100.00

Central and western
sections of the Qilian

Mountains
77.78 85.71 85.71 80.00 80.00 80.00

Figure 3 shows the study area of the border regions of Qinghai and Xizang. Figure 4
shows the MSER results of the study area. The results show that the earthquake-corresponding
rate was good during the training period from January 1991 to December 2020. During the
training period, a total of seven target earthquakes occurred, all with high-value anomalies
exceeding the threshold line before the earthquakes. The extrapolation period began in
January 2021. The probability curve had been in an abnormally high-value state and reached
its peak in January 2021. On 19 March 2021, the Xizang Biru ML6.4 earthquake occurred in
the study area, proving that the extrapolation effect was good. According to the retrospective
study of earthquakes in this region, there was also an anomaly peak before the Qinghai Yushu
ML7.4 earthquake on 14 April 2010; the anomaly peak occurred in September 2009 and the
Xizang Nierong ML6.6 earthquake occurred on 24 March 2010 (about one month prior). The
Maduo ML7.9 earthquake was similar to the Yushu earthquake. In the process of the curve
turning and falling, the Xizang Biru ML6.4 earthquake first occurred on 19 March, then the
Qinghai Maduo ML7.9 earthquake occurred on 22 May (about two months later).

 

Figure 3. Border regions of Qinghai and Xizang (within the dashed box) and ML ≥ 6.3 earthquakes
from January 2021 to December 2021.
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Figure 4. The multi-point sliding extreme-value relevancy (MSER) of the border regions of Qinghai
and Xizang.

The spatial scanning calculation of the border regions of Qinghai and Xizang adopted the
same seven dominant seismic parameters, which were used in the time scanning. ML ≥ 3.0
earthquakes from January 1991 to December 2020 were selected as the training data. The
probability spectrum calculation analysis was carried out with a spatial window length of 2◦
× 2◦ and a step size of 0.2◦ × 0.2◦, with a duration of 1 year and a step size of 1 month. January
2021 was the starting time for extrapolation testing. The Xizang Biru ML6.4 earthquake on
19 March 2021 and the Qinghai Maduo ML7.9 earthquake on 22 May 2021 both occurred
in the study area. From the results in Figure 5, it could be seen that there were almost no
high-value anomalies in the study area from January to May 2019. In June 2019, sporadic
high-value anomalies began to appear near the Xizang Biru region. Afterward, the abnormal
area and amplitude gradually expanded and strengthened, reaching their maximum value in
December 2020. The Biru ML6.4 earthquake occurred in the abnormal area in March 2021.
At the same time, abnormal high points began to appear between Yushu and Maduo in
Qinghai from March 2021 (inside the red dashed box in Figure 5). Although the abnormal
points were small, they showed a gradually increasing trend. The Maduo ML7.9 earthquake
occurred to the northeast of the abnormal points in May 2021. Afterward, the abnormal
values in both regions gradually weakened, and the high-value abnormal points near the
Maduo earthquake completely disappeared in December 2021.

Figure 5. The spatial evolution of the MSER of the border regions of Qinghai and Xizang from January
2019 to September 2021.
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It was found that there were similar highly abnormal changes in 2010. From January
2008 to 2009, the anomaly gradually increased, and almost reached its maximum value
in December 2009. In March 2010, the Xizang Nierong ML6.6 earthquake occurred near
the anomaly concentration area. At the same time, the abnormal high-value points also
gradually increased near the Yushu region in December 2009 (inside the red dashed box
in Figure 6). In April 2010, the Qinghai Yushu ML7.4 earthquake occurred near the high-
value points. Afterward, the abnormal areas gradually weakened, and almost all of them
disappeared in December 2010 (Figure 6).

 

Figure 6. The spatial evolution of the MSER of the border regions of Qinghai and Xizang from January
2008 to September 2010.

3.2. Risk Assessment of the Multi-Parameter Relevancy Spectrum in the Western Chinese Mainland

The R-value evaluation is a widely recognized method used for evaluating the ef-
fectiveness of earthquake prediction [24,25]. The R-value evaluation is calculated by the
difference between the earthquake prediction accuracy rate and the time occupancy rate of
prediction. The specific formula is as follows:

R = A − O =
Na

Nt
− Sa

St
(8)

A represents the earthquake prediction accuracy rate, O represents the time occupancy
rate of the predicted area, Na represents the number of predicted earthquakes successfully,
Nt represents the total number of earthquakes that should be predicted, Sa represents the
time occupied by prediction, and St represents the total time spent on prediction research.

Assuming that earthquakes occur independently of each other, the number of earth-
quakes that occur within a certain period should follow the discretization state of the
Poisson distribution. The probability of a single earthquake occurring during this period is
represented by the time occupancy rate, O, of the predicted area, and the corresponding
significance level should be satisfied as follows [26]:

α =
Nt
∑

i=Na

[(
NtiOi(1 − O)Nt−i

)]
Nti =

Nt!
i!(Nt−i)!

(9)
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In the formula, α represents the significance level, taken as 5%. Based on the known A
value, the value O is calculated, and the corresponding R score for the significance level α
is obtained and represented by R. When R > R0, the predicted result is considered to have
high statistical significance [27,28].

In this paper, the R-values of the multi-parameter calculation results of 12 tectonic
regions in the western Chinese mainland were evaluated, and finally, 7 tectonic regions
passed the test (Table 2), namely, central Tianshan, the western section of southern Tian-
shan, the border regions of Qinghai and Xizang, Yutian in Xinjiang, Nima in Xizang, the
central and western sections of the Qilian Mountains, and the eastern section of southern
Xizang. The criterion for determining anomalies was that the relevancy value exceeded
the threshold line, and an abnormal peak appeared. The time among the three elements
was considered the advantageous extrapolation time when calculating the optimal R-value
by different times (Table 2). The extrapolation time period started with the abnormal peak
time. Taking central Tianshan in Table 2 as an example, if its relevancy value exceeded
the threshold line and reached an abnormal peak in October 2019, its advantageous ex-
trapolation time was 290 days. Therefore, the validity period should be until July 2020.
The intensity of the predicted earthquake was based on the minimum magnitude of target
earthquakes used for simulation training in the training period. The predicted location
refers to the area studied and calculated.

Table 2. Characteristics of multi-parameter relevancy spectrum anomalies in the western Chi-
nese mainland.

No. Region
Three Elements of Prediction

R-Value
Time/Day Intensity/ML Location

1 Central Tianshan 290 ≥6.0 Central
Tianshan

R = 0.55
R0 = 0.38

2 Western section of
southern Tianshan 380 ≥6.3

Western
section of
southern
Tianshan

R = 0.44
R0 = 0.29

3 Border regions of
Qinghai and Xizang 260 ≥6.3

Border area
of Qinghai
and Xizang

R = 0.68
R0 = 0.35

4 Yutian, Xinjiang 190 ≥5.5 Yutian,
Xinjiang

R = 0.58
R0 = 0.29

5 Nima in Xizang 100 ≥5.5 Nyima in
Xizang

R = 0.32
R0 = 0.28

6
The central and

western section of the
Qilian Mountains

170 ≥5.5

The central
and western
section of the

Qilian
Mountains

R = 0.54
R0 = 0.35

7 Eastern of Southern
Xizang 370 ≥6.0

Eastern of
Southern
Xizang

R = 0.51
R0 = 0.36

3.3. Extrapolation Inspection

The research data used in this paper were all up to December 2021. Among the seven
areas that passed the R-value evaluation test, in addition to the border regions of Qinghai
and Xizang, there were also areas with high anomalies, such as the western section of
southern Tianshan and the central and western sections of the Qilian Mountains. The
advantageous extrapolation times for the western section of southern Tianshan and the
central and western sections of the Qilian Mountains were 380 days and 170 days after the
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multi-parameter relevancy value exceeded the threshold line and experienced abnormal
peaks, respectively (Table 2).

Figure 7 shows the study area of the western section of southern Tianshan. Figure 8
shows that the target earthquakes in the western section of southern Tian Shan had good
earthquake-corresponding rates during the training period (January 1991 to October 2016).
There were seven target earthquakes during the training period, and all high-value anoma-
lies exceeding the threshold line appeared before the earthquakes. Taking November 2016
as the starting time for extrapolation, the relevancy curve was still at a high value. The Ak-
tao ML7.0 earthquake in Xinjiang occurred in the study area on 25 November 2016, which
showed that the extrapolation effect was good. However, there was no high-value anomaly
before the Jiashi ML6.7 earthquake in Xinjiang on 19 January 2020, which was considered a
missed earthquake. Afterward, the relevancy curve continued to rise, and it exceeded the
threshold line, reaching an abnormal peak in February 2021, indicating the possibility of
≥ML6.7 earthquakes within the study area. According to Table 2, the advantageous time
for the multi-parameter relevancy spectrum in this region was 380 days. Assuming the
peak time of the anomaly in February 2021 as the starting time, the validity period would
be until 16 February 2022. On 13 February 2022, the Tajikistan MS6.1 earthquake occurred
near the anomaly area, corresponding to this high-value anomaly.

Figure 7. Western section of southern Tianshan (within the dashed box) and ML ≥ 6.3 earthquakes
from November 2016 to December 2021.

 

Figure 8. The MSER changes in the western section of southern Tianshan.

The Aktao ML7.0 earthquake in Xinjiang on 25 November 2016 occurred during the
extrapolation test period. The spatial evolution of the MSER anomaly in the western
section of the southern Tianshan Mountains (Figure 9) showed that the anomaly gradually
increased from June 2016, reaching its maximum intensity in September 2016, and the
Aktao ML7.0 earthquake occurred near the anomaly area in November. Afterward, the
anomaly gradually weakened until it disappeared.
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Figure 9. The spatial evolution of the MSER of the western section of southern Tianshan from January
2016 to October 2017.

The training period in the central and western sections of the Qilian Mountains
(Figure 10) was from January 1991 to December 2015, during which, a total of 10 target
earthquakes occurred. Among them, eight target earthquakes had high-value anomalies
exceeding the threshold line before the earthquakes, and two target earthquakes were
missed (Figure 11). In January 2016, as the starting time for extrapolation, the relevancy
curve continued to decline after reaching the abnormal peak in July 2018, and reached
its lowest point in February 2019. During this period, there was no corresponding target
earthquake. Afterward, the abnormal curve rose again and reached its peak in July 2019.
Two months later, on 16 September 2019, the Gansu Zhangye ML5.5 earthquake occurred.
The relevancy curve had been continuously decreasing and remained below the threshold
line after the Zhangye ML5.5 earthquake in Gansu. The curve began to turn and rise in
March 2021, and the Aksai ML6.0 earthquake in Gansu occurred on 26 August 2021 during
the curve ascent process, exceeding the threshold line. The curve reached its peak again in
January 2022. Table 2 shows that the advantageous extrapolation time in the central and
western sections of the Qilian Mountains was 170 days, so the validity period should be until
20 June 2022. From January 2022 to 20 June 2022, the study region experienced the Qinghai
Menyuan ML7.1 earthquake on 8 January 2022, the Gansu Sunan ML5.5 earthquake on
17 March 2022, and the Qinghai Delingha ML6.3 earthquake on 26 March 2022, respectively,
proving that the extrapolation effect in this study area was very good.

 
Figure 10. Central and western sections of the Qilian Mountains (within the dashed box) and ML ≥
5.5 earthquakes from January 2016 to December 2021.
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Figure 11. The MSER changes of the central and western sections of the Qilian Mountains.

The extrapolation test period for the central and western sections of the Qilian Moun-
tains began in January 2016. The spatial evolution of the MSER anomaly before the
8 January 2022 Qinghai Menyuan ML7.1 earthquake showed that the anomaly amplitude
in the study area began to increase from August 2020, with the largest anomaly increase
in November 2021 (Figure 12). The red pentagram in Figure 12 represents the epicenter
position of the Qinghai Menyuan ML7.1 earthquake in January 2022.

 

Figure 12. The spatial evolution of the MSER of central and western sections of the Qilian Mountains
from June 2020 to September 2021.

4. Discussion

The abnormal patterns of different parameters before the target earthquakes were
different. There were differences in the starting times, peak values, and end times of
the anomalies. The comprehensive analysis method of seismic parameters can com-
bine single parameters related to physical processes at different stages of earthquake
preparation, which could extract the comprehensive abnormal characteristics during the
earthquake preparation process more accurately. Wang [10] conducted a comprehensive
multi-parameter study on earthquakes from 1979 to 2008 in the western section of south-
ern Tianshan, and the results showed that target earthquakes in the study area exhibited
significant high-probability anomalies of multiple parameters 1–2 years prior to the earth-
quakes. This research conclusion was consistent with the advantageous extrapolation time
of 380 days in the western section of southern Tianshan in this paper. In addition, the
anomaly-corresponding rate is the ratio of the number of anomalies corresponding to the
target earthquake to the total number of anomalies. The earthquake-corresponding rate
is the ratio of the number of target earthquakes with anomalies before the earthquake to
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the number of target earthquakes. By statistically analyzing the anomaly-corresponding
rates and earthquake-corresponding rates of single parameters and multiple parameters
in different inspection periods and regions of Xinjiang (Table 3), it was found that the
anomaly-corresponding rates and earthquake-corresponding rates of multiple parameters
were indeed higher than the predictive efficiency of a single parameter.

Table 3. The anomaly-corresponding rates and earthquake-corresponding rates of single parameters
and multiple parameters in different regions of Xinjiang [10].

Study Region

Single Parameter Multi-Parameter

Anomaly-
Corresponding

Rate (%)

Earthquake-
Corresponding

Rate (%)

Anomaly-
Corresponding

Rate (%)

Earthquake-
Corresponding

Rate (%)

West section of
Tianshan 54.32 46.88 66.67 68.75

Baicheng-Kuche
region 49.66 58.29 70.50 95.00

Korla region 55.64 63.69 70.59 83.33
Keping region 73.12 55.71 100.00 77.50

Related studies had also found that—when combined with methods such as PI, LURR,
SV, and AMR—the earthquake prediction performance was better than that of a single
method [18]. At present, this study mainly applied different seismological parameters
for comprehensive analysis through machine learning. This method could also compre-
hensively calculate other observation data of earthquake precursors, such as deformation,
electromagnetic, and underground fluid anomalies. It was even possible to merge and
summarize all seismic observation data to complete a comprehensive probability analysis.
At the same time, by analyzing the spatial evolution of the MSER during the extrapolation
test periods, it was found that the target earthquakes generally occurred after the maximum
amplitude of anomaly enhancement was reached, and the epicenter was located in or near
the anomaly concentration area. This indicated that the model obtained by using this
method for machine learning of historical earthquakes had a good extrapolation effect,
which can provide a reference for the seismic hazard of the study area.

In addition, the R-value in this manuscript is different from the linear correlation
coefficient, R, which measures the relationship between two sets of data. The R-value
evaluation is calculated by the difference between the earthquake prediction accuracy rate
and the time occupancy rate of prediction, as outlined in Formula (8). The best prediction
performance corresponds to paying the minimum cost (O→0) at the highest accuracy rate
(A→1), that is, R→1. On the contrary, the worst prediction performance corresponds to
paying the maximum cost (O→1) at the lowest accuracy rate (A→0), that is, R→−1. It is
generally believed that when R > 0, the success rate of the forecasting is higher than the
random probability, and this result has a certain predictive effectiveness [25]. R0 represents
the derived R-value based on the significance level of 5% (95% confidence level). Therefore,
when R > R0, the predicted result is considered to have high statistical significance [27,28].

5. Conclusions

Twelve regions in the western Chinese mainland were studied using a comprehensive
multi-parameter method, selecting sufficient earthquake events for machine learning to
extrapolate and predict the risk of the study areas. The results showed that there were
three structural regions with obvious anomalies during the extrapolation period, namely
the border regions of Qinghai and Xizang, the western section of southern Tianshan, and
the central and western sections of the Qilian Mountains. And the three structural regions
all had corresponding target earthquakes within the advantageous extrapolation time.
A total of seven advantageous seismological parameters were selected for training and
calculation. In order to eliminate errors, all 12 study areas in this paper used the same
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seismic parameters, parameter thresholds, spatiotemporal scanning scales, and anomaly
threshold lines for their calculation data.

In the calculated results, the extrapolation times of the border regions of Qinghai
and Xizang started from January 2021, and the results showed that the relevancy curve
of extrapolation was in a highly abnormal state. During the advantageous extrapolation
time, the Xizang Biru ML6.4 earthquake on 19 March 2021 and the Qinghai Maduo ML7.9
earthquake on 22 May 2021 occurred, which were similar to the change states of the
previous Xizang Nierong ML6.4 earthquake on 24 March 2010 and the Qinghai Yushu
ML7.4 earthquake on 14 April 2010. Both spatial evolution processes were also very similar,
with earthquakes occurring in areas with abnormally high values and their vicinity. This
indicated that the seismic activity in this area had a certain regularity. If similar anomalies
occur again in the future, it will be necessary to be vigilant about the risk of short-term
continuous occurrences of earthquakes in this region.

The extrapolation effects in the western section of southern Tianshan and the central
and western sections of the Qilian Mountains were both highly well through the machine
learning-based detection of seismic multi-parameters. The anomaly-corresponding rate and
earthquake-corresponding rate were all very high in the calculated results. The application
of the comprehensive analysis of seismic multi-parameters in the western Chinese mainland
could not only infer the urgency of the target earthquakes (in terms of time) but also
distinguish the possible areas where the target earthquakes occurred from the spatial
distribution of abnormal areas. In all, the results showed that the extrapolation effect using
the machine learning method in the western Chinese mainland was very good.
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Abstract: In passive seismic exploration, the number and location of underground sources are very
random, and there may be few passive sources or an uneven spatial distribution. The random
distribution of seismic sources can cause the virtual shot recordings to produce artifacts and coherent
noise. These artifacts and coherent noise interfere with the valid information in the virtual shot
record, making the virtual shot record a poorer presentation of subsurface information. In this paper,
we utilize the powerful learning and data processing abilities of convolutional neural networks to
process virtual shot recordings of sources in undesirable situations. We add an adaptive attention
mechanism to the network so that it can automatically lock the positions that need special attention
and processing in the virtual shot records. After testing, the trained network can eliminate coherent
noise and artifacts and restore real reflected waves. Protecting valid signals means restoring valid
signals with waveform anomalies to a reasonable shape.

Keywords: convolutional neural networks; improved Res-U-net; denoising; passive seismic;
reconstruction

1. Introduction

In seismic surveys, noise in the subsurface tends to interfere with effective signals. Its
signal is weak but widely distributed and haphazard, and we often resort to various techniques
to eliminate it. However, waves generated by vibrations from underground sources will carry
information about underground tectonics as they propagate. If noise can be used, it can act as
a substitute for an active source. In some cases where active source excitation is not possible,
such as near cities, it is sufficient to set up geophones to receive passive sources of signals. At
the same time, passive acquisition is cost-effective because there is no need to excite seismic
sources. Furthermore, due to the rich frequency range of subsurface noise sources, there are a
large number of low-frequency signals [1]. Therefore, passive sources are more advantageous
than active sources in large-scale, deep seismic surveys.

After acquiring the passive source seismic record, we can use seismic interferometry [2,3] to
reconstruct the passive source seismic record into a virtual shot record similar to the active source
seismic shot record. However, using seismic interferometry to reconstruct passive seismic data
inevitably results in coherent noise and artifacts. The noise has a greater impact on deteriorating
the reconstruction of seismic data when the attenuation of the medium is high [4]. Removing
the effects of this coherent noise and artifact disturbances is an ongoing effort by geophysicists.
The F-K [5] filtering-based processing can suppress the coherent noise to some extent, but it
may cause damage to the effective wave. Suppressing the coherent noise in the Radon domain
has also been tried several times [6–8], but there is still a problem of low resolution. Rabiner
et al. [9] created a median filtering denoising method and later produced many derivative
algorithms [10,11]. They can operate on pixels on the image, but their small windows have no
effect on coherent noise and artifacts, and large windows will blur effective signals.
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The above methods can remove coherent noise and artifacts to some extent. However,
they can harm the effective signal or suppress it poorly. The selection of parameters will
have a large impact on the processing effect, which is somewhat subjective. In addition,
this method cannot effectively recover the effective waveform.

Deep learning learns deep features of images and other information by training
neural networks. LeCun [12] and others first invented a convolutional neural network and
achieved good results in handwritten digit recognition. The AlexNet, invented by Hinton
et al. [13], has achieved good results in image recognition and won the championship
in the image recognition contest, setting off an upsurge of in-depth learning. Since then,
various deep learning networks have sprung up in the public’s view, such as VggNet [14],
ResNet [15], FCN [16], DnCNN [17], and UNet [18]. These networks have achieved good
results in classification and image segmentation. Based on ensuring the accuracy of manual
recognition and conventional methods, they have higher processing efficiency, so they have
been widely developed in various fields.

In recent years, thanks to the upgrading of computer hardware resources, deep learning
algorithms have been widely used in the geophysical field. Gu et al. [19] realized low-
frequency reconstruction in full-waveform inversion based on deep learning. Parasyris
et al. [20] synthetic data generation for deep learning-based inversion for velocity model
building. Zhang et al. [21] used interactive salt segmentation from 3D seismic images using
saltisnet3d. Tao et al. [22] acoustic impedance inversion of seismic imaging profiles using self-
attentive U-Net. Xiong et al. [23] use SafeNet to identify seismic disturbances. Sun et al. [24]
accomplished low-frequency extrapolation of multicomponent data in Elastic FWI using deep
learning. Wang et al. [25] used the MCMC inverse problem method of neural networks to
perform numerical simulations in GPR cross-hole full waveform inversion. Liu et al. [26]
used fine-tuned FPN to achieve microseismic first-arrival pickup. Lou et al. [27] proposed
MCDL to achieve seismic volume dip estimation. Dou et al. [28] used the “MDA GAN“ of the
adversarial network to realize 3D seismic data interpolation and reconstruction.

In this research, a convolutional neural network is used to identify and suppress the
coherent noise and artifacts of the virtual shot record. We obtain passive seismic records with
a small number of sources and passive seismic records with a large number of sources through
forward simulation. Using seismic interferometry, they are reconstructed as virtual shot
records, respectively. The reconstructed records of passive seismic records with fewer sources
are used as training data, and the reconstructed records of passive seismic records with more
sources are used as training labels. The network is utilized to mine the features of passive
data with better passive seismic source effects. Using neural networks to suppress coherent
noise and artifacts and restore waveforms in parts where waveforms are not continuous
enough. For the virtual shot records with an uneven source distribution, we use the virtual
shot records with a wide source distribution as labels. At this time, the task of the network
is not only to suppress coherent noise and artifacts and restore the ductility and continuity
of the waveform, but also to restore the event of linear intersection to the event of double
curvature. Although they are two tasks, we use the same network model to implement them
and take a large number of evenly distributed virtual shot records as the training labels for the
two tasks. Therefore, if the above two conditions are not ideal when we are collecting passive
sources, we can reduce their impact on our seismic records and finally obtain better results,
which improves the applicability of passive seismic exploration.

2. Theory and Method

2.1. Cross-Correlation Seismic Interferometry

Seismic interferometry generally includes the cross-correlation method [29], the deconvo-
lution method [30], and the cross-coherence method [31]. Although the multi-dimensional
deconvolution method and cross-coherence method can alleviate the impact of fewer sources
and uneven source distribution on the virtual shot to a certain extent, they still cannot achieve
good results for very extreme source distribution. Here, we used the cross-correlation method,
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which is the most efficient and stable method, to reconstruct the seismic virtual shot. The
reconstruction method of cross-correlation can be expressed as:

R(xB, xA, t) + R(xB, xA,−t) = δ(xH,B, xH,A)δ(t)− T(xA,−t) ∗ T(xB, t)

where R(xB, xA, t) stands for the seismic response excitation at xA and received at xB;
R(xB, xA,−t) represents its noncausal part; δ() represents the Dirac function; and T(xA, t)
and T(xB, t) represent the transmitted wave responses at xA and xB, respectively.

When we use the equation for the mutual correlation reconstruction, we keep the xA
channel unchanged and each of the remaining channels as xB, respectively. Then, we can
obtain the reconstruction record with the xA channel vertex as the excitation point and all
channels as the reception points according to the original position of each channel. The
reconstruction results here can be divided into two parts: the uncaused part and the causal
part. It is a fundamental assumption of seismic interferometry [32] that requires no loss in
the medium and a uniform distribution of the sources. Having satisfied these assumptions,
we consider the causal part to be symmetrical with the noncausal part. By flipping and
summing the causal and non-causal parts, we can obtain a virtual shot record with a higher
signal-to-noise ratio. As a result, it is possible to flexibly construct the virtual shot record of
a shot point at any detector position when reconstructing passive source seismic data with
seismic interferometry without knowing the real source location.

However, when the number of sources is small under not widely distributed condi-
tions, this will lead to spurious reflections and discontinuities in the waveform of the axes.
If the source distribution is not uniform, when the virtual source is located on the side
where the source distribution is lower, the reflected wave will be anomalous to a straight
line. In contrast, the false-shot recordings where the false seismic source is located on the
side with more source distribution will have discontinuous reflected waves and artifacts.

2.2. Deep Learning Algorithms

Based on the above problems in the reconstruction process of non-extensive passive
source distributions, we hope to restore virtual source records that conform to physical
rules, have good continuity, weak coherent noise, and do not contain spurious axes. Here,
we propose to use the UNet network for imperfect virtual shot records. Since the direct
wave energy in the virtual shot records is strong and the reflected wave energy is weak,
we introduced attentional gating (AG) [33] to add multiple attentional layers to the UNet,
allowing it to focus more of its learning on the reconstruction of the reflected waves in the
lower part of the record.

The AG, first proposed in the medical field, aims to mimic the human attention
mechanism by targeting and focusing on salient features in the data, which can make the
model more efficient. It enables local regions to receive special attention, automatically
learning to focus on the structural features of the target, suppressing irrelevant regions
of the input image, and highlighting features useful for a specific task. Validated on a
dataset in the medical domain, the results obtained show that not only can it be integrated
into a network model with minimal computational overhead, but it will also improve the
flexibility and predictive performance of the network. Here, we adopt a lightweight CBAM
attention mechanism [34] to make the network more capable of learning. When the network
transforms a graph into a feature map, it can simultaneously generate specific feature map
information on the channel and spatially. It also performs adaptive operations with the
incoming feature maps and finally outputs the feature maps after the action of the attention
mechanism. We drew inspiration from residual thinking in ResNet and added residual
connections to the network to achieve optimal performance and reduce training difficulty.
The network we used is shown in Figure 1.
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Figure 1. Network structure of improved U-net.

We used virtual shot records with fewer sources and unevenly distributed sources
as training datasets, respectively. We used virtual shot records with more sources and
randomly distributed in the subsurface as labels. We normalized the virtual shot records
with the following equation:

x =
x − xmin

xmax − xmin

where x represents the value of a point in the virtual shot record; xmin represents the
minimum value in that record; and xmax represents the maximum value in that record.
Here, we did not normalize the data using the extreme values in the whole data. This
is to prevent anomalies in signal strength for some records. We also did not normalize
the data using the usual per-track extremes. This is to prevent a blind-like imbalance
in the processed data due to differences between seismic traces. We use single record
normalization, using the maxima and minima of each virtual shot record to normalize,
ensuring high contrast and continuity of pixel points horizontally for each record.

After preprocessing the data, we can then feed the processed dataset into our network.
The optimizer is Adam; the activation function is ReLU except for the last layer, which is
sigmoid; and the loss function is MSE:

loss(y1, y2) =
1
N ∑N

i=1(y2 − y1)
2
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where N represents the sum of the number of pixels in a single seismic record; i represents
the number of elements processed by the neural network; and y2 and y1 represent the
predicted and target values (labels) of the network, respectively.

In general, there are some difficulties in using passive seismic reconstruction records
as a dataset. If the active seismic record is chosen as the label, the valuable low frequency
information in the passive source data will be lost. If the more effective virtual shot records
are chosen as labels, some noise will inevitably be generated. In this paper, we believe that
it is more important to protect the low-frequency signal. Therefore, for better, effect virtual
shot records are chosen as labels.

3. Numerical Example

3.1. Enhanced Reconstruction Results for a Small Number of Seismic Sources

In this paper, virtual shot records are obtained from twenty velocity models. The
velocity model as shown in Figure 2 will be used to obtain passive seismic records, which
will be reconstructed into virtual shot records to be used as test data. These velocity models
used to generate the training and test sets are randomly generated. To demonstrate the
generalizability of the method, the test set is not included in the training set. Here the grid
size of the velocity model is 2 m, the geophone spacing is 1 grid spacing, and the sampling
interval is set to 1 ms to receive a total of 200 passive seismic records. Random noise
sequences were used for the seismic sources. Each velocity model contains 128 seismic
traces, and since the intercorrelation method allows the construction of shot points at any
geophone point, 128 virtual shot point seismic records can be generated. To address the
poor results of reconstructed records due to the small number of sources, we used them as
training data and used reconstructed records with a large number of evenly distributed
sources as labels. To compress the training cost and reduce unnecessary training, we only
show the virtual shot records of the first 800 sampling points after reconstruction. We show
the two source distributions as training sets and training labels under the velocity model
(see Figure 3). The virtual shot records used as training data are obtained by reconstructing
the passive source seismic records under the source distribution shown in Figure 3a. Under
the distribution of seismic sources shown in Figure 3b, we reconstructed the virtual shot
records as training labels. By inputting training data and training labels into the network,
we can obtain a trained network. This network can process the waveforms of the virtual
shot records.

(a) (b)

Figure 2. Velocity models used for the test data. (a) Test model 1; (b) test model 2.

(a) (b)

Figure 3. Completely randomized distribution of passive seismic sources. The red dots represent
where the sources are located. (a) Distribution of a small number of sources. (b) Distribution of a
large number of sources.
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Our computing device was a Nvidia Quadro RTX 4000, and our neural network
framework was TensorFlow-GPU 2.6.0 with 8 GB of video memory. To improve the
generalization of the network, we set the batch size to 4, the learning rate to 0.00001, and
gave a large dropout value of 0.5. We selected 2560 seismic records as training data and
256 seismic records as test data. After 1000 iterations, the loss of the network converges,
and training is complete. The loss and decline of the network are shown in Figure 4. We
fed the test data into the network, and the results are shown in Figures 5 and 6.

Figure 4. The loss convergence of the network.

(c) (d)

(a) (b)

Figure 5. The processing results display virtual shot records with a small number of seismic sources
under test model1. (a) A virtual shot of a small number of sources and input data. (b) A virtual shot
of a large number of sources, labeled. (c) Processing result of attention mechanism UNet, prediction.
(d) Processing result of improved network prediction.
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(c) (d)

(a) (b)

Figure 6. The processing results display virtual shot records with a small number of seismic sources
under test model2. (a) A virtual shot of a small number of sources and input data. (b) A virtual shot
of a large number of sources, labeled. (c) Processing result of attention mechanism UNet, prediction.
(d) Processing result of improved network prediction.

To test whether the performance of our designed network is enhanced compared to the
original network, we set the UNet neural network with attention mechanisms as the control
group to test the improvement effect. By comparison, we can see that the coherent noise is
effectively suppressed by the processing of the neural network. To solve the above problem that
passive virtual shot records as labels may still be noisy, we found that both the training set and
its labels contain a certain amount of coherent noise during the training process. However, due
to the differences in objective factors such as their source locations and numbers, the training
data and labels corresponding to the same virtual shot recordings under the same velocity
model are similar in terms of effective waveforms when reconstructed, whereas the coherent
noise in the virtual shot recordings is unmatchable. This also leads to the fact that our neural
network does not learn the invalid features of the relevant noise during training. Although
the labels also inevitably contain some coherent noise, which is an interesting finding in our
suppression of coherent noise. Similarly, it is difficult for the neural network to learn the features
of the artifacts because the features recorded by the virtual shot vary in each training data, and
the corresponding virtual shot labels contain few or no artifacts in the same position. As a
result, the artifacts are eliminated. In contrast, since the effective signals on the training data
and corresponding labels are similar, our neural network can learn their features. Therefore, the
weaker effective waveforms in the virtual shot records of a small number of sources are better
protected and enhanced. In addition, where waveform discontinuities are present, our network
complements them, restoring waveforms with good continuity.
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Although these networks can suppress coherent noise and artifacts effectively, they
also extract effective signals. However, it can be clearly seen that the improved network
can suppress noise more thoroughly. The continuity of the same waveform axis is better
and clearer, which also proves that our improvement of the network is effective.

In this section, we experiment with neural networks to reconstruct records of unevenly
distributed seismic sources. Using the velocity model from the previous section, we can
concentrate the subsurface seismic sources in a small region for numerical simulation. The
resulting passive seismic source records are reconstructed into unevenly distributed virtual
shot records. The distribution of seismic sources is shown in Figure 7.

(a) (b)

Figure 7. Schematic diagram of source distribution. The red dots represent where the sources are
located. (a) Schematic diagram of inhomogeneous source distribution. (b) Schematic diagram of
homogeneous source distribution.

After 400 iterations, our network was trained, and we fed the test data into the network,
which was processed as shown in the figure. To test the generalizability of our network
under different models and the processing performance for virtual shots located at different
positions, we selected records of virtual shots located in multiple locations for display (see
Figures 8 and 9).

Similar to the previous section, we can still use both of our neural networks to suppress
coherent noise and artifacts. We can revert to a reasonable hyperbolic homogeneous axis in
the virtual shot records on the side without the source distribution; we suppress the spurious
homogeneous axis on the side with the source distribution. At the same time, the problem
of insufficient continuation of the waveform is well resolved. We analyze that since there
are many linear intersecting homography features in the training set corresponding to the
hyperbolic homography axes in the training labels, it is possible to learn the corresponding
features. The reason that coherent noise with artifacts can be suppressed is also similar to
the previous section. In the tracts with the right side of the seismic distribution, our neural
network recovers its waveform even though the training data are broken waveforms.

(a) (b)

Figure 8. Cont.
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(c) (d)

Figure 8. The processing results display virtual shot records with uneven seismic sources under
test model1. (a) A virtual shot of uneven seismic sources and input data. (b) A virtual shot of
uniformly distributed sources, labeled. (c) Processing result of attention mechanism UNet prediction.
(d) Processing result of improved network prediction.

(a) (b)

(c) (d)

Figure 9. The processing results display virtual shot records with uneven seismic sources under test
model2. (a) A virtual shot of uneven seismic sources and input data. (b) A virtual shot of uniformly
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distributed sources, labeled. (c) Processing result of attention mechanism UNet prediction. (d) Pro-
cessing result of improved network prediction.

In the testing of uneven source distribution, we can see that both networks can
effectively suppress coherent noise and artifacts. However, when carefully comparing
the processed waveforms, we found that the virtual records processed by the improved
network showed clearer and more continuous waveforms.

3.2. Virtual Shot Record Processing under a Complex Model

In the experiment with the simple layered model, we have achieved good processing
results for simple seismic records. When the velocity model becomes complex, the seismic
record will inevitably become complex. In order to test the effect of our method on
processing complex seismic records, we used the virtual shot record generated by the
complex velocity models to train the neural network. The complex velocity models are
shown in Figure 10, and their processing results are shown in Figures 11 and 12.

(a) (b)

Figure 10. Complex velocity model of test data. (a) Test model 1; (b) test model 2.

Through the above comparison before and after processing, we can find that in the
face of complex models, even if the number of sources is sufficient and the distribution is
uniform, the virtual shot record is not perfect. In the face of imperfect processing tasks, the
network processing effect is still good.

In the case of a small number of sources, our network can still remove a large number
of virtual events and coherent noise from the virtual shot record and effectively restore the
discontinuous events to continuous events.

In the case of dealing with unevenly distributed sources, the network also removes a
large number of spurious events and coherent noise from the virtual shot recordings. It
will also effectively reduce linear intersection events to hyperbolic events that conform to
physical laws.

(a) (b)

Figure 11. Cont.
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(c) (d)

Figure 11. The processing results display virtual shot records with a small number of seismic sources
under test model1. (a) A virtual shot of a small number of sources. (b) A virtual shot of a large
number of sources, labeled. (c) Processing result of improved network prediction. (d) The residual
between the processing result and the test label.

(a) (b)

(c) (d)

Figure 12. The processing results display virtual shot records with uneven seismic sources under test
model2. (a) A virtual shot of uneven seismic distributed sources and input data. (b) A virtual shot of
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uniformly distributed sources, labeled. (c) Processing result of improved network prediction. (d) The
residual between the processing result and the test label.

It can be seen that our method has achieved good results not only in the simple
layered model but also in the complex model. This result also proves that this method has
wide applicability.

We can see that the waveforms in the wavefield become more complex in spite of the
fact that the velocity model becomes complex, resulting in the waveforms in the wavefield
becoming more complex. Our network still suppresses the coherent signal at a low level.
For the virtual shot records of a small number of sources, the waveforms are clearer with
our network processing. For the virtual shot records of sources distributed only on one side,
the waveform anomalies are restored to a reasonable shape by our network processing.

After achieving good results in the processing of virtual shot records for conventionally
small numbers of sources and for conventionally unevenly distributed sources, we tried
to process the virtual shot records for extremely distributed sources. The two extremely
distributed sources are shown in Figure 13. They are the sources located in the shallow
space and the sources located in the narrow range, respectively.

(a) (b)

Figure 13. Schematic diagram of two extreme distributions of seismic sources. The red dots represent
where the sources are located. (a) The sources are located in a shallow space. (b) The sources are
located in a narrow range.

After processing using neural networks, the results are shown in Figures 14 and 15.
It can be seen from the comparison figure that the virtual shot records corresponding to
these two extreme signal source distributions contain a large number of spurious events
and coherent noise. Moreover, the false reflections are stronger in the reconstructed records,
and the ductility of the effective signal reflection waveform is not enough.

(a) (b)

Figure 14. Cont.
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(c) (d)

Figure 14. The processing results display virtual shot records with uneven seismic sources under test
model1. (a) A virtual shot of shallow spaces distributed sources and input data. (b) A virtual shot of
uniformly distributed sources, labeled. (c) Processing result of improved network prediction. (d) The
residual between the processing result and the test label.

(a) (b)

(c) (d)

Figure 15. The processing results display virtual shot records with uneven seismic sources under test
model1. (a) A virtual shot of narrow spaces distributed sources and input data. (b) A virtual shot of
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uniformly distributed sources, labeled. (c) Processing result of improved network prediction. (d) The
residual between the processing result and the test label.

After processing with the neural network, we successfully restored the waveform
of the effective signal to a reasonable level. We can see from Figures 13 and 14 that the
effective signal in the processed wavefield is stronger. It can be seen that our network can
still recover effective signals from the artifacts and coherent noise.

4. Discussion

In passive-source seismic exploration, the number and distribution of subsurface
sources are very random. The traditional seismic interferometry needs to satisfy the
uniform distribution of the sources and be at a certain depth to reconstruct a high-quality
virtual shot record. And the number and distribution location of undesirable seismic
sources have a great impact on the virtual shot record.

Some conventional classical interferometric methods, such as inverse convolutional
seismic interferometry [30], and algorithms developed on this basis, such as multidimen-
sional deconvolutional seismic interferometry [35], can mitigate the effect of the inhomoge-
neous distribution of sources on the virtual seismic recordings to some extent. However,
all of these methods require strict constraints on the uniform distribution of the geophones
and the excision of the direct waves (which is very difficult to achieve for the noise sources).
On this basis, the inverse is applied to the records received by all geophones. This operation
is not only computationally huge, but the process is extremely unstable. These methods
also do not give good results for specific source distributions (such as sources distributed
in a narrow range on the survey line). In the method using deep learning, Sun et al. [36]
used neural networks to make the virtual seismic record under uneven source distribution
and learn the signal of the active source. Not only were a lot of artifacts eliminated, but
the waveforms were also clearer. However, there is no discussion of the extreme case of
distributed sources or the case of a small number of sources. And the use of active source
records for labeling may cause some loss of low-frequency signals.

Compared with the improved seismic interferometry of the inverse convolution class,
the cross-correlation-based seismic interferometry has fewer limitations, is computation-
ally stable, and does not require strict uniform arrangement of geophones, cumbersome
resection of direct waves, or computationally unstable inverse operations. And using the
virtual seismic records of passive sources as labels for the training of the network can not
only retain the low-frequency signals better but also train better due to the higher degree
of similarity. Therefore, this method can improve the application effect of passive source
seismic exploration to a certain extent on the basis of no additional requirements on the
observation system and no loss of low-frequency signals. In this paper, we only show four
of these cases of seismic source inactivity. After processing according to our network, the
influence of the number and distribution of sources on the virtual seismic record can be
reduced to some extent.

Only four of these inactive cases are shown in this paper. After the processing based
on our network, the influence of the distribution of the seismic sources on the virtual
shot records can be reduced to a certain extent. Therefore, this method can improve the
application of passive source seismic exploration to some extent.

In the future development trend, with the future development of computing equip-
ment and deep learning technology, there will be neural networks with better processing
effects, which can solve the influence of the distribution of more complex seismic sources
on the virtual shot record.

5. Conclusions

In this paper, a wavefield enhancement technique based on a convolutional neural
network for passive seismic reconstruction records is proposed. The reconstructed virtual
source records with a small number of sources and uneven source distribution are fed into
the trained convolutional neural network, and the virtual source records with suppressed
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artifacts and coherent noise are obtained. The unphysical axes are restored to hyperbolic
axes, and the low-frequency advantage of passive seismic surveys is retained.

Compared with reconstructed virtual shot recordings with a better number and distri-
bution of sources, we retain accurate waveform information and low-frequency features
with a lower proportion of noise. The network also has good generalization ability.

For passive sources that are not active in the subsurface, including the case where the
number of sources is small and unevenly distributed, we provide a technical approach
that ensures the effectiveness of passive seismic survey methods. It ensures high quality
passive seismic reconstruction records when the sources are not widely distributed. The
actual processing efficiency is high, and real-time monitoring can be realized.
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Abstract: Microseismic monitoring plays an essential role for reservoir characterization and earth-
quake disaster monitoring and early warning. The accuracy of the subsurface velocity model directly
affects the precision of event localization and subsequent processing. It is challenging for traditional
methods to realize efficient and accurate microseismic velocity inversion due to the low signal-to-
noise ratio of field data. Deep learning can efficiently invert the velocity model by constructing a
mapping relationship from the waveform data domain to the velocity model domain. The predicted
and reference values are fitted with mean square error as the loss function. To reduce the feature
mismatch between the synthetic and real microseismic data, data augmentation is also performed
using correlation and convolution operations. Moreover, a hybrid training strategy is proposed by
combining synthetic and augmented data. By testing real microseismic data, the results show that the
Unet is capable of high-resolution and robust velocity prediction. The data augmentation method
complements more high-frequency components, while the hybrid training strategy fully combines
the low-frequency and high-frequency components in the data to improve the inversion accuracy.

Keywords: microseismic velocity inversion; deep learning; data augmentation; hybrid training; Unet

1. Introduction

Microseismic monitoring plays an important role for both fault/fracture characteriza-
tion and seismic risk analysis in unconventional reservoirs and rock masses [1–5]. Most
current microseismic inversion procedures require realistic velocity models. For example,
the reliability of microseismic inversion and interpretation depends heavily on the accuracy
of the velocity model [6,7]. However, most microseismic velocity models used in produc-
tion are directly adapted from the well-logging curves, which are generally approximate to
simplified models and may be contaminated by noise. Various velocity model calibration
methods have been proposed based on traveltime (difference)-based inversion [8–10]. Addi-
tionally, full waveform inversion (FWI), as a strong inversion tool, has also been introduced
to microseismic inversion [11,12]. However, FWI usually involves a higher computational
demand and is also affected by cycle skipping due to the sinusoidal nature of the wavefield
and complex scattering [13]. Cycle skipping can lead convergence at local minima and thus
yield incorrect velocity models.

Traditional traveltime-based velocity inversion and full-waveform inversion rely on
data quality, such as signal-to-noise ratio (SNR) [14]. However, the real microseismic
data are usually of low SNR, which largely affects the accuracy of the inversion. In ad-
dition, traditional velocity inversion methods rely on the accuracy of the initial velocity.
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Recently, deep learning (DL) has shown excellent capabilities for nonlinear mapping func-
tion approximation in computer vision, especially in the tasks of reconstructing models
and high-resolution images [15,16]. The development of DL has also brought new oppor-
tunities to seismic and microseismic data processing and inversion [17], such as signal
denoising [18], signal identification and classification [19,20], first-arrival picking [21–23],
source location [24], and velocity model building and calibration [25]. Using seismic wave-
forms as the feature input and velocity models as the labels, the trained models with the
nonlinear mapping capability of neural networks can effectively predict velocity models
from seismic waveforms. There are already several studies on using DL algorithms to
invert velocity models. Araya-Polo et al. [26] extracted features from the acquired seismic
data and proposed using deep convolutional neural networks (DCNNs), instead of seismic
tomography, to reconstruct velocity models. Yang et al. [27] proposed a supervised deep
fully convolutional neural network (FCN) approach to build velocity models directly from
raw seismic data.

However, there are only a few studies on DL-based downhole microseismic velocity in-
version to take advantage of the nonlinear mapping ability of deep neural networks (DNNs)
to carry out velocity inversion tasks [28,29]. Unlike velocity model inversion in active seis-
mology, there is generally only one velocity model corresponding to hundreds, possibly
even thousands, of microseismic events. The combination of abundant microseismic events
within restricted regions and limited velocity model information hinders dataset construc-
tion and network performance. Additionally, microseismic processing and interpretation is
dependent on activities and geology in the region of interest, which may limit the availabil-
ity of past microseismic events for DL algorithms. In this sense, the training data play a
vital role to ensure the learning performance of the network. FWI in active seismology relies
heavily on low-frequency components [30], while field microseismic data generally contain
higher frequency contents than active seismic data, and the high-frequency information
might be missing in synthetic data considering the computational expense. Yang et al. [31]
found that integrating physical information with synthetic data can improve the effective-
ness of the training data and network performance. Alkhalifah et al. [32] employed the
domain adaptation approach to introduce real signal features into the synthetic data by
correlation and convolution operations. They demonstrated the effectiveness of domain
adaptation by applying it to seismic imaging problems. Wu et al. [33] proposed to inte-
grate domain knowledge to impose prior constraints for geophysical problems, which can
improve the generalizability and interpretability of DNN models.

In this study, we adopt the Unet model to construct a mapping relationship between
microseismic waveform data and the velocity model. The data augmentation is imple-
mented by correlation and convolution operations to alleviate the feature differences
between the training and real data. We also propose a hybrid training strategy to better
integrate the low-frequency feature in synthetic data and high-frequency feature in aug-
mented data. By testing real data of downhole microseismic monitoring, we demonstrate
that the proposed data augmentation and hybrid training strategy is reliable and effective
in predicting microseismic velocity models.

2. Methodology

2.1. Velocity Inversion and Network Architecture

The velocity inversion can be expressed as the minimization of the following objective
function:

J =
∥∥∥dsyn − dobs

∥∥∥
2

(1)

where J is the objective function, ‖ ‖2 denotes the Euclidean norm, dsyn is the synthetic data
vector, and dobs is the recorded data vector.

Conventional methods for velocity inversion include seismic tomography and full-
waveform inversion, which are based on travel time and waveform, respectively. As
mentioned before, the two methods rely on the data quality and the setting of the initial
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velocity model, both of which cannot be well satisfied in microseismic monitoring. In this
paper, we use neural networks to solve this nonlinear function. Neural networks can create
strongly nonlinear mappings between microseismic gathers and velocities by building
multiple hidden layers:

v = Net(d; θ) (2)

where v ≡ [vp, vs] denotes the predicted velocity value, and θ indicates the total weight in
the network. The training process of the network is realized through forward propagation
and back propagation in the network models to update the θ. The testing process involves
directly predicting the velocity model by inputting waveform data to the trained model.

We adopt the Unet (Figure 1), as it has shown great potential for many geophysical
inversion tasks [34,35]. We make microseismic data and the associated velocity model
{d, v} in pairs as the network input. We use the leaky rectified linear unit (LeakyReLU)
activation function, which alleviates the problems of gradient vanishing and allows for a
better fitting of the model [36].

θ

θ

θ

Figure 1. Unet network architecture. Gathers are input features, and the outputs are velocity models.
Each box represents the output feature map of the convolutional layer. The number at the top of
each box indicates the channel number in the corresponding feature map. The encoder consists of
a convolution layer with a 3 × 3 convolution kernel size (blue arrow), a batch normalization (BN)
layer, a leaky rectified linear unit (LeakyReLU), and a 2 × 2 maximum pooling layer and the Dropout
layer (yellow arrow). Each decoder replaces the maximum pooling layer with a 5 × 5 transposed
convolution layer (black arrows). Skip connections indicate the corresponding channel feature maps
connecting the encoder and decoder sections (green arrows).

2.2. Data Augmentation

Domain adaptation refers to learning when the feature distributions of the source
and target domains are inconsistent [37]. It aims to narrow the distribution gap between
the two domains to achieve a better learning performance in the target domain. Based
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on the idea of domain adaptation, data augmentation is achieved by linear operations of
correlation and convolution operations between synthetic and real data [38]:

di
s(t) = di

s(t)⊗ dk
s(t) ∗ dij

r (t)⊗ dij
r (t) (3)

where i is the index of the single trace, j is the index of an arbitrary event of the real data,
k is the index of the reference trace and we set k = 1, di

s(t) is the new augmented data,
di

s(t) is the single trace of the synthetic data, dk
s(t) is the reference trace of the synthetic

data, dij
r (t) is the single trace of the real data, ⊗ is the correlation operator, and ∗ is the

convolution operator.
Here, we randomly select one reference field event for each synthetic event correspond-

ing to each stage and set the first trace as the reference trace. The high-frequency informa-
tion in the real data can be implicitly introduced through the operations in Equation (3).
The correlation operation can eliminate the effects of recording time delays between the
synthetic and real data. The data augmentation operation can reduce the feature difference
between the training (source) synthetic data and the (target) real data and will finally
contribute to enhancing the performance of the neural network model when applying to
the real data.

2.3. Loss Functions and Quantitative Metrics

Deep learning-based microseismic velocity inversion is a regression problem. We use
MSE as the loss function to fit the reference velocity model and the predicted values:

LMSE(xi, xi) =
1
N

N

∑
i=1

(xi − xi)
2 (4)

where N is the total number of pixels in a single velocity image; xi and xi are a reference
velocity value and a predicted value, respectively.

We use the regression metrics peak signal-to-noise ratio (PSNR), structural similarity
(SSIM), and mean absolute error (MAE) to quantify the prediction results and evaluate
the inversion performance [39–41]. PSNR reflects the degree of global reconstruction
of the velocity image. The PSNR unit is dB, and the larger the value, the better the
inversion performance:

PSNR(x, x) = 20 × log10

(
Max(x)√
MSE(x, x)

)
(5)

where x and x denote the velocity label and inverted velocity, respectively.
Local structure and detail are important factors when recovering a velocity model. To

evaluate the performance of the network model in reconstructing the local details, we use
SSIM to characterize the similarity between the predicted velocity model and the reference
velocity model. The values range from 0 to 1. The higher the value, the lower the image
distortion, indicating that the predicted velocity model is closer to the ground truth:

SSIM(x, x) =
(2μxμx + G1)(2σxx + G2)

(μ2
x + μ2

x + G1)(σ2
x + σ2

x + G2)
(6)

where μx and μx represent the mean values of xi and xi values, respectively, σx and σx
are their standard deviations, σxx denotes their covariance, and G1 and G2 represent the
constants to avoid a zero denominator.
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MAE is utilized to evaluate the variation in velocity across the stratigraphic interface.
The lower the value, the lower the error:

MAE(xi, xi) =
1
N

N

∑
i=1

|xi − xi| (7)

2.4. Training Procedure

We investigate three different training strategies, training only the synthetic dataset,
training only the augmented dataset, and the hybrid training strategy:

loss =
{

loss_syn, epoch < epochs_syn
w × loss_aug, else

(8)

where epochs_syn is the number of epochs when training the synthetic data, and w is a
weight coefficient that indicates the smoothness of the loss curve, enabling the loss value
to have a smooth transition from the synthetic data training stage to the augmented data
training stage.

In our single-stage and multi-stage examples, we use different parameter settings. The
optimizers are Adam. After many rounds of parameter tuning and tests, we finally select
the following hyperparameters: the batch sizes are 32, and w values are 0.1, while the learn
rates are 0.001 and 0.0001, training epochs are 200 and 300, and epochs_syn has values of
80 and 140, respectively.

We work with a PyTorch implementation of the neural network [42]. All network
training and testing in this study was performed on a CPU with a frequency of 2.90 GHz
and 512 GB RAM.

3. Data

To generate more training data, we prepare a horizontally layered model adapted
from a field downhole monitoring of five-stage hydraulic fracturing [10], as shown in
Figures 2 and 3a. There are 395 events in total and the event numbers from stage 1 to
stage 5 are 105, 116, 48, 66, and 60, respectively. The field microseismic data contain three
components and we consider only the Z component to reduce the number of operations.
The acquisition system consists of 15 receivers (black reverse triangles) placed at a constant
spacing of 20 m in a vertical linear array. Each trace has 1201 samples with a time interval
of 0.5 ms. Four-layer velocity models are constructed referring to the velocity model
from traveltime inversion with eight ball-hit events [10]. We obtain 200 velocity models
by adding random ±10% perturbations to the P- and S-wave velocities with fixed layer
depths. We randomly set 30 source locations in the source region (Figure 3a) for each
velocity model. The velocity model has a size of 64 × 200, with a grid spacing of 5 m. A
Ricker wavelet with a peak frequency of 100 Hz is used as the source function. We use
6000 synthetic gathers (200 models × 30 sources) as the initial training dataset. The testing
dataset included 105 field microseismic events from stage 1 (corresponding to a single
reference velocity model).

Figure 3b shows the results of the power spectra comparison. The augmented data
approaches the real data in terms of energy distribution by retaining more high-frequency
contents of the real data. The exemplary synthetic and real microseismic waveform data
are shown in Figure 3c–f.
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Figure 2. The layout of a real downhole microseismic monitoring project. (a) Three-dimensional view.
(b) Side view of (a). Black reverse triangles indicate the receivers and the dots are microseismic events.

Figure 3. Model and data. (a) A horizontally layered model for downhole microseismic monitoring.
The black rectangle indicates the region where the sources are located, the red pentagram indicates
an arbitrary source, and black reverse triangles indicate the receivers. (b) Power spectra comparison.
(c) The original noise-free synthetic waveforms generated by ray-tracing. (d) Real microseismic data.
(e) Result of the real data autocorrelation. (f) The augmented data for the synthetic waveforms in (c).
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4. Result

4.1. Single-Stage Examples

For single-stage examples, we focus on the feasibility of the network and training
strategy. The overall quantitative metrics are listed in Table 1. As indicated in Equation (8),
the hybrid dataset here denotes a hybrid strategy involving both synthetic and augmented
data. It shows that the hybrid training strategy outperforms the other two training strategies
for almost all metrics in the velocity inversion task under the same conditions.

Table 1. The mean values of quantitative metrics for single-stage examples.

Training
Dataset

Phase PSNR SSIM MAE

Synthetic P 19.88 0.7097 272.243
S 19.92 0.8139 133.958

Augmented P 27.90 0.8644 113.514
S 27.71 0.8912 57.431

Hybrid P 30.04 0.8591 93.143
S 29.60 0.8911 48.308

The predicted one-dimensional velocity profiles of the Unet model using the three
training strategies are shown in Figure 4. The displayed velocity values correspond to
two arbitrary events and are averaged along the horizontal direction. We can find that
augmented data and the hybrid training strategy yield better fittings to the reference
velocity model. Figure 5 shows the two-dimensional profiles corresponding to Figure 4b
by the hybrid training strategy. Training with the synthetic data involves first learning the
low-frequency information in the data, and then it can provide an initial velocity model
(Figure 5c,d). The model obtained by training the synthetic data (low frequency) may also
predict high-frequency velocity components with the real data (with high frequency), but
the results have a large error since the model did not learn these high-frequency features.
After training with the augmented data containing high-frequency information, the model
improves the precision of the predicted velocity models (Figure 5e,f).

Figure 4. One-dimensional profiles of the reference and predicted velocity values of two arbitrary
events from the first stage. (a) Velocity curves of one sample event. The red solid and dashed
lines indicate the reference velocity for P- and S-wave, respectively, and the blue, magenta, and
black dashed lines indicate the results of training with synthetic, augmented, and hybrid dataset.
(b) Velocity curves of another sample event. The meanings of the symbols and colors are the same
with (a).
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Figure 5. Two-dimensional profiles of the reference and predicted velocity values of an arbitrary
event from the first stage. (a,b) The reference P- and S-wave velocities. (c,d) Predictions of P- and
S-wave velocities trained with the synthetic dataset (when the epoch is 80). (e,f) Predictions of P- and
S-wave velocities trained with both the synthetic and the augmented dataset (when the epoch is 200).

4.2. Robustness Testing

In order to further evaluate the superiority of the proposed data augmentation method
and hybrid training strategy, we carry out robustness tests on the real data of the first stage.
We denoise the real data by wavelet filtering to obtain the clean signals, and then calculate
the SNR of the real data [43]:

S/N = 10 × log10

(
Sc

Sn

)
= 10 × log10

(
Sc

Sr − Sc

)
(9)

where S/N is the SNR, Sr is the real data signal, Sc is the clean signal after denoising the
real data signal, and Sn is the noise of the real data signal.

The distribution of the SNRs for all events in the first stage is shown in Figure 6. Most
of the SNRs of the real events are lower than 5 dB. We select a sample event (S/N = 3.44)
to quantitatively evaluate the stability and robustness of the network. The predicted
two-dimensional and one-dimensional velocity profiles of the Unet model using the three
training strategies are shown in Figures 7 and 8. The detailed values of quantitative
metrics are listed in Figure 7. The results suggested that the data augmentation method
can significantly improve the prediction accuracy of purely synthetic data by introducing
real data information. Moreover, the hybrid training strategy effectively utilizes the useful
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information of the synthetic data in the low-frequency components and yields the best
inversion results.

Figure 6. The distribution of SNRs of the events of the first stage.

 
Figure 7. Two-dimensional profiles of the predicted velocity values of the sample event. (a,b) Predictions
of P- and S-wave velocities trained with the synthetic dataset only. (c,d) Predictions of P- and S-wave
velocities trained with the augmented dataset only. (e,f) Predictions of P- and S-wave velocities
trained with the hybrid strategy involving both synthetic and augmented data. The reference velocity
models are shown in Figure 5a,b.
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Figure 8. One-dimensional profiles of the reference and predicted velocity values of the sample event.
The meanings of the symbols and colors are the same as Figure 4.

4.3. Multi-Stage Examples

From the results of single-stage examples, we believe that the augmented data and
hybrid training strategy have higher accuracies for efficient velocity inversion. Therefore,
we try to expand the research area to consider more fracturing stages. We consider all
five stages, corresponding to five reference velocity models. We generate 12,000 gathers
(1000 models × 12 sources) as the initial training dataset. The quantitative metrics are
shown in Table 2. Compared to single-stage examples, the predictions are generally worse
due to the combined effects of increased area and characteristics and limited field samples.
Please also note that these metrics are mean values for all the predictions in five stages.
The one-dimensional velocity profiles and the loss curves are shown in Figures 9 and 10,
respectively. The predictions for the first stage (Figure 9a) are better than other stages
(Figure 9b), especially for the two deep layers, mainly due to the largest number and best
coverage of the microseismic events in the first stage. The hybrid training strategy can
achieve slightly faster convergence rates than the other two strategies.

Figure 9. One-dimensional profiles of the reference and predicted velocity values of two arbitrary
events from two stages. (a) Velocity curves of one sample event. The red solid and dashed lines
indicate the reference velocity for the P- and S-wave, respectively, and the blue, magenta, and
black dashed lines indicate the results of training with synthetic, augmented, and hybrid dataset.
(b) Velocity curves of another sample event. The meanings of the symbols and colors are the same as
Figure 4.
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Figure 10. The loss curves for three different training strategies.

Table 2. The mean values of quantitative metrics for multi-stage examples.

Training
Dataset

Phase PSNR SSIM MAE

Synthetic P 18.75 0.7094 314.843
S 19.16 0.7209 155.461

Augmented P 21.50 0.7030 228.985
S 17.89 0.6759 152.441

Hybrid P 22.24 0.7478 221.382
S 18.46 0.6369 165.114

5. Discussion and Conclusions

We attempt to directly invert the velocity models from microseismic waveforms in
this study. The testing results with purely synthetic data demonstrate the Unet model
can predict the layered velocity model quite well and in an efficient manner. Since the
predicted velocity models are almost the same as the real ones and thus do not contain
much information, we do not show those simple results in this manuscript. Zhou et al. [29]
demonstrated the effectiveness of a modified Attention Unet in predicting complex syn-
thetic velocity models with microseismic records. They did not consider field microseismic
data and adopted Gaussian noise to evaluate the robustness of the model, while we used
field data to enhance the synthetic data by data augmentation operations. We also investi-
gate and test many other scenarios by considering different SNRs, source locations, source
mechanisms, and model numbers and sizes to mimic the field cases. Specially, the number
and coverage of real microseismic events largely determine the features and constraints
that can be extracted by the network model. However, these cases just introduce more
complicated features which require a larger training dataset and computation expense.
Further investigation of the influential factors on deep learning-based microseismic velocity
inversion is out of the scope of the current study.

The disadvantage of most current deep learning algorithms is the heavy dependence
on the training dataset and weak generalization capability. The introduced data augmenta-
tion method and hybrid training strategy proved to be effective in alleviating the feature
gap in data domains and improving the generalization ability of the network model, which
may provide guidance for other deep learning-based seismic inversion tasks. Transfer
learning is also helpful to fill the feature gap, but also relies on the scale of the training data.
Another feasible approach to realize seismic inversion with a limited training dataset is
combing data-driven algorithms with the physical laws of seismic wave propagation, to
provide more physical constraints and optimize the learning performance. In this work, we
only consider a horizontally layered model, which is the most-commonly used model in
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microseismic processing. We will investigate the performance of the proposed method on
heterogeneous models and compare it with conventional velocity inversion methods (e.g.,
FWI method). One of the advantages of deep learning methods is the weak dependence on
the raypath coverage since we can train the model with a large and complete dataset.

In this paper, we propose an improved deep learning method for microseismic velocity
inversion. The synthetic data are augmented to incorporate the features of the real data, and
a hybrid training strategy that integrates the synthetic and augmented data is introduced.
The Unet model can directly predict the layered velocity model from microseismic wave-
forms. Training the synthetic data involves first learning the low-frequency information
in the data, and then it can provide an initial velocity model. Then, the augmented data
are trained to learn the high-frequency information, which can improve the precision of
the predicted velocity model. The hybrid training strategy makes better use of the data
and enables the model to learn more imbedded connections between the waveforms and
velocity models. Field downhole microseismic examples demonstrate the feasibility and
superiority of the proposed method for efficient inversion of microseismic velocity models.
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Abstract: A high-resolution catalog for the 2014 Ms 6.5 Ludian aftershocks was constructed based on
the deep learning phase-picking model (CERP) and seismic-phase association technology (PALM). A
specific training strategy, which combines the advantages of the conventional short–long window
average energy ratio algorithm (STA/LTA) and AI algorithms, is employed to retrain the CERP model.
The P- and S-wave phases were accurately detected and picked on continuous seismic waveforms by
the retained AI model. Hypoinverse and HypoDD were utilized for the precise location of 3286 events.
Compared to the previous results, our new catalog exhibits superior performances in terms of location
accuracy and the number of aftershock events, thereby enabling a more detailed depiction of the
deep-seated tectonic features. According to the distribution of aftershocks, it can be inferred that (1)
the seismogenic fault of the Ludian earthquake is the NW-trending Baogunao–Xiaohe Fault, (2) the
Ludian aftershocks interconnected with the discontinuous NW-trending Baogunao–Xiaohe Fault,
and they also intersected with the Zhaotong–Ludian Fault. (3) This suggests that the NE-trending
Zhaotong–Ludian Fault may have been intersected by the NW-trending Baogunao–Xiaohe Fault,
indicating that the Baogunao–Xiaohe Fault is likely a relatively young Neogene fault.

Keywords: deep learning; 2014 Ludian earthquake; aftershock catalog

1. Introduction

The earthquake catalog is a crucial foundation for seismic research. A high-resolution
regional catalog includes a large number of highly precisely located earthquakes. The
greater the number of precisely located earthquake events, the more it helps to clearly
reveal the physical structure of the underground media. This is crucial for various seis-
mological research fields, such as seismic tomography, fault zone structures, stress states
of the Earth’s interior, and seismic hazard assessments [1–3]. Generally, the process of
constructing a seismic catalog involves multiple steps, including earthquake detection,
seismic phase picking, phase association, and earthquake localization. Since the incep-
tion of seismology, seismologists have been dedicated to detecting more events from
noise-rich continuous seismic waveforms, more precisely picking seismic phase arrivals,
and more precisely locating earthquakes to construct high-resolution catalogs [4–13].
However, manual phase-picking methods are not only inefficient but also susceptible to
picking errors. Moreover, traditional rule-based automated algorithms face challenges
in balancing efficiency, accuracy, and completeness. For instance, a class of automated
algorithms based on energy characteristic functions struggles to correctly identify seismic
signals characterized by impulsive noise [13]. On the other hand, algorithms based on
waveform similarity principles heavily rely on the diversity of prior template events,
with low computational efficiency, making them less suitable for scenarios involving
large datasets [11,12]. The key challenge encountered when using traditional automated
algorithms to address seismic phase recognition issues lies in the inherent difficulty of
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mathematically describing these problems [14]. Deep learning technology allows compu-
tational models composed of multiple processing layers to learn mathematical represen-
tations with multiple abstraction levels. Its advantage lies in employing a data-driven
learning approach to find solutions to problems [15]. This characteristic is particularly
suitable for addressing phase-picking issues.

In recent years, the technology used to construct seismic catalogs based on deep
learning has experienced rapid development. This includes not only deep learning-based
techniques for earthquake detection [16–18], seismic phase-picking [18,19], phase asso-
ciation [20], and automatic earthquake location workflows [21,22], but also the gradual
improvement of AI earthquake benchmark datasets [23,24]. Perol et al. [16] first trained a
deep convolutional neural network (CNN) with eight hidden layers and used it to detect
roughly located earthquakes in the Oklahoma area. Mousavi et al. [17] first designed a
hybrid model integrating a CNN with a recurrent neural network (RNN). This model
utilized a CNN to classify earthquake events and noise, while an RNN was employed
for the phase-picking of P- and S-waves within the time windows of the seismic events.
For regression-based solutions, Zhu and Beroza [19] designed a U-shaped deep neu-
ral network with four downsampling and four upsampling processes. This network
(PhaseNet) treated the phase-picking of seismic waves as a probability distribution of P,
S, and noise at each point within a time series window, achieving pixel-level identifica-
tion in seismic waveform data for the first time. They trained their PhaseNet with over
700,000 earthquake events from California, enabling the high-precision picking of P and
S wave arrivals across different instrument types. Mousavi et al. [18] first introduced the
attention mechanism into the problem of phase detection in seismology and presented
a global deep learning model (EQtransformer, Stanford, CA, USA) for simultaneous
earthquake detection and phase-picking. These four AI models represent the four types
of neural network structures commonly used in seismology. Compared to traditional
methods, they all showed improvements in detection accuracy, completeness, and com-
putational efficiency. However, they shared a common issue: significant variation in
generalizability across different tectonic regions. In the field of AI earthquake datasets,
Mousavi et al. [23] published the Stanford Earthquake Dataset (STEAD), the first publicly
released benchmark dataset for training AI seismic models, which contains approximately
3 million global seismic and noise records. However, most seismic data in STEAD origi-
nated from Europe and the USA, with only a small portion originating from mainland
China. Later, Zhao et al. [24] launched the DiTing dataset, which primarily features seis-
mic benchmark AI data from mainland China, including about 780,000 earthquake events.
Additionally, phase association technology was a crucial aspect following phase detec-
tion that impacted earthquake localization. Zhu et al. [20] developed a Bayesian-based
hybrid model for this purpose, enhancing the accuracy and efficiency of seismic phase
association. Furthermore, to enhance the efficiency of the earthquake location workflow,
Zhang et al. [21] and Zhou et al. [22] developed comprehensive workflow frameworks
called LOC-FLOW and PLAM (Phase picking, Association, Location and Matched Filter),
respectively. Both frameworks offered flexible interfaces to overcome format barriers
between multiple processing steps and employed traditional methods for earthquake
association. The main difference between these frameworks was that LOC-FLOW used a
grid search for association and localization, which had lower computational efficiency,
while PALM achieved association based on temporal and spatial differences between
different stations, resulting in improved computational efficiency.

Despite significant progress over the past years, data-driven deep learning technol-
ogy still encounters big challenges when confronted with complex regional structures
and observation conditions in the real world. Jiang et al. highlighted that, when the
EQTransformer and PhaseNet were simultaneously utilized for detecting the aftershock
sequences of the 2021 Yangbi earthquake and the 2021 Maduo earthquake, the catalogs
produced by the two AI models exhibited significant differences. This inconsistency be-
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tween the two catalogs indicated that the regional tectonic structures exerted a significant
influence on the generalization of AI models.

In this study, we designed a novel training strategy by retraining the AI model on
a small sample set to improve its generalization in specific regional tectonic structural
scenarios. This retraining strategy combined the advantages of AI algorithms and the
traditional short-long window algorithm (STA/LTA) [13]. We utilized the PALM method
to obtain seismic/noise sample sets specific to the local region, which were then used
to train a CNN model. Simultaneously, a manually picked P and S phases dataset was
employed to train an RNN model. The CNN model was employed for detecting seismic
events, while the RNN model was dedicated to picking seismic phases. Finally, the
retrained AI model was applied to the 2014 Ludian aftershocks, resulting in a high-
resolution catalog. Our results not only offer essential foundational data for the study
of small seismic activities in the Ludian region but also provide a viable solution to the
current challenges of generalization in AI phase detection.

2. Tectonic Background

The 2014 Ms 6.5 Ludian earthquake occurred along the southeastern margin of the
Qinghai–Tibet Plateau (Figure 1). This region, experiencing the influence of compres-
sional force between the Qinghai–Tibet Plateau and the South China Block, is known
for its complex and diverse geological structures, marked by active tectonic features.
Historically, this area has been the location of intense seismic activity in mainland China,
with a recorded history of 17 earthquakes greater than Ms 6.0, the most notable being
the Ms 7.1 Yongshan–Daguan earthquake in 1974 [25]. The 2014 Ludian earthquake was
closely associated with several active faults, including the Xiaojiang Fault, the Lianfeng
Fault, and the Zhaotong–Ludian Fault. This seismogenic fault zone is a part of the
boundary separating the Sichuan–Yunnan block and the South China block, and also the
transition zone from the actively deforming sub-block of the Dalianshan to the relatively
stable South China block [26]. In addition, the region encompasses other important fault
zones such as the Anninghe Fault, the Zemuhe Fault, the Daliangshan Fault, and the
Mabian–Yanjin Fault. Many moderate earthquakes have occurred along these faults in
the past decades, including the 2003 Ludian Ms 5.0 and Ms 5.2 earthquakes, the 2004
Ludian Ms 5.6 earthquake, the 2006 Yanjin Ms 5.1 earthquake, and the 2012 Yiliang Ms 5.7
and Ms 6.5 earthquakes. These seismic activities underscore the active characteristics
of the region’s tectonics. He et al. [27] and Xu et al. [28] suggest that the Daliangshan
and Mabian fault zones, previously disjointed, represent emerging neo-seismic tectonic
belts. Currently, these zones are undergoing a phase of structural connectivity, with the
precise location of this recent linkage yet to be determined. Situated at the southern end
of the Daliangshan Fault’s tail, the Ludian region provides a critical vantage point for
understanding the structural connectivity of this fault and for assessing related seismic
hazards. The 2014 Ludian earthquake thus offers valuable insights into the dynamics of
tectonic activities in this seismically active region.

54



Appl. Sci. 2024, 14, 1997

Figure 1. The tectonic background, seismic station distribution and historical large earthquakes in
the study area. Blue triangles and green triangles represent the permanent stations and campaign
stations, respectively. The red circles represent the historical earthquakes greater than 7.0. The red
star represents the 2014 Ms 6.5 Ludian earthquake. The black solid curves represent the primary
active faults, and the blue solid curves represent the block boundary in China’s mainland.

3. Data and Methods

3.1. Seismic Data

In this research, we gathered comprehensive seismic data to construct a high-resolution
aftershock catalog of the 2014 Ludian earthquake. The data collection involved continuous
waveform and manually picked phase data from the Sichuan Seismic Network, the Yunnan
Seismic Network, and the Qiaojia–Ludian seismic station network. The Qiaojia–Ludian
network consisted of 12 permanent stations and 12 campaign stations, which were deployed
near the Xiaojiang–Zhaotong–Ludian Fault Zone, allowing for a robust coverage of the 2014
Ludian earthquake. The campaign stations used Güralp CMG-3T seismometers (Güralp
Systems Ltd., Aldermaston, UK) and Reftek 130S data loggers (Trimble Navigation Ltd.,
Sunnyvale, CA, USA), with a frequency range of 120 s–50 Hz. The permanent stations
used Güralp CMG-3ESPC seismometers (Güralp Systems Ltd.) and EDAS-24I data loggers
(Beijing Gangzhen Technology Development Co., Ltd., Beijing, China), with a frequency
range of 60 s–50 Hz, and the seismometers are mostly installed on bedrock. The initial
step in data handling was a rigorous assessment of data quality from all seismic stations.
This involved evaluating the continuity of waveform data and excluding stations with
consistently poor data quality. Then, we meticulously selected 12 campaign stations and
12 regional permanent stations to locate Ludian aftershocks, considering data quality
and geographical significance. The selection criteria aimed to achieve an optimal balance
between station quality and location to enhance aftershock location effectiveness. The
observation period for these 24 seismic stations spanned from 1 August 2014 to 31 December
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2015, with data continuity exceeding 90%. To verify the consistency of instrument responses,
especially in campaign stations, we conducted comparative analyses using instrument
responses to surface waves from global earthquakes greater than Ms 7.0. This comparison,
which involved examining recordings from different stations for the same global seismic
events, focused particularly on the response to long-distance seismic surface waves. This
procedure confirmed the consistency of instrument responses across stations, which was
crucial for the accurate determination of earthquake magnitudes.

The construction of the seismic AI training dataset was a crucial step in the develop-
ment of a reliable and effective deep learning model for seismic event detection and phase
picking. Our dataset was structured into three distinct sets: seismic event samples (posi-
tive), noise samples (negative), and seismic phase-picking samples. The CNN model was
tailored to learn from the event and noise samples, while the RNN model was specifically
trained using the seismic phase-picking samples.

For the generation of phase-picking samples, 55 regional permanent stations from the
Sichuan Seismic Network were selected to create sample datasets for training the RNN
model. These seismic records, encompassing continuous waveforms and P- and S-wave
phase data, were collected from 1 January 2008 to 31 December 2012. The accuracy of
the P- and S-wave phase arrivals was ascertained using the theoretical travel time versus
epicentral distance relationship. We extracted earthquake events from 24 h continuous
waveforms based on the arrival times of P- and S-wave phases. These events were then
represented as 30 s seismic waveform segments, with the P- and S-wave arrival times
annotated on each segment. To ensure the quality of the data, the signal-to-noise ratio
(SNR) for all samples was calculated, and samples with exceptionally high or low SNR were
excluded. Ultimately, this meticulous process yielded a dataset comprising 121,507 event
samples annotated with manual phase labels, providing a rich and reliable foundation
for the subsequent deep learning training and aftershock cataloging. For the generation
of positive (seismic event) and negative (noise) samples, we employed a multifaceted
approach integrating the STA/LTA, Kurtosis [29], and seismic association algorithms
embedded within the PALM framework. This approach was applied to waveform data from
the Ludian region to extract both event and noise samples efficiently. The Kurtosis algorithm
was an automatic S-wave onset-picker, which used kurtosis-derived characteristic functions
and eigenvalue decompositions on three-component seismic data. The Kurtosis algorithm
outperformed the STA/LTA (short-term average/long-term average) algorithm in terms of
accuracy and the number of picks, especially for S-wave. The detection of P and S arrival
pairs for seismic events was accomplished using both the STA/LTA picker and the Kurtosis
picker. Once all P and S arrival pairs were detected, the seismic association algorithm was
employed to associate phase arrivals across all stations, thus forming distinct seismic events.
These detected events constituted our event sample dataset. Noise samples were randomly
extracted from 24 h continuous waveform recordings. A 30 s window was deemed a noise
sample if it lacked any P or S phase arrivals. This method ensures the inclusion of diverse
noise characteristics in the training dataset. In the end, we obtained 15,833 event samples.
To augment the event samples, we added noise and randomly shifted time windows,
resulting in a fivefold increase. A total of 75,327 noise samples were obtained through
random selection. Since noise data were abundant and diverse, we did not perform data
augmentation on the noise data to maintain its original complexity and diversity. After
assembling all sample sets, we conducted a thorough analysis of various attributes within
the dataset. This included assessing the distribution of signal-to-noise ratios, epicentral
distances, azimuths, and the relationship between travel time and epicentral distance (see
Figure 2). Such an analysis is essential to understand the dataset’s diversity and to ensure
that the deep learning models are trained on a representative and comprehensive sample
of seismic data. For a visual understanding of these distributions, refer to Figure 2 in the
paper. This figure illustrates the range and variability of the aforementioned attributes
within the dataset, offering insights into the data’s complexity and the challenges it poses
for AI-based seismic analysis. This comprehensive preparation and analysis of the seismic
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AI training dataset lay the groundwork for the effective training of deep learning models,
enabling them to accurately discern between seismic events and noise and to proficiently
identify seismic phases, thereby contributing to the advancement of seismic research and
aftershock analysis.

Figure 2. Histograms of signal-to-noise ratio, epicentral distance, azimuth coverage, and travel
time-to-epicentral distance relationship in the training dataset. (a,b) depict the distribution of signal-
to-noise ratio for earthquake events and noise samples in the CNN training set. (c–f) represent
histograms of the travel time-to-epicentral distance relationship, azimuth coverage, epicentral dis-
tance, and signal-to-noise ratio in the RNN training set.

3.2. Methods

The comprehensive AI detection workflow is depicted in Figure 3. Unlike the procedu-
ral framework presented in Zhou et al. [30], the seismic phase data used in training the RNN
model were manually picked by experts. In contrast, the sample dataset in Zhou et al. [30]
was obtained through detection by the PAL-picker. The AI model in this study integrates a
hybrid CNN and RNN structure, an approach previously developed by Zhou et al. [14].
Within this combined CNN and RNN model, the CNN deep neural network is composed
of eight convolutional layers, Rectified Linear Unit (ReLU) non-linear activation functions,
Max Pooling layers, and fully connected layers. The forward propagation procedure is
defined by a loss function based on the L1 norm, while the backward propagation utilizes
the Adam optimizer. The RNN features two bidirectional Gated Recurrent Unit (GRU)
layers, which process data both forward and backward in time. In the RNN, each layer’s
current state is influenced by both the input at the present time step and the hidden state
from the preceding time step.
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Figure 3. The workflow of earthquake detection and location. The blue boxes represent important
processing steps, while the black boxes indicate input and output data.

Phase association incorporates clustering analysis in both time and space domains [22].
Temporal association is achieved by searching for clusters of earthquake occurrence times.
Spatial association is accomplished through grid searching for the hypocenter position
with the minimum travel time residual. The phase association procedure ensures the
detection of the same seismic signal by a minimum of four stations, thereby reducing the
likelihood of misidentified signals. The magnitude estimation is determined by calculating
the body wave magnitude using the S-wave amplitude. The earthquake localization utilizes
Hypoinverse [7] for absolute location and HypoDD [10,31] for relative relocation.

3.3. AI Model Training

To improve the performance of the AI model under specific tectonic and observation
conditions, we rapidly constructed a sample dataset for the local region and retrained the
AI model. The methodology for curating the AI training dataset has been delineated in the
preceding section. Before feeding samples into the AI model, data augmentation techniques
were employed on the original dataset to enhance its robustness. This included temporal
adjustments of the sampling window and the infusion of varying degrees of white noise.
Specifically, the P-wave arrival served as the temporal anchor around which five random
shifts within a 15 s interval were executed, each accompanied by the introduction of white
noise ranging from 0 to 40%.

The hyperparameters, notably the learning rate and batch size, are pivotal in the AI
training process, influencing model convergence, the risk of overfitting, and computational
efficiency. An inordinately high learning rate can precipitate non-convergence, while an
excessively low learning rate may unduly protract the convergence timeline. Similarly, a
minuscule batch size could prove inadequate in counterbalancing the stochastic influence
on gradient estimation, whereas an excessively large batch size could lead to protracted
iteration durations. For the training executed in this study, we utilized hardware equipped
with a GeForce RTX 3090 GPU, boasting 24 GB of memory (Nvidia Corporation, Santa
Clara, CA, USA). A learning rate of 0.001 was established for both CNN and RNN training,
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with a batch size of 512. The training dataset was apportioned into training, validation, and
test sets following a 7:2:1 ratio.

Detection accuracy was quantified as the proportion of correct predictions derived
from the training dataset during the CNN training epoch, while validation accuracy was
ascertained using the validation dataset. An observed increment in detection accuracy
concomitant with a decrement in validation accuracy typically denotes the phenomenon of
overfitting within the AI training regime. The 30 s sampling window was dissected into
multiple time steps with a granularity of 0.5 s. The accuracy of these time steps, along
with the validation rate, was defined as the likelihood of accurately predicting the P- and
S-wave phases within these temporal increments during the RNN training phase. The
picking uncertainty is characterized as the temporal precision in identifying the P- and S-
wave arrivals within the training/validation datasets during the RNN training phase. The
trajectories of detection/validation accuracy, picking uncertainty, and time step accuracy
are graphically represented in Figure 4.

Figure 4. Detection accuracy and picking uncertainty over the course of CNN and RNN training
iterations. (a,c) The training accuracy and validation accuracy, respectively, for event samples and
noise samples during the iteration process of the CNN model. Here, the red curve denotes the training
accuracy, while the blue curve represents the validation accuracy. (b,d) The time step accuracy and
picking uncertainty, respectively, during the iteration process of the RNN model, where the red
curve indicates the accuracy on the training set, and the blue curve signifies the accuracy on the
validation set.

3.4. Earthquake Detection, Phase Picking, Association and Location

Utilizing the retrained CNN and RNN models on continuous waveform data, we
conducted earthquake detection over a 30 s window with a 15 s sliding step, applying a
1–20 Hz bandpass filter to 24 h three-component waveforms. P- and S-wave phases were
concurrently picked within this framework, and surface wave amplitudes were quantified
within an amplitude window extending from 1 s pre P-wave to 5 s post S-wave. After
obtaining the P- and S-wave phases for all stations, clustering of phase arrival times is
achieved using a threshold of 2.0 s for grid search travel time residual, and a requirement
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of at least 4 stations simultaneously recording the same seismic signal. This process
culminated in initial detections comprising 3624 seismic events and 25,125 P- and S-wave
phase arrivals. A juxtaposition of the AI-determined arrival times with those manually
picked revealed an average temporal discrepancy for P-waves of 0.02 s (standard deviation
of 0.32 s), and for S-waves, an average discrepancy of 0.11 s (standard deviation of 0.44 s).

For absolute earthquake localization, the Hypoinverse software (Version 1.40) was har-
nessed. We adopted an average strategy for the initial velocity model, utilizing an averaged
three-layer model of Fang et al. (Figure 5) [25]. Throughout the iterative inversion process,
station weights were modulated based on the root mean square of the travel time residuals
and epicentral distance. A residual cutoff threshold was established, affording full weight
to stations with residuals under 0.3 s, nullifying weights for residuals exceeding three times
the cutoff residual (0.9 s), and implementing weighted interpolation for intermediate values
according to a cosine function curve. A distance cutoff was set at 40 km, with a cutoff range
spanning 40–120 km.

Figure 5. The velocity model used in the Ludian region. The red dashed line represents the averaged
P-wave velocity from Fang et al. [25], which is used for absolute localization with Hypoinverse,
while the blue solid line indicates the P-wave velocity model from Fang et al. [25], used for relative
localization with HypoDD.

Subsequent to the absolute localization, relative localization was performed employing
the HypoDD algorithm (Version 1.3). The double-difference method incorporates an
initial relative location derived from travel time measurements, further refined by cross-
correlation to correct temporal disparities, thereby augmenting the precision of the relative
locations. The parameters included a maximum station-event distance of 150 km, an event-
pair distance constraint of 6 km, and a minimum of 8 phases per event pair. After two
cycles and eight iterations, the inversion parameters, inclusive of travel time residuals and
horizontal and vertical discrepancies, were stabilized. During the cross-correlation for
travel time difference calculations (cc), the maximum distance between events pairs was set
to 4 km, and the maximum epicentral distance for stations was 120 km. Template windows
are defined as a P-wave before 0.5 s and after 3.5 s, and S-wave before 0.3 s and after
4.5 s, using a 2–15 Hz bandpass filter. The velocity model is the same as the one used by
Fang et al. (Figure 5). Finally, we obtained high-precision location results for 3286 events.

The Frequency–Magnitude Distribution (FMD) between the AI catalog of this study
and those compiled by Fang et al. and the China Earthquake Network Center (CENC) was
contrasted (Figure 6). This comparative analysis indicated that the AI-generated catalog
exhibits superior detection capabilities relative to the catalogs by Fang et al. [25] and CENC.
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Figure 6. Comparison of frequency magnitude distribution. The solid circles and solid triangles rep-
resent the cumulative and non-cumulative distribution, respectively. These indicate the relationship
between the number of earthquakes equal to or greater than a certain magnitude. The red symbols
represent the CERP catalog in this study, the orange symbols represent the earthquake catalog by
Fang et al. [25], and the blue symbols represent the earthquake catalog from the China Earthquake
Administration’s station network, which overlaps with the fixed stations used in this study.

4. Results

4.1. Aftershocks Space Distribution, Temporal Evolution and Focal Mechanism

The analysis of the aftershock sequence following the 2014 Ludian Ms 6.5 earthquake
elucidates a distinct L-shaped conjugate distribution, suggesting a compound fracture
orientation primarily along the east–west (E–W) and northwest–southeast (NW–SE) axes.
The E–W oriented section spans approximately 23 km in length and 5 km in breadth,
while the NW–SE extension measures about 18 km in length and similarly 5 km across. In
terms of depth, the aftershocks predominantly clustered within a stratum extending from
5 to 15 km beneath the surface. The intersection of the conjugate faults marks the zone
of maximal hypocentral depth, where the concentration of aftershocks is notably dense.
Moving laterally from this central intersection, there is a discernible gradation towards
more superficial seismic events (Figure 7).

The aftershocks also exhibited distinct spatiotemporal variation characteristics. Ini-
tially, within the first 2 to 5 h post-main shock, the aftershocks predominantly aligned in a
northwest–southeast (NW–SE) orientation, forming a strip-like distribution. This pattern
underwent a notable shift approximately 5 h later, with the emergence of a northeast-
southwest (NE–SW) directional trend in the aftershock distribution. This NE–SW orienta-
tion became increasingly pronounced over the subsequent 24 h. Remarkably, after five days,
the aftershock sequence evolved to display an asymmetric conjugate distribution, further
illustrating the dynamic nature of the seismic event’s aftershock activity.

The focal mechanism solutions for the two nodal planes, as published by the Global
Centroid Moment Tensor (GCMT) [32,33], were consistent with the dominant orientations of
the L-shaped conjugate distribution of aftershocks. On the other hand, this spatiotemporal
patterning of the Ludian aftershock sequence concurred with the observations presented in
the works of Fang et al. [25] and Wang et al. [34]. The consistency of these findings across
independent studies lends credence to the interpretation of the tectonic behavior in the
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aftermath of the Ludian earthquake and reinforces the understanding of seismic dynamics
in conjugate fault systems.

Figure 7. The space distribution and temporal evolution of the Ludian aftershocks. (M) The spatial
horizontal distribution of the Ludian aftershocks. (a–c) The depth of aftershocks along three profiles
shown in (M). A-A′, B-B′, and C-C′ represent three different depth profiles corresponding to subfig-
ures (a–c), respectively. Insert figures (d–i) illustrate the temporal evolution of aftershocks within
30 days after the main shock. The focal mechanism is from the Global Centroid Moment Tensor
Project (https://www.globalcmt.org/) (accessed on 5 February 2024) [32,33].

4.2. Seismic Rate Evolution

The seismic rate, defined as the frequency of earthquakes occurring per hour, peaked
within the initial day following the main shock, and thereafter exhibited a general dimin-
ishing trend. This decay in seismic rate over time is a typical characteristic of aftershock
sequence, as postulated by established seismic laws, such as Omori’s law for aftershock
temporal decay. The observed magnitude-time relationship and seismic rate for the after-
shocks also presented conspicuous diurnal patterns. These patterns were discerned to be
linked to the diurnal variations in the ambient noise level, which in turn affected the earth-
quake detection capability of the monitoring system. During periods of heightened daily
noise—such as human activity during daytime hours—the ability to detect smaller seismic
events is often compromised. Conversely, the relative quietude of nighttime generally
corresponds to higher detection rates of smaller aftershocks.

Furthermore, the seismic detection capability is also temporally affected by the ‘tail
waves’ of larger seismic events. These trailing seismic waves generate a transient increase
in the noise floor, which can substantially diminish the detection efficiency for smaller
magnitude earthquakes in the period following significant aftershocks. The impact of
these larger events on detection capability is visually represented in Figure 8, which likely
includes a time series plot showing the variation in seismic rate alongside the occurrence of
larger aftershocks. Such fluctuations in detection capability necessitate careful consideration
when analyzing seismicity rates and the corresponding magnitude distributions. These
variations underscore the importance of incorporating noise level assessments and potential
detection biases into the seismic analysis to ensure the accurate interpretation of seismicity
patterns and the underlying physical processes driving the aftershock sequence.
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Figure 8. Seismicity–time distribution of the Ludian aftershock catalog. (a–c) The earthquake catalogs
obtained in this study (CERP), the earthquake catalog by Fang Lihua et al. [25] and the earthquake
catalog from the China Earthquake Administration (CEA) regional seismic network, respectively.
Panel (d) shows the seismicity rate calculated from the three earthquake catalogs between 1 August
2014 and 21 August 2014. The seismicity rate is defined as the number of earthquakes occurring per
hour in the region.

5. Discussion

5.1. The 2014 Ludian Earthquake’s Seismogenic Fault and Its Tectonic Implications

Within the vicinity of the epicenter, the NE-oriented Zhaotong–Ludian fault is pri-
marily recognized for its thrust faulting. However, the focal mechanism of strike–slip
and the spatial-temporal pattern of aftershocks, which align predominantly along NW–
SE and near E–W directions, imply that the Zhaotong–Ludian fault may not be the only
seismogenic fault. The presence of the NW-oriented Baogunao–Xiaohe fault, noted for its
left-lateral strike–slip movement, provides an alternative tectonic feature that corresponds
more closely with the aftershock distribution and focal mechanism. Particularly within
the first 5 h following the main shock, the predominance of aftershocks in the NW–SE
direction, coupled with their depth characteristics consistent with a strike–slip fault, sug-
gested that the Baogunao–Xiaohe Fault may have been the seismogenic fault for the Ludian
earthquake. Synthesizing the aftershocks’ spatial-temporal pattern, the focal mechanism,
and the intrinsic characteristics of the regional faults, we inferred that the seismogenic fault
responsible for the Ludian earthquake is the NW-oriented Baogunao–Xiaohe fault.

The distribution of the NW-trending Ludian aftershocks, intersecting the NE-trending
Zhaotong–Ludian fault, suggests that the former may be transecting the latter. This in-
tersection could imply that the Zhaotong–Ludian fault, despite its longstanding geologi-
cal presence, has been intersected and possibly offset by the younger Baogunao–Xiaohe
fault, a tectonic feature that may have developed during the Cenozoic era [25]. Further-
more, geological structural maps indicate that the Baogunao–Xiaohe Fault is a minor and
less distinct fault located north of the Zhaotong–Ludian Fault. On the south side of the
Zhaotong–Ludian Fault lies another small fault, with both minor faults being separated by
the Zhaotong–Ludian Fault. Based on these, we assumed that the 2014 Ludian earthquake
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may have interconnected the Baogunao–Xiaohe Fault across the north and south sides of
the Zhaotong–Ludian Fault.

5.2. The Future Application of This Retraining Strategy

Previous researchers have attempted to train high-generalization AI models using
large-scale global datasets to address phase-picking challenges [18,19,35]. However, these
efforts have fallen short of achieving the desired results in complex real-world scenarios.
This suggests that the approach of relying on massive global datasets to solve the gener-
alization problem may not be feasible. In contrast, this study explores the use of small,
easily obtainable datasets to retrain AI models for specific scenarios, aiming to improve
model applicability in those specific contexts. We employed both traditional automated
algorithms, STA/LTA and Kurtosis, for P and S phase detection, applying multi-station con-
straints to eliminate erroneous data. Data augmentation techniques were applied to expand
the dataset for training precise AI models. Therefore, this re-training strategy is highly
adaptable and flexible, theoretically applicable to different earthquake events and tectonic
regions. Our successful results further demonstrated that this AI re-training strategy can
generate a high-performance AI model suitable for specific scenarios. However, it relies on
a well-distributed network. The well-distributed network influences the accuracy of the
phase association process and further affects the generation of high-accuracy event samples.

6. Conclusions

A high-resolution catalog for the 2014 Ms 6.5 Ludian aftershocks is constructed based
on an AI-picker model. During the AI model training process, we designed a specific
training strategy that combines the advantages of the STA/LTA and AI algorithms. Our
successful retraining and detection results indicate that this training strategy for building
a sample set in a specific tectonic region to retrain the AI model can improve the gener-
alization performance of the AI model in the specific region. Compared to the previous
results from the Fang et al. [25] and China Earthquake Networks Center (CENC), our result
exhibits superior performance in location accuracy and the number of aftershock events.
According to the accurate distribution of aftershocks, we conclude that (1) the seismogenic
fault of the Ludian earthquake is the NW-trending Baogunao–Xiaohe Fault; (2) the Ludian
aftershocks interconnected with the discontinuous NW-trending Baogunao–Xiaohe Fault,
and intersected with the Zhaotong–Ludian Fault; and (3) this suggests that the NE-trending
Zhaotong–Ludian Fault may have been intersected by the NW-trending Baogunao–Xiaohe
Fault, indicating that the Baogunao–Xiaohe Fault is likely a relatively young Neogene fault.
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Abstract: In order to improve the resolution and accuracy of seismic inversion, this study constructs
a multi-scale super-asymmetric network (Cycle-JNet). In this model, wavelet analysis is used to
capture the multi-scale data characteristics of well-seismic data, thereby improving the machine’s
ability to learn details. Using the UNet neural network from Convolutional Neural Network (CNN),
we modified the network structure by adding several convolution kernel layers at the output end to
expand generated data, solving the problem of mismatched resolutions in well-seismic data, thus
improving the resolution of seismic inversion and achieving the purpose of accurately identifying thin
sandstone layers. Meanwhile, a cycle structure of Recurrent Neural Network (RNN) was designed
for the secondary learning of the seismic data generated by JNet. By comparing the data transformed
through inverse wavelet transform with the original data again, the accuracy of machine learning can
be improved. After optimization, the Cycle-JNet model significantly outperforms traditional seismic
inversion methods in terms of resolution and accuracy. This indicates that this method can provide
more precise inversion results in more complex data environments, providing stronger support for
seismic analysis.

Keywords: seismic; inversion; wavelet transform; deep learning; Cycle-JNet

1. Introduction

Seismic inversion, as a crucial reservoir characterization technique, has received
extensive research attention over the past decades. Seismic inversion takes seismic data as
input and converts the observed data into rock physics parameters by a mapping model.
However, most existing seismic inversion methods, which are largely model-based, often
exhibit lower accuracy and resolution when faced with complex seismic information. With
the recent widespread application of deep learning across various domains, the technology
has also begun to have a significant impact on seismic inversion. Many researchers are
now utilizing diverse neural networks to establish inversion mapping models and achieve
the mapping of seismic data to wave impedance, aiming to enhance the precision and
resolution of seismic inversion.

Conventional seismic inversion theories mainly rely on convolutional modeling, ini-
tially proposed by Cooke et al. in 1983 [1]. Later, Debe and Van in 1990 presented an
iterative sparse pulse inversion method [2], and Hass and Dubrule introduced the concept
of geostatistical inversion using sequential simulation algorithms based on seismic data
in 1994 [3]. Combining recursive inversion, constrained sparse pulse inversion, and neu-
ral network inversion, Zhang et al. achieved highly accurate results reflecting reservoir
properties in 2009 [4]. Recently, Sheng et al. proposed Seisminc Motion Inversion (SMI)
in 2015 [5]. Traditional seismic inversions typically involve establishing target equations
based on assumptions about inversion equations and imposing certain constraints to solve
them, yet real geological conditions and data complexity render it difficult to express these
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problems in a single explicit manner. There are great challenges in both the creation of
inverse equations and the solution of such equations.

In recent years, deep learning has developed rapidly in many fields [6]. Compared
with traditional seismology and seismic engineering methods, the machine learning method
has the advantages of processing large numbers of data, a diversity in processing data types,
and high precision prediction ability. Therefore, many researchers use machine learning
methods to deal with the problems of processing seismic wave equations, seismic detection
and phase selection, seismic early warning (EEW), ground motion prediction, seismic
tomography and seismic geodesy, etc. [7–10]. Meanwhile, in the study of seismic inversion,
through various deep learning frameworks and model examples [11–13], researchers have
found that neural networks can be used to construct inversion mapping models and realize
the mapping of seismic data to wave impedance. The advantage of this method is that it
can avoid complex mathematical equation modeling and solving and can complete feature
learning, extraction, and prediction in one iteration. By jointly optimizing all parameters,
errors are expected to be reduced and the entire processing process simplified. Therefore,
many researchers have begun to explore seismic wave impedance inversion methods based
on deep learning [14–21].

At present, the main types of networks applicable to the inversion of seismic wave
impedance include Convolutional Neural Networks (CNN) [22] and Recurrent Neural
Networks (RNN) [23]. UNet is a network structure commonly used in CNN. U-Net
was first proposed by Ronneberger in 2015 and successfully applied to medical image
segmentation [24]. UNet is named for its simple and elegant network structure and U-
shaped architecture. UNet is a network structure evolved from convolutional neural
networks, which can combine the deep and shallow information in the network structure to
achieve pixel-level image semantic segmentation. However, due to the mismatch between
the resolution of well curve data and seismic data, as well as an insufficient ability to
integrate and learn global information [25], learning seismic data solely by relying on the
network structure of UNet is not conducive to the identification of sand bodies of different
thickness. Therefore, a structural improvement in the UNet network is carried out to
improve its accuracy and resolution by adding the Cycle network.

In order to process and interpret complex seismic data and improve the learning
efficiency of the machine, this study uses wavelet analysis to capture multi-scale data
features of seismic data. Previously, the method based on wavelet transform has been
widely used in seismic time–frequency analysis [26,27]. Compared with the traditional
time–frequency decomposition method for processing seismic data, wavelet transform
overcomes the fixed spectral resolution of Fourier Transform (STFT) for time–frequency
analysis [28] and has a rather high spectral resolution.

Current intelligent seismic inversion usually uses various simple networks to directly
train various seismic data sets, and the characteristics of frequent frequency changes and
an insufficient resolution of seismic data are ignored [14–21]. Compared with the current
intelligent seismic inversion methods, this study uses wavelet analysis to capture data
characteristics, realize the separation of seismic data of different frequencies, and learn them
separately to improve learning efficiency and accuracy. At the same time, the UNet network
is taken as the main structure, and its structure is designed and improved according to the
particularity of seismic data, so as to improve its learning ability and resolution. In this
paper, a new and reliable prediction model for seismic inversion is established, namely a
multi-scale super-asymmetric single-attribute Cycle-JNet network simulation model. This
article is structured as follows. Section 2 introduces wavelet transform and the construction
of the Cycle-JNet network. Section 3 explains the data used and the exploratory analysis of
the data. In Section 4, the structure and prediction accuracy of the model are evaluated.

2. Multi-Scale Superasymmetric Network (Cycle-JNet) Method

In order to solve the problem that the traditional inversion method has poor processing
ability for complex seismic data and a low recognition accuracy for the thin sand body
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interface, the Cycle-JNet network simulation model used in this study combines wavelet
transform with a variety of deep learning methods to build a multi-scale super-asymmetric
network (Cycle-JNet) seismic intelligent inversion method.

2.1. Wavelet Transform

Wavelet transform plays an important role in various signal processing applica-
tions [29–31]. Among them, discrete wavelet transform (DWT) can decompose the signal
into several wavelets, which is an ideal tool to map the change characteristics of unsteady
signals. As shown in Figure 1, this is the basic principle of DWT. Seismic data processed by
DWT will show the characteristics of multi-scale and high resolution, which helps in im-
proving the accuracy of machine learning and thus improving the accuracy and resolution
of inversion results.

 

Figure 1. DWT working diagram.

DWT is the convolution between the data sequence and the parent wavelet. The
mother wavelet ψ is:

ψa,b(t) = |a|−1/2ψ

(
(t − b)

a

)
, a, b ∈ R, a �= 0 (1)

where a is the scaling factor and b is the translation factor. The inversion target of seismic
inversion body P(t) is the mud content, and its DWT is defined as:

P(a, b) = |a|−1/2
∫

P(t)ψ
(
(t − b)

a

)
dt = 〈P(t),ψa,b(t)〉 (2)

where P(a,b) is the wavelet coefficient. Common mother wavelet functions include Mexican-
hat wavelet, Morlet wavelet, and so on. This paper focuses on the wavelet decomposition
of well vibration curve data. In the curve data, the sand value is 0, and the mud value is 1;
the composition of sand and mud changes frequently and complicatedly. The db 1 wavelet
in Daubechies wavelet [32] is selected to analyze the characteristics of well seismic data,
because it has low complexity and strong mutation detection ability, which can improve
the calculation efficiency and accurately identify the frequently changing mud. However,
the decomposition of other wavelets in Daubechies wavelet, such as db 2 and db 4, is
too complex and too computationally intensive to be suitable for a large number of well
vibration data. The permissible conditions for Daubechies wavelets used in this study are:

Cψ =
∫ ∣∣ψ̂(ω)

∣∣
|ω| dω < ∞ (3)
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In Equation (3), ψ̂(ω) is obtained after the Fourier transform of ψ(t). After the inverse
transformation of Equation (2), the following equation is obtained:

P(t) = C−1
ψ

� P(a, b)ψa,b(t)
a2 dadb (4)

The negative frequency of ψ̂(ω) has no meaning; therefore, Equation (4) can be written
as Equation (5):

P(t) = 2C−1
ψ

∫ ∞

0

∫ ∞

0

P(a, b)ψa,b(t)
a2 dadb (5)

In order to improve calculation speed and reduce data redundancy, the scale and
displacement parameters of DWT are amplified. The discrete mother wavelet function can
be defined as

ψj,k(t) = a−j/2
0 ψ

(
a−j/2

0 t − kb0

)
, j, k ∈ Z (6)

In a J level decomposition, j = 1 + 2 + . . . + J.
The dilated and translated basis functions at different resolution levels are described

by the scaling function, which is called the father wavelet Φj,k(t) and is given by

Φj,k(t) = a−j/2
0 Φ

(
a−j/2

0 t − kb0

)
, j, k ∈ Z (7)

where a0 and b0 are the scale factors and J is the scale level. By using these two basic
wavelet functions, the DWT approximation of the well shock data can be extended to
the following:

P(t) ≈ ∑
j

∑
k
χj,kΦj,k(t) ≈ ∑

k
SJ,KΦJ,K(t) + ∑

k
dSJ,KψJ,K(t) + . . . + ∑

k
dS1,Kψ1,K(t) ≈ ∑

k
SJ,KΦJ,K(t) + ∑

j
∑
k

dj,kψJ,K(t) (8)

where SJ,K and dj,k are smooth and detailed component coefficients representing the trend
and random component of the seismic data, respectively, and have:

SJ,K =
∫

Φj,k(t)P(t)dt, dJ,K =
∫
ψj,k(t)P(t)dt (9)

To enable the effective decomposition of seismic data features at different frequencies
and increase machine learning efficiency and accuracy, it is necessary to determine a
reasonable number of decomposition layers. In the actual wavelet decomposition, although
eight results can be obtained from the well vibration data, there are only two different
resolutions in fact, and the other six results are the mappings of the two results in different
dimensions. This is because the decomposition object is the well curve and has one
dimension, so the number of decomposition layers for each dimension is 2. Figure 2 shows
the seismic data and well curve data after DWT. The high and low frequency data of seismic
data and well curve after DWT are separated, which is conducive to machine learning.
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Figure 2. Schematic diagram of the UNet neural network.

2.2. Cycle-JNet

The UNet network is called UNet because of its symmetrical structure, which resem-
bles the letter U. The structure is shown in Figure 2: the gray layer is Input/Output Layers,
the orange layer is Convolution Layers, the red layer is Downsampling Layers, the green
layer is Upsampling Layers, and the red layer is Channel (channel is one of the dimensions
of the input data or feature map, which is different types of features in the same spatial
position). The network mainly extracts the detailed feature information of the data by using
Encoder and decodes and restores the size of the original data by using Decoder, which can
effectively extract the details in the seismic data after wavelet transform.

Although the resolution of well curve data (about 0.625 ms) is much higher than that
of seismic data (2 ms), the resolution of the well curve data generated is actually consistent
with that of seismic data due to the symmetry of its structure when using the UNet network
for training. It not only reduces the accuracy of machine learning, but the seismic resolution
of Vsh properties produced by the trained network inversion is also low, which is not
conducive to the identification of sand bodies of different thickness. In this study, several
layers of convolution kernel are added to the output end of the UNet network to expand
the data generated by the machine, so that the resolution of the output end is greatly
increased, which is consistent with the well data. Because its structure is like the letter “J”,
it is named JNet. The structure is shown in Figure 3; the legend in the figure is consistent
with that in Figure 2. The original network is called “thick sand identification network
(TSIN)”, which can distinguish and learn the thick sand body and muddy layers in seismic
data. The convolution kernel expanded at the output end is called “super-resolution thin
sand identification network (SR-TSIN)”, and it can distinguish and learn the details of
high-resolution seismic data after wavelet transform, so as to improve the data learning
and output seismic body resolution.
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Figure 3. Schematic diagram of the JNet neural network structure.

The Cycle-JNet network built in this study uses the following hyperparameters: The
batch size of samples processed at one time is 10; the sample size (well vibration data) is
128 × 4 × 4; the sampling interval was 8; learning factor lr = 0.001; initial channel = 2,
convolution kernel size = 4, stride = 2, padding = 1. There are seven convolution layers in
the discriminant network and 11 deconvolution layers in the generative network (seven in
TSIN; SR-TSIN has five layers). The input channel of the first layer X0 is 2, and the output
channel is 128. The input channel of the second layer X1 of the discriminant network is 128,
and the output channel is 256. The input channel and output channel of the third layer X2
of discriminant network are 256 and 512, respectively. The input channel of the fourth layer
X3 is 512 and the output channel is 1024. The input channel of the fifth layer X4 is 1024, and
the output channel is 2048. The input channel and output channel of X5 of the sixth layer of
the discriminant network are 2048 and 4096, respectively. The input channel and output
channel of the seventh layer X6 of the discriminant network are 4096 and 4096, respectively.
The input channel and output channel of the first layer X7 of the generation network are
4096 and 4096, respectively. The input channel of the second layer X8 of the generation
network is 8192, and the output channel is 2048. The input channel of the third layer X9 of
the generation network is 4096, and the output channel is 1024. The input channel of the
fourth layer X10 of the generation network is 2048, and the output channel is 512. The input
channel of Layer 5 X11 of the generation network is 1024, and the output channel is 256.
The input channel of X12 of the sixth layer of the generation network is 512, and the output
channel is 128. The input channel of the seventh layer X13 of the generation network is 256,
and the output channel is 128. The input channel of the eighth layer X14 of the generation
network is 128, and the output channel is 64. The input channel of X15 at layer 9 of the
generation network is 64, and the output channel is 32. The input channel of X16 of the
tenth layer of the generation network is 32, and the output channel is 16. The input channel
of X17 of the eleventh layer of the generation network is 16, and the output channel is 8.
The input channel of Layer 12 X18 of the generation network is 8, and the output channel is
2. The optimization function is Adam, the loss function is MCEloss, the activation function
of layers X0 to X17 is LeakyReLU, layer X18 is Sigmoid, and the epoch is 200.

Since JNet is a convolution-based inversion network, the learning ability of the global
information correlation of seismic data is defective [25], which affects the accuracy of
inversion results. Therefore, a Cycle network is introduced to improve the accuracy of
machine learning. In actual network operation, due to the 1D nature of well curve data,
there are only two scales of effective information when db1 wavelet transform is performed.
Therefore, the well shock data will be decomposed into eight results after DWT. However,
due to the 1D nature of well shock data, there are only two effective results, namely low-
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resolution well shock data (aaa) and high-resolution well shock data (daa), and the other
results are the mapping of them in different dimensions.

Based on the two-resolution information, in order to improve efficiency and accuracy,
the Cycle-JNet network is designed as two parallel aaa networks and daa networks; the
structure is shown in Figure 4. Take the aaa network as an example, where “real” is defined
as actual well shock data, “fake” is defined as machine-generated fake well shock data, and
“R” and “F” are short for “real” and “fake”. In the process of network operation, the low-
frequency seismic data of real seismic data Segy (real) after DWT are called Segy (R-aaa),
and the high-frequency seismic data are called Segy (R-daa). Segy (R-aaa) is input into the
forward convolution network JNet (S1-aaa) of the aaa network to obtain Vsh (F-aaa), which
is a false well curve corresponding to Segy (R-aaa), that is, the Vsh curve considered by the
machine in the aaa network. The purpose of forward training is to let the network learn
the correspondence between seismic data and well data, and linearly add the residuals
obtained by the two aaa networks and daa networks to obtain the residual Loss1 (S1) of
the JNet (S1) network, that is, the weight of the S1 network under the network. Then, Vsh
(F-aaa) output from JNet (S1-aaa) is reversely input into the JNet (S2) of the aaa network
to convolve Vsh (F-aaa) and generate false seismic data Segy (F-aaa) generated according
to Vsh (F-aaa) under the aaa network. At the same time, the daa network generates the
corresponding false seismic data Segy (F-daa), and the purpose of reverse training is to let
the network learn the correspondence between well data and seismic data, carry out inverse
wavelet transform (IWT) on Segy (F-aaa) and Segy (F-daa), and combine the seismic data of
the two scales into one. By comparing the fake seismic data SegY (fake) with the real seismic
data SegY (real), the residual Loss2 (S2) of the JNet (S2) network can be obtained, that is, the
weight of the S2 network under the network. Total residual Loss (S) is the linear addition of
Loss1 (S1) and Loss2 (S2). Using Loss (S) to optimize JNet (S1) and JNet (S2), the machine
is then allowed to enter the next round of training and learning. Thus, the forward training
network JNet (S1-aaa) and JNet (S1-daa) with ideal results can be obtained in multiple
samples and long training time. In actual seismic inversion generation, select the ideal
network JNet (S1-aaa) and JNet (S1-daa) to generate two seismic inversions with different
resolutions, and they will finally be output as a complete seismic inversion through inverse
wavelet transform. Then, reverse input Vsh (F-aaa) into the reverse convolution network
JNet (S2) of the aaa network for convolution.

 
Figure 4. Multi-scale super-asymmetric Cycle-JNet network design.

3. Discussion of the Analysis Results

To address the limitations of traditional inversion methods in processing complex
seismic data and accurately identifying thin sand body interfaces [14–21], we constructed a
multi-scale super-asymmetric network (Cycle-JNet) seismic intelligent inversion method in
this study. In order to verify the feasibility of the method, we analyzed and evaluated the
data of artificial intelligence seismic training and results, intelligent seismic inversion and
other inversion methods, and the section comparison of different inversion methods.
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3.1. Artificial Intelligence Seismic Analysis

In the intelligent seismic training, the JNet network randomly selects ten 1 × 1 × 128
seismic data samples from seismic data for learning. Each seismic data sample contains
a section of seismic curve and a Vsh curve of equal length, in which the input wave of
seismic data is seismic wave. The seismic waves were input into JNet (S1) for training, and
the training results were recorded, as shown in Figure 5. The vertical axis on the left of
the figure represents the value of Vsh curve (that is the sand–mud ratio, the value ranging
from 0 to 1. The smaller the value, the higher the sand body composition and the better the
sand body, and the larger the value, the higher the mud composition). The vertical axis
on the right represents the amplitude of the seismic curve (−56,053~67,456 Hz), and the
horizontal axis represents the depth of the curve (1350~1600 ms). The artificial intelligence
Vsh curve generated by the generator (the green curve in Figure 5), the real Vsh curve
(the red curve in Figure 5), and the input seismic curve (the blue curve in Figure 5) were
compared, and some typical curves of one training round, 50 training rounds, 100 training
rounds, and 200 training rounds were selected for comparison. The artificial intelligence
Vsh curve generated by the generator (the green curve in Figure 5) and the well Vsh curve
(the red curve in Figure 5) were compared to obtain the coincidence rate of the generator
generation curve under different training rounds. When comparing the three curves, it
was found that the resolution of the seismic curve was much lower than that of the well
Vsh curve, but the artificial intelligence Vsh curve successfully expanded the resolution
through the unique structure of JNet and was consistent with the well Vsh curve.

  

  

Figure 5. Single well curve analysis for different training rounds. The green line is the well Vsh
curve, the blue line is the seismic curve, and the red line is the artificial intelligence Vsh curve:
(a) Partial single-well curves after one round of training; (b) Partial single-well curves after 50 rounds
of training; (c) Partial single-well curves after 100 rounds of training; (d) Partial single-well curves
after 200 rounds of training.

As can be seen from Figure 5a, during the first training of the machine, the Vsh curve
generated by the generator was irregular with great fluctuation, poor coincidence rate
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with the well Vsh curve, almost no correlation with the seismic curve, and an insufficient
learning of the characteristics of the well seismic relationship. After 50 rounds of learning,
the artificial intelligence Vsh curve in Figure 5b began to show certain rules and had a
certain coincidence rate with the well Vsh curve, and it showed a certain correlation with
the seismic curve. After 100 rounds of training, the Vsh curve generated by the generator
in Figure 5c had a 90% coincidence rate with the well Vsh curve, which was strongly
correlated with the seismic curve and had an obvious learning effect, indicating that the
neural network is sensitive to changes in well seismic data and has strong learning ability.
However, as shown in Figure 5d, after 200 rounds of training, the efficiency improved
slightly compared to after 100 rounds of training. Both of them showed the high efficiency
and accuracy of the training, with the Vsh curves generated by the two generators having a
very high coincidence rate with the well Vsh curves and the differences in the coincidence
rate between the two being small. If the training continues, the network conformity rate
increases very little, so the training rounds are set at 200 rounds, which reflects the high
efficiency and accuracy of the training.

3.2. Comparative Analysis of Intelligent Seismic Inversion and Other Inversion Methods

The JNET trained for 200 rounds was selected to generate seismic inversion, and a
small piece of the seismic inversion body in the well-dense area was obtained by using
the method of write-by-track inversion. The 1450~1485 ms sections of well A8 and well
A14 in the well density area were selected, and the traditional seismic inversion method
(SMI) and AI were used to compare the sand prediction ability of these two methods. It
can be seen from Figure 6 that for the thick sand body in the lower half, both AI seismic
inversion and SMI inversion can identify the sand body, but the resolution of AI seismic
inversion is higher, clearly depicting the distribution and stack of the sand body in the
thick sand body. For the strata with complex geological conditions in the upper part of the
formation, SMI inversion is almost difficult to identify, and only large sections of fuzzy
sand layer can be seen. However, AI seismic inversion can identify thinner sand layers
and predict and characterize their morphological distribution. In general, the sand body
obtained by SMI inversion can only show rough rules, the characterization of sand body
interface is not clear, the recognition and processing ability of complex strata is weak, and
the prediction accuracy reached 62.7%. While the recognition of thin sand obtained by AI
seismic inversion is quite accurate and detailed, with strong correspondence with lithology,
a high coincidence rate with the VSH curve, and the clear characterization of the sand body
boundary, the prediction accuracy reached 81.3%.
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Figure 6. Comparison between artificial intelligence seismic inversion intelligent prediction and
other inversion prediction: (a) Well A8 is the test well; (b) Well A14 is the test well.

By comparing the AI seismic inversion results of Figure 6a,b, the prediction accuracy
for sand bodies in well A14 and well A8 is 72.1% and 85.5% respectively. It is found that
the prediction accuracy for sand bodies in well A14 is slightly lower than that in well A8,
while the prediction accuracy of the traditional inversion method (SMI) was 63.4% and
62.1%, respectively, because the number of AI seismic inversion training datasets is not
large enough and the feature learning of well A14 is not complete, indicating that the AI
seismic inversion results have some instability.

3.3. Intelligent Seismic Inversion Profile Analysis

The JNet-generated seismic inversion body after 200 rounds of training was used
to discretely model the 1350~1580 ms interval to obtain the intelligent seismic inversion.
Then, we used two-point stochastic modeling and the traditional inversion method SMI
to obtain two inversions and discretely modeled them to obtain the stochastic modeling
inversion and SMI inversion, and the thin sand body prediction and comparison were
performed. Taking well A8 as the test well, after removing the influence of well A8 on the
inversion, the profiles of this segment under different inversion modeling methods were
obtained, as shown in Figure 7. Thus, the accuracy of prediction by different inversion
methods was tested. Figure 7a shows the random modeling inversion modeling profile.
The sand bodies have too strong continuity, which is not in line with the actual situation,
and the corresponding degree with the lithology of the test well is poor. The prediction
of the sand body depends entirely on the curve and stratification of the adjacent Wells,
which is very inaccurate. Figure 7b shows the SMI inversion modeling profile. Compared
with the random thin sand modeling, the sand body continuity is slightly reduced, but
the corresponding degree with the lithology of the test well is improved. However, the
recognition and resolution of the thin sand body on the well are poor, and the prediction
of the thin sand body is not accurate enough. Figure 7c shows the AI seismic inversion
profile, which has a very high coincidence rate for lithology, reaching 85% on the test well.
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It has good identification and high resolution for thin layer sand bodies on the well, and the
continuity of sand bodies is higher than that of SMI modeling inversion, and the prediction
of sand bodies is accurate and of high resolution.

 

 

 
Figure 7. Seismic inversion profiles of sand bodies by each method: (a) random modeling inversion;
(b) SMI; (c) AI seismic inversion.

4. Conclusions

In this paper, a seismic intelligent inversion method based on the multi-scale super-
asymmetric Cycle-JNet network is proposed to predict seismic inversion. The network
includes many technologies such as CNN, RNN, and wavelet transform. Through about
100 rounds of machine learning, the coincidence rate of well vibration curve reached 92.1%,
which proves that the neural network is sensitive to changes in well vibration data and
has strong learning ability. Compared with traditional seismic inversion prediction, it can
easily identify and predict the thin sand layer. During the pumping test, the profile of sand
bodies was uniform and continuous, and the coincidence rate of sand prediction in the test
well reached 81.2%, which proves the accuracy of the proposed method in predicting sand
bodies and also proves that the Cycl-JNet network is a new and reliable seismic inversion
prediction model. The prediction model can realize the identification and prediction of
sand bodies of different thickness, which greatly improves the accuracy and resolution of
seismic inversion.

In practical applications, since the method completely relies on the network of machine
learning to generate the inversion body, it will not be able to make accurate predictions in
the face of the types of seismic data that are not learned, and the accuracy will be greatly
reduced. However, in the face of problematic data, the network cannot judge its correctness
and will still output seismic inversion bodies based on wrong data. It is necessary to
continuously carry out a large amount of seismic data training to improve the network and
train its ability to identify the wrong data.
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Abstract: The importance of monitoring earthquakes for disaster management, public safety, and
scientific research can hardly be overstated. The emergence of low-cost seismic sensors offers
potential for widespread deployment due to their affordability. Nevertheless, vehicular noise in low-
cost seismic sensors presents as a significant challenge in urban environments where such sensors are
often deployed. In order to address these challenges, this work proposes the use of an amalgamated
deep neural network constituent of a DNN trained on earthquake signals from professional sensory
equipment as well as a DNN trained on vehicular signals from low-cost sensors for the purpose of
earthquake identification in signals from low-cost sensors contaminated with vehicular noise. To
this end, we present low-cost seismic sensory equipment and three discrete datasets that—when
the proposed methodology is applied—are shown to significantly outperform a generic stochastic
differential model in terms of effectiveness and efficiency.

Keywords: low-cost sensors; deep neural networks; vehicular noise; earthquake measurement;
earthquake signal contamination; seismometer

1. Introduction

Earthquakes are sudden movements along fault lines that release stored elastic energy
in rocks, generating seismic waves that propagate throughout the Earth [1]. Seismology
is a field abundant with data and is heavily reliant on data analysis. Each day witnesses
numerous earthquakes worldwide with magnitudes exceeding 2.5, which can be felt locally.
Additionally, every few days, earthquakes capable of causing structural damage occur [2].
Moreover, there is a continuous occurrence of numerous smaller earthquakes, typically
with magnitudes below 2.5, which are too weak to be perceptible but are consistently
recorded by modern instruments [3]. These minor seismic events offer valuable insights
into the mechanisms of earthquakes [4].

Monitoring earthquakes is important for disaster management, public safety, and
scientific research. It enables determining preparatory activities such as timely warnings,
evacuation plans, and response strategies in order to mitigate the impact of seismic events,
in addition to studying earthquake patterns to accrue valuable insights into Earth’s dynam-
ics. To this end, sensor networks, comprising mostly of seismometers and accelerometers
placed throughout the globe, play a pivotal role in this effort by continuously collecting
seismic data. These networks facilitate real-time monitoring, data analysis, and the devel-
opment of earthquake prediction models, ultimately enhancing the ability to protect lives
and infrastructure, and advance the scientific understanding of earthquake behavior.

The emergence of low-cost sensors represents a significant advancement in environ-
mental monitoring [5], in general, and earthquake monitoring [6], specifically, as their
affordability allows for widespread deployment. These sensors offer a plethora of advan-
tages, including increased spatial coverage and dense monitoring networks that allow for
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a more comprehensive understanding of environmental conditions. Moreover, their cost-
effectiveness allows for easier replacement in the event of malfunction or damage, ensuring
continuous data collection without substantial financial burdens. This democratization of
sensor technology not only enhances our ability to gather data across vast geographical
areas but also empowers communities, researchers, and organizations to address critical
environmental and societal challenges with greater precision and efficiency.

Vehicular noise contamination poses a significant challenge in urban environments,
where the deployment of low-cost sensors is common. This challenge stems from the
ubiquitous presence of vehicles on roads and highways, generating a continuous stream of
noise that can impact various aspects of urban life [7]. The deployment of low-cost sensors,
while advantageous for monitoring purposes, can also exacerbate the problem by providing
a platform for capturing and transmitting this noise. As urban areas continue to grow
and traffic congestion increases, the issue of vehicular noise becomes more pronounced,
affecting the well-being of residents, wildlife habitats, and overall quality of life [8]. The
task of effectively using sensor data to monitor and analyze while accounting for noise
contamination presents a complex problem that requires innovative solutions and advanced
earthquake signal processing and deep learning techniques [9].

Earthquake identification is of paramount importance due to its significant impact
on public safety, emergency response efforts, and disaster preparedness. Earthquakes are
natural disasters that can cause widespread destruction, loss of life, and disruption to
communities. The accurate and timely identification of earthquakes allows a variety of
critical actions that can mitigate their effects and save lives [10]. It is thus fundamental to
effective disaster management and empowers individuals, communities, and authorities
with the information needed to make informed decisions, take swift actions, and allocate
resources efficiently. The consequences of false positives, and negatives, underscore the
critical nature of reliable seismic monitoring systems in ensuring public safety and disaster
preparedness [11].

Motivation and Contribution

The aforementioned importance of accurate earthquake identification can hardly be
overstated, given the effect of earthquakes on so many aspects of life. Moreover, the
emergence of low-cost sensory equipment for such identification, and its widespread
adoption nowadays, calls for research on the effectiveness and efficiency of this use. This
is further exacerbated by the high density of such sensors that frequently are adjacent to
publicly accessible road infrastructure which in turn contaminates the signals received by
the sensors with vehicular noise. It is, thus, the lack of comprehensive studies addressing
the impact of vehicular noise on earthquake signals captured by low-cost sensors that this
work aims to address.

In order to address these challenges, this work proposes the use of an amalgamated
deep neural network (DNN) composed of (i) a DNN trained on earthquake signals from
professional sensory equipment, as well as (ii) a DNN trained on vehicular signals from
low-cost sensors, for the purpose of earthquake identification in signals from low-cost
sensors contaminated with vehicular noise. The key contributions of this work can be
summarised as follows:

• Creation and dissemination of a dataset of vehicular noise measured with low-cost
seismic sensor;

• Collection and dissemination of ground truth data from professional seismic measure-
ment equipment;

• Creation of DNNs for the aforementioned dataset approaches and experimentation on
their performance;

• Creation and dissemination of a two-fold synchronized dataset: seismic data from
a low-cost seismic sensor, and seismic data from a professional seismic sensor. Both
sensors are in very close proximity; and
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• Amalgamation of the aforementioned DNNs for the identification of earthquakes in
signals from low-cost sensors contaminated with vehicular noise and experimentation
on the DNN.

The rest of this paper is organized as follows: Section 2 discusses the key recent relevant
studies about seismology, seismic waves, sensors for measuring and removing noise from
seismic waves, and deep learning for earthquake and vehicle classification. Section 3
presents the proposed methodology and the deep learning classification algorithm utilized
in this work. Section 4 details the pre-processing techniques applied to the datasets and
the experiments conducted, wherein their respective results are presented and discussed.
Finally, this paper is concluded in Section 5.

2. Background and Related Work

In seismology, the foundation of knowledge lies in data analysis, with significant
breakthroughs often stemming from the examination of fresh datasets or the creation
of novel data analysis techniques [12]. Seismology focuses on the study of earthquakes
and associated phenomena, primarily applying the principles of continuous medium
mechanics, specifically the theory of elasticity. In contrast, seismic engineering is an applied
science concerned with understanding how earthquake-induced motion impacts man-made
structures, including buildings and other constructions [13].

Earthquake impacts on both natural and human-made structures are primarily driven
by the transfer of energy through seismic waves originating from the earthquake’s source.
Seismic waves propagate through the Earth and are detected at distant locations using sen-
sitive seismographs. Interpreting seismic records requires an understanding of how seismic
waves are generated and propagated, and how recording processes affect them. Advances
in seismic instrumentation now allow for accurate digital representation of particle motion
across a wide frequency range. However, this necessitates careful consideration of seismic
noise, the background irregular ground motion caused by various factors, including human
activities and natural phenomena. Occasionally, this background noise is interrupted by
organized energy patterns generated by seismic waves from natural or artificial sources.
These wave-trains, characterized by distinct arrivals associated with specific propagation
paths, become more pronounced with increasing distance from the source. Following the
initial body-wave phases, like P (compressional waves) and S (shear waves), there is an
increase in record amplitude as surface-guided waves arrive [14].

Over the centuries, seismology has evolved significantly. From Zhang Heng’s ancient
seismograph in 132 AD to the late 1800s when scientific research on seismology began,
progress was slow. It was not until around 1900 that precise measuring instruments,
like geophones and seismometers, emerged. These early devices were large, costly, and
had limited sensitivity. However, recent advances in micro-electro-mechanical system
(MEMS) technology have drastically reduced size and cost while improving sensitivity,
making MEMS-based seismic sensors highly promising for their ability to provide reliable
measurements across a wide bandwidth [15]. Modern seismographs produce digitized
information at varying regular time intervals sent to be analyzed on computers. Many
concepts of time series analysis, including filtering and spectral methods, are valuable in
seismic analysis [16].

The identification of noise (seismic included) depends on a plethora of parameters
and usually requires data analysis while depending on the domain or application, a part of
the information may be be treated as noise or useful signal [17]. Seismic noise monitoring
systems have been proposed [18] that address continuous traffic noise utilizing raw noise
records as well as shear-wave velocity profiles. Prior to seismic wave measurement and
identification, noise removal is another important factor that has been addressed [19].
Periodic noise poses a well-documented challenge in the context of seismic wave removal,
often originating from sources such as power lines, pump jacks, engine operations, or other
forms of interference. It introduces contamination to seismic data and has a notable impact
on subsequent data processing and interpretation. The proposed denoising approach
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hinges on the sparse representation of periodic noise, enabling its estimation without being
influenced by seismic reflections. Consequently, this method effectively reduces periodic
noise without compromising the integrity of seismic events. Similarly, the utilization of
machine learning algorithms for eliminating random noise in seismic data has emerged
as a crucial aspect of seismic analysis [20]. In this work, the authors emphasize that
the elimination of random noise from seismic data significantly affects the accuracy of
subsequent data processing. They achieve an enhancement in the signal-to-noise ratio
of seismic data through the application of a convolutional neural network trained on
noise. This not only results in a higher signal-to-noise ratio but also preserves more
valuable information.

Given the previously discussed importance of earthquake identification, and thus,
early warning systems, the prohibitive cost of high-end ground motion sensors often
leaves earthquake-prone areas unable to implement such systems for measuring seismic
waves. Low-cost MEMS-based ground motion sensors present a promising solution for
creating affordable, yet reliable and sturdy, seismometers. Traditional high-end monitoring
systems are highly dedicated measuring systems with high to very high precision of
measurement, usually significantly above the monitoring scenario’s requirements. The
low-cost approach in such monitoring systems attempts to minimize the cost (usually at
the level of one to, hopefully, two orders of magnitude) while preserving the precision
of measurements within acceptable [21]. The lower cost allows for a higher number of
deployed systems and a lower cost per system unit replacement, leading to a denser
network of interconnected systems compared to high-end solutions, offering redundancy,
expansive spatial measurements, and—utilizing AI methods—the capacity for collective
extraction of information. This collective approach yields insights unattainable by unique
systems, achieving significantly higher levels of precision compared to unique low-cost
systems and rivaling those of non-low-cost systems. The advancements in utilizing low-
cost sensors for detecting earthquakes and issuing warnings have shown remarkable
progress in recent years. This progress is evident in the expansion of station coverage, the
enhancement of data quality, and the broadening scope of applications related to earthquake
detection [22]. Real-time seismic signal waves are available to be plotted using ShakeMaps,
helping to assess the damage patterns and directivity of rupture. These ShakeMaps plots
have proven [23] helpful in establishing the peak ground velocity indicator of damage, and
the peak ground acceleration.

Similar to our proposed work for earthquake identification, some research efforts
have also been made for the event detection of earthquakes with machine learning al-
gorithms, applying time wave series data analogous to those used for different vehicle
types. The implementation of different machine learning algorithms determines the class
of automobiles [24] for distinguishing between earthquake and non-earthquake, vandal-
ism vibrations [25], even for event detection, phase identification, and the onset picking
time [26]. In all such cases, the results indicate that the use of deep neural networks was
superior in distinguishing and provided high classification accuracy during training, as
well as in the event and phase detection of earthquakes.

3. Proposed Methodology

Our work proposes the use of an amalgamated deep neural network constituent of a
deep neural network trained on earthquake signals from professional sensory equipment,
as well as a deep neural network trained on vehicular signals from low-cost sensors. These
sensors were placed at points with vehicular activity, enabling them to record passing
vehicles for model training. On the other hand, the professional sensory equipment
used consisted of high-end seismographs, which are used to record seismic events. The
key purpose is to convey the amalgamated deep neural network with the capability to
effectively discern earthquakes in signals from low-cost sensors that are contaminated with
vehicular noise, thereby avoiding false positives caused by vehicles. The proposed low-cost
sensors could be used in bulk and placed in different areas so they can record an upcoming
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seismic event. This could benefit researchers and give them the ability to record the events
from different sensors and extract valuable information. In addition, the low-cost sensors
are easy to maintain or replace, given their affordability in comparison to professional
equipment, and could be placed near roads for easier access to them. Finally, the model we
propose could be very useful when it comes to earthquake recognition, as it has the ability
to recognize the seismic event from a passing vehicle; our model is trained to discern the
difference between them. This model supports our proposal of placing the low-cost sensors
near roads for easier access, as passing vehicles will not affect the recognition process of
the model. A bird’s-eye view of the key pillars of this work is presented in Figure 1.

Vehicular noise 
data, 
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Train 
DNN

Fuse 
DNNs

VN_DNN 
model

Earthquake signals, 
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Figure 1. Architectural diagram of the proposed methodology.

The online availability of the programming code and data in the scientific research
offers numerous benefits, i.e., it improves transparency, collaboration, and accountability
by enabling independent verification of the findings. To this end, all data and code of
this work are available online (https://github.com/LeonidasAgathos/Identifying_earth
quakes_in_low_cost_sensors_signals_contaminated_with_vehicular_noise, accessed on 13
September 2023).

3.1. A Stochastic Approach

A very common scenario used to detect earthquake events involves signals from
low-cost sensors, placed in several areas near roads and a methodology that allows the
identification of earthquake events in such data. In our context, a seismic event is defined
as the transition from a state of pure noise to a seismic signal. The current methodology we
use to detect earthquake events, as presented in [27], is a stochastic differential model that
employs a sliding window technique on the time-series data of the sensor. This window is
incrementally moved through the dataset at predefined intervals. Within each window, the
data undergo a transformation process, the variance function of the transformed data is
computed, and its shape is assessed in relation to a power law distribution.

If the shape of the variance function closely aligns with the characteristics of a power
law distribution, it is postulated that this is indicative of the data window predominantly
representing noise. In this case, the model proceeds to the next window. However, when
the shape of the variance function diverges significantly from the expected power law
shape, the algorithm terminates and signals the detection of a seismic event.

In our case, we applied this algorithm to a dataset obtained from our low-cost seismic
monitoring system. The successful detection of a seismic event was determined based on
the algorithm’s ability to identify an outbreak near the initiation of the seismic event, while
not focusing on the detection of the whole event.

It is worth noting that, although this method demonstrated competency in identifying
seismic events in its original presentation, it faced challenges in distinguishing between
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seismic events and events triggered by external factors, such as passing vehicles. This
limitation was discussed as a key factor in the interpretation of the results.

3.2. Low-Cost Seismic Sensory Equipment

The low-cost sensor mentioned in Section 3.1 was created in the CMODLab of Ionian
University, Corfu, Greece; it consists of low-cost hardware and a data logger system.
Originally, it was created for detecting seismic events and was placed in various areas,
mostly near traffic roads. This placement is a part of the low-cost concept, so the sensors
are easily accessible and replaceable in case of malfunction.

The system employs a 3-axis geophone, operating at 4.5 Hz and 380 Ohm, serving
as the main data logger to record signals. A sampling rate of 225 Hz is archived from the
data logger and an accurate timestamp is added to each sample from a precise real-time
clock circuit. This clock is checked and corrected every hour by using internet information.
The recorded data are stored internally at the system in 5 min chunks (coinciding with
files); subsequently, these are transmitted to the database server every 5 min by using
internet connectivity.

The low-cost system consists of low-cost hardware and open-source software. The
system uses Raspberry Pi 3 B+, which is a credit-card-sized microcomputer board (see
Figure 2). In addition, the system uses an analog-to-digital board with 24-bit high speed
(ADS1256) precision, specialized for interconnection with the microcomputer and the real-
time clock circuit breakout board DS3231. To support the system’s energy needs, it uses a
step-down converter with +5Volt power, up to 3 Amps. The system is also fitted with a solar
panel, battery, and a solar charger controller to make the system autonomous. Moreover,
the system utilized additional accessories, such as a USB GSM–GPRS 4G modem to support
the system’s internet connection, a 3-axis geophone sensor with a cutoff frequency fc
set at 4.5 Hz, and a micro-SD 32 GB memory card that functions as the hard disk of
the microcomputer board and stores all the necessary software needed to support the
system (e.g., Python, data, etc.). The operating system used in the sensor is a Linux-based
operational system for Raspberry Pi. We also used Python and C++ to write and execute
scripts, depending on the needs of the task. The microcomputer board Raspberry Pi 3 B+,
is the heart of the data logger system, and was selected for its high adaptability to integrate
with various additional boards, like (I2c Bus, UART, SPI, GPIO, etc.), and it provides the
data logger with multiple capabilities.

Figure 2. Full data logger system setup with housing in a plastic waterproof IP67 box.
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In addition, as mentioned above, a 24-bit A/D high-speed analog-to-digital precision
board (ADS1256), as shown in Figure 3, is connected to the microcomputer board using the
40-pin GPIO connector.

Figure 3. Raspberry Pi 3 B+ in combination with the 24 bit high precision A/D board—ADS1256.

The A/D board has 24 bits of accuracy and has a quantization error 1/2 LSB of 224/max
input voltage. It can be adjusted to operate with a max input voltage of 3.3 or 5 volts. In our
case, the max input voltage is 5 volts, which means we have a quantization error of 1/2 of
5 volts/224. The board has 8 analog inputs, which can work in a simple mode (8 input
channels) or in a differential mode (4 input channels), similar to our data logger. It can
accommodate sample rates of up to 30K samples per second (in a single channel—simple
mode) and features an internal amplifier with an amplification factor of up to 64. In the
proposed system, it uses a sampling rate of 3750 Hz and an amplification factor of 64.
As per the datasheet (https://www.ti.com/lit/ds/symlink/ads1256.pdf, accessed on 13
September 2023) of the ADS1256, the noise level is up to 6 bits, while the effective number
of bits (ENOB) with the buffer off is essentially the remaining 18 bits. The output of the
A/D card is given in counts. According to the amplification factor of 64, the differential max
input voltage that can be measured from the A/D card cannot be higher than ±78.125 mV.
Each count has a value of 224 ± −78.125 mV, so that means that each count has a value of
0.000009312 mVolts (minimum count step).

The system’s 3-axis 4.5 Hz geophone, as shown in Figure 4, is a SEIS (https://www.se
is-tech.com/4-5hz-3c-geophone/, accessed on 13 September 2023) 4.5 Hz 3C geophone,
and it is connected to our data logger via inputs of the A/D high-speed analog-to-digital
precision board. The geophone is connected in differential mode (A0–A1 input for X-Axis,
A2–A3 input for Y-Axis, A4–A5 input for Z-Axis, while A6–A7 is not used). The sensitivity
of the geophone for each axis, as per the datasheet (https://www.seis-tech.com/wp-conte
nt/uploads/2022/01/3c-geophone-4.5hz.pdf, accessed on 13 September 2023), is about
28.8 Volt/m/s (in open circuit) or 0.0288 Volt/mm/s. Finally, according to the maximum
input voltage of the A/D card and the geophone output voltage, we can see that our system
has an area to collect the ground velocity data of almost ±2.71 mm/s.
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Figure 4. Three-axis geophone with cutoff frequency f c = 4.5 Hz.

3.3. Vehicular Noise

The acquisition of data originating from vehicular noise, utilizing the aforementioned
geophone system in Section 3.2, constituted a crucial phase of our experiments. The key
requirement was to identify a location to place the sensor on a major road with a gap
close to the road for the positioning of the sensor. Additionally, in order to be able to
monitor the collection process, the location had to be opportune for human operators
tasked with recording the passing vehicles so that we could confirm the ground truth and
align it with the signals captured by the geophone. To fulfill all these requirements, we
selected a frequently accessed road in close proximity to our laboratory in the Garitsa area
in Corfu, Greece. For all the above constraints, we collected the signals of passing cars
via the geophone of the sensor, along with the audio recording, in order to assist in the
labeling phase of ground truth later on. Using these recordings, we created an annotated
dataset containing vehicular noise. In the post-collection process, to create the final dataset
for vehicular noise, we cleaned and labeled the data by selecting the most representative
axes of the geophone data containing the records from the movement of the ground. For
the labeling process, the timestamps were labeled manually using the synchronous audio
mentioned previously, collected concurrently with the geophone data, each time a vehicle
passed. In order to further support the reproducibility of our work, the data of this dataset
are available online (https://drive.google.com/drive/folders/1_H72gqp2ObBizB_YHRI0
u53yTSHRiLqc?usp=drive_link, accessed on 13 September 2023).

3.4. Ground Truth Earthquake Dataset

After collecting the vehicular dataset, we also had to collect a dataset about earthquake
events that would act as the ground truth. To complete this task, a data pipeline was created
using the Obspy framework [28], which extracts waveform events from the European
Integrated Data Archive in the National Observatory of Athens (NOA) [29] and saves the
value of data and the timestamp of each signal wave in raw format. The seismic events were
recorded and downloaded from the station VLS in Valsamata, Kefalonia, Greece, which is
part of the NOA network. After collecting data for 773 seismic events from NOA for the VLS
station, data cleaning was applied. All earthquakes were visually inspected for anomalies
during their recording process. Earthquake signals that displayed irregular patterns in
their recording before or after the main event were discarded. Figure 5 shows examples
of regular and irregular earthquake signals. After the above phase, a total of 503 seismic
events remained in our training dataset. To label the data and find the timestamps of the
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start time and end time of each event, we used the STA/LTA Z-Detect [30] algorithm. This
task was conducted using Obspy, which also features libraries for this task. Finally, and in
preparation for feeding these data to the neural network, we created data frames for all
the seismic events with their original values, and their values normalized in the range of
(−1, 1). In order to further support the reproducibility of our work, the data of this dataset
are available online (https://drive.google.com/drive/folders/1AgB4aC3yI7axPM9Jp4Rh
vkwORBjOK5ST?usp=drive_link, accessed on 13 September 2023).

(a)

(b)

(c)

Figure 5. (a) Regular earthquake signal; (b) irregular earthquake signal; (c) irregular earth-
quake signal.
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3.5. Training Process and Creation of DNNs

In order to train the models discussed herein, the following tasks were performed:

• Data preparation included several format conversion tasks aimed at converting the
data into a proper form;

• Data normalization, wherein data were linearly normalized in the range of [−1, 1];
• Class imbalance handling, dealt with the imbalance of the dataset using the NearMiss

method [31];
• Train–test split, where the available data were split in training and testing by means of

a generic approach of an 80–20% split, so we could use enough data to train the models.

In order to create the classification models based on each of the aforementioned
datasets (Sections 3.3 and 3.4), we utilized the TensorFlow [32] and Keras [33] frameworks.
Both these frameworks are renowned for their high performance. In detail, the used
classification model is a long short-term memory model [34], which contains five layers for
training and validation:

• A hidden LSTM (long short-term memory neural network) [35] layer with 64 units
and a return_sequences = True parameter, which returns the full sequence of outputs
for each input sequence and allows stacking additional recurrent layers;

• A ‘flatten’ layer [2], which flattens the 3D output from the LSTM layer into a 2D
tensor; this is typically done to connect the LSTM layer to a standard feed-forward
neural network;

• Two dense layers [36]: The first layer comprises 32 units and the second of 16 units,
which are fully connected, and each neuron is connected to every neuron in the
previous layer. Both dense layers use the ReLU (rectified linear unit) [37] as activa-
tion functions;

• An output layer, which is also a dense layer that represents the output of the model.
The activation function used in this case is the sigmoid function [38], which outputs a
probability score between 0 and 1.

3.6. Two-Fold Synchronized Dataset

The final seismic signal dataset consists of time-series data collected from our low-cost
system, described in Section 3.2, strategically placed in a region prone to seismic activity.
This dataset primarily comprises seismic signals associated with earthquake events. These
signals exhibit a wide spectrum of characteristics, encompassing various magnitudes and
frequencies. Of particular significance is the inclusion of ambient noise originating from
passing vehicular traffic. This environmental noise component, stemming from the dataset’s
proximity to a roadway, introduces a distinctive dimension to our dataset. While seismic
signals provide insights into genuine ground motion events, the presence of vehicular noise
poses a challenge that reflects real-world scenarios and presents a challenge to our machine
learning model.

To ensure the dataset’s reliability, we cross-referenced our recorded signals with data
from established seismographs from NOA, known for their accuracy and trustworthiness.
The purpose of this dataset is to test both the stochastic and amalgamated models, in
order to verify their ability to distinguish between earthquake signals against vehicular
noise signals. The dataset was recorded and saved into 84 distinct csv files, which then
were visually inspected, and each data point was labeled either as an earthquake or
noise (irrespective of being vehicular or otherwise). Later, the same procedure as with
the previous datasets was performed to prepare it for the testing phase. In order to
further support the reproducibility of our work, the data of this dataset are available
online (https://drive.google.com/drive/folders/16uKG9eq1kkf9Xpk39Tt96HHBtZ06N6
qq?usp=drive_link, accessed on 13 September 2023).
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4. Experimental Evaluation

This section details the setup that was used for performing the experimental evaluation
of the proposed methodology, as well as the results received.

4.1. Experimental Setup

For the experimental part of our research, we utilized the datasets previously de-
scribed: the dataset for vehicular noise (Section 3.3), the ground truth earthquake dataset
(Section 3.4), as well as the two-fold synchronized dataset (Section 3.6). The former aims at
providing information on vehicular noise, as perceived by the proposed low-cost sensory
equipment. The second dataset aims to act as the ground truth point of reference, given
its provenance from the European Integrated Data Archive in the National Observatory
of Athens, and the fact that the sensory equipment used to collect these data is of very
high accuracy. The latter dataset is the combined and synchronized dataset of seismic data
from the low-cost seismic sensor in addition to seismic data from the professional seismic
sensor, while both sensors were in very close proximity. All these datasets are also avail-
able (https://github.com/LeonidasAgathos/Identifying_earthquakes_in_low_cost_senso
rs_signals_contaminated_with_vehicular_noise/blob/main/Data_Availability, accessed
on 13 September 2023). For the training part of the process, as extensively discussed in
Section 3.5, the TensorFlow and Keras frameworks were utilized to create the classification
models. The creation of DNNs was based on the LSTM classification model (see Section 3.5
for more details) using five layers for training and validation. The hardware configuration
used was a computer with an i7-9700k CPU, featuring 8 cores and 16 gigabytes of RAM,
along with an MSI GTX 1660 Ti GPU, equipped with a 6-gigabyte memory card. In order to
evaluate the results received, the metrics used herein were accuracy, precision, recall, F1
score, and the area under the curve (AUC) [39], as per the following equations:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall or Sensitivity =
TP

TP + FN
(3)

F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

where TN, FN, FP, and TP are true negative, false negative, false positive, and true
positive, respectively.

4.2. Training Model 1

In this training model, we trained a DNN (https://github.com/LeonidasAgathos/Ide
ntifying_earthquakes_in_low_cost_sensors_signals_contaminated_with_vehicular_noise/b
lob/main/Model_for_Car.ipynb, accessed on 13 September 2023) to identify vehicular
signals so that the model can predict when we have a signal from a passing vehicle or pure
noise. To achieve that, we had to normalize the data in the range (1, −1) and additionally
balance the data. The balancing was done by undersampling the majority class (noise class)
using the method NearMiss (version1), so we have the same amount of data on both classes.
After the pre-processing of the data, we created the DNN, which contained four layers (as
per Section 3.5). We used one LSTM layer followed by a ‘flatten’ layer and three dense
layers. LSTM layers are widely used for time series predictions as they can learn patterns
and correlations within the time series, crucial for earthquake detection. The other layers
are simple ones that assist in transforming the data. The data were allocated with 80% for
training and 20% for testing. The results of the training are shown in Table 1 while the ROC
curve is shown in Figure 6.
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Table 1. Performance metrics for training model 1.

Accuracy Precision Recall F1 Score AUC Curve

68% 77% 52% 69% 73%

Figure 6. AUC for Model 1.

The results, despite being promising, are far from optimal because of the complexity of
the data we used for training. Also, signals were labeled manually using the synchronized
audio files as ground truth, which means that minor discrepancies between the audio and
the file may have occurred.

4.3. Training Model 2

The second model (https://github.com/LeonidasAgathos/Identifying_earthquakes_i
n_low_cost_sensors_signals_contaminated_with_vehicular_noise/blob/main/Model_for
_Eartquake.ipynb, accessed on 13 September 2023) was trained to identify earthquake
events. To perform this task, the NOA data were used, which, as mentioned above in
Section 3.4, includes 502 seismic events. After collecting the data, during the pre-processing
phase, normalization was applied in the (−1, 1) range. After that, we performed the
balancing of the data and the creation of the DNN. As mentioned before, the balancing
method we used was NearMiss (version 1) and the DNN contained the same layers as the
prior training model 1 (Section 4.2) for the same reasons mentioned above. In this model,
samples were classified as either noise or earthquake. Table 2 shows the training and test
results while the ROC curve is shown in Figure 7.

Table 2. Performance metrics for training model 2.

Accuracy Precision Recall F1 Score AUC Curve

75% 83% 63% 72% 82%

The training was conducted in 10 epochs, selected to avoid over-fitting, and lasted
approximately 2 min. The results received from the training and testing phase were better
than the previous model but again far from optimal.
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Figure 7. AUC for Model 2.

4.4. Experiment 1

The first experiment in this study employed the stochastic differential model, as
described in Section 3.1. The primary objective of this model was to identify the onset of
seismic events within an arbitrary time-series dataset. To do that, the two-fold synchronized
dataset was fed to the stochastic differential model. Then, we extracted the actual starting
point of every earthquake event and compared it to the true labels held on the two-fold
synchronized dataset files. Finally, we had to evaluate the results and extract the metrics of
the results.

The results obtained from this experiment can be seen in Table 3 and Figure 8. The
metrics received from the first experiment show us a moderate performance of the model;
the accuracy and precision reached 46% while the F1 score was 63%. Also, the AUC curve
(shown in Figure 9) was 50% and the recall was at 100%.

Figure 8. Cont.
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Figure 8. Results of the stochastic algorithm’s performance.

Table 3. Performance metrics for experiment 1.

Accuracy Precision Recall F1 Score AUC Curve

46% 46% 100% 63% 50%

Figure 9. AUC for the stochastic model.

4.5. Experiment 2

In our second experiment, we created an amalgamated DNN model (https://github.com
/LeonidasAgathos/Identifying_earthquakes_in_low_cost_sensors_signals_contaminated_
with_vehicular_noise/blob/main/Model_Concatenation.ipynb, accessed on 13 September
2023), which includes the two models from Sections 4.2 and 4.3. The purpose of this experi-
ment is for our model to be able to classify the starting point of an earthquake event without
confusion from car signals and to perform better than the current methodology used by the
stochastic model. This was achieved by combining the two different trained models and
concatenating them, thus resulting in a single tensor that is the concatenation of all inputs.
Initially, the pre-trained models of noise–cars and noise–earthquakes were loaded, and we
applied the concatenation process. After that, we had to load the two-fold synchronized
dataset and pre-process the data, which pertained to dropping the unnecessary columns
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and normalizing the data. With our two models in the same shape and the two-fold syn-
chronized dataset in the proper form, our final model was ready to classify the two-fold
synchronized dataset. We set a dense layer with the activation function “sigmoid”, as we
needed to differentiate between noise and earthquakes. We considered car signals and noise
in the same class, as the task was to find the earthquake events and separate them from
any noise signals. To compare the results, we had to classify the two-fold synchronized
dataset based on the final model we created. After that, we had to find the first point of
every file in the two-fold synchronized dataset, which was classified as an earthquake in
order to determine the starting point of the event. This would also be the point where we
would assess proper metrics and compare the two experiments. We saved the classified
labels along with the true labels, so we could derive the metrics from this experiment. The
results of the metrics can be seen in Table 4.

Table 4. Performance metrics for experiment 2.

Accuracy Precision Recall F1 Score AUC Curve

78% 78% 100% 88% 51%

As we can see, the accuracy is 78%, which means that we see a big improvement when
compared to the results of the experiment in Section 4.4, and our model was able to classify
the start of the event, in a much more efficient way. Also, the precision of this experiment is
78%, which means our model performed well in finding the actual start of the earthquake
events (the positive class). The recall was found to be at 100% due to the one class we have
in the predicted labels (we only kept the positive class, which indicates the earthquake).
Finally, the F1 score was found to be at 88%, which is likely the most important metric to
consider in this experiment, as our target was to classify as many true positives as possible
and the AUC curve (shown in Figure 10) was at 51%, which is probably caused by the lack
of the negative class in the given dataset.

Figure 10. AUC for the proposed model.

In summary, the results, as illustrated in Figure 11, firmly validate the efficacy of our
proposed methodology when compared to the stochastic approach. Our proposed model
exhibits notably superior performance, emphasizing its potential in practical applications.
Specifically, our proposed model achieves comparable results in the recall metric when
contrasted with the stochastic model. However, it significantly outperforms the latter by
achieving a precision score exceeding 30%, underscoring its capacity to accurately identify
positive instances (true positives) while mitigating the occurrence of false positive errors.
Moreover, our model attains a substantially improved F1 score, surpassing the stochastic
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model by more than 20%. This superior F1 score attests to our model’s ability to strike an
optimal balance between precision and recall, making it a promising choice for various
real-world scenarios.

As shown in Figure 12, we can see how our model performed in real-world scenarios.
The red color presents the space between the first point predicted as the earthquake to the
last point predicted as the earthquake. The two vertical lines show the actual start and
end of the earthquake (ground truth). When it comes to the start of the event, our model
classifies the starting point exactly at the onset. As we can also observe, the model classifies
the whole earthquake event, not only the starting point. The ending part of an earthquake
is always a complex task so the model performs decently (regarding classification) on that
as well. When comparing these results with the stochastic methodology (Section 4.4), we
can see a big improvement in finding the earthquake events, not only on the metrics, but
also in the actual usage of a model like this, which detects an earthquake event.

While our cost-effective system, built on open hardware and software, offers an
attractive alternative to pricier traditional seismographs, it comes with inherent limitations
in the sampling rate, bit precision, and amplification. Our dataset, a combination of high-
quality and low-cost recordings, presents an imbalance issue due to the significantly smaller
proportion of low-cost data. This imbalance affects our model’s outcomes. Additionally,
the constraints tied to our DNN’s architecture were expected, given its off-the-shelf nature.
However, this architecture can be enhanced through increased parameterization.

Figure 11. Comparison of metric scores.

Figure 12. Cont.
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Figure 12. Results of the amalgamated DNN model’s performance.

5. Conclusions

This paper underscores the profound significance of earthquake monitoring for the
purposes of disaster management, public safety, and scientific research. Moreover, the
pivotal role of sensor networks in amassing seismic data is presented, forming the corner-
stone of current earthquake detection capabilities. In that context, the advent of low-cost
sensors has unlocked the potential for their extensive deployment in the field, despite their
susceptibility to vehicular noise pollution. Low-cost seismic sensors present a formidable
challenge, necessitating innovative solutions for accurate signal extraction. Since the im-
portance of precise earthquake identification cannot be overstated, as it holds the key to
timely alerts and informed decision-making, herein, we propose the use of an amalgamated
deep neural network (DNN) composed of (i) a DNN trained on earthquake signals from
professional sensory equipment, as well as (ii) a DNN trained on vehicular signals from
low-cost sensors, for the purpose of earthquake identification in signals from low-cost
sensors contaminated with vehicular noise.

Our proposal includes a detailed presentation of a low-cost seismic sensory equipment,
which is designed to be approximately two orders of magnitude less expensive than typical
professional seismic measurement equipment. Still, the low-cost seismic sensory equipment
was shown to be prone to vehicular noise contamination. Accordingly, the proposed
amalgamated deep neural network underwent evaluation through experimentation and
has manifested significant performance improvements compared to a generic stochastic
differential model. The superiority of the proposed methodology addresses the need of
effectiveness, as it identifies both the beginning and the end of a seismic event, as well
as the need of efficiency, as indicated by the performance measures. Future plans will
include customizing the generic DNNs deployed in this study for the task at hand, in
order to address the necessities of the work’s scenario and achieve even higher efficiency
in the end identification process. Moreover, we plan to expand the two training datasets
(vehicular noise and ground truth from professional seismometers) provided herein to
ensure more generality and to better train the DNN, accordingly obtaining more general
results. Finally, we plan to extend our low-cost network of sensors in locations near the
professional seismometers in order to enhance the two-fold synchronized dataset and to
test even more diverse scenarios.
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et al. Which Picker Fits My Data? A Quantitative Evaluation of Deep Learning Based Seismic Pickers. J. Geophys. Res. Solid Earth
2022, 127, e2021JB023499.

27. Avlonitis, M. On the problem of early detection of users interaction outbreaks via stochastic differential models. Eng. Appl. Artif.
Intell. 2016, 51, 92–96.

28. Krischer, L.; Megies, T.; Barsch, R.; Beyreuther, M.; Lecocq, T.; Caudron, C.; Wassermann, J. ObsPy: A bridge for seismology into
the scientific Python ecosystem. Comput. Sci. Discov. 2015, 8, 014003. [CrossRef]

29. Evangelidis, C.P.; Triantafyllis, N.; Samios, M.; Boukouras, K.; Kontakos, K.; Ktenidou, O.; Fountoulakis, I.; Kalogeras, I.; Melis,
N.S.; Galanis, O.; et al. Seismic Waveform Data from Greece and Cyprus: Integration, Archival, and Open Access. Seismol. Res.
Lett. 2021, 92, 1672–1684.

30. Choubik, Y.; Mahmoudi, A.; Himmi, M.; El Moudnib, L. STA/LTA trigger algorithm implementation on a seismological dataset
using Hadoop MapReduce. Iaes Int. J. Artif. Intell. (IJ-AI) 2020, 9, 269. [CrossRef]

31. Mani, I.; Zhang, I. kNN approach to unbalanced data distributions: A case study involving information extraction. In Proceedings
of the Workshop on Learning from Imbalanced Datasets, Washington, DC, USA, 21 August 2003; Volume 126, pp. 1–7.

32. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A
System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

33. Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 13 September 2023).
34. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
35. Kowsher, M.; Tahabilder, A.; Islam Sanjid, M.Z.; Prottasha, N.J.; Uddin, M.S.; Hossain, M.A.; Kader Jilani, M.A. LSTM-ANN &

BiLSTM-ANN: Hybrid deep learning models for enhanced classification accuracy. Procedia Comput. Sci. 2021, 193, 131–140.
36. Abualhaol, I.; Falcon, R.; Abielmona, R.; Petriu, E. Data-Driven Vessel Service Time Forecasting using Long Short-Term Memory

Recurrent Neural Networks. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA,
10–13 December 2018; Volume 12, pp. 2580–2590. [CrossRef]

37. Agarap, A.F. Deep Learning using Rectified Linear Units (ReLU). arXiv 2018, arXiv:1803.08375.
38. Dubey, S.R.; Singh, S.K.; Chaudhuri, B.B. A Comprehensive Survey and Performance Analysis of Activation Functions in Deep

Learning. arXiv 2021, arXiv:2109.14545.
39. Yang, T.; Ying, Y. AUC Maximization in the Era of Big Data and AI: A Survey. arXiv 2022, arXiv:2203.15046.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

98



Citation: Zhu, J.; Sun, K.; Zhang, J.

Anomalies in Infrared Outgoing

Longwave Radiation Data before the

Yangbi Ms6.4 and Luding Ms6.8

Earthquakes Based on Time Series

Forecasting Models. Appl. Sci. 2023,

13, 8572. https://doi.org/10.3390/

app13158572

Academic Editor: José A. Peláez

Received: 15 May 2023

Revised: 21 July 2023

Accepted: 22 July 2023

Published: 25 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Anomalies in Infrared Outgoing Longwave Radiation Data
before the Yangbi Ms6.4 and Luding Ms6.8 Earthquakes Based
on Time Series Forecasting Models

Junqing Zhu, Ke Sun * and Jingye Zhang

Institute of Earthquake Forecasting, CEA, Beijing 100036, China
* Correspondence: sunke@cea-ies.ac.cn

Abstract: Numerous scholars have used traditional thermal anomaly extraction methods and time
series prediction models to study seismic anomalies based on longwave infrared radiation data.
This paper selected bidirectional long short-term memory (BILSTM) as the research algorithm after
analyzing and comparing the prediction performance of five time series prediction models. Based on
the outgoing longwave radiation (OLR) data, the time series prediction model was used to predict the
infrared longwave radiation values in the spatial area of 5◦ × 5◦ at the epicenter for 30 days before
the earthquake. The confidence interval was used as the evaluation criterion to extract anomalies.
The examples of earthquakes selected for study were the Yangbi Ms6.4-magnitude earthquake in
Yunnan on 21 May 2021 and the Luding Ms6.8-magnitude earthquake in Sichuan on 5 September
2022. The results showed that the observed values of the Yangbi earthquake 15 to 16 days before the
earthquake (5 May to 6 May) exceeded the prediction confidence interval over a wide area and to a
large extent. This indicates a strong and concentrated OLR anomaly before the Yangbi earthquake.
The observations at 27 days (9 August), 18 days (18 August), and 8 days (28 August) before the
Luding earthquake exceeded the prediction confidence interval in a local area and by a large extent,
indicating a strong and scattered OLR anomaly before the Luding earthquake. Overall, the method
used in this paper extracts anomalies in both spatial and temporal dimensions and is an effective
method for extracting infrared longwave radiation anomalies.

Keywords: time series forecasting models; infrared longwave radiation data; seismic anomaly;
confidence interval; BILSTM

1. Introduction

Since the 1980s, when the Soviet scientist Gornyy [1] first discovered anomalies in
thermal infrared remote sensing images before earthquakes in Central Asia, researchers
in various countries have been using thermal infrared data to study seismic activity and
to attempt to predict earthquakes. Many scholars have used various methods to study
pre-earthquake anomalies based on outgoing longwave radiation data, including wavelet
variation methods [2], the robust satellite techniques (RST) algorithm [3], and the eddy
field method [4], and to analyze pre-earthquake precursor patterns based on the spatial
and temporal evolution of the anomalies. Time series studies of longwave radiation data
could also demonstrate pre-earthquake anomalies from a single time dimension. Many
scholars have used various methods to study changes in temporal OLR values, such as
the geometric moving average martingale (GMAM) change detection method used by
Kong et al. [5], the background field difference method and the mean value method used
by Mahmood et al. [6], and the flux method used by Natarajan et al. [7], after processing
the OLR data and displaying them on a two-dimensional image with time as the horizontal
coordinate. The images showed anomalies that exceeded the thresholds. Many studies
have shown that some thermal infrared anomalies may exist before earthquakes. However,
some scientists have argued against this. For example, Prakash et al. [8] found no significant
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thermal anomalies before earthquakes in and around India after studying earthquakes in
the region. Although there is no consensus on the mechanism of pre-earthquake infrared
anomalies, it is generally accepted that a certain range of thermal anomalies can occur
at some time before an earthquake. Significantly, Chinese seismologists introduced their
research results of seismic infrared remote sensing into daily earthquake forecasting practice
and obtained a good correspondence in the prediction of earthquake risk areas in 2008,
2009, and 2013 [9].

The Earth’s outgoing longwave radiation is the primary driver of the Earth’s climate.
This energy’s reflection, absorption, and emission occur through a complex system of
clouds, aerosols, atmospheric constituents, oceans, and land surfaces [10]. By definition,
longwave radiation is the energy density of electromagnetic waves of all wavelengths
radiated into outer space by the Earth’s atmospheric system. It can reflect the energy
radiation of the Earth’s atmospheric system [11]. The outgoing longwave radiation data
used were acquired by the High-Resolution Infrared Radiation Sounder (HIRS) carried by
the National Oceanic and Atmospheric Administration’s (NOAA) polar-orbiting weather
satellites. The NOAA satellite series has been continuously collecting longwave radiation
data since the 1970s. These data have been used in a variety of applications due to the long
accumulation of data and open-source access.

The rapid development of society has led to the generation of vast amounts of time
series data in economics, meteorology, geology, and the environment. The correct applica-
tion of time series data and forecasting models has been of great value to social activities.
Classical time series forecasting models mainly include autoregressive moving average
(ARMA) and autoregressive integrated moving average (ARIMA) models. Machine learn-
ing has a regression function that has been adapted to the characteristics of time series
data. Various machine learning-based forecasting methods have been applied to time
series data, including support vector machines, Bayesian networks, and Gaussian pro-
cesses. With the development of deep learning, convolutional neural networks based on
time series data, long short-term memory models, and multi-model hybrid models have
been widely used and have achieved excellent performance [12]. Large amounts of data
are required for data training of time series prediction models. The early deployment
of seismic monitoring equipment and advances in observational monitoring techniques
have facilitated the development of multiple types and long-time series of seismic data.
These have provided favorable conditions for the application of time series forecasting
models in the field of seismology. Saqib et al. [13,14] used the ARIMA algorithm for the
short-term prediction of total electron content (TEC) and detected several pre-earthquake
anomalies. In another paper published in the same year, the authors reported a better
performance of the long short-term memory (LSTM) model than the ARIMA model in
detecting seismic ionospheric anomalies. Some researchers have made improvements to the
LSTM algorithm. A multi-network-based hybrid long and short-term memory (N-LSTM)
model was proposed by Senturk et al. [15]; Yue et al. [16] combined the LSTM model and
the relative power spectrum method for TEC anomaly detection; Xiong et al. [17] proposed
an encoder–decoder extended short-term memory expansion model; all these improved
models obtained better performance in their article applications.

In radon time series studies, Mohammed et al. [18] used the ARIMA model and Monte
Carlo prediction model to find a good correlation between soil radon and micro-seismicity
in the study area; Mir et al. [19] used different sets of algorithms to predict time series and
detect anomalies for real-time soil radon time series of different scenarios; Feng et al. [20]
studied groundwater radon and used an empirical mode decomposition–long short-term
memory (EMD–LSTM) model to find multiple possible radon anomalies before earthquakes.
In addition to TEC data and radon data, surface temperature, geoelectric seismic signal,
seismic energy release, b-value (Gutenberg–Richter law’s b-value), groundwater level, OLR,
and geomagnetic data with time series properties have all been used by scholars and based
on time prediction models to study pre-earthquake sequence anomalies.
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This paper first describes traditional methods for studying longwave radiation data
and analyzing seismic sequence data based on different time series prediction models. The
data section presents the data sources and data processing methods used and selects the
Yangbi Ms6.4 earthquake of 21 May 2021 and the Luding Ms6.8 earthquake of 5 September
2022 as research cases. Conventional anomaly extraction methods were able to detect pre-
seismic OLR anomalies for both earthquakes. The Methods section describes time series
prediction models and anomaly assessment methods. The Discussion section discusses
the strengths and weaknesses of this experiment, how the results compare with those of
previous studies, and future directions for improvement. Finally, conclusions were drawn
for the whole text.

2. Data

2.1. HIRS OLR Data

The HIRS sensor is an atmospheric sounding instrument that has been in operation
on the NOAA series of satellites since 1978, with three types of HIRS instruments in use
since 1982, namely HIRS/2 for NOAA 1–14, HIRS/3 for NOAA 15–17, and HIRS/4 for
NOAA-18 and Metop-B [21]. The High-Resolution Infrared Radiation Sounder/4 (HIRS/4)
comprises 19 infrared channels. A total of 12 thermal infrared channels (6.7–15 μm) were
defined as the longwave band, 7 near-infrared channels (3.7–4.6 μm) were defined as the
short-wave band, and 1 channel (0.69 μm) was identified as visible [22]. Compared to
HIRS/3, the latest HIRS/4 has a 10 km instantaneous field of view (IFOV) and a 20 km
ground sample distance (GSD), facilitating increased instrument observations in cloud-free
conditions. The HIRS instrument has a rich set of objects and is capable of acquiring data
on ocean surface temperature, total atmospheric ozone, cloud top height, and coverage,
water vapor distribution, and surface radiance [23].

The HIRS OLR product was developed in the 1980s by Ellingson et al. The unit
of OLR values is W/m2. If radiance data were available from several spectral intervals
encompassing the entire spectrum at a given viewing angle, a first-order estimate of the
OLR could be obtained by summing the radiance for each spectral interval. The estimation
equation for the flux (OLR) was, therefore, chosen as a weighted sum of the HIRS radiance
observations, given as:

OLR = a0 + ∑
k

ak(θ)Nk(θ) (1)

where the a’s are regression coefficients, θ is the satellite zenith angle, and N is the observed
radiance which is related to the specific intensity I at wavenumber v and the instrument
responsivity φ. Nk(θ) is defined as:

Nk(θ) =
∫

Δv
I(v, θ)φkdv (2)

The outgoing flux for an axisymmetric atmosphere is related to the specific intensity as:

OLR = 2π
∫ ∞

0
dv
∫ π/2

0
I(v, θ) cos θ sin θdθ (3)

The spectral intervals and the regression coefficients for (1) were determined with
a stepwise regression analysis of calculations from a theoretical radiation model using
1600 soundings as input data. Ellingson et al. [24] used multispectral regression technology
to evaluate OLR values from four HIRS channels (channels: 3, 7, 10, and 12). The outgoing
flux error of this method was about 4 times smaller than the error of NOAA using AVHRR to
estimate flux. Because the spectral response function for channel 10 has changed in the HIRS
instruments developed after HIRS/2, the algorithm used channels 3, 10, 11, and 12 [25].

The 1◦ × 1◦ OLR data from the NOAA-18 satellite used can be downloaded from
the National Centers for Environmental Prediction (NCEP) FTP server. The downloaded
data were in a binary ASCII format with “1” for daytime data and “2” for nighttime
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data, and the daytime and nighttime data were in a 180 × 360 array. We chose nighttime
data for the study to minimize interference from solar radiation and human activity [23].
NOAA-18 satellite 1◦ × 1◦ OLR data can be downloaded via NCEP’s FTP server (ftp:
//ftp.cpc.ncep.noaa.gov/precip/noaa18_1x1/) (accessed on 20 December 2022).

2.2. Data Processing

In studying the spatial dimension of pre-earthquake thermal infrared anomalies,
Sun et al. [9] found that the most significant thermal anomaly of the 25 April 2015 Ms8.1
earthquake occurred about 100 km west of the epicenter, and the most significant thermal
anomaly of the 12 May 2015 Ms7.5 earthquake occurred about 200 km east of the epicenter.
Lu et al. [2]used the wavelet variation method to study the Tibet Shigatse 26 February
2010 Ms5.0 earthquake, the Tibet Nierong 4 March 2010 Ms5.7 and Ms5.5 earthquakes,
and the Yushu 14 April 2010 Ms7.1 earthquake. After observing the spatial and temporal
evolution maps of the seismic thermal anomalies, we found that the anomalies were mainly
distributed near the epicenter. Most of the anomaly distribution was in the spatial range
of 5◦ × 5◦. The range of effects of different earthquake magnitudes was also provided by
the “SERIES OF EARTHQUAKE CASES IN CHINA”: Ms ≥ 7.0 earthquake, within 500 km;
6.0 ≤ MS < 7.0 earthquake, within 300 km; 5.0 ≤ Ms < 6.0 earthquake, within 200 km [26–28].

In order to study the temporal dimension of the pre-earthquake thermal infrared
anomalies, Jing et al. [29] chose a 5◦ × 5◦ area centered on the epicenter as the study area
after considering that the thermal anomalies usually reflected an extensive range and took
two months as the study time dimension. It was found that the pre-earthquake high OLR
value anomalies appeared within one month in the study of the Zhongba Ms6.8 earthquake
on 25 August 2008 and the Yutian Ms7.3 earthquake on 21 March 2008. In another paper,
Jing et al. [30] found a thermal anomaly in the fault zone near the epicenter of the 25 April
2015 Ms8.1 earthquake in Nepal six months before its occurrence. Song et al. [31] used
the RST algorithm to study the 12 May 2008 Wenchuan Ms8.0 earthquake, which showed
that thermal anomalies began to accumulate spatially three months before the quake, with
anomalies of different intensities and distribution ranges appearing multiple times over
time. Based on existing studies, the following could be concluded: the distribution of
anomaly ranges extracted by the thermal infrared anomaly extraction algorithm was irreg-
ular but generally distributed near the epicenter; and pre-earthquake thermal anomalies
occurred irregularly, usually within six months before the earthquake.

The examples of earthquakes selected for study in this paper were the Yangbi Ms6.4
earthquake of 21 May 2021 and the Luding Ms6.8 earthquake of 5 September 2022. The
epicenter of the Yangbi earthquake was located near the southwest edge of the Sichuan–
Yunnan rhombic block, which is a channel for material extrusion from the Qinghai–Tibet
Plateau to the southeast and belongs to the area with the strongest extrusion deformation.
Within 100 km of the epicenter, there were five Holocene active fractures: the Honghe Fault,
the Lijiang-Xiaojinhe Fault, the Heqing-Eryuan Fault, the Chenghai-Binchuan Fault, and
the Longban-Qiaohou Fault. The Yangbi earthquake was the result of a shallow fault slip,
and the regional geologic structure is consistent with the spatial characteristics of dextral
strike-slip movement [32]. The epicenter of the Luding earthquake was located near the
Moxi Fault in the southeast section of the Xianshuihe Fault Zone on the southeastern edge
of the Tibetan Plateau. The Xianshuihe Fault Zone has a total length of about 350 km and is
a large sinistral strike-slip fault zone with strong activity, high seismic development, and
geological disaster risk [33]. Table 1 shows the information for the two studied earthquakes.

Due to the moderate magnitude of the earthquake, the experimental area selected was
a 5◦ × 5◦ area close to the center. In this paper, we mainly wanted to study close-proximity
anomalies, so we chose the 30 days before the earthquake as the prediction days. The study
area shown in Figure 1 and the nearest grid data to the epicenter were chosen to represent
the data at the epicenter.

102



Appl. Sci. 2023, 13, 8572

Table 1. Detailed information of earthquake examples.

Time (UTC + 8) Longitude/◦ E Latitude /◦ N Depth/KM Magnitude/MS Location

21 May 2021 21:48 99.87 25.67 8 6.4 Yangbi County,
Yunnan Province

5 September 2022 12:52 102.08 29.59 16 6.8 Luding County,
Sichuan Province

 
Figure 1. Research region. The pentagrams indicate the locations of epicenters, the gray area indicates
the 5◦ × 5◦ study area, and the pink lines represent the fault zones.

The original OLR data were organized in an array of 180 × 360 pixels. The time
dimension was continuous. The a-plot in Figure 2 shows the OLR values for the region
of China from 22 April 2022 to 21 May 2022. The b-plot in Figure 2 shows the Yangbi
earthquake in the 5◦ × 5◦ area (5 × 5 pixels). Figure 2 was drawn in MATLAB. Extracting
the experimental area from the original data was the main pre-processing method in
this experiment.
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Figure 2. (a) OLR values in China in the 30 days before Yangbi Ms6.4 earthquake (from 22 April 2021
to 21 May 2021). The red box indicates the study area of the Yangbi earthquake. (b) The Yangbi Ms6.4
earthquake’s OLR values within the 5◦ × 5◦ range of the epicenter (from 22 April 2021 to 21 May 2021).

3. Methods

The existence of pre-earthquake thermal infrared anomalies has been demonstrated in
many studies. Most traditional studies were based on different algorithms to extract the
intensity and distribution range of thermal infrared anomalies in pre-earthquake time and
spatial dimensions, such as the RST algorithm, wavelet vorticity method, and eddy field
method [2–4]. The experiment was based on time series data of outgoing longwave infrared
radiation and used a time series prediction model to predict the values of longwave infrared
radiation at different time ranges before the earthquake within a specific spatial coverage
of the epicenter. Data preparation involved downloading the data and selecting seismic
examples and spatial and temporal scales. The data were cropped to the corresponding
temporal and spatial scales to generate the dataset. By comparing and analyzing the
prediction performance of different time series prediction models for different prediction
periods, we selected the best performing model for the earthquake example study in the
algorithm evaluation phase. In the anomaly extraction phase, the confidence interval was
used as the evaluation criterion to extract the magnitude of the range outside the confidence
interval and the corresponding date. Finally, the anomalies were analyzed based on the
spatiotemporal dimension. Figure 3 shows the entire process of this experiment.
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Figure 3. Experimental flowchart. The experimental process is divided into four parts: Data Prepara-
tion, Algorithm Evaluation, Anomaly Extraction, and Result Analysis.

3.1. Time Series Forecasting Models
3.1.1. ARMA/ARIMA

ARMA and ARIMA models were obtained from a combination of autoregressive
and moving average models [34]. When the time series is smooth, given a time series
t = 0, t = 1, t = 2 . . ., ARMA(p, q) can be expressed as

zt = m1zt−1 + · · ·+ mpzt−p + ct + n1ct−1 + · · ·+ nqct−q (4)

where mp �= 0, nq �= 0, zt is a stationary sequence, ct is a white noise sequence, p is the
autoregressive parameter, and q is the moving average parameter. If the mean of zt is
non-zero, then δ = μ

(
1 − η1 − · · · − ηp

)
is set and (1) is rewritten as [35,36]:

zt = δ + m1zt−1 + · · ·+ mpzt−p + ct + n1ct−1 + · · ·+ nqct−q (5)

When the time series is not smooth, the difference term can be introduced to smooth
the series, where ARMA(p, q) becomes ARMA(p, d, q). The “d” in ARMA(p, d, q) is called
the difference order, and is usually differenced once or twice for an unsteady time series.
The difference separates out the noise in the time series and replaces the time series value
with the difference between the original and previous values [37].

3.1.2. SVM

Since Vapnik [38] developed support vector machines in 1995, the machine learning
model has been widely used in pattern recognition, object classification, and time series
regression tasks. Support vector regression models differ from traditional parametric
models in that the former uses training data to obtain regression results [39]. Suppose that
we have training data (x1, y1), (x2, y2), . . . (xl , yl), where xi is the input value and yi is the
output value corresponding to it. Optimization problems in support vector regression are
as follows:

min
ω, b, ξ, ξ∗

1
2

ωTω + C
l

∑
i=1

(ξi + ξ∗i ) (6)

subject to yi −
(
ωT ϕ(xi) + b

) ≤ ε + ξ∗i ,(
ωT ϕ(xi) + b

)− yi ≤ ε + ξi ξi, ξ∗i ≥ 0, i = 1, . . . , l

where ω is the normal vector, b is the intercept distance, xi is mapped by the function to
a high-dimensional space, and ξ∗i and ξi are the upper and lower errors of the training
respectively. The parameters controlling the regression quality are the cost error C, the
width of the dimension ε, and the mapping function ϕ. SVR avoids under- and overfitting
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training data by minimizing the error and the canonical term. The dual problem of the
function is treated next.

min
α, α∗

1
2
(α − α∗)TQ(α − α∗) + ε

l

∑
i=1

(αi + α∗i ) +
i

∑
i=1

yi(α − α∗i ) (7)

subject to ∑l
i=1(αi − α∗i ) = 0 Qij = ϕ(xi)

T ϕ
(
xj
)

0 ≤ αi, α∗i ≤ C, i = 1, . . . , l

Faced with the problem of computing functions, we can introduce polynomial kernels
or RBF kernels for efficient computation [40].

3.1.3. XGBoost

XGBoost is a machine learning model proposed by Tianqi Chen et al. [41]. It is an
improvement on the gradient-boosting decision tree, which gives full play to the calculator’s
parallel computing power and improves the algorithm’s accuracy. Suppose we have
training data (c1, d1), (c2, d2), . . . (cs, ds),xr ∈ X ⊆ Ro, yr ∈ Y ⊆ R, where X is the input
space and Y is the output space corresponding to it. The optimization objective function
L(u) of the XGBoost algorithm is:

L(u) =
s

∑
r=1

l
(

dr, d̃r(u − 1)
)
+ fu(cr)) + H( fu) (8)

where d̃r(u − 1) is expressed as the predicted value of the model at the (u − 1)th iteration
of the sample; fu(cs) is described as the predicted value of the model at the tth iteration of
the sample; and H( fu) is the canonical term of the objective function. A Taylor expansion
of the above equation gives:

L̃(u) ∼=
v

∑
j=1

⎡⎣ej ∑
r∈Kj

gr +
1
2

ej
2

⎛⎝∑
r∈Kj

hr + λ

⎞⎠⎤⎦+ γT (9)

where gr and hr are the first- and second-order gradients of sample cr, respectively; ej is the
output value of the jth node; λ and γ are the regular term coefficients; and Kj is the subset
of samples in the jth leaf node. The training process of the XGBoost model is the process of
solving the above equation and finding the optimal solution [42].

3.1.4. BILSTM

Recurrent neural networks (RNNs) are a sequence-to-sequence model where the model
does not change depending on the length of the sequence. However, when dealing with
long sequences, it forgets information from further back in time, leading to problems such
as gradient loss and overfitting. The long short-term memory (LSTM) model improves
on the RNN by adding “forgetting gates”, “input gates”, and “output gates” to control
the retention and rejection of information through the function of gates. This optimizes
the shortcomings of RNN’s short-term memory and can effectively handle the transfer of
information in long-time sequences [43,44]. Figure 4 shows a structural diagram of the
LSTM model.

The BILSTM model, a bidirectional long short-term memory neural network, consists
of two independent LSTM models, a forward model and a backward model. The output
combines the results of both models. To some extent, the BILSTM model can compensate
for information that may be missed by the unidirectional LSTM [45]. Figure 5 shows a
structural diagram of the BILSTM model.
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Figure 4. LSTM unit structure diagram. ht−1 and ht are the hidden information of the previous cell
output and this cell output, respectively; xt and yt are the input and output of this cell, respectively;
Ct−1 and Ct are the cell states of the previous cell output and this cell output, respectively; ft, it, and
ot are the objective functions; σ is the sigmoid function.

 

Figure 5. BILSTM structure diagram. xt and yt are the input and output of the model, respectively.

3.2. Anomaly Assessment Method

The confidence level, which belongs to statistics, has also been widely used in the
earthquake field. Yu et al. [46] studied the load/unload response ratio (LURR) time
series before earthquakes and found that the confidence level of LURR anomalies was
highly correlated with the occurrence of large earthquakes. LURR precursor anomalies
preceded most earthquakes with a probability higher than 90%. Alam et al. [47] used a
confidence interval of 95% for anomaly selection in a statistical analysis of radon data from
the Wenchuan earthquake in their analysis of the global seismic activity in 12 scenarios by
magnitude and period. Yin et al. [48] found a significant activity cycle of about 50 years
with a confidence level well above 95%. Kutoglu et al. [49] used the 95% confidence
level as an anomaly test in their analysis of aerosol optical depth (AOD) time series data.
Zhang et al. [50] proposed a new method for pre-seismic TEC detection using the time
series method, in which the difference between the predicted and actual values of the time
series prediction model was presented. The upper and lower limits were the residual values
with a statistical ratio above 95%. The range was obtained by adding and subtracting from
the predicted value, and any actual value outside this range was considered an anomaly.
Zhai et al. [23] also applied this method to detect anomalies in a pre-earthquake longwave
radiation time series and successfully detected significant anomalies. We have made
improvements to the above methods. We trained several days of data and predicted OLR
values for the corresponding number of days. Then, we calculated the residual value of the
original data and obtained the 95% confidence interval of the predicted value. When the
true value exceeded the upper or lower bound of the confidence interval, the datapoint was
determined as an anomaly. Figure 6 shows the detailed anomaly extraction method process.

Using the Luding earthquake 31.5◦ N 102.5◦ E grid data as an example, 95% confidence
intervals were calculated for the predicted values after the use of the time series to predict
the longwave radiation values. The red curve shows the predicted value 30 days before the
earthquake, and the blue curve shows the upper 95% confidence interval, the light blue
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curve shows the lower 95% confidence interval, and the green curve shows the true value
of the grid. In the graphs, we considered the longwave radiation values to be anomalous if
the actual values were below the lower bound of the interval or above the upper bound of
the interval. For the 31.5◦ N 102.5◦ E grid of the Luding earthquake, Figure 7 shows the
predicted OLR values and the anomaly performance.

 

Figure 6. Anomaly extraction method flowchart. The flowchart was modified based on the anomaly
extraction method proposed by Zhai et al. [23] and Zhang et al. [50] in their articles.

 

Figure 7. Prediction and anomaly performance of the 31.5◦ N 102.5◦ E grid OLR values of the Luding
earthquake. The red curve is the predicted OLR value, and the blue and light blue curves are the
upper and lower bounds of the confidence interval, respectively. The green curve is the actual OLR
value; ΔOLR indicates how much the true value exceeds the prediction interval.

4. Results

4.1. Analysis of Algorithm Evaluation Results

We have chosen the Yangbi earthquake as a study earthquake example. Different
training and test data were selected to predict and calculate the error on the grid data within
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5◦ × 5◦ for this earthquake example. For the evaluation of the performance of the different
algorithms, the data need to be divided into training data and test data. Based on previous
conclusions, the time of occurrence of pre-seismic thermal anomalies is irregular. In general,
they occur within six months prior to the earthquake. We aimed to study close-proximity
anomalies, so we chose the 30 days before the earthquake as the prediction days. Due to
the lag in data acquisition and our desire to obtain the long time series distribution of the
anomalies for future practical applications, our test data were sourced from 5, 10, 15, 20, 25,
and 30 days before the earthquake. The OLR data are seasonal. A training period of one
year was found to work best when Zhai et al. [23] investigated the predictive performance
of OLR based on different algorithms. Data from the year before the earthquake can reduce
the disturbance of seismic anomalies to some extent. Therefore, we chose the training data
in this experiment to be one year (360 days) ahead of the test data. Taking the Yangbi
earthquake on 21 May 2021, for example, 5-day training data: 22 May 2020–16 May 2021,
test data: 17–21 May 2021, 10-day training data: 17–11 May 2021, test data: 12–21 May
2021, and so on. The study area of the algorithm is shown in Figure 1. As the original
data provided data located at a 1◦ × 1◦ centroid, the location was recorded in the form of
25.5◦ N 99.5◦ E. The root mean square error is a common error test and has been widely
used in earthquake prediction research [13–15,19,51]. The experiment uses the root mean
square error (RMSE) to assess the error between the predicted and actual values. The total
error is calculated for the same number of days tested.

Table 2 shows the error results of the BILSTM algorithm for different days and grid
points. The remaining ARMA, ARIMA, SVM, and XGBoost algorithms were evaluated
separately, and the total error of the different algorithms was analyzed following the same
steps as described above; not all values are shown in the paper for the sake of brevity.
Table 3 shows the total RMSE for all grids of the five algorithms for different forecast days.

Table 2. Error results for different days and different grids points based on time series BILSTM
prediction model.

BILSTM 5 Days 10 Days 15 Days 20 Days 25 Days 30 Days

23.5◦ N 97.5◦ E 35.8714 44.4602 40.7788 44.0537 41.95 44.4664
23.5◦ N 98.5◦ E 21.17 24.7485 26.7656 33.1445 33.2425 39.824
23.5◦ N 99.5◦ E 24.1076 24.4975 30.2064 37.9868 37.9291 42.8743
23.5◦ N 100.5◦ E 16.7314 18.9341 23.4452 42.1087 43.1239 41.4841
23.5◦ N 101.5◦ E 31.0999 27.5695 31.9941 50.9161 49.8469 47.2746
24.5◦ N 97.5◦ E 9.9734 24.9584 26.6236 33.5992 38.2924 36.2921
24.5◦ N 98.5◦ E 13.3886 34.8646 35.2853 38.5706 37.172 40.8611
24.5◦ N 99.5◦ E 15.065 25.6253 34.2971 40.8797 38.0604 40.7207
24.5◦ N 100.5◦ E 15.0526 24.6202 27.0864 41.9177 42.5833 41.4012
24.5◦ N 101.5◦ E 22.1425 26.9378 29.9275 44.0822 44.73 42.7893
25.5◦ N 97.5◦ E 42.6918 41.4088 38.9593 40.4864 43.8695 41.0631
25.5◦ N 98.5◦ E 48.6846 39.9932 37.4426 39.5021 40.3489 41.4182
25.5◦ N 99.5◦ E 22.459 22.2276 29.1774 42.9795 39.9472 38.9058
25.5◦ N 100.5◦ E 22.459 22.2276 29.1774 42.9795 39.9472 38.9058
25.5◦ N 101.5◦ E 23.2545 22.5681 30.5917 43.7706 44.0704 41.7547
26.5◦ N 97.5◦ E 25.8453 26.5048 25.9652 32.772 33.1736 31.2204
26.5◦ N 98.5◦ E 42.6866 34.406 31.3593 31.8476 34.0241 32.3093
26.5◦ N 99.5◦ E 24.1937 25.337 25.5326 32.002 31.4707 30.8233
26.5◦ N 100.5◦ E 12.9577 13.9075 25.1652 38.3288 37.1007 36.8696
26.5◦ N 101.5◦ E 16.4933 19.1507 25.8206 38.2982 38.8576 37.6009
27.5◦ N 97.5◦ E 16.3102 14.6956 19.9246 26.974 34.2035 32.8196
27.5◦ N 98.5◦ E 16.2189 13.5482 18.7207 28.0452 27.5518 26.2956
27.5◦ N 99.5◦ E 42.1547 32.8008 29.7843 31.8504 30.7415 28.9882
27.5◦ N 100.5◦ E 22.2848 30.6576 29.3146 32.4005 30.3714 29.3901
27.5◦ N 101.5◦ E 35.9955 31.3212 31.2098 38.7217 35.2332 33.7072

Total RMSE 619.292 667.9708 734.5553 948.2177 947.8418 940.0596
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Table 3. Total RMSE error of different time prediction models.

5 Days 10 Days 15 Days 20 Days 25 Days 30 Days

ARMA 625.0028 647.0955 835.6342 871.0932 882.8587 941.6699
ARIMA 718.1327 738.4042 2060.7494 1034.0422 1542.7989 928.8650

SVM 775.9093 784.3109 806.0665 1025.3715 1034.8680 1026.3374
XGBoost 640.0953 670.1815 773.8258 930.6856 964.0494 946.3818
BILSTM 619.2920 667.9708 734.5553 948.2177 947.8418 940.0596

Table 3 shows that the total sum of root mean square errors for all algorithms was the
smallest for the 5-day prediction time; the BILSTM algorithm had the smallest sum of root
mean square errors for the 5-day prediction time. Therefore, BILSTM was selected as the
research algorithm for this experiment. Five days was chosen as the prediction time. Five
days was a short prediction time, and we used the sliding time window method [51] in this
specific experiment to achieve a prediction of thirty days.

4.2. Analysis of Anomaly Results of Earthquake Cases

The best performing BILSTM prediction model was selected as the prediction algo-
rithm after the error analysis of different algorithms and different prediction days. We then
used the anomaly assessment method to study the Yangbi Ms6.4-magnitude earthquake
on 21 May 2021 and the Luding Ms6.8-magnitude earthquake on 5 September 2022. The
following graphs show the predicted results for two examples of earthquakes.

The green curve shows the actual value; the red curve shows the predicted value;
the blue curve shows the upper bound of the confidence interval; the light blue curve
shows the lower bound of the confidence interval; and the red dashed line in the subplots
indicates the difference between exceeding the upper bound and falling below the lower
bound. Figure 8 shows that within the 5◦ × 5◦ area, 22 grid points, excluding grids points
23.5◦ N 98.5◦ E, 24.5◦ N 101.5◦ E, and 26.5◦ N 98.5◦ E, provided one to three cases of varying
amounts outside the confidence interval in the month before the earthquake. Of these,
24 grid points were below the lower bound of the confidence interval, with the exception
of the 23.5◦ N 101.5◦ E point, which was above the upper bound. The maximum value
below the lower confidence interval was found at grid point 27.5◦ N 101.5◦ E, northeast of
the epicenter. Therefore, we speculated that in the month before the Yangbi earthquake,
anomalies of varying sizes were prevalent in the 5◦ × 5◦ area near the epicenter, dominated
by those below the lower confidence interval.

Figure 8 shows that most of the anomalies are below the lower bound of the confidence
interval. To better illustrate how much the range was exceeded, the vertical coordinates in
Figure 9 are negative upwards and positive downwards. Figure 9 shows that smaller-scale
and smaller-range anomalies were observed during the two time periods from 25 April to
26 April and from 11 May to 12 May. A large-scale and more robust anomaly was observed
from 5 May to 6 May, with the anomaly covering 17 grids, and the radiative energy of
individual grid points was exceeded by up to 42.27 W/m2, 27.52 W/m2, 23.58 W/m2,
and 23.11 W/m2. Therefore, we speculated that a strong and concentrated OLR anomaly
existed 15 to 16 days before the Yangbi earthquake (5–6 May).
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Figure 8. Pre-earthquake OLR prediction and anomalies of the Yangbi Ms6.4 earthquake−spatial
dimension.
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Figure 9. Pre-earthquake anomalies of the Yangbi Ms6.4 earthquake−temporal dimension. The X
axis indicates the time, the Y axis indicates the grid position, and the Z axis indicates the degree
of anomaly.

Figure 10 shows that nine grid points did not exceed the confidence interval and were
mainly located near the epicenter and to the east. Combined with Figure 1, it can be seen
that the eastern part of the epicenter is the Chengdu Plain, which is at a lower elevation
and has relatively inactive fault zone activity with fewer anomalies. The coexistence of
anomalies above and below confidence intervals occurred at several grid points. The
maximum value below the lower boundary occurs at the 28.5◦ N 100.5◦ E grid point
southwest of the epicenter. Therefore, we speculated that the anomalies near the epicenter
one month before the Luding earthquake were mainly distributed southwest and northwest
of the epicenter. Both anomaly types below the lower confidence interval and above the
upper confidence interval occurred.

As shown in Figure 11, anomalies of different intensity, type, and extent were present
on 9 August, 11 August, 18 August, 20 August to 21 August, 25 August to 26 August, 28
August, and 31 August. The maximum radiation exceedance on 9 August, 18 August, and
August 28 reached 40.08 W/m2, 34.08 W/m2, and 51.52 W/m2, respectively. We, therefore,
speculated that there were several OLR anomalies of high intensity in the month before the
Luding earthquake.
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Figure 10. Pre-earthquake OLR prediction and anomalies of the Luding Ms6.8 earthquake−spatial
dimension.
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Figure 11. Pre-earthquake anomalies of the Luding Ms6.8 earthquake−temporal dimension. The X
axis indicates the time, the Y axis indicates the grid position, and the Z axis indicates the degree of
anomaly.

5. Discussion

Many studies have shown the presence of infrared longwave anomalies before earth-
quakes, but these studies have limitations. Researchers have obtained good anomaly
predictions in different case studies using different methods and data, but similar results
may not be obtained with a different method, data, or case. Xie et al. [52] used the two-year
relative wavelet power spectrum method, and Wei et al. [53] used the wavelet power
spectrum method based on FY-2E bright temperature data to study the 14 April 2010
Yushu Ms7.1 earthquake in China. The spatial distribution and intensity of the anomaly
spatiotemporal evolution results obtained by the two differed significantly. Sun et al. [9]
found no significant anomalies when they studied the 25 April 2015 Ms8.1 earthquake
in Nepal using the RST algorithm and OLR data. However, Zhang et al. [54] obtained
good anomaly prediction performance near the epicenter when studying the same earth-
quake case using the power spectrum method and bright temperature data. In addition,
traditional methods for studying anomalies in longwave radiation data have been biased
towards the representation of thermal anomalies, such as the RST algorithm, where values
less than zero are ignored in the calculation of the Alice index [55].

Addressing the two limitations mentioned above, the method of this paper is innova-
tive in two ways. The traditional thermal anomaly extraction model is only a model. In
contrast, the BILSTM time series prediction model used is a deep learning model with the
ability to train data and learn data, which is a data-driven approach. The training process
does not change the original data for earthquake cases and data sources. The model can
learn the data trend in the period before the earthquake. In the prediction process, the
model parameters are modified to make the predicted value as close to the actual value
as possible to achieve a better prediction result. The anomaly detection method used
calculates 95% confidence intervals for the OLR, forming several ranges with upper and
lower bounds. True values falling within this range are considered to be free of anomalies,
while true values above the upper bound or below the lower bound are considered to
be anomalous. This approach implies that there are two different types of anomalies. If
the anomaly is above the upper bound, we consider it to be a hot anomaly, and if the
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anomaly is below the lower bound, we consider it to be a cold anomaly. While traditional
methods can only show anomalies of high longwave radiation values, our method has
both hot and cold anomalies, subdividing the types of anomalies that exist before the
earthquake [2,3]. We have tried to explain cold anomalies at a physical level. According to
the results of the rock experiments, compression leads to an increase in temperature, and
tension leads to a decrease in temperature. The location of the Yangbi earthquake and the
results of a multi-period GNSS strain rate field based on GPS data indicate that the Yangbi
earthquake is located in a tension zone; the Luding earthquake is in a zone of weakness at
the high-value edge of the shear strain of a large strike-slip fault zone and a zone of tensor
strain perpendicular to the fault direction.

Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) was used to explain the physi-
cal and chemical mechanisms of the various anomalies that appear at the surface, in the
atmosphere, and in the ionosphere during the gestation and occurrence of earthquakes [56].
It was found that there was a relationship between pre-earthquake OLR and ionospheric
anomalies, which can be explained by LAIC [57–59]. Fu et al. studied strong earthquakes
with magnitudes greater than 6 in Taiwan and concluded that seismic OLR anomalies
may originate from electromagnetic radiation as well as gas emissions [60]. We tried to
compare anomalous the OLR results of the two earthquakes with the anomalous results
of TEC obtained by other scholars. Zhai et al. [23] used the ARMA model to predict the
longwave radiation values of the 8 August 2017 Jiuzhaigou Ms7.0 earthquake and found
OLR anomalies at the epicenter on 27 July and 5 August; Zhu et al. [61] used the sliding
quartile to detect ionospheric TEC anomalies for the same earthquake and found TEC
anomalies on 28 July, 4 August, and 6 August; the timing of OLR anomalies and of iono-
spheric anomalies were close. Du et al. [62] used Chinese seismo-electromagnetic satellite
data to detect electron density anomalies of the Yangbi Ms6.4 earthquake in Yunnan on 21
May 2021 and found anomalies on 5 May and 8 May; Dong et al. [63] used ionospheric
TEC data to study the same earthquake case and detected the strongest anomaly near the
epicenter on 5 May. We found strong and concentrated OLR anomalies from 5 May to 6
May before the Yangbi earthquake. The timing of the OLR anomalies is also very close to
that of the ionospheric anomalies detected before the Yangbi Ms6.4 earthquake. Therefore,
we believe that there is a specific link exists between the OLR anomaly and the ionospheric
anomaly that existed before the earthquake.

In this paper, we only selected the Yangbi Ms6.4 earthquake of 21 May 2021 and
the Luding Ms6.8 earthquake of 5 September 2022 for study. The number of earthquake
cases was too low to form a statistical analysis of the method. We detected significant
anomalies within a 5◦ × 5◦ area of the epicenter and a month before the earthquake with
the parameters of the earthquake case study determined with reference to the summary of
previous works. It was not possible to determine whether such anomalies existed beyond
this range and time period. The distribution and timing of pre-earthquake anomalies
varied between different-magnitude earthquakes, and specific study areas and times need
to be delineated based on specific earthquake examples. The rapid development of deep
learning has led to more and better time series prediction models, such as the Transformer
algorithm [64,65], a complex time series algorithm that can better predict OLR values
and reduce errors. In addition, the parameter setting of the model was also an important
factor affecting good and bad errors, and different parameters give different results. The
experiment needed to establish the optimal set of model parameters. In future research, we
need to improve and refine the above-mentioned drawbacks.

6. Conclusions

This paper used OLR data to predict 30-day values before the Yangbi Ms6.4-magnitude
earthquake on 21 May 2021 and the Luding Ms6.8-magnitude earthquake on 5 September
2022 based on a time series prediction model and the sliding time window method and
assessed the anomalies using 95% confidence intervals. Five time series prediction models
were used to calculate the RMSE for 5, 10, 15, 20, 25, and 30 days in 25 grids using the
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Yangbi earthquake as an evaluation example. The total RMSE of the BILSTM model for
the 5-day prediction time was 619.2920, which was smaller than any other combination of
model and number of days. The following conclusions can be drawn:

(1) The anomaly distributions of the Yangbi and Luding earthquakes were large.
There was a correspondence between the anomaly distribution area and the distribution
of fault zones. The magnitude of the anomalies of the two earthquakes was significant,
and both earthquakes had showed anomaly values above 40. The anomalies of the two
earthquakes showed different characteristics in the time dimension. The Yangbi earthquake
anomaly appeared 15 to 16 days before the earthquake (5–6 May) with a higher intensity
and more concentrated temporal distribution. The Luding earthquake showed stronger
anomalies 27 (9 August), 18 (18 August), and 8 (28 August) days before the earthquake.
The temporal distribution was more scattered. Overall, OLR data based on time series
could effectively detect apparent pre-earthquake anomalies and analyze the possibility
of earthquake generation by the characteristics presented by the anomalies, which was a
promising method for earthquake prediction.

(2) Based on the time series prediction model to study the seismic anomalies in the
5◦ × 5◦ area and within one pre-earthquake time period, we found that the Yangbi and
Luding earthquakes have specific anomaly characteristics and show similar but not identical
anomaly distributions. However, we may find anomalies with the same characteristics in
different cases by studying many earthquake cases. This experimental anomaly extraction
method used a 95% confidence interval, and there were many small and heterogeneous
distribution characteristics in the results of the studied earthquake anomalies. These
anomalies were minor in degree and in terms of indicative features, which may affect
the interpretation of the overall seismic anomaly and need to be eliminated. Overall, the
study of multiple cases based on time series prediction models is a direction for future
anomaly research. The best confidence interval setting must be found in numerous cases
and studies to summarize the potential patterns between the characteristics of the OLR
anomaly distribution and earthquake occurrence.

Author Contributions: Conceptualization, J.Z. (Junqing Zhu) and K.S.; methodology, J.Z. (Junqing
Zhu); software, J.Z. (Junqing Zhu); validation, J.Z. (Junqing Zhu), J.Z. (Jingye Zhang), and K.S.;
formal analysis, J.Z. (Jingye Zhang); investigation, J.Z. (Jingye Zhang); resources, J.Z. (Junqing Zhu);
writing—original draft preparation, J.Z. (Junqing Zhu); writing—review and editing, J.Z. (Junqing
Zhu); visualization, J.Z. (Jingye Zhang); supervision, K.S.; project administration, K.S.; funding
acquisition, K.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China under Grant
No. U2039202, and the National Key Research and Development Program of China under Grant No.
2019YFC1509202.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This study uses NOAA-18 satellite 1◦ × 1◦ OLR data that can be
downloaded via NCEP’s FTP server (ftp://ftp.cpc.ncep.noaa.gov/precip/noaa18_1x1/) (accessed on
20 December 2022).

Acknowledgments: We thank the National Natural Science Foundation of China and the National
Key Research and Development Program of China for funding this study. We thank NOAA for
providing the OLR data and Sha Yin for guidance in producing the figures.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gornyy, V.; Sal’man, A.; Tronin, A.; Shilin, B. Outgoing terrestrial infrared radiation as an indicator of seismic activity. Dokl. Akad.
Nauk USSR 1988, 301, 67–69. (In Russian)

2. Lu, X.; Meng, Q.; Gu, X.; Zhang, X.; Xie, T.; Geng, F. Thermal infrared anomalies associated with multi-year earthquakes in the
Tibet region based on China’s FY-2E satellite data. Adv. Space Res. 2016, 58, 989–1001. [CrossRef]

116



Appl. Sci. 2023, 13, 8572

3. Zhang, Y.; Meng, Q. A statistical analysis of TIR anomalies extracted by RSTs in relation to an earthquake in the Sichuan area
using MODIS LST data. Nat. Hazards Earth Syst. Sci. 2019, 19, 535–549. [CrossRef]

4. Xiong, P.; Shen, X.H.; Bi, Y.X.; Kang, C.L.; Chen, L.Z.; Jing, F.; Chen, Y. Study of outgoing longwave radiation anomalies associated
with Haiti earthquake. Nat. Hazards Earth Syst. Sci. 2010, 10, 2169–2178. [CrossRef]

5. Kong, X.; Bi, Y.; Glass, D.H. Detecting seismic anomalies in outgoing long-wave radiation data. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2014, 8, 649–660. [CrossRef]

6. Mahmood, I.; Iqbal, M.F.; Shahzad, M.I.; Qaiser, S. Investigation of atmospheric anomalies associated with Kashmir and Awaran
Earthquakes. J. Atmos. Sol.-Terr. Phys. 2017, 154, 75–85. [CrossRef]

7. Natarajan, V.; Philipoff, P.; Sreedharan, V.W.; Venkatachalapathy, H. Observation of pre-earthquake thermal signatures using
geostationary satellites: Implications for earthquake forecasting. J. Appl. Remote Sens. 2016, 10, 46004. [CrossRef]

8. Prakash, R.; Srivastava, H. Diurnal variations of outgoing long wave radiation (OLR) vis a vis 4 January, 2016 Manipur earthquake
(Mw: 6.7): An earthquake precursor? Mausam 2017, 68, 475–486. [CrossRef]

9. Sun, K.; Shan, X.-J.; Ouzounov, D.; Shen, X.-H.; Jing, F. Analyzing long wave radiation data associated with the 2015 Nepal
earthquakes based on Multi-orbit satellite observations. Chin. J. Geophys. 2017, 60, 3457–3465.

10. Ouzounov, D.; Liu, D.; Chunli, K.; Cervone, G.; Kafatos, M.; Taylor, P. Outgoing long wave radiation variability from IR satellite
data prior to major earthquakes. Tectonophysics 2007, 431, 211–220. [CrossRef]

11. Ohring, G.; Gruber, A. Satellite radiation observations and climate theory. In Advances in Geophysics; Elsevier: Amsterdam, The
Netherlands, 1983; Volume 25, pp. 237–304.

12. Yang, H.M.; Pan, Z.S.; Wei, B.; Of, S. Review of Time Series Prediction Methods. Comput. Sci. 2019, 46, 21–28.
13. Saqib, M.; Senturk, E.; Sahu, S.A.; Adil, M.A. Ionospheric anomalies detection using autoregressive integrated moving average

(ARIMA) model as an earthquake precursor. Acta Geophys. 2021, 69, 1493–1507. [CrossRef]
14. Saqib, M.; Senturk, E.; Sahu, S.A.; Adil, M.A. Comparisons of autoregressive integrated moving average (ARIMA) and long short

term memory (LSTM) network models for ionospheric anomalies detection: A study on Haiti (M-w=7.0) earthquake. Acta Geod.
Geophys. 2022, 57, 195–213. [CrossRef]

15. Senturk, E.; Saqib, M.; Adil, M.A. A Multi-Network based Hybrid LSTM model for ionospheric anomaly detection: A case study
of the M-w 7.8 Nepal earthquake. Adv. Space Res. 2022, 70, 440–455. [CrossRef]

16. Yue, Y.; Koivula, H.; Bilker-Koivula, M.; Chen, Y.; Chen, F.; Chen, G. TEC Anomalies Detection for Qinghai and Yunnan
Earthquakes on 21 May 2021. Remote Sens. 2022, 14, 4152. [CrossRef]

17. Xiong, P.; Zhai, D.; Long, C.; Zhou, H.; Zhang, X.; Shen, X. Long short-term memory neural network for ionospheric total electron
content forecasting over China. Space Weather. 2021, 19, e2020SW002706. [CrossRef]

18. Mohammed, D.H.K.; Kulahci, F.; Muhammed, A. Determination of possible responses of Radon-222, magnetic effects, and total
electron content to earthquakes on the North Anatolian Fault Zone, Turkiye: An ARIMA and Monte Carlo Simulation. Nat.
Hazards 2021, 108, 2493–2512. [CrossRef]

19. Mir, A.A.; Celebi, F.V.; Alsolai, H.; Qureshi, S.A.; Rafique, M.; Alzahrani, J.S.; Mahgoub, H.; Hamza, M.A. Anomalies Prediction in
Radon Time Series for Earthquake Likelihood Using Machine Learning-Based Ensemble Model. IEEE Access 2022, 10, 37984–37999.
[CrossRef]

20. Feng, X.; Zhong, J.; Yan, R.; Zhou, Z.; Tian, L.; Zhao, J.; Yuan, Z. Groundwater radon precursor anomalies identification by
EMD-LSTM model. Water 2022, 14, 69. [CrossRef]

21. Roebeling, R.; Schulz, J.; Hewison, T.; Theodore, B. Inter-calibration of METEOSAT IR and WV channels using HIRS. AIP Conf.
Proc. 2013, 1531, 288–291.

22. Turner, E.C.; Tett, S.F. Using longwave HIRS radiances to test climate models. Clim. Dyn. 2014, 43, 1103–1127. [CrossRef]
23. Zhai, D.; Zhang, X.; Xiong, P. Detecting thermal anomalies of earthquake process within outgoing longwave radiation using time

series forecasting models. Ann. Geophys. 2020, 63, PA548. [CrossRef]
24. Ellingson, R.G.; Yanuk, D.J.; Lee, H.-T.; Gruber, A. A technique for estimating outgoing longwave radiation from HIRS radiance

observations. J. Atmos. Ocean. Technol. 1989, 6, 706–711. [CrossRef]
25. Lee, H.-T.; Ellingson, R.G. HIRS OLR climate data record–production and validation updates. AIP Conf. Proc. 2013, 1531, 420–423.
26. Chen, Q.F.; Zheng, D.L.; Che, S. Earthquake Cases in China (1992–1994); Seismological Press: Beijng, China, 2002.
27. Chen, Q.F.; Zheng, D.L.; Liu, G.P.; Li, M. Earthquake Cases in China (1995–1996); Seismological Press: Beijing, China, 2002.
28. Jiang, H.K.; Fu, H.; Yang, M.L.; Ma, H.S. Earthquake Cases in China (2003–2006); Seismological Press: Beijing, China, 2014.
29. Jing, F.; Shen, X.; Kang, C.; Meng, Q.; Xiong, P. Anomalies of outgoing longwave radiation before some medium to large

earthquakes. Earthquake 2009, 29, 117–122.
30. Feng, J.; Xuhui, S.; Hui, W.; Chunli, K.; Pan, X. Infrared characteristics analysis of the 2015 Nepal M S 8.1 earthquake. Acta Seismol.

Sin. 2016, 38, 429–437.
31. Song, D.; Zang, L.; Shan, X.; Yuan, Y.; Cui, J.; Shao, H.; Shen, C.; Shi, H. A study on the algorithm for extracting earthquake

thermal infrared anomalies based on the yearly trend of LST. Seismol. Geol. 2016, 38, 680–695.
32. He, S.; Zhou, Q.; Liu, Z. Seismogenic Structure of the 2021 Yangbi, Yunnan MS6.4 Earthquake and Earthquake Risk Analysis in

the Epicenter Area. J. Seismol. Res. 2021, 44, 380–390.
33. Fan, X.; Wang, X.; Dai, L.; Fang, C.; Deng, Y.; Zou, C.; Tang, M.; Wei, Z.; Dou, X.; Zhang, J. Characteristics and spatial distribution

pattern of M S 6.8 Luding earthquake occurred on September 5, 2022. J. Eng. Geol. 2022, 30, 1504–1516.

117



Appl. Sci. 2023, 13, 8572

34. Valipour, M.; Banihabib, M.E.; Behbahani, S.M.R. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural
network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 2013, 476, 433–441. [CrossRef]

35. Kumar, U.; Jain, V. ARIMA forecasting of ambient air pollutants (O 3, NO, NO 2 and CO). Stoch. Environ. Res. Risk Assess. 2010,
24, 751–760. [CrossRef]

36. Shumway, R.H.; Stoffer, D.S.; Stoffer, D.S. Time Series Analysis and Its Applications; Springer: Berlin/Heidelberg, Germany, 2000;
Volume 3.

37. Zhang, H.; Zhang, S.; Wang, P.; Qin, Y.; Wang, H. Forecasting of particulate matter time series using wavelet analysis and
wavelet-ARMA/ARIMA model in Taiyuan, China. J. Air Waste Manag. Assoc. 2017, 67, 776–788. [CrossRef] [PubMed]

38. Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999.
39. Sapankevych, N.I.; Sankar, R. Time series prediction using support vector machines: A survey. IEEE Comput. Intell. Mag. 2009, 4,

24–38. [CrossRef]
40. Chen, B.-J.; Chang, M.-W. Load forecasting using support vector machines: A study on EUNITE competition 2001. IEEE Trans.

Power Syst. 2004, 19, 1821–1830. [CrossRef]
41. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference

on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
42. LI, H.; ZHU, Y. Xgboost algorithm optimization based on gradient distribution harmonized strategy. J. Comput. Appl. 2020, 40,

1633.
43. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
44. Yan, X.; Shi, Z.; Wang, G.; Zhang, H.; Bi, E. Detection of possible hydrological precursor anomalies using long short-term memory:

A case study of the 1996 Lijiang earthquake. J. Hydrol. 2021, 599, 126369. [CrossRef]
45. Lin, H.; Zhang, S.; Li, Q.; Li, Y.; Li, J.; Yang, Y. A new method for heart rate prediction based on LSTM-BiLSTM-Att. Measurement

2023, 207, 112384. [CrossRef]
46. Yu, H.Z.; Zhu, Q.Y. A probabilistic approach for earthquake potential evaluation based on the load/unload response ratio method.

Concurr. Comput. Pract. Exp. 2010, 22, 1520–1533. [CrossRef]
47. Alam, A.; Wang, N.; Zhao, G.; Barkat, A. Implication of radon monitoring for earthquake surveillance using statistical techniques:

A case study of Wenchuan earthquake. Geofluids 2020, 2020, 2429165. [CrossRef]
48. Yin, J.; Song, Z.; Xue, Y.; Liu, J.; Zhang, G.; Zhu, Y. Analysis on global huge earthquake activity. Acta Seismol. Sin. 2012, 34,

191–201.
49. Kutoglu, S.H.; Ghasempour, F.; Sekertekin, A. Investigation of Possible MODIS AOD Anomalies as Earthquake Precursors for

Global Earthquakes. Adv. Space Res. 2021, 68, 3531–3545. [CrossRef]
50. Zhang, X.; Ren, X.; Wu, F.; Chen, Y. A New Method for Detection of Pre-Earthquake Ionospheric Anomalies. Chin. J. Geophys.

2013, 56, 213–222.
51. Xiong, P.; Tong, L.; Zhang, K.; Shen, X.; Battiston, R.; Ouzounov, D.; Iuppa, R.; Crookes, D.; Long, C.; Zhou, H. Towards advancing

the earthquake forecasting by machine learning of satellite data. Sci. Total Environ. 2021, 771, 145256. [CrossRef]
52. Xie, T.; Kang, C.L.; Ma, W.Y. Thermal infrared brightness temperature anomalies associated with the Yushu (China) Ms = 7.1

earthquake on 14 April 2010. Nat. Hazards Earth Syst. Sci. 2013, 13, 1105–1111. [CrossRef]
53. Wei, C.; Zhang, Y.; Guo, X.; Qin, M.; Ning, Y.-L.; Gao, J. Thermal infrared and long-wave radiation anomalies of Yushu MS 7.1

earthquake. Prog. Geophys. 2013, 28, 2444–2452.
54. Zhang, X.; Zhang, Y.; Guo, X.; Wei, C.; Zhang, L. Analysis of thermal infrared anomaly in the Nepal MS8.1 earthquake. Earth Sci.

Front. 2017, 24, 227–233.
55. Tramutoli, V. Robust AVHRR Techniques (RAT) for environmental monitoring: Theory and applications. In Earth Surface Remote

Sensing II; SPIE: Bellingham, WA, USA, 1998; pp. 101–113.
56. Pulinets, S.; Ouzounov, D.; Karelin, A.; Davidenko, D. Lithosphere-atmosphere-ionosphere-magnetosphere coupling-a concept

for pre-earthquake signals generation. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies;
American Geophysical Union: Washington, DC, USA, 2018; pp. 77–98.

57. Parrot, M.; Tramutoli, V.; Liu, T.J.; Pulinets, S.; Ouzounov, D.; Genzano, N.; Lisi, M.; Hattori, K.; Namgaladze, A. Atmospheric
and ionospheric coupling phenomena associated with large earthquakes. Eur. Phys. J. Spec. Top. 2021, 230, 197–225. [CrossRef]

58. Conti, L.; Picozza, P.; Sotgiu, A. A critical review of ground based observations of earthquake precursors. Front. Earth Sci. 2021, 9,
676766. [CrossRef]

59. Lu, J.; Hu, Y.; Jiang, C.; Zhao, Z.; Zhang, Y.; Ma, Z. Analysis of Pre-Earthquake Ionospheric Anomalies in the Japanese Region
Based on DEMETER Satellite Data. Universe 2023, 9, 229. [CrossRef]

60. Fu, C.-C.; Lee, L.-C.; Ouzounov, D.; Jan, J.-C. Earth’s outgoing longwave radiation variability prior to M≥ 6.0 earthquakes in the
Taiwan area during 2009–2019. Front. Earth Sci. 2020, 8, 364. [CrossRef]

61. Zhu, J.; Zhao, M.; Gong, C.; Wang, L. Ionosphere abnormalities before the 2017 MS7. 0 Jiuzhai Valley earthquake. J. Guilin Univ.
Technol. 2020, 40, 372–378.

62. Du, X.; Zhang, X. Ionospheric Disturbances Possibly Associated with Yangbi Ms6. 4 and Maduo Ms7. 4 Earthquakes in China
from China Seismo Electromagnetic Satellite. Atmosphere 2022, 13, 438. [CrossRef]

63. Dong, L.; Zhang, X.; Du, X. Analysis of Ionospheric Perturbations Possibly Related to Yangbi Ms6. 4 and Maduo Ms7. 4
Earthquakes on 21 May 2021 in China Using GPS TEC and GIM TEC Data. Atmosphere 2022, 13, 1725. [CrossRef]

118



Appl. Sci. 2023, 13, 8572

64. Jaderberg, M.; Simonyan, K.; Zisserman, A. Spatial transformer networks. In Advances in Neural Information Processing Systems;
MIT Press: Cambridge, MA, USA, 2015; Volume 28.

65. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October
2021; pp. 10012–10022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

119



Citation: Hu, J.; Ding, Y.; Lin, S.;

Zhang, H.; Jin, C. A Machine-

Learning-Based Software for the

Simulation of Regional Characteristic

Ground Motion. Appl. Sci. 2023, 13,

8232. https://doi.org/10.3390/

app13148232

Academic Editors: Shiyong Zhou and

Ke Jia

Received: 9 May 2023

Revised: 5 July 2023

Accepted: 8 July 2023

Published: 15 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Machine-Learning-Based Software for the Simulation of
Regional Characteristic Ground Motion

Jinjun Hu 1,*, Yitian Ding 1, Shibin Lin 2, Hui Zhang 1 and Chaoyue Jin 1

1 Key Laboratory of Earthquake Engineering Vibration, Institute of Engineering Mechanics, China Earthquake
Administration, Harbin 150080, China; dingyt1998@163.com (Y.D.)

2 Hubei (Wuhan) Institute of Explosion Science and Blasting Technology, Jianghan University, Economic and
Technological Development Zone, Wuhan 430056, China

* Correspondence: hujinjun@iem.ac.cn

Featured Application: Earthquake Detection, Earthquake Early Warning System (EEWS), Process-

ing of Seismic data.

Abstract: Ground-motion simulations provide input time history data required for designing and
assessing structures; however, the simulations conducted by the currently available tools only match
the design spectrum without verifying if the statistical characteristics of the spectrum and duration
are satisfied. A ground-motion simulation software was developed to resolve these issues. The
developed software employs machine learning methods to match the amplitude, spectrum, and
duration features of the target region. Principal component analysis is employed to extract features
from the actual ground-motion database to detect characteristic ground motions and predict the
target acceleration amplitude, response spectrum, and duration, based on the response spectrum
and duration prediction equations. The results show that the simulated ground motion can match
the amplitude, spectrum, and duration characteristics well. Therefore, the simulated ground motion
can provide more reasonable input for the structure. Moreover, the developed software provides
visualization functions that enable the user to determine the target area and obtain the amplitude
field intuitively.

Keywords: reginal characteristic ground motion; ground motion; ground-motion field simulation;
principal component analysis; genetic algorithms; MATLAB-based simulator

1. Introduction

The time-history analysis method is an important tool for calculating the response of
structures under earthquakes. However, time-history analysis relies on reliable ground-
motion inputs. In general, there are two types of ground motion—the real ground-motion
records obtained by seismic stations in the advent of earthquakes, and synthetic ground
motion. Real ground motions are obtained from the ground-motion database [1], whereas
several methodologies are employed to obtain synthetic ground motions [2,3]. Many factors
affect the structural response (e.g., load uncertainty, structural material, and construction
quality), among which load uncertainty has the highest influence [4,5], and ground-motion
input (as an important part of the structural load input) has a considerable effect.

In practice, recorded ground motions are preferred over synthetic ground motions [6].
This is because the synthetic ground motions according to some criteria (e.g., control spectra,
etc.) are different from the recorded ground motions to some extent. However, the lack
of recorded ground motion makes it impossible to select a suitable record. Therefore, it is
important to synthesize reliable and reasonable ground motion for time-history analysis [2].

Ground-motion-synthesis methodologies have been developed for many years, and
several researchers have proposed different methods to simulate ground motions based
on different principles. Currently, ground-motion-simulation methods are divided into
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three categories: (1) Ground-motion simulation based on the stochastic method; (2) physics-
based ground-motion-simulation methods; and (3) hybrid simulated ground motions [3,7–11].
Numerous techniques for simulating ground motion are currently under investigation [12–17].
For example, Ref. [18] simulated ground-motion time series at uninstrumented sites using
a gaussian process regression. They estimated the time series at a site based on observed
ground motions at surrounding sites, and the method can be used for estimating and
understanding causes of earthquake damage at uninstrumented sites. The amplitude,
spectrum, and duration simultaneously constrain the ground motions. Currently, the
most widely used method in engineering is ground-motion synthesis with matching target
response spectrum. However, this synthesis method cannot obtain a unique ground-motion
time history. Therefore, a multicriteria objective function for ground motion is proposed.
Seismic event parameters, target spectra (Sa, haz(T)), target intensity measures (IMs) for a
specific site, structure of interest, and other conditions are investigated to simulate more
reasonable ground motion [19–31]. The energy of seismic waves recorded at a station is
related to the strong motion part of the recorded ground motion. For a given acceleration
a(t), velocity v(t), or displacement d(t), Ref. [29] defined the strong motion part of the
recorded ground motion as the fast-growing region of the integral, where f(t) is any of a(t),
v(t), or d(t). The time interval at which the maximum contribution of this integral occurs
is defined as the strong motion duration. Ref. [29] defined the 5–95% time interval as the
ground-motion duration. Therefore, it is commonly used in seismic hazard analysis [18,19].
However, this is not reflected in the simulation method. In addition, there are regional
differences in the amplitude, spectrum, and duration of ground motions due to geological
formations [26]. When simulating ground motions using the machine learning method,
it is essential to consider the regional characteristics of the location of interest. To ensure
accurate results, it becomes necessary to constrain the amplitude, spectrum, and duration
as the main control factors. By carefully adjusting these parameters, the simulation can
better capture the specific ground-motion characteristics relevant to the location under
study.

Thus far, researchers have developed ground-motion-selection software or frameworks
based on different methods [27–29]; however, procedures for developing ground motion
simulations using advanced methodologies are lacking. Although some methods have
been proposed for synthesizing ground-motion records that meet some of the statistical
characteristics, the current theoretical approach does not consider user-oriented applica-
tions [31]. The current user-oriented ground-motion simulation records cannot meet user
requirements for more accurate acceleration time history records. The user-friendly inter-
face and visualization allows users to focus on other aspects of their research, and software
or plug-ins have been developed to facilitate their use [32]. Thus, it is necessary to develop
user-friendly software that provides a graphical user interface (GUI) with visualization
functions and applies a more rational and advanced ground-motion methodology [33–35].

Machine learning methods have been successfully applied in various fields in recent
years [36]. The proposed software employs a machine learning synthesis method based
on an actual ground-motion database that not only matches the target response spectrum,
but also ensures constraints on the duration using constraints. This resolves the significant
variations in the input response caused by the diversity of the matching results men-
tioned above. This method first extracts the characteristic ground motions from the actual
ground-motion database using principal component analysis (PCA), and then matches the
amplitude, spectrum, and duration. To determine the most reasonable ground motions,
the extracted characteristic ground motions are combined using a multi-objective genetic
algorithm known for its successful application in numerous studies [37]. This algorithm
efficiently determines the optimal solution by considering multiple constraints, enabling
the linear combination of the extracted characteristic ground motions. The software is
a MATLAB-based application that clearly identifies target areas based on engineering
parameters provided by researchers and engineers, obtains amplitude fields visualized
at different periods, and generates acceleration time history records on demand, which
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enables researchers to focus on subsequent research. This paper introduces ground-motion
simulation methodology used by the software and demonstrates its application.

2. Methods for Ground-Motion Simulation

Ref. [38] was the first to carry out the work on ground-motion simulation. Subse-
quently, there has been long-term development of ground-motion simulation methods
and theories. Deterministic methods are mainly applied to simulate the low-frequency
components of ground motion, and stochastic methods are proposed to simulate the high-
frequency components of ground motion [39]. Hybrid simulation methods combine the
advantages of both deterministic and stochastic simulations, and can simulate a wide range
of earthquakes [40]. However, the deterministic approach requires a hypocenter model [41].
The stochastic and hybrid simulation methods also require parameters specific to the target
region, such as stress drop, local site effects, etc. [9]. Therefore, simulating ground motion
remains a huge challenge. With the increasing number of modern seismic stations and
the development of seismic monitoring and ground motion databases—which are now
becoming increasingly abundant—a large amount of data is bound to provide a wealth of
information for research. Owing to the large amount of data, it is important to determine
how to use these data. A regional ground motion field is obtained by applying machine
learning methods with user-requested scenario parameters (e.g., magnitude, epicenter
distance, latitude, and longitude).

The program applies a ground-motion simulation method based on the database of
actual time-history records by applying machine learning PCA for extracting characteristic
ground motions and combining them with a genetic algorithm to determine the optimal
solution. First, ground motion records in the database are extracted by PCA to obtain
the characteristic ground motions that represent the characteristics in the target area.
The extracted characteristic ground motions are independent of each other, and they
are linearly combined to simulate ground motions. The linear combination coefficients
are unknown. The synthesized ground motions require the simultaneous matching of
the response spectrum with both the target response spectrum and the target duration
characteristics. A multi-objective genetic algorithm is applied for using these two matching
relationships as constraints to solve for the combination coefficients that meet the evaluation
criteria. The simulation process is illustrated in Figure 1.

Figure 1. Framework of the proposed ground-motion simulation method.

122



Appl. Sci. 2023, 13, 8232

2.1. PCA for Extracting Ground Motions

The sheer volume of data in the ground-motion database and the potential correlation
between individual datum makes the data difficult to process. First, the characteristics of the
ground-motion data in the database need to be extracted and processed (i.e., dimensionality
reduction of the data). There are many methods of data dimensionality reduction in
machine learning: PCA, linear discriminant analysis (LDA), locally linear embedding
(LLE), and so on. However, LDA is a supervised dimensionality reduction algorithm;
the stream shape learned by LLE can only be unclosed, and the sample set is dense and
uniform. PCA, as an unsupervised dimensionality reduction algorithm, is easier to use and
less demanding on data.

We use PCA to obtain the reduced-dimensional characteristics from the ground-motion
database, calling them characteristic ground motions. Specifically, we use PCA to reduce
the dimensionality of the entire accelerated ground-motion record and to obtain a time
series of data similar to the accelerated ground motion. It should be noted that PCA uses
the ground shaking database of the target region to reflect the regional characteristics of
the synthetic ground motion. For areas lacking ground-motion records, ground motion
from areas with similar earthquake sources, propagation paths, and site conditions can be
selected as ground-motion data.

The application of the PCA algorithm for dimensionality reduction of the ground-
motion dataset involves the following process:

Dataset X needs to be reduced to k dimensions, where X is a matrix of n rows and m
columns. The m represents the ground-motion durations, and ‘n’ stands for the number of

ground motions. X =

⎧⎪⎪⎨⎪⎪⎩
x11, x12, x13, . . . , x1m;
x21, x22, x23, . . . , x2m

. . .
xn1, xn2, xn3, . . . , xnm

⎫⎪⎪⎬⎪⎪⎭
(1) Centralize all samples according to Equation (1); i.e., each bit of the feature minus its

respective mean.

xnm = xnm − 1
k ∑k

i = 1 xnm, (1)

(2) Calculate the covariance matrix of sample C, C = 1
n XTX

(3) Determine the eigenvalues and eigenvectors of the covariance matrix via the eigen-
value decomposition of the matrix covariance matrix.

The eigenvalues are sorted from the largest to the smallest, and the largest k values are
selected. The corresponding k eigenvectors are used as row vectors to form the eigenvector

matrix P. P =

⎧⎪⎪⎨⎪⎪⎩
λ1
λ2
· · ·
λk

⎫⎪⎪⎬⎪⎪⎭.

The centralized data matrix is transformed into a new space constructed by k eigen-
vectors, i.e., Y = PX, which in turn yields new orthogonal feature ground motion data.

1 − ∑K
i = 1 Sii

∑N
i = 1 Sii

≤ t, (2)

The selection of dimension K, representing the number of characteristic ground mo-
tions after dimensionality reduction, can be determined based on the scatter matrix S
generated during singular value decomposition. Equation (2) can be used to calculate
the minimum value of K that satisfies the error condition. If the value of t is 0.15, then it
indicates that the PCA algorithm retains 85% of the main information from the original data.
Consequently, the minimum number of characteristic ground-shaking that can be extracted
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under this allowable error can be determined. The specific value of t can be determined
according to the requirements for the error; therefore, different K values can be selected.

Multiple characteristic ground motions that are independent of each other can be
obtained by applying the abovementioned PCA method to the actual ground-motion
records. The characteristic ground motions and actual ground-motion records in the
database shared the same sampling rate. As a result, it is possible to synthesize the target
ground motions by combining the characteristic ground motions in a linear manner and
determining the combination coefficients that dictate their blending. The linear combination
is a vector synthesis of the characteristic ground-motion vectors multiplied by scaling
coefficients. The characteristic ground motions are linearly combined as Equation (3)

a(t) = ∑q
i = 1 kiai, (3)

where ki, ai, and q denote the coefficient, extracted characteristic ground motion, and
number of extracted characteristic ground motions, respectively. The characteristic ground
motions are eigenvectors composed of data matrices, which are then sorted according to
the size of the eigenvalues.

2.2. Optimization of Coefficients Using NSGA-II

A genetic algorithm is applied because it is necessary to determine the combination
coefficients in Equation (3). The simulating method employed in this procedure takes
into account both the matching of the target response spectrum and the target duration,
which are obtained from the ground-motion-duration model. This approach differs from
the traditional method that only considers matching the target response spectrum based
on the prediction equation of the ground-motion-response spectrum. Since it involves
multiple constraints and requires solving multiple equations, the conventional single-
objective optimization algorithm is no longer applicable, and the computational effort
becomes significant. Therefore, the elitist nondominated sorting genetic algorithm NSGA-II
is utilized [42]. This algorithm effectively balances the relationship between each objective
function, resulting in an optimal solution set that maximizes the performance of each
subobjective function. This approach differs from single-objective optimization and offers
a unique solution. Consequently, the solution to the multi-objective optimization problem
comprises a set of equilibrium solution sets.

The algorithm uses fast dominant sorting to minimize the complexity of the algorithm
and volume of operations. Furthermore, it replaces the fitness-sharing strategy via crowd-
ing and crowding comparison operators to perform a peer comparison of the results after
fast sorting such that the individuals in the Pareto solution can be evenly extended to the
whole domain, and the diversity of the population is preserved. Among them, the banded
elite strategy expands the sample by combining the parent and child populations to ensure
that better individuals can be retained.

2.3. Control Conditions of the Synthesis Coefficient

A well-matched ground motion is defined as a ground motion with a minimum
error in the response spectrum constraint and a minimum error in the duration constraint.
The mean absolute error (MAE) is used to match the response spectra of the synthesized
ground motions with the target spectrum. We used MAE as the error because it is a more
common and straightforward error compared to other errors [43]. Equation (4) introduces
the constraint equation for the response spectrum.

E1 = ∑m
j = 1

[∣∣∣Sa

(
∑n

i = 1 kiai, Tj

)
− S∗

a
(
Tj
)∣∣∣], (4)

where E1 refers to the MAE between the response spectra of the synthesized ground
motions and the target spectrum, S∗

a
(
Tj
)

represents the target response spectrum obtained
from the ground-motion prediction equation in the target area, and Tj indicates the selected
self-oscillation period control point in the spectral matching process. m is the number of
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response spectrum period points. Furthermore, Sa

(
∑n

j = 1 kiai, Ti

)
represents the response

spectrum calculated from the new time-history records obtained by a linear combination
of the extracted characteristic ground motions, where ∑n

i = 1 kiai represents the new time-
history record obtained by multiplying the extracted N characteristic ground motions by
their respective coefficients.

The simulating method applied by the software considers not only the amplitude and
frequency spectrum reflected by the ground-motion response spectrum, but also the para-
metric characteristics of the duration, which is an important parameter of ground motions.
As the structure undergoes nonlinearization, the probability of permanent deformation
increases with longer durations due to the cumulative effect of earthquakes. Therefore,
ground-motion duration is a very important constraint. It is necessary to obtain a rea-
sonable prediction of the ground-motion duration and select the ground-motion duration
prediction equation suitable for the target area. The constraint equation for the duration is
introduced as Equation (5).

E2 = [|D5−95 − d5−95|], (5)

where d5–95 denotes the target ground-motion duration time (different types of duration
definitions can be selected, and this paper considers a 5–95% significant duration as an
example to introduce the method). The new synthetic ground-motion duration is recorded
as D5–95.

3. Results

3.1. Validation of Methods

An earthquake of magnitude Ms6.0 occurred at 28.34◦ N 104.90◦ E, located in Changn-
ing County, Yibin City, southeastern Sichuan Province, China, on 17 June 2019. In this study,
the ground-motion database was created by collecting the mainshock of the Changning
earthquake and aftershock records of magnitude 4 or higher that occurred between June
17 and 24. The specific earthquake information is summarized in Table 1. The epicen-
ter, station locations, and the intensity distribution of the mainshock in Changning are
illustrated in Figure 2a; the epicenter and source mechanism of the selected main after-
shock are illustrated in Figure 2b. The database contains 9 earthquakes with a total of
286 horizontally oriented seismic records, and raw ground-motion data are filtered and
baseline adjusted [44]. The feasibility of the synthesis method is verified by simulating the
Changning earthquake. The Changning earthquake was selected as the scenario, and the
target response spectrum and duration were calculated to validate the method.

Table 1. Selected Changning mainshock–aftershock events.

Name Date Latitude Longitude
Depth
(km)

Magnitude
(Ms)

Mainshock June 17 28.34◦ N 104.9◦ E 16 6
Aftershock June 17 28.43◦ N 104.769◦ E 16 5.1
Aftershock June 18 28.389◦ N 104.849◦ E 10 4.1
Aftershock June 18 28.389◦ N 104.87◦ E 10 4.2
Aftershock June 18 28.379◦ N 104.87◦ E 14 4.5
Aftershock June 18 28.37◦ N 104.889◦ E 17 5.3
Aftershock June 22 28.43◦ N 104.769◦ E 10 5.4
Aftershock June 23 28.389◦ N 104.819◦ E 14 4.6
Aftershock June 24 28.44◦ N 104.8◦ E 10 4.1

Note: Information on seismic events listed in the table comes from the China Earthquake Network Center (CENC).
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Figure 2. Epicenters, station distribution, and focal mechanism parameters of the selected Changning
mainshock and aftershocks. (a) Location of epicenter and stations, and the intensity distribution map.
(b) Epicenter and source mechanism.

3.1.1. Extraction of Characteristic Ground Motion

The PCA was applied to extract the characteristic ground motion in the mainshock
and aftershock databases of Changning. The number of extracted characteristic ground
motions was calculated according to Equation (2) to determine the number of extracted
characteristic ground motions. In this study, t is set to 0.05, i.e., we expect the obtained
extracted characteristic ground motion to retain 95% of the main information in the dataset.
The minimum K value that satisfied the error condition was 11. The top 11 waves were
extracted from the database and ranked according to the percentage of retained information
for the subsequent synthesis of ground motion. Table 2 summarizes the percentage of
information retained in the original database for each extracted ground motion, and Figure 3
shows the time and frequency analysis of the top eight characteristic ground motions. The
extracted ground motion has similar nonstationary characteristics to the actual ground-
motion recordings in the time and frequency domains, which makes the characteristic
ground motions suitable as a set of basis vectors for ground-motion synthesis.

Table 2. Proportion of information retained by the extracted ground motion mother waves.

Number 1 2 3 4 5 6 7 8 9 10 11

Sii 0.363 0.203 0.104 0.097 0.069 0.039 0.030 0.025 0.010 0.007 0.004
∑K

i = 1 Sii 0.363 0.566 0.670 0.767 0.836 0.875 0.905 0.930 0.940 0.947 0.951
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Figure 3. Top eight time histories and time-frequency analyses of characteristic ground motion.

3.1.2. Validation of Ground-Motion Prediction Equation and Constraints

The Changning earthquake in Sichuan occurred in the western part of China; therefore,
it is necessary to select a ground-motion model for western China that is suitable for this
region and a ground-motion duration prediction equation based on a strong ground-
motion database in China [45]. The target response spectrum and target duration ground-
motion models were calculated using the response spectrum and duration, respectively, as
the constraints for ground-motion synthesis of the Changning earthquake by setting the
earthquake scenario. The specific forms of the selected response spectrum ground-motion
model and the ground-motion duration model are shown as Equations (6) and (7).

lgSa(T) = C1 + C2Ms + C4lg[Rrup + C5exp(C6Ms)], (6)

lnD5−95 = 0.1561 + 0.3647Ms + (0.4958 − 0.0145Ms)ln
√

R2
rup + 2.5 − 0.1784lnvs30, (7)

where Sa(T) is the response spectrum, Ms is the surface wave magnitude, Rrup is the rupture
distance, and D5–95 is the ground-motion duration. Vs30 is the shear wave velocity at 30 m
below ground, representing the site conditions, and the value of our target site Vs30 is
302 m/s.

Figure 4a–d shows the comparison of the response spectra of the Changning earth-
quake records at three period points (0.01 s, 0.20 s, and 1.00 s) with the attenuation curves
obtained from the corresponding ground-motion models. The figures also show the compar-
ison of the 5–95% significant duration of the actual ground-motion data with the predicted
values obtained from the duration prediction equation. The two chosen ground-motion
models have the capability to predict the actual ground-motion characteristics of the region
and demonstrate the validity of the selected synthetic constraints, including the target
response spectrum and duration. It is important to mention that two independent GMPEs
are used in this paper. However, it is more reasonable to use the generalized conditioning
intensity measure (GCIM) or generalized ground-motion prediction model (GGMPM)
models, which can provide realistic targets to validate the simulation.
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Figure 4. Comparison between the response spectra and durations of Changning ground motions
and ground-motion models: (a) PGA; (b) Sa (T = 0.2 s); (c) Sa (T = 1 s); (d) D5–95.

3.1.3. Validation of Synthetic Ground Motion

We used the method in this study to synthesize a ground motion and match it with
a record selected from the real ground-motion database to verify the feasibility of the
synthesis method and to verify if the matching results are reasonable. One station in
the Changning earthquake, i.e., 51NXT, was arbitrarily selected, and the specific ground-
shaking information is as listed in Table 3. The synthesis was conducted based on this
method, and the matching effect of the synthesized peak ground acceleration, response
spectrum, and duration with the real ground-motion records, is also summarized in Table 3.
The matching effect and error distribution of the synthesized ground motion and actual
seismic records are illustrated in Figure 5. In Figure 5b, the horizontal and vertical axes
represent the error values between the response spectrum and the holding time of the
synthetic ground shaking, and between the response spectrum and the target values
obtained from the ground-shaking model, respectively. These error values are calculated
using Equations (4) and (5). Each scatter in the distribution of the figure represents a set of
linear combination coefficients of waves in the optimal solution set, whereas the red scatter
represents the finalized combination coefficients under the judging criteria. The synthetic
ground motion in Figure 5a,c shows the result of the linear combination of waves obtained
using the corresponding combination coefficients of the scatter. Peak ground accelerations
and response spectra of the synthetic ground motion are well matched with the actual
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records; more importantly, 90% of the significant duration of the synthetic ground shaking
is matched perfectly with the actual records, and the duration of synthetic earthquakes
is controlled to the target level of the regional duration prediction model. This method
allows the synthesis of ground motion considering constraints of the regional ground-
motion prediction model; they can be used for the construction of a regional set and a
ground-shaking time field for engineering structure input.

Table 3. Basic parameters required for the synthetic ground motion and match of the duration.

-
Magnitude

(Ms)
Depth (km)

Distance
(km)

PGA
(g)

Significant Duration
D5–95(s)

Response
Spectrum Error (g)

Recorded
ground motion 5.4 10 46.92 0.0318 11.045 -

Simulated
ground motion 5.4 10 46.92 0.0333 11.060 0.0784

Figure 5. Comparison with real ground motions: (a) Comparison of the time-history and duration
of real ground-motion records and synthetic ground motion; (b) Error distribution of the optimal
solution set for multi-objective optimization; (c) Matching of response spectrum.

3.2. Architecture of Software

The software has three modules: (1) parameter input, (2) visualization, and (3) cal-
culation history time record. Simulating ground motions require the user to provide
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parameters for engineering demand. The program functions as a black box, requiring
only user-provided parameters to yield results. For instance, regional ground-motion
time-history records that meet the user’s requirements can be input into the program. This
eliminates the need for users to delve into the program’s execution details, allowing them
to concentrate on other aspects. Initially, users can utilize the software’s area module to
mark the epicenter and target area accurately and distinctly on the map, facilitating quick
determination of the target area and enhancing user experience. Subsequently, within the
field simulation module, users can swiftly obtain the amplitude field for each period in
the target area by inputting parameters, enabling clear observation of period amplitudes
and intuitive judgments. Ultimately, the program can be employed to precisely calculate
historical time records for further research. Figure 6 shows the architecture of the proposed
procedure.

Figure 6. Framework of the ground-motion simulation software.

3.3. Parameter Input Module

Scenario construction for the ground motion needs the user to propose requirements
and determine the demand parameters. The user is first required to determine the mag-
nitude of the earthquake and the location of the epicenter, and then to determine other
parameters such as latitude and longitude, Vs30, and rupture angle of the target area. The
input parameter module was entered through the panel in Figure 7a. The specific meanings
of the parameters are listed in Table 4.

  
(a) (b) 

Figure 7. (a) Input parameter module in the panel; (b) area module in the panel.
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Table 4. Meanings of parameters in the software.

Parameters Description

Magnitude Moment magnitude
epic_longitude Epicenter longitude (e.g., enter 112 for 112◦ East)
epic_latitude Epicenter latitude (e.g., enter 27 for 27◦ North)

Vs30 Equivalent shear-wave velocity within 30 m
Ztor Depth to the top of the co-seismic rupture plane

A_longitude Specify the longitude of the lower left corner of the rectangular area
A_latitude Specify the latitude of the lower left corner of the rectangular area

B_longitude Specify the longitude of the upper right corner of the rectangular area
B_latitude Specify the latitude of the upper right corner of the rectangular area

Strike Fault rupture angle 0–180, e.g., 45
Division Interval for gridding the ground-motion field, e.g., 5 km

3.4. Visualization Module

In the past, the command line format was poorly interactive and costly to learn; GUI
is the trend of modern program development, which makes it easy for users to use the
software without having to pay a high learning cost. Data visualization is an efficient form
of presenting data that allows users to observe data results clearly and intuitively, and
helps users use the software better.

3.4.1. Target Area

The target area visualization module allows the user to clearly determine if the area
is their desired area and easily adjust it to their needs; this results in a better interactive
experience. Based on parameters entered in the previous subsection, the epic_longititude
and epic_latitude—which are the location of the epicenter—were determined. Then, the
target area was determined based on the information provided by the user about the target
area (latitude and longitude of the specified area); these are displayed in the area module
panel, as shown in Figure 7b.

3.4.2. Field Simulation

Under the action of the same ground-motion record, a single-degree-of-freedom
system with the same damping and different periods will exhibit different structural
responses. The maximum acceleration of the single-degree-of-freedom system represents
the damage force of the ground motion. Hence, visually depicting the amplitude field—
specifically the maximum acceleration field—of the ground motion within the target area
aids in assessing the destructive force of the ground motion. After determining the target
area according to the target area module, the target area amplitude field should be drawn in
the panel under the MAP according to the location information, magnitude, strike, division,
etc., as shown in Figure 7. In the left panel, IMMAP draws the amplitude field based on
all amplitude values, and users can obtain the corresponding location information based
on the latitude and longitude of the horizontal and vertical coordinates. The values of the
amplitude field are marked by contour lines in the panel so that users can better understand
the amplitude size. The GEOMAP on the right shows a geographic map which serves as
the base map, and the amplitude field is drawn with itself as the base to ensure convenience
for users to compare geographic information.

Furthermore, it is necessary to provide the amplitude fields for different periods.
IMMAP and GEOMAP provide amplitude fields for shorter to longer periods, as illustrated
in Figure 8a,b. This provides the user with a visual reference to obtain the degree of damage
to the target area caused by this earthquake.
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(a) (b) 

Figure 8. Different period field simulation in the panel: (a) MAP’s module in the panel; (b) Different
period button.

3.5. Calculation History Time Record Module

Within the visualization module, the user-provided parameters for scenario require-
ments serve as inputs. As shown in Figure 9, the RUN button in the menu is clicked to
generate a series of acceleration time history records denoted by latitude and longitude
coordinates in the “data” folder under the installation directory.

 
Figure 9. Acquiring time-history module in the panel.

3.6. Properties and Usage of Software

The parameter input module allows us to enter scenarios that the user needs to
build. The visualization module is a visualization function that provides the user-defined
epicenter and the range of the target area while providing the amplitude fields of the main
periods of the response spectrum. The calculation history time record module provides the
time-history records.

Demand parameters are entered into the software, and the demand scenarios are
determined by entering the magnitude, epicenter, and target area. Figure 10 shows the
settings for the Changning earthquake.

After entering the parameters, the epicenter and target area (blue area) were illustrated
by clicking on the AREA button in the visualization module to determine if the set area
matches the demanded scenario and if adjustments are required. The epicenter is indicated
by a red star, and the target area is indicated by a blue box. The base map is provided by
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the Map Toolkit in MATLAB (MATLAB Basemap Data, colorterrain); the map indicates
important cities and roads, which enables better user experience, as indicated in Figure 10.

After determining the target area, another visualization feature of the software is
drawing the amplitude field based on the input parameters. After clicking on the field
simulation button, the amplitude field is drawn in the panel under the MAP, as indicated
in Figure 11.

 

Figure 10. Example of MAPs in the panel.

  
(a) (b) 

  
(c) (d) 

Figure 11. Cont.

133



Appl. Sci. 2023, 13, 8232

  
(e) (f) 

  
(g) (h) 

  
(i) (j) 

Figure 11. Visualization example of ground motion fields for different periods in the panel: (a) Sa
(T = 0.01 s); (b) Sa (T = 0.05 s); (c) Sa (T = 0.1 s); (d) Sa (T = 0.2 s); (e) Sa (T = 0.3 s); (f) Sa (T = 0.5 s);
(g) Sa (T = 0.7 s); (h) Sa (T = 1 s); (i) Sa (T = 2 s); (j) Sa (T = 6 s).

Finally, one feature of the software is the provision of ground-motion records. After
clicking the RUN button, time course files are generated in the data folder and named
latitude and longitude for easy selection and use. One file is opened; the header of the file
describes the number of samples, sampling rate, set magnitude, epicenter, and sampling
points. Subsequently, the time record is provided for the next use.

4. Discussion

The trigonometric series method is a widely used method for simulating ground
motion in engineering. To compare the results of this paper with those of this method, the
ground-motion synthesis is carried out using the trigonometric series method. The set of
seismic information required for synthesizing ground motion and the matching of duration
and response spectrum are shown in Table 5. Figure 5 shows the ground-motion time
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history and duration curves, and the matching error of the response spectrum synthesized
by the two methods.

Table 5. The time and response spectrum matching of two synthetic methods.

Method Ms
Hypocenter

(km)
Epicentral

Distance (km)
Vs30 D5–95

Duration
Error

Response
Spectrum Error

Trigonometric
series 5 10 10 360 8.469 0.239 0.0739

Method in
the paper 5 10 10 360 8.469 6.334 0.3204

The ground motions synthesized by the software In this paper can match the spectrum
and duration well, compared to the traditional methods. However, the method based on
PCA and multi-objective genetic algorithm has some limitations. Therefore, it is necessary
to discuss the scope of application in this software here. Firstly, for areas with real records,
the ground-motion database of the software can be updated to apply to the target area,
while the method has some limitations for areas lacking records. For areas lacking records,
ground motions from areas with similar sources, propagation paths, and site conditions
can be selected as the database of the software, which is of some significance for areas
lacking data. Secondly, because the synthetic ground-motion field needs to depend on
the ground-motion model, areas lacking records should first establish the ground-motion
model, which is out of the scope of this study. Thirdly, due to the regional characteristic
ground motions of the method in this study, only a small sample was selected for testing
because of the limited number of records currently available in a specific small area.

The synthesis results of this paper’s method and the trigonometric series method
can be seen in the comparison; the trigonometric series method considered by matching
with the spectrum can achieve the ground-motion amplitude and spectrum constraints,
but cannot be bound to the duration. In contrast, the ground-motion synthesis method
of this paper can well-reflect the regional ground-motion characteristics reflected by the
regional ground-motion prediction equation in the synthesis results under the control of
the constraint conditions and evaluation criteria.

5. Conclusions

A regional ground-motion synthesis software was developed in this study. The
software extracts characteristic ground motions using PCA and a linear combination of
algorithms that perform genetic algorithm optimization for obtaining time history records,
satisfying real requirements and verifying their accuracy.

Combined with the machine learning method, the synthesis method of this procedure
considers matching both the target response spectrum and target duration compared to
the traditional simulation method, and it satisfies engineering demands for achieving
reasonable ground motions. The software also offers regional amplitude fields and time
history records for larger scenarios.

The software was designed entirely in a MATLAB GUI environment. A clear target
area can be drawn via the visualization interface and provided parameters (such as seismic
magnitude, site, and latitude and longitude of the target area) to improve the user’s
understanding; furthermore, amplitude intensity fields of the main periods are provided,
while the time-history records are generated in the target folder. In addition, the software
provides a user-friendly interface for users to obtain artificial regional ground-motion fields
as per their requirements.

Amplitude, spectrum, and duration are the three most important features of ground
motion. Amplitude and spectrum are usually matched in engineering. Therefore, we
introduce duration as a matching restriction. However, other intensity metrics like Arias
intensity, CAV, and PGV are also significant, and we will continue to investigate them in
the next works.
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Abstract: Earthquake prediction is a long-standing problem in seismology that has garnered attention
from the scientific community and the public. Despite ongoing efforts to understand the physical
mechanisms of earthquake occurrence, there is no convincing physical or statistical model for pre-
dicting large earthquakes. Machine learning methods, such as random forest and long short-term
memory (LSTM) neural networks, excel at identifying patterns in large-scale databases and offer
a potential means to improve earthquake prediction performance. Differing from physical and
statistical approaches to earthquake prediction, we explore whether small earthquakes can be used
to predict large earthquakes within the framework of machine learning. Specifically, we attempt to
answer two questions for a given region: (1) Is there a likelihood of a large earthquake (e.g., M ≥ 6.0)
occurring within the next year? (2) What is the maximum magnitude of an earthquake expected
to occur within the next year? Our results show that the random forest method performs best in
classifying large earthquake occurrences, while the LSTM method provides a rough estimation of
earthquake magnitude. We conclude that small earthquakes contain information relevant to predict-
ing future large earthquakes and that machine learning provides a promising avenue for improving
the prediction of earthquake occurrences.

Keywords: earthquake prediction; machine learning; random forest; long short-term memory
neural network

1. Introduction

The prediction of earthquakes has long been a formidable challenge [1–3], owing
to several factors. Firstly, seismic events are the result of intricate interactions between
tectonic plates, faults, and other geological factors [4], rendering the accurate forecasting of
their timing and magnitudes exceedingly challenging. Secondly, the paucity of long-term
and extensive data poses a significant hurdle in earthquake prediction. Large earthquakes
often recur at lengthy intervals (hundreds to thousands of years) [5], making it arduous
to identify trends and patterns over a prolonged time frame [6]. Owing to the intricate
geological interplay, the variability of seismic activity, the inadequacy of comprehensive
data, and the current technological limitations, the prediction of earthquakes remains a
complex and formidable field.

Moreover, conventional prediction methods based on empirical (physical or statistical)
models are often oversimplified and fallacious when applied to real-life scenarios [7]. With
the rapid development of artificial intelligence (AI) in recent years, many research fields
have been benefited, including earthquake prediction. At the core of AI lies machine
learning, which plays an essential role in driving this transformation. Machine learning’s
ability to identify the corresponding functional relationships between vast amounts of
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data and corresponding labels is its primary advantage. These relationships can be high-
dimensional and nonlinear, making it challenging for humans to comprehend, as is the
case with earthquake prediction [8,9]. Traditionally, experts’ experiences formed the basis
of earthquake prediction, which led to random and uncertain outcomes. However, the
application of machine learning to earthquake prediction provides a promising approach
to achieving more accurate and reliable results.

As early as the 1990s, some scholars proposed the use of machine learning in the
area of research in seismology [10]. Currently, various machine learning methods have
been applied to seismic classification and location [11–14], seismic event prediction [15–17],
seismic early warning [18], seismic exploration [19], slow slip event detection [20], and
tomography [21], achieving promising preliminary results in these research fields. Mean-
while, the rapid deployment of long-term seismic monitoring, providing a huge amount of
seismic dataset information, accelerates the application of machine learning methods in
seismology [8,9,22].

In the research of time series and magnitude prediction, neural networks, including
LSTM and convolution neural networks, have been widely used in recent years [23,24].
In [25], the authors proposed a novel approach to earthquake prediction using LSTM
networks to capture spatiotemporal correlations among earthquakes in different locations.
Their simulation results demonstrate that their method outperforms traditional approaches.

The use of seismicity indicators as inputs in machine learning classifiers has been
shown to improve accuracy in earthquake prediction [26]. Results from applying this
methodology to four cities in Chile demonstrate that robust predictions can be made by
exhaustively exploring how certain parameters should be set up. In [27], a proposed
methodology based on the computation of seismic indicators and GP-AdaBoost classifica-
tion has been trained and tested for three regions: the Hindu Kush, Chile, and Southern
California. The obtained prediction results for these regions exhibit improvement when
compared with already available studies.

The application of artificial neural networks (ANNs) to earthquake prediction is ex-
plored in [28]. The results from the application of ANNs to Chile and the Iberian peninsula
are presented, along with a comparative analysis with other well-known classifiers. The
conclusion is that the use of a new set of inputs improved all classifiers, but the ANN
obtained better results than any other classifier.

A methodology for discovering earthquake precursors by using clustering, grouping,
constructing a precursor tree, pattern extraction, and pattern selection has been applied
to seven different datasets from three different regions [29]. Results show a remarkable
improvement in terms of all evaluated quality measures compared to the former version.
The authors suggest that this approach could be further developed and applied to other
regions with different geophysical properties to improve earthquake prediction.

In [30], the authors use machine learning techniques to detect signals in a correlation
time series corresponding to future large earthquakes. The overall quality is measured by
decision thresholds and receiver operating characteristic (ROC) methods together with
Shannon information entropy. They hope that the deep learning approach will be more
general than previous methods and not require prior guesswork as to what patterns
are important.

The seismic activity parameters constructed based on seismic catalogs are typically
used as the input data set for earthquake prediction. However, it is still debatable whether
the information about small earthquakes (typically with a magnitude smaller than 4.0),
such as foreshocks and aftershocks, contained in these seismic features can predict large
earthquakes (typically with a magnitude larger than 6.0). In fact, the ability to successfully
predict earthquakes has been the subject of controversy [1,3] among researchers. Some
studies have shown that information about small earthquakes can indicate the occurrence
of large earthquakes, while others have drawn opposite conclusions [31,32].

To clarify this debate, a study was conducted by using seismic features based on
seismic catalogs containing small earthquakes to test whether this information can help
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predict large earthquakes. Additionally, the possibility of using machine learning in
earthquake prediction was explored. The study focused on two important questions:

1. Will there be a strong earthquake (M ≥ 6.0, 7.0, or 8.0) in the next year?
2. What will be the maximum magnitude of the earthquake in the next year?

The Sichuan–Yunnan region, as shown in Figure 1,was chosen as the research area and
seismic features were extracted from the seismic catalog to predict earthquakes.

Figure 1. Spatial distribution of seismicity in Chuandian region from 1970 to 2021. The black lines
represent active faults [33]. The yellow circles represent earthquakes larger than 3.0, the purple circles
show earthquakes larger than 6.0, and the red stars are earthquakes larger than 7.0.

The traditional machine learning methods were used to classify whether there would
be strong earthquakes in the next year, and the LSTM network was used to estimate the
maximum magnitude of the earthquake in the next year. In this way, we explored the
potential applications of machine learning methods in earthquake prediction and provided
a possible solution for seismic hazard evaluation.

2. Dataset and Feature Engineering

The seismic catalog used in this study was obtained from the China Earthquake Data
Center (CEDC, http://data.earthquake.cn/index.html, last accessed on 23 May 2022) and
includes earthquake events with a magnitude greater than 3.0 in the Sichuan–Yunnan
region from 1970 to 2021. By means of feature engineering, seismic activity parameters
were generated based on several statistical laws. These parameters were derived from the
seismic catalog and were used as the input features for earthquake prediction, rather than
the original catalog itself.

To test these methods, the Chuandian region of Southwestern China (98.0◦ E–106.0◦ E,
24.0◦ N–32.0◦ N) was selected due to its abundant earthquakes. The time range for analysis
was from 1 January 1970 to 23 May 2021. While there were several sudden large increases
in earthquake activity due to large earthquakes during this time period, the complete-
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ness magnitude was estimated to be approximately 3.0 using the maximum curvature
technique [34,35] (Figure 2). Therefore, the cutoff magnitude was set at 3.0 for this study.

Figure 2. The temporal completeness magnitude from 1970 to 2021 in the Chuandian region based
on the maximum curvature technique [34,35].

Prior research has demonstrated that many seismic features derived from earthquake
catalogs can be used to predict earthquakes [36–38]. These features include an ‘a’ value
and a ‘b’ value in the Gutenberg–Richter law, the number and maximum/mean magnitude
of past earthquakes, seismic energy release, magnitude deficit, seismic rate changes, and
elapsed time since the last large earthquake. In addition, the standard deviation of the
estimated b value, the deviation from the Gutenberg–Richter law, and the probability
of earthquake occurrence are also calculated as seismic features. The formulas used to
calculate these seismic features are listed in Table 1.

Table 1. Details of seismic features and mathematical expressions.

Seismic Features Description Mathematical Expressions

N.O. Number of earthquakes in
observation window

Mag_max Maximum magnitude in
observation window max{Mi}, when t ∈

[
tj, tj + t_obs

]
Mag_mean Mean magnitude in observation

window
∑i Mi

n

b_lsq b value using least square
regression analysis

n∑ (Mi log Ni)−∑ Mi∑ log Ni

(∑ Mi)
2−n∑ M2

i

a_lsq a value using least square
regression analysis

∑(log Ni+b_lsq·Mi)
n

b_std_lsq Standard deviation of b_lsq
2.3(b_lsq)2

√
n
∑

i=1
(Mi−Mag_mean)2

n(n−1)

std_gr_lsq
Deviation from

Gutenberg–Richter law (b_lsq,
a_lsq)

∑(log Ni−a_lsq−b_lsq·Mi)
2

n−1

b_mlk b value using maximum
likelihood method

log e
Mag_mean−Mc

a_ mlk a value using maximum
likelihood method log N + b_mlk·Mc

b_std_ mlk Standard deviation of b_mlk
2.3(b_mlk)2

√
n
∑

i=1
(Mi−Mag_mean)2

n(n−1)
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Table 1. Cont.

Seismic Features Description Mathematical Expressions

std_gr_ mlk
Deviation from

Gutenberg–Richter law (b_mlk,
a_mlk)

∑(log Ni−a_mlk−b_mlk·Mi)
2

n−1

dM_lsq Magnitude deficit (b_lsq, a_lsq) Mag_max − a_lsq/b_lsq

dM_mlk Magnitude deficit (b_mlk,
a_mlk) Mag_max − a_mlk/b_mlk

Energy Seismic energy release
√

∑
(
1012+1.8Mi

)
x7_lsq Probability of earthquake

occurrence using b_lsq e
−3b_lsq

log e

x7_mlk Probability of earthquake
occurrence using b_mlk e

−3b_mlk
log e

zvalue Seismic rate change

R1−R2√
S1
n1
+

S2
n2

,

where R1 and R2 are seismic rate for the first and second half interval
in the observation window. S1 and S2 represent the standard

deviation of seismic rate R1 and R2. n1 and n2 are the number of
earthquakes in those two intervals.

beta Seismic rate change

M(t,δ)−nδ√
nδ(1−δ)

,

where n is the number of earthquakes of the whole seismic catalog, t
is the time duration, and δ is the normalized duration of interest.

M(t, δ) represents the observed number of earthquakes by defining
end time t and interval of interest δ.

T_elaps6 Days since the last M6.0
earthquake

T_elaps65 Days since the last M6.5
earthquake

T_elaps7 Days since the last M7.0
earthquake

T_elaps75 Days since the last M7.5
earthquake

The temporal variations of all 22 seismic features listed in Table 1. were calculated
for the Chuandian region from 1970 to 2021 using a sliding window process, similarly to
previous studies [39]. To predict earthquakes on a mid-term basis, the observation window,
the prediction window, and the sliding window were set to be 2 years, 1 year, and 30 days,
respectively (Figure 3). This resulted in 591 time steps with 22 seismic features at each
step. For earthquake classification, labels were marked with either 0 or 1, and observed
magnitudes were used for earthquake magnitude prediction.

Figure 3. Schematic diagram of seismic feature generation and labels using sliding window approach.
The observation window, the prediction window, and the sliding window are set to be 2 years, 1 year,
and 30 days, respectively.
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3. Methods

In this study, both traditional machine learning algorithms and LSTM neural networks
are employed to investigate the occurrence of strong earthquakes and predict their magni-
tudes, respectively. In the following sections, a brief introduction to these two approaches
will be provided. Additionally, the complete earthquake prediction process is illustrated
in Figure 4.

Figure 4. Flow chart of earthquake prediction.

3.1. Traditional Machine Learning Algorithms

Support vector machine (SVM) is a widely used machine learning algorithm for
classification and regression problems. It constructs a decision boundary defined by a
hyperplane in the feature space, which maximizes the distance between the hyperplane
and the nearest training samples, thereby improving the generalization performance of the
model. In high-dimensional space, SVM can efficiently handle nonlinear problems, and it
performs well for data with small sample size but high dimensionality.

Logistic regression (LR) is a commonly used binary classification algorithm, mainly
used to predict the probability of an output variable given an input variable. It calculates
the weighted sum of the input variables and passes it through a sigmoid function to map
the result to the [0, 1] interval, representing the probability. Logistic regression can use
optimization algorithms such as gradient descent for parameter estimation and supports
extended forms such as polynomial regression.

Decision tree (DT) is a commonly used machine learning algorithm, which makes
decisions by constructing a tree-shaped model. In a decision tree, each node represents a
feature, each branch represents a feature value, and each leaf node represents a decision
result. By partitioning the data and selecting features, decision trees can effectively perform
classification and regression tasks.

Random forest is an ensemble learning algorithm that combines multiple decision
trees for classification and regression tasks. In random forests, each decision tree is trained
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using randomly selected samples and features, and the final result is obtained by voting
or averaging. Due to its ability to reduce overfitting and improve prediction performance,
random forest is widely used in various machine learning problems.

3.2. Long Short-Term Memory Neutral Network

LSTM is a special kind of recurrent neural network (RNN) proposed in 1997, mainly
to solve the problem of gradient disappearance and gradient explosion in the long time
series training process. In comparison to RNNs, LSTM performs better for longer time
series data. In recent years, LSTM has been widely used in various fields, such as traffic
flow prediction [40], stock yield forecast [41], trajectory prediction [42,43], and earthquake
forecasting [37].

The memory unit structure of LSTM, consisting of the forget gate, the input gate, and
the output gate, is illustrated in Figure 5. At the current time step, the memory unit takes in
the hidden variable ht−1, the memory variable Ct−1, and the input xt. Then, the calculation
of the forget gate, the input gate, and the output gate yields the output variables ht and Ct,
which are then fed to the next unit.

Figure 5. The structure of one memory block in LSTM neural network.

The forget gate first adds ht−1 and xt and passes the result through a sigmoid function
to obtain the forget factor, which is then multiplied with Ct−1. The forget factor is calculated
as follows:

ft = σ
(

Wf ·[ht−1, xt] + b f

)
(1)

Similarly, the input gate firstly adds ht−1 and xt, and passes the result through a
sigmoid function and a tanh function to obtain it and C̃t, respectively. The input gate then
multiplies the results of the two functions and adds the results with the output of the forget
gate to obtain Ct. The calculation formula of it, C̃t, and Ct is as follows:

it = σ(Wi·[ht−1, xt] + bi) (2)

C̃t = tanh(WC·[ht−1, xt] + bC) (3)

Ct = ft × Ct−1 + it × C̃t (4)

Finally, the output gate adds ht−1 and xt, and passes the result through a sigmoid
function to obtain the forget factor. The cell state is then passed into the tanh function and
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multiplied by the forget factor to obtain the new hidden state, which is then passed into the
next unit. The calculation formula of ot and ht is as follows:

ot = σ(Wo·[ht−1, xt] + bo) (5)

ht = ot × tanh(Ct) (6)

Here, Wf , Wi,WC, and Wo are weight parameters and b f , bi, bC , and bo are bias
parameters.

4. Results

4.1. Evaluation Metrics

The prediction of the occurrence of strong earthquakes involves a two-class classifi-
cation problem, and the evaluation of its prediction results typically employs a confusion
matrix (Table 2).

Table 2. Confusion matrix of binary classification problem.

Predicted Condition Is
Positive

Predicted Condition Is
Negative

Actual condition is positive True Positive (TP) False Negative (FN)
Actual condition is negative False Positive (FP) True Negative (TN)

Specific judgments regarding the performance of earthquake occurrence prediction
models are typically made by calculating four evaluation indicators based on the confu-
sion matrix:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(10)

Additionally, ROC curves and area under curve (AUC) are used to illustrate the
relationship between the aforementioned indicators and present the results.

For magnitude prediction, mean square error (MSE), mean absolute error (MAE), and
root mean square error (RMSE) are calculated to evaluate the prediction accuracy of the
model. MSE represents the prediction error, MAE represents the average absolute error
between the predicted value and the observed value, and RMSE reflects the degree of
deviation between the predicted value and the true value. The formula to calculate each
index is as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (11)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (12)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (13)

where n is the number of predicted values, yi is the true value, and ŷi is the predicted value.
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4.2. Forecast Results
4.2.1. Strong Earthquake Occurrence and Classification

Figure 6 illustrates the evaluation results of four traditional machine learning models
(random forest (RF), decision tree (DT), support vector machine (SVM), and logistic regres-
sion (LR)) for the classification of large earthquake occurrence, namely, accuracy, precision,
recall, and F1 score. The four models were implemented by calling the respective functions
of SVM in the sklearn toolkit, LogisticRegression, tree in the ensemble, and RandomForest-
Classifier in the ensemble. For SVM, the kernel function was set to rbf, and the penalty
relaxation variable was set to 1.0, with other parameters adopting default values. Pandas
and NumPy were called here to read the dataset file and generate the corresponding array,
respectively. Finally, matplotlib.pyplot was used to visualize the predicted results. The four
evaluation indicators were calculated using Formulas (7)–(10). All tasks were completed
using Python 3.9.6.

Figure 6. Results of large earthquake occurrence classification: accuracy, precision, recall, and F1
score. A magnitude range of 5.0 to 7.0 is used to represent magnitude threshold of prediction.

The vertical axis of each subgraph in Figure 6 represents the respective evaluation
metric value, while the horizontal axis represents the magnitude threshold based on the
magnitude range of the catalog. For the experiment’s training and test sets, the entire dataset
was divided using a 7:3 ratio by calling the function train_test_split in the model_selection
of the sklearn package.

During the experiment, it was observed that using the dataset directly as input data
for support vector machine and logistic regression resulted in poor classification indicators
at certain magnitude thresholds. This was mainly due to the fact that the test data points,
which were not of the same class at these thresholds, were only divided into one class. To
address this issue, the dataset was standardized and normalized before being used as input.
After comparing the experiment’s results before and after normalization, it was found that
the classification results had been improved to some extent.

Figure 7 displays the ROC curves for the classification of large earthquake occurrences.
Unlike the four evaluation indicators, the ROC curve can evaluate the model without
requiring a threshold to be set, providing results that better reflect the true performance of

146



Appl. Sci. 2023, 13, 6424

the model. Moreover, the ROC curve remains unaffected even when the distribution pro-
portion of positive and negative samples in the test set changes. This feature is particularly
important when dealing with category imbalances in actual datasets, as the ROC curve is
able to effectively eliminate the impact of such imbalances on the evaluation results.

An important measure derived from the ROC curve is the area under the curve (AUC).
The closer the AUC value is to 1, the better the classification performance of the model.
When the AUC is 0.5, the classification result is no better than random guessing. As
depicted in Figure 7, the RF classifier achieved the highest AUC value of 0.98, indicating its
superior performance in earthquake prediction. In contrast, the LR classifier had the lowest
AUC value of 0.72, indicating the weakest performance among the four classifiers.

Figure 7. ROC curves of the large earthquake occurrence classification using SVM, DT, LR, RF.

4.2.2. Magnitude Prediction

In the magnitude prediction process, the same 22 feature parameters were utilized
as input to the LSTM model, which then outputted the maximum magnitude of the next
forecast window. The training set, validation set, and test set were divided in an 8:1:1 ratio.
Given the small size of the data set, we needed to be cautious of overfitting. Therefore, we
performed multiple optimizations using the validation set and determined the optimal
configuration of the LSTM model. Specifically, the number of hidden layers was set as 1,
the number of neurons as 16, the initial learning rate as 0.01, and the number of epochs as
200, to prevent overfitting. Pandas and NumPy were also called here to read the dataset
file and generate the corresponding array, respectively. Torch was imported to build the
LSTM model. All figures were obtained using matplotlib.

In the data preprocessing stage, the MinMaxScaler function was utilized to normalize
the data, which was then fed into the model for training. The denormalized prediction
results were obtained after the model had made its predictions. The MinMaxScaler function
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of sklearn was called in this section. The magnitude prediction results are presented in
Figures 8 and 9.

Figures 8 and 9 present the outcomes of the maximum magnitude prediction. The
LSTM model can effectively capture the temporal variations of the maximum magnitudes
in the training and validation sets, with most of the predicted magnitudes oscillating within
a range of ±0.5 of the observed magnitude. However, on the test set, the model can only
grasp the trend of the magnitude and tends to overestimate the maximum magnitude for
actual events with magnitude <= 5.0 and underestimate the maximum magnitude for actual
events with magnitude >= 6.0. This suggests that although the LSTM model can detect the
general pattern, it tends to produce oversimple predictions for the maximum magnitude.

Figures 10 and 11 illustrate the dispersion of errors using boxplot and histogram.
Notably, the error distribution of the training set is centered around 0, whereas the error
distribution of the test set is much wider, centered around 0.5. In the test set, the model
produces a higher quantity of positive errors than negative ones, as is evident from the
histograms in Figure 11.

Figure 8. (a) Retrospective test of prediction of the maximum magnitude earthquake. The blue, green,
and purple curves represent training, validation, and test period of the observations, respectively.
The yellow, red, and brown curves represent training, validation, and test period of the predictions,
respectively. (b) Loss curves of prediction of the maximum magnitude earthquake. The blue and red
curves represent the loss of training set and test set, respectively.
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Figure 9. Comparison of the predicted and observed maximum magnitudes. The black dots, red
triangles, and blue crosses represent test, validation, and training dataset, respectively.

 

Figure 10. Boxplot of the errors of training set, validation set, and test set.
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Figure 11. Histograms of the errors of training set, validation set, and test set in earthquake magnitude
prediction using LSTM.

Table 3 presents the evaluation indicators of our model and compares them with those
of other studies. The results are better than that of [36], but worse than [37]. The reasons
for these differences will be discussed in the Section 5.

Table 3. Comparison of prediction results by different researchers.

Evaluation Index This Study [37]
[36]

DL RF GLM

MSE 0.7347 0.015192
MAE 0.7252 0.097173 1.15 0.74 1.03
RMSE 0.8571 0.123256

To evaluate the importance of different features, the permutation importance method
was used. This method measures the importance of features by calculating the increase
of model prediction error after shuffling the time series of each feature. The advantage of
this method is that it can compare the importance of different features and save more time
compared to other methods.

Figure 12 shows the feature importance of our model, where the length of the bar
chart represents the error of the model after shuffling the order. Longer bars indicate
more important features, while the orange line represents the MAE of the model as the
reference line.

Figure 12 reveals that nearly all the features used have a positive effect on the model’s
performance. Among them, b_std_mlk, x7_mlk, and T_elaps7 are less important, while
dM_mlk, x7_lsq, N.O., and T_elaps6 are the top four most important features. These results
demonstrate that magnitude deficit, probability of earthquake occurrence, number of
earthquakes, and the days since the last large earthquake are crucial factors for earthquake
magnitude prediction, which is consistent with physical understanding.
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Figure 12. Feature importance obtained by the permutation importance method.

5. Discussion

5.1. Sample Number Issue and Feature Importance

Based on the classification results presented above, it is evident that RF outperforms
LR and SVM in terms of several evaluation indicators and is also marginally better than DT.
However, it should be noted that the classification results may be affected by the different
proportions of positive and negative samples in the dataset, which is determined by the
setting of the strong earthquake threshold and can impact the prediction outcomes. To
investigate this further, we experimented with several magnitudes which were shown in
Table 4 as the classification threshold and analyzed the number of positive and negative
samples, as well as the difference in classification metrics. It is important to exercise caution
when interpreting the accuracy score in cases where there is an imbalance in the number of
positive and negative samples. Newer models that are insensitive to class imbalance [44]
may help overcome this problem, but this is out of the scope of this study.

Table 4. Evaluation results and sample numbers of the random forest method.

Magnitude Accuracy Precision Recall F1 Score
Positive
Samples

Negative
Samples

5.0 0.975 0.982 0.991 0.986 549 41
5.5 0.958 0.949 0.987 0.967 386 204
6.0 0.949 0.922 0.959 0.940 258 332
6.5 0.958 0.96 0.857 0.906 141 449
7.0 0.992 0.889 1.0 0.941 60 530

At the same time, the impact of the small number of overall samples on the classifi-
cation results should also be taken into consideration. Although the evaluation metric of
RF is relatively the highest among the four classification methods, indicating that it is the
best classifier in the prediction of strong earthquakes, further verification is necessary to
determine its reliability on different datasets due to the small number of samples in the
test set and the uneven distribution of positive and negative samples. To better interpret
the classification results of RF, the feature quantity was ranked from high to low based on
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their weights in the classification, as illustrated in Figure 13. The top three most important
features are T_elaps75, T_elaps7, and dM_lsq, which is consistent with the feature impor-
tance of earthquake magnitude prediction and confirms the important role of the number
of days since the last large earthquake and the magnitude deficit.

Figure 13. Feature importance ranking by the random forest method.

The poor classification results of LR and SVM in this experiment also suggest the need
for further investigation into the potential impact of dataset size and feature distribution on
the classification performance. To address this issue, the feature values were standardized
and normalized in the dataset, and the classifier parameters were adjusted accordingly.
This approach led to an improvement in the overall classification performance.

5.2. Comparison with Previous Studies

From the prediction results, it can be seen that the LSTM model only trended in the
prediction results, but the predicted values were significantly larger than the observed
values. Upon comparison with two other articles in Table 3, the results were inferior to
those reported in [37]. However, after conducting replication experiments, we discovered
that this disparity could be attributed to differences in the input features used in those two
studies. Using the same input approach as in [37], a similar performance was obtained, as
shown in Figures 14 and 15.

In the replication experiment, the MSE was found to be 0.2289, while MAE was 0.4193,
and RMSE was 0.4784. The prediction results obtained using the approach of [29] are shown
in Figures 14 and 15 and appear to be better than the results obtained previously. However,
we identified a potential data leakage issue in their approach due to the overlap between
input features and output labels. Specifically, the feature “Mag_max_obs” dominated
other features, as confirmed by the feature importance shown in Figure 16. Upon careful
examination of the approach of [37], we found that they input the maximum magnitude of
the first few windows for training and then obtain the maximum magnitude for the several
windows that follow. As these windows have overlapping parts, the maximum magnitudes
of the first several windows contain some characteristics of the maximum magnitudes of
the following several windows. This data leakage problem resulted in the information of
the test set being leaked to the training set, leading to a too-low error and a too-high feature
importance of Mag_max_obs.
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Figure 14. Retrospective test of prediction of the maximum magnitude earthquake using the similar
input with [37]. The blue, green, and purple curves represent training, validation, and test period of
the observations, respectively. The yellow, red, and brown curves represent training, validation, and
test period of the predictions, respectively.

Figure 15. Comparison of the predicted and observed maximum magnitudes using the same input
with [37]. The black dots, red triangles, and blue crosses represent test, validation, and training data
set, respectively.
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Figure 16. Feature importance for the retrospective experiment with [37].

Meanwhile, in Table 3, a comparative analysis of the results with those presented
in [36] is conducted. The authors of this paper employ generalized linear models (GLM),
random forest (RF), and deep neural network (DNN) to predict the maximum magnitude
of future earthquakes. Unlike this study, their work benefits from sufficient training data.
Remarkably, their predicted magnitudes are smaller than the observed values. Notably, the
LSTM model outperforms the predictions reported in [36], underscoring the effectiveness
of the model construction.

6. Conclusions

In this study, we explored the possibility of using machine learning for earthquake
prediction by applying four traditional machine learning methods and the LSTM neu-
ral network to predict the occurrences and maximum magnitudes of earthquakes in the
Sichuan–Yunnan region. We calculated and extracted seismicity parameters related to earth-
quake occurrence from the earthquake catalog as input features. The results showed that the
random forest method was the most effective at classifying large earthquake occurrences,
and the LSTM method provided a reasonable estimation of earthquake magnitude.

The findings support the idea that small earthquakes contain information relevant to
predicting future large earthquakes and offer a promising way to predict the occurrence of
large earthquakes. Additionally, the findings provide useful information on which features
that are consistent with physical interpretation are important for earthquake prediction.

While the limitations of this study should be noted, they also represent the next steps
for future work. First, under this framework, earthquake swarms, which are statistically
very rare [45], are difficult to predict due to the small differences between their magnitudes.
Second, longer-term seismic monitoring is needed for the further application of more
complex models (e.g., transformer) to improve the performance of predictions. Third, the
spatial locations of earthquakes are not considered in this study but are important for earth-
quake prediction. New models which can address spatial information (e.g., graph neural
networks) may be useful to tackle this problem in the future. Although limitations and
difficulties exist, we are trying to explore the nonlinear relations of earthquake prediction,
which is one of the most difficult problems in seismology, by applying machine learning
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methods. This study presents a potential avenue for improving the accuracy of earthquake
prediction in the future.
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Abstract: The present paper continues the series of publications by the authors devoted to solving
the problem of recognition regions with potential high seismicity. It is aimed at the development of
the mathematical apparatus and the algorithmic base of the FCAZ method, designed for effective
recognition of earthquake-prone areas. A detailed description of both the mathematical algorithms
included in the FCAZ in its original form and those developed in this paper is given. Using California
as an example, it is shown that a significantly developed algorithmic FCAZ base makes it possible
to increase the reliability and accuracy of FCAZ recognition. In particular, a number of small zones
located at a fairly small distance from each other but having a close “internal” connection are being
connected into single large, high-seismicity areas.

Keywords: FCAZ; DPS; earthquake-prone areas; density; finite metric spaces; connectivity; isolation

1. Introduction

The aim of seismic hazard assessment is to analyze and predict the parameters of
seismic impact for future strong earthquakes. The first methods for finding solutions to this
problem were deterministic (deterministic seismic hazard analysis (DSHA)) [1,2]. In DSHA,
a seismic hazard is assessed for the maximum possible earthquake magnitude in each zone
of seismic source occurrence over the shortest distance. A disadvantage of DSHA is that
the timing (earthquake frequency and associated uncertainty) is often neglected. Only one
scenario is used which describes the maximum possible earthquake [1–5].

In the 1970s, the development of probabilistic seismic hazard maps at the national,
regional, and urban (microzonation) scales began [6–9]. In the 1990s, probabilistic meth-
ods began to prevail over deterministic ones. Currently, there are two main directions
in research on seismic hazard assessment: probabilistic (probabilistic seismic hazard as-
sessment (PSHA)) [10] and neodeterministic (neodeterministic seismic hazard assessment
(NDSHA)) [11,12].

NDSHA allows a deterministic description of the seismic ground motion caused
by an earthquake with a given epicentral or hypocentral distance and magnitude [13].
NDSHA methods are based on modeling in terms of detailed knowledge of the earthquake
source [14–16] and the scenario of seismic wave propagation [17].

One of the key conditions for the successful application of NDSHA is the availabil-
ity of adequate information about the areas prone to strong earthquakes in the studied
region. The flexibility of NDSHA makes it possible to successfully incorporate additional
information about areas prone to strong earthquakes obtained using independent methods
and calculations. This reduces the existing gaps in knowledge about seismicity obtained
from earthquake catalogs [18]. It was demonstrated in [19,20] that the use in NDSHA of
additional knowledge about the areas prone to strong earthquakes, obtained by applying
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pattern recognition methods [21–24], makes it possible to create effective preventive seismic
hazard maps.

The fundamental possibility of using methods and algorithms of pattern recognition
for earthquake-prone area recognition was first substantiated by the eminent mathemati-
cian I.M. Gelfand et al. in 1972 [25]. The formalized approach developed by them was
subsequently called earthquake-prone areas (EPA) [21–23]. Over the past 50 years, since its
inception, EPA has been used to recognize strong earthquake-prone areas in a number of
mountainous countries in the world. A posteriori estimates of the recognition reliability
that were obtained based on the analysis of the locations of the epicenters of strong earth-
quakes that occurred in the considered regions after receiving results for them became a
confirmation of the effectiveness of using pattern recognition to identify territories with
potentially high seismicity [24].

The authors of [21,26] described in detail the still-existing significant difficulties of
applying EPA in practice. The latter served as the fundamental basis for the beginning
of research at the Geophysical Center of the Russian Academy of Sciences, dedicated to
the development of the ideological, system-mathematical, and computational base for
earthquake-prone area recognition. As part of these studies, the algorithmic system of
formalized clustering and zoning (FCAZ) [27,28] was developed, which is an unsupervised
pattern recognition method. FCAZ is based on the classification of recognition objects by
clustering. The epicenters of weak earthquakes are used as recognition objects.

Note that clustering is an important tool in the mining of geophysical data [29].
Clustering studies on earthquake epicenters [30–35] have been actively developed since
the early 1990s [36]. As a rule, they are aimed at achieving two goals: revealing the
characteristics of clusters and their relationship with the physical properties of the Earth’s
crust [37–40] and the declustering [29,31] of earthquake catalogs [41].

The analysis of earthquake epicenters with classical clustering algorithms is associated
with difficulties [29,36]. It turns out that algorithms that take into account the “density” of
the locations of objects are effective due to their ability to find clusters of an arbitrary shape
even with significant data noise [29]. Within the framework of the scientific direction of
discrete mathematical analysis (DMA) [42–44], created and developed at the Geophysical
Center of the Russian Academy of Sciences, based on fuzzy mathematics and fuzzy logic
under the general name DPS clustering, a complex of topological filtering algorithms is
being developed that takes into account the density of the objects being classified [45–47]. It
should be noted that DPS clustering algorithms are actively and effectively used in various
geological and geophysical studies (analysis of earthquake catalogs, searching for signals
on geophysical records, the problem of radioactive waste disposal, etc. [26,47–50]). DPS
clustering is the algorithmic core of the FCAZ method [28].

FCAZ makes it possible to effectively recognize earthquake-prone areas (with a mag-
nitude M ≥ M0) based on the clustering study of the catalog of seismic events [21]. In its
original form, FCAZ was a sequential application of DPS clustering algorithms and the
Ext algorithm [26]. The fundamental difference between FCAZ and its predecessors, par-
ticularly EPA, is the presence of a formalized block (algorithm) Ext. This implements the
transition from the classification of point objects into high- and low-seismicity zones to the
original flat high-seismicity zones. Ext formalizes the construction of a unique mapping
of DPS clusters into flat zones of nonzero measure inside and on the boundary of which
an earthquake with M ≥ M0 may occur [28]. FCAZ made it possible to move from simple
pattern recognition to system analysis in the problem of earthquake-prone area recognition.
In particular, with the help of FCAZ, it was possible to uniquely distinguish a subsystem of
high-seismicity zones from a non-empty complement using an exact boundary.

Previously, FCAZ was used to successfully recognize earthquake-prone areas in the
Andean mountain belt of South America, on the Pacific coast of the Kamchatka Peninsula
and the Kuril Islands in California, in the Baikal-Transbaikal and Altai-Sayan regions,
in the Caucasus, and in the Crimean Peninsula and northwestern Caucasus. A detailed
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description of the FCAZ method, its mathematical apparatus, and the results obtained is
given in [26].

It should be noted that at present, in parallel with the mathematical tools described
here by the authors of earthquake-prone area recognition, methods for seismic hazard
and subsequent seismic risk assessment are being created and developed based on other
ideological foundations and mathematical solutions [2,51–57]. Most of them are still part
of PSHA, although in recent years, there have been more and more publications in which
PSHA has been criticized [2].

Returning to DPS clustering, it should be noted that, conceptually, its initial concept is
a fuzzy model of the fundamental mathematical “limit” property. It is called the density
and is a non-negative function that depends on an arbitrary subset and any point in the
initial space in which clustering is assumed. The value of the density should be understood
as the strength of the connection between a subset and a point, as the degree of influence of
a subset on a point, or dually as the degree of limiting a point to a subset.

Nontrivial densities always exist in finite metric spaces (FMS). By fixing the density
level α and interpreting it as a limit level, we can introduce the notion of discrete perfection
with a level α. The set in the initial space is called discretely perfect with a level α (α-DPS
set or just DPS set) if it consists of all points of the original space’s α limit.

A rigorous theory of DPS sets (DPS theory) was constructed within the framework
of DMA, in which, in particular, it is shown that DPS sets have the properties of clusters.
The currently developed DPS clustering algorithms (DPS algorithms) operate in finite
metric spaces and depend on a number of parameters, the main ones of which are the
density P, its level α, and the local survey radius r, and they have three stages [43,46].

In the first stage, topological filtering of the original space is carried out, and its noise is
cleared. DPS algorithms iteratively cut out from the original space the maximum α-perfect
subset, the existence and uniqueness of which is guaranteed by the DPS theory.

In the second stage, the DPS algorithm splits the result of the first stage into r-
connected components, which according to the DPS theory will be DPS sets. These are
local DPS clusters. Due to the locality of the viewing radius, the division into r-connected
components of the maximum α-perfect subset at the second stage is often small, detailed,
and needs to be enlarged. This is the essence of the third and final stage of DPS clustering.
Its result will be the representation of the maximum DPS subset in the form of a disjunct
union of groups of local DPS clusters, each of which is a fragmentary manifestation (edge)
of the global anomalous entity behind it in the original FMS. A detailed description of all
DPS stages will be given below using the example of the SDPS algorithm, which is the
most famous of the DPS algorithms.

This article is devoted to the further development of both DPS clustering and, in gen-
eral, the mathematical apparatus of the FCAZ method. In the example of California, the ad-
vantages of strong earthquake-prone area recognition based on the developed algorithmic
tools of the FCAZ method are shown.

2. Materials and Methods: SDPS Algorithm

Historically, the first in a series of DPS algorithms was the set theoretic SDPS algo-
rithm [26,47,58]. It is based on the density S, which conveys the degree of concentration of
the initial FMS X around each of its points x (the most natural understanding of the density
X in x) (Figure 1). The result of SDPS is condensed groups in X ↔ sets that locally contain
“many X” and formally correspond best to empirical clusters.

Let us move on to a precise presentation of the SDPS algorithm.
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Figure 1. The concept of density relative to a set. Four points (a, b, c, and d) are selected in the
initial array X. The density S in them relative to the subset A (red dots) is equal to the number of
points from A that fall into the balls indicated in the figure. Point c will be densest with respect to A,
followed by points b, d, and a.

2.1. Density S

Let X be a finite subset in the Euclidean plane Π with a distance d. The density S is
a non-negative functional relationship between an arbitrary subset A ⊂ X and any point
x ∈ X: S(A, x) ↔ SA(x). Thus, the density SA(x) is also defined in the case where x /∈ A.

S is determined by two parameters: the localization radius r and the center parameter
p ≥ 0, which takes into account the distance to x in the ball DA(x, r) = {a ∈ A : d(x, a) ≤ r}:

SA(x) = SA(x|r, p) = ∑
y∈DA(x,r)

(
1 − d(x, y)

r

)p
. (1)

With p = 0, we obtain the usual number of points in DA(x, r):

SA(x|r, 0) = |DA(x, r)|.
2.2. First Stage

Set the level α of the density S, let X0(α) = X, and define the sequence of sets
Xi+1(α) = {x ∈ Xi(α) : SXi(α)(x) ≥ α}, i = 0, 1, . . . . This does not increase Xi(α) ⊇
Xi+1(α), and therefore, due to the finite nature of X, it will necessarily stabilize from some
moment i∗:

X = X0(α) ⊃ Xi(α) ⊃ · · · ⊃ Xi∗(α) = Xi∗+1(α) = · · · ↔ X(α). (2)

By replacing in the equality Xi∗+1(α) = {x ∈ Xi∗(α) : PXi∗(α)(x) ≥ α} the sets Xi∗(α)
and Xi∗ + 1(α) on X(α), we obtain the equality

X(α) = {x ∈ X(α) : PX(α)(x) ≥ α},

which indicates the α density of the set X(α) in the space X even at its points. Such a set in
X is called α discretely perfect:

Definition 1. A subset A in X is α discretely perfect if

A = {x ∈ X : SA(x) ≥ α}. (3)
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The first stage (SDPS1) of the SDPS algorithm is to build X(α) (i.e., transition from the
entire set X to a subset X(α): SDPS1 : X → X(α)). The result (X(α)) of the first stage of
the SDPS algorithm will also be referred to as SDPS(X) or SDPS(α, r, p)(X). The cutting
process (Equation (2)) is shown in Figure 2, from which, in particular, it can be seen that
the first stage of SDPS is a topological filtering of the space X (i.e., clearing it of noise).

Figure 2. Application of the SDPS algorithm to the array X (a). Four iterations are shown in (b–e).
The result is a local α-perfect subset of X(α) in X (e). The green points in figures (b–d) show the points
that did not pass the next iteration in SDPS. SDPS further split X(α) into connected components
(yellow and black subsets (f)).

The examples below illustrate the general nature of the dependence of the SDPS
algorithm on the parameters at the first stage: the smaller the radius r, and the larger
the parameters p and α, the more rigorous the SDPS was, and the denser and smaller its
resulting SDPS1(X) was:

Example 1. The initial array X (Figure 3a) shows the inverse nature of the dependence of the
SDPS algorithm on the density level α. By raising it, we went inside the condensations, finding
dense nuclei already in them (Figure 3b,c)

Figure 3. The inverse character of the dependence of the first stage of SDPS on the density level,
where (a) is the initial array X and (b,c) have sets shown in red, yellow, and green for SDPS(α, r, p)(X)

and SDPS(ᾱ, r, p)(X) for α < ᾱ.
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Example 2. Under the conditions of Example 1, the direct nature of the dependence of the SDPS
algorithm on the vision radius r is shown. By lowering it by passing from r to r̄ < r, we made the
SDPS algorithm more local with the aim of finding smaller condensations (Figure 4). All small
condensations in Figure 4b are shown in black.

Figure 4. Direct dependence on the radius of localization of the first stage of SDPS when moving
from SDPS(α, r, p)(X) (a) to SDPS(α, r̄, p)(X) (b) with r > r̄ on the array X (Figure 3a). Finer black
condensations were added to the red, yellow and green ones.

Example 3. In the conditions in Example 1, the inverse nature of the dependence of the SDPS
algorithm on the parameter p was shown. By increasing it by going from p to p̄ > p, we made the
SDPS algorithm more rigorous (Figure 5).

Figure 5. The inverse nature of the dependence of the first stage of SDPS on the center parameter.
For p̄ > p, the result of SDPS(α, r, p̄)(X) (b) was more rigorous than the result of SDPS(α, r, p)(X) (a)
on array X (Figure 3a).

2.3. Second Stage

Figure 6b shows the result of the first stage SDPS1(X) for the array X shown in
Figure 6a. It is clear that it needed “reasonable” partitioning. In the SDPS algorithm,
the second and third stages are devoted to this.

At the second stage, the set X(α) is partitioned into non-intersecting r-connected
components (Figure 6c) which, of course, must be included in any reasonable partition of
X(α). There are two reasons for this, and they are given below:

Definition 2. Points x and y in X(α) are called r-connected if in X(α), there is a chain of r
close-to-each-other points x0, . . . , xn with a start x = x0, end y = xn, and distances d(xi, xi+1) ≤
r, i = 0, . . . , n − 1.

The r connectivity relation is an equivalence that splits X(α) into disjunctive r con-
nectivity components which, depending on the context, will be denoted below as c or ck,
k = 1, . . . , k∗ = k∗(X(α), r).
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The second stage of the SDPS algorithm, which we will denote as SDPS2, consists of
constructing the c components. Their collection, as well as the partition X(α) associated
with them, will be denoted identically as Cr(X(α)), and thus

Cr(X(α)) = {ck|k∗1 } and Cr(X(α)) ↔ X(α) = ∨k∗
k=1ck. (4)

This is the result of the second stage of the SDPS algorithm: SDPS2(X) = Cr(SDPS(X)).
Rationale (first reason): r is the localization radius in the SDPS algorithm, and therefore

any points that are r close to each other are considered close and must necessarily be in-
cluded in the same partition component X(α) (the partition should not break close points).

Rationale (second reason): the components of the r connectivity are separated from
each other by more than r, so the density S of each of them at any point from the other com-
ponent is equal to zero. Hence, the conclusion is that each component of the r connection
in X(α) is itself discretely perfect, since it independently provides the necessary level α of
the density S at each of its points and is equal to zero at other points.

Figure 6 shows that the result of cutting (red dots in Figure 6b) was split in the second
stage into 24 r-connected components, shown in Figure 6c with different colors.

Figure 6. (a) Initial array X. (b) Result of the first stage of the SDPS algorithm. (c) Result of the
second stage of the SDPS algorithm with r connectivity components (uniform in color sets). (d) Result
of the third stage of the SDPS algorithm with edges and quasi-edges (uniform in color sets).

2.4. The Third Stage

The results of the second stage may be enough (Figures 3–5) or may not (Figure 6c).
The expert E decides. He or she perceives the second stage SDPS2(X) as a given that is not
subject to further internal transformation, considering each component of the r connectivity
c ∈ SDPS2(X) to be a single and indivisible spot (big point).

The spots c = cX(α) are interpreted by the expert E as single exits (manifestations) of
global anomalous entities in X. To understand their true scale, additional connection of
spots, if possible, may be needed. This is the third and final stage of the SDPS algorithm.

The expert E considers a set of spots C ⊂ SDPS2(X) to be one whole if any two spots
in it can be connected by a chain of close (in his or her opinion) intermediate transitions.
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This gives the expert a reason to conclude that C is not random and that the set of spots (r
components of connectivity) included in C is a collective but fragmentary manifestation
(edge) of some global anomalous entity in X.

We denote with χE the partition of the spot space SDPS2(X) into such “non-random”
sets Ci:

χE ↔ SDPS2(X) = ∨i∗(E)
i=1 Ci, Ci =

{
Cij|j

∗(i)
j=1

}
. (5)

This is the third stage of the SDPS algorithm (SDPS3(X) = χE), and it depends on the
expert E’s analysis of the initial space X and the first and second SDPS stages of it:

χE = χE(X, SDPS1(X), SDPS2(X)). (6)

With such an analysis, for each set Ci, the question of proximity within it is generally
solved individually.

In this paper, the simplest Boolean version of the third stage is presented where,
based on the analysis of the space X only, the expert E develops its proximity threshold
rE, which is weaker than r (r < rE) and splits the spot space SDPS2(X) into rE connectivity
components (χE = CrE X(α)).

The parameters r and rE are constructed using power law averaging of non-trivial
distances in X:

r =
(

∑x �=y∈X d(x,y)q(r)

|X|(|X|−1)

)1/q(r)
,

rE =

(
∑x �=y∈X d(x,y)q(E)

|X|(|X|−1)

)1/q(E)
.

For the parameter r, numerous tests of the SDPS algorithm have established that
the choice of q(r) ∈ [−3,−2] can be considered optimal. The studies carried out in the
framework of this work show that q(E) ∈ [−2.5,−1.5]. The intersection of the areas of
parameters r and rE is explained both by the fuzzy perception of proximity by the expert
and by the diversity in construction of X.

Figure 6c shows the 24 r connectivity components (spots) obtained in the second stage,
which combined into 15 rE connectivity components (Figure 6d). Note that, in this case,
q(r) = −3.0, and q(rE) = −2.3.

2.5. SDPS and DBSCAN Algorithms

The cutting process (Equation (2)) was also valid for other density constructions, par-
ticularly for the derivative of S of the construction S̃: S̃A(x) = max SA(x̃), x̃ ∈ DA(x, r).
The related S̃DPS algorithm was less rigorous than the SDPS algorithm. For the same
parameters r, p, and α, SDPS(X) ⊆ S̃DPS(X)) always held and coincided with the well-
known DBSCAN algorithm.

Figure 7b,c shows the results of the second stage of the SDPS and S̃DPS = DBSCAN
algorithms, and Figure 7a shows traditional k-means clustering. All this gives grounds for
the following conclusion: the SDPS algorithm in its first two stages, as in the well-known
algorithms DBSCAN, OPTICS, and RSC [59,60], represents a new stage in cluster analysis,
where modern cluster analysis algorithms first filter the initial space, clearing it of noise
(first stage), and then the result is divided into homogeneous parts (second stage).
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Figure 7. Comparison of the results of the algorithms. (a) Results of clustering with the k-means
algorithm. (b) SDPS algorithm. (c) DBSCAN algorithm.

3. Immersion of a Finite Set into a Domain of Euclidean Space under DMA Methods

The results for the operation of the SDPS algorithm in its pure form were of little
use for practical conclusions. Therefore, discrete expansions needed to be immersed in
Euclidean domains, finding a compromise between the economy (scanability) and connec-
tivity (smoothness) of such immersion. The resulting disjunctive regions would be areas of
increased interest for the reasons that prompted the operation of the SDPS algorithm.

DMA methods help to solve the problem of immersing a finite set into the domain
of a Euclidean space in the two-dimensional case. The solution is the result of the joint
work of the Ext and Int algorithms. Ext was developed earlier, and it is responsible for the
ability to scan the embedding. It is a component of FCAZ [26,50]. Int is responsible for
the connectivity of the embedding. It is presented here for the first time and is the main
theoretical result of this paper.

The initial data were a domain B in the Euclidean plane Ξ and a finite set A in B.
The task was to construct a Euclidean shell H(A) for A in B that satisfied the ability to scan
and connectivity requirements formulated above.

3.1. Ext and Int Algorithms

Let us choose an orthonormal coordinate system xOy in Ξ so that Ξ = R
2(x, y)

and also a regular pixel cover Π of the plane Ξ, consistent with the xOy coordinates.
The shell Ext(A) for A in B is obtained as the union of all pixels π from Π that intersect

B and are close to A:

Ext(a) = ∪{π ∈ Π : ((π ∩ B) �= ∅) ∧ (π close to A)}. (7)

Thus, it is necessary to determine the proximity π to A. There are several ways to
accomplish this in DMA, namely quantiles, fuzzy comparisons, and Kolmogorov averages.
Let us present the last option.

Let c(π) denote the center of the pixel π, and define the distance ρ(A, π) from A to π
as the Kolmogorov averaging Mν of the nontrivial distances between elements A and c(π)
with a negative index ν:

ρ(A, π) = Mν{ρ(a, c(π)) : a ∈ A ∧ ρ(a, c(π)) �= 0}, ν < 0.

The proximity threshold ρ(A|B) to A in B is also obtained using Kolmogorov averag-
ing in the general case with another negative index ω:

ρ(A|B) = Mω{ρ(A, π) : π ∩ B �= ∅}, ω < 0.

The shell Ext(A) is formed by all pixels close to A in B:

Ext(A) = ∪{π : ρ(A, π) ≤ ρ(A|B)}.
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Next, we turn to the Int. Let us fix any point b from B and, for any a from A other than
b, denote with Θb(a) the angle in [0, 2π) corresponding to the direction of eb(a) from b to a:

eb(a) =
b − a

||b − a|| = (cos Θb(a), sin Θb(a)).

Let us properly order the set of angles Θb(A) = {Θb(a), a ∈ A \ b} in [0, 2π):

Θb(A) → {Θ1 < Θ2 < · · · < Θn}, n = n(b, A)

and assume Θn+1 = Θ1.
The extended set Θb(A) = {Θi|n+1

1 } is responsible for the environment of the point
b by the set A and helps to express it formally. If, for the chosen environment threshold
Θ ∈ [0, π], all successive differences Θi+1 − Θi are less than Θ (i = 1, . . . , n), then the point
b is considered to be environed by the set A (internal for A). Otherwise, the point b is
considered external to A:

b ↔ internal
external

for A, if max{Θi+1 − Θi|n1}
<
≥ Θ. (8)

The connection (Equation (8)) with the locality threshold R makes the environing
criterion more flexible by making it local, where b is locally internal (external) for A if b is
internal (external) for the ball DA(b, R) according to Equation (8).

The shell Int(A) is formed by all pixels whose centers are internal to A:

Int(A) = {π ∈ Π : c(π) locally internal A}.

The shell H(A) for A in B with the ability to scan and connectivity conditions is
obtained by the union of Ext(A) and Int(A):

H(A) = (Ext + Int)(A) = Ext(A) ∪ Int(A).

Its construction depends on four parameters: two negative indices ν, ω for Ext, and
the environing and locality thresholds Θ and R for Int.

Figure 8 shows the set A for which Figure 9 presents all the stages of constructing the
shell H(A). The final result is shown in two ways: H(A) = Ext(A) ∪ (Int(A) \ Ext(A)) (Int
against the background of Ext (Figure 9c)) and H(A) = Int(A) ∪ (Ext(A) \ Int(A)) (Ext
against the background of Int (Figure 9d)).

Figure 8. Initial array X for constructing the shell H(A).
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Figure 9. (a) Ext shell for the set A. (b) Shell of Int for the set A. (c) Shell H(A) = Ext(A) ∪
(Int(A) \ Ext(A)) (Int against the background of Ext). (d) Shell H(A) = Int(A) ∪ (Ext(A) \ Int(A))

(Ext against the background of Int).

3.2. FCAZ Method

FCAZ in its original version was a sequential combination of only the first stage of the
SDPS algorithm and the Ext algorithm [28]:

FCAZ(X) = Ext(SDPS(X)).

The additional stages in the SDPS algorithm presented in this article, as well as Int
algorithm, allowed us to continue the development of FCAZ. We propose a new variant
of FCAZ associated with the Boolean version of SDPS, namely the joint use of Ext and Int
algorithms, resulting in the SDPS algorithm on X in the form of decomposition:

FCAZ(X) = (Ext + Int)(SDPS(X)).

Figure 10 shows an example of constructing FCAZ zones based on a developed
mathematical apparatus.
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Figure 10. FCAZ zones constructed for the results from running the first stage of the SDPS algorithm
on the array X (Figure 6b). (a) Extzones. (b) Int zones. (c) Int against the background of Ext. (d) Ext
on the background of Int.

4. Discussion

As mentioned above, the FCAZ method in its initial form, which has been used to
date to recognize the areas prone to the strongest, strong, and significant earthquakes in
a number of mountainous countries of the world [26], is a sequential application of the
first stage of the SDPS algorithm (in the papers devoted to FCAZ recognition, it is just
the DPS algorithm) and the Ext algorithm, where FCAZ(X) = Ext(DPS(X)) [28]. In the
present work, the algorithmic base of the FCAZ method was substantially developed. Thus,
in particular, its algorithmic base was expanded.

Using California as an example, let us consider the contribution of the Int algorithm
developed in this paper to the mapping of potential high-seismicity zones (i.e., contouring
of the recognized DPS clusters of epicenters of weak earthquakes). In Figure 11, the green
and red colors show the results of FCAZ recognition of strong earthquake-prone areas
with magnitudes M ≥ 6.5 in California from [26]. Earthquake epicenters from the ANSS
catalog (http://www.ncedc.org/anss/catalog-search.html, accessed on 1 January 2020)
with M ≥ 3.0 that occurred over the period of 1960–2012 were used as recognition objects
(DPS clustering). The choice of the magnitude threshold M = 3.0 was carried out based
on theoretical and practical analysis of the magnitude–frequency graphs for the entire
considered region. The green color in Figure 11 shows the DPS clusters, while red shows
the high-seismicity zones mapped by the Ext algorithm based on the clusters within which
earthquakes with M ≥ 6.5 can occur. In [26], the arguments in favor of the reliability of the
performed recognition are presented in detail. In turn, it was shown in [50] that the result of
FCAZ recognition in California depended little on the presence or absence of foreshock and
aftershock sequences in the earthquake catalog, which is the source of recognition objects.

The black stars in Figure 11 show the epicenters of 33 earthquakes with M ≥ 6.5 that
occurred over the period of 1836–2010. The blue and white stars show the epicenters of
events with M ≥ 6.5 that occurred in 2014 and 2019 (i.e., after the end of the instrumental
catalog, which made up a set of recognition objects). These events formed the material of a
pure experiment. Thus, the consistency of the recognized FCAZ zones with the locations
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of the epicenters of strong earthquakes that occurred more than 180 years ago, including
the ones before and after the beginning of the instrumental catalog used in recognition,
was checked.

Figure 11. New FCAZ zones prone to earthquakes with M ≥ 6.5 in California and earthquake
epicenters with M ≥ 6.5.

Out of 35 events with M ≥ 6.5, only 5 (14.3%) epicenters did not fall into the recognized
FCAZ-zones (Figure 11). At the same time, it should be noted that three epicenters located
in the northwest of the region are located in the Pacific Ocean at a fairly large distance from
the coast. Additionally, two epicenters of historical earthquakes did not fall into the FCAZ
zones: near Fort Tehon (1857) and in San Francisco (1906). These earthquakes occurred long
before the start of systematic instrumental observations of seismicity in California. Thus,
for various reasons, there were not enough objects (earthquake epicenters with M ≥ 3.0) to
recognize the areas of these five strong earthquakes.

The positive result of the pure experiment should be noted: both epicenters fell strictly
inside the FCAZ zones (Figure 11). At the same time, we emphasize that the epicenter of the
earthquake on 6 July 2019 with M = 7.1 (white star in Figure 11) [61], being inside the FCAZ
zones, was located outside the areas determined for the magnitude threshold M = 6.5
being high seismicity under the EPA method [21]. The latter once again emphasizes the
modernity and reliability of the obtained FCAZ results.

The result of applying the new computational component Int in the FCAZ structure
is shown in Figure 11 in blue against the background of red zones mapped by the Ext
algorithm. Thus, we have a new shell Ext(DPS)∪ (Int(DPS) \Ext(DPS)) of high-seismicity
DPS clusters in California, which we will consider in this paper as new FCAZ zones prone
to strong earthquakes.

The new FCAZ zones had the same number of “miss target” errors. As before, five
earthquake epicenters were outside the recognized zones. However, it should be noted that
the development of the FCAZ algorithmic basis, including the expansion of the algorithmic
base of the method, could not directly lead to a decrease in the number of target misses.
The contribution of the updated mathematical toolkit of the method which significantly
develops FCAZ-seismic zoning is as follows. At the second (described in detail above)
stage of the application of the DPS algorithm in California, clusters were formed that
were r-connected components (Equation (4)). According to the mathematical construction
embedded in the third DPS stage, some of these connected components need to be combined
into large clusters that have a close internal connection against the background of all
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recognized dense condensations. However, the Ext algorithm does not always allow
building a single FCAZ zone for clusters that are united at the third DPS stage. The Int
algorithm effectively solves this problem.

From Figure 11, it can be seen that the result of the operation of the Int algorithm
made it possible to combine several zones mapped by the Ext algorithm into individual
high-seismicity areas. This was especially well observed in the south and east of the Sierra
Nevada mountains, in the ocean area south of Los Angeles, as well as northeast of the city
of San Diego. In the last location, Int made it possible to connect the edges of a large FCAZ
zone mapped by the Ext algorithm. Thereby, the degree of falling into this zone of two
strong earthquake epicenters increased. Before the application of the Int algorithm, these
epicenters were located on the very edge of the recognized FCAZ zones.

From Figure 11, it can be concluded that the FCAZ recognition result obtained in
California using the updated algorithmic base, which presented more interconnected
potential high-seismicity zones, has a greater degree of reliability. Thus, based on the
developed mathematical apparatus, the reliability and accuracy of the FCAZ recognition
of areas prone to earthquakes were significantly increased. This in turn contributes to
the prediction of damage from earthquakes and, for the first time, can be directly used to
update seismic zoning maps.

5. Conclusions

Discrete mathematical analysis is a discrete data analysis method that uses scenarios of
classical continuous mathematics, in which the fundamentals are replaced by fuzzy models
of their discrete analogs. From a practical point of view, DMA is a new approach to data
analysis focused on an expert and occupying an intermediate position between rigorous
mathematical methods and soft combinatorial ones.

The solution to the problem within the DMA framework consists of two parts. The first
one is informal, as it analyzes the logic of the expert, introduces the necessary concepts,
and explains the scenarios and principles of the solution. The second has a formal character-
istic. With the help of the DMA apparatus, all concepts receive rigorous definitions within
the framework of fuzzy mathematics and fuzzy logic, and the schemes and principles
become algorithms.

This article provides three such solutions:

• The SDPS algorithm is a DMA response to the empirical definition of a cluster as a
connected set, the measure of the presence of which at each of its points is higher than
at any other.
The answer is a rigorous DPS set theory and DPS clustering based on it.

• The Ext algorithm is a DMA formalization of the scanning ability and proximity based
on an empirical understanding with the help of Kolmogorov means (one of the main
technical means of DMA).

• The Int algorithm is a DMA formalization of smoothness (insideness) based on
the empirical logic of the circle with the help of Kolmogorov means and standard
linear algebra.

It should be noted that DMA has all the necessary tools to generate unsupervised
topological filtering and classification algorithms. Based on fuzzy sets and fuzzy logic,
DMA can convey expert ideas about the spatial distributions of objects. DMA makes it
possible to implement a system approach to the analysis of geophysical data in the problem
of adequate seismic hazard assessment studied in the article.

In conclusion, we emphasize that based on the mathematical apparatus of the FCAZ
method, which has been substantially developed based on DMA, in this work, new zones
prone to earthquakes with M ≥ 6.5 in California were constructed. A distinctive feature
of the new FCAZ recognition system is the combination of a number of smaller zones
located at a relatively small distance from each other into large, single, connected potential
high-seismicity zones. Note that after applying the Int algorithm, the area of the FCAZ
zones increased by only 6%.
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The results presented in the present and previous works indicate the high reliability
of the interpretation of FCAZ zones as earthquake-prone areas. The FCAZ method makes
it possible to effectively recognize possible locations of future earthquakes solely from
seismological data. We also note that the results of the FCAZ studies indicate that weak
seismicity can actually “manifest” the properties of geophysical fields, which are used directly
in the form of characteristics of recognition objects in other (similar to FCAZ) methodologies.
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Abstract: P-wave first-motion polarity is important for the inversion of earthquake focal mechanism
solutions. The focal mechanism solution can further contribute to our understanding of the source
rupture process, the fault structure, and the regional stress field characteristics. By using the abundant
focal mechanism solutions of small and moderate earthquakes, we can deepen our understanding of
fault geometry and the seismogenic environment. In this paper, we propose an automatic workflow,
FocMech-Flow (Focal Mechanism-Flow), for identifying P-wave first-motion polarity and focal
mechanism inversion with deep learning and applied it to the 2021 Yangbi earthquake sequence.
We use a deep learning model named DiTingMotion to detect the P-wave first-motion polarity of
2389 waveforms, resulting in 98.49% accuracy of polarity discrimination compared with human
experts. The focal mechanisms of 112 earthquakes are obtained by using the CHNYTX program,
which is 3.7 times more than that of the waveform inversion method, and the results are highly
consistent. The analysis shows that the focal mechanisms of the foreshock sequence of the Yangbi
earthquake are highly consistent and are all of the strike-slip type; the focal mechanisms of the
aftershock sequence are complex, mainly the strike-slip type, but there are also reverse and normal
fault types. This study shows that the deep learning method has high reliability in determining the P-
wave first-motion polarity, and FocMech-Flow can obtain a large number of focal mechanism solutions
from small and moderate earthquakes, having promising application in fine-scale stress inversion.

Keywords: P-wave first-motion; focal mechanism; Yangbi earthquake; deep learning

1. Introduction

The focal mechanism solution reflects the seismogenic fault structure and regional
stress field information, which is essential for understanding the regional geological struc-
ture and seismicity analysis [1–5]. Compared with moderate and strong earthquakes, small
earthquakes (M < 3.0) are more numerous, occur more frequently, and have a wider distri-
bution. The focal mechanisms of small and moderate earthquakes contain a wealth of fault
structure information, which is of great significance for the simulation of the earthquake
rupture process, the analysis of fault zone characteristics and fault properties, and the
inversion of stress fields [4,6–8].

The inversion methods of focal mechanism solutions can be divided into two cat-
egories: waveform fitting and P-wave first-motion polarity. For moderate and strong
earthquakes (M > 3.5), the waveform inversion method is commonly used to determine
the focal mechanism [9–12]. This method uses information carried in the waveform and
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can give a good focal mechanism solution even when there are few stations. However,
most of the earthquakes recorded by the regional seismic network are small earthquakes
below M3.0, with short propagation distances and high-frequency components, making
their waveforms difficult to fit and their focal mechanism solutions difficult to obtain. On
the other hand, because the rupture of small earthquakes is relatively simple, the results
based on the P-wave first-motion polarity are generally consistent with the results based
on waveform fitting. Therefore, for small earthquakes (M < 3.0), the first-motion polarity of
P-wave inversion is often used to retrieve focal mechanism solutions [1,6,13–16]. Manually
identifying the first-motion polarity of a P-wave is stable, reliable, and easy to operate, and
it was the earliest method used to study the source mechanism of earthquakes [17]. With
the continuous advancement of technology, many focal mechanism inversion methods
have been developed, such as [18,19], combining P-wave first-motion polarity and the S/P
wave amplitude ratio to determine focal mechanisms, which was called the HASH method.
Moreover, [20] used a high-frequency full waveform combined with P-wave first-motion
and the S/P wave amplitude ratio to invert the focal mechanism of small earthquakes in
a sparse network, and the GPAT [21] method combines P-wave first-motion polarity and
generalized maximum amplitude to invert the focal mechanism of earthquakes.

The identification of the P-wave first-motion polarity was performed manually in the
past. In recent years, with the construction of the National Intensity Rapid Report and
Earthquake Early Warning Project, the number of seismic stations in China has increased
from ~1200 to more than 15,000. Manual processing can no longer meet the needs for
the development of earthquake monitoring. In order to quickly identify the polarity of a
P-wave, seismologists have developed a variety of methods. For example, [22,23] proposed
an autoregressive model to automatically determine P-wave first-motion polarity, [24] used
the Bayesian probability density function to identify the polarity of a P-wave, and [25]
focused on mutual information and maximum order statistics in information theory to
determine the P-wave first-motion polarity. However, when the signal-to-noise ratio of
the waveform is low, these automatic algorithms based on rules are unable to achieve
reliable first-motion polarity discrimination, and manual review is required. In addition,
these algorithms only use limited discriminant parameters, and it is difficult to reflect the
complete waveform characteristics, which restricts the accuracy of the algorithm.

With the rise of deep learning, data-driven algorithms have made breakthroughs in
tasks such as object detection and classification, and have been widely used not only in
image recognition [26,27] and speech recognition [28,29], but also developed rapidly in the
field of seismology, such as earthquake detection [30,31], seismic phase picking [32–35],
earthquake classification [36,37], and focal mechanism inversion [38,39]. The P-wave first-
motion polarity is usually divided into three categories: upward, downward, and uncertain.
Therefore, the discrimination of incipient polarity can be regarded as a classification prob-
lem, and the automatic identification of first-motion polarity can be realized by using a large
number of known labels for supervised learning. Specifically, Refs. [40–43] used data from
Southern California, Japan, and Taiwan, China, and used a convolutional neural network
to try to realize the automatic determination of the first-motion polarity of P-waves, and
they achieved good results.

In this paper, based on a deep-learning P-wave first-motion picking model named
DiTingMotion [44,45], we detected the P-wave first motions of the 2021 Yangbi Ms6.4
earthquake sequence and compared them with the manual picking results and the rule-
based automatic algorithm. The P-wave first-motion polarity discriminative effect of the
model was evaluated using 2389 P-wave first-motion polarities detected by DiTingMotion;
the focal mechanisms of 112 earthquakes were retrieved by the CHNYTX program [16].
The FocMech-Flow process for the automatic inversion of focal mechanisms using P-wave
first-motion was established. Compared to the results of other methods, the feasibility of
automatic inversion of the focal mechanism solution was analyzed.
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2. FocMech-Flow Workflow

The workflow of FocMech-Flow for focal mechanism inversion is shown in Figure 1.
The main steps consist of four parts:

1. Seismic Event Screening. Seismic events satisfying focal mechanism inversion are
selected from the observation report. Seismic events recorded by at least 10 stations
and with a maximum gap angle less than 70◦ are selected.

2. Data Preprocessing. According to the P-wave arrival time in the observation report
picked by analysts, we take the P-wave arrival time as the center, cut a 4-s waveform
window, and carry out de-mean, de-trend, and amplitude normalization processing.

3. Determination of the P-Wave First-Motion Polarity. The preprocessed vertical com-
ponent waveform is centered on the P-wave arrival time; we cut a 1.28-s waveform
window, detected by DiTingMotion, and the polarity of the P-wave is given.

4. Focal Mechanism Inversion. According to the earthquake location, station location,
and regional velocity model, we calculate the takeoff angle, combined with the first-
motion polarity, and invert the focal mechanism with the CHNYTX program.

Figure 1. FocMech-Flow flow chart for focal mechanism inversion. A, B and C represent three levels
of reliability of the focal mechanism solution. A is the best, B is the second, and C is the worst. P and
T are the pressure axis and tension axis, respectively.

The first-motion polarity of the P-wave is detected automatically by DiTingMotion.
DiTingMotion was trained by [45,46] using the DiTing dataset [44] and the first-motion
dataset from the Southern California Seismic Network [40]. DiTingMotion is a deep learn-
ing model based on a convolution neural network. The model consists of five convolution
modules. The first two convolution modules contain two one-dimensional convolution
layers and one maximum pooling layer, respectively. The last three convolution modules
contain three one-dimensional convolution layers and one maximum pooling layer, re-
spectively. In the last three convolution modules, each module outputs a set of polarity
predictions and then determines the P-wave polarity as “Up” or “Down” by comparing the
probability threshold. See Ref. [45] for details about the network structure, training process,
and test results of DiTingMotion.

The CHNYTX program [16] is used for focal mechanism inversion, which is based
on the grid research method [6,14]. By improving the calculation of the weight factor of
the data points and the dynamic clustering of solution areas, the reliability of the focal
mechanism is evaluated according to the number of clustering centers, the lowest weighted
contradiction ratio, and the minimum root mean square (RMS) of the rotation angle.
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3. Yangbi Earthquake Sequence

At 21:48 on 21 May 2021 (Beijing time), a Ms 6.4 earthquake occurred in Yangbi,
Yunnan (Figure 2). The epicenter was located at 25.63◦ N, 99.92◦ E, with a focal depth of
8 km. Around 27 min before the mainshock, an ML 5.4 foreshock occurred. The foreshock
activity of this earthquake was very obvious, and more than 4600 aftershocks occurred two
weeks after the mainshock [47–51]. There were 88 seismic stations around the mainshock,
with good azimuthal coverage. The phase arrivals and P-wave first-motion polarity were
picked manually by experienced analysts, which provided good observation data to study
the focal mechanisms of this sequence and compare different methods for the automatic
determination of the P-wave first-motion polarity [52–57].

 

Figure 2. Seismic stations, faults, and epicenters of the Yangbi earthquake sequence. (a) The tectonic
setting of the Yangbi earthquake. Black lines indicate faults [58], blue triangles indicate seismic
stations, and red dots represent the epicenters of the sequence. The blue line in the inset indicates
the boundary of the active block, and the yellow five-pointed star indicates the mainshock. (b) The
distribution of the Yangbi earthquake sequence (red dots), the epicenters of 112 earthquakes used for
focal mechanism inversion (blue dots), and the focal mechanism solutions of large earthquakes.

The observation report and earthquake waveforms were provided by the Yunnan
Earthquake Agency. We selected events with at least ten first-motion polarities [42]. There
were 112 events with 2389 P-wave first-motion polarities that met the requirements. The
magnitude range of 112 events was 1.6 ≤ ML ≤ 5.7, of which 50 earthquakes were be-
low ML3.0.

4. The Detection Results of P-Wave First-Motion Polarity

The experts from the Yunnan Earthquake Agency processed 2389 P-wave first-motion
polarities of 112 earthquakes, of which 1360 polarities were upward and 1029 polarities were
downward. To ensure the reliability of the first-motion polarities, we conducted a review
and corrected 13 polarities with obvious errors. The detection results of DiTingMotion
showed that 2353 polarities were consistent and 36 polarities were inconsistent, with
an accuracy rate of 98.49% (Table 1). Among them, there were 1376 polarities detected
as upward, with an accuracy rate of 99.19%; there were 1013 polarities recognized as
downward, with an accuracy rate of 97.38%. After visual inspection, the 36 waveforms that
were identified incorrectly were mainly due to the low signal-to-noise ratio and difficulty in
distinguishing first-motion polarity, which led to the inconsistency between DiTingMotion
and manual picks (Supplementary Figure S1).
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Table 1. Comparison of polarity classification results obtained with different methods.

Method Up Down Uncertain TP FP TP/ALL

DiTingMotion
(This Study) 1376 1013 0 2353 36 98.49%

PhasePApy [23] 768 509 1112 1275 2 53.37%
NPC [59] 1366 1023 0 2261 128 94.64%

Note: Uncertain indicates the number of polarities that cannot be determined; TP and FP represent the numbers
of consistent and inconsistent polarities between automatic methods and manual discrimination; ALL represents
2389 P-wave first-motion polarities used for test; TP/ALL represents the accuracy.

In order to compare the advantages and disadvantages of different methods for
identifying the first-motion polarity of the P-wave, we selected the PhasePApy [23] and
the Network for Polarity Classification (NPC) [59] model, and compared the detection
results with DiTingMotion (Table 1). PhasePApy uses a rule-based automatic algorithm to
distinguish P-wave first-motion polarities and divides them into three categories: upward,
downward, and uncertain. The NPC model is developed on the basis of a convolutional
neural network and attention mechanism, and outputs upward and downward results.
The NPC model used in this study was trained with data from Southern California and
Oklahoma, Japan, Italy, and Taiwan, Chinese Mainland.

It can be seen from Table 1 that the two models trained by deep learning have accuracy
higher than 90% in the classification of the P-wave polarity. DiTingMotion used 641,025 P-
wave first-motion polarity data from the Chinese Mainland in the past 10 years for training.
It had the highest accuracy and was more suitable for detecting earthquakes in China.
The NPC model used only part of the DiTing dataset, and the detection accuracy was
slightly lower than that of DiTingMotion. However, PhasePApy discriminated the polarity
according to the threshold given manually, and its ability to distinguish the characteristics
of different waveforms was weak, which led to misdetection in nearly half of all cases.
It can be seen that the deep learning models have obvious advantages over traditional
rule-based methods in the detection of the P-wave first-motion polarity.

5. Robustness of P-Wave First-Motion Polarity

In Ref. [15], the authors calibrated the polarity error rate for the handmade first-
motion polarities with similar events and found that ∼10% of the impulsive polarities
and ∼20% of the emergent polarities were wrong. In order to test the robustness of the
DiTingMotion, we flipped the amplitudes of 2389 waveforms and detected their polarities
with DiTingMotion again. The test showed that for 2389 reversed waveforms, 56 polarities
were misidentified. The detection accuracy was 97.66%, which was similar to that before the
waveform flip. This test indicated that DiTingMotion has good robustness in determining
the first-motion polarity.

The precision of the P-wave arrival time will affect the discrimination of first-motion
polarity, especially when there is strong noise before the P-wave, which may cause the
opposite sign of the first motion. To investigate whether the detection results were affected
by the P-wave arrival time, we added a random shift to the P-wave arrival times of
2389 waveforms to simulate the picking error. The predominant P-wave period of the
local earthquakes recorded by the regional network was generally 0.1–0.2 s. We applied a
random error within ±0.1 s to the arrival time of the P-wave, and cut the waveforms with
the shifted arrival times. Then, we detected the polarities with DiTingMotion again. Tests
showed that when the arrival time of the P-wave was incorrectly marked, the detection
accuracy of P-wave first-motion polarities decreased by 5.61–22.1% (Table 2).
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Table 2. Detection accuracy of P-wave first-motion polarity before and after shifting the arrival time.

Random Error 0 ±0.1 s +0.1 s −0.1 s

Accuracy (all) 98.49% 84.26% 76.39% 92.88%
Accuracy (SNR ≥ 30 dB) 99.60% 87.69% 82.85% 95.58%
Accuracy (SNR < 30 dB) 97.57% 81.12% 71.96% 92.22%

To further analyze the reason for the drop in accuracy, we calculated the signal-to-noise
ratio (SNR) of the waveform. The formula for calculating SNR is as follows:

SNR = 10 × log10

(
signal
noise

)2
(1)

where signal is the maximum absolute value of the amplitude in the signal window, noise
is the root mean square of the waveform amplitude in the noise window, and the unit of
SNR is dB. The signal window is taken as 0.5 s after the arrival time of the P-wave, and the
noise window is taken as 0.5–1.5 s before the arrival time of the P-wave.

We take the SNR of 30 dB as the boundary, divide the data into two categories—
high SNR and low SNR—and calculate the detection accuracy at different SNRs (Table 2).
When the SNR is high, the arrival deviation has less influence on the accuracy of polarity
detection; however, when the picked arrival time is earlier, the false detection rate is higher.
It can be seen that when using DiTingMotion to detect the P-wave first-motion polarities,
the picking accuracy of the P-wave arrival time should be as accurate as possible. For
the manually picked arrival times, one can use deep learning-based methods, such as
Refs. [32,34], etc., to detect the event waveform again, and select the waveform that is
manually and automatically marked at the same time (the residual less than 0.1 s) to detect
its first-motion polarities. On the one hand, this can ensure the reliability of the first-motion
polarities. On the other hand, it can also improve the waveform utilization. In some cases,
only the arrival time is picked manually, but the initial movement symbol is not given.

6. Focal Mechanism Solutions of the Yangbi Earthquake Sequence

Using 2389 P-wave first-motion polarities of the above 112 earthquakes, the focal
mechanism solutions of 112 earthquakes were inverted by the CHNYTX program [16].
Referring to the evaluation metrics in [16] (Table 3), the inversion results were divided
into three classes, A, B, and C. There were 43 in Class A, 9 in Class B, and 60 in Class C.
The detailed parameters of the focal mechanism solutions are shown in Supplementary
Table S1.

Table 3. Focal mechanism solution quality evaluation [16].

Classes Evaluation Threshold

A Ψmin ≤ 0.15, and NC = 1, and RMS ≤ 15◦
B Each parameter is between Class A and Class C
C Ψmin ≥ = 0.30, or NC ≥ 2

Note: Ψmin denotes the minimum weighted contradiction ratio; NC denotes the number of clustering centers;
RMS denotes the minimum root mean square of the rotation angle.

The focal mechanism solutions of approximately 30 earthquakes with ML ≥ 3.5 have
been obtained by using the waveform inversion method [52–55,57]. In this study, we
determined 112 focal mechanism solutions using the P-wave first-motion polarity, which is
3.7 times that of the waveform inversion method (Figure 3). Among the 112 earthquakes,
there are 40 earthquakes with ML ≥ 3.5 and 50 earthquakes with ML < 3.0, and the minimum
magnitude is ML1.6. This shows that when the stations are well distributed, the focal
mechanism of a large number of small earthquakes can be retrieved using the P-wave
first-motion data.
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Figure 3. Statistics of the focal mechanism solutions for 1 ≤ ML ≤ 6.4. (a–f) denotes the magnitude
distribution of the focal mechanisms obtained in this study and Refs. [52–55,57].

To verify the reliability of the new inversion results, we selected 10 earthquakes with
focal mechanism solutions from published articles that have been commonly studied
(Figure 4). We measured the consistency of the focal mechanism solutions [60] using the
Kagan angle (KA). We calculated KA with the FMcenter program [61]. When KA is less than
25◦, it can be considered that the focal mechanism solutions are consistent [62]. Figure 4 is
the comparison result. The standard deviation of the KA obtained in this paper is less than
24◦, which is in good agreement with previous results. It shows that the focal mechanism
solution obtained by FocMech-Flow inversion is reliable.

 
Figure 4. Comparison of focal mechanism solutions between different studies.

The leftmost column is the earthquake information; the rightmost column is the
standard deviation of the Kagan angle.

Previous studies have shown that the Yangbi earthquake sequence occurred on a
secondary fault parallel to the Weixi-Qiaohou fault [52,53,55,56]. This right-lateral strike-
slip fault can be regarded as the northward extension of the Red River fault zone [63]. We
used the FMC program [64] to classify the focal mechanisms (Figure 5). The results showed
that there were 31 strike-slip events (SS), 35 strike-slip types with normal fault components
(SS-N), 17 normal fault types with strike-slip components (N-SS), 15 strike-slip types with

180



Appl. Sci. 2023, 13, 2233

reverse components (SS-R), 9 normal fault types (N), 2 reverse fault types (R), and 3 reverse
fault types with strike-slip components (R-SS).

 

Figure 5. Types of focal mechanism solutions of the Yangbi earthquake sequence.

We divided the magnitude–time (M-T) diagram of the Yangbi earthquake sequence
from 18 to 28 May into two phases: foreshock and aftershock sequences. Figure 6 shows
the focal mechanism solutions of this study for some large earthquakes (ML ≥ 3.5). We
found that the focal mechanisms of the foreshocks were consistent, and they were all
strike-slip-type events. The earthquakes were distributed along the NW-SE direction, and
the largest ML5.4 foreshock occurred at the southeast end of the foreshock sequence. The
focal mechanisms of the aftershocks were complex. The focal mechanism of the mainshock
was the strike-slip type, and the focal mechanism of the largest aftershock ML5.1 was the
strike-slip type with a normal fault component. Earthquakes at the periphery of the source
region had prominent normal fault components, and very few of them had normal fault
events. The focal mechanisms with the strike-slip and normal-fault components accounted
for more than 92% of the total inversion results in this study, which was consistent with
the regional tectonic background (Figures 5 and 6). In particular, the focal mechanism
solutions for the foreshock sequence were not only highly consistent, but their nodal planes
had an NW-SE orientation (Figure 6b), which is consistent with the seismogenic tectonics
of this earthquake, as suggested by previous studies. Although the focal mechanisms of
the aftershocks were relatively complex, the orientation of the nodal planes of the source
mechanism solution for most aftershocks was also consistent with the seismogenic tectonics.
This indicates that the focal mechanisms obtained in this study are highly credible.

It was found that there were differences in the consistency of the focal mechanisms
between foreshocks and aftershocks [65–67], which was proposed to describe the seismicity
with parameter K (K∈[−1, 1]) using the consistency of the focal mechanisms. High K means
high consistency of the focal mechanism. In addition, KA can also reflect the consistency
of the focal mechanisms. Except for the largest foreshock (ML5.4) whose KA was more
than 30◦, the KA values of other foreshocks were all less than 25◦, indicating that the focal
mechanisms were consistent (Figure 7c). On the contrary, the KA of the aftershocks has a
wide distribution range and low consistency. The seismicity parameter K and the KA of the
foreshock and aftershock changed before and after the mainshock. The focal mechanisms
of the foreshock sequence were consistent, all of which were of the strike-slip type with
high K values, which reflects that the stress in the source area accumulated continuously
before the mainshock, resulting in the stress field tending to be uniform. This is consistent
with the previous research that considered that the foreshocks were controlled by a unified
stress field, and the focal mechanism solutions had high similarity [8,65,68,69]. After the
mainshock, the number of aftershocks with different types of focal mechanisms increased,
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the K value decreased, and the KA increased, all of which reflected the adjustment process
of the stress field in the source area [8,70–72].

 
Figure 6. M-T diagram, earthquake distribution, and focal mechanism solutions for foreshocks and
aftershocks. (a) M-T diagram of the Yangbi earthquake sequence. The yellow star indicates the
mainshock. (b) Focal mechanism solutions of the foreshock sequence. (c) Focal mechanisms of the
mainshock and aftershocks. The color of the beach ball represents different types of focal mechanisms
(see Figure 5).

 

Figure 7. Temporal variation in KA angle and K value in the Yangbi earthquake sequence. (a) KA angle
of the foreshock sequence. (b) KA angle of the aftershock sequence. (c) K value for the consistency of
the foreshock and aftershock (light green indicates KA ≤ 25◦), and the red dotted line separates the
foreshock and aftershock. The red dotted lines in (a,b) indicate 25◦ KA angle.

7. Conclusions

Taking the Yangbi earthquake sequence in 2021 as an example, this paper discusses
the feasibility of the automatic discrimination of the polarity of P-wave first motion and
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its application in focal mechanism inversion and establishes a workflow named FocMech-
Flow for automatic focal mechanism inversion by using P-wave first motion. The main
conclusions are as follows.

(1) Compared with manual and rule-based methods, deep learning-based methods
have high accuracy in determining P-wave first-motion polarity. Even if there is a 0.1-s error
in the P-wave arrival time, the recognition accuracy of the P-wave first-motion polarity is
still over 80%.

(2) Focal mechanism solutions of 112 earthquakes in the Yangbi earthquake sequence
were determined with FocMech-Flow, which were in good agreement with previous results.
FocMech-Flow can reduce the lower limit of focal mechanism inversion to approximately
ML2.0, and can obtain a large number of focal mechanism solutions for small and moderate
earthquakes (ML ≤ 3.0), which provides extensive data to depict the fine fault geometry
and stress field inversion.

(3) The Yangbi earthquake sequence is mainly strike-slip. A few earthquakes have
normal fault components. The focal mechanisms with strike-slip and normal fault compo-
nents account for more than 92% of events. The focal mechanisms of the Yangbi foreshock
sequence are highly similar to that of the mainshock. The consistency of focal mechanism
solutions decreases for the aftershock sequence, which reflects the stress field adjustment
after the earthquake.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app13042233/s1, Figure S1: Inconsistent discrimination between
DiTingMotion and analysts. The red dotted line indicates P-wave arrival time. Light blue shading
region indicates the DiTingMotion detection window (±0.64 s centered at the P-wave arrival time);
Figure S2: Consistent discrimination between DiTingMotion and analysts. The red dashed line
indicates the arrival time of P-wave. Light blue shading indicates the DiTingMotion detection window
(±0.64 s centered at the P-wave arrival time); Table S1: The source parameters of 112 earthquakes in
this paper.
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Abstract: This study uses two different time series forecasting approaches (parametric and non-
parametric) to assess a frequency and magnitude forecasting of earthquakes above Mw 4.0 in North-
eastern Algeria. The Autoregressive Integrated Moving Average (ARIMA) model encompasses the
parametric approach, while the non-parametric method employs the Singular Spectrum Analysis
(SSA) approach. The ARIMA and SSA models were then used to train and forecast the annual
number of earthquakes and annual maximum magnitude events occurring in Northeastern Algeria
between 1910 and 2019, including 287 main events larger than Mw 4.0. The SSA method is used as
a forecasting algorithm in this case, and the results are compared to those obtained by the ARIMA
model. Based on the root mean square error (RMSE) criterion, the SSA forecasting model appears
to be more appropriate than the ARIMA model. The consistency between the observation and the
forecast is analyzed using a statistical test in terms of the total number of events, denoted as N-test.
As a result, the findings indicate that the annual maximum magnitude in Northeastern Algeria
between 2020 and 2030 will range from Mw 4.8 to Mw 5.1, while between four and six events with a
magnitude of at least Mw 4.0 will occur annually.

Keywords: earthquake magnitude forecasting; time series analysis; singular spectrum analysis (SSA);
autoregressive integrated moving average (ARIMA) model

1. Introduction

Earthquakes are one of the most challenging natural disasters for populations to
manage. Even though earthquakes are unpredictable and typically occur without warning,
a detailed analysis of the seismic hazard and risk-reduction measures can help to reduce
subsequent economic and social losses after the occurrence of an earthquake.

The north of Algeria is located on the border of the Nubian Plate, which is in a
compressional movement with the Eurasian Plate [1–3] (Figure 1a). The origin of the
seismicity in this region is the compressional movement between these two plates. Known
seismic activity (Figure 1b) includes several damaging earthquakes, especially in the last
50 years, where severe earthquakes have been recorded in the El Asnam region (now Chleff),
including the earthquakes of 9 September 1954 (Mw 6.8) and 10 October 1980 (Ms 7.3)
(see [4]). The most recent significant event was the Zemmouri/Algiers earthquake 21 May
2003 (Mw 6.9), occurring roughly 50 km offshore from the northeast of Algiers (e.g., [5,6]).
In addition, in this period, several earthquakes affected regions close to important cities
and caused some damages, such as the Constantine (northeast Algeria) earthquake (Ms 5.9)
of 27 October 1985.
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Figure 1. Tectonic and seismicity frame. (a) Tectonic sketch for the studied region. (b) Sha-low
seismicity with depth less than 30 km and magnitude above magnitude Mw 4.0. (c) Distribution of
seismicity with magnitude above Mw 4.0 and distribution of focal mechanism solutions.

The interest of the scientific community in approaches to reduce the risk of damaging
earthquakes and related seismic risk assessments of urban areas in Northern Algeria is steadily
growing in response to this seismic activity. There is always a pressing need for studies on
earthquake forecasting, the implementation of building regulations, and safe constructions,
especially in developing countries like Algeria, due to the severity of large earthquakes and
the damage they produce. The resulting improvement in earthquake risk assessment and
hazard management leads to significant savings in human life and properties.

The effects of the earthquakes previously mentioned in Northern Algeria [7] indicate
the importance of improving estimates of the forecasting from different source zones. Due
to its complex tectonics, the Northeastern region of Algeria was chosen as the studied area.

On both short- and long-term time periods, earthquake forecasting has significant
social and economic consequences. In addition, it plays a main role in earthquake pre-
paredness. On the basis of the quantification of patterns in seismicity data, a wide range
of forecasting methods have been proposed with varied degrees of effectiveness [8–17].
For instance, Mignan [17] develops an analysis of the steady increase in seismic activ-
ity around a potential earthquake epicenter, known as the accelerating moment release
(AMR) approach, while Keilis–Borok [8] presents and analyses step-by-step the topic of
the earthquake prediction. A significant advance in this research field is the earthquake
forecasting method based on Regional Earthquake Likelihood Models (RELM) [14,18–21].
Nowadays, a new algorithm known as pattern informatics (PI) is also emerging as an ad-
vanced method [14]. In addition, new methods based on deep learning are being developed
to find a static-stress-based criterion predicting the location of aftershocks [22], as well as
the interest in real-time post-seismic forecasting based on ground velocity recorded within
the first hour after the mainshock by means of the perceived magnitude [23].

Several studies have been conducted from the perspective of seismic hazard assess-
ment and forecasting. The Gutenberg Richter (GR) model [24] is widely used and states that
the logarithm of the cumulative number of events is linearly proportional to the magnitude.
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It is worth noting that several authors [25–27] suggested that the extreme value distribution
is a more suitable analytical model and should be employed for the distribution of the mag-
nitude set rather than the GR model. Stochastic processes, particularly Poisson processes,
are also used to forecast earthquake frequencies by taking the earthquake occurrence time
into account. The Poisson model is characterized by a constant hazard function and an
exponential recurrence time distribution. This assumption leads to the unsatisfying result
of only time-independent seismic hazard or seismic forecasting estimates, suggesting that
the probability of an earthquake at any given time is independent of its magnitude and
the time since the last one, respectively. Additionally, compared to the Poisson law, the
distribution of earthquakes is over-dispersed, since the events are grouped in time and
location. Various other models based on stochastic processes have also been investigated
to predict the number of events, such as compound Poisson [28,29], branching [15,30]
and stochastic point processes [31,32]. These stochastic procedures made predicting the
magnitude of the earthquake challenging. In addition, these approaches are ineffective for
determining earthquake seasonality and patterns.

Recently, a few studies attempted to use forecasting models based on time series, such
as the Auto-Regressive Integrated Moving Average (ARIMA) and the generalized autore-
gressive conditional heteroscedasticity (GARCH) models [33,34], to forecast earthquake
magnitudes by considering the seasonality and trends of earthquake series. Another model,
the singular spectrum analysis model, or SSA [35–37], is becoming more attractive in order
to forecast earthquake magnitudes in a specific seismic zone. It is a reliable and advanced
non-parametric time series analysis method combining dynamical systems, signal pro-
cessing, multivariate statistics and traditional forecasting analysis. According to several
authors [35–37], this approach is useful for determining the magnitude of earthquakes
in a given area. The SSA model can identify significant seismic time series components
exhibiting typical irregular behavior and provide accurate forecasts for them. Despite the
fact that a few studies on earthquake magnitude forecasting using the SSA approach have
been conducted [37], the primary goal of our study is to apply this method in Northeastern
Algeria to predict earthquake magnitudes with time effects, which are frequently missed in
estimates, while also capturing the dynamics of earthquake occurrences. Subsequently, the
ARIMA and SSA models provided the annual maximum earthquake magnitudes for the
first time in the studied area.

The root mean square error approach, usually denoted as RMSE, is a common tool
for comparing different models and/or methodologies in time series [38,39]. In this study,
the estimated RMSE values show that the SSA is the best model for describing the number
of earthquakes and the annual maximum magnitude in this region. The seismicity in this
area is continuous, and it is characterized by low-to-moderate seismic activity. Despite
the interest of the scientific community in regional seismology and seismic hazards, the
studied area remains of great interest due mainly to the tectonic complexity, which resulted
in the identification of several active faults, the characteristics of which are still under
investigation [40]. Then, this study is the first one in this region to address the issue of
forecasting using time series, and it is part of the scientific community’s efforts to manage
and reduce seismic risk. It is worth noting that, previously, a model has been developed
for Northern Morocco and Algeria to assess the probability of exceeding magnitudes Mw
5.0 and 6.0 in 10 years [41], but assuming a Poissonian process on a spatially smoothed
seismicity model. This study enabled for the spatial variation of such results.

In the current study, the consistency between the observation and the forecast is
analyzed using the CSEP (Collaborative for the Study of Earthquake Predicability) test [42]
in terms of the total number of events, also denoted as N-test. The results are presented as
quantile scores, δ1 and δ2 indices. According to Nanjo et al. [43], the forecast rate is too high
(an overestimation) if δ2 is very small, and too low (an underestimation) if δ1 is very small
for the N-test. Furthermore, according to the original CSEP testing framework, a model
fails the test if its score is below a significance level of 2.5%, indicating an inconsistency
between the forecast and the observation.
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2. Seismicity and Earthquake Database

The study area is situated in the Tell Atlas in Northeastern Algeria (Figure 1a). This
important geological formation resulted from a collision caused by the Algero–Provençal
Basin opening within the Nubia Plate in the Early Miocene. Furthermore, it is most likely
related to the Nubian Plate subduction, which is dipping to the north [44,45].

Onshore and offshore folds and thrust faults extending from NE–SW and from E–W
represent the majority of the current tectonic features (e.g., [46,47]). The compressional
movement between the Nubian and Eurasian Plates causes considerable seismicity, which
is mostly represented in a moderately diffused seismic area in Northern Africa in its
western domain (Figure 1b). This collision zone includes Northern Algeria, where recent
geodetic studies reveal an actual plate convergence rate of about 5 ± 1 mm/yr in a N60◦W
direction, as illustrated in Figure 1a [2,3,48–50]. Earthquakes with a magnitude above
Mw 5.0 frequently occur in the area [7,51], sometimes causing significant damage and
casualties [52,53].

Most well-studied thrusting earthquakes occur on land, including the largest-recorded
Ms 7.3 10 October 1980, El Asnam earthquake [54–56]. Examples of destructive earthquakes
in the past include the 3 January 1365, and 5 May 1716 earthquakes, both felt with intensity
X (European Macroseismic Scale, EMS-98) [57]. The earthquake that struck on 2 March 1825,
with a felt intensity of X–XI on the Modified Mercalli Intensity Scale (MMI), was another
historical occurrence. The Mw 6.9 earthquake that struck the area under consideration
on 21 May 2003 was the most recent destructive earthquake [7]. The seismicity of the
studied area displayed in Figure 1b has been the subject of various studies, both on
historical and instrumental seismicity. For instance, Harbi et al. [51] performed a clear and
comprehensive analysis of the historical seismicity, proposing the re-appraisal of several
historical events located in the region. On the other hand, recent instrumental seismicity
recorded by the Algerian seismic network has also been the subject of several works [58–62].
Figure 1c depicts the shallow depth (h ≤ 30 km) focal mechanism data compiled in the
region [44,45]; the Frohlich diagram [63] is displayed, and the Zoback classification [64] is
used. In previous studies [44,45], a detailed analysis of the inversion of the focal mechanism
solutions and the inferred stress pattern was performed. The tectonic framework of the
Ibero–Maghrebian region is detailed from these data, and the results are found to be in
agreement with more recent studies (e.g., [50]). Similar horizontal maximum principal
stress directions can be seen throughout the area, and they almost exactly coincide with the
previously identified horizontal P axis in the NW–SE direction, as previously established
by Henares et al. [65]. Additional tectonic stress regimes have been identified, including
extensional, compressional, transpressional and strike-slip schemes.

The earthquake data file considered in this analysis was obtained from a seismic cata-
log previously compiled [7] for Northern Algeria, which has been updated until December
2019. It is well recognized that having an up-to-date Poissonian earthquake data file is a
prerequisite for any seismic hazard assessment [66–69]. A combination of available pub-
lished studies, bulletins and original data was used to produce the early earthquake data
file. This led to the development of a unified earthquake data file, including information
on magnitude, regional extent (between 32◦ and 38◦ latitudes and between 3◦W and 10◦E
longitude), and date range (between AD 856 and June 2008) [7].

Specifically, for the current study, this initial earthquake data file has been updated to
December 2019, with data coming from the Spanish Instituto Geográfico Nacional (IGN)
and the Algerian Centre de Recherche en Astronomie, Astrophysique et Geophysique
(CRAAG). It is important to note that in order to maintain the magnitude homogenization,
this process was performed using the same relationships between reported magnitudes and
moment magnitude that were used to generate the initial catalog [7]. The initial recorded
events were described using several scales (surface-wave Ms, body wave mb, body wave
from Lg phase amplitude mbLg and local duration ML magnitudes). The next stage was
to identify and remove any dependent event or non-Poissonian earthquake (foreshocks,
aftershocks and swarms). In the present study, the method of Gardner and Knopoff [70]
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was applied using the particular temporal and spatial window introduced in the initial
catalog [7]. Figure 1b shows the spatial distribution of shallow seismicity for earthquakes
with magnitudes greater than Mw 4.0 using the declustered dataset. Figure 1c, on the other
hand, shows the distribution of focal mechanism solutions and seismicity with magnitudes
greater than Mw 4.0.

Finally, the completeness of this catalog is performed at the base of a visual ap-
proach [71] in order to evaluate the threshold magnitude of the earthquake data file.
Following previous studies [7,72], this approach is applied to our data above different
magnitude values: if the cumulative annual number of earthquakes over this magnitude
is approximately linear, then the seismic catalog is complete and Poissonian for a given
threshold magnitude during a specific period of time. The cumulative number of events
with a magnitude above Mw 4.0, 4.5, 5.0, 5.5, 6.0 and 6.5 is depicted in Figure 2. It shows
that magnitudes above Mw 4.0 and 4.5 appear roughly complete and Poissonian since 1920
and 1910, with rates of 7.7 and 4.2 events/year, respectively. However, approximately since
1870 and 1885, with rates of 2.1 and 0.81 events/year, magnitudes exceeding Mw 5.5 and
5.0 can be considered complete and Poissonian, respectively. For magnitudes greater than
Mw 6.0 and 6.5, they are likely complete and Poissonian since 1860 and 1700, respectively,
with rates of 0.21 and 0.08 events/year.

Figure 2. Cumulative number of earthquakes above magnitudes Mw 4.0, 4.5, 5.0, 5.5, 6.0 and 6.5 vs.
time (black circles). The straight lines (in red) show linear fits.

3. Methodology Outline

The annual earthquake number series, denoted as {Nk; k ≥ 0}, and the annual maximum
magnitude in Northeastern Algeria that occurred during the period from 1910 to 2019, named
{mk, k ≥ 0}, have been modelled using two different approaches. Initially, a parametric
approach, abbreviated as ARIMA, was based on the Autoregressive Integrated Moving
Average model, and a non-parametric approach was based on the Singular Spectrum Analysis
model, abbreviated as SSA. ARIMA models [73], also known as Box–Jenkins models, are
powerful tools in time series analysis aiming to describe the autocorrelations in the data
and forecast values in the univariate time series that are non-stationaries, which are the time
series with a trend component [74]. Usually, the notation ARIMA (p,d,q) is used, where q is
the parameter of the moving average (MA) model, p is the parameter of the autoregression
(AR) model, and d is the number of the differentiation procedure necessary to ensure the
stationarity in the series. The extensions to ARIMA models are the Seasonal Box–Jenkins
models [75], which support the direct modelling of the seasonal component of the non-
stationaries time series exhibiting both the trend and seasonal fluctuations [74]. For seasonal
series of a given period S, a Seasonal Autoregressive Integrated Moving Average (SARIMA, or
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Seasonal ARIMA) is introduced with the notation SARIMA(p, d, q)× (P, D, Q)S, with P and
Q being the orders of the seasonal autoregressive and seasonal moving average polynomials.

Let (Xt)t≥0 be a time series. The ARIMA(p, d, q) equation model takes the form

Φp(B)�dXt = Θp(B)εt (1)

where εt is the error series representing the white noise of mean 0 and variance σ2
ε , and

�d = (1 − B)d (2)

represents the difference operator of order d, being d, the order of integration required to
achieve the stationarity in the data. The polynomial

Φp(B) = 1 − ϕ1B1 − ϕ2B2 − . . . − ϕpBp (3)

corresponds to the AR term at the pth order and

Φp(B) = 1 − ϕ1B1 − ϕ2B2 − . . . − ϕpBp (4)

is the MA polynomial at the qth order [76].
The first stage in the Box–Jenkins analysis procedure is to ensure that the analyzed series

is stationary; that is, free of trend and seasonal terms. The plot of the autocorrelation (ACF)
and partial autocorrelation functions (PACF) are used to determine the parameters p and q,
which control substantially the model. According to Cowpertwait and Metcalfe [77], for a
second-order stationary time series, the autocovariance function of the lag k is given by

γk = E[(xt − μ)(xt+k − μ)] (5)

noticing that the number of time steps between the variables is known as the lag.
The lag k autocorrelation function (ACF) ρk, is defined as

ρk =
γk
σ2 (6)

being μ and σ2 the mean and the variance of the time series, respectively, where ρ0 = 1. In
general, the partial autocorrelation function (PACF) of stationary time series at lag k is the k-
th coefficient of a fitted AR(k) model; if the underlying process is AR(p), then the coefficients
will be zero for all k > p. It measures the correlation between observations that are separated
by k time units (e.g., xt and xt−k) after removing the effect of any correlation resulting by the
terms at shorter lags (e.g., xt−1, . . . . . . . . . ,xt−k−1). The Akaike information criterion [78]
and the Bayesian information criterion [79], denoted as AIC and BIC, respectively, are used
to select the best model, the one with minimum information criterion values and white
noise error series. According to Fabozzi et al. [80], it is worth noting that the AIC criterion
represents the relationship between the Kullback–Leibler measure [81] and the maximum
likelihood estimation method. The Kullback–Leibler measure is developed to capture the
lost information in the estimation, which means that this measure selects the good model
minimizing the loss of information. Usually, the AIC criterion is given by the equation

AIC = −2logL
(

θ̃
)
+ 2K (7)

where θ is the set of model parameters, L(θ̃) is the likelihood of the candidate model given
the data when evaluated at the maximum likelihood estimate of θ, and K is the number of
the estimated parameters in the candidate model.
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For small samples, the corrected Akaike information criterion, denoted as AICc, should
be used instead of the AIC criterion described previously. The relation giving the AICc is

AICc = −2 logL(θ̃) + 2K +
2K + 1/

N − K − 1 (8)

where N is the number of observations. Hurvich and Tsai [82] define a small sample size
as one that is less than 40. It is noteworthy that, as N increases, the third term in AICc
approaches zero, producing the same result as the AIC criterion.

The Bayesian information criterion [79], denoted as BIC, is another model selection
criterion based on the information theory but set within a Bayesian context. The difference
between the BIC and the AIC criteria is that the former puts a greater penalty for the number
of parameters than the latter. It is computed using the following relation

BIC = −2 logL(θ̃) + KlogN (9)

where the terms are the same as described in the definition of the AIC criterion. As in the
previous criterion, the best model is the one providing the minimum BIC value.

The Single Spectrum Analysis (SSA) model is a time series forecasting method commonly
used to analyze time series with periodic oscillations. The application of the SSA method is
advantageous because it encompasses decomposing a time series into simpler components, such
as a gradually changing trend, oscillations and noise. Various disciplines have implemented the
SSA method, including signal processing [83], nonlinear dynamics [84,85], climate data [86–88],
medical science [89] and mathematical statistics [90]. Furthermore, when combined with neural
networks or other comparable techniques, it is a powerful pre-processing tool for time series
forecasting [91,92]. Decomposition and reconstruction are the two complementary processes
that make up the SSA implementation algorithm.

According to Golyandina and Zhigljavsky [93], we consider a real-valued time series
X = (x1, . . . , xN) with length N (N > 2), satisfying xj �= 0 for at least one j. The first step in
the decomposition stage, named the embedding step, consists in transforming the original
time series into a sequence of L-dimensional vectors, Xi = (xi, . . . , xJ)T, where J = N − L + 1,
and L is the window length. The J-formed vectors are called L-lagged vectors and present
the columns of the trajectory matrix (or L-trajectory matrix) of the series X (L × J) given by

X =

⎛⎜⎜⎜⎝
x1 x2 · · · xJ
x2 x3 · · · xJ+1
...

xL

...
xL+1

. . .
· · ·

...
xN

⎞⎟⎟⎟⎠ (10)

The window length L is obtained through experimentation, and the appropriate L
parameter is determined according to the problem being considered and some preliminary
information from the time series [94]. It is worth noting that there are no general rules for
the determination of this parameter. However, it is advised that for time series exhibiting
seasonality, the window length can be chosen as common multiples of 12 [95].

The second step in this stage, called the singular value decomposition, consists of
performing a singular value decomposition method to the trajectory matrix X. Here, we
will define the matrix S = X.XT, and denote by λ1, λ2, . . . , λL the eigenvalues of S that
are taken in the decreasing order (λ1 ≥ λ2≥ . . . ≥ λL ≥ 0), and by U1, U2, . . . , UL the
orthonormal system corresponding to the eigenvalues of S. Let d = rank (X), which is equal
to max{i, such that λi > 0} and

Vi = XTUi/
√

λi for i = 1, . . . , d (11)

Using this notation, the singular value decomposition of the trajectory matrix X can
be written as

X = X1 + X2 + . . . + Xd (12)

193



Appl. Sci. 2023, 13, 1566

with
Xi =

√
λiUiVT

i (13)

The matrices Xi, called elementary matrices, with the rank equal to one, and the set of
triplets

(√
λi, Ui, Vi

)
are called the ith eigen-triplet of the singular values decomposition.

The second stage of the algorithm implementation corresponding to the reconstruction
stage includes two other steps: the eigentriple grouping and the diagonal averaging steps. The
eigentriple grouping step consists of dividing the elementary matrices Xi (i = 1, . . . , L) into r
groups, 1 ≤ r ≤ d [94]. The resulting matrices are then produced by adding the r eigen-triples
in each group.

Whereas, the diagonal averaging step is based on the reconstruction of the one-
dimensional series of length N, that can be considered as an approximation of the original
series, by applying the diagonal averaging method on the grouped matrices that are re-
sulted in the previous step [93,96].

In order to compare between the different approaches applied, an important conven-
tion is widely used and based on the root mean square error (RMSE) criterion [38,39], which
is calculated by

RMSE =

√√√√ 1
N

N

∑
k=1

(xk − x̂k)
2 (14)

where xk indicates the actual value and x̂k represents the kth forecasted value based on the
previous data. Therefore, the optimum model is the one presenting the smallest RMSE value.

4. Earthquake Magnitude Forecasting

The magnitude forecasting analysis for earthquakes with magnitudes equal to or
greater than Mw 4.0 is implemented in this section using the previously described models.
The data file used in this section includes the main shocks that occurred between 1910 and
2019 in Northeastern Algeria.

Figure 2 shows that the occurrence process during this time period can be approxi-
mated by a Poisson process. In this section, we will focus on two time series that represent
the annual number of earthquakes and the annual maximum magnitudes in this region.

Here, we denote for j = 1, . . . , N by m(k)
j the magnitudes above Mw 4.0 of events

occurred during the k-th year and define mk as the annual maximum magnitude max
0≤j≤N

m(k)
j

during the k-th year, whereas the number of earthquakes during the considered year, the
k-th year, is denoted as Nk.

Figure 3a displays the {Nk; k ≥ 0} and {mk, k ≥ 0} plots covering the considered time
period using a threshold magnitude equal to Mw 4.0. The ARIMA and SSA time series
models are then employed to forecast both the frequency and annual maximum magnitude
of earthquakes using the R-packages [97] RSSA and FORECAST [98,99]. By comparing
the observed and predicted values, it is critical to identify the fitting models [74]. To
increase the accuracy and reduce the rate of uncertainty, we have divided the dataset into
training and testing data. We have identified that between 1910 and 2000, nearly 80% of
the total events in the series {Nk; k ≥ 0} and {mk, k ≥ 0} are included, corresponding to 70
observations. As a result, we estimate that 80% of the data are composed of training data,
while the remaining 20% are events that were recorded between 2001 and 2019.
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Figure 3. (a) Annual number of earthquakes (circles) and maximum annual magnitude (stars) in
the period 1910–2019. (b) Differential time series for annual earthquake number (circles) and for
maximum annual magnitude (stars) in the period 1910–2000.

Figure 3a shows two significate peaks in the {Nk; k ≥ 0} plot that refer to the high
number of earthquakes that occurred between 1960 and 2003, and an important peak in
the {Nk; k ≥ 0} plot corresponding to the biggest earthquakes that occurred in the studied
region during this period.

The stationarity and the normality of the studied series are tested using the Augmented
Dickey Fuller (ADF) [100] and the Shapiro–Wilk (SW) tests [101]. The obtained results are
shown in Table 1. The ADF test indicates the non-stationarity in {Nk; k ≥ 0} and {mk, k ≥ 0}
time series with a p-value greater than 5%, and according to SW test (Table 1), the normality
hypothesis is rejected for both series (p-value less than 5%). Thus, the {Nk; k ≥ 0} and {mk, k ≥ 0}
series are not normally distributed variables with non-stationary behaviour, which means that
these non-parametric methods can be more appropriate for our study.

The stationarity of the data is an important hypothesis in ARIMA modelling. As a
result, the first order differentiated series of {Nk; k ≥ 0} and {mk, k ≥ 0} are computed.
Figure 3b shows the differentiated resultant time series, with the two plots indicating a
clear stationarity in the data. Thus, the integration parameter d is fixed in this study to
1. The p and q parameters of the ARIMA model are determined from the ACF and PACF
plots of the differentiated series of {Nk; k ≥ 0} and {mk, k ≥ 0}, respectively, which are
shown in Figure 4. In the set of candidate ARIMA models, the optimum models for {Nk;
k ≥ 0} and {mk, k ≥ 0} are the ones that minimize the AIC and BIC criteria and have a
normally uncorrelated residual. Hence, according to Table 1, the ARIMA (2,1,1) and ARIMA
(2,1,2) models are the selected ones for {Nk; k ≥ 0} and {mk, k ≥ 0} time series, respectively.
Figure 5 illustrates the residuals analysis of the two models, where Figure 5a shows the
residuals of the selected models. Figure 5b shows the ACF residual plots, indicating that
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the residuals of the two models are uncorrelated. Finally, Figure 5c shows that the residuals
are normally distributed according to the residuals Quantile-Quantile plots (Q-Q plot)
statistical test [102,103].

Table 1. Annual earthquake number and annual maximum magnitude time series stationarity (ADF) and
normality (SW) tests results. ARIMA model selection using the AIC and BIC criterions are also showed.

Series ADF Test SW Test Model AIC BIC

Eartq_Num 0.345 7.21 × 10−7

ARIMA (2,1,2) 4.061 4.255
ARIMA (2,1,1) 3.995 4.175
SARIMA (2,1,2)

(1,0,1)(S=12)
4.068 4.294

Max_Mag 0.063 0.029

ARIMA (2,1,2) 2.169 2.364
ARIMA (2,1,1) 2.191 2.425
SARIMA (2,1,2)

(1,0,1)(S=12)
2.198 2.425

 

 

Figure 4. ACF (circles) and PACF (stars) values (a) for the differential annual earthquake number
and (b) for the differential annual maximum magnitude.
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Figure 5. Residual analysis of the selected ARIMA model for earthquakes number time series (circles)
and for annual maximum magnitudes time series (stars). (a) residuals of the selected models; (b) ACF
residual plots, indicating that the residuals of the two models are uncorrelated; (c) residuals are
normally distributed according to the residuals Quantile-Quantile plots (Q-Q plot).

The second approach considered in our study is based on the SSA method. The first
stage of the SSA method consists of decomposing the {Nk; k ≥ 0} and {mk, k ≥ 0} time series
into principal independent components, which are the trend, the seasonality and the noise.
The second stage consists of reconstructing the original series using only the trend and the
seasonality. Figure 6 indicates that the seasonality and trend components used together
(blue line) describe the observed earthquake number and the annual maximum magnitude
in the studied region better than the trend component alone (red line).

The parameters of the SSA model were empirically chosen based on a visual pre-
sentation and clear separability of the main independent components. According to Has-
sani [104], a window length less than half of the sample size is considered adequate.
According to Golyandina et al. [94], for seasonal time series, this parameter must be a
common multiple of the seasonality period. Several window lengths (12, 24 and 36 sam-
ples) were thus evaluated to select the best one, which has been chosen using the RMSE
criterion. The reconstruction stage parameter (see Section 3), denoted r, is determined
using the eigenvalues plot of the {Nk; k ≥ 0} and {mk, k ≥ 0} series presented in Figure 7,
where the slow decrease in these plots suggests the beginning of the noise component.
Then, according to Figure 7, two components are used both in the reconstruction process of
the {Nk; k ≥ 0} series and in the reconstruction of the {mk, k ≥ 0} series. These results can be
confirmed using the w-correlation matrices shown in Figure 8. The w-correlation matrices
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indicate that the first three components are uncorrelated in the {Nk; k ≥ 0} series (Figure 8a),
and two components in the {mk, k ≥ 0} series (Figure 8b). Therefore, from the w-correlation
matrices, the reconstruction parameter is fixed to 3 and 2 for the {Nk; k ≥ 0} and {mk, k ≥ 0}
time series, respectively.

 

Figure 6. Fit of the recorded annual number and the annual maximum earthquake magnitude (grey
line) by the seasonality and trend components combined (blue line) and by the trend component
alone (red line).

 
Figure 7. Eigenvalues plots of the first 12 components for the annual earthquake number series
(circles) and for the annual maximum magnitudes series (stars).
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(a) 

(b) 

Figure 8. W-correlation matrix plots for the first 12 components of the earthquake number series (a)
and the annual maximum magnitude series (b).

The first group is composed of solely the first component, which is uncorrelated to the
other components. Because the second and third components are highly correlated, the
pair (2,3) forms the second group. After linking the components from 4 to 8, it is shown
that the fourth component has a correlation with the fifth, sixth and eighth components. In
addition, the sixth component has a high correlation with the seventh component. Thus,
the pairs (4,5) and (6,7), as well as the eighth component, configure the last group.

Therefore, the rest of components in {Nk; k ≥ 0} series correspond to the noise. For
{mk, k ≥ 0} series, according to the w-correlation matrix in Figure 8b, two groups can be
used in the reconstruction of the original series. The first group consists of mainly the first
component, whereas the second group consists of Components 2–8 and Component 12,
which are all correlated with one another. As a result, all of the other components form the
noise in the {mk, k ≥ 0} series. It is worth noting that the first component in both matrices
that is uncorrelated with the other component corresponds to the trend component in both
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series. Therefore, the reconstruction parameters in this case are fixed to 3 and 2 for the {Nk;
k ≥ 0} and {mk, k ≥ 0} time series, respectively.

Table 2 presents the RMSE value of the candidate SSA models for the studied series.
According to the results given in Table 2, the best SSA models for {Nk; k ≥ 0} and {mk, k ≥ 0}
are the SSA (24,3) and SSA (12,2) models, respectively. Figure 9 depicts the independent
main component extracted from the {Nk; k ≥ 0} (a) and {mk, k ≥ 0} (b) series, representing
the trend, seasonality and noise components.

Table 2. The SSA chosen model based on the RMSE of the analyzed time series.

Series Model RMSE

Earthq_Num
SSA (12,2) 3.847
SSA (24,3) 3.048
SSA (36,2) 3.426

Max_Mag
SSA (12,2) 0.314
SSA (24,2) 0.365
SSA (36,2) 0.395

Finally, the RMSE value is used to compare the different approaches. Table 3 displays
the RMSE values of the ARIMA and SSA models for the {Nk; k ≥ 0} and {mk, k ≥ 0} time
series, with the smaller RMSE value indicating the better model.

Table 3. Best model selected based on the RMSE value for the two considered time series.

Series
ARIMA (p,d,q)

RMSE
SSA (L,r)

RMSE

Earthq_Num (2,1,1)
3.317

(24,3)
3.048

Max_Mag (2,1,2)
0.374

(12,2)
0.314

As a result, the SSA (24,3) and SSA (12,2) models are the best ones for describing the
number of earthquakes and the maximum magnitude series, respectively. Table 4 also
shows the forecasted values from 2020 to 2030 using the selected SSA models. Finally,
Figure 10 depicts the original (grey dashed line) and forecasted (red dashed line) series,
where a stationary behavior can be observed in both time series from 2020 to 2030.

Table 4. Forecasted annual earthquake number and annual maximum magnitude time series from
2020 to 2030 from the selected SSA model.

Years
Series

Earthq_Num Max_Mag

2020 5 4.9
2021 6 5.1
2022 5 4.8
2023 5 4.9
2024 5 5.1
2025 4 5.0
2026 5 4.9
2027 6 5.0
2028 4 5.1
2029 4 5.0
2030 5 5.1
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(a) 

 
(b) 

Figure 9. Trend, seasonality and noise components for the annual earthquake number (a) and
maximum annual magnitude (b) series.
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Figure 10. Observed and forecasted (in red) values for the number of earthquakes (top) and the
annual maximum magnitude (bottom) using the SSA model.

5. Validation of the Procedure

After a certain earthquake forecast method has been developed using training data
and set up by best fit on real data, and before any practical implementation, it must be
validated [105].

The SSA method is used to perform forecasting analysis of the earthquake data file
from 1910 to 2015, with the purpose of generating forecast values and comparing them
to observed values from 2016 to 2019. As previously stated, the time series are divided
into two sets, the first of which includes 80% of the data used as training data [74] and
encompasses the years 1910 to 1997, while the remaining 20% covers the years 1998 to 2015,
considered as testing data.

The stationarity and the normality of the studied series in the considered training
period are tested again using the ADF and the SW tests. The derived ADF values are
0.34 and 0.077 for the annual earthquake number and maximum magnitude, respectively,
whereas the obtained SW values are 2.0 × 10−7 and 0.035 for the two investigated series,
respectively. The ADF test results for the two series are higher than 5%, showing that the
two series are non-stationary during the training period. Moreover, the two series are not
normally distributed and exhibit a non-stationary behaviour as a result of the computed
SW values. Therefore, as proceeded initially, and in order to achieve the stationarity in the
data, the differentiated series of {Nk; k ≥ 0} and {mk, k ≥ 0} are computed.

Considering the d parameter of the ARIMA model equal to 1, the ACF and PACF
functions of the resultant series are used to select the p and q parameters. Thus, ARIMA
(2,1,2) and ARIMA (2,1,3) are the model-candidates for the time series {Nk; k ≥ 0}, and
ARIMA (2,1,2) and ARIMA (3,1,2) for the time series {mk, k ≥ 0}, derived during the training
period 1910–1997. Analyzing the annual earthquake number series, AIC values equal to
3.99 and 4.00 are obtained for the ARIMA (2,1,2) and ARIMA (2,1,3) models, respectively,
whereas BIC values equal to 4.20 and 4.24 are obtained for the same model candidates,
respectively. In addition, analyzing the annual maximum magnitude time series, the
obtained AIC values are equal to 2.21 and 2.23 for the ARIMA (2,1,2) and ARIMA (3,1,2)
models, respectively. For the same model-candidates, the BIC values are equal to 2.41 and
2.16. Thus, on the base of AIC and BIC criteria, the ARIMA (2,1,2) model is considered the
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best one to describe the annual earthquake number and the annual maximum magnitude
during the training period.

The parameters of the SSA model are then obtained, as previously proceeded, by
testing several window lengths (12, 24 and 36 samples). The best model is also derived
using the RMSE criterion. Analyzing the annual earthquake number time series, the lower
RMSE value equal to 3.62 is derived for the model SSA (24,2), whereas for the models SSA
(12, 2) and SSA (36,2), the values are equal to 4.40 and 3.89, respectively. Concerning the
annual maximum magnitude time series, the lower RMSE is derived for the model SSA
(36,2), whereas for the models SSA (12,2) and SSA (36,2), the values are equal to 0.379 and
0.375, respectively. Finally, for the two considered time series, SSA (24,2) is considered the
best model.

Then, using the previously described procedure, the chosen models ARIMA (2,1,2)
and SSA (24,2) are used to forecast the annual number of earthquakes and the annual
maximum magnitude from 2016 to 2019. Uncommonly, no events with magnitudes greater
than Mw 4.0 occurred in the studied region in 2018, whereas two events with magnitudes
greater than Mw 4.0 occurred in 2016, 2017 and 2019. Then, the period from 2016–2019
appears as a low seismicity epoch. That being the case, the forecasted values using the
model ARIMA (2,1,2) are greater than real ones. In 2016 and 2019, about four events were
predicted, and three events were predicted in 2017.

On the other hand, values found using the SSA (24,2) model are of the order of 3 for each
year, and hence closer to the observed values. Regarding the annual maximum magnitude,
similar values are obtained using the ARIMA (2,1,2) and SSA (24,2) models, of the order of
Mw 5.0 for 2016, 2017 and 2019. These forecasted values are in agreement with the observed
ones, which are equal to Mw 5.0, 4.5 and 4.7 for 2016, 2017 and 2019, respectively.

Thus, clearly the SSA (24,2) model makes it possible to find realistic results corroborat-
ing the observed data.

A statistical test is used to assess the consistency of the results obtained using the SSA
algorithm in the period from 2016 to 2019. According to Schorlemmer et al. [19], to take into
account the uncertainty, the likelihood test, named L-test, can be conducted by simulating
the observed events. In the current study, we focus on the statistical N-test [42], which
consists to test the rate forecast. The N-test is intended to measure, in a probabilistic manner,
how the forecasted number of events will match the observed number of earthquakes.

Then, the N-test [19,42,106] is implemented. The N-test takes into account two linked
quantile scores, δ1 and δ2, reflecting whether the produced sequences produced forecasted
event numbers Nfore that were higher or lower than the observed values Nobs, as given in
the equations

δ1 = 1 − P
(
(Nobs − 1)

∣∣∣Nf ore

)
(15)

δ2 = P
(

Nobs

∣∣∣Nf ore

)
(16)

bearing in mind that P(ω|λ) = λω

ω! exp(−λ).
The quantity δ1 is the probability of observing at least Nobs, and δ2 is the probability of

observing at most Nobs. Both the overall forecast rate and observed number of events are
assumed to be Poissonian and described by Nfore and Nobs, respectively. The quantity δ2
describes the right-continuous Poisson cumulative distribution with the expectation Nfore
at corresponding Nobs at the times evaluated. This score describes the fraction of forecast
expectations smaller than the observed events. The probability that more than Nobs events
are forecasted is given by (1 − δ2). The problem with this approach is addressed in [42].
Instead, the δ1 probability was added in addition to the original N-test to describe at least
Nobs, in which the user only needs to be concerned about low probability values [19,42].

The quantile scores in this statistical N-test assess if the number of forecasted occur-
rences is inconsistent with Nobs. A small δ1 indicates that the forecast underestimates the
observed sequence, whereas a small δ2 suggests that the forecast overestimates the number
of occurrences. The forecast can thus be rejected if the probabilities of δ1 and δ2 are less than
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the effective significance level [42]. The effective significance threshold for the one-sided
N-tests was set at 2.5% to coincide with a single quantile score, which corresponds to a 5%
error rate for the test [42,107].

Table 5 presents the obtained results, the observed Nobs and the forecasted number
of earthquakes Nfore, and the quantile scores δ1 and δ2. The N-test performance can be
interpreted by observing whether the quantile scores δ1 and δ2 fall the region between 0.025
and 1. In Figure 11, we can observe that high δ1 scores tend to correspond to low δ2 scores.

Table 5. Observed and forecasted earthquake number using the selected SSA model quantile score δ1

and δ2.

Year N Observed N Forecasted N-Test δ1 N-Test δ2

2016 2 3.0 0.8506 0.2240
2017 2 3.2 0.8705 0.2079
2018 0 3.5 1 0.0302
2019 2 3.4 0.8865 0.1929

 
Figure 11. N-test values for (a) δ1 index and (b) δ2 index.

6. Discussion and Conclusions

The SSA technique is a well-known and effective time series analysis tool. On the
studied earthquake magnitude time series, the forecasting capabilities of the SSA method
were evaluated and compared with those of the standard ARIMA one, which is recognized
to have a more suitable structure for forecasting.

The results of this study show that the SSA technique could be effectively applied as
an algorithm for forecasting earthquake number and sizes.

According to Abacha et al. [61], the seismicity in the studied area is continuous and
moderate. Several swarm sequences occurred in the recent past, showing intense activity
with low magnitudes and limited time. An analysis of the series covering the years 1910
to 2015 is performed in order to validate the method employed in the current study by
forecasting for the years 2016 to 2019. The forecasting values agree very well with the
observed events both for the frequency and the annual maximum magnitude. Moreover,
according to the recent recorded seismicity in the studied area, the forecasted magnitudes
computed in the current study agree very well with the recorded seismicity during the
years 2020 and 2021. The recorded magnitude events during these two years are lower
than the maximum forecasted magnitudes, equal to 4.9 and 5.1, respectively. These results
should to be considered as the maximum magnitude that is not exceeded.
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The SSA model successfully modelled the considered data file and provided an ac-
curate forecast of future earthquake magnitudes. Furthermore, the SSA model’s trend
component is a clear deterministic component for estimating earthquake magnitude.

The N-test was employed in this study to assess the consistency between the observa-
tion and forecasting in terms of the total number of events. The results were given in terms
of quantile scores δ1 and δ2. According to the results, the test is passed, which validates the
suggested model.

The results also show that, while significant parts of the variability in those seismolog-
ical time series do not appear to have an adequate time structure to be forecasted, the key
components may still be identified and forecasted using the SSA model.

It is worth noting that the data file used in this study, which spans the years 1910 to
the end of 2019, including events with magnitudes greater than Mw 4.0, could be modelled
by an inhomogeneous Poisson process with a variable activity rate (Figure 2). A future
study could forecast the number of earthquakes using such an inhomogeneous Poisson
process, while the annual maximum magnitude could also be forecasted using, for instance,
the extreme probability statistics [25]. An issue that appears to be a weakness of these
procedures, and deserves special attention in the future, is the assessment of uncertainties
of the forecasted values.
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Abstract: A high-pass cut-off frequency in filtering is critical to processing strong-motion records.
The various processing procedures available nowadays are based on their own needs and are not
universal. Regardless of the methods, a visual inspection of the filtered acceleration integration to
displacement is required to determine if the selected filter passband is appropriate. A better method
is to use a traversal search combined with visual inspection to determine the cut-off frequency,
which is the traditional method. However, this method is inefficient and unsuitable for processing
massive strong-motion records. In this study, convolutional neural networks (CNNs) were used to
replace visual inspection to achieve the automatic judgment of the reasonableness of the filtered
displacement time series. This paper chose the pre-trained deep neural network (DNN) models
VGG19, ResNet50, InceptionV3, and InceptionResNetV2 for transfer learning, which are only trained
in the fully connected layer or in all network layers. The effect of adding probability constraints on
the results when predicting categories was analyzed as well. The results obtained through the VGG19
model, in which all network layers are trained and probability constraints are added to the prediction,
have the lowest errors compared to the other models. The coefficient of determination (R2), root
mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE)
are 0.82, 0.038, 0.026, and 2.99%, respectively.

Keywords: cut-off frequency of high-pass filtering of strong-motion records; transfer learning;
convolutional neural networks (CNNs)

1. Introduction

Strong-motion records provide important primary data for scientific research and
engineering practice in earthquake engineering. Strong-motion records usually need to be
processed scientifically and reasonably to obtain correct analysis results. Data processing is
indispensable in many research subjects such as site effect analysis [1–3], studies on the
attenuation relation of ground motion [4–7], structural design and seismic performance as-
sessment [8,9], and seismic resilience assessment [10,11]. In structural dynamic time history
analysis, appropriate natural ground motion input can effectively reduce the uncertainty
in the analysis results [12,13]. However, slight baseline drift and noise in strong-motion-
acceleration records will lead to significant shifts in velocity and displacement time history,
which do not correspond with the physical meaning of practical earthquake events and are
not appropriate for engineering input and research analysis. Therefore, it is necessary to
carry out proper strong-motion records processing in earthquake engineering research.

Various methods have been proposed worldwide to process strong-motion records.
The data processing method presented by the NGA strong-motion database [14,15] is
firstly to remove the instrument response and zero-line offset from the acceleration time
series and then to reduce the noise interference by filtering. The processing flow of the
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Reference database for seismic ground-motion in Europe (RESORCE) [16] is: (i) the zero-
line adjustment of the acceleration time series; (ii) filtering via a fourth-order non-causal
filter; (iii) polynomially fitting the baseline of the displacement time series; (iv) subtract-
ing the second derivative of the baseline with the filtered acceleration. For the Chilean
strong-motion database [17], the trigger type of all records is determined, and different
methods are applied for the normal trigger and post-trigger records to taper strong-motion
records before calculating the Fourier Amplitude Spectrum (FAS). The subsequent filtering
process is similar to RESORCE. The data processing method proposed by the European
Strong Motion Engineering Database (ESM) [18] and the Italian Strong Motion Database
(ITACA) [19] is similar to the one described above. However, the zero-line correction, the
taper length, the filter order, and other parameters are different, and post-processing after
obtaining the filtered acceleration time series is added.

In the above processing of strong-motion records, the effects of noise are all removed by
filtering, in which the high-pass and low-pass cut-off frequencies are essential parameters.
For the Internet Site for European Strong-Motion Data (ISESD) [20], two constant values
(0.25 Hz and 25 Hz) are used as high-pass and low-pass cut-off frequencies in band-pass
filtering. In the NGA strong-motion database [14], the high-pass cut-off frequency is
determined by visually examining the FAS and the integrated displacements, while the
high-pass and low-pass cut-off frequencies are both determined via the visual inspection
of FAS in the ESM [18] and ITACA [19]. Furthermore, in RESORCE [16], the high-pass
cut-off frequency is selected by referring to the theoretical corner frequencies of the double-
corner source spectrum [21], and the low-pass cut-off frequency is determined based on
the recommendations of Douglas et al. [22]. In addition, the signal-to-noise ratio (SNR) can
also be used to calculate the high-pass and low-pass cut-off frequencies. In the Chilean
strong-motion database [17], the high-pass cut-off frequency is determined by limiting the
SNR to be greater than 3.0, while the Nyquist frequency is selected as the low-pass cut-off
frequency. The high-pass and low-pass cut-off frequencies were determined by limiting
the SNR to be greater than 3 by Parker et al. [23]. Bahrampouri et al. [24] determined
the high-pass cut-off frequency by limiting the SNR to be greater than 2, and choosing
the low-pass cut-off frequency requires an SNR to be greater than 1. Edwards et al. [25]
used the point at which the linear trend of the recorded FAS decays more slowly than the
theoretical spectrum [26] to define the high-pass cut-off frequency. An SNR equal to 3 was
taken as the lower limit of the low-pass cut-off frequency. A better method is to filter by
using a high-pass cut-off frequency from small to large and to determine the rationality
and accuracy of the selected high-pass cut-off frequency by visually inspecting the effect of
integral displacement after filtering.

Unfortunately, low-frequency noise sometimes cannot be effectively and accurately
filtered using the method above of determining the filter passband of strong-motion records.
At present, a better way to ensure a high-pass cut-off frequency is to determine the ra-
tionality and accuracy of the selected cut-off frequency by visually inspecting the effect
of the integral displacement after filtering, which is the traditional method [27]. If the
mean value at the end of the filtered displacement time series is close to zero and the fitted
straight line at the end of the range remains horizontal, the time series curve is considered
qualified. A new filtered passband must be selected for filtering if it is not considered
qualified. However, the efficiency of the traditional method is extremely low, and it is not
suitable for processing massive strong-motion records. It is necessary to visually inspect
the integral displacement after filtering to determine whether the results are acceptable.

According to Xie [28] and Zhou [29], the low-pass cut-off frequency has little effect
on the baseline offset of displacement time series for strong-motion records. The low-pass
cut-off frequency in this paper is taken as 35 Hz (where the sampling frequency is 100 Hz)
or 20 Hz (where the sampling frequency is 50 Hz). Generally, in the traditional method,
people must subjectively inspect the acceptability of the filtering result by classifying the
integral displacement time series curve into qualified or unqualified. However, there is
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no uniform classification standard in traditional artificial identification for the integral
displacement time series qualification.

Computer vision has been applied to image classification with uniform criteria and a
faster speed. Convolutional neural networks (CNNs) that can automatically extract higher-
dimensional features of data can significantly improve the accuracy of computer vision
tasks [30,31]. However, deep neural networks (DNNs) [32] are slower to converge due to
their large number of parameters. Transfer learning [33] enables the model to converge
quickly by fine-tuning the pre-trained weights of the model. In this way, pre-trained
network models can be better adapted to new data sets to achieve higher performance and
reduce training time.

In this paper, to address the shortcomings of the traditional method, deep CNNs were
used to replace visual inspection to achieve the automatic judgment of the reasonableness
of a filtered displacement time series in processing massive strong-motion records. The
pre-trained neural network models VGG19 [34], ResNet50 [35], InceptionV3 [36], and Incep-
tionResNetV2 [37] were adopted for transfer learning to classify the filtered displacement
time series as qualified or unqualified. The classification performance of the models that
only train the fully connected layer was compared with the models in which all layers are
trained. Moreover, the model with higher classification performance was applied to the
traversal search of the high-pass cut-off frequency. Finally, the high-pass cut-off frequencies
determined using traditional methods were used as accurate values, and four metrics
widely used in past investigations (i.e., the coefficient of determination, root mean square
error, mean absolute error, and mean absolute percentage error) were used to evaluate
the results obtained using each model. The effect of adding a probability constraint to the
predictive classification for the final results was also compared and analyzed.

2. Database

Raw ground motion records, supplied by the Center for Engineering Strong Motion
Data (CESMD) [38], were adopted in this work. A total of 4461 raw records in V1c format
were selected for this paper. The traditional method was applied to these raw records to
obtain the appropriate high-pass cut-off frequency for each record.

2.1. Traditional Method

The procession of the traditional method to determine the high-pass cut-off fre-
quency of strong-motion records is shown in Figure 1, which consists of four crucial
steps, as follows:

Figure 1. The process of obtaining the high-pass cut-off frequency (fHP is the high-pass
cut-off frequency).
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Step 1: The baseline correction of raw records. The method used here is to remove the
first-order function fitted by the record.

Step 2: The selection of the appropriate high-pass cut-off frequency for filtering to
remove the low-frequency noise, starting from 0.01 Hz and increasing the high-pass cut-off
frequency with every step of 0.01 Hz.

Step 3: The integration of filtered acceleration time series into velocity and displace-
ment time series.

Step 4: The artificial identification of displacement time series curves that are qualified;
if they are not, skip to step 2; if they are qualified, output the cut-off frequency.

2.2. Data Pre-Processing

Yao et al. [39] showed that the causal filtering method does not produce interference
signals in the noise segment before the seismic signal arrives, while acausal filtering causes
interference vibration before the signal arrives. Moreover, the order of the filter is an
important factor for filtering, and a higher-order filter will lead to more oscillation at both
ends of the filtered record [40]. Therefore, the fourth-order Butterworth causal filter, a
widely used filter [14,16,17,24,29], was used in this paper. The traditional method was used
to find the high-pass cut-off frequencies of 4461 records, and 3065 records could only obtain
qualified displacement time series curves only through band-pass filtering. Observing
the processed records from CESMD showed that the cut-off frequencies were selected
in a “one-size-fits-all” manner, i.e., the same cut-off frequency was adopted for all three
components of the same record (Figure 2a). However, the velocity and displacement time
series curves obtained in this way appeared to be qualified but may have had too much
valid information filtered out, because the noise affecting the three components of the
same record was not necessarily the same. Therefore, it was essential to find the high-pass
cut-off frequency for every record. The high-pass cut-off frequencies corresponding to the
3065 records obtained using the traditional method were taken as the accurate values. The
scatter plot of these values is shown in Figure 2b.

Figure 2. The high-pass cut-off frequency for each record. (a) CESMD; (b) traditional method.

The partial acceleration, velocity, and displacement time series curves of record
AKBAW–n.0212o88mof.BNE after filtering with different high-pass cut-off frequencies
are shown in Figure 3. It was observed that the displacement time series curves obtained
via filtering with the value before the accurate value as the cut-off frequency were all
unqualified, and the ones after that were all qualified.
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Figure 3. Cont.
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Figure 3. The post-filtering time series curve of record AKBAW–n.0212o88mof.BNE (d) and sub-
sequent images are considered qualified, where figure f is the filtered time series curve using the
frequency given by CESMD). (a) 0.01 Hz; (b) 0.05 Hz; (c) 0.10 Hz; (d) 0.12 Hz; (e) 0.17 Hz; (f) 0.30 Hz.

For each strong-motion record, up to six filtered displacement time series curves were
selected for the purpose of building the database. These included three unqualified curves
and three qualified curves. The three qualified displacement curves were obtained by
filtering using the accurate value and two frequency values after it as the high-pass cut-off
frequency. There was little difference between the displacement curves after filtering with
two adjacent frequencies. The unqualified displacement curves were obtained by filtering
with 0.01 Hz, 0.03 Hz, and 0.05 Hz as high-pass cut-off frequencies. The exact value of
some records did not reach 0.05 Hz, so the frequency value of the unqualified time series
curve was only 0.01 Hz and 0.03 Hz. A total of 8866 unqualified displacement curves and
9195 qualified displacement curves were obtained through the above method. Ultimately,
18,061 displacement curves were used as the dataset. Additionally, 80% of the data were
input into the CNN as the training set, and the test and validation set was 10%; the dataset
was divided randomly.

The zero line was used as a reference in the artificial identification of the drift of the
displacement curve, and to facilitate machine differentiation, the zero line was represented
by a solid red line. To avoid the influence of axes and legends on model training, all graphs
were cropped so that the CNN could only see the displacement curve. To meet the input
requirement of the networks in this paper, the image was resized to 224 × 224 × 3. The
result of the image resizing is shown in Figure 4.
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Figure 4. The processing of displacement diagram. (a) Unqualified displacement time series curve;
(b) qualified displacement time series curve.

3. Deep Neural Networks (DNNs)

In the classification of data, convolutional neural networks (CNNs) are widely used.
However, it is difficult to extract high-dimensional abstract data features in a CNN with
simple architecture, and this leads to under-fitting problems. In order to achieve more
effective data character extraction and classification, a more complex network model is
needed. Complex network structures often have a large number of parameters, and the
model takes a long time to converge. Therefore, model-based transfer learning [33] was
adopted in this study to solve the above problems. Previous research [41] has shown
that trained models can be adapted to other datasets or tasks by simply fine-tuning them.
Fine-tuning allows the pre-trained parameters of the model to fit the new dataset better,
which can improve classification performance and save training time.

3.1. Transfer Learning Model

In this paper, the VGG19 [34], ResNet50 [35], InceptionV3 [36] and InceptionRes-
NetV2 [37] pre-trained network models were adopted for transfer learning, and the cor-
responding network architectures are shown in Figure 5. The parameter information
regarding these models is shown in Table 1. It can be seen that the VGG19 network model
has a minor depth but the most significant number of parameters. There are two large fully
connected layers (4096 neurons) after the backbone model. Resnet50 has a global average
pooling layer which dramatically reduces the size of output from the model. On the other
hand, the InceptionV3 and InceptionResNetV2 models reduce the number of parameters in
the model by using parallel modules and concatenating small convolutions instead of large
convolutions and using a global average pooling layer.
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Figure 5. Architectures of typical deep neural networks. (a) VGG19; (b) ResNet50; (c) InceptionV3;
(d) InceptionResNetV2.

Table 1. The parameter information regarding network models.

Model Size (MB) Depth
Number of
Parameters (Million)

VGG19 [34] 549 26 144
ResNet50 [35] 98 168 25.6
InceptionV3 [36] 92 159 23.9
InceptionResNetV2 [37] 215 572 55.9

3.2. Training and Evaluation Methods

In this paper, the training of the network model was divided into two parts. On
the one hand, only the fully connected layers were trained, and the weights of all the
other layers were frozen. On the other hand, all the network layers were unfrozen, and
the parameters of all the network layers were fine-tuned. Additionally, all the models
were trained for 50 epochs. Furthermore, Python 3.8 [42] with Tensorflow 2.8 [43] and
Keras 2.8 [44] deep learning frameworks were used as the training environment. Adam [45]
optimizer was used to improve the accuracy of the model. Binary cross-entropy was used
as the loss function (Equation (1)). The cross-entropy function is widely used in deep
learning classification, which is based on maximum likelihood estimation to fit a model.
It minimizes the distance between two probability distributions (predicted and actual).
Combined with the activation function in the output layer (such as sigmoid or softmax), it
can accelerate the training of deep learning models faster via logarithmic operations.
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Additionally, the evaluation metric Per f [46] (Equation (2)) was selected to compare
the performance of different models, and both training and validation performance were
considered in the method.

Loss = − 1
N

N

∑
i=1

yi × log(p(yi)) + (1 − yi)× log(1 − p(yi)) (1)

Per f = μtrain × acctrain
losstrain

+ μvaild × accvalid
lossvalid

(2)

where N is the total number of samples, yi is the binary label 0 or 1, and p(yi) is the
probability of the output yi label. μtrain and μvaild are the weights of the training and
validation results, respectively; the values are 0.1 and 0.9, respectively. The acctrain and
losstrain are the accuracy and loss of the training results, and accvalid and lossvalid are the
accuracy and loss of the validation results. Here, the mean value of the last 10 epochs
is presented.

3.3. Training and Evaluation Results

Figure 6 presents the detailed training process for the four network models. The solid
and dashed lines are the training and validation results, respectively. Frozen denotes the
models in which only the fully connected layers are trained, and unfrozen indicates the
models in which all layers are trained. As shown in Figure 6, among the network models
that only train fully connected layers, only the VGG19 model has higher accuracy and
lower loss on the training and test sets. On the contrary, the remaining three models have
relatively high losses and significantly lower and not converged accuracies. As the depth
of the model increases, the accuracy of the model gets lower, and the loss gets higher and
higher, indicating that the weights of other network layers except the fully connected layer
are frozen so that the powerful feature extraction ability of the deep neural network has not
been exerted. For the models in which all the network layers are trained, all four models
achieve high accuracy in training and validation results, and the losses are close to zero
and converge in the end. These results indicate that no overfitting occurred.

Figure 6. Detailed training process for deep neural networks. (a) Training and validation accuracies
(frozen); (b) training and validation losses (frozen); (c) training and validation accuracies (unfrozen);
(d) training and validation losses (unfrozen).
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The performance of each model was evaluated using Equation (2), and the results are
presented in Table 2. For the displacement curve classification problem in this paper, the
Per f of InceptionV3-frozen, ResNet50-frozen, and InceptionResNetV2-frozen is close to 0,
which is not suitable for this paper. However, the Per f of VGG19-frozen and the model
with all the network layers trained is higher, with the InceptionResNetV2-unfrozen model
reaching 40.43, and they are more suitable for the dichotomous classification problem in
this paper.

Table 2. Performance evaluation of deep transfer neural networks.

DNN
VGG19–
Frozen

VGG19–
Unfrozen

InceptionV3–
Frozen

InceptionV3–
Unfrozen

ResNet50–
Frozen

ResNet50–
Unfrozen

InceptionResNetV2–
Frozen

InceptionResNetV2–
Unfrozen

acctrain 0.979 0.998 0.770 0.999 0.768 0.999 0.670 0.999
accvalid 0.980 0.997 0.801 0.997 0.801 0.997 0.682 0.998
losstrain 0.061 0.008 4.804 0.004 42.364 0.004 212.492 0.003
lossvalid 0.052 0.010 3.356 0.011 30.580 0.009 214.860 0.009
Per f 3.479 23.04 0.043 37.40 0.004 36.07 0.000 40.43

3.4. Test Results

Finally, the test set was tested using the network model with the lowest loss and
highest accuracies among the 50 epochs. The accuracy of various models was evaluated
using confusion matrices, and the corresponding results are shown in Figure 7. Categories
0 and 1 represent the unqualified and qualified displacement time curves, respectively. The
diagonal elements of the matrix represent the number of samples with the correct predicted
class, and the other pieces represent the number of samples with the incorrectly predicted
class. The third column of the third row of the matrix is the ratio of correctly classified
samples to the total number of samples, which is the accuracy rate.

Figure 7. Confusion matrix of test set, where green and yellow represent the number of correctly
classified samples with labels of 0 and 1, respectively. (a) VGG19–frozen; (b) ResNet50–frozen;
(c) InceptionV3–frozen; (d) InceptionResNetV2–frozen; (e) VGG19–unfrozen; (f) ResNet50–unfrozen;
(g) InceptionV3–unfrozen; (h) InceptionResNetV2–unfrozen.

As shown in Figure 7, the test results remained consistent with those in Table 2, and
the InceptionResNetV2–unfrozen model performed the best with an overall accuracy of
96.9%. The five models that performed better had relatively high classification accuracies
for qualified displacement curve images, with a maximum of 99.2%. For all the models,
misclassifying unqualified displacement curve pictures as qualified was an essential factor
affecting the overall accuracy.
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In summary, among all the network models that only train the fully connected layer,
the VGG19 network model has the best performance in the validation and testing process.
Models with all the network layers trained can achieve good classification results. Therefore,
in the following work of this paper, the VGG19–frozen model and the four models that
train all the layers were chosen to identify whether the displacement curve was qualified.

4. Application of the Trained Network Models

In this section, the trained DNN models were used to identify whether the filtered
displacement time curve was qualified. The artificial recognition of the displacement curve
in the traditional method is replaced by a CNN, which saves a lot of time and improves
work efficiency.

4.1. Filtering Results

In the filtering process of this paper, after filtering, the displacement curve changed
from unqualified to qualified. When approaching the reasonable filtering frequency ob-
tained using the traditional method, there was no significant difference in the displacement
curve picture, so it would be judged as qualified prematurely. The conventional data binary
classification problem considers that as long as the prediction probability is greater than
50%, it is considered to belong to the class. In order to avoid premature judgment as
qualified, stricter criteria should be adopted. Therefore, probability restrictions were added
to determine whether the filtered displacement curve was qualified using the deep network
model. Only when a higher probability is judged to be qualified can it be considered
qualified and not be the traditional 50%. After comparison, this paper argued that more
than 99.9% of the probability being considered qualified is appropriate. Figures 8 and 9
show the relationship between the high-pass cut-off frequency obtained by considering
the probability and not considering the probability and the high-pass cut-off frequency
obtained by using the traditional method when judging whether the displacement after
filtering is qualified.

Figure 8. The high-pass cut-off frequency was obtained using a model that only trains the fully
connected layer (unit: Hz). (a) The VGG19 when not considering probability; (b) the VGG19 when
considering probability.

As seen from Figures 8 and 9, almost all of these scatter points were distributed below
the black line, indicating that the values obtained using the method in this paper were
generally smaller than those obtained using the traditional method, and the unqualified
displacement curve was prematurely judged as qualified. The black line here was y = x; if
two values were equal, they were distributed on the black line.
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Figure 9. The high-pass cut-off frequency obtained by training the model of all layers (unit: Hz).
(a,c,e,g) are the results of VGG19, ResNet50, InceptionV3, and InceptionResNetV2 when probabilities
are not considered, respectively; (b,d,f,h) are the results of VGG19, ResNet50, InceptionV3, and
InceptionResNetV2, respectively, when considering the probability.
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4.2. Analysis of Filtering Results

To evaluate the accuracy of the high-pass cut-off frequencies obtained with different
models, four error functions (Equations (3)–(6)) were applied to analyze the errors concern-
ing the values obtained using the traditional method. The coefficient of determination R2 is
widely used in regression problems to estimate the degree of linear correlation between
the true value and the predicted value. The closer R2 is to 1, the better the performance of
the model. The RMSE is used to measure the deviation between the predicted value and
the true value. The MAE reflects the actual situation of the prediction error. The MAPE is
the ratio of the prediction error to the true value. The closer these three values are to zero,
the higher the performance of the model. The results of the calculations related to the four
statistical parameters for each model are presented in Table 3.

R2 = 1 −

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(yi − y)2

(3)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (4)

MAE =
1
n

n

∑
i=1

|ŷi − yi| (5)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (6)

where y and ŷ are the high-pass cut-off frequencies obtained using the traditional method
and the high-pass cut-off frequency obtained using the method of this paper, respectively,
n represents the number of data samples, and y denotes the mean value of y.

Table 3. Analysis of results.

Model
Considering
Probability?

R2 RMSE MAE MAPE (%)

VGG19–frozen
Yes 0.64 0.054 0.035 21.03
No 0.57 0.059 0.040 25.34

VGG19–unfrozen
Yes 0.82 0.038 0.026 2.99
No 0.65 0.052 0.038 24.53

ResNet50–unfrozen
Yes 0.74 0.046 0.031 18.54
No 0.68 0.050 0.035 21.63

InceptionV3–unfrozen Yes 0.68 0.051 0.034 20.43
No 0.59 0.057 0.039 24.40

InceptionResNetV2–unfrozen Yes 0.69 0.050 0.034 20.49
No 0.63 0.055 0.039 24.02

According to the analysis results in Table 3, using a CNN instead of artificial iden-
tification to judge whether a filtered displacement curve is qualified and thus obtain a
high-pass cut-off frequency of strong-motion records can be satisfactory. The coefficient of
determination R2 reached a maximum of 0.82 and a minimum of 0.57. The RMSE ranged
from a minimum of 0.038 to a maximum of 0.059. The MAE ranged from a minimum of
0.026 to a maximum of 0.040. The MAPE ranged from a maximum of 25.34% to a minimum
of 2.99%. In comparison, the VGG19–unfrozen model considering probabilities was used
to achieve the highest accuracy.

It can be concluded that the probability limit added to the prediction classification
of the model enhanced its performance. R2 was improved by an average of 14.41%, of
which VGG19–unfrozen had the most improvement at 26.15%. The RMSE, MAE, and
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MAPE were reduced by 12.6%, 16.23%, and 30.01% on average. Among them, the three
parameters of VGG19–unfrozen were reduced the most by 26.92%, 31.58%, and 87.81%. The
performance of the VGG19–unfrozen model was most significantly improved by adding
probabilistic restrictions.

4.3. Comparison to Results of the SNR Method

As described in the introduction, the SNR method is widely used in obtaining high-
pass cut-off frequencies of strong-motion records [17,23–26]. This section compares the
high-pass cut-off frequencies obtained via the traditional method in this paper with those
obtained using the SNR method. The method proposed by Bahrampouri et al. [24] was
used to obtain a high pass cut-off frequency, and this paper used an SNR greater than 3.
The strong-motion record before the arrival of the P-wave was used as a noise window
(Figure 10). The P-wave arrival pickup algorithm proposed by Ma et al. [47] was used
here. The FAS of strong-motion records and noise was smoothed (the Konno–Ohmachi
method [48]), and the smoothed noise FAS was linearly scaled by 4 times (the green
dotted line in Figure 11). The point where the zoomed noise smoothing FAS intersects
the ground motion smoothing FAS was considered the high-pass cut-off frequency (in-
dicated by an arrow in Figure 11). The choice of a scaling factor equal to four ((signal +
noise)/noise) implied an SNR equal to three as the criterion for the choice of the high-pass
cut-off frequency.

Figure 10. An example of recorded ground motion and noise (AKBAW–n.0212o88mof.BNE).

Figure 11. Illustrative plot for selecting filter corner frequencies.

Figure 12 shows the displacement curves for filtering at high-pass cut-off frequencies
obtained using the traditional method, the method of this paper, and the SNR method,
respectively. For this record, there was a significant drift in the filtered displacement
curve using the high-pass cut-off frequency based on the SNR method, indicating that the
high-pass cut-off frequency used was inappropriate.
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Figure 12. Displacement curves after filtering using different cut-off frequencies.

Then, 300 records were randomly selected from the strong-motion database in this pa-
per, and the high-pass cut-off frequencies obtained using the traditional and SNR methods
were compared. Records without intersections (at 0–1 Hz range, as shown in Figure 13)
between noise smoothing FAS and record smoothing FAS were removed, and 184 records
could be obtained with high-pass cut-off frequencies via the SNR method. Figure 14 shows
the high-pass cut-off frequencies obtained via the SNR method for 184 records.

Figure 13. FAS of fHP cannot be obtained via SNR method (AKPWL–n.1000hyfh.HNN.–.V1c).

Figure 14. The obtained high-pass cut-off frequency (unit: Hz). (a) SNR method
(b) Proposed method.

It can be seen from Figure 14 that the high-pass cut-off frequency obtained via the
SNR method was generally smaller than that obtained using the traditional method. This
indicates that the displacement time series curves obtained by filtering the high-pass cut-off
frequency obtained using the SNR method were mostly unqualified. In contrast, most of
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the displacement time series curves obtained via filtering with high-pass cut-off frequency
obtained using this paper’s method were qualified.

5. Conclusions

This paper studied the rationality of using DNNs instead of artificially judging the
displacement curve after filtering strong-motion records. The classification performances of
the VGG19, ResNet50, InceptionV3, and InceptionResNetV2 deep transfer neural networks
only training the fully connected layer and training all the layers were compared and
analyzed. The trained model was then applied to high-pass cut-off frequency traverse
searching. Additionally, a probability limit of 99.9% was added to the model’s classification
of the qualified displacement time series. The accuracy of the high-pass cut-off frequency
obtained was analyzed by using the high-pass cut-off frequency obtained via the traditional
method as the accurate value. Finally, the high-pass cut-off frequencies using the SNR
method were also obtained and compared with the results of the proposed method.

The main conclusions are as follows:

1. Among the network models that only train the fully connected layer, only the VGG19
model could achieve satisfactory classification performance. In contrast, the rest of
the models had higher losses, and the accuracies did not converge. All the trained
models of all the network layers could achieve satisfactory classification performance,
among which, InceptionResNetV2 had the highest performance with 99.9% and 99.8%
accuracy in the training and validation sets, respectively, and 0.003 and 0.009 loss,
respectively. The overall accuracy of the test set in the confusion matrix was 96.9%.

2. Considering probability when predicting categories can improve the classification
performance of the model. R2 increased by 14.41% on average, and the RMSE, MAE,
and MAPE decreased by 12.6%, 16.23%, and 30.01% on average, respectively.

3. The VGG19 model with all the network layers being trained and the addition of
probabilistic restrictions in predicting the category was more suitable for the high-
pass cut-off frequency automatic search problem of strong-motion records in this
paper. The results obtained using this model had the highest R2 of 0.82 and the lowest
RMSE, MAE, and MAPE of 0.038, 0.026, and 2.99%, respectively.

4. The high-pass cut-off frequency obtained using the SNR method was generally smaller
than the accurate value. This also inspires authors to use this frequency instead of
0.01 Hz as the starting frequency in the search for high-pass cut-off frequencies to
improve efficiency.
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recordings in the 2016 Kaikōura earthquake sequence. Bull. Seismol. Soc. Am. 2018, 108, 1757–1773. [CrossRef]

3. Sandhu, M.; Sharma, B.; Mittal, H.; Chingtham, P. Analysis of the Site Effects in the North East Region of India Using the Recorded
Strong Ground Motions from Moderate Earthquakes. J. Earthq. Eng. 2022, 26, 1480–1499. [CrossRef]

4. Wen, R.; Xu, P.; Wang, H.; Ren, Y. Single-Station Standard Deviation Using Strong-Motion Data from Sichuan Region, China. Bull.
Seismol. Soc. Am. 2018, 108, 2237–2247. [CrossRef]

5. Shoushtari, A.V.; Adnan, A.B.; Zare, M. On the selection of ground–motion attenuation relations for seismic hazard assessment
of the Peninsular Malaysia region due to distant Sumatran subduction intraslab earthquakes. Soil Dyn. Earthq. Eng. 2016,
82, 123–137. [CrossRef]

6. Guo, D.; He, C.; Xu, C.; Hamada, M. Analysis of the relations between slope failure distribution and seismic ground motion
during the 2008 Wenchuan earthquake. Soil Dyn. Earthq. Eng. 2015, 72, 99–107. [CrossRef]

7. Si, H.; Midorikawa, S.; Kishida, T. Development of NGA-Sub ground-motion prediction equation of 5%-damped pseudo-spectral
acceleration based on database of subduction earthquakes in Japan. Earthq. Spectra 2022, 38, 2682–2706. [CrossRef]

8. Wen, R.; Ji, K.; Ren, Y. Review on selection of strong ground motion input for structural time-history dynamic analysis. Earthq.
Eng. Eng. Dyn. 2019, 39, 1–18. [CrossRef]

9. Ren, Y.; Yin, J.; Wen, R.; Ji, K. The impact of ground motion inputs on the uncertainty of structural collapse fragility. Eng. Mech.
2020, 37, 115–125. [CrossRef]

10. Aroquipa, H.; Hurtado, A. Seismic resilience assessment of buildings: A simplified methodological approach through conventional
seismic risk assessment. Int. J. Disaster Risk Reduct. 2022, 77, 103047. [CrossRef]

11. Narjabadifam, P.; Hoseinpour, R.; Noori, M.; Altabey, W. Practical seismic resilience evaluation and crisis management planning
through GIS-based vulnerability assessment of buildings. Earthq. Eng. Eng. Vib. 2021, 20, 25–37. [CrossRef]

12. Wang, W.; Ji, K.; Wen, R.; Ren, Y.; Yin, J. Impact of strong ground motion’s process procedure on the structural nonlinear
time-history analysis. Eng. Mech. 2020, 37, 42–52+62. [CrossRef]

13. Ji, K. Strong Ground Motion Selection for Multiple Levels of Seismic Fortification Demand in China. Doctor Thesis, Institute of
Engineering Mechanics, China Earthquake Administration, Harbin, China, 2018.

14. Chiou, B.; Darragh, R.; Gregor, N.; Silva, W. NGA Project Strong-Motion Database. Earthq. Spectra 2019, 24, 23–44. [CrossRef]
15. PEER. PEER Ground Motion Database. Available online: https://ngawest2.berkeley.edu/ (accessed on 25 December 2017).
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Abstract: Geotechnical investigation plays an indispensable role in site characterization and provides
necessary data for various construction projects. However, geotechnical measurements are time-
consuming, point-based, and invasive. Non-destructive geophysical measurements (seismic wave
velocity) can complement geotechnical measurements to save project money and time. However,
correlations between geotechnical and seismic wave velocity are crucial in order to maximize the
benefit of geophysical information. In this work, artificial neural networks (ANNs) models are
developed to forecast geotechnical parameters from seismic wave velocity. Specifically, published
seismic wave velocity, liquid limit, plastic limit, water content, and dry density from field and
laboratory measurements are used to develop ANN models. Due to the small number of data, models
are developed with and without the validation step in order to use more data for training. The
results indicate that the performance of the models is improved by using more data for training. For
example, predicting seismic wave velocity using more data for training improves the R2 value from
0.50 to 0.78 and reduces the ASE from 0.0174 to 0.0075, and MARE from 30.75 to 18.53. The benefit of
adding velocity as an input parameter for predicting water content and dry density is assessed by
comparing models with and without velocity. Models incorporating the velocity information show
better predictability in most cases. For example, predicting water content using field data including
the velocity improves the R2 from 0.75 to 0.85 and reduces the ASE from 0.0087 to 0.0051, and MARE
from 10.68 to 7.78. A comparison indicates that ANN models outperformed multilinear regression
models. For example, predicting seismic wave velocity using field plus lab data has an ANN derived
R2 value that is 81.39% higher than regression model.

Keywords: field measurement; laboratory measurement; multilinear regression analysis; artificial
neural networks

1. Introduction

Seismic wave velocity is a practical, non-destructive, non-invasive, cost-effective mea-
surement related to the inherent mechanical properties of geomaterials [1]. However,
seismic wave velocity is not used directly in most designs of engineering structures. Devel-
oping correlations between seismic wave velocity and different engineering soil properties
could facilitate the use of seismic information for designing engineering structures.

Researchers have extensively studied the correlation between seismic wave velocity
and different soil properties. Dikmen developed correlations between shear wave velocity
(Vs) and uncorrected Standard Penetration Test (SPT-N) values for sandy, silty, and clayey
soils [2]. It was shown that SPT-N and shear wave velocity were strongly correlated but
the type of soil had no significant effect on the estimation of Vs. Gautam established corre-
lations between shear wave velocity and uncorrected standard penetration resistance [3].
This study used 500 measurements on various sand and silt soils. The coefficient of de-
termination for silty and sandy soils was relatively low in comparison to using all soils
together. He also compared his results with existing correlations from the literature and
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showed significant similarities with existing correlations. Hasancebi developed correla-
tions between shear wave velocity and penetration resistance for sandy, clayey, and all
soil (i.e., sandy and clay) using regression analysis [4]. Correlations between shear wave
velocity and SPT-N were found to be significant. For sandy soil, the R-value was 0.65, for
clayey soil the R-value was 0.75, and the combined data had an R-value of 0.73. Hasancebi
also concluded that the blow count was a significant parameter for the correlation, but
the soil type had no significant influence. A good correlation was established between
S-wave velocity and the degradation factor (GPMT/Go), where GPMT is intermediate strain
shear modulus from the PMT and Go is low strain modulus from S-wave velocity. How-
ever, the correlations between SPT-N and field measured S-wave velocity and P-wave
velocity were poor. Correlations were also developed between shear wave velocity and
cone penetration resistance. Mayne and Rix worked on field clay soil and found empirical
correlations between shear wave velocity (Vs) and cone penetration tip resistance (qc) [5].
An increasing trend in shear wave velocities with cone penetration resistance was observed
with consistency from soft to stiff to hard clay materials. Log regression analysis returned a
coefficient of regression of 0.736. Inazaki established correlations between S-wave velocity
and SPT-N, bulk density, solidities as the complement of porosity, and mean grain size
of surficial unconsolidated sediments [6]. S-wave velocities were measured in boreholes
using the PS suspension logging tool. The results showed that it is possible to express
N-values in terms of S-wave when N-value data have good accuracy. The correlation
between S-wave velocities and solidities was good but was dependent on lithofacies and
depositional age. The data also showed a good relationship between S-wave velocity and
density but a weak relation between S-wave velocity and mean grain size. Even though
most of the researchers found good correlations between S-wave velocity and N-values,
studies by some researchers could not find out good correlations between S-wave velocity
and N-values. A large number of researchers worked on developing correlation between
shear wave velocity and SPT-N [7–21].

Some other researchers attempted to develop correlation between seismic wave veloc-
ity and other geotechnical parameters. Evans worked with sand and clay soils to establish
correlations between geophysical and geotechnical parameters [22]. Seismic refraction
surveys were performed to collect S-wave and P-wave velocities. Pressure Meter Test
(PMT), SPT, Atterberg limit tests, and dry unit weight data were also collected from the
Salt River Project (SRP) [23,24]. Heureux and Long developed correlations between S-wave
velocity, cone penetration parameters, undrained shear strength, and 1-D compression
parameters for Norwegian clay [25]. Data used for this research was collected from 29 sites;
in south-eastern and mid-Norway. Regression analyses were performed to establish the
correlation between in situ S-wave velocity (Vs) and cone net resistance (qnet), collected
from the cone penetration test. The coefficient of determination R2 was 0.73. The undrained
shear strength values obtained from direct shear tests were correlated with Vs. with a
regression coefficient (R2) of 0.91. Their analysis also showed a good correlation between
pre-consolidation stress (Pc

’) and Vs with an R2 value of 0.81. Johora developed ANN
models to predict geotechnical parameters from S-wave and P-wave velocity separately
using laboratory data for compacted clay and sandy clay soil [26]. The results indicated
that P-wave velocity and S-wave velocity were more sensitive to dry density and void
ratio than to saturation and water content. The performance of the ANN models to predict
geotechnical parameters from soil mix proportion and either P-wave or S-wave velocity
was better when multiple geotechnical parameters were predicted at a time. Empirical
correlations were developed by Imai et al. between index properties and seismic veloc-
ities [27]. Foti and Lancellotta used velocity data published by Hunter and showed the
dependency of porosity with S-wave and P-wave velocity [28,29]. Alshameri and Madun
showed a direct positive linear correlation exists between seismic wave velocity and co-
hesion and shear strength for compacted sand-kaolin mixtures. They also attempted to
establish correlation between seismic wave velocity and friction angle but found that it is
insignificant [30]. Duan et al. developed correlations between shear wave velocity with
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vertical effective stress, unit weight, preconsolidation stress and undrained shear strength
for clay type soil [31].

ANN is gaining popularity as a problem-solving tool in the field of civil engineering.
Researchers are using ANN to predict concrete compressive strength [32–34], ultrasonic
pulse velocity [35], slump of concrete [36–38]. Zeh showed the application of ANN to
assess the nonlinear behavior of steel structures [39]. ANN was used to forecast flexure
and initial stiffness of beam column joints [40]. In geotechnical engineering ANN was used
to study slope stability [41], pile analysis [42,43], developing correlation between ER and
geotechnical parameters [44], analysis of liquefaction potential [45,46]. In transportation
engineering researchers applied ANN to develop transportation systems [47].

ANN can solve complex problems, but the performance depends on the size and
accuracy of the data set. Using a big data set can help to train the network efficiently.
In many fields big data sets are not always easily available. Researchers are working
on developing ANN models using small data sets. Pasini described a particular neural
network tool which is capable of handling small data sets and its application to a specific
case study [48]. Feng et al. used deep neural network to predict material defects using
small data set [49].

Literature contains a good number of correlations between seismic wave velocity and
blow counts. There are fewer correlations with other important geotechnical parameters,
such as water content, dry density, cohesion, angle of friction, saturation, void ratio,
etc. More study is necessary to establish the correlation between seismic wave velocity
and different types of geotechnical parameters. Many of the existing studies employ
conventional regression methods to develop the correlations between geotechnical and
seismic wave velocity, even though ANN was used in many fields of civil engineering In
this study, multi regression analysis and the ANNs approach were used to develop the
relationships between seismic wave velocity and geotechnical parameters or, conversely,
to predict geotechnical parameters from seismic wave velocity and other geotechnical
parameters using data from the literature. The performance of the ANN and regression
analysis was compared. Two different ANN approaches with and without validations were
also discussed to handle the small size data set.

2. Seismic Wave Velocity

Soil allows for the propagation of different types of seismic waves. Waves that deform
the material through shear are referred to as shear waves, and those that produce volumetric
deformations are referred to as compressional waves. These are often referred to as S-wave
and P-wave, respectively. Seismic wave velocity is related to the maximum shear modulus,
bulk modulus, Young’s modulus, bulk density, and Poisson’s ratio of the soil [50].

The longitudinal P-wave and the transverse S-wave velocity in an infinite elastic
continuum are related to the elastic properties by

Vp =

√
M
ρ

=

√
B + 4

3 G
ρ

P-waves (1)

Vs =

√
G
ρ

S-waves (2)

where M (Pa) is the constraint modulus, B (Pa) is the bulk modulus, G (Pa) is the shear
modulus, and ρ (kg/m3) is the mass density of the medium. Hence, the propagation
velocity increases with the material stiffness and decreases with its mass density (inertia).
Velocity of S-waves is always smaller than the velocity of P-waves [50].
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For fluid-filled porous media, the effective bulk modulus is provided by Gassmann [50].

Beff = BSK +

(
1 − BSK

Bg

)2

ϕ
Bf
+ 1−ϕ

Bg
− BSK

B2
g

(3)

where BSK (Pa) is the bulk modulus of the skeleton, Bg (Pa) is the bulk modulus of the
grains, Bf (Pa) is the bulk modulus of the fluid phase, andϕ is the porosity. In the Gassmann
model, the shear modulus of the soil, Geff, (Pa) remains unaffected by the presence of the
fluid at low excitation frequencies:

Geff = GSK. (4)

For partially saturated soils, the mass density of the mixture ρmix, changes due to the
different densities of the saturating fluids. By ignoring granular effects, fluid substitution
can be used to modify the expression for the effective bulk modulus of the soil. For soil
with water saturation of Sw, the fluid bulk modulus in Equation (5) given by

1
Bf

=
Sw

Bw
+

1 − Sw

Ba
(5)

where Bw (Pa) is the bulk modulus of the liquid phase and Ba (Pa) is the bulk modulus of
the air phase. Small volumes of air produce a large decrease in the modulus of the fluid
phase. However, under dynamic loading, differences in inertia, shear stiffness, and bulk
compressibility can add further complexity to the analysis.

Seismic wave propagation in granular soil materials is more complicated due to the
complex behavior of the solid skeleton and the influence of capillary forces. The skeletons
BSK and GSK depend on the “strength” of the grain contacts and are therefore dependent
upon the applied effective stress. The concept of effective stress for soils at low saturation
is still an area of active research because internal forces associated with capillary forces
and electrical forces at the grain surface play an important role [50]. That is why empirical
relationships are often necessary to predict seismic wave propagation in the partially
saturated particulate medium.

There are numerous methods for measuring seismic wave velocity in the field and the
laboratory. In the laboratory, the “time of flight” approach is common. A seismic wave is
generated using a source in contact with one end of the sample, the disturbance passes
through the soil and is detected by a receiver at the opposite end of the sample. Velocity is
calculated by dividing the distance (sample length) by the measured travel time. The soil
samples usually consist of remolded soil or a field sample with some degree of disturbance.
The frequency of the seismic wave is usually in the 10–100 kHz range. Field measurements
of seismic velocity can be performed using surface surveys such as refraction surveys or
surface wave analysis. These approaches mitigate the problem of soil disturbance since
no samples are required. However, they are less repeatable and have larger uncertainty
in measure values. The frequency of the seismic wave is in the 10 Hz to several 100 Hz
ranges. It should be noted that field-measured seismic velocities are usually lower than
laboratory-measured velocities.

3. Data Collections

This study uses data from a report on seismic wave velocity (P wave) published
by the Engineering Research Institute of Iowa State University, Ames, Iowa [51]. Field
measurement of seismic wave velocity was conducted on highway embankments. The
embankments were constructed with three types of soil namely, clay loam, silty clay (two
weathering variations, gray and brown), and silty loam. For laboratory measurements,
samples were collected from the side slope of the highway embankment adjacent to the field
measurement location. One additional soil type was used for the laboratory measurements
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defined as loess. The types of soils investigated, and their liquid limit and plasticity index
are shown in Table 1.

Table 1. Type of soil used for the tests.

Soil Type Liquid Limit Plasticity Index

Clay loam 23 9
Silty clay (gray) 30 13

Silty clay (brown) 40 18
Silty loam 32 6

Loess 32 6

Micro-seismic refraction tests were conducted at 34 different locations to measure
seismic velocities in the field. The equipment consists of three components: an impact
source, a receiving transducer, and a seismic timer. A model 217 Micro-Seismic Timer and a
transducer were used for these micro-seismic refraction tests. A tack hammer was used as
the impact source on a 5/8-inch diameter steel ball-bearing to transmit the energy into the
ground. Seismic measurements were taken along a 2 ft line by moving the receiver in 3-in
intervals. A total of 10 first-arrival measurements were collected at each station. The seismic
wave velocities were calculated from slope of the distance-time plots. At the midpoint of
the seismic line, a standard rubber balloon volumetric density measurement and an in situ
water content measurement were performed [52]. The range of values associated with the
field measurements is listed in Table 2.

Table 2. Parameters and ranges.

Type of Data Parameters
Ranges

Max Min

General
Plasticity Index 21.87 2.03

LL (%) 45.43 17.39

Field
Dry density (kg/m3) 2240.58 1465.69

Water content (%) 18 3.87
Velocity (m/s) 1128.99 67.12

Lab
Dry density (kg/m3) 2240.58 1465.69

Water content (%) 20.53 4.74
Velocity (m/s) 1675.07 57.48

Field plus Lab
Dry density (kg/m3) 2246.59 1484.71

Water content (%) 20.96 3.13
Velocity (m/s) 1705.07 7.23

In the laboratory, 35 different soils samples were compacted in 4-inch diameter by
4.58 inch high molds. Standard and modified AASHO compaction tests procedures were
followed to prepare the samples. Water content, dry density of all the samples (total 35)
were determined in lab. Liquid limit (LL), plasticity index (total 5 samples) were determined
on for the different soil types. Seismic velocities were measured on all samples (total 35)
using the pulse-transmission method.

4. Artificial Neural Networks Approach

During the past few years, artificial neural networks (ANNs) based modeling has been
gaining popularity in the field of geotechnical engineering [53]. ANNs can learn complex
nonlinear relationships between parameters from many data [54]. The methodology of
ANN is based on the human brain activity of processing data. Much like the human brain,
ANN has a large number of interconnected cells called neurons [55]. There are connection
links between the neurons to transfer signals from one neuron to the other. ANN consists
of three different layers (i.e., input layer, hidden layers, and output layer). Information
is passed from the input layer through hidden layers to the output layer. The hidden
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layers process the received signals from the input layer then transmit the information to
the output layer. The output layer receives the processed information from the hidden
layer and executes the outputs. ANN is capable of learning highly complex relationships
which are difficult to solve by traditional computational techniques. The performance of an
ANN model depends on the quality and the size of the database. Erroneous and too small
databases affect the accuracy of the model performance. ANN can be of different types,
i.e., feed-forward neural networks, recurrent networks, and stochastic neural networks
depending on the number of layers, the activation function and training algorithm [55].
The vital part of ANNs approach is the activation function, which introduces nonlinearity
to the network to solve complex problems. Examples of different activation functions that
can be used are linear, binary step, sigmoidal, and hyperbolic tangent sigmoid.

5. ANN Model Development

The architecture of an ANN model is determined based on the characteristics of
the problem and knowledge of ANN. In this study, the feed-forward back propagation
technique is used, and the nonlinear sigmoid function is chosen as the activation function.
ANN models are usually developed following four different steps. In the first step, a
database is divided into three different classes namely training, testing, and validation.
Training sets include around 50% of the total data and are selected randomly, including
minimum and maximum values of the input data. Testing and validation sets are also
selected randomly and contain about 25% of the data in each set. In the second step, the
optimum number of hidden nodes and iteration of the network is determined by training
and testing the network. The three best-performing networks are chosen based on their
statistics for comparison. In the third step, the three best networks are validated using a
validation data set. For the final step, the selected three networks are re-trained using all
the data to increase the prediction accuracy on the network structure that was determined
in the previous step. The performance of the selected three networks is evaluated based on
Mean Absolute Relative Error (MARE), Coefficient of Determination (R2), and normalized
Average Squared Error (ASE) and calculated using the following equations.

MARE =
∑N

i=1(

∣∣∣ XP
i − XA

i

∣∣∣)/XA
i

N
∗ 100 (6)

R2 = 1 −
∑N

i=1

(
XA

i − Xp
i

)2

∑N
i=1

(
XA

i − Xi

)2 (7)

ASE =
∑N

i=1

(
XA

i − Xp
i

)2

N
(8)

where, XA
i = Actual value, XP

i = Predicted value, Xi = Mean of XA
i , N = Total number of data.

6. ANN Models

ANN models are developed to predict seismic wave velocity, water content, and dry
density using the data from the lab and field experiments. Separate ANN models are
developed using lab data, field data, and lab and field data combined. Since the number
of data is limited, two different ANN approaches are used for predicting seismic wave
velocity. The first approach is the typical approach, where the data is used for training,
testing, and validation. Around 50% of data is used for training, 25% for testing, and 25%
for validation. In the second approach, the validation stage is excluded so that 75% data
is used for training and 25% for testing. The parameters used for developing models are
shown in Table 2, along with their ranges.
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6.1. ANN Models for Predicting Seismic Wave Velocity

Six different models are developed to predict seismic wave velocity. Models are using
lab data, field data and both lab and field data together following the two approaches, with
validation and without validation. Correlation matrix analysis was used before selecting
the input and output parameters for prediction model development.

The best three networks selected based on the statistical measures and optimal hidden
nodes to predict seismic velocity using field data from LL, plasticity index, water content,
and dry density are presented in Table 3. The best model is the model which has lower
the ASE, MARE and higher the R2. The statistics show that ASE, MARE and R2 of all
three networks are very close to each other in training, testing, and all-trained. From these
three networks, network 4_ (4_4_3100) _1 (where network structure is denoted as input_
(initial hidden nodes_final hidden nodes_iteration) _output) is chosen as the best model
depending on the best statistics in testing. The predicted versus actual graph is shown
in Figure 1a. The statistics and predicted versus actual graph indicate that the accuracy
of predicting velocity is marginal. The best model for predicting velocity using field data
without the validation stage is network 4_ (2_4_2900) _1. The predicted versus actual graph
for network 4_ (2_4_2900) _1 is shown in Figure 1b. The statistics are presented in Table 4.
The accuracy of predicting velocity is increased after omitting validation, but the overall
performance is still marginal.

Table 3. Statistical accuracy measures of model for predicting seismic wave velocity using field data,
with validation).

Model Architecture 4_ (1_1_2100) _1 4_ (2_2_2100) _1 4_ (4_4_3100) _1

Training
ASE 0.0151 0.0152 0.0152

MARE 19.61 19.87 19.75
R2 0.30 0.30 0.30

Testing
ASE 0.0122 0.0121 0.0121

MARE 21.72 21.70 21.56
R2 0.26 0.28 0.27

Validation
ASE 0.0153 0.0149 0.0147

MARE 18.54 18.63 18.49
R2 0.25 0.28 0.29
All

ASE 0.0132 0.0132 0.0133
MARE 18.87 19.01 19.04

R2 0.34 0.34 0.34

The best model using lab data to predict velocity is network 4_ (2_2_200) _1. The
statistics in Table 4 and predicted versus actual graph shown in Figure 1c indicate that the
accuracy of the velocity prediction is good. The best model to predict velocity without
validation is network 4_ (1_5_100) _1. The predicted versus actual graph shown in Figure 1d
and the statistics presented in Table 4 indicate that the accuracy of the velocity predictions
is good. Again, excluding the validation helps to slightly minimize the errors and increases
the R2 values. The results also show that the errors are much lower, and the R2 values are
much higher for the networks trained using lab data in comparison to the network trained
using field data.
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(c) (d) 

 
(e) (f) 

Figure 1. Graphical prediction accuracy of model for predicting seismic wave velocity, (a) field, with
validation, (b) field, without validation, (c) lab, with validation, (d) lab, without validation, (e) field
plus lab, with validation, (f) field plus lab, without validation.
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Table 4. Comparing ANN models (predicting seismic wave velocity).

Source of Data Model Model Structure ASE MARE R2

Field
with

validation 4_ (4_4_3100) _1 0.0133 19.04 0.34

without
validation 4_ (2_4_2900) _1 0.0128 19.34 0.37

Lab
with

validation 4_ (2_2_200) _1 0.0079 14.86 0.71

without
validation 4_ (1_5_100) _1 0.0058 13.33 0.80

Field plus Lab
with

validation 4_ (1_2_2900) _1 0.0174 30.75 0.50

without
validation 4_ (5_10_20000) _1 0.0075 18.53 0.78

The best model using field and lab data together to predict the seismic wave velocity is
network 4_ (1_2_2900). The statistics are shown in Table 4. and the predicted versus actual
graphs for the best network shown in Figure 1e. indicates that the accuracy is marginal.
The ASE and MARE are higher after combining lab and field data in comparison to the
models trained with lab and field data separately. The R2 values are improve. The model
developed without the validation stage is network 4_ (5_10_20000) _1 The statistics are
shown in Table 4. and the predicted versus actual graphs for the best network shown in
Figure 1f. indicates that the accuracy is good This model has significantly smaller errors
and increased R2 values compared to the model with validation.

In summary, of the results in Table 4 indicates that developing models without the
validation stage in order to have more data for training results in slightly better models.
The errors are lower and the R2 values are higher for the network trained using lab data
than using field data. The models using field data and lab data together perform in between
models based solely on lab data or field data.

6.2. ANN Models for Predicting Water Content

Water content is an important index property of soil. The amount of water gives an
indication of grading of soil and porosity. Soil compaction and strength is highly affected
by water content. ANN models are developed to predict water content using lab and field
data independently and in combination. Based on the previous models for velocity this
analysis is developed without validation. Models are developed with and without velocity
as input to evaluate if velocity helps in predicting water content. The statistics for the six
different models are presented in Table 5.

Table 5. Comparing ANN models (predicting water content).

Source of Data Model Model Structure ASE MARE R2

Field
without
velocity 3_ (2_3_1000) _1 0.0087 10.68 0.75

with velocity 4_ (1_5_100) _1 0.0051 7.78 0.85

Lab
without
velocity 3_ (4_4_100) _1 0.0051 7.69 0.82

with velocity 4_ (3_3_100) _1 0.0043 6.63 0.89

Field plus Lab
without
velocity 3_ (5_12_100) _1 0.006 10.69 0.74

with velocity 4_ (3_3_1000) _1 0.0083 11.61 0.67

The best model to predict water content from LL, plasticity index, and dry density
using field data is Network 3_ (2_3_1000) _1. The predicted versus actual graph for the
best network is shown in Figure 2a indicates that the accuracy of predicting water content
is good. Predicting water content from field data by including seismic wave velocity
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into the input parameters is Network 4_ (1_5_100). The predicted versus actual graph is
shown in Figure 2b and the statistics indicate better accuracy in predicting water content.
So, the results indicate that including seismic wave velocity improves the prediction of
water content.

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 2. Graphical prediction accuracy of model for predicting moisture content, (a) field, without
velocity, (b) field, with velocity, (c) lab, without velocity, (d) lab, with velocity, (e) field plus lab,
without velocity, (f) field plus lab, with velocity.

Using lab data to predict water content from LL, plasticity index, and dry density is
best for network 3_ (3_3_100) _1 The predicted versus actual graphs are shown in Figure 2c
and statistics indicate that the accuracy of predicting moisture content is higher than the
model derived from field data. Adding the velocity as additional input to traditional lab
data results in network 4_ (3_3_100) _1 with even better accuracy. The predicted versus
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actual graph for this network is shown in Figure 2d and the statistics shown in Table 5
indicate this is the best model for predicting moisture content. In summary, the models
for predicting moisture content are better using laboratory data than field data and the
addition of seismic velocity information enhances the models

Combining lab and field data to develop ANN models to predict water content reduces
the performance of the models. Network 3_ (5_12_100) _1 is the best network without the
velocity. The predicted versus actual graph, is shown in Figure 2e. The statistics indicate
that the errors are higher and the R2 values are lower for the network built using field data
and lab data together in comparison to the network built using lab data and field data
separately. So combining field and lab data together lowers the performance of the model.
The predicted versus actual graph for the best network 4_ (3_3_100) _1 including seismic
wave velocity into the input parameters is shown in Figure 2f. Contrary to the previous
models, based on solely lab or field data, the addition of velocity as input causes the ASE,
MARE to increase and the R2 to decrease. In summary, models for predicting water content
are more accurate when using lab data than field data. Combining the data results in much
poorer models. The addition of velocity as an input to either the lab or field data results
in more accurate models. Adding velocity as in input to the combined lab and field data
results in poorer models.

6.3. ANN Models for Predicting Dry Density

Soil dry density is used to determine the degree of compaction. The maximum dry
density is very important to increase the soil ability to support the structure and to avoid
excessive settlements. ANN models are developed to predict dry density using lab and
field data independently and in combination. Based on the previous models for velocity
this analysis is developed without validation. Models are developed with and without
velocity as input to evaluate if velocity helps in predicting dry density. The statistics for the
six different models are presented in Table 6.

Table 6. Comparing ANN models (predicting dry density).

Source of Data Model Model Structure ASE MARE R2

Field
without
velocity 3_ (4_4_2000) _1 0.0068 2.90 0.80

with velocity 4_ (3_5_100) _1 0.0032 1.81 0.91

Lab
without
velocity 3_ (4_4_500) _1 0.0051 2.42 0.86

with velocity 4_ (4_4_100) _1 0.0056 2.52 0.85

Field plus Lab
without
velocity 3_ (3_11_19800) _1 0.0087 2.94 0.75

with velocity 4_ (9_9_400) _1 0.0077 3.00 0.78

The best model to predict dry density from LL, plasticity index and water content
using field data is Network 3_ (4_4_2000) _1. The predicted versus actual graph for the
best network shown in Figure 3a indicates that the accuracy of predicting dry density is
good. The best ANN model developed to predict dry density with the same number of
classified data and ranges but including seismic wave velocity into the input parameters
is network 4_ (3_5_100) _1. The predicted versus actual graph is shown in Figure 3b and
the statistics indicate better accuracy in predicting dry density So, the results indicate that
including seismic wave velocity improves the prediction of dry density. The best network
using lab data to predict dry density from LL, plasticity index, and dry density is network
3_ (4_4_500) _1. The predicted versus actual graphs are shown in Figure 3c and statistics
indicate that the accuracy of predicting dry density is lower than the model derived from
similar field data. Adding the velocity as additional input to traditional lab data results in
network 4_ (4_4_100) _1.
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Figure 3. Graphical prediction accuracy of model for predicting dry density, (a) field, without
velocity, (b) field, with velocity, (c) lab, without velocity, (d) lab, with velocity, (e) field plus lab,
without velocity, (f) field plus lab, with velocity.

The predicted versus actual graph for this network is shown in Figure 3d and the
statistics shown in Table 6 indicate the addition of velocity in the lab data did not help to
improve the results.

The models for predicting dry density are better using field data than laboratory data.
This is in contrast to the results for water content shown previously. Combining lab and
field data to develop ANN models to predict dry density reduces the performance of the
models. Network 3_ (3_11_19800) _1 is for without the velocity. The predicted versus
actual graph is shown in Figure 3e. The statistics indicate that the errors are higher and
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the R2 values are lower for this network in comparison to the networks built using lab
data or field data. The predicted versus actual graph for the best network 4_ (9_9_400) _1
including seismic wave velocity into the input parameters is shown in Figure 3f. The
addition of velocity as input causes the MARE to increase but the R2 is higher, and ASE
is lower. This suggests a slight to insignificant improvement of the model after adding
velocity as an input.

In summary, models for predicting dry density are more accurate when using field
data with velocity as an input. The model based on lab data is comparable to field data-
based models without the additional of velocity. Combining the lab and field data results
in much poorer models. The addition of velocity as an input to either field data and lab
plus field data results in more accurate models but did not help to improve the accuracy of
the model build using lab data.

7. Comparison between ANN and Regression Models

Regression analysis is a conventional way to determine the relationship between inde-
pendent and dependent variables. It determines how strongly the independent variables
affect the depended variables. Multiple-linear regression analyses are performed using the
same databases used for the ANN models. The performance of the models is determined
based on RMSE, MARE, unnormalized ASE and R2. For predicting seismic wave velocity
three different data set: lab data, field data and both lab and field data are used. Input
parameters for predicting seismic wave velocity models are LL, plasticity index, water
content and dry density.

For predicting water content LL, plasticity index, dry density and velocity are used
as input parameters. Models are developed for lab, field and both lab and field data sets.
For predicting dry density same type of data set and approach are used except the input
parameters are LL, plasticity index, water content and seismic wave velocity. The results of
regression analysis are shown in Table 7.

Table 7. Comparison of ANN and regression models.

Model Source of Data
ANN Regression

RMSE ASE MARE R2 RMSE ASE MARE R2

Predicting velocity
F 394 155,616 19.3 0.37 403 162,712 18.8 0.34
L 403 162,650 13.3 0.80 465 216,368 15.4 0.72

F + L 483 233,701 18.5 0.78 772 596,434 30.8 0.43

Predicting water content
F 1.0 1.0 7.7 0.85 1.5 2.3 12 0.66
L 1.0 1.0 6.6 0.89 0.9 0.9 6.5 0.88

F + L 1.6 2.6 11.6 0.67 1.6 2.7 12 0.66

Predicting dry density
F 2.7 7.5 1.8 0.91 4.9 24.2 3.3 0.69
L 3.4 11.6 2.5 0.85 3.3 11.0 2.4 0.85

F + L 4.1 17.5 3 0.78 4.4 19.5 3.1 0.75

Note: Field (F), Lab (L).

Table 7 presents the statistics for ANN (without validation) and regression models.
To compare ANN models with regression models the unnormalized ASE is calculated
using the unnormalized actual and predicted values. Additionally, root mean squared error
(RMSE) is also calculated using.

RMSE =

√√√√∑N
i=1

(
XA

i − Xp
i

)2

N
(9)

For predicting seismic wave velocity, the regression model using laboratory data
showed the higher R2 value and lower MARE but higher. ASE and RMSE than field data
models. Combining the field and lab data increased errors and a R2 value in between the
models using individual lab and field data. For predicting water content, the regression
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models based on lab data also showed the best performance The performance of field data
and field plus lab data are very close to each other. For predicting dry density, the best
performance is also observed for the lab data model. The second-best model is field plus
lab data and lowest performance is observed for the field data.

For all the cases, ANN models resulted in better R2 values in comparison to regression
analysis. Significant improvements are observed for the case of field data for predicting
water content, the R2 increases 22.35%, using field data for predicting dry density the
R2 increase 24.18% and for using field & lab data for predicting seismic wave velocity
the R2 increase 44.87%. Errors are lower for ANN models in comparison to regression
models with some minor exceptions. ANN models showed significantly reduced errors
than regression models using with field data for predicting water content RMSE decreases
50%, ASE decreases 130%, MARE decreases 55.84%, for predicting dry density the RMSE
decreases 81.48%, ASE decreases 222.67%, 83.33%. The model build with field and lab data
for predicting velocity the RMSE decreases 59.83%, ASE decreases 155.21% and MARE
decreases 66.49%. So, it appears that ANN shows better accuracy in prediction when
compared to regression analysis.

8. Conclusions

This study used ANN and regression analysis to predict geotechnical parameters from
seismic wave velocity and other geotechnical parameters using a published data. The
geotechnical parameters used here are plasticity index, LL, dry dry density, and water
content. The aim was to evaluate the use of seismic wave velocity to predict geotechnical
parameters so that it can save time and cost by minimizing the number of geotechnical tests.

From the analysis this can be concluded that seismic wave velocity helps to predict
water content and dry density. This validates that seismic wave velocity is sensitive to
change in water content and dry density. Combination of other geophysical parameters
may increase the accuracy of the prediction model. The study shows that the performance
of the prediction models is better when lab and filed data are used separately. However,
combining lab and field data resulted in poorer models and requires further investigation.
From the comparison of ANN and regression models it is proved that ANN can predict
better with more accuracy than traditional regression analysis. This study showed the
correlation between seismic wave velocity and water content, dry density for four types
of soil using field and lab data. Other geotechnical parameters such as angle of friction,
cohesion, saturation, void ratio can be considered for developing correlations. Correlations
can also be developed for other soil types.
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Abstract: Earthquake is a major hazard to humans, buildings, and infrastructure. Early warning sys-
tems should detect an earthquake and issue a warning with earthquake information such as location,
magnitude, and depth. Earthquake detection from raw waveform data using deep learning models
such as graph neural networks (GNN) is becoming an important research area. The multilayered
structure of the GNN with a number of epochs takes more training time. It is also hard to train the
model with saturating nonlinearities. The batch normalization technique is applied to each mini-batch
to reduce epochs in training and obtain a steady distribution of activation values. It improves model
training and prediction accuracy. This study proposes a deep learning model batch normalization
graph convolutional neural network (BNGCNN) for early earthquake detection. It consists of two
main components: CNN and GNN. Input to the CNN model is multi-station and three-component
waveform data with magnitude ≥ 3.0 were collected from January 2000 to January 2015 for Southern
California. The extracted features of CNN are appended with location information and input to GNN
model for earthquake detection. After hyperparameter tuning of the BNGCNN, when testing and
evaluating the model on the Southern California dataset, our method shows promising results to the
baseline model GNN by obtaining a low error rate to predict the magnitude, depth, and location of
an earthquake.

Keywords: batch normalization; deep learning; earthquake detection; graph convolution network;
seismic network

1. Introduction

Earthquake is a major hazard to humans, buildings, and infrastructure. In recent years,
for emergency response, early automatic detection of an earthquake from raw waveform
data generated from the sensors of seismic stations is becoming an important research
area [1]. For this purpose, the earthquake early warning (EEW) system generates an early
warning on the targeted area a few seconds after the detection of earthquake waves without
the intervention of an analyst [2]. Machine learning-based computational methods are
stronger candidates for automatic earthquake detection.

Traditional machine learning and deep learning techniques have shown superior
performance in many automated tasks such as text processing [3,4] image processing [5,6],
and speech recognition [7,8]. Ref. [9] used an ANN-based MLP model to assess the safety of
existing buildings. Results show that the model outperforms the others to classify concrete
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structure damage. Ref. [10] designed an earthquake early warning system using SVM
to predict magnitude and peak ground velocity. The proposed system can effectively
generate an alert at different levels from 0 to 3. The major drawback of machine learning
techniques is their dependency on feature selection techniques. Several feature selection
methods have been proposed in the past but several comparative studies show that there is
no universal feature selection method that works well with all types of data. In contrast
to traditional machine learning, convolutional filters in the convolutional layer extract
feature automatically, and therefore, deep learning models outperform the traditional
machine learning models on various tasks [11]. An important factor that can increase the
performance of deep learning models is hyper-parameter tuning [12,13]. A model has
several parameters such as batch size, dropout, learning rate, activation function, number
of epochs, and number of convolutional filters. Finding the best value of these parameters
(also called parameter tuning) is a time-consuming and resource-exhausting process. Batch
normalization is a technique used for more stable and faster training of deep learning
models [13,14].

Recently, deep learning techniques such as convolutional neural networks (CNN),
graph neural networks (GNNs), and their ensemble models graph convolutional neural
networks (GCNNs) have shown good performance for earthquake detection [15,16]. CNN
has strong power to extract useful information from the seismic raw waveform data.
Convolutional layers in the CNN model can extract contextual local features from input
waveform data and by applying pooling operation it can learn global features. Combining
these features with spatial information of stations helps for the accurate prediction of
an earthquake. Adding batch normalization in CNN results in faster and more stable
training of the model. GNNs have been designed particularly to process data arising from
networks [17]. CNN with the GNN model has shown very good performance on seismic
data processing in several studies [18].

Several past attempts for earthquake detection using deep learning techniques have
some shortcomings. Ref. [18] used deep learning-based GNN method for seismic source
characterization and appended latitude and longitude information with data to extract
features from CNN. A graph partitioning method with CNN used for earthquake detection
is proposed [15]. In this method, they did not use the actual GNN method but only
classic graph theory was used. Recently, a study by [1] used GNN with CNN for seismic
event classification from multiple stations but they did not use any spatial information or
meta-information about stations.

Therefore, in this study, we propose a large-scale deep learning model batch normaliza-
tion graph convolutional neural network (BNGCNN). The CNN part of the model extracts
useful and relevant features from seismic raw waveform data collected from multiple
stations and GNN processes spatial information and meta-information about multiple base
stations. Batch normalization in CNN improves learning and reduces training time [13,14].
In this way, the proposed model effectively process seismic data obtained from multiple
networks and can predict earthquake efficiently and correctly.

Our contributions to this study are summarized as follows:

• We propose a deep learning-based model BNGCNN model for the early prediction of
an earthquake.

• For experiments, we use a seismological dataset having 1477 events collected from
187 stations. Event waveform data with location information have been collected from
multiple seismic stations instead of a single station.

• The performance of our model has been systematically analyzed by fine-tuning its
several hyper-parameters.

• We chose the model proposed in [18] as a baseline model to compare the results
obtained from the proposed model. Results show the superiority of our model.

The rest of the paper is organized as follows: In Section 2, we discuss related work
including seismic data, convolutional networks, and graph networks. Section 3 discusses
the architecture of the proposed model and its parameters. A brief introduction of the
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seismic dataset, challenges, and statistics are given in Section 4. Section 5 includes the
experimental results of the proposed model and the baseline models. Conclusion and
future work are given in Section 6.

2. Related Work

Traditional machine learning requires user knowledge to extract meaningful features
from the data. These feature selection or extraction methods heavily affect the performance
of these models like decision trees, support vector machines, and naïve Bayes [19]. Ref. [10]
designed an earthquake early warning system using SVM to predict magnitude and peak
ground velocity. The proposed system can effectively generate an alert at different levels
from 0 to 3. Further, applying feature selection methods to the raw data is time-consuming
and more prone to errors. Deep learning models perform feature selection automatically
using multiple hidden layers. These layers are also used for dimensionality reduction
which makes deep learning models more powerful for processing nonlinear and complex
data [20]. The architecture of deep learning models such as graph neural networks and
multilayer perceptron represents effectively spatial information such as stations and their
relationship [18].

Deep learning models have shown superior performance to traditional machine learn-
ing models on a variety of tasks such as image processing [21], text classification [22],
blockchain, etc. Deep learning has three mainstream architectures CNN [23], GNN [5],
and RNN which are inherited from the machine learning model known as multi-layer
perceptron (MLP) [18]. MLP has a fully connected layered architecture that is power-
ful but because of its high computational time, the depth of the model is limited. The
advanced architectures have multiple layers of different types (convolutional, pooling,
dropout, softmax) to learn complex data and improve performance. Refs. [9,24] used an
ANN-based MLP model to assess the safety of existing buildings. Results show that the
model outperforms the others to classify concrete structure damage. Ref. [25] proposed
a neural network-based forecasting model to predict earthquake intensity. Experiments
show that DeepShake can effectively predict an earthquake five seconds before the event.

In some studies, CNN-based models have been used for seismic data processing,
feature extraction, and classification. Ref. [16] investigated the CNN for rapid earthquake
detection and epicenter classification from the single station waveform data. Experiments
on three-component waveform data obtained from IRIS show that the proposed CNN-
based model achieves 87% accuracy to predict earthquake sources over a broad range of
distances and magnitudes. Ref. [16] used CNN to predict the ground shaking intensity of
earthquake after 15–20 s after earthquake origin time. Ref. [23] proposed two CNN-based
models to estimate the seismic response of the surface. Ref. [20] used a deep CNN model
for earthquake detection and source region estimation. The proposed models predict fairly
well the amplitude and the natural periods. All these studies used single-station waveform
data and do not consider location information in prediction.

Recently, a hybrid deep learning model GCNN is becoming popular for earthquake
detection using seismic data. Ref. [17] used the GNN model to show that along with the
time series data sensor location information can be exploited using graph-based networks.
Experimental results on two seismic datasets containing earthquake waveforms show
promising results. Refs. [1,18] proposed a deep CNN and GNN model for earthquake
events classification from multiple stations. CNN layers aggregate features from the
waveform data and combining these features with spatial information of stations helps the
GNN for accurate prediction of an earthquake. Ref. [15] proposed a graph partitioning-
based model that uses both CNN and GNN for earthquake detection from seismic array
data. They used data from multiple seismic stations but the spatial information of these
stations was ignored completely.

Different events can be detected by multiple stations in different locations. Multiple
stations enable a generation of heterogeneous data but there exists a relationship between
the observations collected from multiple stations [1]. A single station enables the generation
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of a large amount of homogenous data. Therefore, earthquake detection from multiple
station data is a more challenging task than single station data for deep learning models [17].
CNN-based models are often used for single-station datasets [26,27] while GCNN models
are good to process multiple-station datasets [5,18].

A problem with deep learning models is the fine-tuning of their parameters. Batch nor-
malization is a technique used for faster and stable training of a deep learning model [13,14].
In training, the objective of batch normalization is to normalize the layer output using the
statistics of each mini-batch size. Recently, many studies used batch normalization in their
proposed deep learning models to improve the model performance such as brain tumor
detection [6], gas–liquid interface construction [28], and fault diagnosis of a machine [29].
Unfortunately, automatic earthquake detection from seismic data generated from multiple
stations is deprived of the batch normalization technique.

A set of studies have been summarized in Table 1. It is seen that CNN-based studies
only use single-station seismic data for earthquake detection and do not use geographical
information of the station for prediction. The studies which use graph-based neural
networks use the dataset where events have been collected from multiple seismic stations.
Moreover, these studies include station geographical information that significantly increase
model prediction. It is because GNNs are good to handle spatial information [30]. A few
studies are based on other models such as transformers or RNN models such as LSTM
or BiLSTM.

Table 1. A summary of the literature is discussed in this study. Most of the studies do not use spatial
information about events.

Study Model Spatial Info Year Data Station

[17] GCNN Yes 2022 Italy and
California Multiple

[18] GCNN Yes 2020 California Multiple
[27] CNN No 2019 IRIS Single
[16] CNN No 2021 Central Italy Multiple
[1] GCNN 2022 – Multiple

[26] SVMR No 2018 Bogota,
Colombia Single

[31] CNN + LSTM + BiLSTM
+ Transformer No 2020 STEAD Single

[15] CNN and Graph No 2021 MeSO-Net
Japan

Multiple,
Single

[23] CNN – 2021 NIED Japan Single
[23] Deep CNN – 2021 CARABOBO Single

[2] CNN and Team.
Transformer Yes 2021 Japan, Italy Multiple

3. Methods

There are several advantages of using CNN on seismic waveform data: (1) It operates
directly on waveform data with little preprocessing and without feature extraction; (2) it is
shifted invariant and not sensitive to the time position of the feature (P- or S-waves); and
(3) it does not make explicit use of existing physics-based knowledge such as S-P difference,
or seismic travel times. The proposed methodology used in this study is shown in Figure 1.
First, three component wave-from data are downloaded from IRIS (Incorporated Research
Institute for Seismology). After preprocessing, in the second step, we use a CNN to examine
the waveforms of a specific station. The three-component waveform is processed by this
CNN, and then a set of features is extracted from it. After that, the geographic location
(latitude and longitude) of the seismic station is appended to the feature vector to create it.
In the third step, this feature vector is used as an input by the second component, which is
a GNN. This GNN will recombine the time series features with the station location to create
a final station-specific feature vector. This procedure is carried out once for each of the
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stations that make up the network, utilizing the CNN and GNN components in the same
way (i.e., the same operations are applied to each station individually). Only along the
time axis are the processes that constitute the convolution carried out. Output is flattened
and the final prediction about the magnitude, location, and depth is made finally. The
architecture of the proposed model is given in detail in Figure 2.

 

Figure 1. The proposed methodology consists of three components. First, data downloading and
preprocessing. Second, CNN part to examine the data to extract the feature map. Third, use extracted
future map and combine it with station location information to make a final prediction.

BNGCNN is derived from the model [18] to detect an earthquake event and predict its
magnitude and location. We have modified the architecture and added CNN with a batch
normalization layer for optimized training and to improve prediction accuracy. Input to
the BNGCNN is an array size (50, N, 3) for all stations where the number of components in
data is three, 50 is the number of stations and N is the number of samples with a sampling
rate of 512 per second. As a result of the fact that seismic waveforms recorded at various
stations have distinct biases, we preprocess the data in accordance with:

ym = xm − 1
M

M

∑
i=1

xi , m = 1, . . . , M (1)

where xm is the seismic waveform data, ym is the converted seismic waveform data, and
M is the total number of samples in the occurrence event, preprocessing has the effect
of geometrically pushing the data center to the origin. The ordering of the stations is
preserved and each waveform starts its origin time. We have normalized the waveform by
its maximum value as it is recommended to improve CNN performance [16]. A stack of
5 feed-forward convolutional blocks where each block consists of 2-D convolution filters
of size 1 × 5 × fi where f = {4, 8, 16, 32, 64} is the number of filters in the ith block.
Convolution is performed on the time-axis and recombined into the filters of the next layer.
Convolutional operation is defined as:

yl+1
i (j) = kl

i ∗ Ml(j) + bl
i (2)
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where yl+1
i (j) denotes the input of the jth neuron in the feature map i of layer l + 1. kl

i the
weights of the ith filter kernel in layer l, Mj the jth local region in the layer l and bl

i the
bias. After each convolutional layer, an activation function is employed to extract the
nonlinear features. The rectified linear unit (ReLU) is a typical activation function used for
this purpose and can be defined as:

ReLU(x) = max(0, x) (3)

where x is the output of the convolutional layer. It is a piecewise linear function that returns
a value of zero if the input is negative and if the input is positive, it will be output directly.

Tanh(x) =
ex − e−x

ex + e−x =
2

1 + e−2x − 1 ∈ (−1 to 1) (4)

where e is Euler’s constant. The advantage of this activation function is that it can return
negative values which are useful if the desired output distribution contains negative values.
If the value of the input is greater (more positive), then the value of the output will be
closer to 1.0. On the other hand, if the value of the input is smaller (more negative), then
the output will be closer to −1.0.

Figure 2. The proposed architecture of the batch normalization graph convolutional neural network.
3-channel data are fed into the model. Features are extracted by CNN and batch normalization is
applied before pooling operation. Location information is added to the feature vector and the GNN
part makes the final prediction.

Batch normalization is added before the activation function. ReLU introduced non-
linearity followed by a spatial dropout of 15%. Data are reduced by 1 × 4 max-pooling
with stride 1 after passing three convolutional layers. The last convolutional layer does not
use any activation function. To preserve the extracted features, in the last layer of the final
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block, we use tanh activation function not followed by a dropout. The final max-pooling
layer reduced the data from Ns × 32 × 64 to Ns × 1 × 64. Ns denotes the total number
of stations. For each station from Ns, it produces a feature vector of size 64. This feature
vector is then appended by spatial information (longitude, latitude) and yields a feature
vector Ns × 2 × 66.

The second component of the BNGCNN is a multi-layer perceptron that recombines
spatial information with time-series features. It has two hidden layers 128 neurons and
ReLU activation function, and spatial dropout. It produces the data of Ns × 1 × 128 size
and represents the collection of features of each node in the graph. This node feature vector
is aggregated with the graph feature vector by performing max reduce operation along the
station’s dimension.

The final component is MLP with two hidden layers of 128 neurons. After activation
using tanh, this component maps the graph feature vector into the model output of size 4
(depth, magnitude, latitude, longitude). The predicted output is mapped with the labels
scaled between −1 and 1 through a mean absolute error (MAE) loss function. The loss can
be expressed as the mean of the absolute differences between the actual values and those
that were predicted, or it can be written as a formula as follows:

L(y, ŷ) =
1
N

N

∑
i−0

|y − ŷ| (5)

where ŷ is the predicted value by the model, and y is the actual value in the data. We
used an Adam optimizer with initial learning rate 0.0001. All the components are directly
connected and trained as a single model.

4. Results

4.1. Datasets

This study uses a dataset from Southern California. The area of study is important
because it is the economic and social hub of the states. The dataset consists of three
component raw waveforms (BHN, BHE, BHZ) recorded directly from seismic stations. N
oriented north-west, E oriented west-east, and Z oriented vertically. We extracted 120 s
long time windows that contained the onsets of both P- and S-wave arrivals for all the
available events. An earthquake with a magnitude less than 3.0 with no depth cut-off was
not considered. Each station provides a simultaneous sampling of three channels with
a 24-bit resolution. Each waveform file is converted to a sac file using python libraries.
Waves are filtered at a frequency range from 0.1–8.0 Hz and interpolate onto a time base
1 < t < 101 s after the event origin time, over 512 evenly spaced time samples (5 Hz
sampling frequency). We considered the waveform length starting from its origin time to
120 s after its end time.

We use a python library ObsPy to collect data for datasets [32,33]. ObsPy downloads
the broadband inventory and earthquake catalog of the Southern California Seismic Net-
work (SCSN (doi:10.7914/SN/CI)). In the dataset, there is a total of 1427 events collected
from 187 stations from the period 31 January 2000 to 31 December 2015 (15 years). For both
seismic stations and event locations, we set the limits for latitude from [32◦ to 36◦] and
longitude [−120◦ to −116◦]. Maps of stations and events considered in this study are given
in Figure 3. The locations of these seismic stations are shown as triangles in Figure 3a and
the event locations are shown as dots in Figure 3b. Statistics of the dataset are given in
Table 2.

250



Appl. Sci. 2022, 12, 7548

(a) Spatial stations distribution (b) Spatial events distribution 

Figure 3. (a) Shows the number of stations and their location for the Southern California region.
(b) Event distribution for California. The depth and magnitude of an event are encoded by its color
and size.

Table 2. A summary of the Southern California dataset used in this study.

Properties Values Properties Values

Period 2000–2015 Min. and Max. Latitude [32◦ to 36◦]
No. of events 1427 Min and Max. Longitude [−120◦ to 116◦]
No. of stations 187 Minimum magnitude 3.0
Filter the waveform 0.1–8 Hz Even spaced time sample 2048 Hz
No. of stations 187 Scaled Min. max. source depth 0 to 30 km
Scaled magnitude 3–6 Time-base 1 < t < 101

The magnitude distribution and depth distribution of each event are shown as His-
tograms in Figure 4a,b. Magnitude distribution shows that events are not equally dis-
tributed concerning the magnitude values. Half of the events in the dataset have magnitude
ranges from 3.0 to 3.13. Only a few events have a magnitude greater than 3.9. The average
magnitude value of all the events is 3.3. On the other side depth distribution, more than
60% of events have a depth range from 1.7 km to 10.2 km. Only a few events have a depth
of more than 20.0 km. The average value of the depth in the dataset is 9.0 km.

Figure 4. Cont.
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Figure 4. The histogram in (a) shows the magnitude distribution and the histogram in (b) shows the
depth distribution of the events from the Southern California dataset used in experiments by the
proposed model.

4.2. Experimentation

All of the experiments are carried out on an Intel Core i7-7700 processor running at
3.60 GHz with 16 GB of RAM, an NVIDIA GeForce GTX 1080 graphics card, Windows 10,
and TensorFlow 2.3 with CUDA toolkit, respectively.

To optimize the network parameters, we started our model parameters as the param-
eters of the model [18]. The experiments are designed to compare two different types
of neural network models, GNN and BNGCNN, with the ultimate goal of developing a
generalized detection model as a result of the findings. A random 80/20 split is performed
on the entire data set to create a training set and a validation set, respectively. Training set
constitutes 80 percent of the whole data with 1140 out of 1427 events. This dataset is used
for training the model. Remaining 20 percent data used as a validation set to validate the
model performance with 287 out of 1427 events. We evaluate the performance of the trained
model on both the training and validation data sets separately as [18]. Several models can
be compared to one another with the use of an independent test set to determine which is
the most efficient. In addition, it should be emphasized that k-Fold cross-validation would
almost probably result in somewhat better-performing models with smaller sample sizes,
but this has not been confirmed in this study.

Finding the optimal parameters for a model requires extensive training across a large
number of epochs. The term “one epoch” refers to when a model passes through all of the
examples once in a forward pass and once in a backward pass in a dataset or a batch of
data. A large, complicated, and noisy dataset necessitates the use of more epochs by the
model. To do this, early halting from evaluating validation performance is employed. A
model may be trained for 30 epochs and then the best parameters are selected from the
model with the highest validation performance, as an example. Positive class labels are
less likely to be mislabeled in training data than negative class labels, hence models with
higher accuracy on the positive class are preferred over models with higher accuracy on the
negative class. Figure 5a shows the training loss and validation loss with a different number
of epochs (50 to 500). A model’s training loss reveals how well it fits the training data,
whereas a model’s validation loss tells how well it fits new data that was used for validation.
Our model is showing the best performance over 400 epochs where the validation loss is
minimum and the model best fits the new data.

252



Appl. Sci. 2022, 12, 7548

 
(a) Model performance on different epochs (b) Performance with different batch size 

 
(c) Performance on different dropout values (d) Model loss at different number of iterations  

Figure 5. Model performance using different values of epochs in (a), batch size in (b), dropout in (c),
and iterations in (d).

Batch size refers to the number of instances that are sent to the model at one time for
processing in a single iteration of the model. A large batch would take more memory on
the GPU, resulting in slower training operations. Figure 5b shows the performance of our
model over different batches. We put our model through its paces on 16 different batches
of varying sizes (4 to 64). The results demonstrate that a batch size of 32 produces superior
results by obtaining the lowest validation loss value of 0.107, which is consistent with the
findings of [6].

Figure 5c depicts the performance of our model when different dropout values are
considered. To protect the network against noise and overfitting, dropouts are used. If the
model is trained on an insufficient dataset, it may encounter the problem of overfitting.
An alternative method would be to increase the dataset size or decrease the number of
hidden units utilized for feature computation. Dropout is a model feature that deletes or
deactivates inactive units in the model’s hidden layer. These units are not included in the
calculations for the following rounds of the algorithm. Figure 5c illustrates that the model
gets the maximum accuracy on a 0.8 dropout value.

Tests are carried out with varying batch sizes, several epochs, dropout values, and
other hyperparameters. Ultimately, the goal is to develop a generalized detection model
that outperforms the competition in terms of prediction accuracy. There is a maximum
number of training epochs allowed for each sample size; these values are determined by
reviewing a large number of potential training scenarios with a small number of epochs
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and manually selecting the numbers from empirical evidence. It is preferable to train for
an excessive amount of time since early stopping will select the highest performing model
on the validation set, which is resistant to over-fitting.

When several further experiments have been conducted to analyze hyperparameters,
the most ideal choices are made for executing the ensuing stated experiments and obtaining
the resulting results. Figure 5d shows the performance of the proposed model with the
best-performing network parameters. Take note of how the distance between validation
and train loss narrows with each passing epoch. The reason for this is that while the
network learns the data, it also reduces the regularization loss (model weights), resulting
in a slight discrepancy between validation and train losses. On the training set, the model,
on the other hand, is still more accurate.

5. Results and Discussion

In this section, we compare the performance of our proposed model with the GNN
model [18] through experiments on the California dataset. Performance is evaluated
separately for training and validation datasets. Charts of Figure 6 show the mean training
error, mean validation error, and mean square error obtained from the GNN model for
longitude, latitude, depth, and magnitude predictions. The mean absolute difference
between the predicted values and the actual values in the catalog is less than 13 km for
longitude and latitude, 3.3 km for depth, and 0.13 for magnitude. The experimental results
for the proposed BNGCNN model are shown in Figure 7. The mean absolute difference
between the predicted values and the actual values in the catalog is less than 10 km for
longitude and latitude, 2.6 km for depth, and 0.09 for magnitude. It is visible from the
comparison of both Figures 6 and 7 that the proposed model with batch normalization
significantly reduces the error and improves accuracy.

Figure 6. Mean absolute error for training and validation sets obtained from the California dataset.
Predicted values by GNN model and the actual values for (a) latitude, (b) longitude, (c) depth, and
(d) magnitude after inserting geographical information.
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Figure 7. Mean absolute error for training and validation sets obtained from the California dataset.
Predicted values by the BNGCNN model and the actual values for (a) latitude, (b) longitude,
(c) depth, and (d) magnitude by inserting geographical information.

On the training and validation datasets, we examine the model’s performance with
and without station position information. The results are shown graphically in Figure 8a–d
for the baseline model and Figure 8e–h for the BNGCNN model. The black color line shows
the training error, the yellow line for validation error, and the blue line for errors when no
station location information is used. The performance of the model when including the
geographic locations of the stations is examined separately for both the train data set and
the validation data set, and the results demonstrate minimal overfitting. The performance is
evaluated using the combined data set even when the station locations are not included in
the analysis. The model posterior is calculated by running inference 100 times on each event
in the training and validation catalogs and determining the related mean and standard
deviation while retaining dropout regularization. For GNN, both data sets produce similar
results, indicating that overfitting on the training set is minimal. The mean absolute
difference between catalog data and model projections is less than 0.13 for magnitude,
3.3 km for depth, and less than 0.11◦ (13 km) for latitude and longitude (which translates to
a mean epicentral location error of 18 km). For the proposed BNGCNN model, averaging
the latitude and longitude values from the catalog and model predictions, the mean absolute
difference is less than 10 km in distance for the latitude and longitude (resulting in a mean
epicentral location error of 18 km), 2.6 km in depth, and 0.09 in magnitude. The approach
produces a respectable first-order estimate of location and magnitude that can be used
as a starting point for further refinement using typical seismological instruments. The
magnitude curve in Figure 8h illustrates some prominent peaks than Figure 8d. This is
because of the scale and shift operations that a batch normalization layer uses [13]. Unlike
the input layer, which requires all normalized values to have a zero mean and unit variance,
Batch Norm allows its values to be shifted (to a different mean) and scaled (to a different
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variance). It does this by multiplying the normalized values by a factor, gamma, and adding
to them a factor, beta. Therefore, the results in Figure 8b are different than Figure 8h.

Figure 8. Prediction errors of the GNN from (a–d) and BNGCNN from (e–h) models to predict
latitude, longitude, depth, and magnitude of a seismic event without and with using station location
information. With station spatial information, the black line shows the training error on the training
subset while the yellow line shows the validation error on the validation set. The blue line shows the
prediction error on combined training and validation subsets without location information.

Figure 9a,b show the difference between the event’s actual epicenter and the predicted
epicenter of GNN and BNGCNN, respectively. Each arrow represents a single cataloged
event, beginning from the predicted epicenter and pointing to the catalog epicenter. The
colors represent the misfit ratio over the model posterior’s 95 percent confidence interval.
As a result, the blue color denotes that the catalog epicenter is within the 95 percent
confidence interval, while the red color denotes that it is not. We can compare the posterior’s
confidence intervals with the actual epicenter location error because we can compute
the posterior distribution for each event. A model error ratiometric, which measures
the distance between predicted and observed epicenters, is used to illustrate the model
uncertainty. This metric is normalized by the model posterior’s 95% confidence interval. A
score of 1 indicates that the genuine epicenter location falls within a 95 percent confidence
interval, while a value of 0 indicates that the true epicenter location does not lie within the
confidence interval at all. In most cases, the error ratio is less than one. This means that
the model posterior distribution’s expected aleatoric uncertainties are substantially smaller
than the actual epistemic uncertainties.

Because regions with the highest density of seismic stations also have the lowest
prediction error (see Figure 8), it appears that the spatially interpolated prediction error
is somewhat related to the local density of seismic stations. The highest systematic errors
are seen in the northwest and southeast corners of the selected region, where the station
density is low and the model appears to be unable to obtain the boundary values of latitude
and longitude. In this case, the behavior of the tanh activation function can be explained by
the fact that it asymptotically approaches the value ±1, which corresponds to the range
of latitudes and longitudes represented by the training samples. As a result, ever greater
activations are necessary to push the final location predictions toward the boundaries of
the domain, resulting in findings that are biased toward the interior of the domain. This
shows a basic trade-off between resolution (prediction accuracy) in the interior of the
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data domain and the greatest amplitude of the predictions (which also applies to linear
activation functions).

(a)  

(b)  

Figure 9. Residuals of the epicentral locations (in first column) and overlay of the locations of seismic
stations (in second column) on the interpolated prediction error (in km) on the California dataset.
(a) Residuals of the epicentral locations and overlay of the locations of seismic stations by GNN;
(b) Epicentral residuals and an overlay of seismic station locations by BNGCNN.

6. Conclusions

In this study, we propose a BNGCNN model to predict earthquakes with satisfying
accuracy adopting multistation and 3 channel waveform data consisting of 1477 events
with magnitude 3 or more than 3 from 187 stations. After preprocessing the data, CNN
of the proposed model with batch normalization before activation is applied to the input
data. We found that it not only helps to extract valuable features but also improves training
by reducing the number of epochs and reducing nonlinearity which helps in fast training
and improves prediction accuracy. We also found that incorporating station location
information in feature vectors and applying GNN on the feature vector also improves the
prediction accuracy of our model. We have analyzed the performance of our proposed
model by analyzing its different hyperparameters which help us to find the best values of
the model parameters to reduce training error. Comparison with the baseline model proves
the superiority of our model on the same dataset by reducing the error rate to 3 km, 0.7 km,
and 0.04 for longitude and latitude, depth, and magnitude, respectively.
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For future work, we aim to explore other variants of deep learning models such as
GNN with attention layer mechanisms [34] and transformers [2,31]. We also aim to test
deeply deep learning models on multiple datasets with sparse and dense stations with and
without station location information. The proposed model can also be applied to assess the
damage done by an earthquake [9].
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