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Features, Paradoxes and Amendments of Perturbative
Non-Hermitian Quantum Mechanics
Miloslav Znojil 1,2,3

1 The Czech Academy of Sciences, Nuclear Physics Institute, Hlavní 130, 250 68 Řež, Czech Republic;
znojil@ujf.cas.cz

2 Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62,
500 03 Hradec Králové, Czech Republic

3 Institute of System Science, Durban University of Technology, Durban 4001, South Africa

Abstract: Quantum mechanics of unitary systems is considered in quasi-Hermitian representation
and in the dynamical regime in which one has to take into account the ubiquitous presence of pertur-
bations, random or specific. In this paper, it is shown that multiple technical obstacles encountered in
such a context can be circumvented via just a mild amendment of the so-called Rayleigh–Schrödinger
perturbation–expansion approach. In particular, the quasi-Hermitian formalism characterized by an
enhancement of flexibility is shown to remain mathematically tractable while, on the phenomenologi-
cal side, opening several new model-building horizons. It is emphasized that they include, i.a., the
study of generic random perturbations and/or of multiple specific non-Hermitian toy models. In
parallel, several paradoxes and open questions are shown to survive.

Keywords: unitary quantum mechanics; non-Hermitian Schrödinger picture; generalized perturbation
theory; ambiguity of physical Hilbert space

1. Introduction

The exact or approximate solutions of the time-independent Schrödinger equation

H |ψn〉 = En |ψn〉 , |ψn〉 ∈ H , n = 0, 1, . . . (1)

play a key role in our understanding of the structure of quantum bound states or resonances.
Often, it is believed that up to some truly exotic exceptions the division line which separates
the case of bound states from the case of resonances also separates Equation (1) in which H
is Hermitian from Equation (1) and in which H is non-Hermitian. Incidentally, the latter
belief has been shattered after 1998 when Bender with Boettcher [1] revealed that the class
of the “anomalous” non-Hermitian Equation (1) yielding bound states can be larger than
expected, also incorporating certain models in which the Hamiltonians have the form
of superposition of the most common kinetic energy ∼p2 with an equally standard (but
complex) local interaction potential.

In the latter models, widely known as “PT –symmetric” [2–6], the manifest non-
Hermiticity of the Hamiltonian

H 6= H†

has been found to coexist with the reality of the spectrum. Thus, it was immediate to
conclude that the unitarity of the evolution can be guaranteed not only in the conventional
textbook spirit (i.e., via the self-adjointness of the Hamiltonian [7]), but also under certain
additional technical conditions [8], via the Dieudonné’s [9] quasi-Hermiticity requirement

H†Θ = Θ H . (2)

One can then speak about quantum mechanics of unitary systems which are slightly
modified and reformulated in the so-called quasi-Hermitian representation.

Symmetry 2024, 16, 629. https://doi.org/10.3390/sym16050629 https://www.mdpi.com/journal/symmetry1
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In this framework, one of the most important features of the modification may be
seen in its innovative approach to the concept of perturbation, which is found to be, in this
setting, counterintuitive. This is for three reasons. The first one is that in this formalism
(cf., e.g., its reviews in [10] or [11]), we are allowed to change the physical Hilbert-space
norm. Thus, in a preselected “perturbed” Hamiltonian H(λ) = H0 + λ H1 the size (and,
hence, influence) of the perturbation cannot always be kept under reliable control. Often,
an enhanced sensitivity to perturbations is observed. For this reason, in open quantum
systems, a few more remarks on this subtlety will be added below.

The second reason and paradox emerges when we consider just a closed quantum
system in which the influence of H1 6= H†

1 is guaranteed to be small. Still, the correct
probabilistic interpretation of the system remains ambiguous, mainly again due to the non-
uniqueness of the physical Hilbert-space inner-product metric Θ (again, a more detailed
support of this observation will be given below).

Thirdly, even if we decide to ignore the latter ambiguity and even if we pick up just
any one of the eligible metrics (which would reduce the scope of the theory in a not quite
predictable manner of course), such a choice of the geometry of the physical Hilbert space
would still vary with λ. This is, probably, the most challenging problem that is also to be
addressed in our present paper.

Preliminarily we may notice and emphasize that in the language of mathematics, the
problem may be formulated easily because the underlying auxiliary, unitarity-of-evolution-
guaranteeing operator Θ (if it exists [8]) can be perceived as representing just an invertible
and positive definite ad hoc physical-Hilbert-space inner-product metric, Θ = Θ† > 0. In
the related reformulation of quantum theory, all of the measurable predictions only require,
therefore, the evaluation of the following metric-dependent matrix elements:

an = 〈ψn|ΘA|ψn〉 . (3)

The knowledge of the wave function and of the operator A representing an observable
of interest must be complemented here by the guarantee of observability A†Θ = Θ A of
course [8,10].

One of the most influential sources of interest in certain special classes of non-Hermitian
Hamiltonians with real spectra lied in quantum field theory [12] and, in particular, in the
role played there by perturbation theory [13–15]. One of the most important subsets
of the underlying phenomenological Hamiltonians H is formed, therefore, by the one-
parametric families

H = H(λ) = H(0) + λ V 6= H† (4)

where λ is a complex number and where the component V representing the perturbation
should not be, in some sense, too large [15].

Under this assumption, a powerful tool of the construction of the solutions of Equa-
tion (1) lies in the use of power-series ansatzs

En = En(λ) = En(0) + λ E(1)
n + λ2 E(2)

n + . . . (5)

and
|ψn〉 = |ψn(λ)〉 = |ψn(0)〉+ λ |ψ(1)

n 〉+ λ2 |ψ(2)
n 〉+ . . . . (6)

A serious obstacle emerges when we turn our attention to the unconventional quasi-
Hermitian models. In light of Equation (2), the metric will become manifestly λ− de-
pendent in general, Θ = Θ(λ). In contrast to the conventional perturbation-expansion
constructions, it becomes necessary to complement the standard pair (5) and (6) of the
Rayleigh–Schrödinger perturbation–expanison ansatzs by their new, operator–expansion
partner, say, of the power-series form

Θ(λ) = Θ(0) + λ Θ(1) + λ2 Θ(2) + . . . . (7)

2
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This means that the non-Hermiticity (4) of Hamiltonian makes a consequent implementa-
tion of the Rayleigh–Schrödinger perturbation-expansion approach to the quasi-Hermitian
bound state quantum physics complicated.

The consequent theory requires an explicit or implicit reference to as many as five
separate but mutually interrelated Hilbert spaces in general (cf. [16]). The main theoretical
benefit of such a five-Hilbert-space reformulation of quantum mechanics lies in an exhaus-
tive classification of admissible perturbations. In this sense, our present paper can be read
as a more pragmatically oriented follow up of [16].

As an introduction, a few basic features of the theory may be found summarized in
Appendices A–D. With this background in mind, Section 2 will add two illustrative exam-
ples explaining not only an overall motivation of using non-Hermitian Hamiltonians but
also the existence of the deep mathematical differences between the use of perturbation
expansions in the closed and open quantum systems.

In Section 3, we will turn our attention to the physical consequences of these differ-
ences. We will point out that in the related literature the necessity of an unambiguous
separation of the closed-system quantum physics from the open-system quantum physics
is not always sufficiently carefully observed. This note will be complemented by an outline
of the role of random perturbations in realistic models. A critique of a few recent results
will be given in which the depth of the difference between the closed and open systems
has been underestimated. This will be followed by a clarification of one of the related
paradoxes connected with the usage of the concept of the so-called pseudospectra [17]. For
the description of the influence of the random perturbations, the usefulness of the concept
of pseudospectra remains strictly restricted to the studies of the open quantum systems.
In the quasi-Hermitian models, the transition from spectra to pseudospectra cannot be
recommended because it does not lead to any enrichment of the information about the
dynamics of the underlying closed quantum systems.

In Section 4, we will finally return to the quasi-Hermitian perturbation theory. We will
recall the mathematical challenge represented by the necessity of the construction of an
additional operator expansion (7). In the climax of our paper, we will offer a new, alterna-
tive, upgraded formulation of the quasi-Hermitian version of the Rayleigh–Schrödinger
perturbation series in which the latter necessity will be circumvented.

An extensive discussion and summary of our results will be presented in the last
two sections, Sections 5 and 6. The essence of the innovation (and, first of all, of a sig-
nificant simplification of the formalism) will be shown to lie in an implementation of the
biorthogonal-basis ideas [18] as taken from their application in a different, non-stationary
quantum dynamics context [19].

2. Merits of Non-Hermitian Hamiltonians

From a purely pragmatic point of view, Schrödinger Equation (1) can be perceived
as a linear eigenvalue problem in which, in the majority of applications, the possible non-
Hermiticity of the Hamiltonian would make the construction of solutions less stable and
technically more difficult. This is a generic statement which is well known [11,17]. People
often seem surprised when they encounter a quantum system for which the technically
friendliest representation of Hamiltonian happens to be non-Hermitian.

2.1. Dyson-Inspired Simplifications of Schrödinger Equations

A compact account of history of the recent quick enhancement of interest in the closed
and stable quantum systems controlled by an “anomalous” Hamiltonian H 6= H† can be
found in [11]. The emergence of such a class of models can look, at first sight, surprising.
Nevertheless, one of the oldest demonstrations of the technical advantages of using a
non-Hermitian H emerged many years ago, viz., during Dyson’s entirely pragmatic, well-
motivated, and purely numerical study of a specific real-world many-body problem [20].

An impact of the latter quantum-many-body result remained, for a couple of years,
restricted just to nuclear physics [21]. The idea only acquired a new life and broader

3
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response after Bender with Milton [12] revealed that the study of non-Hermitian models
may be also of immediate relevance in quantum field theory.

In such a broadened methodical context, a particularly elementary and fully non-
numerical sample H(JM) = p2 + V(JM)(x) of such a Hamiltonian has been proposed,
in 2006, by Jones with Mateo [22]. Via an exactly solvable toy model, these authors
demonstrated that, in some cases, given a conventional self-adjoint Hamiltonian
h(JM) = p2 + v(JM)(x), one can profit from its replacement by an isospectral alternative
H(JM) = p2 + V(JM)(x), which is non-Hermitian. Indeed, the former operator where the
potential contained two components

v(JM)(x) = −2 x + 4 x4 (8)

could be perceived as more complicated than their avatar H(JM) with

V(JM)(x) = − x4 (9)

containing just the single interaction term. Moreover, the single-term potential (9) is
symmetric with respect to the product of parity and time-reversal, i.e., in comparison, it is
less complicated than its left–right-asymmetric two-term partner (8). One can really speak
about a simplification h(JM) → H(JM), in principle at least.

Both of the latter Hamiltonians predict the same real (i.e., measurable and stable)
bound-state spectrum which is discrete and bounded from below. The conventional one,
viz., operator h(JM) is self-adjoint while its non-Hermitian avatar H(JM) is merely quasi-
Hermitian (cf. definition (2)). From an experimentalist’s point of view the isospectrality of
the two alternative Hamiltonians makes the two representations of the same closed quantum
system indistinguishable. For mathematicians, the differences are also not too deep because
the main source of difference, viz., the inner-product metric needed in Equation (2), has
been found, in [22], in an exact, closed and really elementary operator form

Θ(JM) = exp
[

p3/48− 2p
]

. (10)

This makes the non-Hermiticity of H(JM) just a minor, easily surmounted complication.

2.2. Analytic Continuations and Non-Unitary Open Systems

From the point of view of experimental physics, the truly exceptional exact solvability
of the Jones’ and Mateo’s interaction (9) is not so impressive because the coordinate x is
complex (see its definition in [22]). This makes the standard probabilistic interpretation of
the “simplified” system unclear because the value of x (tentatively treated as the position
of a particle) ceases to be a measurable quantity.

A new physics has to be then sought in a return to differential Schrödinger equations
in which the coordinate x remains real. In the light of the paradox (or rather of the danger)
of the non-observability of coordinates, one is forced to consider the asymptotically less
anomalous potentials in which the line of coordinate x could still be kept real. One of
such illustrative examples can be found in our older paper [23] where we studied the
perturbation expansions (5) of the energies generated by the two-parametric imaginary
cubic oscillator Hamiltonian

H(IC)( f , g) = − d2

dx2 +
f 2

4
x2 + igx3 . (11)

Indeed, such a differential–operator model is still non-Hermitian and PT – symmetric, i.e.,
it is formally closely analogous to Equation (9). Moreover, knowing that after identification
λ = g, i.e., in the weak-coupling regime, the conventional small-anharmonicity expansions
would diverge, we were able to transfer the role of a small parameter to the other coupling

4
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and choose λ = f . As a consequence, we achieved a very good convergence of our resulting
perturbative strong-coupling series (5) for the energies.

Later, we found a complementary inspiration in [24] in which Bender and Dunne set
f = 1 and λ = g and studied the alternative, divergent but resummable weak-coupling
expansion. They were interested in just the ground state energy, and they managed to
construct the Rayleigh–Schrödinger perturbation series

E(BD)(λ) ∼ 1
2
+

∞

∑
n=1

bnλ2n (12)

up to very large orders by having evaluated the necessary integer-valued coefficients
non-numerically,

b1 = 11 , b2 = −930 , b3 = 158836 , b4 = −38501610 , . . . . (13)

At n� 1, they managed to fit these coefficients using an amazing asymptotic formula

bn ∼ (−1)n+1 60n+1/2

(2π)3/2 Γ
(

n +
1
2

)[
1 +O

(
1
n

)]
. (14)

Via an appropriate resummation of the divergent series (12), this enabled them to obtain,
at any not too large real coupling λ, a very good (they even wrote “excellent”) agreement
with the known and real numerical value of the ground-state energy E(BD)(λ).

As a climax of the story, Bender and Dunne also proposed a phenomenologically
meaningful physical output of their considerations. For this purpose, they re-interpreted
their asymptotic estimate (14) as a support of the possibility and consistency of an analytic
continuation of the function E(BD)(λ) to the (cut) complex plane of λ. On these grounds,
they were able to evaluate the imaginary part of E(BD)(iε) and to interpret the result as
a prediction of a measurable decay width of another quantum system described by an
analytically continued Hamiltonian

H = p2 + x2/4− εx3 (15)

(cf. Eq. Nr. 5 in [24]). In other words, the initial non-Hermitian operator (11) has been
reinterpreted, via analytic continuation, as a more or less standard physical quantum
Hamiltonian supporting an unstable (but still observable) ground state.

2.3. Dyson Maps and the Modified Concept of Locality

In the overall framework of quasi-Hermitian quantum mechanics (QHQM) of closed
systems as formulated, in the Schrödinger picture, by Scholtz et al. [8], we paid attention,
in our recent paper [16], to the consistent applicability of the theory in the presence of
perturbations. We pointed out that even in the non-perturbative version of the theory
it made sense to realize the description using three separate Hilbert spaces (cf. diagram
Nr. (10) in [16] or Equation (A1) in Appendix A).

One of these spaces is denoted here by symbol L. By assumption, it is just a hypo-
thetical and, for practical purposes, inaccessible space. Only the other two are relevant,
both hosting operator H and differing just by the respective forms of inner products. The
first space (viz., K) is just auxiliary and unphysical. The second one (denoted here asH) is
physical and, for this reason, a unitary equivalent to L, with the equivalence mediated by a
mapping Ω.

The latter (often called Dyson [25]) mapping is related to the metric by formula

Θ = Ω†Ω 6= I . (16)

In a way dating back to the Dyson’s paper [20], the key message as delivered by our
paper [16] is that after one makes the Hamiltonian λ− dependent and after one imple-

5
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ments the perturbation-expansion philosophy, one has to distinguish between the “physics”
(represented by the perturbed H(λ) at any λ 6= 0) and “mathematics” (represented by the
exactly solvable H(0)). In other words, both of the Hamiltonian-supporting Hilbert spaces
K andH become λ− dependent.

Incidentally, at both λ = 0 and λ 6= 0, the knowledge of factorization (16) would
enable us to return also to the above-mentioned toy-model interaction (9) in which the
“false coordinate” appeared to be complex, x /∈ R. Due to the exact solvability of the model
and due to the extreme simplicity of the related metric (10), one could also introduce a
closed-form Dyson-map operator

Ω(JM) = exp
(

p3/96− p
)

(17)

and define a correct (i.e., by construction, quasi-Hermitian) coordinate-representing operator
Q(JM) acting in K andH using formula

q(JM) = Ω(JM) Q(JM)
(

Ω(JM)
)−1

= q† . (18)

This is the definition of a suitable (albeit a bit artificial) observable tractable as a coordinate.
From the point of view of consistency of the theory, the choice of the self-adjoint q(JM) (or,
directly, of the quasi-Hermitian Q(JM)) is more or less arbitrary.

The relation (18) can itself be re-read as the closest analogue of connection between the
more common energy-operators alias Hamiltonians (cf. relation (A2) in Appendix B). Such
a constraint can be complemented by some additional phenomenological requirements. For
example, it is possible to start from the “inaccessible” textbook Hilbert space L and choose
the left-hand side “input information” q(JM) as a diagonal operator with the equidistant
spectrum simulating the position on a one-dimensional discrete lattice or on its suitable
continuous-spectrum limit [26,27].

3. Norm-Ambiguity Paradox and Its Consequences

A concise outline of the non-Hermitian but unitary theory of closed systems is relo-
cated to Appendices A–D. Using the notation of diagram (A1) in Appendix A, let us now
emphasize that in most applications the information about dynamics is carried just by the
Hamiltonian H acting in an auxiliary Hilbert space K in which H 6= H†. As a consequence,
the choice of metric Θ, compatible with the quasi-Hermiticity condition (2), remains non-
unique [8]. The relevant (i.e., physical, Θ− dependent) size of the perturbations V in (4) is,
therefore, indeterminate.

This is a paradox, the relevance of which becomes particularly serious in the realistic
models of quantum systems in which one cannot ignore the possible occurrence of random,
uncontrolled, statistically distributed perturbations.

3.1. Random Perturbations and Pseudospectra

In the most common textbook version of quantum mechanics of the perturbed unitary
systems living in L, the evolution is generated by the perturbed Hamiltonians, which are
self-adjoint.

h(λ) = h(0) + λ h1 = h†(λ)

(see [28] or Equation (A2) in Appendix B). The stability of the system may then be tested
using all perturbations, the norm of which is bounded, ‖h1‖ ≤ ε. For this purpose,
the spectra of the perturbed Hamiltonians could be calculated using the λ− dependent
Schrödinger equation in L,

h(λ) |ψn(λ)�= En(λ) |ψn(λ)� , n = 0, 1, . . . (19)

plus, say, the Rayleigh–Schrödinger perturbation-series ansatz (5).

6
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As a result, one would obtain, in principle at least, a union of all of the possible
perturbed spectra, i.e., the set

⋃

λ ‖h1‖<ε

σ(h(0) + λ h1) (20)

which should lie, for stable systems, just inside a small vicinity of σ(h(0)), i.e., of the
unperturbed spectrum. In such a setting, it is recommended to recall the Roch’s and
Silberman’s observation [29] that the set (20) coincides with the so-called pseudospectrum
σε(h(0)) of h(0), i.e., with the set that is defined as the following union of the spectrum and
of the domain in which the resolvent of h(0) remains large [17],

σε(h(0)) = σ(h(0)) ∪
{

z ∈ C
∣∣ ‖(h(0)− z)−1‖ > ε−1} . (21)

One can cite [30] and conclude that “if h is self-adjoint . . . ”, the pseudospectra “give no
additional information”.

3.2. Norms in Non-Hermitian Models

Let us repeat that as long as the Hamiltonians in question are kept self-adjoint, the
Roch’s and Silberman’s observation simplifies the analysis of the influence of random
perturbations because it just shows that the smallness of perturbations immediately implies
that at the sufficiently small ε the difference between the sets σε(h(0)) (pseudospectrum)
and σ(h(0)) (spectrum) becomes negligible.

The situation becomes thoroughly different when a quantum Hamiltonian H is chosen
“highly non-self-adjoint” because then, “the pseudospectrum σε(H) is typically much larger
than the ε−neighborhood of the spectrum”. There is a subtlety in such a proposition (cited
from [30]) because in the context of the general non-Hermitian Schrödinger Equation (1),
one has to distinguish, in a way already emphasized in the Introduction, between its
open-system and closed-system interpretations.

In the former, “resonances-describing” subcase, we would have to complement
Equation (1) by the specification of the conventional Hilbert space endowed with the
usual, metric-independent norm. In diagram (A1), such a space is denoted by the dedicated
symbol K, with the norm of V denoted as ‖V‖ as usual. Hence, in such a case (not, by
the way, of our present immediate interest), we may formally set Θ = I and H = K in
Appendix A.

In the other, “bound-states-describing” subcase (which is of our present interest) we
may still follow the same conventions as introduced in Appendix A. Thus, with Θ 6= I and
withH 6= K we have to treat Schrödinger Equation (1) as living in an amended, physical
Hilbert spaceH.

Unless one asks questions about norms, only the dual versions of the vector spaces
K and H are different. Still, precisely the difference between the operator norm of V in
K (denoted as usual, ‖V‖) and in H (to be denoted differently, say, as ]V]) becomes one
of the most essential aspects of the respective alternative definitions of the Hilbert-space-
dependent pseudospectra.

3.3. Pseudospectra in Quasi-Hermitian Models

As long as we are not going to study resonances, we may just restrict our attention to
the random perturbations in quasi-Hermitian (i.e., by definition, in the hiddenly unitary)
closed quantum systems. In principle, their description in the alternative physical Hilbert
spaces L and H is then equivalent. In practice, nevertheless, one may observe that the
predictions of the measurements as constructed in the textbook Hilbert-space representation
are impractical and less user-friendly. Then, we are forced to treat the knowledge of the
union (20) of the perturbed spectra in L as “technically inaccessible”.
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After we decide to move toH, we must also remember that the corresponding physical
norm ]V] of perturbations becomes different and, first of all, Θ dependent. The key and
meaningful question to ask is then the question about the structure of the union

⋃

λ]V] <ε

σ(H(0) + λ V) (22)

of the spectra of all of the slightly but randomly perturbed systems living inH.
The above-cited theorem can be recalled again. After one defines the pseudospectrum

σε(H) := σ(H) ∪
{

z ∈ C
∣∣ ](H − z)−1] > ε−1} (23)

inH, one immediately obtains the Roch–Silberman relationship
⋃

λ]V] <ε

σ(H(0) + λ V) = σε(H(0)) . (24)

This is our desired ultimate formula. In the correct and physical Hilbert spaceH in which
the Hamiltonian is made self-adjoint, this formula defines the sensitivity to perturbations
in terms of the correct physical pseudospectrum (23). Its explicit numerical construction is
facilitated and made useful. Obviously, once we require our random perturbations to be
small inH, we may again recall Proposition Nr. 3 in [30] and conclude that in full parallel
with the Hermitian models also in the quasi-Hermitian picture of dynamics the spectrum
and pseudospectrum carry equivalent information about the sensitivity of bound states
to perturbations,

σε(H(0)) ⊆
{

z ∈ C
∣∣ dist

(
z, σ(H(0))

)
< const × ε

}
. (25)

At the small values of ε, the pseudospectrum is formed just by a small vicinity of the spectrum. In
the terminology of [30], such a pseudospectrum is “trivial” because small random perturbations
cannot destroy the stability of the underlying closed quantum system.

4. Amended Rayleigh–Schrödinger Construction

Let us temporarily return to the open-system theory where one does not need to
define any nontrivial inner-product metric because the evolution is non-unitary (cf., e.g.,
monographs [31] or [32]). In Section 2, we recalled, for illustration, the work in [24]
as a typical sample of a more traditional approach. Bender and Dunne used there a
Hamiltonian (11) for the purposes of the description of a complicated physical phenomenon.
The physical Hamiltonian itself, as sampled by Equation (15), has only been deduced after
an analytic-continuation redefinition of the model.

In our present paper, our strategy is different, with our attention restricted to the
unitary, closed and stable quantum systems in which the unitarity of evolution coexists
with the non-Hermiticity of H. In this setting, we intend to describe an amendment of the
QHQM perturbation-expansion recipe in which the metric-related technical obstacles will
be circumvented using a reformulation of the theory as recently proposed, in a different
context, in [19].

4.1. The Choice-of-Space Problem Revisited

The requirement of unitarity of the evolution may make the QHQM perturbation
theory discouragingly complicated, mainly due to the operator–expansion nature of the
newly emerging series (7) representing the metric. In a way outlined in Appendix C, the
theory has to be formulated in as many as five Hilbert spaces (cf. our present diagram (A13)
or analogous diagram Nr. (20) in [16]). The standard, reference-providing space L of
textbooks has to be accompanied by the doublet of the preferred representation spaces,
viz., by K(λ) pertaining to the ultimate dynamical scenario and by K(0) representing the
solvable unperturbed system. The remaining pair of their amended physical partners
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consists of the predictions-offering H(λ) (carrying the ultimate picture of physics) and
H(0) (i.e., its unperturbed λ = 0 partner).

The five-Hilbert-space pattern looks complicated. Concerning its applicability, one
has to be a bit skeptical. In what follows, we intend to show that a fairly efficient remedy
of the skepticism can be based on a more or less straightforward reformulation of the
theory in which the specification of the metric will be re-interpreted as an upgraded
form of transition from K to the correct physical Hilbert space H. A motivation of our
present modification of the theory lies in an undeniable appeal of the Rayleigh–Schrödinger
perturbation-approximation philosophy, which may be characterized, in the conventional
textbook setting, by its enormous technical simplicity. In this sense, we intend to show that
this simplicity need not get lost after one moves to the innovative QHQM framework.

Our attention will be concentrated upon the mathematical consistency aspects of the
theory. We will emphasize that it is possible to overcome the most unpleasant conceptual
complications emerging when one deals with a realistic quasi-Hermitian Hamiltonian of
a unitary quantum system which is allowed to vary with a parameter. The theory will
be re-analyzed in a way inspired by several publications, a sample of which is recalled in
Appendix C.

Attention will be paid to the models in which the parameter-dependence remains weak
and tractable by the techniques of perturbation theory [15]. In the first step of amendment
of the conventional approaches, we will modify the very concept of a state, keeping in mind
that in conventional textbooks, the state is usually characterized by aket–vector element of
a physical Hilbert space (i.e., by |ψ〉 ∈ H). The most immediate inspiration of a change in
such a definition may be deduced from Equation (3), in which it is sufficient to abbreviate

〈ψ(λ)|Θ(λ) := 〈〈ψ(λ)| ∈ K′ (26)

or, after the Hermitian conjugation in our mathematical representation space,

Θ(λ)|ψ(λ)〉 := |ψ(λ)〉〉 ∈ K . (27)

These abbreviations enable us to rewrite Equation (3) in a more compact form,

a(λ) = 〈〈ψn(λ)|A|ψn(λ)〉 (28)

out of which the metric Θ(λ) seems to have “disappeared”.
An easy resolution of such an apparent paradox is that we moved back from auxiliary

K to physicalH. After some elementary algebra, we also reveal that the parallels between
the “old” ket vectors |ψn(λ)〉 ∈ K and their “new” partners of Equation (27) (which
could be called “ketkets”) can even be extended, yielding an identically satisfied “parallel”
eigenvalue problem

H†(λ) |ψn(λ)〉〉 = En(λ) |ψn(λ)〉〉 , |ψn(λ)〉〉 ∈ K , n = 0, 1, . . . (29)

(with the same real spectrum of course) or, after the mere Hermitian conjugation in K,
equivalently,

〈〈ψn(λ)|H(λ) = 〈〈ψn(λ)| En(λ) , 〈〈ψn(λ)| ∈ K′ , n = 0, 1, . . . . (30)

Now, we are prepared to realize that for vectors, the “physical” Hermitian conjugation as
defined, hypothetically, in the “hidden” Hilbert spaceH just replaces the ket |ψn(λ)〉 ∈ H
by the “brabra” 〈〈ψn(λ)| ∈ H′.

To summarize, we come to the conclusion that in the correct physical Hilbert spaceH,
the most natural representation of an n−th bound state of the quantum system in question
will not be provided by any ket but rather by the elementary projector

$n(λ) = |ψn(λ)〉
1

〈〈ψn(λ)|ψn(λ)〉
〈〈ψn(λ)| . (31)
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The main advantage of such an upgrade of conventions is two-fold. First, formula (31)
remains the same in both of the Hilbert-space representations in K and inH, and second,
using the standard definition

an(λ) = Tr[A$n(λ)] (32)

of the probability density, one immediately rediscovers the above-mentioned equivalent
measurement-predicting prescription (3). Moreover, the use of formula also opens the way
from pure states to mixed states and quantum statistical physics [33–35].

4.2. Rayleigh–Schrödinger Construction Revisited

In the light of our preceding considerations, the essence of our present innovation
of the QHQM Rayleigh–Schrödinger construction of the series (5)–(7) [with an implicit
reference to the “measurement-prediction” Formula (3) alias (28) alias (32)] can be seen to
lie simply in the replacement of the almost prohibitively complicated operator–expansion
formula (7) by the alternative and formally sufficient new ketket-expansion ansatz

|ψ(λ)〉〉 = |ψ(0)〉〉+ λ |ψ(1)〉〉+ λ2 |ψ(2)〉〉+ . . . . (33)

In other words, we will still have to start from the entirely conventional decomposition (4)
of the Hamiltonian and from the related order-by-order re-arrangement

[
H − E(0) + λ (V − E(1))− λ2 E(2) − . . .

][
|0〉+ λ |ψ(1)〉+ λ2 |ψ(2)〉+ . . .

]
= 0 (34)

of our initial perturbed form of Schrödinger Equation (1). The innovation only comes when
we reject the recipe of our previous proposal [16] (based on the reconstruction of Θ(λ)
via the clumsy power-series ansatz (7)) as unnecessarily (and, what is worse, more or less
prohibitively) complicated.

In our present upgraded recipe, one simply complements Equation (34) by its associ-
ated partner for ketkets,
[

H† − E(0) + λ (V† − E(1))− λ2 E(2) − . . .
][
|0〉〉+ λ |ψ(1)〉〉+ λ2 |ψ(2)〉〉+ . . .

]
= 0 . (35)

Obviously, an enormous simplification of the construction of the measurable predictions (32)
is achieved. Indeed, in comparison with the complicated formulae in [16], the construction of
the necessary recurrences for the sequence of corrections becomes immediate, making use
only of the slightly upgraded projector

Π = I − |0〉〈〈0| = ∑
j>0
|j〉〈〈j| (36)

and leading to the easily deduced formulae for the energies, say,

E(1) = 〈〈0|V|0〉 , E(2) = 〈〈0|VΠ|ψ(1)〉 , . . . (37)

as well as to the kets
|ψ(1)〉 = Π

1
E(0)−ΠHΠ

ΠV|0〉 , (38)

|ψ(2)〉 = Π
1

E(0)−ΠHΠ
Π[V − E(1)]Π|ψ(1)〉 , (39)

(etc.) and, analogously, for the ketkets,

|ψ(1)〉〉 = Π† 1
E(0)−Π†H†Π† Π†V†|0〉〉 , (40)

|ψ(2)〉〉 = Π† 1
E(0)−Π† H†Π† Π†[V† − E(1)]Π†|ψ(1)〉〉 , (41)
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etc.
Summarizing, one only has to remind the readers that the full-fledged version of

the present amended QHQM perturbation theory is only needed when we really have to
predict the results of measurements of the observable represented by a preselected operator
A. In applications, we are often interested in just the evaluation of only one of the values of
the energy (which is, moreover, defined as one of the eigenvalues of the Hamiltonian). In
practice, such a value is often known to be real. In such a case, naturally, what is needed is
just the more or less standard construction of the single power series (5). We may conclude
that precisely such simplified calculations were performed in papers [23,24], with the
details recalled in Section 2 and in Section 2.2 above.

5. Discussion
5.1. Key Role Played by the Proof of Reality of Spectrum

In the early studies of non-Hermitian Hamiltonians with real spectra [1,2,12,36], the
authors admitted that the non-Hermiticity of H(λ) could make the standard probabilis-
tic closed-system interpretation of the states questionable. For example, Bender and
Dunne [24] circumvented the problem by claiming that their expansion (12) offers only
“strong evidence” that the quantity E(λ) is an analytic function, which can be continued to
the cut complex plane of couplings g = λ2.

Later, emphasis has been shifted to the requirement of the reality alias potential
observability of the would-be bound-state energy-level spectrum of H representing a
necessary condition of existence of an amended inner product. A direct and truly innovative
closed-system physical interpretation of models started to be sought in the reconstruction
of metric Θ = Θ(H) [3,10].

In the context of QHQM perturbation theory, for several reasons (some of which have
been discussed above), the necessity of the proof of the reality of the energy spectra also
acquired a new urgency. In its analysis, as performed in our preceding paper [16], we
emphasized that the scope of the QHQM perturbation theory is in fact “too broad”. In
comparison with the constructive strategy of conventional textbooks (where the trivial
physical inner-product metric is chosen in advance), the more flexible QHQM theoretical
framework forced us to admit that our Θ must be treated as perturbation dependent. The
two conventional Rayleigh–Schrödinger power series (5) and (6) had to be complemented
by the third item (7) representing the metric and making the construction of the model (i.e.,
of its correct physical Hilbert space) almost prohibitively difficult.

In this context, one of our present main results is that we managed to simplify the
construction by replacing the difficult operator expansion (7) by its mere ketket–vector
alternative (33). Nevertheless, even after such an upgrade of the recipe the (rarely easy!)
proof of the reality of the spectrum will still keep playing the most important role of a
necessary preparatory step in applications.

5.2. The Requirement of Completeness of the Set of Observables

We achieved a simplification of the non-Hermitian version of the Rayleigh–Schrödinger
formalism by making the operator–expansion (7) of the metric “invisible”. The price to pay
was the loss of insight into the correspondence between the reality of spectrum and the
choice of the class of admissible perturbations. In fact, the study of this correspondence is
nontrivial, requiring, probably, a return to the study of explicit expansions (7).

The question remains to be kept in mind as a truly interesting and challenging future
project, nevertheless. One of the reasons is that it is closely related to the paradox of the
ambiguity of the metric. Indeed, it is well known that the operator Θ endowing a given
Hamiltonian H with a self-adjoint status inH need not be unique. As a consequence, even
the norm of perturbation V in ansatz (4) can vary so that also the conventional condition of
its “sufficient smallness” could be difficult, if not impossible, to prove.

The ambiguity of Θ = Θ(H) has been identified in [8], resulting from an incom-
pleteness of our information about the system’s dynamics. Indeed, the emergence of any
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independent candidate Λ for an observable (which would have to be quasi-Hermitian with
respect to the same metric, Λ†Θ = Θ Λ) would suppress the ambiguity of Θ whenever such
a candidate appears not to be reducible to a function of H, Λ 6= Λ(H). This means that a
unique Θ will be obtained only after one specifies a complete set of irreducible observables
H (= Λ0) and Λ (= Λ1) and, perhaps, Λ2, etc. [8].

In a way discussed in [8], one is usually forced to work with only an incomplete
irreducible set of preselected observables Λj. This means that the ambiguity of the metric
can only rarely be fully suppressed. One may try to circumvent the problem by making a
more or less arbitrary choice of one of the eligible metrics. The same strategy is, after all,
widely accepted in the conventional textbooks using trivial Θ = I.

In the framework of unconventional QHQM, an exhaustive explanation of the prob-
lem of the ambiguity of the norm can already be found in [8], where one reads that
the variability of our choice of the metric just reflects an incompleteness of the input
information about dynamics. This means that such an ambiguity disappears when our
knowledge of H becomes complemented by the knowledge of a sufficiently large (i.e.,
in mathematical language, “irreducible”) set of some further operator candidates for
the observables.

In this sense, we arrive at a new paradox. Either we postulate such a knowledge or not.
Naturally, the abstract theory would only be fully satisfactory in the former case. In such a
case, nevertheless, the λ dependence of the Hamiltonian and metric would be inherited by
an induced and strongly counterintuitive λ dependence of all of the further (i.e., necessarily
quasi-Hermitian) observables Λj with j > 0.

5.3. The Coordinate-Non-Observability Paradox

Among all of the differential–operator candidates for a closed-system quantum Hamil-
tonian possessing a real energy-like spectrum as sampled by Equation (11) above, one
of the most interesting alternative models was studied by Buslaev and Grecchi [2]. One
of the truly striking features of their model (which made it qualitatively different from
Equation (11)) was that for the purposes of its mathematical consistency it was necessary
to keep the “coordinate” complex (i.e., x /∈ R, in the asymptotic domain at least). This
is a contradictory situation because such a variable cannot in fact be interpreted as an
observable quantity.

The puzzle has been clarified by an explicit reference to perturbation theory in combi-
nation with the techniques of analytic continuation. In a way discussed also in section 2
above, Buslaev and Grecchi revealed a hidden, perturbation-series-mediated connection
between their manifestly non-Hermitian “complex-coordinate” oscillator and the safely
self-adjoint Hamiltonian

h(AHO) = −4+ |~r|2 + λ |~r|4 (42)

describing an entirely conventional quartic anharmonic oscillator [14,37]. They were aware
of the divergence of the related Rayleigh–Schrödinger perturbation series (5), but their
analysis revealed the existence of an intimate relationship between operator (42) (defined
as self-adjoint in the most common physical Hilbert space L2(Rd)) and its specific non-
Hermitian isospectral descendant.

In [2], the same idea has been shown to work also in application to another, mul-
tiparametric multiplet of ordinary differential Hamiltonian-like operators H(BG)

n with
n = 1, 2, . . . , K (with, incidentally, K = 7). A special status has been again enjoyed by the
element H(BG)

1 = h(BG) which was required, in the most conventional Hilbert space L2(R),
to be self-adjoint. The last element H(BG)

K of the sequence appeared to be non-Hermitian but
parity-time-symmetric alias PT – symmetric. For our present purposes, we may abbreviate
H(BG)

K = H(BG) (i.e., drop the last subscript) and notice that the above-mentioned Jones
and Mateo isospectrality relationship finds a direct analogue in formula

h(BG) ∼ H(BG).
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This is not too surprising because the Jones and Mateo Hamiltonian h(JM) is just a parameter-
free special case of the Buslaev and Grechi multiparametric operator h(BG). Thus, after
a multiparametric generalization of Jones’ and Mateo’s Dyson operator (17), a new light
could be thrown upon the concept of locality in non-Hermitian physics (cf. [38] and also
formula (18) in Section 2.3 above).

Incidentally, Jones’ and Mateo’s “direction of simplification” becomes inverted since
the evolution controlled by H(BG) has to be reclassified as a more complicated picture of
dynamics. Still, the message which survives is that the physical interpretation is directly
provided by the Rayleigh–Schrödinger perturbation series of Equation (5).

5.4. A Detour to Meaningful Complex Spectra

In the conventional applications of perturbation theory, one starts from the knowledge
of a preselected family of Hamiltonians

H(λ) = H0 + λ H1 (43)

in which the unperturbed operator H0 is assumed maximally user-friendly or even, often,
diagonal. The specification of the admissible perturbations λH1 is then rather routine, made
in accordance with both the phenomenological and mathematical model-building needs [15].
Family (43) is chosen, in most textbooks, as a mere sum of two self-adjoint operators.

We have already emphasized that once one admits a manifest non-Hermiticity of one
or both of the operator components of the Hamiltonian in an auxiliary Hilbert space K,

H0 6= H†
0 , H1 6= H†

1 (44)

the technical costs of such a weakening of the conventional assumptions may be high
(cf. [3,8,10,11,39,40]). Even when one decides to keep the working Hilbert space perturbation-
independent,K(λ) = K(0) = K, a number of challenging questions survive. One of the most
important ones follows from the possible loss of the reality of eigenvalues,

E(λ) = E(0) + λ E(1) + λ2 E(2) + . . . ∈ C . (45)

Then, one has to accept the open-system philosophy and to treat the Rayleigh–Schrödinger
expansions just as an ansatz which could work even when E(λ) /∈ R and even when the
series is divergent.

The feasibility of such an alternative model-building strategy has been confirmed, e.g.,
by Caliceti et al. [36] (cf. also a more recent review of the field in [41]). In essence, the
latter authors revealed that in a number of specific toy models the conventional ansatz (45)
may still serve as a productive constructive tool, yielding, at the small and real coupling
constants, the real (i.e., energy-like) as well as complex (i.e., resonance-representing) low-
lying spectra after standard resummation.

5.5. Real Spectra and the Paradox of Emergent Instabilities

The reality of spectra of the Hamiltonians has independently been noticed in the
context of quantum field theory [12]. This attracted the attention of the physics community
to the applicability of expansions (45) in the non-Hermitian setting of Equation (44). The
authors of the innovated studies of imaginary cubic anharmonic-oscillator Hamiltonians

H(CAHO)(µ, ν) = − d2

dx2 +
µ2

4
x2 + iνx3 (46)

identified either λ = µ (say, in the “strong-coupling expansions” of Ref. [23]) or λ = ν (say,
in the “weak-coupling expansions” in [24]).

Even when having the strictly real bound-state-like spectra, the latter model-building
efforts were criticized by mathematicians [17,30]. They recommended a replacement of
the mere search for eigenvalues (characterized as “fragile”) by a more ambitious con-
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struction of pseudospectra. We have to point out that the mathematically well-founded
latter recommendation has been based on a conceptual misunderstanding. Fortunately,
a disentanglement of the misunderstanding was straightforward. It proved sufficient to
distinguish between the closed and open systems and to show that the construction of
pseudospectra only makes sense (and offers new information) in the latter case (for more
details, see also Section 3 above).

From a purely mathematical point of view, one should not be too surprised by the
latter conclusion and, in particular, by the “wild” [30] behavior of open systems exhibiting
emergent instabilities because the theory behind the closed systems is different. For them,
the constructions and predictions obtained in the two alternative “physical” Hilbert spaces
L andH are, by definition, equivalent. Thus, no paradox can be seen in the existence of the
mechanism due to which the pseudospectra of closed systems remain well behaved even
when the representation of dynamics itself is non-Hermitian.

Another, even more straightforward explanation of the existence of the emergent
open-system instabilities becomes best visible when the system in question happens to
lie close to a Kato’s exceptional-point singularity [42–44]. In such a vicinity, indeed, the
operator of metric Θ becomes singular and dominated by a projector [45]. Perturbations
H1, which are small with respect to the correct physical Hilbert-space norm (in our present
notation this means that ]H1]� 1) may still be, simultaneously, very large with respect to
the conventional open-system norm as defined in the standard regular limit of Θ→ I (i.e.,
‖H1‖ � 1). As a consequence, perturbations may be expected to lead to the “wild” forms
of pseudospectrs (20) as sampled, via a number of elementary examples, in [30].

5.6. Ultimate Challenge: Models Where the Metric Does Not Exist

To a compact introduction in the overall QHQM theory, as provided in Appendix A,
it makes sense to add that a truly enormous increase in the popularity of the formalism
has been inspired by Bender’s and Boettcher’s claim [1] that the reality of spectra is a
phenomenon which can be observed in an unexpectedly broad class of models which
are not only phenomenologically attractive but also mathematically user-friendly. These
results set the scene for an intensive subsequent study. It is of no surprise that whenever an
operator H proves non-Hermitian (in K) while its spectrum {En} is “bound-state-like” (i.e.,
real, discrete, and bounded from below), one feels tempted to consider the possibility of its
quantum quasi-Hermitian Hamiltonian-operator interpretation.

In [1], the temptation has been further supported by the detailed analysis of the specific
ordinary differential Hamiltonian-like operators

H(BB)(n) = − d2

dx2 − (ix)n+2 , n ≥ 0 . (47)

These operators are, in general, complex and manifestly non-Hermitian but still possessing
the strictly real and discrete bound-state-like spectra. On these grounds, Bender and
Boettcher conjectured that such operators could be treated as Hamiltonians in certain
unconventional, “analytically continued” quantum theories.

In 2012, Siegl and Krejčiřík [46] opposed the claim. Using the rigorous methods of
functional analysis, they proved that for at least some of the toy models where H had the
elementary differential–operator form (47), an acceptable metric Θ which would satisfy
relation (2) does not exist at all. This weakened the enthusiasm because at least some of
the local interaction benchmark models cannot be endowed with any admissible physical-
Hilbert spaceH.

One of the ways of circumventing such a mathematical disproof of quasi-Hermiticity
has been found in a transition to the open system reinterpretation of the models [5]. As a
benefit, such a change of strategy simplified the mathematics because one could simply
set Θ = I. A return to the old open-system philosophy behind models (47) appeared even
productive in mathematics. In a way outlined in Section 5.5 above, it led to the discovery of
certain unexpected spurious approximate solutions of Equation (1) emerging at the energies
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which were far from the spectrum [30]. Thus, it was immediate to conclude that in place of
the spectrum, the much more useful descriptive tool can be sought in the pseudospectra.

In a way which we described in Section 3 above, the pseudospectra directly character-
ize the influence of random perturbations upon dynamics of the systems. Incidentally, their
analysis has been shown to make sense only in the open-system cases in which the spectra
of H are not real. As long as Im En 6= 0 at some n, the Hamiltonian cannot be Hermitian,
H 6= H†. Thus, we may set Θ = I and identify H = K. In contrast, the knowledge of
pseudospecta is not needed in the other, stable-bound-state scenario, partially because the
implication [Im En 6= 0] =⇒ [H 6= H†] cannot be inverted.

It is possible to conclude that for the closed systems with the Hamiltonians sampled
by Equation (47), the question of their acceptability is still open. The reason is that the
physical Hilbert space defined in terms of the correct inner-product metric Θ = Θ(H) need
not exist. Thus, whenever we decide to stay inside the QHQM theory and require that

[H 6= H†] & [Im En = 0] , ∀n

we must keep in mind that the status of many popular illustrative examples has to be
reconsidered as inconclusive, with an acceptable physical interpretation being still sought
in several new directions [47–55].

In fact, Scholtz et al. [8], were probably already aware of the similar mathematical
subtlety because they complemented the quasi-Hermiticity requirement (2) by a few further
consistency-supporting sufficient conditions. Among them, the most prominent amend-
ment of the theory seems to be their mysterious requirement of the boundedness of H.
Unmotivated and counterintuitive as it might have looked in the past, it was probably one
of the lucky parts of the formulation of QHQM by Scholtz et al. [8] because, in retrospect, it
excludes the contradictory differential unbounded-operator models (47) as unacceptable.

6. Summary

In the textbooks on quantum theory, the authors have to distinguish between the
models supporting, and not supporting, the presence of resonances. The notion of pertur-
bation plays a fundamental role in both of these implementations of the theory. This is for
two reasons. The first one is realistic: Whenever one tries to prepare and study a quantum
system, stable or unstable, it is hardly possible to achieve its absolute isolation from an
uncontrolled environment. One has to guarantee the negligibility of influence of such an
environment using, typically, non-Hermitian Hamiltonians and open-system models with
complex spectra and random perturbations.

The second reason is mathematical: Even if we manage to guarantee that the system in
question is, up to negligible errors, isolated, perturbation theory re-appears as a powerful
tool suitable for calculations and for an efficient evaluation of predictions. Naturally,
a consistency of perturbation-related constructions needs a guarantee of a “sufficient
smallness” of the perturbation. Such a guarantee is a task, an explicit formulation of which
depends on the model-building details. Our present attention has mainly been devoted,
therefore, to the physics of stable bound states (and just marginally to unstable resonances)
in a way motivated by the recently increasing popularity of the so-called non-Hermitian
Schrödinger representations of the stable and unitary quantum systems.

In the literature, the presentation of this subject may be found accompanied by the emer-
gence of multiple new and unanswered questions. In our paper, we picked up a few of such
questions which we were able to answer. Basically, our answers may be separated in sev-
eral groups. In the first one, we felt inspired by the authors who studied the pseudospectra.
We imagined that in such an area of research the application of innovative mathematics is
not always accompanied by a clear explanation of physics. In this setting, we conjectured
that a key to the resolution of certain emerging apparent paradoxes can be found in distin-
guishing, more consequently, between the traditional non-Hermitian quantum models with
Θ = I (for the study of which the pseudospectra have been found truly indispensable [17])
and the more recent and sophisticated closed-system theories in which the specifica-
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tion of the correct inner-product metric proves nontrivial and Hamiltonian-dependent,
Θ = Θ(H) 6= I.

In this way, we managed to explain that in certain applications (sampled by the
random-perturbation studies) there is practically no difference between the use of the
QHQM and standard quantum mechanics. A slightly different conclusion has been
achieved when we turned attention to a more explicit study of the Rayleigh–Schrödinger
perturbation expansions. The differences, not too well visible in the mere calculations of
energies [23,24], appeared immediately deeply relevant when one becomes interested in
practically any other observable quality/quantity of the system.

The latter feature of the theory has already been observed (and not found to be too
welcome) in our preceding paper [16]. Our detailed analysis of the structure of the QHQM-
version of perturbation theory led us there to a few rather skeptical conclusions concerning
the applicability of the formalism in its full generality. In our present paper, we managed
to show that the strength of the latter discouraging results can perceivably be weakened
when one reconsiders the theory and after one reduces its scope to just the description of
its experimentally verifiable predictions.

In this spirit, we proposed replacing the next-to-prohibitively difficult operator-valued
solution of Equation (2) (specifying the perturbation-dependent metric Θ(λ) needed
in Equation (3)) by the vector-valued solution of Equation (29) entering the modified
form (28)) of the same prediction which is, even by itself, much easier to evaluate.

In conclusion, it is probably worth adding that along the same methodical lines one
could also get beyond the framework of the Schrödinger picture in which the opereators
of observables are mostly assumed time independent, A 6= A(t). In the future, perhaps,
the same methodical ideas might prove applicable also in the non-stationary context and
models and in the interaction-picture extension of the hiddenly unitary-evolution formalism
as proposed a couple of years ago in [56].
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Appendix A. Quantum Mechanics in Quasi-Hermitian Representation

A comprehensive outline of the formulation of unitary quantum mechanics in which
the conventional requirement of Hermiticity of the Hamiltonian is replaced by an apparently
weaker, metric-dependent quasi-Hermiticity constraint (2) can be found not only in the
older review by Scholtz et al. [8] but also in a few newer papers (e.g., [3,10,57]) and books
(e.g., [4,11]). In the interpretation of review [39], the formalism is based on the simultaneous
use of a triplet of Hilbert spaces (say, [L,K,H]) connected by the Dyson-inspired [20]
mutual correspondences, as displayed in the following diagram:

hypothetical space of textbooks
L = Lunf riendly

(physical but not used)
map Ω−1 ↙ ↘↖ equivalence.

friendly representation space
K = Kmathematical
(unphysical)

simplification Θ→I←−
ultimate amended picture

H = Hphysical
(represented in K)

(A1)

In such an arrangement, by assumption, the two lower-line Hilbert spaces K andH
coincide as linear modules or vector-space sets of the ket–vector elements |ψ〉. Thus, we can
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write |ψ〉 ∈ K and/or |ψ〉 ∈ H and treat the Hamiltonian H (carrying the input information
about dynamics) as an operator defined and acting in both of these two spaces.

The difference between K andH lies in two conventions. First, the former, auxiliary,
manifestly unphysical Hilbert space K is definitely preferred as the more user-friendly one.
The standard Dirac’s notation is applied to the bra–vector elements of its dual marked by a
prime, 〈ψ| ∈ K′. Second, the correct physical Hilbert spaceH is only treated as represented
in K using the mere change of the inner product,

〈ψa|ψb〉 = the inner product in K , 〈ψa|Θ|ψb〉 = the (mimicked) product inH .

The bra–vector elements of the dual physical vector space are, in the notation of Ref. [58],
denoted as “brabras”, 〈〈ψ| ∈ H′. They have the metric-dependent representation

〈〈ψ| = 〈ψ|Θ

in K′. Thus, we can treat these brabras as the Hermitian conjugates of the kets in the
physical Hilbert spaceH. In parallel, we can also introduce the “ketkets” |ψ〉〉 = Θ |ψ〉 as
the Hermitian conjugates of the brabras with respect to the simpler, conventional inner-
products in the unphysical but preferred representation-Hilbert-space K.

Appendix B. Rayleigh–Schrödinger Construction in L
A factorization Θ = Ω†Ω of the metric enables us to define the textbook L–space

self-adjoint avatar of our Hamiltonian
h = Ω H Ω−1 = h† . (A2)

It acts in the upper component L of diagram (A1), which is just the conventional physical
Hilbert space of textbooks. The latter Hilbert space can be perceived as the set of the
“spiked-ket” elements |ψ�= Ω |ψ〉 ∈ L and of their Hermitian-conjugate “spiked-bra”
duals ≺ψ| = 〈ψ|Ω† ∈ L′. By definition, the hypothetical and practically inaccessible
operator h is an L–space image of our preselected Hamiltonian H. Hence, the the above-
mentioned links of L to the other two spaces imply that the Hermiticity of h in L is
equivalent to the (hidden) Hermiticity of our H inH. In contrast, the same operator H is
non-Hermitian in the mathematical manipulation space K.

In the context of perturbation theory with h = h(λ) = h0 + λv in Schrödinger equation

h(λ) |ψn(λ)�= En(λ) |ψn(λ)� , n = 0, 1, . . . (A3)

the standard power-series ansatz for energies (5) is complemented by its wave-function
analogue

|ψn(λ)�= |ψn(0)� +λ |ψ(1)
n � +λ2 |ψ(2)

n � + . . . . (A4)

The Hermiticity (A2) is then an important mathematical advantage. In particular, this
property enables us to treat the unperturbed Schrödinger equation

(h0 − En(0))|ψn(0)�= 0 (A5)

as a standard eigenvalue problem, preferably solvable in closed form. Next, we may recall
any textbook and write down the first-order-approximation extension of Equation (A5),

(h0 − En(0))|ψ(1)
n � +(v− E(1)

n )|ψn(0)�= 0 (A6)

as well as its second-order extension

(h0 − En(0))|ψ(2)
n � +(v− E(1)

n )|ψ(1)
n � +(−E(2)

n )|ψn(0)�= 0 (A7)
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etc. In this manner, we may reconstruct the sequence of the corrections to the energy,

E(1)
n =≺ψn(0)|v|ψn(0)� , (A8)

E(2)
n =≺ψn(0)|v|ψ(1)

n � (A9)

(etc.) as well as the analogous sequence of the corrections to the wave-function ket–vectors

|ψ(1)
n �= Q

1
En(0)−Qh0Q

Qv|ψn(0)� , (A10)

|ψ(2)
n �= Q

1
En(0)−Qh0Q

Q(v− E(1)
n )|ψ(1)

n � (A11)

(etc.) where the symbol
Q = I − |ψn(0)�≺ψn(0)| (A12)

denotes an elementary projector “out of model space”.

Appendix C. Open Questions behind Quasi-Hermitian Perturbations

In the ultimate physical Hilbert spaceH in which H is self-adjoint, it would be possible
to introduce a dedicated superscript marking the space-characterizing conjugation and to
rewrite Equation (2) as follows,

H = H‡ := Θ−1 H† Θ .

Nevertheless, once we move to the preferred representation space K, the latter notation be-
comes redundant because the relation H = H‡ finds its rephrasing in the quasi-Hermiticity
constraint (2) in K.

In applications, we have to re-read Equation (2) as restricting an assignment of metric
Θ to a preselected non-Hermitian operator H. Such a metric will necessarily vary with
the Hamiltonian in general, Θ = Θ(H). The same observation applies to its Dyson-map
factor, Ω = Ω(H). Both of these comments have already been formulated in [16]. We
pointed out there that whenever one decides to consider any one-parametric family of
Hamiltonians H = H(λ) (including also the perturbed Hamiltonians of Equation (4) as a
special case), the physical meaning of the quantum system can only be deduced from its
textbook probabilistic interpretation in L at every λ.

This means that the change in the parameter will imply the change of diagram (A1).
The independence of the unperturbed and perturbed versions of Schrödinger Equation (1)
lead to the necessity of working, at every non-vanishing parameter λ, with as many as
six separate Hilbert spaces. Even though we can merge L(λ) = L(0) = L and use the
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single textbook space for reference, the union of the two respective diagrams (A1) with
λ = 0 and λ 6= 0 still has to be replaced by their five-Hilbert-space concatenation.

elementary initial
auxiliary space K(0)
(unperturbed limit)

Hermitization Θ(0)−→
elementary initial
correct spaceH(0)

(unperturbed limit)
map Ω(0) ↘ ↗↙ equivalence at λ=0

hypothetical merged
inaccessible space L)

of conventional textbooks
map Ω(λ) ↗ ↘↖ equivalence at λ 6=0

λ− dependent ultimate
auxiliary space K(λ)
(perturbed regime)

Hermitization Θ(λ)−→
λ− dependent ultimate

correct spaceH(λ)

(perturbed regime)

(A13)

In [16], we emphasized that the general QHQM formalism remains consistent and
applicable even when the λ−dependence of the Hilbert space metric Θ(λ) is not smooth.
Nevertheless, we proposed that for the perturbed models of Equation (4) characterized
by a smooth λ−dependence of the Hamiltonian, it makes sense to also postulate the
analyticity of Θ(λ). Still, our concluding comments concerning the practical feasibility of
the calculations were skeptical. In contrast, one of the key messages, as delivered by our
present paper, can be seen in a significant suppression of the latter skepticism.

Appendix D. Biorthonormalized Unperturbed Bases

In Hilbert space K, our Hamiltonians are assumed non-Hermitian, H 6= H†. In
Section 4, we emphasized that we therefore have to complement the conventional
Schrödinger equation (i.e., Equation (1) for the ket vectors) by its conjugate partner speci-
fying theirH–space duals. This goal is achieved either via Equation (30) for the “brabra”
vectors or, equivalently, via Equation (29) for the “ketket” vectors.

Temporarily let us simplify the mathematics and assume that dim K < ∞ [59]. Then,
for the reasons explained in diagram (A13) of Appendix C, we must distinguish between the
equations at λ = 0 (the unperturbed limit) and at λ 6= 0 (the perturbed regime). In the former
case, let us now rewrite both of the λ = 0 Schrödinger equations in a more compact notation,

H |n〉 = En |n〉 , n = 0, 1, . . . , dimK− 1 , (A14)

H† |n〉〉 = En |n〉〉 , n = 0, 1, . . . , dimK− 1 . (A15)

In the framework of perturbation theory in its most elementary form, the solutions of
such an advanced, “doubled” quasi-Hermitian bound-state problem are usually assumed
available in closed form. We will also require that all of the unperturbed eigenvectors form
a biorthonormalized set (i.e., one has 〈〈ψm|ψn〉 = δmn), which is complete. Thus, we will
have, at our disposal, the spectral decomposition of the identity operator,

dimK−1

∑
n=0

|n〉 〈〈n| = I . (A16)

Formally, one can even postulate the validity of a spectral representation of the unperturbed
Hamiltonian,

H(0) =
dimK−1

∑
n=0

|n〉 En(0) 〈〈n| . (A17)
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Finally, recalling [58], one can write down also the multiparametric definition

Θ(0) =
dimK−1

∑
n=0

|n〉〉 |κn(0)|2 〈〈n| (A18)

of all of the metrics which would be formally compatible with the Dieudonné’s quasi-
Hermiticity constraint (2) at λ = 0. In parallel, the related Dyson-map factor Ω = Ω(0)
appearing in Equation (16) and in diagrams (A1) and/or (A13), as well as in the explicit
definition |ψ�= Ω |ψ〉 ∈ L of the elements of the hypothetical space of textbooks can be
formally represented by the sum

Ω(0) =
dimK−1

∑
n=0

|n� κn(0) 〈〈n| . (A19)

Depending on the representation, one can insert here 〈〈ψ| ∈ H′ or 〈〈ψ| = 〈ψ|Θ ∈ K′.
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46. Siegl, P.; Krejčiřík, D. On the metric operator for the imaginary cubic oscillator. Phys. Rev. D 2012, 86, 121702. [CrossRef]
47. Berry, M.V. Physics of Nonhermitian Degeneracies. Czech. J. Phys. 2004, 54, 1039–1047. [CrossRef]
48. Bagarello, F.; Fring, A. A non selfadjoint model on a two dimensional noncommutative space with unbound metric. Phys. Rev. A

2013, 88, 042119. [CrossRef]
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Abstract: The concept of quantum ratio has emerged from recent efforts to understand how New-
ton’s equations appear for the center of mass (CM) of an isolated macroscopic body at finite body
temperatures as a first approximation of quantum mechanical equations. It is defined as Q ≡ Rq/L0,
where the quantum fluctuation range Rq is the spatial extension of the pure-state CM wave function,
whereas L0 stands for the body’s linear size (the space support of the internal bound-state wave
function). The two cases Rq/L0 . 1 and Rq/L0 � 1 roughly correspond to the body’s CM behaving
classically or quantum mechanically, respectively. In the present note, we elaborate on this concept
and illustrate it through several examples. An important notion following from introduction of
the quantum ratio is that the elementary particles (thus, the electron and the photon) are quantum
mechanical even when environment-induced decoherence places them into a mixed state. Thus,
decoherence and classical state should not be identified. This simple observation, further illustrated
by consideration of a few atomic and molecular processes, may have significant implications for the
way that quantum mechanics works in biological systems.

Keywords: quantum mechanics; classical mechanics; macroscopic bodies; quantum fluctuations

1. Introduction: The Quantum Ratio

The concept of quantum ratio emerged during the efforts to understand the conditions
under which the center of mass (CM) of an isolated macroscopic body possesses a unique
classical trajectory. It is defined as

Q ≡ Rq

Lo
, (1)

where Rq is the quantum fluctuation range of the CM of the body under consideration
and L0 is the body’s (linear) size. The criterion proposed to tell whether the body behaves
quantum mechanically or classically is [1]

Q� 1 , (quantum), (2)

or
Q . 1 , (classical) , (3)

respectively.
Let us assume that the total wave function of the body has a factorized form

Ψ(r1, r2, . . . rN) = ΨCM(R)ψint(r̂1, r̂2, . . . r̂N−1) , (4)

where ΨCM is the CM wave function, the N-body bound state is described by the internal
wave function ψint, {r̂1, r̂2, . . . r̂N−1} are the internal positions of the component atoms
or molecules, R is the CM position, and ri = R + r̂i (i = 1, 2, . . . , N). In the case of a
macroscopic body, N can be as large as N ∼ 1025, 1050, etc.
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1.1. The Size of the Body

L0 is determined by ψint. A possible definition of L0 is

L0 = Maxi r̄i , r̄i ≡ (〈ψint|(r̂i)
2|ψint〉)1/2 , (5)

though the detailed definition is not important here. L0 is the spatial support (extension) of
the internal wave function describing the bound state a macroscopic body, and from some
scales upwards, might well be described as a classical bound state due to gravitational or
electromagnetic forces; however, their size is always well defined). It is the (linear) size
of the body. Even though L0 might somewhat depend on the body temperature T (the
average internal excitation energy), it is well defined even in the T → 0 limit. It represents
the extension of the ground-state wave function of the bound state describing the body.

For an atom, the definition (5) correctly provides the outermost orbit in the electronic
configuration. L0 varies from 0.5 Å to hundreds of Å for atoms and molecules. The atomic
nuclei (composed of protons and neutrons), which are bound more strongly by short-range
nuclear forces, have smaller size L0 on the order of Fermi ∼10−13 cm. For mesoscopic to
macroscopic bodies, L0 varies vastly depending on the composition, the types of the forces
which bind them, and their particular molecular or crystalline structures. For the earth (the
radius) L0 ∼ 6400 km.

An exception is the case of the elementary particles, which have L0 = 0. This has a
simple implication according to (2): having Q = ∞, the elementary particles are quantum-
mechanical.

It might be argued that length scales (i.e., small or large) are relative concepts in
physics; at distances much larger than L0, any body looks pointlike. More generally,
when changing the scales of distances or energies, the physics might look similar. A more
rigorous formulation of this idea (scale invariance) is that of the renormalization group in
relativistic quantum field theories in four dimensions, e.g., theories of the fundamental
interactions [2–5]), or in lower-dimensional models of critical phenomena [6].

Scale invariance holds if the system possesses no fixed length scale (nonrelativistic
quantum mechanics, having only h̄ with the dimension of an action as the fundamental
constant in its formulation, shares this property [7]). The so-called quantum nonlocality
is one of its consequences. However, in specific problems the masses and the potential
explicitly break scale invariance in general. For a class of potentials, such as the delta-
function or 1/r2 potentials in D = 2 space dimensions, the system possesses exact scale
invariance [8]. From the point of view of the theory of fundamental interactions, the
absence of a fixed length scale means that physics at low energies does not depend on the
ultraviolet cutoff Λ. Thus, we need to introduce the regularization (and renormalization)
of the theory because of the presence of ultraviolet divergences. In other words, the theory
is of renormalizable type, that is, a quantum field theory without any a priori mass (or
length) parameter.

For the questions of interest in the present work, however, it is important, and we
do know, that the world we live in has definite length scales, such as Bohr’s radius and
the size of atomic nuclei. In other words, terms such as microscopic (from elementary
particles and nuclei to atoms and molecules) and macroscopic (much larger than these)
have well-defined concrete meanings.

These fixed sizes (or length scales) characterizing our world are set by the fundamental
constants of nature (h̄, e, c) and by the parameters in the theory of the fundamental (strong
and electroweak) interactions [2–5], namely, the quark and lepton masses, W and Z masses.
See Section 2.1 for more on this topic.

1.2. Quantum Range Rq

The quantum fluctuation range Rq is determined by ΨCM(R). In principle, it is just the
(spatial) extension of the pure-state wave function ΨCM(R) describing the CM of the body.
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However, it is a much more complex quantity than L0, and depends on many factors. In
quantum mechanics (QM) there is no a priori upper limit to Rq. Take for instance the wave
function of a free particle, ψ; while it might be thought that the normalization condition
||ψ|| = 1 necessarily sets a finite quantum fluctuation range, this is not the case. As is well
known (Weyl’s criterion), a particle can be in a state arbitrarily close to a plane-wave state,

ψ ∝ eip·r/h̄ , (6)

i.e., in a momentum eigenstate, which has Rq = ∞. This fact, the absence of a priori upper
limit for Rq, is another consequence of the fact that QM laws contain no fundamental
constant with the dimension of a length.

Given a body, Rq will in general depend on the internal structures, excitation modes,
and body temperature. These cause self-induced (or thermal) decoherence due to the
emission of photons which carry away information and seriously reduce Rq. If the body
is not isolated, its Rq is severely affected by the action of environment-induced decoher-
ence [9–14] upon the surrounding temperature, flux, etc. Moreover, Rq depends on the
external electromagnetic fields, which may split the wave packets, as in the Stern–Gerlach
setup, as well as on possible quantum-mechanical correlations (entanglement) among
distant particles. Rq may depend also on time.

An important question concerns the width of the wave packet of the CM of an iso-
lated (microscopic or macroscopic) particle, ∆CM. This should not be confused with L0.
Being the spread of a single-particle wave function, ∆CM is a measure of the quantum
fluctuation range

Rq & ∆CM , (7)

though Rq can be much larger than ∆CM in general.
As for the relation between ∆CM and L0, ∆CM corresponds to the uncertainty of the

CM position of the body. For a macroscopic body, an experimentalist who is capable of
measuring and determining its size L0 with some precision will certainly be able to measure
the CM position R with

∆CM . L0 , or even with ∆CM � L0 . (8)

Nevertheless, such a relation neither holds necessarily nor is required in general.
A macroscopic body, especially at exceedingly low temperatures near T = 0, may well

be in a state of position uncertainty (the width of the wave packet)

∆CM � L0 . (9)

Using (7), such a system is seen to have Q� 1, and as such is quantum mechanical. Many
attempts to realize macroscopic quantum states experimentally by bringing the system
temperatures close to T = 0 have been made recently [15–26].

Vice versa, a well-defined CM position (8) set up at time t = 0 does not in itself tell
whether the system will behave quantum mechanically or classically.

A free wave packet of an atom or molecule with initial position uncertainty ∆CM will
quickly diffuse (the diffusion rate depends on the mass) and acquire Rq ∼ ∆CM � L0 (see
Table 1, taken from [1]). In the Stern–Gerlach setup, with an inhomogeneous magnetic
field, the (transverse) wave packet of an atom or a molecule with spin will be split in two
or more wave packets, which can become separated even by a macroscopic distance (Rq)
such that Rq � L0, Q� 1 (see Section 2.3 for more about this).

On the other hand, a macroscopic body does not diffuse (see Table 1). Its CM wave
packet does not split under an inhomogeneous magnetic field either [1]. Therefore, if the
CM position of a macroscopic body is measured with precision (8) at time t = 0, the relation

25



Symmetry 2024, 16, 427

Rq . L0 (Q . 1 ) is maintained in time. Such a body evolves classically with a well-defined
trajectory obeying Newton’s equations [1].

Table 1. Diffusion time of the free wave packet for different particles. Conventionally, we take the
initial wave packet size of 1 µ = 10−6 m and define the diffusion time as the ∆t needed for its size to
double. For a macroscopic particle of 1 g, the doubling time is 1019 s ∼ 1011 yrs, which exceeds the
age of the universe.

Particle Mass (in g) Diffusion Time (in s)

electron 9× 10−28 10−8

hydrogen atom 1.6× 10−24 1.6× 10−5

C70 fullerene 8× 10−22 8× 10−3

a stone of 1 g 1 1019

1.3. The Microscopic Degrees of Freedom Inside of a Macroscopic Body Are Quantum Mechanical

The present discussion on the quantum ratio is concerned with the question of how
classical behavior for the CM of a macroscopic body emerges from QM. An important fact to
be kept in mind is the following: even if a macroscopic (or a mesoscopic) body might behave
classically as a whole due to environment-induced or self-induced (or thermal) decoherence
and to its large mass [1], the internal microscopic degrees of freedom, electrons, atomic
nuclei, and photons remain quantum mechanical (see Sections 2.1, 2.2 and 3). All sorts of
quantum-mechanical processes (e.g., tunneling) continue to be active inside the body, even
if various decoherence effects may be significant. These quantum phenomena constitute
the essence of the physics of polymers and general macromolecules, and consequently
of biology. They hold the key to the answers to many questions in biology, genetics, and
neuroscience that are unanswered today (see for instance [27,28]). The consideration of
the present note has nothing to add directly to these questions; however, see a few related
general comments in Section 3 below.

2. The Quantum Ratio Illustrated

In this section, the quantum ratio is illustrated via several examples.

2.1. Elementary Particles

The elementary particles known today (as of the year 2024, see [29]) are the quarks,
leptons (electron, muon, τ lepton), the three types of neutrinos, and the gauge bosons (the
gluons, W, Z bosons, and photon), with the masses listed below (Tables 2–4).

Table 2. The quark masses in MeV/c2; the errors are not indicated. 1 MeV/c2 ' 1.782661× 10−27 g.

2.16 (u) 4.67 (d) 93.4 (s) 1.27× 103 (c) 4.18× 103 (b) 172.7× 103 (t)

Table 3. The lepton masses, with the e, µ, and τ masses in MeV/c2.

0.51099895 (e) 105.658 (µ) 1776.86 (τ) mν 6= 0 ; mν < 0.8 eV/c2

Table 4. Gauge bosons and their masses.

photon gluons W± (GeV/c2) Z (GeV/c2)

0 0 80.377± 0.012 91.1876± 0.0021

The fact that the processes involving these particles are very accurately described by
the local quantum field theory SU(3)QCD × {SU(2)L ×U(1)}GWS up to the energy range
of O(10)TeV means that

L0 . O(10−18) cm . (10)
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In future, these elementary particles might well turn out to be made of some constituents
unknown today, bound by some new forces yet to be discovered. For present-day physics,
their size can be taken to be

L0 = 0 ... Q = ∞ . (11)

Thus, the elementary particles are quantum mechanical. The virtual emission and absorp-
tion of a particle of mass m provides the physical “size” h/mc, known as the Compton
length, of any quantum-mechanical particle; however, this should be distinguished from
the size L0 defined as the extension of its internal wave function.

This notion is generally taken for granted by physicists, even if no justification is
(was) known as such. Here, as we are inquiring as to whether a certain “particle”, be it an
atom, molecule, macromolecule, a piece of crystal, etc., behaves quantum mechanically or
classically, and under which conditions, it perhaps makes sense to ask whether or why an
elementary particle is quantum mechanical. Introduction of the quantum-ratio criterion
offers an immediate (affirmative) answer to the first question and explains the second.
By definition, the elementary particles have no internal structures, and consequently no
internal excitations. Thus, there is no sense in talking about their body temperature or
thermal decoherence.

Note that any quantum particle, such as an electron, behaves “classically” under
certain conditions (the Ehrenfest theorem), e.g., when it is well-localized, free or under
homogeneous electromagnetic field, and within the diffusion time; however, this is not
what we mean by a classical particle.

The observation that the elementary particles (Tables 2–4) are quantum mechanical
in the light of the quantum ratio (10) and (11) might sound new; however, it is really not.
Actually, it reflects the common understanding that matured around 1970 in the high-
energy physics community (e.g., ‘t Hooft, Cargese lecture [30]) that the laws of nature at
the microscopic level are expressed by a renormalizable and relativistic local gauge theory
(a quantum field theory) of the elementary particles. Such a theory describes pointlike
particles (L0 = 0). Quantum gravity or string theory effects, possibly relevant near the
Planckian energies MPl ∼ 1019 GeV, do contain a length scale ∼10−32 cm, but it is beyond
the scope of the present work to consider whether and how these affect the discussion of
quantum or classical physics at the larger distances (≥10−18 cm) that we are concerned
with here.

The scale or dilatation-invariance of this type of theories is broken by the necessity of
introducing an ultraviolet cutoff, a mass scale ΛUV , to regularize, renormalize, and define
a finite theory (quantum anomaly). Remarkably, the scale invariance is restored by the in-
troduction of the renormalized coupling constants (defined conveniently at some reference
mass scale µ) and by giving them an appropriate µ dependence (the renormalization-group
equations); see, e.g., Coleman’s 1971 Erice lecture [31].

The fixed length or mass scales of our world, mentioned in Section 1.1, concern the in-
frared fate of such dilatation invariance. These fixed scales can ultimately be traced to (i) the
vacuum expectation value 〈φ0〉 ' 246 GeV of the Higgs scalar field in the SU(2)×U(1)
Glashow–Weinberg–Salam electroweak theory, and (ii) the mass scale ΛQCD ' 150 MeV ,
dynamically generated by the strong interactions (quantum chromodynamics). These
break scale-invariance. All fixed length scales, from the microscopic to the macroscopic
world we live in, follow from these and from some dimensionless coupling constants in the
SU(3)QCD × {SU(2)×U(1)}GWS theory; for instance, the nuclear size is typically on the
order of the pion’s Compton length, h/mπc, and m2

π ∼ mu,dΛQCD. The proton and neutron
masses (∼940 MeV/c2) are mainly provided by the strong interaction effects ∼ ΛQCD. The
Bohr radius is h̄2/mee2.
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2.2. Hadrons and Atomic Nuclei

Atomic nuclei, together with various hadrons (the mesons and baryons), are the
smallest composite particles known today. Until around 1960, the mesons (π, K, . . . ) and
baryons (p, n, . . . ) used to be part of the list of “elementary particles”, together with
leptons. As the theory of strong interactions (the quark model, and subsequently quantum
chromodynamics, a non-Abelian SU(3) gauge theory of quarks and gluons) was established
around 1974–1980, they were replaced by the quarks and gluons as more fundamental
constituents of nature.

The atomic nuclei are bound states of the nucleons, i.e., protons (p) and neutrons (n).
They are bound by the strong interactions, and their size is on the order of

L0 ∼ A1/3 fm , 1 fm ≡ 10−13 cm = 10−5 , (12)

where A is the mass number. The Coulombic wave functions in the atoms and molecules
have extension (Rq) of the order of Å; thus,

Q =
Rq

L0
& O(105) . (13)

The atomic nuclei are quantum mechanical.
To say that the atomic nuclei are quantum mechanical because of the atomic exten-

sion (13), however, is certainly too reductive. The atomic nuclei indeed may appear without
being bound in atoms. For instance, the α particle is the nucleus of the helium atom, but
may come out of a metastable nucleus through α decay and propagate as a free particle.
It possesses a size on the order of (12), much larger than the typical size of an elementary
particles (10), but for processes typically involving the distance scales much larger than
1 fm, it behaves as a pointlike particle, i.e., quantum mechanically, just as any elementary
particle does. Similarly for the proton, the nucleus of the hydrogen atom, with L0 ∼ 0.84 fm.

2.3. Stern–Gerlach Experiment

The next smallest composite particles known in nature are the atoms. They are Coulom-
bic composite states made of electrons moving around a positively charged atomic nuclei,
almost pointlike (at the atomic scales) and O(103∼105) times heavier than the electron.

Let us consider the well known Stern–Gerlach process of atoms with a magnetic
moment in an inhomogeneous magnetic field. To be concrete, we take as an example the
very original Stern–Gerlach experiment with the silver atom [32] Ag, with mass and size

mAg ' 1.79× 10−22 g , L0 ' 1.44× 10−8 cm . (14)

With the electronic configuration and the global quantum number

[Kr] 4d10 5s1 , 2S1/2 ; (15)

the magnetic moment of the atom is dominated by the spin of the outmost electron,

µ =
eh̄

2mec
g s , (16)

where g is the gyromagnetic ratio g ' 2 of the electron. [Kr] above indicates the zero
angular momentum-spin (L = S = 0) closed shell of the Kripton electronic configuration
describing the first 36 electrons.

The question is whether the silver atom, which is certainly a quantum-mechanical
bound state of 47 electrons, 47 protons, and 51 neutrons and has a mass ∼100 times that of
the hydrogen atom, behaves as a whole (i.e., its CM) as a QM particle with spin 1/2 or as a
classical particle of magnetic moment µ.
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The beam of Ag is sent into the region, 3.5 cm long, of an inhomogeneous magnetic
field B = (0, 0, B(z)), dB(z)/dz 6= 0, as it proceeds in, e.g., the x̂ direction. The beam width,
which reflects the apertures of the two slits used to prepare the well-collimated beam, is
about ∼0.02–0.03 mm wide (the transverse wave packet size of the atom can be taken to be
of this order; the silver atom, having a mass roughly 100 times that of the hydrogen atom,
has a diffusion time on the order of 10−2 s (see Table 1), meaning that the diffusion during
the travel of 3.5 cm is entirely negligible). After passing the region of the magnetic field, the
image of the atoms on the glass screen shows two bands clearly separated by about 0.2 mm
in the direction of ẑ. In other words, at the end of the region with the magnetic field, the
atom is described by a split wave packet of the form

ψ = ψ1(r)| ↑〉+ ψ2(r)| ↓〉 (17)

with the centers of the two subpackets ψ1 and ψ2 at r = r1 and r = r2, respectively, where
|z1 − z2| ' 0.2 mm. The spatial support of the wave function ψ can be taken as about that
size. It follows that

Q =
Rq

L0
& 0.2 mm

1.4 · 10−8 cm
' 106 � 1 , (18)

with the Ag atom as a whole behaving as a perfectly quantum-mechanical particle.
Actually, the fact that the wave packets are divided in two by an inhomogeneous

magnetic field does not necessarily mean that the system is in a pure state of the form (17);
the wave function of the form (17) corresponds to a 100% polarized beam, where all incident
atoms are in the same spin state

c1| ↑〉+ c2| ↓〉 =
(

c1
c2

)
, |c1|2 + |c2|2 = 1 . (19)

If the beam is partially polarized or unpolarized, the spin state is described by a density
matrix ρ. The pure state (19) corresponds to the density matrix

ρ(pure) =

( |c1|2 c1c∗2
c2c∗1 |c2|2

)
, (20)

whereas a general mixed state is described by a generic Hermitian 2× 2 matrix ρ with

Tr ρ = 1 , ρii ≥ 0 , i = 1, 2 . (21)

In an unpolarized beam, ρ = 1
2 1.

What the Stern–Gerlach experiment measures is the relative frequency with which the
atom arriving at the screen happens to have spin sz =

1
2 or spin sz = − 1

2 . Let

Π↑ = | ↑〉〈↑ | =
(

1 0
0 0

)
, Π↓ = | ↓〉〈↓ | =

(
0 0
0 1

)
(22)

be the projection operators on the spin-up (down) states; according to QM, the relative
intensities of the upper and lower blots on the screen are

Π̄↑ = Tr Π↑ρ = ρ11 ; Π̄↓ = Tr Π↓ρ = ρ22 , ρ11 + ρ22 = 1 . (23)

The prediction about the relative intensities of the two narrow atomic image bands from
the wave function (17) and from the density matrix (23) is in general indistinguishable, as
is well known. In other words, what the Stern–Gerlach experiment shows is not whether
the atom is in a pure state of the form (17) or in a generic (spin-) mixed state (23), but rather
that the silver atom is a quantum mechanical particle.
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Indeed, the prediction for a classical particle is qualitatively different. If classical,
each atom would move depending on the orientation of its magnetic moment, tracing a
well-defined trajectory

m ṙ = p ,
dpx

dt
=

dpy

dt
= 0 ,

dpz

dt
= Fz = −

∂

∂z
µ · B . (24)

It would arrive at some generic point on the screen. If the initial orientation of the mag-
netic moment were random, after many classical atoms had arrived they would leave a
continuous band of atomic images, rather than two narrow well-separated bands, as has
been experimentally observed and as QM predicts.

Vice versa, if the orientation of the magnetic moment/spin is fixed (and the same)
for all incident atoms, then classical atoms will produce only one narrow band, whereas
QM atoms will leave two separate image bands. These considerations clearly tell that the
concepts of mixed state and classical particle should be distinguished. We extend these
discussions further in Section 3, taking into account the effects of environment-induced
decoherence as well as the large spin limit and their respective relations to the classical
limit (24).

2.4. Atomic and Molecular Interferometry

Many beautiful experiments exhibiting the quantum mechanical feature (wave char-
acter) of atoms and molecules have been performed (or proposed) using various types of
interferometers [33–42]. One of the most powerful approaches uses Talbot–Lau interferom-
etry [33,36–39].

The essential part of all these experiments makes use of the so-called Talbot effect [43].
In a typical setting, an atomic or molecular beam passing through the first slit is sent to the
diffraction grating (G2 in Figure 1), which consists of many slit apertures set with period d.
After passing through the diffraction grating, the wave function of the atom or molecule,
which originated from a point source, has the form

ψ(x2) '∑
i

ψi(x2) , (25)

where ψi(x2) is the (transverse) wave packet of the atom (molecule) which has passed
through the i-th slit. Just behind the diffraction grating, the distribution of the atom
(molecule) has a modulation such as in Figure 2, with each peak corresponding to the
position of a slit opening.

The coherent components of the wave function (25) corresponding to the different
paths shown in Figure 1 interfere constructively or destructively depending on the vertical
position x3 on the imaging screen, which is set at a distance L2 from the diffraction grating.
In the so-called near-field diffraction–interference effects, the intensity modulation behind
the diffraction grating (Figure 2) is reproduced (self-imaging) on the screen G3 [33,36–39,43],
where L2 takes definite values related to the Talbot length (here, d is the period of the slits in
the diffraction grating and λdB = h

p , is the de Broglie wavelength (with p the longitudinal
momentum) of the atom or molecule),

LT =
d2

λdB
, (26)

as shown in Figure 1. The details of the calculation for the sum over paths can be
found in [36]. By introducing the geometrical magnification factors M1 ≡ (L1 + L2)/L2,
M2 ≡ (L1 + L2)/L1, the sum over the different paths of Figure 1 is shown to provide
(for instance, at L2 = 2M2LT) the intensity pattern |ψ(x)|2 behind the diffraction grating
reproduced at G3, with an enlarged period M2d. For L2 = M2LT , the same intensity pattern
appears except shifted by a half-period; thus, x3 → x3 + M2d/2.
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Figure 1. The Talbot effect. The intensity modulation of the molecules immediately after the passage
of the diffraction grating G2 (Figure 2) is reproduced due to the sum over paths at an imaging plane
G3 placed at definite distances L2 related to the Talbot length (26) from G2.

d

Figure 2. The intensity pattern of the atom (or molecule) behind the diffraction grating G2. Each peak
corresponds to a slit opening.

In a Talbot–Lau interferometer, which is a variation of the above, the imaging screen is
replaced by a vertically movable (i.e., in the x3 direction) transmission-scanning grating
with an appropriate period d′ (see Figure 3). In this way, the occurrence of the interfer-
ence fringes—the Talbot self-imaging—is converted to the total transmission rate of the
molecules (atoms), which varies periodically as a function of the vertical (x3) position of
the scanning grating G3 as a whole. Another advantage of the Talbot–Lau interferometer
is the possibility of introducing the incoherent source beam hitting the first grating. Even
though the coherent sum over paths is relevant only for the atoms (or the molecules) which
have originated from a definite source slit, the use of an incoherent source can increase the
total counts after the third transmission grating, significantly improving the statistics of
the experiments.
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Figure 3. Talbot–Lau interferometer; G2 is the diffraction grating, the thick lines are the slit openings,
G3 is a vertically movable transmission-scanning grating, and G1 are the source slits.

For the purpose of discussing the quantum fluctuation range and the quantum ratio,
these details of the setup are not really fundamental; we need simply to know the transverse
spatial extension of the wave function (25). This in turn can be taken as the height of the
diffraction grating G2, H in Figure 3. The detection of the Talbot effect or Talbot–Lau
fringe visibility is a proof that the transverse wave packets in (25) are indeed in coherent
superposition, i.e., that it is a pure state. Thus, we take the quantum fluctuation range Rq
in Table 5 from the experimental total height H of the diffraction grating G2 (Figure 3).

A large quantum ratio implied by such a quantum range (along with the size) is
certainly an indication that these atoms and molecules are quantum mechanical, even
though such an observation does not supersede the direct evidence of quantum coherence
and interference effects presented in [33,36–39].

Table 5. The size (L0), quantum fluctuation range (Rq), and quantum ratio (Q ≡ Rq/L0) of atoms
and molecules in various experiments. The mass is in atomic units (au), L0 is in Angströms (Å), and
Rq is in mm. In all cases, the momentum of the atom (molecule), its masses, the size of the whole
experimental apparatus, and consequently the time interval involved are all such that the quantum
diffusion of the (transverse) wave packets are negligible.

Particle Mass L0 Rq Q Exp Miscl

Ag 108 1.44 0.2 ∼106 [32] Stern-Gerlach
Na 23 2.27 0.5/0.75 ∼106 [39]
C70 840 9.4 16 ∼107 [36–38] T � 2000 K
C70 840 9.4 ∼0.001 ∼103 [38] T ≥ 3000 K

On the “Matter Wave”

A familiar concept used in articles on atomic and molecular interferometry [34–42]
is the “matter wave”. This might appear to summarize well the characteristic feature of
quantum-mechanics, namely, “wave-particle duality”. Actually, such an expression is more
likely to obscure the essential quantum mechanical features of these processes rather than
clarifying them. It appears to imply that beams of atoms or molecules somehow behave as
a sort of wave; however, this is not quite an accurate description of the processes studied
in [34–42].

The wave–particle duality of de Broglie, the core concept of quantum mechanics, refers
to the property of each single quantum-mechanical particle, and not to any unspecified col-
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lective motion of particles in the beam (the “wave nature” of atoms or molecules observed
in the interferometry [34–42] must be distinguished from many-body collective quantum
phenomena, such as Bose–Einstein condensed ultra-cold atoms described by a macroscopic
wave function). This point was demonstrated experimentally by Tonomura et al. [44] in a
double-slit electron interferometry experiment à la Young, with exemplary clarity.

Exactly the same phenomena occur in the case of any atomic or molecular interferom-
etry. For each single incident atom or molecule, it amounts to the position measurement at
the third imaging screen. For each incident particle, the result for the exact final vertical
position at G3 is not known; in accordance with QM, it cannot be predicted. Only after
the data with many incident particles are collected do we observe the interference effect
reflecting the coherence among the components of the extended wave function (25), in
accordance with QM laws.

From the data in [34–42], it is not difficult to verify that the average distance between
the successive atoms (or the molecules) as compared to the size of their longitudinal wave-
packet (which can be deduced from the momentum uncertainty ∆p) is many orders of
magnitude larger. For instance, in the case of the sodium atom experiment [39], the ratio
is about 6 cm/47 Å∼ 107. In the case of C70 [38] this ratio seems to be even greater. The
atoms or molecules do arrive one by one.

As the correlation among the atoms or molecules in the beam is negligible (as it should
be) and the position of each final atom/molecule is apparently random, the resulting
interference fringes, such as are manifested in Talbot (or Talbot–Lau) interferometers, is all
the more surprising and interesting. What these experiments show goes much deeper into
the heart of QM than the words “matter wave” or “wave–particle duality” might suggest.

3. Decoherence Versus Classicality

The atomic and molecular experiments discussed in Sections 2.3 and 2.4 are all per-
formed in a high-quality vacuum [32–42]. This is necessary lest the scattering of the atom
or molecule under study with environmental particles, e.g., air molecules, destroy their
pure quantum-state nature and destroy their ability to exhibit typical quantum phenomena
such as diffraction, coherent superposition, and interference. These processes are known as
environment-induced decoherence [9–14]. Under environment-induced decoherence, the
object under consideration becomes a mixture, and the diffraction, coherent superposition,
and interference phenomena typical of pure quantum states are lost.

However, this does not necessarily mean that the system becomes classical. Being in a mixed
state is necessary in order for the system to behave classically, but is in general not suffi-
cient [1]. Unfortunately, there seems to be a widespread and inappropriate identification in
the literature between the two concepts of mixed (decohered) states and classical states.

Consider the free electron; its decoherence rate/time has been studied under various
types of environments [9–14]. For instance, in the 300 K atmosphere at 1 atm pressure, a
free electron decoheres in 10−13 s [11]. When it interacts subsequently with other systems,
however, it does so quantum mechanically, not as a classical particle. When it leaves the
region with “environment”, it emerges as a free particle, in a pure quantum state. The same
can be said of the photon, as well as of any other elementary particle.

A related remark may be made about cosmic rays. The gamma rays (photons), neutri-
nos, protons, etc., which are produced in the hot and dense interiors of stars, once outside
of stars, travel through cosmic space (a good approximation of vacuum) as free quantum
particles in pure states.

In the experiment of [38], C70 molecules are excited by a laser beam before they enter
the interferometer. When the average temperature of the molecules exceeds 3000 K, the
Talbot–Lau interference fringe signals are found to disappear, showing that the molecules
became mixed states, in agreement with the decoherence theory (here, decoherence is
caused by the excitation of the molecules and the ensuing photon emission, so it is more
appropriate to talk about thermal (or self-) decoherence [38,45] rather than environment-
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induced decoherence). The quantum fluctuation range Rq takes the order of the diffraction
grating period d; this value is provided in Table 5. However, this does not mean that the
C70 molecules become classical; rather, what we can conclude from [38] is that thermal
decoherence places the molecule in an incoherent mixed state.

Below, we consider two more test cases in which the difference among the pure state,
decohered mixed state, and classical state can be seen very clearly. These considerations
can have far-reaching consequences; for instance, they may indicate a way out of the
“no-go” verdict for the relevance of quantum mechanics in brain dynamics [12]. They
may even be fundamental in all microscopic processes underlying biological systems (see
Section 1.3) [27,28].

3.1. Stern–Gerlach Setup, Decoherence, and Classical Limit

The original Stern–Gerlach (SG) process has been discussed already (Section 2.3). What
this experimental result shows is that the silver atom behaves as a quantum mechanical
particle, either in a pure or (spin-) mixed state.

Here, we discuss the SG process again in more detail in three different regimes: (i) for
a pure QM process; (ii) under environmental decoherence (i.e., for an incoherent mixed
state); and (iii) for a classical particle. The main aim of this discussion is to highlight the
differences between these different physical situations as sharply as possible.

3.1.1. Pure QM State

For definiteness, let us take an incident atom with spin s = 1
2 directed in a definite but

generic direction n = (sin θ cos φ, sin θ sin φ, cos θ), i.e.,

Ψ = ψ(r, t) |n〉 , (27)

where
|n〉 = c1| ↑〉+ c2| ↓〉 , c1 = e−iφ/2 cos θ

2 , c2 = eiφ/2 sin θ
2 , (28)

and ψ(r, t) describes the wave packet of the atom moving towards the x̂ direction be-
fore entering the region with an inhomogeneous magnetic field B. The Hamiltonian is
provided by

H =
p2

2m
+ V , V = µ · B , (29)

µ =
eh̄

2mec
g s , B = (0, 0, B(z)) , dB(z)/dz 6= 0 . (30)

and the time evolution of the system is described by the Schrödinger equation

ih̄ ∂tΨ = H Ψ, (31)

where the total energy is conserved.
After the atom enters the inhomogeneous field B, the upper and lower spin compo-

nents of the wave function split; thus, we write

Ψ↑ = ψ1(r, t)| ↑〉+ ψ2(r, t)| ↓〉 . (32)

The up- and down-spin components ψ1,2 satisfy the Schrödinger equation (µB = eh̄
2mec is the

Bohr magneton, and recall the well known fact that the gyromagnetic ratio g ' 2 of the
electron and the spin magnitude 1/2 approximately cancel)

ih̄
∂

∂t
ψ1,2 =

(
p2

2m
± µBB(z)

)
ψ1,2 . (33)
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We assume that, prior to entering the region with the magnetic field, the wave function
ψ(r, t) is a compact wave packet (e.g., a Gaussian with width a) moving towards the
x̂ direction.

From (33) and their complex conjugates, the Ehrenfest theorems for the spin-up and
spin-down components follow separately:

d
dt
〈r〉1 = 〈p/m〉1 ,

d
dt
〈p〉1 = −〈∇(µBB(z))〉1 , (34)

d
dt
〈r〉2 = 〈p/m〉2 ,

d
dt
〈p〉2 = +〈∇(µBB(z))〉2 , (35)

where 〈r〉1 ≡ 〈ψ1|r|ψ1〉, etc. That is, for a sufficiently compact initial wave packet ψ(r, t),
the expectation values of r and p in the up and down components ψ(r, t)1,2 respectively
follow the classical trajectories of a spin-up or spin-down particle. At the end of the region
with the magnetic field B (we assume that the transit time of the whole process and the
mass of the atom are such that the free quantum diffusion of the wave packets is negligible;
see also Appendix A) it is described as a split wave packet of form (17). Even though the
two subpackets might be well-separated by a macroscopic distance |r1–r2|, they are still in
coherent superposition. Its pure-state nature can be verified by reconverging them using a
second magnetic field with the opposite gradients and studying their interferences (i.e., the
quantum eraser).

A variational solution of (33) in the case of a linear potential B(z) = b0 z is provided in
Appendix A. The splitting of the wavepacket is illustrated in Figure 4a.

Figure 4. The spin-up and spin-down sub-wavepackets of the silver atom evolve independently
under the Schrödinger equation both in vacuum ((a), pure state) and in a weak environment (37)–(39)
(b), where the decoherence is represented by an unknown and to-be-averaged-over relative phase α

between ψ1(r) and ψ2(r). Here, (c) represents a unique classical trajectory.

3.1.2. Environment-Induced Decoherence

Let us now consider the SG process (27)–(30) again, this time in a poor vacuum, e.g.,
in the presence of non-negligible background. The decoherence of a well-separated split
wave packet such as (17) due to interactions with environmental particles has been the
subject of intense study [9–14]. The upshot of the results of these investigations is that
environment-induced decoherence causes the pure state (17) to become a mixed state at
t� 1/Λ, described by a diagonal density matrix

ψ(r)ψ(r′)∗ → ψ1(r)ψ1(r′)∗| ↑〉〈↑ |+ ψ2(r)ψ2(r′)∗| ↓〉〈↓ | , |r1 − r2| � λ , (36)

where Λ is the decoherence rate [9–14] and λ is the de Broglie wavelength of the environ-
mental particles. The density matrix (36) means that each atom is now either near r1 or
near r2. The prediction for the SG experiment, however, is the same as in the case of the
spin-mixed state (partially polarized source atoms) (23); it cannot be distinguished from
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the prediction |c1|2 : |c2|2 for the relative intensities of the two image bands in the case of
the pure state.

Actually, the study of the effects of environmental particles on any given quantum
process is a complex and highly nontrivial problem involving many factors, including
the density and flux of the particles, the pressure, the average temperature, the kinds of
particles present, the type of interactions, and more [9–14]. Thus, a simple statement such
as (36) might seem an oversimplification.

Without going into the detailed features of the environment, we may nevertheless
attempt to clarify the basic conditions under which a result such as (36) can be considered
reliable. Following [11], we introduce the decoherence time τdec ∼ 1/Λdec as a typical
timescale over which decoherence takes place. In addition, the dissipation time τdiss may be
considered as the timescale in which the loss of the (energy, momentum) of the atom under
study due to interactions with environmental particles become significant. Unlike [11],
however, we shall not consider τdyn, the typical timescale of the internal motion of the object
under study; roughly speaking, the size L0 that we introduced in defining the quantum
ratio (1), that is, the space support of the internal wave function, corresponds to this
(τdyn ∝ L0). The quantum–classical criteria suggested by [11] might appear to have some
similarities with (2) and (3); however, the former seems to leave unanswered questions
such as “what happens to a quantum particle (τdyn < τdec), at t > τdec?” This is precisely
the sort of question which we are trying to address here.

We also need to consider the typical quantum diffusion time τdi f f , and finally the
transition time τtrans, which is the interval of time that the atom spends between the source
slit and the image screen (or at least the final reference position in the direction of motion).

First of all, we assume that the velocity of the incident atom, its mass, and the size of
the whole apparatus are such that the free quantum diffusion (the spreading of the wave
packets) is negligible during the process under study. Furthermore, the environment is
assumed to be sufficiently weak that the effects of energy loss, momentum transfer, etc.,
can be neglected to a good approximation. As shown in [9–14], the loss of phase coherence
is a much more rapid process than the dynamical effects affecting the motion of the particle
under consideration.

In other words, we consider the time scales

τdec � τtrans � τdi f f , τdiss . (37)

The first inequality tells us that the motion of the wave packets is much slower than the
typical decoherence time. Considering the atom at some point, where it is described by a
split wave packet of the form (17) with the centers separated by

|r1 − r2| � a , (38)

where a is the size of the original wavepacket, we may treat such an atom as if it were at
rest and first take into account the rapid decoherence processes studied in [9–14] (a sort of
Born–Oppenheimer approximation). Furthermore, we can take the environment particles
with a typical de Broglie wavelength λ such that

a� λ� |r1 − r2| ; (39)

the environment particle can resolve between the split wave packets but not between the
interior of each of the subpackets ψ1(r) or ψ2(r).

In conclusion, under conditions (37)–(39), each of the split wave packets proceeds just
as in the pure case (no environment) reviewed in Section 3.1.1, and their average position
and momentum (i.e., the expectation values) obey Newton’s Equations (34) and (35). Each
of the subpackets describes a quantum particle in a (position) mixed state, that is, near
either r1 or r2. After leaving the region of the SG magnets, it is just a (pure-state) wave
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packet ψ1(r) or ψ2(r). The two possibilities no longer interfere, in contrast to the pure split
wave packet studied in Section 3.1.1 (see Figure 4b).

Needless to say, if any of the conditions (37)–(39) are violated, the motion of the
atom would be very different; for instance, τdiss � τtrans would mean totally random
motion for the atom. Even in such a case, however, the effects of the environment-induced
decoherence/disturbance are quite distinct from the motion of a classical particle, with a
unique smooth trajectory, as discussed below.

3.1.3. Classical (or Quantum?) Particle

A classical particle with the magnetic moment directed towards

n = (sin θ cos φ, sin θ sin φ, cos θ) (40)

is described by Newton’s Equation (24). The way in which the unique trajectory for a
classical particle emerges from quantum mechanics has been discussed in [1], where the
magnetic moment is an expectation value

∑
i
〈Ψ|(µ̂i +

ei ˆ̀ i
2mic

)|Ψ〉 = µ (41)

taken in the internal bound-state wave function Ψ and where µi and ei`i
2mic

denote the intrinsic
magnetic moment and that due to the orbital motion of the i-th constituent atom (molecule)
with i = 1, 2, . . . , N. Clearly, in general, the considerations made in Sections 3.1.1 and 3.1.2
for a spin 1/2 atom with a doubly split wave packet cannot be generalized simply to (or
compared with) a classical body (41) with N ∼ O(1023).

Nevertheless, logically one cannot exclude particular systems (e.g, a magnetized metal
piece) with all spins directed in the same direction, for instance. Thus, one might wonder
how a quantum mechanical particle of spin S behaves under an inhomogeneous magnetic
field in the large spin limit, i.e., S = N

2 , N → ∞.
The question is whether the conditions discussed in [1] for the emergence of classical mechanics

(with a unique trajectory) for a macroscopic body (and see Section 5 below) are sufficient, or whether
some extra condition or mechanism is needed to suppress possible wide spreading of the
wave function into many subpackets (see Figure 5) under an inhomogeneous magnetic field.
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Figure 5. The distribution |ck|2 in k, i.e., in possible values of Sz, −S ≤ Sz ≤ S, for a spin S = 5
particle in the state (42) with θ = π/2 (center, bue dots) and θ = π/4 (right, orange dots).

The answer is simple but somewhat unexpected. Consider the state of a particle with
spin S directed towards a direction n:

(S · n) |n〉 = S |n〉 , n = (sin θ cos φ, sin θ sin φ, cos θ) . (42)
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Assuming that the magnetic field is in the z direction (along with its gradients), we need to
express |n〉 as a superposition of the eigenstates of Sz,

|n〉 =
N

∑
k=0

ck |Sz = M〉 , M = −N
2
+ k , (k = 0, 1, . . . , N) . (43)

The expansion coefficients ck are known (to obtain (44), consider (42) as a direct product
state of N spin 1

2 particles, all oriented in the same direction (28)). Collecting terms with a
fixed k (the number of spin-up particles) provides (44)

ck =

(
N
k

)1/2
e−iMφ/2

(
cos θ

2

)k(
sin θ

2

)N−k
,

N

∑
k=0
|ck|2 = 1 , (44)

where (N
k ) are binomial coefficients, N!/k!(N − k)!. Using Stiring’s formula, we find the

distribution in various Sz = M at large N and k with fixed x = k/N to be

|ck|2 ' eN f (x) , x = k/N , (45)

with

f (x) = −x log x− (1− x) log(1− x) + 2x log cos θ
2 + 2(1− x) log sin θ

2 . (46)

The saddle-point approximation, valid at N → ∞, provides us with

f (x) ' − (x− x0)
2

x0(1− x0)
, x0 = cos2 θ

2 ; (47)

thus,
|ck|2 −→ δ(x− x0) (48)

in the N → ∞ (x = k/N fixed) limit. The narrow peak position x = x0 (see (43)) corresponds to

Sz = M = N(x− 1
2 ) = S (2 cos2 θ

2 − 1) = S cos θ . (49)

Thus, a large-spin (S� h̄) quantum particle with the spin directed towards n in a Stern–
Gerlach setup with an inhomogeneous magnetic field B = (0, 0, B(z)) moves along the
single trajectory of a classical particle with Sz = S cos θ instead of spreading over a wide
range of split subpacket trajectories covering −S ≤ Sz ≤ S! (see Figures 5 and 6).
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Figure 6. The distribution in possible values of Sz for a spin S = 103 particle in the state (42), with
θ = π/2 (center, blue) and θ = π/4 (right, orange); the particle starts to appear classical.
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This somewhat surprising result means that QM takes care of itself in showing that
a large-spin particle (S/h̄ → ∞) follows a classical trajectory which is consistent with
the known general behavior of the wave function in the semi-classical limit (h̄ → 0) (of
course, this does not mean that the classical limit necessarily requires or implies S→ ∞).
If the value S � h̄ is understood as being due to the large number of spin 1/2 particles
composing it (see the previous footnote), the spikes (47) and (48) can be understood as
being due to the accumulation of an enormous number of microstates giving Sz = M).

3.2. Tunneling Molecules

As another example, let us consider a toy version of an atom (or a molecule) of mass
m moving in the z direction with momentum p0, now with a split wave packet in the
transverse (x, y) plane:

Ψ = eip0z/h̄ψ(x, y) , ψ(x, y) = c1ψ1(x, y) + c2ψ2(x, y) , (50)

where ψ1 and ψ2 are narrow (free) wave packets centered at r1 = (x1, y1) and r2 = (x2, y2),
respectively. This is somewhat analogous to the wave function of the silver atom (17) or
of the C70 molecule (25). Actually, we take a wave packet χp0(p, z) for the longitudinal
wave function by considering a linear superposition of the plane waves eipz/h̄, with the
momentum p narrowly distributed around p = p0. For instance, a Gaussian distribution
∼ e−(p−p0)

2/b2
in p yields a Gaussian longitudinal wave packet in z of width ∼ 2h̄/b.

At times much smaller than the characteristic diffusion time t � 2mh̄
b2 , the particle is

approximately described by the wave function shown below. The exact answer has the
Gaussian width in the exponent replaced as b2

4h̄2 → b2

4h̄2(1+ib2t/2mh̄)
and the overall wave

function multiplied by (1 + i b2t/2mh̄)−1/2. These are the standard diffusion effects of
a free Gaussian wave packet of width a = 2h̄/b. Moreover, if the longitudinal wave
packet and the transverse subwave packets are taken to be of a similar size, then the free
diffusion of the transverse wave packets (and consequently the t-dependence of ψ(x, y))
can be neglected).

Ψasymp ∼ eip0z/h̄e−ip2
0t/2mh̄e

− b2

4h̄2 (z−
p0t
m )2

ψ(x, y) . (51)

Assuming that such a particle is incident from z = −∞ (t = −∞), moves towards
right (increasing z), and hits a potential barrier (Figure 7)

V =

{
0 , |z| > a,
V(z) , −a < z < a

(52)

with a height that is above the energy of the particle (approximately provided by the

longitudinal kinetic energy E ' p2
0

2m ), as the longitudinal and transverse motions are
factorized, the relative frequencies (probabilities) of finding the particle on both sides of
the barrier (barrier penetration and reflection) at large t can be calculated by standard
one-dimensional QM. (In [7,46], it was proposed to use the phrase “(normalized) relative
frequency” instead of the word “probability”, as the traditional probabilistic Born rule
places human intervention as the central element of its formulation, and distorts the way
quantum mechanical laws (the laws of nature!) look. To the authors’ view, this has been the
origin of innumerable puzzles, apparent contradictions, and conundrums entertained in the
past; see [7,46] for a new perspective and a more natural understanding of the QM laws).

The answer is well known; the tunneling frequency is provided, in the semi-classical
approximation, by

Ptunnel = |c|2 , c ∼ e−
∫ a0
−a0

dz
√

2m(V(z)−E)/h̄ , (53)
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(V(z)− E > 0, −a0 < z < a0). The particle on the right of the barrier is described by the
wave function

Ψpenetrated ' c Ψasymp = c eip0z/h̄e−ip2
0t/2mh̄e

− b2

4h̄2 (z−
p0t
m )2

ψ(x, y) , (54)

where c is the transmission coefficient of (53). The transverse coherent superposition of the
two components (sub-wavepackets) (50) remains intact (see Figure 7).

Figure 7. In the left-hand figure (A), an atom (molecule) arrives from z = −∞ and moves towards
the potential barrier V(z) at −a < z < a (independent of x and y). It is described by a wave packet
(split in the transverse direction as in (50)). The wave function of the particle at t→ ∞, shown on the
right-hand side (B), contains both the reflected and transmitted waves. The coherent superposition of
the two sub-wavepackets in the (xy) plane remains intact.

Now, we can reconsider the whole process with the region left of the barrier (z < −a)
immersed in air (or, as in the C70 experiments [38], the incident molecules can be bombarded
by laser beams, become excited, and emit photons before they reach the potential barrier).
While the precise decoherence rate depends on several parameters, in general the incident
particles are decohered in a very short time, as in (36) [9–14]. The particle to the left of
the barrier (we assume that the environmental particles (air molecules) have energies
much less than the barrier height, and remain confined in the region left of the barrier)
is now a mixture; each atom (molecule) is either near r1 = (x1, y1) or r2 = (x2, y2) in the
transverse plane. When the particle hits the potential barrier, it tunnels through it with
relative frequencies (53) and emerges on the other side of the barrier as a free particle.
It has the wave function (54), with ψ(x, y) replaced by ψ1(x, y) with relative frequency
|c1|2/(|c1|2 + |c2|2) and by ψ2(x, y) with frequency |c2|2/(|c1|2 + |c2|2). While this is a
statistical mixture, each part is a pure quantum mechanical particle. See Figure 8.

Our discussion above assumes that the air molecules (the environmental particles)
are just energetic enough (i.e., their de Broglie wave length is small enough) to resolve the
transverse split wave packets (see (36)) while at the same time being much less energetic

than the longitudinal kinetic energy p2
0

2m and with sufficiently small flux. In writing (54),
we have assumed that the effects of the environmental particles on the longitudinal wave
packet are small, even though the tunneling frequency may be somewhat modified, as it is
very sensitive to its energy.
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Figure 8. In the left-hand figure (A), an atom (molecule) arrives from z = −∞ and moves towards the
potential barrier at −a < z < a, as in Figure 7. In contrast to the process in vacuum shown in Figure 7,
however, this time the half-space on the left of the potential barrier contains air. The molecule is
now in a mixed state due to the environment-induced decoherence. Its (transverse) position density
matrix becomes diagonal; it is either near (x1, y1) or near (x2, y2). The wave function of the particle
at t→ ∞, shown in the right part (B), still contains a small transmitted wave as well as the reflected
wave, however, without coherent superposition of the two transverse wave packets.

Obviously, in a much warmer and denser environment the effects of scattering on our
molecule would be more severe, and the tunneling rate would become considerably smaller.
Even then, our atom (or molecule) would remain quantum mechanical (the situation is
reminiscent of the α particle track in a Wilson chamber; α is scattered by atoms, ionizing
them on the way, but traces a roughly straight trajectory. When it arrives at the end of the
chamber, it is the same α particle, and has not become classical).

4. The Abstract Concept of a “Particle of Mass m”

It is customary to consider an otherwise unspecified “particle of mass m” in order
to discuss model systems in both quantum mechanics and classical mechanics. We will
see that considerations based on such an abstract concept of a particle cannot be used to
discriminate classical objects from quantum mechanical systems or as a way to explain the
emergence of classical mechanics from QM.

Let us consider a 1D particle of mass m moving in a harmonic-oscillator potential

H =
p2

2m
+

m ω2

2
x2 . (55)

The coherent state is defined by a |β〉 = β |β〉 , where a is the annihilation operator. Its well
known solution in the coordinate representation is just the Gaussian wave packet

x0 =

√
h̄

2 m ω
(β + β∗) ≡ A cos ϕ , p0 = i

√
h̄ mω

2
(β∗ − β) = m ω A sin ϕ , (56)

ψ(x) = 〈x|β〉 = N exp
[
− (x− x0)

2

4 D
+ i

p0 x
h̄

]
, (57)

with
D = 〈(∆x)2〉 = h̄

2 m ω
. (58)
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The Schrödinger time evolution can be expressed as the time variation of the center of mass
and its mean momentum, x0 → x0(t) , p0 → p0(t) ,

x0(t) = A cos(ϕ + ωt) p0(t) = m ω A sin(ϕ + ωt) , (59)

while the wave packet shape and size (58) remain unchanged in time. This looks exactly
like the motion of a classical oscillator of mass m and size D!

It is sometimes thought that such a behavior on the part of the coherent states carries
the key to understanding the emergence of classical mechanics from QM. However, there
are reasons to believe that this may not be quite the correct way of reasoning.

In order to see that such an identification/analogy cannot be pushed too far, consider
quenching, i.e., suddenly turning off the oscillator potential, setting ω = 0 at t = t0. The
particle starts moving freely, with the initial condition (x0(t0), p0(t0)).

The problem is that there is no way to tell what happens at t ≥ t0. A quantum
mechanical particle would diffuse with a rate depending on its mass, as in Table 1. A
classical particle does not diffuse. The expression “a particle of mass m” does not tell
us whether it is a quantum or a classical particle, or what the true size of the body L0
(unrelated to D) is.

Note that by describing this body as a “particle” it is tacitly assumed that its physical
size is irrelevant (i.e., L0 = 0) to the modeled harmonic oscillator problem. However, the
physical size L0 of the particle does matter. If its (unspecified) size were truly zero it would
be quantum mechanical, as Q = Rq/L0 = ∞.

The lesson to be drawn from this discussion is that a model system based on an abstract
“particle” concept in which the information about L0 is lacking cannot be used to study
the emergence of classical physics from quantum mechanics. Allowing for decoherence
effects and selecting a particular class of mixed states as privileged ones by introducing
some criteria may not lead to a satisfactory understanding of how classical physics emerges
from QM.

5. Discussion

An immediate implication of the introduction of the quantum ratio concept is that
elementary particles are quantum mechanical. This is the case even if under certain
conditions, such as envirornment-induced decoherence, they may be reduced to mixed
states. They remain quantum mechanical. The distinction between the concept of mixed
(quantum) states and classical states is essential. As the electron and photon are elementary
particles, they remain quantum mechanical even in the warm and dense environments of
biological systems.

We have studied the quantum ratio of some larger particles (atoms and molecules) via
examination of various interferometry experiments, which indeed show that these particles
behave quantum mechanically in vacuum.

In Section 3, we have provided an extensive discussion of several real and model
examples involving atoms, molecules, and elementary particles in order to highlight the
reasons that environment-induced decoherence [9–14] in itself does not make the affected
particle classical, as is often stated or tacitly assumed.

Though in a slightly different context, the so-called negative-result experiments or
null measurements [47,48] tell a similar story. There, the exclusion of some of the possible
experimental outcomes (a non-measurement) by use of an intentionally biased measure-
ment setup, implies the loss of the original superposition of states. However, the predicted
state of the system remains a perfectly quantum mechanical one, even though it now
exists in a more restricted region of Hilbert space; see [49] for a recent review and careful
re-examination of the interpretation of these negative-result experiments.

All of these discussions naturally lead us back to the recurrent theme in quantum
mechanics, namely, mixed states versus pure quantum states. As is widely acknowl-

42



Symmetry 2024, 16, 427

edged, there are no differences of principle. As famously noted by Schrödinger, complete
knowledge of the total closed system Σ (its wave function, the pure state vector) does not
necessarily mean the same for a part of the system (A ⊂ Σ).

Only in exceptional situations in which the interactions and correlations between the
subsystem of interest (“local", A) and the rest of the world (“rest", Σ/A) can be neglected,
and as such where the total wave function has a factorized form

ΨΣ ' ψA ⊗ΦΣ/A , (60)

can we describe the local system A in terms of a wave function. Whenever the factoriza-
tion (60) fails, system A is a mixture described by a density matrix.

Quantum measurement is a process in which the factorized state (60), where ψA is the
quantum state of interest and the measurement device Φ0 is part of ΦΣ/A, is brought into
an entangled state, triggered by a spacetime pointlike interaction event [7,46,49].

Even a macroscopic system can be brought to the pure-state form ψA, as in (60), at
sufficiently low temperatures. At T = 0, any system is in its quantum-mechanical ground
state; see [15–26] for efforts to realize such macroscopic quantum states experimentally at
very low temperatures.

Vice versa, the classical equations of motion describe the CM of a macroscopic body at
finite temperatures. When the following three conditions are met,

(i) for macroscopic motions (i.e., h̄ ' 0), the Heisenberg relation does not limit the
simultaneous determination (i.e., the initial condition) for the position and momentum

(ii) there is a lack of quantum diffusion due to large mass (i.e., a large number of atoms
and molecules composing the body)

(iii) there is a finite body temperature, implying thermal decoherence and the mixed-state
nature of the body

then the CM of a body has a unique trajectory [1]. Newton’s equations for it then follow
from the Ehrenfest theorem. If the quantum fluctuation range Rq is not larger than the size
of the body, i.e., if Q = Rq/L0 . 1, then such a trajectory can be regarded as the classical
trajectory of that body.

To summarize, introduction of the quantum ratio is an attempt to move beyond the
familiar ideas on the emergence of classical physics from QM, such as large action, the
semiclassical limit (or h̄ → 0), and Bohr’s correspondence principle (or environment-
induced decoherence) [9–14]. Clearly, there is no sharp boundary between where and
when QM or classical mechanics respectively describe a given system more appropriately.
The quantum ratio is a proposal for an approximate but simple universal criterion for
characterizing the two kinds of physical systems: quantum (Q� 1) and classical (Q . 1).

Author Contributions: Conceptualization, K.K. and H.-T.E.; methodology, K.K.; validation, H.-T.E.;
formal analysis, K.K.; original draft preparation, K.K.; review and editing, K.K. and H.-T.E. All
authors have read and agreed to the published version of the manuscript.

Funding: The work by K.K. is supported by the INFN special initiative project grant GAST (Gauge
and String Theories).

Acknowledgments: We thank Francesco Cappuzzello, Giovanni Casini, Marco Matone, Pietro
Menotti, and Arkady Vainshtein for discussions.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Variational Solution for SG Wavepackets

The Schrödinger Equation (33) can be solved by separation of the variables

Ψ(r, t) = χ(x, t)η(y, t)ψ(z, t) . (A1)
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As the motions in the x and y directions are free ones, we focus on ψ(z, t).
We recall Dirac’s variational principle [50]. Consider the effective action

Γ[ψ] =
∫

dt 〈ψ(t)|(i∂t − Ĥ)|ψ(t)〉 . (A2)

Then, the variation with respect to |ψ〉 and 〈ψ|

δΓ[ψ]
δψ

= 0 for all ψ with 〈ψ|ψ〉 = 1 , (A3)

i.e., requiring that the effective action Γ be stationary against arbitrary variations of the
normalized wave function, which vanish at t→ ±∞, is equivalent to the exact Schrödinger
equation (this has been applied in a study of semiquantum chaos in a double-well oscillator
in [51], but can be used in quantum field theory as well with suitable wave functionals;
see [50,52] for example).

An important property which follows immediately is that orthogonal superpositions
of variational trial eigenstates of the Hamiltonian evolve independently without interfering
with each other. Let |ψ〉 = |ψ1〉| ↑〉+ |ψ2〉| ↓〉〉 be the sum of the two orthogonal spin-up
and spin-down eigenstates of

Ĥ =
1

2m
p̂ 2

z + µ b0 zσz (A4)

in the Stern–Gerlach setup (with B = (0, 0, b0z)). Then, the effective action becomes a sum
of two independent terms,

∫
〈ψ1| . . . |ψ1〉 and

∫
〈ψ2| . . . |ψ2〉, which can be varied separately.

We choose the following normalized Gaussian trial wave functions, which are suitable
for the effectively one-dimensional problem of particles with mass m and with the magnetic
moment µmoving in a magnetic field ∝ b0z transverse to the beam direction (i.e., x̂):

ψ(z, t) = (2πG(t))−
1
4 exp

{
−
(

1
4G(t) − iσ(t)

)
(z− z̄(t))2 + i p̄(t)(z− z̄(t))

}
(A5)

where G(t), σ(t), p̄(t), z̄(t) are the variational-parametric functions, p̄(t), z̄(t) describe the
momentum and position of the wave packet, and G(t), σ(t) describe the quantum diffusion.
Substituting this into (A2) yields

Γ[ψ] =
∫

dt
{

p̄ ˙̄z− 1
2m

p̄2 ∓ µb0z̄ + h̄
[
σĠ− 2

m
σ2G− 1

8m
G−1

]}
. (A6)

Independent variations with respect to G(t), σ(t), p̄(t), z̄(t) give

˙̄z =
1
m

p̄ , ˙̄p = ∓µb0 , (A7)

Ġ =
4
m

σG , σ̇ = − 2
m

σ2 +
1

8m
G−2 . (A8)

Note that, in the magnetic field of linear inhomogenuity B = (0, 0, b0 z) under consideration
here, the center of the wave packet p̄(t), z̄(t) moves as a classical particle and the diffusion
effects G(t), σ(t) are the same as for a free wave packet.

The solution of Equations (A7) and (A8) is

z̄(t) =
1
m
(∓1

2
µ b0 t2 + p̄0t) + z̄0 ; p̄(t) = ∓µ b0 t + p̄0 ,

G(t) =
i
m

t + G0 , σ(t) =
i
4
(

i
m

t + G0)
−1 , (A9)

where x̄0, p̄0, and G0 set the initial conditions at t = 0. The diffusion of the wave packet
1
4 G−1 − iσ = 1

2 (
i
m t + G0)

−1 is the same as in the free case, as noted already. We understand
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this as being due to the fact that, in the linear field Bz(z) = b0 z, the force is constant and
the same for each part inside the wave packets ψ1,2(z). The effect of quantum diffusion is
negligible for t� mG0, where G0 is the initial wave packet size.

Substituting (A9) into (A5) yields our variational solution of the Schrödinger equation.
The wave packets for spin-up and spin-down states remain in coherent superposition but
move independently (see Figure 4).
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Abstract: The loss of any symmetry in a system leads to quantum problems that are typically very
difficult to solve. Such a situation arises for particles with anisotropic mass, like electrons in various
semiconductor host materials, where it is known that they may have an anisotropic effective mass. In
this work, we consider the quantum problem of a spinless charged particle with anisotropic mass
in two dimensions and study the resulting energy and eigenstate spectrum in a uniform constant
perpendicular magnetic field when a Landau gauge is adopted. The exact analytic solution to the
problem is obtained for arbitrary values of the anisotropic mass using a mathematical technique that
relies on the scaling of the original coordinates. The characteristic features of the energy spectrum
and corresponding eigenstate wave functions are analyzed. The results of this study are expected to
be of interest to quantum Hall effect theory.

Keywords: charged particle; magnetic field; anisotropic mass; Landau states

1. Introduction

Great advances in the fields of nanotechnology and low-dimensional systems have
enabled the precise, controlled fabrication of materials at atomic and molecular scales. The
electron’s quantum mechanical nature is very pronounced in this regime. Therefore, there
is a great potential payoff that electronic devices built on nanoscale may manifest many
desirable quantum properties. This means that current science and technology may be at
the cusp of major developments that can fundamentally change our life for many decades to
come. Low-dimensional systems, in particular two-dimensional (2D) systems of electrons
are seen as some of the most fascinating systems for meeting the technological challenges
of the future [1–5]. The great interest in 2D systems of electrons stems from the fact that
the combination of low-dimensionality, confinement, discreteness of the electron’s charge,
electron’s quantum spin and interaction/correlation effects can lead to very intriguing
quantum phenomena [6,7]. The application of new and extraordinary experimental tools,
in conjunction with the production of novel materials, has created an urgent need for a
better understanding of the many novel unexpected physical phenomena that are observed
under these conditions [8,9].

The application of a strong uniform constant magnetic field perpendicular to a 2D
system of electrons dramatically changes its physics. As a matter of fact, a 2D system of
electrons in a perpendicular magnetic field exhibits remarkable quantum phenomena at
very low temperatures. Two novel specific physical phenomena, the integer quantum Hall
effect (IQHE) [10] and fractional quantum Hall effect (FQHE) [11], stand out as two of
the most important discoveries in condensed matter physics over the last decades. The
appearance of plateaus in the Hall resistance plot as a function of the magnetic field was an
unexpected finding. The Hall resistance on these plateaus is quantized at RH = h/(ν e2)
values, where h is the Planck constant, e is the magnitude of electron’s charge and the
quantum number ν is the integer (1, 2, etc.) for the IQHE or fractional (1/3, 1/5, etc.) for
the case of the FQHE.
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The IQHE has a simpler explanation that originates from the quantum physics of
single-particle states in a perpendicular magnetic field. On the other hand, the FQHE
represents a particular example of a novel collective quantum liquid state of matter that
originates, in a unique way, from strong electronic interactions/correlations. For both
cases, the first step in comprehending the phenomena is to consider the solution of the
quantum problem of a spinless charged particle in a 2D system subject to a perpendicular
magnetic field. This quantum problem was solved by Landau a long time ago [12]. The
model typically assumes that charged particles (for instance, electrons) with a fixed given
isotropic mass are confined in a 2D system that is subjected to a strong, uniform, constant
and perpendicular magnetic field. The main feature of the quantum solution is that the
resulting energy spectrum consists of massively degenerated discrete quantum states
known as Landau levels which are separated from each other by an energy gap. For a given
Landau level, the eigenstate spectrum of the many degenerated wave functions describes
states with the same kinetic energy quantized by the application of the magnetic field.

Within the realm of quantum mechanics, the kinetic energy of an electron moving in a
perpendicular magnetic field is quantized to values of h̄ ωc/2, 3 h̄ ωc/2, 5 h̄ ωc/2, and so
on, where h̄ = h/(2 π) is the reduced Planck’s constant and ωc is the cyclotron angular
frequency. The energy gap between two neighboring Landau levels is h̄ ωc while h̄ ωc/2 is
known as the lowest Landau level energy. The number of eigenstates in each Landau level
represents the degeneracy of that level and is proportional to the value of the magnetic field
(B) and to the area (A) of the 2D sample, Ns = B A/Φ0 where Φ0 = h/e is the magnetic
flux quantum. Note that the degeneracy, Ns, of each Landau level increases with increasing
the magnetic field. A key parameter that controls the properties of the system is the filling
factor, ν, which is defined as the ratio of the number of electrons, N, to the degeneracy
(number of available states) of each Landau level, ν = N/Ns. In fact, the filling factor
represents exactly the quantum number, ν, in the expression for the Hall resistance plateaus,
RH . This means that IQHE occurs when the filling factor, ν, is an integer, while the FQHE
happens when ν is fractional.

In the extreme quantum limit of a very high perpendicular magnetic field, the de-
generacy of each Landau level becomes so large that all electrons may be accommodated
in the lowest Landau level, with a negligible admixture of higher Landau levels. In fact,
some of most important FQHE liquid states occur when the lowest Landau level is frac-
tionally filled with electrons. Under these conditions, the kinetic energy of the electrons
is essentially quenched to a constant value (that corresponds to the lowest Landau level
energy per electron). The electrons also have a quantum spin that couples to the magnetic
field. The energy associated with this coupling is known as Zeeman energy and this is
smallest when the quantum spin of the electrons is aligned with the magnetic field. For this
reason, and to simplify the treatment, one may assume that the quantum spin of electrons
is “frozen” by the magnetic field and, therefore, the electrons may be seen as effectively
spinless charged particles.

As the magnetic field varies, the stabilization of the novel quantum phases of electrons
happens at special filling factors that generally have odd denominators. Among them,
the most robust FQHE states correspond to filling factors ν = 1/3 and 1/5 and are well
described by Laughlin’s theory in terms of trial wave functions [13]. Differently from
odd-denominator-filled states in the lowest Landau level, even-denominator-filled states
with filling factors ν = 1/2, 1/4 and 1/6 do not show typical FQHE features and behave as
isotropic compressible metallic Fermi liquid states [14]. The composite fermion theory [15]
for the FQHE sheds light on the Fermi-liquid nature of such even-denominator-filled states.
On the other hand, Wigner crystallization occurs when the filling factor becomes around,
or less than, ν = 1/7, as seen in various studies [16–20].

As discussed above, the 2D model of a charged particle in a uniform constant perpen-
dicular magnetic field has many applications in quantum mechanics ranging from theories
of magnetism a century ago [21,22] to quantum Hall effect phenomena during the last few
decades [23–32]. The model in which a charged particle has a given constant isotropic
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mass was solved exactly by Landau in a work where the so-called Landau gauge was first
introduced [12]. The exact solution of the stationary Schrödinger equation in this case is
relatively straightforward for such a gauge due to the possibility of separating variables
and writing the overall wave function as the product of a plane wave for one position
variable and a displaced one-dimensional (1D) harmonic oscillator for the other one.

However, it is well known that any loss of symmetry in a quantum system leads to
mathematical problems that generally become much more difficult to solve. A common
situation of this nature arises when we deal with particles such as electrons trapped in
semiconductor materials. For these conditions, the electrons may possess an anisotropic
effective mass. The purpose of this work is to consider the 2D model of a spinless charged
particle with anisotropic mass in a uniform constant perpendicular magnetic field and show
that this quantum problem has a simple and exact analytic solution, despite the presence
of mass anisotropy. The mathematical approach that we use is based on the introduction
of “new” scaled distorted coordinates. The method allows one to transform the original
problem of a charged particle with anisotropic mass in standard coordinates to that of a
charged particle with isotropic effective mass in “new” scaled distorted coordinates.

The paper is organized as follows: In Section 2, we explain the quantum solution for the
case of a charged particle with constant isotropic mass in a uniform constant perpendicular
magnetic field. In Section 3, we provide the exact solution when the mass is anisotropic
and point out the key details of the adopted mathematical method. In Section 4, we discuss
the subtle effects that may come from the anisotropic mass of electrons in quantum Hall
systems. In Section 5, we provide some concluding remarks.

2. Results—Isotropic Mass

In this section, we focus our attention on the quantum problem of a spinless particle
with a constant isotropic mass, m > 0, and charge, q, moving in 2D space in the presence of
a uniform constant perpendicular magnetic field. We clarify that by a constant quantity
we mean one that does not change with time. A particle with a constant isotropic mass is
a rather conventional one. For instance, it can be an electron with a bare mass, me, and a
negative charge in studies of 2D electronic systems under ideal conditions. For more realistic
experimental situations, one must take into account the fact that 2D systems of electrons
are often created at the interface of a semiconductor heterojunction and/or heterostructure,
such as GaAs/AlGaAs. Since electrons are typically confined in the conduction band of a
given host semiconductor, the mass, m, for this case would represent the electron’s effective
band mass for those structures that are known to have a constant isotropic effective mass
(for example, it is known that the effective band mass of electrons is isotropic and has the
value, m = 0.067 me, in a GaAs host semiconductor).

Providing certain details to the solution of this known problem is beneficial for un-
derstanding how the emerging new problem of a particle with anisotropic mass can be
mapped back to the known results. To begin with, the magnetic field perpendicular to the
2D plane is written as follows:

~B = (0, 0, Bz) . (1)

Any magnetic field is given in terms of a vector potential, so that

~B = ~∇× ~A(x, y) , (2)

where ~∇ =
(

∂
∂x , ∂

∂y , ∂
∂z

)
is the nabla or del operator, ∂

∂x , ∂
∂y , ∂

∂z are partial derivatives and
~A(x, y) is the vector potential for the given magnetic field. The choice of ~A(x, y) is not
unique. The simplest choice is the so-called Landau gauge, which may take the following
two flavours:

~A(x, y) = Bz (0, x, 0) , (3)

or
~A(x, y) = Bz (−y, 0, 0) . (4)

49



Symmetry 2024, 16, 414

In this work, we choose the Landau gauge in Equation (3).
The general quantum Hamiltonian is

Ĥ =
1

2 m

[
~̂p − q ~A(x, y)

]2
, (5)

where ~̂p = ( p̂x, p̂y) is the 2D linear momentum operator. The x and y components of the
2D linear momentum operator may be explicitly written as follows:

p̂x = −i h̄
∂

∂x
; p̂y = −i h̄

∂

∂y
, (6)

where i =
√
−1 is the imaginary unit and h̄ is the reduced Planck’s constant. One must

notice that the interaction of the particle’s quantum spin with the magnetic field (the
Zeeman effect) is not included in the Hamiltonian of Equation (5), since, for simplicity, we
are assuming a spinless charged particle.

One can write the quantum Hamiltonian as follows:

Ĥ =
1

2 m

[
p̂x − q Ax(x, y)

]2
+

1
2 m

[
p̂y − q Ay(x, y)

]2
. (7)

For the Landau gauge in Equation (3), the quantum Hamiltonian in Equation (7) becomes

Ĥ =
p̂2

x
2 m

+

(
p̂y − q Bz x

)2

2 m
=

1
2 m

[
p̂2

x +
(

p̂y − q Bz x
)2
]

. (8)

The stationary Schrödinger equation to solve is

Ĥ Ψ(x, y) = E Ψ(x, y) , (9)

where E is the energy and Ψ(x, y) is the wave function. In order to solve this equation, one
envisions the particle as being constrained in a 2D area, Lx Ly, where −Lx/2 ≤ x ≤ +Lx/2,
0 ≤ y ≤ Ly and Lx → ∞ and Ly → ∞. Hence, in the x-direction, one has −∞ < x < +∞.
On the other hand, periodic boundary conditions (PBC) for the wave function are imposed
in the y-direction:

Ψ(x, y) = Ψ(x, y + Ly) . (10)

Given the form of the Hamiltonian in Equation (8) and the PBC choice in Equation (10),
one searches for a wave function that solves Equation (9) as a product of a plane wave state
in the y-direction and a function that depends on coordinate x in the other direction:

Ψ(x, y) =
ei ky y
√

Ly
Φ(x) . (11)

The overall normalization of the wave function must be such that
∫ +∞

−∞
dx
∫ Ly

0
dy |Ψ(x, y)|2 = 1 . (12)

A substitution of the expression from Equation (11) into Equation (9) gives
[

p̂2
x

2 m
+

(h̄ ky − q Bz x)2

2 m

]
Φ(x) = E Φ(x) . (13)

One can rewrite Equation (13) as
[

p̂2
x

2 m
+

m
2

(
q Bz

m

)2(
x− h̄ ky

q Bz

)2
]

Φ(x) = E Φ(x) . (14)
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At this juncture, we introduce the explicit definition of the cyclotron angular frequency:

ωc =
|q| |Bz|

m
> 0 , (15)

where |q| > 0 is the magnitude of the charge of the particle, |Bz| > 0 is the magnitude of the
magnetic field perpendicular to the 2D plane and m > 0 is the constant isotropic mass of the
charged particle. Classically speaking, a charged particle, such as the one described above,
moving perpendicular to the direction of a uniform constant magnetic field, will undergo a
uniform circular motion with a given rotational cyclotron frequency, fc = ωc/(2 π). The
cyclotron frequency is independent of the radius of the circle of rotation and velocity. All
charged particles with the same charge-to-mass ratio will undergo a circular motion with
the same frequency.

With help from the definition in Equation (15), one can write Equation (14) as follows:
[

p̂2
x

2 m
+

m
2

ω2
c

(
x− h̄ ky

q Bz

)2
]

Φ(x) = E Φ(x) . (16)

The PBC in the y-direction, as specified by Equation (10), fixes the allowed values of the ky
wave vector:

ky =
2π

Ly
j ; j = 0,±1,±2 . . . (17)

Note that Equation (16) represents a displaced 1D quantum oscillator centered at h̄ ky/(q Bz),
which has a known solution. The resulting discrete energy eigenvalues are

En = h̄ ωc

(
n +

1
2

)
; n = 0, 1, . . . . (18)

These are the Landau levels. Note that the discrete Landau level energies are highly degen-
erate since the quantum number, ky, does not enter the energy expression. The normalized
eigenfunctions corresponding to the above energy levels may be written as follows:

Ψn ky(X, y) =
ei ky y
√

Ly
Φn(X) , (19)

where

X = x− h̄ ky

q Bz
, (20)

and Φn(X) is the normalized eigenfunction of a 1D harmonic oscillator of mass m and
frequency ωc. Such a wave function is given by

Φn(X) = Nn exp
(
−α2 X2

2

)
Hn(α X) , (21)

where

Nn =

√
α√

π 2n n!
, (22)

is the normalization constant,

α =

√
m ωc

h̄
, (23)

is a parameter with the dimensionality of an inverse length and Hn(x) are the Hermite
polynomials. By using Equation (15), one sees that

α =

√
m ωc

h̄
=

√
|q| |Bz|

h̄
=

1
lB

, (24)
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where

lB =

√
h̄

|q| |Bz|
, (25)

is known as the magnetic length.
By looking at the expression obtained in Equation (19), one concludes that the normal-

ized eigenfunctions for a charged particle studied in a Landau gauge look like stripes [33]. It
is straightforward to note that the probability density for such eigenfunctions, |Ψn ky(X, y)|2,
depends only on the variable X (thus, x), but not y. This means that one can view such
states as extended in one direction (in this case, along the y-direction), but exponentially
localized around a given set of centers in the other perpendicular direction (in this case, the
x-direction).

3. Results—Anisotropic Mass

Let us now consider the same quantum problem but with the assumption that the
charged particle has a constant anisotropic (effective) mass of the following form:

mx > 0 ; my > 0 , (26)

along the respective x and y directions. This situation would apply to electrons hosted in
semiconductors in which the lowest energies of the conduction band are locally approxi-
mated in parabolic form by an anisotropic dispersion relation:

E(~k) = E0 +
h̄2

2 mx
(kx − k0x)

2 +
h̄2

2 my
(ky − k0y)

2 +
h̄2

2 mz
(kz − k0z)

2 , (27)

where E(~k) is the energy of an electron at wavevector~k in that band, E0 is the minimum
energy of that band, mx,y,z are the effective masses along the different axes and ~k0 =
(k0x, k0y, k0z) represents the wavevector of the conduction band minimum (that, in principle,
may be offset from the zero value). The effective (isotropic or anisotropic) masses of
conduction band electrons in common host semiconductor materials (GaAs, GaP, InAs,
AlAs, Si, Ge, etc.) are all positive. However, if semiconductor band structures of certain
exotic materials exhibit saddle points (e.g., in heterostructures, curved 2D materials, or
topological insulator systems), there could be situations where the effective mass is positive
in one direction (mx > 0) and negative in another (my < 0). Dealing with the concept of a
particle with a negative mass, either classically or quantum mechanically, is beyond the
scope of this work.

The scenario envisioned by Equation (26) would lead to a starting quantum Hamiltonian

Ĥ =
1

2 mx

[
p̂x − q Ax(x, y)

]2
+

1
2 my

[
p̂y − q Ay(x, y)

]2
. (28)

For the assumption of a Landau gauge, as in Equation (3), one has

Ĥ =
1

2 mx

(
−i h̄

∂

∂x

)2

+
1

2 my

(
−i h̄

∂

∂y
− q Bz x

)2

. (29)

The Hamiltonian in Equation (29) is the anisotropic mass counterpart to that in Equation (8),
with the 2D linear momentum operators written in explicit form.

The idea behind the solution of this quantum problem is to try to identify some “new”
coordinates that will allow us to see the problem of a particle with anisotropic mass in
“old” coordinates as that of a “new” particle with constant “isotropic” mass in these “new”
coordinates. This means that the solution of the problem will be achieved elegantly if this
process comes to fruition, given that, at this juncture, one can rely on already known results.
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Being inspired by this idea, the mathematical approach that we follow is centered on
scaling the original coordinates, x and y. We start by scaling the variable x to γ x, where γ
is seen as a real positive scaling parameter whose precise value would be determined at a
later stage. Let us write Equation (29) as

Ĥ =
1

2 mx

[
−i h̄ γ

∂

∂(γ x)

]2

+
1

2 my

[
−i h̄

∂

∂ y
− q Bz

γ
(γ x)

]2

. (30)

Since γ x is going to be one of the “new” scaled coordinate variables, it immediately
transpires that the scaling parameter, γ, can be factorized out of the second term in the
right-hand side expression of Equation (30) if one rescales the other coordinate variable y
to y/γ:

Ĥ =
1

2 mx

[
−i h̄ γ

∂

∂(γ x)

]2

+
1

2 my

[
− i h̄

γ

∂

∂
(

y
γ

) − q Bz

γ
(γ x)

]2

. (31)

At this junction, one can check that the quantum Hamiltonian in Equation (31) can be
rewritten as follows:

Ĥ =
γ2

2 mx

[
−i h̄

∂

∂(γ x)

]2

+
1

2 my γ2

[
−i h̄

∂

∂
(

y
γ

) − q Bz (γ x)

]2

. (32)

Let us choose the value of γ, such that

γ2

2 mx
=

1
2 my γ2 . (33)

This choice leads to
γ2 =

√
mx

my
. (34)

For the choice of γ2, as in Equation (34), one has

γ2

mx
=

1
my γ2 =

1√mx my
; γ2 =

√
mx

my
. (35)

This means that one can use the result from Equation (35) to write the Hamiltonian in
Equation (32) as

Ĥ =
1

2 mc

(
−i h̄

∂

∂x ′

)2

+
1

2 mc

(
−i h̄

∂

∂y ′
− q Bz x ′

)2

, (36)

where the two “new” scaled coordinate variables are

x ′ = γ x ; y ′ =
y
γ

, (37)

and
mc =

√
mx my , (38)

represents the effective cyclotron mass of a particle with anisotropic mass [34].
One can rewrite the quantum Hamiltonian in Equation (36) in a more compact form

as follows:

Ĥ =
1

2 mc

[
p̂2

x ′ +
(

p̂y ′ − q Bz x ′
)2
]

, (39)
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where ~̂p ′ = ( p̂x ′ , p̂y ′) is the 2D linear momentum operator with respect to the “new”
primed coordinates.

A comparison of the result from Equation (39) with the original Hamiltonian for a
particle with constant isotropic mass, as seen in Equation (8), indicates that the problem
of a particle with anisotropic mass in variables x and y has been transformed to that of a
particle with isotropic mass, mc =

√mx my in terms of “new” scaled variables x ′ and y ′.
Note that dx dy = dx ′ dy ′. However, one must be careful to write

∫ +∞

−∞
dx
∫ Ly

0
dy =

∫ +∞

−∞
dx ′

∫ Ly/γ

0
dy ′ , (40)

when the overall normalization condition of the wave function is applied. The solution of
the quantum problem for a particle with constant isotropic mass is well known. Thus, one
can immediately use such known results with the only consideration taken that all expres-
sions must be written in terms of the “new” primed variables. The energy eigenvalues are

En = h̄ ω ′c

(
n +

1
2

)
; n = 0, 1, . . . . (41)

where

ω ′c =
|q| |Bz|

mc
. (42)

Note that ω ′c takes the place of the cyclotron angular frequency, ωc, for the case of a particle
with constant isotropic mass, m. Likewise, mc =

√mx my takes the place of mass, m, for the
case of a particle with constant isotropic mass.

With some care, one can write the normalized eigenfunctions corresponding to the
above energy levels as follows:

Ψn k ′y(X ′, y ′) =
ei k ′y y ′

√
Ly/γ

Φn(X ′) , (43)

where

X ′ = x ′ −
h̄ k ′y
q Bz

, (44)

and Φn(X ′) is the normalized eigenfunction of a displaced 1D harmonic oscillator of
mass, mc, and frequency, ω ′c , in “new” primed coordinates. In order to have the PBC in
Equation (10) still be valid, one has

k ′y = γ ky , (45)

where ky is given from Equation (17).
The displaced 1D quantum oscillator wave function in the “new” primed coordinates

is written as follows:

Φn(X ′) = N ′n exp

(
−α ′2 X ′2

2

)
Hn(α

′ X ′) , (46)

where

N ′n =

√
α ′√

π 2n n!
, (47)

and

α ′ =

√
mc ω ′c

h̄
. (48)
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4. Discussion

Classically speaking, a charged particle experiences a magnetic force when moving
through a magnetic field. The fundamental question that one must answer is what happens
to the particle if this magnetic field is uniform over the motion of the charged particle. The
simplest case occurs when a charged particle with fixed isotropic mass moves perpendicular
to a uniform constant magnetic field. Since the magnetic force is perpendicular to the
direction of travel, a charged particle follows a circular path in a magnetic field. Another
way to look at this is that the magnetic force is always perpendicular to velocity, so that it
does no work on the charged particle. As a result, the particle’s kinetic energy and speed
(magnitude of velocity) remain constant. In a nutshell, the direction of motion is affected
but not the speed. The classical description above becomes more nuanced when the charged
particle has a constant anisotropic mass with values mx 6= my along the respective x and y
directions. We have investigated the classical 2D motion of a charged particle with such an
anisotropic mass in the presence of a uniform constant magnetic field that is perpendicular
to the plane of motion and have found that the trajectory of the particle for such a case is
elliptical [34]. We also have verified that, as expected, such a trajectory becomes circular
when the mass becomes isotropic (mx = my). Overall, it was found that the resulting
classical motion and trajectory of such a particle is very sensitive to the direction of the
initial velocity.

The solution of the quantum counterpart to this problem is much more complicated.
The main reason is that, unlike the classical scenario, the quantum Hamiltonian is given in
terms of the vector potential and not the magnetic field. There are different vector potentials
that can generate the same magnetic field. The freedom to choose various vector potentials,
~A(x, y) , that lead to the same magnetic field is known as the choice of the gauge. The
most common gauges used are the symmetric gauge and Landau gauge. A step-by-step
solution to the quantum problem of a charged particle with constant isotropic mass in a
perpendicular uniform constant magnetic field for the case of a symmetric gauge is readily
available in the literature [35]. The quantum problem of a charged particle with isotropic
mass is easier to solve for a Landau gauge. By providing the full details of such a solution,
we reminded the reader of the peculiarities of the Landau gauge and also prepared the
ground for tackling the much more difficult quantum problem for the counterpart case
of a charged particle with anisotropic mass. It is shown in this work that the quantum
problem of a charged particle with anisotropic mass in a perpendicular uniform constant
magnetic field can be solved rather elegantly by adopting a mathematical method that
rescales the original coordinates to new distorted ones. This procedure allows one to restore
the mass symmetry of the stationary Schrödinger differential equation, albeit in “new”
distorted coordinates.

The quantum problem of a charged particle (with or without an isotropic mass)
undergoing 2D motion in a perpendicular uniform constant magnetic field leads to the
physics of Landau states. The properties and the nature of Landau states is fundamental to
explain a plethora of important phenomena in physics, such as the IQHE and FQHE. The
unique nature of the IQHE/FQHE phases has always been fertile ground for paradigm-
shifting ideas in theoretical condensed matter physics and materials science. Novel theories,
phases of matter and concepts such as topological states, incompressible quantum Hall
liquids or composite fermions are now well-known in the literature and all originate from
studies of these two phenomena. For all these cases, the starting model assumes a standard
Coulomb interaction potential between the charged particles. Obviously, a Coulomb
interaction potential is isotropic, in the sense that the interaction energy of any pair of
charged particles depends only on their separation distance. The same presumption is valid
for many inherently anisotropic phases, such as charge density waves, liquid crystalline
phases, Wigner solid phases, etc. The assumption made is that the interaction potential is
isotropic (for instance, a Coulomb interaction potential) and there is no intrinsic anisotropy.

However, in a real quantum Hall sample, electrons may possess an anisotropic effective
mass tensor or may interact via an effective anisotropic interaction potential (mediated from
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the substrate). This situation calls for a re-examination of the role played by anisotropic
factors such as an anisotropic effective mass [36]. To be more specific, we consider a 2D
system of charged particles with anisotropic band mass values, mx > 0 and my > 0, along
two respective directions labelled x and y. The charged particles interact with the usual
(isotropic) Coulomb interaction potential:

vC(~ri −~rj) =
k q2

√
|xi − xj|2 + |yi − yj|2

, (49)

where k is Coulomb’s electric constant, q is the charge of the particles and~ri −~rj = (xi −
xj, yi − yj) is the 2D vector that separates the positions of particles i and j. The anisotropic
mass of the charged particles breaks the rotational symmetry of the quantum kinetic
energy operator (with or without a magnetic field). The transformation of variables in
Equation (37) allows one to restore the rotational symmetry of the quantum kinetic energy
in the “new” scaled coordinates. The same transformation of coordinates, when applied
to the Coulomb interaction potential, would transform it into the following anisotropic
Coulomb interaction potential:

vγ(~r ′i −~r ′j ) =
k q2

√
|x ′i−x ′j |2

γ2 + γ2 |y ′i − y ′j |2
, (50)

where γ > 0 is an interaction anisotropy parameter that leads to anisotropy when different
from 1. This parameter (γ) is the same as the scaling parameter of the coordinates that was
discussed earlier. From the perspective of Equation (50), one can view the directions of x
and y (primed or unprimed) as corresponding to the two principal axes of the dielectric
tensor. The potential becomes the standard isotropic Coulomb interaction potential for
γ = 1. In primed variables, this anisotropic Coulomb interaction potential (for γ 6= 1)
breaks the usual assumption of isotropic pair interaction potentials. It is expected that
an anisotropic interaction potential of this nature can steer us towards novel conceptual
frameworks [37]. The idea is to deal with the rarely tackled, but considerably more difficult,
problem of understanding how anisotropic order arises in a quantum system in which
the constituent particles interact with an anisotropic interaction potential. An anisotropic
interaction potential, alone or in conjunction with other intrinsic degrees of anisotropy in
the system, may be seen as a game changer that can lead to novel physics in the field [38,39].

The interaction/correlation effects in systems of electrons may lead to the formation
of novel quantum phases of matter. Under certain conditions, one can describe various
properties in terms of the underlying topology of the system. This is the case for topological
insulators in general and FQHE systems in particular. In fact, FQHE liquids are the ultimate
examples of a phenomenon with topological features. As already noticed, the FQHE is
observed in certain 2D materials (in the presence of a large perpendicular magnetic field
near absolute zero temperature). The quantum effects related to the magnetic field cause a
gap to open up between energy bands in the bulk material. As a result, the electrons in the
bulk become localized (they cannot move freely). This leads to bulk states of electrons that
represent an insulator. However, the electrons at the edge can still move and, thus, they
can conduct (this is the physics of “edge states”), while the bulk phase remains insulating.
Overall, such phases are characterized by the presence of an energy band-gap within the
bulk of the material, while the material’s edge/boundary or surface hosts topologically
protected gapless conducting modes. The non-trivial topology of the FQHE gives rise
to fractionally charged elementary excitations which, in some cases, may even possess
non-Abelian braiding statistics (for instance, the Pfaffian state at filling factor ν = 5/2).
The interaction/correlation effects between electrons are the key ingredients that lead to
this sort of physics (in fact, there is no FQHE without interactions between electrons).
The predominant view since the time of Laughlin’s theory [13] has been that FQHE states
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represent isotropic quantum liquid phases that have rotational symmetry. However, recent
work [40] in quantum Hall fluids has revealed the importance of a novel internal geometric
degree of freedom (or metric) that has been previously overlooked. It has been pointed out
that topological liquid phases arising in the FQHE regime are not required to be rotationally
invariant. This means that the presence of an internal anisotropy (such as anisotropic
mass and/or anisotropic interaction potential) may drastically modify our view on the
remarkable topological properties of such systems. Therefore, the quantum solution of this
problem for the case of a charged particle with an anisotropic mass (mx 6= my) is very useful
for analyzing situations in which the charged particles (for instance, electrons and/or holes)
possess a pronounced anisotropic (effective) mass.

5. Conclusions

The quantum problem of a charged particle confined in 2D space in a uniform constant
perpendicular magnetic field is the foundation of many important phenomena in physics,
where the IQHE/FQHE stand out as two major discoveries from the last few decades.
The basic features of all quantum Hall phenomena were initially understood by using the
standard model of charged particles (electrons) with constant isotropic mass in a uniform
constant perpendicular magnetic field. However, experimental sample refinements have
led to an increased interest in grasping more subtle systems involving electrons that possess
an effective anisotropic band mass.

Breaking any symmetry in a quantum system leads to problems that are not easy to
solve in analytical form. The case of an (effective) particle with anisotropic mass is one
such scenario that is important not only from a mathematical perspective, but also for real
experimental applications, for instance when dealing with electrons in a semiconductor
material. As a matter of fact, the concept of an effective anisotropic mass tensor is routine
when it comes to studying the properties of electrons in periodic potentials, such as the ones
created by the crystal structure of many semiconductor materials. The standard studies of
2D systems of electrons in a perpendicular magnetic field originally involved GaAs/AlGaAs
heterostructures. In these systems, the electrons typically manifest an (effective) isotropic
mass. However, the improvements in experimental samples and materials now allow one
to study 2D systems of electrons for regimes that were not accessible before, including
those in which the electrons manifest an (effective) anisotropic mass. Any source of internal
anisotropy in a quantum system may lead to novel subtle quantum phenomena, involving
scenarios that may have not been observed before. This means that the system’s symmetry (or
lack of it) influences the patterns of various observed quantum phenomena. In particular, this
work further emphasizes the role that symmetry (or lack of it) plays in quantum problems
that involve 2D systems of charged particles with anisotropic mass subject to a perpendicular
magnetic field.

For a 2D system of electrons with an applied uniform constant magnetic field in the
z-direction and a homogeneous electric field, Ex, in the x-direction, all states drift in the
transverse y-direction (where the plane waves are). As a result, the current density in the
y-direction, jy, will be given by

jy = ν
e2

h
Ex , (51)

where, for simplicity, we consider IQHE states with filling factor, ν = 1, 2, . . .. Sam-
ple details, including effects from the presence of an anisotropic (effective) mass of the
electrons, are not expected to play any role in the measured Hall resistance plateaus,
RH = |Vy/Ix| = h/(ν e2), where Vy is the Hall (transverse) voltage and Ix is the longi-
tudinal current. However, the ranges of the magnetic field and/or the electron density
where the plateaus appear will be affected by an anisotropic mass. The quantized Hall
resistance shows a universal behavior, but it is known that the current distribution in
real quantum Hall devices is quite complicated [41]. Therefore, an anisotropic mass of
the charge carriers is expected to affect the patterns of the current distribution, too. The
occurrence of such phenomena may be detected from the experimental observation of
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the unexpected magneto-transport anisotropy features of a 2D system of electrons in the
quantum Hall regime.

Another interesting scenario where an anisotropic mass may have a profound impact
arises when one discusses the effects of Earth’s gravity on the quantum Hall behavior of
2D systems of electrons. To this effect, one may consider a 2D quantum Hall sample of
electrons oriented in such a way that the gravitational field of the Earth acts on the 2D
plane of the sample perpendicular to the magnetic field. The effect of gravity for such
an orientation is to act as an effective in-plane constant homogeneous electric field due
to the same linear nature of the gravitational potential. For the geometry adopted in this
work, one may choose the gravitational field to act in the x-direction. The new twist that
comes from the (effective) mass anisotropy of the electrons is that the resulting gravitational
potential energy has the gravitational field coupled to the mass of the electrons in the
x-direction, resulting in an energy term of the form, mx g x, where g is the acceleration due
to gravity on the Earth’s surface. If the quantum Hall effect is affected by the gravitational
field, the effects of the mass anisotropy should show up as a modification to the current
density expression when one uses the quantum Hall effect to probe the inverse-square law
of gravity, as recently suggested [42]:

jy(mx) =

(
1 +

mx g
e Ex

)
ν

e2

h
Ex . (52)

This additional energy term correction due to Earth’s gravity (∝ mx/Ex) may lead to subtler
effects than the case study of a constant isotropic mass, m, previously considered in a recent
work, which takes a fresh look at the influence of gravity on the quantum Hall effect states
(more precisely, on the IQHE states) of electrons for a variety of conditions [42].

Based on these considerations, one can promptly recognize the reasons why it is
important to consider the 2D quantum problem of a charged particle with an anisotropic
mass subject to a uniform constant perpendicular magnetic field when a Landau gauge
is adopted. This problem is important to the physics of the quantum Hall effect for
those situations in which the charged particles (electrons) have an effective band mass
anisotropy [43–47]. It is shown that this model, despite exhibiting no axial symmetry,
allows an exact analytic calculation of the energy and eigenfunctions for any value of
anisotropic mass and magnetic field. The solution to the quantum problem is obtained
elegantly by a scaling transformation of the original coordinates. The results of this study
would be of interest to a broad audience of individuals working in quantum mechanics, as
well as researchers that study the applications of quantum theory in materials science.
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Abstract: The Greenberger-Horne-Zeilinger version of the Einstein-Podolsky-Rosen (EPR) paradox is
widely regarded as a conclusive logical argument that rules out the possibility of reproducing the
predictions of Quantum Mechanics within the framework of any physical theory sharing the notions
of reality and relativistic causality that we acknowledge as a given in our classical descriptions
of the macroscopic world. Thus, this renowned argument stands as a seemingly insurmountable
roadblock on the path to a very desired, physically intuitive understanding of quantum phenomena
and, in particular, quantum entanglement. In this paper, we notice, however, that the GHZ argument
involves unaccounted spurious gauge degrees of freedom and that it can be overcome once these
degrees are properly taken into account. It is then possible to explicitly build a successful statistical
model for the GHZ experiment based on the usual notions of relativistic causality and physical reality.
This model, thus, completes—in the EPR sense—the quantum description of the GHZ state and paves
the way to a novel intuitive interpretation of the quantum formalism and a deeper understanding of
the physical reality that it describes.

Keywords: quantum mechanics; EPR paradox; Bell’s theorem; GHZ argument; gauge symmetries;
holonomies; hidden variables; statistical physics

1. Introduction

The inability to accommodate the seemingly trivial notions of causality and physical
realism within the current interpretation of the quantum mechanical wavefunction is at the
core of a long lasting debate about the foundations of quantum theory and the role played
by measurements, whose origins go back to the formulation of the renowned Einstein-
Podolsky-Rosen (EPR) paradox almost ninety years ago [1,2]. Solving these key issues
would require developing a description of quantum phenomena in terms of a statistical
model of local hidden variables. Nonetheless, according to the current wisdom, such a
description is not possible in so far as we insist on keeping the notion, also seemingly
trivial, that the observers’ choice of their measurement settings is not constrained by the
actual hidden configuration of the observed system (free-will).

Indeed, several fundamental theorems state that generic models of hidden variables
that share certain intuitive features cannot fully reproduce the predictions of quantum
mechanics [3–12], while carefully designed experimental tests have consistently confirmed
the predictions of the quantum theory and, thus, have ruled out all these generic models of
hidden variables [13–23]. The best known among these theorems is the Bell theorem [3,5–7],
which proves that such generic models of hidden variables cannot reproduce the statisti-
cal correlations predicted by quantum mechanics for the outcomes of long sequences of
strong polarization measurements performed along certain relative directions on pairs of
entangled qubits.

The Greenberger-Horne-Zeilinger version of the Bell theorem [8] is an even more
conclusive proof of the limitations of these generic models of hidden variables, since it
proves that such models cannot reproduce even single outcomes of strong spin polarization

Symmetry 2023, 15, 1327. https://doi.org/10.3390/sym15071327 https://www.mdpi.com/journal/symmetry61
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measurements performed along certain relative directions on three or more entangled
qubits prepared in the so-called GHZ state,

|GHZ〉 ≡ | ↑ ↑ . . . ↑ 〉+ | ↓ ↓ . . . ↓ 〉√
2

. (1)

However, in a series of recent papers [24–27], we have shown that the proof of the Bell
theorem crucially relies on a subtle assumption that is not required by fundamental physical
principles. Namely, we noted that the proof implicitly assumes the existence of an absolute
angular frame of reference with respect to which we can define the polarization properties
of the hypothetical hidden configurations of the pairs of entangled qubits as well as the
orientations of the measurement devices that test them. Furthermore, we showed that such
an absolute frame of reference may not exist if the hidden configurations spontaneously
break the gauge rotational symmetry along an otherwise arbitrary direction.

A simple example that illustrates the absence of an absolute frame is described in
Figure 3 in reference [24]. Let us first consider a Bell-type game played between three
parties located at the vertices of a triangle drawn on a plane. At the start of the game,
each party sets at his/her vertex a reference unit vector contained within the plane. A
long sequence of unit vectors randomly oriented within the plane is then produced at
the center of each of the three edges of the triangle and sent to the two parties located at
their respective ends. Upon receiving a sampled random vector, each party compares its
orientation to the local reference unit vector and produces a binary outcome, either +1
or −1, according to a deterministic response function. In this game, the affine structure
of the euclidean plane allows comparing at once the relative orientations of the reference
unit vectors at the three vertices, as well as the sampled random unit vectors, and, thus,
it defines an “absolute frame of reference”. In precise terms, the plane is equipped with
an equivalence relationship that allows it to univocally define the relative orientation of
vectors located at different sites. It is then straightforward to derive the Bell inequality
for the pairwise correlations between the binary outcomes of the parties. However, it can
be readily seen that such an “absolute frame of reference” does not exist if we consider a
similar Bell-type game played between parties located on the surface of a sphere instead of
a plane: a tangent vector parallel-transported over a closed-loop drawn on the sphere may
acquire a non-zero geometric rotation phase due to a holonomy. Therefore, even though
any two parties can calibrate and agree on a common frame of reference to describe the
relative orientations of their reference unit vectors as well as the orientation of the random
vectors shared between them, there does not exist a common frame of reference upon which
all three parties can agree at once. In order to compare (and maybe constrain) the pairwise
correlations that can be attained in the latter game, it is necessary to set the reference unit
vector of one of the parties as a fixed common frame by taking advantage of the gauge
degrees of freedom involved in the problem.

Gauge degrees of freedom are auxiliary degrees that may appear in the theoretical
models but do not correspond to well-defined degrees of freedom in the described physical
system, so that the predictions of the model cannot depend on them [28]. In fact, theoret-
ical models that involve spurious gauge degrees of freedom may require a gauge-fixing
condition in order to make physically sound predictions. In a Bell experiment, the rel-
ative orientation between the two detectors that test the pairs of entangled qubits is a
well-defined physical degree of freedom that actually determines the correlation between
their outcomes. On the other hand, the global orientation associated with a rigid rotation
of the two detectors is a spurious gauge degree of freedom that should not play any role in
the predictions of any properly defined theoretical model. Similarly, the setting of the three
detectors needed to test the triplets of qubits prepared in the GHZ state is described by a
single physical degree of freedom too, as we shall show later.

Following these insights, we built in [24,25,27] an explicit statistical model of local
hidden variables that fully reproduces the predictions of quantum mechanics for the Bell
states of two entangled qubits while complying with all the required symmetry demands
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and the hypothesis of ’free-will’. Thus, our model completes the description of these
quantum states in the sense advocated by Einstein, Podolsky, and Rosen [1]. However, the
model has been criticized because, even though it strictly complies with Einstein’s causality
principle, it supposedly violates Bell’s definition of locality. In this respect, it is necessary
to remember that Einstein’s causality is a fundamental principle in modern physics that
stems from the Lorentz covariance of the laws that describe the elementary building blocks
of Nature and their interactions, while Bell’s notion of locality arose only as a result of
his intent to formulate Einstein’s principle of causality in a way fit to prove his renowned
theorem [3]. Therefore, wherever Einstein’s causality principle and Bell’s notion of locality
do not agree, compliance with the former must prevail (see the discussion that precedes
Equation (7) and also the discussion that follows Equation (35) for further details).

In this paper, we develop these ideas and build an explicit model of local hidden
variables for the GHZ state of three entangled qubits. The paper is organized as follows.
In Section 2, we review the argument put forward by Greenberger, Horne, and Zeilinger
as a proof of the impossibility of reproducing the quantum mechanical predictions for the
GHZ state within the framework of any model of local hidden variables. In Section 3, we
introduce a simple, explicit model of hidden variables that overcomes this argument. In
Section 4, we extend this model and discuss it in detail. Our conclusions are summarized
in Section 5.

2. The GHZ Paradox

The Greenberger-Horne-Zeilinger spin polarization state of three entangled qubits,
denoted as A, B, and C, is described by the quantum wavefunction:

|Π〉Φ =
1√
2

(
| ↑〉(A)| ↑〉(B)| ↑〉(C) + eiΦ | ↓〉(A)| ↓〉(B)| ↓〉(C)

)
,

where {| ↑〉, | ↓〉} denotes a basis of single particle spin polarization eigenstates along
its locally defined Z-axis. In this state, all three outcomes in every single event of a long
sequence of strong spin polarization measurements performed on each one of the three
qubits along their corresponding Z-axes must be consistently equal, either

S(A)
Z (n) = S(B)

Z (n) = S(C)
Z (n) = +1,

or

S(A)
Z (n) = S(B)

Z (n) = S(C)
Z (n) = −1,

for all n ∈ {1, . . . , N}, with each one of the two possibilities happening with a probability
of 1/2. Here n labels each one of the many repetitions of the experiment, and N is the total
number of repetitions.

In fact, in the GHZ state (2) the expected average values of long sequences of strong
spin polarization measurements performed along any arbitrary directions Ω(A)

α , Ω(B)
β , Ω(C)

γ

in the XY-planes orthogonal to the local Z-axes are equal to zero:

〈S(A)
Ωα

(n)〉n∈N = 〈S(B)
Ωβ

(n)〉n∈N = 〈S(C)
Ωγ

(n)〉n∈N = 0, (2)

as well as their two-particles correlations:

〈S(A)
Ωα

(n) · S(B)
Ωβ

(n)〉n∈N = 〈S(B)
Ωβ

(n) · S(C)
Ωγ

(n)〉n∈N

= 〈S(C)
Ωγ

(n) · S(A)
Ωα

(n)〉n∈N = 0.
(3)

Notwithstanding, the three-particles correlation is non-zero, in general, and given by:
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〈S(A)
Ωα

(n) · S(B)
Ωβ

(n) · S(C)
Ωγ

(n)〉n∈N

= cos
(

∆
Ω(A)

α
+ ∆

Ω(B)
β

+ ∆
Ω(C)

γ
+ Φ

)
,

(4)

where ∆
Ω(A)

α
, ∆

Ω(B)
β

and ∆
Ω(C)

γ
describe the relative orientations of each one of the measure-

ment devices with respect to some implicit local reference directions labelled as X-axes, see
Figure 1.

In particular, for Φ = 0 the following four relationships follow:

S(A)
X (n) · S(B)

X (n) · S(C)
X (n) = +1, n = 1, . . . , N

S(A)
X (m) · S(B)

Y (m) · S(C)
Y (m) = −1, m = 1, . . . , M

S(A)
Y (k) · S(B)

X (k) · S(C)
Y (k) = −1, k = 1, . . . , K

S(A)
Y (l) · S(B)

Y (l) · S(C)
X (l) = −1, l = 1, . . . , L,

(5)

for any four sequences of strong measurements performed along directions (X, X, X),
(X, Y, Y), (Y, X, Y) and (Y, Y, X).

XB

YB
ZB

Wb
(±1)

XA

YA

ZA

Wa

(±1)

XC

YC

ZC Wg

(±1)

F

Figure 1. The GHZ argument implicitly requires the existence of an absolute frame of reference with
respect to which it is possible to describe the polarization properties (±1,±1,±1) of the hypothetical

hidden configurations of the triplets of qubits as well as the orientations Ω(A)
α , Ω(B)

β , Ω(C)
γ of the

measurement devices that test them.

These four relationships (5) lie at the core of the Greenberger-Horne-Zeilinger paradox [8].
On the one hand, these relationships imply that we can gain certainty about the polarization
properties of any of these three qubits, without in any sense, disturbing them. Thus, according
to the notion introduced by Einstein, Podolsky, and Rosen [1], these polarization properties are
elements of reality whose values must be set at the time when the three entangled particles are
produced. On the other hand, this notion seems to be inconsistent: by multiplying the last three
equations in (5) and assuming that all polarization components must take values either +1 or−1,
we would obtain that

S(A)
X (n) · S(B)

X (n) · S(C)
X (n) = −1, n = 1, . . . , N (6)

which is in contradiction with the first one.
This argument is widely considered the most clear-cut evidence against the possibility

of giving the wavefunction (2) a statistical interpretation within the framework of a local
model of hidden configurations, in which the observers are free to choose the setting of
their measurements.

3. The Paradox Revisited

The above argument crucially relies on the implicitly assumed existence of an absolute
angular frame of reference, with respect to which the polarization properties of the hidden
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configurations of the triplets of entangled qubits, as well as the orientations of the measure-
ment devices that test them, can be defined. In such an absolute frame of reference, all the
polarization components of all possible hidden configurations must take a binary value,
either +1 or −1, and relationships (5) immediately follow. However, as we already noticed
in previous works [24–27], the existence of such an absolute angular frame of reference is
not required by fundamental physical principles.

In fact, an absolute frame of reference can not be defined within the standard frame-
work of quantum mechanics, whose predictions the models of hidden variables are aimed
to reproduce. This can be readily noticed from the wavefunction that describes the GHZ
state (2) in terms of the single-particle eigenstates | ↑〉(A,B,C), | ↓〉(A,B,C) of locally defined
operators σ

(A,B,C)
Z . These eigenstates are defined only up to a phase (like any other normal-

ized eigenvector of any linear operator) and, hence, the phase Φ in the wavefunction (2) is
not, in principle, properly defined yet. In order to properly define this phase, it is necessary
to set a reference setting (8) of the three measurement devices and experimentally obtain
the threesome correlation between their outcomes. Only with respect to this reference
setting of the three detectors, which we arbitrarily label as local X-axes, it is possible to
properly define a subsequent rotation of any one of the devices by an angle ∆, see Figure 2.
Indeed, the correlation between the binary outcomes of the three measurement devices that
test the GHZ state is described by a single physical degree of freedom, the angle ∆ + Φ,

〈S(A)
Ωα

(n) · S(B)
Ωβ

(n) · S(C)
Ωγ

(n)〉n∈N = cos(∆ + Φ). (7)

while the orientations of each one of the three detectors, Ω(A)
α , Ω(B)

β and Ω(C)
γ , cannot be

independently defined in a proper sense.

XA

YA

ZA

XB

YB ZB

XC

YC

ZC
D

F

(±1)

(±1)

(±1)

Figure 2. By symmetry considerations the orientation of one of the measurement devices, say A, can
always be defined as a local X-axis for every one of the repetitions of the experiment. Moreover, the
orientation of a second measurement device, say B, can also be always defined as a local X-axis since
any rotation in it can be accounted for through the definition of the phase Φ that characterizes the
source of the photons. In fact, as explained in Section 3, this is strictly necessary in order to properly
define the quantum state (2). Thus, the experimental setting of the three measurement devices is
described by a single angle ∆, while the expected correlation between their outcomes depends only
on the linear combination ∆ + Φ.

In the absence of an absolute frame of reference, the polarization properties of the
hidden configurations may only be properly defined with respect to the reference directions
set by the orientation of the corresponding measurement devices. In particular, for the
reference setting of the detectors, ∆ = 0, whose orientations we have arbitrarily labeled as
X-axes, the correlation is given by:

〈S(A)
X (n) · S(B)

X (n) · S(C)
X (n)〉n∈N = cos(Φ), (8)
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and, for Φ = 0 is given by

〈S(A)
X (n) · S(B)

X (n) · S(C)
X (n)〉n∈N = +1. (9)

Actually, condition (8) defines the notion of parallel orientations of the three measurement
devices. All settings for which this condition is fulfilled are physically indistinguishable
through measurements performed on triplets of entangled particles in the GHZ state, and,
hence, all such sets of axes are gauge equivalent.

Moreover, the polarization properties of the hidden configurations of the triplets
of entangled particles can be properly defined only with respect to the local reference
directions set by the three measurement devices. That is, the actual value s(A)

Ω (Ωα, ω) of
the polarization component of, say, particle A along some direction Ω may be, in general,
a function of the reference direction Ωα set by the measurement apparatus of observer
A (and, of course, also of the coordinate ω ∈ S that labels the hidden configuration in
which the system of three entangled particles occurs). This dependence does not conflict
with the principle of causality, which only demands that the value of the polarization
components of particle A cannot depend on the orientations of the reference directions Ωβ,
Ωγ along which observers B and C choose to test their particles. Therefore, we must not
restrict our models within the constraint that all polarization components of either one of
the particles must take a binary value, either +1 or −1: only the polarization component
of each one of the particles along the reference direction set by the orientation of the
corresponding measurement device must take a binary value. That is, for all possible
hidden configurations of the triplet, we must have:

s(A)
Ωα

(Ωα, ω) = ±1, s(B)
Ωβ

(Ωβ, ω) = ±1, s(C)Ωγ
(Ωγ, ω) = ±1, (10)

but the polarization components along any other direction must not necessarily take either
one of these two values. Indeed, the only experimental access that we can have to the
spin polarization components along these other directions is through weak measurements,
whose outcome can have absolute values larger and smaller than one and may even be com-
plex [29]. In fact, weak values of physical observables are complex numbers independent
of the linear dimension of the Hilbert space of the described quantum system.

Therefore, it is crucial to realize that in order to obtain a meaningful description of
the system, we must be careful to compare magnitudes defined with respect to the same
reference directions. For example, we can state that with respect to a set of parallel reference
directions X(A), X(B) and X(C) defined by condition (9), the polarization components of
the particles along the orthogonal directions Y(A), Y(B), Y(C) take values either +i or −i,
according to the relationship:

s(A)
Y (X, ω) = i s(A)

X (X, ω),
s(B)

Y (X, ω) = i s(B)
X (X, ω),

s(C)Y (X, ω) = i s(C)X (X, ω),

(11)

with s(A)
X (X, ω) = ±1, s(B)

X (X, ω) = ±1 and s(C)X (X, ω) = ±1, see Figure 3. Therefore, the
four constraints (5) become trivially identical,

s(A)
X (X, ω) · s(B)

X (X, ω) · s(C)X (X, ω) = +1,
s(A)

X (X, ω) · i s(B)
X (X, ω) · i s(C)X (X, ω) = −1,

i s(A)
X (X, ω) · s(B)

X (X, ω) · i s(C)X (X, ω) = −1,
i s(A)

X (X, ω) · i s(B)
X (X, ω) · s(C)X (X, ω) = −1.

(12)
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In other words, the argument put forward by Greenberger, Horne, and Zeilinger as a
proof of the impossibility of reproducing the predictions of quantum mechanics for the
GHZ state within the framework of a model of local hidden variables can be overcome by
realizing that there does not necessarily exist an absolute frame of reference with respect to
which the hidden polarization properties of the entangled particles can be defined and, in
consequence, allowing their actual values to depend on the reference direction with respect
to which they are described.

X

Y

Z
w (±1)

(±i)

X

Y

Z
w

(±1)

( i)±

Figure 3. Two gauge-equivalent descriptions of the polarization properties of an incoming photon
from a GHZ triplet, with respect to two different orientations of the measurement device that
tests them.

4. A Statistical Model for the GHZ State

In this section, we build and discuss in detail an explicit statistical model of local
hidden variables for the GHZ state of three entangled qubits. The model complies with
the ’free-will’ assumption and reproduces the quantum mechanical predictions for the
average values and correlations of long sequences of strong spin polarization measurements
performed on the three qubits along any three arbitrary directions.

Our statistical model consists of infinitely many possible hidden configurations con-
tinuously distributed over the unit circle S1, a well-defined density of probability for each
one of these configurations to occur, and locally defined binary response functions that
specify the outcomes that each one of these hidden configurations would produce in each
one of the three measurement devices as a function of their orientations.

First, we define two sub-populations within the space of all possible hidden configura-
tions, which we label as η = ±1, each one occurring with a probability of 1/2. These two
sub-populations correspond, respectively, to the two possible outcomes of the measurement
performed on one of the particles, say, particle A. That is,

S(A)
X (η) = s(A)

X (X, η) = η. (13)

The device that measures the polarization of particle B along an arbitrary direction orthogo-
nal to its locally defined Z-axis fixes a reference frame of angular coordinates ωB ∈ [−π, π)
over the circle S1. We assume that the density of probability for each one of the hidden
configurations to occur is given by

g(ωB) =
1
4
|sin(ωB)|, (14)

and define the outcome of the measurement on particle B as:

S(B)
X (ωB, η) = s(B)

X (X, ωB, η) = η · S(ωB), (15)

with:

S(x) = sign(x) =
{

+1, if x ∈ (0,+π],
−1, if x ∈ (−π, 0].

(16)
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Similarly, the device that measures the polarization of particle C along some other arbitrary
direction Ω orthogonal to its locally defined Z-axis sets its own frame of angular coordinates
ωC ∈ [−π,+π) over the circle S1. By symmetry considerations, we demand that the
outcome of this measurement be described by the same response function:

S(C)
Ω (ωC, η) = s(C)Ω (Ω, ωC, η) = η · S(ωC).

Moreover, we impose that the two sets of angular coordinates ωB and ωC are related by the
relationship:

ωC = ω′B, if η = +1,
ωC = π + ω′B, if η = −1,

(17)

where
ω′B = L(ωB; ∆ + Φ), (18)

and

• If ∆̃ ∈ [0, π),

L(ω; ∆̃) =





q(ω) · arc-cos
(
− cos(∆̃)− cos(ω)− 1

)
,

if − π ≤ ω < ∆̃− π,
q(ω) · arc-cos

(
+ cos(∆̃) + cos(ω)− 1

)
,

if ∆̃− π ≤ ω < 0,
q(ω) · arc-cos

(
+ cos(∆̃)− cos(ω) + 1

)
,

if 0 ≤ ω < ∆̃,
q(ω) · arc-cos

(
− cos(∆̃) + cos(ω) + 1

)
,

if ∆̃ ≤ ω < +π,

(19)

• If ∆̃ ∈ [−π, 0),

L(ω; ∆̃) =





q(ω) · arc-cos
(
− cos(∆̃) + cos(ω) + 1

)
,

if − π ≤ ω < ∆̃,
q(ω) · arc-cos

(
+ cos(∆̃)− cos(ω) + 1

)
,

if ∆̃ ≤ ω < 0,
q(ω) · arc-cos

(
+ cos(∆̃) + cos(ω)− 1

)
,

if 0 ≤ ω < ∆̃ + π,
q(ω) · arc-cos

(
− cos(∆̃)− cos(ω)− 1

)
,

if ∆̃ + π ≤ ω < +π,

(20)

with

q(ω) = sign((ω− ∆̃)mod([−π, π))),

and the function y = arc-cos(x) is defined in its main branch, such that y ∈ [0, π] while
x ∈ [−1,+1]. The parameter ∆̃ ≡ ∆ + Φ in this transformation law denotes the orientation
of the measurement setting, as defined in (7) and (8).

It is straightforward to check that the density of probability (14) remains functionally
invariant when described with respect to the new set of coordinates, that is,

g(ωC) =
1
4
|sin(ωC)|, (21)
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since
|dω′g(ω′)| = 1

4 |dω′ sin(ω′)| = 1
4 |d(cos(ω′))| =

1
4 |d(cos(ω))| = 1

4 |dω sin(ω)| = |dω g(ω)|, (22)

and
g(π + ω) =

1
4
| sin(ω + π)| = 1

4
| sin(ω)| = g(ω). (23)

In fact, these equalities state in precise terms that the probability of each hidden configura-
tion occuring does not depend on the orientation of the reference direction chosen by the
observers to describe their particles, or, in other words, that our model complies with the
requirements of ‘free-will’.

We can now define a partition of the circle S1 into four disjoint regions,

S1 = I++

⋃
I+−

⋃
I−+

⋃
I−−, (24)

as follows:

I++ = {ωB : ωB ∈ (∆̃,+π]} =

=

{
{ωC : ωC ∈ (0,−∆̃ + π]}, if η = +1
{ωC : ωC ∈ (−π,−∆̃]}, if η = −1

I+− = {ωB : ωB ∈ (0, ∆̃]} =

=

{
{ωC : ωC ∈ (−∆̃, 0]}, if η = +1
{ωC : ωC ∈ (−∆̃ + π, π]}, if η = −1

I−− = {ωB : ωB ∈ (∆̃− π, 0]} =

=

{
{ωC : ωC ∈ (−π,−∆̃]}, if η = +1
{ωC : ωC ∈ (0,−∆̃ + π]}, if η = −1

I−+ = {ωB : ωB ∈ (−π, ∆̃− π]} ={
{ωC : ωC ∈ (−∆̃ + π, π]}, if η = +1
{ωC : ωC ∈ (−∆̃, 0]}, if η = −1

where we have assumed without any loss of generality that 0 ≤ ∆̃ ≤ π.
In each one of these four segments, the two measurements are fully correlated or

anti-correlated:

• If η = +1,

S(B)
X (ωB, η) · S(C)

Ω (ωC, η)
∣∣∣
I++

⋃ I−−
= +1,

S(B)
X (ωB, η) · S(C)

Ω (ωC, η)
∣∣∣
I+−

⋃ I−+
= −1,

(25)

• If η = −1,

S(B)
X (ωB, η) · S(C)

Ω (ωC, η)
∣∣∣
I++

⋃ I−−
= −1,

S(B)
X (ωB, η) · S(C)

Ω (ωC, η)
∣∣∣
I+−

⋃ I−+
= +1,

(26)

It is straighforward to notice that

µ
(
I++

⋃
I−−

)
− µ

(
I+−

⋃
I−+

)
= cos(∆̃), (27)
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where µ(·) denotes the normalized measure over the circle according to the probability
density distribution (14). Hence,

• Over the sub-population of states with η = +1,

〈S(B)
X · S(C)

Ω 〉 = cos(∆̃), (28)

• Over the sub-population of states with η = −1,

〈S(B)
X · S(C)

Ω 〉 = − cos(∆̃). (29)

Therefore, over the whole population the two measurements are totally uncorrelated,

〈S(B)
X · S(C)

Ω 〉 = 0, (30)

since each one of the two sub-populations η = +1 and η = −1 happens with probability
1/2. The same is true for the same reason for the correlation between the outcome of the
measurement on particle A and any of the other two:

〈S(A)
X · S(B)

X 〉 = 〈S
(A)
X · S(C)

Ω 〉 = 0. (31)

Furthermore, the three-particles correlation is given by:

〈S(A)
X · S(B)

X · S(C)
Ω 〉 = cos(∆̃), (32)

which reproduces the quantum mechanical prediction (7) for the GHZ state.
Let us remark that in the model that we have described here, similar to quantum

formalism, the orientation of two of the three measurement devices sets a reference frame
with respect to which the orientation of the third device is described; see Figure 2. Therefore,
it does not make sense to compare two different orientations for the reference setting since
they are physically indistinguishable and, hence, the orientation of the reference setting is
a spurious gauge of degree of freedom. This is the ultimate reason that allows the set of
angular coordinates over the circle S1 to acquire (due to a holonomy) a non-zero geometric
phase α 6= 0, π through certain cyclic transformations (19) and (20):

L−∆ ◦ L∆+Φ ◦ L−Φ = Lα 6= I,−I. (33)

The possible appearance of a geometric phase in closed loops of gauge transformations is
well-known, also in classical physics. A particularly beautiful example is the gauge theory
of swimming at low Reynolds numbers described in ref. [30].

Before closing this section, let us stress that Equations (17) and (18) are coordinates
transformations and do not introduce any non-local interaction between the detectors. In
order to clarify this issue consider a source that produces pairs of macroscopic arrows
parallel to each other and randomly oriented within a locally defined XY plane. The twin
arrows are then parallel-transported in opposite directions along the Z axis towards two
distant detectors, each one of them consisting of an arrow that can also be arbitrarily
oriented within their local XY plane. Upon arriving at their respective detectors, the relative
orientation of each one of the incoming arrows is described with respect to the orientation of
the corresponding detector, and a local response is produced according to (16). Obviously,
for every pair of incoming twin arrows, the following relationship must hold:

ω′ = ω− ∆̃, (34)

where ω and ω′ are the relative angles between the orientations of the incoming arrows
and their corresponding detectors, and ∆̃ is the relative angle between the two detectors.
This relationship (34) does not introduce any non-local interaction between the detectors,
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since it is dictated by the euclidean structure of the macroscopic space, and, therefore, it
is fulfilled no matter who decides how to orient the detectors or when these decisions are
taken. Furthermore, the response of each one of the detectors given by (16) depends only
on the orientation of the incoming arrow with respect to the local detector and does not
depend either on the relative orientation between the two detectors or on the orientation of
the other arrow with respect to the other detector.

Equations (17) and (18) are nothing but a non-linear generalization of the Euclidean
relationship (34), and it simply means that the entangled particles might carry with them a
non-euclidean metric. In this sense, it is useful to think about Equations (17) and (18) as
somehow similar to the Lorentz transformation that relates, for example, the frequencies
ν and ν′ of a signal emitted by a source towards two detectors moving with relative
velocity V,

ν′ = L(ν; V). (35)

Obviously, this non-linear relationship does not violate Einstein’s principle of causality
since it is dictated by the Minkowski metric of space-time, from which the very notion of
causality stems.

As a last final comment, let us remind ourselves again that Bell’s definition of locality
arose as a result of the intent by Bell to formulate Einstein’s principle of causality in a way
fit to prove his renowned Bell’s theorem. Therefore, wherever the notion of Bell’s locality
disagrees with Einstein’s principle of causality, the latter must prevail.

5. Discussion

We have shown in this paper that the argument behind the renowned GHZ paradox
crucially relies on an implicit assumption that is not required by fundamental physical
principles and, therefore, can be overcome by giving up this unnecessary requirement.
Namely, the argument put forward by Greenbereger, Horne, and Zeilinger thirty years
ago [8] implicitly assumes that there exists an absolute angular frame of reference with
respect to which we can define the polarization properties of the hypothetical hidden
configurations of the entangled qubits, as well as the orientations of the measurement
devices that test them. However, we have remarked in this and previous papers [24–27]
that in order to properly define the phase Φ that characterizes the state (2) of the triplets of
entangled qubits, it is necessary to fix an arbitrary reference setting of the measurement
devices that test their polarizations. Only with respect to this reference setting can one
properly define a subsequent relative rotation ∆ of one of the devices, see Figure 2, while the
orientation of the reference setting is a spurious gauge degree of freedom. In the absence
of an absolute frame of reference, the polarization properties of each of the qubits can
be properly defined only with respect to the orientation of the measurement device that
tests them.

With these observations in mind, we have built an explicit statistical model of local
hidden variables for the GHZ state of three entangled qubits that reproduces the predictions
of quantum mechanics and complies with the ’free-will’ assumption. The model, thus,
completes—in the EPR sense—the quantum description of the GHZ state. This model
closely resembles the model of hidden variables for the Bell polarization states of two
entangled qubits that we recently described in [24–27].

Since these models were designed to reproduce the predictions of quantum mechanics
for the Bell and GHZ experiments, they cannot be experimentally favored or disfavored
against the quantum formalism through their predictions for these experiments. Further
work is needed in order to develop this statistical framework and maybe find ways to
test it against quantum mechanics, but this is beyond the scope of the present papers.
The aim of these models at this stage is to explore the possibility that the strongly well-
established quantum formalism could not be the ultimate framework for describing the
fundamental building blocks of Nature and their interactions, overcoming a belief widely
held by the physics community for over half a century. An underlying statistical framework
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would provide a physically intuitive interpretation of the quantum formalism and a better
understanding of quantum phenomena.

Finally, it is worth stressing once more that the existence of an absolute frame of
reference is neither demanded nor guaranteed by fundamental physical principles or
any experimental evidence, and, therefore, it is at best a working assumption. However,
according to the conclusions reached in this paper and [24–27], this working assumption
lies at the core of the impossibility noticed by the Bell theorem, the GHZ theorem, and
other renowned theorems to accommodate together within the quantum formalism some
of the most fundamental physical notions. On the other hand, these difficulties can be
easily overcome by lifting this working assumption. Therefore, the latter might even be
considered a favored option since the apparent emergence of an absolute frame in the
macroscopic world can also be easily understood [24].
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Abstract: Supersymmetric quantum mechanics has wide applications in physics. However, there
are few potentials that can be solved exactly by supersymmetric quantum mechanics methods, so it
is undoubtedly of great significance to find more potentials that can be solved exactly. This paper
studies the supersymmetric quantum mechanics problems of the Schrödinger equation with a new
kind of generalized trigonometric tangent superpotential: A tan npx + B tan mpx. We will elaborate
on this new potential in the following aspects. Firstly, the shape invariant relation of partner potential
is generated by the generalized trigonometric tangent superpotential. We find three shape invariance
forms that satisfy the additive condition. Secondly, the eigenvalues and the eigenwave functions
of the potential are studied separately in these three cases. Thirdly, the potential algebra of such a
superpotential is discussed, and the discussions are explored from two aspects: one parameter’s and
two parameters’ potential algebra. Through the potential algebra, the eigenvalue spectrums are given
separately which are consistent with those mentioned earlier. Finally, we summarize the paper and
give an outlook on the two-parameter shape-invariant potential.

Keywords: supersymmetric quantum mechanics; generalized trigonometric tangent superpotential;
shape invariance; potential algebra

1. Introduction

The concept of Supersymmetry (SUSY) has permeated almost all fields of Physics:
atomic and molecular physics, nuclear physics, statistical physics, and condensed matter
physics [1–4]. It is even considered a necessary way to establish any unified theory [5,6].
Although SUSY has achieved great success in theoretical physics, there has been no conclu-
sive evidence of supersymmetric partners in experiments. It was introduced by Nicolai
and Witten in non-relativistic quantum mechanics [7,8]. These researchers soon found that
supersymmetric quantum mechanics (SUSYQM)was of great significance and soon became
a method to solve the Schrödinger equation [3,4,9,10].

The exact or quasi-exact solution of the Schrödinger equation under various potential
constraints has always been a particular concern in quantum mechanics [10–14]. There
are only a dozen potentials which are solvable in Schrödinger equation through SUSYQM
methods. These potentials mainly include harmonic oscillator potential, Coulomb potential,
Morse potential, Rosen–Morse potential, Scarf potential, Eckart potential, Pösch–Teller po-
tential, and so on [3,14–23]. Recently, the list of these potentials has been expanded [24–26].
These precisely solvable potentials also satisfy the shape invariance condition [3,27,28],
and it is found that there is a deep connection between shape invariance and SUSY. These
connections need to be dealt with from the perspective of group theory. The Lie algebra is
an important part of the group theory, and the potential algebra theory allows for a deep
analysis of SUSYQM [29–32]. The shape invariant potentials mentioned above naturally
have corresponding potential algebraic forms. Therefore, it is undoubtedly of great signif-
icance to obtain the potential algebraic form of shape invariance. The above discussion
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leads to the following problems: (1) How to find more solvable potentials. (2) The Riccati
equation satisfied from the superpotential is only a first-order differential equation, but the
solution of the equation is not easy to obtain [33]. The known solvable potential and its
superpotential are consistent. Therefore, how to find more solutions to the Ricati equations
is also an important problem. (3) If we can construct more solvable potentials, what exciting
new results will come from these new solvable potentials?

Our group has begun tryingto promote this research from the existing superpotential.
The study in [26] is our first generalization, extending the hyperbolic tangent superpo-
tential to a linear combination of two different hyperbolic tangent, bringing positive and
meaningful results. The present paper is another attempted generalization, taking the
linear combination of two tangent superpotentials as our generalization potential, and the
results are even more exciting.

In this paper, a superpotential with the generalized trigonometric tangent functions
is proposed:

W(x, A, B) = A tan npx + B tan mpx
(
−π

2
< max{npx, mpx} < π

2

)
(1)

where A, B are constant coefficients, p is an arbitrary positive constant, and m and n are
positive integers. The problems related to the Schrödinger equation with such superpo-
tential are researched. Compared to the superpotential A tanh px + B tanh 6px in [25], the
superpotential in Equation (1) is undoubtedly more general. Compared with Reference [26],
this article has the following differences: Firstly, the scope of the independent variable
discussion is different. The potentials covered in [26] are non-periodic. The potentials
studied in this paper are periodic, and we have chosen to discuss them within a period
of the variable x. Secondly, the corresponding parameter binding relationship under the
shape invariance constraint is completely different. Finally, the eigen-energies of these two
potentials and the corresponding wave functions are not the same.

This article focuses on the following clues to illustrate our new findings. We start with
a brief review of the core content of SUSYQM in the Section 2. On this basis, we proceed to
study the four shape invariant algebraic relations hidden behind this new superpotential
in the next section. How are the eigenvalues and potential algebras of this new potential
different from other potentials? Section 4 will tell us the answer.

2. SUSYQM

For simplicity, we set h̄ = 2m = 1 in the steady-state Schrödinger equation− h̄2

2m
d2ψ(x)

dx2 +
V(x, a)ψ(x) = Hψ(x). The Hamiltonian of that equation is:

H = − d2

dx2 + V(x, a) (2)

According to the related References [10–14], the superpotential W(x, a) was introduced
to define the ladder operators A+ and A−:

A±(x, a) = ∓ d
dx

+ W(x, a) (3)

The potential of the system is transformed into two partner potentials V±(x, a) to be
described as:

V±(x, a) = W(x, a)2 ± dW(x, a)
dx

(4)

In addition, the partner potentials V±(x, a) meet

V+(x, a0) + g(a0) = V−(x, a1) + g(a1) (5)
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where g(a0) and a1 are functions of the additive constant a0, and a1 = f (a0). Equation (5)
is called the shape invariance of the partner potentials. It can be rewritten as:

V+(x, a0) = V−(x, a1) + R(a0) (6)

So, it is not hard to see that

R(a0) = g(a1)− g(a0) (7)

The partner Hamiltonians are:

H± = − d2

dx2 + V±(x, a) (8)

That is to say:
H+(x, a0) + g(a0) = H−(x, a1) + g(a1) (9)

The relationship between the intrinsic energies can be written as:

E+(a0) + g(a0) = E−(a1) + g(a1) (10)

According to [3], the eigenenergy spectrum can be obtained as:

E−0 = 0, E+
n = E−n+1 (11)

With this iterative relation, we can find all the energy levels E−n (a0) in turn:

E−n (a0) = E+
n−1(a0) = g(an)− g(a0)(n = 1, 2, 3 . . .) (12)

Not only the expression of eigenvalue E−n (a0), but also the expression of eigenvalue
E−n (ai)(i = 0, 1, 2, . . .) can be obtained:

E−n (ai) = E+
n−1(ai) = g(an+i)− g(ai)(n = 1, 2, 3 . . . , i = 0, 1, 2 . . .) (13)

According to the superpotential and the lifting operators A± = ∓ d
dx + W(x, a), we

can calculate the zero-energy ground state wave function ψ−0 (x):

ψ−0 (x) = N exp
(
−
∫ (x)

W(x, a)dx
)

(14)

where N is the normalized coefficient. According to [3], the eigenfunctions can be obtained:

ψ+
n (x) =

(
E−n+1

)−1/2 A−ψ−n+1(x), ψ−n+1(x) =
(
E+

n
)−1/2 A+ψ+

n (x) (15)

where E−n+1 > 0 is required.
In SUSYQM, as long as a superpotential W(x) that can be solved accurately is deter-

mined, the corresponding ascending and descending operators A±(x, a), partner potentials
V±(x, a), and partner Hamiltonians H± can be constructed according to this superpotential
W(x), so as to solve the corresponding eigen energy E−n (ai)(i = 0, 1, 2, . . .) and eigen wave-
function ψ−n (x). The relationship between the superpotential and these physical quantities
can be described by Figure 1.
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Figure 1. The relationships between superpotential W(x) and other physical quantities.

Figure 1 shows the importance of superpotential in SUSYQM. But the number of
potentials that can be solved exactly at present is very limited. Tables A1 and A2 in
Appendix A gives all the superpotentials that can be solved exactly at present and the
corresponding physical quantities [3,14–26]. So, whether new superpotentials that can be
solved precisely can be constructed has become the focus of research in SUSYQM. Based
on this situation, this paper constructs a new superpotential, A tan npx + B tan mpx, that
can be solved exactly.

3. The New Shape Invariance Derivation Idea Based on the New Solvable Potential
A tan npx + B tan mpx

The generalized trigonometric tangent superpotential which we construct is given in
Equation (1). The relationship between the superpotential and these parameters are shown
in Figure 2.
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Figure 2. The relationship between superpotential W(x, A, B) = A tan npx + B tan mpx and the
parameters A, B, n, p, m: (a) reveals the relationship between the superpotential and p; (b) reveals the
relationship between the superpotential and A, B.

We can deduce:

V+(x, A, B) = W2(x, A, B) +
dW(x, A, B)

dx
=A(np + A) sec2 npx + B(mp + B) sec2 mpx + 2AB tan npx tan mpx− A2 − B2

(16)
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V−(x, A, B) = W(x, A, B)2 − dW(x, A, B)
dx

=A(A− np) sec2 px + B(B−mp) sec2 mpx + 2AB tan npx tan mpx− A2 − B2
(17)

The figures of the partner potentials are shown in Figures 3 and 4. Figure 4 reveals the
partner potentials near the origin.
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Figure 3. The Figures of the partner potentials (n = 1, m = 2, p = 0.05).

Figure 4. The partner potentials near the origin. (n = 1, m = 2, p = 2). Note: the doted line is
V−(x, A, B), the solid line is V+(x, A, B).

From Figure 3, it can be seen that, whatever values A and B take, the shapes of the
partner potentials V−(x, A, B) and V+(x, A, B) are similar, so they conform to the shape
invariance relationship described in Section 1.

Now, let us discuss the constraint relationship between A0,A1,B0, and B1. Under
the condition of the shape invariance relation of V±(x, A, B), the independent variable x
coefficient in V±(x, A, B) must be the same, i.e., there are:

A0(np + A0) = A1(A1 − np) (18)

B0(mp + B0) = (B1 −mp)B1 (19)

2A0B0 = 2A1B1 (20)

Combining Equations (18)–(20), we can obtain:

A1 = A0 + np or A1 = −A0 (21)

B1 = B0 + mp or B1 = −B0 (22)

It is not difficult to see that A0, A1, B0 and B1 can be combined into the following
four cases which are shown in Table 1.
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Table 1. The four cases of A1, B1.

Case 1 Case 2 Case 3 Case 4

A1 = A0 + np A1 = A0 + np A1 = −A0 A1 = −A0
B1 = B0 + mp B1 = −B0 B1 = B0 + mp B1 = −B0

As for case 4, since it does not satisfy the additivity, we do not discuss the case here.
Let us analyze the wave function and energy under the other three cases in the following.

3.1. Case 1 A1 = A0 + np, B1 = B0 + mp

By substituting A1 = A0 + np and B1 = B0 + mp into Equations (16) and (17), we
can obtain:

V+(x, A0, B0) =
(

npA0 − A2
0

)
sec2 npx +

(
mpB0 − B0

2
)

sec2 mpx+

2A0B0 tan npx tan mpx− A2
0 − B2

0

(23)

V−(x, A1, B1) =
(

npA0 − A2
0

)
sec2 npx +

(
mpB0 − B2

0

)
sec2 mpx + 2(A0 + np)

(B0 + mp) tan npx tan mpx− (A0 + np)2 − (B0 + mp)2
(24)

Since the shape invariance relationship is satisfied between V+(x, A0, B0) and
V−(x, A1, B1), the coefficients before independent variable x should be equal.That is to say,
there is:

2A0B0 = 2(A0 + np)(B0 + mp) (25)

From this formula, the binding relationship between the parameters can be further
obtained as:

A0

n
= −p− B0

m
(26)

Under this parameter constraint, the shape invariance relation can be written as:

V+(x, A0, B0) = V−(x, A1, B1) + (A0 + np)2 + (B0 + mp)2 −
(

A2
0 + B2

0

)
(27)

It is not difficult to see the expression of g(A1, B1), g(A0, B0) from the above formula
that is:

g(A1, B1) = (A0 + np)2 + (B0 + mp)2 (28)

g(A0, B0) = A2
0 + B2

0 (29)

The coefficients Ak and Bk follow an additive relation and are easy to be obtained:

Ak = A0 + knp and Bk = B0 + kmp (30)

where k = 0, 1, 2, · · · . The energy eigenvalue can be obtained as:

E−k (ai) = g(ak+i)− g(ai)

= (A0 + (k + i)np)2 + (B0 + (k + i)mp)2 −
(
(A0 + inp)2 + (B0 + imp)2

) (31)

note that i = 0, 1, 2, · · · . When i = 0, there are:

E(−)
k (a0) = g(ak)− g(a0) = (A0 + nkp)2 + (B0 + mkp)2 − A2

0 − B2
0 (32)

However, it is worth noting the condition that the shape invariance holds is that the
ground state energy is zero, i.e., E−0 = 0. According to Equation (31), there is:

E+
0 = E1 = (A0 + np)2 + (B0 + mp)2 − A2

0 − B2
0 (33)
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For all k ≥ 1, we have E−k ≥ 0 in Equation (31). Through A0
η + B0

m = −p, we can obtain:

k ≥ −2(An + Bm)

p(n2 + m2)
(34)

This means that the energy levels have lower limits. For example, if A = 0.195,
B = −0.49, n = 1, m = 2, p = 0.05, then k ≥ 10.

We can also find out the eigenfunctions of the Schrödinger equation:

ψ−k (x, A0, B0) = Nk A+(x, A0, B0)A+(x, A1, B1) . . . A+(x, Ak−1, Bk−1)e
−
∫ (x) W(x,Ak ,Bk)dx (35)

For example, the ground state wavefunction is:

ψ
(−)
0 (x, A0, B0) = N0e−

∫ (x) W(x,A0,B0)dx = N0(cos mpx)
B0
np (cos npx)

A0
np (36)

and the first excited state wavefunction is:

ψ−1 (x, A0, B0) = N1 Â+(x, A0, B0)e−
∫

W(x,A1,B1)

= −N1(cos npx)
A1
np −1

(cos mpx)
B1
mp−1

(np sin npx cos mpx + mp cos npx sin mpx)
(37)

where Nk, N0, and N1 are the normalization coefficients. Some of the eigenfunctions and
their relationships are shown in Figure 5 .
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Figure 5. Some of the eigenfunctions (n = 1, m = 2, p = 0.05, A0 = −1.05, B0 = 2).

Of course, we can also obtain the eigenwave functions of the other excited states to
obtain the exact solutions of the Schrödinger equation.
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3.2. Case 2 A1 = A0 + np, B1 = −B0

Putting A1 = A0 + np and B1 = −B0 into Equations (16) and (17), we have:

V+(x, A0, B0) = A0(np + A0) sec2 npx + B0(mp + B0) sec2 mpx

+2A0B0 tan npx tan mpx− A2
0 − B2

0
(38)

V−(x, A1, B1) = (A0 + np)A0 sec2 npx + B0(B0 + mp) sec2 mpx

−2(A0 + np)B0 tan npx tan mpx− (A0 + np)2 − B2
0

(39)

Analogously, the coefficients before independent variable x should be equal, that is
to say:

2A0B0 = −2(A0 + np)B0 (40)

We can obtain the binding relation between the parameters corresponding to this case,
which is:

A0 = −np
2

(41)

Furthermore, the shape invariance between V+(x, A0, B0) and V−(x, A1, B1) is given by:

V+(x, A0, B0) = V−(x, A1, B1) + (A0 + np)2 + B2
0 − A2

0 − B2
0 (42)

In the same way, combining with Equation (5), we can obtain:

g(A1, B1) = (A0 + np)2 − B0
2

g(A0, B0) = A2
0 − B0

2
(43)

Since A0 = − np
2 , substituting it into the above formula, we have:

E−1 (A0, B0) = g(A1, B1)− g(A0, B0) = 0 (44)

By the recurrence of energy according to the shape invariance,

Ak = A0 + knp and Bk = (−1)kB0 (45)

It still needs to satisfy

AkBk = Ak+1Bk+1 ⇒ AkBk = (Ak + np)Bk+1 (46)

Considering the Equations (41) and (45), we can obtain:

Ak = −np/2 = A0 (47)

Obviously, it can be seen that the above formula can only exist when k = 0; otherwise,
the energy will be less than 0, which is not allowed. That is to say, only A0 = −np/2 and
A1 = np/2 meet the requirements.

According to Equation (35), we can see that there is only a zero-energy ground state
ψ−0 (x):

ψ
(−)
0 (x) = N(cos mpx)

B0
mp (cos npx)−

1
2 (48)

where N is the normalization constant. The figure of the ground state ψ−0 (x) is shown
in Figure 6.
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Figure 6. The figure of the ground state ψ
(−)
0 (x) in the case 2( A0 = −2, B0 = 8) and case

3( A0 = −2 B0 = 8) for n = 1, m = 1, p = 2.

3.3. Case 3 B1 = B0 + mp, A1 = −A0

This case is similar to the previous one. So, we have B0 = −mp/2, (A0 6= 0), and only
B0 = −mp/2 and B1 = mp/2 meet the requirements. Since the ground state energy is zero,
we can obtain:

E−1 = g(A1, B1)− g(A0, B0) = 0 (49)

According to Equation (35), there is only a zero energy ground state ψ−0 (x):

ψ−0 (x) = N′(cos mpx)−
1
2 (cos npx)

A0
np (50)

where N′ is the normalization constant. The figure of the ground state ψ−0 (x) is shown
in Figure 6.

From the research in the Section 3, it can be seen that the new potential A tan npx +
B tan mpx constructed in this paper can not only be precisely solved by SUSYQM but
also has some special features compared with the previous potential (Appendix A); for
example, it has a variety of shape invariance relationships and more rigid parameter
binding relationships, which are shown in Table 2.

Table 2. The physical quantities of the new Superpotential W(x, A, B) = A tan npx + B tan mpx.

Variation of Parms Binding
of Parms

Value
of k Eigen Energy E(−)

k Ground State ψ−
0 (x)

Case 1 Ak = A0 + knp
Bk = B0 + kmp

(51)
A0
n = −p− B0

m 0, 1, 2 . . . (A0 + nkp)2 + (B0

+ mkp)2 − A2
0 − B2

0

(52) N0(cos mpx)
B0
mp (cos mpx)

A0
np

Case 2
Ak = A0 + knp

Bk = (−1)kB0
(53) A0 = − np

2 0 0 N(cos mpx)
B0
mp (cos npx)−

1
2

Case 3 Ak = (−1)n A0

Bk = B0 + kmp
(54) B0 = −mp

2 0 0 N′(cos mpx)−
1
2 (cos npx)

A0
np
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4. Potential Algebra of the New Superpotential A tan npx + B tan mpx

The solution and the shape invariances of Equation (5) can also be obtained by potential
algebra [29–32]. Let us introduce the operators J3, J+ and J− [34–37] (J3 is a Casimir
operator):

J+ = eisφA+, J− = A−e−isφ, J3 = k− i
s

∂φ, F(J3) = f (χ(sk− sJ3)) (55)

where s is a constant which reflects the additive step length, and k is an arbitrary constant,
the function χ must satisfy the compatibility equation: χ(i∂θ + s) = η(χ(i∂θ)) in which
η(χ(i∂θ)) is a function of function χ(i∂θ), φ is an auxiliary variable, the operator A− is
obtained from A−(x, a0) by introducing an auxiliary variable φ independent of z and
replacing the parameter a0 with an operator χ(i∂θ) [34,35]:

x → z, a0 → χ
(
i∂φ

)
, a1 → χ

(
i∂φ + s

)
, A−(x, a0)→ A−

(
z, χ
(
i∂φ

))
(56)

and J± have the characteristics of raising and lowering operators:

[J+, J−] = J+ J− − J− J+

= eisφA+
(
z, χ
(
i∂φ

))
A−
(
z, χ
(
i∂φ

))
e−isφ −A−

(
z, χ
(
i∂φ

))
A+
(
z, χ
(
i∂φ

))

= A+
(
z, χ
(
i∂φ + s

))
A−
(
z, χ
(
i∂φ + s

))
−A−

(
z, χ
(
i∂φ

))
A+
(
z, χ
(
i∂φ

))
(57)

In addition, J3 satisfies the following properties:

e±isϕ J3e∓isϕ = J3 ± s, e±isϕ J3
2e∓isϕ = (J3 ± s)2 (58)

For further discussion, see Reference [35]. The commutations of J+, J− and J3 are
satisfied with:

[J3, J±] = ±J± [J+, J−] = F(J3) (59)

For the general algebra described in Equation (58), these operators are explicitly
checked:

J− J+ + G(J3) = J+ J− + G(J3 − 1), F(J3) = G(J3)− G(J3 − 1) (60)

where G(J3) is a function of J3. Suppose | h > is an arbitrary eigenstate of J3, and J± plays
the role of raising and lowering operators. Then, there are:

J3|h >= h|h >, J−|h >= a(h)|h− 1 >, J+|h >= a(h + 1)|h + 1 > (61)

where a(h) is a function of eigenvalue h. According to [J+, J−]|h >= F(J3)|h >, we obtain:

J+ J− − J− J+ = |a(h)|2 − |a(h + 1)|2 = G(h)− G(h− 1) (62)

If h = hmin, then J−|hmin〉 = 0 and a(hmin) = 0, we have:

a2(hmin + 1) = G(hmin − 1)− G(hmin) (63)

By substituting Equation (63) into Equation (62), we have:

|a(hmin + 2)|2 = G(hmin − 1)− G(hmin + 1) (64)

Repeating the above steps, we can obtain:

a2(hmin + k) = G(hmin − 1)− G(hmin + k− 1) (65)

where k is a positive integer. If hmin + k = h, then:

a2(h) = G(h− k− 1)− G(h− 1) (66)
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From Equations (62) to (66), the expression of G(J3) is critical which can be deter-
mined by H = J+ J−.If H, is allowed to act on the state ψn(x), the following relation can
be obtained:

H−ψn(x) = J+ J−ψn(x) = E−n ψn(x) = (G(h− k− 1)− G(h− 1))ψn(x) (67)

Next, we need to find the potential algebra presentationH± and h̃ of H and h for
this new potential A tan(npx) + B tan(mpx). Since this new solvable potential has two
parameters, it is not difficult to imagine that the potential algebra constructed should also
have two parameters. According to Equation (9), we can obtain:

H+
(
x, χA

(
i∂φA

)
, χB

(
i∂φB

))
= H−

(
x, χ
(
i∂φA + sA

)
, χ
(
i∂φB + sB

))
+

h̃
(
χ
(
i∂φA + sA

)
, χ
(
i∂φB + sB

))
− h̃
(
χ
(
i∂φA

)
, χ
(
i∂φB

)) (68)

with Equations (21) and (22), we have

sA = np, sB = mp (69)

Let χ(z) = z, then

i∂φA = np
(

kA − JA
3

)
, i∂φB = mp

(
kB − JB

3

)
(70)

Since parameters in need to satisfy the additivity, there are constraints similar to
Equations (18)–(20), and there exist three cases:

Case (i): χ
(
i∂φA + sA

)
= np

(
kA − JA

3 + 1
)
, B1 = −B0 (the parameter A satisfies the

additivity);
Case (ii): A1 = −A0; χ

(
i∂φB + sB

)
= mp

(
kB − JB

3 + 1
)

(the parameter B satisfies the
additivity);

Case (iii): χ
(
i∂φA + sA

)
= np

(
kA − JA

3 + 1
)
, χ
(
i∂φB + sB

)
= mp

(
kB − JB

3 + 1
)

(both A
and B satisfy the additivity).

4.1. Potential Algebra Method with One Parameter

In the above three cases, Case (i) and Case (ii) belong to the single-parameter additive
shape invariance, and the discussion of Case (ii) and Case (i) is very similar. So, in this part,
we only make careful calculation for Case (i) and directly give the results for Case (ii).

For Case (i), according to Equations (55), (56), and (70), we have:

JA
3 = kA −

i
sA

∂φA, i∂φA = sA

(
kA − JA

3

)
= np

(
kA − JA

3

)
, B1 = −B0 (71)

and

J+ J− = eisAφA

[
− d

dx
+ np

(
kA − JA

3

)
tan npx− B0 tan mpx

]

[
d

dx
+ np

(
kA − JA

3

)
tan npx− B0 tan mpx

]
e−isAφA

= − d2

dx2 +
(

B0mp + B2
0

)
sec2 mpx + n2 p2

(
kA − JA

3 − np
)

(
kA − JA

3 − np− 1
)

sec2 npx− 2B0np
(

kA − JA
3 + np

)
tan npx tan mpx

−B2
0 − n2 p2

(
kA − JA

3 − np
)2

(72)
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J− J+ =

[
d

dx
+ np

(
kA − JA

3

)
tan npx + B0 tan mpx

][
− d

dx
+ np

(
kA − JA

3

)
tan npx + B0 tan mpx

]

=− d2

dx2 +
(

B0mp + B2
0

)
sec2 mpx + n2 p2

(
kA − JA

3

)(
kA − JA

3 + 1
)

sec2 npx+

| 2B0np
(

kA − JA
3

)
tan npx tan mpx− B2

0 − n2 p2
(

kA − JA
3

)2

(73)

Furthermore, we have:

J+ J− − J− J+ = −n2 p2
[
−2
(

kA − JA
3

)
np + n2 p2

]
+ 2B0n2 p2 tan npx tan mpx (74)

Due to the additional conditional limitations, the coefficient of the term containing the
variable x can be made zero by limiting the value of k. That is, it is required that:

2B0(np)2 = 0 (75)

J+ J− − J− J+ = 0 = F
(

JA
3

)
(76)

In view of Equation (76), apparently, G
(

JA
3
)
= G

(
JA
3 − np

)
and F(J3) = 0. It indicates

that only a single state exists in the system, and its eigenvalue is zero. This result is the
same as the shape invariance counterpart in Sections 3.2 and 3.3.

4.2. Potential Algebra Method with Two Parameters

According to Equations (55), (59), and (70), we have

J+ J− =ei(sAφA+sBφB)A+
(
z, χ
(
i∂φA , ∂φB

))
A−
(
z, χ
(
i∂φA , ∂φB

))
e−i(sAφA+sBφB)

=A+
(
z, χ
(
i∂φA + sA, i∂φB + sB

)))
A−
(
z, χ
(
i∂φA + sA, i∂φB + sB

))

=

[
− d

dx
+ np

(
kA − JA

3 + 1
)

tan npx + mp
(

kB − JB
3 + 1

)
tan mpx

]

[
d

dx
+ np

(
kA − JA

3 + 1
)

tan npx + mp
(

kB − JB
3 + 1

)
tan mpx

]

=− d2

dx2 + (np)2
(

kA − JA
3 + 1

)(
kA − JA

3

)
sec2 npx + (mp)2

(
kB − JB

3 + 1
)

(
kB − JB

3

)
sec2 mpx + 2mnp2 tan npx tan mpx− (np)2

(
kA − JA

3 + 1
)2

− (mp)2
(

kB − JB
3 + 1

)2

(77)

J− J+ =A−
(
z, χ
(
i∂φA , i∂φB

))
e−i(sAφA+sBφB)ei(sAφA+sBφB)A+

(
z, χ
(
i∂φA , i∂φB

))

=A−
(
z, χ
(
i∂φA , i∂φB

))
A+
(
z, χ
(
i∂φA , i∂φB

))

=

[
d

dx
+ np

(
kA − JA

3

)
tan npx + mp

(
kB − JB

3

)
tan mpx

][
− d

dx
+ np

(
kA − JA

3

)

tan npx + mp
(

kB − JB
3

)
tan mpx

]

=− d2

dx2 + m2 p2
(

kB − JB
3 + 1

)(
kB − JB

3

)
sec2 mpx + n2 p2

(
kA − JA

3 + 1
)

(
kA − JA

3

)
sec2 npx + 2mnp2

(
kB − JB

3

)(
kA − JA

3

)
tan npx tan mpx

−m2 p2
(

kB − JB
3

)2
− n2 p2

(
kA − JA

3

)2

(78)

85



Symmetry 2022, 14, 1593

Furthermore, we have:

J+ J− − J− J+ = (mp)2
(

kB − JB
3

)2
+ (np)2

(
kA − JA

3

)2
−

[
(mp)2

(
kB −

(
JB
3 − 1

))2
+ (np)2

(
kA −

(
JA
3 − 1

))2
] (79)

Under the requirement of the shape invariance, Equation (79) must be represented
only by J3. So, we need to further rewrite the above formula as:

J+ J− − J− J+ = (np)2
(

2JA
3 − 2kA − 1

)
+ (mp)2

(
2JB

3 − 2kB − 1
)

(80)

It is not difficult to see that if we set kA = − 1
2 , kB = − 1

2 , we obtain:

[J+, J−] = 2p2
(

n2 JA
3 + m2 JB

3

)
(81)

Considering the function F(J3) in Equation (59)

J+ J− − J− J+ = F(J3) = F
(

JA
3 , JB

3

)
= G

(
JA
3 , JB

3

)
− G

(
JA
3 − 1, JB

3 − 1
)

(82)

we can deduce:

G
(

JA
3 , JB

3

)
= (mp)2

(
−1

2
− JB

3

)2
+ (np)2

(
−1

2
− JA

3

)2
(83)

and have
E−k = G(hA − k− 1, hB − k− 1)− G(hA − 1, hB − 1) (84)

Set − 1
2 − hA + 1 = A

np ,− 1
2 − hB + 1 = B

mp and we have the energy eigenvalues

E(−)
k (a0) = (A0 + nkp)2 + (B0 + mkp)2 − A2

0 − B2
0 (85)

This is exactly the same as Equation (32).

5. Summary and Prospect

In this paper, the Schrödinger equation with a new generalized trigonometric tangent
superpotential A tan npx + B tan mpx is solved within the framework of SUSYQM. We
show that the superpotential is the new superpotential that can be solved exactly, which
expands the number of exactly solvable potentials shown in Appendix A. At first, the
shape invariant relation of partner potential generated by superpotential are discussed
from three aspects, which are all satisfied with the additivity, and the energy spectrum and
eigenfunctions are obtained. Then, we again study the three aspects with additive shape
invariance from the potential algebra, and we obtain the exact same energy eigenvalues as
previously. Of course, the exact solutions of the equation can be derived from the ground
state wave function. Finally, the energy eigenvalues are discussed.

In conclusion, this paper studies another generalization of the existing solvable poten-
tial. Taking the linear combination of tanmpx superpotential and tannpx superpotential
as our generalization potential, the results are still exciting. The two generalizations of
our research group, including [26], actually give some important information: There are
two parameters, and the relationship between the parameters is reversed by the shape
invariance, with constraints between the two parameters that meet the shape invariant
requirement. These are quite meaningful.
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Appendix A. All Potentials That Can Be Solved Exactly

Table A1. The newly constructed potential that can be solved exactly.

Name Superpotential Eigenenergies Ground State Eigenfunction

Generalized Hyperbolic
Tangent 1 A tanh npx + B tanh mpx (A+ B)2− (A+ B− knp− kmp)2 (cosh npx)−

A
np (cosh mpx)−

B
mp

Generalized Hyperbolic
Tangent 2 A tanh px + B tanh 6px (A + B)2 − (A + B− 7np)2 cosh px

1
2

(
−1+ B0

6p

)
cosh 6px−

B0
6p

Generalized Hyperbolic
Tangent 3

(
− b

2
+ p

)
tanh px+ b tanh 2px

(
1
2

b + p
)2
−
(

1
2

b− (n + 1)p
)2

cosh px−1+ b0
2p cosh 2px−

b0
2p

Generalized Hyperbolic
Tangent 4

1
4
(−b+ 4p) tanh px+ b tanh 4px

(
3
4

b + p
)2
−
(

3
4

b− (3n + 1)p
)2

cosh px
b

4p cosh 4px1− b
4p

Generalized trigonometric
tangent (this paper) Λ tan npx + B tan mpx (A0 + nkp)2 + (B0

+ mkp)2 − A2
0 − B2

0

(A1) N0(cos mpx)
B0
mp (cos mpx)

A0
np
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A Time-Symmetric Resolution of the Einstein’s Boxes Paradox
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Abstract: The Einstein’s Boxes paradox was developed by Einstein, de Broglie, Heisenberg, and others
to demonstrate the incompleteness of the Copenhagen Formulation of quantum mechanics. I explain
the paradox using the Copenhagen Formulation. I then show how a time-symmetric formulation of
quantum mechanics resolves the paradox in the way envisioned by Einstein and de Broglie. Finally, I
describe an experiment that can distinguish between these two formulations.

Keywords: quantum foundations; time-symmetric; Einstein’s boxes; Einstein–Podolsky–Rosen (EPR)

1. Introduction

A grand challenge of modern physics is to resolve the conceptual paradoxes in the
foundations of quantum mechanics [1]. Some of these paradoxes concern nonlocality
and completeness. For example, Einstein believed the Copenhagen Formulation (CF) of
quantum mechanics was incomplete. He presented a thought experiment (later known
as “Einstein’s Bubble”) explaining his reasoning at the 1927 Solvay conference [2]. In this
experiment, an incident particle’s wavefunction diffracts at a pinhole in a flat screen and
then spreads to all parts of a hemispherical screen capable of detecting the wavefunction.
The wavefunction is then detected at one point on the hemispherical screen, implying
the wavefunction everywhere else vanished instantaneously. Einstein believed that this
instantaneous wavefunction collapse violated the special theory of relativity, and the
wavefunction must have been localized at the point of detection immediately before the
detection occurred. Since the CF does not describe the wavefunction localization before
detection, it must be an incomplete theory. In an earlier paper, I analyzed a one-dimensional
version of this thought experiment with a time-symmetric formulation (TSF) of quantum
mechanics [3], showing that the TSF did not need wavefunction collapse to explain the
experimental results.

Einstein, de Broglie, Heisenberg, and others later modified Einstein’s original thought
experiment to emphasize the nonlocal action-at-a-distance effects. In the modified experi-
ment, the particle’s wavefunction was localized in two boxes which were separated by a
space-like interval. This modified thought experiment became known as “Einstein’s Boxes.”
Norsen wrote an excellent analysis of the history and significance of the Einstein’s Boxes
thought experiment using the CF [4].

Time-symmetric explanations of quantum behavior predate the discovery of the
Schrödinger equation [5] and have been developed many times over the past century [6–33].
The TSF used in this paper has been described in detail and compared to other TSFs
before [3,31–33]. Note in particular that the TSF used in this paper is significantly different
than the Two-State Vector Formalism (TSVF) [12,23,24]. First, the TSVF postulates that a
quantum particle is completely described by two state vectors, written as 〈φ| |ψ〉, where |ψ〉
is a retarded state vector satisfying the retarded Schrödinger equation ih̄∂|ψ〉/∂t = H|ψ〉
and the initial boundary conditions, while 〈φ| is an advanced state vector satisfying the
advanced Schrödinger equation −ih̄〈φ|∂/∂t = 〈φ|H and the final boundary conditions.
In contrast, the TSF postulates that the transition of a quantum particle is completely
described by a complex transition amplitude density φ∗ψ, defined as the algebraic product
of the two wavefunctions. Second, the TSVF postulates that wavefunctions collapse upon
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measurement, while the TSF has no collapse postulate. The particular TSF used in this
paper is a type IIB model in the classification system of Wharton and Argaman [34].

Section 2 explains the paradox associated with the CF of the Einstein’s Boxes thought
experiment, as described by de Broglie. Section 3 reviews a CF numerical model of the
thought experiment which does not resolve the paradox. Section 4 describes a TSF numeri-
cal model of the thought experiment which resolves the paradox. Section 5 discusses the
conclusions and implications.

Note that this paper only concerns a single quantum particle interfering with itself
and not multiple quantum particles entangled with each other.

2. The Einstein’s Boxes Paradox

The Einstein’s Boxes paradox was explained by de Broglie as follows [35]:

Suppose a particle is enclosed in a box B with impermeable walls. The associated
wave ψ is confined to the box and cannot leave it. The usual interpretation
asserts that the particle is “potentially” present in the whole of the box B, with a
probability |ψ|2 at each point. Let us suppose that by some process or other,
for example, by inserting a partition into the box, the box B is divided into two
separate parts B1 and B2 and that B1 and B2 are then transported to two very
distant places, for example to Paris and Tokyo. The particle, which has not yet
appeared, thus remains potentially present in the assembly of the two boxes and
its wavefunction ψ consists of two parts, one of which, ψ1, is located in B1 and
the other, ψ2, in B2. The wavefunction is thus of the form ψ = c1ψ1 + c2ψ2, where
|c1|2 + |c2|2 = 1.

The probability laws of [the Copenhagen Formulation] now tell us that if an
experiment is carried out in box B1 in Paris, which will enable the presence
of the particle to be revealed in this box, the probability of this experiment
giving a positive result is |c1|2, while the probability of it giving a negative result
is |c2|2. According to the usual interpretation, this would have the following
significance: because the particle is present in the assembly of the two boxes prior
to the observable localization, it would be immediately localized in box B1 in
the case of a positive result in Paris. This does not seem to me to be acceptable.
The only reasonable interpretation appears to me to be that prior to the observable
localization in B1, we know that the particle was in one of the two boxes B1 and
B2, but we do not know in which one, and the probabilities considered in the
usual wave mechanics are the consequence of this partial ignorance. If we show
that the particle is in box B1, it implies simply that it was already there prior to
localization. Thus, we now return to the clear classical concept of probability,
which springs from our partial ignorance of the true situation. But, if this point of
view is accepted, the description of the particle given by ψ, though leading to a
perfectly exact description of probabilities, does not give us a complete description
of the physical reality, because the particle must have been localized prior to
the observation which revealed it, and the wavefunction ψ gives no information
about this.

We might note here how the usual interpretation leads to a paradox in the case of
experiments with a negative result. Suppose that the particle is charged, and that
in the box B2 in Tokyo a device has been installed which enables the whole
of the charged particle located in the box to be drained off and in so doing to
establish an observable localization. Now, if nothing is observed, this negative
result will signify that the particle is not in box B2 and it is thus in box B1 in
Paris. But this can reasonably signify only one thing: the particle was already
in Paris in box B1 prior to the drainage experiment made in Tokyo in box B2.
Every other interpretation is absurd. How can we imagine that the simple fact of
having observed nothing in Tokyo has been able to promote the localization of the
particle at a distance of many thousands of miles away?
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3. The Conventional Formulation of Einstein’s Boxes

The version of Einstein’s Boxes proposed by de Broglie is experimentally impractical.
We will use Heisenberg’s more practical version [36], shown in Figure 1. The Conventional
Formulation (CF) postulates that a single free particle wavefunction with a mass m is com-
pletely described by a retarded wavefunction ψ(~r, t) which satisfies the initial conditions
and evolves over time according to the retarded Schrödinger equation:

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ. (1)

BS
S

x
y

B2

B1

Figure 1. The modified Einstein’s Boxes thought experiment. The source S can emit single-particle
wavefunctions on command. Each wavefunction travels to the balanced beam splitter BS and then to
box B1 and box B2. The two boxes are separated by a space-like interval.

The “retarded wavefunction” and “retarded Schrödinger equation” are simply the
usual wavefunction and Schrödinger equation, described as retarded to distinguish them
from the “advanced wavefunction” and “advanced Schrödinger equation,” which will be
defined below. We will use units where h̄ = 1 and assume the wavefunction ψ(~r, t) is a
traveling Gaussian with an initial standard deviation σ = 50, initial momentum kx = 0.4,
and mass m = 1. We will also assume that each box contains a detector whose eigenstate
is the same Gaussian as that emitted by the source. The CF assumes that a single-particle
wavefunction emitted from a source S will travel to the beam splitter BS, where half of it
will pass through BS and continue to box B1 while the other half will be reflected from BS
and travel to box B2. Let us assume the two halves reach the boxes at the same time.

Figure 2 shows how the wavefunction’s CF probability density ψ∗ψ evolves over time,
assuming the initial condition is localization in the source S. At t = 0, ψ∗ψ is localized
inside the source S. At t = 1000, ψ∗ψ is traveling toward the beam splitter BS. At t = 3000,
ψ∗ψ has been split in half by the beam splitter, and the two halves are traveling toward
box B1 and box B2. At t = 4000− δt, half of ψ∗ψ arrives at box B1, while the other half
arrives at box B2. Upon a measurement at box B2 at t = 4000, the CF postulates that in 50%
of the runs, the half wavefunction in box B2 collapses to zero, while simultaneously, the
half wavefunction in box B1 collapses to a full wavefunction φ(~r, t), which we will assume
has the same shape and size as the initial wavefunction. It was believed by de Broglie that
this prediction of the CF was absurd: “How can we imagine that the simple fact of having
observed nothing in [box B2] has been able to promote the localization of the particle [in
box B1] at a distance of many thousands of miles away?”
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The CF assumes that the probability Pc for the collapse in box B1 is Pc = A∗c Ac, where
the subscript c denotes the CF and the CF transition amplitude Ac for the collapse is

Ac =
∫ ∞

−∞
φ∗(x, y, 4000)

1√
2

ψ(x, y, 4000)dxdy, (2)

where t = 4000 is the time of wavefunction collapse and the “quantum” factor 1√
2

accounts
for the initial wavefunction ψ(x, y, t) being split in half when it reaches box B1. Plugging
in numbers gives a collapse probability Pc = 0.43. This probability is not 1/2 because the
evolved wavefunction at t = 4000 is not identical in shape to the detector eigenstate.

Figure 2. The Conventional Formulation (CF) explanation of the Einstein’s Boxes experiment with a
single-particle wavefunction emitted from source S. (a) The probability density ψ∗ψ is localized
inside S. (b) ψ∗ψ has left S and is traveling toward the beam splitter BS. (c) ψ∗ψ has been split in
half by BS, and the two halves are traveling toward boxes B1 and B2. (d) The two halves arrive at B1

and B2. (e) A measurement at either B1 or B2 at t = 4000 causes either ψ to collapse to zero in B2 and
to a full wavefunction in B1 (shown) or ψ to collapse to zero in B1 and to a full wavefunction in B2

(not shown).
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4. The Time-Symmetric Formulation of Einstein’s Boxes

The TSF postulates that quantum mechanics is a theory about transitions described by
the transition amplitude density φ∗ψ, where ψ is a retarded wavefunction that obeys the
retarded Schrödinger equation ih̄∂ψ/∂t = Hψ and satisfies the initial boundary conditions,
while φ∗ is an advanced wavefunction that obeys the advanced Schrödinger equation
−ih̄∂φ∗/∂t = Hφ∗ and satisfies the final boundary conditions. As in the TSVF, ψ can be
interpreted as a retarded wavefunction from the past initial conditions, and φ∗ can be
interpreted as an advanced wavefunction from the future final conditions [3]. We will
assume the same wavefunctions ψ(~r, t) and φ(~r, t) as in the CF above.

An electron (e.g.) can be absorbed by a few molecules in a detector. The number of
few-molecule sites in a detector is orders of magnitude larger than the number of square
centimeter sites in a detector. This makes it overwhelmingly more likely that the electron
will be absorbed in an area localized to a few square nanometers than much larger areas.
This could explain why the transition amplitude density refocuses to a localized area at
the detector. Note that there exist two unitary solutions based on the initial conditions,
but time-symmetric theories also require the final conditions, which are that the particle is
always found in either one or the other box. Let us then assume the final conditions are
either a transition amplitude density localized in box B1 or a transition amplitude density
localized in box B2.

Figure 3 shows the TSF explanation of the Einstein’s Boxes thought experiment,
assuming that the final condition is a particle transition amplitude density localized in
box B1. At t = 0, |φ∗ψ| is localized inside the source S. At t = 1000, |φ∗ψ| is traveling
toward the beam splitter BS. At t = 3000, |φ∗ψ| has passed through the beam splitter
and is traveling toward box B1. |φ∗ψ| is zero on the path from BS to B2 because φ∗ is zero
on this path. At t = 4000− δt, |φ∗ψ| arrives at box B1. Upon a measurement at box B2 at
t = 4000, no particle transition amplitude density is found. Upon a measurement at box B1
at t = 4000, one particle’s transition amplitude density is found. The one-particle transition
amplitude density was localized inside box B1 before the measurement was made.

The TSF assumes the probability Pt for the transition from localization in the source S
to localization in box B1 is Pt =

1
2 A∗t At, where the subscript t denotes the TSF, the “classical”

probability factor 1
2 accounts for the fact that there are two equally likely possible final

states, and the TSF amplitude At for the transition is

At =
∫ ∞

−∞
φ∗(x, y, t)ψ(x, y, t)dxdy, (3)

Plugging in numbers gives a TSF transition probability Pt = 0.43, which is identical
to the CF collapse probability result. Note that there is no transition amplitude density
collapse in the TSF, so there is no need to specify the time of collapse in the integrand.
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Figure 3. The time-symmetric formulation (TSF) explanation of the Einstein’s Boxes experiment,
with a single-particle transition amplitude density emitted from source S and detected at box B1.
(a) The absolute value of the transition amplitude density |φ∗ψ| is localized inside S. (b) |φ∗ψ|
has left S and is traveling toward the beam splitter BS. (c) |φ∗ψ| has passed through BS and is
traveling toward box B1. |φ∗ψ| is zero on the path from BS to B2 because φ∗ is zero on this path.
(d) |φ∗ψ| arrives at B1. (e) Measurements at t = 4000 show a transition amplitude density in B1 and
no transition amplitude density in B2. With equal probability, the final condition could have been
localization in box B2. Transition amplitude density collapse never occurs. |φ∗ψ| is normalized.

5. Discussion

To the best of my knowledge, this is the first time a TSF has been shown to resolve the
Einstein’s Boxes paradox. The TSF resolves the paradox in the ways that Einstein and de
Broglie envisioned. The transition amplitude density φ∗ψ “localises the particle during the
propagation [2],” and φ∗ψ “was already in Paris in box B1 prior to the drainage experiment
made in Tokyo in box B2 [35].” None of the problems associated with wavefunction collapse
occur. The TSF appears to give the sought-after exact description of the probabilities and a
complete description of the physical reality.

One might wonder if a theory based on transition amplitude densities will be able to
reproduce all of the predictions of the CF. In 1932, Dirac showed that all the experimental
predictions of the CF of quantum mechanics can be formulated in terms of transition
probabilities [37]. The TSF inverts this fact by postulating that quantum mechanics is a
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theory which experimentally predicts only the transition probabilities. This implies that the
TSF has the same predictive power as the CF.

The TSF has the additional benefit of being consistent with the classical explanation
of the Einstein’s Boxes thought experiment. As the size of the “particle” becomes larger
and it starts behaving more like a classical particle, it will always go to either one box or
the other. There is a logical continuity between its behavior in the quantum and classical
regimes, in contrast to the CF predictions.

In the TSF example above, we assumed the transition probabilities for the two boxes
were the same. Now consider the case where the two transitions are not equally likely.
For a very unlikely transition, the pre-experiment estimate of the TSF transition amplitude
density φ∗ψ is tiny, while for a very likely transition, the pre-experiment estimate of φ∗ψ is
large. However, this does not mean that φ∗ψ itself is a smaller-sized field in the event of an
unlikely outcome. Before an experiment is conducted, we have classical ignorance of which
transition will occur. We normalize the wavefunctions ψ and φ∗ to unity and calculate the
expected probability for each transition based on φ∗ψ. After the experiment is complete,
we know which of the two possible transitions actually occurred, so we renormalize the
φ∗ψ of that transition to give a transition probability of one and renormalize the other φ∗ψ
to zero. Note that this is an update of our classical ignorance of which transition occurred
and not a physical wavefunction collapse. This may explain why the CF collapse postulate
appears to work.

A central issue raised by the Einstein’s Boxes paradox is the question of which elements
of quantum theory should be thought of as elements of reality (ontic) and which elements
are merely states of knowledge (epistemic). The TSF transition amplitude density φ∗ψ
and the wavefunctions ψ and φ∗ should be thought of as elements of reality, with the
understanding that φ∗ψ is the TSF equivalent of a real particle wavefunction while ψ and
φ∗ are the TSF equivalents of virtual particle wavefunctions. For multiple particles, φ∗ψ
lives in a higher dimensional configuration spacetime, which should be thought of as the
stage for reality [32]. The CF concept of a superposition of paths after the beam splitter
then becomes just a state of knowledge in the TSF. In reality, only one path is taken; we just
do not know in advance which one. Since the TSF assumes that the sources and sinks are
randomly emitting ψ and φ∗ wavefunctions, it is a probabilistic theory. In analogy with the
classical theory of special relativity, the TSF transition amplitude density can be thought
of as a quantum worldtube. The higher dimensional configuration spacetime is then the
quantum equivalent of Minkowski spacetime.

Finally, the CF predicts a rapid oscillating motion of a free particle’s wavefunction in
empty space. Schrödinger discovered the possibility of this rapid oscillating motion in 1930,
naming it zitterbewegung [38]. This prediction of the CF is inconsistent with Newton’s
first law, since it implies a free particle’s wavefunction does not move with a constant
velocity. The TSF predicts zitterbewegung will never occur [3]. Direct measurements of
zitterbewegung are beyond the capability of current technology, but future technological
developments should allow measurements to confirm or deny its existence. Given the
technology, one possible way to test for zitterbewegung would be to hold an electron in
the ground state in a parabolic potential and then turn off the potential while looking for
radiation at the zitterbewegung frequency of 1021 s−1. This could distinguish between the
CF and the TSF.
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Abstract: The global quantum information-theoretical analysis of the class of Yukawa potential (CYP)
in the presence of magnetic and Aharonov–Bohm (AB) fields has been examined both analytically
and numerically in this research piece. The energy equation and wave function for the CYP are
obtained by solving the Schrodinger equation in the presence of external magnetic and AB fields
using the functional analysis technique. The probability density is used to calculate the Tsallis, Rényi,
and Onicescu information energy entropies numerically. The influence of the screening parameter

(β), magnetic (
→
B), and AB (ξ) fields on the global information-theoretical measurements for the CYP

is explored. Atomic and molecular physics, quantum chemistry, and physics are specific areas where
these research findings will find application.

Keywords: magnetic and AB fields; Onicescu information energy; Rényi entropy; Shannon entropy;
class of Yukawa potential; Tsallis entropy

1. Introduction

Rényi, Tsallis, and Shannon information entropies, and Onicescu information energy,
are all global quantum information-theoretic measures (GQITM). These measures are
focused on quantifying the spread of the probability distribution that characterizes the
permitted quantum mechanical states of a system [1–5]. The importance of these global
measures is to study the uncertainty of the probability distribution [6–13].

These theoretical techniques have been widely used in atomic and molecular systems,
and they provide excellent insight into density functionals and electron correlation, which
assists in the study of atomic structure and dynamics [14–18]. Quantum information theory
(QIT) has acquired a lot of traction recently and has piqued the interest of many scholars. It
has also proven to be incredibly useful in a variety of domains ranging from physics, chem-
istry, biology, medicine, computer science, neural networks, image recognition, linguistics,
and other social sciences [19–22].

This is because QIT has a connection to current quantum communications, computing,
and density functional techniques, which are the underlying theories and building blocks
for a number of technological advances [18–20]. The quantification of information is a sub-
discipline of applied mathematics, physics, and engineering. Nonetheless, these metrics,
as well as the uncertainty relations that go with them, are essential factors in identifying a
variety of atomic and molecular processes [21,22]. In quantum physics, they are commonly
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utilized to study quantum entanglement [22,23], quantum revivals [23,24], and atomic
ionization characteristics [25]. This study has been done by several scholars for various
quantum mechanical systems [25–38].

Olendski [39] studied the Shannon quantum information entropies, Fisher informa-
tions, and Onicescu energies and complexities both in the position and momentum spaces
for the azimuthally symmetric two-dimensional nano-ring that is placed in uniform mag-
netic and Aharonov–Bohm fields. Olendski [40] calculated the one-parameter functionals
of the Rényi and Tsallis entropies both in the position and momentum spaces for the az-
imuthally symmetric 2D nano-ring that is placed into the combination of the transverse
uniform magnetic field and the Aharonov–Bohm (AB) flux and whose potential profile
is modeled by the superposition of the quadratic and inverse quadratic dependencies on
the radius r.

We are interested in investigating information-theoretical measures for the CYP in
the presence of magnetic and Aharonov–Bohm fields in the current work. Onate and
Ojonubah were the first to propose this potential [41]. Since it is a generalization of the
Yukawa, Hellmann, Coulomb, and inverse quadratic Yukawa potentials, this atomic model
is important [41,42]. CYP has a wide range of applications in physics, including high-energy
physics, atomic and solid-state physics, and many more [43,44]. The CYP is expressed
as [41]:

V(r) = − Ãe−2βr

r2 − B̃
r
+

C̃e−βr

r
(1)

where r is the interparticle distance, Ã, B̃, and C̃ are the potential parameters, and β is the
screening parameter which characterizes the range of the interaction [41].

In this study, we are looking for answers to the following questions: what hap-
pens to information-entropies when magnetic and Aharonov–Bohm fields have an all-
encompassing effect? What happens when a lone effect occurs? As a result, we are
interested in using information-theoretical measurements to investigate this spreading in
both position and momentum spaces.

GITM are measures of uncertainty and information of a probability distribution and
are useful in identifying strong variations on the distribution over a small region in a
system; thus, they identify the local changes in the probability density, giving a good
description of the quantum system [9,45].

The Shannon entropy is extended by the Rényi entropy. It is a single-parameter entropy
measure family that has some important link with Shannon entropy. In the position space,
Rényi entropy is defined as [2,27,28,46]:

Rp[Ξn] =
1

1− p
ln
[∫

(Ξ(r))pdr
]
=

1
1− p

lnΥp[Ξn], p > 0, p 6= 1. (2)

For the momentum space coordinate, the associated Rényi entropy is given as:

Rq[Xn] =
1

1− p
ln
[∫

(X(ρ))pdρ

]
=

1
1− p

lnΥp[Xn], p > 0, p 6= 1. (3)

where Xn = X(ρ) = |Ψ(ρ)|2. The parameter’s permissible range of values is governed by
the integral’s convergence condition in the definition, with the crucial condition p > 0. In
the limit p→ 0 , the Rényi entropy changes to the Shannon entropy [34].

As p approaches zero, the Rényi entropy increasingly weighs all events with nonzero
probability more equally, regardless of their probabilities. In the limit for p→ 0 , the Rényi
entropy is just the logarithm of the size of the support of Ξn. The limit for p→ 1 is the
Shannon entropy. As p approaches infinity, the Rényi entropy is increasingly determined
by the events of highest probability [34].

Onicescu proposed a better measure of dispersion distribution in an attempt to estab-
lish a generalization to the Shannon entropy [5]. Onicescu information energy is described
as [5]:
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E[Ξn] =
∫

Ξ2(r)dr =
∫

(Ξ(r))pdr = Υp[Ξn], p = 2 (4)

For the momentum space coordinate, the equivalent Onicescu energy is given as:

E[Xn] =
∫

X2(ρ)dρ =
∫

(X(ρ))pdρ = Υq[Xn], p = 2 (5)

The probability distribution is more concentrated and the information content is
smaller as the Onicescu information energy increases. The energy product of Onicescu can
thus be calculated as Eργ = EρEγ.

In the position and momentum space coordinates, the Tsallis entropy is defined as [4]:

Tp[Ξn] =
1

p− 1

(
1−

[∫
(Ξ(r))pdr

])
=

1
p− 1

(
1−Υp[Ξn]

)
, p > 0, p 6= 1 (6)

and:

Tp[Xn] =
1

p− 1

(
1−

[∫
(X(ρ))pdρ

])
=

1
p− 1

(
1−Υp[γn]

)
, p > 0, p 6= 1 (7)

where Xp[Ξn] is the entropic moments. In the limit p→ 1 , the Tsallis entropy also changes
to the Shannon entropy. In Equations (2)–(7): p is a non-negative dimensionless coefficient,
which can be construed as a factor describing the reaction of the system to its deviation from
the equilibrium; Ξ(r) is the position space probability density; and X(ρ) is the momentum
space probability density.

The following is how this article is structured: the normalized wave function and
probability density for the CYP in the presence of magnetic and Aharonov–Bohm fields are
presented in the next section. The numerical findings and explanations of the Rényi entropy,
Tsallis entropy, and Onicescu information energy, as well as their respective uncertainty
relations, are presented in Section 3. A final remark is made in Section 4.

2. The Model Formulation

In cylindrical coordinates, the Hamiltonian operator of a charged particle moving
in the class of Yukawa potential (CYP) under the combined influence of AB and external
magnetic fields may be expressed [47–49] as:

[
1

2µ

(
i}
→
∇− e

c

→
A
)2
− Ãe−2βr

r2 − B̃
r
+

C̃e−βr

r

]
ψ(r, ϕ) = Enmψ(r, ϕ), (8)

where Enm denotes the energy level, µ is the effective mass of the system, and the vector

potential which is denoted by “
→
A” is given as:

→
A =

(
0,

→
Be−βr

(1−e−βr)
+ φAB

2πr , 0
)

[47,48].

Equation (8) cannot be solved analytically, so Greene and Aldrich approximation
scheme have to be employed in order to obtain the eigen solutions [46]. The energy is
obtained as follows using the functional analysis approach (FAA):

Enm =
}2β2ηm

2µ
− B̃β− }2β2

8µ




2µB̃
}2β
− 2µC̃

}2β
− 2µÃ

}2 +
(

µωc
}β

)2
− ηm − (n + σm)

2

(n + σm)




2

(9)

where m is the magnetic quantum number:

σm =
1
2
+

√
(m + ξ)2 − 2µÃ

}2 +

(
µωc

}β

)2
+

2µωc

}β
(m + ξ) (9a)

and:
ηm = (m + ξ)2 − 1

4
(9b)
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The normalized wave function χnm(s) that corresponds to the two lowest lying states
n = 0, 1 are presented as follows:

χ0(s) =

√
βΓ(1 + 2λ + 2σm)

Γ(2λ)Γ(1 + 2σm)

(
e−βr

)λ(
1− e−βr

)σm
(10)

and:

χ1(s) = 1
1+2λ

√
βλ(1+2λ)Γ(3+2λ+2σm)

(1+σm)(1+2λ+2σm)Γ(1+2λ)Γ(1+2σm)

(
e−βr)1+λ×

(
1− e−βr)σm(e−βr(1 + 2λ)− 2σm − (1 + 2λ)

) (11)

where λ =

√
− 2µEnm

}2β2 − 2µC̃
}2β

+ ηm.

The normalized momentum-space χnm(ρ) wave function for the two lowest lying
states n = 0, 1, are obtained as [39,40]:

χ0(ρ) =
1√
2π

∞∫

0

χ0(r)e−iρrdr (12)

χ0(ρ) =

√
βΓ(1 + 2λ + 2σm)

Γ(2λ)Γ(1 + 2σm)

Γ
(

iρ
β + λ

)
Γ(1 + σm)

√
2πβΓ

(
1 + iρ

β + λ + σm

) (13)

χ1(ρ) =
1√
2π

∞∫

0

χ1(r)e−iρrdr (14)

χ1(ρ) =

√
β(1 + 2λ)Γ(3 + 2λ + 2σm)

2(1 + σm)(1 + 2λ + 2σm)Γ(2λ)Γ(1 + 2σm)



(−2iρσm + α(1 + 2λ + σm))Γ(1 + σm)Γ

(
iρ
β + λ

)

√
2πβ2(1 + 2λ)Γ

(
2 + iρ

β + λ + σm

)


 (15)

Full details of the solutions can be found in ref. [50]. We point out here that Edet
and Ikot [50] have recently treated one of these global information entropies known as
the Shannon entropy. In a bid to broaden the scope of our application, we will in the next
section consider other global entropies.

In the absence of magnetic and AB fields, if we set m = `+ 1
2 , −Ã = Ã, C̃ = −C̃,

B̃ = 0, and β = 0, we recover the Kratzer–Feus potential:

V(r) =
Ã
r2 −

C̃
r

(16)

with energy:

En` = −
µ

2}2
C̃2

(
n + 1

2 +

√
`+ 1

4 + 2µÃ
}2

)2 (17)

The above expressions (16) and (17) are in agreement with Ref. [51].

3. Global Information-Theoretic Measures for the CYP

In general, the derivation of these information entropies is difficult and time-consuming,
particularly the analytical formulation for the Tsallis and Rényi entropies and Onicescu
information energy in momentum space. This is due to the Fourier transform’s intricate
computation; as a result, we find the numerical result.

Figure 1a–d displays the plot of Tsallis entropies in position and momentum space,
which reveals that the CYP’s position Tsallis entropies diminish as the potential parameter
increases, whereas the momentum space expands when the potential parameter β is
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amplified. In the position space with rising magnetic and AB fields, Tsallis entropy is
likewise shown to decrease. In the momentum space, the opposite is the case.
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Figure 1. Position space Tsallis entropies Tr(r) versus: (a) screening parameter (β) with varying
magnetic field; (b) screening parameter (β) with varying AB field. Momentum space Tsallis entropies
Tρ(ρ) versus (c) screening parameter (β) with varying magnetic field; (d) screening parameter (β)

with varying AB field.

The Rényi entropies (RE) in position and momentum space are shown in Figure 2a–d.
RE increases with rising potential parameter β and decreases with the increasing magnetic
and AB fields in position space. RE gets larger with the screening parameter β and is
inversely proportional to magnetic and AB fields in momentum space. This behaves
similarly to the Shannon entropies in position space seen in Figure 1a–d in Ref. [51].

The Onicescu information energy (OIE) in position and momentum space is shown in
Figure 3a–d. The OIE in position space increases as the screening parameter β upsurges and
declines as the magnetic and AB fields rise. The OIE reduces as the screening parameter
rises and upsurges as the magnetic and AB fields grow in momentum space. This highlights
the fact that the greater the system’s OIE, the more concentrated the probability distribution
is and the smaller the information content. According to the definition of the Shannon
entropy, more localized distributions and position space probability density correspond to
the smaller value of the RE, which means that the delocalization of the probability density
increases with increasing quantum number.
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Figure 2. Position space Rényi entropies Rr(r) versus: (a) screening parameter (β) with varying
magnetic field; (b) screening parameter (β) with varying AB field. Momentum space Rényi entropies
Rρ(ρ) versus (c) screening parameter (β) with varying magnetic field; (d) screening parameter (β)

with varying AB field.

The numerical findings in Tables 1 and 2 demonstrate that the position-space Tsallis
entropy reduces as the potential parameter, magnetic, and AB fields rise, whereas the
momentum-space Tsallis information entropy grows as the potential parameter β, magnetic,
and AB fields increase. This is consistent with what we observed in Figure 1. The single
influence of these fields is examined in Table 3. The Tsallis entropy in the position space
grows as the potential parameter β increases when just the magnetic field is present, and a
similar condition is observed in the momentum space. This contradicts our findings for the
all-inclusive impact in momentum space. This finding is also confirmed when only the AB
field is functioning.
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Figure 3. Position space Onicescu information energy Er(r) versus: (a) screening parameter (α)

with varying magnetic field; (b) screening parameter (β) with varying AB field. Momentum space
Onicescu information energy Eρ(ρ) versus (c) screening parameter (β) with varying magnetic field;
(d) screening parameter (β) with varying AB field.

Table 1. Numerical results of the Tsallis entropy for CYP of Ã = 1, B̃ = 2 and C̃ = −1 for m = 0 in

the presence of AB and magnetic fields with varying β and
→
B .

n = 0 β Tr Tρ TrTρ
→
B Tr Tρ TrTρ

0.1 4.85597 −1.36078 −6.60789 0.1 10.3199 −1.76531 −18.2178
0.2 3.00089 −0.97275 −2.9191 0.2 7.51722 −1.6137 −12.1305
0.3 2.12788 −0.68065 −1.44834 0.3 6.62342 −1.54307 −10.2204
0.4 1.58914 −0.437 −0.69446 0.4 6.15692 −1.5002 −9.23659
0.5 1.21291 −0.22413 −0.27185 0.5 5.86766 −1.47134 −8.63333
0.6 0.930544 −0.03313 −0.03083 0.6 5.67091 −1.45071 −8.22686
0.7 0.708313 0.141231 0.100036 0.7 5.52895 −1.43534 −7.93591
0.8 0.527399 0.30238 0.159475 0.8 5.42214 −1.42353 −7.71857
0.9 0.376339 0.452694 0.170367 0.9 5.33924 −1.41423 −7.55093

n = 1 0.1 0.331132 −1.13946 −0.37731 0.1 4.20379 −1.38461 −5.8206
0.2 −0.22603 −0.66985 0.151406 0.2 3.13651 −1.302 −4.08373
0.3 −0.4842 −0.31568 0.152849 0.3 2.56567 −1.25414 −3.21771
0.4 −0.64587 −0.0206 0.013304 0.4 2.19632 −1.22327 −2.68669
0.5 −0.76184 0.236612 −0.18026 0.5 1.93233 −1.2021 −2.32285
0.6 −0.85165 0.466783 −0.39753 0.6 1.73169 −1.18699 −2.05549
0.7 −0.92462 0.676366 −0.62538 0.7 1.57271 −1.17587 −1.84931
0.8 −0.98589 0.869596 −0.85733 0.8 1.44287 −1.16752 −1.68457
0.9 −1.03857 1.04943 −1.08991 0.9 1.33436 −1.16112 −1.54936
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Table 2. Numerical results of the Tsallis entropy for CYP of Ã = 1, B̃ = 2 and C̃ = −1 for m = 0 in
the presence of AB and magnetic fields with varying ξ.

n = 0 ξ Tr Tρ TrTρ

0.1 75.1126 −2.36279 −177.476
0.2 18.4411 −1.97689 −36.4561
0.3 14.1096 −1.8945 −26.7308
0.4 12.1546 −1.84339 −22.4055
0.5 10.9773 −1.80543 −19.8188
0.6 10.1662 −1.77482 −18.0432
0.7 9.56125 −1.74892 −16.7219
0.8 9.08577 −1.72634 −15.6851
0.9 8.69795 −1.70622 −14.8406

n = 1 0.1 4.34999 −1.49708 −6.51228
0.2 4.03499 −1.48134 −5.97721
0.3 3.75866 −1.46679 −5.51319
0.4 3.51378 −1.45323 −5.10635
0.5 3.29489 −1.44051 −4.74632
0.6 3.09776 −1.42851 −4.42517
0.7 2.91908 −1.41713 −4.13671
0.8 2.75619 −1.4063 −3.87602
0.9 2.60694 −1.39595 −3.63916

Table 3. Numerical results of the Tsallis entropy for CYP of Ã = 1, B̃ = 2 and C̃ = −1 for m = 0 in
the absence of AB and magnetic fields.

→
B = 0, n = 0 β Tr Tρ TrTρ n = 0, ξ = 0 β Tr Tρ TrTρ

0.1 10.0506 −0.77122 −7.75125 0.1 18.5869 −0.34567 −6.425
0.2 3.68752 −1.26202 −4.65372 0.2 13.49 −0.62472 −8.42742
0.3 2.28039 −1.41008 −3.21553 0.3 11.0811 −0.77215 −8.55619
0.4 1.59787 −1.49039 −2.38145 0.4 9.57162 −0.87116 −8.33842
0.5 1.1687 −1.5445 −1.80506 0.5 8.49297 −0.9456 −8.03094
0.6 0.864823 −1.5848 −1.37057 0.6 7.65982 −1.00545 −7.70155
0.7 0.634176 −1.61665 −1.02524 0.7 6.9822 −1.05578 −7.37164
0.8 0.450886 −1.64281 −0.74072 0.8 6.41051 −1.09948 −7.04822
0.9 0.300389 −1.66492 −0.50012 0.9 5.91497 −1.13834 −6.73327

→
B = 0, n = 1 0.1 7.63677 −0.94899 −7.24723 n = 0, ξ = 0 0.1 4.71345 −1.03892 −4.89688

0.2 1.34222 −1.40999 −1.89252 0.2 3.07693 −1.2298 −3.78402
0.3 0.489068 −1.52626 −0.74644 0.3 2.32993 −1.32995 −3.09868
0.4 0.067563 −1.59329 −0.10765 0.4 1.87899 −1.39616 −2.62338
0.5 −0.19899 −1.63956 0.326249 0.5 1.56944 −1.44481 −2.26753
0.6 −0.38826 −1.67449 0.650143 0.6 1.34038 −1.48278 −1.9875
0.7 −0.53219 −1.70232 0.905953 0.7 1.16234 −1.51362 −1.75935
0.8 −0.6467 −1.72533 1.11577 0.8 1.01907 −1.53937 −1.56873
0.9 −0.74081 −1.74485 1.2926 0.9 0.90080 −1.5613 −1.40643

The numerical results in Tables 4 and 5 demonstrate that the position-space Rényi
entropy decreases as the potential parameter, magnetic, and AB fields increase, but the
momentum-space Rényi information entropy increases as the potential parameter β, mag-
netic, and AB fields increase. This is consistent with what we saw in Figure 2.

When we looked at the lone influence of these fields on the Rényi entropy in Table 6,
we saw something intriguing. When just the magnetic field is active, we find that the Rényi
entropy in the position space grows as the potential parameter rises, but the opposite is
true in the momentum space.
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Table 4. Numerical results of the Rényi entropy for CYP of Ã = 1, B̃ = 2 and C̃ = −1 for m = 0 in

the presence of AB and magnetic fields with varying β and
→
B .

n = 0 β Rr Rρ Rr + Rρ
→
B Rr Rρ Rr + Rρ

0.01 5.03916 −4.31242 0.726733 0.1 4.08677 −3.06149 1.02528
0.02 4.34122 −3.61373 0.727489 0.2 3.47004 −2.59247 0.877566
0.03 3.9311 −3.20287 0.728235 0.3 3.23639 −2.40078 0.835604
0.04 3.63891 −2.90994 0.728971 0.4 3.10517 −2.29122 0.813953
0.05 3.41138 −2.68168 0.729699 0.5 3.02021 −2.22009 0.800121
0.06 3.2248 −2.49438 0.730416 0.6 2.96073 −2.17044 0.790281
0.07 3.0665 −2.33538 0.731125 0.7 2.91691 −2.13409 0.78282
0.08 2.92894 −2.19712 0.731823 0.8 2.88343 −2.1065 0.776922
0.09 2.80723 −2.07472 0.732513 0.9 2.85713 −2.08501 0.772117

n = 1 0.01 2.86638 −3.88188 −0.91592 0.1 2.50324 −2.01771 1.03444
0.02 2.18509 −3.18133 −0.89902 0.2 2.0905 −1.83909 0.507536
0.03 1.79113 −2.76872 −0.88264 0.3 1.84131 −1.74117 0.27248
0.04 1.51464 −2.47415 −0.86674 0.4 1.66793 −1.67997 0.123167
0.05 1.30236 −2.24434 −0.85132 0.5 1.53782 −1.63886 0.014201
0.06 1.1306 −2.05558 −0.83635 0.6 1.43544 −1.60992 −0.07122
0.07 0.986711 −1.89521 −0.82182 0.7 1.35222 −1.58885 −0.1411
0.08 0.863154 −1.75565 −0.80777 0.8 1.28293 −1.57312 −0.1999
0.09 0.755069 −1.63204 −0.79445 0.9 1.22415 −1.56115 −0.25036

Table 5. Numerical results of the Rényi entropy for CYP of Ã = 1, B̃ = 2 and C̃ = −1 for m = 0 in
the presence of AB and magnetic fields with varying ξ.

n = 0 ξ Rr Rρ Rr + Rρ

0.1 8.46512 −7.25642 1.2087
0.2 5.31356 −3.91064 1.40292
0.3 4.73423 −3.545 1.18924
0.4 4.42115 −3.34237 1.07878
0.5 4.2118 −3.20189 1.00991
0.6 4.05662 −3.09406 0.962565
0.7 3.93427 −3.00635 0.927922
0.8 3.83372 −2.93228 0.901435
0.9 3.7486 −2.86809 0.880507

n = 1 0.1 2.57713 −2.28344 0.293695
0.2 2.46699 −2.24452 0.222474
0.3 2.36656 −2.20906 0.157495
0.4 2.27435 −2.17646 0.097891
0.5 2.18922 −2.14626 0.042958
0.6 2.11021 −2.11809 −0.00788
0.7 2.03658 −2.09168 −0.0551
0.8 1.96769 −2.0668 −0.09911
0.9 1.90302 −2.04327 −0.14025

This is in contrast to what we saw in the overall impact. The Rényi entropy in the
position space reduces as the potential parameter β grows when just the AB field is active,
but the opposite is true in the momentum space. This supports our observation of the
all-encompassing influence. However, we may deduce that the magnetic is necessary to
produce a rising Rényi entropy with regard to the potential parameter β. This finding is
comparable to what the Shannon entropy shows [50]. It is important to realize that the
conjugates of position and momentum space information entropies have an inverse rela-
tionship with each other. A strongly localized distribution in the position space corresponds
to widely delocalized distribution in the momentum space.
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Table 6. Numerical results of the Rényi entropy for CYP of Ã = 1, B̃ = 2 and C̃ = −1 for m = 0 in
the absence of AB and magnetic fields.

→
B = 0, n = 0 β Rr Rρ Rr + Rρ ξ = 0, n = 0 β Rr Rρ Rr + Rρ

0.01 2.68063 −1.87887 0.801764 0.01 7.62858 −6.22541 1.40317
0.02 2.73321 −1.9305 0.802702 0.02 6.93615 −5.53222 1.40392
0.03 2.79274 −1.98819 0.804547 0.03 6.53136 −5.1267 1.40466
0.04 2.86121 −2.05353 0.807671 0.04 6.2443 −4.83893 1.40538
0.05 2.94157 −2.12888 0.812688 0.05 6.02175 −4.61567 1.40608
0.06 3.03855 −2.21788 0.820669 0.06 5.83997 −4.43321 1.40676
0.07 3.16036 −2.32666 0.833696 0.07 5.68632 −4.2789 1.40743
0.08 3.32321 −2.46682 0.856396 0.08 5.55325 −4.14517 1.40808
0.09 3.56648 −2.66486 0.901613 0.09 5.43589 −4.02717 1.40871

→
B = 0, n = 1 0.01 1.7365 −1.70708 0.029415 ξ = 0, n = 1 0.01 4.95852 −4.64268 0.315837

0.02 1.80368 −1.76118 0.042503 0.02 4.2703 −3.94798 0.322324
0.03 1.89214 −1.82383 0.068313 0.03 3.86973 −3.54097 0.328754
0.04 2.01026 −1.89798 0.112277 0.04 3.5869 −3.25177 0.335129
0.05 2.17217 −1.98861 0.183554 0.05 3.36856 −3.02711 0.341448
0.06 2.40431 −2.10526 0.299049 0.06 3.19101 −2.8433 0.347714
0.07 2.76485 −2.27025 0.494601 0.07 3.04159 −2.68767 0.353926
0.08 3.42965 −2.56125 0.868406 0.08 2.91276 −2.55267 0.360085
0.09 6.79656 −4.58251 2.21405 0.09 2.79963 −2.43344 0.366193

The numerical results in Tables 7 and 8 demonstrate that the position-space Onicescu
information energy surges as the potential parameter β, magnetic, and AB fields rise,
whereas the momentum space Onicescu information energy information entropy reduces
as the potential parameter β, magnetic, and AB fields rise. When we looked at the single
influence of these fields on the Onicescu information energy in Table 9, we discovered
something interesting. When just the magnetic field remains operational, the Onicescu
information energy in the position space drops as the potential parameter β rises, although
in the momentum space the opposite is the case.

Table 7. Numerical results of the Onicescu information energy for CYP of Ã = 1, B̃ = 2 and C̃ = −1

for m = 0 in the presence of AB and magnetic fields with varying β and
→
B .

n = 0 β Er Eρ ErEρ
→
B Er Eρ ErEρ

0.01 0.008762 9.07971 0.079559 0.1 0.024594 3.19723 0.078632
0.02 0.017609 4.51712 0.079541 0.2 0.043439 1.80812 0.078544
0.03 0.026536 2.99677 0.079523 0.3 0.054213 1.45001 0.07861
0.04 0.035542 2.23696 0.079505 0.4 0.061476 1.27996 0.078687
0.05 0.044623 1.78135 0.079488 0.5 0.066716 1.18048 0.078757
0.06 0.053776 1.47782 0.079472 0.6 0.070659 1.11549 0.078819
0.07 0.063 1.2612 0.079455 0.7 0.073716 1.06996 0.078873
0.08 0.072291 1.09888 0.079439 0.8 0.076143 1.03648 0.078921
0.09 0.081648 0.972761 0.079424 0.9 0.078105 1.01097 0.078962

n = 1 0.01 0.007422 5.59089 0.041495 0.1 0.040827 0.912806 0.037267
0.02 0.014928 2.77409 0.041412 0.2 0.050152 0.737849 0.037004
0.03 0.022514 1.83575 0.041331 0.3 0.056263 0.660556 0.037165
0.04 0.030177 1.36701 0.041252 0.4 0.060563 0.617627 0.037405
0.05 0.037912 1.08607 0.041175 0.5 0.063724 0.590905 0.037655
0.06 0.045716 0.899033 0.041101 0.6 0.06612 0.573083 0.037893
0.07 0.053587 0.765634 0.041028 0.7 0.067982 0.560632 0.038113
0.08 0.061521 0.665751 0.040958 0.8 0.069456 0.551639 0.038314
0.09 0.069516 0.588203 0.04089 0.9 0.070642 0.544983 0.038499
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Table 8. Numerical results of the Onicescu information energy for CYP of Ã = 1, B̃ = 2 and C̃ = −1
for m = 0 in the presence of AB and magnetic fields with varying ξ.

n = 0 ξ Er Eρ ErEρ

0.1 0.0000933 806.906 0.075303
0.2 0.008064 9.86189 0.079521
0.3 0.013689 5.807 0.079491
0.4 0.018143 4.38037 0.079472
0.5 0.021898 3.62857 0.079458
0.6 0.025189 3.15415 0.079449
0.7 0.028147 2.82241 0.079441
0.8 0.030854 2.57461 0.079436
0.9 0.033363 2.38079 0.079431

n = 1 0.1 0.031595 1.14182 0.036076
0.2 0.033139 1.09123 0.036162
0.3 0.034608 1.04845 0.036285
0.4 0.036014 1.01157 0.036431
0.5 0.037364 0.979267 0.03659
0.6 0.038666 0.950587 0.036756
0.7 0.039925 0.924839 0.036924
0.8 0.041145 0.901502 0.037092
0.9 0.04233 0.88018 0.037258

This contrasts our findings in the case of the comprehensive impact. When just the
AB field is present, we notice that the Onicescu information energy in the position space
grows as the potential parameter β increases, but the opposite is true in the momentum
space. This is consistent with our findings in the case of the all-inclusive effect. However,
we could deduce that the AB field is necessary to acquire a rising Onicescu information
energy in position space with regard to the potential parameter.

Table 9. Numerical results of the Onicescu information energy for CYP of Ã = 1, B̃ = 2 and C̃ = −1
for m = 0 in the absence of AB and magnetic fields.

→
B = 0, n = 0 β Er Eρ ErEρ ξ = 0, n = 0 β Er Eρ ErEρ

0.01 0.092604 0.841859 0.07796 0.01 0.000797 99.8309 0.079572
0.02 0.087888 0.887062 0.077962 0.02 0.001593 49.9446 0.079566
0.03 0.082858 0.940966 0.077966 0.03 0.002388 33.3145 0.079561
0.04 0.077453 1.00672 0.077974 0.04 0.003182 24.9986 0.079555
0.05 0.071589 1.08934 0.077985 0.05 0.003976 20.0082 0.079549
0.06 0.065144 1.19742 0.078004 0.06 0.004769 16.6806 0.079544
0.07 0.057925 1.34718 0.078035 0.07 0.005561 14.3032 0.079538
0.08 0.049601 1.57429 0.078087 0.08 0.006353 12.5197 0.079533
0.09 0.039507 1.97911 0.078189 0.09 0.007144 11.1321 0.079527

→
B = 0, n = 1 0.01 0.058928 0.642116 0.037839 ξ = 0, n = 1 0.01 0.002969 12.0965 0.035914

0.02 0.055738 0.678174 0.0378 0.02 0.005944 6.04393 0.035927
0.03 0.052193 0.722853 0.037728 0.03 0.008926 4.02654 0.035941
0.04 0.04821 0.780259 0.037616 0.04 0.011914 3.01793 0.035954
0.05 0.043661 0.858218 0.037471 0.05 0.014907 2.41282 0.035969
0.06 0.038324 0.974424 0.037344 0.06 0.017907 2.00947 0.035984
0.07 0.031739 1.18204 0.037517 0.07 0.020913 1.72141 0.035999
0.08 0.022607 1.76184 0.03983 0.08 0.023924 1.50541 0.036015
0.09 0.00187 39.5402 0.073944 0.09 0.026941 1.33744 0.036031

4. Conclusions

The GQITM was investigated in both the position and momentum spaces for the
CYP in the ground and first excited states in this research. The wave function and energy
equations are obtained by solving the Schrodinger equation with the CYP in the presence
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of magnetic and AB fields using the functional analytical method [50]. The probability
density is evaluated by squaring the CYP’s wave function given in terms of hypergeometric
functions. Numerical results at p = 2 for the Rényi entropy, Tsallis entropy, and Onicescu
information energy have also been produced. The effects of magnetic and AB fields on these
entropies have been well investigated. Our results show that these fields and potential
parameters are relevant for the manipulation of the behavior of the quantum system. The
findings obtained in this study will find possible applications in quantum information
processing, quantum chemistry, etc. The present study can be extended to the investigation
of the information entropies of heavy mesons such as charmonium and bottomonium in
the presence of magnetic and AB fields [52–55].
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Abstract: Among the few exactly solvable problems in theoretical physics, the 2D (two-dimensional)
Newtonian free fall problem in Euclidean space is perhaps the least known as compared to the
harmonic oscillator or the Kepler–Coulomb problems. The aim of this article is to revisit this problem
at the classical level as well as the quantum level, with a focus on its dynamical symmetries. We
show how these dynamical symmetries arise as a special limit of the dynamical symmetries of the
Kepler–Coulomb problem, and how a connection to the quartic anharmonic oscillator problem, a
long-standing unsolved problem in quantum mechanics, can be established. To this end, we construct
the Hilbert space of states with free boundary conditions as a space of square integrable functions
that have a special functional integral representation. In this functional space, the free fall dynamical
symmetry algebra is shown to be isomorphic to the so-called Klink’s algebra of the quantum quartic
anharmonic oscillator problem. Furthermore, this connection entails a remarkable integral identity for
the quantum quartic anharmonic oscillator eigenfunctions, which implies that these eigenfunctions
are in fact zonal functions of an underlying symmetry group representation. Thus, an appropriate
representation theory for the 2D Newtonian free fall quantum symmetry group may potentially open
the way to exactly solving the difficult quantization problem of the quartic anharmonic oscillator.
Finally, the initial value problem of the acoustic Klein–Gordon equation for wave propagation in a
sound duct with a varying circular section is solved as an illustration of the techniques developed
here.

Keywords: super-integrability; dynamical symmetry algebras; integral transforms

1. Introduction

In an elementary freshman physics course, the problem of particle motion under
constant gravitational acceleration on the surface of the earth in Euclidean space, usually
considered as one dimensional, is frequently dubbed as a free fall problem [1,2]. This is not
the more general relativistic problem in which an inertial particle subject to no force moves
along a space-time geodesic [3].

To the best knowledge of the author, up to now, no comprehensive report on the
dynamical symmetries of this 2D Newtonian free fall problem has been found in the
literature besides the seminal work of T. Iwai and S. G. Rew [4]. As the one-dimensional
free fall problem, which has been thoroughly treated classically and quantum mechanically,
displays limited interesting features, we introduce an extra space dimension to allow for
new specific features to emerge. This is how a body of dynamical symmetries comes about,
and how a connection to the quartic anharmonic oscillator problem is generated, which is
one of the most challenging theoretical problems as it is generally thought of as a non-trivial
quantum field theory in zero space dimension. These issues were not considered in [4].

This paper is divided into two main sections and a short section on an application.
Section 2 is devoted to the classical physics of the 2D Newtonian free fall problem.

For the convenience of the reader, some basic concepts on the symmetries of a system are
recalled in the framework of Hamiltonian mechanics before a derivation of the dynamical
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symmetry algebra is undertaken along the lines of [4]. Then, we prove a theorem which
states that the dynamical symmetry algebra of the free fall problem may be obtained as a
special limit of the the dynamical symmetry algebra of the Kepler–Coulomb problem, which
concerns the dynamics of a particle moving in the inverse separation distance potential
field. Both problems are known to be super-integrable, and now they are shown to be
connected at the classical level. Hence, one may access the free fall dynamical symmetry
algebra from the well-known Kepler–Coulomb dynamical symmetry algebra. In addition,
this connection goes even further when a higher order integral of motion in the free fall
problem is shown to be an outgrowth of a Kepler–Coulomb integral of motion at zero
coupling constant. Furthermore, a passage to parabolic coordinates reveals a connection
between the free fall problem and the quartic anharmonic oscillator.

In Section 3, we apply the Schrödinger quantization to the system, which is in fact not
the quantization scheme adopted by T. Iwai and S. G. Rew in [4]. For this, we introduced
a Hilbert space of square integrable wave functions that verify free boundary conditions
in R2 and are suitable for obtaining an image representation of the free fall dynamical
symmetry algebra as Klink’s so-called one-variable algebra of the quartic anharmonic
oscillator. Thus, the Schrödinger quantization does naturally lead to the quartic anharmonic
oscillator besides the passage to parabolic coordinates. This is due to a particular integral
representation of the free fall wave functions, which takes the form of an Airy-Fourier
transform. Finally, by performing a passage to parabolic coordinates, one obtains an
integral identity for the eigenfunctions of the quartic anharmonic oscillator problem, which
turns out to be the characteristic integral equation for zonal functions in the representation
of some underlying group. As the only natural group arising from the 2D free fall problem
is its own dynamical symmetry group, we suspect that a comprehensive development of
its representation theory would reveal that the eigenfunctions of the quartic anharmonic
oscillator problem are just the corresponding zonal functions of this group. We defer this
tantalizing investigation to a future work. In short, the present results on quantizing the 2D
Newtonian free fall dynamical symmetry algebra appear as a necessary intermediate step
in the search for an exact solution to the quantum quartic anharmonic oscillator problem.

The last section, Section 4, uses the functional techniques of Section 3 to solve the
initial problem of sound wave propagation in a cylindrical duct with a particular varying
circular section.

The paper ends with a short conclusion and perspectives on possible further research.

2. The Classical Two-Dimensional Free Fall Problem
2.1. Generalities on Classical Symmetries, Canonical Structure, and Integrals of Motion

As generally admitted, the classical state of a non-moving physical system is described
by a set of functions in a coordinate system. Under a coordinate transformation, these
functions may take different forms. But if they remain invariant, the system is said to admit
a symmetry.

Now, for a physical system in motion, its states are specified by functions of time t and
dynamical coordinates in phase space. If under a transformation of dynamical coordinates
its state functions remain invariant, we say that the system admits a dynamical symmetry.
The set of symmetry transformations may have a group structure, which is called dynamical
symmetry group. Such a dynamical symmetry group (or equivalently, the algebra of its
generators) is of highest interest in the search for solutions of its equation of motion (The
term dynamical symmetry was coined by A. O. Barut [5]. Earlier, such symmetry was known
as hidden or accidental [6]).

In this paper, we are concerned with the dynamical symmetries of a system in the
framework of Hamilton’s canonical formalism of mechanics, with the time-independent
Hamiltonian function H. We now recall some useful main points of this framework.
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- A system with n degrees of freedom is described by 2n canonical variables (qi, pi)
with i = 1, . . . , n in phase space, verifying the following fundamental Poisson bracket
commutation relations:

{
qi, qj

}
=
{

pi, pj
}
= 0,

{
qi, pj

}
= δi j, (1)

where the Poisson bracket between two functions in phase space φ and ψ is defined by the
following:

{φ, ψ} =
n

∑
i=1

(
∂φ

∂qi

∂ψ

∂pi
− ∂φ

∂pi

∂ψ

∂qi

)
,

and the canonical equations of motion:

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi

, (2)

the solutions of which depend on the 2n initial conditions (qi(t), pi(t))|t=0 = (q0
i , p0

i ).
Consequently a dynamical symmetry exists if it originates from a canonical coordinate

transformation in phase space, leaving both the Hamiltonian H and the fundamental
Poisson bracket relations invariant. In differential geometry, this is called a symplectic
structure. Non-trivial dynamical symmetry exists only for n > 1.

- Canonical transformations (see Chapters 10–12 of [7]) are parts of a wider class
of coordinate transforms in phase space called contact transformations. A differentiable
mapping (q1, . . . , qn, p1, . . . , pn) → (Q1, . . . , Qn, P1, . . . , Pn) is called a contact transforma-
tion if the differential form ∑n

i=1(PidQi − pidqi) is the exact differential dW of a function
W(q1, . . . , qn, p1, . . . , pn).

This can be equivalently expressed by requiring the fundamental Poisson brackets in
the variables (Q1, . . . , Qn, P1, . . . , Pn) to be valid:

{Qi, Qj} = {Pi, Pj} = 0, (i, j = 1, . . . , n),

{Qi, Pj} = 0, (i, j = 1, . . . , n; i < j, i > j),

{Qi, Pi} = 1, (i = 1, . . . , n). (3)

The Poisson bracket of two functions (φ, ψ) is invariant under the contact trans-
formations {φ, ψ}(Q,P) = {φ, ψ}(q,p). The lower index (q, p) (resp. (Q, P)) refers to the
variables in the partial derivatives of the respective Poisson brackets. A contact transfor-
mation (q1, . . . , qn, p1, . . . , pn) → (Q1, . . . , Qn, P1, . . . , Pn), which preserves the equations
of motion of the system is a canonical transformation if

∫
∑n

i=1 PidQi is an integral invariant
of the system (Jacobi’s theorem). Consequently, a canonical transformation implements a
dynamical symmetry.

An infinitesimal canonical transformation of parameter τ has the following form:

Qi = qi +
∂Fτ

∂pi
∆τ, Pi = pi −

∂Fτ

∂qi
∆τ, (4)

where Fτ is an arbitrary function of (q1, . . . , qn, p1, . . . , pn) and ∆τ is a small increment
of the parameter τ. Fτ is called the the generating function of the contact transformation.
The variation ∆ f of an arbitrary function f in phase space under an infinitesimal contact
transformation of generator Fτ is given by ∆ f = { f , Fτ}∆τ. Fτ can be an integral of the
motion, a function which takes a constant value and does not explicitly depend on time
t, see [7]. A system of integrals of motion Fi is said to be in involution when {Fi, Fj} = 0
for all (i, j = 1, . . . , m). If F and F′ are two integrals of the motion, their Poisson bracket is
also an integral of the motion (Poisson’s theorem). The set of all Fj forms a Lie algebra with
respect to the Poisson bracket.

The determination of all canonical transformations for a dynamical system is at the
core of finding the dynamical symmetries of this system.
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- For a system with an n degree of freedom, with a time-independent Hamiltonian H,
total energy is conserved and H = E. If there exists n functionally independent integrals of
motion Fi, where i = 1, . . . , n in involution (or {Fi, Fj} = 0 for all (i, j)), the system is said
to be Liouville integrable and its solution can be given up to quadratures. If there are further
m functionally independent integrals of motion Fm, where m = 1, . . . , (n− 1), the system is
called super-integrable [8]. For m = 1 (resp. m = (n− 1)) it is called minimal super-integrable
(resp. maximal super-integrable). These m extra integrals of motion usually build a Lie
algebra. Maximal super-integrable systems are also known as exactly solvable systems, and
their properties can be derived algebraically. Each integral of motion Fi may originate from
Noether’s conservation law or from a coordinate variable separation. The Kepler–Coulomb
(or inverse distance potential) and the isotropic harmonic oscillator problems are known to
be super-integrable systems in two dimensions [9].

2.2. Statement of the Classical Two-Dimensional Free Fall Problem

As it is widely known, the motion of a particle under constant force in two-dimensional
space occurs along parabolas with a symmetry axis parallel to the direction of the constant
force. To simplify the writing, the particle is assumed to have a unit mass and moves in a
two-dimensional configuration space (v, u) ∈ R2, with Ov being the horizontal axis and
the gravitational constant set is also equal to one. Let (v̇, u̇) be the time derivatives of the
Cartesian coordinates (v, u). From the Lagrangian L =

(
1
2 (u̇

2 + v̇2)− u
)

, one gets the
conjugate momenta and the Hamiltonian:

pu =
∂L
∂u̇

= u̇, pv =
∂L
∂v̇

= v̇, and H =
1
2

p2
v +

(
1
2

p2
u + u

)
. (5)

Note that H is the sum of the v-free motion part and of the u-free fall part.

2.3. Dynamical Symmetries

As in two dimensions, the maximal number of possible symmetries is three. Iwai
and Rew [4] were the first to obtain dynamical symmetries by considering linear inho-
mogeneous transformations S(ρ, σ, τ) in the phase space dependent on three parameters
(ρ, σ, τ):

V = v + τpv + σpu + ρ, Pv = pv − σ,

U = u + σpv − τpu −
1
2
(σ2 + τ2), Pu = pu + τ. (6)

Proposition 1. S(ρ, σ, τ) is a canonical transformation.

Proof. By the simple substitution of the (V, U, Pv, Pu) in terms of the (v, u, pv, pu), as given
by Equation (6), it appears that the Hamiltonian function form is invariant:

H =
1
2
(P2

u + P2
v ) + U =

1
2
(p2

u + p2
v) + u. (7)

Moreover, using the expression of the Poisson bracket and Equation (6), one can also
check the following:

{V, U} = {Pv, Pu} = 0,

{V, Pu} = {U, Pv} = 0,

{V, Pv} = {U, pu} = 1, , (8)

Hence, S(ρ, σ, τ) is a bona fide canonical transformation.

Proposition 2. For all triplet (ρ, σ, τ) ∈ R3, the canonical transforms form a group—the dynami-
cal symmetry group of the free fall problem in two dimensions.

117



Symmetry 2022, 14, 27

Proof. Composition law. Let another canonical transform S(ρ′, σ′, τ′) with parameters
(ρ′, σ′, τ′) act on the previous one S(ρ, σ, τ) and compute the resulting product S(ρ′, σ′, τ′)
S(ρ, σ, τ), which is expressed by the set of new parameters (V, U, Pv, Pv) :

V = V + τ′Pv + σ′Pu + ρ′,

U = U + σ′Pv − τ′Pu −
1
2
(σ′2 + τ′2),

Pv = Pv − σ′,

Pu = Pu + τ′. (9)

Then, the substitution of Equation (6) into Equation (9) yields the following equations:

V = (v + τpv + σpu + ρ) + τ′(pv − σ) + σ′(pu + τ) + ρ′

= v + (τ + τ′)pv + (σ + σ′)pu + (ρ + ρ′)− (στ′ − σ′τ),

U = (u + σpv − τpu −
1
2
(σ2 + τ2)) + σ′(pv − σ)− τ′(pu + τ)− 1

2
(σ′2 + τ′2)

= u + (σ + σ′)pv − (τ + τ′)pu −
1
2
(σ + σ′)2 − 1

2
(τ + τ′)2,

Pv = (pv′ − σ)− σ′ = pv − (σ + σ′),

Pu = (pu′ + τ′) + τ′ = pu + (τ + τ′). (10)

Hence, we conclude that the composition of two operations is as follows:

S(ρ′, σ′, τ′) · S(ρ, σ, τ) = S((ρ + ρ′)− (στ′ − σ′τ), σ + σ′, τ + τ′). (11)

Because of the extra term (στ′− σ′τ), the previous formula does not correspond to the
additive structure of a group operation with respect to the parameters (ρ, σ, τ). But since
the v variable is a cyclic variable, this term is physically irrelevant´; in this way, the group
structure is physically restored.

Iwai and Rew proposed to represent each element of the group with fifth-order,
upper-triangular matrices, as can be checked by the matrix multiplication rule:




1 0 τ σ ρ

0 1 σ −τ − 1
2 (σ

2 + τ2)
0 0 1 0 −σ
0 0 0 1 τ
0 0 0 0 1




- The inverse transform S−1(ρ, σ, τ) is clearly given by S(−ρ,−σ,−τ) since the extra
term (στ′ − σ′τ) vanishes at (σ + σ′) = 0 and (τ + τ′) = 0.

-The identity matrix is obviously the neutral group element.

2.4. Infinitesimal Iwai–Rew Canonical Linear Transforms and Integrals of Motion

The infinitesimal form of the Iwai–Rew canonical linear transformations is written in
the form of Equation (8), with infinitesimal (∆ρ, ∆σ, ∆τ) as:

V = v + pv∆τ + pu∆σ + ∆ρ + . . . ,

U = u + pv∆σ− pu∆τ + . . . ,

Pv = pv − ∆σ + . . . ,

Pu = pu + ∆τ + . . . . (12)
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Proposition 3. The infinitesimal transformations in phase space defined by Equation (12) are canonical
transformations: H and the Poisson brackets {V, Pv}, {V, Pu}, {V, U}, {U, Pu}, {U, Pv}, {Pu, Pv}
are invariant.

Proof. By working out the Poisson brackets using Equation (12), they will appear to remain
in the canonical form of Equation (8), while the form of the Hamiltonian in the variables
(V, U, Pv, Pu) is the same as the form in variables (v, u, pv, pu).

We now determine the three generating functions (Fρ, Fσ, Fτ) from the three sub-
groups of canonical transformations, respectively defined by the following equations:

Fρ : V = v + ∆ρ, U = u, Pv = pv, Pu = pu,

Fσ : V = v + pu∆σ, U = u + pv∆σ, Pv = pv − ∆σ, Pu = pu,

Fτ : V = v + pv∆τ, U = u− pu∆τ, Pv = pv, Pu = pu + ∆τ. (13)

Then, partial derivatives of (Fρ, Fσ, Fτ) with respect to (v, u, pv, pu) can be deduced as
follows:

Fρ :
∂Fρ

∂v
= 0,

∂Fρ

∂u
= 0,

∂Fρ

∂pv
= 1,

∂Fρ

∂pu
= 0,

Fσ :
∂Fσ

∂v
= 1,

∂Fσ

∂u
= 0,

∂Fσ

∂pv
= pu,

∂Fσ

∂pu
= pv

Fτ :
∂Fσ

∂v
= 1,

∂Fσ

∂u
= −1,

∂Fσ

∂pv
= pv,

∂Fσ

∂pu
= −pu. (14)

Therefore, we obtain the exact differentials (dFρ, dFσ, dFτ) in terms of (dv, du, dpv, dpu)
(Schwarz’s theorem is trivially verified for all pairs of variables). Their integration yields
the sought integrals of motion:

Fρ = pv, Fσ = (pv pu + v), Fτ =
1
2

p2
v −

(
1
2

p2
u + u

)
. (15)

Proposition 4. The free fall system in two dimensions is super-integrable since its has three
integrals of the motion:

{Fρ, H} = {Fσ, H} = {Fτ , H} = 0. (16)

Proof. Compute the three Poisson brackets and observe that they are zero.

Proposition 5. The three generating functions (Fρ, Fσ, Fτ) build a Lie algebra structure, the dy-
namical symmetry algebra AFF of the two-dimensional free fall with respect to the Poisson bracket:

{
Fρ, Fσ

}
= −I, {Fσ, Fτ} = 2Fρ,

{
Fτ , Fρ

}
= 0. (17)

Proof. Work out the Poisson brackets and use the expressions of the (Fρ, Fσ, Fτ) from
Equation (15). They are identical to those of Iwai–Rew [4]. If we make the substitutions
Fρ → F3, Fσ → F2, Fτ → F1 in our Equation (15), we recover the Iwai–Rew commuta-
tion relations given by their Equation (2.21).

Remark 1. Observe that the classical trajectory data (two initial position coordinates, two initial
momentum coordinates) can be used to compute the values of Ĥ, F̂ρ, F̂σ, F̂τ and vice versa.

Proposition 6. Origins of the integrals of motion
(a) Fρ is due to translational invariance of H in the Ov direction;
(b) Fσ is due the separability of H in a π/4-rotated coordinate system;
(c) Fτ is due to the manifest separability of H in v and u variables.
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Proof. (a) For this case, the proof is trivial because v is a cyclic variable in H.
(b) Consider the change of variables ξ = (u + v), ζ = (u − v), from which one

deduces u = 1
2 (ξ + ζ), v = 1

2 (ξ − ζ). Then, since pv = v̇, pu = u̇, we have pv =
1
2 (pξ + pζ), pu = 1

2 (pξ − pζ). Substitution into the expressions of H and Fσ yields the
following equation:

H =
1
2

{(
1
2

p2
ξ + ξ

)
+

(
1
2

p2
ζ + ζ

)}
, and Fσ =

1
2

{(
1
2

p2
ξ + ξ

)
−
(

1
2

p2
ζ + ζ

)}
. (18)

where H and Fσ are both separable in the new coordinate system obtained by a π/4 rotation
of the (v, u) coordinate system around the origin. In fact, they are the sum and difference
of the one-dimensional free fall Hamiltonian in the ξ and ζ directions. Hence, {Fσ, H} = 0.
In reference [10], it was claimed that at the quantum level, Fσ is due to separability in
translated parabolic coordinates. But so far, no proof has appeared in print.

(c) As H is the sum of a free-motion Hamiltonian in the v-direction, and the Hamilto-
nian is that of a one-dimensional free fall in the u-direction, it is then clear that Fτ , which is
the difference of these two Hamiltonians, should verify {Fτ , H} = 0. Since the total energy
is conserved as H = E, it may be simpler to write Fτ = (p2

v − E).

Remark 2. We notice that v-parity is also a dynamical symmetry and a discrete canonical
transformation since v → −v (which also implies pv → −pv) leaves H as well as {v, pv} = 1
and all other Poisson brackets invariant.

2.5. The Free Fall Problem as a Special Limiting Case of the Kepler–Coulomb Problem

In this section, we show that the free fall problem can emerge from a special limit
of the Kepler–Coulomb (KC) problem or the problem of the inverse distance potential,
occurring either in gravitational or electrical interaction. This problem is known to be
super-integrable and in two dimensions, and the set of its three integrals of motion makes
up the components of the so-called Runge–Lenz vector [11]. Here, we adopt the notations
of [12], with the particle mass set equal to one.

The idea is simple. The inverse distance potential κ/r arising from a source of strength
κ is rotation-symmetric, where r is the distance from the source to the observation site.
If the source recedes to infinity in the u-direction, the potential at the observation site
tends toward zero. But one may compensate this potential decrease by taking a source
strength κ(r), which increases with the distance. Thus, we may choose an increasing
functional dependence so that in the limit of infinite source-observation separation, a linear
potential appears.

In our Cartesian coordinate system, if the source of strength κ is placed at the coordi-
nate origin, the Hamiltonian of the inverse distance problem is the following:

HKC =
1
2
(p2

v + p2
u)−

κ√
u2 + v2

, (19)

and the three integrals of motion are given by [12]:

Lw = (vpu − upv),

Kv = (vpu − upv)pu − v
κ√

u2 + v2
,

Ku = −(vpu − upv)pv − u
κ√

u2 + v2
, (20)

where Lw is the angular momentum around Ow, which is orthogonal to the plane Ovu.
They verify the Poisson bracket relations of the dynamical symmetry algebra AKC

{Lw, Kv} = Ku, {Ku, Lw} = Kv, {Kv, Ku} = −2HKC Lw. (21)
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Now, if the source is no longer at the origin O but situated on the Ou axis at a distance
l from the origin, the Hamiltonian and the components of the Runge–Lenz vector have
new expressions H′KC and (L′w, K′v, K′u), which are deduced from the previous expressions
in which u is replaced by (u + l) and κ by κ(l):

H′KC =
1
2
(p2

v + p2
u)−

κ(l)√
(u + l)2 + v2

, (22)

and

L′w = (vpu − upv)− lpv,

K′v = (vpu − upv − lpv)pu − v
κ(l)√

(u + l)2 + v2
,

K′u = −(vpu − upv − lpv)pv − (u + l)
κ(l)√

(u + l)2 + v2
. (23)

Now, as l → ∞, the asymptotic behaviour of the inverse distance potential is as
follows:

κ(l)√
(u + l)2 + v2

∼ κ(l)
l

(
1− u

l
+O( 1

l2 )

)
. (24)

Hence, if the source strength increases as κ(l) = l2, then the inverse distance potential
reaches the limiting form of a linear potential in u:

− κ(l)√
(u + l)2 + v2

→ −l + u +O(1
l
). (25)

In this limit, the inverse distance potential problem tends toward the free fall problem
up to a negative infinite constant:

H′KC ∼ H − l +O
(

1
l

)
, (26)

and the components of the Runge–Lenz vector take the following asymptotic forms:

L′w ∼ −lpv + (vpu − upv),

K′v ∼ −l(pu pv + v) + (vpu − upv)pu + uv− vO(1
l
),

K′u ∼ −l2 + lp2
v −

[
(vpu − upv)pv − u2

]
+O(1

l
), (27)

Theorem 1. The dynamical symmetry algebra of the free fall problem AFF is a contraction of the
dynamical symmetry algebra of the Kepler–Coulomb problem AKC.

Proof. We now rewrite the Poisson brackets of the Kepler–Coulomb problem when the
potential source is at a large distance l from the origin, and then replace the generators
(L′w, K′v, K′u) by their asymptotic expansions for l → ∞. Therefore:

(a) {L′w, K′v} = K′u becomes

{(vpu − upv)− l Fρ,−l Fσ + (vpu − upv)pu + uv− vO(1
l
)} =

− l2 + l (Fτ + H)−
[
(vpu − upv)pv − u2

]
+O(1

l
). (28)
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Extracting the leading order in l2 on the left-hand side and on the right-hand side, we
obtain {Fρ, Fσ} = −I, as expected; see Equation (17).

(b) {K′u, L′w} = K′v becomes

{−l2 + l (Fτ + H)−
[
(vpu − upv)pv − u2

]
+O(1

l
), (vpu − upv)− l Fρ} =

− l Fσ + (vpu − upv)pu + uv− vO(1
l
). (29)

Collecting terms of leading order in l2 on both sides of this equation, we get {Fτ , Fρ} =
0 since there is no term in l2 on the right-hand side.

(c) {K′v, K′u} = −2H′KC L′w becomes

{−l Fσ + (vpu − upv)pu + uv− vO(1
l
),−l2 + l (Fτ − H)−

[
(vpu − upv)pv − u2

]
+O(1

l
)} =

− 2
(

H − l +O
(

1
l

)) (
(vpu − upv)− l Fρ

)
. (30)

Equating terms of order d2 on both sides of this equation yields precisely {Fσ, Fτ} =
2Fρ. Hence, we reproduce all the Poisson brackets of AFF.

2.6. A “Higher” Order Integral of the Motion

We now raise the question whether there exists a “higher” order integral of the motion
as a construct of the dynamical symmetry algebra generators. What comes to mind is a
weighted sum of squares of the (Fρ, Fσ, Fτ), an object similar to the square of the angular
momentum in a rotation algebra. Instead of a tedious systematic search, a more astute
way of finding such an integral of the motion would start by observing that the symmetry
algebra of the Kepler–Coulomb problem does have a non-trivial limit when the source
strength is turned off, i.e., κ = 0. Then, the generators take the following form:

Lw = (vpu − upv), Kv(0) = (vpu − upv)pu, Ku(0) = −(vpu − upv)pv. (31)

They fulfil the same Poisson bracket relations as those with κ 6= 0:

{Lw, Kv(0)} = Ku(0), {Ku(0), Lw} = Kv(0), {Kv(0), Ku(0)} = −2H0 Lw, (32)

where H0 is the Hamiltonian for free particle motion in two dimensions.
Now, if we allow a linear potential to “grow” in the u-direction, rotational symmetry

disappears. Hence, Lw must be discarded as a possible integral of motion in the presence
of a linear potential u. Thus, from the two remaining (Kv(0), Ku(0)), only one can survive
under a modified form as a “higher” order integral of the motion, because of Poisson ’s
theorem in Section 2.1.

Let F2 be this hypothetical “higher” integral of the motion. As the introduced linear
potential is in the u direction, we may assume F2 to be of the simple form:

F2 = Ku(0) + h(v, u, pv, pu), (33)

where h(v, u, pv, pu) is an unknown function in phase space.

Proposition 7. There exists a second order integral of the motion F2 given by the following
equation:
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F2 = Ku(0)−
1
2

v2 = −(vpu − upv)pv −
1
2

v2. (34)

Proof. The function h(v, u, pv, pu) is determined by the condition
{

F2, H
}
= 0. Since from

explicit computation one gets the following:

{
F2, H

}
=

∂h
∂v

pv +
∂h
∂u

pu +
∂h

∂pu
+ vpv = 0, (35)

it is obvious that one should require that h(v, u, pv, pu) = − 1
2 v2.

Remark 3. The same search procedure for another quadratic integral of the motion does not work
with Kv(0) because the commutativity of the Poisson bracket with H leads to impossible conditions
having to be satisfied.

Proposition 8. The expression of F2 in terms of the generators (Fr, Fs, Ft) is as follows:

F2 = HF2
ρ −

1
2

F2
σ −

1
2
(Fτ + H)2, (36)

Proof. Substitute the expressions (H, Fρ, Fσ, Fτ) into the expression of F2.

Corollary 1. The Poisson brackets of F2 with the generators (Fρ, Fσ, Fτ) are easily obtained:
{

F2, Fρ

}
= −Fσ,

{
F2, Fσ

}
= 2Fρ Fτ ,

{
F2, Fτ

}
= −2Fρ Fσ. (37)

Proposition 9. The infinitesimal transformation generated by F2 with parameter z is canonical.

Proof. The infinitesimal canonical transform generated by F2 with the parameter z is given
by the following equations:

V = v + (vpu − 2upv)∆z + . . .

U = u + vpv ∆z + . . .

Pv = pv − (pv pu + v)∆z + . . .

Pu = pu + p2
v ∆z . . . (38)

We can check that the Hamiltonian remains invariant if the terms of order (∆z)2 are
ignored:

H(v′, u′, pv′ , pu′) = H(v, u, pv, pu) +
(
(pv pu + v)2 + p4

v

)
(∆z)2 + . . . (39)

Next, we can verify that the six canonical Poisson brackets are preserved, but the
details are not presented here. Moreover, it does possess the additive abelian group
property with respect to z, i.e., S(z) · S(z′) = S(z + z′), as can be checked explicitly.

2.7. Passage to Parabolic Coordinates and the Physical Meaning of F2

The issue here is to understand how F2 arises as a dynamical symmetry. The com-
prehensive work of Miller et al. [13] on quantum separability has revealed that parabolic
coordinates do play a central role. Following this indication, we make a passage to parabolic co-
ordinates (x, y) from our Cartesian coordinates (v, u), as defined by u = 1

2 (x2− y2), v = xy.
The Lagrangian L then changes to a new expression:

L =
1
2
(u̇2 + v̇2)− u =

1
2
(x2 + y2)(ẋ2 + ẏ2)− 1

2
(x2 − y2). (40)
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From the following definitions of conjugate momenta:

pu =
∂L
∂u̇

= u̇, pv =
∂L
∂v̇

= v̇,

px =
∂L
∂ẋ

= (x2 + y2)ẋ, py =
∂L
∂ẏ

= (x2 + y2)ẏ, (41)

we deduce a relation between the (v, u) and the (x, y) momenta:

pu =
xpx − ypy

(x2 + y2)
, pv =

ypx + xpy

(x2 + y2)
. (42)

This allows for the acquisition of new expressions of H and F2 in parabolic coordinates:

H =
1
2

p2
x + p2

y

(x2 + y2)
+

1
2
(x2 − y2), (43)

F2 =
x2y2

2(x2 + y2)

{(
p2

x
x2 + x2

)
−
(

p2
y

y2 − y2

)}
. (44)

As such, these expressions do not show any obvious x and y variable separation.
The three integrals of motion (Fρ, Fσ, Fτ) also do not display any obvious separation into an
x part and a y part when re-expressed in the parabolic coordinates. Next, we recall that the
initial conditions (v0, u0, p0

v, p0
v) fully determine the four integrals of motion (H, Fρ, Fσ, Fτ).

Hence, F2 has a fixed value because it is a construct of these four integrals of motion.

Proposition 10. For H = E, F2 takes a constant value in the range of energy values E+(E) of a
confining quartic oscillator with an angular frequency square (−E).

Proof. As total energy is conserved, H = E implies that the following relation must be
verified for all (x, y) 6= (0, 0):

1
(x2 + y2)

{(
1
2

p2
x − Ex2 +

1
2

x4
)
+

(
1
2

p2
y − Ey2 − 1

2
y4
)}

= 0. (45)

This means that for a given E, the sum of the Hamiltonians of a confining quartic x-
oscillator and a non-confining quartic y-oscillator must be equal to zero for all (x, y) 6= (0, 0).
Since these one dimensional quartic oscillators are time-independent, their respective
Hamiltonians have fixed values, i.e.:

(
1
2

p2
x − Ex2 +

1
2

x4
)
= E+(E),

(
1
2

p2
y − Ey2 − 1

2
y4
)
= E−(E), (46)

however, subjected to the condition E+(E) + E−(E) = 0. Note that for a given E, E+(E)
takes all real values above the minimum value of the quartic x-oscillator Hamiltonian
polynomial in phase space.

On the other hand, F2 may be rewritten as follows:

F2 =
x2y2

(x2 + y2)

{
1
x2

(
1
2

p2
x − Ex2 +

1
2

x4
)
+

1
y2

(
1
2

p2
y − Ey2 − 1

2
y4
)}

=
x2y2

(x2 + y2)

(
E+(E)

x2 − E−(E)
y2

)
. (47)

Since E+(E) + E−(E) = 0, one gets F2 = E+(E). This is due to this new aspect of
separation of variables called the Stäckel separation of variables.
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2.8. Third Order Integrals of the Motion

In [13], it is shown that third order super-integrable systems separable in parabolic
coordinates admit second order integrals, while third order integrals are reducible, i.e., they
are Poisson brackets of second order integrals of motion. Here, we have:

F3σ =
{

Fσ, F2
}
= p3

v − 2upv − pv p2
u, F3τ =

{
Fτ , F2

}
= −(pu p2

v + 2vpv). (48)

However, these third order reducible integrals of motion do not generate one pa-
rameter infinitesimal canonical transformations because they do not leave H functionally
invariant and are consequently uninteresting.

3. Schrödinger Quantization of the Two-Dimensional Free Fall Problem
3.1. Quantization

The Hamiltonian form of the free fall problem lends itself nicely to its quantization.
The classical canonical variables are put into one-to-one correspondence with their quantum
counterparts, as self-adjoint operators in a Hilbert space of states H:

(v, pv, u, pu) ↔ (Q̂v, P̂v, Q̂u, P̂u). (49)

They build a direct product of v and u Heisenberg algebras (here h̄ = 1 for ease of
writing):

[Q̂v, P̂v] = i, [Q̂u, P̂u] = i, and [Ôv, Ôu] = 0, (50)

where Ôv (respectively Ôu) means (Q̂v, P̂v) (respectively Ôu = (Q̂u, P̂u)).
The quantum Hamiltonian, the dynamical symmetry algebra generators, and the

quadratic integral of motion are then given by the following equation:

Ĥ =
1
2

(
P̂2

v + P̂2
u

)
+ Q̂u, F̂ρ = P̂v, F̂σ = P̂v P̂u + Q̂v, F̂ρ = P̂2

v . (51)

They fulfil the quantum commutation relations deduced from their Poisson brackets
classical counterparts:

[F̂ρ, F̂σ] = −iI, [F̂σ, F̂τ ] = 2iF̂ρ, [F̂τ , F̂ρ] = 0, (52)

where I is the identity operator. The quadratic integral of motion F̂2 is as follows:

F̂2 = Q̂u P̂2
v −

1
2
(P̂vQ̂v + Q̂v P̂v)P̂u −

1
2

Q̂2
v. (53)

3.2. Schrödinger Representation

It is convenient to work with the Schrödinger coordinate representation. The Hilbert
space H of states |ψ〉 ∈ H is represented by the square integrable functions ψ(v, u) =
〈v, u|ψ〉, where |v, u〉 for (v, u) ∈ R2 is a continuous set of complete and total set in H.
The canonical dynamical operators by differential operators in (v, u) are as follows:

(Q̂v, P̂v, Q̂u, P̂u) =

(
v,−i

∂

∂v
, u,−i

∂

∂u

)
. (54)
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Consequently, the differential operator representation of the Hamiltonian, the dynam-
ical symmetry generators, and the quadratic integral of motion are as follows:

Ĥ = −1
2

(
∂2

∂v2 +
∂2

∂u2

)
+ u,

F̂ρ = −i
∂

∂v
, F̂σ =

(
− ∂2

∂v ∂u
+ v
)

, F̂τ = −
(

∂2

∂v2 + Ĥ
)

,

F̂2 =

(
v

∂2

∂v ∂u
− u

∂2

∂v2 +
1
2

∂

∂u
− 1

2
v2
)

. (55)

All Poisson brackets from the classical (H, Fρ, Fσ,Fτ,, F2) now become quantum com-
mutators between (Ĥ, F̂ρ, F̂σ, F̂τ , F̂2), as can be easily checked. Let ÂFF be the algebra
generated by (Ĥ, F̂ρ, F̂σ, F̂τ).

Corollary 2. F̂2 can be expressed in terms of (Ĥ, F̂ρ, F̂σ, F̂τ) as

F̂2 = Ĥ F̂2
ρ −

1
2

F̂2
σ −

1
2

(
F̂τ + Ĥ

)2
. (56)

Proof. Use the expressions in Equation (55) and substitute in (56).

As usual, the space of relevant wave functions L2(v, u) are generated by the eigenfunc-
tions of the stationary Hamiltonian operator Ĥ. At this step, to determine this functional
space, boundary conditions should be specified. As pointed out in the previous section
on the classical mechanics of free fall motion, we are concerned with global motion along
parabolic trajectories in R2, with concavity turned downward and not with the bouncing
motion on a horizontal line v =constant or the billiard motion inside a two-dimensional
box. Both have overly restrictive boundary conditions, rending the wave functions uninter-
esting. Therefore, only stationary wave functions with free boundary conditions on the
v-axis and on the negative u-axis solutions of Ĥ ψE(v, u) = E ψE(v, u) are considered here.

Since Ĥ is separable in the v and u parts, elementary solutions are of the product form:

eikv Ai
(

γu +
k2

γ2 − γE
)

, (57)

where γ3 = 2 and Ai(x) is the first Airy function which decreases at x → ∞; see [14].
Hence, the spectrum of Ĥ is real and continuous. An arbitrary stationary eigenfunction

ψE(u, v) with an eigenvalue E is given by an integral on k:

ψE(u, v) =
∫

R
dk eikv ψ̃E(k)Ai

(
γu +

k2

γ2 − γE
)

, (58)

where ψ̃E(k), yet to be determined, appears as a density amplitude representing the relative
distribution of the v-motion with respect to the u-motion parts for a fixed E in ψE(u, v).
Both ψE(u, v) and ψ̃E(k) describe two aspects of the same quantum state |ψE〉.

Proposition 11. As ψE(u, v) represents a probability amplitude in L2(v, u), ψ̃E(k) is a square
integrable function on R, i.e., ψ̃E(k) ∈ L2(k).

Proof. Let us compute the overlap integral 〈ψE|ψE′〉 between two eigenstates of energies
E and E′:

〈ψE|ψE′〉 =
∫

R2

du dv
2π

ψ∗E(v, u)ψE′(v, u) =
∫

R2

du dv
2π

∫

R
dk e−ikv ψ̃∗E(k)Ai

(
γu +

k2

γ2 − γE
) ∫

R
dk′ eik′v ψ̃E′(k

′)Ai
(

γu +
k′2

γ2 − γE′
)

. (59)
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The 2π factor is just for convenience. Integration over dv yields 2π δ(k− k′). Then,
after k′-integration, one may consider the remaining u-integration.

This u-integral is readily given in [14] by equation 3.108 on page 57 as follows:

1
|α β|

∫ ∞

−∞
du Ai

(
u + a

α

)
Ai
(

u + b
β

)
×

= δ(a− b), if β = α,

=
1

|β3 − α3| 13
Ai

(
b− a

|β3 − α3| 13

)
, if β > α. (60)

Hence, we have a relation between the inner product in L2(v, u) and the inner product
in L2(k):

∫

R2

du dv
2π

ψ∗E(v, u)ψE′(v, u) = γ−2 δ(E− E′)
∫

R
dk ψ̃∗E(k) ψ̃E′(k). (61)

It expresses the completeness of the eigenfunctions ψE(v, u), provided that:
∫

R
dk ψ̃∗E(k) ψ̃E(k) < ∞. (62)

Hence, ψ̃E(k) ∈ L2(k).

Theorem 2. The integral mapping ψE(v, u) ∈ L2(v, u) → ψ̃E(k) ∈ L2(k) is invertible, i.e.,

ψ̃E′(k
′) =

∫

R
dE

∫

R2
du dv ψE(u, v) e−ik′v Ai

(
γu +

k′2

γ2 − γE′
)

. (63)

Proof. By integrating both sides of Equation (58) with the following equation:

∫

R2

du dv
2π

e−ik′v Ai
(

γu +
k′2

γ2 − γE′
)

, (64)

we get the following integral on the right-hand side:

∫

R2

du dv
2π

e−ik′v Ai
(

γu +
k′2

γ2 − γE′
) ∫

R
dk eikv ψ̃E(k)Ai

(
γu +

k2

γ2 − γE
)

. (65)

Assuming Fubini’s theorem hypothesis, we can exchange integrations and the dv
2π -

integration would yield δ(k− k′). Then, after integration on dk, the right-hand side be-
comes:

ψ̃E(k′)
∫

R

du
2π

Ai
(

γu +
k2

γ2 − γE
)

Ai
(

γu +
k′2

γ2 − γE′
)

, (66)

which, upon application of the integration formula (60), yields the following:

∫

R2

du dv
2π

ψE(u, v) e−ik′v Ai
(

γu +
k′2

γ2 − γE′
)
= ψ̃E(k′) γ−2 δ(E− E′). (67)

A last integration on dE on both sides of this equation gives the final result:

ψ̃E′(k
′) = γ2

∫

R
dE

∫

R2
du dv ψE(v, u) e−ik′v Ai

(
γu +

k′2

γ2 − γE′
)

. (68)

Hence, the integral mapping ψE(v, u) → ψ̃E(k) is invertible, provided that a sum-
mation on E is performed or uses complete data. In this respect, it may be called the
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Fourier-Airy Transform. These two amplitudes describe the same physics in two different
contexts.

3.3. Representation of the Dynamical Symmetry Algebra ÂFF by Klink’s Algebra

Proposition 12. The action of the ÂFF generators on the wave function ψE(v, u) is easily trans-
ferred to the wave function ψ̃E(k) according to the following:

ĤψE(v, u) = E
∫

R
dk ψ̃E(k) eikv Ai

(
γu +

k2

γ2 − γE
)

,

F̂ρψE(v, u) =
∫

R
dk (kψ̃E(k)) eikv Ai

(
γu +

k2

γ2 − γE
)

,

F̂σψE(v, u) =
∫

R
dk
(

i
d
dk

)
ψ̃E(k) eikv Ai

(
γu +

k2

γ2 − γE
)

,

F̂τψE(v, u) =
∫

R
dk (k2 − E)ψ̃E(k) eikv Ai

(
γu +

k2

γ2 − γE
)

. (69)

Proof. The action of Ĥ is E since ψE(v, u) is an eigenfunction of Ĥ.
As F̂ρ and F̂τ are represented in L2(v, u) by v-derivatives acting under the integral

sign on eikv, we successively get k and k2 acting on ψ̃E(k).
For the action of F̂σ =

(
− ∂2

∂u ∂v + v
)

, we observe that:

v ψE(v, u) =
∫

R
dk ψ̃E(k)

(
−i

∂

∂k
eikv
)

Ai
(

γu +
k2

γ2 − γE
)

. (70)

Since the Airy function vanishes for k = ±∞, we perform a partial integration in k to
get the following:

v ψE(v, u) =
∫

R
dk
(

i
∂

∂k
ψ̃E(k)

)
eikv Ai

(
γu +

k2

γ2 − γE
)
+
∫

R
dk ψ̃E(k) eikv Ai’

(
γu +

k2

γ2 − γE
)

iγk. (71)

where Ai’(x) is the derivative of Ai(x). We then observe that the second integral is as
follows:

∂2

∂u ∂v
ψE(v, u). (72)

Hence, the action of F̂σ on ψE(v, u) is replaced by i ∂
∂k ψ̃E(k) in L2(k).

Corollary 3. As a consequence, the action of F̂2 on ψE(v, u) is translated into action on ψ̃E(k)
as the action of the one-dimensional confining quartic anharmonic oscillator Hamiltonian in the k
variable on the wave function ψ̃E(k):

F̂2 ψE(v, u) = −
∫

R
dk
{(
−1

2
d2

dk2 − Ek2 +
1
2

k4
)

ψ̃E(k)
}

eikv Ai
(

γu +
k2

γ2 − γE
)

(73)

Proof. Use the expression of F̂2 in terms of the following dynamical symmetry algebra
generators (F̂ρ, F̂σ, F̂τ):

F̂2 = (Ĥ F̂2
ρ −

1
2

F̂2
σ −

1
2
(F̂τ + Ĥ)2), (74)

and the previous proposition.

Corollary 4. The mapping ψE(v, u) → ψ̃E(k) induces an isomorphism between the two-variable
algebra generated by (F̂ρ, F̂σ, F̂τ), and the one-variable algebra generated by (k, i d

dk , k2), which is
known as Klink’s algebra for quartic anharmonic oscillator and for which the quadratic integral of
motion F̂2 is the Schrödinger Hamiltonian of this quartic anharmonic oscillator [15].
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Proof. The commutators of (F̂ρ, F̂σ, F̂τ) are isomorphic to those of (k, i d
dk , k2) by computa-

tional checking.

This relation shows how the one-dimensional confining quartic anharmonic oscillator
is linked to the two-dimensional free fall. Note that this relation cannot be established if one
had started with the one-dimensional free fall problem. In classical physics, the presence
of quartic anharmonic oscillators in the free fall problem arises only when parabolic
coordinates are introduced. This is not the case here. There is still another curious relation
between the two systems discovered by Voros in [16].

3.4. Finite Quantum Canonical Transforms

Proposition 13. The finite quantum unitary transforms generated by (F̂ρ, F̂σ, F̂τ) are expressed as
follows:

Ûρ = exp−iρ F̂ρ, Ûσ = exp−iσ F̂σ, Ûτ = exp−iτ F̂τ . (75)

They produce the quantum version of the classical Iwai–Rew transform (see Equation (8)).

Proof. The proof is trivial and involves the use of the Baker–Hausdorff–Campbell formula:

eŶX̂eŶ = X̂ + [Ŷ, X̂] +
1
2!
[Ŷ,+[Ŷ, X̂]] + . . .

where (X̂, Ŷ) are operators. Because of the commutation relations of ÂFF, the computation
of this Baker–Hausdorff–Campbell on (Q̂v, P̂v, Q̂u, P̂u) yields only a few terms, whose
coefficients are precisely those in Equation (8).

Proposition 14. The action of (Ûρ, Ûσ, Ûτ) on the wave function ψE(v, u) may be represented by
the following integral transforms:

ÛρψE(v, u) =
∫

R
dk
(

e−ikρψ̃E(k)
)

eikv Ai
(

γ(u− E) +
k2

γ2

)
,

ÛσψE(v, u) =
∫

R
dk ψ̃E(k + σ) eikv Ai

(
γ(u− E) +

k2

γ2

)
,

ÛτψE(v, u) =
∫

R
dk
(

e−iτ(k2−E) ψ̃E(k)
)

eikv Ai
(

γ(u− E) +
k2

γ2

)
. (76)

Proof. The proof is straightforward. It uses the action of each generator given by Equation (69)
and then exponentiates it as action on ψ̃E(k). This leads to unitary factors for Ûρ and Ûτ as
well as a shift in the argument of ψ̃E(k) for Ûσ. This is an alternative form to the one obtained
by Iwai–Rew [4].

3.5. Quantum Integrals of Motion and Consequences on the Schrödinger Wave Functions

In this subsection, we study the nature of the quantum integrals of motion. In particu-
lar, when a manifest separation of variables occurs in an operator Ô(v, u) = Ô(v) + Ô(u),
the operator F̂(v, u) = Ô(v)− Ô(u) automatically commutes with Ô(v, u).

(a1)F̂ρ exists since [Ĥ, F̂ρ] = 0 because ρ is a cyclic variable, as in the classical case.
(a2) F̂τ is due to the separation in the (v, u) Cartesian variables. Hence,

Ĥ =

(
−1

2
∂2

∂v2

)
+

(
−1

2
∂2

∂u2 + u
)

, and F̂τ =

(
−1

2
∂2

∂v2

)
−
(
−1

2
∂2

∂u2 + u
)

(77)

commute.
(b1) F̂σ is due to the separation in π/4 rotated Cartesian variables (ξ, ζ). With the

following change in variables:

(v, u) =
1
2
((ξ + ζ), (ξ − ζ)), (ξ, ζ) = ((u + v), (u− v)), (78)
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(Ĥ, F̂σ) becomes (Ĥ(ξ, ζ), F̂σ(ξ, ζ)) given by the following equations:

((
− ∂2

∂ξ2 +
1
2

ξ

)
+

(
− ∂2

∂ζ2 +
1
2

ζ

)
,
(
− ∂2

∂ξ2 +
1
2

ξ

)
−
(
− ∂2

∂ζ2 +
1
2

ζ

))
(79)

which commute.
(b2) However, there was an unproven claim of separation of variables in displaced

parabolic coordinates [10] as a justification for the existence of (F̂σ). Hereafter, we provide
an argument that may explain this claim. Consider the intermediate space (k, u), obtained
after a partial v-Fourier transform from the (v, u) space. The Schrödinger equation in the
(k, u) space for stationary states of the eigenvalue E admits solutions in the form of:

Ai
(

γu +
k2

γ2 − γE
)

. (80)

This solution has a constant value C on the parabolas of equation
(

u + 1
2 k2 − E

)
= C,

where C is a shift of the parabolas. Consequently, the tangential derivative of any function
of (k, u) along these parabolas is zero. This tangential derivative is just t · ∇, where
∇ =

(
∂
∂k , ∂

∂u

)
is the gradient operator and t = (1,−k) is the tangent vector to the parabola.

Thus, we have the following:

(
−k

∂

∂u
+

∂

∂k

)
Ai
(

γu +
k2

γ2 − γE
)
= 0. (81)

Going back to the (v, u) space by the k-Fourier inverse transform, this tangential
derivative reappears as a (v, u)−partial differential operator

(
∂2

∂u ∂v − v
)

, which is just −F̂σ.
Therefore, the claim of reference [13] is only valid in the (k, u)-space.

(c) F̂2 is due to a special form of separation of variables (Stäckel separation of variables),
when one changes from Cartesian (v, u) to parabolic (x, y) coordinates by the following

formulas: (u, v) =
(

x2−y2

2 , xy
)

. After working out the expressions of the (x, y) partial

derivatives, we end up with new expressions in (x, y) for (Ĥ, F̂2):

Ĥ(x, y) =
1

x2 + y2

{ (
−1

2
∂2

∂x2 +
1
2

x4
)
+

(
−1

2
∂2

∂y2 −
1
2

y4
)}

,

F̂2(x, y) =
(−1)

x2 + y2

{
y2
(
−1

2
∂2

∂x2 +
1
2

x4
)
− x2

(
−1

2
∂2

∂y2 −
1
2

y4
)}

. (82)

These expressions can also be obtained from the quantization of classical expres-
sions by replacing (px, py) with

(
−i ∂

∂x ,−i ∂
∂y

)
. The meaning of this Stäckel separation of

variables is given in the following proposition.

Proposition 15. As the total energy is conserved as Ĥ = E, the eigenfunctions of Ĥ in parabolic
coordinates are products of Schrödinger eigenfunctions of confining and non-confining quartic
oscillators in the form of ψE(v, u) ∼ ψE(x, y) = ψ

(+)
E (x)ψ(−)

E (y). Then, F̂2ψ
(+)
E (x)ψ(−)

E (y) =

−Eψ
(+)
E (x)ψ(−)

E (y).

Proof. Using the expression of Ĥ in parabolic coordinates given by Equation (82) and call-
ing the corresponding wave function ψE(x, y), we can transform the stationary Schrödinger
equation ĤψE(x, y) = EψE(x, y) for all (x, y) 6= (0, 0) into the following condition:

{ (
−1

2
∂2

∂x2 − Ex2 +
1
2

x4
)
+

(
−1

2
∂2

∂y2 − Ey2 − 1
2

y4
)}

ψE(x, y) = 0. (83)
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Since this condition is to be satisfied for all (x, y) 6= (0, 0), ψE(x, y) should be a product
of eigenfunctions of the two separate Schrödinger operators in x and in y, with opposite
eigenvalues. For the confining quartic potential in x, it is known that this Schrödinger
operator has discrete non-degenerate point spectrum with the eigenvalues E = εn, with
n ∈ N, which are bounded below. On the other hand, the Schrödinger operator with
non-confining quartic potential in y has a continuous, real, non-degenerate, scattering-type
spectrum. Thus, ψE(v, u) ∼ ψE(x, y) must be of the product form (up to a multiplicative
constant):

ψE(x, y) = ψ
(+)
E (x)ψ

(−)
E (x),

verifying the stationary Schrödinger equations:

(
−1

2
∂2

∂x2 − Ex2 +
1
2

x4
)

ψ
(+)
E (x) = H(+)

osc (x)ψ(+)
E (x) = +E ψ

(+)
E (x),

(
−1

2
∂2

∂y2 − Ey2 − 1
2

y4
)

ψ
(−)
E (y) = H(−)

osc (y)ψ
(−)
E (y) = −E ψ

(−)
E (y). (84)

Then, after rewriting the expression of F̂2 under the following form:

F̂2 =
(−1)

x2 + y2

{
y2
(
−1

2
∂2

∂x2 − Ex2 +
1
2

x4
)
− x2

(
−1

2
∂2

∂y2 − Ey2 − 1
2

y4
)}

, (85)

we see that
F̂2ψE(x, y) = F̂2ψ

(+)
E (x)ψ

(−)
E (y) = −E ψ

(+)
E (x)ψ

(−)
E (y). (86)

Hence, for Ĥ = E, we have necessarily −E as an eigenvalue of F̂2, where E = εn is
any eigenvalue of the confining quartic potential + 1

2 x4.

3.6. Integral Relation for Schrödinger Eigenfunctions of Quartic Oscillators

The passage to parabolic coordinates has a remarkable consequence on the eigenfunc-
tions of quantum quartic oscillators, as stated in the following theorem.

Theorem 3. The eigenfunctions of quantum confining and non-confining quartic oscillators verify
the following integral relation:

ψ
(+)
E (x)ψ

(−)
E (y) = µE

∫

R
dk ψ

(+)
E (k) eikxy Ai

(
x2 − y2 + k2 − 2E

γ2

)
. (87)

Proof. Recast the expression of ψE(v, u) in parabolic coordinates to get the following:

ψ
(+)
E (x)ψ

(−)
E (y) = µE

∫

R
dk ψ̃E(k) eikxy Ai

(
x2 − y2 + k2 − 2E

γ2

)
, (88)

where µE takes care of the fact that ψE(v, u) ∼ ψE(x, y) up to a multiplicative constant. Let

F̂2 operate on both sides of this equation. On the left-hand side, we get −Eψ
(+)
E (x)ψ

(−)
E (y)

according to Equation (86). On the right-hand side, we obtain:

− µE

∫

R
dk
(
−1

2
d2

dk2 − Ek2 +
1
2

k4
)

ψ̃E(k) eikxy Ai
(

x2 − y2 + k2 − 2E
γ2

)
, (89)

according to Equation (73). Hence, to have consistency between the two sides, one must
require that ψ̃E(k) = ψ

(+)
E (k). Therefore, it follows that the eigenfunctions of the confining

and non-confining quartic oscillators should verify the integral relation above.

Since the confining quartic oscillator is of dominant physical interest as a non-trivial
field theory model in zero space dimension, an integral identity for its eigenfunctions can
be derived from the previous identity via a “Wick-rotation” [17].
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Corollary 5. The eigenfunctions ψ
(+)
E (x) of the confining quartic oscillator fulfil the following

integral identity:

ψ
(+)
E (x)ψ

(+)
E (x′) = µE

∫

R
dk ψ

(+)
E (k)

(
cosh xx′k
sinh xx′k

)
Ai
(

x2 + x′2 + k2 − 2E
γ2

)
. (90)

Proof. Since
H(−)

osc (ix′) = −H(+)
osc (x′), and ψ

(−)
E (ix′) = ψ

(+)
E (x′), (91)

replace y with y = ix′ in Equation (88). Then, as parity is a good quantum number for
H(+)

osc , the factor e−kxy in the integrand should be replaced by either sinh xx′k or cosh xx′k,
according to the parity of the state of energy E = εn for n ∈ N. This last integral identity
was discovered long ago via the Weyl quantization of anharmonic oscillators [18] and
recently rediscovered by [19].

4. An Application to Wave Propagation in Duct of Varying Section

In 2003, B J Forbes et al. [20] observed that the Webster equation describing the excess
pressure p(u, t) in a fluid flowing in a duct with a slowly varying circular cross-sectional
area S(u):

1
c2

∂2 p(u, t)
∂t2 =

1
S(u)

∂

∂u

(
S(u)

∂p(u, t)
∂u

)
, (92)

where u is the space coordinate along the axis of the duct, t the time, and c is the constant
wave speed in the fluid, which can be turned into a Klein–Gordon equation with a potential
V(u) for a wave function ψ(u, t):

(
1
c2

∂2

∂t2 −
∂2

∂u2 + V(u)
)

ψ(u, t) = 0, (93)

if ψ(u, t) = p(u, t)
√

S(u) and

V(u) =
1√
S(u)

d2
√

S(u)
du2 . (94)

Hence, if we require that the potential to be linear V(u) = (u− d), where d is an arbi-
trary distance, Equation (94) shows that the duct section should vary as S(u) =Ai(u− d),
and consequently, Equation (93) is obtained from the two-dimensional free fall Schrödinger
equation by “Wick-rotation” v = ict [17] (without a factor 1/2 in the partial derivatives).
This Klein–Gordon Equation (93) admits a dynamical symmetry algebra which is the Wick
rotated ÂFF. Note that the free fall F̂τ integral of motion now becomes the Klein–Gordon
operator, and conversely, the free fall Hamiltonian operator is now an integral of the mo-
tion for the Klein–Gordon operator. The quadratic integral operator of the Klein–Gordon
problem is now the Wick rotated free fall F̂2 operator. In this case, one directly gets the
integral identity for the Schrödinger eigenfunctions of the confining quartic anharmonic
oscillator; see Equation (90).

The general solution of this Klein–Gordon wave equation φd(t, u) is formally analo-
gous to ψE(v, u); it is given by the ω-integral for t > 0:

φd(t, u) =
∫

R
dω f (ω)Ai

(
γ(u− d) +

ω2

c2γ2

)
, (95)

with the initial conditions φd(0, u) and φ̇d(0, u) = d
dt φd(t, u)|t=0.

Theorem 4. The angular frequency distribution f (ω) of φd(t, u) is fully determined by the initial
conditions.
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Proof. The proof uses the integral given by Equation (60) and also by correctly integrating
the delta function δ(ω2 −ω′2):

1
2
( f (ω′) + f (−ω′)) =

|ω′|
c2

∫

R
du φd(0, u)Ai

(
(u− d) +

ω′2

c2

)
,

1
2
(− f (ω′) + f (−ω′)) =

sgnω′

c2

∫

R
du φ̇d(0, u)Ai

(
(u− d) +

ω′2

c2

)
(96)

where sgnω = ω
|ω| is the sign of ω. This fully determines f (ω).

5. Conclusions and Perspectives

In this paper, a complete account of the dynamical symmetries of the two-dimensional
free fall is provided both classically and quantum mechanically. The results may open
the way towards the construction of the representation of its dynamical algebra. This is a
challenging task which makes it necessary to understand the zonal character of the integral
relation fulfilled by the eigenfunctions of the confining quartic oscillator [21]. An extension
to dimensions higher than two, which may reveal new unexpected features of this simple
physical problem as it did in two dimensions, is foreseen as future work.
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Abstract: Accepting a time-symmetric quantum dynamical world with ontological wave functions
or fields, we follow arguments that naturally lead to a two-boundary interpretation of quantum
mechanics. The usual two boundary picture is a valid superdeterministic interpretation. It has,
however, one unsatisfactory feature. The random selection of a chosen measurement path of the
universe is far too complicated. To avoid it, we propose an alternate two-boundary concept called
surjective mapping conjecture. It takes as fundamental a quantum-time running forward like the
usual time on the wave-function side and backward on the complex conjugate side. Unrelated
fixed arbitrary boundary conditions at the initial and the final quantum times then determine the
measurement path of the expanding and contracting quantum-time universe in the required way.

Keywords: time symmetric quantum dynamics; two-boundary interpretation of quantum mechanics;
the resurrection of macroscopic causality; cosmological epochs without macroscopic descriptions

1. Introduction

The wave function and the fields are the draft horses of quantum mechanics and quan-
tum field theory. We here take a realist view about their ontological existence. Measurement
decisions involving collapses require the elimination of wave function components all the
way back. So, the realist view requires backward causation. The wave function and its
conjugate follow the Schrödinger equation, which is entirely symmetric in time. For field
theory, with its Hamilton function, the situation is analogous.

To accept time symmetry is a severe step. It involves some non-locality. Interpretations
used different strategies to get around it. The Copenhagen interpretation tries to avoid
backward causation by denying wave function ontological existence. In “An intricate
quantum statistical effect and the foundation of quantum mechanics” [1], we argued that
it is not successful in a broader quantum statistical domain and that backward causation
is unavoidable. The basic argument is: If identical particles are produced with a certain
probability at the time t1 one can decide at a later time t2 to allow them to mingle or to
keep them separate. This decision at the time t2 introduces or prevents interference terms
which enhance or deplete the production probability a the time t1. As particle production
is ontological, it means backward causation. In some way, the acceptance of time symmetry
on a quantum level is a paradigm change. As we argued in “Time Symmetric Quantum
Mechanics and Causal Classical Physics” [2], there is nothing wrong with time-symmetric
quantum mechanics as long in our rapidly expanding universe an approximate classical
time directed physics can be obtained.

The term “conjecture” instead of “interpretation” was used as there might be unthought-
of problems. The most dangerous aspects are infinities which often lead to problems if
involved limits are not considered carefully. We, therefore, decided to take the universe as
finite with a vast lifetime from a big bang to a highly extended final state. As the universe
is almost empty and sparsely interacting at its end, the limit t f → ∞ presumably exists but
is not taken.

As Sakurai [3] pointed out, most of the spectacular successes of Quantum Mechanics
(QM) lie in the domain of Quantum Dynamics (QD), meaning QM without the Measure-
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ment Process involving collapses. Many applications of QM involve just static situations,
and for most processes, one just needs to know the given initial and the possible final states.

2. The Components of Measurements

Nobody doubts QD; differences in interpretations concern the Theory of Measure-
ments. There is a lot of splitting and merging in QD in which no components are eliminated.
Such eliminations are an essential element of Measurement Processes. Empirically one
knows that such measurement processes in which components disappear require witnesses.
Usually, witnesses are observers who remember the choices taken. Here they can be just
objects whose existence documents past selections.

Some basic facts about witnesses seem not fully realized. The fastest witness pro-
duction involves phase changes [4]. For traceable witnesses, the by far dominant part
is low-energy photons. Any drift chamber, any circuit board, and, if he visits, Wigner’s
friend’s brain all emit measurable radiofrequency electromagnetic waves.

Individual photons with a radio wavelength between 0.03 and 20 m carry unmeasur-
able energies of 10−23and 10−26 Joule. There have to be a lot of them, and there are known
to be penetrating. A substantial fraction of them will escape the apparatus, the laboratory,
and there is a special window for these frequencies in the ionosphere. In our expanding
universe, it means a large number of them will enter a part of the sky where they will never
encounter any interaction. In this way, the information of the measurement will be stored
in the final state. The final hypersphere (∝ c · t3

f ) is enormous and even a single photon
will somehow reversed point to the precise emission region reflecting the measurement
decision. The stored information will not be disturbed by other particles. The same applies
to the other measurements. As emission takes a specific time, the number of measurements
in a finite universe is a finite huge number, say, ζ for “zillion”. In an expanding universe ζ
grows faster than its lifetime.

A measurement result will be definite, such as up or down. It means the same
choice on the wavefunction side and the complex conjugated one as described by the
following projection:

Pno interference(t) = | ↑>wave<↑ |wave ⊗ | ↑>conjugate<↑ |conjugate

+ | ↓>wave<↓ |wave ⊗ | ↓>conjugate<↓ |conjugate (1)

To just add such an operator is not acceptable. It eliminates contributions that can
only be done in processes involving witnesses.

However, in a finite universe, no problem arises. The final state on the wave-function
side has to agree with that on the complex conjugated one. So, no mixed terms can
contribute, e.g., with ↑ witnesses on the wave-function side and with ↓ witnesses on the
other side. Formally for an unconstrained universe, one can replace the sum over all final
states by a unit operator connecting the wavefunction and the complex conjugate one
as done in Equation (2), depicting the evolution of the wave function and its complex
conjugate part.

∑j,j′ ,j′′ ,j′′′ < i |Uj(t− ti) O Uj′(t f − t) 1 Uj′′(t− t f ) O Uj′′′(ti − t) | i >
↘ → up → 1 → up → ↗

or
∑j,j′ ,j′′ ,j′′′ < i |Uj(t− ti) O Uj′(t f − t) 1 Uj′′(t− t f ) O Uj′′′(ti − t) | i >

↘ → down→ 1→ down→ ↗ (2)

That the witnesses on both sides have to agree to contribute is now apparent. I kept
the unit matrix to remember the separation. The argument stayed entirely in the domain of
QD, and no addition was needed.

Next, the measurement will have to determine an actual choice, like a projection
operator which takes ↑ and eliminates ↓:

Pjump(t) = | ↑><↑ | . (3)
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At what time should the operator act? Clearly, this should occur outside of the
quantum domain where all components are needed. This means it should occur behind a
good part of the witness production, but it can be later. As there is backward causation,
the only requirement is that states coming from the chosen component can be distinguished
from the unchosen one. As some witnesses stay forever, it is possible to move the projection
to the end, i.e., just before t f .

With everything except these measurement decisions integrated out, the number of
measurement-decision paths in the universe will again be a finite number like 2ζ . Of course,
it is somewhat lower as there are correlations in measurement results like that of Alice
and Bob and non-binary choices?

3. Two Boundary Quantum Dynamics

If we put all measurement projections to the end, we have QD everywhere except at
the boundaries. One can define a final density operator containing all those projections
and formally obtain the two-boundary interpretation [5–8] of QM. It is a serious, valid,
super-deterministic interpretation of QM [9].

An unpleasant feature with these and similar theories is the required random selection
of measurement path determined by the final boundary. For each measurement path i, it has
to obtain the absolute square |amplitudei|2. Witnesses prevent interference contributions.
It has then to choose a random number rand ∈

[
0, ∑ζ!

i=1 |amplitudei|2
]

and determine the

chosen J so that rand ∼ ∑J
i=1 |amplitudei|2. In our opinion, it is far too complicated to

be attractive.
There is a modified two-boundary interpretation, the surjective mapping conjecture,

which avoids this unpleasant random choice. No measurement choice projections are
needed. It takes the quantum time τ ∈ [0, 2t f ] as fundamental and replaces the usual
expression for the density.

ψ · ψ∗|(t)
by

ψ(τ1 = t) · ψ(τ2 = 2 · t f − t)

For simplicity we inserted the definitions of the arguments. The mapping (τ1, τ2)→ t
involved is in the set theory called surjection. With the condition:

ψ(τ2) = ψ(τ1 = 2t f − τ2)
∗ (4)

the usual description would be obtained.
Equation (4) trivially holds around the unit operator 1 for t = t f ± ε. The highly

extended state at t f with all its witnesses strongly influences the smaller universe around
it to keep Equation (4) sufficiently accurate for a large part of the universe, including our
epoch. Where approximately valid, Equation (4) allows for a macroscopic description.

The formalism removes the constrain of this Equation (4). It allows for unequal
boundaries at the initial and final quantum time:

ψ(2t f ) 6= ψ(0)∗

They are result from a missing theory of the total quantum universe depicted in
Figure 1.
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Figure 1. The unknown quantum universe.

One can evolve and revolve both boundary states to the state of maximum extend t f :

< ψ(0)|U(t f , 0) and < ψ(2t f )|U(t f , 2t f )

In the conventional quantum theory, they would be equal, and their product would
be one. Now both sides are unrelated. Each occupies a tiny fraction of the vast phase space
of the universe at t f , presumably of the order of t−3

f . No overlap is expected except for an
extremely tiny region:

< ψ(0)|U(t f , 0) 1 U(t f , 2t f )
∗|ψ(2t f ) >= extremely tiny

There is no reason for the product to vanish.
It changes the picture of measurements. Consider a generic Stern-Gerlach experiment

shown in Figure 2 separately showing the wave function and the complex conjugate side.
They are split in an inhomogeneous magnetic field and then enter drift chambers, where
witnesses connected to the border state at t f fix a choice observable by charge coupled
electronics. The setup of the initial particle to a spin ⊗ is common to both outcomes, ↑ and
↓, and can be ignored on both sides. The spin ↑-component and its future on both sides,
the wave function and the conjugate one, following the dotted red line is then given in
Equation (5):

< ψ(⊗)|ψ(↑) >< ψ(t, ↑)|U|ψ(t f , ↑) >ψ(0) ·
< ψ(t f , ↑)|U|ψ(2t f − t, ↑) >ψ(2t f )

< ψ(↑)|ψ(⊗) > (5)

An analogue expression holds for the spin ↓-component. The limited overlap at t f
makes both terms tiny.

Figure 2. Generic Stern-Gerlach experiment.

For statistical reasons, two independent, very tiny quantities are extremely unlikely
of the same magnitude. So one will be dominant and the other irrelevant. (Exceptional
situations—we ignore—might lead to multi-world choice between coexisting observers.)
It looks like a random process choosing one and collapsing the other, but it reflects the
influence of the available future paths.

This situation is not unimportant. A discontinuous dynamical evolution of the uni-
verse, i.e., one with jumps, is considered unacceptable on philosophical grounds. Further-
more, Einstein and other important physicists could not accept QM as a complete theory as
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it involved random dynamics, i.e., as “der Alte würfelt nicht”. The Surjective Mapping
Conjecture avoids random dynamics and offers the envisioned completion.

The boundaries at the initial and final quantum-times are fixed. We can still average
over many settings with different positions in the universe. The first and last factor in
Equation (5) is known to be independent of settings and can be pulled out. As the process
is basically symmetric one has for the average of the remaining factors:

[
< ψ(t, ↑)|U|ψ(t f , ↑) >ψ(0)< ψ(t f , ↑)|U|ψ(2t f − t, ↑) >ψ(2t f )

]

=
[
< ψ(t, ↓)|U|ψ(t f , ↓) >ψ(0)< ψ(t f , ↓)|U|ψ(2t f − t, ↓) >ψ(2t f )

] . (6)

It means the relative probability is given just by the first and last factors:

| < ψ(⊗)|ψ(↑) > |2 and | < ψ(⊗)|ψ(↓) > |2 (7)

as required by the Born rule. It comes out automatically, no special choice had to be made.
It reflects a general statistical property of QM (in Figure 3). For any setup with a

measurement defined by witnesses reaching t f these witnesses, in turn, allow the matching
at t f to determine individual measurements unpredictably:
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setups
QM calculations
measurements ←− ←− environment

Figure 3. General situation of a measurement

No predictions are possible. Averaging, however, eliminates this seemingly random
influence of the environment, and predictive calculations are possible.

It is in some way a hidden variable theory. However, the hidden variable

ψ(t = 0)∗ − ψ(t = 2t f )

does not sit on individual particles where they would create problems [10]. It produces
a narrow overlap region at t f . which determines all measurements, like in the usual
two-boundary picture.

It is intrinsically somewhat less deterministic than the usual two boundary inter-
pretations [11]. What happens at a time τ1 = t and τ2 = 2t f − t affects the evolution in
between, including the “final” t f state. So, if one likes, one can add or imagine to have
added something like an outside, free-willed manipulation affecting this “final” t f state.

4. Conclusions

To conclude, as a multi-particle physicist analysing Bose–Einstein correlations, I was
forced to accept backward causation. Backward causation and, consequently, non-locality
changes paradigms in the interpretation of QM, suggesting a two-boundary interpretation.
This note showed how a particular choice of boundaries could eliminate an un-pleasant
feature of this interpretation.
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Abstract: This paper is concerned with the modeling and analysis of quantum dissipation and
diffusion phenomena in the Schrödinger picture. We derive and investigate in detail the Schrödinger-
type equations accounting for dissipation and diffusion effects. From a mathematical viewpoint, this
equation allows one to achieve and analyze all aspects of the quantum dissipative systems, regarding
the wave equation, Hamilton–Jacobi and continuity equations. This simplification requires the
performance of “the Madelung decomposition” of “the wave function”, which is rigorously attained
under the general Lagrangian justification for this modification of quantum mechanics. It is proved
that most of the important equations of dissipative quantum physics, such as convection-diffusion,
Fokker–Planck and quantum Boltzmann, have a common origin and can be unified in one equation.

Keywords: decaying systems; Schrödinger equation; Madelung formulation

1. Introduction

Since the early 20th century, the challenging problem of dissipation and diffusion mod-
eling has been widely studied in quantum theory because a comprehensive understanding
of dissipation in quantum mechanics is fundamental to the foundations of this theory [1,2].
The quantum–mechanical treatment of dissipative processes and other nonequilibrium
phenomena has been the subject of much attention due to its applicability in various fields
such as solid-state and statistical physics, incoherent solitons, photochemistry, Brownian
dynamics, heavy-ion scattering, quantum gravity theories, dynamical modes of plasma
physics, propagation of optical pulses and damping effects in nonlinear media [3–5].

In 1926 (the same year Schrödinger published his celebrated articles), Madelung refor-
mulated the Schrödinger equation into a set of real, non-linear partial differential equations
comparable with the Euler equations which were used in hydrodynamics. Madelung
showed that the two equations were mathematically equivalent [6,7], and if one writes
the wave function in the form of eR+iS, the Schrödinger equation implies that, first, S is
governed by a classical Hamilton–Jacobi-like equation, or alternatively that

→
v = ∇S is for-

mulated by a Newton-like equation; second, ρ (which is defined as ρ(x, t) = |ψ|2 = R(x, t)2)
is governed by a classical continuity equation [8]. The only formal difference between
these equations and their purely classical counterparts is the existence of an additional
“quantum” potential. Since that time these equations have provided the basis for numerous
classical interpretations of quantum mechanics, including the hydrodynamic interpreta-
tion first proposed by Madelung [6], the theory of stochastic mechanics due to Nelson
and others [3,8–12], the hidden-variable and double-solution theories of Bohm and de
Broglie [13–15] and quite possibly other interpretations as well [8,16,17]. In some of these
theories, such as the hydrodynamic interpretation and stochastic mechanics, the Madelung
equations are taken as fundamental, and the Schrödinger equation is viewed as a mathe-
matical consequence [8].

In the Schrödinger picture, quantum diffusion and dissipation effects have been
effectively modeled by nonlinear terms of the type λ∆ψψ, which was first formulated

Symmetry 2021, 13, 812. https://doi.org/10.3390/sym13050812 https://www.mdpi.com/journal/symmetry141
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by Kostin [18,19] to describe nonlinear Schrödinger–Langevin dynamics, where λ is a
friction constant and ∆ψ = −i log ψ

|ψ| is the argument of the complex wave function ψ(x, t),

and also later by logarithmic nonlinearities with the form log (|ψ|2)ψ, which was studied
by Bialynicki-Birula and Mycielski [20,21]. They suggested that this logarithmic form
maintains the lack of correlation between noninteracting particles. In a system under
observation, there are many degrees of freedom such that information would be lost in the
coupling process, which leads to dissipation [22]. Caldeira and Legget showed by using the
influence-functional method [23] that dissipation tends to destroy quantum interference
in a time scale shorter than the relaxation time of the system [22]. This result has given
justification for the use of logarithmic nonlinear wave equations [12,18,22,24] to describe
quantum dissipation. These equations are acceptable as a proper, practical bath functional
in time-dependent density functional theory for open quantum systems [22,24].

In this paper the main purpose is to obtain a deeper understanding of some equations
of quantum dissipation and their interrelations in a more satisfactory way based on the
influence-functional method. We start from the fact that the Lagrangian density equation
can be generalized to accommodate arbitrary wave functions. This is done using a sub-
stitution prescription for the principal function by applying a general complex function
of eβ(x,t) to introduce a wide-ranging Schrödinger-type wave equation and their corre-
sponding Hamilton–Jacobi and continuity equations to access desirable results. It is shown
that this approach provides a unified framework to aggregate and reproduce the wide
class of Schrödinger-type equations compatible with the convection–diffusion, quantum
Boltzmann and Fokker–Planck continuity equations; this leads to a deeper understanding
of the nature of dissipative systems. We use Madelung’s fluid dynamical formulation of the
Schrödinger equation, in order to quantize the generalized Hamilton–Jacobi equation [25],
which is intimately related to Hamilton–Jacobi theory. In this work, it is shown that the
spatial dependence of the real part of eβ(x,t) leads to the dissipative form of quantum
potential, which is first introduced here.

This paper includes two main parts. First, the Schrödinger-type equation for dis-
sipative systems via Lagrangian density and Euler–Lagrange equations is derived, and
the related Madelung decomposition is discussed. In the next section it is shown that
by assigning appropriate functions for β(x, t), a wide range of important equations in
nonequilibrium quantum physics, such as convection–diffusion, Fokker–Planck and quan-
tum Boltzmann, are obtained.

2. Schrödinger-Type Equations of Dissipative Systems
2.1. Derivation

The Lagrangian approach based on the Principle of Least Action has been a unifying
principle in almost all areas of physics to obtain dynamical equations. The Lagrangian L is
a functional of field amplitude ψ(x, t). It can usually be expressed as the integral overall
space of a Lagrangian density L(ψ). If the field Lagrangian density L(ψ) is given, we can
obtain the dynamical field equation from the Euler–Lagrange equations [26–29],

∂L
∂ψ
− ∂

∂t

(
∂L
∂

.
ψ

)
−

3

∑
i=1

∂

∂xi

(
∂L

∂(∂ψ/∂xi)

)
= 0, (1)

where ∂
∂ψ is a partial derivative.

Based on the Lagrangian approach, one can obtain the Schrödinger equation by its
corresponding Lagrangian density [26,27], which is

Lsh(ψ) = iℏψ∗
∂ψ

∂t
− ℏ2

2m ∑3
i=1

(
∂ψ∗

∂xi

)(
∂ψ

∂xi

)
,
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If we define
.
ψ = ∂ψ

∂t and the gradient as
→
∇ ≡

(
∂

∂x , ∂
∂y , ∂

∂z

)
, the above equation can be

written as

Lsh(ψ) = iℏψ∗
.
ψ− ℏ2

2m

→
∇ψ∗ ·

→
∇ψ, (2)

Here ψ(x, t) is a complex function, and we can treat ψ and ψ∗ as independent fields.
Now we can put the Lagrangian density (2) in the Euler–Lagrange Equation (1) for the
field ψ∗ to obtain the Schrödinger equation (or ψ for its complex conjugate), and end up
with the Schrödinger equation for free particles [26,27,30]:

−iℏ∂ψ

∂t
=

ℏ2

2m
∇2ψ (3)

where ∇2 ≡
(

∂2

∂x2 , ∂2

∂y2 , ∂2

∂z2

)
is the Laplacian.

Theorem 1. If ψ(x, t) satisfied Equation (3), and it can be written in the form ψ(x, t) =
e−β(x,t)ψD(x, t) where β(x, t)ϵC and x ∈ R3, t ∈ R, then ψ(x, t) is also the solution of the
following differential equation,

−iℏ∂ψ

∂t
=

ℏ2

2m

(→
∇+

→
∇β

)2
ψ. (4)

Proof. By putting ψD = eβ(x,t)ψ(x, t) in Lsh we have

Lsh(ψD) = iℏ
(
eβψ

)∗ ∂(eβψ)
∂t − ℏ2

2m

→
∇
(
eβψ

)∗.
→
∇
(
eβψ

)

= iℏeβ∗ eβψ∗
(

∂β
∂t ψ + ∂ψ

∂t

)
− ℏ2

2m eβ∗ eβ

(
ψ∗
→
∇β∗ +

→
∇ψ∗

)
.
(

ψ
→
∇β +

→
∇ψ

)

Now eβ∗ eβ = e(βr−iβi)+(βr+iβi) = e2βr , where βr(x, t) and βi(x, t) are the real and
imaginary parts of β(x, t). By defining LD(ψ) = Lsh(ψD), the above equation gives

LD(ψ) = iℏe2βr ψ∗
(

∂β
∂t ψ + ∂ψ

∂t

)
− ℏ2

2m e2βr

(→
∇β∗ ·

→
∇βψ∗ψ +

→
∇β ·

→
∇ψ∗ψ +

→
∇β∗ ·

→
∇ψψ∗ +

→
∇ψ∗ ·

→
∇ψ

)
. (5)

This is the Lagrangian density of dissipation wave function. Now to obtain the
dynamical equation of dissipation wave function, we substitute LD in the Euler–Lagrange
Equation (1) to obtain

iℏ ∂β
∂t ψ + iℏ ∂ψ

∂t − ℏ2

2m (
→
∇β∗ ·

→
∇β)ψ− ℏ2

2m

→
∇β∗ ·

→
∇ψ + ℏ2

2m 2(
→
∇βr ·

→
∇β)ψ

+ ℏ2

2m (∇2β)ψ + ℏ2

2m

→
∇β ·

→
∇ψ + ℏ2

2m 2
→
∇βr ·

→
∇ψ + ℏ2

2m∇2ψ = 0.
(6)

To simplify the above equation we replace β = (βr + iβi) and β∗ = (βr − iβi) in some
terms in Equation (6), then we have

{
iℏ ∂β

∂t +
ℏ2

2m∇2β
}

ψ +
{

iℏ ∂ψ
∂t + ℏ2

2m∇2ψ
}
− ℏ2

2m (
→
∇βi)

2
ψ + ℏ2

2m (
→
∇βr)

2
ψ + i ℏ

2

2m 2
→
∇βr.

→
∇βiψ + ℏ2

2m

→
∇βr.

→
∇ψ

+ i ℏ
2

2m

→
∇βi.

→
∇ψ = 0.

(7)

By using the two following equations

(
→
∇β)

2
ψ = (

→
∇βr + i

→
∇βi)

2
ψ =

(
(
→
∇βr)

2
− (
→
∇βi)

2
+ i2

→
∇βr.

→
∇βi

)
ψ (8)

and →
∇β.

→
∇ψ = (

→
∇βr + i

→
∇βi).

→
∇ψ (9)
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Equation (7) is rephrased in terms of β as

{
iℏ∂β

∂t
ψ + iℏ∂ψ

∂t

}
+

ℏ2

2m
∇2ψ +

ℏ2

2m
∇2βψ +

ℏ2

2m
(
→
∇β)

2
ψ +

ℏ2

2m
2
→
∇β.

→
∇ψ = 0.

Finally, to shorten Equation (9) and have an optimal form we use

(
→
∇+

→
∇β)

2
ψ = ∇2ψ + ψ∇2β + (

→
∇β)

2
ψ + 2

→
∇β.

→
∇ψ

Therefore, we conclude

−iℏ∂ψ

∂t
=

ℏ2

2m
(
→
∇+

→
∇β)

2
ψ + iℏ∂β

∂t
ψ (10)

Equation (10) is a dissipative Schrödinger-like equation (DSE). □

Theorem 1, to some extent, is comparable to the Stoker [25] method, which has a
variable function from which different equations can be obtained. Stocker’s method was
rudimentary and was not covered thoroughly. In the quantum hydrodynamical framework,
Nassar [22,31] proposed a generalized nonlinear equation covering some of the famous
equations due to Kostin [18], Süssmann and Hasse [32], Bialynicki-Birula–Mycielski [20],
Stocker–Albrecht [25] and Schuch–Chung–Hartmann [33]. His equation had a variable
parameter to produce different equations. Zander, Plastino and Díaz-Alonso [34] have
investigated the nonlinear equation proposed by Nassar [22], and in its corresponding
Hamilton–Jacobi and continuity parts some terms are left undefined. Recently, Gonçalves
and Olavo [35] have derived, from first principles, a generalized Schrödinger equation that
encompasses dissipative phenomena. Their results are not applicable to different equations
of quantum dissipation systems.

Our approach is based on a variable complex valued function of eβ(x,t), which can
produce Fokker–Plank, convection–diffusion and quantum Boltzmann equations. These
equations are only some examples of the applicability of this approach.

In this work, to the best of our knowledge, for the first time we present:
(A) a formalism which aggregates most of the important equations of dissipative

quantum systems in a comprehensive manner; this leads to a deeper understanding of the
nature of dissipative systems, see Section 3;

(B) a general form for quantum potential that would appear when the dissipation
parameter depends on space, such as plasma currents where the quantum Boltzmann
equation is used [36], see Sections 2.2 and 3.4.

Corollary 1. if β = −γt (γ > 0), we have e−γtψ which describes a decaying wave function, then
its relevant wave equation is

−iℏ∂ψ

∂t
=

ℏ2

2m
∇2ψ− iℏ|γ|ψ. (11)

Corollary 2. if β = i qφ
ℏc (where qφ

ℏc is the Aharonov–Bohm parameter [27]), we have ei qφ
ℏc ψ which

describes an Aharonov–Bohm effect, and its relevant wave equation is the same as the standard
Schrödinger equation.

2.2. Madelung Decomposition of DSE

The equations of quantum hydrodynamics (Madelung equations) are Madelung’s
corresponding alternative formulation of the Schrödinger equation [6], which is written
in terms of hydrodynamical variables. The derivation of Madelung equations is similar
to the de Broglie–Bohm formulation, which represents the Schrödinger equation as a
quantum Hamilton–Jacobi equation [37]. The Madelung equations, by their virtue of being
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formulated in the language of Newtonian mechanics, make it possible to construct a wide
class of quantum theories by making the same coordinate-independent modifications found
in Newtonian mechanics, without any need to construct a quantization algorithm [38].

Consider the one-dimensional time-dependent Schrödinger Equation (3) and write
the polar form of wave function in terms of amplitude R(x, t) and phase function (or action
function) S(x, t), i.e.,

ψ(x, t) = R(x, t)e
iS(x,t)

ℏ , (12)

in which both are real valued functions. The probability density associated with this wave
function is ρ(x, t) = R(x, t)2.

By substituting this wave function into the Schrödinger Equation (3), one obtains a
system of two coupled partial differential equations, which are the Madelung hydrodynam-
ical formulation of wave mechanics [7,15,25,39]. Now by equating the real and imaginary
parts, first we find the continuity equation for the imaginary part,

∂ρ

∂t
+
→
∇ ·

→
J = 0, (13)

in which the probability flux is
→
J , defined as

→
J = ρ

→
∇S
m , and

→
ν =

→
∇S
m is the flow velocity

(or drift velocity) of the probability current.
The second equation or the real part is the quantum Hamilton–Jacobi equation (for

V = 0), given by

−∂S
∂t

=
1

2m
(
→
∇S)

2
− ℏ2

2m
∇2R

R
; (14)

in which the total energy is equal to the kinetic energy plus a quantum potential Q (Q =

− ℏ2

2m
∇2R

R ). Because of the explicit dependence of the quantum potential on ℏ, it brings all
quantum effects into hydrodynamic formulation [39].

Now by applying Madelung decomposition on DSE (10), and after some manipula-
tions, with the use of the identity

(
→
∇+

→
∇βr)

2
R = ∇2R + R∇2βr + 2

→
∇βr ·

→
∇R + (

→
∇βr)

2
R (15)

the general quantum Hamilton–Jacobi and the general continuity equations, respectively,
become

− ∂

∂t
(S + ℏβi) =

1
2m

(
→
∇S + ℏ

→
∇βi)

2
− ℏ2

2m
(
→
∇+

→
∇βr)

2
R

R
(16)

and (
∂

∂t
+ 2

∂βr

∂t

)
ρ + (

→
∇+ 2

→
∇βr) ·


ρ

→
∇S + ℏ

→
∇βi

m


 = 0 (17)

Equation (16) is the Hamilton–Jacobi equation, in which on the left-hand side is the
total energy and the right-hand side includes a dissipative form of the kinetic energy plus

the general form of quantum potential. It is noteworthy to emphasize, when
→
∇βr ̸= 0, the

quantum potential equation appears as

QD = − ℏ2

2m
(
→
∇+

→
∇βr)

2
R

R
. (18)

This means that the spatial part of βr changes the quantum properties and modifies
the effect of the quantum potential. Since βr is responsible for dissipative phenomena, one
could refer (18) as a dissipative quantum potential (DQP).
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It can be shown that the mean value of the DQP is proportional to the Fisher informa-
tion probability density about the observable x̂. By definition of Fisher information

F (θ) := E
[
− ∂2

∂θ2 log f (X|θ)
]
= −

∫
f∇2(ln f )d3x (19)

and since

∇2(ln f ) =
∇2 f

f
−
(∇ f

f

)2
(20)

it can be proved that, similar to quantum potential [40–42], the mean value of the DQP is
proportional to Fisher information

⟨QD⟩ =
∫

ψ∗DQDψDdr =
ℏ2

8m
F (21)

and this is important because quantum fluctuations and quantum geometry are related to
the quantum potential via Fisher information [43,44].

Temporal and spatial dependence of the imaginary part β (which adds to the phase)
changes the total energy and the kinetic energy, respectively. Additionally, the spatial
dependence of the real part β changes the well-known quantum potential, but its temporal
part has no effect on the quantum Hamilton–Jacobi Equation (16).

Equation (17) is the origin of several important equations in open quantum systems.
In the following sections, Equation (17) will be further discussed.

3. Applications

In this section, we will provide further discussion of Equations (16) and (17). We show
that by selecting an appropriate function for β(x, t), a wide range of important equations
in quantum physics are obtained. Moreover, with enough knowledge about the wave
function, it would be possible to predict the nature of the Hamilton–Jacobi, continuity and
more importantly wave equations and vice versa.

For example, here is a brief description of the Berry’s phase. Berry’s phase [43] is
a quantum phase effect arising in systems that undergo a slow, cyclic evolution. In an
adiabatic evolution of the Hamiltonian, a quantum system in an nth eigenstate, remains in
this nth eigenstate of the Hamiltonian, while picking up a phase factor. Under adiabatic
approximation, the coefficient of the nth eigenstate is given by

Cn(t) = Cn(0) exp
[
−
∫ t

0
⟨ψn(t′)|

.
ψn(t′)⟩dt′

]
= Cn(0)eiγn(t) (22)

where γn(t) is the Berry’s phase with respect of parameter t. According to (22) and
comparison with (16) and (17) one concludes that the adiabatic evolution has no effect on
the continuity part, but the Hamilton-Jacobi equation takes the form of

−∂S
∂t

=
1

2m
(
→
∇S)

2
− ℏ2

2m

→
∇2R

R
+ ℏ∂γ(t)

∂t
(23)

and the corresponding wave equation is obtained as

iℏ∂ψ

∂t
= − ℏ2

2m
∇2ψ− ℏ∂γ(t)

∂t
ψ (24)

In the following, for better clarification, we will apply this approach to obtain the
continuity equation, the Fokker–Planck equation, the convection–diffusion equation and
the quantum Boltzmann equation. The important point is that they are all derived from a
single equation produced by the “Lagrangian density of the Srodinger equation”. Therefore,
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Equation (10) can be considered as a consistent and constructive generalization for the
Schrödinger equation.

3.1. Continuity Equation with Source or Sink

In the simplest example we take

βi = 0 and βr = γt, γ ∈ R (25)

so, the wave function is ψD = eγtψ, in which γ is a real number. Therefore, the correspond-
ing wave equation takes the form

iℏ∂ψ

∂t
= − ℏ2

2m
∇2ψ + iγℏψ. (26)

In this case, the Hamilton–Jacobi equation remains without change

−∂S
∂t

=
1

2m
(
→
∇S)

2
− ℏ2

2m
∇2R

R
, (27)

and, as expected, the probability current is no longer conserved

∂R2

∂t
+
→
∇ ·

→
J = −2γρ (28)

where 2γρ represents source or sink for the current [17].

3.2. The Fokker–Plank Equation

As an important example, we take

βr = 0 and βi = ln R(x, t) (29)

where R(x, t) is the real valued amplitude of the wave function, and upon substituting in
DSE (10), its corresponding wave equation takes the form

iℏ ∂ψ
∂t = − ℏ2

2m∇2ψ− i ℏ
2

2m∇2(ln|ψ|)ψ− iℏ
2

m

→
∇ ln|ψ| ·

→
∇ψ

+ ℏ2

2m (
→
∇ ln|ψ|)

2
ψ− ℏ ∂ ln|ψ|

∂t ψ.
(30)

Next, by setting (29) in Equations (16) and (17), we obtain its relevant continuity and
the Hamilton–Jacobi equations, respectively

− ∂

∂t
(S + ℏ ln R) =

1
2m

(
→
∇S + ℏ

→
∇ ln R)

2
− ℏ2

2m
∇2R

R
(31)

∂ρ

∂t
+
→
∇ ·

→
J = − ℏ

2m
∇2ρ. (32)

Equation (31) is the Hamilton–Jacobi equation of a diffusive system, whose total
energy is on the left-hand side and total kinetic energy plus quantum potential is on the
right-hand side. Total kinetic energy includes kinetic energy corresponding to drift velocity
in which there is an added non-classical, stochastic diffusion velocity (either of Markovian
or of non-Markovian type) [1].

Equation (32) is the well-known Fokker–Planck equation. Some fundamental consid-
erations of quantum theory suggest a general, complex nonlinear Schrödinger equation
(outside the classes most often studied), which follows from admitting quantum diffusion
currents, so that its probability density satisfies the Fokker–Planck equation [17,45–47].
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It is worth mentioning that the diffusion current, and thus the Fokker–Planck equation,
are due to the presence of ln R(x, y) in the phase of the wave function

ψ→ ψD = e(βr+iβi)ψ

ψD = Reiκ ln Rei S
ℏ = Re

i(S+ℏκ ln R)
ℏ

where κ is a real number.
Doebner and Goldin in [45] propose a group-theoretical justification for a nonlin-

ear modification of quantum mechanics, as the most general class of Schrödinger-type
equations compatible with the Fokker–Planck continuity equation; they start with

iℏ∂ψ

∂t
= H0ψ +R[ψ]ψ + iI [ψ]ψ with I [ψ] = ℏD

2

(
∇2(ψψ

)

ψψ

)
(33)

whereR[ψ] and I [ψ] are the real and imaginary parts of the nonlinear functional multiply-
ing ψ; and I [ψ] is the key phrase to create the Fokker–Planck equation. Then, they declare
that the theory at this point gives no further information aboutR[ψ], but it is reasonable to
assume thatR[ψ] is of a form similar to I [ψ].

If Equation (30) is rewritten as (34), its compliance with the Doebner–Goldin Equation
(33) is determined [35,45,46,48]

iℏ ∂ψ
∂t = − ℏ2

2m∇2ψ +

{
ℏ
m

→
∇|ψ|
|ψ|
→
∇S + ℏ2

2m

(→
∇|ψ|
|ψ|

)2

+ ℏ ∂ ln|ψ|
∂t

}
ψ + i

{
−ℏ2

2m

(∇2ψ2

2ψ2

)}
ψ (34)

The general Lagrangian justification for this nonlinear modification of quantum me-
chanics seems to suggest it as a minimal nonlinear generalization of the Schrödinger
equation; it contains the least terms and still satisfies the Fokker–Planck equation. In
addition, it satisfies the general requirements of a nonlinear Schrödinger equation: (a)
the probability is conserved, (b) the equation is homogeneous, (c) non-interacting particle
subsystems remain uncorrelated, (d) plane waves are solutions for the free equation and (e)
the free equation is also time and space translation invariant [45,48].

Logarithmic terms which appear in (34) have a great importance in quantum friction
and diffusion effects. Dissipation tends to destroy quantum interference in a time scale
shorter than the relaxation time of the system [21]. This result has given justification for the
use of logarithmic nonlinear wave equations [12,18,22,24] to describe quantum dissipation.
Additionally, the logarithmic form guarantees non-interacting particle subsystems remain
uncorrelated [20].

3.3. Convection–Diffusion Equation

If we combine the diffusion (the Fokker–Planck equation) (32) with source or sink (28),
the result would be a convection–diffusion equation. Thus, based on previous sections
we pick ψD = e(βr+iβi)ψ = e

γ
2 t+ilnRψ (γ ∈ R), and substituting in (10), (16) and (17),

respectively, the wave equation, the Hamilton–Jacobi equation and continuity equations
are obtained as

iℏ∂ψ

∂t
= − ℏ2

2m
(
→
∇+ i

→
∇ ln|ψ|)

2
ψ + ℏ ∂

∂t
ln|ψ| ψ + iℏγ

2
ψ (35)

− ∂

∂t
(S + ℏ ln R ) =

1
2m

(
→
∇S− ℏ

→
∇ ln R )

2
− ℏ2

2m
∇2R

R
(36)

∂ρ

∂t
+
→
∇ ·

→
J = − ℏ

2m
∇2ρ− 2γρ. (37)

Equation (37) is the convection–diffusion equation [49], and 2γρ is the source or sink
of the probability current.
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3.4. Quantum Boltzmann Equation

As a last example, we take Γ(x, t) as a general real function and again the diffusion
factor of i ln R(x, t) we have

β =
−Γ(x, t)

2
+ ilnR(x, t), (38)

Therefore, wave Equation (10) takes the form of

iℏ∂ψ

∂t
= − ℏ2

2m
(
→
∇−

→
∇Γ + i

→
∇ ln|ψ|)

2
ψ + ℏ∂ ln|ψ|

∂t
ψ +

iℏ
2

∂Γ
∂t

ψ (39)

and corresponding Hamilton–Jacobi and continuity equations become

− ∂

∂t
(S + ℏ ln R) =

1
2m

(
→
∇S + ℏ

→
∇ ln R)

2
− ℏ2

2m

(→
∇−

→
∇Γ
2

)2
R

R
(40)

(
∂

∂t
− ∂Γ

∂t

)
ρ + (

→
∇−

→
∇Γ) ·

(→
J +

ℏ
2m

ρ
→
∇ ln ρ

)
= 0. (41)

We see in Equation (40) that DQP is revealed. It means that if
→
∇Γ(x, t) ̸= 0, the

well-known quantum potential will take a new form of DQP.
Equation (41) is the continuity equation, and with some manipulations it takes a

familiar form

∂ρ

∂t
+
→
∇ ·

(
ρ
→
v
)
− ℏ

2m
∇2ρ = ρ

(
∂

∂t
+
→
v ·
→
∇+

ℏ
2m

→
∇ ln ρ ·

→
∇
)

Γ. (42)

where
→
v =

→
∇S
m is the drift velocity. The left-hand side of the above equation is the Fokker–

Plank equation and the right-hand side resembles the quantum Boltzmann equation
[

∂

∂t
+
→
v ·
→
∇+

→
F ·
→
∇p

]
f (
→
x ,
→
p , t) = Q[ f ](

→
x ,
→
p ). (43)

The quantum Boltzmann equation gives the non-equilibrium time evolution of a gas
of quantum mechanically interacting particles. In Equation (43), f (

→
x ,
→
p , t) is a general

distribution function,
→
F is external applied force and Q is quantum collision operator,

accounting for the interactions between the gas particles; if it is zero then the particles do
not collide. Thus, the Fokker–Planck term at the left-hand side of (42) represents the effects
of particle collisions [50].

Go back to the right-hand side of Equation (42). Since we can write

→
∇Γ =

∂Γ
∂x

∂
→
∇S

∂
→
∇S

= ∇2S
∂Γ

∂
→
∇S

, (44)

then by substituting (44) and (43) into the right-hand side of (42), we have
(
→
F · ∂

∂
→
p

)
f =

(
ℏ

2m2∇
2S
→
∇ ln ρ · ∂

∂
→
∇S

)
Γ. (45)

Thus, we can write Equation (42) as

∂ρ

∂t
+
→
∇ · (ρ→v )− ℏ

2m
∇2ρ = ρ

(
∂

∂t
+
→
v ·
→
∇+

ℏ
2m

(
→
∇ ·→v )

→
∇ ln ρ ·

→
∇p

)
Γ. (46)
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So, the external applied force is defined as
→
F = ℏ

2m (
→
∇ ·→v )

→
∇ ln ρ, which is related to

both drift and diffusion velocities.
The Fokker–Planck equation, which was firstly derived to treat the Brownian motion

of molecules, has been extensively used to evaluate the collision term of the Boltzmann
equation for describing small-angle binary collisions of the inverse-square type of force [36].
In stellar dynamics, Chandrasekhar first discussed this theory for stochastic effects of grav-
ity [36,51]. The applications of this equation to classical plasma physics were first treated
by Landau, Spitzer, as well as Cohen, Spitzer and Routly, and an elegant mathematical
treatment was completed by Rosenbluth, MacDonald and Judd [36,52].

4. Summery and Conclusions

In this approach based on the influence-functional method we gain a better under-
standing on quantum friction and diffusion effects in a more satisfactory way. We generalize
the Lagrangian density equation to accommodate arbitrary wave functions, to provide
an approach to general quantum dissipation and diffusion modeling by introducing a
dissipative Schrödinger-type equation (DSE). The key point of this approach is β(x, t), as a
complex function, which is responsible for taking the problem from equilibrium phenom-
ena to nonequilibrium ones. The approach provides the achievable analysis, for all aspects
of the phenomena, concerning the wave equation, the Hamilton–Jacobi equation and the
continuity equation. It is shown that by applying a general complex function of eβ(x,t)

one can produce a wide-ranging Schrödinger-type wave equation and their correspond-
ing Hamilton–Jacobi and continuity equations to access desirable results. To show the
widespread applications of this approach, we provided some examples of the Berry phase,
the continuity equation, the Fokker–Planck equation, the convection–diffusion equation
and the quantum Boltzmann equation. All of these equations are obtained by step-by-step
generalizations of the beta function, see Table 1.

Table 1. Dissipation quantum equations and their related β functions.

Quantum Equations βr βi

Continuity equation with Source or Sink βr(x, t) = γt βi(x, t) = 0

Fokker–Planck equation βr(x, t) = 0 βi(x, t) = ln R(x, t)

Convection–diffusion equation βr(x, t) = γt
2 βi(x, t) = ln R(x, t)

Quantum Boltzmann equation βr(x, t) = −Γ(x,t)
2

βi(x, t) = ln R(x, t)

As a first step, we chose βr(x, t) = γt with no imaginary part, then we would have
growing/shrinking amplitude; it means the probability current is no longer conserved,
and there would be source/sink in the continuity equation.

Some fundamental considerations of quantum theory suggest a general, complex non-
linear Schrödinger equation, which follows from admitting quantum diffusion currents and
must be such that its probability density satisfies the Fokker–Planck equation. To describe
the diffusion current there is no need for source or sink; so the real part which affects the
amplitude is zero, and the imaginary part which controls the phase gets the βi = ln R(x, t)
value. From this choice the Fokker–Plank equation results in the continuity part, but it
also changes the usual appearance of the Hamilton–Jacobi (31). As expected, by quantum
friction and diffusion effects, logarithmic nonlinearities appear in the corresponding wave
Equation (34).

Now if we have a combination of growing/shrinking amplitude with diffusion current,
βr(x, t) = γt

2 and βi(x, t) = ln R(x, t), the result is the convection–diffusion Equation (37).

Finally, choosing for general real part Γ(x, t), which means βr(x, t) = −Γ(x,t)
2 and

βi(x, t) = ln R(x, t), this leads to the quantum Boltzmann equation. Because of the spatial
dependence of βr(x, t), the new appearance for quantum potential (DQP) has been revealed
(18). Since the quantum potential depends on the amplitude of a wave function, it is
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deformed as DQP for a dissipative system. This form of quantum potential is first presented
in this work.

All of above equations are derived from a single equation produced by the Dissipative
Schrödinger Equation (10). This unified framework provides a common ground for a better
understanding of quantum friction and diffusion effects and allows a deeper understanding
of the nature of the dissipative systems. The present approach is useful to the study of
non-equilibrium quantum mechanical systems, such as mesoscopic systems.
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Abstract: In this review, we trace the evolution of the quantum spin-wave theory treating non-
collinear spin configurations. Non-collinear spin configurations are consequences of the frustration
created by competing interactions. They include simple chiral magnets due to competing nearest-
neighbor (NN) and next-NN interactions and systems with geometry frustration such as the triangular
antiferromagnet and the Kagomé lattice. We review here spin-wave results of such systems and also
systems with the Dzyaloshinskii–Moriya interaction. Accent is put on these non-collinear ground
states which have to be calculated before applying any spin-wave theory to determine the spectrum
of the elementary excitations from the ground states. We mostly show results obtained by the use
of a Green’s function method. These results include the spin-wave dispersion relation and the
magnetizations, layer by layer, as functions of T in 2D, 3D and thin films. Some new unpublished
results are also included. Technical details and discussion on the method are shown and discussed.

Keywords: quantum spin-wave theory; Green’s function theory; frustrated spin systems; non-collinear
spin configurations; Dzyaloshinskii–Moriya interaction; phase transition; Monte Carlo simulation

1. Introduction

In a solid the interactions between its constituent atoms or molecules gives rise to
elementary excitations from its ground state (GS) when the temperature increases from
zero. One has examples of elementary excitations due to atom-atom interactions, known
as phonons, or due to spin-spin interactions, known as magnons. Note that magnons are
spin waves (SW) when they are quantized. Elementary excitations are defined also for
interactions between charge densities in plasma, or for electric dipole-dipole interactions
in ferroelectrics, among others. Elementary excitations are thus collective motions which
dominate the low-temperature behaviors of solids in general.

For a given system, there are several ways to calculate the energy of elementary
excitations from classical treatments to quantum ones. Since those collective motions are
waves, their energy depends on the wave vector k. The k-dependent energy is often called
the SW spectrum for spin systems. Note that though the calculation of the SW spectrum is
often for periodic crystalline structures, it can also be performed for symmetry-reduced
systems such as in thin films or in semi-infinite solids in which the translation symmetry is
broken by the presence of a surface.

In this review we focus on the SW excitations in magnetically ordered systems. The his-
tory began with ferromagnets and antiferromagnets with collinear spin GSs, parallel or
antiparallel configurations in the early 1950s. Most of the works on the SW used either the
classical method or the quantum Holstein–Primakoff transformation. The Green’s function
(GF) technique has also been introduced in a pioneering paper of Zubarev [1]. The first
application of this method to thin films has been done [2]. Note that unlike the SW theory,
the GF can treat the SW up to higher temperatures. We will come back to this point later.

Let us recall some important breakthroughs in the study of non-collinear spin con-
figurations. The first discovery of the helical spin configuration has been published in
1959 [3,4]. Some attempts to treat this non-collinear case have been done in the 1970 and
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1980. Let us cite two noticeable works on this subject in Refs. [5,6]. In these works, a local
system of spin coordinates have been introduced in the way that each spin lies on its
quantization axis. One can therefore use the commutation relations between spin deviation
operators. These works took into account magnon-magnon interactions by expanding the
Hamiltonian up to three-operator terms at temperature T = 0 [5] or up to four-operator
terms at low T [6]. Nevertheless, since these works used the Holstein–Primakoff method,
the case of higher T cannot be dealt with. In Ref. [7], the GF method has been employed
for the first time to calculate the SW spectrum in a frustrated system where the GS spin
configuration is non-collinear. Using the SW spectrum, the local order parameters and
the specific heat were calculated. Since this work, we have applied the GF method to a
variety of systems where the GS is non-collinear. In this review, we will recall results of
some of these published works.

Let us comment on the frustration which is the origin of the non-collinear GS. The frus-
tration is caused by either the competing interactions in the system or a geometry frustration
as in the triangular lattice with only the antiferromagnetic interaction between the nearest
neighbors (NN) (see Ref. [8]). The frustration causes high GS degeneracy, and for the
vector spins (XY and Heisenberg cases) the spin configurations are non-collinear, making
the calculation of the SW spectrum harder. A number of examples will be shown in this
review paper.

In addition to competing interactions, the Dzyaloshinskii–Moriya (DM) interaction [9,10]
is also the origin of non-collinear spin configurations in spin systems. While the Heisenberg
model between two spins is written as −JijSi · Sj giving rise to two collinear spins in the
GS, the DM interaction is written as Dij · Si × Sj giving rise to two perpendicular spins.
The DM model was historically proposed to explain the phenomenon of weak ferromagnetism
observed in Mn compounds [11]. However, the DM interaction is at present known in various
materials, in particular at the interface of a multilayer [12–16]. Although in this review we do
not show the effect of the DM interaction in a magnetic field which gives rise to topological
spin swirls known as skyrmions, we should mention a few of the important works given in
Refs. [17–21]. Skyrmions are among the most studied subjects at the time being due to their
potential applications in spin electronics [22]. We refer the reader to the rich biography given
in our recent papers in Refs. [23,24].

Since this paper is a review on the method and the results of published works on
SW in non-collinear GS spin configurations, it is important to recall the method and show
main results of some typical cases. We would like to emphasize that, on the GF technique,
to our knowledge there are no authors other than us working with this method. Therefore,
the works mentioned in the references of this paper are our works published over the
last 25 years. The aim of this review is two-fold. First we show technical details of the
GF method by selecting a number of subjects which are of current interest in research:
helimagnets, systems including a DM interaction, and surface effects in thin films. Second,
we show that these systems possess many striking features due to the frustration.

This paper is organized as follows. In Section 2, we express the Hamiltonian in a
general non-collinear GS and define the local system of spin coordinates. Here, we also
present the calculation of the GS and the foundation of the self-consistent GF technique
and the calculation of the SW dispersion relation and layer magnetizations at arbitrary
temperature (T). We show in Section 3 the numerical results obtained from the GF. Section 4
shows interesting examples using various kinds of interaction including the DM interaction
in a variety of systems from two dimensions, to thin films and superlattices. Section 5 treats
a case where the DM interaction competes with the antiferromagnetic interaction in the
frustrated antiferromagnetic triangular lattice. Section 6 presents the surface effect in a thin
film where its surface is frustrated. Concluding remarks are given in Section 7.

2. Hamiltonian of a Chiral Magnet—Local Coordinates

Chiral order in helimagnets has been subject of recent extensive investigations. In Ref. [25],
the surface structure of thin helimagnetic films has been studied. In Ref. [26] exotic spin
configurations in ultrathin helimagnetic holmium films have been investigated. In Refs. [27,28]
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chiral structure and spin reorientations in MnSi thin films have been theoretically studied.
In these works, the chiral structures have been considered at T = 0, but not the SW even at
T = 0. The main difficulty was due to the non-collinear, non-uniform spin configurations. We
have shown that this was possible using the GFs generalized for such spin configurations
given in Ref. [7].

To demonstrate the method, let us follow Ref. [29]: we consider the body-centered
tetragonal (bct) lattice with Heisenberg spins. Each spin interacts with its nearest neighbors
(NN) via the exchange constant J1 and with its next NN (NNN) on the c-direction via the
exchange J2 (see Figure 1).

Figure 1. Interactions J1 (thin solid lines) between nearest neighbors and J2 between next nearest
neighbors along the c axis in a bct lattice.

We consider the simplest model of a helimagnet, given by the following Hamiltonian

H = −J1 ∑
i,j

Si · Sj − J2 ∑
i,k

Si · Sk (1)

where Si is a quantum spin of magnitude 1/2, the first sum is performed over all NN pairs,
and the second sum over pairs on the c-axis (cf. Figure 1).

In the case of an infinite crystal, the chiral state occurs when J1 is ferromagnetic and J2
is antiferromagnetic and |J2|/J1 is larger than a critical value, as will be shown below.

Let us suppose that the energy of a spin EC in a chiral configuration when the angle
between two NN spin in the neighboring planes is θ, one has (omitting the factor S2)

E = −8J1 cos θ − 2J2 cos(2θ) (2)

The lowest-energy state corresponds to

dE
dθ

= 0

→ 8J1 sin θ + 4 sin(2θ) = 0 (3)

8J1 sin θ(1 +
J2

J1
cosθ) = 0

There are two solutions, sin θ = 0 and cos θ = − J1
J2

The first solution corresponds to

the ferromagnetic state, and the second solution exists if − J1
J2
≤ 1 which corresponds to the

chiral state.
For a thin helimagnetic film, the angle between spins in adjacent layers varies due to

the surface. We can use the method of energy minimization for each layer, then we have a
set of coupled equations to solve (see Ref. [29]). Figure 2 displays an example of the angle
distribution across the film thickness Nz.
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Figure 2. (a) Chiral structure along the c-axis for an infinite crystal, in the case θ = 2π/3, namely
J2/J1 = −2; (b) Cosine of α1 = θ1 − θ2, . . . , α7 = θ7 − θ8 across the film for several values
J2/J1 = −1.2,−1.4,−1.6,−1.8,−2 (from top) with Nz = 8: ai stands for θi − θi+1 and x indicates the
film layer i where the angle ai with the layer (i + 1) is shown. See text for comments.

In order to calculate the SW spectrum for systems of non-collinear spin configurations,
let us emphasize that the commutation relations between spin operators are established
when the spin lies on its quantization z. In the non-collinear cases, each spin has its own
quantization axis. It is therefore important to choose a quantization axis for each spin. We
have to use the system of local coordinates defined as follows. In the Hamiltonian, the spins
are coupled two by two. Consider a pair Si and Sj. As seen above, in the general case
these spins make an angle θi,j = θj − θi determined by the competing interactions in the
systems. For quantum spins, in the course of calculation we need to use the commutation
relations between the spin operators Sz, S+, S−. As said above, these commutation relations
are derived from the assumption that the spin lies on its quantization axis z. We show in
Figure 3 the local coordinates assigned to spin Si and Sj. We write

Si = Sx
i ξ̂i + Sy

i η̂i + Sz
i ζ̂i (4)

Sj = Sx
j ξ̂ j + Sy

j η̂j + Sz
j ζ̂ j (5)

Expressing the axes of Sj in the frame of Si one has

ζ̂ j = cos θi,j ζ̂i + sin θi,j ξ̂i (6)

ξ̂ j = − sin θi,j ζ̂i + cos θi,j ξ̂i (7)

η̂j = η̂i (8)

so that

Sj = Sx
j (− sin θi,j ζ̂i + cos θi,j ξ̂i)

+Sy
j η̂i + Sz

j (cos θi,j ζ̂i + sin θi,j ξ̂i) (9)
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Figure 3. Spin Si lies along the ~ζ axis (its quantization axis), while spin Sj lies along its quantization
axis ~ζ ′ which makes an angle θ with the ~ζ axis. The axes ~ξ and ~ξ ′ are perpendicular respectively to ~ζ

and ~ζ ′. The perpendicular axes η̂i and η̂j coincide with the~c axis, perpendicular to the basal plane of
the bct lattice.

Using Equation (9) to express Sj in the (ξ̂i, η̂i, ζ̂i) coordinates, we calculate Si · Sj, we
get the following Hamiltonian from (28):

He = − ∑
<i,j>

Ji,j

{
1
4
(
cos θi,j − 1

)(
S+

i S+
j + S−i S−j

)

+
1
4
(
cos θi,j + 1

)(
S+

i S−j + S−i S+
j

)
(10)

+
1
2

sin θi,j
(
S+

i + S−i
)
Sz

j −
1
2

sin θi,jSz
i

(
S+

j + S−j
)

+ cos θi,jSz
i Sz

j

}

This explicit Hamiltonian in terms of the angle between two NN spins is common
for a non-collinear spin configuration due to exchange interactions Ji,j. For other types of
interactions such as the DM interaction, the explicit Hamiltonian in terms of the angle will
be different as shown in Section 4.

We define the following GFs for the above Hamiltonian:

Gi,j(t, t′) = << S+
i (t); S−j (t

′) >>

= −iθ(t− t′) <
[
S+

i (t), S−j (t
′)
]
> (11)

Fi,j(t, t′) = << S−i (t); S−j (t
′) >>

= −iθ(t− t′) <
[
S−i (t), S−j (t

′)
]
> (12)

Writing their equations of motion we have

ih̄
d
dt

Gi,j
(
t, t′
)

=
〈[

S+
i (t), S−j

(
t′
)]〉

δ
(
t− t′

)

−
〈〈[
H, S+

i (t)
]
; S−j

(
t′
)〉〉

, (13)

ih̄
d
dt

Fi,j
(
t, t′
)

=
〈[

S−i (t), S−j
(
t′
)]〉

δ
(
t− t′

)

−
〈〈[
H, S−i (t)

]
; S−j

(
t′
)〉〉

, (14)
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where

S±j = Sx
j ξ̂ j ± iSy

j η̂j
[
S+

j , S−l
]

= 2Sz
j δj,l

[
Sz

j , S±l
]

= ±S±j δj,l

Note that the equation of motion of the G Green’s function generates the F Green’s func-
tions, and vice-versa. Performing the commutators in Equations (13) and (14), and using the
Tyablikov approximation [30] for higher-order GFs, for instance << Sz

i′S
+
i (t); S−j (t

′) >>'
< Sz

i′ ><< S+
i (t); S−j (t

′) >> etc., we obtain

ih̄
dGi,j(t, t′)

dt
= 2 < Sz

i > δi,jδ(t− t′)

− ∑
i′

Ji,i′ [< Sz
i > (cos θi,i′ − 1)×

× Fi′ ,j(t, t′)

+ < Sz
i > (cos θi,i′ + 1)Gi′ ,j(t, t′) (15)

− 2 < Sz
i′ > cos θi,i′Gi,j(t, t′)]

+ 2 ∑
i′

Ii,i′ < Sz
i′ > cos θi,i′Gi,j(t, t′)

ih̄
dFi,j(t, t′)

dt
= ∑

i′
Ji,i′ [< Sz

i > (cos θi,i′ − 1)×

× Gi′ ,j(t, t′)

+ < Sz
i > (cos θi,i′ + 1)Fi′ ,j(t, t′) (16)

− 2 < Sz
i′ > cos θi,i′Fi,j(t, t′)]

− 2 ∑
i′

Ii,i′ < Sz
i′ > cos θi,i′Fi,j(t, t′)

Note that the Tyablikov decoupling scheme is equivalent to the so-called “random-
phase-approximation” (RPA).

For the sake of clarity, we write separately the NN and NNN sums, we have

ih̄
dGi,j(t, t′)

dt
= 2 < Sz

i > δi,jδ(t− t′)

− ∑
k′∈NN

Ji,k′ [< Sz
i > (cos θi,k′ − 1)×

× Fk′ ,j(t, t′)

+ < Sz
i > (cos θi,k′ + 1)Gk′ ,j(t, t′)

− 2 < Sz
k′ > cos θi,k′Gi,j(t, t′)]

+ 2 ∑
k′∈NN

Ii,k′ < Sz
k′ > cos θi,k′Gi,j(t, t′) (17)

− ∑
i′∈NNN

Ji,i′ [< Sz
i > (cos θi,i′ − 1)×

× Fi′ ,j(t, t′)

+ < Sz
i > (cos θi,i′ + 1)Gi′ ,j(t, t′)

− 2 < Sz
i′ > cos θi,i′Gi,j(t, t′)]
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ih̄
dFk,j(t, t′)

dt
= ∑

i′∈NN
Jk,i′ [< Sz

k > (cos θk,i′ − 1)×

× Gi′ ,j(t, t′)

+ < Sz
k > (cos θk,i′ + 1)Fi′ ,j(t, t′)

− 2 < Sz
i′ > cos θk,i′Fk,j(t, t′)]

− 2 ∑
i′∈NN

Ik,i′ < Sz
i′ > cos θk,i′Fk,j(t, t′) (18)

+ ∑
k′∈NNN

Jk,k′ [< Sz
k > (cos θk,k′ − 1)×

× Gk′ ,j(t, t′)

+ < Sz
k > (cos θk,k′ + 1)Fk′ ,j(t, t′)

− 2 < Sz
k′ > cos θk,k′Fk,j(t, t′)]

For simplicity, we suppose in the following Jk,k′ are all equal to J1 for NN interactions
and to J2 for NNN interactions. Ik,k′ is taken to be I1 for NN pairs. In addition, in the film
coordinates defined above, we denote the Cartesian components of the spin position Ri by
three indices (`i, mi, ni) in three directions x, y and z.

Since there is the translation invariance in the xy plane, the in-plane Fourier transforms
of the above equations in the xy plane are

Gi,j
(
t, t′
)

=
1
∆

∫ ∫

BZ
dkxy

1
2π

∫ +∞

−∞
dωe−iω(t−t′)

×gni ,nj

(
ω, kxy

)
eikxy ·(Ri−Rj), (19)

Fk,j
(
t, t′
)

=
1
∆

∫ ∫

BZ
dkxy

1
2π

∫ +∞

−∞
dωe−iω(t−t′)

× fnk ,nj

(
ω, kxy

)
eikxy ·(Rk−Rj), (20)

where ω is the SW frequency, kxy the wave-vector parallel to xy planes and Ri the position
of Si. ni, nj and nk denote the z-components of the sites Ri, Rj and Rk. The integral over
kxy is performed in the first Brillouin zone (BZ) whose surface is ∆ in the xy reciprocal
plane. ni = 1 denotes the surface layer, ni = 2 the second layer etc.

In the 3D case, the Fourier transformation of Equations (17) and (18) in the three
(x, y, z) directions yields the SW spectrum in the absence of anisotropy:

h̄ω = ±
√

A2 − B2 (21)

where

A = J1〈Sz〉[cos θ + 1]Zγ + 2ZJ1〈Sz〉 cos θ

+J2〈Sz〉[cos(2θ) + 1]Zc cos(kza)

+2Zc J2〈Sz〉 cos(2θ)

B = J1〈Sz〉(cos θ − 1)Zγ

+J2〈Sz〉[cos(2θ)− 1]Zc cos(kza)

where Z = 8 is the NN coordination number, Zc = 2 the NNN number on the c-axis and
γ = cos(kxa/2) cos(kya/2) cos(kza/2) where a is the lattice constant taken the same in three
directions. Note that h̄ω is zero when A = ±B. This is realized at two points as expected in
helimagnets: kx = ky = kz = 0 (γ = 1) and kz = 2θ along the helical axis. It is interesting
to note that we recover the SW dispersion relation of ferromagnets (antiferromagnets) [2]
with NN interaction only by putting cos θ = 1 (−1) in the above coefficients.
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In the case of a thin film, the in-plane Fourier transformation yields the following
matrix equation

M(ω)h = u, (22)

where h and u are given by

h =




g1,n′

f1,n′
...

gn,n′

fn,n′
...

gNz ,n′

fNz ,n′




, u =




2
〈
Sz

1
〉
δ1,n′

0
...

2
〈

Sz
Nz

〉
δNz ,n′

0




, (23)

We take h̄ = 1 hereafter. Note that M(ω) is a (2Nz × 2Nz) matrix given by Equation (24)
where

M(ω) =




ω + A1 0 B+
1 C+

1 D+
1 E+

1 0 0 0 0 0 0
0 ω− A1 −C+

1 −B+
1 −E+

1 −D+
1 0 0 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · D−n E−n B−n C−n ω + An 0 B+

n C+
n D+

n E+
n · · ·

· · · −E−n −D−n −C−n −B−n 0 ω− An −C+
n −B+

n −E+
n −D+

n · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 0 D−Nz

E−Nz
B−Nz

C−Nz
ω + ANz 0

0 0 0 0 0 0 −E−Nz
−D−Nz

−C−Nz
−B−Nz

0 ω− ANz




(24)

An = −8J1(1 + d)
[〈

Sz
n+1
〉

cos θn,n+1

+
〈
Sz

n−1
〉

cos θn,n−1

]

− 2J2

[〈
Sz

n+2
〉

cos θn,n+2

+
〈
Sz

n−2
〉

cos θn,n−2

]

B±n = 4J1〈Sz
n〉(cos θn,n±1 + 1)γ

C±n = 4J1〈Sz
n〉(cos θn,n±1 − 1)γ

E±n = J2〈Sz
n〉(cos θn,n±2 − 1)

D±n = J2〈Sz
n〉(cos θn,n±2 + 1)

where we recall that n denotes the layer number, namely 1, 2, . . . , Nz and d = I1/J1. Note
that θn,n±1 denotes the angle between a spin in the layer n and its NN spins in adjacent

layers n± 1 etc. and γ = cos
(

kxa
2

)
cos
(

kya
2

)
.

In order to obtain the SW frequency ω, we solve the secular equation det |M| = 0
for each given (kx, ky). Since the linear dimension of the square matrix is 2Nz, we ob-
tain 2Nz eigen-values of ω, half positive and half negative, corresponding to two oppo-
site spin precessions as in antiferromagnets. These values depend on the input values
< Sz

n > (n = 1, . . . , Nz). Thus, we have to solve the secular equation by iteration until the
convergence of input and output values. Note that, even at T = 0, < Sz

n > are not equal to
1/2 due to the zero-point spin contraction [31]. In addition, because of the film surfaces,
the spin contractions are not uniform.
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The solution for gn,n can be calculated (see Ref. [29]). The spectral theorem [1] can be
used to obtain, after a somewhat lengthy algebra (see [29]),:

〈Sz
n〉 =

1
2
− 1

∆

∫ ∫
dkxdky

2Nz

∑
i=1

D2n−1(ωi)

eβωi − 1
(25)

where n = 1, . . . , Nz, and

D2n−1
(
ωi
(
kxy
))

=
|M|2n−1

(
ωi
(
kxy
))

∏j 6=i
[
ωj
(
kxy
)
−ωi

(
kxy
)] . (26)

As < Sz
n > depend each other in ωi(i = 1, . . . , 2Nz), their solutions should be obtained

by iteration at a given temperature T. In the particular case where T = 0 one has

〈Sz
n〉(T = 0) =

1
2
+

1
∆

∫ ∫
dkxdky

Nz

∑
i=1

D2n−1(ωi
(
kxy
)
) (27)

Note that the sum is performed over Nz negative ωi since positive ωi yields the zero
Bose–Einstein factor at T = 0).

The transition temperature Tc can be calculated self-consistently when all < Sz
n > tend

to zero.
We show in the following section, the numerical results using the above formulas.

3. Results for Helimagnets Obtained from the Green’s Function Technique

We use the ferromagnetic interaction between NN as unit, namely J1 = 1. Take the
helimagnetic case where J2 is negative with |J2| > J1. We have determined above the
spin configuration across the film for several values of p = J2/J1. Replacing the angles
θn,n±1 and θn,n±2 in the matrix elements of |M|, then calculating ωi(i = 1, . . . , 2Nz) for
each kxy. For the iterative procedure, the reader is referred to Ref. [29]. The solution
〈Sz

n〉(n = 1, . . . , Nz) is obtained when the input and the output are equal with a desired
precision P.

3.1. Spectrum

We calculate the SW spectrum as described above for each a given J2/J1. The SW
spectrum depends on T. We show in Figure 4 the SW spectrum ω versus kx = ky for an
eight-layer film with J2/J1 = −1.4 at T = 0.1 and T = 1.02 (in units of J1/kB = 1). We
observe that

(i) There are opposite-precession SW modes. Unlike ferromagnets, SW in antiferromag-
nets and non-collinear spin structures have opposite spin precessions [31]. The neg-
ative sign does not mean SW negative energy, but it indicates just the precession
contrary to the trigonometric sense,

(ii) There are two degenerate acoustic “surface” branches one on each side. These degen-
erate “surface” modes stem from the symmetry of the two surfaces. These surface
modes propagate parallel to the film surface but are damped when going to the bulk,

(iii) With increasing T, layer magnetizations decrease as seen hereafter, this reduces
therefore the SW frequency (see Figure 4b),

(iv) Surface and bulk SW spectra have been observed by inelastic neutron scattering
in collinear magnets (ferro- and antiferromagnetic films) [32,33]. However, such
experiments have not been reported for helimagnetic thin films.
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Figure 4. (a) Spectrum E = h̄ω versus k ≡ kx = ky for J2/J1 = −1.4 at T = 0.1 and (b) T = 1.02,
for Nz = 8 and d = 0.1. The surface branches are indicated by s.

3.2. Zero-Point Spin Contraction and Transition Temperature

It is known that, in antiferromagnetic materials, quantum fluctuations cause a contraction
of the spin length, namely the spin length is shorter than the spin magnitude, at T = 0 [31].
We demonstrate here that a spin with a stronger antiferromagnetic interaction has a stronger
contraction: spins in the first and in the second layers have only one antiferromagnetic NNN
on the c-axis while interior spins have two NNN. The contraction at a given J2/J1 is thus
expected to be stronger for interior spins. This is shown in Figure 5: with increasing |J2|/J1,
i.e., the antiferromagnetic interaction becomes stronger, the contraction is stronger. Of course,
there is no contraction when the system is ferromagnetic, namely when J2 → −1.

Figure 5. Spin lengths of the first four layers at T = 0 for several values of p = J2/J1 with d = 0.1,
Nz = 8. As seen, all spins are contracted to values smaller than the spin magnitude 1/2. Black circles,
void circles, black squares and void squares are for first, second, third and fourth layers, respectively.

3.3. Layer Magnetizations

We show now the layer ordering in Figures 6 and 7 where J2/J1 = −1.4 and −2,
respectively, in the case of Nz = 8. Consider first the case J2/J1 = −1.4. We note that the
surface magnetization, having a large value at T = 0 as seen in Figure 5, crosses the interior
layer magnetizations at T ' 0.42 to become much smaller than interior magnetizations
at higher temperatures. This crossover phenomenon is due to the competition between
quantum fluctuations, which dominate low-T behavior, and the low-lying surface SW
modes which reduce the surface magnetization at higher T. Note that the second-layer
magnetization makes also a crossover at T ' 1.3 which is more complicated to analyze.
Similar crossovers have been observed in other quantum systems such as antiferromagnetic
films [34] and superlattices [35].
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Figure 6. (a) Layer magnetizations as functions of T for J2/J1 = −1.4 with d = 0.1, Nz = 8, (b) Zoom
of the region at low T to show crossover. Black circles, blue void squares, magenta squares and red
void circles are for first, second, third and fourth layers, respectively. See text.

Figure 7. (a) Layer magnetizations as functions of T for J2/J1 = −2 with d = 0.1, Nz = 8, (b) Zoom
of the region at low T to show crossover. Black circles, blue void squares, magenta squares and red
void circles are for first, second, third and fourth layers, respectively. See text.

Similar remarks are also hold for J2/J1 = −2 shown in Figure 7.
Note that the results shown above have been calculated with an in-plane anisotropy

interaction d = 0.1. Larger d yields stronger layer magnetizations and larger Tc.
To close this section on SW in helimagnetic bct thin films, we mention that the same

investigation was done in the case of simple-cubic helimagnetic films where the surface
spin reconstruction and the surface SW have been shown [36]. We have also studied the
frustrated bct Heisenberg helimagnet in which the SW spectrum of the non-collinear spin
configuration has been calculated [37].

4. Dzyaloshinskii–Moriya Interaction in Thin Films

Let us consider a thin film made of N square lattices stacked in the y direction per-
pendicular to the film surface. The results for this system have been published in Ref. [38].
Hereafter, we review some of these important results. The Hamiltonian is given by

H = He +HDM (28)

He = −∑
〈i,j〉

Ji,jSi · Sj (29)

HDM = ∑
〈i,j〉

Di,j · Si × Sj (30)

where Ji,j and Di,j are the exchange and DM interactions, respectively, between two quan-
tum Heisenberg spins Si and Sj of magnitude S = 1/2.

163



Symmetry 2022, 14, 1716

We suppose in this section the in-plane and inter-plane exchange interactions between
NN are both ferromagnetic and denoted by J1 and J2, respectively. The DM interaction
is defined only between NN in the plane for simplicity. The J term favors the collinear
spin configuration while the DM term favors the perpendicular one. This will lead to
a compromise where Si makes an angle θi,j with its neighbor Sj. It is obvious that the
quantization axes of Si and Sj are different. Therefore, the transformation using the local
coordinates, Equations (4)–(9), is necessary. Let us suppose that the vector Di,j is along the
y axis, namely the η̂i axis. We write

Di,j = Dei,jŷi (31)

where ei,j = +1(−1) if j > i (j < i) for NN j on the x̂ or ẑ axis. One has by definition
ej,i = −ei,j.

The easiest way to determine the GS is to minimize the local energy at each spin:
taking a spin and calculating the local field acting on it from its neighbors. Then, we align
the spin in its local-field direction to minimize its energy. Repeating this procedure for
all spins, we say we realize one sweep. We have to make a sufficient number of sweeps
to obtain the convergence with a desired precision (see details in Ref. [39]). This local
energy minimization is called “the steepest descent method”. We show in Figure 8 the
configuration obtained for D = −0.5 using J1 = J2 = 1.

Figure 8. The ground state is a planar configuration on the xz plane. The figure shows the case where
θ = π/6 (D = −0.577), J1 = J⊥ = 1 using the steepest descent method. The inset shows a zoom
around a spin with its nearest neighbors.

We see that each spin has the same angle with its four NN in the plane (angle between
NN in adjacent planes is zero). We demonstrate now the dependence of θ on J1: the energy
of the spin Si is written as

Ei = −4J1S2 cos θ − 2J2S2 + 4DS2 sin θ (32)

where θ = |θi,j|minimizing Ei with respect to θ one obtains

dEi
dθ

= 0 ⇒ −D
J1

= tan θ ⇒ θ = arctan(−D
J1
) (33)

The result is in agreement with that obtained by the steepest descent method. An ex-
ample has been shown in Figure 8.

We rewrite the DM term of Equation (30) as

Si × Sj = (−Sz
i Sy

j − Sy
i Sx

j sin θi,j + Sy
i Sz

j cos θi,j)ξ̂i

+(Sx
i Sx

j sin θi,j + Sz
i Sz

j sin θi,j)η̂i (34)

+(Sx
i Sy

j − Sy
i Sz

j sin θi,j − Sy
i Sx

j cos θi,j)ζ̂i
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From Equation (31), we obtain

HDM = ∑
〈i,j〉

Di,j · Si × Sj

= D ∑
〈i,j〉

(Sx
i Sx

j ei,j sin θi,j + Sz
i Sz

j ei,j sin θi,j) (35)

=
D
4 ∑
〈i,j〉

[(S+
i + S−i )(S+

j + S−j )ei,j sin θi,j

+4Sz
i Sz

j ei,j sin θi,j]

where we have replaced Sx by (S+ + S−)/2. Note that ei,j sin θi,j is always positive since for
a NN on the positive axis direction, ei,j = 1 and sin θi,j = sin θ where θ is positively defined,
while for a NN on the negative axis direction, ei,j = −1 and sin θi,j = sin(−θ) = − sin θ.

4.1. Formulation of the Green’s Function Technique for the Dzyaloshinskii–Moriya System

Using the transformation into the local coordinates, Equations (4)–(9), one has

H = − ∑
<i,j>

Ji,j

{
1
4
(
cos θi,j − 1

)(
S+

i S+
j + S−i S−j

)

+
1
4
(
cos θi,j + 1

)(
S+

i S−j + S−i S+
j

)

+
1
2

sin θi,j
(
S+

i + S−i
)
Sz

j −
1
2

sin θi,jSz
i

(
S+

j + S−j
)

(36)

+ cos θi,jSz
i Sz

j

}

+
D
4 ∑
〈i,j〉

[(S+
i + S−i )(S+

j + S−j )ei,j sin θi,j

+4Sz
i Sz

j ei,j sin θi,j]

Note that the quantization axes of the spins are in the xz planes as shown in Figure 3.
We emphasize that, while the sine terms of the DM Hamiltonian, Equation (35), remain

after summing over the NN, the sine terms of He, the 3rd line of Equation (36), are zero
after summing over opposite NN because there is no ei,j term.

It is very important to emphasize again that the commutation relations between spin
operators Sz and S± are valid when the spin lies on its local quantization axis. Therefore, it
is necessary ro use the local coordinates for each spin.

In two dimensions (2D) there is no long-range order at non-zero T for isotropic spin
models with short-range interaction [40]. Thin films have very small thickness, not far from
2D systems. Thus, in order to stabilize the ordering at very low T, we use a very small
anisotropy interaction between between Si and Sj as follows

Ha = − ∑
<i,j>

Ii,jSz
i Sz

j cos θi,j (37)

where Ii,j(> 0) is positive, small compared to J1, and limited to NN in the xz plane. For
simplicity, we suppose Ii,j = I1 for all such NN pairs. As we will see below, the small value
of I1 does stabilize the SW spectrum when D becomes large. The Hamiltonian is finally
given by

H = He +HDM +Ha (38)
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Using the two GF’s in the real space given by Equations (11) and (12) and using the
same method, we study the effect of the DM interaction. For the DM term, the commutation
relations [H, S±i ] lead to:

D ∑
l

sin θ[∓Sz
i (S

+
l + S−l ) +±2S±i Sz

l ] (39)

which gives rise, using the Tyablikov decoupling, to the following GF’s:

<< Sz
i S±l ; S−j >>'< Sz

i ><< S±l ; S−j >> (40)

These functions are in fact the G and F functions. There are thus no new GF’s generated
by the equations of motion.

As in Section 2, the Fourier transforms in the xz plane gn,n′ and fn,n′ of the G and F
lead to the matrix equation

M(E)h = u, (41)

M(E) being given by Equation (42) below




E + A1 B1 C1 0 0 0 0 0 0
−B1 E− A1 0 −C1 0 0 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · 0 Cn 0 E + An Bn Cn 0 0
· · · 0 0 −Cn −Bn E− An 0 −Cn 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 CN 0 E + AN BN
0 0 0 0 0 0 −CN −BN E− AN




(42)

where E = h̄ω is the SW energy and the matrix elements are given by

An = −J1[8 < Sz
n > cos θ(1 + dn)

−4 < Sz
n > γ(cos θ + 1)]

−2J2(< Sz
n−1 > + < Sz

n+1 >) (43)

−8D sin θ < Sz
n > γ

+8D sin θ < Sz
n >

Bn = 4J1 < Sz
n > γ(cos θ − 1)

−8D sin θ < Sz
n > γ (44)

Cn = 2J2 < Sz
n > (45)

where n = 1, 2, . . . , N denotes the layer numbers, dn = I1/J1, γ = (cos kxa + cos kza)/2,
kx and kz are the wave-vector components in the xz planes, a being the lattice constant.
Remarks: (i) if n = 1 (surface layer) then there are no n− 1 terms in the An, (ii) if n = N
then there are no n + 1 terms in An.

For a thin film, the SW frequencies at a given wave vector~k = (kx, kz) are obtained by
diagonalizing (42).

The magnetization of the layer n at finite T is calculated as in the helimagnetic case
shown in the previous section. The formula of the zero-point spin contraction is also
presented there. The transition temperature Tc can be also calculated by the same method.
Let us show in the following the results.

4.2. Results for 2D and 3D Cases

In the 2D case, one has only one layer. The matrix (42) is

(E + An)gn,n′ + Bn fn,n′ = 2 < Sz
n > δ(n, n′)

−Bngn,n′ + (E− An) fn,n′ = 0 (46)
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where An is given by (43) but without J2 term for the 2D case. Coefficient Bn is given by (44)
and Cn = 0. The SW frequencies are determined by the following secular equation

(E + An)(E− An) + B2
n = 0

→ E2 − A2
n + B2

n = 0

→ E = ±
√
(An + Bn)(An − Bn) (47)

Several remarks are in order:

(i) when θ = 0, the last three terms of An and Bn are zero: one recovers the ferromagnetic
SW dispersion relation

E = 2ZJ1 < Sz
n > (1− γ) (48)

where Z = 4 is the coordination number of the square lattice (taking dn = 0),
(ii) when θ = π, one has An = 8J1 < Sz

n >, Bn = −8J1 < Sz
n > γ. One recovers then the

antiferromagnetic SW dispersion relation

E = 2ZJ1 < Sz
n >

√
1− γ2 (49)

(iii) when there is a DM interaction, one has 0 < cos θ < 1 (0 < θ < π/2). If dn = 0,
the quantity in the square root of Equation (47) becomes negative at γ = 1 when θ
is not zero. The SW spectrum is not stable at kx = ky = 0 because the energy is not
real. The anisotropy dn can remove this instability if it is larger than a threshold value
dc. We solve the equation (An + Bn)(An − Bn) = 0 to find dc. In Figure 9 we show dc
versus θ. As seen, dc increases from zero with increasing θ.

Figure 9. Value dc at which E = 0 at γ = 1 (~k = 0) vs. θ (in radian). Above this value, E is real. See
text for comments.

As we have anticipated, we need to include an anisotropy in order to allow for SW to
be excited even at T = 0 and for a long-range ordering at non-zero T in 2D as seen below.

We show in Figure 10 the SW dispersion relation calculated from Equation (47) for
θ = 0.2 and 0.6 (radian). As seen, the spectrum is symmetric for positive and negative wave
vectors. It is also symmetric for left and right precessions. One observes that for small θ,
namely small D, E(k) is proportional to k2 at low k (see Figure 10a). This behavior is that in
ferromagnets. For large θ, one observes that E(k) becomes linear in k as seen in Figure 10b.
This behavior is similar to that of antiferromagnets. Note that the change of behavior is
progressive with increasing θ, we do not observe a sudden transition from k2 to k behavior.
This behavior is also observed in 3D and in thin films as well.
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Figure 10. SW frequency E(k) as a function of k ≡ kx = kz in the case (a) θ = 0.2 and (b) θ = 0.6 in
2D. See text for detailed comments.

As said earlier, the inclusion of an anisotropy d permits a long-range ordering at T 6= 0
in 2D: Figure 11 displays the magnetization M (≡< Sz >) calculated by Equation (2) where
in each case the limit value dc has been used. We note that M depends strongly on θ: at
high T the larger θ the stronger M. However, at T = 0 the spin length is smaller for larger θ
due to the zero-point spin contraction [31] calculated by Equation (27). As a consequence
there is a cross-over of layer magnetizations at low T as shown in Figure 11b. The spin
length at T = 0 is shown in Figure 12 for several θ.

Figure 11. (a) Magnetization M as a function of T for the 2D case with θ = 0.1, θ = 0.3, θ = 0.4, θ = 0.6
(void magenta squares, blue filled squares, green void circles and filled black circles, respectively),
(b) Cross-over of magnetizations is enlarged at low T. See text for comments.

Figure 12. Spin length at T = 0 for the 2D case as a function of θ (radian).
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We now consider the 3D case. The crystal is infinite in three direction. The Fourier
transform in the y direction, namely gn±1 = gne±ikya and fn±1 = fne±ikya reduces the
matrix (23) to two coupled equations of g and f functions. One has

(E + A′)g + B f = 2 < Sz >

−Bg + (E− A′) f = 0 (50)

where

A′ = −J1[8 < Sz > cos θ(1 + d)

−4 < Sz > γ(cos θ + 1)]

−4J2 < Sz > (51)

+4J2 < Sz > cos(kya)

−8D sin θ < Sz > γ

+8D sin θ < Sz >

B = 4J1 < Sz > γ(cos θ − 1)

−8D sin θ < Sz > γ (52)

The spectrum is given by

E = ±
√
(A′ + B)(A′ − B) (53)

In the ferromagnetic case, cos θ = 1, thus B = 0. Arranging the Fourier transforms in
three directions, one gets the 3D ferromagnetic dispersion relation E = 2Z < Sz > (1− γ2)
where γ = [cos(kxa) + cos(kya) + cos(kza)]/3 and Z = 6, coordination number of the
simple cubic lattice.

As in the 2D case, we find a threshold value dc for which is the same for a given θ.
This is rather obvious because the DM interaction operates in the plane making an angle
θ between spins in the plane, therefore its effects act on SW in each plane, not in the y
direction perpendicular to the “DM planes”. Using Equation (53), we calculate the 3D
spectrum displayed in Figure 13 for a small and a large value of θ. As in the 2D case, we
observe E ∝ k when k→ 0 for large θ. The main properties of the system are thus governed
by the in-plane DM interaction.

Figure 13. Spin-wave spectrum E(k) versus k ≡ kx = kz for θ = 0.1 (red crosses) and θ = 0.6 (blue
circles) in three dimensions. Note the linear-k behavior at low k for the large value of θ. See text
for comments.

Figure 14 displays the magnetization M versus T for several values of θ. As in the
2D case, when the DM interaction is included, the spins undergo a zero-point contraction
which increases with increasing θ. The competition between quantum fluctuations at T = 0
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and thermal effects at high T gives rise to magnetization cross-over shown in Figure 14b.
The spin length at T = 0 vs. θ is shown in the inset of Figure 14b. Comparing these results
to those of the 2D case, we see that the spin contraction in 2D is stronger than in 3D. This is
physically expected because quantum fluctuations are stronger at lower dimensions.

Figure 14. (a) Magnetization M versus temperature T for a 3D crystal θ = 0.1 (radian), θ = 0.3,
θ = 0.4, θ = 0.6 (void magenta squares, blue filled squares, green void circles and filled black circles,
respectively), (b) Zoom to show the cross-over of magnetizations at low T for different θ, inset shows
S0 versus θ. See text for comments.

4.3. The Case of a Thin Film

As in the 2D and 3D cases, in the case of a thin film it is necessary to use a value for dn
larger or equal to dc given in Figure 9 to stabilize the SW at long wave-length. Note that for
thin films with more than one layer, the value of dc calculated for the 2D case remains valid.

Figure 15 displays the SW spectrum of a film of eight layers with J1 = J2 = 1 for a
small and a large θ. As in the previous cases, E is proportional to k for large θ (cf. Figure 15b)
but only for the first mode. The higher modes are proportional to k2.

Figure 15. Spin-wave spectrum E(k) versus k ≡ kx = kz for a thin film of eight layers: (a) θ = 0.2 (in
radian) (b) θ = 0.6, using dc for each case. Positive and negative branches correspond to right and
left precessions. Note the linear-k behavior at low k. See text for comments.

Figure 16 shows the layer magnetizations of the first four layers in a 8-layer film (the
other half is symmetric) for two values of θ. One observes that the surface magnetization is
smaller than the magnetizations of other interior layers. This is due to the lack of neighbors
for surface spins [2].
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Figure 16. Layer magnetizations M versus temperature T for a film with N = 8: (a) θ = 0.6 (radian),
(b) θ = 0.2, (c) S0 versus θ.

The spin contraction at T = 0 is displayed Figure 16c.
The effects of the surface exchange and the film thickness have been shown in Ref. [38].
To close this section, let us mention our work [41] on the DM interaction in magneto-

ferroelectric superlattices where the SW in the magnetic layer have been calculated. We
have also studied the stability of skyrmions at finite T in that work and in Refs. [42,43].

5. Effect of Dzyaloshinskii–Moriya Interaction in a Frustrated Antiferromagnetic
Triangular Lattice

The results of this section are not yet published [44]. We will not present this model in
details. We show the Hamiltonian, the GS and the SW spectrum.

5.1. Model—Ground State

We consider a triangular lattice occupied by Heisenberg spins of magnitude 1/2.
The DM interaction was introduced historically to explain the weak ferromagnetism in
compounds MnO. The superexchange between two Mn atoms is modified with the dis-
placement of the oxygen atom between them. If the displacement of the oxygen is in the
xy plane (see Figure 17a), then the DM vector Di,j is perpendicular to the xy plane and is
given by [45,46]

Di,j ∝ riO × rOj ∝ −rij × R (54)

where riO = rO − ri and rOj = rj − rO, rij = rj − ri. rO is the position of non-magnetic ion
(oxygen) and ri the position of the spin Si etc. These vectors are defined in Figure 17a in
the particular case where the displacements are in the xy plane. We have therefore Di,j
perpendicular to the xy plane in this case.
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Figure 17. (a) D vector along the z direction perpendicular to the xy plane. See the definition of the
D vector in the text, (b) In-plane Dij vector chosen along the direction connecting spin Si to spin Sj

in the xy plane.

Note, however, that if the atom displacements are in 3D space, Di,j can be in any
direction. In this paper, we consider also the case where Di,j lies in the xy plane as shown
in Figure 17b where Di,j is taken along the vector connecting spin Si to spin Sj.

Note that from Equation (54) one has

Dj,i = −Di,j (55)

In the case of perpendicular Di,j, let us define ui,j as the unit vector on the z axis.
From Equations (54) and (55) one writes

Di,j = Dui,j (56)

Dj,i = Duj,i = −Dui,j (57)

where D represents the DM interaction strength. Note however that the DM interaction goes
beyond the weak ferromagnetism and may find its origin in various physical mechanisms.
So, the form given in (56) is a model, a hypothesis.

In the case of in-plane Di,j, we suppose that Di,j is given as

Di,j = D(rj − ri)/|rj − ri| = Drij (58)

where D is a constant and rij denotes the unit vector along rj − ri. The case of in-plane Di,j
on the frustrated triangular lattice (see Figure 17b) has been recently studied since this case
gives rise to a beautiful skyrmion crystal composed of three interpenetrating sublattice
skyrmions in a perpendicular applied magnetic field [44,47,48]. A description of this case
is however out of the purpose of this review.

5.2. Ground State with a Perpendicular D in Zero Field

The Hamiltonian is given by

H = −J ∑
〈ij〉

Si · Sj − D ∑
〈ij〉

ui,j · Si × Sj

−H ∑
i

Sz
i (59)

where Si is a classical Heisenberg spin of magnitude 1 occupying the lattice site i. The first
sum runs over all spin nearest-neighbor (NN) pairs with an antiferromagnetic exchange
interaction J (J < 0), while the second sum is performed over all DM interactions between
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NN. H is the magnitude of a magnetic field applied along the z direction perpendicular to
the lattice xy plane.

In the absence of J, unlike the bipartite square lattice where one can arrange the NN
spins to be perpendicular with each order in the xy plane, the triangular lattice cannot fully
satisfy the DM interaction for each bond, namely with the perpendicular spins at the ends.
For this particular case of interest, we can analytically calculate the GS spin configuration
as shown in the following. One considers a triangular plaquette with three spins numbered
as 1, 2, and 3 embedded in the lattice. For convenience, in a hexagonal (or triangular) lattice,
we define the three sublattices as follows: consider the up-pointing triangles (there are
three in a hexagon, see the blue triangles in Figure 18). For the first triangle one numbers in
the counter-clockwise sense 1, 2, 3 then one does it for the other two up-pointing triangles
of the hexagon, one sees that each lattice site belongs to a sublattice. The DM energy of a
plaquette is written as

Hp = −2D[u1,2 · S1 × S2 + u2,3 · S2 × S3 + u3,1 · S3 × S1]

= −2D[sin θ1,2 + sin θ2,3 + sin θ3,1] (60)

where the factor 2 of the D term takes into account the opposite neighbors outside the
plaquette, and where θ1,2 = θ2 − θ1 is the oriented angle between S1 and S2, etc. Note that
the u vectors are in the same direction because we follow the counter-clockwise tour on
the plaquette.

Figure 18. Perpendicular Di,j: Ground-state spin configuration with only Dzyaloshinskii–Moriya
interaction on the triangular lattice (J = 0) is analytically determined. One angle is 120 degrees and
the other two are 60 degrees. Note that the choice of the 120-degree angle in this figure is along
the horizontal spin pair. This configuration is one GS and the other two GSs have the 120-degree
angles on respectively the two diagonal spin pairs. Note also that the spin configuration is invariant
under the global spin rotation in the xy plane. For convenience, the spins are decomposed into three
sublattices numbered 1, 2 and 3. See text for explanation.

The minimization of Hp yields

dHp

dθ1
= 0 = −2D[− cos(θ2 − θ1) + cos(θ1 − θ3)] (61)

dHp

dθ2
= 0 = −2D[cos(θ2 − θ1)− cos(θ3 − θ2)] (62)

dHp

dθ3
= 0 = −2D[cos(θ3 − θ2)− cos(θ1 − θ3)] (63)
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The solutions for the above equations are

θ1,2 = θ3,1 so that θ3,2 = θ3,1 + θ1,2 = 2θ1,2 (64)

θ2,3 = θ1,2 so that θ1,3 = θ1,2 + θ2,3 = 2θ2,3 (65)

θ3,1 = θ2,3 so that θ2,1 = θ2,3 + θ3,1 = 2θ3,1 (66)

Note that the second and third lines can be obtained by the circular permutation of the
indices 1, 2, and 3 using the first line. These three equations, Equations (64)–(66), should be
solved. There is more than one solution. We have from Equation (61) cos(θ1,2) = cos(θ3,1).
Using Equation (66) one obtains

cos(2θ3,1) = cos(θ3,1) → 2 cos2(θ3,1)− cos(θ3,1)− 1 = 0 (67)

This second-degree equation gives cos(θ3,1) =
1±
√

1+8
4 . Only the negative solution is

acceptable so that θ3,1 = θ2,3 = π/6. From Equation (66), one has θ2,1 = π/3. This is one
solution given by Equation (68) below. Note that we have taken one of them, Equation (66),
to obtain explicit solutions for the three angles given in Equation (68). We can do the
same calculation starting with Equations (64) and (65) to get explicit solutions given in
Equations (69) and (70). We note that when we make a circular permutation of the indices
of Equation (68) we get Equation (69), and a circular permutation of Equation (69) gives
Equation (70). One summarizes the three degenerate solutions below

θ3,1 = θ2,3 = π/6, θ2,1 = π/3 (68)

θ1,2 = θ3,1 = π/6, θ3,2 = π/3 (69)

θ2,3 = θ1,2 = π/6, θ1,3 = π/3 (70)

We show in Figure 18 the spin orientations of the solution (68). The GS energy is
obtained by replacing the angles into Equation (60). For the three solutions, one gets the
energy of the plaquette

Hp = −3D
√

3 (71)

We have three degenerate GSs.
Note that this solution can be numerically obtained by the steepest descent method

described above. The result is shown in Figure 19 for the full lattice. We see in the zoom
that the spin configuration on a plaquette is what is obtained analytically, with a global
spin rotation as explained in the caption of Figure 18.

As said above, to use the steepest descent method, we consider a triangular lattice
of lateral dimension L. The total number of sites N is given by N = L× L. To avoid the
finite size effect, we have to find the size limit beyond which the GS does not depend on
the lattice size. This is found for L ≥ 100. Most of calculations have been performed for
L = 100.
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Figure 19. Perpendicular Di,j: (a) Ground-state spin configuration with only Dzyaloshinskii–Moriya
interaction on the triangular lattice (J = 0) obtained numerically by the steepest descent method,
(b) a zoom on a hexagonal cell, this is exactly what obtained analytically shown in Figure 18 with a
global spin rotation in the xy plane: the angle of the horizontal pair (1,2) is 120 degrees, those of (2,3)
and (3,1) are equal to 60 degrees.

5.3. Ground State with Both Perpendicular D and J in Zero Field- Spin Waves

When both J and perpendicular D are present, a compromise is established between
these competing interactions. In zero field, the GS shows non-collinear but periodic in-
plane spin configurations. The planar spin configuration is easily understood: when D
is perpendicular and without J, the spins are in the plane. When J is antiferromagnetic
without D, the spins are also in the plane and form a 120-degree structure. When D and
J exist together the angles between NN’s change but they remain in the plane in order to
keep both D and J interactions as low as possible. An example is shown in Figure 20 where
one sees that the GS is planar and characterized by two angles θ = 102 degrees and one
angle β = 156 degrees formed by three spins on a triangle plaquette. Note that there are
three degenerate states where β is chosen for the pair (1,2) (Figure 20a) or the pair (2,3) or
the pair (3,1). Changing the value of D will change the angle values. Changing the sign of
D results in a change of the sense of the chirality, but not the angle values.

In the case of perpendicular Di,j in zero-field, as shown above we find the GS on a
hexagon of the lattice is defined by four identical angles β and two angles θ as shown in
Figure 20. The values of β and θ depend on the value of D. We take J = −1 (antiferromag-
netic) hereafter. For D = 0.5 we have β = 156 degrees and θ = 102 degrees. For D = 0.4
we obtain β = 108 degrees and θ = 144 degrees, using N = 60× 60.
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Figure 20. Perpendicular Di,j with antiferromagnetic J: (a) Ground-state spin configuration in zero
field for D = 0.5, J = −1 where the angles in a hexagon are shown in (b) with β = 156 degrees for
the pair (1,2) on the horizontal axis and θ = 102 degrees for the pairs (2,3) and (3,1) on the diagonals.
Note that there are two other degenerate states where β is chosen for the pair (2,3) or (3,1).

The periodicity of the GS allows us to calculate the SW spectrum in the following.
The model for the calculation of the SW spectrum uses quantum Heisenberg spins of

magnitude 1/2, it is given by

H = −J ∑
〈i,j〉

Si · Sj − D ∑
〈i,j〉

ui,j · Si × Sj − I ∑
〈i,j〉

Sz
i Sz

j cos θij (72)

where θij is the angle between Si and Sj and the last term is an extremely small anisotropy
added to stabilize the SW when the wavelength k tends to zero [31,40]. Note that ui,j points
up and down along the z axis for respective two opposite neighbors.

As before, in order to calculate the SW spectrum for systems of non-collinear spin
configurations, we have to use the system of local coordinates. The Hamiltonian becomes

H =− J ∑
〈i,j〉

1
4
(S+

i S+
j + S−i S−j )(cos θij − 1) +

1
4
(S+

i S−j + S−i S+
j )(cos θij + 1)

+
1
2

Sz
j sin θij(S+

i + S−i )− 1
2

sin θijSz
i (S

+
J + S−j ) + Sz

i Sz
j cos θij

− D ∑
〈i,j〉

Sz
i Sz

j sin θi,j +
1
4

sin θi,j(S+
i S+

j + S+
i S−j + S−i S+

j ) +
1
2

cos θi,j(Sz
i (S

+
j + S−j )− Sz

j (S
+
i + S−i ))

− I ∑
〈i,j〉

Sz
i Sz

j cos θi,j

We define the two GFs by Equations (11) and (12) and use the equations of motion of
these functions (13) and (14), we obtain

ih̄
dGi,j(t− t′)

dt
= 2 < Sz

i > δi,jδ(t− t′)− J ∑
〈l〉

< Sz
i > Fl,j(t− t′)(cos θi,l − 1)

+ < Sz
i > Gl,j(t− t′)(cos θi,l + 1)− 2 cos θi,l < Sz

l > Gi,j(t− t′)

+ D ∑
〈l〉

2 sin θi,l < Sz
i > Fl,j(t− t′)− sin θi,l < Sz

i > (Gl,j(t− t′) + Fl,j(t− t′))

− 2I ∑
〈l〉

cos θi,l < Sz
i > Fl,j(t− t′)
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ih̄
dFi,j(t− t′)

dt
= J ∑

〈l〉
< Sz

i > Gl,j(t− t′)(cos θi,l − 1)

+ < Sz
i > Fl,j(t− t′)(cos θi,l + 1)− 2 cos θi,l < Sz

l > Fi,j(t− t′)

− D ∑
〈l〉

2 sin θi,l < Sz
i > Gl,j(t− t′)− sin θi,l < Sz

i > (Gl,j(t− t′) + Fl,j(t− t′))

+ 2I ∑
〈l〉

cos θi,l < Sz
i > Gl,j(t− t′)

Note that < Sz
i > is the average of the spin i on its local quantization axis in the

local-coordinates system (see Ref. [38]). We use now the time Fourier transforms of the G
and F, we get

h̄ωgi,j = 2µiδi,j − J ∑
〈l〉

µi fl je−ik·(Ri−Rl)(cos θi,l − 1)

+ µigl je−ik·(Ri−Rl)(cos θi,l + 1)− 2µl cos θi,l gi,j

− D ∑
〈l〉

2 sin θi,lµl gi,j − sin θi,lµi(gl,je−ik·(Ri−Rl) + fl,je−ik·(Ri−Rl))

+ 2I ∑
〈l〉

µl cos θi,l gi,j

(73)

and
h̄ω fi,j = J ∑

〈l〉
µigl je−ik·(Ri−Rl)(cos θi,l − 1)

+ µi fl je−ik·(Ri−Rl)(cos θi,l + 1)− 2µl cos θi,l fi,j

+ D ∑
〈l〉

2 sin θi,lµl fi,j − sin θi,lµi(gl,je−ik·(Ri−Rl) + fl,je−ik·(Ri−Rl))

− 2I ∑
〈l〉

µl cos θi,l fi,j

(74)

where µi ≡< Sz
i >, k is the wave vector in the reciprocal lattice of the triangular lattice,

and ω the SW frequency. Note that the index z in Sz
i is not referring to the real space

direction z, but to the quantization axis of the spin Si. At this stage, we have to replace θi,j
by either β or θ according on the GS spin configuration given above (see Figure 20).

As in the previous sections, writing the above equations under a matrix form, we have

M(h̄ω)h = C, (75)

where M(h̄ω) is a square matrix of dimension 2× 2, h and C are given by

h =

(
gi,j
fi,j

)
, C =

(
2
〈
Sz

i
〉
δi,j

0

)
, (76)

and the matrix M(h̄ω) is given by

M(h̄ω) =

(
h̄ω + A B
−B h̄ω− A

)

The nontrivial solution of g and f imposes the following secular equation:

0 =

(
h̄ω + A B
−B h̄ω− A

)
(77)
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where

A = −J(8µi cos β(1 + I) + 4µi cos θ(1 + I)− 4µiγ(cos β + 1)− 2µiα(cos θ + 1))

− D(4µi sin βγ + 2µi sin θα) + D(8µi sin β + 4µi sin θ)
(78)

B = J(4µiγ(cos β− 1) + 2µiα(cos θ − 1))− D(4γµi sin β + 2µiα sin θ) (79)

where the sum on the two NN on the x axis (see Figure 20b) is

∑
l

e−ik·(Ri−Rl) = 2 cos(kx) ≡ 2α (80)

and the sum on the four NN on the oblique directions of the hexagon (see Figure 20b) is

∑
l

e−ik·(Ri−Rl) = 4 cos(kx/2) cos(
√

3ky/2) ≡ 4γ (81)

Solving Equation (77) for each given (kx, ky) one obtains the SW frequency ω(kx, ky):

(h̄ω)2 = A2 − B2 → h̄ω = ±
√

A2 − B2 (82)

Plotting ω(kx, ky) in the space (kx, ky) one obtains the full SW spectrum.
The spin length 〈Sz

i 〉 (for all i, by symmetry) is given by (see technical details in
Ref. [31]):

〈Sz〉 ≡ 〈Sz
i 〉 =

1
2
− 1

∆

∫ ∫
dkxdkz

2

∑
i=1

Q(Ei)

eEi/kBT − 1
(83)

where Ei(i = 1, 2) = ±
√

A2 − B2 are the two solutions given above, and Q(Ei) is the
determinant (cofactor) obtained by replacing the first column of M by C at Ei.

The spin length 〈Sz〉 at a given T is calculated self-consistently by following the
method given in Refs. [31,38].

Let us show the SW spectrum ω (taking h̄ = 1) for the case of J = −1 and D = 0.5
in Figure 21 versus ky with kx = 0 (Figure 21a) and versus kx for ky = 0 (Figure 21b).
In order to see the effect of the DM interaction alone we take the anisotropy I = 0. One
observes here that for a range of small wave-vectors the SW frequency is imaginary. The SW
corresponding to these modes do not propagate in the system. Why do we have this case
here? The answer is that when the NN make a large angle (perpendicular NN, for example),
one cannot define a wave vector in that direction. Physically, when k is small the B
coefficient is larger than A in Equation (82) giving rise to imaginary ω. Note that the
anisotropy I is contained in A so that increasing I for small k will result in A > B making
ω real.

We show now in Figure 22a the spectrum along the axis kx = ky at T = 0 for I = 0.
Again here the frequency is imaginary for small k, as in the previous figure. The spin length
< Sz > along the local quantization axis is shown in Figure 22b. Several remarks are in
order: (i) At T = 0, the spin length is not equal to 1/2 as in ferromagnets because of the
zero-point spin contraction due to antiferromagnetic interactions (see Ref. [31]), its length
is ' 0.40, quite small; (ii) the magnetic ordering is destroyed at T ' 1.2.

To close the present section, we note that in the case of perpendicular D considered
above, we did not observe skyrmion textures when applying a perpendicular magnetic
field: all spin configurations are no more planar, making the calculation of the SW spectrum
more difficult. This problem is left for a future investigation.
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Figure 21. (a) Spin-wave spectrum versus ky with kx = 0 at T = 0 for I = 0, (b) Spin-wave spectrum
versus kx with ky = 0 at T = 0 for I = 0. The magenta curves show the real frequency, while the
green ones show the imaginary frequency. See text for comments. Parameters: D = 0.5, J = −1,
H = 0 where θ = 102 degrees and β = 156 degrees (see the spin configuration shown in Figure 20),
h̄ = 1.
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Figure 22. (a) Spin-wave spectrum versus kx = ky at T = 0 for I = 0. The magenta curves show the
real frequency, while the green ones show the imaginary frequency. See text for comments, (b) The
spin length Sz versus temperature T (kB = 1). Parameters: D = 0.5, J = −1, H = 0 where θ = 102
degrees and β = 156 degrees (see the spin configuration shown in Figure 20).

6. Other Systems of Non-Collinear Ground-State Spin Configurations: Frustrated
Surface in Stacked Triangular Thin Films

In this section, we study by the GF technique the effect of a frustrated surface on
the magnetic properties of a film composed triangular layers stacked in the z direction.
Each lattice site is occupied by a quantum Heisenberg spin of magnitude 1/2. Let the in-
plane surface interaction be Js which can be antiferromagnetic or ferromagnetic. The other
interactions in the film are ferromagnetic. We show in the following that the GS spin
configuration is non-collinear when Js is lower than a critical value Jc

s . The film surfaces
are then frustrated. In the frustrated case, there are two phase transitions, one corresponds
to the disordering of the two surfaces and the other to the disordering of the interior layers.
The GF results agree qualitatively with Monte Carlo simulation using the classical spins
(see the original paper in Ref. [39]).

In this section we review some ot the results given in the original paper Ref. [39],
emphasizing the SW calculation and the important results. The Hamiltonian is written as

H = −∑
〈i,j〉

Ji,jSi · Sj − ∑
<i,j>

Ii,jSz
i Sz

j (84)

where the first sum is performed over the NN spin pairs Si and Sj, the second sum over their
z components. Ji,j and Ii,j are respectively their exchange interaction and their anisotropic
one. The latter is small, taken to ensure the ordering at finite T when the film thickness
goes down to a few layers, without this we know that a monolayer with vector spin models
does not have a long-range ordering at finite T [40].
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Let Js be the exchange between two NN surface spins. We suppose that all other
interactions are ferromagnetic and equal to J. We shall use J = 1 as the unit of energy in
the following.

6.1. Ground State

In the case where Js is ferromagnetic, the GS of the film is ferromagnetic. When Js is
antiferromagnetic, the situation becomes complicated. We recall that for a single triangular
lattice with antiferromagnetic interaction, the spins are frustrated and arranged in a 120-
degree configuration [8]. This structure is modified when we turn on the ferromagnetic
interaction J with the beneath layer. The competition between the non collinear surface
ordering and the ferromagnetic ordering of the bulk leads to an intermediate structure
which is determined in the following.

The GS configuration can be determined by using the steepest descent method de-
scribed below Equation (31). Let us describe qualitatively the GS configuration: when Js is
negative and Js < Jc

s where Jc
s (< 0) is a critical value, the GS is formed by pulling out the

planar 120◦ spin structure along the z axis by an angle β. This is shown in Figure 23.

Figure 23. Ground state of the film when Js is smaller than the critical value Jc
s . See text for description.

Figure 24 shows cos α and cos β versus Js obtained by the steepest descent method.
As seen for Js > Jc

s , the angles are zero, namely the GS is ferromagnetic. The critical value
Jc
s is numerically found between −0.18 and −0.19.

We show in the following that this value can be analytically calculated by assuming
the structure shown in Figure 23). We number the spins as in that figure: S1, S2 and S3 are
the spins in the surface layer, S′1, S′2 and S′3 are the spins in the second layer. The energy of
the cell is

Hp = −6[Js(S1 · S2 + S2 · S3 + S3 · S1)

+Is(Sz
1Sz

2 + Sz
2Sz

3 + Sz
3Sz

1)

+ J
(
S′1 · S′2 + S′2 · S′3 + S′3 · S′1

)
(85)

+I
(
S′z1 S′z2 + S′z2 S′z3 + S′z3 S′z1

)]

− 2J
(
S1 · S′1 + S2 · S′2 + S3 · S′3

)

−2I
(
Sz

1S′z1 + S′z2 S′z2 + Sz
3S′z3

)
,
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Figure 24. Ground state determined by cos(α) (diamonds) and cos(β) (crosses) as functions of Js.
Critical value of Jc

s is shown by the arrow.

We project the spins on the xy plane and on the z axis. One writes Si = (S‖i , Sz
i ).

One observes that only surface spins have non-zero xy vector components. Let the angle
between these xy components of NN surface spins be γi,j which is in fact the projection of
the angle α on the xy plane. By symmetry, we have

γ1,2 = 0, γ2,3 =
2π

3
, γ3,1 =

4π

3
. (86)

The angles βi and β′i of Si and S′i formed with the z axis are by symmetry

{
β1 = β2 = β3 = β,
β′1 = β′2 = β′3 = 0,

The total energy of the cell (86), with Si = S′i =
1
2 , is thus

Hp = −9(J + I)
2

− 3(J + I)
2

cos β− 9(Js + Is)

2
cos2 β

+
9Js

4
sin2 β. (87)

The minimum of the cell energy verifies this condition:

∂Hp

∂β
=

(
27
2

Js + 9Is

)
cos β sin β +

3
2
(J + I) sin β = 0 (88)

One deduces
cos β = − J + I

9Js + 6Is
. (89)

This solution exists under the condition −1 ≤ cos β ≤ 1. The critical values are
determined from this condition. For I = −Is = 0.1, Jc

s ≈ −0.1889J which is in excellent
agreement with the results obtained from the steepest descent method.
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Now, using the GF method for such a film in the way described in the previous
sections, we obtain the full Hamiltonian (84) in the local framework:

H = − ∑
<i,j>

Ji,j

{
1
4
(
cos θij − 1

)(
S+

i S+
j + S−i S−j

)

+
1
4
(
cos θij + 1

)(
S+

i S−j + S−i S+
j

)

+
1
2

sin θij
(
S+

i + S−i
)
Sz

j −
1
2

sin θijSz
i

(
S+

j + S−j
)

+ cos θijSz
i Sz

j

}
− ∑

<i,j>
Ii,jSz

i Sz
j (90)

where cos
(
θij
)

is the angle between two NN spins. We define the two coupled GF, and we
write their equations of motions in the real space. Taking Tyablikov’s decoupling scheme
to reduce higher-order GFs, and then using the Fourier transform in the xy plane we arrive
at a matrix equation as in the previous section with the matrix M is defined as

M(ω) =




A+
1 B1 D+

1 D−1 · · ·
−B1 A−1 −D−1 −D+

1
...

... · · · · · · · · · ...

... C+
Nz

C−Nz
A+

Nz
BNz

· · · −C−Nz
−C+

Nz
−BNz A−Nz




, (91)

where

A±n = ω±
[1

2
Jn〈Sz

n〉(Zγ)(cos θn + 1)

− Jn〈Sz
n〉Z cos θn − Jn,n+1

〈
Sz

n+1
〉

cos θn,n+1

− Jn,n−1
〈
Sz

n−1
〉

cos θn,n−1 − ZIn〈Sz
n〉

− In,n+1
〈
Sz

n+1
〉
− In,n−1

〈
Sz

n−1
〉]

, (92)

Bn =
1
2

Jn〈Sz
n〉(cos θn − 1)(Zγ), (93)

C±n =
1
2

Jn,n−1〈Sz
n〉(cos θn,n−1 ± 1), (94)

D±n =
1
2

Jn,n+1〈Sz
n〉(cos θn,n+1 ± 1), (95)

where Z = 6 is the in-plane coordination number, θn,n±1 denotes the angle between two
NN spins belonging to the adjacent layers n and n± 1, while θn is the angle between two
NN spins of the layer n, and

γ =
[
2 cos(kxa) + 4 cos

(
kya/2

)
cos
(

kya
√

3/2
)]

/Z.

Note that in the above coefficients, we have used the following notations:

(i) Jn and In are the in-plane interactions. Jn is equal to Js for the two surface layers and
equal to J for the interior layers. All In are taken equal to I.

(ii) The interlayer interactions are denoted by Jn,n±1 and In,n±1. Note that Jn,n−1 = In,n−1
= 0 if n = 1 and Jn,n+1 = In,n+1=0 if n = Nz.

As described in the previous sections, the SW spectrum ω is obtained by solving
det|M| = 0. Using ω we calculate the magnetizations layer by layer for typical values of
parameters. The results are shown in the following.
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6.2. Quantum Surface Phase Transition

Let us show a typical case in the region of frustrated surface where Js = −0.5 in
Figure 25. Several comments are in order:

(i) The surface magnetization is very small with respect to the magnetization of the
second layer,

(ii) At T = 0, the length of the surface spin is about 0.425, much shorter than the spin mag-
nitude 1/2. This is due to the antiferromagnetic interaction at the surface which causes
a strong spin contraction. For the second layer, the spins are aligned ferromagnetically,
their length is fully 0.5,

(iii) The surface undergoes a phase transition at T1 ' 0.2557 while the second layer
remains ordered up to T2 ' 1.522. The system is thus disordered at the surface and
ordered in the bulk, for temperatures between T1 and T2. This partial disorder is very
interesting. It gives another example of the partial disorder observed earlier in bulk
frustrated quantum spin systems.

(iv) One observes that between T1 and T2, the first layer has a small magnetization. This
is understood by the fact that the strong magnetization of the second layer acts as an
external field on the first layer, inducing therefore a small value of its magnetization.

Figure 25. First two layer-magnetizations obtained by the Green’s function technique vs. T for
Js = −0.5 with I = −Is = 0.1. The surface-layer magnetization (lower curve) is much smaller than
the second-layer one. See text for comments.

We plot the phase diagram in the space (Js, T) in Figure 26. Phase I denotes the surface
canted-spin state, phase IIA denotes the partially ordered phase: the surface is disordered
while the bulk is ordered. Phase IIB separated from phase IIA by a vertical line issued from
Jc
s ' −0.19 indicates the ferromagnetic state, and phase III is the paramagnetic phase.
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Figure 26. Phase diagram in the space (Js, T) for the quantum Heisenberg model with Nz = 4,
I = |Is| = 0.1. See text for the description of phases I to III.

6.3. Classical Phase Transition: Monte Carlo Results

In order to compare with the quantum model shown in the previous subsection, we
consider here the classical counterpart model, namely we use the same Hamiltonian (28)
but with the classical Heisenberg spin of magnitude S = 1. The aim is to compare their
qualitative features, in particular the question of the partial disordering at finite T.

We use Monte Carlo simulations for the classical model where the film dimensions are
N × N × Nz, Nz being the film thickness which is taken to be Nz = 4 as in the quantum
case shown above. We use here N = 24, 36, 48, 60 to see the lateral finite-size effect. Periodic
boundary conditions are used in the xy planes. We discard 106 MC steps per spin to
equilibrate the system and average physical quantities over the next 2× 106 MC steps
per spin.

We show in Figure 27 the result obtained in the same frustrated case as in the quantum
case shown above, namely Js = −0.5. we see that the surface magnetization falls at
T1 ' 0.25 while the second-layer magnetization stays ordered up to T2 ' 1.8. This surface
disordering at low T is similar to the quantum case. Between T1 and T2 the system is
partially disordered.

Figure 27. Magnetizations of layer 1 (circles) and layer 2 (diamonds) versus temperature T in unit of
J/kB for Js = −0.5 with I = −Is = 0.1.
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Figure 28 shows the phase diagram obtained in the space (Js, T). It is interesting to
note that the classical phase diagram shown here has the same feature as the quantum phase
diagram displayed in Figure 26. The difference in the values of the transition temperatures
is due to the difference of quantum and classical spins.

Figure 28. Phase diagram for the classical Heisenberg spin using the same parameters as in the
quantum case, i.e., Nz = 4, I = |Is| = 0.1. The definitions of phases I to III have been given in the
caption of Figure 26.

To close this review, we should mention a few works works where SW in the regime
of non-collinear spin configurations have been studied: the frustration effects in antiferro-
magnetic face-centered cubic Heisenberg films have been studied in Ref. [49], a frustrated
ferrimagnet in Ref. [50] and a quantum frustrated spin system in Ref. [51]. These results
are not reviewed here to limit the paper’s length. The reader is referred to those works
for details.

7. Concluding Remarks

As said in the Introduction, the self-consistent Green’s function theory is the only
one which allows to calculate the SW dispersion relation in the case of non-collinear spin
configurations, in two and three dimensions, as well as in thin films. The non-collinear spin
configurations are due to the existence of competing interactions in the system, to the ge-
ometry frustration such as in the antiferromagnetic triangular lattice, or to the competition
between ferromagnetic and/or antiferromagnetic interactions with the Dzyaloshinskii–
Moriya interaction. We have shown that without an applied magnetic field, the GS spin
configuration is non-collinear but periodic in space. We have, in most cases, analytically
calculated them. We have checked them by using the iterative numerical minimization
of the local energy (the so-called steepest-descent method). The agreement between the
analytical method and the numerical energy minimization is excellent. The determina-
tion of the GS is necessary because we need them to calculate the SW spectrum: SW are
elementary excitations of the GS when T increases.

The double-fold purpose of this review is to show the method and the interest of its
results. We have reviewed a selected number of works according to their interest of the
community: helimagnets, materials with the Dzyaloshinskii–Moriya interaction, and the
surface effects in thin magnetic films. The Dzyaloshinskii–Moriya interaction gives rise
not only a chiral order but also the formation of skyrmions in an applied magnetic field.
The surface effects in helimagnets and in films with a frustrated surface give rise to the
reconstruction of surface spin structure and many striking features due to quantum fluctu-
ations at low T such as the zero-point spin contraction and the magnetization crossover).
We have also seen above the surface becomes disordered at a low T while the bulk remains
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ordered up to a high T. This coexistence of bulk order and surface disorder in a temperature
region is also found in several frustrated systems [8].

To conclude, we say that the Green’s function theory for non-collinear spin systems is
laborious, but it is worthwhile to use it to get results with clear physical mechanisms lying
behind observed phenomena in frustrated spin systems.
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