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Preface

We are delighted to present the Reprint of our Special Issue titled “Application of

Artificial Neural Network in Agriculture”, which showcases fourteen high-quality research articles

highlighting the use of artificial neural networks (ANNs) and related technologies when applied to

agricultural practice and production.

With the need for farming to become more efficient and environmentally sustainable to meet the

demands of a growing global population, the application of ANNs to inform and enhance agricultural

practice and production is gathering pace.

The introduction of enabling technologies, such as edge computing, the Internet of Things, and

mobile applications, is creating new opportunities to gather extensive digital datasets in real time,

which can then be used by models with the ability to learn from and interpret this information,

including ANNs, artificial intelligence, and machine learning.

In this Reprint, we highlight how ANNs may be employed for pest detection, plant disease

detection, nutritional monitoring and prediction, the classification of the phenology of beans, and the

optimisation of egg production. This Reprint also presents how ANNs may be used for predicting the

power requirements of agricultural machinery and the dynamic behaviour forecasting of an indirect

solar dryer.

The multidisciplinary nature of the articles presented will likely strongly appeal to researchers

and scientists working in the areas of agricultural technology, communications engineering, computer

science, data analytics, electronic engineering, information technology, image processing, and

mathematical modelling.

We would like to express our gratitude to the many peer reviewers who have contributed their

time, comments, and opinions to ensure that the presented articles are of the highest quality. We

would also like to thank the editorial staff of AgriEngineering and our contact editor Mr Dušan Zečević

for their continuous support throughout the publication process.

We hope you find our Reprint to be of interest and a source for future research in this increasingly

important application of ANNs.

Ray E. Sheriff and Chiew Foong Kwong

Guest Editors
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Article

TFEMRNet: A Two-Stage Multi-Feature Fusion Model for
Efficient Small Pest Detection on Edge Platforms
Junlin Mu 1,†, Linlin Sun 1,2,†, Bo Ma 1, Ruofei Liu 1, Shuangxi Liu 1, Xianliang Hu 3, Hongjian Zhang 1,2,*
and Jinxing Wang 1,4,*

1 College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian 271018, China;
mjl19970127@163.com (J.M.); sunlinlin@sdau.edu.cn (L.S.); 2023010151@sdau.edu.cn (B.M.);
19860912870@163.com (R.L.); shuangxiliu168@163.com (S.L.)

2 Shandong Province Key Laboratory of Horticultural Machinery and Equipment, Taian 271018, China
3 Shandong Xiangchen Technology Group Co., Ltd., Jinan 250000, China; 2022010103@sdau.edu.cn
4 Shandong Provincial Engineering Laboratory of Agricultural Equipment Intelligence, Taian 271018, China
* Correspondence: zhanghongji_an@163.com (H.Z.); jinxingw@163.com (J.W.)
† These authors contributed equally to this work.

Abstract: Currently, intelligent pest monitoring systems transmit entire monitoring images to cloud
servers for analysis. This approach not only consumes significant bandwidth and increases moni-
toring costs, but also struggles with accurately recognizing small-target and overlapping pests. To
overcome these challenges, this paper introduces a two-stage multi-feature fusion small-target pest
detection algorithm based on edge computing devices, termed TFEMRNet. The algorithm initially
conducts semantic segmentation on an edge processor, followed by uploading the segmented images
to a cloud server for target identification. Specifically, the semantic segmentation model TFENet
incorporates a Multi-Attention Channel Aggregation (MACA) module, which integrates semantic
features from EfficientNet-Pest and Swin Transformer, thereby enhancing the model’s ability to
extract features of small-target pests. Experimental results demonstrate that TFEMRNet surpasses
models such as YOLOv11, Fast R-CNN, and Mask R-CNN on small-target pest datasets, achieving
precision of 96.75%, recall of 96.45%, and an F1 score of 95.60%. Notably, the TFENet model within
TFEMRNet attains an IoU of 91.63% in semantic segmentation accuracy, outperforming other seg-
mentation models such as U-Net and PSPNet. These findings affirm TFEMRNet’s superior efficacy in
small-target pest detection, offering an effective solution for agricultural pest monitoring.

Keywords: pest identification; tiny object recognition; multi-stage detection approach; edge-based
processing; feature integration

1. Introduction

Pest infestation has been regarded as a severe disaster in apple production [1]. These
pests reproduce rapidly, and if not promptly controlled, they can severely damage fruits
and significantly reduce apple yields. Therefore, the rapid and accurate identification of
pest species has been crucial for the management of apple pests and diseases [2,3]. Precise
pest identification not only enhances control efficacy, but also reduces the use of pesticides,
thereby minimizing environmental impact [4]. However, existing agricultural pest detection
methods face numerous challenges in practical applications, primarily manifested in the
following aspects.

Current apple pest detection methods face several significant challenges that hinder
their effectiveness and scalability. Firstly, the accuracy of existing techniques is inadequate
due to the high diversity of apple pest populations, which exhibit considerable variations
in morphology, size, and coloration across different developmental stages. This diversity
complicates the reliable distinction among various species and their growth phases, leading
to difficulties in precise classification and preventing farmers from implementing effective

AgriEngineering 2024, 6, 4688–4703. https://doi.org/10.3390/agriengineering6040268 https://www.mdpi.com/journal/agriengineering
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control measures, thereby negatively impacting both the yield and quality of apples [5].
Secondly, the processing speed of traditional manual detection methods is slow and labor-
intensive, making large-scale pest monitoring in extensive orchards time-consuming and
inefficient. For instance, inspecting several hundred acres manually may take days or
weeks, while pest reproductive rates can outpace detection efforts, resulting in increased
losses [6]. Thirdly, advanced technologies and algorithms such as drones, remote sensing,
and deep learning, although enhancing detection efficiency, impose high demands on
computational power and energy consumption. In resource-constrained rural areas, the
deployment and maintenance of such high-tech equipment are challenging and costly,
leading to significant increases in both operational costs and energy usage [7]. These factors
collectively impede the widespread adoption and effectiveness of current pest monitoring
systems in apple orchards.

To address the aforementioned challenges, Intelligent Integrated Pest Management
(IPM) has emerged by incorporating Artificial Intelligence (AI) and edge computing tech-
nologies, providing new solutions for pest monitoring. Edge computing enables real-time
data processing at the device level, reducing reliance on cloud servers, lowering latency,
and conserving bandwidth [8]. Intelligent IPM has proven highly effective in controlling
economically important crop pests [9]. At the same time, the identification of small-target
pests has become a significant research focus. These pests often cause direct damage
to fruits, making them essential subjects for real-time identification [10]. Additionally,
a top-down feature fusion algorithm has been proposed to improve feature utilization
for small-target pests by integrating top-down feature fusion with prior bounding box
clustering, thereby achieving precise localization of these pests [11]. A detection model
named Skip DETR has been introduced, which enhances the detection performance of small
objects by incorporating skip connections and spatial pyramid pooling layers to facilitate
feature fusion across different network layers [12]. Furthermore, the novel multi-scale
dense MD-YOLO method has improved feature map utilization and reduced information
loss by integrating DenseNet modules and adaptive attention modules [13]. In summary,
existing solutions for small-target pest detection have primarily focused on enhancing
the feature utilization of images depicting small-target pests [14]. However, most of these
approaches still face the following limitations: in the presence of interference from other
pests, the semantic features of small-target pest images remain limited [15]. Although
these models offer advantages in improving image feature utilization, the challenge of
feature loss due to downsampling has not been adequately addressed, thereby hindering
the accurate identification of small-target pests.

As previously discussed, this research seeks to bridge the gap between pest recognition
accuracy and the limitations imposed by resource constraints in deploying models on edge
devices by introducing a lightweight pest detection algorithm named TFEMRNet. This
approach involves conducting semantic segmentation directly on the edge device and
subsequently transmitting the segmented images to a cloud server for identification. This
strategy effectively lowers the computational power demands and conserves bandwidth.
To address the existing challenge of insufficient information utilization in the detection of
small-target pests, a dual-encoder feature-enhanced semantic segmentation network has
been developed. This network increases the visibility of small-target pests within the entire
image, thereby enriching the semantic features associated with these pests. Furthermore,
a parallel branch architecture has been incorporated, which simultaneously integrates
features from the Swin Transformer and EfficientNet-Pest. This configuration facilitates the
efficient capture of global dependencies and low-level spatial information in a streamlined
manner, significantly improving the model’s capacity to represent pest characteristics. The
primary contributions of this study are summarized as follows:

1. We construct a dataset that includes pests such as Grapholitha molesta and Helicoverpa
armigera, collected from intelligent pest monitoring devices. This dataset provides a
critical foundation for advancing pest identification research and validating detec-
tion models.
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2. We design a two-stage small-target pest recognition algorithm that reduces computing
power requirements on edge devices and saves bandwidth.

3. We design a dual-encoder feature-enhanced semantic segmentation network (TFENet)
based on feature fusion, addressing the issue of inadequate semantic feature utilization
for small-target pests in high-resolution images. TFENet employs a parallel branch
structure that integrates features from the Swin Transformer and EfficientNet-Pest,
enabling efficient acquisition of global dependencies and low-level spatial information
in a shallow manner.

4. We design a Multi-Attention Channel Aggregation module (MACA) which optimizes
global information and local details using SE-Block and CBAM modules. Addition-
ally, it enhances the model’s feature extraction capability for small-target pests by
interacting feature maps from the two branches through the Hadamard product.

The structure of this study is organized as follows: Section 2 outlines the materials used
and the two-stage recognition methodology employed. Section 3 details the experimental
hardware, the obtained results, and their discussion. Section 4 presents the conclusions,
and finally, future work is described.

2. Materials and Methods
2.1. Image Acquisition

Grapholitha molesta is one of the primary small-target pests in orchards, causing damage
to both fruits and leaves. Due to its small size, strong camouflage, high mobility, and lack
of phototaxis, it is difficult to monitor. This study focuses on the recognition of small-target
pests, using the oriental fruit moth as an example.

Pest monitoring equipment plays a vital role in tracking agricultural pests. The
intelligent pest monitoring device utilized in this study for apple orchards is illustrated
in Figure 1a. This apparatus consists of a solar power module, a central processing unit,
an image acquisition module, and edge computing devices. The central processing unit
includes an edge computing gateway that conducts initial image segmentation. To attract
specific pest species, targeted pheromone baits are installed within the device, facilitating
the trapping of designated pests. Multiple pheromone baits for various pest species can
be deployed simultaneously, allowing for a single device to monitor different pests at
the same time, thereby lowering monitoring expenses. Once captured, the pests fall onto
a collection plate where a 12-megapixel high-definition camera periodically takes high-
resolution images, which are then sent to the central processing unit. Following this,
the data transmission module forwards the collected images to a cloud server through
4G/5G networks. An example of the captured images is presented in Figure 1b.
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ating labeled files with category and location information. The annotated images were 
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frame representing TFENet and the green frame representing Mask R-CNN [18]. The out-
puts of TFENet and Mask R-CNN are displayed outside the frame. TFENet integrates fea-
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Figure 1. Pest monitoring device and pest images. (a) For the intelligent monitoring device for
targeted pests in apple orchards, (b) the pest images obtained using the intelligent monitoring device
for targeted pests in apple orchards.
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Edge computing is utilized in the proposed pest detection system to reduce latency
and bandwidth usage by processing data locally on edge devices rather than relying on
centralized cloud computing. This approach ensures faster response times, which is critical
for real-time pest monitoring in agricultural environments. Additionally, edge computing
alleviates the need for continuous data transmission to cloud servers, making it more
cost-effective and energy-efficient for large-scale deployment in remote areas.

From 2021 to 2023, we extensively collected images using both the targeted pest
trapping device and the intelligent pest monitoring device in apple orchards. Additionally,
we obtained pest samples from the Shandong Jinan Agricultural Science Academy to
simulate device environments and augment the sample data. A total of 452 images were
collected for this study, comprising 326 images obtained from the intelligent monitoring
device and 126 images sourced from the targeted trapping device. These images were
captured using a high-definition camera, each possessing a resolution of 5760 × 4420 pixels.

The LabelMe software (LabelMe v5.2.0.) was used for manual annotation [16], gen-
erating labeled files with category and location information. The annotated images were
utilized to construct the model’s training, validation, and test datasets, partitioned in a
6:2:2 ratio, resulting in 1350 training images, 450 validation images, and 450 test images.
To enhance the dataset, five data augmentation techniques were employed: brightness
adjustment, noise addition, random point addition, mirroring, and translation [17]. Follow-
ing data augmentation, the training set increased from 1350 to 5400 pest images, thereby
providing a more robust foundation for network training.

2.2. Two-Stage Recognition Method TFEMRNet

The two-stage recognition network used in this study is named TFEMRNet, and its
structure is shown in Figure 2. TFENet employs a parallel branch structure, with the
blue frame representing TFENet and the green frame representing Mask R-CNN [18].
The outputs of TFENet and Mask R-CNN are displayed outside the frame. TFENet inte-
grates features from Swin Transformer [19] and EfficientNet-Pest [20] in a parallel manner,
allowing for the efficient acquisition of global dependencies and low-level spatial infor-
mation. Additionally, we introduced a new fusion module called the multi-attention
channel aggregation module (MACA), which effectively merges multi-level features from
the two branches.
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Figure 2. Overall structure diagram of TFEMRNet. The blue box on the left represents the TFENet
structural framework, the green box on the right represents the MaskRCNN structural framework,
and outside the box are the TFENet segmentation results and MaskRCNN detection results, respec-
tively. In the figure, H represents the feature map height, W represents the feature map width, and
Head represents the prediction head.
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Specifically, TFEMRNet combines semantic segmentation and object detection. In the
first stage, semantic segmentation is performed. The segmentation results are used to crop
target areas from the original images, obtaining image fragments containing pests. We
selected three outstanding semantic segmentation networks, TFENet, PSPNet, and UNet,
and tried efficient feature extraction backbone networks for each, using EfficientNet and
BiFPN for efficient multi-scale feature fusion. For instance, with UNet, we replaced the
original VGG16 with EfficientNet as the backbone network. The second stage of TFEMRNet
involves object detection, where the image fragments from semantic segmentation are input
into the Mask R-CNN model to obtain pest identification and classification results. Mask
R-CNN detects pests in the image fragments and provides pest species information.

The first stage of TFEMRNet, the TFENet semantic segmentation model, is detailed
in Figure 3. Swin Transformer and EfficientNet serve as encoders for the TFENet segmen-
tation network, with their feature maps fused via the multi-attention channel aggregation
module. The semantic information and spatial context of pest images are crucial for im-
proving the segmentation accuracy of small-target pests. Traditional CNNs struggle to
model the global semantic information of pest images due to the fixed size of convolution
kernels. In contrast, the Swin Transformer captures global semantic information through a
self-attention mechanism, efficiently capturing both low-level spatial features and high-
level semantic information without relying on excessively deep network architectures. This
mitigates issues like gradient vanishing and insufficient feature reuse, addressing the loss
of high-level semantic features in small-target pest images. However, the Swin Transformer
has limitations in modeling fine-grained features, potentially causing spatial inductive bias
when processing local information. To better integrate the strengths of both encoders and
resolve the precise segmentation of small-target pests, we designed a segmentation model
that combines features from the Swin Transformer and EfficientNet-pest. This integration
improves the model’s capacity for feature representation.
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In the TFENet semantic segmentation network, the features extracted by the Swin
Transformer and EfficientNet-pest are input into the MACA (Multi-Attention Channel
Aggregation) module for feature fusion. This fusion process uses Attention Gates (AG)
skip connections to combine features, ultimately generating the final segmentation map
through a simple head. The output segmentation map is subsequently resized to match the
original image resolution. This feature fusion network architecture effectively addresses
the segmentation challenges posed by small-target pests in high-resolution images, thereby
enhancing the detection performance of the recognition network for these pests.

Ultimately, the two-stage recognition strategy offers an effective approach for iden-
tifying small-target pests in high-resolution images. Initially, it employs a dual-phase
recognition algorithm framework to address the challenges associated with detecting small-
target pests within detailed imagery. In TFEMRNet, to prevent feature loss caused by image
compression, the prediction map generated using the TFENet semantic segmentation net-
work is restored to the original image resolution. Subsequently, corresponding segments
are extracted from the original image to serve as object detection samples. Additionally, the
accuracy of semantic segmentation impacts the integrity of the object detection samples.
To ensure that the pest regions do not exceed the image boundaries, we appropriately
expand the prediction boxes obtained from semantic segmentation to be the minimum
enclosing rectangles of the pest regions predicted by the semantic segmentation model.
This adjustment method keeps the centroid position unchanged and expands the side
length of the bounding box by 1.2 times.

2.2.1. Swin Transformer Module

Swin Transformer is a Transformer architecture suitable for visual tasks that effectively
extracts multi-scale image features through a hierarchical structure and sliding window
mechanism. The hierarchical structure is similar to a convolutional neural network, al-
lowing the model to gradually capture the details and global information of the image,
while the sliding window performs a self-attention calculation locally through a fixed-size
window, significantly reducing the computational cost.

In order to achieve cross-window information fusion, the Swin Transformer introduces
the Shifted Window mechanism, that is, window sliding, to realize information interaction
between windows. At the same time, the multi-head self-attention mechanism helps the
model focus on details in different areas, thereby improving the detection capabilities of
small targets and complex backgrounds. The overall architecture of this integration is
depicted in Figure 4.
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2.2.2. EfficientNet-Pest Module

EfficientNet has provided high accuracy for small-target objects), aligning with the
requirements of this study. As illustrated in Figure 5, EfficientNet consists of one stem and
seven blocks. The function of the stem structure is to adjust the number of channels through
convolution. Each block comprises multiple inverted bottleneck convolution (MBConv)
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modules. Effective feature layers P3–P5 have been extracted through these blocks, followed
by two downsampling operations to obtain P6 and P7. Subsequently, P3–P7 have been
input into the BiFPN for multi-scale feature fusion. During this process, each BiFPN layer
has performed bidirectional feature fusion, both top-down and bottom-up, to enhance
feature extraction for small targets in high-resolution images. The outputs of BiFPN, P3_out,
P4_out, and P5_out have served as the input feature maps for the multi-attention chan-
nel aggregation module, corresponding to g0 = RH/16×W/16×256, g1 = RH/8×W/8×128, and
g2 = RH/4×W/4×64, respectively.
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2.2.3. MACA

Upon analyzing high-resolution images, it was observed that small-target pests pos-
sess fewer pixel features. This limitation may lead to the extraction of relatively sparse
feature information during the detection process, thereby significantly diminishing detec-
tion accuracy. To mitigate this issue, this study introduces the Multi-Attention Channel
Aggregation (MACA) module. The MACA enhances the extraction of feature information
for small-target pests by integrating encoded features from EfficientNet-Pest and the Swin
Transformer. The architecture of this module is depicted in Figure 6.
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The module integrates the self-attention mechanism and multimodal fusion mecha-
nism to obtain the fused features f i, where i is 0, 1, or 2, through the following steps. The
calculation formulas are presented in Equations (1)–(4):

t̂i = channelattn(ti) (1)

ĝi = channelattn(ĝi) (2)

b̂i = Conv(tiWi
1 ⊗ giWi

1) (3)

f i = Residual([b̂i, t̂i, ĝi]) (4)

In the MACA, the symbols Wi
1 ∈ RDi×Li and Wi

2 ∈ RCi×Li denote the element-wise
product. This module employs a channel attention mechanism using an SE block to capture
global contextual information from the Swin Transformer. In contrast, a CBAM block
is utilized for spatial attention, enhancing localized features in pest-relevant areas and
suppressing non-essential background content. The feature maps from both branches are
then fused through element-wise multiplication. Interactive features b̂i, together with
refined attention features t̂i and ĝi, are combined within a residual block. The output
features fifˆifi effectively retain both comprehensive and localized details at the present
spatial scale. Finally, AG skip connections incorporate f i to generate the final segmentation,
as described in Equations (5) and (6).

f̂ 0 = f 0 (5)

f̂ i+1 = Conv([Up( f̂ i), AG( f̂ i+1, Up( f̂ i))] (6)

The MACA amalgamates both local and global features from pest images, thereby
enhancing the network’s capability to extract features from small-target pests and markedly
increasing the segmentation accuracy for these pests.

2.2.4. Loss Function

The TFENet semantic segmentation network uses an end-to-end training strategy
that combines a weighted IoU loss alongside a binary cross-entropy term, expressed
as L = Lw

IoU + Lw
I .

In this configuration, boundary pixels are assigned higher weights to enhance their
significance. Additionally, to facilitate improved gradient propagation, deep supervision is
incorporated by providing extra guidance to the Swin Transformer branch. Consequently,
the overall training loss is formulated as presented in Equation (8):

L = αL(G, head( f̂ 2)) + γL(G, head(t2)) + βL(G, head( f 0)) (7)

In this context, α, β, and γ are adjustable hyperparameters set to 0.4, 0.4, and 0.2,
respectively, based on prior experience derived from similar studies in pest detection opti-
mization [21]. These values were selected to balance the contributions of precision, recall,
and detection robustness in accordance with the findings reported in previous research.

3. Results and Discussion
3.1. Experimental Setup

The experiments were conducted on a 64-bit Windows 10 operating system using
a workstation equipped with an Intel® Xeon® Silver 4210R processor (Santa Clara, CA,
USA) and an NVIDIA GeForce RTX 2080 Ti GPU (Santa Clara, CA, USA) to expedite the
experimental process. Additionally, the system was outfitted with 128 GB of RAM and a
2 TB SSD to ensure efficient data processing and model training.

Training of TFEMRNet was performed using Python version 3.8 and developed based
on the PyTorch 1.10 framework. To fully leverage GPU acceleration, the experimental
environment was configured with CUDA 10 and cuDNN version 7.4.1.5. Furthermore,
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essential deep learning libraries and toolkits such as NumPy 1.19.5, Pandas 1.1.5, and
Scikit-learn 0.24.2 were utilized to ensure the smooth progression of the experiments.

During the experimental process, fixed random seeds were set to guarantee the repro-
ducibility of results. Specifically, the Python random seed was set to 42, the NumPy random seed
to 42, and the PyTorch random seed to 42. Additionally, torch.backends.cudnn.deterministic was
set to True and torch.backends.cudnn.benchmark to False to ensure consistent outcomes across
experiments. Moreover, fixed shuffle parameters and data splitting methods were employed
during data loading to further enhance the reproducibility and reliability of the experiments.

Through the above detailed environmental configurations and random seed settings,
the stability and reproducibility of the experimental results were ensured, providing a solid
foundation for the training and evaluation of the TFEMRNet model.

3.2. Evaluation Metrics

In this study, Intersection over Union (IoU) was utilized as the primary evaluation
metric for the semantic segmentation phase. Based on extensive prior research experience in
the fields of image processing and object detection, IoU was selected as the main evaluation
metric because it effectively measures the degree of overlap between the segmentation
results and the ground truth labels, and it has been proven to possess high reliability and
consistency in numerous related studies. During the application of the object detection
algorithm to the image fragments obtained in the initial segmentation phase, the original
test set labels could not be directly applied to the new samples due to alterations in image
dimensions. Drawing on previous methods for handling changes in image size, this study
innovatively employs the location information derived from semantic segmentation to
precisely isolate the target regions from the original images, thereby generating new labeled
samples suitable for the subsequent object detection phase. This approach not only resolved
the challenges posed by label migration due to size changes, but also enhanced the accuracy
and efficiency of object detection.

For evaluating the object detection performance, precision, recall, and F1-score were
adopted as the key metrics. Precision measures the proportion of correctly identified
pests out of all detected pests, with higher precision indicating a lower rate of false pos-
itives. Recall assesses the proportion of correctly detected pests out of all actual pests,
where higher recall signifies fewer missed detections. The F1-score, calculated as the har-
monic mean of precision and recall, acts as an essential measure of the model’s overall
performance accuracy. The selection of these evaluation metrics is based on the need for
a comprehensive assessment of model performance in prior research, ensuring that the
model’s performance across different aspects is thoroughly reflected. Specifically, for the
identification of Grapholitha molesta in this research, all evaluation metrics were applied to
this particular pest species. The mathematical formulations for IoU, precision, recall, and
F1-score are presented in Equations (8) through (11):

IOU =
Area o f Overlap
Area o f Union

(8)

recall =
TP

TP + FN
(9)

precision =
TP

TP + FP
(10)

F1 = 2 × recall × precision
recall + precision

(11)

3.3. Model Training

The initial phase of semantic segmentation involves classifying each pixel within
an image, necessitating substantial computational resources. To accommodate hardware
constraints, input images were resized to a default resolution of 512 × 384 pixels. During
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model training, the initial learning rate was set to 0.0001, and the batch size was configured
to 16. To ensure the effectiveness of the proposed enhancements in this study, all other
hyperparameters were maintained consistently with the original TFENet. Each method
was trained iteratively for 100 epochs, with the model being saved after each epoch. The
model demonstrating the best performance on the validation set was selected as the final
model for each method.

3.4. Performance Advantages of Two-Stage Segmentation Recognition Strategy

This research employs a two-stage recognition approach to identify small-target pests.
To assess the effectiveness of the proposed method, comparative experiments were con-
ducted against conventional recognition techniques, including Mask R-CNN, YOLOv11,
and Fast R-CNN. The experimental outcomes, presented in Table 1, demonstrate that the
proposed method attains the highest recognition accuracy of 96.75%, accompanied by a
recall rate of 96.45% and an F1-score of 95.60%.

Table 1. Performance comparison with state-of-the-art object detection models.

Method Backbone Precision (%) Recall (%) F1 (%)

TFEMRNet EfficientNet 96.75 96.45 95.60
MaskRCNN VGG16 71.92 72.82 72.37

YOLOv11 Darknet53 75.43 74.45 74.68
FastRCNN VGG16 71.60 72.56 72.08

The P–R curves for the four network models on the custom dataset are presented
in Figure 7. In the P–R curves, the horizontal axis represents precision, and the vertical
axis represents recall. The P–R curve is obtained by sequentially connecting points with
different recall and precision rates. A P–R curve that bulges towards the top right corner
indicates the stronger detection capability of the model. As shown in Figure 7, TFEMRNet
exhibits better detection performance on this dataset compared to the other three models.
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According to the results in Figure 8, most pest images have been accurately identified
using YOLOv11, but some Grapholitha molesta, as indicated by the red circles in Figure 8,
have not been detected using the advanced object detection models. The green circles
indicate incorrectly detected objects. Traditional object detection models suffer from sig-
nificantly reduced recognition accuracy in the presence of pest adhesion or overlap. The
substantial pixel-scale difference between the Grapholitha molesta and other pests makes
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it difficult for detectors to identify them. Moreover, the small proportion of Grapholitha
molesta in the images, coupled with their few pixels, further complicates their recognition.
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To address these issues, the proposed strategy first uses a semantic segmentation
algorithm to locate the target areas containing pests and then recognizes the target areas.
This recognition strategy significantly mitigates the problem of low recognition accuracy
in the presence of interference. Using images captured with an intelligent monitoring
device targeting pests in apple orchards as an example, Figure 9 displays the recognition
results of advanced object detection models and the two-stage object detection model
under interference conditions. Figure 9a shows the original images to be detected, with
red boxes numbered 1–5 indicating image segments with interference. Figure 9b presents
the detection results of the image segments numbered 1–5 using TFEMRNet, YOLOv11,
FastRCNN, and MaskRCNN models.
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The results demonstrate that YOLOv11, FastRCNN, and MaskRCNN exhibit poor
recognition performance under interference conditions, while TFEMRNet accurately identi-
fies the pests, indicating that the proposed method can accurately recognize Grapholitha
molesta in high-resolution images under various conditions.

3.5. Performance Advantages of TFENet Semantic Segmentation Model

The two-stage object detection results are not limited to TFEMRNet; all methods
based on two-stage object recognition can enhance detection accuracy for adhered and
overlapping objects. However, for Grapholitha molesta, not all semantic segmentation models
can accurately segment pests from the original images. In this study, the backbone feature
extraction networks of TFENet, Unet, and PSPNet were replaced with EfficientNet-pest
and compared with their original models. The experimental results are shown in Figure 10.
Figure 10b displays the prediction results of TFENet, Figure 10c shows the prediction
results of the Unet network, and Figure 10d presents the prediction results of the PSPNet
network. The red areas in Figure 10b indicate the objects missed by Unet and PSPNet.
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Figure 10. Performance comparison of semantic segmentation models, where (a) represents the
original image of the device and (b–d) represent the predicted results of three semantic segmentation
models. The red area in (b) represents the missed detection objects in other semantic segmentation
models.

Compared to TFENet, Unet and PSPNet exhibited missed detections, which is unac-
ceptable in practical applications. These missed detections may result from information
loss due to image compression, potentially leading to missing objects in the target detection
phase and consequently reducing the overall recognition accuracy of the model. In contrast,
the improved TFENet demonstrated superior performance in small-target segmentation,
showing a significant advantage in the segmentation accuracy of Grapholitha molesta.

An ablation study was conducted on the Grapholitha molesta dataset, with the results
presented in Table 2. Using TFENet as the baseline, the introduction of the MACA model
led to a 10% improvement in Intersection over Union (IoU), no significant enhancement
in precision, and a 9% increase in recall. These findings indicate that the MACA model
enhances the segmentation performance for Grapholitha molesta, particularly excelling in
reducing missed detections.

Table 2. Performance of six semantic segmentation models.

Method MACA IOU Precision Recall Inference Times (s) Model Size

TFENet
TFENet

- 0.82 0.93 0.76 0.0191 135 MB√
0.92 0.96 0.85 0.0213 139 MB

UNet - 0.85 0.95 0.76 0.0253 147 MB
PSPNet - 0.86 0.85 0.79 0.0301 156 MB

3.6. Performance Advantages of TFEMRNet Under Multiple Interference Conditions

Through the analysis of recognition results, it has been found that in high-resolution
images obtained using the intelligent monitoring device targeting pests in apple orchards,
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traditional object detection models perform reasonably well for recognizing isolated
Grapholitha molesta. However, their performance significantly declines for pest images
under mutual adhesion, pest images under occlusion, and pest images under overlap.
These three interference conditions are illustrated in Figure 11.
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To further validate the performance of the TFEMRNet algorithm under interference
conditions, a comparative experiment with YOLOv11, the model with the best detection
performance, has been conducted. We have analyzed YOLOv11’s recognition results for
Grapholitha molesta in four scenarios using a test set of 50 images: independent pest images,
pest images under mutual adhesion, pest images under occlusion, and pest images under
overlap. The precision, recall, and F1-score parameters for these scenarios were obtained.

The statistical analysis reveals that TFEMRNet achieves the most significant improve-
ment in detection performance under overlapping conditions, with precision increasing by
46.73% and recall increasing by 82.84%. This enhancement addresses the issue of small-
target pest features being lost due to overlap in high-resolution images, which previously
led to missed detections. In occlusion scenarios, where features of small-target pests are
partially lost, TFEMRNet outperforms YOLOv11 with precision improving by 20.06%
and recall improving by 71.15%. For mutual adhesion conditions, TFEMRNet improves
precision by 21.63% and recall by 28.51% compared to YOLOv11. In the most frequent
independent pest scenario, TFEMRNet achieves a precision improvement of 36.97% and a
recall improvement of 11.68% compared to YOLOv11.

An analysis of Table 3 shows that in the independent pest scenario, the number of
false positives (FP) is relatively high due to the similarity between impurity features and
Grapholitha molesta features. In high-resolution images, YOLOv11 extracts fewer semantic
features of Grapholitha molesta, making it difficult to distinguish them from impurities,
resulting in low recognition accuracy. TFEMRNet, however, extracts more semantic features
of Grapholitha molesta, effectively distinguishing them from impurities and thus improving
recognition accuracy.
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Table 3. Performance of two models under multiple interference conditions.

Method Situations TP TP FN Precision (%) Recall (%) F1 (%)

YOLOv11

independent 564 241 78 70.06 87.85 77.95
Occlusion 16 5 58 76.19 21.62 33.68
adhesion 303 108 146 73.72 67.48 70.46
overlap 3 4 45 42.85 6.74 10.91

TFEMRNet

independent 639 5 3 99.22 99.53 99.37
Occlusion 68 3 6 95.77 91.89 93.79
adhesion 431 21 18 95.35 95.99 95.67
overlap 43 5 5 89.58 89.58 89.58

In occlusion and overlap scenarios, the number of false negatives (FN) is higher due
to the loss of Grapholitha molesta features, which are not detected by YOLOv11. This loss of
features in the extracted feature maps leads to YOLOv11’s inability to detect Grapholitha
molesta under these conditions. TFEMRNet outperforms YOLOv11 across all four scenarios
because YOLOv11 suffers from the loss of high-level semantic features of Grapholitha
molesta. TFEMRNet’s two-stage recognition method overcomes the challenges faced by
traditional object detection models in extracting small-target features from high-resolution
images, thus addressing the issue of low recognition accuracy for Grapholitha molesta in
various conditions.

This demonstrates that our model performs well in handling small-target pests in
high-resolution images.

4. Conclusions and Future Work

Pest monitoring systems are integral to apple cultivation and broader agricultural
practices. This study focuses on the identification of Grapholitha molesta by introducing a
two-stage detection model named TFEMRNet. The model effectively identifies Grapholitha
molesta in high-resolution images, achieving a detection accuracy of 96.75% and a recall rate
of 96.45%. The proposed two-stage recognition approach enhances the semantic features of
Grapholitha molesta during the object detection phase, thereby addressing the challenge of
low detection accuracy. To elevate the performance of the semantic segmentation compo-
nent, the TFENet module incorporates Swin Transformer and EfficientNet architectures to
extract both global and local pest features. Consequently, the enhanced network attains
an Intersection over Union (IoU) of 91.63% in image segmentation, successfully segment-
ing Grapholitha molesta and providing high-quality samples for the subsequent object
detection phase.

TFEMRNet demonstrates excellent scalability through its modular design and efficient
feature extraction capabilities, enabling it to handle larger datasets and adapt to the moni-
toring of various harmful biological species. Its two-stage architecture facilitates distributed
computing and parallel processing, ensuring high performance even when confronted with
massive image data. Additionally, the TFENet module incorporates a Multi-Attention Chan-
nel Aggregation (MACA) mechanism that integrates diverse semantic features, thereby
enhancing the model’s ability to recognize different pest characteristics and allowing it
to flexibly adapt to the detection requirements of various species. Leveraging transfer
learning and data augmentation techniques, TFEMRNet can rapidly adapt to new pest
types and improve its generalization capabilities across diversified datasets. Furthermore,
TFEMRNet supports multi-task learning, enabling the simultaneous detection of multiple
pest species, which further enhances the model’s efficiency and adaptability. In practical
applications, TFEMRNet continuously optimizes and updates the model by integrating
multi-source data and real-time monitoring feedback, ensuring its effective deployment
across different agricultural environments. Future research will focus on developing a
lightweight version of TFEMRNet suitable for mobile devices and expanding the dataset to
include a broader range of pest species, thereby further advancing the modernization and
precision of intelligent agricultural practices.
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Furthermore, TFEMRNet has been deployed on a pest warning website for practical
application. The experimental results underscore the superiority of TFEMRNet’s pest
detection architecture, demonstrating its potential for identifying other small-target pests.
However, the current optimization objective function of TFEMRNet does not yet address
model lightweighting. Future research will focus on developing a lightweight version of
TFEMRNet suitable for mobile devices and expanding the dataset to include samples of
peach small borers and citrus small borers for training and deployment. Additionally, we
plan to integrate climate and soil moisture data to identify patterns of pest occurrence,
thereby advancing the modernization of smart agriculture through comprehensive analysis
and data processing.
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Abstract: The primary strategy for mitigating lost productivity entails promptly, accurately, and
efficiently detecting plant pests. Although detection by humans can be useful in detecting certain
pests, it is often slower compared to automated methods, such as machine learning. Hence, this
study employs a Convolutional Neural Network (CNN) model, specifically GoogleNet, to detect
pests within mobile applications. The technique of detection involves the input of images depicting
plant pests, which are subsequently subjected to further processing. This study employed many
experimental methods to determine the most effective model. The model exhibiting a 93.78% accuracy
stands out as the most superior model within the scope of this investigation. The aforementioned
model has been included in a smartphone application with the purpose of facilitating Indonesian
farmers in the identification of pests affecting their crops. The implementation of an Indonesian
language application is a contribution to this research. Using this local language makes it easier
for Indonesian farmers to use it. The potential impact of this application on Indonesian farmers is
anticipated to be significant. By enhancing pest identification capabilities, farmers may employ more
suitable pest management strategies, leading to improved crop yields in the long run.

Keywords: pest detection; GoogLeNet; Convolutional Neural Network; mobile application

1. Introduction

Food is one of the most fundamental requirements for maintaining human health
and vitality. Almost anywhere in Indonesia, a wide variety of crops may be grown due to
the country’s abundance of arable land [1]. When it comes to plant exports, Indonesia is
a major player [2]. Due to its tropical location, Indonesia frequently experiences floods,
droughts, and other forms of severe weather. The changing patterns of precipitation and
temperature brought on by global warming also threaten plant growth and crop output.
Traditional, inefficient farming practices are still used by some Indonesian farmers. Another
factor that might prevent farmers from boosting output is a lack of access to cutting-edge
agricultural technologies like organic fertilizer, improved seeds, enough irrigation, and safe
pesticides. Social disparities in Indonesian society, which may be experienced by farmers
in particular locations, may also have an impact on agricultural output. Small farmers’
inability to run their farms efficiently is largely attributable to their lack of knowledge. Poor
harvest outcomes are to be expected under these conditions.

The situation of farmers in Indonesia is strongly connected to the challenge of identi-
fying pests in agricultural settings, which in turn can have an effect on crop yields that are
not at their full potential [3]. The education level of many farmers in Indonesia is rather
poor, and they have limited access to agricultural training and knowledge [4–6]. As a
consequence of this, they might not have an appropriate understanding of how to properly
detect and control agricultural pests. Smaller farms may not have the financial means to
invest in or learn to utilize sophisticated software tools for pest identification. As a result, it

AgriEngineering 2023, 5, 2366–2380. https://doi.org/10.3390/agriengineering5040145 https://www.mdpi.com/journal/agriengineering



AgriEngineering 2023, 5

may be challenging to see pests in their early stages. Without prompt and proper treatment,
a pest infestation on one plant will spread to others in the area [7–11]. In a typical crop,
a single rat may harm anywhere from 11 to 176 plants in a single night [12]. During the
breeding season, a single rat can destroy up to 26 stalks in a single night, leaving behind
only a few rows of plants. It takes a mouse only 21 days to have her own litter of 6–8 young.
Obviously, the severity of this problem might increase dramatically if it is not addressed
promptly and effectively. Depending on the surrounding environment and the care offered
to the plant, there may be a wide variety of pests that target a single plant type [13].

Several ancillary technologies [14] are already in use in the agriculture industry,
including drones. Farmers may utilize drones to keep an eye on crops from above and
protect them from pests by spraying pesticides over large areas [15–18]. However, without
special detecting equipment, drones cannot identify which pests are present on a farm, and
not every farmer can afford to buy them. Pest detection apps for smartphones that are
already ubiquitous in Indonesia are a necessity.

It is important to be able to identify the numerous plant pests that occur. Machine
learning using supervised model approaches is one approach [19–25]. This technique
needs data that already have a previous label. In machine learning, there are also various
methods of image classification. One effective method is the use of CNNs. The Pest
Region-CNN end-to-end detection model, otherwise known as Pest R-CNN, was created
by Du et al. for the maize pest Spodoptera frugiperda [26]. It tracks their consumption
of maize leaves using the Faster R-CNN model. The model classifies invasion intensity
into juvenile, minor, moderate, and severe using UAV-acquired high-spatial-resolution
RGB ortho-images. The model demonstrated the efficacy of deep learning object detection
in pest monitoring with a mean average accuracy of 43.6% on the test dataset. Their
model’s detection accuracy improved by 12% and 19% over Faster R-CNN and YOLOv5,
respectively. Jiao et al. developed a CNN-based multi-class pest identification approach
for complicated scenarios [27]. Their research introduces adaptive feature fusion within
feature pyramid networks to extract deeper pest characteristics. To reduce information
loss in the highest-level feature map, an adaptive augmentation module was designed.
Finally, a two-stage region-based CNN (R-CNN) refined the predicted bounding boxes to
determine the pest types and locations in each image. Compared to SSD, RetinaNet, FPN,
Dynamic R-CNN, and Cascade R-CNN, their method achieved 77.0% accuracy, which was
the highest.

The key to lowering the amount of produce that is lost is finding plant pests as early,
correctly, and effectively as possible. In this scenario, apps that run on mobile devices
provide a significant and pertinent solution. With the help of smartphone applications,
farmers are able to conveniently perform routine checks on their crops. They can capture
images of plants and detect pests using their mobile devices, making it simpler for them
to record and monitor everyday agricultural conditions. Mobile applications have been
developed with user interfaces that are straightforward and simple to operate. Because
of this, they may be used without trouble by farmers who have varied levels of education
and prior experience with technology. A number of applications have been developed to
help farmers detect pests. Prabha et al. developed an Android mobile application that
utilizes a Deep CNN (DCNN)-based artificial intelligence system for the purpose of insect
identification in maize production [28]. The utilization of CNN models on mobile devices
yields advantages for all stakeholders, with particular benefits being offered to farmers and
agricultural extension experts, since they enhance their accessibility. A mobile application
for Android was developed for the purpose of detecting fall armyworm infection in maize
crops. This application incorporated the advice provided by Tamil Nadu Agricultural
University’s Integrated Pest Management (TNAU IPM) capsules. This mobile software
offers guidance on effectively managing the issue of fall armyworm infestation. Chen et al.
presented an application for the identification of scale pests in Taiwan using image-based
methods [29]. The Coccidae and Diaspididae species, known as mealybugs, are the predom-
inant pests of scale insects in Taiwan. These species have the potential to cause significant
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harm to plants and pose a substantial threat to agricultural productivity. Therefore, the
identification of scale pests holds significant importance within the agricultural sector of
Taiwan. You Only Look Once v4 (YOLO v4), single-shot multi-box detectors (SSDs), and
faster region-based CNNs (Faster R-CNNs) are some of the deep learning algorithms used
to detect and precisely localize scale pests inside an image. A smartphone application
has been created that utilizes a trained scale pest detection model. This application aims
to assist in the identification of pests in agricultural settings, hence enabling farmers to
effectively apply targeted pesticides and minimize crop losses.

Despite the existence of several related applications in other countries, there is a dis-
tinct necessity for tailored mobile-based applications designed specifically for Indonesian
farmers. The compatibility between applications produced in other countries and the
local language may not always be guaranteed. The development of a mobile application
tailored to Indonesian farmers would facilitate the incorporation of local language into
the program’s content and user interface. This approach would enhance comprehension
and acceptance among farmers, hence facilitating their utilization of the application. There
is a poor general level of English proficiency in the whole population of Indonesia [30].
Farmers who have completed elementary and secondary schooling will also find this to
be a difficult situation [31]. As a result, developing a mobile application tailored to the
needs of Indonesian farmers has the potential to address the distinct obstacles encountered
within the agricultural sector in Indonesia.

This study also employs a CNN architecture, namely GoogleNet, for the purpose
of identifying pests within mobile applications. GoogleNet makes use of a technology
called Inception blocks, which integrate a variety of convolutional algorithms and filter
sizes into a single layer. This results in a reduction in the number of computing processes
and parameters that are necessary, making the model simpler. When compared to other
CNN architectures that were available at the time, such as AlexNet or VGG, this model
featured a significantly lower total number of parameters [32,33]. This enabled a more
effective utilization of the RAM of the mobile device. In addition, this model includes
methods such as L2 regularization and dropout to avoid overfitting [34]. This can assist
in retaining model performance on small datasets without the need for a high number
of parameters by reducing the likelihood of the model being overly accurate. The fact
that GoogleNet was developed with hardware capabilities in mind, such as the Single
Instruction Multiple Data (SIMD) instructions that are present on many recent mobile
devices [35], is another key aspect to take into consideration. This helps to maximize
the usage of the resources available in the hardware. Traditional convolution is rendered
obsolete as a result of the development of depth-wise separable convolution. Because
of this, the number of operations and parameters that are necessary is decreased, which
results in increased computing efficiency. The use of a large number of convolutional
layers of relatively modest size helps to extract information in an effective manner and
also enables dimensionality reduction. All of the aforementioned criteria contribute to
GoogleNet’s ability to achieve an optimal performance on mobile devices with limited
resource capacities. Because of this, it is an excellent option for mobile apps, which place
a premium on computing efficiency as well as model size. This aligns with the varied
agricultural landscape of Indonesia.

2. Materials and Methods
2.1. Data Collecting

Insects and other organisms that cause damage to plants are the focus of this research.
The information was obtained from the Kaggle website, which may be viewed at the fol-
lowing address on the internet: https://www.kaggle.com/simranvolunesia/pest-dataset
(accessed on 21 February 2022). The data that were used cover nine different kinds of
plant-destroying insects, including aphids, armyworm, beetles, bollworms, grasshoppers,
mites, mosquitoes, and sawflies. Stem borers were also included in the list. There are
two types of data in the dataset provided. The data included 2700 images, with each
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class contributing 300 images. These data were used to train the model, with 1800 data as
training data, and the remaining 900 data as validation data. The data were distributed
evenly in terms of number throughout each class so that the process of learning could go
more smoothly with the weighting model. The second data group comprised the taking of
450 images, with each class contributing 50 images. This second data group was used to
test the model.

2.2. Data Preprocessing

In the first step of the data preparation stage, the data were separated into two
categories: training data and validation data. Following the distribution of the data, the
images were subjected to preprocessing. Image preprocessing was performed so that the
model was able to detect characteristics in images with greater ease as a result of the work
that was performed. Image data relating to plants and pests were examined in this study.
The data were eventually utilized as input data in the classification process once they had
been processed via the preparation step. Data preprocessing consisted of two main stages,
namely image resizing and image augmentation. Image resizing was performed to change
the input image to a size of 224 × 224, with a size of 3 bits per pixel. Some deep learning
operations are more efficient when the size of the image is a multiple of certain numbers,
such as 32, 64, or 128. The GPU can process data more efficiently with an image size of
224 × 224 pixels [36]. Numerous deep learning models have been trained (pre-trained)
with datasets containing images of size 224 × 224 [37]. Utilizing pre-trained models is
facilitated by employing the same size during detection. Also, certain deep learning
frameworks, such as TensorFlow, have pre-trained models that support 224 × 224 image
sizes directly [38]. This facilitates the implementation of these models within applications.

Image augmentation was only carried out on the training data, because a lot of data
were needed for the model training process [39–42]. The process was carried out to expand
the variety of images that were used by the model using the module tf.image in TensorFlow.
This stage was carried out to increase the amount of data by changing the shape of the image.
The augmentation process carried out involved rotating the image, shifting the image based
on the width and height of the image, applying shearing to the image, enlarging the image,
and flipping the image horizontally.

• Width Shift

This was carried out to shift the image width to the left and right to provide variations
for the model to learn. The width shift range value given was 0.2.

• Height Shift

This was carried out to shift the image height up and down to provide variations for
the model to learn. The height shift range value given was 0.2.

• Shears

This was carried out to tilt the image regarding the x-axis and y-axis to provide
variations for the model to learn. The value of the shear range given was 0.2.

• Zoom

This was carried out to enlarge or reduce the image to provide variations for the model
to learn. The value of the given zoom range is 0.2.

• Horizontal Flip

This involved flipping an image vertically or horizontally to provide variations for
the model to learn. It was assisted using external tools in the form of an image
data generator library that had been previously provided by Tensorflow to make the
process easier.
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2.3. Classification

One deep learning approach is CNN, which is based on artificial neural networks
(ANN) [43–45]. The process data at both the input layer and the hidden layer then output
the results to the output layer. The difference between CNNs and ANNs is that the former
focuses more on recognition than the latter. A CNN has a structure consisting of various
layers that form a stacked network [46,47]. Convolutional layers, pooling layers, and fully
connected layers are the three main layers that produce a CNN after being combined. The
CNN layer is very important. This layer continuously uses filters on the data in the input
layer, and then produces the output. In the pooling layer process, the output convolutional
layer has its dimensions and parameters reduced [48–50]. Maximum pooling takes the
largest value from the pooling filter used. Average pooling takes the average value from
the pooling filter used. The pooling process helps reduce the computational complexity
of the model and prevents overfitting. Multilayer perceptron applications typically use
fully connected layers. The goal of convolutional or pooling layers is to increase the
dimensionality of data that can be classified linearly. To achieve this goal, data that have
been previously processed in this layer will be flattened first before being inserted into
this layer.

In 2014, Google collaborated with various universities to conduct research on GoogleNet,
also known as Inception V1. The winner of ILSVRC 2014 is this architectural design.
Compared to winning designs from previous years, this design is more accurate. This
architecture uses global average pooling and 1 × 1 convolution in the middle. The main
aim of this architecture is to determine how optimally the local sparse structure in a
convolutional vision network can be estimated and encompassed in easily accessible thick
components [51–55]. This architecture’s 1 × 1 convolution concept helps reduce the number
of parameters (loads and biases) present in the architecture significantly. At the end of
the network, this architecture uses an elative global average pooling method. Overall,
this structure consists of twenty-two layers. To maintain computational efficiency, this
architecture can be used on devices. It has low computing capabilities, as depicted in
Figure 1, which explains the details of the twenty-two architectural layers. This study used
the CNN method. The architecture used was GoogLeNet, which was a development of
LeNet and AlexNet and had twenty-two layers. The GoogLeNet model was implemented
by training the model using previously obtained data. By using a pre-existing dataset, this
model predicted images of plants.

Figure 1 demonstrates the GoogLeNet architecture that was utilized in the research.
The subsequent section provides an outline of the subsequent steps:

1. The input used is an image measuring 224 × 224.
2. The image data undergo five phases of convolution prior to reaching the fully con-

nected layer.
3. In the initial phase, the data are subjected to 7 × 7 convolution and 3 × 3 max pooling.
4. The data are then transit through two convolution layers with dimensions of 1 × 1

and 3 × 3, followed by a max pooling layer with dimensions of 3 × 3.
5. In the third stage, data enter the Inception model layer twice and are processed by

max pooling with 3 × 3 dimensions.
6. In the fourth stage, the data are first processed by an Inception model layer and then by

an auxiliary classifier. The data then pass through three layers of the inception model
and then the second auxiliary classifier. Then, the data pass through an Inception
model layer once more prior to max pooling with 3 × 3 dimensions.

7. In the fifth stage, the data travel through two layers of the Inception model and
then undergo 7 × 7-dimensional average pooling. The data then proceed to the
output after passing through the fully connected layer, which is also the sixth stage of
the architecture.

8. At stages 2 through 5, a 1 × 1 convolution layer is used to reduce the dimensions of
the output.
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Figure 1. Details of each layer on GoogleNet.

An inception model and auxiliary classifier were developed for the GoogLeNet ar-
chitecture in this study before creating the main model. Figure 2 illustrates the inception
model’s architecture. In addition, Figure 3 describes the auxiliary classifier, which was
utilized by the GoogleNet model.
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Figure 3. Architecture of Auxiliary Classifiers.

Before the model was implemented, hyperparameters were determined. The research
was conducted by experimenting with multiple hyperparameters to determine the optimal
pair of hyperparameters that yield the most accurate results from the model. This research
employed the number of dense layers in the fully connected layer and various dropout
values as hyperparameters. The research utilized these two categories of hyperparameters
to find the optimal solution. The dropout values evaluated were 0.3, 0.4, and 0.5, and
the number of dense layers was 1, 3, or 5. The hyperparameter determination procedure
involved varying the number of dense layers and the dropout value on the fully connected
layer to select the model with the highest accuracy. After determining the optimal hy-
perparameters, the GoogleNet model was applied to the applications created with the
hyperparameter pair that yielded the highest accuracy.

In addition to the hyperparameters that were investigated, this study also set ad-
ditional factors, including epochs, the batch size, optimizers, and the image size. The
number of epochs was set to 100. The batch size, which determined the number of samples
processed in each iteration, was specified as 8. The optimizer in this study was Stochas-
tic Gradient Descent (SGD). The learning rate, denoting the step size at each iteration,
was assigned a value of 0.00001. Lastly, the image size was 224 × 224. Hyperparameter
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changes involved a dense layer between the flatten layer and the output layer, as well as
modifications to the values inside the dropout layer.

2.4. Evaluation

Model testing was carried out using data that were different from the training and
validation data. This was to ensure that each model created made predictions on data
that the model had not previously studied. Model validation was carried out via K-fold
cross-validation (K = 3). This method helped the process of evaluating and determining
hyperparameters, especially on smaller datasets. This method divided k datasets randomly.
To determine the validation and training data, the rotation of each piece of data was
performed [56–58]. The aim of this training was to produce different evaluation results
for each fold performed. The hyperparameters were determined by taking the average
value of these assessments. In addition, a confusion matrix was displayed in this study
to simplify the test. The accuracy values were obtained using this matrix. This was the
amount of data that had been classified correctly. During this procedure for testing models,
the only model that was chosen was the one that had the highest quality validation values
for each hyperparameter. This method was used to check the model with new data. The
test results were used to assess the Android application system model created.

2.5. Implementation of Mobile Applications

The training process was carried out using Google Colab (Google LLC, Mountain View,
CA, USA). After the model evaluation process was complete, the conversion stage was
carried out. Of all the hyperparameter experiments carried out, only the best model was
implemented in the application. Because the application to be developed was smartphone-
based, this conversion process was necessary. Tensorflow Lite is a version of Tensorflow
specifically made for mobile-based applications used on the Android operating system, and
was used in this study. The disparities in the accuracy and duration of detection between
training in Google Colab and testing on a smartphone might arise from several sources.
Some examples include hardware disparities, deployment optimization, and dependencies
on frameworks and libraries. In order to address this issue, we employ frameworks such as
TensorFlow Lite, which is specifically developed to enhance the efficiency of models for
deployment on mobile devices. It provides tools and techniques particularly designed to
enhance the speed and efficiency of inference on mobile devices. It can strive to minimize
the disparities in precision and response time between the training environment in Google
Colab and the testing environment on a smartphone. This process was carried out to
change the format of the model obtained, which was previously in h5 format, into TFlite
format. After the conversion process was complete, the model was moved to the Android
application directory. It carried out the detection process using the application diagram
package that is presented in Figure 4. The system structure consisted of relationships
between directories in the application, as depicted in this diagram. Three main directories
comprised the created directory: res, Java, and the Machine Learning Model. The res
directory consisted of assets to support the visuals of the application that were used in
the Java directory later. The directory included the logic that regulated the application
path. Machine learning models were applied to the applications in this directory. The
deployment diagram in Figure 5 explains the physical settings of the application being
created. The Java classes were components that form the flow and logic of an application;
resources were the material that was shown to the user. Tflite was the model used for the
machine learning prediction process. This GoogleNet-installed mobile application requires
an Android operating system, a minimum of 2 GB RAM memory, and a minimum of 32 GB
internal storage. The camera’s resolution must be at least 4 megapixels for direct image
capture. When run, this application has a maximum size of 10 MB.
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3. Results

At this point, an evaluation of the hyperparameters that were employed is carried
out, and its findings are analyzed. The specified hyperparameters were utilized in a total
of 12 separate experiments. The metrics taken into consideration were the accuracy score
from the testing to ensure that there was no overfitting or underfitting. In the testing
process, the model with the best accuracy value was selected from the k-fold process that
was previously carried out. This was done because K-fold produced three models and
only used one of the models later to be implemented into the prototype to be made. The
hyperparameters to be tested were the number of dense layers and the dropout value. The
hyperparameters of dense layers had a total of 0, 1, 3, and 5, with some dropout values of
0.3, 0.4, and 0.5.

Table 1 shows that the experiment that produced the best model was the one that
had the addition of five dense layers and a dropout of 0.5. Even though it had the same
accuracy during testing as a model that did not experience the addition of a dense layer,
and even though the dropout value was 0.5, the accuracy of the model with the addition of
five dense layers during validation was 1% superior. The worst model from this experiment
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was the model with the addition of three dense layers, with a dropout value of 0.3% and an
accuracy of 89.33%. The best confusion matrix model is in Figure 6.

Table 1. Experimental results.

Dropout Number of Dense Layer Number of Neurons Accuracy

0.3 0 0 92.22%
0.3 1 256 91.33%
0.3 3 512; 256; 128 89.33%
0.3 5 512; 256; 128; 64; 32 93.11%
0.4 0 0 92.88%
0.4 1 256 91.77%
0.4 3 512; 256; 128 92.44%
0.4 5 512; 256; 128; 64; 32 92.22%
0.5 0 0 93.78%
0.5 1 256 93.33%
0.5 3 512; 256; 128 93.55%
0.5 5 512; 256; 128; 64; 32 93.78%

AgriEngineering 2023, 5, FOR PEER REVIEW    10 
 

 

experiment was the model with the addition of three dense layers, with a dropout value 

of 0.3% and an accuracy of 89.33%. The best confusion matrix model is in Figure 6. 

Table 1. Experimental results. 

Dropout  Number of Dense Layer  Number of Neurons  Accuracy 

0.3  0  0  92.22% 

0.3  1  256  91.33% 

0.3  3  512; 256; 128  89.33% 

0.3  5  512; 256; 128; 64; 32  93.11% 

0.4  0  0  92.88% 

0.4  1  256  91.77% 

0.4  3  512; 256; 128  92.44% 

0.4  5  512; 256; 128; 64; 32  92.22% 

0.5  0  0  93.78% 

0.5  1  256  93.33% 

0.5  3  512; 256; 128  93.55% 

0.5  5  512; 256; 128; 64; 32  93.78% 

In this case, almost all hyperparameters were stable in the range of 91–93% except for 

the hyperparameter pair number with 3 dense layers and a dropout value of 0.3, which 

had an accuracy of 89%. Models that experience the addition of five dense layers tend to 

be stable, with an accuracy  in  the range of 92–93%. With an  increase  in  the number of 

dense layers, the model was able to take in deeper features in the image. However, if it 

took too many features from an image, overfitting occurred. If the model was too focused 

on a particular training dataset, it made predictions correctly when given another, similar 

dataset. Furthermore, in this case, the dropout value had no significant effect on produc-

ing an optimal model. 

 Predicted label   
 

A  B  C  D  E  F  G  H  I   
 

A
ct
u
al
 l
ab
el
 

A  49  0  0  0  0  0  0  1  0    A: aphids 

B  0  49  0  0  0  0  0  1  0    B: armyworm 

C  0  0  50  0  0  0  0  0  0    C: beetle 

D  0  1  0  40  0  1  1  4  3    D: bollworm 

E  1  0  0  0  48  0  0  1  0    E: grasshopper 

F  0  0  0  4  0  44  1  0  1    F: mites 

G  0  0  0  0  0  2  48  0  0    G: mosquito 

H  1  1  0  0  1  0  0  45  2    H: sawfly 

I  0  0  1  0  0  0  0  0  49    I: stem borer 

Figure 6. Confusion matrix. 

The stages of system implementation were carried out by making a prototype appli-

cation to detect pests on plants. The prototype of this application was based on the An-

droid operating system. In this application prototype, there are four main views: pages 

from the main menu, pest detection, how to deal with pests, and application description. 

The application was shown to farmers in Indonesia so that the language of instruction is 

the national language, namely Indonesian. A detection page is a page containing the pri-

mary application features that will be provided to end users, as shown in Figure 7. It ex-

hibits  a  preview  of  the  detected  images  and  their  classification  based  on  nine  labels 

Figure 6. Confusion matrix.

In this case, almost all hyperparameters were stable in the range of 91–93% except for
the hyperparameter pair number with 3 dense layers and a dropout value of 0.3, which
had an accuracy of 89%. Models that experience the addition of five dense layers tend
to be stable, with an accuracy in the range of 92–93%. With an increase in the number of
dense layers, the model was able to take in deeper features in the image. However, if it
took too many features from an image, overfitting occurred. If the model was too focused
on a particular training dataset, it made predictions correctly when given another, similar
dataset. Furthermore, in this case, the dropout value had no significant effect on producing
an optimal model.

The stages of system implementation were carried out by making a prototype applica-
tion to detect pests on plants. The prototype of this application was based on the Android
operating system. In this application prototype, there are four main views: pages from
the main menu, pest detection, how to deal with pests, and application description. The
application was shown to farmers in Indonesia so that the language of instruction is the
national language, namely Indonesian. A detection page is a page containing the primary
application features that will be provided to end users, as shown in Figure 7. It exhibits
a preview of the detected images and their classification based on nine labels extracted
from the dataset. The detection page has two options to select the type of input that will be
used for detection. The two categories of input are direct capture with the mobile device’s
camera and taking images from the gallery. This page employs a pre-built deep-learning
model for detection.
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Figure 7. The mobile application is integrated with a pest detection system utilizing GoogleNet.
The purpose of this application is to answer the needs of Indonesian farmers, who predominantly
communicate in the Indonesian language, by presenting its content in Indonesian. (a) Illustrates
the user interface for inputting images to be detected. The “Kamera” function refers to the capability
of capturing images by utilizing the built-in camera on a mobile device. In contrast, the “Galeri”
feature facilitates the inclusion of images from the pre-existing collection into the user’s mobile gallery.
(b) Displays the program interface that exhibits the detected outcomes of the pests that were examined.

This study evaluated the application using a sample size of 36 participants. Table 2
displays the roster of inquiries. The participants in the study included 15 males and
21 females, ranging in age from 16 to 43 years old. The majority of participants were residing
in Java and Bali, which are two regions in Indonesia known for their extensive agricultural
areas. This survey utilized a Likert scale consisting of 10 assertions, each accompanied by a
range of response options that gauged the level of agreement or disagreement with a topic. A
rating of 1 signified a strong disagreement, while a rating of 5 signified a strong agreement.

Table 2. Survey results.

No Questions Mean Median Variation Min. Max.

1 Do you think this application will be effective in detecting pests? 4.36 4.00 0.13 3 5
2 Will this application help in identifying pest problems in plants? 4.31 4.00 0.15 3 5
3 Are you satisfied with the performance of this application in detecting pests? 4.08 4.00 0.19 2 5
4 Do you like the features of this app? 4.11 4.00 0.18 2 5
5 Is this application fast and accurate in detecting pests? 3.89 4.00 0.19 2 5
6 Can this app detect pests better than humans? 3.78 4.00 0.19 3 5
7 Will this application increase efficiency or productivity in agriculture? 4.31 4.00 0.17 3 5

8 Will this application make a positive contribution to overcoming pest
problems in plants or the surrounding environment? 4.36 4.50 0.16 3 5

9 Is this application easy to use? 4.36 5.00 0.17 3 5
10 Would you recommend this app to others, especially farmers? 4.33 5.00 0.19 3 5

The value 2 appears three times in all responses in the survey. The interviews with
the three individuals revealed, respectively, discontentment with the application being
available only on Android and a desire for the application to offer many more functionalities
to assist farmers in their work; furthermore, one respondent highlighted the lack of accuracy
in real-time testing. Nevertheless, the survey findings from the 36 participants indicated a
favorable outlook in terms of their contentment with the program. This is evidenced by the
fact that the average score falls between the range of 3.78 to 4.36.
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4. Conclusions

Using the GoogLeNet architecture, this research tries to apply the CNN method to
develop an application that can detect pests in plants. In its implementation, this research
showed that the convolution function, which extracted features pixel by pixel in the image,
allowed CNN to detect pests on plants. Adding a thick layer improved the accuracy of
the model; the number of thick layers made the model extract more features from the
dataset, but adding too many thick layers caused the overfitting of the model. The layer
dropout value of 0.5 was the most accurate but did not show significant changes between
models. The model with an accuracy of 93.78% was the best in this research. By entering
the GoogLeNet model into an application, an application can be created to detect pests
in plants on Android devices. This application was developed on a smartphone basis
so that Indonesian farmers could easily identify pests on their crops. This application is
also presented in Indonesian, which is the national language of Indonesia, so it is easy to
use. It is the main contribution of this research. It is hoped that this application will be a
breakthrough for Indonesian farmers. By identifying pests more easily, farmers can treat
pests more appropriately, which will ultimately result in better crop yields.

This research aims to help researchers and practitioners face the challenges that come
with real-world implementation by covering topics such as more heterogeneous data, a
focus on performance in limited-power devices, integration in end-to-end systems, security,
end-user evaluation, the development of custom algorithms, and ongoing evaluation. This
study has the potential to be extended further into applications that are more practical by
increasing the scale of the experiment. This is also supported by an interview conducted
with a respondent who is a staff member from the Plant Quarantine Agency of the Indone-
sian government. The suggestion is that the impact can be enhanced if the pests listed
for detection also encompass the sorts of pests that currently exist in Indonesia but are
still prevalent in specific regions. Due to the current process, this task is currently being
performed manually by the agency. Therefore, it is possible to ensure that this research
offers maximum advantages in a variety of practical applications while ensuring security,
privacy, and a good influence on society if a commitment is made to following the relevant
rules and standards and taking an ethical approach.
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Abstract: This study presents a comparative analysis of YOLO detection models for the accurate
identification of bean leaf diseases caused by Coleoptera pests in natural environments. By using
a manually collected dataset of healthy and infected bean leaves in natural conditions, we labeled
at the leaf level and evaluated the performance of the YOLOv5, YOLOv8, YOLOv9, YOLOv10, and
YOLOv11 models. Mean average precision (mAP) was used to assess the performance of the models.
Among these, YOLOv9e exhibited the best performance, effectively balancing precision and recall
for datasets with limited size and variability. In addition, we integrated the Sophia optimizer and
PolyLoss function into YOLOv9e and enhanced it, providing even more accurate detection results.
This paper highlights the potential of advanced deep learning models, optimized with second-order
optimizers and custom loss functions, in improving pest detection, crop management, and overall
agricultural yield.
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1. Introduction

The global agricultural industry is a cornerstone of the world’s economy and food
security, with certain crops playing an essential role in the livelihoods of millions of farmers.
Among these, beans stand out due to their extensive cultivation and high economic value.
In 2017, 60.6% of the world’s production was concentrated in six countries: India, Myanmar,
Brazil, the United States, China, and Mexico [1]. Additionally, the United States, India,
Brazil, and Mexico collectively accounted for 40% of the global import volume [2]. However,
despite their importance, beans are frequently subjected to a variety of infections and insect
infestations, resulting in significant financial losses and presenting a fundamental challenge
to food production.

The intensification and increasing frequency of plant pest and disease outbreaks
further exacerbate this issue, posing severe threats to agricultural systems and food
security [3–5]. These outbreaks not only cause economic instability but also create food
safety concerns and, in extreme cases, the potential for widespread events [5–7]. To address
these growing challenges, the global community requires better tools, improved capabilities,
and better co-ordination to effectively prevent, manage, and eradicate these threats [3,8].

Integrated pest management has long been recognized as a critical approach to mitigat-
ing the spread of pests and diseases, reducing yield losses, and improving productivity [9].
However, current methods reveal significant gaps, particularly in early detection, accurate
classification, and timely intervention. Emerging automation tools and technologies, par-
ticularly those that utilize artificial intelligence (AI), have shown promise in addressing
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these challenges [8]. Numerous studies have explored AI-based algorithms for the early
detection of plant pests and diseases, with deep learning approaches emerging as the
predominant focus of recent research. Despite these advancements, several limitations
remain, particularly in achieving the precision and speed required for practical real-time
applications [10].

One significant challenge is the size and quality of the datasets used to train these
models. Limited datasets can lead to overfitting, resulting in poor generalization of new
data. Although data augmentation methods offer partial solutions, a substantial amount of
high-quality images are still required to achieve robust model accuracy [11]. In addition,
symptom variations caused by factors such as plant genotype, environmental conditions,
and disease progression stages further complicate the generalization of the model [8].

Another persistent issue is the unbalanced distribution of the training data. Diseases
with fewer samples are often under-represented, biasing the models towards more preva-
lent conditions and reducing their effectiveness in identifying rarer diseases [12]. Moreover,
plants are often affected by multiple simultaneous diseases or nutritional deficiencies, a
scenario that current single-disease detection models struggle to address [13].

Real-time processing requirements pose yet another obstacle. Deploying these models
in practical applications requires algorithms that can process images quickly without com-
promising accuracy. This often demands a delicate balance between model complexity and
computational efficiency. Environmental factors, including lighting variations, background
noise, and other external conditions, further challenge the consistency of image-based
models in diverse settings [14].

To address these gaps, we conducted a comparative study on the performance of
various YOLO (you only look once) [15] object detection models. We hypothesize that using
pretrained YOLO models can significantly improve the early diagnosis and intervention
of crop diseases, ultimately contributing to better crop management and higher yields in
the agricultural domain. By using the effectiveness of these models, our study seeks to
enhance the precision and efficiency of pest detection systems. This research not only aims
to fill existing gaps in early pest detection but also to provide a robust method that can be
widely adopted to improve agricultural practices [16].

We focused on the identification of bean leaf diseases caused by Coleoptera pests
under natural field conditions. Unlike previous studies, this work addresses the challenge
of using YOLO models in real-world agricultural environments characterized by natural
surroundings, varied lighting, and environmental noise. Furthermore, the integration of
advanced optimizers such as Sophia and the PolyLoss function into YOLOv9e exhibits
measurable performance enhancements, contributing to the reliability and precision of
these models in pest detection.

The main contributions of this paper are the following:

1. Our dataset contains bean leaf images captured under natural field conditions, which
is less common compared to datasets captured in controlled environments.

2. We demonstrate the effectiveness of integrating the Sophia optimizer and Poly-
Loss into YOLOv9e, showing measurable performance improvements in mAP50
and mAP50-95.

3. The work focuses on real-world challenges such as complex backgrounds, varied
lighting conditions, and natural field variability, which have been less explored in
prior studies.

The rest of the paper is divided into six sections:
Section 2 summarizes related work on pest detection using deep learning. Section 3

discusses the importance of Coleoptera pests in beans and the YOLO models. Section 4
details the materials and methods: data collection, annotation, training, and metrics.
Section 5 analyzes the YOLO model results. Section 6 covers the main findings, and
Section 7 concludes with key insights and future research.
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2. Related Work

The use of deep learning for the detection of pests in crop leaves has become a highly
effective method to enhance agricultural productivity and improve crop health [17]. In
contrast, conventional methods relying on visual inspection by farmers are often time-
consuming, costly, and prone to mistakes [18]. Deep learning (DL) techniques, particularly
convolutional neural networks (CNNs), have revolutionized this field by enabling the rapid
and precise identification of pests and diseases in plant leaves [19,20]. Choudhary et al. [21]
proposed a method based on deep convolution neural networks to recognize plant diseases
on images. The innovation and advancement of the developed model lie in its simplicity,
which used CNN to distinguish between damaged and healthy leaves. Shrestha et al. [22]
developed a CNN-based method to detect plant diseases, emphasizing image processing
techniques to examine sample images of diseased and healthy plant leaves. These images
were used to train the model, resulting in a test precision of 80%. Shobana et al. [23]
proposed a technique to determine whether a plant is afflicted by a specific disease by
capturing an image of the leaves and entering it into a model to obtain the diagnosis. By
using CNN, the plant disease is identified with an accuracy of 86%. The study developed
by Survana et al. [24] aimed to improve crop health by precisely identifying leaf diseases
in seven plant species (apple, bell pepper, corn, grape, peach, potato, and tomato) using
a pretrained convolutional neural network (CNN). The results exceed a 90% accuracy
threshold in disease classification, outperforming traditional algorithms such as BPNN, K-
Means, MLP, RBF, and SVM. Kim and Kim [25] developed a deep learning model to identify
different pest infections in strawberry plants, enhancing pest management in smart farms.
EfficientNet [26] models were selected for their superior image processing capabilities and
high accuracy in the preprocessing phase, and EfficientNet-B3 demonstrated the highest
accuracy when used in conjunction with RegNetY-064 and ensemble learning. The authors
of [27] focused on using MobileNet for the classification of diseases in tomato leaves, and
their model was able to classify diseases such as early blight, leaf spot, yellow curl, and
healthy leaves. Their classification accuracy exceeded 0.980, demonstrating high precision
in distinguishing between different types of diseases affecting tomato leaves.

The YOLO family of models has shown significant promise in real-time pest disease
detection. The work presented by Mathew and Mahesh [28] focused on the use of YOLOv5
for identifying diseases in bell pepper plants, showcasing its potential in agricultural
applications. The study achieved more accurate and efficient disease detection compared
to other models, such as YOLOv4. The use of YOLOv5 enabled the rapid and precise
identification of disease symptoms in the leaves of the bell pepper plant, allowing early
detection and intervention to curb the spread of diseases and improve crop yield. The study
developed by the authors of [29] proposed YOLO-Tea in order to improve the detection
of tea disease. The proposed method was shown to outperform typical models, such as
SSD and Faster R-CNN, by 1.8% and 5.5%, respectively. The enhancements made to the
YOLOv5s model, such as the incorporation of the ACmix and CBAM modules, improved
the accuracy in identifying small targets such as tea diseases and insect pests. YOLOv7 has
also been used for the detection of tea leaf disease, showing superior results with a high
detection accuracy of 97.3% and a precision of 96.7% [30]. On the other hand, Trinh et al. [31]
presented the development of the Alpha-EIOU-YOLOv8 algorithm for the detection of
rice leaf disease. The researchers achieved a high detection accuracy of up to 89.9%,
exceeding the performance of existing methods. These advances emphasize the potential
of YOLO-based models in improving pest and disease detection in agricultural leaves.

Table 1 presents a detailed analysis of the contributions of this study, comparing them
with the results reported in the state of the art.
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Table 1. Comparison of key characteristics in different works. This table evaluates studies based on
the use of complex backgrounds, multiple classes in the same image, varying brightness conditions,
application to beans or soybeans, and data augmentation. Our work addresses all these aspects in
comparison to other works.

Work Use of Complex
(Real) Backgrounds

Incidence of
Classes in the Same
Image

Different
Brightness
Conditions

Applied to Beans or
Soybeans

Use of Data
Augmentation

[32] - - - - -

[33] - - - - X
[34] - - - X X
[29] X X X - -

[35] X - - - -

[36] - - - X -

[37] - - - X X
Our work X X X X X

3. Background

In this study, we focus on the detection of pests, specifically the Coleoptera species, that
are known to cause significant damage to crops and stored products. To accurately identify
and monitor these pests, we employ object detection models, particularly the YOLO models.
YOLO models are renowned for their high accuracy and real-time detection capabilities,
making them ideal for the rapid identification of Coleoptera in various environments. This
section provides a background on the pests targeted in our study and the object detection
methodologies utilized.

Coleoptera pests, such as the bean leaf beetle (Epilachna varivestis) and banded
cucumber beetle (Diabrotica balteata), are among the most destructive pests for bean crops.
These pests cause significant defoliation during the flowering and pod formation stages,
resulting in substantial yield losses. This study prioritizes Coleoptera due to its economic
significance in Zacatecas, Mexico. However, the methodology and dataset can be adapted
to other pests and diseases in future research.

3.1. Coleoptera

Coleoptera are the most species-rich order on the planet. Some of the families included
are Cerambycidae, Chrysomelidae, Scarabaeidae, Cicindelidae, Paussidae, Curculionidae,
Erotylidae, Languriidae, Endomychidae, Carabidae, Staphylinidae, Lucanidae, and Passali-
dae, among others [38]. Figure 1 shows examples of bean leaves affected by Coleoptera
pests, specifically from the Coccinellidae or Chrysomalidae families, displaying visible
damage such as holes and discoloration.

Figure 1. Examples of bean leaves showing damage caused by Coleoptera pests, specifically from the
Coccinellidae and Chrysomalidae families. The damage is characterized by holes and discoloration
on the leaf surface.
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3.1.1. Bean Leaf Beetle

Epilachna varivestis Mulsant (Coleoptera: Coccinellidae), commonly known as the
bean leaf beetle, Mexican bean beetle, bean beetle, or bean weevil, belongs to the order
Coleoptera and family Coccinellidae. It is classified as a nonquarantine pest [39]. These
beetles feed on the surface of leaf tissues, leaving only the veins and part of the epidermis
intact. The remaining tissue quickly dies and turns brown. This defoliation during the
flowering and pod formation and filling stages leads to significant yield losses in the
crop [40].

3.1.2. Banded Cucumber Beetle

Diabrotica balteata LeConte (Coleoptera: Chrysomelidae) feeds on the leaves, creating
oval or irregular perforations throughout the leaf blade. When small plants are affected,
their primary leaves show reduced growth, leading to wilting and eventual death. Damage
has also been observed in flowers and pods when populations are high [41].

3.2. YOLO Model

In 2016, YOLO [15] was introduced as an approach to object detection. This approach
addresses object detection as a regression task by simultaneously predicting bounding
boxes and class probabilities. YOLO employs a single neural network that processes
complete images in one pass, directly predicting bounding boxes and class probabilities.
Although YOLO may produce more localization errors than cutting-edge systems, it is less
prone to generating false positives on background elements.

The original YOLO model consisted of 24 convolutional layers followed by two fully
connected layers. It used 1 × 1 reduction layers followed by 3 × 3 convolutional layers. The
Fast YOLO model employs a nine-layer neural network. The final output of the model was
a 7 × 7 × 30 prediction tensor, as illustrated in Figure 2.

Convolution layer     
7x7x 64-s-2 

Maxpool layer 
 2x 2-s-2 

Convolution layer     
3x3-s-1 

Maxpool layer  
2x2-s-2 

Convolution layers    
1x1x128 
3x3x256
1x1x256
3x3x512

Maxpool layer  
2x2-s-2

Convolution layer   
  3x3x1024 
3x3x1024

Connection 
layer 

Convolution layers  
1x1x256 
3x3x512 
1x1x512
3x3x1024

Maxpool layer  
2x2-s-2 

X4 

X2 Connection 
layer 

Convolution layers  
1x1x512 
3x3x1024 
3x3x1024 

3x3x1024-s-2 

24 convolution layers total 

  1 convolution    1 convolution    4 convolutions    4x2+2=10
 convolutions  

  2x2+2=6 
convolutions  

  2 convolutions        

YOLO added layers

Figure 2. YOLO network’s architecture includes 24 convolutional layers, two subsequent fully
connected layers, reduction layers of dimensions 1 × 1, and convolutional layers of 3 × 3.

3.2.1. YOLOv5

YOLOv5 is characterized by its compact model size and rapid detection speed. Its
network structure comprises four main components [42]:

• Input component: The dataset is diversified by implementing the Mosaic data enhance-
ment. Here, four images are randomly selected and then scaled, cropped, and spliced.

• Backbone network: The architecture of this block is based on the CSPDarkNet archi-
tecture. Its 6× 6 convolutional layers perform feature extraction. The MaxPool layer is
included in the spatial pyram pooling fast (SPPF) for the last version of YOLOv5 [43].

• Neck network: The function of this block is to process the extracted features from the
backbone network. This task is performed using the feature pyramid network (FPN)
or the path aggregate network (PAN) to enhance the feature extraction performance.

• Classification layer: The final stage filters confidence bounding boxes and object
classes to yield the highest confidence and category results for detected objects.
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3.2.2. YOLOv8

The backbone of the YOLOv8 model retains the YOLOv5 CSP module. The C2f
module is used for visual feature extraction, replacing the C3 module. In YOLOv8, the
CBS 1 × 1 convolution structure in the PAN-FPN up-sampling stage is removed. The
model employs a decoupled head with two convolutions for classification and regression,
incorporating distribution focal loss (DFL) [44].

A major update of YOLOv8 includes an anchor-free approach and task alignment
learning for classification and regression. The anchor alignment metric is derived by multi-
plying the classification score with the IOU of predicted and actual frames and is used in the
sample allocation and the loss function to optimize the anchor predictions [45] dynamically.

The YOLOv8 model uses variational focal loss (VFL) for classification loss and
DFL + CIOU (complete IOU) loss for regression loss. DFL changes the single value of
the co-ordinate regression to output n + 1, representing the probability of the corresponding
regression distances, and calculates the integral to obtain the final regression distance. This
approach enables the network to focus more accurately on nearby target values, increasing
their probability [46].

3.2.3. YOLOv9

Launched in February 2024, YOLOv9 [47] incorporates advanced techniques such as
programmable gradient information (PGI) and the generalized efficient layer aggregate
network (GELAN) [48]. GELAN enhances feature aggregation, which is particularly benefi-
cial for small datasets such as the one used in this work. It optimally utilizes parameters,
reducing overfitting while retaining critical features. PGI tackles the information bottleneck
issue by retaining critical data across deep network layers, ensuring the production of
reliable gradients for precise model updates and improved detection performance. PGI
improves gradient flow across layers, making it better suited for extracting fine-grained
features in our dataset. GELAN represents a significant architectural enhancement that
promotes optimal parameter utilization and computational efficiency. This design facilitates
the smooth integration of various computational blocks, making YOLOv9 versatile for a
range of applications without sacrificing speed or accuracy. In particular, the medium to
large models, YOLOv9m and YOLOv9e, demonstrate significant advances in balancing
model complexity and detection performance, achieving notable reductions in parameters
and computations while improving accuracy.

3.2.4. YOLOv10

YOLOv10, released in May 2024 [49], was designed to enhance real-time object detec-
tion by addressing the limitations of previous models, such as reliance on nonmaximum
suppression (NMS) and architectural inefficiencies. It introduces NMS-free training through
consistent dual assignments and adopts a holistic model design that balances efficiency and
accuracy. The architecture includes an enhanced CSPNet backbone for improved gradi-
ent flow, a PAN neck for multiscale feature fusion, and dual heads for training, providing
multiple predictions per object and another for inference, offering a single prediction to
reduce latency. YOLOv10 also incorporates large-kernel convolutions and self-attention
modules [50].

3.2.5. YOLOv11

Launched in October 2024, YOLOv11 [51] represents the latest innovation in the
Ultralytics YOLO series at the time of this writing. It offers improvements in accuracy,
speed, and efficiency in the COCO dataset but not in our dataset, as we show in the
results. YOLOv11 features a modified backbone and neck architecture that improves
feature extraction for more precise detection and task performance. With refined designs
and optimized training pipelines, YOLOv11 achieves faster processing without sacrificing
accuracy. YOLOv11 is adaptable to various environments, including edge devices and
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cloud platforms, and supports a wide range of tasks such as object detection, segmentation,
classification, and pose estimation.

3.2.6. Sophia Optimizer

Sophia is a scalable second-order optimizer specifically developed for pretraining large
language models (LLMs). It enhances the optimization process by integrating curvature
information through an efficient approximation of the Hessian diagonal, eliminating the
need to calculate it at each iteration. This feature makes Sophia particularly beneficial in
federated learning (FL) scenarios. Compared to first-order adaptive optimizers such as
Adam [52], which is the default optimizer for YOLO models, Sophia achieves faster conver-
gence, requiring fewer steps while keeping the computational cost per step almost the same.
Tests on GPT models for language tasks showed that Sophia delivers an improvement of
2× in steps, total computation, and wall clock time [53].

3.2.7. PolyLoss

PolyLoss aims to enhance the performance of commonly used classification loss func-
tions, such as cross-entropy and focal loss, by interpreting them as polynomial expansions.
This approach decomposes the loss functions into a series of polynomial terms, with coeffi-
cients that can be adjusted to better align with specific tasks and datasets. By providing
this flexibility, PolyLoss enables the fine-tuning of the importance assigned to various poly-
nomial terms, leading to improved performance in a wide range of applications, including
image classification, segmentation, and object detection [54].

4. Materials and Methods

The methodology of this study is structured into five distinct phases (Figure 3) to
ensure the accurate identification of bean leaves using deep learning techniques. A compre-
hensive image dataset was collected and carefully cleaned to remove any images that did
not feature bean leaves. This preprocessing step was crucial to ensure that only relevant
images were included in the subsequent stages. The remaining images, which exclusively
depicted bean leaves, were then annotated with two classes: healthy and infected. Follow-
ing annotation, we trained 14 variants of the YOLO model, particularly YOLOv5, YOLOv8,
YOLOv9, YOLOv10 and YOLOv11. Finally, the performance of these models was evaluated
and compared using standard metrics to determine the most effective variant for detecting
and classifying the health status of the bean leaves.
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Figure 3. Workflow of the methodology followed in this study. The process begins with the collection
of bean leaf images, followed by the annotation of infected and healthy leaves. These annotated
images are then used to train YOLO models, and the performance of these models is compared using
various metrics.
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4.1. Data Acquisition

The dataset applied in this research originates from the prior study conducted by [55].
It consists of images depicting healthy and Coleoptera pest-affected bean leaves. The
dataset encompasses 531 images, each with a resolution of 1920 × 1080 pixels and an
approximate size of 519 KB in JPEG format. These images were taken in bean fields
distributed across different areas of Zacatecas, Mexico. The images were captured with a
Logitech C920 camera in midday natural light for even illumination. Photos were taken
170 cm above the ground, with the camera at a 90° angle to ensure uniformity.

4.2. Data Selection

During data selection, the dataset was refined to include only images with bean leaves.
Images with weeds or irrelevant objects were removed. As a result, the dataset decreased
from 531 to 508 images, ensuring relevance for annotation and training, as illustrated by
the removed image in Figure 4.

Figure 4. Example of a deleted image containing an unknown weed, which was removed during the
data selection phase to ensure that only images of bean leaves were included in the dataset.

4.3. Annotation

In the annotation phase, the relevant features of the bean leaves were analyzed and
extracted using image processing techniques. Based on the literature on the manifestations
of Coleoptera pests in bean leaves, two classes were designated for labeling: “healthy” and
“infected”. To create image labels according to these defined categories, we use a semi-
automatic annotation tool called Auto-Seg-annotation [56] that is based on the segment
anything model (SAM) [57].

4.4. Models Training

To effectively train and evaluate the models, we selected 508 images and divided
them into training, testing, and validation sets. The training set consisted of 308 images,
which is approximately 60% of the total; the validation set included 100 images (about 20%
of the total), used to fine-tune the model’s hyperparameters; and the test set comprised
100 images, used exclusively to evaluate the final performance of the model. This allocation
facilitated precision-metric calculations based on a percentage of the total images, allowing
for the direct interpretation of results on a scale of 0 to 100.

The hyperparameters and online augmentations selected in this study were consistent
for each model to facilitate performance comparison, as shown in Tables 2 and 3.
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Table 2. Hyperparameters employed during model training.

Hyperparameter Value

Epochs 200
Batch Size 16
Patience 20
Image Size 640

Table 3. Data augmentation parameters used during training.

Name Probability

hsv_hue_augmentation 0.015
hsv_saturation_augmentation 0.7
hsv_value_augmentation 0.4
image_translation 0.1
image_scale 0.5
flip_left_right 0.5
mosaic_augmentation 1.0
random_erasing 0.4
image_crop_fraction 1.0

4.5. Metrics Comparison

When comparing different YOLO versions, various key performance metrics were
incorporated to thoroughly evaluate the effectiveness of each model. The precision-recall
curve (Figure 5) provides valuable insights into the trade-offs between precision and
recall, which is essential to understanding how well the model manages diverse class
distributions. Meanwhile, the F1 confidence curve (Figure 6) helps to identify the ideal
confidence threshold where the harmony between precision and recall reaches its peak,
offering a better assessment of the performance of the model.
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Figure 5. Precision-recall curve for 14 versions of YOLO models, illustrating the trade-off between
precision and recall across different thresholds.
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Figure 6. F1 confidence curve for 14 versions of YOLO models, showing the variation in F1 score
across different confidence thresholds to identify the optimal balance between precision and recall.

We evaluated the performance of the models using mean average precision, which is
based on precision and recall.

Precision measures the ratio of correctly predicted positive observations to the total
predicted positives. It is calculated as (1).

Precision =
TP

TP + FP
, (1)

where TP represents true positives, and FP represents false positives. This metric indicates
how many of the detected objects are correctly identified.

Recall measures the ratio of correctly predicted positive observations to all observa-
tions in the actual class. It is defined as (2).

Recall =
TP

TP + FN
, (2)

with FN being false negatives. Recall highlights the model’s ability to identify all relevant
instances within the dataset.

Mean average precision at IoU = 0.50 (mAP50) averages the precision across all classes
at an intersection over union (IoU) threshold of 0.50. This metric provides insight into the
model’s performance in detecting objects with a moderate overlap criterion.

For a more detailed evaluation, the mean average precision at IoU thresholds from
0.50 to 0.95 (mAP50-95) is used. This metric averages the precision across multiple IoU
thresholds, ranging from 0.50 to 0.95 with a step size of 0.05, offering a more complete view
of the model’s ability to accurately predict bounding boxes across varying levels of overlap.
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5. Results

This section presents the detection results obtained using various YOLO models to identify
healthy and infected bean leaves. The comparison focuses on YOLOv5, YOLOv8, YOLOv9,
YOLOv10, and YOLOv11 models, highlighting their performance across different metrics.

Tables 4–8 display visual comparisons of the object detection results for the YOLOv5,
YOLOv8, YOLOv9, YOLOv10, and YOLOv11 models, respectively. Each row in the table
corresponds to a different variant of the model, and each column presents the detection
output for a specific image. The blue bounding boxes indicate healthy detected leaves,
while the red bounding boxes represent infected leaves.

Table 4. Visual comparison of object detection results using different YOLOv5 models (YOLOv5m,
YOLOv5l, and YOLOv5x) on three distinct images. Blue boxes indicate healthy detected leaves, while
red boxes represent detections of infected leaves.

Model Image 1 Image 2 Image 3

YOLOv5m

YOLOv5l

YOLOv5x

Table 5. Visual comparison of object detection results using different YOLOv8 models (YOLOv8m,
YOLOv8l, and YOLOv8x) on three distinct images. Blue boxes indicate healthy detected leaves, while
red boxes represent detections of infected leaves.

Model Image 1 Image 2 Image 3

YOLOv8m

YOLOv8l

YOLOv8x
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Table 6. Visual comparison of object detection results using two YOLOv9 models (YOLOv9c and
YOLOv9e) on three distinct images. Blue boxes indicate healthy detected leaves, while red boxes
represent detections of infected leaves.

Model Image 1 Image 2 Image 3

YOLOv9c

YOLOv9e

The evaluation of the performance of the YOLO models is presented using precision-
recall (PR) curves in Figure 5, the F1 confidence curves in Figure 6, and a detailed compari-
son of performance metrics in Table 9.

The PR curves (Figure 5) illustrate how precision and recall vary between different
confidence thresholds. The ideal performance of a model is represented by a curve that
approaches the top-right corner, indicating high precision and high recall. Among the
models tested, YOLOv9e and YOLOv9c consistently maintained higher precision over a
wide range of recall values, demonstrating their effectiveness in accurately identifying
healthy and infected bean leaves. In comparison, YOLOv5x and YOLOv8x performed
better at higher recall values, but their overall balance between precision and recall was
slightly less robust than the YOLOv9 models.

Figure 6 illustrates the F1 confidence curves, highlighting the performance of the
model at different thresholds. The F1 score, which reflects precision and recall, helps to
pinpoint the optimal confidence threshold. YOLOv9e and YOLOv9c maintained high F1
scores at various levels, proving to be reliable for leaf detection. In contrast, YOLOv5 and
YOLOv8 showed moderate F1 performance, with YOLOv5x and YOLOv8x excelling at
higher thresholds.

Table 7. Visual comparison of object detection results using two YOLOv10 models (YOLOv10m,
YOLOv10l, and YOLOv10x) on three distinct images. Blue boxes indicate healthy detected leaves,
while red boxes represent detections of infected leaves.

Model Image 1 Image 2 Image 3

YOLOv10m

YOLOv10l

YOLOv10x
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Table 8. Visual comparison of object detection results using two YOLOv11 models (YOLOv11m,
YOLOv11l, and YOLOv11x) on three distinct images. Blue boxes indicate healthy detected leaves,
while red boxes represent detections of infected leaves.

Model Image 1 Image 2 Image 3

YOLOv11m

YOLOv11l

YOLOv11x

Figure 6 presents the F1 confidence curves for the 14 tested versions of the YOLO
models. The F1 score combines precision and recall, offering a balanced measure of a
model’s performance. This figure illustrates how the F1 score changes across various
confidence thresholds to detect healthy and infected bean leaves.

Table 9 provides a comprehensive comparison of performance metrics for various
YOLO models in the detection of healthy and infected bean leaves. The models evalu-
ated include different versions of YOLOv5 (m, l, x), YOLOv8 (m, l, x), YOLOv9 (c, e),
YOLOv10 (m, l, x), and YOLOv11 (m, l, x). Each row in the table presents the metrics for a
specific model variant, and the results are categorized by the class of leaves (all, healthy,
and infected).

The breakdown by class (healthy and infected) shows that the models generally
perform better in detecting healthy leaves because the healthy category is more represented
in the data.

Table 9 demonstrates the slight superiority of YOLOv9e, with the highest score for
mAP50-95 of 0.514, making it the most balanced model crucial for practical applications, as
it outperforms in accuracy and reliability at different overlap levels.

The YOLOv10 and YOLOv11 models showed similar strengths. YOLOv10x was the
top variant with good precision and recall balance. YOLOv11x outperformed previous
versions with higher F1 scores and consistent precision-recall balance, ranking as one of
the top models in this study.

The data augmentation parameters and the standardized hyperparameters, as outlined
in Tables 2 and 3, respectively, ensured that the evaluation was conducted under consistent
and controlled conditions. This standardization facilitates a fair comparison and highlights
the real-world performance capabilities of each model.

While YOLOv10 and YOLOv11 introduce innovations such as NMS-free training,
large-kernel convolutions, and enhanced feature fusion designed to improve scalability
and efficiency in real-time object detection, these features offer advantages for large-scale
datasets and multi-class detection tasks, and may not fully capitalize on the focused, single-
class nature of our dataset. The architectural design of YOLOv9, specifically its GELAN
and PGI components, is more effective at balancing precision and recall for datasets with
limited size and variability. This explains the relatively lower performance of YOLOv10
and YOLOv11 compared to YOLOv9e in our experiments.
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Table 9. Performance metrics for various YOLO models in detecting healthy and infected bean leaves.
The bold numbers indicate the best results for each column and each class.

Model Class mAP50 mAP50-95

yolov5m
all 0.56 0.478
Healthy 0.774 0.673
Infected 0.345 0.283

yolov5l
all 0.583 0.513
Healthy 0.783 0.694
Infected 0.383 0.333

yolov5x
all 0.567 0.49
Healthy 0.783 0.68
Infected 0.352 0.3

yolov8m
all 0.566 0.473
Healthy 0.767 0.647
Infected 0.365 0.3

yolov8l
all 0.565 0.499
Healthy 0.781 0.696
Infected 0.348 0.302

yolov8x
all 0.571 0.503
Healthy 0.778 0.691
Infected 0.364 0.316

yolov9c
all 0.575 0.505
Healthy 0.782 0.689
Infected 0.369 0.322

yolov9e
all 0.578 0.514
Healthy 0.785 0.706
Infected 0.371 0.322

yolov10m
all 0.565 0.481
Healthy 0.768 0.655
Infected 0.361 0.307

yolov10l
all 0.56 0.476
Healthy 0.773 0.664
Infected 0.346 0.289

yolov10x
all 0.561 0.475
Healthy 0.777 0.664
Infected 0.344 0.286

yolov11m
all 0.59 0.51
Healthy 0.792 0.692
Infected 0.388 0.328

yolov11l
all 0.583 0.499
Healthy 0.787 0.685
Infected 0.379 0.314

yolov11x
all 0.587 0.507
Healthy 0.794 0.694
Infected 0.379 0.32

Model Improvement

After determining that YOLOv9e was the model that performed the best in the initial
analysis, we performed further experiments by integrating the Sophia optimizer and the
PolyLoss function, both separately and in combination. We retrained YOLOv9e with these
modifications to see how they would enhance the detection performance of the model.
Table 10 shows the numerical results, and Table 11 visually compares the object detection
results in three different images, with blue boxes representing healthy leaves and red boxes
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indicating infected ones. The introduction of Sophia and PolyLoss improved detection
accuracy, resulting in more precise and consistent bounding boxes for both healthy and
infected leaves.

Table 10. Performance metrics for YOLOv9 improved models in detecting healthy and infected
bean leaves. The bold numbers indicate the best results for each column and each class.

Model Class mAP50 mAP50-95

yolov9e
all 0.578 0.514
Healthy 0.785 0.706
Infected 0.371 0.322

yolov9e with Sophia optimizer
all 0.59 0.522
Healthy 0.795 0.709
Infected 0.386 0.335

yolov9e with Polyloss
all 0.592 511
Healthy 0.79 0.69
Infected 0.394 0.332

yolov9e with Sophia and Polyloss
all 0.589 0.519
Healthy 0.793 0.702
Infected 0.385 0.335

Table 11. Visual comparison of object detection results using the YOLOv9e model with Sophia
optimizer, Polyloss loss function, and both on three distinct images. Blue boxes indicate healthy
detected leaves, while red boxes represent detections of infected leaves.

Model Image 1 Image 2 Image 3

YOLOv9e
with Sophia

YOLOv9e
with Polyloss

YOLOv9e
with Sophia
and Polyloss

6. Discussion

Tables 4–8 reveal that YOLOv9e excels in precision and accuracy for the bounding box
for infected leaf areas, which are often smaller and more difficult to detect. This is evident
in the superior metrics found in Table 9. Occasionally, YOLOv10 and YOLOv11 incorrectly
classified overlapping entities or missed some leaf edges because their architectural design
targets larger datasets. As further evidenced in Table 9, the mAP50 and mAP50-95 scores
underline the robustness of YOLOv9e. It incorporates architectural features such as GELAN
and PGI, enabling better feature aggregation and gradient optimization, which are well-
suited for smaller datasets. The precision-recall curves depicted in Figure 5 demonstrate
the capacity of YOLOv9e to maintain high precision across different recall rates. Similarly,
the F1 confidence curves in Figure 6 show the consistent performance of YOLOv9e across a
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spectrum of confidence levels. These findings are consistent with the quantitative results
presented in Table 9. In Table 10, the incorporation of the Sophia optimizer and the PolyLoss
function into YOLOv9e improved both precision and recall, thus improving overall mAP
scores. This suggests that utilizing optimization techniques can effectively tailor YOLO
architectures to specific datasets and conditions.

7. Conclusions

This work demonstrated the effectiveness of YOLO models in real-world pest detection
scenarios, with YOLOv9e emerging as the most reliable model for detecting bean leaf
diseases. Despite the limited size of the dataset, the methodological rigor of the study
ensured robust model training and evaluation.

We evaluated the performance of various YOLO models in detecting healthy and
infected bean leaves. YOLOv9 models showed better overall performance, particularly
YOLOv9e, which excelled with a mAP50 of 0.578 and a mAP50-95 of 0.514, making it the
most effective model for the detection of bean leaf disease in this study.

Further improvements were explored by incorporating state-of-the-art architectures
such as YOLOv10 and YOLOv11, which introduced innovations such as NMS-free training
and enhanced feature fusion, yielding a better precision-recall balance. Although YOLOv9e
stood out as the most robust model for pest detection, YOLOv10 and YOLOv11 also
demonstrated significant potential for precision agriculture applications.

Moreover, the integration of the Sophia optimizer and PolyLoss into YOLOv9e further
improved its performance. The combined use of these optimizations yielded the best
overall results, improving precision and recall across confidence thresholds and demon-
strating their value in the refinement of deep learning models for agricultural tasks. These
findings emphasize the potential of YOLOv9e, particularly when enhanced with Sophia
and PolyLoss, as a reliable solution to detect pests in bean leaves. Future research will
focus on extending the dataset to include additional pests and diseases, enabling broader
applications of these models in precision agriculture.
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Abstract: Magnaporthe oryzae, the source of the rice blast, is a serious threat to the world’s rice supply,
particularly in areas like Tamil Nadu, India. In this study, weather-based models were developed
based on count time series and machine learning techniques like INGARCHX, Artificial Neural
Networks (ANNs), and Support Vector Regression (SVR), to forecast the incidence of rice blast
disease. Between 2015 and 2023, information on rice blast occurrence was gathered weekly from
three locations (Thanjavur, Tirunelveli, and Coimbatore), together with relevant meteorological data
like temperature, humidity, rainfall, sunshine, evaporation, and sun radiation. The associations
between the occurrence of rice blast and environmental factors were investigated using stepwise
regression analysis, descriptive statistics, and correlation. Mean Squared Error (MSE) and Root Mean
Squared Error (RMSE) were used to assess the model’s prediction ability. The best prediction accuracy
was given by the ANN, which outperformed SVR and INGARCHX in every location, according
to the results. The complicated and non-linear relationships between meteorological variables and
disease incidence were well-represented by the ANN model. The Diebold–Mariano test further
demonstrated that ANNs are more predictive than other models. This work shows how machine
learning algorithms can improve the prediction of rice blast, offering vital information for early
disease management. The application of these models can help farmers make timely decisions to
minimize crop losses. The findings suggest that machine learning models offer promising potential
for accurate disease forecasting and improved rice management.

Keywords: rice blast; Magnaporthe oryzae; weather parameters; INGARCHX; SVRX; ANNX

1. Introduction

More than half of the world’s population is fed by rice (Oryza sativa L.), which is an
essential component of global agriculture. It is grown in over 100 countries, with Asia
accounting for the majority of production. With an anticipated production of 11 million
metric tonnes in 2022 [1], the USA is another major producer of rice. For many people in
India, rice is a staple item and an essential component of the diet [2]. However, India’s
average rice yield is still relatively low, which makes it difficult to meet both domestic
consumption and export requirements despite growing local and worldwide demand [3].
Meeting rice production has become more challenging due to changing climatic condi-
tions [2]. With an estimated total production of 7.98 million tonnes, Tamil Nadu is the
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fourth-most productive state in India. Tamil Nadu is ranked third in terms of yield per
hectare, producing about 3379 kg per hectare. The physiological processes of rice, such
as growth, development, and grain production, are impacted by climate change. It also
indirectly affects the prevalence of pests and diseases, which has an effect on yields [4].
The crop is susceptible to pathogen infection, which can result in a variety of diseases
depending on the weather. This highlights the importance of early detection and suitable
treatment to minimize damage and guarantee maximum efficacy [5–7]. A fungus known as
Magnaporthe oryzae attacks rice crops from seedling to harvesting. When the infection is
severe, it can cause the panicles to topple over. It can also occur on the seeds, neck, and
branches of the panicles, which show greyish-brown, spindle-shaped lesions when infected
(Figure 1) [8]. Blast is considered a major disease of rice because of its wide distribution
and extent of destruction under favourable conditions. Count time series modelling is an
extensively used statistical methodology in which integer autocorrelated discrete count
observations are available as the inputs with a typically assumed Poisson or negative
binomial distribution. This method is especially pertinent in the modelling of crop disease,
as data for the number of days or weeks it takes until the first individual becomes infected
by a particular incidence are correlated. While the count time series models and machine
learning methods have been applied extensively to different types of problems, including
epidemiological studies [9], these models are under-exploited in modelling and predicting
rice blast incidence data streams.
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Figure 1. Rice blast incidence documented in study area. The image was captured by the author at
Paddy Breeding Station, TNAU, Coimbatore, Tamil Nadu, India.

Count time series models have been applied to a variety of scenarios, including
disease prediction, manufacturing industry claims, and stock market data [10–13]. Machine
learning models have been successfully used to predict agricultural outcomes like oilseed
production, banana and rice yields, susceptibility to pests in rice, and disease severity in
crops like tomatoes and sugarcane [14–19]. The adoption of preventive measures can be
greatly aided by an accurate weather-based prediction of rice blast. However, multiple
regression analysis and conventional time series models were frequently used in previous
studies on crop disease forecasting. The accuracy of the prediction model is not improved by
normalizing count data that follows non-Gaussian distributions, such as those characterized
by Poisson and negative binomial distributions. Although the generalized linear model
(INGARCH) is well suited for count data, little to no use has been made of it for disease
modelling, including rice blast. In addition, it has been shown that the standard models
such as multiple linear regression and ARIMA are less successful for highly variable and
nonlinear data [14]. On the other hand, data-driven machine learning models such as
SVR and ANN, which do not rely on rigid assumptions, exhibit potential in these kinds of
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situations. Modelling and forecasting disease incidence like rice blast is crucial for informed
decision-making and effective crop management. The goal of this research is to use count
time series (INGARCH) and machine learning techniques (ANN, SVR) to create a reliable
statistical model for rice blast prediction based on important weather data. In order to
minimize yield losses, the models are made to predict when rice blast will occur. This
work highlights the innovative use of machine learning techniques like ANN and SVR in
the field of rice disease modelling by combining weather variables with the count time
series model or INGARCH for the first time. In order to determine the causal linkages
between environmental conditions and the incidence of rice blast, this study used stepwise
regression analysis, basic descriptive statistics, and correlation analysis.

This study aims to develop a robust statistical model for predicting rice blast based
on critical weather parameters using count time series (INGARCH) and machine learning
methods (ANN, SVR). The models are designed to forecast the occurrence of rice blast,
thereby minimizing yield losses. For the first time, this study applies the count time series
model, specifically INGARCH, with weather variables to the area of rice disease modelling,
highlighting the novel application of machine learning techniques like ANN and SVR in
this field. In this study, the work carried out included conducting basic descriptive statistics,
performing correlation analysis, and utilizing stepwise regression analysis to identify the
causal relationships between environmental factors and the incidence of rice blast. Utilizing
exogenous meteorological information, sophisticated computational methods including
INGARCH, ANN, and SVR are used to predict the incidence of rice blast in high-risk areas.

2. Materials and Method
2.1. Data Collection

The rice blast disease data were collected from three different survey points in Tamil
Nadu (Thanjavur, Tirunelveli, and Coimbatore) from the year 2015 to 2023 (Figure 2). The
disease incidence was calculated using percent disease incidence (PDI) according to IRRI,
1990. The weekly disease data were obtained from the cumulative of the daily data collected.
Corresponding meteorological data, including maximum temperature (MaxT), minimum
temperature (MinT), relative humidity morning (RHm), relative humidity evening (RHe),
rainfall (RF), sunshine (SS), solar radiation (SR), wind speed (WS), leaf wetness (LW), and
evaporation (EVP) were also collected from the automatic weather stations situated at the
respective locations. Standard Meteorological Week (SMW) wise disease incidence and
weekly meteorological observation were considered for this study. A total of 80% of the
dataset was used as a training set and the remaining 20% of observations were used as a
testing set.

2.2. Pre-Processing of Meteorological Variables

Missing meteorological data were addressed using linear interpolation and mean
imputation techniques. These methods were implemented using R software (version 4.x)
with the “zoo” and “imputeTS” packages for handling time series data gaps and missing
values [20,21].

Meteorological data were normalized using the min-max scaling method to ensure
comparability across variables. This was executed in R using the “scales” package [22].
Time lags (1 to 3 weeks) were introduced for the weather variables to account for the delayed
effects of meteorological factors on rice blast disease [23]. This step was implemented using
the “dplyr” and “zoo” packages in R.
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2.3. Statistical Models

Descriptive statistics were carried out with the parameters including mean, standard
error (SE), skewness, kurtosis, minimum and maximum observation, and coefficient of
variance (CV) to describe the nature of the data under study. The data were graphically
distributed as the time series plots. The interrelationships between the variables were
analysed with Pearson product–moment correlation, and stepwise multiple regression was
carried out to observe the cause-and-effect relationship between rice blast disease incidence
and exogenous weather variables [9]. The regression equation in matrix form was given as
follows:

Y = Xβ + e (1)

where ‘Y’ is the dependent variable, ‘X’ is the vector of exogenous/independent variable, ‘β’
is the regression coefficient and ‘e’ is the residual error assumed to be normally distributed
with e ~ N (0, σ2). The three models, INGARCH, ANN, and SVR, as well as time series
plots, were completed with R software (version 4.3.1, R Core Team 2018). Correlation and
stepwise regression analysis were carried out in SAS (version 9.3).
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2.4. Integer-Valued Generalized Autoregressive Conditional Heteroscedastic (INGARCH) Model

The time series analysis is structured within the generalized linear model (GLM)
framework, which has been extensively explored by [24]. INGARCH models, a subset of
these GLMs, assume that the conditional distribution of the dependent variable follows one
of the well-known discrete distributions such as Poisson, negative binomial, generalized
Poisson, or double Poisson [11,25,26]. For a count time series {Yt: t ∈N} where λt represents
the time-varying r-dimensional covariate vector {Xt: t ∈ N} i.e., Xt = (Xt,1, . . ., Xt, r,) T, the
conditional mean of Yt, denoted as E (Yt|Ft−1) = λt, is based on historical data Ft. The
generalized form of INGARCH model is expressed as follows

g(λt) = β0 + ∑p
k=1 αk

∼
g
(
Yt−ik

)
+ ∑q

l=1 β1g
(
λt−j1

)
+ ηT (2)

In the case where the functions g and
∼
g are identity functions, that is g (x) =

∼
g (x) = x, the

model simplifies significantly. Under this configuration, the process Yt is assumed to follow
a Poisson distribution conditional on its past values. Specifically, Yt is Poisson distributed
with a conditional mean λt = E (Yt|Yt−1, Yt−2, . . .), which is a linear function of both its past
values and the lagged values of λt. The model is characterized by the equation:

λt = β0 + ∑p
i=1 αyt−i + ∑q

j=1 βjλt−j (3)

with β0 > 0 and α1, . . . , αp , . . . ,β1, . . . , βq ≥ 0 where the coefficients αk and βi are non-
negative. When the model is simplified in this way, it is referred to as an INGARCH model of
order p and q (abbreviated as INGARCH (p, q)), or simply as an INGARCH(p) model if q = 0.
These models are also known as autoregressive conditional Poisson (ACP) models [10].

In situations where the conditional variance of Yt is larger than its mean λt, indicating
over-dispersion, the negative binomial distribution is employed instead of the Poisson
distribution. In this scenario, Yt is assumed to follow a negative binomial distribution
conditional on past information, specifically Yt|Ft−1~NegBinom (λt, ∅), where ∅ represents
the overdispersion parameter [27]. As ∅ increases, the model converges towards the
Poisson distribution. This negative binomial extension accounts for over-dispersion and
provides a more flexible model in such cases.

The estimation of parameters in INGARCH models typically uses conditional like-
lihood methods, with special attention given to the asymptotic properties. The standard
INGARCH model relies on past values of the forecast variable, predicting future values
based on this historical data. The INGARCHX model is an extension of this framework
that incorporates additional external covariates to the INGARCH model, allowing for a
more comprehensive analysis by including exogenous factors in the prediction model [28].

2.5. Support Vector Regression (SVR)

The methodology employed in this study involves the use of Support Vector Re-
gression (SVR) to transform the original input data into a higher-dimensional feature
space [29]. This transformation enables the construction of a linear regression model in
the newly mapped feature space, facilitating more accurate predictions. Given a dataset
Z = {xiyi}N

i=1, where xi ∈ Rn represents the input variables, yi is the corresponding scalar
output and N is the size of the data set, the SVR model is formulated as:

f(x) = wTφ(x) + b (4)

In this equation, w denotes the weight vector, b is the bias term, and φ(x) is a function
that maps the input data x into a higher-dimensional space. The parameters w and b are
determined by minimizing a regularized risk function, which combines model complexity
and prediction error:

R(θ) =
1
2
‖w‖2 + c

[
1
N

ΣN
i=1Lε(yi, f(xi))

]
(5)
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The first component of the risk function, 1
2‖w‖

2 is the regularisation term, which
controls the complexity of the model by penalising large weights, ensuring that the model
remains as flat as possible. The second component 1

N ΣN
i=1Lε(yi, f (xi)) is the empirical error

term, evaluated using the ε-insensitive loss function as defined by:

Lε(yi, f(xi)) = f(x) =
{|yi, f(xi)− ε|; |yi − f(xi)| ≥ ε,

0 |yi − f(xi)| < ε,
(6)

This loss function allows the model to ignore small deviations (within ε) from the actual
values, thereby focusing only on significant prediction errors. For this study, the Radial
Basis Function (RBF) kernel was utilized to map the input data into the higher-dimensional
feature space. The RBF kernel is defined as:

k
(
xi, xj

)
= exp

{
−γ‖x− xi‖2

}
(7)

The effectiveness of the RBF kernel depends on the proper selection of two hyper-
parameters: the regularization parameter C, which balances the trade-off between the
model’s complexity and its prediction accuracy, and the kernel parameter γ, which defines
the influence of a single training example. These parameters were optimized during the
training process to enhance the model’s performance. Additionally, SVR, in conjunction
with the radial basis function, was applied to model the relationship between input vari-
ables and outcomes, similar to the approach used in the INGARCHX model for time series
forecasting. The structural design of the SVR architecture is typically illustrated visually to
provide a clearer understanding of the kernel’s composition and data flow (Figure 3).
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2.6. Artificial Neural Network

Over the past few decades, Artificial Neural Networks (ANNs) have emerged as a
dominant machine learning methodology. In the realm of time series analysis, a specialized
form of ANN has gained traction, known as the autoregressive neural network. This
variant is particularly adept at handling temporal data by incorporating time lags as input
features.

The mathematical framework underpinning ANNs in time series contexts can be
conceptualized as a neural network with an implicit functional representation of time.
For multi-layer feed-forward autoregressive neural networks, the final output Yt can be
expressed through the following equation

Yt = α0 + ∑q
j=1 αjg

(
β0j + ∑p

i=1 βijYt−p

)
+ εt (8)

In this formulation the αj (j = 0, 1, 2, . . ., q) and βij (i = 0, 1, 2, . . ., p; j = 0, 1, 2, . . ., q)
represent the model parameters also referred to as synapsis weights, p signifies the number
of input nodes, q denotes the number of hidden nodes, and g represents the activation
function. The training process for ANNs in this context focuses on minimizing the disparity
between actual and predicted values. This is achieved through an error function specific to
autoregressive ANNs, which can be expressed as

E =
1
N

ΣN
t=1(et)

2 =
1
N

ΣN
t=1
{

Xt−
(

w0 +
(
∑q

j=1 wJg
(

woj + Σp
i=1wijXt−i

)))
}2 (9)

where N represents the total number of error terms. The parameters of the neural network
(wij) are adjusted based on the magnitude of changes in ∆wij as ∆wij = −η ∂E

∂wij
, where

η is the learning rate [14,30]. This approach shares similarities with INGARCHX and
SVRX models in that exogenous variables can be incorporated to account for external
factors. When extended in this manner, the model becomes known as an ANNX model.
The structural design of the ANN architecture is typically illustrated visually to provide a
clearer understanding of the network’s composition and data flow (Figure 4).
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2.7. Model Evaluation Metrics

To assess the accuracy and reliability of predictive models, two key performance
indicators were employed: the mean square error (MSE) and its square root, the root mean
square error (RMSE).

The Mean Square Error (MSE) is defined as the average of the squared differences
between predicted and actual values. It is calculated by summing the squared differences
between each predicted value and its corresponding actual value, then dividing by the total
number of observations. The formula for MSE is presented as

MSE =
∑N

i=1(yi − ŷi)
2

N
(10)

Root Mean Square Error (RMSE) is described as the standard error of estimate in
regression analysis. It is calculated by taking the square root of the MSE. The formula for
RMSE is given as

RMSE =

√
∑N

i=1
(
yi − Ŷi

)

N

2

(11)

where yi is the actual value, ŷi is the predicted value, and N is the number of observations
The sum is taken from i = 1 to N.

2.8. Diebold–Mariano Test

The Diebold–Mariano (DM) test, is used to assess whether there is a statistically
significant difference between two forecasting models based on their residuals. The test
considers the residuals of two models (r1 and r2) and di was the absolute difference between
these residuals:

di = |r1| − |r2|. An autocovariance function γk is calculated as

γk =
1
n∑n

i=k+1

(
d1 − d

)(
di−k − d

)
(12)

where d is the mean of di, and the sum is from i = k + 1 to n.
The DM test statistic is then given by

DM =
d√[

γ0 + 2∑h−1
k=1 γk

]
/n

(13)

where the sum in the denominator goes from k = 1 to h − 1, and h = n1/3 + 1. For
hypothesis testing: Null hypothesis (H0): E(d) = 0, meaning the forecast accuracy is similar
for both models. Alternative hypothesis (H1): E(d) 6= 0, indicating different forecast
accuracies between the models. This test helps researchers determine if one forecasting
model significantly outperforms another in terms of accuracy.

3. Results

The time series plot of rice blast disease incidence from 2015 to 2023 across three
locations in Tamil Nadu is presented in Figure 4. The plot reveals that, in all the locations
studied, the disease was most severe between the 40th and 15th Standard Meteorological
Weeks (SMWs), with minor occurrences during other periods as well. However, an excep-
tion was observed at the Thanjavur centre, where severe incidence was confined to the
period between the 40th and 6th SMWs.

The summary statistics of the dependent variable, i.e., the rice blast, and the exogenous
weather variable given in Table 1 are self-explanatory. For instance, rice blast incidence at
Tirunelveli, Thanjavur and Coimbatore were 11.54, 3.88 and 3.30 per cent, respectively. The
data under consideration were highly heterogeneous in nature, with rice blast incidence
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varying in a wide range (0 to 65), leading to a high standard deviation (SD) and abnormality
in data distribution as indicated by skewness and kurtosis values out of the normal range.

Table 1. Summary statistics of rice blast incidence at study locations.

Location Statistics RB MaxT MinT RHm RHe WS RF SR LW

Tirunelveli

Mean 11.54 33.08 25.63 66.22 72.92 5.21 1.71 496.07 5.93
Std. Error 0.73 0.15 0.09 0.85 0.68 0.14 0.3 4.99 0.12
Skewness 1.21 0.189 −0.086 −1.01 −1.13 0.14 0.3 4.99 0.12
Kurtosis 0.59 −0.224 −0.472 1.93 1.17 −0.07 51.26 0.34 −0.88
Minimum 0 24.77 20.5 42.8 53.72 1.75 0 128.7 0.02
Maximum 65 40.97 29.81 92.18 95.38 15.64 63.14 693.75 10.82
SD 14.97 3.24 1.98 17.43 17.58 2.91 6.19 101.92 2.55

Thanjavur

Statistics RB MaxT MinT RHm RHe WS RF SS EVP

Mean 3.88 33.21 23.27 89.60 59.12 4.89 2.69 6.05 4.41
Std. Error 0.36 0.10 0.09 0.24 0.64 0.10 0.20 0.08 0.06
Skewness 2.96 −0.32 1.39 −0.94 −1.08 0.96 4.16 −0.51 −0.12
Kurtosis 8.60 −0.97 18.19 0.17 2.43 1.37 25.18 −0.25 −0.24
Minimum 0.00 26.37 16.44 68.43 52.78 0.00 0.00 0.00 0.09
Maximum 58.23 38.89 15.29 99.71 98.43 15.74 55.29 10.11 9.76
SD 9.78 2.78 2.56 6.59 17.56 2.74 5.66 2.18 1.74

Coimbatore

Statistics RB MaxT MinT RHm RHe WS RF SS EVP

Mean 3.30 31.9 22.62 84.3 52.64 6.36 2.17 6.46 97.16
Std. Error 0.25 0.12 0.09 0.18 0.53 0.13 0.21 0.12 8.32
Skewness 2.26 0.88 −1.06 −0.61 −0.38 1.7 3.29 0.94 1.06
Kurtosis 5.57 −0.72 1.18 0.77 −0.16 3.17 13.2 7.15 −0.71
Minimum 0 26.64 16.1 69.05 22.71 2.35 0 1.07 3.77
Maximum 25.60 37.5 25.85 94 75 17.68 28.02 23.74 9.36
SD 4.94 2.33 1.74 3.48 10.23 2.49 4.03 2.32 6

RB—Rice Blast; MaxT—Maximum Temperature; MinT—Minimum Temperature; RHm—Relative Humidity
Morning; RHe—Relative Humidity Evening; WS—Wind Speed; RF—Rainfall; SR—SolarRadiation; SS—Sunshine;
LW—Leaf wetness; EVP—Evaporation.

3.1. Correlation Analysis

The Pearson correlation coefficients between rice blast incidence and weather param-
eters are presented in Table 2. A strong positive correlation was observed between rice
blast incidence and evening relative humidity (RHe), morning relative humidity (RHm),
and leaf wetness (LW). Conversely, a strong negative correlation was noted with minimum
temperature (MinT) at the Tirunelveli centre. In Thanjavur, the morning and evening
relative humidity (RHm and RHe) showed strong positive correlations, while maximum
temperature (MaxT) and minimum temperature (MinT) exhibited strong negative correla-
tions. Similarly, in Coimbatore, RHm and RHe had strong positive correlations with disease
incidence, whereas MinT displayed a strong negative correlation. Overall, the correlation
analysis indicates that rice blast incidence is associated with MaxT, MinT, RHm, RHe, and
LW, highlighting the influence of weather heterogeneity on the disease’s variability.

3.2. Stepwise Regression Analysis

To determine the weather factors influencing rice blast incidence, stepwise regression
analysis was conducted, and the results are presented in Table 3. The findings indicate
that weather parameters such as MaxT, RHe, EVP, and RF in Thanjavur; MinT, RHm,
WS, LW, and RF in Tirunelveli; and MaxT, RHm, RHe, and EVP in Coimbatore have
a significant impact on rice blast incidence. Although these variables exhibit a notable
influence, the model’s R2 value suggests moderate explanatory power for Tirunelveli and
Coimbatore. However, the R2 value for Thanjavur is lower, indicating a weaker fit, likely
due to non-linearity and high heterogeneity in the dependent variables.
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Table 2. Pearson correlation coefficients between rice blast incidence and meteorological variables at
study locations.

Location RB MaxT MinT RHm RHe WS RF SR LW

Tirunelveli

RB 1.00
MaxT 0.46 1.00
MinT −0.58 −0.07 1.00
RHm 0.59 0.04 −0.44 1.00
Rhe 0.72 −0.04 0.51 −0.14 1.00
WS −0.20 −0.04 0.56 −0.19 0.78 1.00
RF 0.03 −0.01 −0.14 0.19 −0.09 −0.16 1.00
SR −0.32 −0.02 0.38 −0.45 0.07 0.16 −0.30 1.00
LW 0.59 0.05 −0.29 0.22 −0.16 −0.19 0.08 −0.25 1.00

Thanjavur

RB MaxT MinT RHm RHe WS RF SS EVP

RB 1.00
MaxT −0.48 1.00
MinT −0.33 0.63 1.00
RHm 0.82 −0.60 −0.57 1.00
RHe 0.72 −0.52 −0.25 0.37 1.00
WS −0.17 0.27 0.24 −0.68 −0.36 1.00
RF 0.16 −0.33 0.00 0.23 0.31 −0.14 1.00
SS −0.21 0.44 −0.04 −0.08 −0.30 −0.04 −0.41 1.00
EVP −0.45 0.70 0.45 −0.60 −0.55 0.36 −0.36 0.56 1.00

Coimbatore

RB MaxT MinT RHm Rhe WS RF SS EVP

RB 1
MaxT −0.43 1
MinT −0.87 0.49 1
RHm 0.50 −0.25 −0.11 1
Rhe 0.62 −0.58 0.29 0.34 1
WS −0.28 −0.01 0.22 −0.52 0.09 1
RF 0.25 −0.24 0.09 0.35 0.46 −0.14 1
SS −0.09 0.64 −0.08 −0.23 −0.74 −0.11 −0.28 1
EVP −0.28 0.07 −0.04 −0.15 −0.22 −0.16 −0.03 0.05 1

RB—Rice Blast; MaxT—Maximum Temperature; MinT—Minimum Temperature; RHm—Relative Humidity
Morning; RHe—Relative Humidity Evening; WS—Wind Speed; RF—Rainfall; SR—SolarRadiation; SS—Sunshine;
LW—Leaf wetness; EVP—Evaporation.

Table 3. Stepwise regression analysis of rice blast incidence and meteorological variables at study
locations.

Centre Variable Estimate S.E. t Value Pr > t R2 Model R2 p-Value

Thanjavur

Intercept 47.73 5.32 8.97 <0.0001

0.2783 0.2822 <2.2 × 10−16
MaxT −1.18 0.15 −7.42 <0.0001
RHe 0.03 0.02 1.62 0.01
EVP −1.34 0.26 −5.14 <0.0001
RF −0.27 0.05 −4.6 <0.0001

Tirunelveli

Intercept 81.73 10.14 8.06 <0.0001

0.4716 0.4779 <2.22 × 10−16

MinT −3.78 0.36 −10.47 <0.0001
RHm 0.21 0.03 6.29 <0.0001
WS 0.84 0.22 3.8 <0.0001
LW 1.4 0.21 6.38 <0.0001
RF −0.18 0.08 −2.1 <0.01

Coimbatore

Intercept 29.15 7.76 3.75 <0.0001

0.439 0.4483 <2.22 × 10−16
MaxT −1.43 0.11 −12.79 <0.0001
RHm 0.31 0.07 4.21 <0.0001
RHe −0.16 0.03 −5.23 <0.0001
EVP 0.01 0.001 6.37 <0.0001
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3.3. INGARCHX Model

Prior to the development of the INGARCH model, the Box–Pierce non-correlation test
was used to assess the presence of autocorrelation in the blast incidence count time series
data (Table 4). The test results indicated a highly significant autocorrelation (p < 0.0001)
across all centres, confirming the presence of autocorrelation in the data. The INGARCH
model, incorporating exogenous weather variables, was applied and while the overall
model parameters were significant, none of the weather variables were significant across
all locations. The over-dispersion parameters obtained for Thanjavur (3.97), Tirunelveli
(1.64), and Coimbatore (7.10) suggest that the data are heterogeneous and over-dispersed,
fitting a negative binomial distribution. The over-dispersion parameters for Thanjavur
(3.97), Tirunelveli (1.64), and Coimbatore (7.10) indicate that the data are heterogeneous
and over-dispersed, aligning with a negative binomial distribution. Further diagnostic
checks using the Box–Pierce test on the residuals confirmed that they were autocorrelated
and non-random (p < 0.0001) at all locations. The inability of the INGARCHX model to
account for the data’s heterogeneity and complexity likely explains the non-significance of
the weather variables and the persistence of significant residuals. This suggests that the
model may not fully capture the intricate relationships within the data.

Table 4. Parameter estimation of the INGARCHX model for rice blast incidence at study locations.

Center Parameters Estimation S.E. Z Value Probability Box–Pierce
Non-Correlation Test

Thanjavur

Intercept 5.07 × 10−7 2.513 0 1 Original Residualbeta_1 1.28 × 10−1 0.046 2.74 <0.001
MaxT 2.99 × 10−10 0.056 0 1

χ2 = 573.03
(p < 0.0001)

χ2 = 464.61
(p < 0.0001)

MinT 2.48 × 10−9 0.049 0 1
RHm 1.72 × 10−2 0.025 1.67 0.501
RHe 1.49 × 10−9 0.034 0 1
WS 9.06 × 10−6 0.014 0 0.999
RF 3.52 × 10−9 0.06 0 1
SS 1.44 × 10−2 0.002 5.32 <0.0001
EVP 8.28 × 10−9 0.093 0 1
Overdispersion
Parameter (Ø) 3.97

Tirunelveli

Intercept 1.17 354.38 0.0330 0.9737

χ2 = 308.88
(p < 0.0001)

χ2 = 277.66
(p < 0.0001)

beta_1 5.83 × 10−5 0.0709 0.0008 0.9993
MinT 1.84 × 10−8 0.3848 0 1
MaxT 2.34 × 10−6 0.7412 0 1
RHm 2.66 × 10−5 0.1380 0.0002 0.9998
RHe 4.77 × 10−6 0.4840 0 1
WS 1.69 × 10−5 0.0575 0.0003 0.9998
RF 3.19 × 10−9 0.3349 0 1
SR 3.79 × 10−10 0.3457 0 1
LW 3.34 × 10−13 0.0118 0 1
Overdispersion
Parameter (Ø) 1.64

Coimbatore

Intercept 3.27 × 10−4 4.1765 0 1

χ2 = 301.73
(p < 0.0001)

χ2 = 200
(p < 0.0001)

beta_1 3.25 × 10−1 0.0561 5.789 <0.0001
MaxT 1.32 × 10−13 0.1339 0 1
MinT 2.49 × 10−9 0.1313 0 1
RHm 6.19 × 10−7 0.0316 0 1
RHe 4.79 × 10−4 0.0464 0.0103 0.9918
WS 5.28 × 10−8 0.0533 0 1
RF 1.44 × 10−2 0.0264 0.543 0.5869
SS 6.01 × 10−9 0.0660 0 1
EVP 7.43 × 10−9 0.0049 0.510 0.1310
Overdispersion
Parameter (Ø) 7.10
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3.4. SVRX Model

The parameter specifications for the SVRX model applied to rice blast incidence at
the study locations are outlined in Table 5. The model used a Radial Basis Function (RBF)
kernel across all three centres (Thanjavur, Tirunelveli, and Coimbatore). The number of
support vectors ranged from 223 to 269, with a cost of 1. The gamma values were 0.125
for Thanjavur, 0.09 for Tirunelveli, and 0.111 for Coimbatore. The epsilon value was set
to 0.1 across all locations, with cross-validation errors of 0.019 for Thanjavur, 0.66 for
Tirunelveli, and 0.370 for Coimbatore. The Box–Pierce non-correlation test for residuals
showed significant autocorrelation (p < 0.001) for all locations, indicating that the residuals
were not random.

Table 5. Parameter specifications of SVRX and ANNX models for rice blast incidence at study
locations.

Thanjavur Tirunelveli Coimbatore

SVRX Model

Kernel function RBF RBF RBF
No. of Support Vectors 223 269 231
Cost 1 1 1
Gamma 0.125 0.09 0.111
Epsilon 0.1 0.1 0.1
Cross-validation error 0.019 0.66 0.370
Box–Pierce non-correlation test for residuals 370.11 (p < 0.0001) 110.67 (p < 0.0001) 152.5 (p < 0.0001)

ANNX

Input lag 9 2 2
Dependent/output variable 1 1 1
Hidden layer 1 1 1
Hidden nodes 1 2 2
Exogenous variables 8 8 8
Model 9:1S:1L 13:2S:1L 11:2S:1L
Total number of parameters 12 31 27
Network type Feed Forward
Activation function I:H Sigmoidal
Activation function H:O Identity
Box–Pierce non-correlation test for residuals 0.203 (p = 0.65) 0.313 (p = 0.575) 0.921 (p = 0.3372)

3.5. ANNX Model

The ANNX model parameters presented in Table 5 show that for Thanjavur, Tirunelveli,
and Coimbatore, the model configurations included input lags of 9, 2, and 2, respectively.
Each location had one dependent variable and one hidden layer, with the number of hidden
nodes set to 1, 2 and 2 for each location, respectively. Eight exogenous variables were used
across all locations. The model architecture was a feed-forward network with a total of 12,
31, and 27 parameters (or synaptic weights) for Thanjavur, Tirunelveli, and Coimbatore,
respectively. The activation function used for the input-to-hidden layer was sigmoidal,
and an identity function was applied from the hidden layer to the output layer. Diagnostic
checking using the Box–Pierce non-correlation test indicated that the residuals were un-
correlated and random for Thanjavur (p = 0.065), and highly uncorrelated for Tirunelveli
(p = 0.575) and Coimbatore (p = 0.337), suggesting a good fit for these locations.

3.6. Model Performance Evaluation Across Different Centres

Comparisons of model performance for predicting rice blast incidence in Thanjavur,
Tirunelveli, and Coimbatore using three different models—INGARCHX, ANNX, and
SVRX—are shown in Table 6. The performance is evaluated based on Mean Squared Error
(MSE) and Root Mean Squared Error (RMSE) for both the training and testing datasets.
Table 6 highlights that the ANNX model consistently demonstrated superior performance
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across all locations and datasets, particularly excelling in the training sets with the lowest
MSE and RMSE values.

Table 6. Comparison criteria for different models for rice blast incidence in training and testing
datasets.

Criteria INGARCHX ANNX SVRX

Thanjavur
Training MSE 50.941 12.12 36.54

RMSE 7.137 3.481 6.045

Testing MSE 472.58 407.89 387.44
RMSE 21.738 20.196 19.683

Tirunelveli
Training MSE 228.86 31.38 56.832

RMSE 15.12 5.601 7.538

Testing MSE 175.49 14.974 44.44
RMSE 13.24 3.869 6.66

Coimbatore
Training MSE 11.774 2.542 7.784

RMSE 3.431 1.594 2.789

Testing MSE 39.746 10.890 13.757
RMSE 6.304 3.30 3.709

4. Discussion

Based on MSE and RMSE in both training and testing datasets, the results of mod-
elling and forecasting rice blast incidence at the research areas using various models were
evaluated, as indicated in Table 6. The investigation revealed that the stepwise regression
model’s fitness was low (low R2) as a result of the dependent variable’s high heterogene-
ity and non-linearity. However, ref. [23] demonstrated a strong association between the
onset of rice blast illness and the morning, afternoon, and dew point temperatures, as
well as evaporation and dew explained using stepwise regression. The reduced MSE and
RMSE values of the ANNX model among the evaluated methods show that it performs
better than other machine learning models and classical statistical models, including SVR
and INGARCH, in both training and testing datasets in forecasting blast incidence. Ad-
ditionally, in both datasets, the SVRX model fared better than the INGARCHX model.
ANNX > SVRX > INGARCHX was the model’s performance rating in both the training
and validation stages at all three locations.

The ANN model outperformed the conventional autoregressive integrated moving
average and SVR models, according to similar findings published by [31,32]. Table 5
illustrates how candidate hyperparameters for the SVR model were chosen from a variety
of user-defined combinations. The robustness of the models was confirmed by 10-fold cross-
validation. This method allowed the models to be trained on 80% of the data and tested
on the remaining 20%, thereby providing reliable performance estimates and reducing the
risk of overfitting. In addition to cross-validation, an independent test set comprising 20%
of the data was held out for further validation. Using a feed-forward network and the
“Levenberg-Marquardt back-propagation algorithm”, the ANN model was improved via
repeated testing. The model was modified over 25 iterations and a maximum of 1000 cycles,
with the learning rate and momentum terms set at 0.03 and 0.01, respectively. Following
testing of various input lag and hidden node combinations, the final model parameters
were selected based on the lowest possible training error. Figure 5 shows how well the
ANNX model predicted the incidence of rice blasts, exceeding both the INGARCHX and
SVRX models in terms of accuracy. The model’s prediction disparities were emphasized
by the MSE and RMSE comparison criterion (Figure 6). The ANN model’s consistent
performance across both cross-validation and independent test datasets confirmed its
ability to generalize well to unseen data, reinforcing its suitability for practical applications.
The Diebold–Mariano test (Table 7) further validated the ANN model’s performance,
confirming the statistical significance of its superiority over traditional models such as
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INGARCHX and SVR. These findings highlight the practical importance of the ANN
model in capturing complex, non-linear relationships between weather variables and rice
blast incidence. In both datasets, the ANN model outperformed the INGARCHX and
SVRX models. The superior performance of the ANN model across different datasets and
statistical validation through tests like Diebold–Mariano strongly supports its applicability
for real-time disease prediction in varied environmental conditions.
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The RBF function in SVR approached a Gaussian distribution with an increasing
gamma value, whereas the ANN model used a sigmoidal activation function to map
inputs to the hidden layer. Since count time series data are produced from non-Gaussian
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distributions, this may help to explain why INGARCH has trouble identifying patterns in
these kinds of data. Similar outcomes were noted by [14], who found that when it came to
modelling and forecasting rice gall midge, ANN performed better than INGARCH and
SVR. Further evidence that the ANNX model fits the data better than the other two comes
from diagnostic checks that showed the residuals from the SVRX and INGARCHX models
were non-random and correlated, while those from the ANNX model were random and
uncorrelated. Table 7 presents the inter-model significance differences in a simple manner.

Machine learning algorithms provide better predictive performance, as shown by
similar studies by [33] for early potato yield prediction, [34] for rice blast, and [35] for
wheat yield in Pakistan. Earlier models, such as those developed in Japan, Korea, and India,
often relied on linear regression models and statistical methods, which limited their ability
to capture complex non-linear interactions between environmental factors and disease
incidence. Many models, including EPIBLAST in Korea and PYRICULARIA in Japan,
struggled to integrate important variables like nitrogen fertilization and canopy-level leaf
wetness (LW) [36,37]. The limited incorporation of these factors reduced the reliability of
predictions, as excessive nitrogen or microclimatic variability can alter disease severity
significantly. Another shortcoming in these earlier models was the lack of real-time data
integration. Many models, such as those developed in Taiwan and Iran, relied heavily
on historical weather data collected from stations located far from rice fields [37]. This
spatial disconnect resulted in inaccurate predictions, especially during periods of rapid
environmental changes. Our machine learning models (ANN and SVR) address these
limitations by incorporating a wider range of inputs—such as solar radiation, wind speed,
and localized meteorological data—collected from in-field sensors. This reduces the spatial
and temporal uncertainties that limit older models. Furthermore, statistical validation
through the Diebold–Mariano (DM) test confirmed the superiority of ANN over traditional
approaches, ensuring more robust predictions for Tamil Nadu’s climate. Unlike simpler
regression-based models, the developed ANN can detect non-linear relationships, making
it better suited for conditions where multiple variables interact simultaneously, such as
high humidity combined with fluctuating temperatures. This allows for early disease
detection and timely interventions. Recent models, like EPIRICE, and modifications to
older frameworks, such as BLASTSIM, have shown improvements by using climate change
projections and geographic information systems (GIS) to predict disease risk under different
future scenarios [36]. The model developed in this study aligns with these advancements
by integrating real-time environmental inputs with localized weather data, thus improving
prediction accuracy under variable climatic conditions.

The ANNX model has been shown to be more accurate than other models in predicting
outbreaks of rice blast disease through field-level application. Farmers can gain useful
insights into how weather variations may impact disease risk by utilizing the model, which
incorporates essential meteorological characteristics including sunshine, minimum temper-
ature and relative humidity. This model is a particularly useful tool for site-specific disease
management because it provided localized predictions after being trained on data from
certain regions of Tamil Nadu, namely Thanjavur, Tirunelveli, and Coimbatore. This makes
it possible for farmers to prevent rice blast disease by adopting preventative measures,
including modifying irrigation schedules, using fungicides at the required times and choos-
ing more resilient rice types which were identified as critical but underutilized in previous
models. These actions greatly lower the frequency and intensity of rice blast disease. Agri-
cultural extension services can assist in converting the complex predictions of the ANNX
model into practical insights for farmers. Based on the model’s predictions, these services
can offer frequent updates that help farmers decide when to take preventive measures.
The predictive models developed in this study have significant practical applications for
real-time rice blast disease management. Farmers and agricultural extension services can
leverage these models through mobile apps or web-based platforms. By inputting current
meteorological data, the models can provide real-time alerts on the likelihood of disease
outbreaks, allowing farmers to take preventive actions such as applying fungicides or
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adjusting irrigation schedules. Additionally, the models can be integrated into Decision
Support Systems (DSS) used by agricultural officers to recommend the optimal timing for
interventions based on weather forecasts. Governments and cooperatives could also use
these models to develop early warning systems, notifying farmers of potential risks during
critical growth stages. Moreover, combining the models with smart farming technologies
and IoT devices would enable automatic weather data input, offering real-time recommen-
dations for precise disease management, reducing crop losses, and improving overall yield
sustainability.

5. Conclusions

This study demonstrates the effectiveness of using machine learning models, particu-
larly the Artificial Neural Network (ANN) model, for predicting rice blast disease based
on meteorological data. The models developed in this research can serve as vital tools
for farmers and agricultural extension services in Tamil Nadu, India, allowing for timely
interventions to minimize crop losses and optimize fungicidal sprays. There is significant
scope to scale up these models to other rice-growing regions beyond Tamil Nadu. The
developed models not only improve upon the predictive accuracy of traditional approaches
but also offer a practical solution for early disease management. By addressing the limita-
tions identified in previous studies, such as inadequate data collection, lack of non-linear
modelling, and accounting for regional climatic variations, the proposed model is expected
to forecast rice blast disease more accurately. By integrating these models into national
agricultural strategies and facilitating the development of real-time disease monitoring
systems and decision support tools, this research paves the way for more reliable and
accessible forecasting systems for sustainable agriculture.
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Abstract: Early detection of plant leaf diseases is a major necessity for controlling the spread of
infections and enhancing the quality of food crops. Recently, plant disease detection based on deep
learning approaches has achieved better performance than current state-of-the-art methods. Hence,
this paper utilized a convolutional neural network (CNN) to improve rice leaf disease detection
efficiency. We present a modified YOLOv8, which replaces the original Box Loss function by our
proposed combination of EIoU loss and α-IoU loss in order to improve the performance of the rice
leaf disease detection system. A two-stage approach is proposed to achieve a high accuracy of rice
leaf disease identification based on AI (artificial intelligence) algorithms. In the first stage, the images
of rice leaf diseases in the field are automatically collected. Afterward, these image data are separated
into blast leaf, leaf folder, and brown spot sets, respectively. In the second stage, after training the
YOLOv8 model on our proposed image dataset, the trained model is deployed on IoT devices to
detect and identify rice leaf diseases. In order to assess the performance of the proposed approach, a
comparative study between our proposed method and the methods using YOLOv7 and YOLOv5
is conducted. The experimental results demonstrate that the accuracy of our proposed model in
this research has reached up to 89.9% on the dataset of 3175 images with 2608 images for training,
326 images for validation, and 241 images for testing. It demonstrates that our proposed approach
achieves a higher accuracy rate than existing approaches.

Keywords: rice leaf diseases; blast leaf; leaf folder; brown spot; YOLOv8

1. Introduction

Rice (Oryza sativa) is one of the most important staple crops in the world, not only
providing a rich source of carbohydrates but also plenty of vitamins and minerals for
human healthy growth and development. This adaptable grain is an essential element of
diets and Asian cuisine [1]. Unfortunately, the recent successful cultivation of rice faces
numerous challenges, and one of the most significant threats to its yield and quality comes
in the form of rice leaf diseases. These diseases, caused by various pathogens, can severely
impact the health of rice plants, resulting in reduced crop yields and low-quality harvests.
Therefore, accurate and timely detection of rice leaf diseases is of paramount importance
and has become a primary agricultural concern.

Nowadays, science and technology are growing rapidly with many breakthrough in-
ventions that make people’s lives easier and simpler. The adoption of modern technologies,
including machine learning and deep learning, has opened up new avenues for tackling
these challenges in the agriculture sector. One of the most popular technologies that can be
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used to solve this problem is the use of deep learning technology on plants to identify and
classify diseases. In recent years, more and more studies have focused on disease detection
and crop management based on these technologies with more and more improvement in
accurate detection rate [2–5].

Deep learning is a subset of machine learning that seeks to mimic the data processing
and decision-making mechanisms of the human brain. Within deep learning, CNN stands
as a vital element in various fields such as speech recognition, image recognition, natural
language processing, and the field of genomics [6]. Its utility extends across diverse real
applications such as health care, finance, and even education as in the E-Learning Modeling
Technique and CNN as proposed in [7]. Notably, there have been encouraging outcomes
in scientific investigations that employ deep learning to identify diseases in specific plant
species. In this research area, several noteworthy studies have explored disease detection
in plants. For instance, study [8] focused on disease detection in cucumber plants using
the YOLOv4 network for leaf image analysis. The authors achieved impressive accuracy
rates exceeding 80% with a dataset comprising over 7000 images. However, since this
study relied solely on a convolutional neural network (CNN) model, there were limitations
to its accuracy. Another study [9] delved into deep learning methods for surveillance
and the detection of plant foliar diseases. It examined images at various infection levels
and proposed a model to assess disease progression over the plant growth cycle. This
study also investigated factors influencing image quality, such as dataset size, learning
rate, illumination, and more. In a different context, research [10] utilized YOLOv3 to
detect brown spot and leaf blast diseases. Nevertheless, the practicality of this approach was
hindered because it exclusively used images with white backgrounds, limiting its flexibility.
Meanwhile, studies [11,12] leveraged ResNet and YOLOv3 to detect diseases in tomato
leaves. In [13], the authors introduced their CNN model for classifying leaf blight diseases.
Furthermore, research [14] conducted a comprehensive comparison of CNN models, in-
cluding DenseNet-121, ResNet-50, ResNeXt-50, SE-ResNet-50, and ResNeSt-50. They even
combined these models to improve detection results. Another study [15] employed a CNN
model to detect brown spot and leaf blast diseases in rice, achieving an impressive overall
accuracy of 0.91. Vimal K. Shrivastava et al. in [16], utilized AlexNet and SVM to classify
three rice leaf diseases, achieving an accuracy rate of 91.37%. Additionally, study [17]
performed a survey and comparative analysis of different models for detecting diseases
in rice leaves and seedlings. Research [18] used VGG16 and InceptionV3 to classify five
distinct rice diseases. Lastly, in research [19], SVM was combined with a DCNN model to
identify and classify nine different types of rice diseases, achieving an impressive accuracy
rate of 97.5%. Article [20] presents a method for recognizing and classifying paddy leaf
diseases, such as leaf blast, bacterial blight, sheath rot, and brown spot, using an optimized deep
neural network with the Jaya algorithm. The classification of diseases is carried out using
an optimized deep neural network with the Jaya optimization algorithm. The experimental
results show high accuracy for different types of diseases. In [21], the author used the hue
value to extract the non-diseased and diseased parts during the pre-processing process
and used CNN for feature extraction to be able to identify the diseases including rice blast,
sheath rot, bacterial leaf blight, brown spot, rymv, and rice tungro. Studies [22,23] used YOLOv5
to detect various typical rice leaf diseases.

In this research, we use the YOLOv8 model to detect the three most common rice leaf
diseases in Vietnam, namely leaf blast (Section 1.1), leaf folder (Section 1.2), and brown spot
(Section 1.3).

1.1. Leaf Blast

The primary culprit behind leaf blast disease is the fungus Magnaporthe oryzae, which
can afflict all components of the rice plant, including the leaves, collar, node, neck, portions
of the panicle, and occasionally the leaf sheath. The occurrence of blast disease is contingent
upon the presence of blast spores [24]. The leaf blast disease is depicted in Figure 1a.
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(a) Leaf blast disease (b) Leaf folder disease (c) Brown spot disease

Figure 1. Common rice leaf diseases in Vietnam.

To identify leaf blast disease, a thorough examination of the leaf and collar is necessary.
Initial signs manifest as pale to grayish-green lesions or spots, characterized by dark green
borders. As these lesions mature, they assume an elliptical or spindle-shaped configuration,
featuring whitish-to-gray centers surrounded by reddish-to-brownish or necrotic bound-
aries. Another indicative symptom resembles a diamond shape, broader at the center and
tapering toward both ends [24].

1.2. Leaf Folder

The leaf folder is formed by leaf folder caterpillars, which encircle the rice leaf and secure
the leaf edges with threads of silk. They consume the inner part of the folded leaves,
leading to the development of whitish and see-through streaks along the surface of the
leaf [25]. Leaf folder disease is shown in Figure 1b.

Infected leaves typically exhibit vertical and translucent white streaks, along with
tubular leaf structures. Occasionally, the leaf tips are affixed to the leaf base. Fields heavily
affected by this condition may present an appearance of scorching due to the prevalence of
numerous folded leaves [25].

1.3. Brown Spot

Brown spot is a fungal disease that infects cotyledons, leaves, sheaths, panicles, and
shoots. Its most noticeable impact is the formation of numerous prominent spots on
the leaves, which have the potential to lead to the demise of the entire leaf. In cases of
seed infection, it results in unfilled seeds or seeds displaying spots or discoloration [24].
The brown spot disease is shown in Figure 1c.

Infected seedlings display small, circular lesions that are yellowish-brown or brown in
color and may encircle the cotyledons while distorting the primary and secondary leaves.
Starting from the tillering stage, lesions begin to appear on the leaves. Initially, these lesions
are small and circular and range from dark brown to purplish-brown. As they fully mature,
they adopt a round-to-oval shape with a light brown-to-gray center, encircled by a reddish-
brown border produced by mycotoxins. On susceptible rice varieties, lesions measuring
between 5 and 14 mm in length can result in leaf wilting. Conversely, on resistant varieties,
the lesions are brown and approximately the size of a fingertip [24].

The rest of the paper is planned as follows. Section 2 presents the methodology with
the system overview, a hardware design, and data preparation. It also demonstrates the
YOLOv8 architecture, along with evaluation metrics and a loss calculation. The experimen-
tal results and the discussion are given in Section 3. Finally, conclusions, acknowledgments,
and references are made in Section 4.

2. Materials and Methods
2.1. System Overview

The procedure can be outlined in the following steps: First, the images of rice leaf
diseases are collected and added to dataset. Then, the YOLOv8 model is employed to
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swiftly and accurately detect diseases in rice leaves. Finally, the symptoms of unhealthy
leaves of rice are used to alert farmers via email and text message. The structure of the
system is depicted in Figure 2.

Figure 2. The system of detecting rice leaf diseases.

2.2. System Hardware Design

Figure 3 illustrates the configuration of the hardware devices responsible for the
identification and alerting of leaf folders, leaf blasts, and brown spots on rice leaves. The system
includes 1 micro-controller, 1 USB camera, and 1 GSM module (Table 1). First, the camera
is connected to a micro-controller to capture real-time images of the rice plant on the field.
The AI algorithm (implemented in micro-controller) detects and identifies plant diseases.
The detection outcomes are then transmitted to the GSM module, which subsequently
sends warning messages to the farmers.

Figure 3. Auto-detecting rice disease system with Raspberry Pi 4 model B.
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Table 1. Main features of parts in system

No. Name of Main Part Specifications

1 USB Camera Essager C3
• Resolution: 1920 × 1080;
• Frame rate: 30 fps;
• Pixel: 2 mp.

2 Raspberry Pi 4 model B

• Chipset: Broadcom BCM2711, Quad core Cortex-A72
(ARM v8) 64-bit SoC @ 1.8 GHz;

• 8 GB LPDDR4-3200 SDRAM;
• 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth

5.0, BLE Gigabit Ethernet;
• 2 USB 3.0 ports; 2 USB 2.0 ports; 40 pin GPIO header;
• 5 V DC via USB-C connector (minimum 3 A).

3 SIM 800 L

• Input voltage: 3.7–4.2 V;
• GSM antenna connector: IPX and ordinary wire;
• SIM type: Micro SIM;
• Allows calls, SMS/MMS sending;
• Integrated protocols for internet connection (TCP, UDP,

HTTP, IP).

2.3. Data Preparation
2.3.1. Image Collection

The experiments are conducted on the rice field at the Vietnam National University
of Agriculture (latitude: 21.001792, longitude: −254.068270), Hanoi, Vietnam. A total of
1634 images of rice plants were collected in the experimental rice field with some type of rice
variance, such as DCG66, DCG72, DH15, or Hat ngoc 9. The dataset contains images of three
common diseases in rice plants namely leaf folder, leaf blast, and brown spot. The images were
captured under various conditions: different weather conditions (sunny, cloudy, rainy);
different environment light. All these images of the rice plant diseases were confirmed
manually by agricultural experts.

2.3.2. Dataset Splitting

Our final dataset includes 3175 images and is divided into three parts: a training set,
validation set, and test set. The training set includes 2608 images, the validation set includes
326 images, and the test set includes 241 images. The number of samples in each class are
1231 for the leaf folder, 1377 for the blast, and 1237 for the brown spot. One important note
is that the images from our test set do not overlap with the images from the validation and
training sets; the same is true of the validation set. Our dataset contains small images with
the sizes of 150 pixels × 150 pixels and 106 pixels × 200 pixels to large images with the
sizes of 3024 pixels × 4032 pixels and 4312 pixels × 5760 pixels.

2.3.3. Data Augmentation

In YOLOv8, different augmentation methods are implemented for the training process;
the value of these methods can be adjusted in the default.yaml file. Some of these methods
include horizontal and vertical flipping, translation, mosaic, etc. One thing that must be
noted is that the augmentation process does not create additional images. Instead, it is
applied straightforwardly during each epoch to the dataset. This approach can generate a
greater number of unique examples rather than a fixed number of images. Consequently,
the model can learn from a significantly larger amount of data. As a result, the augmentation
methods can lead to better performance of the model and help the model adapt better to
various conditions. Table 2 gives the augmentation hyperparameters in our model.
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Table 2. Augmentation hyperparameters table.

No. Name Function

1 Hsv_h 0.015
2 Hsv_s 0.7
3 Hsv_v 0.4
4 Translate 0.1
5 Scale 0.5
6 Flipud 0.5
7 Fliplr 0.5
8 Mosaic 1.0

2.4. YOLOv8 Architecture
2.4.1. Overview

YOLOv8 is one of the newest YOLO versions along with YOLO-NAS. Some honor-
able mentions of earlier versions of YOLO are YOLOv1, YOLO9000v2 [26], YOLOv3 [27],
YOLOv4 [28], YOLOv5, YOLOv6 [29], YOLOv7 [30], etc. YOLOv8 itself contains dif-
ferent versions of architecture including YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l,
and YOLOv8x. The lightest model is YOLOv8n, and the heaviest model is YOLOv8x.
The differences that make one version heavier than another are the convolutional kernel
and the feature extraction number. It is important to note that the YOLOv8 version and
the YOLOv5 version come from the same developer, Ultralytics. This is the main reason
for the similarity of the YOLOv8 architecture and the YOLOv5 architecture. In this project,
YOLOv8n is investigated for the rice plant disease detection problem because it has satis-
fied our requirements for accuracy, interference speed, and lightness. Figure 4 depicts the
YOLOv8 architecture diagram.

Figure 4. YOLOv8 architecture diagram.

2.4.2. Backbone

YOLOv8 has many similarities to YOLOv5. The C3 module in YOLOv5 is replaced in
YOLOv8 with C2f. The C2f idea is the fusion between the C3 module of YOLOv5 and the
ELAN model idea. This idea of the ELAN block [31] was influenced by the CSP strategy
and VoVNet [32] The two main blocks of the backbone are C2f and Conv. The C2f block
contains a split block, bottleneck, a Conv Block, and a concatenat layer. The number of
bottleneck layers is based on the position of the C2f block in the backbone and the depth of
the architecture. In the first C2f block, the number of bottleneck layers will be n = 3× d;
for the second and the third, it will be n = 6× d; and, finally, in the last C2f, the value
will be n = 3× d. One important thing to note is that the feature map of the second and
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third C2f blocks will be concatenated with the head part. The Conv Block contains Conv2d,
BatchNorm2d, and SiLU.

2.4.3. Neck

Same as in YOLOv5, YOLOv8 uses SPPF in the neck part. The neck part’s mission is to
perform feature fusion. Feature fusion combines features from the backbone and forwards
them into the head part. SPPF is an improved version of SPP. The advantage of SPP is that it
allows the model to effectively capture and encode information from objects of various sizes
within an image, regardless of their spatial locations. In SPP, max-pooling with different
kernel sizes will be applied to each channel in the feature maps of the backbone to create
three feature maps with different sizes. This feature map will then be produced into a
fixed-length vector. One of the two main differences between SPP and SPPF is the kernel
size of the max-pooling layer; while SPP uses different kernel sizes, as mentioned above,
SPPF uses the same kernel size for each layer. The second difference is that, instead of
applying three max-pooling layers in parallel, SPPF positions these max-pooling layers in
series. These differences have made SPPF much faster than SPP.

2.4.4. Head

The main blocks in the head structure are Conv Block, C2f Block, Upsample, and Con-
cat. Note that the C2f of the head part will not contain shortcuts for the bottleneck block.
One of the changes in YOLOv8, compared to other versions, is the shift to Anchor-Free
instead of Anchor-Based, as seen in the older version. The second change is the use of
Decouple-Head. In the older versions of Object Detection, such as Faster R-CNN and
YOLO, the Localization and Classification mission is processed on the same branch of the
head. This may lead to a problem because Classification needs discriminative features,
while Localization needs features containing information on boundary regions. The differ-
ence in the features of these tasks is referred to as task conflict. To avoid this, the author
of YOLOv8 has separated these tasks into two different branches. However, this led to a
task misalignment problem. To solve this, the authors of YOLOv8 have applied TAL in the
TOOD paper [33], which is a Label Assignment strategy. YOLOv8 uses TAL to measure the
alignment level of Anchor, and it is given in Equation (1):

t = sα×uβ (1)

where s and u are the classification score and IoU score, respectively. Alpha and beta are
the numbers used to adjust the impact of the two tasks in the Anchor alignment metric,
and t is the alignment metric. Depending on the value of t, positive samples and negative
samples will be separated for training through the loss function.

2.5. Metrics

In this study, evaluation metrics including Precision (2), Recall (3), mAP (mean Average
Precision) (4), and F1-score (5) were used. They are given in Equations (2)–(5), respectively.

precision =
TP

TP + FP
× 100% (2)

recall =
TP

TP + FN
× 100% (3)

mAP =

N
∑

k=1
P(k)R(k)

C
(4)

F1-score = 2× precision× recall
precision + recall

(5)
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where TP is the number of exactly identified rice leaves, FP is the number of backgrounds
misidentified as the target leaves, FN represents an unspecified number of leaf targets,
C represents the number of target categories of rice leaves, N means the number of IOU
thresholds, k is the IOU threshold, P(k) is the precision, and R(k) is the recall.

2.6. Loss
2.6.1. Classification Loss

The loss function of YOLOv5 is divided into 3 subfunctions: class loss (BCE with logits
loss), objectness loss (BCE with logits loss), and location loss (CIoU loss). The loss function
is expressed in Equation (6).

Loss=l1Lcls + l2Lbox + l3Ld f l (6)

2.6.2. Loss Calculation

With BCE with logits loss, this loss function combines a sigmoid layer and BCE Loss
into a single layer. This version is more numerically stable than using sigmoid alone
followed by BCE Loss because, by combining operations into one class, the logsum-exp
trick for numerical stability is used. The formula of BCE Loss with logits in the multi-label
classification case can be demonstrated in Equations (7) and (8).

`c(x, y) = Lc = {l1,c, . . ., lN,c}T (7)

Ln,c = −wn,c

[
pcyn,c. log σ(xn,c)+
+(1− yn,c) log(1− σ(xn,c))

]
(8)

where:

• c: class number, in this case, c > 1, otherwise c = 1;
• pc: weight of the positive answer for class c;
• N: the batch size;
• n: number of samples in a batch;
• yn,c: positive class relates to that logit, while 1− yn,c represents that for a negative

class.

2.6.3. Box Loss

CIoU or Complete IoU loss [34] is a loss function that was created to address the
limitations of earlier versions of IoU loss functions, such as GIoU and IoU, and aims to
provide a more accurate bounding box regression. CIoU is computed in Equation (9).

LCloU = 1− IoU +
p2(b, bgt)

c2 + αv (9)

While p indicates the Euclidean distance, α and v are used to calculate the discrepancy in
the width-to-height ratio.

α =
v

(1− IoU) + v
(10)

v =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(11)

2.6.4. DFL Loss

According to the authors in [35], inside each image, the target object could suffer from
various conditions, such as shadow, blur, occlusion, or the boundary being ambiguous
(being covered by another object). So, for these reasons, the authors of [35] pointed out that
the ground-truth labels are sometimes not trustworthy. To address this problem, DFL was
created to force the network to quickly concentrate on learning the probabilities associated
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with values in the surrounding continuous regions of the target bounding boxes. The DFL
is computed in Equation (12).

DFL(Si, Si+1) = −((yi+1 − y) log(Si) + (y− yi) log(Si+1)) (12)

where yi+1 and yi−1 are the two closest values to y or, in other words, the ground-truth
bounding box. Si and Si+1 can be described as the probability for yi+1 and yi−1.

2.7. Loss
2.7.1. Efficient IoU Loss

In [36], the experimental result has pointed out the improvement in accuracy and
convergence speed compared to the other versions. However, the authors of [36] have
spotted one big disadvantage of CIoU [34], which is the parameter v, in which:

• v does not represent the relation between w and wgt or h and hgt; instead, it represents
the difference between their aspect ratios. In cases where w = kwgt , we will have
v = 0, which is inconsistent with reality. Because of this, the loss function will only
try to increase the similarity of the aspect ratio, rather than decrease the discrepancy
between (w, h) and

(
wgt, hgt);

• The gradient of v with respect to w and h can be demonstrated as:

∂v
∂w = 8

π2

(
arctan wgt

hgt − arctan w
h

)
∗ h

w2+h2 ,
∂v
∂h = − 8

π2

(
arctan wgt

hgt − arctan w
h

)
∗ w

w2+h2 ;
(13)

∂v
∂w = − h

w
∂v
∂h (14)

With the second equation, it is easy to see that if w is increased, then h will decrease
and vice versa. According to the author, it is unreasonable when w < wgt and h < hgt

or w > wgt and h > hgt. To solve the above problem, the authors have suggested a
new version of IoU loss, which is EIoU. The loss function is computed in Equation (15).

LEIoU = 1− IoU +
ρ2(b,bgt)

(wc)2+(hc)2 +
ρ2(w,wgt)

(wc)2 +
ρ2(h,hgt)
(hc)2 (15)

where wc and hc are the width and height of the smallest enclosing box covering two boxes.

2.7.2. Alpha-IoU Loss

Alpha-IoU loss created by [37] is a new family of losses based on the fusion of IoU loss
functions and the power parameter α. There are two important properties of alpha-IoU
that should be mentioned:

• The loss re-weighting: wlr = Lα−IoU/LIoU = 1 + (IoU − IoUα)/(1 − IoU) with
wlr (IoU = 0) = 1 and lim

IoU→1
wlr = α. ;

• Lα−IoU will adaptively down-weight and up-weight the relative loss of all objects
according to their IoUs when 0 < α < 1 and α > 1, respectively. When α > 1,
the reweighting factor increases monotonically with the increase in IoU (wlr decays
from 1 to α). In other words, with α > 1, the model will focus more on one high-
IoU object;

• The loss gradient reweighting: w∇r = |∇IoU Lα−IoU |/|∇IoU LIoU | = αIoUα−1 with the

turning point at IoU = α
1

1−α ∈
(

0, 1
e

)
when 0 < α < 1 and IoU = α

1
1−α ∈

(
1
e , 1

)
if

α > 1. When α > 1, the above reweighting factor w∆r increases monotonically with
the increase in IoU, while decreasing monotonically with the increase in IoU when
0 < α < 1. In other words, Lα − IoU with α > 1 helps detectors learn faster on
high-IoU objects.
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2.7.3. Alpha-EIoU Loss

In this paper, we propose a method that replaces the original Box Loss function of
YOLOv8 with the combination of the EIoU loss and alpha-IoU loss. The alpha-EIoU loss
function is given in Equation (16).

Lα−EIoU = 1− IoUα +
ρ2(b,bgt)

(wc)2α+(hc)2α +
ρ2α(w,wgt)

(wc)2α +
ρ2α(h,hgt)
(hc)2α (16)

α = 3 as recommended by the author in [37].

3. Results and Discussion
3.1. Parameter Setting

The input size of the image is changed to 640 pixels× 640 pixels, in terms of optimizers,
we choose the Stochastic Gradient Descent, the momentum for the Stochastic Gradient
Descent is set to 0.937, the initial learning rate and the final learning rate is set by default
and equal to 0.01 and 0.0001, respectively. Finally, the dataset is trained within 300 epochs
with batch size equal to 16, the figures for the parameter can be seen in the Table 3.

Table 3. Parameter Settings.

Batch size 16
Optimizer SGD

Epoch 300
Initial learning rate 0.01
Final learning rate 0.0001

Momentum 0.937

3.2. Evaluation of the Proposed Method

The final result of rice disease detection using YOLOv8 with the loss function change
is shown in Table 4 and the PR-Curve. This result will be compared with the YOLOv8
model without the change in loss function. This result was achieved in the test set with a
total number of 95 leaves containing folder disease, 95 leaves containing blast disease, and
84 leaves containing brown spot disease. This result was achieved by using the nano version
of YOLOv8, which is the YOLOv8n model.

The PR-Curve of YOLOv8 is given in Figure 5.

Figure 5. PR-Curve of YOLOv8.
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Table 4. The final result of rice disease detection using YOLOv8 with loss function change.

YOLOv8 PRECISION RECALL F1 mAP@50

All 89.6 83.5 86.4 88.9
Leaf Folder 93.9 88.4 91.1 91.7
Leaf Blast 86.7 90.5 88.6 91.2

Brown Spot 88.2 71.5 79.0 84.0

The PR-Curve of YOLOv8 with alpha-EIoU loss is given in Figure 6.

Figure 6. PR-Curve of YOLOv8.

Figure 7 depicts the inference results of our proposed model. Take note that the red,
pink, and orange bounding boxes represent the folder, blast, and brown, respectively. Based
on the given results of both YOLOv8 and YOLOv8 with the alpha-EIoU loss, the accuracy of
the modified loss function has increased the model accuracy up to 1%, which is significant.
In terms of other metrics, the proposed method of using alpha-EIoU also yields a better
result. In precision and recall, the proposed method achieved 90% and 84.4%, respectively,
while YOLOv8 without the modification to the Box Loss function achieved 89.6% and 83.5%.
It can be seen that the improvements in these metrics for the proposed method increase
from 0.4% to 0.9%. In order to consider both economic factors and the precision factors, the
F1-score is known as an important parameter in detecting diseases. Our proposed method
achieves a higher F1-score (87.1%) than that of the original method (86.4%). However, if we
look at the specific accuracy value of each class, there are still some improvements that need
to be made in order to improve our proposed model. The accuracy of the folder disease
is 91.7% when predicted by the original method; however, the proposed method only
achieved 90.4%. The same can be seen in the blast disease, where the value of mAP@0.5 is
91.2% for the conventional way and only 89.7% for the proposed method. The proposed
method greatly increased the accuracy of brown spot disease, in which, the alpha-EIoU
method provides an accuracy of 89.5% compared to 84% for the CIoU method, which is
more than a 5% increase in accuracy. Compared to the algorithm of YOLOv5 in [22,23],
the accuracy of our proposed model on leaf blast has reached 89.7% compared to 69.4%
in the study in [22] and 80.3% proposed in [23]. The efficient disease detection of brown
leaf spot of our proposed model is also given in Table 5. It is shown that the accuracy of
our proposed model on the brown spot has reached 89.5%. This is much better than that of
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YOLOv5, used in [23], which gives only a 55.4% accuracy. As depicted in the pictures of
bacterial blight in [22], the authors of that study have mistaken the leaf folder disease for
bacterial blight; therefore, this shows that our model’s accuracy on the leaf folder, which is
90.4%, is much better than the 65% from [22]. In the comparison of the proposed method
with one of the state-of-the-art models, YOLOv7, in the paper [38], written by the same
author as that of [18], our method increases the accuracy of the leaf blast class by more
than 19%. In terms of leaf folder, which the author mistook for bacterial blight, our model
achieves 90.4% compared to only 69.9%. For the cases of precision and recall, our method
only achieves 90% and 84.4%, respectively, and does not surpass the values of 1 and 0.92 for
YOLOv5 [18] and YOLOv7 [38]. However, our proposed method reaches 87.1% compared
to 77% and 76% of the two other methods for the F1-score.

(a) (b) (c)

Figure 7. Inference results on rice leaf diseases: (a) inference result on brown spot disease, (b) infer-
ence result on leaf folder disease, and (c) inference result on leaf blast disease.

Table 5. YOLOv8 with alpha-EIoU loss results.

YOLOv8 Precision Recall F1 mAP@50

All 90.0 84.4 87.1 89.9
Leaf Folder 93.1 85.2 89.0 90.4
Leaf Blast 86.2 88.4 87.3 89.7

Brown Spot 90.6 79.8 84.9 89.5

The complexity and the FPS of our proposed method for YOLOv8n, YOLOv5n, and
the YOLOv7-tiny method provided by [39–41] can be seen in Table 6:

Table 6. Computional complexity of YOLOv8n, YOLOv7-tiny, and YOLOv5n.

Size (pixels) Params (M) FLOPs (B) NVIDIA Jetson
AGX Orin (FPS)

YOLOv8n 640 3.2 8.7 383
YOLOv5n 640 1.9 4.5 370

YOLOv7-tiny 640 6.2 13.8 290

As can be seen in the table, YOLOv8n and YOLOv5 are clearly more suitable to
implement on low-cost devices. While YOLOv8n’s params and flops are higher than those
of YOLOv5n, YOLOv8 is still able to yield a better performance. Because of these reasons,
our proposed method is a suitable option for low-cost devices. This will further benefit the
economic aspect, especially as it requires a large number of devices when being utilized on
large-scale rice fields.

For the application of our model, we implement it on Raspberry Pi 4 Model B, as a
Single-Board Computer (SBC), supporting a variety of packages and software libraries
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across different programming languages. In this study, we use Python packages, such as
Serial and Ultralytics. The Serial library was used to enable control of the GPIO pins with
the SIM800L module on Raspberry Pi. The Ultralytics library was used to run the YOLOv8
model. Raspberry Pi is a low-cost device, so it took more time to process the AI model.
Therefore, in this project, we used YOLOv8n (the lightest version of the YOLOv8 model) so
that the Rpi could handle an average processing time of about 1500 ms per frame.

In this research, the prediction results of our approach have been evaluated by the
agricultural experts at the Vietnam National University of Agriculture, Hanoi, Vietnam.
Despite some mistakes in the prediction process, our proposed model still has great poten-
tial to warn farmers of infected regions in their rice fields (Figure 8). The performance of
our hardware system, according to experts, is sufficient to apply to real-world scenarios.

Figure 8. The SMS message sent to farmers.

3.3. Discussion

As mentioned above, while our method can provide better accuracy for all of the
combined classes, our method seems to have drawbacks in detecting folder disease and
leaf blast disease. In terms of the model complexity, although our method has been applied
to the lightest version of YOLOv8, which is YOLOv8 nano, the change in our method
did not further reduce the complexity of the original model or increase it. In the case
of images captured in different weather conditions, our dataset does not contain images
captured in heavily windy conditions, a case that can make the images extremely blurry.
Adding images in windy weather can greatly enhance our model performance in real-world
scenarios. For the folder class, in extreme lighting conditions, a healthy leaf can be easily
mistaken for a diseased leaf, which can lead to a reduced accuracy of the model.

In future research works, we intend to improve our methods in three terms, namely,
(1) deep learning techniques, (2) practical application techniques, and (3) the scale of the
dataset. For the first term, we would like to test replacing the classification loss function
of the original YOLOv8 with the Varifocal Loss Function [42] and train the model on
different learning rate schedulers, as inspired by [43], to further increase the accuracy of
the proposed model. In the practical aspect, our proposed system may be implemented on
a real agricultural robot that can automatically move in the field for early detection and
prevention of rice leaf diseases in Vietnam. With high accuracy detection of rice diseases,
our proposed method may improve the effectiveness of the rice disease management
systems. Our proposed system reduces the human resources and the time needed for rice
disease detection; therefore, it can easily diagnose the diseases at an early stage. Moreover,
this approach reduces the pesticide residue in the final product of rice and decreases the
environmental impact of rice cultivation. Although we only apply the proposed method to
three different types of disease, e.g., leaf folder, leaf blast, and brown spot, the number of
disease classes and the number of images in our dataset can be further extended. In terms
of large datasets, this can easily be performed because our modification to the model does
not affect the learning process on either large-scale or small-scale datasets. In addition,
in this research, we do not change the optimizer of the original YOLOv8 version, which
is the Stochastic Gradient Descent. This is an optimization algorithm that is commonly
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used in the case of large-scale datasets. In further extending the number of classes, the new
diseases might contain relatively small disease marks. This could be a challenge, however,
in this research, our prediction accuracies on the brown spot disease and the leaf blast
disease, characterized by the smallest disease marks, are relatively good, which bodes well
for future improvements.

4. Conclusions

Our paper introduces a new approach using the YOLOv8 architecture with the
YOLOv8n model and the alpha-EIoU loss function to identify the disease of rice plants with
an accuracy is up to 89.9%, which is a better result compared to 62% in [23], 80.7% in [22],
and 82.8% in [38]. This result was achieved on 241 photos, and this is a relatively good
result for further applications in the real world.The experiment system worked well and
provided warnings immediately after detection to farmers with knowledge equivalent to
an expert; this will help farmers have quick responses to deal with the diseases. With this
result, we implement the achieved model into the low-cost hardware that we designed to
provide farmers with a solution to detect diseases in a timely manner in the rice field. Our
research also provides a completely new rice leaf disease image dataset of the three most
common diseases, (leaf blast, leaf folder, and brown spot), in Vietnam. Therefore, it may help
researchers reduce the time and money recquired to obtain such data in future research.
It is proved that our proposed modification of the YOLOv8 framework achieved better
performance than some other state-of-the-art methods.
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Abstract: Deep neural networks have demonstrated outstanding performances in agriculture produc-
tion. Agriculture production is one of the most important sectors because it has a direct impact on the
economy and social life of any society. Plant disease identification is a big challenge for agriculture
production, for which we need a fast and accurate technique to identify plant disease. With the
recent advancement in deep learning, we can develop a robust and accurate system. This research
investigated the use of deep learning for accurate and fast tomato plant disease identification. In this
research, we have used individual and merged datasets of tomato plants with 10 diseases (including
healthy plants). The main aim of this work is to check the accuracy of the existing convolutional
neural network models such as Visual Geometry Group, Residual Net, and DenseNet on tomato plant
disease detection and then design a custom deep neural network model to give the best accuracy in
case of the tomato plant. We have trained and tested our models with datasets containing over 18,000
and 25,000 images with 10 classes. We achieved over 99% accuracy with our custom model. This high
accuracy was achieved with less training time and lower computational cost compared to other CNNs.
This research demonstrates the potential of deep learning for efficient and accurate tomato plant
disease detection, which can benefit farmers and contribute to improved agricultural production. The
custom model’s efficient performance makes it promising for practical implementation in real-world
agricultural settings.

Keywords: plant disease; tomato; convolutional neural network; machine learning; deep learning

1. Introduction

One of the most significant industries is agriculture production because it directly
affects a society’s economy and social structure [1]. Agriculture production faces a signifi-
cant issue in identifying plant diseases; thus, we need a quick and precise method to do so.
We can create a reliable and accurate system with the most recent advancements in deep
learning convolutional neural networks (CNNs) [2]. In this study, we used two (individual,
combined) datasets of tomato plants with 10 illnesses, including healthy plants as well. The
major objective of this study is to compare several tomato plant diseases utilizing some of
the top convolutional neural network models, including Visual Geometry Group, Residual
Net, and DenseNet. In addition, we have also developed our neural network architecture.
Despite the complexity of datasets exceeding 18,000 and 25,000 images with 10 distinct
classes each, ResNet, DenseNet, and our custom model achieved remarkable accuracy
above 99%.

The quality and amount of a nation’s production determine how much agriculture it
can produce [3]. Any nation’s economic and social structure is directly impacted by the
production of agricultural goods [4]. Agriculture production is essential to the advancement
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of society and the economy [5]. This is the reason that diagnosing and treating plant
diseases has drawn so much attention due to the large amount of territory that farms
now cover; finding, assessing, and treating plant diseases is a tremendously difficult
problem for farmers today [6]. Traditional disease detection is a highly difficult and time-
consuming technique. Additionally, there is a high likelihood of errors, which might result
in productivity loss. Additionally, early diagnosis and treatment of plant diseases are
essential because they have a significantly higher rate of success [7].

Because the plant’s leaves are the most apparent and susceptible to disease, they are
used to recognize plant diseases [8]. We require a system that can accurately identify
the condition using images. For diagnosis purposes, plant diseases and their treatments
have been the subject of extensive research, but each has its limitations. Researchers have
employed a variety of methodologies, including deep learning, image processing, and
machine learning. As a result, these studies were fruitful, and the majority of the procedures
produced results that were superior to those of human specialists, especially deep learning.
Although there is still debate over whether neural architecture performs better, in this
study, we compared several leading neural network architectures on tomato plant diseases
using two datasets with over 1800 and 2500 sample images, respectively. Additionally, we
have included our neural network design, which produced test accuracy results of 99.22
and 99.24.

2. Related Works

Current research suggests some effective methods for diagnosing plant diseases. This
study begins with a review of studies on the many types of plant diseases and methods to
accurately identify them to better comprehend the existing literature on their identification.

Analytical research published by Punitha, Kartikeyan, Gyanesh, and Shrivastava in
2022. In their research, they have used Deep Learning architectures AlexNet, GoogLeNet,
and DenseNet with different optimizers via the stochastic gradient descent (SGD) algorithm
and root mean square propagation (RMSProp) for tomato plant disease identification
and classification to compare their accuracies. In this research, the best performer is
GoogleLeNet, with an accuracy of 99.56% [9].

Amarjeeth Singh et al. (2022) published research in which they used vegetable crops
to detect diseases like Scab, Early Blight, Leaf scorch, and Bacterial spot. In this research,
deep learning and CNN architecture were used, and they achieved an accuracy of 98.87%.
The accuracy achieved in this research is good, but it can still be improved [10].

Vishakha Kathole Mousami Munot (2022) performed a comparative survey of different
deep learning CNN architectures like the VGG, GoogleLeNet, and AlexNet to detect plant
disease using their leaves. The dataset used in this research has six different diseases and a
healthy class [11].

Khalil Khan, Rehan Ullah Khan, Waleed Albattah, and Ali Mustafa Qamar published
a paper in 2022. In this research, semantic segmentation is used to highlight the foreground
(leaf) and the background (non-leaf) and to look through each pixel for labeling. A CNN-
based model is used on the Plant Village dataset. In this research, they have achieved a
total of 97.6% accuracy [12].

Swati S. Wadadare and H. S. Fadewar (2022) have researched tomato plant diseases
using the latest deep learning technology. In this research, Inception V3 is used for tomato
plant disease detection. The transfer learning technique is used with a training accuracy of
92.19% and a test accuracy of 93.03% [13].

Chen, Hsing-Chung, Agung Mulyo Widodo, et al. (2022) published their research
on plant disease detection in which they used AlexNet. They have used 18, 345 training
data and 4585 test data. In their research, they have achieved an accuracy of 98% using
a releasing rate of 0.0005 and 75 epochs. The accuracy can be justified, but by using new
models, it can be improved further [14].

In 2022, Khan, Muhammad Attique, et al. published their research on cucumber plant
disease detection. They have used multi-level deep entropy ELM feature selection. They
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have used VGG16, ResNet50, ResNet101, and DenseNet201 deep learning CNN models. In
their research, they achieved the best accuracy of 98.4% [15].

In 2022, Xie, Yiting, Darren Plett, and Huajian Liu published research on crown rot
disease in wheat plants. In their research, they used image color and machine learning
techniques. They successfully distinguished between healthy and infected plants 14 days
earlier. In their research, the F1 scores for most datasets were higher than 0.80 [16].

Research by Kaur, Prabhjot, et al. in 2021 shows plant disease detection using a
hybrid convolutional network by applying feature reduction. They have used grape
plants with Leaf blight, Black rot, stable, and Black measles diseases. In this study, the
researchers analyzed the Plant Village dataset and employed logistic regression to reduce
the dimensionality of the extracted features. They have used state-of-the-art classifiers and
achieved an accuracy of 98.7% after 92 epochs [17].

Almadhor, Ahmad, et al. (2021) published their research in which they used machine
learning techniques for guava plant disease detection. In this research, they have used
different color and textual techniques for feature extraction with machine learning classi-
fiers like Fine KNN, Complex Tree, Boosted Tree, Bagged Tree, and Cubic SVM. In their
results, the Bagged Tree Classifier has the highest accuracy of 99% on all four guava plant
diseases [18].

Applalanaidu, Majji V., and G. Kumaravelan (2021) performed review-based research
on machine learning and deep learning for plant disease detection. In this research, they
have a different comparison for both machine learning and deep learning. For machine
learning, the SVM model has the best performance with an accuracy of 97.3%, followed by
the Random Forest classifier with 97% accuracy. For deep learning, Inception V3 has the
best accuracy of 99.76%, followed by VGG with 99.53% accuracy [19].

B. Srinivas, P. Satheesh, P. Rama Santosh Naidu, and U. Neelima (2021) used deep
learning to detect guava plant diseases. In this paper, the researchers have used Flask in
Python, in which they have created their own CNN model. The confusion matrix is used
for obtaining the accuracy, and the accuracy archived was between 65 and 85% [20].

In 2023, Murat Tasyurek and Recep Sinan Arslan published a study on a new CNN
model called Real Time-Droid (RT-Droid). RT-Droid is based on YOLO V5 and can detect
malware very quickly and accurately. To create RT-Droid, the authors first extracted features
from Android manifest files and converted them into RGB images similar to QR codes.
Leveraging transfer learning, the researchers trained VGGNet, Faster R-CNN, YOLO V4,
and YOLO V5 models on these images. Notably, the YOLO V5 model achieved exceptional
object detection accuracy in real time, surpassing the efficiency of other CNN models used
in the study. The authors also compared the results of RT-Droid with VGG Net, Faster
R-CNN, and YOLO V4 and found that it yielded better results [21].

Existing studies have made valuable contributions to tomato plant disease detection
with deep learning, typically focusing on individual datasets. Our work builds on past
research by incorporating merged datasets and developing a high-performing custom
model, potentially paving the way for more robust and efficient tomato plant disease
detection systems. After analyzing the performance of established CNN architectures
like VGG, ResNet, and DenseNet, we designed a custom model. This model achieved
high accuracy, as discussed in the results section, while also offering benefits like reduced
training time and computational cost.

3. Methods and Data Collection

In this section, an in-depth methodology for tomato plant disease recognition is
discussed. The methodology comprises four steps, as shown in Figure 1 below.
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3.1. Data Collection

Data collection might seem like the simple act of gathering information, but the path
can be riddled with obstacles. From biases to inconsistencies, let us dive into some of the
common challenges that can trip up even the most seasoned data gatherers.

Inaccurate data: The collected data may not address the key variables or information
needed to answer the intended research question.

Missing data: Gaps in the collected data, including empty fields and missing images
for specific predictions, can negatively impact model performance.

Data imbalance: Unequal distribution of samples across categories can bias the model,
hampering its performance for under-represented groups.

Data bias: Hidden within the data itself, even the most well-intentioned model
can inherit and amplify biases based on factors like gender, political affiliation, age, or
geographical origin. These biases, often subtle and difficult to detect, can lead to unfair and
inaccurate predictions.

Several techniques can be applied to address those problems:
Freely available and pre-cleaned datasets. Pre-cleaned free data can be obtained from

websites or vendors. They provide almost all sorts of data, and sources like Kaggle can
offer pre-processed and clean data.

Leveraging web crawling and scraping techniques, automated tools such as bots and
headless browsers can efficiently extract data from websites, providing valuable resources
for training machine learning models.

Private data: In cases where publicly available data is scarce or insufficient, ML
engineers can resort to generating their own synthetic data. This approach is particularly
advantageous for models requiring smaller datasets to achieve optimal performance.

Custom data: Agencies can create or crowdsource the data for a fee.
In this research, we have collected our data from Kaggle for disease recognition. We

have collected different types of image samples from Kaggle with the range from 10,000 to
40,000 images. The models are trained and tested using different data, and the performance
is closely examined to make sure the collected data is correct.
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3.2. Data Preprocessing

Data preprocessing is very important for machine learning and deep learning because
the performance and accuracy of ML/DL models directly depend upon the quality of the
data. Before the model is trained, we need to do preprocessing on the data and make sure
the data is clean, relevant, and enough.

3.3. Data Cleaning

The data used in this research is different preprocessed image data taken from Kaggle;
however, the data is pre-cleaned, but different data gave different results. This is why we
trained and tested models using different data with different sizes, quality, and conditions,
and images were captured. The different results were then compared to specify the most
suitable dataset. The model was first trained with less data from 8000 samples with good
results but not satisfactory results. The model trained and tested with 20,000–38,000 looks
to be the best-suited numbers for deep learning. The dataset created was cleaned of any
irregularities and irrelevant data.

3.4. Data Splitting

The data were split into three groups: Training, Validation, and Testing data. The
training data is used to train the model. The model uses the training data to identify
patterns and improve the accuracy. The validation data is used during the training process
to validate the model. The validation data is entered in batches and works as test data
during each step in the training process. The test data is used to test the model, and this
is data that the model has never seen before. This data is used to find the accuracy of the
model on new data. The training data is 70%. The validation data is 20%. The testing data
is 10%.

3.5. Data Augmentation

The data augmentation is used to generate new data for the model; this technique
works best for images in deep learning. Rotation, High contrast, Bright light, Low light,
and image invert augmentation are used for the models that use augmented data.

Resize and Rescale

In this step, we resize the image to our desired size. We do resize to avoid the problem
of images with different sizes because it can greatly affect the model’s overall performance.
By rescaling, we change the values of the image, e.g., we can convert the image into
grayscale. We do this process for performance gain because it limits the image colors from
0 to 1.

Data Prefetch

In this step, we fetch the data into the short-term memory and fill the buffer. This is
performed so that the data stays in the memory and the model can easily retrieve the data
when required.

Label Encoding

Label encoding is used to convert text data into a format that the model can understand.
We use label encoding to change the text data into arrays. These arrays are used to create
machine learning models for text analysis and predictions.

Term Frequency Inverse Document Frequency

The term frequency inverse document frequency is used to filter out useless data. This
technique is used to take all the important information in text data for better model performance.

3.6. Model Training

In this step, we train the model using training data. The model is a combination of
statistical formulas that become optimized using numerical values. The training data is
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passed through to the model, and the model uses different functions such as Sigmoid,
RMSE, TANH, and RELU for convergence. The model goes to global minima for the best
accuracy. The model starts from low accuracy and high loss and slowly converges to the
global minima to improve the accuracy and decrease the loss, as shown in Figure 2. Most
of the time, the model becomes stuck at local minima because of some noise in the given
data. To overcome the problem of local minima, we clean the data so it will converge to a
more global minima. In this research, we have built different deep learning models and
compared the accuracies to obtain the most suitable model.
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3.7. Model Testing

In this step, we test the model using new data that the model has not seen before. We
used test data to evaluate the model’s performance. In this step, we test all the models
and performances to select 31 of the most suitable models. We give the model test data to
make predictions and compare it with the existing results to evaluate the actual accuracy
and performance.

3.8. Model Selection

In this step, we have to select the best model amongst the VGG, ResNet 50, DenseNet
121, DenseNet169, DenseNet201, and custom model. After we train the models and test
them, we can demonstrate the performance of all the models.

We will have some models that will perform better than others. Here, we will evaluate
the models’ performances and choose the best-performing machine learning and deep
learning model.
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3.9. Implementation and Experimental Setup

Optimizing for both ease of development and performance, Python was chosen as
the programming language for building the deep learning architectures. Leveraging the
powerful combination of Keras, TensorFlow backend, and the CuDNN library, we achieved
efficient training on an NVIDIA Quadro K2200 GPU (HP, Italy) with its 4 GB memory,
640 CUDA cores, and high bandwidth.

3.10. Deep Learning Architecture

Seeking to enhance plant disease classification accuracy, researchers explored improve-
ments and modifications to existing deep learning architectures, demonstrating superior
performance in identifying plant species ailments. Among them, we have considered VGG
16 [19], AlexNet [20], ResNet [21], and DenseNet 121 [21].

3.11. Visual Geometry Group (VGG)

The VGG16 architecture is a deep convolutional neural network (CNN) that was
originally developed for image classification. It has been shown to be very effective for
a variety of image classification tasks, including plant disease detection. The VGG16
architecture consists of 16 layers, as shown in Figure 3, each of which is a convolutional
layer or a max pooling layer. The convolutional layers extract features from the input image,
and the max pooling layers downsample the features to reduce the size of the model. The
fully connected layers at the end of the network classify the features into different classes.
The VGG16 architecture has been shown to be very effective for plant disease detection.
In a study published in 2018, the VGG16 architecture achieved an accuracy of 93.5% on a
dataset of tomato and potato plant images.

AgriEngineering 2024, 6, FOR PEER REVIEW  7 
 

 

powerful combination of Keras, TensorFlow backend, and the CuDNN library, we 
achieved efficient training on an NVIDIA Quadro K2200 GPU (HP, Italy) with its 4 GB 
memory, 640 CUDA cores, and high bandwidth. 

3.10. Deep Learning Architecture 
Seeking to enhance plant disease classification accuracy, researchers explored im-

provements and modifications to existing deep learning architectures, demonstrating su-
perior performance in identifying plant species ailments. Among them, we have consid-
ered VGG 16 [19], AlexNet [20], ResNet [21], and DenseNet 121 [21]. 

3.11. Visual Geometry Group (VGG) 
The VGG16 architecture is a deep convolutional neural network (CNN) that was orig-

inally developed for image classification. It has been shown to be very effective for a va-
riety of image classification tasks, including plant disease detection. The VGG16 architec-
ture consists of 16 layers, as shown in Figure 3, each of which is a convolutional layer or a 
max pooling layer. The convolutional layers extract features from the input image, and 
the max pooling layers downsample the features to reduce the size of the model. The fully 
connected layers at the end of the network classify the features into different classes. The 
VGG16 architecture has been shown to be very effective for plant disease detection. In a 
study published in 2018, the VGG16 architecture achieved an accuracy of 93.5% on a da-
taset of tomato and potato plant images. 

 
Figure 3. VGG Architecture. 

3.12. Custom Model 
This model is our own created model, as shown in Figure 4. This model has outper-

formed most of the models we have created with performance that is the same as VGG16.  
• The first layer has 16 filters and a kernel size of 3 × 3. 
• These layers have an average pooling of 2 × 2. 
• The second and third layer has 32 filters and a kernel size of 3 ×3. 
• These layers have an average pooling of 2 × 2. 
• The fourth to sixth layer has 64 filters and a kernel size of 3 × 3. 
• These layers have an average pooling of 2 × 2. 
• The seventh to tenth layer has 512 filters and a kernel size of 3 × 3. 
• These layers have an average pooling of 2 × 2. 
• The first Dense layers have units of 256. 
• The second Dense layers have units of 64. 
• The third Dense layers have units of 32. 

With total layers, ten layers, and batch normalization. 

Figure 3. VGG Architecture.

3.12. Custom Model

This model is our own created model, as shown in Figure 4. This model has outper-
formed most of the models we have created with performance that is the same as VGG16.
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• The first layer has 16 filters and a kernel size of 3 × 3.
• These layers have an average pooling of 2 × 2.
• The second and third layer has 32 filters and a kernel size of 3 ×3.
• These layers have an average pooling of 2 × 2.
• The fourth to sixth layer has 64 filters and a kernel size of 3 × 3.
• These layers have an average pooling of 2 × 2.
• The seventh to tenth layer has 512 filters and a kernel size of 3 × 3.
• These layers have an average pooling of 2 × 2.
• The first Dense layers have units of 256.
• The second Dense layers have units of 64.
• The third Dense layers have units of 32.

With total layers, ten layers, and batch normalization.

4. Results

In this research, we have built different deep learning models and compared the
accuracies to obtain the most suitable model.

4.1. Visual Geometry Group 16

The VGG16 model has performed very well. It has a validation accuracy of 99 and a
test accuracy of 98. The model’s performance is very good, but if we compare it to other
models that we have used in this research, then almost all of them have outperformed the
VGG16. The VGG16 has performed very poorly on the merged data set, with an accuracy
of just 92%. Table 1 shows the model is fighting to maintain constant validation accuracy.
The training accuracy and loss are significantly better than the validation accuracy and
loss. However, the validation accuracy on the merged data is just 92.06, which is a very
bad performance.

Table 1. Visual Geometry Group 16 individual and Merged Data.

Visual Geometry Group 16 Individual Data Visual Geometry Group 16 Merged Data

Accuracy Loss Val Accuracy Val Loss Accuracy Loss Val Accuracy Val Loss

98.96 0.0323 98.77 0.0448 99.41 0.0199 92.29 0.6432
98.76 0.0382 97.88 0.0709 99.80 0.0094 92.24 0.6590
98.90 0.0380 99.15 0.0295 99.95 0.0015 91.95 0.6751
99.24 0.0271 97.95 0.0784 99.82 0.0058 92.11 0.6922
99.32 0.0200 98.10 0.0618 99.91 0.0037 92.06 0.6915

Figure 5 shows the convergence of the model. The convergence rate is not that good
because the model looks stuck at the elbow rules, which state that the model should be
stopped from where it starts the elbow shape. In the test result, the model successfully
predicted 90% of the test subjects correctly. Only one prediction out of nine is incorrect, as
shown in Figure 6. The overall confidence that the model has shown is 98 to 100%.
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4.2. Custom Model

This is our custom-built model, and it has performed well. This model has outper-
formed the VGG16 model, but it is still not the best we have used in this research. Other
models have outperformed this model. The positive point of this model is that it has a
very simple network architecture and gives very good results in very little time at less
computation cost. The model has a constant 100 training accuracy, and the validation
accuracy changes, but this model has a more stable performance than VGG16. The model
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validation accuracy is very stable; the only drop occurred at the end. The validation loss
performance is one of the best, as shown in Table 2.

Table 2. Custom Model Individual and Merged Data.

Custom Model Individual Data Custom Model Merged Data

Accuracy Loss Val Accuracy Val Loss Accuracy Loss Val Accuracy Val Loss

100 1.7998 × 10−4 98.78 0.0483 95.86 0.1574 70.52 1.4740
100 1.2213 × 10−4 98.78 0.0481 99.72 0.0110 79.61 1.0076
100 9.4443 × 10−5 98.82 0.0486 99.96 0.0032 99.01 0.0328
100 7.4930 × 10−5 98.89 0.0497 100 0.0012 99.11 0.0355
100 6.0184 × 10−5 98.75 0.0487 100 9.1173 × 10−4 99.22 0.0289

These are the performance graphs of the custom model. The graph has converged
fast, but the stability is not that good compared to the other models we have used in this
research. As you can see, the training accuracy and loss are very stable, but the validation
accuracy and loss change rapidly. However, the model performed better on the merged
dataset, as shown in Figure 7.

AgriEngineering 2024, 6, FOR PEER REVIEW  10 
 

 

Table 2. Custom Model Individual and Merged Data. 

Custom Model Individual Data Custom Model Merged Data 
Accuracy Loss Val Accuracy Val Loss Accuracy Loss Val Accuracy Val Loss 

100 1.7998 × 10-4  98.78 0.0483 95.86 0.1574 70.52 1.4740 
100 1.2213 × 10-4  98.78 0.0481 99.72 0.0110 79.61 1.0076 
100 9.4443 × 10-5  98.82 0.0486 99.96 0.0032 99.01 .0328 
100 7.4930 × 10-5  98.89 0.0497 100 0.0012 99.11 .0355 
100 6.0184 × 10-5  98.75 0.0487 100 9.1173 × 10-4  99.22 .0289 

These are the performance graphs of the custom model. The graph has converged 
fast, but the stability is not that good compared to the other models we have used in this 
research. As you can see, the training accuracy and loss are very stable, but the validation 
accuracy and loss change rapidly. However, the model performed better on the merged 
dataset, as shown in Figure 7. 

 
Figure 7. Custom Model Individual and Merged Data performance. 

The results of nine images that we have taken from the test data are shown below. 
The model has successfully predicted all the diseases accurately. The confidence of the 
model is averaging almost 99% except for the on-test subject, where the model confidence 
is very low at 50%, but the prediction is correct on the individual data while keeping the 
accuracy and confidence to almost 100% on the merged data from Figure 8. 

Figure 7. Custom Model Individual and Merged Data performance.

The results of nine images that we have taken from the test data are shown below. The
model has successfully predicted all the diseases accurately. The confidence of the model is
averaging almost 99% except for the on-test subject, where the model confidence is very
low at 50%, but the prediction is correct on the individual data while keeping the accuracy
and confidence to almost 100% on the merged data from Figure 8.
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Figure 8. Custom Model Individual and Merged Data Results.

4.3. Residual Net

The best-performing model we have used in this research so far has an accuracy of
more than 99.50%. ResNet is the most stable model we have used. It has the best validation
accuracy of 99.44% and the best test accuracy of 99.78% on individual data. On the merged
dataset, ResNet50 has a very good performance with 99.34% test accuracy and is just behind
Dense20, as shown in Table 3.

Table 3. Residual Net Individual and Merged Data.

ResNet Individual Data ResNet Merged Data

Accuracy Loss Val Accuracy Val Loss Accuracy Loss Val Accuracy Val Loss

99.99 5.2742 × 10−4 99.44 0.0196 100 1.6210 × 10−4 99.48 0.0282
100 2.0346 × 10−4 99.44 0.0191 100 1.6100 × 10−4 99.43 0.0286
100 1.5636 × 10−4 99.44 0.0191 100 1.5992 × 10−4 99.45 0.0285
100 1.3528 × 10−4 99.44 0.0190 100 1.5885 × 10−4 99.48 0.0285
100 1.2024 × 10−4 99.44 0.0192 100 1.5780 × 10−4 99.45 0.0284

The test and validation accuracy and loss are shown here. Using these graphs, we
can demonstrate the performance of the model, as shown in Figure 9. The model fully
converged at epoch 4, which is extremely fast. The ResNet model has the best accuracy,
as we can see in Figure 10, where the model has successfully identified all the diseases
correctly. Mostly, the confidence of the model in these test cases is 100%, and the average
confidence is more than 99%.
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4.4. DenseNet121

DenseNet121′s performance is also very good. This model has outperformed all the
models we have used in this research; it just falls behind ResNet. The DenseNet model has
a very good accuracy of 99.55% on the individual dataset. The model has not performed as
well on the merged dataset. The model has a very stable validation and training accuracy
and loss performance at each epoch. The model is converging, and the accuracy is better.
We have stopped the models at this point because the convergence rate has dropped very
low; thus, we will obtain a very low-performance gain at a high cost, as shown in Table 4.
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Table 4. DenseNet121 Individual and Merged Data.

DenseNet 121 Individual Data DenseNet121 Merged Data

Accuracy Loss Val Accuracy Val Loss Accuracy Loss Val Accuracy Val Loss

98.26 0.0547 98.96 0.0319 98.75 0.0420 99.40 0.0207
98.69 0.0439 99.27 0.0277 99.05 0.0328 99.43 0.0219
99.00 0.0348 99.24 0.0225 99.22 0.0274 99.45 0.0207
99.10 0.0300 99.31 0.0211 99.46 0.0213 99.37 0.0218
99.25 0.0272 99.41 0.0203 99.46 0.0193 99.24 0.0209

Figure 11 shows the training validation accuracy and loss graph. The model has a very
stable graph, but the problem is that the convergence drops very quickly on both datasets,
as shown in the figures below.
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The DenseNet 121 model has the second-best accuracy, as we can see in Figure 12,
where the model has successfully identified all the diseases correctly. The confidence of the
model in these test cases gives an average confidence of more than 99%.

4.5. DenseNet169

We have achieved a test accuracy of 99.78%, the same accuracy as ResNet50. The
DenseNet169 performance was one of the best in this research. We believe that ResNet
has performed a little better than DenseNet169 because the test accuracy is the same for
both models, but the training and validation accuracy of ResNet50 is better, and also the
parameters are fewer in ResNet. As we can see, models are very stale. The model has
been almost fully trained because there are no more significant improvements, as shown in
Table 5 below. The model has fully converged, as shown in Figure 13, and does not need
any more epochs.
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Figure 12. DenseNet121 Individual and Merged Data Results.
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Table 5. DenseNet169 Individual and Merged Data.

Dense Net 169 Individual Data DenseNet169 Merged Data

Accuracy Loss Val Accuracy Val Loss Accuracy Loss Val Accuracy Val Loss

98.49 0.0470 99.13 0.0331 99.57 0.0184 98.95 0.0346
98.84 0.0371 99.20 0.0280 99.65 0.0161 98.87 0.0388
99.12 0.0296 99.20 0.0283 99.61 0.0141 98.87 0.0374
99.15 0.0266 99.37 0.0246 99.75 0.0112 98.98 0.0368
99.40 0.0205 99.34 0.0273 99.84 0.0092 99.02 0.0358

DenseNet169 has successfully identified all of the nine test subjects correctly. The
confidence in the model is very high, averaging 99%. Only for one subject is the model
confidence at 97%, which is below the average, but the confidence is almost 100% in most
of the other subjects in Figure 14.

4.6. DenseNet201

DenseNet201 is a type of DenseNet model series. In this research, the models have
performed well with 99.78% training accuracy, 99.33% validation accuracy, and 99.67% test
accuracy. There are only two other models that have performed better than DensNet201
in this research. Table 6 shows that the training accuracy and loss are improving at each
epoch, but the main issue is that the validation accuracy and loss are not improving. For
this reason, we have ended the model training.

Figure 14. DenseNet169 Individual and Merged Data Results.

Looking at these accuracy and loss graphs, we can see that the model has stopped the
convergence. By using these graphs, we can understand that the model cannot improve
anymore, and further training can cause overfitting and gradient vanishing, as shown in
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Figure 15. These are some of the results that we have taken from testing the model. The
model has successfully identified all the diseases with almost 100% confidence. There are
no false–true or true–false predictions, but on more testing data, this model does not have
the best accuracy, as shown in Figure 16.
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Table 6. DenseNet201 Individual and Merged Data.

Dense Net 201 Individual Data DenseNet201 Merged Data

Accuracy Loss Val Accuracy Val Loss Accuracy Loss Val Accuracy Val Loss

99.38 0.0240 99.41 0.0201 98.69 0.0418 99.97 0.0050
99.61 0.0171 99.27 0.0235 98.99 0.0322 99.95 0.0036
99.66 0.0148 99.17 0.0233 99.27 0.0250 99.97 0.0021
99.70 0.0131 99.37 0.0191 99.24 0.0229 100 0.0019
99.78 0.0098 99.31 0.0211 99.37 0.0204 99.97 0.0018

5. Comparative Analysis and Discussions

Unlike most prior research using transfer learning on diverse plant data, our study’s
targeted focus on tomatoes enabled the development of a custom model that delivers supe-
rior accuracy while simultaneously minimizing both model complexity and computational
requirements. This research investigated the use of deep learning for accurate and fast
tomato plant disease identification. Existing convolutional neural networks (CNNs) like
VGG, ResNet, and DenseNet were evaluated for their performance, and a custom deep
learning model was developed and tested. The custom model achieved over 99% accuracy
in identifying 10 tomato plant diseases (including healthy plants). This high accuracy was
achieved with less training time and lower computational cost compared to other CNNs.
This research demonstrates the potential of deep learning for efficient and accurate tomato
plant disease detection, which can benefit farmers and contribute to improved agricultural
production. The custom model’s efficient performance makes it promising for practical
implementation in real-world agricultural settings. The research used large datasets of
tomato plant images, which helped achieve high accuracy. Different deep learning and
machine learning models have been developed in this study. This stage involves comparing
all of the models. Here, we have to look at the models that were employed in this study,
ranked by performance from worst to best. Tables 7 and 8 show us the model, no. of layers,
the optimizer, the no. of parameters, the no. of epochs used for training the model, the
training, testing, and validation accuracies and loss for the signal dataset that we have used.

Table 7. Comparison Table with Individual Data.

Model Optimizer Layers Parameters No. of
Epochs

Training
Accuracy

Training
Loss

Validation
Accuracy

Validation
Loss

Test
Accuracy

VGG16 Adamax 16 27,514,698 30 99.32% 0.0200 98.10% 0.0618 98.79%
Custom Adamax 10 8,598,090 30 100% 6.0618 × 105 98.75% 0.0487 99.22%

ResNet 50 SGD 50 6,315,018 10 100% 1.202 × 104 99.44 0.0203 99.78%
DenseNet121 SGD 121 51,914,250 10 99.25% 0.0272 99.41% 0.0203 99.55%
DenseNet169 SGD 169 84,028,170 05 99.15% 0266 99.37% 0.0246 99.78%
DenseNet201 SGD 201 96,873,738 05 99.78% 0098 99.31% 0.0211 99.67%
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Table 8. Comparison Table of Merged Data.

Model Optimizer Layers Parameters Training
Accuracy Training Loss Validation

Accuracy
Validation

Loss
Test

Accuracy

VGG16 Adamax 16 27,514,698 99.91% 0.0037 92.06% 0.6915 92.06%
Custom Adamax 14 8,598,090 100% 9.1173 × 10−4 99.22% 0.0289 99.24%
ResNet

50 SGD 50 6,315,018 100% 1.5780 × 10−4 99.45% 0.0284 99.34%

Dense
Net121 SGD 121 51,914,250 99.46% 0.0193 99.24% 0.0209 98.93%

Dense
Net169 SGD 169 84,028,170 99.84% 0.0092 99.02% 0.0358 98.87%

Dense
Net201 SGD 201 96,873,738 99.37% 0.0204 99.97% 0.0018 100%

5.1. Comparison Table of Individual Data

For each model created using a specific dataset, the accuracy and loss are shown in
Table 7 for training, testing, and validation. ResNet50 and DenseNet169 have the highest
test accuracies, according to the table, but ResNet50 is more effective. The VGG16 also has
the lowest level of accuracy overall.

5.2. Comparison Chart of Individual Data

Here is a graph that shows how the models have performed. The DenseNet201 model
is the best model, followed by ResNet50 in this study, as shown by the graphic. Figure 17
shows that ResNet50 has the highest overall training validation and test accuracy.
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5.3. Comparison Table of Merged Data

For all of the models created using the combined dataset, the training, testing, and
validation accuracy and loss are shown in Table 8. According to the table, DenseNet201
and DenseNet169 have the best test accuracies, but DenseNet201 is superior. Additionally,
the VGG16 once more has the lowest overall accuracy.
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5.4. Comparison Chart of Merged Data

The graph below demonstrates that, except for the VGG16, most models have fared
extremely well. With Dense201, the ResNet50 has performed best, and our model is closely
following, as shown in Figure 18.
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6. Conclusions and Future Work

In this research, we have used different CNN architectures developed using different
datasets. When the results were compared, we concluded that all of the DenseNet models
had performed better, but in comparison to both datasets, DenseNet201 has extraordinary
results, followed by DenseNet169 and ResNet50. However, our own deployed model also
has accuracies of over 99% on both datasets, which is a strong reason that this model can
also be used for plant disease detection. In this research, we have discussed how we can
detect and recognize plant disease using its leaves and treatment for these plant diseases.
We have used the ResNet deep learning model and the decision tree classifier model using a
Python programming language. We have achieved very high accuracy in both models. The
problems we faced related to our system were data gathering and model selection. There is
a lot of data available, but most of it is outdated or false data. There are also a lot of machine
learning and deep learning models, and we had to build and select the best model. Models
like VGG, DenseNet, and ResNet are very computationally expensive and time-consuming
because we have to train on a lot of parameters. This model will be implemented on a drone
device along with the object detection model, which will detect the tomato leaf, and this
model will detect the disease in the tomato leaf. After the disease is detected, the system
will automatically prescribe the specified spray for the detected disease.
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Abstract: During the 1950s, the Gros Michel species of bananas were nearly wiped out by the incurable
Fusarium Wilt, also known as Panama Disease. Originating in Southeast Asia, Fusarium Wilt is a
banana pandemic that has been threatening the multi-billion-dollar banana industry worldwide.
The disease is caused by a fungus that spreads rapidly throughout the soil and into the roots of
banana plants. Currently, the only way to stop the spread of this disease is for farmers to manually
inspect and remove infected plants as quickly as possible, which is a time-consuming process. The
main purpose of this study is to build a deep Convolutional Neural Network (CNN) using a transfer
learning approach to rapidly identify Fusarium wilt infections on banana crop leaves. We chose
to use the ResNet50 architecture as the base CNN model for our transfer learning approach owing
to its remarkable performance in image classification, which was demonstrated through its victory
in the ImageNet competition. After its initial training and fine-tuning on a data set consisting of
600 healthy and diseased images, the CNN model achieved near-perfect accuracy of 0.99 along with a
loss of 0.46 and was fine-tuned to adapt the ResNet base model. ResNet50’s distinctive residual block
structure could be the reason behind these results. To evaluate this CNN model, 500 test images,
consisting of 250 diseased and healthy banana leaf images, were classified by the model. The deep
CNN model was able to achieve an accuracy of 0.98 and an F-1 score of 0.98 by correctly identifying
the class of 492 of the 500 images. These results show that this DCNN model outperforms existing
models such as Sangeetha et al., 2023’s deep CNN model by at least 0.07 in accuracy and is a viable
option for identifying Fusarium Wilt in banana crops.

Keywords: convolutional neural network; Fusarium wilt; transfer learning; ResNet-50; banana crop

1. Introduction

Banana (Musa spp.) is one of the most widely produced cash crops in the tropical
regions of the world and the fourth most important crop among developing nations.
Over 130 countries export bananas, contributing to a total revenue of 50 billion dollars
per year [1]. Fusarium wilt or Panama disease is caused by the Fusarium oxysporum f. sp.
cubense tropical race 4 (TR4), and is a well-known threat to global banana production [2,3].
TR4 infected hundreds of thousands of hectares of banana plantations throughout countries
like China, India, the Philippines, Australia, and Mozambique [4].

Four to five weeks after inoculation with Foc, banana crops begin to exhibit the main
symptom of Fusarium wilt, yellowing of their leaves. TR4 can spread through flowing
water, farm equipment, infected plant material, and soil contamination. Approximately
four to five weeks after being inoculated with TR4, banana crops start displaying the
primary symptom of Fusarium wilt: the yellowing of their leaves. These once-vibrant
leaves gradually begin to droop and eventually collapse, forming a ring of lifeless foliage
encircling the pseudo-stem of the crop [5]. Over time, an increasing number of leaves
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experience wilting and collapse, resulting in the entire canopy of the crop being composed
solely of withering and deceased leaves.

Currently, the main method used to manage Fusarium wilt is to inspect banana
plantations with manual labor in hopes of identifying these yellowing leaves. However,
this process requires enormous amounts of time and money to perform [6]. Also, manual
inspection quality is affected by the experience and expertise of the farmer performing the
inspection, meaning accuracy of diagnosis cannot be ensured [7]. Additionally, there are
currently no chemical or physical treatments available that can effectively control Fusarium
Wilt. Once the signs of this disease are identified, the only viable treatment option is the
rapid removal of the crop in order to prevent a large-scale infection from occurring [8].

Alternatively, Remote sensing has been used in recent studies to detect the presence
of Fusarium wilt. For example, a DJI Phantom 4 quadcopter (DJI Innovations, Shenzhen,
China) equipped with a MicaSense RedEdge MTM five-band multi-spectral camera to
perform remote sensing surveys of banana plantations in China [6]. The multi-spectral
images were then used to calculate different vegetation indices, attempting to find the
infection status of Fusarium wilt in the plantation. The same approach was used in [9] to
detect Fusarium wilt on banana plantations.

The main drawback to these remote sensing detection systems, despite their ability
to detect Panama disease, is similar to that of conducting manual inspections: the high
cost. The high-quality multispectral and hyperspectral cameras required by these types of
detection systems can range in cost from several thousands of dollars to tens of thousands
of dollars. Given that Fusarium wilt infections mostly occur in developing countries on the
continents of South America, Africa, and South Asia [10], it is clear that farmers in those
regions cannot afford high-quality spectral cameras and the computational power used to
analyze spectral images.

Presently, convolutional neural networks have been used to detect many different
plant diseases through their symptoms within the visible light spectrum. In computer
vision, deep convolutional neural networks (CNNs) can achieve excellent performance
in image classification tasks [11]. CNNs are a variant of deep neural networks that are
designed to mimic the cognitive process of human vision. CNNs receive an input, usually
in the form of an image, which is then fed through layers of neurons that perform nonlinear
operations, lastly, the output is in the form of a list of scores between 0 and 1, each of
which represents the likelihood of the image belonging to an image class. The nonlinear
operations at these neurons are optimized through a training procedure [12].

Transfer learning is a technique used in the design of deep learning models to reduce
the need for large training datasets and high computational costs for training. Transfer
learning essentially works by integrating the knowledge of a previously trained CNN model
into a new CNN model designed for a specific task [13]. Transfer learning approaches have
been used in plant classification, sentiment classification, software defect prediction and
more [14]. There are several pre-trained models that can be selected as the base model
for transfer learning, such as ResNet, AlexNet, Inception V-3, VGG16, and ImageNet.
In [11], the authors evaluated the aforementioned four pre-trained models in a transfer
learning-based plant disease detection task. It was found that ResNet-50 is the best model
and achieves an accuracy of 0.9980.

In this paper, we present a transfer learning-based deep CNN model for the detection
of Fusarium Wilt in banana crops. The key contributions of this paper are summarized
as follows:

• We employed ResNet-50 as the base model, which is accessible in Keras with pre-
trained weights on the TensorFlow backend. Originally trained to identify 1000 distinct
object classes from ImageNet, the ResNet-50 architecture was adapted for our binary
classification task. To do this, we substituted the original final fully connected layer of
1000 neurons with a single neuron fully connected layer to fit our binary output. Then,
the ResNet-50 layers were fine-tuned to adapt the knowledge of the base model to the
Fusarium wilt detection task. Our CNN model is illustrated in Figure 1.
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• The training dataset was obtained from [15], consisting of 72 images of Fusarium
wilt-infected banana leaves and 84 images of healthy banana leaves. To augment
the dataset size and mitigate overfitting, random flips, rotations, and noise injection,
were applied to each image. After training for 100 epochs, the model demonstrated
near-perfect performance.

• Furthermore, for testing purposes, we created a new data set from Google searches,
comprising 500 distinct images. This testing dataset will provide a robust platform for
further research into Fusarium wilt detection.

• Our transfer learning-based CNN model achieved high accuracy and an F-1 score of
0.98, correctly classifying 492 out of 500 images (see Figures 2–5). We also demon-
strate the impact of both transfer learning and data augmentation by evaluating our
model’s performance with and without these techniques. Figure 6 illustrates that
our CNN model achieves an accuracy of 0.7685 without transfer learning and data
augmentation, while it attains an accuracy of 0.9823 using the transfer learning and
data augmentation methods.

• To evaluate the model’s discriminative ability on the banana leaf image dataset,
we employed a Receiver Operating Characteristic (ROC) curve (refer to Figure 7).
The results, depicted by the ROC curve, affirm that our trained model can effectively
distinguish between Fusarium wilt-infected and healthy banana plants.

• We conducted a performance comparison between our ResNet-50 model based CNN
model and other CNN models: VGG16, AlexNet, and DenseNet121. As illustrated
in Figure 8, ResNet-50 exhibited superior performance compared to these models.
Therefore, our transfer learning-based ResNet-50 model emerges as a promising
candidate for the detection of Fusarium wilt in banana crops.

Figure 1. The diagram displays the dimensions of the inputs and outputs of each layer of our CNN
model along with the names of each layer.
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(a) (b)

Figure 2. (a) Accuracy (percentage of correctly predicted samples) vs. Epoch and (b) Loss (binary
cross-entropy loss) vs. Epoch. Visualization of the learning process reveals improvement in both
training and validation loss and accuracy for our CNN model with successive epochs.

Figure 3. These outputs are the values of accuracy and loss of the training and validation sets
during fine-tuning.

Figure 4. The confusion matrix represents the predictions made by the CNN model (500 total
predictions).

Figure 5. The classification report shown here depicts the precision, recall, F-1 score, accuracy, and the
macro and weighted averages of these values.
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Figure 6. The graph shows the different accuracy values as a result of the different evaluation
conditions of the model.

Figure 7. ROC curve for the CNN model trained on the Fusarium wilt dataset. The area under the
curve (AUC) of 0.92 signifies that the model has good discriminatory power between the positive
and negative classes.

1.1. Literature Review

CNNs have been employed for the detection of various plant diseases, such as soybean
plant diseases [16], apple black rot, grape leaf blight, tomato leaf mold, cherry powdery
mildew, potato with early blight, and bacterial spots on a peach [14]. In a study by [17],
the authors developed a CNN model capable of detecting 58 classes of plant leaves from
diverse crops, including aloe vera, apple, banana, cherry, citrus, corn, coffee, grape, paddy,
peach, pepper, strawberry, tea, tomato, and wheat. In another work, Ref. [1] presented a
deep learning-based neural network model for identifying Fusarium wilt. Their model
achieved an accuracy of 0.9156, evaluated on 700 samples of diseased and healthy banana
leaf images. Notably, the accuracy reported in this study surpassed that achieved in [1]
by approximately 0.065, reaching 0.98. The study [6] proposed a remote sensing-based
detection model for Fusarium wilt on banana plantations in China. Their model utilized
changes in vegetation indices caused by Fusarium wilt for disease detection. Meanwhile,
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Ref. [18] implemented the Yolo v4 neural network model in a Raspberry Pi for Fusarium
wilt detection in banana leaves. The handheld system demonstrated an on-field accuracy
of 0.90, offering portability and independence from internet connectivity. The paper [19]
introduced a Support Vector Machine (SVM) classification framework for identifying four
types of banana diseases in India, including sigatoka, cmv, bacterial wilt, and Fusarium wilt.
The SVM classification achieved an average accuracy of approximately 0.85, with accuracy
of 0.84, 0.86, 0.85, and 0.85 for the four diseases, respectively.

Figure 8. Accuracy comparison across different deep learning architectures. ResNet-50 demonstrates
superior performance in Fusarium wilt detection.

In a recent development, Ref. [20] conducted an in-depth study leveraging the Mo-
bileNetV2 architecture, an efficient CNN model designed for mobile vision applications.
In [20], the authors demonstrated the capability of lightweight neural networks when aug-
mented with deep transfer learning techniques to achieve notable accuracy in classifying
a diverse array of fruit images, including apples, oranges, and bananas. The practical
implications of their study suggest the viability of implementing such models on edge
devices within agricultural frameworks. Continuing the exploration of transfer learning
potentials, Ref. [21] provided an extensive comparative analysis on the detection of diseases
in sunflower crops. The study [21] highlighted the significant performance benefits of
applying transfer learning to plant disease detection tasks. By using a CNN pre-trained on
extensive datasets and subsequently fine-tuning it for sunflower disease identification, they
underlined the robustness of transfer learning in achieving precise disease identification
in agricultural applications. In a comprehensive review, Ref. [22] addressed the compli-
cations inherent to citrus fruit disease classification. The review [22] critically assessed
the methodologies from initial image acquisition to advanced pre-processing and classifi-
cation via CNN. Similarly, Ref. [23] investigated enhanced methods of data preparation.
The study [23] put forth innovative annotation techniques that aid in the efficient training
of CNN models for fruit classification tasks, with a specific focus on minimizing manual
labeling efforts while enhancing the precision of dataset annotations. In [24], authors pre-
sented a novel CNN-based approach for seed classification. In their publication [24], they
outlined the development of a CNN model adept at categorizing seeds with substantial
accuracy, demonstrating the versatility of CNNs beyond disease identification and into the
quality assessment and sorting of agricultural products.

1.2. Objectives

The main objectives of this study were to (a) develop and train a transfer learning-
based convolutional neural network model for identifying Fusarium wilt in banana crops,
(b) utilize a ResNet-50 pre-trained model as the foundational architecture, and (c) evaluate
the precision of this model in Fusarium wilt identification.
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2. Materials and Methods
2.1. Dataset

In [15], the authors compiled an extensive dataset featuring diverse images of banana
diseases and healthy plant samples. For the purpose of training our CNN model, we utilized
a subset of their data that comprised 72 images of Fusarium wilt-infected banana leaves
and 84 images featuring healthy banana leaves. The dataset compiled by [15] is accessible
at (https://data.mendeley.com/datasets/4wyymrcpyz/1 (accessed on 5 December 2023))
This dataset includes images that allow one to distinguish Fusarium wilt-infected banana
leaves from healthy banana leaves. These images were captured at different times of the
day and under varying environmental conditions, ensuring a broad range of scenarios
for increased model robustness. The original images in the dataset had dimensions of
256 × 256 pixels. However, to align with the input layer dimensions of the CNN model,
the images underwent resizing to a standardized size of 224 × 224 pixels. This resizing
process ensured uniform dimensions for all input images, facilitating seamless processing
within the CNN model.

2.2. Data Pre-Processing and Augmentation

To expand the initial dataset and address the risk of overfitting due to limited data, we
employed data augmentation techniques. This involved applying random flipping, rotation,
and noise addition to each image in the training dataset. The resulting augmented dataset
provided the model with a more diverse and enriched sample for training, enhancing its
generalization capabilities beyond the original dataset.

The dataset was divided into two separate subsets: a training dataset and a validation
dataset. Specifically, 70% of the dataset was assigned to the training dataset, while the
remaining 30% formed the validation dataset. By establishing a clear distinction between
the training and validation datasets, the model’s performance was effectively assessed
and monitored during the training process. The separation facilitated a robust evaluation
of the model’s capacity to generalize predictions to previously unseen data, ensuring its
effectiveness in detecting and classifying Fusarium wilt-infected banana leaves beyond the
images it had been trained on.

2.3. Transfer Learning

Our study focused on creating a transfer learning-based CNN model specialized in
detecting Fusarium wilt in banana crops. We aimed to develop a model that balances
computational efficiency with ease of deployment. For this task, we selected Keras [25],
a renowned high-level neural network API, in conjunction with TensorFlow [26], a leading
machine learning framework. In our search for a suitable pre-trained model, we opted for
ResNet-50 [27], a well-established CNN architecture in computer vision. We chose ResNet-
50 for its proven effectiveness in image classification tasks and its innovative use of residual
blocks to address the vanishing gradient problem in deep networks. The architecture
ensures gradient information preservation across layers, enabling optimal weight learning
throughout its depth.

We employed a ResNet-50 model pre-trained on the ImageNet dataset with 1000 object
categories. Then, we modified its architecture by replacing the original 1000-neuron fully
connected layer with a single-neuron layer tailored to our binary classification task.

While newer CNN architectures exist, many of them demand substantial computa-
tional resources, potentially hindering deployment in resource-constrained environments.
ResNet-50 strikes a balanced trade-off, offering excellent performance without the hefty
computational demands of more recent architectures. This aligns well with our goal of
creating a model that is powerful and practical for widespread use.

2.4. Neural Network Architecture

A CNN model has a sequential structure, stacking each layer on the previous one.
This configuration facilitates a systematic flow of information through the network. It also
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helps in extracting increasingly abstract features from the input image as it progresses
through the layers. Figure 1 illustrates the architecture of our CNN model, depicting the
step-by-step transformation of the input image.

2.5. Input Layer

Our model initiates with the input layer, which receives an image sized at 224 × 224 pixels
with three RGB values, forming a 3-dimensional matrix. Each cell in this matrix contains
a pixel value representing the intensity of the pixel for grayscale images or, for RGB im-
ages, three matrices or channels corresponding to the red, green, and blue components.
Subsequently, the input image is fed into the ResNet-50 based layer.

2.6. ResNet-50 Layer

ResNet, short for Residual Network, represents a specific type of CNN introduced
in [27]. ResNet-50, specifically, is a convolutional neural network with 50 layers (48 convo-
lutional layers, one MaxPool layer, and one average pool layer). Residual neural networks
are a subtype of artificial neural networks (ANNs) constructed by stacking residual blocks.
The residual block is defined as:

y = f (x, W) + x, (1)

where x, y, W, and f (·) denote the input, output, weights, and the residual function of the
block, respectively. Refer to [27] for detailed information.

In Figure 1, the MaxPool layer and the average pool layer are separated from the
ResNet-50 Layer, and details about these two layers are provided below.

2.7. Max Pooling Layer

After the 48 convolutional layers of ResNet-50, a max pooling layer is introduced to
downsample the feature map. This process, which reduces the spatial dimensions, extracts
essential features, enhancing computational efficiency. The downsizing aids in emphasizing
the most salient information while discarding irrelevant details.

2.8. Global Average Pooling Layer

Once the information passes through the residual blocks and the max pooling layer,
a global average pooling layer is applied. This layer reduces the spatial dimensions of the
feature map by computing the average value of each feature. By summarizing information
across the entire feature map, the global average pooling layer preserves the most relevant
features while discarding spatial details. This process focuses on the most descriptive
aspects of the image.

2.9. Dropout Layer

Following the global average pooling layer, a dropout layer is incorporated into the
CNN model. This layer randomly drops out a fraction of the outputs generated by the
previous layer during training, serving as a regularization technique. Its purpose is to
enhance the model’s ability to generalize by reducing the likelihood of overfitting.

2.10. Fully Connected Dense Layer

Finally, the CNN model concludes with a fully connected dense layer that conducts
linear transformations on the input received from the preceding layers. Because our task
(binary classification) is to distinguish between a healthy banana leaf and a Fusarium
wilt-infected banana leaf, we include a fully connected output layer with one neuron. This
neuron incorporates a sigmoid function, expressed as:

σ(z) =
1

1 + e−(WTz+b)
, (2)
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where z denotes the input vector, the vector W contains the weights, and b is the bias.
The sigmoid Function (2) produces a value between 0 and 1. This characteristic allows

the model to interpret the output as a probability, indicating the likelihood of a given input
belonging to a specific class. For instance, if the output of the last layer exceeds 0.5, we
predict the input as a healthy leaf; otherwise, the leaf is Fusarium wilt-infected.

3. Results
3.1. Training

Prior to training, the ResNet-50 architecture’s layers were initialized with weights
pre-trained on ImageNet. The weights of the last fully connected layer (i.e., the output layer)
were initialized using a uniform random distribution, as detailed in [28]. During training,
the pre-trained layers of the ResNet-50 architecture remained frozen, while the output
layer was trained using the Adam optimization algorithm with a learning rate of 0.001.
The standard binary cross-entropy loss function was employed in training, and two metrics
were recorded: accuracy, representing the percentage of correctly predicted samples, and loss,
representing the binary cross-entropy loss.

Let yi ∈ {0, 1} denote the actual label of the i-th input image, where yi = 0 indicates a
Fusarium wilt-infected leaf; otherwise, yi = 1 indicates that the leaf is healthy. The output
of the neural network is denoted by pi, where 0 ≤ pi ≤ 1 represents the probability of
the i-th input being healthy. Let N be the number of images in a dataset. The binary
cross-entropy loss (BCE) of the neural network on the given dataset is determined by

BCE = − 1
N

N

∑
i=1

yilogpi + (1− yi)log(1− pi). (3)

The accuracy of the neural network on a given dataset is determined by

Accuracy =
1
N

N

∑
i=1

yi1(pi ≤ 0.5) + (1− yi)1(pi > 0.5), (4)

where 1(·) is an indicator function.
Utilizing our dataset, the CNN model underwent training on the Google Colab plat-

form. The computation was expedited via the cloud-based Graphics Processing Unit
(GPU). The model’s training consisted of 100 epochs, and the observed metrics exhibited
convergence tendencies.

As depicted in Figure 2, post-training, (a) the CNN model registered an accuracy of
100% and a BCE loss of 0.0247 on the training dataset; (b) the CNN model registered an
accuracy of 97.83% and a BCE loss of 0.0351 on the validation dataset.

3.2. Fine Tuning

After the initial training phase, the last 10 pre-trained layers of the ResNet-50 archi-
tecture were unfrozen for model fine-tuning. Then, the weights of all the unfrozen layers
of the CNN model were optimized using the Adam optimization algorithm. The learning
rate of the model was also adjusted to 10−4. This is conducted to ensure that the weights of
the model are not drastically altered during this process. By fine-tuning, we are essentially
adapting the knowledge of the base model to this identification task.

As shown in Figure 3, the outputs of the fine-tuning process show that the model
was able to reach a peak accuracy of 100% on both the training dataset and the validation
dataset, indicating the pre-trained model’s weights having adapted to this classification
task successfully.

3.3. Model Evaluation

In order to determine the ability of the CNN model to identify Fusarium wilt infec-
tions, it was tested on a dataset consisting of 500 images (https://www.dropbox.com/
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scl/fo/uvcgie7p8izwwqf3norp7/h?rlkey=7066yyc9w5ezcju4m3gu594uc&dl=0 (accessed
on 5 December 2023)). The images, previously unseen by the model, were taken from a
Google search. Using the OpenCV-Python3 library, the data augmentation techniques of
rotation, noise addition, and resizing were used to expand the 200 healthy and diseased
images to 500 images.

The metrics used to determine the overall performance of the model were: accuracy,
precision, recall, and F-1 score. These measures are calculated using Equations (5)–(8),
respectively. Accuracy is a straightforward metric that measures the overall correctness
of the model’s predictions. Precision is a metric that focuses on the positive predictions
(yi = 1) made by the model. It is defined as the ratio of true positive predictions (correctly
predicted positive samples) to the total number of positive predictions (both true positives
and false positives). Recall, also known as sensitivity or true positive rate, measures the
ability of the model to correctly identify positive samples. It is defined as the ratio of
true positive predictions to the total number of actual positive samples (true positives and
false negatives). The F-1 score is the harmonic mean of precision and recall. It provides a
balanced measure that considers both precision and recall simultaneously. Additionally,
a confusion matrix was visualized through the OpenCV library packages to see the exact
number of true and false positive and negative identification classes. It should be noted that
the accuracy of random guessing identification for Fusarium wilt will yield an accuracy
of 0.50. It should also be noted that there is no method to truly quantify the accuracy
of a farmer in identifying Fusarium wilt as this depends on many variables including
experience, age, genetics and more.

Accuracy =
TP + TN

TP + TN + FP + FN
. (5)

Precision =
TP

TP + FP
. (6)

Recall =
TP

TP + FN
. (7)

F1 Score =
2× Precision× Recall

Precision + Recall
. (8)

As depicted in Figure 4, the CNN model with augmented images in the training
data and with transfer learning-based design was able to correctly identify 492 out of the
500 total test images to the correct classification class. The eight errors consisted of five
false positive and three false negative identifications. The greater number of false positives
in this case is considered a more desirable outcome because the farmer can verify that the
banana crop is not truly infected before any potential removal of the entire plant. If the
number of false negatives was higher, it would pose a larger issue of missing infections,
thus, allowing a greater spread of Fusarium wilt.

The classification report shown in Figure 5 depicts the precision, recall, F-1 score,
and accuracy of the testing dataset. The CNN model was able to perform with an accuracy
of 0.99 on the healthy images and 0.98 on the Fusarium wilt-diseased images. These
measures combined with the 0.98 F1 score show the model was able to generalize its prior
training to new data. As a comparison for metrics, Ref. [29] trained a deep learning model
to identify Fusarium wilt and was only able to achieve 0.9156 accuracy, 0.9161 precision,
0.8856 recall, and 0.8156 score. Their model was also able to substantially outperform
existing models with an accuracy nearly 0.20 higher than the second-best model compared
in their study. The model in this paper was able to outperform all the metrics of their model;
however, this may be due to the original size of the evaluation set being substantially less
than the set in their paper. In future real-world testing, this CNN model may yield slightly
lower metrics; however, it is still expected that the model will outperform most existing
models based on its stellar performance on this dataset.
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3.4. Comparative Analysis: Impact of Data Augmentation and Transfer Learning

In this section, we analyze the impact of data augmentation and transfer learning
on model performance. The evaluation was conducted with four different conditions:
(a) model performance without data augmentation and transfer learning, (b) model per-
formance with data augmentation and without transfer learning, (c) model performance
without data augmentation and with transfer learning, and (d) model performance with
data augmentation and with transfer learning. The results of the evaluations are illustrated
in Figure 6.

3.5. Receiver Operating Characteristic

A Receiver Operating Characteristic (ROC) curve was also used to evaluate the per-
formance of the model on the same dataset of banana leaf images. The ROC curve is a
graphical representation of the true positive rate (TPR) against the false positive rate (FPR)
at various threshold settings. It provides an aggregate view of the model’s performance
across all possible classification thresholds.

TPR (Sensitivity) =
TP

TP + FN
(9)

FPR (1 - Specificity) =
FP

FP + TN
(10)

where:

• TP: True Positives
• FN: False Negatives
• FP: False Positives
• TN: True Negatives

The high AUC value in Figure 7 indicates that the model can distinguish between
affected and unaffected plants with high accuracy.

3.6. 10-Fold Cross Validation

To enhance the precision and robustness of the Convolutional Neural Network (CNN)
model, a 10-fold cross-validation method was implemented. This technique’s significance
lies in assessing the CNN model’s ability to generalize and make accurate predictions on
unseen data.

Given a dataset D of size N, it is partitioned into 10 mutually exclusive subsets,
D1, D2, . . . , D10. For each iteration i of the cross-validation: 1. Di is reserved for validation,
and the union of the remaining subsets D− Di is used for training. 2. The model is trained
on D− Di and validated using Di. 3. Performance metrics, namely training loss, training
accuracy, validation loss, and validation accuracy, are computed.

The process is repeated for all subsets, ensuring each data point is used for validation
precisely once.

Average Validation Accuracy =
1

10

10

∑
i=1

Validation Accuracyi (11)

Average Training Accuracy =
1

10

10

∑
i=1

Training Accuracyi (12)

ResNet-50’s enhanced performance is attributed to its deep layers and the integration
of residual blocks. These features help the model recognize complex patterns and avoid
issues like vanishing gradients. This evaluation supports the choice of ResNet-50 for tasks
requiring high classification accuracy.

An examination of the metrics in Table 1 reveals the model’s consistent performance
across distinct subsets. The gradual rise in training accuracy denotes the CNN’s adaptative
learning capability. In parallel, the upsurge in validation accuracy indicates proficient

117



AgriEngineering 2023, 5

generalization on novel data vectors. This systematic 10-fold cross-validation solidifies the
CNN model’s efficacy in detecting Fusarium wilt, positioning it as a pivotal tool for disease
identification and mitigation in agriculture.

Table 1. Metrics for the 10-fold cross-validation of the CNN model, segmented by subset.

Subset Training Loss Training Accuracy Validation Loss Validation Accuracy

1 0.7750 0.5188 0.9880 0.3125
2 0.6890 0.6250 0.8267 0.3750
3 0.7107 0.5813 0.6750 0.5312
4 0.5410 0.7375 0.5630 0.7188
5 0.3574 0.8627 0.4693 0.7812
6 0.2753 0.9500 0.4069 0.8438
7 0.2729 0.9375 0.3536 0.8438
8 0.2361 0.9688 0.3086 0.8750
9 0.2406 0.9125 0.2694 0.9688
10 0.1607 0.9804 0.2367 0.9688

3.7. Comparative Evaluation between Architectures

We assessed the performance of the ResNet-50 model in detecting Fusarium wilt and
compared it with other CNN architectures: VGG16, AlexNet, and DenseNet121. All models
were trained using the same dataset to ensure consistent evaluation conditions.

As presented in Figure 8, ResNet-50 achieved an accuracy of 0.98 on the testing
dataset, outperforming the other architectures. Each model was set up using standard
configurations to maintain fairness in the comparison.

4. Discussion

The accurate detection of Fusarium wilt in banana leaves using computer vision is
a central challenge in agricultural tech research. Traditional methods often encounter
difficulties in consistently differentiating between healthy and diseased banana leaves,
particularly when symptoms are subtle. This study explored the application of transfer
learning and deep convolutional neural networks to address this challenge.

The model introduced in this research, based on the CNN architecture, demonstrated
commendable efficacy, surpassing several contemporary methods. In performance metrics,
this model achieved an ROC AUC of 0.92, positioning it favorably against numerous
existing algorithms. Such accuracy was achieved within a brief training duration. Training
encompassed a mere 100 epochs and concluded within an hour, highlighting the efficient
computational capabilities of the Google Colab GPU. An initial dataset of 156 images served
as the starting point. Through data augmentation techniques, this dataset was expanded.
The augmented dataset enabled the model to effectively differentiate between healthy and
wilt-afflicted banana leaves.

When benchmarked against other solutions available, the model shows significant
promise for integration into platforms like Unmanned Aerial Vehicles (UAVs) or mobile
applications. Such integrations can significantly enhance agricultural practices by providing
advanced tools for early Fusarium wilt detection and consequently reducing crop loss.

Future perspectives in computational research suggest the emergence of even more
streamlined models tailored for real-world applications. For optimal performance, data
collection from specific plantations remains a crucial aspect. Such targeted datasets ensure
that models can cater to diverse environmental conditions specific to different agricultural
regions. Techniques like federated learning can further optimize these models, allowing for
on-field adjustments in alignment with unique crop conditions.

The potential of Generative Adversarial Networks (GANs) also warrants attention.
GANs can aid in the generation of synthetic training datasets that mirror real-world
conditions, thus enhancing the training process.
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In summary, this research highlights the capabilities of CNNs and transfer learning in
the realm of agricultural technology, offering a foundation for further advancements in the
detection and management of crop diseases.
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Abstract: The combination of multispectral data and machine learning provides effective and flexible
monitoring of the soil nutrient content, which consequently positively impacts plant productivity
and food security, and ultimately promotes sustainable agricultural development overall. The aim of
this study was to investigate the associations between spectral variables and soil physicochemical
attributes, as well as to predict these attributes using spectral variables as inputs in machine learning
models. One thousand soil samples were selected from agricultural areas 0–20 cm deep and collected
from Northeast Mato Grosso do Sul state of Brazil. A total of 20 g of the dried and homogenized
soil sample was added to the Petri dish to perform spectral measurements. Reflectance spectra
were obtained by CROP CIRCLE ACS-470 using three spectral bands: green (532–550 nm), red
(670–700 nm), and red-edge (730–760 nm). The models were developed with the aid of the Weka
environment to predict the soil chemical attributes via the obtained dataset. The models tested
were linear regression, random forest (RF), reptree M5P, multilayer preference neural network, and
decision tree algorithms, with the correlation coefficient (r) and mean absolute error (MAE) used as
accuracy parameters. According to our findings, sulfur exhibited a correlation greater than 0.6 and a
reduced mean absolute error, with better performance for the M5P and RF algorithms. On the other
hand, the macronutrients S, Ca, Mg, and K presented modest r values (approximately 0.3), indicating
a moderate correlation with actual observations, which are not recommended for use in soil analysis.
This soil analysis technique requires more refined correlation models for accurate prediction.

Keywords: machine learning; soil analysis; reflectance spectra

1. Introduction

Ferralsols constitute 32.9% of Brazil’s population [1]. Ferralsols are characterized by
low levels of plant nutrients such as Ca, Mg, and P and high levels of Al [2]. Soybean is
most commonly grown in the Ferralsols of Brazil [3].

Modern agriculture requires automation for analysis and management processes.
Agricultural automation is well known for the ability to diagnose and observe pests and
diseases [4,5]. Automation in soil analysis processes is complex and requires further study.

The assessment of soil properties, including a series of chemical processes, aims
to determine the ability of the soil to provide specific nutrients necessary for the plant
pathway cycle. The most common approach adopted for this purpose consists of extracting
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a chemical solution using extractants that simulate the absorption of nutrients by plants.
However, the use of this traditional method of soil analysis raises environmental challenges,
notably owing to the inadequate disposal of waste generated during the assessment of soil
properties, including a range of chemical processes, which aims to determine the ability of
the soil to provide specific nutrients essential for the plant growth cycle [6].

The current method not only presents risks for the professionals involved, but also
has adverse environmental impacts due to the presence of chemical residues, in addition
to incurring high costs related to the acquisition of chemical reagents and requiring a
considerable time lag. In this context, sustainable and efficient analytical approaches that
minimize environmental impacts and optimize the effectiveness of the soil assessment
process are needed to guarantee more efficient agricultural practices [7].

Multispectral soil analysis involves the use of various spectroscopic techniques to
evaluate soil properties [8]. Different methods have been used for soil analysis, such as
microspectrophotometry, X-ray fluorescence spectroscopy, and laser-induced breakdown
spectroscopy [9]. These techniques provide information on the composition, purity, and
elemental content of soils, helping to discriminate between different types and sources
of soils [10]. Data fusion methodologies have been applied to improve classification
accuracy, especially when combining information from several spectroscopic analyzers.
Multispectral analysis can capture the spectral dimensionality of soils, providing valuable
information on the variability of soil elements, despite limitations in the resolution of
narrowband absorption.

Soil spectral analysis calibration is crucial for accurately predicting soil properties.
Soil parameters such as potassium, phosphorus, and organic matter are already being
evaluated by visible-near-infrared (Vis-NIR) spectroscopy, but it requires calibration [11].
Calibration methods involve preprocessing transformations, variable selection techniques,
and regression algorithms to increase prediction accuracy [10]. Methods of calibration
are employed to calibrate soil spectral data, including preprocessing transformations,
variable selection techniques, and regression algorithms [12]. Using spectral libraries
and reducing sample processing levels have shown potential for lowering costs and time
implications for predicting soil properties such as organic carbon, clay, and pH [13]. Overall,
proper calibration methods are essential for leveraging soil spectral analysis to monitor soil
properties effectively and contribute to precision agriculture.

The use of indirect analysis through multispectral sensors has enabled expeditious,
economically viable, and ecologically sustainable monitoring of elementary soil levels.
Moreover, the integration of machine learning (ML) algorithms has proven crucial for
obtaining reliable estimates in this context [14]. The synergistic combination of these
approaches provides effective and agile monitoring of the soil nutrient content, which
is highly relevant for agricultural soil productivity, food security, and the promotion of
sustainable agricultural development [15]. The convergence of these techniques not only
optimizes the speed and efficiency of monitoring, but also contributes to mitigating the
environmental challenges inherent to traditional soil analyses, such as the production of
chemical residues.

The central problem of this study is the difficulty in quickly and accurately assessing
and monitoring soil physicochemical attributes, which are crucial for the proper and
sustainable management of agricultural resources. Traditional soil analysis methods,
such as laboratory collection and analysis, are generally time-consuming, expensive, and
limited in terms of spatial coverage, which makes large-scale and real-time monitoring
difficult. In this context, the use of spectral variables as indirect indicators of soil properties
emerges as a promising alternative. However, an important issue is the complexity of
the relationship between spectral variables and soil physicochemical attributes, which
can vary depending on the type of soil, moisture, and presence of organic matter, among
other factors. Therefore, there is a technical challenge in building machine learning models
capable of capturing these relationships in a robust and generalizable way so that they can
be applied in different scenarios. The objective of the current investigation was to analyze
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the associations between the spectral and physicochemical variables of soil in addition to
predicting the physicochemical attribute levels of soil via the use of spectral variables as
inputs into machine learning models.

2. Materials and Methods
2.1. Sample Collection and Determination of Physicochemical Properties

Soil samples were collected at 0 to 20 cm depth from the municipalities of Cassilândia,
Chapadão do Sul, Costa Rica, and Paraíso das Águas (18◦46′26′′ S 52◦37′28′′ W, average
altitude of 810 m of sea level), with a coverage area of 16,130.84 km2, located in the State of
Mato Grosso do Sul (MS), Brazil. The regional climate is classified as humid tropical, with
a rainy season in summer and a dry season in winter, with an average annual rainfall of
1.850 mm, an average annual temperature of 20.5 ◦C, and a variation of 7.5 ◦C.

The soil in the region is mostly classified as Rhodic Ferralsol [16]. A total of 33%
of the 1000 samples analyzed were characterized as sandy, 25% as sandy loam, 24% as
clay loam, and 20% as clay. The soil samples were collected with different augers, i.e.,
probe-type augers (20 mm diameter) and screw-type augers, at depths of 0–0.20 m. The
soil samples were sieved through a 2 mm mesh and air-dried. The elements Ca, Mg, and K
were analyzed in the Exata Brasil Laboratory located in Chapadão do Sul-MS.

KCl solution (1 mol L−1) at a ratio of 1/10 (soil:solution) was used to extract Ca and
Mg from the soil. The element potassium (K) was extracted from the Mehlich1 solution
(0.05 mol L−1 HCl + 0.0125 mol L−1 H2SO4) at a ratio of 1/10 (soil:solution). The ammonium
acetate solution in a proportion of 10 g of soil to 25 mL of the solution was used to extract S
from the soil. Ca, Mg, K, and S contents in the soil extracts were measured via Argon Plasma
Optical Atomic Emission Spectrometry (ICP-OES) (Perkin Elmer, Waltham, MA, USA).

Multispectral evaluations were carried out in a 20 g aliquot of each sieved, dried,
and homogenized soil sample, which was subsequently added to a Petri dish for spectral
measurements (Figure 1). The Petri dish was placed on a flat bench, and the sensor was
installed 8 cm from the soil surface. The area of incidence of the spectral beam was
3 cm2. Two external 50 W halogen lamps were positioned 35 cm from the Petri dish at a
zenith angle of 30◦, forming a 90◦ angle to each other following the method described by
Franceschini et al. [14].
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The reflectance spectra were obtained with a CROP CIRCLE ACS-470 instrument
(Holland Scientific, Inc., Lincoln, NE, USA). The six spectral bands used were green
(532–550 nm), red (670–700 nm), and red edge (730–760 nm). The sensor was calibrated
via FieldCal SC-1. The spectral bands were applied to the surface of the soil samples in
100 replicates for each band. Reflectances were recorded in spreadsheets, and reflectance
averages were calculated for each spectral band.
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2.2. Data Analysis via Computational Intelligence

The data were subjected to observation and compared via the WEKA (Waikato Envi-
ronment for Knowledge Analysis) software version 3.9.3(c) 1999–2018, which was accessed
by a computer with an AMD Phenom™ IIx4 B97 processor 3.20 GHz, installed memory
RAM 4 GB, 32-bit operating system, Windows 7, using cross-validation with 10 folds
(K = 10) and 10 repetitions (100 runs) in a spectral analysis of 690 samples with wavelength
data obtained as input values and macronutrients as output values to be predicted for Ca,
Mg, and K. The data prediction analysis used 370 samples for S.

The models tested were random forest (RF), multilayer perceptron (MLP), decision
trees (M5P), REPTree (REPT), and random trees (RTs). All the parameters adopted were set
to the default software configuration. The tested models were selected with applicability in
other agronomic works according to Refs. [13,14]. MLP is a type of neural network that
excels at solving supervised learning problems with multiple inputs. It consists of layers
of neurons (or perceptrons) organized into an input layer, one or more hidden layers, and
an output layer. Each neuron in a layer is connected to the neurons in the next layer by
adjustable weights. In Weka software, the default MLP configuration includes a single
hidden layer with a number of neurons defined by the average between the number of
attributes and the number of classes, which generally provides a good balance between
learning capacity and computational efficiency.

M5P provides more information on mathematical equations and addresses categorical
and continuous variables and missing values. This model combines features of deci-
sion trees with linear regression, making it particularly useful for continuous and mixed-
category data. It builds decision trees where the leaves contain linear equations that
facilitate prediction. This allows M5P to handle both categorical and continuous variables
and manage missing values, providing a more interpretable model by providing insight
into the underlying mathematical relationships between variables.

The random forest (RF) algorithm uses multiple independent decision trees and
combines their predictions. It is particularly effective for large-scale problems because
of its robustness against overfitting, and facilitates data interpretation by allowing the
assessment of variable importance. A random tree (RT) is used to build a decision tree with
a random dataset through the division of nodes.

The REPTree algorithm builds decision trees via regression logic in multiple iterations.
In each iteration, it evaluates several trees, selecting the best one on the basis of regression
error criteria. This model allows a robust pruning approach, where the final tree is simpli-
fied to improve the generalizability of the model. The averages of the S, Mg, Ca, and K
contents of the actual data and the predicted data of the samples randomly selected via
machine learning were contrasted in scatter and line graphs via SigmaPlot 11.0 software.

The accuracy of the prediction models was evaluated by the correlation between the
predicted and observed values (r) and the mean absolute error (MAE). The accuracy values
of each of the tested models were subjected to analysis of variance to verify the existence of
significant differences between the machine learning models. Subsequently, boxplots were
generated for r and MAE for each model in the case of macronutrient prediction.

The means of the performance parameters were grouped via the Scott–Knott test at
5% probability. The boxplots and groupings of means were generated via the ggplot2 and
ExpDes.pt packages of R software.

For the Pearson correlation coefficient (r), we applied the criterion adapted by Figueiredo
Filho and Silva Júnior [15], which is classified into three categories—low, medium, and
high—and is considered low when r is approximately 0.10–0.30, moderate when r is be-
tween 0.40 and 0.60, and high when r is 0.70–1.

3. Results

The averages of the S, Mg, K, and Ca contents in the analyzed soil show a disparity
between the predicted data due to accumulated error (Figure 2). The S content in the
soil predicted by machine learning analyses via MLP, M5P, RF, RT, and REPT exhibited
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significant dispersion compared with the chemically analyzed mean content (Figure 2A).
Conversely, the Mg and K contents predicted by MLP, M5P, RF, and REPT showed low
dispersion relative to the mean content, not aligning with the values obtained through
chemical analysis (Figure 2B,C). In this context, the use of RT resulted in greater dispersion
in the prediction of Mg, K, and Ca contents. However, the mean Ca content predicted by
RT was the closest to the real value found in the chemical analyses (Figure 2D).
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Figure 2. Boxplots of the Pearson correlation coefficient (r, to the left) and mean absolute error (MAE,
on the right) for different sulfur-related machine learning models: random forest (RF), multilayer
Perceptron (MLP), decision trees (M5P), REPTree (REPT), and random tree (RT). Mean levels of S (A),
Mg+2 (B), K+ (C) and Ca+2 (D) of the soil chemically analyzed and predicted by different algorithms.

With respect to the prediction of the sulfur content, the M5P and RF algorithms
outperformed the other algorithms (Figure 3), presenting high r values (higher than 0.6).
This value guarantees the high accuracy of these algorithms in estimating the sulfur content
on the basis of spectral reflectance. Another factor that contributes to the accuracy of both
algorithms is the low MAE, indicating smaller errors in the prediction, ensuring greater
precision of these algorithms when predicting S contents.

With respect to the performance of the algorithms in predicting the magnesium (Mg)
content, the results revealed that the random forest (RF) algorithm was superior in terms
of accuracy (Figure 4). This could be translated into greater consistency between the
predictions and observed values, as revealed by the correlation coefficient (r), which
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surpassed those of the other algorithms. Additionally, the RF demonstrated a lower mean
absolute error (MAE) value, denoting a significantly high precision in its estimates.
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letters about the boxplots represent statistical differences at 5% probability by the Scott–Knott test.
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Figure 4. Boxplots of the Pearson correlation coefficient (r, to the left) and mean absolute error (MAE,
on the right) for different magnesium-related machine learning models. Different lowercase letters
about the boxplots represent statistical differences at 5% probability by the Scott–Knott test.

The RT algorithm exhibited similar behavior to that of the RF when evaluated in
relation to the accuracy indicator (r). However, it is important to highlight that RT revealed a
significantly high MAE value, which indicates that although it presents relative consistency
in predictions, it is not an accurate algorithm for predicting magnesium content.

Statistically, the algorithms had the same behavior for the correlation coefficient (r)
in potassium prediction. There was also no significant difference in terms of error. There-
fore, using algorithms that maintain better performance for the other elements facilitates
processing because, in the case of potassium, all the models have the same performance
(Figure 5). The prediction value was approximately 0.3, indicating a moderate value that
may be considerably adequate in terms of the variability and dynamicity of P in the soil.

On the other hand, in the analysis of the prediction of the calcium (Ca) content, the
M5P algorithm demonstrated superior performance in relation to the other algorithms, as
evidenced by correlation coefficient values (r) that approached 0.3 (Figure 6). Furthermore,
notably, the M5P algorithm achieved notably lower mean absolute error (MAE) values,
approximately 1.50, with the maximum MAE value for predicting this nutrient. These
results emphasize the ability of the M5P algorithm to generate accurate estimates, with a
relatively low level of error, which is extremely relevant for estimating the calcium content
in soil samples via multispectral data.

126



AgriEngineering 2024, 6

AgriEngineering 2024, 6, FOR PEER REVIEW  7 
 

 

Statistically, the algorithms had the same behavior for the correlation coefficient (r) 

in potassium prediction. There was also no significant difference in terms of error. 

Therefore, using algorithms that maintain better performance for the other elements 
facilitates processing because, in the case of potassium, all the models have the same 
performance (Figure 5). The prediction value was approximately 0.3, indicating a 
moderate value that may be considerably adequate in terms of the variability and 

dynamicity of P in the soil. 

 
Figure 5. Boxplots of the Pearson correlation coefficient (r, to the left) and mean absolute error (MAE, 

on the right) for different potassium-related machine learning models. Different lowercase letters 

about the boxplots represent statistical differences at 5% probability by the Scott–Knott test. 

On the other hand, in the analysis of the prediction of the calcium (Ca) content, the 
M5P algorithm demonstrated superior performance in relation to the other algorithms, as 
evidenced by correlation coefficient values (r) that approached 0.3 (Figure 6). 

Furthermore, notably, the M5P algorithm achieved notably lower mean absolute error 
(MAE) values, approximately 1.50, with the maximum MAE value for predicting this 
nutrient. These results emphasize the ability of the M5P algorithm to generate accurate 
estimates, with a relatively low level of error, which is extremely relevant for estimating 
the calcium content in soil samples via multispectral data. 

 
Figure 6. Boxplots of the Pearson correlation coefficient (r, to the left) and mean absolute error (MAE, 
on the right) for different calcium-related machine learning models. Different lowercase letters 

about boxplots represent statistical differences at 5% probability by the Scott–Knott test. 

Figure 5. Boxplots of the Pearson correlation coefficient (r, to the left) and mean absolute error (MAE,
on the right) for different potassium-related machine learning models. Different lowercase letters
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Figure 6. Boxplots of the Pearson correlation coefficient (r, to the left) and mean absolute error (MAE,
on the right) for different calcium-related machine learning models. Different lowercase letters about
boxplots represent statistical differences at 5% probability by the Scott–Knott test.

In short, the M5P and RF algorithms performed satisfactorily in terms of the correlation
coefficient (r). Specifically, these algorithms achieve values remarkably close to the actual
values, which is especially evident when the sulfur content is predicted, where the r value
is close to 0.8. For the other elements analyzed, the accuracy remained at approximately 0.3,
which is moderate and consistently shows that, owing to the dynamism and complexity
of these soil elements, the use of multispectral reflectance to determine them is promising.
Furthermore, the M5P and RF algorithms yielded lower MAE values, further reinforcing the
reliability of the predictions generated by these algorithms. Reducing the error contributes
to greater precision in the estimates, improving the accuracy of the predictions obtained
via multispectral reflectance.

4. Discussion

The results indicate a significant disparity between the expected concentrations of
sulfur (S), magnesium (Mg), potassium (K), and calcium (Ca) and the measurements
derived from chemical analysis. The inconsistency of the predicted data is influenced by the
quality of the data and noise in the accuracy of the predictive models [17]. Data variations
amplify imprecision, particularly in more complex predictive models [18]. However, it is
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essential to validate data analyses with accurate predictive models. In this context, the RT
predictive model provided better accuracy for S and Ca than did the actual analyzed data.

Traditional methods for estimating soil nutrients, such as laboratory analysis, are
recognized for their accuracy, but they have significant limitations in terms of time and
cost [10]. These methods require specialized labor, and the use of chemical reagents, in
addition to being expensive, can pose environmental risks due to the generation of po-
tentially contaminating waste [10]. This process becomes unfeasible for large-scale and
timely application, which contrasts with the growing demand for fast, economical, and
sustainable methodologies in the agricultural sector. In this context, the use of multispectral
sensors combined with machine learning techniques has emerged as a promising alter-
native for estimating soil nutrients in a more efficient and environmentally friendly way.
The combination of these tools allows data to be obtained noninvasively and in real time,
facilitating continuous and large-scale monitoring of soil attributes. In this study, three
specific multispectral bands were used to predict soil nutrient levels, employing differ-
ent machine learning algorithms [6]. This approach offers a potentially faster and more
accessible methodology that can contribute to more sustainable and precise agricultural
practices, enabling more effective soil management in response to the needs of agricultural
production [7].

Among the investigated nutrients, S had the highest predictive value, close to 0.80
for the correlation coefficient I, and notably low values of the mean absolute error (MAE),
confirming its ability to offer highly accurate predictions (Figure 2). High prediction values
were achieved by the M5P and RF algorithms, highlighting the robustness and reliability of
the algorithms in the task of predicting S content. Both algorithms performed well because
of their high r and low MAE values, and their use in other agricultural tasks, such as
predicting soil organic carbon, stands out [19]. With satisfactory results in predicting soil
nutrients, RF can be used to infer soil fertility [20]. The soil nutrients significantly influence
the distribution of soil organic carbon [21].

The other predictions yielded median values, with a certain significance, highlighting
the complexity of predicting potassium content through the evaluated algorithms, which is
particularly relevant in agronomic and soil fertility contexts, where the precise estimation
of Mg, K, and Ca contents is crucial for effective and sustainable agricultural practices. In
magnesium prediction, the RF algorithm stands out as a superior choice, guaranteeing
greater accuracy. These results highlight the relevance of careful selection of the appropriate
algorithm for a given task. Dharumarajan et al. [22] reported that RF was the best model for
most soil properties, from macro- to micronutrients, indicating that the RF model is better
for solving multivariate adjustment problems since RF combines many trees to form an
accurate prediction mechanism. In addition, the RF algorithm, when necessary, has fewer
parameters to adjust.

In the potassium prediction results, there was homogeneity in the results regarding
r, suggesting that the analyzed algorithms exhibited a moderate correlation with the real
observations of potassium content, although they did not reach higher levels of correlation,
indicating that the prediction of this element can be challenging. In a similar study, Forkuor
et al. [23] reported that no machine learning algorithm works best for all global situations,
and models must be tested to calibrate them to identify an accurate model for predicting
soil properties, optimizing data processing.

The analysis of the calcium prediction (Ca) content revealed that the M5P algorithm
performed better than the other algorithms did, as evidenced by correlation coefficient
values that approached 0.3. This result suggests that M5P established a moderate and
consistent r with actual observations of Ca content, indicating its ability to provide mean-
ingful estimates.

The superior performance of M5P in predicting S and Ca, for which the algorithm
stands out, highlights its applicability and usefulness in agronomic contexts, where accurate
estimation of this nutrient is crucial for adequate soil management and the development of
effective agricultural practices. This contributes to increased productivity and sustainability
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of agricultural activities. According to previous studies, this model performs well in several
tasks in different areas, such as predicting cadmium in agricultural soils [24]. M5P also
presents good results in the physical and chemical prediction of soil and water due to its
greater accuracy and speed than the regression model [25]. This diversity of accuracies in
different situations demonstrates the generalizability and robustness of the algorithm.

The complexity of S forms in soils contributes to variability in spectral measurements.
Sulfur occurs in organic and inorganic forms in soil and is transformed by microorganisms in
the soil [26]. In this sense, organosulfur compounds are stable over time, whereas others may
decompose or convert to other forms, leading to variability in spectral measurements [27].

Ca, Mg, and K interact with each other and with the soil matrix, which changes their
chemical bonding structures with other elements present and their spectral expressions [28].
Calcium and magnesium have the capacity to generate carbonates and additional com-
pounds that affect the reflectance of soil samples [29]. Potassium influences the spectral
properties of soil through interactions with clay [28].

Our findings demonstrated the effectiveness of the M5P and RF algorithms in predict-
ing soil nutrients, particularly the S content, where the accuracy reached notable levels. The
ability of these models to provide estimates close to real values has significant implications
for agriculture and soil management, promoting decision-making on the basis of reliable
data and contributing to more efficient and sustainable agricultural practices. The greatest
contribution of these technologies is to reduce the work involved in analyzing samples
and reducing the use of reagents in laboratory analyses, making this part of the procedure
faster, requiring and dispensing with the use of expensive reagents from laboratories that
report adequate disposal, which are not always served. With future research applying the
algorithms found here, it will be possible to adapt and use such technologies with remote
sensors or prototypes to be used in situ. Soil samples from other locations and a larger
number of samples can be used to increase the accuracy of the algorithms. The use of
hyperspectral sensors can also improve predictive value in addition to their application in
agriculture, which enables real-time monitoring in agricultural scenarios.

5. Conclusions

In the present study, the use of the CROP CIRCLE ACS-470 multispectral sensor asso-
ciated with machine learning was demonstrated to be a promising approach for predicting
soil macronutrients, especially sulfur, with correlations between actual and estimated val-
ues above 0.6. However, regarding the macronutrients P, K, Ca, and Mg, the prediction
accuracy reached values of approximately 0.3, indicating a moderate and coherent cor-
relation with actual observations; however, the development of more refined models is
needed to improve the results. These findings highlight the reliability and accuracy of
predictions, thus strengthening the usefulness and effectiveness of the sensor in the context
of soil analysis and agricultural decision-making.

The use of multispectral sensors and data prediction analysis via the M5P and RF
algorithms derived from our results are directly applicable to areas with characteristics
similar to those of Rhodic Ferralsol and Arenosol soils. For regions with soils of differ-
ent compositions, we suggest conducting complementary studies to adapt the proposed
practices to local conditions.
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Abstract: In traditional farming, fertilizers are often used without precision, resulting in unnecessary
expenses and potential damage to the environment. This study introduces a new method for
accurately identifying macronutrient deficiencies in Rhodena lettuce crops. We have developed a
four-stage process. First, we gathered two sets of data for lettuce seedlings: one is composed of color
images and the other of point clouds. In the second stage, we employed the interactive closest point
(ICP) method to align the point clouds and extract 3D morphology features for detecting nitrogen
deficiencies using machine learning techniques. Next, we trained and compared multiple detection
models to identify potassium deficiencies. Finally, we compared the outcomes with traditional lab
tests and expert analysis. Our results show that the decision tree classifier achieved 90.87% accuracy
in detecting nitrogen deficiencies, while YOLOv9c attained an mAP of 0.79 for identifying potassium
deficiencies. This innovative approach has the potential to transform how we monitor and manage
crop nutrition in agriculture.

Keywords: model; greenhouses; Rhodena lettuce; diseased; macronutrient; point clouds

1. Introduction

Green leafy vegetables are recognized as vital sources of vitamins, minerals, and
dietary fiber; therefore, they significantly contribute to human nutrition and health. They
are particularly important in rural areas where they serve as a cheap and accessible source
of essential nutrients [1,2]. Green leafy vegetables are found to be rich sources of both
macro- and microelements. Calcium, phosphorus, and zinc levels in green leafy vegetables
vary from 0.9 to 2.9, 0.4 to 1.2%, and 17.5 to 46.2 ppm, respectively [3].

Lettuce is a popular leafy green vegetable that is consumed worldwide. It is an excel-
lent source of vitamin A, vitamin K, beta-carotene [4] (provitamin A), and vitamin C [5].
Shi et al. [6] emphasized the potential health benefits of consuming lettuce, including
anti-inflammatory effects, improved cardiovascular health, and potential anticancer prop-
erties. The presence of antioxidants in lettuce is linked to enhanced immune function and
overall health. However, lettuce also contains anti-nutrients such as nitrates, phytates,
tannins, oxalates, and cyanogenic glycosides, which may have adverse effects. Additionally,
alkaloids in lettuce can cause gastrointestinal tract and nervous system disorders. These
anti-nutritional factors can influence nutrient absorption and health. Understanding these
effects is crucial for optimizing nutrition.

Lettuces thrive in temperate and subtropical regions throughout the year, and the
primary cultivation of lettuces occurs in Asia, North America, and Europe. According to
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the United Nations Food and Agriculture Organization (FAO), Asia produces 50% of the
world’s lettuce, followed by North America with 27% and Europe with 21%. Mexico’s
Agrifood and Fisheries Information Service (SIAP) reported a production of 523,000 tons
of lettuce in 2023, and a production of 530,000 tons is expected for 2024. In particular,
Mexico annually exports an average of 260,000 tons of lettuce to major partners such as
the United States, Canada, Japan, Costa Rica, and Panama. This makes Mexico the third
largest lettuce exporter globally, after the United States and Spain, as stated by the Spanish
Federation of Associations of Producers Exporters of Fruits, Vegetables, Flowers, and Live
Plants (FEPEX).

The Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food
(SADER) reports that lettuce is grown in 21 states of Mexico. Guanajuato is the top lettuce
producer, accounting for 28% of the national production, followed by Zacatecas with 17.8%
and Aguascalientes with 14.8%. Guanajuato’s climate is ideal for vegetable production.
Factors influencing the growth and development of greenhouse seedlings include crop
irrigation, fertilizer use, substrate, and climate change.

Lettuce has two global cultivation trends: organic or hydroponic and inorganic. Hy-
droponics is the current trend being used to reduce fertilizer use [7–14], while inorganic
cultivation is conventional and is used more widely around the world due to its low produc-
tion and commercialization costs [15,16]. Organic or hydroponic cultivation emphasizes soil
fertility and biological activity, minimizes the use of nonrenewable resources, and does not use
fertilizers. In contrast, inorganic cultivation uses disproportionately nonrenewable resources
and fertilizers, while focusing little on soil fertility and plant biological activity [17–22].

The process of detecting macroelements is costly for greenhouses in Mexico, primarily
due to the expenses associated with laboratory analyses and the need for specialized equip-
ment. Additionally, the time required to obtain and analyze the results from traditional
laboratory tests can lead to delays in addressing macroelement deficiencies, thus potentially
impacting crop health and overall yield. These challenges emphasize the necessity for a
more efficient and cost-effective methodology for identifying and addressing macroelement
deficiencies in greenhouse cultivation.

Artificial intelligence (AI) is transforming agricultural practices by safeguarding crop
yields; reducing excessive use of water, pesticides, and herbicides; preserving soil fertil-
ity; automating tasks; and optimizing labor efficiency, thus improving productivity and
improving quality [23]. This paper presents a technique for automating the identification
of macroelements by processing point clouds and images with AI techniques, eliminat-
ing the need for laboratory analyses and providing valuable assistance to agronomists in
forecasting crop yields.

The objective of this study is to identify macroelements to address practical challenges
in greenhouses located in central Mexico. Our goal is to accomplish this using affordable
equipment and without disrupting existing conditions. We also adapted the prototype and
methodology to minimize production time and costs. Our solution is adaptable and can be
customized to suit various greenhouse configurations.

Our methodology presents a cost-effective and minimally invasive alternative to
conventional laboratory tests. By employing deep learning algorithms alongside classical
methods, our approach aims to detect macroelement deficiencies in lettuce seedlings within
greenhouse environments. This process integrates both expert simulation and laboratory
testing to validate the presence of macroelement deficiencies. Point clouds are employed to
capture the morphology of seedlings and identify nitrogen (N) deficiencies, while neural
network imagery is utilized for the detection of potassium (K) deficiencies. This aims to
minimize the consumption of fertilizers, water, and overall production costs. To this end,
we propose the ScanSeedling v2.0 prototype for 3D scanning seedlings, as depicted in
Figure 1.
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Figure 1. ScanSeedling v2.0: prototype scan of entire crops. The sensor moves along the x-axis to 2 m,
the y-axis to 6 m, and the z-axis to a height of 0.60 m.

2. Related Works

Automatic detection of macronutrient deficiencies in crops using artificial intelligence
has been a significant area of research, with various studies exploring different method-
ologies and technologies. This section reviews related works and contrasts them with our
approach, which involves using datasets of lettuce seedlings, point cloud registration, and
neural networks for deficiency detection.

Several studies have used machine learning and computer vision techniques to detect
nutrient deficiency in crops. For example, a study in maize plants used unsupervised
machine learning algorithms to identify deficiencies, emphasizing the importance of image
preprocessing and segmentation for accurate classification [24]. Similarly, MobileNet has
been used to detect nutrient deficiencies with high precision, using depth-wise and point-
wise convolutions for efficient processing [25].

In the realm of image processing, another study focused on using RGB color features
and texture recognition to build datasets for training supervised machine learning models
to identify nutritional deficiencies in crops [26]. This approach highlights the role of image
features in enhancing model performance, which aligns with our use of 3D morphology
features derived from point clouds.

Signal-based deep learning methods have also been explored, as seen in research
involving lime trees. This study compared the performance of recurrent neural networks
(RNNs) and multilayer perception (MLP) models, finding that MLP achieved higher ac-
curacy in detecting nutrient deficiencies [27]; while our work primarily focuses on image
and point cloud data, this study stresses the potential of alternative data sources and
model architectures.

The importance of macronutrients such as nitrogen, phosphorus, and potassium
(NPK) is well documented, and AI techniques are applied to identify deficiencies through
image recognition and analysis [28]. Our research contributes to this field by providing a
novel dataset and methodology tailored to lettuce crops, demonstrating high accuracy in
detecting deficiencies.

A comprehensive survey of computer vision and machine learning approaches for
the detection of nutrient deficiency underscores the use of remote sensing, UAVs, and
IoT-based sensors [29]; while our study does not incorporate these technologies, it aligns
with the broader trend of leveraging AI for noninvasive crop monitoring. In oil palm trees,
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Landsat-8 imagery and machine learning were used to classify macronutrient levels, with
varying success depending on the nutrient [30]. This study illustrates the challenges of
remote sensing data, which contrasts with our direct imaging and point cloud approach,
which offers more detailed morphological insights. Moreover, a review of plant nutrient
deficiency detection emphasizes the need for continued observation and the role of AI in
automating this process [28]. Our work advances this goal by integrating AI with novel
data sources for real-time deficiency detection.

Traditional methods for detecting macronutrient deficiencies involve visual inspec-
tions, laboratory tests, and 2D image analysis, which are often limited by human error,
time consumption [31,32], and the inability to capture the complete three-dimensional
structure of plants [33,34]. These approaches also rely on invasive sampling techniques that
can damage crops and are not practical for large-scale applications. In contrast, iterative
closest point (ICP) [35–38] allows for precise point clouds registration, representing the 3D
morphology of plants, such as lettuce seedlings [39]. By aligning these point clouds, ICP
facilitates the extraction of detailed 3D morphological features, enabling accurate identi-
fication of nutrient deficiencies. When combined with image and point cloud data, this
noninvasive approach allows continuous, real-time monitoring of crops without causing
harm, making it scalable for large agricultural operations [40,41]. This capability supports
early detection of deficiencies, enabling timely interventions to maintain crop health.

There are other approaches focused on food safety and public health, particularly in the
context of agricultural practices. The study developed in [42] presents an effective model for
detecting pesticide residues in edible parts of vegetables, specifically tomatoes, cabbages,
carrots, and green peppers. A dataset consisting of 1094 images of both contaminated and
uncontaminated vegetables was collected. The images were taken using an infrared thermal
camera and underwent preprocessing steps such as noise removal and grayscale conversion.
The researchers used a convolutional neural network (CNN) for feature extraction to detect
specific pesticide residues (mancozeb, dioxacarb, and methidathion). Various transfer
learning models, including Inception V3, VGG16, VGG19, and ResNet50, were tested, with
Inception V3 achieving the highest classification accuracy of 96 77%. This research not
only improves the ability to detect harmful chemical residues but also has implications for
improving agricultural practices and consumer safety, thus contributing to better health
outcomes and informed decision making in the agricultural sector.

On the other hand, models such as YOLO have been used in agriculture and livestock
applications through object detection and instance segmentation techniques. The work
developed in [43] presents a significant advancement in the field of agricultural technology
by enhancing the efficiency and effectiveness of fruit detection systems. The study indicates
that the model can accurately detect pitaya fruits under varying light conditions, which
is crucial for agricultural applications where lighting can change significantly throughout
the day. The YOLOv5s model was used to detect pitaya fruits in real time. Their model
achieved a precision of 97.80%, a recall rate of 91. 20%, and a frame-per-second (FPS) rate
of 139 with GPU. In the field of livestock, the approach from [44] developed and applied
a YOLOv7 model for automated cattle detection and counting using drone imagery. This
model integrates object detection and instance segmentation, allowing for high-speed and
accurate identification of cattle in various environments. The authors demonstrate that
Mask YOLOv7 significantly improves the accuracy of counting compared to traditional
methods, achieving 93% accuracy in controlled environments and 95% in uncontrolled
environments. This advancement showcases the potential of combining drone technology
with deep learning algorithms for real-time monitoring of farm animals.

Compared to these studies, our research stands out by utilizing a unique combination
of 3D point cloud data and neural networks, achieving notable accuracies with the decision
tree classifier (DTC) and the YOLOv9c model. This approach not only provides a high level
of precision but also offers a scalable solution for detecting macronutrient deficiencies in
lettuce, potentially applicable to other crops as well.
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3. Methods

The proposed system is designed to detect two specific macronutrient deficiencies in
Rhodena lettuce: nitrogen (N) and potassium (K). These deficiencies manifest differently in
crops, requiring different detection approaches.

Nitrogen deficiency in crops often results in stunted growth and reduced biomass [45].
To detect this, our system analyzes the morphology of lettuce seedlings using 3D point
clouds and extracts key morphological characteristics, such as plant height and leaf area.
We used these features as input to various machine learning methods to classify nitro-
gen deficiency.

However, potassium deficiency usually leads to abnormal leaf colorations, such as
chlorosis or necrosis [46,47]. To identify these visual symptoms, we trained different
YOLO models to detect and classify characteristic color changes associated with potas-
sium deficiency.

The characteristics of two macronutrient deficiencies are illustrated in Figure 2. Figure 2a
shows the lack of size due to a deficiency in nitrogen. Figure 2b,c show the yellow coloration
of the veins and leaves attributed to potassium deficiency.

(a) (b) (c)

Figure 2. Diseases seedling Rhodena lettuce. Panel (a) shows nitrogen deficiencies, and (b,c) show
potassium (K) deficiencies.

Figure 3 illustrates the methodology proposed in the following sections.

Figure 3. Overview of the proposed methodology for detecting macronutrient deficiencies in Rhodena
lettuce seedlings. The top row illustrates the steps for 2D data analysis, which focuses on detecting
potassium deficiencies using object detection models. The bottom row shows the steps for 3D data
analysis, which are used to detect nitrogen deficiencies through morphological feature extraction and
machine learning classifiers.

1. Data acquisition. In this step, we created two datasets of Rhodena lettuce seedling
images labeled with macroelements and point clouds.
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2. Point cloud registration. We used the iterative closest point (ICP) algorithm to register
the different point clouds of the crops.

3. Training and evaluation. We trained and evaluated multiple machine learning models
to detect the lack of nitrogen based on the seedlings morphology and we also trained
multiple object detection architectures, including YOLOv8 [48], YOLOv9 [49], and
YOLOv10 [50], to detect the lack of potassium based on the lettuces texture.

4. Results comparison: In this final step, we compare the results obtained from laboratory
tests with those obtained from our system.

3.1. Data Acquisition

We collected two types of data: images and 3D point clouds using a Kinect v2.0 RGBD
sensor mounted on a cart, as shown in Figure 1. The sensor is placed at a height of z = 60 cm
relative to the seedling. It moves along the (x, y) axes at programmable distances based
on the characteristics of the trays. The x axis has a distance of 4.20 m and the y axis has
a distance of 1.70 m. During each movement of 40 cm along x and 30 cm along y, we
captured a scan using the RGBD sensor to obtain different viewing angles of the crop.

We captured the data 15 days after germination. This timing allowed the agronomist
to determine the crop yield and optimize fertilizer use. The entire crop includes 12 trays
with 162 cavities, each containing Rhodena lettuce seedlings, for a total of 1944 cavities
with lettuce seedlings.

We also acquired RGB images on the 15th and 28th days after germination at a
resolution of 3000 × 3000 pixels, totaling 640 images from the crop. Then, we manually
annotated macronutrient deficiency into two categories: healthy and disease.

3.2. Point Cloud Registration

Once the 3D scans of the crop were collected, we registered the 3D point clouds using
the iterative closest point (ICP) as proposed by Zhang et al. [51]. In this technique, given
two point sets, P and Q, the goal is to optimize a rigid transformation on P to align it with
Q. ICP solves this problem using an iterative approach that alternates between two steps:
correspondence and alignment.

However, the classical ICP is slow to converge to a local minimum due to its linear
convergence rate. To address this issue, we used the Anderson acceleration [52]. This
approach parameterizes a rigid transformation using another set of variables X, such that
any value of X corresponds to a valid rigid transformation, and the ICP iteration can be
rewritten as follows:

X(k + 1) = GICP(X(k)) (1)

Then, Anderson acceleration can be applied to the variable X by performing the
following steps in each iteration:

1. From the current variable X(k), recover the rotation matrix R(k) and translation
vector t(k).

2. Perform the ICP update (R0, t0) = GICP(R(k), t(k)).
3. Compute the parameterization of (R0, t0) to obtain GICP(X(k)).
4. Compute the accelerated value XAA with Anderson acceleration using X(k − m), . . .,

X(k) and GICP(X(k − m)), . . . , GICP(X(k)).

Where:

X(k + 1)AA = G(X(k))− ∑ j = 1mθ∗j (G(X(k − j + 1))− G(X(k − j))) (2)

The registration process allowed us to apply the methodology proposed in [53] to
extract morphological characteristics.
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3.3. Detection of Nitrogen Deficiencies

Nitrogen deficiency in crops often leads to stunted growth and reduced biomass. Our
system detects this by analyzing the morphology of lettuce seedlings using key morpholog-
ical characteristics extracted from the registered point cloud.

To extract morphological characteristics, we measure the seedling size, the plant’s
germination stage, and the number of leaves and classify them into three stages: first,
second, or third.

The height of the crop indicates a nitrogen deficiency, with an average crop height
of 3.4 cm. A healthy fertilized seedling reaches an average height of 6 cm, which marks
the first stage of growth. The nitrogen element N becomes apparent around day 15 after
germination. In the first stage, the average height is 6 cm; in the second stage, the height
ranges around 4 cm; in the third stage, the height is less than 3 cm; and the fourth stage
corresponds to seedlings that did not germinate.

We annotated a total of 1944 cavities with lettuce seedlings and split the data into 70%
for training and 30% for validation.

Then, we trained machine learning classifiers that included a support vector machine
(SVM), neighborhood component analysis (NCA), decision tree classifier (DTC), and a
linear model with stochastic gradient descent (SGD).

3.4. Detection of Potassium Deficiency

Potassium deficiency usually results in abnormal leaf colorations, such as chlorosis or
necrosis. To recognize these visual symptoms, we compared various YOLO [54] models
trained to detect and classify characteristic color changes related to potassium deficiency.

YOLO models feature a unified detector that utilizes regression, associated class
probabilities, and detection bounding boxes. YOLO utilizes global features, and its main
advantage is its speed, allowing real-time detection on standard hardware. In general, the
YOLO algorithm can be summarized in three main components:

1. Single step grid predictions. It divides the image I into M × M grid cells, where each
cell contains detection predictions.

2. Bounding box regression. It determines the bounding boxes, which correspond to
the rectangles that contain the objects in the image. The attributes of these bounding
boxes are determined using a single regression module as shown in Equation (3).

Y = [p, x, y, h, w, c] (3)

Here, Y is the vector representation of each bounding box, p is the probability score of
each grid cell containing an object [0, 1], x, y are the coordinates of the center of the
bounding box concerning the grid cell, h, w is the height and width of the bounding
box to the cell, and c is the class for the n number of classes.

3. Nonmaximum suppression (NMS). An object may have several overlapped detections.
NMS keeps the predictions with the highest detection confidence.

YOLO drawbacks include the potential failure to detect small objects and less likely
prediction of false positives in the background. Early versions were prone to localization errors.

This work compares three of the most recent YOLO models: YOLOv8 [48], YOLOv9 [49],
and YOLOv10 [50], described in the following sections.

3.4.1. YOLOv8

The architecture of YOLOv8 is designed to enhance real-time object detection capa-
bilities with improved accuracy and efficiency. YOLOv8 is structured around three main
components: the backbone, the neck, and the head. The backbone, which is responsible
for feature extraction, utilizes CSPDarknet53, a variant of the Darknet architecture. This
version incorporates cross-stage partial (CSP) connections, which improve information
flow and gradient propagation during training. The neck of YOLOv8 employs a path
aggregation network (PANet) to facilitate multiscale feature fusion, crucial for detecting
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objects of varying sizes within an image. The head consists of multiple detection heads that
predict bounding boxes, class probabilities, and objectness scores, incorporating dynamic
anchor assignment and a novel intersection over union (IoU) loss function to enhance
detection accuracy and handle overlapping objects more effectively [55]. Figure 4 shows
the architecture of YOLOv8.
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Figure 4. YOLOv8 network architecture: The diagram illustrates the structure of YOLOv8, divided
into three main components: backbone, head, and output. The backbone is responsible for feature
extraction and includes multiple convolutional (Conv) and C2f layers, along with a spatial pyramid
pooling-fast (SPPF) block. The head performs feature aggregation and enhancement through multiple
concatenation (Concat) and upsampling (U) operations, followed by additional C2f layers. Finally,
the output section applies detection layers to produce the final object detection results.

YOLOv8 also introduces several advancements in training strategies and model vari-
ants to cater to different application needs. The model employs adaptive training tech-
niques, including advanced data augmentation methods like MixUp and CutMix, to im-
prove robustness and generalization. Additionally, YOLOv8 supports multiple backbones,
such as EfficientNet and ResNet, allowing users to customize the architecture based on
specific requirements. The availability of different model variants, such as YOLOv8-tiny
and YOLOv8x, provides flexibility in balancing accuracy and computational efficiency [48].

3.4.2. YOLOv9

YOLOv9 represents a significant advancement in the YOLO series, introducing inno-
vative techniques to enhance object detection performance. The architecture of YOLOv9
is built upon the foundation of YOLOv7, with substantial improvements through the
integration of two key innovations: programmable gradient information (PGI) and the
generalized efficient layer aggregation network (GELAN). PGI addresses the issue of infor-
mation bottleneck, a common challenge in deep neural networks where crucial data can
be lost as they progress through layers. By implementing PGI, YOLOv9 ensures efficient
gradient flow and reliable gradient backpropagation, which enhances the model’s learning
capabilities and accuracy. This is achieved through an auxiliary reversible branch that
provides additional pathways for gradient flow, thereby preserving essential information
throughout the training process. Figure 5 shows the architecture of YOLOv9 [49].
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Figure 5. YOLOv9 programmable gradient information (PGI) architecture. The model is composed
of an auxiliary reversible branch (left), a main processing branch (center), and a multilevel auxiliary
information module (right). The auxiliary reversible branch utilizes a series of AB (auxiliary block)
modules, while the main processing branch consists of MB (main block) modules. The multilevel
auxiliary information module combines outputs from both branches and incorporates PH (pooling
head) modules to integrate and process multiscale features. PGI enables dynamic information flow
across different levels of the network, facilitating efficient detection and classification tasks.

GELAN further complements the PGI framework by focusing on efficient layer ag-
gregation and parameter utilization. It combines principles from CSPNet and ELAN to
optimize gradient path planning and feature integration, resulting in a lightweight yet
robust architecture. This design allows YOLOv9 to maintain high inference speed and
accuracy while using fewer parameters and computational resources compared to its prede-
cessors. The architecture supports multiple model variants, such as YOLOv9-S, YOLOv9-M,
YOLOv9-C, and YOLOv9-E, catering to different application needs from lightweight to
performance-intensive scenarios [56].

3.4.3. YOLOv10

YOLOv10 introduces several architectural innovations that enhance both efficiency
and accuracy in real-time object detection. One of the key advancements is the implementa-
tion of a consistent dual assignments strategy, which eliminates the need for nonmaximum
suppression (NMS) during inference. This approach significantly reduces inference latency
while maintaining competitive performance by combining one-to-one and one-to-many
label assignments during training [50]. Furthermore, YOLOv10 adopts a holistic model
design based on efficiency accuracy, optimizing various components to minimize com-
putational overhead. This includes a lightweight classification head using depth-wise
separable convolutions, spatial-channel decoupled downsampling to reduce information
loss and computational cost, and a rank-guided block design to efficiently allocate compu-
tational resources based on stage redundancy. Figure 6 shows a summarized architecture
of YOLOv10.
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Figure 6. YOLOv10 NMS-free architecture with one-to-many matching. YOLOv10 eliminates the
need for nonmaximum suppression (NMS) by incorporating a dual-label assignment framework.
The backbone network extracts image features, which are processed by the path aggregation network
(PAN). The model utilizes two heads: a one-to-one head for precise regression and classification,
and a one-to-many head designed to handle a broader range of object sizes. The consistent match
metric (CMM) ensures that the model consistently matches detected objects across different scales,
enhancing the accuracy and robustness of detections.

To further enhance accuracy, YOLOv10 incorporates large-kernel convolutions and
a partial self-attention (PSA) module. Large-kernel convolutions expand the receptive
field, improving the model’s ability to capture detailed features, particularly beneficial for
small object detection. The PSA module integrates global representation learning with
minimal computational cost by processing only a portion of the features through multihead
self-attention, thus avoiding the overhead associated with full self-attention mechanisms.
These architectural improvements allow YOLOv10 to achieve superior performance met-
rics, such as higher mean average precision (mAP) and reduced latency compared to
previous YOLO versions and other state-of-the-art models, making it highly suitable for
real-time applications.

3.5. Evaluation Metrics

The metrics used to evaluate potassium deficiencies are precision, recall, and mean
average precision (mAP).

Mean average precision (mAP) is a widely used metric for evaluating the performance
of object detection models. Combining precision and recall, it provides a comprehensive
measure of a model’s ability to detect objects accurately.

Precision measures the fraction of true positive detections out of all positive detections
made by the model, and indicates how many of the detected objects are actually correct, as
defined in Equation (4).

Precision =
TP

TP + FP
(4)

Recall measures the fraction of true positive detections out of all actual objects in the
image, and indicates how many of the actual objects were detected by the model, as defined
by Equation (5).

Recall =
TP

TP + FN
(5)

Intersection over union (IoU) is used to evaluate the accuracy of an object detector
by comparing the overlap between the predicted bounding box and the ground truth
bounding box. A higher IoU indicates better overlap and, thus, a more accurate detection.

Average precision (AP) is calculated for each class by integrating the area under the
precision–recall curve. It provides a single score summarizing the precision–recall trade-off
for that class. mAP is calculated by averaging the AP scores over all classes and possibly
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over different IoU thresholds. This ensures that the evaluation does not rely on a single IoU
threshold, which can vary depending on the task and dataset. For example, in the COCO
challenge, mAP is calculated by averaging AP over multiple IoU thresholds (from 0.5 to
0.95 in increments of 0.05) across all object classes.

A high mAP score indicates that the model is capable of detecting objects with both
high precision and recall, which is crucial for safety and reliability in these applications.

4. Results

The nutritional needs of seedlings in a greenhouse are primarily dependent on the
concentration of existing nutrients on the substrate and irrigation. However, the lack of
macroelement detection in seedlings, especially lettuce at an early age, allows for appropri-
ate treatment and avoids total loss of production. This work demonstrates that it is possible
to match or mimic laboratory tests and proposes the use of AI algorithms to apply only the
necessary fertilizers.

There are two types of cycles in cultivation: long and short. The long cycle lasts
between 100 and 120 days in winter and 90 to 100 days in autumn. The short cycle lasts
between 50 and 70 days in summer and 80 to 90 days in spring. This work was performed
in the short spring cycle, which has a relatively warm climate with temperatures close to
30 ◦C. In addition, the hours of sunlight are longer, directly impacting the development of
the seedlings. The greenhouse is located north of Celaya, Guanajuato, Mexico, at latitude
20.613112 and longitude −100.921866, at an altitude of 1756 m above mean sea level.

4.1. Laboratory Tests

The Rhodena lettuce crop was divided into two groups: healthy and diseased. The
diseased group, which covered 80% of the crop, was only watered, while the healthy
group (the remaining 20%) was watered and fertilized normally. To verify the values of
macroelements, a laboratory conducted destructive tests on both groups of seedlings.

Table 1 shows the laboratory tests of the macroelements nitrogen, phosphorus, calcium,
magnesium, and sulfur in percentages, as well as iron, zinc, manganese, copper, and boron
in units of parts per million (ppm). The table compares healthy seedlings with diseased
seedlings, indicating the necessary nutritional requirements for the seedlings.

Figure 7 shows macroelements, where 1 is very low, 2 low, 3 sufficient, 4 high, and
5 very high. The level of 3 is considered sufficient. In this work, we focus on detecting the
lack of nitrogen and potassium, which are very low and the most prevalent in the crop.

Table 1. Test laboratory analysis of macroelement concentrations in Rhodena lettuce seedlings. The
table presents the concentrations of multiple elements in parts per million (ppm). The nutritional
sufficiency ranges for each element are also provided for reference.

Test Laboratory Lettuce Rhodena

Element
Result

Sufficiency Unit
Healthy Diseased

Nitrogen 4.91 2.05 4.50–5.50 %
Phosphorus 0.47 0.32 0.35–0.40 %
Potassium 6.17 2.75 6.00–7.00 %
Calcium 1.89 0.78 1.00–2.00 %

Magnesium 0.81 1.48 0.30–0.40 %
Sulfur 0.51 0.35 0.20–0.60 %
Iron 1429 3956 50.0–100 ppm
Zinc 76.20 27.49 25.0–100 ppm

Manganese 93.49 51.39 20.0–200 ppm
Copper 6.24 11.25 5.00–10.0 ppm
Boron 52.25 43.28 25.0–80.0 ppm
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Figure 7. Comparative analysis of macroelement levels in healthy and diseased Rhodena lettuce
seedlings. The bar chart categorizes macroelement concentrations into five levels: 1 (very low), 2 (low),
3 (sufficient), 4 (high), and 5 (very high), with level 3 indicating sufficiency. The analysis highlights
that nitrogen (N) and potassium (K) are at very low levels, particularly in diseased seedlings.

4.2. Detection of Nitrogen Deficiencies

Using multiple scans taken on the 15th day after germination, we obtain a single point
cloud combining multiple scans using ICP, as described in Section 3.2.

Figure 8 shows the alignment of 8 point clouds, each containing 12 trays with 162 cav-
ities. The color variations along the z axis indicate the seedlings’ height, and the gaps
represent nongerminated seedlings.

From the registered point cloud, we extract the characteristics of each seedling, which
serve as inputs for the classifier. These characteristics encompass leaf count, height, and
growth stage.

To obtain the height, we use the algorithm presented in [53]. In this procedure, we
normalize the points to the agrolite or substate and obtain the highest point point as (x, y).
At the time of the scan, the Rhodena lettuce plant had developed to the second stage of
growth. The height is used to determine nitrogen deficiency. The crop has an average
height of 3.2 cm, while healthy seedlings have an average height of 4 cm. The seedlings in
the first stage are those that have received fertilizer.

Figure 8. Point clouds registration. The image shows the whole crop area. The colors along the z axis
represent the height of the seedlings, while the gaps reveal the seedlings that did not germinate.
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The diagram in Figure 9a illustrates the height distribution (in cm) during three
different growth stages of Rhodena lettuce. The tallest median height is observed at growth
stage 0, while the lowest is seen at growth stage 2. The interquartile ranges vary among
stages, indicating differences in height variability. Additionally, Figure 9b displays the
distribution of the number of leaves at each growth stage. Growth stage 0 exhibits the
highest median number of leaves, while growth stages 1 and 2 have similar median values
but lower overall leaf counts.

(a) (b)

Figure 9. Heights and leaves distribution across development stages. Panel (a) shows the height
distribution (in cm) of lettuces at different growth stages (0, 1, and 2). Height decreases progressively
from Stage 0 to Stage 2. (b) Bar plot showing the number of leaves at each growth stage, with Stage 0
having the most leaves, and Stages 1 and 2 showing similar and lower leaf counts.

Figure 10a displays the distribution of plant heights in centimeters. The data show a
relatively symmetrical spread with a peak of around 0.04 cm, indicating that most plants
fall within this height range. The distribution shows some variability, with heights ranging
from approximately 0.02 cm to 0.06 cm. Figure 10b illustrates the distribution of the number
of leaves per plant. The distribution is bimodal, with two prominent peaks at 2 and
4 leaves, suggesting that most plants have 2 or 4 leaves, with fewer occurrences of other
leaf counts. Figure 10c shows the frequency of plants in different stages of growth (0, 1, and
2). Growth stage 1 has the highest frequency, followed by Stage 2, while Stage 0 has the
lowest frequency, indicating the prevalence of plants in intermediate growth stages.

The scatter plots in Figure 11 illustrate the three growth stages of the Rhodena lettuce
seedling. In a healthy crop without diseases, most of the seedlings would be at this stage.
However, our experiment shows that a high percentage of the monitored crop plants are
in the second growth stage. Specifically, Figure 11a displays a lettuce plant with four true
leaves and two cotyledons, standing at a height of 4 cm. Figure 11b depicts four leaves,
two cotyledons, and two first true leaves with a height of 3 cm. Lastly, Figure 11c shows
two cotyledons with a height of 2 cm. The first, second, and third stages represent 5.81%,
53.98%, and 25.45% of the crop, respectively, with the remaining 5.63% representing failures.

We trained multiple machine learning models to classify lettuce seedlings into four
categories: first stage, second stage, third stage, and failures. The results of the machine
learning classifiers to classify nitrogen deficiencies are shown in Table 2. Each cell in the
table represents the percentage of seedlings at different stages. The sum of the percentages
in the first, second, and third stages indicates the overall production. Adding all stages
and failures gives the accuracy of the classifiers. The decision tree classifier (DTC) attained
the highest accuracy at 90.87% and a crop production rate of 85.24% on the 15th day. The
percentage of seedlings in the third and second stages indicates limited development of the
lettuce plant.
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(a) (b)

(c)

Figure 10. Distribution of morphological measurements and grown stages. (a) shows an histogram
of plant height distribution in centimeters, showing a peak around 0.04 cm with a broad spread
from 0.02 cm to 0.06 cm. (b) Histogram of the distribution of the number of leaves, highlighting two
prominent peaks at 2 and 4 leaves. (c) Bar plot showing the distribution of growth stages.

(a) (b) (c)

Figure 11. Developmental phases of lettuce. Panel (a) exhibits four true leaves, two cotyledons,
and a height of 4 cm. Panel (b) presents two true leaves and two cotyledons with a height of 3 cm.
Panel (c) displays two cotyledons with a height of 2 cm. According to the DTC technique, optimal
results were achieved by delineating the plant morphology for each growth stage with an accuracy of
90.87% and a production forecast of 85.24%.
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Table 2. Crop production accuracy by growth stage of each classifier production accuracy. The table
presents the prediction results of various classifiers, detailing the percentage of lettuce seedlings
classified into different growth stages (third, second, first, and failures). The overall production is
calculated by summing the percentages across the first, second, and third stages. The accuracy of
each classifier is determined by summing the percentages of all stages and failures.

Classifier Crop Production %

Stage NCA SGD DTC Linear RBF Poly

Third 30.1 27.42 25.45 23.49 23.9 22.01
Second 52.13 48.34 53.98 53.65 52.12 53.87

First 1.87 2.18 5.81 2.02 5.95 5.36
Fails 4.94 6.54 5.63 6.03 4.80 6.08

Accuracy 89.04 84.48 90.87 85.19 86.77 87.32
15th day Prod. 84.01 77.94 85.24 79.16 81.97 81.24

4.3. Detection of Potassium Deficiency

Lack of potassium in seedlings can cause yellow marks to appear in the veins of the
leaves or on the leaves themselves, usually around day 20 after germination.

We conducted training using manually annotated images to train YOLOv8, YOLOv9,
and YOLOv10 models for detecting healthy and diseased categories. Table 3 presents the
precision, recall, and mAP50 for each model. Specifically, YOLOv9c achieved the highest
mAP of 0.792 among the three detectors.

Table 3. Comparison of model accuracy across YOLO versions: The table presents the preci-
sion, recall, and mAP50 values for different versions of YOLO models—YOLOv8, YOLOv9, and
YOLOv10—trained on a dataset containing manually annotated images with healthy and diseased
categories. The highest-performing variant within each YOLO model family is highlighted in bold.

Detector Model Precision Recall mAP50

YOLOv8

n 0.750 0.701 0.736
s 0.633 0.782 0.747
m 0.788 0.658 0.729

0.786 0.658 0.713
x 0.627 0.765 0.737

YOLOv9

t 0.670 0.792 0.772
s 0.702 0.778 0.784
m 0.653 0.798 0.783
c 0.701 0.79 0.792
e 0.66 0.792 0.784

YOLOv10

n 0.739 0.703 0.716
s 0.731 0.730 0.740
m 0.800 0.639 0.740
b 0.775 0.657 0.715
l 0.679 0.752 0.750
x 0.764 0.687 0.726

Figure 12 presents the precision/recall curves for the three most proficient neural
network models examined in this study. The YOLOv8s model is depicted in blue with an
mAP of 74.7%, YOLOv10l in green with 75%, and YOLOv9c in orange with 79.2%. Notably,
the YOLOv9c model exhibited the superior performance.

Figure 13 presents the detection results obtained from the YOLOv8s, YOLOv9c, and
YOLOv10l models. The initial row illustrates the manually annotated ground truth. Sub-
sequently, the second, third, and fourth rows depict the predictions generated by the
YOLOv8s, YOLOv9c, and YOLOv10l models, respectively.
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Figure 12. Precision/recall curves corresponding to the evaluation of the three most effective models.

Ground Truth

YOLOv8s

YOLOv9c

YOLOv10l

Figure 13. Potassium deficiency detection. The first row displays manually labeled ground truth
detections. The second, third, and fourth rows present the predictions for YOLOv8s, YOLOv9c, and
YOLOv10l, respectively.

5. Discussion and Conclusions

This study introduces a novel method for detecting micronutrient deficiencies in
Rhodena greenhouse-grown lettuces via 2D and 3D analysis. We used a depth camera to
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capture 3D point clouds to estimate nitrogen deficiencies through morphological variables,
while a deep learning detector analyzed 2D images to identify potassium deficiencies.

Conventional methods for detecting nutrient deficiencies predominantly depend on
laboratory analyses and visual inspections, which are inherently time-intensive, costly, and
susceptible to human error. Our methodology proposes a noninvasive, real-time alternative
that markedly diminishes the necessity for laboratory testing. In identifying nitrogen
deficiencies, we evaluated several machine learning techniques, with the decision tree
classifier (DTC) attaining the highest accuracy at 90.87%. For the detection of potassium
deficiencies, YOLOv9c demonstrated an accuracy of 79.20%. These findings emphasize the
promise of AI-driven methodologies in agricultural applications.

The capability to precisely identify nutrient deficiencies at an early stage is indis-
pensable for optimizing fertilizer use and ensuring the robust development of crops. The
results indicate that the proposed methodology can be effectively utilized for monitoring
lettuce crops, potentially diminishing the necessity for excessive fertilizer usage, thereby
yielding economic and environmental advantages. Furthermore, this approach is adapt-
able to other crops, providing a scalable solution for nutrient monitoring across diverse
agricultural contexts.

Although the results are promising, this study has limitations. The performance of the
model is highly dependent upon the quality of the input data, specifically the resolution of
the images and the precision of the point cloud registration. Likewise, the efficacy of the
method in varying environmental conditions or with different varieties of lettuce has yet to
be comprehensively examined. Future research should aim to evaluate the methodology in
diverse settings and with a variety of crops to determine its broader applicability.

Furthermore, the existing system predominantly addresses deficiencies in nitrogen
and potassium. Extending the model to identify other macronutrients, such as phosphorus
and magnesium, would significantly increase its efficacy. Additionally, the incorporation of
IoT devices for continuous monitoring and automated decision-making systems could be
investigated to develop a more holistic crop management tool.
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Abstract: Among the technological tools used in precision agriculture, the convolutional neural
network (CNN) has shown promise in determining the nutritional status of plants, reducing the time
required to obtain results and optimizing the variable application rates of fertilizers. Not knowing the
appropriate amount of nitrogen to apply can cause environmental damage and increase production
costs; thus, technological tools are required that identify the plant’s real nutritional demands, and that
are subject to evaluation and improvement, considering the variability of agricultural environments.
The objective of this study was to evaluate and compare the performance of two convolutional neural
networks in classifying leaf nitrogen in strawberry plants by using RGB images. The experiment
was carried out in randomized blocks with three treatments (T1: 50%, T2: 100%, and T3: 150% of
recommended nitrogen fertilization), two plots and five replications. The leaves were collected in
the phenological phase of floral induction and digitized on a flatbed scanner; this was followed by
processing and analysis of the models. ResNet-50 proved to be superior compared to the personalized
CNN, achieving accuracy rates of 78% and 48% and AUC of 76%, respectively, increasing classification
accuracy by 38.5%. The importance of this technique in different cultures and environments is
highlighted to consolidate this approach.

Keywords: San Andreas; fertilization; machine learning; ResNet-50

1. Introduction

Strawberry production (Fragaria × ananassa Duch., Rosaceae), worldwide, is led by
China and the United States, but Brazil stands out as the 8th largest producer, with produc-
tion reaching 197 thousand tons [1]. From 2011 to 2021, global acreage grew by 20%, and
production increased by 44%. In Brazil, the strawberry area grew to 6.280 ha in the 2022/23
crop year, up from 2.500 ha in 2012 [2]. This rise highlights Brazil’s contribution to the global
strawberry production scenario. Investments in research and new technologies have been
made to meet this growing demand, with the aim of developing more productive varieties.

Nutritional management plays a fundamental role in crop development, making it a
widely studied topic due to its direct influence on increasing productivity and fruit quality.
Nitrogen is an essential element for plants, being the main constituent of chlorophyll,
which is directly involved in photosynthetic activity. Therefore, the greenness of leaves is
determined by the concentration of chlorophyll molecules [3]. Variations in green hues due
to foliar nitrogen (N) content can result in class separation in an RGB image bank when it
comes to computer vision. Thus, this pigment becomes essential in the context of precision
agriculture because it serves as a basis for quantifying foliar N content [4–6]. A practical
and quick way to determine the existence of nutrient deficiency in plants is through visual
diagnosis. However, its accuracy is limited by the experience of the technician and it also
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requires a significant amount work in generating a prescription map to be used in localized
management. As a result, new research is constantly emerging to estimate the ideal nutrient
level in crops [7,8].

Several scientific studies and research efforts have highlighted the proven relationship
between the concentration of green in the leaves, analyzed through computer vision, and
the nitrogen content in plants [9–12]. In this context, nitrogen exerts a significant influence
on plant growth, productivity and soil fertility [13]. Agricultural production, which is
essential for global food security, relies largely on synthetic fertilizers that provide this key
element [14]. Thus, studies on nitrogen strive to increase its efficiency of use.

With regard to the assessment of the nutritional status of plants, conventional ap-
proaches to assessing the nutritional status of plants are generally destructive, labor-
intensive and require specific resources [15]. Considering the importance of strawberry
cultivation and the need for more accessible, quick and efficient methods to determine
nutritional status, there is an interest in the development of more effective methods [16].

In the field of precision agriculture, the application of predictive techniques, such
as the use of nutrient sensors in plants, stands out [17], and remote sensing with drones
in urban forest management has been developed [18]. In addition, there are approaches
based on image processing and artificial intelligence, which stand out for their ability to
identify nutritional deficiencies in crops in a non-invasive way. However, it is essential to
improve N prediction techniques in order to ensure the necessary accuracy in agricultural
decision-making, considering the complexity of the relationships between the availability
of this element, plant growth, and fruit quality.

Among the AI (artificial intelligence) tools used for prediction and classification, deep
learning has been applied in different areas, presenting satisfactory results in solving
various problems. According to Ferentinos et al., [19], this feature refers to the use of
artificial neural network architectures with multiple processing layers, distinguishing
them from the more superficial approaches of traditional neural networks. Among the
former class, the convolutional neural network (CNN) stands out among the deep learning
algorithms and is widely used to extract features from images [20,21]. During image
processing, CNNs allow the extraction of several characteristics, especially those related
to color-based indices, which are relevant to nutritional applications. In the face of the
challenge of accurately identifying nitrogen levels and the growing importance of precision
agriculture for sustainable development, investing in innovative technologies is essential.
Deep learning tools capable of handling RGB images can assist in nitrogen fertilization
management in strawberry crops by classifying foliar nutritional status. This approach
involves applying CNNs to process images and classify nitrogen levels in plants.

Therefore, the present study aimed to evaluate and compare the performance of two
convolutional neural networks in the classification of leaf nitrogen levels in strawberry
crops, based on RGB images. The analysis focused on performance metrics of the gen-
erated models, aiming to contribute to the advancement of knowledge and the practical
implementation of more effective tools in the nutritional management of plantations.

2. Materials and Methods

An experiment was carried out to create an image bank, with strawberry cultivation as
its theme. The experiment was carried out from August to December 2022 at the Faculty of
Animal Science and Food Engineering (FZEA/USP), with strawberries (Fragaria × ananassa
Duch., Rosaceae) of the San Andreas cultivar. The experiment took place in a 100 m2 green-
house, with climate control provided by an evaporative air system, located at the “Fernando
Costa” campus, in Pirassununga. The geographic coordinates of the location are approxi-
mately 21◦57′25.2′′ S, 47◦27′13.7′′ W, with an average altitude of 610 m above sea level. The
region has a CWA climate, with well-defined seasons, one, rainy, from October to March,
and the other, dry, from April to September, with an average annual rainfall of 1298 mm and
an average temperature of 20.8 ◦C. The strawberry seedlings were transplanted in October
2022 to 30 pots, comprising three treatments and five replications, as each replication was
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divided into two plots. The treatments consisted of applying different doses of nitrogen
fertilizers as follows: 50% of the recommended fertilization (FR), by Passos et al., 2013 (T1);
100% FR (T2), control; and 150% FR (T3) [22]. This methodology has been used by different
researchers [23,24].

The image database was generated and organized to serve as a resource of extractable
characteristics for classification, and these characteristics were used as input to the network
and their vectors used in the training of computational classifiers based on deep learning
methods, having the classes of the different N doses as the output or target attribute of
the model.

To obtain parameters for comparison of the model, leaf chemical analysis was per-
formed at the Laboratory of Agrarian/Soil Sciences of the Faculty of Animal Science and
Food Engineering of the University of São Paulo, according to the methodology described in
the manual of chemical analysis of soils, plants and fertilizers published by EMBRAPA [25].

2.1. Obtaining and Processing the Images

The indicative leaves of strawberries were collected on the third expanded leaf, and
were selected for uniformity of age and stage of development in all treatments and replica-
tions, to ensure consistency in the comparative analyses. After collection, at the Laboratory
of Agricultural Machinery and Precision Agriculture (LAMAP), of the Department of
Biosystems Engineering of the University of São Paulo, the leaves were prepared to obtain
the images. This step involved removing any excess dust or dirt by using a paper towel.
With a high-resolution flatbed scanner (HP Scanjet 3800), the images of the sheets were
scanned in RGB (red–green–blue) color, in JPG (Joint Photographic Experts Group) format
and with a resolution of 1200 DPI (dots per inch).

Using a script developed in the Matlab© R2021b software, the scanned images of the
strawberry leaves were cropped, automatically extracting blocks of 224 × 224 pixels and
thus generating an image bank with specific areas of interest [26] for further processing.
This procedure aimed to obtain images that would provide an ideal visualization of the
patterns generated by the doses on the leaves, as exemplified in Figure 1. The image blocks
were scaled to a standardized size, as required in the input of the ResNet architecture
models [27].
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Figure 1. Example of the image bank formed by strawberry leaf cleavage blocks. Figure 1. Example of the image bank formed by strawberry leaf cleavage blocks.

After the completion of the automatic cropping stage, the manual selection of image
blocks was performed to compose the database. During this process, each image block was
checked to ensure the quality and integrity of the data to be used. The selection followed
specific criteria, requiring that the image of each block be completely filled by a region of
the leaf, i.e., without characteristics of visible leaf damage or injury. This approach ensured
the presence of only the areas relevant for analysis in each block. In addition, blocks that
presented noise, such as white background or dirt on the leaf, were excluded, since such
imperfections could interfere with the subsequent classification process. After manual
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selection, 50 blocks of images were chosen for each vessel, totaling 500 blocks per treatment.
With three treatments analyzed, the final dataset consisted of 1500 blocks of images.

With the definition of the dataset, a script was developed in the Matlab© R2021b soft-
ware to generate the classifier models of the fertilized nitrogen dosage, using two different
CNN architectures, one customized and the other based on ResNet-50, respectively, as
described in Tables 1 and 2.

Table 1. Personalized CNN architecture for leaf nitrogen level prediction.

Layers Settings

2D Convolutional 256 filters with size 5 × 5, activation by ReLU
Batch Normalization Default

2D MaxPooling Size pooling = 2 × 2, stride = 2
2D Convolutional 128 filters with size 3 × 7, activation by ReLU

Batch Normalization Default
2D MaxPooling Size pooling = 2 × 2, stride = 2

2D Convolutional 128 filters with size 7 × 3, activation by ReLU
Batch Normalization Default

2D Convolutional 32 filters with size 3 × 3, activation by ReLU
Batch Normalization Default

Fully Connected 3 neurons, activation by softmax

Table 2. CNN ResNet-50 architecture for leaf nitrogen level prediction.

Layer Name Output Size 50 Layers

conv1 112 × 112 7 × 7, 64, stride 2

conv2_x 56 × 56

3 × 3 max pool, stride 2



1× 1 , 64
3× 3 , 64
1× 1 , 256


× 3

conv3_x 28 × 28




1× 1 , 128
3× 3 , 128
1× 1 , 512


× 4

conv4_x 14 × 14




1× 1 , 256
3× 3 , 256
1× 1 , 1024


× 6

conv5_x 7 × 7




1× 1 , 512
3× 3 , 512
1× 1 , 2048


× 3

1 × 1 Average pool, 3-d fc, softmax

The personalized CNN architecture is designed as a sequential model, with four layers
of two-dimensional convolution (2D convolutional) using different numbers and sizes
of filters. These layers form the basis of a CNN model, being responsible for extracting
characteristics from the input data [28]. In the case of images, convolution layers allow
one to learn visual patterns (such as colors, shapes, and textures), from the simplest to
the most complex, successively [29]. Using the Rectified Linear Unit activation function
in the convolution layers allows you to better deal with non-linearity issues at a lower
computing cost [28]. The adoption of rectangular filters (3 × 7 and 7 × 3) in the second
and third convolution layers aimed to capture possible vertical and horizontal patterns.
Following each convolution layer is a normalization layer (Batch Normalization), which
speeds up training, decreases overfitting and optimizes the learning process [30]. After the
first and second normalization layers is a subsampling layer (2D MaxPooling), which is
used to reduce the dimensionality of the activation maps, saving computing resources while
preserving the most relevant data [28]. Finally, there is the output (Fully Connected), or
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classification layer. The softmax activation function used in this layer transforms its neurons
into probabilities assigned to each class, effectively turning the model into a classifier.

The other CNN architecture adopted for this study was based on ResNet-50, as
described in Table 2. A convolutional neural network proposed by He et al. [31], it consists
of 50 layers, of which 49 are convolutional. Addressing the complexity of deep network
training, ResNet-50 introduces the “identity shortcut connection”, allowing one to skip one
or more layers to form residual blocks. In addition, to optimize computational efficiency,
the ResNet-50 utilizes a “bottleneck design” structure, reducing the number of parameters
and operations on each residual block [31].

The ResNet-50 architecture allows the loading of a pre-trained version with more
than one million images from the ImageNet database. This makes it possible to classify
images into 1000 categories. With an image input of 224 × 224 pixels, this pre-trained
neural network provides comprehensive representations for a variety of natural images,
allowing you to reuse learned visual patterns in applications involving other categories
of images. This technique of reusing learned knowledge, called learning transfer, has
become a common practice, as it accelerates the training process, saves computational
resources, and helps in the generalization and convergence capacity of new models, being
especially useful in situations where the database of the problem addressed is insufficient
for learning [32]. Table 2 shows the elements of the 50-layer ResNet architecture.

2.2. Analysis of the Models

To evaluate the reliability of the model, the K-fold cross-validation technique was
used, in which the dataset is divided into distinct groups [33]. In this study, we opted for
a five-fold cross-validation (K = 5), which entails dividing the dataset into five different
groups. Each of these groups served as a test set in five independent iterations. This
means that in each iteration, a different group was used for validation, while the other
four (or K − 1) were employed for model training. At the end of the five iterations, the
average precision was calculated, which then served as the final measure of the model’s
performance. During the cross-validation process, 80% of the images were used for training,
which is equivalent to 1200 blocks of images. The remaining group, consisting of 20% of the
images (300 images) was designated as a validation and test set to evaluate the performance
of the model. This training and testing procedure was repeated five times, ensuring that
each group would be used once as a test set. This strategy ensures that all images in
the dataset are used for both training and testing, providing a more robust and reliable
assessment of the model’s performance.

For the model, we took into account the configurations, as shown in Table 3, in training
the neural networks in which the hyperparameters are inserted, since they are responsible
for defining how the model will be trained, and, consequently, how it will be able to
perform the task for which it was designed [34].

Table 3. Training options used in the convolutional model.

Number of times 10
Mini-lot size 8

Option for data scrambling every-epoch
Positive scaling of the initial learning rate 0.0001

For both the personalized convolutional neural network and ResNet-50, the number
of epochs used was 10. In a comparative study, Too et al. [35] considered the fine-tuning
of deep learning models for plant disease identification, and compared the behaviors for
10 and 30 epochs, observing that ResNet-50 and ResNet 101 work properly with fewer
iterations, and, in addition, after fine-tuning, the models using 10 epochs obtained an
accuracy above 90%.

Table 4 summarizes the formulas of the performance metrics and their expressions
used in the present study.
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Table 4. Description of performance evaluation metrics.

Metric Formula Description

Accuracy Acc =
TP+TN

TP+TN+FP+FN The overall efficiency of a model.

Sensitivity or Recall Se = TP
TP+FN The efficiency of a model as to positive samples.

Specificity Sp = TN
TN+FP The efficiency of a model as to negative samples.

Precision Pre = TP
TP+FP

The proportion of actual positives out of all positives
predicted by the model.

F1-score F1score =
2 ∗ Pre ∗ Se

Pre+Se The harmonic mean between precision and sensitivity.
G-mean Gmean =

√
recall ∗ speci f icity Maximum accuracy in each of the classes.

TP: true positive; TN: true negative; FN: false negative; FP: false positive; Pre: accuracy; Se: sensitivity.

The area under the curve (AUC) reflects the performance of a classifier, illustrating
how the true positive rate (recall/sensitivity) varies as the false positive rate (inverted speci-
ficity) changes [36]. This analysis provides insights into the model’s ability to distinguish
between classes in different decision-making contexts. Models with an AUC close to 1.0 are
considered highly effective in classification tasks [37], thus highlighting the fundamental
relevance of this metric in evaluating model performance.

3. Results and Discussion
3.1. Foliar Chemical Analysis

Figure 2 shows the boxplot test for the values of leaf nitrogen concentration in straw-
berry leaves in the flower induction stage. N concentrations ranged from 19.4 g kg−1 to
33.3 g kg−1. The T1 (50% of the N dose) and T2 (100% of the N dose) treatments exhibit
quite similar median and mean values, while the T3 treatment (150% of the N dose) shows
a higher trend.
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3.2. Analysis of the Models

The confusion matrix evaluates the correspondence between the output predicted by
the model and the desired output, and then calculates the classification accuracy for each
class in a specific class, thus revealing the strengths and weaknesses of the model [38]. The
rating rate using personalized CNN was 48.1%, while for ResNet-50 it was 78.1%. Analysis
of the matrices for the personalized CNN and ResNet-50 models, as described in Figure 3,
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reveals distinct patterns in the classification capacity of the treatments (T1, T2, and T3). For
personalized CNN, the performance was not satisfactory in view of the fact that the model
got more wrong than it got right. Strategies could be explored to improve the outcome of
the model, such as optimizing the hyperparameters, including filter size, number of layers
and learning rate [39]. As for ResNet-50, it performed better, as it extracts patterns from
more complex spectral features [40]; the rate of correct answers was higher in this model,
reaching 78% accuracy. For both networks, T1 was the one with the highest rate of correct
answers, with 60.2% and 84.4%, respectively, for the personalized CNN and ResNet-50;
this was possibly due to the symptom of nutritional deficiency, expressed as a uniform
chlorosis, which allowed the model to classify more assertively.
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Table 5 shows the performance of the classifiers in discriminating the different N doses
(T1 = 50%, T2 = 100%, and T3 = 150%) in the phenological stage of floral induction based on
neural networks. These metrics provide different perspectives on the model’s performance
and help in the overall understanding of its effectiveness.

Table 5. Personalized CNN convolutional neural networks and ResNet-50 performance metrics.

Personalized CNN (%) ResNet-50 (%)

Metrics T1 T2 T3 T1 T2 T3

Accuracy 48 48 48 78 78 78
Sensitivity 60 44 40 84 73 77
Specificity 42 50 52 75 81 79
Precision 34 31 29 63 65 64

Recall 60 44 40 84 73 77
F1-score 44 36 34 72 69 70
G-mean 50 47 46 80 77 78

The generated models used 1200 excerpts from the database for training. The cus-
tomized CNN model achieved a mean accuracy of 48%, an unsatisfactory performance in
distinguishing between the 50%, 100% and 150% treatments, as confirmed by the lower
recall values and precision values of these classes. Possibly, the personalized CNN had
an unsatisfactory performance due to the complexity of the standards expressed by the
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treatments, making categorization difficult, given this structure and the configuration of
the CNN, in addition to the lack of generalization in relation to negative samples.

The best performance in the classification presented was with the use of ResNet-
50 for the dose of 50% N, with an accuracy of 84%. For the T2 and T3 treatments, the
accuracy, recall and F1-score metrics showed better results than those of the personalized
CNN, but they are similar to each other. This suggests that the leaves in these treatments
exhibited less variation in color intensity and distribution, making the classification of
models more costly.

A comparison of the AUC analyses is shown in Figure 4. First, for the customized
CNN, the result was not satisfactory for floral induction, remaining within a range of
0.57 to 0.64, except for T1. As the phenological stage of the plant advances, an increase
in leaf chlorosis can be observed due to differences in nitrogen concentration between
the treatments. The coloration of the plant’s leaf can be influenced in a variety of ways,
depending on the availability of nitrogen. In nitrogen deficiency, leaves tend to become
paler, yellowish, or light greenish, due to the reduction in chlorophyll synthesis, which is
responsible for the green coloration of leaves, and excess nitrogen can lead to a very dark
green color of leaves and excessive vegetative growth [41].
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The analysis of the metrics highlighted that ResNet-50 had higher values in all metrics,
especially in specificity, ranging from 64% to 69%, while personalized CNN had lower
specificity, ranging from 41% to 44%.

The comparison between the architectures revealed that ResNet-50 achieved superior
accuracy, standing out for its ability to identify distinct patterns, in contrast to the custom
CNN, which had lower performance due to its lower capacity for learning and general-
ization. These results corroborate the findings of previous studies, such as those of Costa
et al. [42], which achieved 86.6% recall when applying ResNet-50 for detection of defects in
tomatoes, reinforcing the efficiency of this architecture in predicting adequate fertilization
rates in strawberry plants.

The superior classification performance of the model using ResNet-50 may be related
to the characteristics presented in this convnet. In this architecture, there are blocks with
convolutional layers in sequence and a separate parallel identity layer [43], which can result
in a more precise extraction of color or texture features from plant leaf images [44]. In the
ResNet-50 used, the technique of transfer learning, combined with pre-training on large
datasets, was applied, which conferred an essential generalization capacity for classifying
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different nitrogen concentrations in strawberry leaves [45]. In addition, the application
of residuals to the convolutions, a differential of ResNet-50, allows the network to learn
residual differences in the image features, optimizing the model’s training.

4. Conclusions

The study focused on comparing the performance of convolutional neural network
architectures in classifying the nitrogen status of strawberry leaves. The results highlighted
the better performance of the Resnet-50 architecture compared to the custom CNN in the
specific task of classifying nitrogen status in strawberry leaves by handling RGB images.
Evaluating the two main performance analysis metrics of the models, it was found that
Resnet-50, with total accuracy = 78% and AUC T1 = 0.76, T2 = 0.63 and T3 = 0.61, out-
performed the custom CNN with total accuracy = 48% and AUC T1 = 0.96, T2 = 0.90 and
T3 = 0.91. An increase of 38.5% was achieved with ResNet-50 when compared to the custom
CNN. By offering a more accurate and efficient approach to nutritional status detection,
Resnet-50 demonstrated its potential for improving monitoring processes, standing out in
this work as an important tool in precision agriculture. Additionally, it is suggested that
further studies explore image preprocessing techniques and fine-tuning, such as adjust-
ments to model hyperparameters, regularization and data augmentation techniques, to
further optimize the accuracy and effectiveness of the classification model. These initia-
tives have the potential to elevate Resnet-50 to a new level of performance, consolidating
its role as an essential tool in precision agriculture. Thus, this research offers important
practical knowledge for the efficient management of agricultural crops, promoting a more
sustainable approach to modern agriculture. Finally, further field research involving other
crops is recommended for the validation of this approach.
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Abstract: The early and precise identification of the different phenological stages of the bean (Phaseolus
vulgaris L.) allows for the determination of critical and timely moments for the implementation of
certain agricultural activities that contribute in a significant manner to the output and quality of the
harvest, as well as the necessary actions to prevent and control possible damage caused by plagues
and diseases. Overall, the standard procedure for phenological identification is conducted by the
farmer. This can lead to the possibility of overlooking important findings during the phenological
development of the plant, which could result in the appearance of plagues and diseases. In recent
years, deep learning (DL) methods have been used to analyze crop behavior and minimize risk
in agricultural decision making. One of the most used DL methods in image processing is the
convolutional neural network (CNN) due to its high capacity for learning relevant features and
recognizing objects in images. In this article, a transfer learning approach and a data augmentation
method were applied. A station equipped with RGB cameras was used to gather data from images
during the complete phenological cycle of the bean. The information gathered was used to create a set
of data to evaluate the performance of each of the four proposed network models: AlexNet, VGG19,
SqueezeNet, and GoogleNet. The metrics used were accuracy, precision, sensitivity, specificity, and
F1-Score. The results of the best architecture obtained in the validation were those of GoogleNet,
which obtained 96.71% accuracy, 96.81% precision, 95.77% sensitivity, 98.73% specificity, and 96.25%
F1-Score.

Keywords: deep learning; convolutional neural network; bean phenology; food security; transfer
learning

1. Introduction

According to the Food and Agriculture Organization of the United Nations (FAO),
plant plagues are among the main causes of the loss of over 40 percent of food crops
worldwide, exceeding losses of up to USD 220 billion each year [1]. In Mexico, bean
production contributes MXN 5927 million to the annual income. However, in 2021, the
registered loss was more than MXN 222 million, mainly due to diseases caused by viruses
transmitted in seeds, aphids, white flies, and other similar insects [2]. Several factors
interfere with food security, such as climate change [3–5], the lack of pollinators [6,7],
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plagues and plant diseases [8], the result of the COVID-19 pandemic, and the present war
between Russia and Ukraine [9], among others.

Insect plagues, diseases, and other organisms significantly affect the quality and
production of crops. These organisms feed off plants and transmit diseases that can cause
severe disruption in the growth and development of plants, causing a major impact on
food security, the economy, and the environment, thereby decreasing the availability of
food, increasing production costs, and affecting the growth of rural areas and developing
countries [10].

It is important to mention the strategies used to mitigate the effects produced by
plagues and diseases around the world, such as the selection of resistant varieties, crop
rotation, the use of natural enemies of plagues, and the rational use of chemical products,
among others. More efforts need to be made to implement mechanisms and innovative
strategies to reduce loss in food crops and sustainably contribute to food security [9,11,12].

In recent years, the use of artificial intelligence (AI) in applications has increased
exponentially. Proof of this is the appearance of works related to image recognition,
especially in the field of agriculture, where various approaches to using deep learning (DL)
methods to classify the phenology of different food crops around the world have been
presented. This allows us to have knowledge of the record of critical moments in the life cycle
of the plant to program treatments, effectively and timely apply pesticides or fungicides, and
prevent and control plagues and diseases; this offers great advantages in precision agriculture
in a nonharmful manner, and it helps minimize damage to crops [13–17].

DL methods are used to identify the different phenological stages of crops, and there
exists a diversity of approaches to address the classification of topics related to agricultural
decision making that mainly influence the estimation of agricultural production. In this
regard, the present work proposes a comparative study of the performance of four models
of convolutional neural networks (CNNs), AlexNet, VGG19, SqueezeNet, and GoogleNet,
in classifying the phenological stages of bean crops; the performance of each of the models
is compared through the following metrics: accuracy, precision, sensitivity, specificity, and
F-1 Score. The results are used to choose the architecture that best models the classification
problem in bean phenology.

The goal of analyzing the different CNN architectures is to identify the best-performing
one and, in the future, to embed networks in compact systems so that farmers can identify
the phenological stages of plants, allowing them to take preventive measures.

The organization of the present work is structured as follows: Section 2 describes the
most relevant works on transfer learning, related concepts, and a description of the CNN
models used in the present work. Section 3 describes the methodology of the investigation
work. Section 4 contains the obtained results and their discussion. Section 5 presents the
conclusions, and finally, future work is described.

2. Related Work

DL has been used to obtain high-quality maps. In this regard, Ge et al. [18] mapped
crops from different regions in the period from planting to vigorous growth and compared
the maps obtained by using conventional methods with those obtained with DL, where the
latter reached 87% accuracy.

On the other hand, Yang et al. [17] proposed the identification of the different phe-
nological phases of rice from RGB images captured by a drone with a CNN model that
incorporated techniques such as spatial pyramidal sampling, knowledge transfer, and ex-
ternal data, which are essential for timely estimation and output, in comparison to previous
approaches where data on the vegetation index in temporal series and diverse methods
based on thresholds were used. The obtained results show that the approach has high
precision in the identification of the phenology of rice, with 83.9% precision and a mean
absolute error (MAE) of 0.18.

The approach of learning by transfer is used in various applications, such as the
prediction of the performance of numerous crops worldwide, where Wang et al. [19] used
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remote sensors with satellite images to estimate the outcome of soy crops through algo-
rithms and deep learning, offering an inexpensive and efficient alternative in comparison
to conventional techniques that are generally expensive and difficult to expand in regions
with limited access to data.

Identifying the phenology in diverse crops allows for determining critical moments
for timely agricultural activities. In this regard, Reeb et al. [20] implemented a pre-trained
CNN model named ResNet18 to classify the phenology of A. petiolata, comparing the results
obtained to the classification conducted by a group of non-expert humans. During the
validation stage of the model, 86.4% of the results obtained from a set of 2448 images were
classified correctly by the proposed model. Subsequently, an evaluation of the precision
of the model was made and compared to human precision, where the model correctly
classified 81.7% of a total of 241 images. In contrast, the non-expert humans achieved a
precision of 78.6%.

On the other hand, Datt et al. [15] used the CNN to recognize eight phenological
stages in apple crops. The knowledge transfer model used was Inception-v3, which trained
a set of images from the Srinagar region in India. The number of images captured in the
area was 1200, extending to 7000 images through data augmentation techniques, obtaining
results in comparison to other models such as Xception, Xception-v3, ResNet50, VGG16,
and VGG19 where the metric used was for F1-Score and achieved values of 0.97, 0.96, 0.66,
0.96, and 0.95, respectively.

Through the use of characteristic descriptors, Yalcin et al. [16] proposed the imple-
mentation of automatic learning algorithms to compare learning algorithms based on a
CNN to recognize and classify phenological stages in various types of crops such as wheat,
corn, barley, lentil, cotton, and pepper through images collected by cameras at farming
stations located in parts of the territory of Turkey. The AlexNet model used for the clas-
sification of phenology significantly exceeded automatic learning algorithms during the
performance evaluation.

The combination of conventional techniques with DL methods can offer alternatives
to the solution of classification problems, such as the case of the application of hybrid
methods, to get to know the estimation of agricultural production in the work carried out
by Zhao et al. [21], in which they used the knowledge transfer technique to learn from an
existing model based on the combination of biomass algorithms of wheat crops and the
model of simple performance. The results show a precise estimation of the wheat harvest
with both models since they reveal a good correlation of R2 = 0.83 and a root mean squared
error (RMSE) of 1.91 t ha−1.

The use of temporal series and other techniques for phenological classification is
usually relevant in the work carried out by Taylor et al. [22], who propose a model for
creating temporal series of the phenological cycle. They use a hidden Markov post-process
model to address the temporal correlation between images, reaching F1-Scores of 0.86 to
0.91. The results show the temporal progression of the crops from the emergency to the
harvest, providing the daily phenological stages on a temporal scale.

DL techniques are used to classify the different phenological stages in different types
of crops, including bean crops. The diversity of approaches and techniques used to classify
images varies the obtained results compared to techniques and strategies used in diverse
studies during the last decade. Thereupon, CNN produces trusted results, has a grand
capacity for generalization in the classification of images, and has a high capacity for
extracting features related to the phenology in different crops.

2.1. Convolutional Neural Networks (CNNs)

CNNs basically consist of three blocks: the first in a layer of convolution that allows the
extraction of features of an image; the second is a block that consists of a layer of maximum
grouping to execute a subsample of pixels and reduce the dimensionality, allowing the
reduction of computational costs; and finally, the third block involves fully connected layers
to provide the network with the capacity of classification [23–25]. The general description
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of the CNN architecture is shown in Figure 1, where features of the images are identified,
extracted, and classified.
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2.2. Transfer Learning

In general, CNN results are better if trained by more extensive data sets than small
ones. However, many applications do not have large data sets, and transfer learning can
be helpful in those applications where the data set is smaller in ImageNet [26]. For this
reason, a re-trained model from large data sets can be used to learn new features from
a comparatively smaller data set [27]. Figure 2 describes a block diagram of the transfer
learning approach used in this study.
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Recently, the scientific community has taken a particular interest in the transfer learn-
ing approach in diverse fields, such as medicine and agriculture, among others [28–31]. This
approach allows previously acquired knowledge and avoids training with large quantities
of data when training new deep architecture models [28,32,33].

2.3. Re-Trained Neural Networks

Using a re-trained CNN model has significant advantages in comparison to the design
of models from zero, which require large sets of data and training that can take considerable
time, including weeks, translating into high computational costs. On the other hand, a re-
trained model can have a high capacity for generalization and accelerate convergence [34].

In this study, four models of re-trained CNN were used to evaluate the performance
in the image classification identifying phenological phases in bean crops: AlexNet, VGG19,
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SqueezeNet, and GoogleNet. A brief introduction of each of the re-trained models is
included below.

2.3.1. AlexNet Model

The algorithms for object detection and image classification were evaluated with
the AlexNet model developed by Krizhevsky et al. [35] and the ImageNet Large-Scale
Visual Recognition Challenge (LSVRC) for the model training [36]. The architecture is
characterized by using a new activating function, the Rectified Linear Unit (ReLU), to
add non-linearity, solve the gradient evanescent problem, and accelerate network training.
CNN consists of eight layers in total: the first five layers are of convolution, some of which
are followed by max-pooling layers, and the following three layers are fully connected,
followed by an exit layer of 1000 neurons for the SoftMax for multiclass classification. The
AlexNet model was trained with over one million images from the ImageNet database
created by Deng et al. [26]. The entry size of the images is 227 × 227, a total of 60 million
parameters and 650 thousand neurons.

2.3.2. VGG19

The VGG19 network is a nineteen-layer deep convolutional neural network developed
by Simonyan et al. [37]. This model uses small filters of 3 × 3 in each of the sixteen
convolution layers. Next, it uses three fully connected layers to classify images into
1000 categories. The ImageNet database developed by Deng et al. [26] was used to train
the VGG19 model. The layers used for the extraction of features are separated into five
groups where a layer of max-pooling follows each group, and it is required to insert and
image the size of 224 × 224 to generate the label corresponding to the exit.

2.3.3. SqueezeNet

The SqueezeNet architecture uses compression techniques to reduce the model size
without compromising its performance with a fire module that, instead of using convo-
lutional layers followed by grouping layers, uses a combination of filters that combine
convolutions of 1× 1 and 3× 3 to reduce the number of parameters. The SqueezeNet model
proposed by Iandola et al. [38] contains fifty times fewer parameters than the AlexNet
model, has eighteen layers of profundity, and requires a size of 227 × 227.

2.3.4. GoogleNet

This model, also known as Inception v1, was developed by Szegedy et al. [32]. It
consists of twenty-two layers of profundity with entry images the size of 224 × 224.
GoogleNet uses average pooling after the last convolutional layer instead of fully connected
layers. The convolution modules called “Inception modules” are composed of multiple
convolutions of different sizes (1 × 1, 3 × 3, and 5 × 5), allowing the network to capture
the features on different spatial layers, facilitating the representation of fine details and
complex patterns.

Table 1 summarizes the main features in terms of the parameters used, profundity,
and size of the different architectures of CNN networks proposed in this study.

Table 1. Summary of presented architectures.

CNN Architecture Year Developer Profundity (Number
of Layers) Size (MB) Number of

Parameters

AlexNet 2012 Krizhevsky et al. [35] 8 240 60 million
VGG19 2014 Simonyan et al. [37] 19 550 138 million

SqueezeNet 2016 Iandola et al. [38] 18 5 1.2 million
GoogleNet 2014 Google 22 50 4 million
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3. Materials and Methods

The methodology used in this study consists of three phases, as shown in Figure 3.
The first phase describes the data acquisition procedure and the construction and general
features of the obtained images. The second phase describes the transfer learning of CNN
architectures used in this study and the configuration of hyperparameters, such as the
learning rate, the lot size by iteration, the number of epochs, and the optimizer. The third
phase describes the evaluation of the proposed models to measure the performance by
applying different metrics.

Figure 3. Diagram of proposed methodology.

3.1. Acquisition of Data

The two selected bean parcels are located in the municipality of Calera de Víctor
Rosales in the state of Zacatecas, Mexico (22◦54′14.6′′ N 102◦39′32.5′′ W). The variety of
beans used was pinto Saltillo, and the data were collected between 12 May and 15 August
of the year 2023. The camera model used was HC-801Pro, with 4G technology, a range
of optical vision of 120◦, IP65 protection, and a resolution of 30 megapixels to acquire
high-quality images.

Two cameras were installed to capture the images, as shown in Figure 4. To determine
the number of images for the training and testing data set, according to Tylor et al. [22],
the average time for bean harvest after its emergence is from 65 to 85 days approximately,
which is why an average of eight to ten images were captured per day since the emergence
of the plant.

Figure 4. Installation of the GSM camera station in the open field for the capture of images: (a) camera
station for the capture of images; (b) schematic diagram for the acquisition of images.

The shooting method used was for two samples per sequence for intervals of time
between 8:00, 10:00, 12:00, 16:00, and 18:00 h, obtaining a total of 814 images, allowing
the experimental data to include the bean growing cycle in the vegetative phase and the
reproductive phase, from the germination phase of the plant (V0) through the emergence
phase of the plant (V1), primary leaves (V2), the first trifoliate leaf (V3), the third trifoli-
ate leaf (V4), prefloration (R5), floration (R6), pod formation (R8), pod filling (R8), and
maturation (R9).

Generally, the bean’s phenology is classified into ten classes and divided into two
main categories: the vegetative and the production phases. However, for this investigation,
only four classes were selected according to the most significant number of examples per
class since they tend to be the most representative, according to Etemadi et al. [39].
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An example of each class of the obtained data set can be observed in Figure 5, labeling
the vegetative phase in the stage of primary leaves, first and third trifoliate leaves (V2–V4),
reproductive phase in the stage of prefloration and floration (R5–R6), reproductive phase
in the stage of formation and filling of pods (R7–R8), and reproductive phase in the stage
of maturation (R9).
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Figure 5. Descriptive stages of the phenology of the bean: (a) vegetative phase in primary leaves,
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The training data set and tests used per class can be observed in Figure 6. Most images
have a resolution of 5120 × 3840 pixels. However, the images were re-dimensioned to
adjust the size according to the entry specifications for each proposed model [34].
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3.2. Data Augmentation

The data augmentation contributes to avoiding overfitting the network and memoriz-
ing the exact details of the images during training. This is a common problem when the
CNN model is exposed to small data sets where the learned patterns are not generalized
into new data [40,41].
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Currently, there is a tendency in deep learning training algorithms to allow for the
increase of the initial data set through data augmentation techniques, obtaining results
that can improve the precision performance in deep learning algorithms [42]. A series of
aleatory transformations increased data to exploit the few examples of images and increase
the precision of the proposed CNN models. The strategies of data augmentation used were
rotation, translation, reflection, and scaling. Examples are shown in Figure 7.
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3.3. Training of the Models

For the training data set and tests, the images were divided randomly in a partition of
70% of the training data set and 30% for the test set. Table 2 shows the configuration of the
experimental equipment used in this investigation. The four models previously selected
were trained by the ImageNet database, which contains more than 15 million images [26].

Table 2. Configuration of experimental equipment.

Name of Configuration Parameters

Processor AMD Ryzen 7, 5700U, 8 cores at 1.8 GHz
Graphic Card Radeon Graphics up to 4.3 GHz

RAM 16 GB
Operative system Windows 11

Programing platform MATLAB (2022a)

The hyperparameters selected in this study from the revised literature and the pre-
viously mentioned hardware capacity are described in Table 3. The selection of hyper-
parameters significantly affects the performance of CNN models, which is why a good
selection is crucial. The hyperparameters were standardized for each model to compare the
performance of the proposed models [31,43,44].

Table 3. Training hyperparameters of pre-trained models.

Re-Trained CNN Model Image Size Optimizer Momentum Epochs Batch Size Learning Rate

AlexNet 227 × 227 Stochastic
Gradient

Descent with
Momentum

0.9 15 128 0.001
VGG19 224 × 224

SqueezeNet 227 × 227
GoogleNet 224 × 224

The optimizer used is the Stochastic Gradient Descent with Momentum (SGDM)
method, which combines stochastic gradient descent and momentum techniques. Each
iteration calculates the gradient using a random sample from the training set. Then, the
weight is updated considering the previous update, allowing convergence acceleration and
keeping it at a local minimum.
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Momentum is employed to improve the precision and velocity of the training by
adding a fraction from the previous step to the present step in the weight update. This
allows it to overcome the obstacle of local minimums and maintain a constant impulse in
the direction of the gradient.

The epochs refer to the number of iterations carried out regarding the correlation
of forward and reverse propagation to reduce loss. The size of the epochs describes
the number of examples used in each iteration of the training algorithm. The learning
rate is defined by the velocity size in which the optimization function performs a search
to converge [45].

3.4. Performance Evaluation

At present, an extended variety of metrics are used to evaluate the performance of
CNN models, where information is given about the aspects and characteristics that allow
the evaluation of the performance of the models. A number of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) are needed to calculate the
performance of the models. These cases represent the combinations of true and predicted
classes in classification problems. Therefore, TP + TN + FP + FN equals the total number of
samples and is described in a confusion matrix [46].

When trained by transfer learning, the biased distributions appear naturally, producing
an intrinsic unbalance. This is why it is necessary to employ metrics that evaluate the
global performance of each model. In this regard, the metrics employed [16,20,22,46,47]
were used to compare the performance of the models without setting aside the different
characteristics of the training and validation data used in this study.

TP is the true positive, which means the prediction is positive. FP is the false positive,
which means the prediction is negative. However, the prediction is positive. FN is the
false negative, which means a positive prediction, but the result is negative. TN is the true
negative, which means a negative result prediction.

The confusion matrix is a tool that allows the visualization of a model’s performance
when classifying and containing the previously defined elements. The rows in the matrix
represent the true class, and the columns, the predicted class, and the primary diagonal cells
describe the correctly classified observations. In contrast, the lateral diagonals correspond
to the incorrectly classified observations.

In this study, five metrics were used to evaluate the performance of the proposed
models: accuracy, precision, sensitivity, specificity, and F1-Score [27,48]. Accuracy is
the relation between the number of correct predictions and the total number of made
predictions, as calculated by Equation (1).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision measures the proportion of correct predictions made by the model, in other
words, the number of correctly classified elements as positives out of a total of elements
identified as positive. The mathematical representation is described in Equation (2).

Precision =
TP

TP + FP
(2)

Sensitivity is also known as recall; it calculates the proportion of correctly identified
cases as positive from a total of true positives, as described in Equation (3).

Sensitivity =
TP

TP + FN
(3)

Specificity is the opposite of sensitivity or recall and calculates the portion of cases
identified as negatives. It is calculated by Equation (4).

Specificity =
TN

TN + FP
(4)
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F1-Score allows the combination of precision and sensitivity or recall, where the value
of one indicates a good balance between precision and sensitivity in the classification model.
Its mathematical representation is described in Equation (5).

F1-score = 2× precision× recall
precision + recall

(5)

4. Results and Discussion

Table 4 provides a detailed calculation for each of the different metrics of AlexNet’s
architecture. A sensitivity of 100% was obtained for the prediction of classes R9 and V2–V4,
which correspond to the reproductive phenological phase in the stage of maturation and
the vegetative phase in the stage of primary leaves and first and third trifoliate leaves,
respectively.

Table 4. Calculation of metric for the AlexNet model.

Name Classes Averaging

True Positive 62 93 23 55 58.25
False Positive 3 2 4 1 2.5

False Negative 2 8 0 0 2.5
True Negative 176 140 216 187 179.75

Accuracy 0.958847 0.958847 0.958847 0.958847 0.958847
Precision 0.953846 0.978947 0.851851 0.982142 0.941697

Sensitivity 0.968750 0.920792 1 1 0.972385
Specificity 0.983240 0.985915 0.981818 0.994680 0.986413
F1-Score 0.961240 0.948979 0.920000 0.990990 0.955302

The averages obtained for the accuracy, precision, sensitivity, specificity, and F1-Score
were 95.8%, 94.1%, 97.2%, 98.6%, and 95.5% of the predicted classes during validation,
respectively.

Table 5 shows the different metrics in the VGG19 model. In classes R5-R6, correspond-
ing to the reproductive phenological phase in the stages of prefloration and floration, a
precision of 100% was reached.

Table 5. Calculation of metrics for VGG19 model.

Name Classes Averaging

True Positive 60 97 23 55 58.75
False Positive 0 3 4 1 2

False Negative 4 4 0 0 2
True Negative 179 139 216 187 180.25

Accuracy 0.967078 0.967078 0.967078 0.967078 0.967078
Precision 1 0.970000 0.851851 0.982142 0.950998

Sensitivity 0.937500 0.960396 1 1 0.974474
Specificity 1 0.978873 0.981818 0.994680 0.988843
F1-Score 0.967741 0.965174 0.920000 0.990990 0.960976

A 95% precision average for all classes can be observed. On the other hand, maximum
sensitivity was also obtained for classes R9 and V2–V4, corresponding to the phenological
phase of reproduction in the maturation stage and vegetative phase of primary leaves and
first and third trifoliate leaves, respectively. An average of 97.4% of sensitivity is observed
in each class. In addition, averages reached for specificity are 98.8% and 96% F1-Score in all
classes, achieving the best scores compared to the other architectures.

A detailed calculation for each metric used in the architecture SqueezeNet can be
shown in Table 6. For the classes V2–V4, which corresponds to the vegetative phenological
phase in the stage of primary leaves and first and third trifoliate leaves, a sensitivity of 100%
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was obtained. On the other hand, averages in accuracy, precision, sensitivity, and F1-Score
of 95.8%, 93.4%, 95.9%, 98.6%, and 94.4%, respectively, are observed for all predicted classes
during validation.

Table 6. Calculation of metrics for SqueezeNet model.

Name Classes Averaging

True Positive 59 97 22 55 58.25
False Positive 0 3 6 1 2.50

False Negative 5 4 1 0 2.50
True Negative 179 139 214 187 179.75

Accuracy 0.958847 0.958847 0.958847 0.958847 0.958847
Precision 1 0.970000 0.785714 0.982142 0.934464

Sensitivity 0.921875 0.960396 0.956521 1 0.959698
Specificity 1 0.978873 0.972727 0.994680 0.986570
F1-Score 0.959349 0.965174 0.862745 0.990990 0.944564

The different metrics of the GoogleNet model can be observed in Table 7, where the
average obtained for precision is 96.8% in all predicted classes, and there is a maximum
sensitivity in the prediction of classes V2–V4 that corresponds to the vegetative phenological
phase in the stage of primary leaves and first and third trifoliate leaves. The averages
observed in the metrics of accuracy, precision, sensitivity, specificity, and F1-Score are 96.7%,
96.8%, 95.7%, 98.7%, and 96.2%, respectively, for all predicted classes during validation,
which concur with the metric of precision obtained for the VGG19 model.

Table 7. Calculation of metrics for GoogleNet model.

Name Classes Averaging

True Positive 60 99 21 55 58.75
False Positive 1 5 1 1 2

False Negative 4 2 2 0 2
True Negative 178 137 219 187 180.25

Accuracy 0.967078 0.967078 0.967078 0.967078 0.967078
Precision 0.983606 0.951923 0.954545 0.982142 0.968054

Sensitivity 0.937500 0.980198 0.913043 1 0.957685
Specificity 0.994413 0.964788 0.995454 0.994680 0.987334
F1-Score 0.960000 0.965853 0.933333 0.990990 0.962544

Table 8 shows the results obtained in each metric, with the best values obtained
during the architecture’s evaluation highlighted in bold. It shows that the architecture of
VGG19 and GoogleNet obtained the best performance, and both concur in accuracy. On
the other hand, the architecture with the lowest performance observed is SqueezeNet due
to the values obtained that are generally lower than those obtained in other architectures.
However, SqueezeNet required the least training time in comparison to the others.

Table 8. Comparison of results for each of the architectures.

Metrics AlexNet VGG19 SqueezeNet GoogleNet

Accuracy 0.9588 0.9671 0.9588 0.9671
Precision 0.9417 0.9510 0.9345 0.9681

Sensitivity 0.9724 0.9745 0.9597 0.9577
Specificity 0.9864 0.9888 0.9866 0.9873
F1-Score 0.9553 0.9610 0.9446 0.9625

Time [minutes] 17.31 168.76 20.19 25.48

A comparison of the accuracy obtained in each of the models during the training
and validation stages is shown in Figure 8, where the architecture AlexNet reaches the
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highest accuracy percentage compared to the other models during the training stage.
However, in the validation stage, VGG19 reached the highest accuracy percentage. This
stage shows that the GoogleNet model obtained the lowest accuracy percentage compared
to the other models. However, it is observed that this model reached the highest accuracy
percentage during the validation stage, just like VGG19; in other words, they obtained a
greater capacity.
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Figure 8. Accuracy of models during training and validation.

The architecture performance summary with measurements obtained in each metric
calculated during the validation stage can be observed in Figure 9; the accuracy metric
obtained during the training stage is included for each model. It is observed that the
GoogleNet architecture maintained the best balance in the projection of all metrics. On
the other hand, it is observed that the architecture SqueezeNet obtained the best perfor-
mance compared to the rest of the architectures, except in precision, where the result is
the same as the AlexNet architecture, and sensitivity is less than the obtained with the
GoogleNet architecture.

Based on the obtained results, the GoogleNet architecture has a higher performance
during the validation compared to its performance during the training process; the cause
of this behavior could be due to the limited amount of training data, the adequate
selection of hyperparameters, and possibly an over-adjustment. However, the differ-
ence between the precision of training and validation is 1.4% compared to the models
AlexNet, VGG19, and SqueezeNet, which present a difference of 1.7%, 3.3%, and 1.7%,
respectively—considering that increased training data will give an outcome with a tendency
to decrease the performance during the validation of each architecture.

According to the behavior during the validation, the architectures AlexNet and
SqueezeNet presented a low-balanced tendency in the metrics, obtaining low results for
precision and F1-Score. On the other hand, the architecture VGG19 registered the same
level of performance as GoogleNet but with lower precision and F1-Score, giving a reason
to consider the architecture GoogleNet as having the best global performance.

Figure 10 shows the confusion matrix of the four proposed CNN models. It also
provides a detailed analysis of instance numbers correctly classified by each proposed
architecture. Compared to other architectures, the AlexNet architecture presented problems
in correctly classifying the class R9, which corresponds to the reproductive phenological
phase in the stage of maturation, achieving the classification of only 85.2% of instances.

The confusion matrix of the VGG19 architecture shows its high capacity to classify
instances correctly. The diagonal shows the correctly classified instances; however, class R9
presented the most difficulty. The SqueezeNet architecture, like the previous architectures,
shows more difficulties in correctly classifying the class R9; however, for the GoogleNet
architecture, the class presents minimal difficulties.
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Table 9 describes a comparison summary of the performance results obtained by
other authors concerning the techniques and metrics used for this work. It breaks down
the values obtained for accuracy, precision, sensitivity, and F1-Score for each proposed
architecture.

Table 9. Comparison of similar work recently published.

Author Phenology Technique Data
Augmentation

Accuracy
[%]

Precision
[%]

Sensitivity
[%]

F1-Score
[%]

Yalcin [16]
Wheat, barley,
lentil, cotton,
and pepper

Re-trained CNN
AlexNet model Not 87.14 88.12 87.24 87.28

Qin et al. [46] Rice Re-trained CNN
ResNet-50 model Yes 87.33 - - -

Reeb et al. [20] Alliaria petiolata Re-trained CNN
ResNet-18 model Not 86.4 - - -

Taylor et al. [22]
Corn, wheat,

barley, soybean,
and alfalfa

Re-trained CNN
VGG16 model and

temporal model
of Markov

Not - 92 90 91

Han et al. [47] Rice
CNN model with

support vector
machine (SVM)

Yes 91.3 - - 93

This study Bean Re-trained CNN
GoogleNet model Yes 96.71 95.1 97.45 96.1

5. Conclusions

The proposed methodology shows that the proposed CNN models allow the correct
classification of more than 90% of the samples, even when working with an unbalanced
and relatively minor data set. In addition, each analyzed architecture has different charac-
teristics, such as the number of layers and used filters. However, it is crucial to highlight a
suitable selection of metrics to discriminate one architecture from the other.

Evaluating different CNN topologies is significant for future work since the architec-
tures can present bias due to being trained with numerous images from which many are not
part of the final classification. In this regard, evaluating the performance by transfer with
new data lays the foundation for new work, such as identifying nutrients or plagues for this
species. The joint evaluation of the metrics accuracy, precision specificity, sensitivity, and
F1-Score allows the obtention of a multifaceted analysis, resulting in a higher performance
GoogleNet architecture. Even though the global performance of each model is acceptable,
data augmentation can modify the performance of all architectures.

One of the main limitations in the implementation of CNN models is the lack of
data for certain classes, for which the main contribution of this study is to be able to
distinguish the performance obtained through a reduced data set, where the application
of data augmentation techniques other than reducing the overfitting in training helps
improve the capacity of generalization in the network in comparison to other studies where
augmentation techniques were not applied in the same way as the performance results of
the models in Table 9.

On the other hand, through a methodological analysis, the performance was compared
and evaluated by applying five metrics to four CNN models. The GoogleNet architecture
obtained the best performance, showing the best results in most metrics, obtaining 96.71%
accuracy, 96.81% precision, 95.77% sensitivity, 98.73% specificity, and 96.25% F1-Score.

6. Future Work

This study will open other alternatives that could be applied using the same transfer-
by-learning approach for the controlled prevention of plagues and diseases in bean crops
through timely intervention and automated computerized image classification.
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Abstract: Optimizing the design and operational parameters for tillage tools is crucial for improved
performance. Recently, artificial intelligence approaches, like ANN with learning capabilities, have
gained attention for cost-effective and timely problem solving. Soil-bin experiments were conducted
and data were used to develop ANN and regression models using gang angle, velocity ratio, soil
CI, and depth as input parameters, while tractor equivalent PTO (PTOeq) power was used as an
output. Both models were trained with a randomly selected 90% of the data, reserving 10% for testing
purposes. In regression, models were iteratively fitted using nonlinear least-squares optimization.
The ANN model utilized a multilayer feed-forward network with a backpropagation algorithm. The
comparative performance of both models was evaluated in terms of R2 and mean square error (MSE).
The ANN model outperformed the regression model in the training, testing, and validation phases.
A well-trained ANN model was integrated with the particle-swarm optimization (PSO) technique for
optimization of the operational parameters. The optimized configuration featured a 36.6◦ gang angle,
0.50 MPa CI, 100 mm depth, and 3.90 velocity ratio for a predicted tractor PTOeq power of 3.36 kW
against an actual value of 3.45 kW. ANN–PSO predicted the optimal parameters with a variation
between the predicted and the actual tractor PTOeq power within ±6.85%.

Keywords: artificial neural network; particle-swarm optimization; specific draft; specific torque;
equivalent PTO power

1. Introduction

The careful selection of energy-efficient agricultural machinery plays a pivotal role
in reducing labor-intensive tasks, increasing cropping frequency, and minimizing field-
preparation time. Traditional tillage implements often necessitate multiple passes to achieve
the desired seedbed, leading to soil compaction that results from repetitive tractor passes.
Combining active and passive tools strategically allows the forward thrust produced by
the active tool to contribute to the power requirements of the passive tool. This reduces
draft and specific energy requirements for tillage tasks, increases field productivity, and
minimizes slip due to fewer passes [1–6]. Within an active–passive tillage implement, the
performance and power requirement are affected by operational parameters [7,8]. The
optimization of the design and operational parameters of agricultural machinery is a
significant approach for improving tool performance, efficiency in production, and quality
of cultivation while cutting down the energy expenditure and its harmful impact on the
environment. The field operation of tillage implements under optimal parameters can
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fulfill the task of improving tilth quality with a minimum expenditure of energy [9,10].
Numerous research studies have demonstrated that the use of tillage equipment in field
operations often demands a substantial amount of energy. Effectively managing this energy
can lead to reduced fuel consumption and cost savings.

Predictive models help researchers predict the draft and power demand of tillage
tools with the use of limited data, thereby eliminating the need to perform both costly and
time-intensive field trials every time. It also helps research workers and manufacturers
improve the design of tools through the comparison and analysis of multiple factors that
affect the draft requirement of tools. Soft computing techniques have gained significant
popularity over the past twenty years due to their better accuracy and fast process. In
recent times, artificial intelligence-based techniques like artificial neural networks (ANN)
have been used effectively for predictive modeling in various fields. One advantageous
aspect of ANN is its capability to establish correlations within extensive and intricate
datasets, devoid of any prior understanding of the interconnections. ANN models have
seen a growing application in the realm of agricultural engineering due to their aptitude
for addressing a wide range of challenging issues. This includes tasks such as pattern
classification, prediction, and their ability to maintain performance even when dealing with
noisy, incomplete, or inconsistent data [11,12]. ANNs comprise interconnected nonlinear
processing elements, each featuring numerous inputs and outputs. These networks operate
through three key phases: training, validation and testing, and application. Given the
constraints of linear regression techniques for approximating functions, artificial neural
networks (ANNs) can serve as a valuable method for predicting the necessary energy for
tillage by considering various soil parameters and speed data. The nonlinear and stochastic
characteristics of interactions between soil and tools, coupled with the constraints of linear
regression techniques for function approximation attract the application of ANNs for the
predictive modeling of soil-working machines due to their learning nature and ability to
solve complex problems by transforming them into a differentiable function [13,14].

Researchers used various tools, viz. regression model, response surface methodology,
ANN, genetic algorithm (GA), and genetic particle swarm optimization (GAPSO), for
modeling and the optimization of operational parameters of tillage and seeding machin-
ery [15–17]. The integrated approach of modeling tools and optimization techniques has
been successfully applied by researchers in various fields [18,19]. The integration of ANN
with global optimization techniques like GA and particle-swarm optimization (PSO) might
be helpful for modeling and the optimization of parameters of a tillage implement. How-
ever, the ability of the PSO technique to work in discrete as well as analog systems, along
with better computational efficiency, makes it advantageous over other techniques [20,21].

Hence, in light of these considerations, this study was undertaken to develop ANN
and regression models for predicting the power requirement of active–passive tillage
machinery. To achieve this, soil-bin experiments were conducted at various gang angles,
u/v ratio, soil cone index, and operative depth, and the equivalent PTO (PTOeq) power
was recorded. The data were used to develop ANN and regression models using gang
angle, velocity ratio, soil CI, and operating depth as input parameters, while PTOeq power
was used as an output parameter. The well-trained ANN model was also integrated with
PSO, and different combinations of optimal parameters were predicted by ANN–PSO.

2. Materials and Methods
2.1. Prototype Active–Passive Disc Harrow and Its Associated Test Rig for Soil-Bin Investigations

Experiments were conducted using a test rig of a combined active–passive disc harrow
(APDH). To aid in its development, SolidWorks 2013 software (version SP1.0) was utilized
to construct a 3D model of the APDH test rig. The isometric view of the developed
laboratory prototype APDH and its associated test rig, along with the nomenclature of
different parts, are shown in Figure 1. The developed APDH comprised 03 notched discs
(13) in the front active gang and 03 plain discs (16) in the rear passive gang. Each of these
discs featured an edge diameter of 510 mm, with a spacing of 225 mm between adjacent
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discs. These discs were mounted on two separate 25 × 25 mm square gang axles (15), and
these gangs were affixed to the primary frame constructed from MS angle iron (2) using
suitable bearings (17). In order to supply power to the front gang axle during operation, a
7.5 kW three-phase electric motor running at 1425 rpm (5) was securely positioned on top
of the primary frame, employing a chain and sprocket drive mechanism. Additionally, for
adjusting and controlling its operating depth, a double-acting hydraulic cylinder (19) was
positioned (vertically) at the central point of the primary frame.
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frame; (4) C-bar linkage having vertical slot; (5) motor; (6) torque transducer; (7) bellow coupling;
(8) universal joint; (9) sprocket 1; (10) sprocket 2; (11) sprocket 3; (12) sprocket 4; (13) notched
disc; (14) spool bearing; (15) gang axle; (16) plain disc; (17) pillow block bearing; (18) side roller;
(19) double-acting hydraulic cylinder; (20) roller on top of the side rail; (21) roller on C-section of the
side rail.

A guide frame (3) was integrated to ease the mobility of the test rig inside the soil
bin. It was accomplished by a firm and secure linkage between the primary frame of the
test rig and the bin’s side rails (1) by employing appropriate rollers. Four rollers (20) were
affixed to the guide frame and positioned atop the side rails to guide and maintain the
intended path of the test rig inside the soil bin. Additionally, six rollers (21) were mounted
on the guide frame within the C-section of the side rails (1) to counterbalance the upward
force and uphold the desired operating depth of the test rig while it moved on the carriage.
These rollers also served to prevent the guide frame from moving upward during the
hydraulic depth adjustment of the test rig at the beginning of each experiment, as they were
secured to the side rails. The primary frame was additionally outfitted with two cylindrical
side rollers (18) that were pressed against the rails. These rollers played a crucial role in
mitigating the lateral force generated while the disc was in operation. This ensured the
primary frame’s stability and prevented it from slipping out of the rail. The developed
harrow had an operating width of 630 mm, and its operating depth could be adjusted up to
200 mm. Furthermore, an arrangement existed for altering the gang angle of the front active
set (α) by manipulating the angles of the shafts responsible for transmitting motion via the
universal joints (8) and by using a set of holes in the primary frame, along with adjusting
the positions of the pillow block bearings (17). The primary frame was equipped with two
C-channels (4), which served as a means to attach the primary frame to the intermediary
carriage and allow for a free vertical movement of the test rig during the adjustment of its
operating depth. Table 1 outlines the test rig’s specifications.
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Table 1. APDH test rig’s details.

Particulars Value

Type of disc harrow Offset

Type of discs Spherical with notched concave surfaces at
the front and smooth discs at the rear

Diameter of discs, mm 510
Concavity of discs, mm 60

Spacing between discs, mm 225
Gang axle, mm ×mm 25 × 25
Working width, mm 630

Gang angle adjustment, degrees 25 to 40
Overall dimensions (l × w × h), mm × mm × mm 1965 × 1620 × 1237

During the soil-bin study, the forward speed was set at a constant 3.2 km h−1, which
was the maximum allowable speed within the soil bin. The circumferential speed of
the discs was manipulated by varying the disc’s rpm within a range of 80 to 150. This
manipulation resulted in achieving different u/v ratios, specifically 2.40, 3.00, 3.60, and
4.60, for the APDH.

2.2. Experimental Plan for Tests in the Soil Bin

The design of active tillage machinery is primarily influenced by critical factors such as
the gang angle, rotational direction of the tillage tool, operating depth, and the speed ratio
(which is the ratio of the circumferential velocity of the tool (u) to the forward velocity of
the implement (v)). These parameters collectively impact the draft and torque requirements
of powered discs [22–25]. The rotation of the discs in the same direction as the travel is
referred to as concurrent rotation while rotating in the opposite direction to travel is termed
as non-concurrent or reverse rotation. To conduct experiments in the non-concurrent mode
for the front-powered discs, the rotational direction of the discs was altered using a motor
controller switch. However, after an initial assessment of the front active set in the non-
concurrent mode, it became evident that soil accumulation in front of the discs led to a
significant and undesirable increase in the draft and torque requirements. Consequently,
experiments were not pursued in the non-concurrent mode for the front set.

The speed ratio (u/v) plays a pivotal role in determining soil tilth/pulverization at
the expense of power consumption. An increased u/v ratio leads to an unwarranted rise in
power consumption, while a lower u/v ratio leads to inadequate soil pulverization and
increased fluctuations in cutting resistance [2,24]. The performance of APDH was evaluated
by operating the discs in the concurrent mode of the front gang axle at various u/v ratios,
α, operating depth, and soil cone indices, as mentioned in Table 2. Each experiment was
conducted three times.

Given the numerous possible combinations of α for both the front and rear gangs, it
is impractical to test every conceivable combination. Consequently, a strategic approach
was adopted, focusing on the key parameters that exert a significant influence on the
outcomes to streamline the process. Specifically, the rear gang angle (β) was kept constant
(30 degrees) throughout each test. In contrast, α was systematically adjusted, ranging from
25 to 40 degrees. This variation in α was implemented due to the front gang’s operation in
virgin soil, where it played a predominant role in contributing to the overall draft.
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Table 2. Research plan for the soil-bin study of APDH.

Variables Levels Values

General factors
Soil texture 1 Sandy clay loam

Soil moisture content (MC), % (db) 1 10 ± 1
Working width, mm 1 630

Forward speed, km h−1 1 3.2
Rear gang angle (β), degrees 1 30

Independent factors
Front gang angle (α), degrees 4 25, 30, 35, and 40

Operating depth, mm 3 100, 120, and 140
u/v ratio 4 2.40, 3.00, 3.60, and 4.60

Soil CI, MPa (bulk density, g cm−3) 3 0.50 ± 0.03 (1.43), 0.08 ± 0.03
(1.58), and 1.10 ± 0.03 (1.73)

Dependent factors
Draft, kN

Torque, kN-m

2.3. Instrumentation and Measurements for Tests in the Soil Bin

The effects of α, forward speed, operating depth, and u/v ratio on the performance
of APDH were studied under uniform soil conditions. The experiments were conducted
in the soil bin of the AgFE Department, IIT Kharagpur, India, during the months of June
to October. In order to assess the consistency of the test bed, measurements of soil CI,
bulk density, and moisture content (m.c.) were taken before commencing each experiment.
The MC content of the soil was determined using a rapid infrared moisture meter, and
this measurement process was repeated three times for each set of experiments to ensure
accuracy and reliability. For the assessment of soil CI, a hydraulically operated soil cone
penetrometer was employed. The procedures followed for these measurements adhered
to the guidelines specified in the ASABE Standards S313.3 [26], ensuring consistency and
standardization in the data-collection process. Prior to commencing each experiment, CI
readings were systematically recorded at six specific locations spaced approximately 1 m
apart along the prepared test bed. This vigilant monitoring process allowed us to assess
the uniformity of the soil conditions. In instances where CI readings deviated substantially
from the intended values, indicating non-uniformity, corrective action was taken. The
test bed was intentionally disturbed and reprepared to ensure that the soil conditions
met the required standards before proceeding with the experiments. A core sampler
(150 mm length × 50 mm dia.) was inserted vertically into the soil to extract soil samples
for the purpose of determining the soil’s bulk density. This sampling process was repeated
three times for each set of experiments, ensuring the collection of representative soil
samples [27].

The test rig’s vertical positioning was facilitated by a hydraulic system, and the
operating depth was precisely measured using a combination of a potentiometer (rotary
type) and a rack-and-pinion mechanism. To determine the forward speed accurately, a
magnetic proximity sensor was affixed to the soil-processing carriage, allowing for precise
measurement of the carriage’s movement speed. For assessing the draft requirement, a
calibrated S-type load cell with a 2000 kg capacity was horizontally mounted between the
soil-processing carriage and the intermediary carriage, as depicted in Figure 2. This load
cell provided accurate measurements of the force or draft exerted during the experiments.
The load cell was equipped with a nominal sensitivity of 2.0 millivolts per volt, exhibiting
a composition error within the range of ±0.03%. It functions within an excitation voltage
range of 9 to 12 volts (DC). For measuring the torque requirement of the front gang axle
of the APDH, a high-precision HBM torque transducer with a capacity of 1000 N-m was
employed. This torque transducer was coupled to the output shaft of a 7.5 kW three-phase
induction motor, which was connected to the test rig using a bellow coupling. The outputs
from all the sensors utilized in the experiment were directed to the Spider-8 data-acquisition
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system (HBM), which was configured to sample data at a frequency of 50 Hz. Furthermore,
these data were saved to a PC for subsequent analysis and processing.
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2.4. Experimental Procedure for Tests in the Soil Bin

The scope of this research was confined to a single soil texture, specifically sandy clay
loam, maintaining an MC within a range of 10 ± 1% (dry basis). This deliberate limitation
was imposed to ensure that the experiments remained manageable and focused. Prior to
each test, soil preparation was carried out using the soil-processing carriage. This process
involved the utilization of a rotary tiller to alleviate stresses within the soil. Subsequently,
water was applied to bring the MC within the desired range. The soil within the soil bin
was leveled using a leveling blade and compacted through a hydraulic roller operation to
achieve the targeted CI. Experiments were conducted only after confirming the uniformity
of the test bed, which was assessed by measuring the MC, CI, and bulk density of the
soil. If a substantial difference (p ≤ 0.01) was detected in the recorded CI and bulk density
compared to the targeted values, the test bed was intentionally disturbed and reprepared.
This rigorous procedure was consistently followed to attain the desired soil conditions
before each experiment.

Before conducting each test, the data on soil condition were collected using a core
sampler and the hydraulically operated cone penetrometer. Experiments were conducted
over a test span of seven meters within the central section of the established test bed with
each test replicated thrice. The test apparatus was moved through the soil after configuring
the α to the desired settings, choosing an appropriate gear to set the forward speed at
different levels, utilizing a suitable chain and sprocket drive system to attain the desired
front gang axle rotation speed, and adjusting the operating depth as needed. A calibrated
S-type load cell, positioned between the soil-processing carriage and the intermediary
carriage, along with a torque transducer and proximity switch, continuously collected
data on draft, torque, and operating speed. These data were consistently gathered and
monitored by the data-acquisition (DAQ) system. Upon completing each test, the soil bed
was intentionally disturbed and subsequently prepared again, ensuring consistency and
uniformity in the soil conditions for conducting subsequent tests.
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2.5. Estimation of Equivalent PTO (PTOeq) Power of the Tractor

The tractor’s necessary equivalent PTO (PTOeq) power for performing harrowing in
real field conditions was calculated using the collected draft and torque data obtained from
the soil-bin testing following Equation (1), as given below:

PTOeq power =
Df × va

3.6 × ηPTO to DB
+

2 × π × NFGA × TFGA

60 × ηPTO to FGA
(1)

Equation (1) for PTOeq power could be rewritten in terms of specific values as follows
(Equation (2)):

PTOeq power =
(

SD × va

3.6 × ηPTO to DB
+

2 × π × NFGA × ST
60 × ηPTO to FGA

)
×Asd (2)

where PTOeq power is the equivalent PTO power of the tractor in kW; Df is the draft in kN;
SD is the specific draft in kN m−2; va is the forward speed in km h−1; TFGA is the torque
required at front gang axle in kN-m; ST is the specific torque requirement in kN-m m−2;
Asd is the area of soil disturbance in m2; NFGA is the rpm of front gang axle; ηPTO to DB is the
transmission efficiency from PTO to drawbar, and ηPTO to FGA is the transmission efficiency
from PTO to the front gang axle = 0.98 × 0.98, taking into account dual speed reduction.

In accordance with ASABE standards D497.5 [28], the transmission efficiency from PTO
to drawbar (ηPTO to DB) was taken into account for agricultural 2WD tractors. Specifically,
it was set at 0.55 for soft soil conditions (0.50 ± 0.03 kPa), 0.67 for tilled soil conditions
(0.80 ± 0.03 kPa), and 0.72 for firm soil conditions (1.10 ± 0.03 kPa) for calculating the
PTOeq power of the tractor.

2.6. Development of ANN and Regression Models
2.6.1. ANN Model

In the present study, a multilayer feedforward network utilizing the backpropagation
algorithm was considered due to its learning capability for any complex problem [18].
The independent parameters, viz. α, cone index (MPa), depth (mm), and u/v ratio, were
used as the input while the dependent parameter, namely PTOeq power, was used as the
output in the ANN model, as presented in Figure 3. The model underwent training using a
randomly chosen 90% of the complete dataset obtained from the soil-bin experiments. The
trained model was then tested with the remaining 10% of the data. The model was trained
using two hidden layers with the ‘tansig’ transfer activation function and the ‘purelin’
transfer function in the output layer. The ANN coding was run multiple times using the
trial-and-error method in MATLAB to reach the convergence criteria of the minimum mean
square error (MSE). A good-performing ANN model with low MSE and high R2 was then
combined with particle-swarm optimization (PSO) to optimize different parameters.

2.6.2. Regression Model

In this study, multiple regression analyses were conducted, employing curve-fitting
techniques, to investigate the relationships between individual independent factors (namely,
CI, u/v ratio, depth, and α) and the dependent factor (PTOeq power). The analyses were
carried out using SPSS Statistics 22.0 from IBM Corporation in New York, NY, USA. These
individual relationships were subsequently integrated into the final regression model
for estimating the PTOeq power requirement of APDH. The regression model was fitted
iteratively to the test data utilizing nonlinear least-square optimization employing the
Levenberg–Marquardt algorithm proposed by [29]. Interactions between independent
parameters were omitted during model development to prevent unnecessary complexity,
as they did not significantly enhance model accuracy.
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The effectiveness of both the ANN and regression models was evaluated using a
range of statistical criteria, including performance indices such as RMSE, R2, and MAPE, as
detailed below:

RMSE = 2

√√√√
{

∑n
i=1(Ei −Mi)

2

n

}
(3)

R2 = 1− ∑n
i=1(Mi − Ei)

2

∑n
i=1(Mi −Ai)

2 (4)

MAPE =
∑n

i=1|(Mi − Ei) / Mi|
n

× 100 (5)

where, Ei, Mi, and A are the values of predicted, actual, and average PTOeq power, and n
is the sample size. RMSE represents the standard deviation of the residuals and serves as
an indicator of the predictive capability of the model. An RMSE of 0 would indicate an
outstanding model. R2 is another statistical criterion commonly utilized in soft comput-
ing models. Mean absolute percentage error (MAPE), which is typically expressed as a
percentage, was also employed in the evaluation as a performance measure of the model.

2.7. Optimization Using Particle Swarm Optimization (PSO)

The particle-swarm optimization (PSO) technique is inspired by the social behavior of
fish and birds. It is a powerful meta-heuristic optimization algorithm with faster conver-
gence and the ability to search the wide space for the global minimization or maximization
of parameters of both a discrete and a continuous nature, which makes it advantageous
over other techniques like genetic algorithm [20,21,30]. The working strategy of the PSO
algorithm is given in Figure 4. The algorithm starts with a random solution, i.e., the
unplanned allocation of position and velocity to each particle. The particles are speedily
moved towards their personal best locations. After attaining the personal best locations, all
particles are converged to a global best location. During the entire procedure, the algorithm
keeps track of the positions and velocities of all particles. The information of existing posi-
tion, existing velocity, distance between existing position and pbest, and distance between
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existing position and gbest is used for changing the position and velocity of particles, as
given in Equations (6) and (7).

vn+1
m = wvn

m + c1r1(pbm − xn
m) + c2r2 (gbm − xn

m) (6)

xn+1
m = xn

m + vn+1
m (7)

where vn
m denotes the velocity of the mth particle at iteration n, w denotes the inertia weight

factor, c1 and c2 are individual and social learning parameters, respectively, pbm represents
the position of the mth particle at its personal best value, gbm denotes the position of the
mth group at its global best value, xn

m indicates the position of the mth particle at iteration
n, and r1 and r2 are uniformly distributed random numbers.
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In the present study, the design problem was of a minimization nature, involving
α, cone index, depth, and u/v ratio, as represented by X1, X2, X3, and X4, respectively.
Therefore, this problem can be represented mathematically in the following form:

min
X∈XT

f (X)

25 ≤ X1 ≤ 40

0.5 ≤ X2 ≤ 1.1

100 ≤ X3 ≤ 140

188



AgriEngineering 2024, 6

2.40 ≤ X4 ≤ 4.60

where X = [X1, X2, X3, X4]
T indicates the decision solution vector.

3. Results and Discussion

As per the experimental plan outlined in Table 2, the test rig for the APDH underwent
testing within the soil bin under varying conditions. These conditions included different
values for α at 25◦, 30◦, 35◦, and 40◦, various u/v ratios at 2.40, 3.00, 3.60, and 4.60, cone
index (CI) values within the ranges of 0.50 ± 0.03, 0.80 ± 0.03, and 1.10 ± 0.03 kPa, and
different working depths set at 100, 120, and 140 mm. It is noteworthy that the rear gang
angle (β) remained fixed at 30◦ throughout the experiments. The research design adopted
a fully randomized approach, and 03 replications were conducted for each soil condition
and operational factor. To assess the significance of the various independent factors and
their interactions, an ANOVA was performed. Furthermore, to examine the presence of
significant differences between treatment means, multiple comparison procedures were
carried out using Duncan’s multiple range (DMR) tests. The detailed findings of the
experiments are presented in Table 3.

Table 3. Performance results of the soil-bin tests.

Variable Levels Specific Draft,
kN m−2

Specific Torque,
kN m m−2

Equivalent PTO
Power Pe, kW

Front gang angle
(α), degrees

25 13.23 a 5.15 a 5.73 a

30 14.71 b 4.50 b 5.50 b

35 17.04 c 3.69 c 5.19 c

40 23.12 d 3.34 d 5.63 a

u/v ratio

2.40 20.57 a 5.38 a 5.67 a

3.00 18.32 b 4.19 b 5.34 b

3.60 14.99 c 3.57 c 5.08 c

4.60 14.22 d 3.54 c 5.95 d

CI, MPa
0.50 13.47 a 3.06 a 4.40 a

0.80 17.08 b 4.29 b 5.58 b

1.10 20.52 c 5.16 c 6.55 c

Operating depth,
mm

100 18.00 a 4.48 a 4.90 a

120 16.85 b 4.14 b 5.50 b

140 16.23 c 3.89 c 6.13 c

According to DMR tests, average values that are denoted by distinct lowercase letters within the same column for
a particular variable are considered to be significantly different at a confidence level of 95%.

3.1. Effect of Operational Parameters on Specific Draft of APDH

Table 3 illustrates a noteworthy trend in the specific draft of the APDH. It consistently
decreased as the u/v ratio increased across all settings of α and various operating condi-
tions. What is particularly interesting is that this reduction in specific drafts became more
noticeable up to a u/v ratio of 3.60. Beyond this point, any further increase in the u/v
ratio resulted in a negligible reduction in the specific draft. This observation suggests that
there is a point of diminishing returns when it comes to increasing the rpm of the discs.
Beyond a certain threshold (a u/v ratio of 3.60 in this instance), the soil’s shear strength
appears to have reached a minimum, indicating thorough soil pulverization. Consequently,
further intensifying the no. of bites per unit time by increasing the disc’s rpm seems to
have no significant effect on reducing specific draft. This reduction in the draft, leading to
a decrease in the specific draft with an increase in the u/v ratio, is consistent with findings
from previous experiments conducted with powered discs [22,24,25].

When examining the impact of α on the draft, two critical factors come into play. The
first factor is the area of contact between the convex surface of the disc and the furrow wall,
which we refer to as the rear-side bearing area. The second factor involves the amount of
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soil that the discs interact with during their forward movement. When the α increases,
it leads to a larger area of contact between the convex surface of the disc and the furrow
wall. This increased contact area results in greater scrubbing of the discs, which, in turn,
demands higher energy to surmount the friction forces when the discs are in free-rolling
mode. However, this extended rear-side bearing area also contributes to generating forward
thrust or reducing the draft requirement when the discs are actively rotating. This reduction
in draft occurs because the furrow wall provides bearing support to the discs. Therefore,
the intrinsic result of the increase in α is to lower the draft when the discs are in free rolling
mode, and increase it when they are in powered mode. This change in the draft is primarily
due to the alteration in the rear-side bearing area. However, as α increases further, it also
results in the discs handling a larger quantity of soil. This increase in the quantity of soil
being processed leads to an elevated draft requirement for both the active and free-rolling
modes of the discs. Consequently, the overall variation in draft force with changes in α is
determined by the cumulative impact of these parameters. Additionally, it is important
to note that, as α continues to increase, the rear-side bearing area of the discs eventually
reduces to zero at a specific gang angle. This point is known as the critical gang angle.
Beyond this critical angle, any further increase in α only serves to increase the amount of
soil manipulated by the discs as also documented by [31].

From the data presented in Table 3, it is evident that the specific draft of the APDH
exhibited a moderate increase, with an increase in α up to 35◦, regardless of the u/v ratio
and soil condition. However, beyond this point, there was a sharp and notable increase
in the specific draft. This increase in specific draft with a higher α can be attributed to
two primary factors. (1) As α increases, there is a reduction in the rear bearing area. This
decrease in bearing area results in less support for the discs from the furrow wall, leading
to an increase in the specific draft. (2) Additionally, an increase in α corresponds to a larger
volume of soil manipulated by the discs. The greater quantity of soil being processed
contributes to an elevated draft requirement. At higher α values, especially beyond 35◦, the
rear bearing area becomes nearly insignificant, and the substantial increase in the amount
of soil being manipulated intensifies the specific draft. The rise in draft associated with an
augmentation in disc angle plays a substantial role in driving up the specific draft of the
APDH. Similar observations regarding draft have been reported in experiments conducted
with powered discs in Bangkok clay and sandy loam soils by researchers such as [23–25,32].
These findings collectively support the observed trend of increased specific draft with
higher α in the APDH.

The specific draft of APDH was augmented with an increase in soil CI and operating
depth at all tested conditions (Table 3) which is a direct consequence of the heightened soil
resistance associated with these conditions.

3.2. Effect of Operational Parameters on Specific Torque of APDH

The data presented in Table 3 reveals a consistent pattern: The specific torque require-
ment of the APDH decreased as the u/v ratio (rpm of the front gang axle) increased across
all tested conditions. This reduction in specific torque requirement was particularly notable
up to a u/v ratio of 3.60, beyond which any further elevation in the u/v ratio resulted in
only a negligible reduction. This is because, at higher rotational speeds of the discs (higher
u/v ratios), there is a decrease in the force necessary for cutting. Essentially, the resistance
to cutting is reduced at these higher speeds. Furthermore, at elevated u/v ratio settings, the
powered discs operated in the same area of tilled soil for an extended period of time and
repeatedly interacted with the soil that had already been tilled. This repeated interaction
contributed to a decrease in the average torque required. The minimal decrease in specific
torque beyond the u/v ratio of 3.60 may be due to a balance between factors. While there
may be an increased torque requirement to overcome air resistance and the increased soil
displacement at a higher rpm of the discs, this increase is counteracted by the reduced
torque required for cutting the pulverized soil. This equilibrium results in no significant
change in the total torque requirement when the u/v ratio is increased from 3.60 to 4.60.
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Similar observations regarding the decrease in torque demand with an increase in
the u/v ratio have been reported in tests carried out utilizing powered discs in Bangkok
clay and sandy loam soils by researchers such as [23–25]. These findings corroborate the
observed trend of reduced torque demand with higher u/v ratios in the APDH.

Furthermore, Table 3 reveals a noticeable trend. The specific torque requirement of the
APDH decreased as α increased under all tested conditions. This reduction was particularly
pronounced from 25◦ to 35◦. However, when α increased further from 35◦ to 40◦, this
reduction became almost negligible. The potential explanation for this decrease in specific
torque requirement lies in the lower friction force generated because of the diminished
contact area between the rear side of the disc and the furrow wall as α increases. Essentially,
the greater α leads to less contact between the discs and the furrow wall, resulting in
reduced friction and, consequently, a decreased torque requirement. The substantial
decrease in the specific torque requirement observed from 25◦ to 35◦ is a direct consequence
of the increased volume of soil being handled. However, as α continues to increase from
35◦ to 40◦, the effect of this reduced rear-side bearing area on the torque requirement is
partially offset by the substantial increase in the amount of soil being processed. This
balancing act leads to a lesser reduction in the torque demand of the APDH within this
range of α.

It is worth noting that this phenomenon of reduced torque, responsible for the decline
in specific torque requirement with an increase in disc angle, has also been reported in tests
conducted with powered discs in Bangkok clay and sandy loam soils by researchers such
as [23–25]. These research findings align with the observed trend of the decreased specific
torque requirement with an increased α in the APDH.

The specific torque demand of the APDH increased as both the soil CI and operating
depth increased across all tested conditions (Table 3). This increase in specific torque is
because of the increased soil resistance linked with greater CI values and operating at
greater depths.

3.3. Effect of Operational Parameters on PTOeq Power of APDH

The results of the ANOVA for the PTOeq power for APDH are given in Table 4. From
this table, it is evident that the effects of all considered factors were significant for the
PTOeq power for APDH at a 99% confidence interval. No significant effect was found for
their interactions except the interactions of depth with α and soil CI. The F values given in
Table 4 demonstrate that the soil CI had the utmost influence on the PTOeq power followed
by the depth, u/v ratio, and α in that order. The individual effects of these parameters on
the PTOeq power for APDH are discussed separately in the following sections.
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Table 4. Results of ANOVA for the estimated PTOeq for APDH.

Dependent Variable: PTOeq Power, kW

Source df Mean Square Computed F Value

Model 144 94.75 751.95 **
α 3 5.99 47.56 **
CI 2 167.44 1328.83 **

depth 2 54.89 435.61 **
u/v ratio 3 15.55 123.40 **
α × CI 6 0.10 0.82

α × depth 6 0.29 2.33 **
α × u/v ratio 9 0.21 1.68

CI × depth 4 1.44 11.47 **
CI × u/v ratio 6 0.33 2.65

depth × u/v ratio 6 0.04 0.35
α × CI × depth 12 0.04 0.33

α × CI × u/v ratio 18 0.04 0.29
α × depth × u/v ratio 18 0.01 0.09
CI × depth × u/v ratio 12 0.02 0.13

α × CI × depth × u/v ratio 36 0.01 0.08
Error 288 0.13

** significant at 1% probability level, R2 = 0.99, adjusted R2 = 0.99, df = degrees of freedom.

Table 3 highlights an interesting trend; PTOeq power for the APDH decreased as the
u/v ratio increased from 2.40 to 3.60. However, beyond this point, there was a sharp in-
crease in PTOeq power when the u/v ratio reached 4.6 across all investigated combinations
of soil and working parameters. This pattern clearly indicates the presence of an optimal
u/v ratio for actively rotating discs in terms of energy consumption. The initial decline in
PTOeq power from a u/v ratio of 2.40 to 3.60 can be explained by the significant reduction
in the draft and torque requirements of the APDH as the u/v ratio increased. This reduction
effectively counteracted the higher power requirement resulting from an increase in the
rpm of the front gang. Notably, there was only a marginal reduction in the draft and torque
demand of the APDH when the u/v ratio was increased from 3.60 to 4.60. However, as
the u/v ratio exceeded 3.60, the disc rpm continued to increase, leading to a sharp rise
in PTOeq power (according to Equation (2)). In essence, beyond a u/v ratio of 3.60, the
increase in disc rpm surpassed the decrease in the draft and torque requirements of the
APDH. Consequently, increasing the u/v ratio beyond 3.60 provided no advantage in terms
of draft and torque reduction; instead, it resulted in unnecessary power consumption to
overcome air resistance due to higher disc rotation, greater soil-slice displacement, and the
additional task of further soil pulverization.

The mean PTOeq powers for APDH for the u/v ratios of 2.40, 3.00, 3.60, and 4.60 was
found to be 5.67, 5.34, 5.08, and 5.95 kW, respectively, for the entire test range of α, depth,
and soil CI. Significant differences existed between the average values of PTOeq power for
APDH recorded at various levels of u/v ratio at a 95% confidence interval.

As shown in Table 3, the PTOeq power for the APDH displayed a particular pattern
in response to changes in α (gang angle) across all tested soil and working parameter
combinations. Initially, PTOeq power decreased as α increased from 25◦ to 35◦. However,
beyond 35◦, there was a sharp increase in PTOeq power when α reached 40◦, indicating
the presence of an optimal gang angle setting for the APDH near 35◦. The initial decline in
PTOeq power with the increase in α from 25◦ to 35◦ was primarily attributed to a significant
reduction in torque requirements. However, as α continued to increase beyond 35◦, PTOeq
power increased due to a sharp rise in the draft, while the torque requirement exhibited
almost negligible reduction.

The mean PTOeq powers for α of 25◦, 30◦, 35◦, and 40◦ were found to be 5.73, 5.50, 5.19,
and 5.63 kW, respectively, for the test range of u/v ratio, depth, and soil CI. No substantial
difference was found to exist among the mean PTOeq power at α of 25◦ and 40◦, whereas
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PTOeq power at α of 30◦ and 35◦ was found to be significantly different from each other as
well as from PTOeq power at α of 25◦ and 40◦.

In general, the PTOeq power for APDH was found to increase with an increase in
operating depth at all tested levels of α, u/v ratio, and soil CI. The obvious explanation
for the increase in PTOeq power for APDH with an increase in depth was the higher draft
and torque requirement of APDH at higher depths of operation. Furthermore, the PTOeq
power for APDH enhanced with an increase in soil CI at all tested conditions because of
the higher penetration resistance linked with more CI values.

3.4. Multiple Regression Model

To develop the regression model, the Levenberg–Marquardt estimation technique [29]
was followed with the negligence of interactions between parameters. This was because
it added complexity to the model without yielding substantial improvement in accuracy.
Multicollinearity was checked by taking into account the tolerance and variance inflation
factor (IFvar) as measures of any possible correlations between the factors. The results
indicated no evidence of multicollinearity, as the IFvar value was one.

The average draft and torque data obtained from the soil-bin tests were at three levels
each of operating depth and soil CI; four levels each of u/v ratio and α were analyzed using
SPSS 22.0 software and were used to develop the PTOeq power model for APDH using a
multiple regression technique. Soil CI and operating depth were found to have a linear
relationship with PTOeq power requirement. However, α and u/v ratio had a quadratic
relationship with PTOeq power requirement. The formulated model for estimating the
PTOeq power requirement of APDH is as follows (Equation (8)):

PTOeq power = C0 + C1 × α + C2 × α2 + C3 ×
(u

v

)
+ C4 ×

(u
v

)2
+ C5 × CI + C6 ×d (8)

where, PTOeq power is in kW; α is the gang angle of the front set in degrees; CI is the cone
index of the soil before tillage in MPa; d is the operating depth in mm; u/v is the speed
ratio; and Ci = regression coefficients, the values of which are provided in Table 5 along
with the standard error values, i = 0, 1, 2, 3, 4, 5.

Table 5. Regression coefficients and their respective standard errors for the PTOeq power prediction
model.

Regression Coefficients
PTOeq Power Model

Estimate Standard Error

C0 12.30 0.903
C1 −0.452 0.049
C2 0.007 0.001
C3 −3.76 0.247
C4 0.55 0.035
C5 3.59 0.077
C6 0.03 0.001

The results of regression analysis for the PTOeq power prediction model of APDH
are given in Table 6. The high R2 affirmed the precision of the formulated model and
suggested that the variables under consideration could account for a significant portion of
the variance observed in the experimental data.
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Table 6. Results of regression analysis for the formulated regression model.

Source

PTOeq Power Model
(R2 = 0.95)

SS df MS

Regression 4541.18 7 648.74
Residual 7.10 137 0.05

UT 4548.28 144 -
CT 174.44 143 -

SS = sum of squares (Type III); df = degrees of freedom; MS = mean square; UT = uncorrected total; CT = corrected
total.

3.5. Performance of ANN and Regression Models during the Training and Testing Phases

It is evident from the regression plot presented in Figure 5 that the formulated ANN
model predicted PTOeq power reasonably well, with values close to the actual one during
the training phase. In the training process of the model, mean square error (MSE) reached
a minimum value within 10 epochs for validation, relating it to a faster convergence of
the model. The comparative performances of the ANN and regression model during the
training and testing phases are exhibited in Figure 6 and Table 7. Both models predicted the
PTOeq power data close to the actual one; however, the performance of ANN was superior
to the regression model in terms of the R2 value and MSE during the training as well as the
testing phase.
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Table 7. Performance indices of ANN and regression models.

Model
RMSE MAPE R2

Training Testing Training Testing Training Testing

ANN 0.093 0.176 1.214 2.871 0.99 0.98
Regression 0.271 0.229 4.001 3.644 0.95 0.96
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(b) testing phases.

3.6. Validation of Formulated Models with Independent Data

The formulated models were also validated by keeping the levels of front gang angles,
cone index, and depth as used in the experiment but varying the u/v ratio now by changing
the forward speed (2.5–3.2 km h−1) while keeping the disc speed fixed as 100 rpm (Figure 7).
During the validation of models with independent data also, ANN outperformed the
regression model with a high R2 value and low MSE. From the presented results, it is
evident that, overall, the ANN model showed superior performance and precisely predicted
PTOeq power close to the measured values.
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3.7. Prediction of Optimal Parameters Using ANN–PSO

The well-trained ANN model was coupled with PSO to predict the optimal operational
settings. The program was run repeatedly to estimate different combinations of optimal
parameters, as given in Table 8. The predicted PTOeq power was compared with the actual
PTOeq power available either in the standard run or alternatively, through experimentation
with the new sets of conditions. It is interesting to see that the PSO-trained ANN model
indicated better performance than the regression model in terms of RMSE, MAPE, and R2

value during the training phase of the model. However, in some instances, the performance
of the regression model was better during the testing phase compared to the ANN–PSO
technique (for instance, combinations given at serial numbers 1 and 2).

Table 8. Various sets of optimal parameters forecasted through the use of ANN–PSO.

S. No.
RMSE MAPE R2

α, ◦ CI,
MPa

Depth,
mm

u/v
Ratio

PTOeq Power Variation,
%Training Testing Training Testing Training Testing Predicted Actual

1 0.154 0.302 1.509 4.018 0.98 0.95 35.0 0.5 100 3.60 3.36 3.59 −6.85
2 0.165 0.266 2.058 4.903 0.98 0.90 35.5 0.5 120 3.40 4.00 3.89 2.75
3 0.093 0.176 1.214 2.871 0.99 0.98 36.6 0.5 100 3.90 3.36 3.45 −2.67
4 0.125 0.111 1.521 1.773 0.99 0.99 35.7 0.5 140 3.90 4.20 4.02 4.29

One interesting thing to be observed in Table 8 is that all combinations exhibited an
optimal front gang angle of 35 ± 2◦ and a cone index of 0.5 MPa to achieve the minimum
PTOeq power. Among various combinations, optimal parameters having a 36.6◦ front gang
angle, 0.5 MPa cone index, 100 mm depth, and 3.90 u/v ratio were considered according
to the performance indices of the model, i.e., low RMSE and high R2 value along with
lesser variability in the predicted and actual PTOeq power. The results given in Table 8
indicate that the ANN–PSO model predicted the optimal parameters with reasonably good
accuracy and low variation (±6.85%) between the predicted and actual PTOeq power. The
learning ability of ANN and the optimization of network parameters by the PSO technique
makes ANN–PSO a faster and more accurate technique for handling complex and nonlinear
problems. The convergence plot of the fitness function of PSO is presented in Figure 8. It is
evident from Figure 8 that all particles converged rapidly towards the global minimum
within 20 iterations, which makes it faster and advantageous over other techniques [30].
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4. Conclusions

Predicting the power requirements of agricultural machinery is crucial for optimizing
performance, reducing energy consumption, and improving overall efficiency. In this study,
predictive models for the power requirement of tillage machinery, particularly an active–
passive tillage machinery, were formulated by means of artificial neural networks (ANNs)
and regression techniques using data from soil-bin experiments conducted at various gang
angles, u/v ratios, soil cone indexes, and operative depths. The following conclusions were
drawn from the study:

1. Both the ANN and regression models performed well in predicting the power re-
quirement; however, the ANN model had superior performance over the regression
model, as evidenced by high R2 values and low MSE during the training, testing, and
validation phases.

2. The well-trained ANN model was then integrated with PSO and different combina-
tions of optimal parameters were predicted by ANN–PSO with good accuracy and
lesser variation (±6.85%) between the predicted and actual PTOeq power.

3. The combination of a 36.6◦ front gang angle, 0.50 MPa cone index, 100 mm depth, and
3.90 u/v ratio was found to be an optimal setting for the predicted PTOeq power of
3.36 kW against 3.45 kW (actual).

4. It was observed that all combinations of soil and working parameters (i.e., CI and
depth) exhibited an optimal front gang angle in the range of 35 ± 2◦ and a u/v ratio
of 3.65 ± 0.25 to achieve the minimum PTOeq power.

These findings can have practical implications in agriculture by aiding in the selection
of optimal equipment settings to reduce energy consumption, minimize operational costs,
and improve fieldwork efficiency. In conclusion, this study underscores the significant role
of techniques like ANN and PSO in the precise prediction of performance characteristics
and the optimization of operational parameters of tillage tools for improved efficiency and
quality of work with minimal expenditure of energy.
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Abstract: This research presents the prediction of temperatures in the chamber of a solar dryer using
artificial neural networks (ANN). The dryer is a forced-flow type and indirect. Climatic conditions,
temperatures, airflow, and geometric parameters were considered to build the ANN model. The
model was a feed-forward network trained using a backpropagation algorithm and Levenberg–
Marquardt optimization. The configuration of the optimal neural network to carry out the verification
and validation processes was nine neurons in the input layer, one in the output layer, and two hidden
layers of thirteen and twelve neurons each (9-13-12-1). The percentage error of the predictive model
was below 1%. The predictive model has been successfully tested, achieving a predictor with good
capabilities. This consistency is reflected in the relative error between the predicted and experimental
temperatures. The error is below 0.25% for the model’s verification and validation. Moreover, this
model could be the basis for developing a powerful real-time operation optimization tool and the
optimal design for indirect solar dryers to reduce cost and time in food-drying processes.

Keywords: solar dryer; thermal analysis; electronic instrumentation; artificial neural networks;
feedforward propagation algorithm

1. Introduction

Developing dehydrated vegetable and meat products has gained economic importance
worldwide to preserve food and increase its shelf life. Drying is one of the oldest and
most used techniques for food preservation [1]. Its function is to eliminate the water
that contains the food, which inhibits the proliferation of microorganisms and hinders
putrefaction. However, many processes are based on artisan techniques, which provide
poor quality and repeatability in the resulting products. Nevertheless, the globalization
trend has aroused interest in increasing its production, controlling the quality of its products,
and expanding its offerings by accelerating the drying processes, seeking to add value to
“artisanal” products [2].

Furthermore, there is a vision of sustainable development for food preservation, which
is sought to be supported by using renewable energies, such as solar energy, both for
artisanal and industrial processes [3,4].

Based on this perspective, solar drying through solar dryers is an attractive process
for food dehydration applications [5]. Some solar dryers are considered direct because
the foods are exposed to radiation [1], and they use a black surface to increase the air
temperature to dry the product. Indirect solar dryers, on the other hand, comprise the
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solar collector and the drying chamber, and the solar radiation does not affect the products’
surface; this equipment’s performance can be by natural or forced convection. For this
configuration, the collector receives solar radiation to increase the airflow temperature
supplied through it, and the chamber is where the air circulates to remove moisture from the
product. This system is desirable as it does not require high temperatures, exhibits greater
drying efficiency, and does not require energy storage because the temperature required
for drying fruits and vegetables is between 30 and 70 ◦C [1] and because it manages to
reach these temperatures. However, these devices operate in areas with abundant solar
radiation and climatic conditions, such as those in tropical regions, under semi-cloudy and
clear-sky conditions.

In this study, an experimental forced-flow indirect solar dryer is used for research
purposes. This system is considered complex for its geometry and operating principle since
its performance depends on weather conditions. It requires a system to supply airflow that
guarantees adequate air circulation.

The design, development, and analysis of the thermal behavior of solar dryers have
been widely studied theoretically with numerical analysis and experimental studies. For
numerical analysis, computational fluid dynamics (CFD) was used to analyze heat and
mass transfer to determine the behavior of temperatures, flows, and moisture loss in the
dryers [6–8]. In experimental studies, dryers were instrumented to monitor the behavior of
temperatures, airflows, and moisture and the data compared with computational numerical
simulations to validate their models [3,9–11]. On the other hand, different methodologies
have been applied to obtain mathematical models and numerically simulate dryers to
describe their performance [12,13]. For these study cases, it has been found that moisture
tends to decrease when the temperature increases inside the drying chamber. This improves
the equipment’s performance in drying food. However, each of these papers aims to
determine a design that allows the ideal temperature inside the drying chamber to be
obtained by evaluating thermal performance by applying mathematical models, numerical
computational simulations, and experimental studies.

The ideal conditions in a solar dryer allow for calculating the drying kinetics of
products such as vegetables, meats, and other materials [4,12–16]. Due to the system’s
complexity, it is difficult to determine the performance of the solar dryer. Moreover, the
techniques used become tedious and computationally expensive. Looking for new practical
alternatives to predict the air temperature inside the chamber of a solar dryer to improve
the designs and optimize the operation is a challenge. One of the computational models
that impact a predictive analysis tool in thermal systems is the artificial neural networks
(ANN) technique.

This technique consists of models inspired by the biology of the human brain [17]. It
offers an alternative to solving complex problems in real situations. Otherwise, it would be
tough to characterize using analytical techniques and numerical simulation since they do not
require detailed knowledge of the physical phenomena of thermal systems [18]. Recently,
ANNs have been used in different engineering fields in pattern recognition, adaptive control
systems, and complex thermal systems [19–21]. They have been applied to modeling
and predicting thermal performance in heat pumps for cooling and heating [18,22,23] and
performing modeling in reactors for storing sorption energy to predict the dynamics of
charge and temperature state [24]. Likewise, neural networks have been applied to simulate
solar collectors’ thermal performance and calculate solar radiation [25–28].

Similarly, studies have been carried out in heat exchangers for the predictive analysis
of heat transfer, pressure drop, and control [20,29–33]. Also, this technique has been used
to predict temperatures and mass flow and calculate thermal behavior in heat exchang-
ers [34–36]. It has been applied to describe fluidized bed dryers, predicting the drying
characteristics of potatoes, garlic, and melon [37] and microwave-assisted green pea-drying
time prediction [38]. Likewise, predictions have been made to calculate the moisture con-
tent in wheat [39]. Also, ANNs have worked on modeling the performance of a parabolic
greenhouse dryer for drying lychee pulp [40].
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This research presents the prediction of temperatures in the chamber of a solar dryer
using artificial neural networks (ANN). The dryer under study is indirect and forced flow.
It comprises a solar collector and a drying chamber with trays for food. The objective is
to build a predictive model of the temperature of the drying chamber. For this purpose,
solar radiation and ambient temperature are considered, as well as the temperatures of
the pipes and the speed of the airflow inside the drying chamber. A model dryer was
instrumented with temperature sensors, an airflow meter, and a meteorological station for
climate conditions for experimental purposes. The latter were recorded with an Arduino-
type microcontroller and LabVIEW Student Software Suite 2020, respectively. Also, the
number and spacing of trays were considered. The proposed artificial neural network
model was applied to model the system and validated with experimental data. This
network model could be a powerful tool to assist in the design of solar dryers as well as the
optimization of their operation.

2. Materials and Methods

The study of solar dryers remains a complex problem. Different innovative proposals
in the literature combine theoretical, numerical, and experimental procedures for thermal
analysis. However, only some of them are suitable for online applications. In some cases,
the analysis is limited to the effect of the internal geometry of the dryer on its dynamic
behavior. For this reason, this research paper proposes using artificial neural networks to
predict the air temperature inside the drying chamber for different numbers and positions
of trays inside the dryer chamber.

This section describes the experimental solar dryer in detail, then the electronic com-
munication between a microcontroller and the LabVIEW Student Software Suite 2020 for
applied electronic instrumentation and practical data acquisition. Finally, artificial neural
networks are presented to predict the state of the solar dryer.

2.1. Experimental Setup of the Solar Dryer

This experimental work was developed in Yecapixtla, Morelos, Mexico, at 18◦51′09.6′′

north latitude and 98◦52′11.0′′ west longitude. The solar dryer is outdoors and faces south
for maximum use of solar energy. The collector has a tilt angle of 24◦ and the following
dimensions: length (L1) 2.145 m, width (W1) 0.95 m, and height (D1) 0.13 m, and for the
chamber, the following: height (L2) 1.27 m, width (W2) 1.0 m, and depth (D2) 0.455 m
(Figure 1a). The solar collector comprises three parts: a 20-gauge stainless steel casing;
an arrangement of sixteen copper ducts with dimensions of 1.5 m in length, an external
diameter of 0.0266 m, and a 0.001 cell for airflow passage; and lastly, a clear acrylic cover.
The main component of the collector is the energy-absorbing pipes. These are painted
matte black to absorb and take advantage of the most remarkable solar radiation available
during the day.

The underside and the sides are insulated to minimize heat loss. The thermal insulation
is a 3 cm thick polyurethane foam between the housing and a reflective aluminum sheet.
The clear acrylic cover reduces convection heat loss from the absorber pipes. The air inlet
to the collector is in the lower part (Color blue arrows), and the air outlet in the upper
(Color yellow arrows) part connects to the drying chamber (Figure 1b). The airflow that
enters the collector passes into the ducts, raises the temperature, and is transported to the
drying chamber. The drying chamber is constructed of stainless steel and painted matte
black to absorb radiant energy and increase indoor air temperature. The airflow that enters
the chamber is in the lower part (Color yellow arrows), and the outlet (Color green arrows)
is in the upper part (Figure 1c). The drying chamber contains spaces for a maximum of
fifteen mobile trays. The trays are used to dehydrate or dry a product. For this study, the
chamber was arranged for fifteen, twelve, ten, eight, and five trays equally spaced from
each other. The trays were constructed with an anodized aluminum frame and nylon mesh.
These are arranged horizontally, with a dimension length (L) of 0.88 m and a width (W) of
0.41 m (Figure 1d).
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Figure 1. Experimental solar dryer facing south. (a) Exterior view. (b) Airflow ducts of the solar
collector. (c) Drying chamber. (d) Trays for drying.

2.2. Data Acquisition

The solar dryer has sensors for the measurement of temperature and airflow velocity.
Four of the solar collector’s sixteen pipes were designed to contain type K thermocouples
with their Max 6675 modules. The sensors are located and represented with S1, S2, S3, and
S4 (Figure 2a). It has a measurement range between −100 ◦C to 1250 ◦C. The sensitivity
of the sensor is approximately between 41 to 42 µV/◦C with an accuracy of ±0.7 ◦C.
Likewise, two fans of type NMB with 12 volts and 1.3 ampere operating characteristics
were installed at the input of the solar collector (Figure 2a). These were used to supply
the airflow to the solar collector and transport the air into the drying chamber. The flow
rate was controlled with voltage modules FZ0430 and current modules ACS712. The flow
velocity was measured at the input of the drying chamber (see Figure 1c) with a type
UT363 anemometer. The measurement range is 0 to 30 m

s with a precision of ±5% rdg + 0.5
(Figure 2a). Also, the drying chamber was fitted with a DHT22 (S5) temperature sensor
with a precision of ±0.1 ◦C (Figure 2b).
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Figure 2. Arrangement of the solar dryer. (a) Location of fans, K-type thermocouples, and anemome-
ters in the solar collector. (b) The DHT22 temperature sensors are inside the drying chamber.

On the other hand, a microcontroller (Arduino, Monza, Italy) was used to interconnect
the temperature and humidity sensors and for data acquisition. The microcontroller is
connected to a personal computer through a USB port to acquire data. LabVIEW software
allows communication between the Arduino microcontrollers for data recording. LabVIEW
was used to manage the intensity of the electrical current and, in turn, control the speed of
the airflow supplied by the fans.

2.3. Weather Station

A weather station (Ambient Weather, Chandler, AZ, USA; model WS-2902A) was used
to measure weather conditions (Figure 3a). Solar radiation and ambient temperature are
taken into consideration for the construction of the predictive model. Temperature sensor
specifications correspond to a range between −4.4 and 60 ◦C and solar radiation between 0
and 120 k Lux ( W

mm2 , lux, fc). The station was installed at a height of 3.5 m and was located
near the solar dryer to provide more accurate data (Figure 3b). The data were acquired and
recorded remotely into a personal computer then monitored using a display console.
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Figure 3. Weather station. (a) Meteorological station for measuring solar radiation and ambient
temperature. (b) A 3.5 m high weather station located next to the solar dryer (Red-lined square).

2.4. Artificial Neural Network Model

The method applied is backpropagation, which is used in the training process of
forwarding connection networks. Backpropagation is a supervised learning method with a
descending gradient: an input pattern propagates through different network layers until it
produces an output target. The target is compared to the desired output, and the output
neurons calculate the error. The estimated error is transmitted backward from the output
layer to the other neurons in the hidden layers. It is proportional to its contribution to the
total error of the artificial neural network. With this, the mistakes of the synaptic weights
of each neuron used are adjusted.

The input neurons correspond to the first layer, while the intermediate layer is the
hidden layer. However, multilayer networks can use the tan-sigmoid (tansig) transfer
function. For the last layer, output neurons with linear transfer functions (purelin) are used.
Thus, these network outputs can take any value without being limited.

The input vectors normalize between 0.1 and 0.9 due to the tan-sigmoid and purelin
transfer function constraints for the hidden and output layers. The transfer function [41]
and the normalization equation [42] are given by Equations (1) and (2), respectively.

g(x) =
[1 + tanh(x)]

2
(1)

Xi = 0.8
(

Xi − Xmin
Xmax − Xmin

)
+ 0.1 (2)

Xi is the value to be normalized; Xmax is the maximum value; Xmin the minimum value
of the data set.

In this work, the Levenberg–Marquardt (trainlm) algorithm of multilayer backprop-
agation was used to evaluate the performance of different configurations of the neural
network architecture to determine the ideal. Once the backpropagation training algorithm
of the multilayer network is known, the architecture is arranged for four layers. The
first layer corresponds to the input neurons and a neuron in the output layer. However,
due to the complexity and non-linearity of the system on its own, two hidden layers are
considered. As there is no rigorous way to determine an optimal number of neurons in the
hidden layer, the selection results from a compromise between the computational effort
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required for ANN training and an estimate of the minimum number of neurons necessary
for capturing dynamic behavior. Therefore, the mean square error (MSE) is applied as an
indicator of the performance of the training process, Equation (3) [42]. In this way, it is
possible to obtain the ideal architecture for the verification and validation process of the
predictive model.

SE =
∑i=N

i=1

(
yi,pred − yi,exp

)2

N
(3)

where N is the total number of data points; yi,pred is the network prediction; yi,exp is the
experimental response; and i is an index of data.

The predictive model is built considering nine input parameters and one output
parameter defining the system. The neural network’s inputs are the following parameters:

• Solar radiation (Ra)
• Airflow velocity (Va)
• Ambient temperature (Ta)
• Solar collector pipe temperatures (Tt1, Tt2, Tt3, Tt4)
• Number of trays (Ntray)
• Separation between each of the trays (Dt)
• Drying chamber temperature (Tc).

The data set available (188), 75%, is used for the training process. At the same time,
23% is separated to validate the training.

3. Results
3.1. Climatic Data and Parameters of the Solar Dryer

This section presents the temperature variables, air velocity, and climatological data
described in Section 2. The weather data recording was completed every 10 min, corre-
sponding to a cloudy day on 7 August and a clear and non-cloudy day on 18 August
2020. The recording time on 7 August corresponds to approximately between the 12:10 and
2:00 pm hours of the day (central Mexico time). Meanwhile, for the 18th, it fits a schedule
approximately between 11:30 am and 2:30 pm. These established schedules have been
considered to capture solar radiation as much as possible with the solar dryer.

The following figures present the experimental time series. Figure 4 shows the time
series of solar radiation (SR1 and SR2) and air temperature (Ta1 and Ta2). Meanwhile,
Figure 5 shows the airflow velocity (Va1 and Va2). However, the pipe and air temperatures
inside the drying chamber are recorded each 1 min over the specified time. Figure 6 shows
the temperatures of the pipes, Tt1, Tt2, Tt1v, and Tt2v, and the drying chamber, Tc and Tcv.
Also, Figure 7 presents the temperatures of the pipes: Tt3, Tt4, Tt3v, and Tt4v. SR1, Ta1, Va1,
Tt1, Tt2, Tt3, Tt4, and Tc correspond to the data recorded on 18 August. SR2, Ta2, Va2, Tt1v,
Tt2v, Tt3v, Tt4v, and Tcv correspond to the data of 7 August. Each of the variables shows
disturbances throughout the trajectory. These disturbances are associated with the presence
of experimental noise. Figures 6 and 7 also offer the smooth course of each time series.
Smoothing makes it possible to reveal meaningful patterns in our data while omitting the
contribution of noise. Here, a moving average filter has been applied. Figure 6 shows pipe
temperatures: Tt1s, Tt2s, Tt1vs, and Tt2vs, and the drying chamber: Tcs and Tcvs. Figure 7
presents pipe temperatures: Tt3s, Tt4s, Tt3vs, and Tt4vs.

Table 1 shows the essential parameters of the solar dryer geometry to construct the
neural network model to predict the temperature inside the drying chamber. The predic-
tive model can provide the chamber temperature for different numbers of symmetrically
separated trays. For this, three arrays of the number of trays (Ntray) with their respective
separation distances (Dt) are used in training and verifying the model. For the validation,
five tray arrangements are considered; see Table 1.
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Table 1. Drying chamber configuration.

Training–Verification Validation
(Ntray) Dt (m) (Ntray) Dt (m)

15 0.07 15 0.07
10 0.105 12 0.087
5 0.21 10 0.105

8 0.131
5 0.21

3.2. Results of the Artificial Neural Network

According to the linear regression statistical modeling technique, the backpropagation
algorithms were evaluated using the multiple determination coefficients (R2) and the mean
square error (MSE) criteria. The equation obtained with the linear regression minimized
the distance between a fit line for experimental and predicted data points in the training
process. This technique describes a continuous response variable as a function of one or
more predictor variables [43–45]. The algorithm with the best performance was Levenberg–
Marquardt (trainlm), with an R2 of 0.94162 and an MSE of 0.9725. This last algorithm is
used to conduct the training and prediction process and select the number of neurons
within each hidden layer.

No technique or methodology exists to determine the optimal number of neurons
within the hidden layers, as mentioned in Section 2.4. However, some authors recommend
conducting a study for the calculation [46–48]. Therefore, the maximum number of neurons
obtained is based on the trade-off between the computational effort required during the
training process of the ANN and the estimate of the minimum number of neurons needed.
On the other hand, an approximation is made through the geometric pyramid rule to start
from an initial number of neurons in the hidden layers until the ideal is obtained. The
trial-and-error phase is carried out from this process to find the best performance for the
prediction process. In this training process, 75% of the data set (188) was used, while the rest
was used for model verification. The criterion for obtaining the number of neurons in the
hidden layers was based on the deviations used to obtain the architecture’s configuration
(MSE). According to performance analysis and the MSE estimation during the training
process of the ANN, the best network configuration was 9-13-12-1, with an MSE below 1%.
Therefore, the ANN configuration verifies and validates the model (see Figure 8).

3.3. Verification and Validation of Results

The verification and validation of the artificial neural network model for predicting
the temperature in the drying chamber are shown in this section. Likewise, the relative
error between the experimental and predicted data is also shown.

Forty-seven data points, from one hundred eighty-eight of 18 August 2020, were con-
sidered for verifying the predictive model. Figure 9 presents the results of the temperature
prediction between the predicted (TANN) and experimental (Texp) data from the drying
chamber. Here, neural network results follow the trajectory throughout the trend, trying to
resemble the experimental data. The relative error between the predicted and observed
data is below 0.25% (see Figure 10). The error calculated makes the model reliable for
making predictions with similar conditions to those proposed. For this, the neural network
model is validated with a set of 24 data points.

However, for the validation process of the same model, 24 data points from 7 August
2020, of that same year, are considered. Figure 11 shows the validation results of the ANN
model. Again, the neural network predicts data very close to the experimental values. The
estimated relative error is below 0.25% (Figure 10).
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4. Discussion

The temperature inside the chamber plays a vital role in the drying process. The
importance lies in the determining factor of temperature prediction, which correlates with
how much heat the solar dryer can provide for drying. However, time is an important
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parameter that needs to be known; a future study should consider the type and quantity
of products. Therefore, in this work, the drying chamber temperatures are predicted to
help investigate a future model that involves the type and amount of product to be dried
based on its moisture content. Likewise, raising the chamber’s temperature allows the
humidity of the air to be reduced through the ducts of the solar collector to be transported
into the chamber. The ideal temperature for drying vegetables, fruits, and meats, among
others, is between 30 and 70 ◦C [10,11,15,16,38,49]. Obtaining lower temperatures would
cause the decomposition of the product subjected to drying due to the proliferation of
microorganisms. When the temperature exceeds 70 ◦C, the product subjected to drying
may exhibit degradation of its functional compounds [11,50]. Maintaining the temperature
in solar dryers is a complex problem due to the variable weather conditions.

For our study, weather conditions, pipe temperatures, the air temperature in the
drying chamber, and the speed of the airflow supplied to the solar collector were correctly
recorded. Due to the noise present in each variable, these were smoothed through the
moving average filter technique to create the neural network model. The smoothing
of the data allowed the development of the predictive model of the network. Different
neural network configurations were proposed, and the best structure determined was
9-13-12-1. The neural network model’s capabilities were tested, and the verification was
performed for an experimental data set. The model presented good predictive capabilities,
obtaining relative errors below 0.25%. This type of error makes the model reliable with
other weather conditions if they are within the range of conditions established in model
training. The model was validated with experimental data for the same variables and input
parameters for another specific day from 12:10 to 14:00. Again, the response was favorable
as the prediction results closely followed the experimental trajectory, with an error like
the verification.

The predictive model of the neural network has once again demonstrated its viability
with similar conditions that have been applied for another time of year. It should be noted
that this model can replace traditional models that use computational and experimental
numerical models [6–13] to analyze thermal behavior in solar dryers, which become tedious
due to the number of variables involved and the geometric shapes for their study. However,
one of the essential advantages of this model is that it provides better predictive capabilities
without considering the complexity of the system but considering the variables of interest
that allow us to know its behavior. This model could be a basis for developing a real-time
optimization tool for the operation and optimal design of indirect solar dryers involving
the type, quantity, and moisture content of the product to be dried.

The solar dryer design for this case study uses radiant energy to raise the airflow
temperature through the collector and transport it by a forced medium toward the chamber,
reaching a temperature between 40 to 50 ◦C for different quantities of trays inside the
drying chamber.

5. Conclusions

An indirect solar dryer has been presented to know the system’s dynamics. Weather
conditions, airflow velocities, ambient temperature, and solar collector piping have been
successfully recorded. A configuration of five trays in the drying chamber was proposed to
determine the temperature behavior.

A feed-forward neural network trained with the Levenberg–Marquardt (trainlm)
algorithm showed good predictive capabilities. This algorithm was used to determine the
ideal configuration of the network architecture. The network configuration was obtained for
nine neurons in the input layer, one in the output layer, and two hidden layers of thirteen
and twelve neurons each (9-13-12-1), with an MSE error of 0.9725. This configuration
reduced the cost and time of the network learning process.

The predictive model was successfully tested, achieving a good predictor for fore-
casting the air temperature inside the drying chamber. It is reflected when the relative
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error between predicted and experimental temperatures is obtained. The relative error was
below 0.25% for the model’s verification and validation.

In addition, this model could serve as a basis for developing a real-time optimization
tool for the operation and optimal design of indirect solar dryers. However, other factors
must be considered, such as extreme weather conditions, low or high temperatures, and
the type, quantity, and moisture content of the product to be dried.
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Abstract: Egg production is a significant source of animal protein for human consumption. Feed
costs significantly impact the profitability of egg production, representing more than 70% of the
variable costs. This study evaluated the effect of dietary intakes of three essential amino acids (EAAs)
on the egg cost for H&N Brown second-cycle laying hens. The hens were fed for 20 weeks with
23 diets that varied in their lysine, methionine + cystine, and threonine contents. These amino acids
were derived from both dietary and synthetic sources. Zootechnical results were used to calculate the
feed cost per kilogram of egg (FCK), considering the cost of raw materials and the diet composition.
Multivariate polynomial models and artificial neural networks (ANNs) were validated to predict FCK
as a function of the EAAs and time. The EAA intakes that minimize FCK over time were optimized
using the best model, a cascade-forward ANN with a softmax transfer function. The optimal
scenario for FCK (0.873 USD/kg egg) at 20 weeks was achieved at 943.7 mg lysine/hen-day, 858.3 mg
methionine + cystine/hen-day, and 876.8 mg threonine/hen-day. ANNs could be a valuable tool for
predicting the egg cost of laying hens based on the nutritional requirements. This could help improve
economic efficiency and reduce the feed costs in poultry companies.

Keywords: animal nutrition; egg laying; feed costs; mathematical model; multivariate analysis; poultry

1. Introduction

According to FAO estimations, the world population may increase to 9.8 billion
by 2050 [1]. This accelerated growth has aroused worldwide concern, mainly due to
the difficulty of producing more food without affecting food security and of making it
accessible to the entire population. Among the possible strategies that can be implemented
to increase food production worldwide, egg production is emerging as a viable alternative
to advance progress toward the second Sustainable Development Goal (end hunger, achieve
food security and improved nutrition, and promote sustainable agriculture) [2].

From a nutritional point of view, eggs are an essential source of proteins, phospho-
lipids, vitamins (e.g., thiamin, riboflavin, niacin, vitamin B12, vitamin A, vitamin E, vitamin
D, and vitamin K), minerals (e.g., iron, selenium, calcium, magnesium, phosphorus, potas-
sium, sodium, and zinc) and antioxidants, and their consumption could cover part of the
daily needs of these types of nutrients [3,4]. Furthermore, this product presents advantages
over other protein sources, primarily stemming from its low commercial cost, which has
increased its consumption and production worldwide. It is estimated that between 2018
and 2020, egg production increased by more than 8% worldwide [5]. Despite the growth
of this industry and the egg’s nutritional value, some factors limit its production, such as
costs associated with animal feed, which can exceed 70% of variable costs [6]. An effective
strategy to reduce egg production costs is the implementation of second production cycles
in birds. By adopting this method, different benefits are obtained, such as increased lay-
ing cycles and egg size, which provide responsiveness to fluctuations in costs associated
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with production supplies [7]. For second-cycle production to be efficient, the nutritional
requirements of laying birds must be defined. However, these requirements vary according
to genetic lines, production volume, environmental conditions, and the age of the birds [8].

Amino acids are critical components in the nutrition and productivity of laying hens.
Therefore, a deficit or excess of these compounds can be configured as a disadvantage
from an economic point of view [9]. Among the amino acids that are part of the diet
of laying hens, lysine (Lys), sulfur amino acids (methionine and cysteine; Met + Cys),
and threonine (Thr) are the most relevant. Lys is an essential amino acid (EAA) for the
maintenance, growth, and production of birds, with the primary function of participat-
ing in body protein synthesis [9,10]. As plant-based protein sources have low levels of
Met + Cys, these are the first limiting amino acids for poultry diets [9]. The third limiting
amino acid in poultry diets is Thr [11], which is related to maintaining the integrity of
the intestinal barrier and the production of antibodies that play an essential role in bird
immunity [9]. Several studies have evaluated the optimal ratio of amino acids in the diet
of laying hens to improve productivity or egg size [12,13]. However, only some studies
have focused on minimizing the feed cost per kilogram of egg (FCK) by evaluating the
nutritional requirements associated with amino acids in the diet.

The challenges and trends in poultry require investment in technology and innovation,
especially in data analysis, to improve the industry’s efficiency, profitability, sustainability,
and competitiveness [14]. Data analysis can support planning and cost reduction in egg
production by estimating the productive behavior of laying hens under various nutritional,
sanitary, environmental, and economic conditions [10,12,15,16].

Predictive models are valuable tools to address the challenges of poultry production
in terms of business management and cost reduction [17–19]. They can provide benefits
such as enhancing the control and monitoring of farm indicators to identify health or
nutrition issues; conducting comparative analysis between different production conditions
to assess the performance and profitability of companies and identify areas for improvement
or correction; and supporting companies to adapt to market or environmental changes,
estimate scenarios, and plan actions aligned with their objectives.

In this study, two models based on ANNs were applied to assess the dependence of
the feed cost per kilogram of egg (FCK) on the dietary intakes of the three main EAAs for
laying hens. The model with the best fit was used to minimize FCK and to determine the
relative importance of Lys, Met + Cys, and Thr in H&N Brown second-cycle laying hens
(SCLHs) under field conditions.

2. Materials and Methods
2.1. Fieldwork, Experimental Design, and Diet Formulation

This study was conducted on a commercial farm in San Pedro, Antioquia (Colombia).
The university bioethics committee approved the protocols and experimental procedures on
the laying hens (Act 03/2017). For the fieldwork, H&N Brown SCLHs aged 91 weeks were
used (1380 hens). The animals were housed in California-type cages under environmental
conditions and distributed in a layer shed after being subjected to proper molting and
resting protocols [12]. In each cage, 12 hens were placed (576 cm2/bird), and each cage was
fitted with a PVC side feeder and two nipple drinkers. Five cages were used as replicates
for each treatment (60 birds per treatment).

The diet formulation per treatment and the feed consumption were used to express the
design matrix as dietary intakes of Lys (iLys), Met + Cys (iMetCys), and Thr (iThr) (Table 1)
according to the methodology and results of Morales-Suárez et al. [12]. This methodology
combined levels of the three EAAs from a comprehensive literature review using a central
composite design. The resulting 23 diets (treatments) were prepared weekly by adding
L-lysine (98.5% feed grade), DL-methionine (99% feed grade), and L-threonine (98.5% feed
grade) to a diet based on corn and soybean meal (Supplementary Table S1). Thus, the
Lys, Met + Cys, and Thr levels in the experimental diets were adjusted by considering the
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contributions of the synthetic amino acids and food ingredients. The layers were fed at
115 g/hen-day for 20 weeks.

Table 1. Essential amino acid intakes of H&N Brown SCLHs over 20 weeks and diet cost.

Diet iLys *
(mg/hen-day)

iMetCys *
(mg/hen-day)

iThr *
(mg/hen-day)

Diet Cost
(USD/kg)

1 727.0 ± 10.0 661.9 ± 9.1 552.1 ± 7.6 0.3974
2 732.4 ± 9.6 666.8 ± 8.8 875.2 ± 11.5 0.4015
3 728.4 ± 18.0 852.1 ± 21.0 712.4 ± 17.6 0.4036
4 728.5 ± 17.2 1042.3 ± 24.6 553.2 ± 13.0 0.4058
5 736.3 ± 18.6 1053.5 ± 26.7 879.8 ± 22.3 0.4099
6 809.6 ± 11.3 736.6 ± 10.3 614.6 ± 8.6 0.4015
7 812.7 ± 18.0 739.5 ± 16.4 805.8 ± 17.9 0.4040
8 828.4 ± 22.7 982.6 ± 26.9 628.9 ± 17.2 0.4065
9 810.2 ± 11.3 961.9 ± 13.4 803.3 ± 11.2 0.4089

10 951.7 ± 17.8 673.7 ± 12.6 723.7 ± 13.6 0.4033
11 947.4 ± 19.0 861.7 ± 17.3 559.4 ± 11.2 0.4055
12 938.4 ± 13.6 853.6 ± 12.4 713.6 ± 10.3 0.4075
13 943.7 ± 12.2 858.3 ± 11.1 876.8 ± 11.3 0.4095
14 935.1 ± 12.9 1040.2 ± 14.3 711.0 ± 9.8 0.4117
15 1076.9 ± 23.4 751.2 ± 16.3 626.8 ± 13.6 0.4061
16 1066.3 ± 15.7 743.9 ± 10.9 810.7 ± 11.9 0.4085
17 1058.8 ± 14.6 963.9 ± 19.5 616.3 ± 12.5 0.4111
18 1058.5 ± 14.6 963.6 ± 13.3 804.7 ± 11.1 0.4135
19 1164.7 ± 30.3 674.3 ± 17.7 562.5 ± 14.7 0.4052
20 1143.1 ± 15.8 661.9 ± 9.1 868.8 ± 12.0 0.4092
21 1154.2 ± 18.4 858.7 ± 13.7 771.9 ± 11.4 0.4114
22 1153.3 ± 20.7 1049.5 ± 18.8 557.0 ± 10.0 0.4135
23 1159.5 ± 16.9 1055.1 ± 15.4 881.2 ± 12.3 0.4176

* Values expressed as means ± standard deviations (n = 100). Source: Morales-Suárez et al. [12].

In this way, the experiment considered the dependence of FCK on four factors: iLys,
iMetCys, iThr, and time.

2.2. Zootechnical and Economic Results

The feed conversion ratio (CR) was computed weekly as the ratio between kilograms
of feed intake and kilograms of eggs.

The feed cost per kilogram of egg (FCK) was calculated considering the cost of the
diets (Table 1) calculated from the local cost of the raw materials in USD in March 2021
(Table 2). For each treatment, the FCK in USD/kg egg was estimated weekly by multiplying
the cost per kilogram of feed and CR.

2.3. Mathematical Modeling

The FCK was modeled as a function of dietary intake of EEAs (iLys, iMetCys, iThr)
and time (t) using multivariable polynomial models and ANNs.

The second- (Equation (1)) and third-order (Equation (2)) polynomial models were
evaluated by means of stepwise regression to include only statistically significant terms at
a 95% confidence level [20].

FCK = β0 +
4

∑
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βjxj +

3

∑
j=1

4

∑
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βjkxjxk +

4

∑
j=1
βjjx

2
j (1)

FCK = β0 +
4

∑
j=1
βjxj +

3

∑
j=1

4

∑
k>j
βjkxjxk +

4

∑
j=1
βjjx

2
j +

2

∑
j=1

3

∑
k>j

4

∑
l>k
βjklxjxkxl

4

∑
j=1

4

∑
k 6=j
βjkkxjx2

k +
4

∑
j=1
βjjjx

3
j (2)

219



AgriEngineering 2023, 5

Table 2. Cost of diet ingredients.

Ingredient Cost (USD/kg)

Corn 0.29
Soybean meal 0.53

Palm oil 0.93
Corn gluten 0.92

Calcium carbonate 0.05
Monocalcium phosphate 0.62

Bentonite 0.06
Choline chloride 1.15

Salt 0.08
Vitamin premix 11.78
Mineral premix 6.42

L-lysine * 1.73
DL-Methionine * 2.56

L-threonine * 1.50
Tryptophan 9.96

Arginine 15.37
Sodium bicarbonate 0.44

Valine 4.20
* Synthetic amino acids used as dietary supplements.

Here, FCK is the feed cost per kilogram of egg (USD/kg egg); x terms represent the
EEA dietary intakes (iLys, iMetCys, iThr) and the time; and β terms are the parameters
associated with linear, quadratic, cubic, and cross-product terms.

Additionally, feed-forward (Equation (3)) (Figure 1a) and cascade-forward (Equation (4))
(Figure 1b) ANN architectures with one hidden layer were used to evaluate the dependence
of the FCK on the independent factors. These network architectures have been used due to
their prediction capability for complex multivariate nonlinear problems and their modeling
capability for diverse natural phenomena that are very difficult to handle via classical
techniques [21]. Five to eleven neurons and four transfer functions (hyperbolic tangent, log
sigmoid, radial basis, and softmax) (Equations (5)–(8), respectively) were assessed for each
ANN architecture [22].

FCK = who × f + bo (3)

FCK = who × f + wio × x + bo (4)

f =
2

1 + e[−2(wih × x + bh)]
− 1 (5)

f =
1

1 + e[−(wih × x + bh)]
(6)

f = e[−(wih × x + bh)
2] (7)

f =
e(wih × x + bh)

∑ e(wih × x + bh)
(8)

Here, FCK is the output estimation, who is the weights between the hidden and the
output layers, f is the transfer function, wio is the weights between the input and the output
layers in the cascade-forward architecture, x is the input predictor (iLys, iMetCys, iThr,
t), bo is the bias of the output layer, wih is the weights between the input and the hidden
layers, and bh is the biases of the hidden layer.
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Figure 1. Feed-forward (a) and cascade-forward (b) architectures used in the artificial neural network
modeling. The examples illustrate four-input, one-output neural networks with six neurons in a
hidden layer.

2.4. Training, Validation, and Statistical Analysis

MATLAB® R2019a (The MathWorks Inc., Natick, MA, USA) was used for the analysis
of two sets of data: the training group with 1380 data records (three treatment replicates)
and the validation group with 920 data records (two treatment replicates).

The statistically significant parameters of the multivariate polynomial models
(Equations (1) and (2)) were obtained through the MATLAB® function “stepwisefit”. The
parameters of the ANN models (biases and weights) were identified using the “trainbr”
function of MATLAB®, which avoids overfitting in the training process through a Bayesian
regularization algorithm [23].

The accuracy, goodness of fit, and deviation of the models were evaluated by ex-
amining the root-mean-square error (RMSE) (Equation (9)), the adjusted coefficient of
determination (R2

adj) (Equation (10)), and the bias (Equation (11)), respectively. Meanwhile,
the quality of the models was determined by employing the Akaike Information Criterion
(AIC) (Equation (12)) [24]. The models with the best fit were evaluated for the adequacy of
the estimates using a residual analysis.

RMSE =

√√√√∑n
i=1

(
FCK*

i − FCKi

)2

n
(9)

R2
adj = 1− S2

yx/S2
y (10)

bias =
1
n∑n

i=1

(
FCK*

i − FCKi

)
(11)

AIC = nlog
[

det
(

1
n∑n

i=1 εε
T
)]

+ 2np + n[log (2π) + 1] (12)

Here, FCK*
i and FCKi represent the observed and predicted values, respectively; Sy

and Syx are the standard deviations of the sample and model estimations, respectively; ε is
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the prediction error; and n and np are the numbers of data points and estimated parameters,
respectively. A high value of R2

adj and low values of RMSE and AIC were used to select
the best model.

2.5. Optimization

An optimization problem was formulated to find the iLys, iMetCys, and iThr values
that minimize FCK (Equation (13)) at 4, 8, 12, 16, and 20 weeks. The optimization was
solved for each of the weeks mentioned above using the MATLAB® function “fmincon”
and constraining the limits to the maximum and minimum values of iLys, iMetCys, and
iThr used in the experiment (Table 1).

minimize FCK(iLys, iMetCys, iThr)such that





iLysmin ≤ iLys ≤ iLysmax
iMetCysmin ≤ iMetCys ≤ iMetCysmax

iThrmin ≤ Thr ≤ iThrmax

(13)

3. Result
3.1. Egg Cost and Zootechnical Results

The observed FCK values were between 0.998 and 1.559 USD/kg egg in week 8,
between 0.949 and 1.214 USD/kg egg in week 12, between 0.928 and 1.090 USD/kg egg in
week 16, and between 0.919 and 1.041 USD/kg egg in week 20 (Table 3). FCK generally
decreases over time since feed costs are amortized as the hens’ egg production increases
over the production cycle.

The lowest FCK corresponds to diet 13 at weeks 8, 12, 16, and 20, followed by diet 12
at weeks 12, 16, and 20 and diet 3 at week 20 (Table 3). In these diets, the iLys values ranged
from 728.4 mg/hen-day (diet 3) to 943.7 mg/hen-day (diet 13); the iMetCys values ranged
between 852.1 mg/hen-day (diet 3) and 858.3 mg/hen-day (diet 13); and the iThr values
ranged between 712.4 mg/hen-day (diet 3) and 876.8 mg/hen-day (diet 13) (Table 1).

The observed CR was between 2.02 and 2.36 kg feed/kg egg, comparable to the values
for commercial hens at 20 weeks of production [25]. Diet 13 presented CR values between
3.40 ± 0.19 kg feed/kg egg (week 4) and 2.18 ± 0.16 kg feed/kg egg (week 20) (Table 4).

Egg production ranged from 83.1% to 85.3%, which agrees with the values reported for
commercial hens at 20 weeks of production in the Hy-Line Brown management guide [25].
Diet 13, the treatment with the lowest FCK, presented the following egg production rates:
72.1 ± 4.7% (week 4); 80.9 ± 5.1% (week 8); 81.2 ± 9.1% (week 12); 77.1 ± 6.5% (week 16);
and 80 ± 4.9% (week 20) [12]. At week 20, diet 13 showed 105.1 ± 4.2 hen-housed eggs, an
average of 5.25 eggs per week.

3.2. Curve Fitting and Statistical Criteria

FCK was modeled using two different approaches (Table 5). In the first approach, the
multivariate polynomial models presented RMSE values of 0.0818 and 0.0841 and R2

adj
values of 0.8642 and 0.8519 for the training and validation, respectively.

The best polynomial model for FCK was the third-order equation in Equation (14),
where the independent variables iLys, iMetCys, iThr, and t are represented as x1, x2, x3,
and x4, respectively.

FCK = −3.0975 + 0.1523x1 − 0.1945x2 + 7.009× 10−2x3 − 0.6893x4 + 5.901× 10−5x1x2 + 1.653× 10−4x2x3
−2.323× 10−4x1x3 + 6.095× 10−4x4x1 + 4.990× 10−4x4x2 − 3.589× 10−4x4x3 − 1.073× 10−4x2

1
+1.192× 10−4x2

2 − 4.103× 10−5x2
3 + 2.060× 10−2x2

4 + 9.065× 10−8x2
1x3 − 2.760× 10−7x2

1x4

−3.276×10−8x2
2x1 − 9.762×10−8x2

2x3 − 2.298×10−7x2
2x4 + 4.207×10−8x2

3x1

+1.174×10−7x2
3x4 − 1.952×10−7x1x2x4 + 1.131×10−7x2x3x4 + 9.898× 10−8x1x3x4

+1.710× 10−8x3
1 − 5.055× 10−9x3

2 − 4.380× 10−4x3
4

(14)

The best results for FCK using ANN models were obtained using a cascade-forward
architecture, nine neurons in the hidden layer, and a softmax transfer function (Table 5).
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The fitting results presented RMSE values of 0.042 and 0.043 and R2
adj values of 0.9534 and

0.9564 for the training and validation, respectively.

Table 3. Feed cost per kilogram of egg (USD/kg egg) of H&N Brown SCLHs for the diets over
20 weeks.

Diet Week 8 Week 12 Week 16 Week 20

1 1.33 ± 0.04 1.15 ± 0.06 1.06 ± 0.06 1.02 ± 0.05
2 1.56 ± 0.03 1.21 ± 0.03 1.09 ± 0.03 1.04 ± 0.04
3 1.16 ± 0.02 1.02 ± 0.03 0.96 ± 0.03 0.94 ± 0.03
4 1.15 ± 0.01 1.03 ± 0.02 0.99 ± 0.02 0.96 ± 0.03
5 1.18 ± 0.02 1.05 ± 0.03 0.98 ± 0.02 0.95 ± 0.02
6 1.43 ± 0.02 1.16 ± 0.03 1.06 ± 0.03 1.02 ± 0.03
7 1.23 ± 0.04 1.06 ± 0.04 0.98 ± 0.04 0.94 ± 0.03
8 1.41 ± 0.03 1.15 ± 0.04 1.04 ± 0.04 0.99 ± 0.04
9 1.21 ± 0.01 1.07 ± 0.02 1.01 ± 0.03 0.98 ± 0.03

10 1.22 ± 0.03 1.08 ± 0.04 1.00 ± 0.03 1.01 ± 0.09
11 1.16 ± 0.02 1.06 ± 0.03 0.99 ± 0.02 0.97 ± 0.02
12 1.12 ± 0.05 1.01 ± 0.02 0.96 ± 0.02 0.94 ± 0.02
13 1.00 ± 0.04 0.95 ± 0.02 0.93 ± 0.04 0.92 ± 0.04
14 1.17 ± 0.02 1.05 ± 0.01 1.00 ± 0.02 0.97 ± 0.03
15 1.09 ± 0.03 1.02 ± 0.03 0.97 ± 0.03 0.95 ± 0.03
16 1.25 ± 0.01 1.11 ± 0.01 1.03 ± 0.02 1.00 ± 0.02
17 1.21 ± 0.02 1.04 ± 0.02 0.98 ± 0.02 0.95 ± 0.03
18 1.28 ± 0.05 1.09 ± 0.03 1.03 ± 0.03 1.00 ± 0.03
19 1.36 ± 0.04 1.14 ± 0.01 1.05 ± 0.02 1.01 ± 0.01
20 1.34 ± 0.02 1.16 ± 0.03 1.06 ± 0.04 1.02 ± 0.04
21 1.35 ± 0.03 1.14 ± 0.04 1.05 ± 0.04 1.02 ± 0.04
22 1.48 ± 0.03 1.20 ± 0.03 1.07 ± 0.03 1.03 ± 0.04
23 1.41 ± 0.04 1.21 ± 0.02 1.09 ± 0.02 1.04 ± 0.02

Values expressed as means ± standard deviations (n = 5).

Table 4. Feed conversion ratio (kg feed/kg egg) of H&N Brown SCLHs for the diets over 20 weeks.

Diet Week 8 Week 12 Week 16 Week 20

1 3.43 ± 0.23 2.58 ± 0.12 2.16 ± 0.33 2.22 ± 0.06
2 3.62 ± 0.20 2.62 ± 0.14 2.03 ± 0.15 2.03 ± 0.11
3 2.89 ± 0.11 2.37 ± 0.11 2.08 ± 0.25 2.25 ± 0.17
4 2.88 ± 0.18 2.20 ± 0.14 2.09 ± 0.26 2.18 ± 0.24
5 3.45 ± 0.44 1.88 ± 0.08 2.15 ± 0.28 1.95 ± 0.14
6 5.05 ± 0.53 2.17 ± 0.07 2.00 ± 0.23 2.03 ± 0.10
7 3.50 ± 0.36 2.00 ± 0.11 1.99 ± 0.30 2.09 ± 0.22
8 4.20 ± 0.29 2.16 ± 0.09 1.99 ± 0.18 2.08 ± 0.10
9 2.87 ± 0.26 2.30 ± 0.15 1.89 ± 0.07 2.17 ± 0.23

10 3.25 ± 0.30 2.34 ± 0.17 2.27 ± 0.23 2.09 ± 0.17
11 3.59 ± 0.26 2.10 ± 0.04 2.11 ± 0.19 2.23 ± 0.19
12 3.05 ± 0.30 2.01 ± 0.05 2.03 ± 0.18 2.14 ± 0.23
13 2.48 ± 0.20 2.08 ± 0.16 2.11 ± 0.21 2.18 ± 0.27
14 3.40 ± 0.19 2.12 ± 0.05 2.05 ± 0.14 2.17 ± 0.11
15 2.59 ± 0.30 2.26 ± 0.16 2.14 ± 0.22 2.59 ± 1.33
16 3.10 ± 0.10 2.43 ± 0.07 2.19 ± 0.21 2.24 ± 0.23
17 3.30 ± 0.22 2.25 ± 0.03 2.00 ± 0.05 2.18 ± 0.14
18 3.50 ± 0.13 2.15 ± 0.09 2.03 ± 0.14 2.29 ± 0.18
19 3.84 ± 0.30 2.35 ± 0.11 2.18 ± 0.08 2.05 ± 0.15
20 4.07 ± 0.53 2.36 ± 0.14 2.16 ± 0.10 2.18 ± 0.19
21 3.48 ± 0.21 2.34 ± 0.17 2.21 ± 0.19 2.08 ± 0.08
22 4.39 ± 0.16 2.35 ± 0.14 2.14 ± 0.26 2.05 ± 0.08
23 3.60 ± 0.18 2.39 ± 0.15 2.11 ± 0.04 2.02 ± 0.10

Values expressed as means ± standard deviations (n = 5).
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Table 5. Modeling results for the feed cost per kilogram of egg (FCK) of H&N Brown SCLHs.

Model Specifications Training Validation p-Value Bias AICRMSE R2
adj RMSE R2

adj

Multivariate polynomial
Second order 12 parameters 0.108 0.7663 0.111 0.7485 0.001 2.38 × 10−5 19028
Third order 28 parameters 0.082 0.8642 0.084 0.8519 0.001 7.11 × 10−5 18621

ANN

Feed-forward
network

Softmax transfer function
Nine hidden neurons

55 parameters
0.047 0.9418 0.045 0.9537 0.001 2.38 × 10−7 17714

Cascade-forward
network

Softmax transfer function
Nine hidden neurons

59 parameters
0.042 0.9534 0.043 0.9564 0.001 1.23 × 10−7 17608

RMSE is the root-mean-square error; R2
adj is the adjusted coefficient of determination; AIC is Akaike’s information

criterion; p-value is the probability to test the validity of the null hypothesis that the residuals came from a normal
distribution, according to the Lilliefors test.

The ANN models showed better-fitting results than other modeling approaches,
presenting higher R2

adj, lower RMSE, and lower AIC values. In addition, the ANN models
predicted the behavior of FCK using a simple network architecture (Equations (4) and (7)),
which would facilitate the subsequent analysis and optimization. The parameters (weights
and biases) of the best ANN model are presented in Table 6.

Table 6. Weights and biases of the ANN model for feed cost per kilogram of egg (FCK) of H&N
Brown SCLHs.

wih who wio bh bo



1.5971 0.8748 −2.4899 1.1157
19.078 4.7011 1.5910 −3.5728
18.684 4.4364 1.7995 0.4581
4.4308 −4.2488 −0.8286 0.1034
−17.374 1.1351 3.4314 −2.8917

0.5897 0.7214 −2.6382 1.6316
−10.577 −11.288 1.3771 1.9248
−15.701 2.4790 0.9823 2.3833
−0.7277 1.1889 −3.2246 −1.1524







−0.00138
0.00223
−0.00131

0.00121
−0.00079

0.00090
−0.00114
−0.00127

0.00265




T




5.35× 10−5

1.61× 10−5

−1.56× 10−6

−3.69× 10−5




T




8.9212
−3.6435

3.2475
0.1961
−8.2080

5.1132
−8.5495

0.1083
2.8147




0.00111

wih is the weights between the input and the hidden layers; who is the weights between the hidden and the output
layers; bh is the biases of the hidden layer; bo is the bias of the output layer.

3.3. Optimization

The minimum FCK during 20 weeks of production was obtained with mean amino acid
levels of 909.5 mg/hen-day of iLys, 830.71 mg/hen-day of iMetCys, and 881 mg/hen-day
of iThr (Table 7).

Table 7. Optimal intakes of lysine, methionine + cysteine, and threonine between 8 and 20 weeks
of production for H&N Brown SCLHs considering the feed cost per kilogram of egg (FCK) as the
optimization criterion.

Week
Minimum FCK
(USD/kg egg)

Optimal Intakes (mg/hen-day)

Lysine Methionine + Cysteine Threonine

8 1.040 965.91 864.45 881
12 0.963 965.91 860.48 881
16 0.930 979.18 856.52 881
20 0.873 727.00 741.39 881

Mean 909.5 830.71 881

224



AgriEngineering 2023, 5

4. Discussion
4.1. Egg Cost and Zootechnical Results

The iLys requirement of 943.7 mg/hen-day found in diet 13, corresponding to the
treatment with lower FCK (Table 4), is similar to that reported by Schneider [26], who
indicated 942 mg/hen-day for maximum production, and is above the values observed
by Rostagno et al. [27], Schmidt et al. [28], and Kakhki et al. [29] of 807 mg/hen-day,
824 mg/hen-day, and 848 mg/hen-day, respectively.

The iMetCys requirement of 858.3 mg/hen-day found in diet 13 is above the values of
747.46 mg/hen-day, 786.51 mg/hen-day, 791 mg/hen-day, and 811 mg/hen-day reported
for maximum production by Macelline et al. [9], Polese et al. [30], Schmidt et al. [28], and
Rostagno et al. [27], respectively.

The iThr requirement of 876.8 mg/hen-day observed in diet 13 is above the values
reported for maximum production by Agustini et al. [31], Schmidt et al. [32], and Rostagno
et al. [27] of 516.26 mg/hen-day, 525.04 mg/hen-day, and 621 mg/hen-day, respectively.

For the best FCK treatment (diet 13), the CR was 2.16 ± 0.14 kg feed/kg egg (Table 4)
for H&N Brown SCLHs at 20 weeks of production (111 weeks of age). This result is lower
than that obtained by Sariozkan et al. [33], who found 2.2 to 2.4 kg feed/kg egg at week
20 of production in Hy-Line Brown SCLHs between 81 and 92 weeks of age. The feed
conversion ratio result for diet 13 found at 16 weeks (2.18 ± 0.17 kg feed/kg egg) is higher
than the 1.97 kg feed/kg egg reported for Isa Brown hens at 16 weeks (103–106 weeks
of age) [34] and 2.04 kg feed/kg of egg reported for H&N Brown SCLHs at 14 weeks of
production (81–95 weeks of age) [35].

A good level of amino acids in the diet, especially sulfur amino acids (Met + Cys), is
essential in the second production cycle since they directly influence egg size [36]. The
difference in egg sizes could also contribute to making diet 13 the most cost-effective
treatment. The percentage of eggs weighing 60 g or more (94%) was higher than that of
diet 2 (92%) [12], which presented the highest FCK.

Finally, the results of diet 13 regarding egg production and CR at week 20 [12] show
the importance of each EAA in meeting the nutritional needs of H&N Brown SCLHs. From
8 weeks of egg production, the productive levels increased with the consumption of Lys
in the diet because this EAA is considered physiologically crucial for the maintenance,
growth, and production of laying hens, and its primary function is the synthesis of muscle
protein. In addition, egg production responds to high levels of Lys, possibly due to the
increase in the concentration of plasma albumin, which is the main protein required by the
body for the synthesis of egg protein in the oviduct [36].

4.2. ANN Model to Analyze Egg Cost as a Function of EAAs and Time

The ANN models accurately described the nonlinear behavior for H&N Brown SCLHs
compared to the other models. These models also enabled effective prediction of FCK
based on iLys, iMetCys, iThr, and time (Table 5). The fitting results were better for both
the training and validation data sets. The AIC values also showed that the ANN models
presented a better generalization than the polynomial models.

The ANN models were appropriate for estimating FCK, as confirmed by the ran-
dom and balanced distribution of the residuals around zero, with 98.2% of them ranging
from −0.12 to 0.12 USD/kg egg (Figure 2), despite the non-normality of the residuals
(p-value < 0.05) (Table 5).

According to previous results [12], the ANN models were more accurate in describing
FKC than egg production based on EAAs and time in H&N Brown SCLHs. Although this
is the first study of its kind, applying ANNs to simultaneously analyze the influence of
nutritional factors and time on feed costs, other studies have reported that ANN mod-
els are more precise than other nonlinear regression models in estimating zootechnical
parameters [37,38].
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Figure 2. Residual analysis of the ANN model for the feed cost per kilogram of egg (FCK) of H&N
Brown second-cycle laying hens (92–111 weeks old).

The versatility of ANNs allows for estimating the weekly, overall, or final nutritional
requirements in terms of costs for the second production cycle. The best FCK estimations
covered intermediate levels of EAAs among those evaluated in the experimental design
(Table 1). Thus, the ANN model estimated levels of iLys for low FCK values at 20 weeks
(Figure 3) comparable to the 942 mg/hen-day recommended by Schneider [26] for Shaver
Brown SCLHs. On the contrary, other authors recommend lower levels: 713 mg/hen-day
for hens in the post-molting phase [25], or 751 mg/hen-day [9], 848 mg/hen-day [29], and
807 mg/hen-day for laying hens in the first production cycle [27].

Combinations of iLys, iMetCys, and iThr to minimize FCK at different weeks can be
found in Figure 3. For week 8, FCK values less than 1.076 USD/kg egg can be achieved with
943–1000 mg/hen-day of iLys, 800–1000 mg/hen-day of iMetCys, and 717–881 mg/hen-day
of iThr. For week 12, the recommended levels are 943–1000 mg/hen-day of iLys,
853–961 mg/hen-day of iMetCys, and 881 mg/hen-day of iThr, which can result in FCK val-
ues less than 0.973 USD/kg egg. For week 16, the adequate levels are 943–1000 mg/hen-day
of iLys, 853–961 mg/hen-day of iMetCys, and 881 mg/hen-day of iThr, which can lead to
FCK values less than 0.948 USD/kg egg. For week 20, several possible combinations of
EAA intakes can produce FCK values below 0.922 USD/kg egg, as shown in Figure 3. For
example, some options could be 728 mg/hen-day of iLys, 661–991 mg/hen-day of iMetCys,
and 552 mg/hen-day of iThr, or 727 mg/hen-day of iLys, 700–900 mg/hen-day of iMetCys,
and 881 mg/hen-day of iThr.

The limiting amino acid concept is based on the interruption of protein synthesis due
to amino acid deficiency in the provided diet. For birds, methionine is the first limiting
amino acid, not only due to the high demand for cysteine to form feathers and methionine
to form ovalbumin but also due to the composition of the diet generally used for this
species [39]. As glycogenic agents, methionine and cysteine are metabolized to pyruvic
acid via succinyl-CoA and participate in gluconeogenesis—the process of making glycogen
in the liver and muscle—improving the body recovery of the birds [36].

The estimated iThr at 20 weeks is also different from the 562 mg/hen-day for Shaver
Brown hens (75–90 weeks of age) [31], 462 mg/hen-day for Lohmann Brown SCLHs
(79–95 weeks of age) [32], and 499 mg/hen-day for Hy-Line commercial layers [25]. These
reported levels are lower than the 876.8 mg/hen-day of iThr recommended in this study
for H&N Brown SCLHs.
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Figure 3. Dependence of the feed cost per kilogram of egg (FCK) on lysine (iLys), methionine + cysteine
(iMetCys), and threonine (iThr) intakes at 8, 12, 16, and 20 weeks (99, 103, 107, and 111 weeks of age)
for H&N Brown SCLHs.

Threonine becomes more relevant the older the hens are because its maintenance ratio
increases [40]. Therefore, adequate Thr supplementation allows the bird to express its
maximum production potential. Hence, its nutritional demand is important to consider in
egg production, albeit indirectly [41]. The large membrane carriers are found in the ileum,
suggesting that this is a crucial site of Thr uptake. Likewise, the intestinal mucosa devel-
ops by growing taller and denser villi, which means more epithelial cells and improved
digestion and absorption of nutrients [42].

The ANN model shows how each EAA affects different FCK outcomes (Figure 3),
indicating that it is necessary to validate scenarios of technical and economic interest to
the producers and studies where other nutritional requirements can be used for different
production stages.

The optimal levels of Lys, Met + Cys, and Thr for SCLHs have been inconsistent
across different studies despite being the most critical EAAs for laying hens. This study
demonstrated the importance of the interactions among the EAAs for predicting the egg
cost in laying hens, using ANN models as a novel approach.
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4.3. Optimization

The minimum FCK decreased between weeks 8 and 20 from 1.040 to 0.873 USD/kg egg.
Digestible iLys and iMetCys levels diminished between 8 and 20 weeks from 965.91 mg/hen-day
to 727 mg/hen-day and from 864.45 to 741.39 mg/hen-day, respectively. Digestible iThr
levels were 881 mg/hen-day for all weeks analyzed (Table 7). At 20 weeks of production,
the iMetCys/iLys ratio was 102%, and the iThr/iLys ratio was 121%.

H&N Brown SCLHs showed Thr requirements of 881 mg/hen-day, higher than those
of laying hens in the first production cycle, to achieve excellent egg production and feed
conversion results with the lowest FCK. Thr supplementation enables animals to make
use of proteins and minor amino acids in feed [31]. Protein synthesis and body protein
turnover depend on Thr. In addition, Thr and serine are essential for feather formation,
accounting for 20% of EAA requirements [40]. Mucin production, necessary for intestinal
health, nutrient absorption, and antibody production, also requires Thr [43].

The iThr/iLys ratio at 20 weeks of 121.18% for H&N Brown SCLHs is higher than
the EAA estimation of 77% for laying hens during the first cycle of production [27]. The
iMetCys/iLys ratio at 20 weeks of 101.98% for H&N Brown SCLHs is also higher than the
98% reported by Rostagno et al. [27].

The mean optimal requirements (Table 7) are close to the EAA intakes in diet 13.
On diet 13, the observed FCK between weeks 8 and 20 decreased by 7.92% (Table 3),
corresponding to an increment of 2.45% in egg production [12] and a decrease of 3.36% in
CR (Table 4). When comparing the observed and estimated FCK, we found percentage
errors of less than 2% between weeks 12 and 20, reflecting the accuracy of the ANN model.

5. Conclusions

According to this study, the feed cost per kilogram of egg for H&N Brown second-cycle
laying hens is better described by artificial neural networks than by multivariate polyno-
mial models. Artificial neural networks can also estimate essential amino acid intakes to
minimize feed costs, offering excellent egg production and conversion ratio results.

The requirements of lysine, methionine + cysteine, and threonine in H&N Brown
second-cycle laying hens to minimize the feed cost per kilogram of egg differ from those
defined to maximize egg production when models based on artificial neural networks are
used. This modeling methodology will allow producers to design profitable and productive
diets according to the changing scenarios of the poultry sector.
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