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Abstract: User alignment can associate multiple social network accounts of the same user. It has
important research implications. However, the same user has various behaviors and friends across
different social networks. This will affect the accuracy of user alignment. In this paper, we aim
to improve the accuracy of user alignment by reducing the semantic gap between the same user
in different social networks. Therefore, we propose a semantically enhanced social network user
alignment algorithm (SENUA). The algorithm performs user alignment based on user attributes,
user-generated contents (UGCs), and user check-ins. The interference of local semantic noise can be
reduced by mining the user’s semantic features for these three factors. In addition, we improve the
algorithm’s adaptability to noise by multi-view graph-data augmentation. Too much similarity of non-
aligned users can have a large negative impact on the user-alignment effect. Therefore, we optimize
the embedding vectors based on multi-headed graph attention networks and multi-view contrastive
learning. This can enhance the similar semantic features of the aligned users. Experimental results
show that SENUA has an average improvement of 6.27% over the baseline method at hit-precision30.
This shows that semantic enhancement can effectively improve user alignment.

Keywords: social networks; user alignment; semantic enhancement; graph contrastive learning

1. Introduction

As different social networks offer their users distinctive functions, people tend to
register accounts on several different social networks. In recent years, the number of online
users on each social network has grown significantly. A huge amount of user data is
generated due to users sharing and communicating on various social networks. Based
on these data, researchers are able to analyze users’ behavior and the evolution of social
networks, which can in turn facilitate research in areas such as community discovery [1],
recommender systems [2], link prediction [3], and other related fields. However, this
development of multiple social networks also brings some problems. First, cross-domain
user recommendation is inaccurate because users’ behavior across different social networks
is not always consistent. It is also difficult to find abnormal users and trace the abnormal
sources, because malicious users tend to spread false remarks on multiple social networks.
After user alignment associates a user’s multiple accounts across different social networks,
comprehensive analysis of users’ behaviors on these networks can be used to solve problems
such as cross-domain recommendation [4] and abnormal user detection [5]. User alignment
is a basic and meaningful research, and the accuracy of alignment needs to be improved.

User alignment is also known as anchor link prediction, user identification, and social
network alignment [6–8]. Its purpose is to associate the accounts registered by real users
across different social networks. However, the differences in the same user’s features and
friends across the different social networks will reduce the accuracy of user alignment,
which is referred to as the semantic gap problem. Improving the effect of user alignment by
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reducing the semantic gap can be broken down into three aspects: (1) Accurate and compre-
hensive representation of user characteristics. Due to the heterogeneity between different
social networks, computing user similarity based on user features and network topologies
is commonly influenced by noise [9,10]. Existing methods of this kind are too biased to
determine whether two users of two different social networks are the same real user by
simply analyzing the users’ attributes, such as age and gender. Users’ writing patterns, per-
sonal emotion, and other semantic features can be mined through an analysis of usernames
and text posts [11]. Integrated consideration of the username, user-generated content, geo-
graphic location, network topology, and other data can help mine users’ semantic features,
comprehensively characterize users, and reduce the negative impacts of local feature differ-
ences on user-alignment effects [12–15]. Notably, however, user feature mining methods
discussed above do not consider the reliability of data, computing overhead, and missing
data problems. (2) Improving noise adaptation ability. Since the user features and network
topology of the same user differ slightly from one social network to another, the noise
contained in the semantic features of the user will reduce the user similarity. Feng et al. [16]
achieved user alignment based on the user’s position and reduced the interference of posi-
tion noise with user alignment by constructing a position encoder and trajectory encoder
to calculate the user similarity. Xiao et al. [9] enhanced the noise adaptation ability of the
model by adding perturbations to the data and designing a noise-adapted loss function.
Xue et al. [17] proposed three noise-processing strategies: dropping, retaining, and condi-
tional retention. Notably, the above noise-processing measures do not consider the effect of
data propagation between users on noise. (3) Optimizing user-alignment effects. After user
features are pre-processed, user alignment is often achieved using network representation
learning. This method compares the similarity of user embedding vectors to determine
whether they are the same real user, after embedding users of two social networks into
the same vector space. To improve the accuracy of user alignment, many embedding
optimization methods have been proposed [18–20]. Zhang et al. [21] and Chen et al. [22]
improved the alignment effect by using a generative adversarial network to optimize the
embedding representation of users. Notably, while these embedding optimization methods
can improve user alignment, they do not sufficiently consider the impact of highly similar
users on user alignment in the same social network and in the social network to be aligned.

To solve the above problems, we propose a semantic enhancement algorithm for social
network user alignment, which enhances the semantic features of users from three aspects:
semantic representation, noise adaptation, and embedding optimization. It can improve
the accuracy of user alignment. (1) There are different characteristics of user attributes,
UGCs, and user check-ins. First, user attributes have a low computational overhead and
reflect users’ behaviors. There are more semantic features included in UGCs, such as users’
preferences and writing habits, but the data volume of pictures and videos is too large.
User check-ins contain highly reliable data related to the time and place of posting.
Therefore, we represent the semantic features of users at multiple levels based on user at-
tributes, text in UGCs, and user check-ins. (2) The embedded view constructed based on se-
mantic representations contains both feature noise and topological noise.
Considering the impact of data propagation among users on user alignment, we compute
the semantic centrality of users based on their influence and preferences.
During graph-data augmentation, the weights of features and topologies are adaptively
adjusted based on semantic centrality to highlight the important features and topologies.
(3) To improve user alignment, it is necessary to optimize the embedding vector of users.
Friends in the same social network have similar semantics, as do aligned users in the
social network to be aligned. We aggregated the important semantic features of similar
neighbors by using a multi-headed graph attention network, then used contrastive learning
on the same social network views and the alignment views. This approach can reduce the
semantic similarity between users in the social network view while enhancing semantic
similarity between aligned users in the aligned view. The social network user-alignment

2



Entropy 2023, 25, 172

effect can be effectively improved by enhancing the semantic features of users using these
three aspects. The contributions of the work are summarized as follows.

• Multi-level data analysis can improve the mining of users’ semantic features.
We extract meta-semantic features, specifically, users’ preferences and cities of res-
idence from UGCs and check-ins, and then extract high-level semantic features of
users from user attributes, UGCs, and check-ins, based on BERT, word2vec, and meta-
graph, respectively. The semantic features of users are represented on multiple levels,
which reduces the interference of local semantic noise and improves the accuracy of
computing user similarity.

• The heterogeneity of different social networks introduces feature and topology noise
interference into the calculation of user alignment. Since users’ influence and prefer-
ences have important impacts on semantic propagation among users, we compute
the semantic centrality of users based on these two features and assign appropriate
weights to the features and topologies. The model’s adaptability to noise is improved
by graph-data augmentation to enhance the user-alignment effect.

• As the feature embedding vectors of the same user are not exactly the same across
different social networks, the user’s embedding vector is optimized by means of
semantic fusion and contrastive learning. The features of the surrounding similar
neighbors are aggregated using a multi-head graph attention network to enhance
the semantic features of the users themselves. Contrastive learning improves the
embedding distance of users in the same social network while reducing the embedding
distance of aligned users in the social network to be aligned, which ensures the
accuracy of the obtained user alignment.

The remainder of this article is organized as follows. The related works are reviewed
in Section 2. Subsequently, Section 3 introduces the relevant definitions and user align-
ment issues. The details of the SENUA algorithm are described in Section 4, followed by
Section 5, which presents the experiments. Finally, Section 6 concludes this article.

2. Related Work

2.1. User Alignment

User alignment has been extensively studied. Existing approaches can be classified
into three categories: user feature-based, network-topology-based, and hybrid approaches.

In user feature-based approaches, the semantic features of users are mined based
on data such as user attributes and UGCs to determine whether they represent the same
real user by computing the user similarity [11,16,23–29]. During the account registration
process, the username is a required item, which enables the naming habits of users to
be mined; thus, the user similarity is most widely computed based on the username.
Li et al. [25] analyzed the phonetic and font similarities of Chinese usernames to achieve
user alignment. To deeply mine user features, Xing et al. [30] not only analyzed the length,
character features, and alphabetic features of usernames, but also mined user preferences
from their posted contents to improve user-alignment accuracy.

Network-topology-based approaches compare the friend network similarity of users
in the source and target networks to achieve user alignment [18,31–38]. At present, net-
work representation learning methods are commonly used to mine network topology
features [35]. This kind of method can achieve user alignment by minimizing the embed-
ding distance after embedding the user’s network topology features into a low-latitude
vector space [36,37]. However, the embedding vectors of different network topologies are
not stable enough. Therefore, network topology is often combined with information propa-
gation [39], genetic algorithms [40], community discovery [38], and generative adversarial
networks [18] to enhance user-feature representations.

The user-feature-based approaches focus on the users’ personal information and the
content they post. The network-topology-based approach focuses on the user’s friend-
ships. There is complementarity or redundancy between these two different types of data.
Notably, while a single method with a single type of data cannot deeply mine the semantics
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of users, hybrid methods that combine user features and network topologies can more fully
mine the semantic features of users and thereby improve user alignment [9,12–14,22,41–44].
Graph neural networks are commonly used at present to fuse user features and network
topologies simultaneously. These methods aggregate the feature vectors of the user’s neigh-
bors to enhance the semantic features of the user, and subsequently determine whether
two users match based on the similarity of the embedded vectors [42,44]. However, mining
the semantic features of users based on graph neural networks also captures feature noise
and topological noise in social networks. AFF-LP [45] uses an attention mechanism to
extract network topology and temporal features in order to reduce noise interference and
improve the accuracy of the algorithm. Notably, this method only considers the effect of
network noise, while failing to consider the feature noise due to user feature differences.
GATAL [9] removes edges to simulate network noise and randomly changes node features
to simulate feature noise. After noise processing, the graph attention network is used to
fuse the neighborhood features so that the algorithm can maintain good performance, even
under noisy conditions. In addition, the user-alignment algorithm combines graph neural
networks with generative adversarial networks to solve the problem of accuracy reduction
due to semantic variability [22]. While these studies have made some progress, the noise
augmentation method in users’ semantic features is random; thus, it is not adaptive to
the data propagation characteristics in social networks. Accordingly, the effect on user
semantic enhancement needs to be improved.

2.2. Text Feature Extraction

There are huge amounts of text, images, video, and other multi-source data in social
networks. Image and video have a high computational overhead and difficult semantic
extraction. Scholars often mine text features through natural language processing [46,47].
The text contains more semantic features, which are usually mined by two steps: sequence
annotation [48] and vector embedding. Since the number and completeness of words
in short and long texts differ greatly, it is more effective to annotate them at different
levels [49]. Shao et al. [50] analyzed the data structure based on latent variables in
random fields and constructed two frameworks for sequence annotation at the word
and sentence levels, respectively. The commonly used text feature embedding methods
include word2vec [51], FastText [52], BERT [53], etc. BERT is a transformer-based lan-
guage representation model. It performs self-supervised training by masking parts of
words to mine text features. Currently, text-embedding methods are often combined with
attention mechanisms to enhance the completeness and accuracy of extracted features.
Our proposed user alignment approach deeply incorporates attention mechanisms to
enhance the semantic features of similar users.

2.3. Graph Representation Learning

Graph representation learning includes node embedding, graph neural networks, and
generative graph models [54]. The node embedding contains an encoder–decoder, random
wandering, and matrix decomposition. This type of method is a shallow embedding model,
with which is difficult to capture the deep features of nodes. It also has limitations such
as high overhead and inadequate feature mining. Graph neural networks embed user
features into vector space by propagating, aggregating, and updating features between
nodes. This class of methods is an end-to-end deep embedding model that can perform
feature mining directly based on graph data and helps to mine deep features of nodes.
Deep generative models include variational autoencoders, generative adversarial networks,
and autoregressive models. Normally, this class of methods usually optimizes node vectors
by confronting encoders and decoders with each other. The degree of similarity between
friends has a significant impact on the accuracy of user alignment. Graph neural net-
works can adaptively aggregate neighboring features and enhance the user’s features.
Using graph neural networks has greater benefits for user alignment.
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2.4. Graph Contrastive Learning

Contrastive learning has already received widespread research attention and made
significant achievements in many tasks, such as natural language processing [55] and
computer vision [56]. In recent years, contrastive learning has been applied to graph repre-
sentation learning, which is referred to as graph contrastive learning. In graph contrastive
learning, multiple views are generated via graph-data augmentation, and then these nodes
are embedded into the vector space by encoding and projection; finally, the embedding
effect is optimized by contrastive learning. You et al. [57] designed four graph-data aug-
mentation methods: node dropout, edge perturbation, feature masking, and subgraph
sampling. Hassani et al. [58] used a diffusion kernel for data augmentation, enabling
each node to sense more global information. Notably, existing graph-data augmentation
methods use a uniform transformation for topologies and features, which can lead to poor
performance. Therefore, Zhu et al. [59] proposed an adaptive data augmentation scheme
that preserves important features and topologies during augmentation.

User alignment based on either user characteristics or network topology alone is
necessarily limited. The fusion of these two types of data can effectively enhance user
semantic features and improve the user-alignment effect. Considering the reliability of the
data and the overhead of the algorithm, we deeply mine the semantic features of users from
user attributes, UGCs, and check-ins. In addition, we propose a modified graph contrastive
learning approach to achieve social network user alignment; this approach uses semantic
centrality in graph-data augmentation to improve the algorithm’s self-adaptation to noise,
and enhances the semantic feature similarity of aligned users via contrastive learning in
multiple views.

3. Preliminaries

In this section, we introduce the related definitions and the user-alignment issue.
The symbols used in this article and the corresponding meanings are summarized in
Table 1.

Table 1. Definitions of symbols.

Notation Definition

GS,GT Source social network,target social network.
U Set of users in the social network.
E Edge set of the social network.
A User features of the social network.
Ap, Ac, A� User attributes, UGCs, and user check-ins.
Aname

p , Aarea
p , Apre f

p User name, city of residence, and user preference.
ui The ith user.
V Embedding vectors of user semantic features.
R Vector space.
D Feature dimension.
N Total number of users in the network.
M Aligned user pairs.
Rshar Preference sharing matrix.
ξ(ui) Semantic centrality of user ui.
pe

uiuj
Topology sampling probability.

p f
d Feature masking probability.

3.1. Semantic Social Network View

Social networks contain huge amounts of user data. Based on the reliability, dis-
cernment, and data scale of these data, we selected user attributes Ap, user-generated
contents Ac, and user check-in A� as the basis for discerning aligned users, which ensures
that sufficient semantic information is available for the represented users. The user at-
tributes Ap contain the username Aname

p , city of residence Aarea
p , and the user preferences

5
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Apre f
p . We use only the text of posts as UGCs to avoid the huge overhead associated

with the task of analyzing images and videos. User check-ins refer to time and place at
which a user makes a post. In this paper, we consider a semantic social network view
G = (U, E, A). U = {u1, u1, · · · , un} represents the set of n nodes, and each node repre-
sents a user; E =

{
eij = (ui, uj)|ui, uj

}
denotes the set of edges. This is an n ∗ n matrix that

represents the friend relationships between n users. If eij = 1, users ui and uj are friends;
otherwise, they are not friends. Based on the number of edges connected to node uj, we
can get the degree of node uj as ∑n

i=1 eij. The user features A are represented by a triplet
A =

{
Ap, Ac, A�

}
; these elements, respectively, represent user attributes, user-generated

contents, and user check-ins.

3.2. Semantic Enhancement User Alignment

Typically, a user has multiple social network accounts. In this paper, we aim to
solve the problem of matching social network accounts belonging to the same person, as
shown in Figure 1. In order to distinguish the semantic views corresponding to different
social networks, the source and target social networks to be aligned are represented by
GS = (US, ES, AS) and GT = (UT , ET , AT), respectively. The two views with semantic gaps
include noise; we use graph-data augmentation to reduce the impact of the noise. Moreover,
to improve the alignment accuracy, GAT and contrastive learning are used to enhance
the semantic features of the users. Finally, we determine whether two users represent
the same real user based on user similarity, that is, aligned user pairs M = {(ui, uj)|ui ∈
US, uj ∈ UT}.

Figure 1. User-alignment diagram.

3.3. Multi-View Graph Contrastive Learning

Graph contrastive learning typically involves four steps: data augmentation, encoding,
projection, and contrastive learning. (1) Two differing views are generated from the original
view by data augmentation; (2) each view is encoded by a graph neural network; (3) the
nodes of two views are mapped to the same vector space; (4) the consistency of the same
node in different views is maximized by means of contrastive learning. To achieve user
alignment, we propose a modified multi-view graph contrastive learning approach. Its
input includes the source social network GS and the target social network GT . After data
augmentation is performed for both views, the view to be aligned and the augmented
view are encoded as vectors. In the comparative learning stage, we not only contrast
the augmented views of GS and GT , respectively, but also contrast the aligned views
GS and GT .

In addition, to improve the effect of graph contrastive learning on user alignment
in social networks, we propose a semantic centrality attention that considers the im-
pacts of user influence and user preferences on user-alignment effects in social networks.
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During data augmentation and encoding, the weights are adaptively adjusted to highlight
the important semantic features of users.

4. SENUA Algorithm

In this section, we first provide an the overview of SENUA, and then present the
details of each component.

4.1. Overview of SENUA

In this paper, we propose the SENUA algorithm to improve the accuracy of social net-
work user alignment by enhancing the semantic features of users. The overall framework
is illustrated in Figure 2, and the specific algorithm of SENUA is presented in Algorithm 1.
SENUA takes as input the source social network view GS and the target social network
view GT to be aligned. To improve the alignment effect, we enhance the semantic features
of users in three aspects: semantic representation, noise adaptation, and embedding opti-
mization. The process of SENUA consists of five steps. (1) Adequate user semantic feature
representation can reduce the interference of the local semantic gap on global semantics.
Taking user behavior, spatio-temporal information, and user relationships into account,
multi-dimensional semantic features of users are extracted from user attributes, UGCs, and
check-ins via semantic analysis. (2) Due to the variability between different social networks,
the extracted semantic features often contain noise, which can affect the user-alignment
effect. The algorithm’s noise-adaptation capability can be improved through the use of
graph-data augmentation for features and topologies in multiple views. Notably, the ef-
fect of graph-data augmentation is not stable for different networks or downstream tasks.
Accordingly, to improve the effectiveness of data augmentation in social network user align-
ment, we propose semantic centrality attention to adaptively adjust the data augmentation
weights. Since the probability of data spreading among users with high influence and
the same preference is higher, these users usually have more common semantic features.
During graph-data augmentation, computing semantic centrality based on influence and
user preferences can help to ensure that important user semantic features are retained.
(3) When attempting to determine whether a user is an aligned user based on their semantic
features, the key lies in how to deeply mine the similar semantic features of aligned users.
Users who communicate more frequently on social networks tend to have more similar
semantic features. Graph neural network-based fusion of semantic features of neighbors
can thereby enhance the representations of individual users. (4) Highly similar users in
the same social network can interfere with user alignment. Through the use of contrastive
learning in multiple views, we not only reduce the semantic similarity between users in
the same social network, but also enhance the semantic similarity between aligned users,
which can optimize the feature embedding vectors of users. (5) Based on the optimized
multi-view embedding vectors, user similarity is computed using the cosine distance. If the
similarity reaches a threshold value, the two users are considered as aligned users. Since
many operations are the same for the source social network view GS and the target social
network view GT , if S and T are not used to distinguish between the views in what follows,
this will mean that both networks have to perform this operation.

In brief, the differences of the proposed algorithm are: (1) Multiple embedding meth-
ods are combined to fully represent user semantic features through low-level and high-level
semantic feature extraction. It can reduce the influence of local noise. (2) Calculating the
semantic centrality of users based on their preferences and user influence, and using it to
compute the probability of topology and feature augmentation in graph-data augmenta-
tion. (3) Computing feature aggregation weights in graph attention networks based on
the semantic centrality of users. (4) The application scenario of contrastive learning is
extended from a single social network to multiple social networks. Enhance similarity
between aligned users through multi-view contrastive learning. (5) Top-k highly similar
users are selected as aligned users, and then the missing network topology is completed by
aligned users.
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Figure 2. The framework of the proposed algorithm.

Algorithm 1: Social network user alignment.

Input: social network GS and GT

Output: aligned user M in GS and GT

(1) Semantic representation: UGCs Ac
LDA−−→ user preference Apre f

p ;

Check-In A�
Bayesian−−−−→ resident city Aarea

p ; Ap =
{

Apre f
p , Aarea

p , Aname
p

}
Ap, Ac, A� → feature vectors V p, V c, V �; V p, V c, V �

merge−−−→ V
for epoch ← 1, 2 · · · do

(2) Graph data augmentation:

G̃S
pe

uiuj
,p f

d−−−−→ G̃1SG̃2S; G̃T
pe

uiuj
,p f

d−−−−→ G̃1TG̃2T;
(3) Converge neighborhood features by GAT with semantic centrality;
(4) Contrastive learning: ĜS ←→ ĜT ; Ĝ1S ←→ Ĝ2S; Ĝ1T ←→ Ĝ2T ;
Compute the loss objective J with contrastive learning;
Update parameters by applying stochastic gradient ascent to maximize J ;
(5) Obtain node embeddings of ĜS and ĜT ;
Computer user similarity sim

(
uS

i , uT
j

)
;

Find top k anchor users greater than the threshold by comparing similarity;
Complete the missing network topology;

end

4.2. Multi-Level Semantic Representation

There are two problems with adequately representing the semantic features of users
in user alignment studies. (1) Absent or fake user attributes. When users register accounts
on multiple social networks for privacy protection, user attributes may be empty or forged
except for the username. (2) Inadequate semantic feature mining. The embedding of
user features into the low-dimensional vector space may result in some semantic features’
absence. For example, to make a computer understand human language, representing
the meaning of a whole sentence with a vector will necessarily lose some semantics of
the sentence. To address these two issues, we propose a multi-level semantic feature
representation, outlined as shown in Figure 3.

8
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Given two social network views to be aligned, two kind of meta-semantic features,
user preferences and resident cities, are extracted from UGCs and check-ins, respectively.
High-level user semantic features are extracted from three dimensions, user attributes,
UGCs, and check-ins, and then embedded and fused to obtain the user’s feature embedding
vector V . Feature extraction from multiple levels and dimensions can effectively enhance
the semantic features of users and improve user-alignment effects.

Figure 3. Multi-level semantic feature representation.

4.2.1. Meta-Semantic Feature Extraction

User attributes are highly discriminative but contain few semantic features. It is not
possible to confidently conclude that two users on different social networks are the same
person by looking only at the age and gender. Therefore, in this paper, users’ preferences
and cities of residence extracted from UGCs and check-ins are used to supplement users’
attributes for the subsequent user alignment task. Here, user preference refers to the user’s
fondness for something, and the city of residence refers to the location from which the user
most frequently posts on social networks. These two meta-semantic features are extracted
from UGCs and user check-ins, not filled in by users themselves; thus, they can represent
user features more reliably. It can be used to compute user similarity more accurately and
improve the effect of user alignment.

Extraction of User Preferences: UGCs refer to posts made by users that contain more
user behavior characteristics. With the latent Dirichlet allocation (LDA) topic model, the
topics of posts can be extracted from UGCs. LDA is a probabilistic topic model that ana-
lyzes the words in a document to obtain the topic of each document and its percentage.
Most existing studies use a single LDA topic model for a single social network without
considering the variability of users’ posts across different social networks. This approach ac-
cordingly limits the representational power when analyzing multiple social network topics.
Therefore, we extract cross-view topics from the social network views to be aligned based
on C-LDA [60]. The user-view and view-word distributions are employed to repre-
sent the user’s social network view preferences and the differences in language styles
across different views. Each view sets a polynomial distribution of background subject
words to reduce the interference generated by meaningless noise words in the document.
To improve the similarity of subject terms and the association between users across social
network views, we retain subject terms with high co-occurrence frequencies in different
views and add them as user preferences Apre f

p to user attributes Ap.
City of residence extraction: User check-ins can be used to reliably determine the times

and places at which users make posts. However, the precise positioning of user check-ins
in different social networks is often inconsistent, which may interfere with user alignment.
If the user’s city of residence is analyzed based on the time and location of the check-in,

9
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this can fuzzify the precise location features and improve the robustness of the algorithm.
Therefore, based on the Bayesian recommendation algorithm [61], we extract users’ cities
of residence from multiple views based on their preferences Apre f

p , check-ins A�, and social
connections E. The preference-based city of residence probability is obtained based on the
location of users with the same preference; the influence-based city of residence probability
is obtained based on the influence of friends in the social network; the distance-based city
of residence probability is obtained based on the distance between users’ check-in locations;
the linear sum of these three probabilities forms the final city of residence probability. The
city with the highest probability is the determined to be the city of residence of the user
Aarea

p and is added to the user attribute Ap.

4.2.2. Word-Level Semantic Representation

After meta-semantic feature extraction, user attribute Ap includes username Aname
p ,

city of residence Aarea
p , and interest preference Apre f

p . Since these words are not related to
each other, global semantic features do not need to be considered. Therefore, based on
word2vec [51] we vectorize the user attributes to extract word-level semantics.
The user attributes are divided into words, after which, stop words (such as "a" and "the")
are dropped. Each word is represented by a Huffman encoding, making the encoding of the
more frequent words shorter, which can improve the training efficiency of our algorithm.
There are more repetitive words describing city and preference in user attributes, and
the dataset is small, which is suitable for training word vectors with CBOW—a language
model of word2vec. After the CBOW model training, we get the feature vectors Vname

p ,

Varea
p , and Vpre f

p , corresponding to the username, city of residence, and interest preferences.
After merging these features together, the feature vector corresponding to the user attributes
is as follows:

V p =
[
v1p, v2p, · · · , vip, · · · , vnp

] ∈ R
D×n,

where vip represents the word-level semantic embedding vector of user i. R denotes the
vector space, and d denotes the feature dimension of the embedding vector.

4.2.3. Document-Level Semantic Representation

Compared with user attributes, UGCs contain more semantic features, such as sen-
timent and writing patterns. These semantic features facilitate user alignment; how-
ever, the included local semantic noise may also interfere with the alignment effect.
The semantic features of UGCs cannot be fully mined using word2vec. Notably, the
embedding vector trained based on the BERT [53] method contains more semantic features,
which can reduce the noise information in UGCs. Therefore, based on PT-BERT [62], we
extract document-level semantics from UGCs. The original sentence embedding is obtained
by BERT, after which a pseudo-sentence embedding of corresponding length is generated.
The original embedding and the pseudo-embedding are used to the final embedding vector
based on the attention mechanism. Unbiased encoders are trained using contrast learning
in true and false embedding vectors, which can enhance the semantic features of sen-
tences. After training, the user-generated contents Ac are converted into the corresponding
feature vector:

V c = [v1c, v2c, · · · , vic, · · · , vnc] ∈ R
D×n,

where vic represents the document-level semantic embedding vector of user i.

4.2.4. Spatiotemporal Semantic Representation

It is not easy to deeply mine the association between two users based solely on the
user location at the time of posting. Therefore, we combine time and space by using
ACTOR [63] to deeply mine the user’s spatio-temporal semantics and thereby improve the
user-alignment effect. The times and locations of check-ins and users are used as nodes to
construct a heterogeneous network. According to different types of node linkage patterns,
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such as T1 − U1 − U2 − T2, temporal and spatial features are embedded into the same
vector space. Deeper semantic features can be captured by maintaining the higher-order
proximity of different levels. After training, the user check-in A� is transformed into a
spatio-temporal semantic embedding vector:

V � = [v1�, v2�, · · · , vi�, · · · , vn�] ∈ R
D×n,

where vI ell represents the spatio-temporal semantic embedding vector of user i.
Through meta-semantic feature extraction, we obtain the user preferences Apre f

p and
cities of residence Aarea

p . Adding them to the user attribute Ap can reduce the negative im-
pact on the user-alignment effect of missing or false of user attributes.
Through multi-dimensional user feature semantic analysis, we extract the correspond-
ing word-level feature embedding vector V p, document-level feature embedding vector
V c, and spatio-temporal feature embedding vector V � from the user attributes Ap, user-
generated contents Ac, and user check-ins A�. These feature embedding vectors are fused
and averaged to obtain the embedding vector V , representing user features. Meanwhile,
the original views of the source and target social networks are converted to embedded
views. The process is as follows:

GS =
(

US, ES, AS
)
→ G̃S =

(
US, ES, VS

)
.

GT =
(

UT , ET , AT
)
→ G̃T =

(
UT , ET , V T

)
.

4.3. Graph-Data Augmentation with Semantic Noise Adaption

Data augmentation is a kind of data expansion and enhancement method. In the field
of image processing, data augmentation refers to increasing the sample size by transforming
the image. In graph networks, graph-data augmentation is achieved by adding perturba-
tions to edges and features [64]. Across different social networks, the semantic features
and topologies of users exhibit some variability. The semantic noise included in the social
network view reduces the accuracy of user alignment. To address this problem, we improve
the generalization capability of the algorithm by employing graph-data augmentation for
the semantic features and topologies of the users in the embedded view. The existing
graph-data augmentation methods are not well adapted to the dynamic data diffusion
characteristics in social networks, meaning that the user alignment is insufficiently effective.
Therefore, we propose a graph-data augmentation method with a semantic centrality atten-
tion mechanism to ensure a reasonable distribution of augmentation weights. This enables
the augmented view to improve the algorithm’s self-adaptation to noise while ensuring
that important topologies and features remain unchanged. Below, we describe the aspects
of semantic centrality, topology-level semantic augmentation, and feature-level semantic
augmentation.

4.3.1. Semantic Centrality

Users who communicate more frequently on social networks tend to be more se-
mantically similar. Based on the similar semantics of friends, the semantic features
of users themselves can be made more complete, which can improve user alignment.
Users’ influence and preferences each have a significant impact on their communication.
Due to the power-law distribution characteristic of social networks, most users usually
have a small number of friends. Users who are followed by more people tend to have more
influence. Moreover, users with similar preferences communicate with each other more
frequently. Therefore, we compute semantic centrality attention weights based on influence
and preference. The critical user features and network topology in a given view can be
retained by increasing the probability of masking the features of users with low influence
and the probability of removing the topology of users with different preferences.

11



Entropy 2023, 25, 172

In undirected graphs, degree indicates the number of friends of a user. We use degree
centrality to indicate the importance of a user in a social network. The computation formula
is as follows:

Degree Centrality =
ki

N − 1
, (1)

where ki denotes the degree of user i and N denotes the total number of users in this
network. The degree centrality of users in the social network relationship graph mea-
sures user influence, and the degree centrality of users in the preference sharing rela-
tionship graph measures the degree of user preference. Preference sharing relationships
are constructed from user-preference relationships and social network relationships [65].
As shown in Figure 4, the network topology E of the embedded view represents the social
network relationships. The user-preference relationships Rpre f are constructed according to

the user and the corresponding user preferences Apre f
p . According to the user preferences,

users with common preferences are constructed as preference sharing relationships. The
formula can be expressed as follows:

Rshar =
(

Rpre f RT
pre f

)
◦ E (2)

where E denotes social relationships, and the Hadamard product ◦E is used to ensure
that the constructed preference sharing relationships belongs to a subset of E. The matrix
Rpre f RT

pre f multiplied together can link users with the same preferences.
The semantic centrality ξ(ui) of user ui can be represented as

ξ(ui) = deguser(ui) + degshar(ui) (3)

where deguser(·) denotes the degree centrality of user ui in the social network relationship
graph, and degshar(·) denotes the degree centrality of user ui in the preference sharing
relationship graph.

Figure 4. Construction process of preferences a sharing relationship.

4.3.2. Topology-Level Semantic Augmentation

Users’ friendships are inconsistent across social networks, and this topological noise
can lead to semantic gaps for the same user from different views. We accordingly perform
topology-level semantic augmentation based on the semantic centrality of the user, which
constructs a new edge set Ẽ from the network topology E of the embedded view with
sampling probability pe

uiuj
. This reduces the influence of network topology noise on

user alignment. The sampling probability pe
uiuj

refers to the probability of preserving
the topology (ui, uj), which reflects the importance of the edge that connects user ui and
user uj.

We indicate the degree of topological importance based on the average of the semantic
centrality of users ui and uj. The weight of the topology is the average of the semantic
centrality of the connected users, namely, we

uiuj
=
(
ξ(ui) + ξ

(
uj
))

/2. To reduce the effect
of the power-law distribution property of the social network on the drop probability, we
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take the logarithms of topological weights, namely, λe
uiuj

= log we
uiuj

. The probabilities are
normalized by the following equation:

pe
uiuj

= min

(
λe

uiuj
− λe

min

λe
max − λe

min
, pe

τ

)
(4)

where λe
max and λe

min denote the maximum and minimum values of the topological weights
we

uiuj
, respectively. pe

τ is the truncation probability, indicating that the topology is not
allowed to fall below the probability pe

τ ; this prevents damaging the topology of the
network with lower sampling probability.

4.3.3. Feature-Level Semantic Augmentation

The contents of users’ posts for the same event are inconsistent across social network
views. This feature noise can cause semantic gaps for the same user in different views.
Based on the user’s semantic centrality, feature-level semantic augmentation can reduce
the negative impact of feature noise on user alignment. We zero out certain dimensions
of users’ features that are unimportant, which improves the algorithm’s adaptability to
feature noise. To ensure randomness, we obtain m̃ ∈ {0, 1, }F by randomly sampling from
a vector of Bernoulli distribution with probability 1 − p f

d , and then generate the feature
vectors Ṽ . The computing process is as follows:

Ṽ = [v1 ◦ m̃, v2 ◦ m̃, · · · , vn ◦ m̃]T (5)

where vn denotes the corresponding feature vector of user n. The symbol ◦ is the Hadamard
product, which denotes that the user features and the random vector m̃ are multiplied by
elements.

To ensure that the generated feature vector Ṽ retains the important user semantic
features, we compute the weight of a certain dimension feature based on the semantic
centrality. If the d-th dimension feature frequently appears in user features with high
semantic centrality, then the weight of that dimension is higher. The computational formula
is as follows:

w f
d = ∑

u∈U
|vud| · ξ(u), (6)

where vud denotes the feature value of the d-th dimension of user u in the embedded view.
The larger the absolute value, the more important the feature of the dimension.

To reduce the order of magnitude effect of high weight dimensions on low weight
dimensions, we take the logarithms of the weights of the features, namely, λ

f
d = log w f

d .
The probabilities are normalized by the following equation:

p f
d = 1 − min

(
λ

f
d − λ

f
min

λ
f
max − λ

f
min

, p f
τ

)
, (7)

where λ
f
max and λ

f
min denote the maximum and minimum values, respectively, of the

d-dimensional feature weights. p f
τ is the feature truncation probability, indicating that

masking features are not allowed above the probability p f
τ , which prevents corrupting the

user features of the embedded view.
The probabilities of topology-level semantic augmentation and feature-level semantic

augmentation are stochastic. The embedded view G̃ generates two augmented views G̃1,
and G̃2, after two rounds of random graph-data augmentation. The topology and features
of both views are distinct, which can improve the algorithm’s ability to adapt to noise.
The augmentation process of the embedded view is as follows:
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G̃S =
(

US, ES, VS
)
→

⎧⎨
⎩G̃1S =

(
US, E1S, Ṽ1S

)
G̃2S =

(
US, E2S, Ṽ2S

) ;

G̃T =
(

UT , ET , V T
)
→

⎧⎨
⎩G̃1T =

(
UT , E1T , Ṽ1T

)
G̃2T =

(
UT , E2T , Ṽ2T

) ;

4.4. Multi-Head Attention Semantic Fusion

The effect of user alignment depends on the similarity of the aligned users. If there is
lower semantic similarity among the aligned users, the accuracy of the algorithm will be
reduced. Due to the variability of user features in social networks, the extracted semantic
features cannot accurately represent users. Moreover, users and friends often share similar
semantic features with each other. Therefore, we implement feature-topology adaptation
fusion using a multi-head graph attention network. GAT [66] can adaptively fuse social
network topology and neighbor features with different weights, and also further mine
users’ semantic features deeply based on a multi-head mechanism. We combine semantic
centrality and GAT to increase the weight of fusing similar neighbor features. This can
improve the accuracy of user alignment. This approach merges the semantic features of
neighbors to enhance the features of the nodes themselves and improve the accuracy of user
alignment. As some users may have excessive numbers of friends in the augmented view,
fusing more neighbor features using an ordinary GNN trends to give rise to an overfitting
phenomenon. Therefore, we use GAT to fuse the semantic features of our neighbors.

The semantic features of users are already available in the embedding view and the
corresponding augmented view. We use vi and vj to denote the embedding vectors of users
ui and uj, respectively. The attention factor for these two users is computed as follows.

eij = LeakyReLU
(
α(Wvi, Wvj)ξ

(
uj
))

. (8)

This coefficient reflects the importance of user uj to user ui. In the equation, we use a
linear transformation with parameters W ∈ RD′×D, along with a self-attentive mechanism
α to adaptively adjust the weights. To preserve important features, the user’s semantic
centrality ξ

(
uj
)

is used to measure the importance of its neighbors. Finally, a nonlinear
layer LeakyReLU is added to serve as the activation function. To facilitate the comparison
of attention weights across users, we normalize the attention of our neighbor uj using the
softmax function:

αij = so f tmaxj(eij) =
exp(eij)

∑uk∈Ñ(ui)
exp(eik)

, (9)

where Ñ(ui) is the first-order neighbor of user ui.
To improve the semantic fusion capability of the GAT, we use K independent attention

heads for computation and concatenation. The computation process is as follows.

v
′
i =

∥∥∥K
k=1 σ

⎛
⎝ ∑

uj∈Ñ(ui)

α
(k)
ij W(k)vj

⎞
⎠, (10)

where ‖ indicates that the splicing operation is utilized in the features, and K indicates the
number of heads in the multi-head attention.

The averaging operation is used at the final level. The computation process is
as follows:

v
′
i = σ

⎛
⎝ 1

K

K

∑
k=1

∑
uj∈Ñ(ui)

α
(k)
ij W(k)vj

⎞
⎠. (11)
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The embedded view and the corresponding augmented view are semantically fused
and constructed as a contrastive view, which facilitates the usage of contrastive learning
among the views in the next section. The specific view transformation process is as follows:⎧⎨

⎩G̃S =
(

US, ES, VS
)
→ ĜS =

(
US, ES, V̂S

)
G̃T =

(
UT , ET , V T) → ĜT =

(
UT , ET , V̂ T

) ;

⎧⎨
⎩G̃1S =

(
US, E1S, Ṽ1S

)
→ Ĝ1S =

(
US, E1S, V̂1S

)
G̃2S =

(
US, E2S, Ṽ2S

)
→ Ĝ2S =

(
US, E2S, V̂2S

) ;

⎧⎨
⎩G̃1T =

(
UT , E1T , Ṽ1T

)
→ Ĝ1T =

(
UT , E1T , V̂1T

)
G̃2T =

(
UT , E2T , Ṽ2T

)
→ Ĝ2T =

(
UT , E2T , V̂2T

) ;

4.5. Multi-View Contrastive Learning

Computing the similarity of users requires the semantic features of users to be embed-
ded in the Euclidean space. The effect of generated embedding vectors on user alignment
depends not only on the differential semantics of the same social network, but also on the
similar semantics of the aligned users in the social network to be aligned. Therefore, we
perform comparison learning across in multiple comparison views. The similar features
of aligned users and the different features of non-aligned users are compared in order to
optimize the embedding effect, achieve user semantic feature enhancement, and improve
the alignment accuracy.

We apply contrastive learning to three pairs of views: (1) source contrastive views Ĝ1S

and Ĝ2S generated by the source social network; (2) target contrastive views Ĝ1T and Ĝ2T

generated by the target network; (3) source-target contrastive views (alignment views) ĜS

and ĜT , constructed by the source and target social networks. In contrastive learning, it
is necessary to construct positive and negative samples, which include positive samples,
inter-view negative samples, and intra-view negative samples. The following description
is based on the source comparison views Ĝ1S and Ĝ2S. As these two contrastive views
are constructed based on the source social network and the set of users is unchanged, we
construct u1S

i and u2S
i , which belonging to the same real user as positive sample pairs.

The user u1S
i and the other users of the contrastive view Ĝ2S are constructed as inter-view

negative sample pairs; and the user u1S
i and the other users of the contrastive view Ĝ1S

are constructed as intra-view negative sample pairs. The positive and negative samples
of the target contrastive view Ĝ1T and Ĝ2T are constructed in the same way as the source
contrastive view. To make the embedding vectors of aligned users more similar, we use the
aligned users in the aligned views ĜS and ĜT as positive samples.

The contrastive views of the same social network perform contrastive learning to
enhance the differential features of different users. The alignment views perform contrastive
learning to enhance the similar features of known aligned users. This method effectively
reduces the semantic gap and improves the alignment accuracy. By constructing the loss
function based on InfoNCE Loss [64], we aim to improve the mutual information of positive
samples as the goal of contrastive learning, which makes the positive sample pairs more
similar. The loss function L of a positive sample pair

(
uϕ

i , uγ
i

)
can be defined as follows:

L
(

uϕ
i , uγ

i

)
= log eθ(uϕ

i ,uγ
i )/τ

eθ(uϕ
i ,uγ

i )/τ︸ ︷︷ ︸
positive pair

+∑
k 	=i

eθ(uϕ
i ,uγ

k )/τ

︸ ︷︷ ︸
inter−view

+∑
k 	=i

eθ(uϕ
i ,uϕ

k )/τ

︸ ︷︷ ︸
intra−view

;

s.t.(ϕ, γ) =
{(

ĜS, ĜT), (Ĝ1S, Ĝ2S), (Ĝ1T , Ĝ2T)}.

(12)
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We set a temperature coefficient τ to adjust the penalty strength of the inter-view and
intra-view negative sample pairs, which prevents the user alignment model from falling
into a local optimum solution in training. θ(u1, u2) = s(g(u1), g(u2)) is used to compute
the user similarity.

The loss function L
(

uϕ
i , uγ

i

)
is computed for the loss of users in the contrastive

views ĜS, Ĝ1S, Ĝ1T . Since the positive samples of the contrastive views ĜS and ĜT are
aligned users and the positive samples of the other two pairs of contrastive views are
the same users, these three pairs of contrastive views can be viewed as mirror-symmetric.
Therefore, the loss of the contrastive views ĜT , Ĝ2S, Ĝ2T can be defined as L

(
uγ

i , uϕ
i

)
.

Our overall objective is to maximize the mean of all positive sample pairs. Accordingly, the
overall loss function J is computed as follows.

J =
1

2N

N

∑
i=1

[
L
(

u1
i , u2

i

)
+ L

(
u2

i , u1
i

)]
, (13)

In this section, we continually reduce the value of this loss function to optimize the
embedding vectors of the contrastive views ĜS and ĜT . User-alignment accuracy can be
improved by enhancing the similar semantic features of aligned users and the difference
features of non-aligned users.

4.6. User Alignment

In this section, we compute the user similarity based on the embedding vectors of
views ĜS and ĜT . If the similarity reaches the alignment threshold, the two users of different
social networks are determined to be the same real-world user. The cosine distance is used
to measure the similarity of users uS

i and uT
j . The calculation formula is as follows:

sim
(

uS
i , uT

j

)
=

V̂S
i · V̂T

j∥∥V̂S
i

∥∥∥∥∥V̂T
j

∥∥∥ , (14)

where V̂S
i and V̂T

i denote the feature vectors of users ui and uj in the aligned views ĜS and
ĜT , respectively.

Based on the user similarity equation, we can compute the similarity of all users in
the two social networks and represent them by the matrix Vsim. If Vsim

ij is greater than the
alignment threshold, users ui and uj are considered to be aligned users.

To make better use of the inter-layer link relationships, we add the top k similar aligned
users that reach the similarity threshold to the known aligned user pairs M. Suppose there
are two pairs of aligned users who are friends in the source network, but no link between
them has been established in the target network; we can then complement the missing
topology of the target network based on the aligned users. This can enhance user semantic
features and improve user-alignment accuracy.

5. Experiments

Experiments were conducted on real-world social networks to evaluate the effec-
tiveness of the proposed SENUA model when dealing with the user alignment problem.
Moreover, an ablation study and comparisons of similarity before and after the experiment
are conducted and discussed.

5.1. Dataset and Experimental Setup
5.1.1. Dataset

To prove the effectiveness of the algorithm, the Douban–Weibo datasets [43] and
DBLP17-DBLP19 datasets [44] are used to validate the experiment. Douban–Weibo dataset
contains social network topology, user attributes, and user-generated contents. DBLP is a
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computer science bibliography that includes author’s name, school, city, and papers. The
statistics are presented in Table 2.

Table 2. Statistics of the datasets.

Datasets Networks Users Edges Min
Degree

Ave
Degree

Max
Degree

Anchors Source

Social
networks

Douban 9734 200,467 1 43 1723
9514 [43]

Weibo 9514 196,978 1 34 2501

coauthor
networks

DBLP17 9086 51,700 2 5.7 144
2832 [44]

DBLP19 9325 47,775 2 5.1 138

Similar users in the same social network and similar users across social networks
can affect alignment. To visualize the interference, we took 50 pairs of aligned users from
both datasets and represent the user similarity with a heat map, as shown in Figure 5.
Green represents the Douban–Weibo datasets, and blue represents the DBLP17-DBLP19
datasets. The labels of the 6 subgraphs indicate the social networks in which users are
registered. The scale of the coordinate axis represents the user ID. Figure 5a,b,d,e represent
the comparison of users in the same social network. The users of the horizontal and vertical
axes are in accordance. Figure 5c,f show the comparison of aligned users in the social
network to be aligned. The diagonal line indicates the similarity of the aligned user pairs.
The deeper the color in the graph, the higher the degree of similarity. The figure shows
that there are a large number of highly similar users in the same social network, which can
interfere with user alignment. Compared with Douban–Weibo, the interference user color
is lighter and the alignment user color is deeper in DBLP17-DBLP19. It is easier to achieve
user alignment in DBLP17-DBLP19 datasets. We aimed to improve the color depth of the
diagonal lines in Figure 5c,f. Increasing the color depth of the diagonal in Figure 5c,f is our
goal. We ensured the accuracy of user alignment by reducing noise in social networks and
optimizing embedding effects.

Figure 5. Visualization of user similarity before training: (a) Douban; (b) Weibo; (c) Douban-Weibo;
(d) DBLP17; (e) DBLP19; (f) DBLP17-DBLP19.
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5.1.2. Parameter Settings

After treating the following–followed relationship as an undirected edge, we expand
the directed edges of the dataset into undirected edges. We extracted user semantic features
from user attributes, UGCs, and user check-ins with an embedding dimension of 256.
The projection before user alignment comprises two fully connected layers, where the
hidden dimension was 512. The edge sampling probability in graph augmentation was 0.3.
The feature masking probability was 0.2. The temperature parameter τ was 0.2 for con-
trastive learning based on InfoNCE.

5.1.3. Evaluation Indicators

Hit-Precisionk was used as the performance metric for this experiment. This metric
represents the average score of the top k positive samples in the prediction results, which
can represent the prediction accuracy of our algorithm. The computation formula is
as follows:

Hit − Precision@k =
1
|C| ∑

x∈C

k − (hit(x)− 1)
k

, (15)

where C indicates the set of candidate users, and hit(x) indicates the location of the positive
sample among the top-k recommended candidate users.

5.2. Baseline Methods

To verify the performance of this algorithm, we chose the following user alignment
algorithms as the baselines.

• GraphUIL [21] encodes the local and global network structures, then achieves user
alignment by minimizing the difference before and after reconstruction and the match
loss of anchor users.

• INFUNE [43] performs information fusion based on the network topology, attributes,
and generated contents of users. Adaptive fusion of neighborhood features based on
a graph neural network is performed to improve user-alignment accuracy.

• MAUIL [44] uses three layers of user attribute embedding and one layer of network
topology embedding to mine user features. User alignment is performed after map-
ping user features from two social networks to the same space.

• SNAME [67] effectively mines user features based on three embedding methods:
intentional neural network, fuzzy c-mean clustering, and graph drawing embedding.

5.3. Experimental Results

Figure 6 presents the heat map of user similarity of two datasets after SENUA training.
The diagonal lines indicate the similarity of aligned users, and the other regions indicate
the similarity of non-aligned users. Compared with the pretraining Figure 5c,f, it can be
observed that the diagonal colors are significantly deeper, and the colors of the remaining
positions are significantly lighter. Overall, SENUA reduces the interference of highly
similar users on the user-alignment effect and accordingly improves the alignment effect.
Figure 7 presents the similarity comparison of aligned users before and after training.
The horizontal axis represents the users to be aligned, and the vertical axis is the user
similarity. As the figure makes clear, the similarity of aligned users is significantly improved
after training, and the similarity changes are more stable. The multi-head attention semantic
fusion makes the embedding vector more stable, and contrastive learning in aligned views
enhances the similarity of aligned users, which plays an important role in improving user
alignment accuracy.

To demonstrate the effectiveness of our algorithm, we compare the user-alignment
accuracy of each algorithm based on the Douban–Weibo and DBLP17-DBLP19 datasets,
as shown in Figure 8. The horizontal axis is the ratio of the training set to the total
dataset. The vertical axis is the performance metric hit-precision30, which indicates the
existence probability of aligned users among the 30 similar users recommended for the user.
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This can represent the prediction accuracy of aligned users in different social networks.
The results show that SENUA outperformed other baseline methods in user alignment, with
an average improvement of 6.27%. This shows that multi-view graph contrastive learning
can improve the effectiveness of social network user alignment. The overall performance
in Figure 8b is significantly better than that in Figure 8a. User alignment can also achieve
better results when the training ratio of DBLP is 10%. In Figure 5d,e, there are fewer highly
similar users in the same social network, and the user alignment is less affected by noise
interference. Compared with Figure 5c, the diagonal line of Figure 5f is darker, and other
areas are lighter in color. In the DBLP17-DBLP19 dataset, the aligned users are subject to
less interference, which results in better user alignment in this dataset. Our algorithm is
not optimal when the training ratio is 10%. As the training ratio increases, the alignment
accuracy continues to improve. Better user alignment is obtained when the training ratio
is high. Graph attention networks and contrastive learning all require sufficient data to
accurately discover the feature patterns of users. We reduce the local noise interference by
multi-level user feature representation, and then effectively enhance the semantic features
of users by semantic fusion and semantic contrasting.

Figure 6. Visualization of trained user similarity: (a) Douban-Weibo; (b) DBLP17-DBLP19.

Figure 7. Comparison of user similarity before and after training: (a) Douban-Weibo; (b) DBLP17-
DBLP19.
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Figure 8. Comparisons with baselines: (a) Douban-Weibo; (b) DBLP17-DBLP19.

We fixed the ratio of the training set to the total dataset to 0.9. Subsequently, the effects
of GAT and graph-data augmentation on user alignment were measured, as shown in
Figure 9. The accuracy decreases slightly at one layer of GAT and without graph-data
augmentation. The graph-data augmentation improves the peak accuracy of our algorithm,
although the impact on the accuracy is small. With semantic centrality attention, graph-data
augmentation can reduce noise interference in social networks while preserving important
features and topology. After the number of layers of GAT is adjusted from one to two,
the user-alignment accuracy decreases significantly. If the number of GAT layers is too
high, users will fuse more neighborhood features, which will reduce the feature variability
among users and lead to difficulties in user alignment.

Figure 9. The impacts of GAT and graph-data augmentation on user alignment: (a) Douban-Weibo;
(b) DBLP17-DBLP19.

6. Conclusions

In this paper, we proposed a semantic-enhancement-based social network user align-
ment algorithm, SENUA, to reduce the semantic-gap problem caused by social network
variability. The interference of local semantic noise on user alignment is reduced through
the use of multi-level semantic representations. To reduce the feature noise and topological
noise in the aligned views, we improved the algorithm’s ability to adapt to semantic noise
by using graph-data augmentation. Appropriate weights are assigned to the user’s seman-
tic features and topology with the semantic centrality of the user, which enables important
semantic features to be preserved. The embedding vectors of users are optimized based on
multi-head graph attention networks and multi-view contrastive learning. By increasing
the embedding distance between users in the same social network views while decreasing
the embedding distance of aligned users in the aligned views, we can effectively enhance
the semantic features of users and improve the alignment effect. To verify the performance
of our model, we compared it with several baseline methods on the Douban–Weibo and
DBLP17-DBLP19. Experimental results show that the effectiveness of SENUA is 6.27%
higher than that of the baseline methods on average. As these results show, SENUA en-
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hances user alignment through semantic enhancement in many ways. However, semantic
fusion and multi-view contrastive learning generate a high computing overhead. In our
future work, we plan to improve the efficiency and accuracy of user alignment based on
causal inference.
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Abstract: Currently, the most widely used protocol for the transportation layer of computer networks
for reliable transportation is the Transmission Control Protocol (TCP). However, TCP has some
problems such as high handshake delay, head-of-line (HOL) blocking, and so on. To solve these
problems, Google proposed the Quick User Datagram Protocol Internet Connection (QUIC) protocol,
which supports 0-1 round-trip time (RTT) handshake, a congestion control algorithm configuration
in user mode. So far, the QUIC protocol has been integrated with traditional congestion control
algorithms, which are not efficient in numerous scenarios. To solve this problem, we propose
an efficient congestion control mechanism on the basis of deep reinforcement learning (DRL), i.e.,
proximal bandwidth-delay quick optimization (PBQ) for QUIC, which combines traditional bottleneck
bandwidth and round-trip propagation time (BBR) with proximal policy optimization (PPO). In PBQ,
the PPO agent outputs the congestion window (CWnd) and improves itself according to network
state, and the BBR specifies the pacing rate of the client. Then, we apply the presented PBQ to QUIC
and form a new version of QUIC, i.e., PBQ-enhanced QUIC. The experimental results show that the
proposed PBQ-enhanced QUIC achieves much better performance in both throughput and RTT than
existing popular versions of QUIC, such as QUIC with Cubic and QUIC with BBR.

Keywords: QUIC; congestion control; deep reinforcement learning; BBR

1. Introduction

At present, computer networks remain the essential platform for information inter-
action, where the transport layer plays an influential role. The emergence of modern
applications, such as video live broadcast and Internet of Things (IoT), has imposed higher
demands on throughput, packet loss rate, and network delay. The development of wire-
less transmission technologies such as 5G and WiFi has made the network environment
even more complex. The Transmission Control Protocol (TCP), as a widely used protocol,
experiences problems such as large handshake delay, head-of-line (HOL) blocking, and
protocol solidification, which increasingly affect network performance. Compared with
TCP, the User Datagram Protocol (UDP) is more efficient for real-time transmission but
lacks reliability.

In 2012, Google proposed the Quick UDP Internet Connection (QUIC) protocol [1],
which realizes orderly, quick, and reliable transport services in user mode based on UDP.
The QUIC protocol reduces the handshake latency to zero round-trip time (RTT) by caching
ServerConfig. Moreover, the QUIC protocol natively supports multiplexing techniques
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where streams on the same connection do not influence each other, which solves the HOL
blocking problem. Additionally, the QUIC protocol decouples the congestion control
algorithm from the protocol stack, which is more flexible than TCP. Currently, the QUIC
protocol has become one focus of researchers in both academia and industry.

For both TCP and QUIC protocols, congestion control is one of the core mecha-
nisms. The basic logic of TCP congestion control contains congestion sensing and the
corresponding disposal pattern, which improves the network utilization by estimating the
bandwidth-delay product (BDP) of the link and adjusting the send rate of clients. Since the
first congestion control algorithm, Tahoe [2], was proposed, there have been dozens of con-
gestion control algorithms developed that are suitable for different scenarios. The operation
rules of traditional congestion control algorithms are shown in Figure 1. Congestion control
algorithms work on the sender, sensing the network state and changing the congestion
window or transmission rate. Currently widely used control algorithms are heuristic and
cannot be optimally executed in dynamic and changeable network environments.

Figure 1. A schematic of congestion control in TCP.

Recently, researchers have started to design TCP congestion control algorithms using
machine learning algorithms. There are numerous versions of TCP based on supervised
learning, such as TCP with DeePCCI [3] and TCP with LSTM-PTI [4]. Naturally, supervised-
learning-based algorithms are only used for passive congestion identification, and training
them requires a great deal of labeled data. As the network environment changes, so
do the network characteristics. In this case, the supervised learning congestion control
algorithm is not suitable for the changing network environment and may no longer be
effective. In light of the advantages of the reinforcement learning (RL) method in sequence
decision [5,6], researchers all over the world have been trying to apply it to congestion con-
trol. So far, some well-known congestion control methods, such as Remy [7], performance-
oriented congestion control (PCC)-Vivace [8], Q-learning TCP (QTCP) [9], Orca [10] and
Aurora [11] algorithms have been proposed for the TCP protocol. For the QUIC protocol, re-
searchers worldwide have proposed some modified versions of QUIC, i.e.,
QUIC-go [12], Microsoft QUIC (MsQUIC) [13], Modified QUIC [14], and Quiche [15].
QUIC-go is an implementation of the QUIC protocol in Go. It keeps up to date with the
latest request for comments (RFC) and is easy to deploy. MsQUIC is a Microsoft implemen-
tation of the QUIC protocol. It optimizes the maximal throughput and minimal latency.
Modified QUIC proposes a modification to the handshaking mechanism to minimize the
time required to update the CWnd, which results in a smooth variation in the CWnd. This
makes modified QUIC protocol easy to deploy and achieves better performance in terms of
throughput. Quiche is an implementation of the QUIC protocol in Rust and C. It performs
well across different applications, such nginx and curl.

However, for these popular versions of QUIC, only heuristic congestion control algo-
rithms are applied. Most heuristic congestion control algorithms commonly perceive the
network state based on simple network models and adopt a fixed strategy, i.e., shrinking
the window when packet loss occurs or RTT increases, and augmenting the window when
an acknowledge character (ACK) is received. Such a simple strategy makes heuristic con-
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gestion control algorithms unable to achieve optimal results in dynamic and changeable
network environments. For example, in the WiFi scenario, where obstacles and human
activity affect network quality, packet loss events do not imply the occurrence of congestion.
However, heuristic congestion control algorithms cannot distinguish that. This issue leads
to poor performance of the QUIC protocol in terms of throughput and latency when the
network settings change. Therefore, to enable the QUIC to achieve better performance in
different network environments, we tried to design DRL-enhanced QUIC using the merits
of DRL in environment awareness and decision making.

The contributions of this work can be summarized as follows:

• First, we developed a novel congestion control mechanism, referred to as proximal
bandwidth-delay quick optimization (PBQ) by combining proximal policy optimiza-
tion (PPO) [16] with traditional BBR [17]. It is able to effectively improve the con-
vergence speed and link stability during the training phase. We then applied the
presented PBQ to the QUIC protocol and formed a new version of QUIC, i.e., PBQ-
enhanced QUIC, which aims to enhance its adaptivity and throughput performance.

• Second, for the purpose of reducing the action space and establishing the connection of
the values of the congestion window (CWnd) for each interaction, we used continuous
action ratio as the output action of PBQ’s agent. Additionally, in the design of the
utility function, we used a relatively simple formulation of the objective function as the
optimization objective and introduced a delay constraint. By doing so, our proposed
PBQ-enhanced QUIC achieves higher throughput and maintains a low RTT.

• Third, we built a reinforcement learning environment for QUIC on the network
simulation software ns-3, where we trained and tested PBQ-enhanced QUIC. The
experimental results showed that our presented PBQ-enhanced QUIC achieves much
better RTT and throughput performance than existing popular versions of QUIC, such
as QUIC with BBR and QUIC with Cubic [18].

The organization of the rest of this paper is as follows: Section 2 describes the QUIC
protocol, including the handshake phase, multiplexing, connection migration, and conges-
tion control. Section 3 gives the design of PBQ and PBQ-enhanced QUIC. Section 4 intro-
duces the training link and testing link and evaluates the performance of PBQ-enhanced
QUIC compared with that of QUIC using different congestion control algorithms. Finally,
Section 5 gives the conclusions.

2. QUIC Protocol

2.1. The Basic Concept of QUIC

The QUIC protocol is a secure and reliable data transfer protocol first proposed by
Google in 2012, which was released as a standardized version of QUIC, RFC 9000 [19],
by the Internet Engineering Task Force (IETF). The bottom layer of QUIC is UDP, which
makes it compatible with current network protocols. At the same time, the QUIC protocol
is compatible with traditional congestion control algorithms in TCP. The QUIC proto-
col has numerous improvements over TCP, mainly in handshaking, multiplexing, and
connection migration.

2.2. Handshake

TCP is a plaintext transport protocol and transport layer security (TLS) is required to
implement data encryption transmission. In TLS 1.2, two RTTs are required for the TLS
handshake phase and three RTTs for the total handshake delay. Under TLS 1.3, the TLS
handshake phase requires one RTT, and the handshake phase still requires two RTTs.

Comparatively, the QUIC protocol optimizes the handshake process. In the hand-
shake phase, QUIC incorporates the transmission parameters into the encryption part.
When the first connection is established, the client sends authentication- and encryption-
related information to the server. It takes only one RTT to establish a connection. Alterna-
tively, we can use quantum key distribution to replace the original encryption information
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exchange [20]. When the connection is established once again, the client uses the preshared
key to establish an encrypted connection with the server during zero RTT.

2.3. Multiplexing

Multiplexing is multiple streams on a connection at the same time, commonly on a
Hyper Text Transfer Protocol (HTTP) stream. For HTTP/2, a TCP connection can support
multiple HTTP streams. However, HOL blocking in the TCP protocol causes interference
between HTTP streams, which affects their performance. In advance, multiple streams
can be created on a single QUIC connection, which reduces the handshake frequency. The
QUIC protocol is implemented based on UDP. Streams on the same QUIC connection are
independent of each other, which solves the HOL blocking problem.

2.4. Connection Migration

One TCP connection is known to be identified by a quintuple, i.e., <IPsource, PORTsource,
IPdest, PORTdest>, where IPsource denotes the source IP address, PORTsource denotes the
source port, IPdest denotes the destination IP address, and PORTdest denotes the destination
port [21]. If one term in the quadruple changes, the connection is broken. By using a 64-bit
random ID as the connection identifier, the QUIC protocol avoids the effect of network
switching. The simple process of connection migration is shown in Figure 2.

Figure 2. Connection migration.

Particularly, before the client’s IP changes, the endpoints communicate via a nonde-
tection packet. After IP changes, the path detection is performed to verify the reachability
before connection migration starts. If the path detection fails, the connection migration
cannot be performed; otherwise, a fresh connection is established. The IP address is verified
between the client and the server, and the endpoint holding the latest IP address of the peer
migrates. When migration occurs, the congestion control part and the reliable transport
protocol estimation part of the path need to be reset. After the connection migrates, it sends
a nonprobe packet.

2.5. Congestion Control in QUIC

The QUIC protocol is a reliable UDP-based data transfer protocol, which makes it
compatible with existing network protocols. The congestion control algorithm in TCP
is implemented in kernel mode, and if an upgrade is performed, the kernel needs to be
recompiled. However, the QUIC protocol straddles kernel mode and user mode, and its
congestion control part is in user mode. Thus, it can be easily upgraded. In particular, the
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QUIC protocol supports the configuration of different congestion control algorithms for
applications, making it possible to optimize for specific applications.

3. The PBQ-QUIC

In this section, we describe PBQ and its application to QUIC to form the PBQ-
enhanced QUIC.

3.1. The Basic Idea of PBQ

For clarity, Figure 3 shows the workflow of PBQ. PBQ combines PPO with BBR to
accurately identify the network state. It can effectively identify congestion and packet loss
events. PBQ is divided into three main parts: Monitoring, Decision, and Pacer modules.
The Monitoring module collects environment state and sends it to the Decision module.
The Decision module outputs actions, including at and the pacing rate, according to the
network state. The Pacer module distributes actions to the corresponding senders. In
the Decision module, the Controller distributes the network state to the PPO and the
BBR. The PPO part outputs at according to st using the new policy and sends it to the
environment through Pacer. The replay memory stores the experience of past interactions.
After multiple interactions, the policy networks and the value network are updated using
the past interaction experience. Inspired by Orca, our Decision module adopts a two-level
regulation mechanism, which is shown in Figure 4. The underlying BBR algorithm performs
a classical decision-making behavior driven by ACK. The DRL agent evaluates the network
congestion and predicts the BDP according to the state output by the Monitoring module.

Figure 3. The framework of PBQ.

• Monitoring Module

We set the network state collection interval to 100 ms, and the designed state quantity
is shown in Table 1. Because the interval is not strictly equal to 100 ms, we also count the
intervals. The remaining states are the statistics within each interval.
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Table 1. State statistics description.

State Description

CWndt Current congestion window
intervalt Cata update interval

deliveryRatet Average delivering rate (throughput)
RTTt Averaged RTT

packetLosst Average loss rate of packets

Figure 4. The two-level control logic of PBQ’s enhanced QUIC.

• Reward Function Design

We trained PBQ using a linear function with constraints. First, we define a linear
utility function as α ∗ deliveryRatet − β ∗ packetLosst, where α denotes the coefficient of
deliveryRatet, deliveryRatet denotes the delivery rate in time t, β denotes the coefficient of
packetLosst, and packetLosst denotes the packet loss rate in time t. Then, we formulate an
optimization problem to maximize the linear utility function under a given RTT constraint,
i.e., RTTt ≤ minRTTt , t = 1, 2, 3 . . . , n, where RTTt denotes the last RTT in time t, and
minRTTt denotes the minimum RTT from the establishment of the connection to time t.

max α ∗ deliveryRatet − β ∗ packetLosst

s.t. RTTt ≤ minRTTt ,t = 1, 2, 3 . . . , n .
(1)

We use the maximization objective as the base reward function:

Rt = α ∗ deliveryRatet − β ∗ packetLosst (2)

With the delay constraint, the final reward function is

Rt = α ∗ deliveryRatet − β ∗ packetLosst

Rt =

{
Rt RTTt ≤ γ ∗ minRTTt

Rt − η RTTt > γ ∗ minRTTt

(3)

where γ denotes the penalty threshold, and η denotes the penalty term when RTTt >
γ ∗ minRTTt.

• Action Design

Reinforcement learning action types can be divided into two categories, discrete and
continuous actions. We first used discrete actions, but analyzing the experimental re-
sults, we found that when using discrete actions, the output of the agent considerably
fluctuated, and it was difficult to achieve better performance in the initial stages of the
interaction. In general, the discrete action does not favor the early stability of the net-
work links. The final solution in this study draws on the additive increase multiplicative
decrease (AIMD) [22] idea in traditional congestion control, and we set the action output as
CWndRatio. The mapping relationship between CWndRatio and the congestion window is
as follows:

newCWnd = CWnd ∗ 2CWndRatio (4)
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The relationship between the values of CWnd for each interaction was established, which
reduces the fluctuation of the action and ensures the excellent performance of the model.

• Learning Algorithm for PBQ

For the DRL agent, PPO is employed, which is a classical actor-critic algorithm. We
used tanh as the activation function in both actor and critic neural networks. Because
the state transitions in traditional congestion algorithms are not complex, we preferred to
build a simpler neural network and train on it. Finally, we constructed a three-layer neural
network, where the hidden layer contains 64 neurons.

For clarity, the PBQ training phase is summarized in Algorithm 1. On lines 1–2 of
Algorithm 1, the training episode Episodes is set and the replay memory D is initialized,
which is used to store state, action and reward. The policy parameters θnew and value
parameters φ are also initialized with random weights. We set policy parameters θold equal
to θnew. Then, on lines 4–16, at each episode, we first reset the environment and obtain the
initial state s0 and initial reward r0. We use PPO to regularly output αt according to the
new policy πθnew . We map αt to CWndt, which is also the estimated link BDP. Then, CWndt
is preformed into environment. In each step, PBQ collects network states st and st+1, action
value at, and the corresponding reward rt, and updates the replay memory D. The policy
parameters θnew and value functions φ are updated when the number of steps accumulates
to the policy update threshold update_timestep. The underlying BBR method is driven by
ACK to control the specific pacing rate of the clients.

Algorithm 1 PBQ’s learning algorithm.

1: Initialize replay memory D and training episode Episodes
2: Initialize policy parameters θnew, value parameters φ, θold ← θnew
3: for episode = 1 to Episodes do
4: Reset environment, obtain initial state s0 and initial reward r0
5: i ← 1
6: for t = 1 to steps do
7: if time to play PPO action then
8: Run policy πθnew , obtain PPO action αt
9: Map αt to CWndt, CWndt = CWndt−1 ∗ 2αt

10: Perform CWndt
11: else
12: Play a BBR action, perform pacingRatet
13: end if
14: Collect {st, at, rt, st+1}, update D
15: t = t + 1
16: if t % update_timestep == 0 then
17: θold ← θnew, update θnew and φ
18: end if
19: end for
20: end for

• Pacer

The Pacer module is responsible for distributing the actions output by the Decision
module to the corresponding clients. The action distribution is driven by an update callback
for the CWnd and an update callback for the pacing rate. For pacing rate, when the client
receives an ACK or packet loss occurs, the underlying BBR adjusts the pacing rate and
triggers a pacing rate update callback. For CWnd, the Decision module receives the updated
network state from the Monitoring module; the RL part outputs α and calculates the current
CWnd; then, the callback function is called to update the CWnd on the client via Pacer
module. As shown in Figure 5, the Pacer module distributes actions to the corresponding
clients based on their ids.

31



Entropy 2022, 25, 294

Figure 5. Action distribution in the Pacer module.

3.2. PBQ-Enhanced QUIC

Figure 6 shows the differences in congestion control between PBQ-enhanced QUIC
and traditional QUIC. QUIC uses Cubic as the default congestion control algorithm. Cu-
bic is a heuristic algorithm that is driven by events at the sender side, including ACK
receipt, packet loss, etc. The policy of Cubic is based on packet loss events, which leads
to poor performance in scenarios where packet loss is present. PBQ is a combination of
the DRL method PPO and BBR with the advantages of both. Our deployment adopts the
client/server (C/S) mode, which only modifies QUIC in client and adopts the standard
QUIC implementation in the server. We deeply integrated PBQ into the QUIC client. We
added the Monitoring module for network state statistics, the Decision module for rate
control, and the Pacer module for rate distribution. The Decision and Pacer modules are
asynchronously executed, and they do not affect the behavior of the clients.

Figure 6. PBQ-enhanced QUIC.

We specifically designed states and actions. The Monitoring module periodically
collects the state of the environment and sends the processed data to the Decision module.
We collected a number of environment states, including pacing rate, current RTT and
minimum RTT, interval, packet loss rate, CWnd, and so on. The output of the Pacer module
includes the CWnd and pacing rate of the senders. The BBR regulates the pacing rate of the
clients, and the DRL agent gives the congestion window as the predicted BDP. Then, the
Pacer module changes the sending behavior of the clients.

4. Simulation Performance

We tested the PBQ-enhanced QUIC in various scenarios on the open-source network
simulator ns-3 [23] and compared the results with those of QUIC using different congestion
control algorithms. We wrote simulation scripts in C++ and implemented our DRL agent
based on MindSpore in python. Then, we ran the comparison experiments on a Dell
PowerEdge R840 server with 256 G memory, 64 cores, and a GeForce RTX 3090 GPU.
We tested the model on a large number of links with different parameters and analyzed
the sensitivity of PBQ-enhanced QUIC to the number of link flows and packet loss rate.
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When the testing and training links were quite different, the PBQ-enhanced QUIC still
performed well.

4.1. Our Simulation Environment

The application of DRL methods is inseparable from the interaction with the environ-
ment. Several researchers have implemented their own simulation environments, but they
all target the TCP domain, and there is no mature solution for the simulation environment
of the QUIC protocol alone. At the same time, we think that the development of a network
simulation environment is a huge and meticulous project that should be focused on the
study of congestion control algorithms; therefore, we chose the ns-3 platform to build the
training and testing environment. We built our own simulation environment based on
NS3-gym [24] and Quic-NS-3 [25] to test PBQ-enhanced QUIC.

4.2. Training

We also applied the PPO method to the congestion control part of QUIC. We trained
PPO and PBQ on the link shown in Figure 7. For training, we set N to two, which means
that two traffic flows shared a link. The link parameters are shown in Table 2. Our model
converged in 50 epochs, each consisting of 1200 steps. In contrast, the experimental results
showed that after combining with BBR, the model converged faster, and the throughput
and RTT performance were more stable in the initial interaction.

Figure 7. The simulation link of PBQ.

Table 2. Training link.

Attribute Value

Number of flows 2
Bottleneck bandwidth 2 Mbps

RTT 30 ms
Queue capacity 75 Kilobytes

Queue scheduling algorithm First Input First Output (FIFO)

As illustrated in Figure 8b,c, the algorithm we propose can effectively improve the
stability of the pretraining action while ensuring the quality of the link. As shown in
Figure 8a, the combination with the BBR effectively speeds up the speed of convergence,
which solves the problems we described before.
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(a)

(b)

(c)

Figure 8. Training process after 600 episodes: (a) training reward; (b) training throughput; (c) training RTT.

4.3. Testing

Similarly, we compared PBQ-enhanced QUIC with QUIC using current learning-based
congestion control algorithm Remy and heuristic algorithms such as Bic [26], Cubic, Low
Extra Delay Background Transport (LEDBAT) [27], NewReno [28], Vegas [29], and BBR.
[id = S.L.] The link parameters are shown in Table 3.
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Table 3. Testing link.

Attribute Value

Number of flows 2∼8
Bottleneck bandwidth 10 Mbps

RTT 100 ms
Packet loss rate 0%∼10%
Queue capacity 75 Kilobytes

Queue scheduling algorithm FIFO

In traditional algorithms, BBR is based on network modeling, while the remaining
algorithms take packet loss events as congestion occurrence signals. In this part, we still
used the dumbbell link in Figure 7. To demonstrate the adaptability of our algorithm, there
was a large deviation between our test and training links. Specifically, we determined
the performance of PBQ-enhanced QUIC in different scenarios, including its excellent
adaptation and tolerance to packet loss and number of flows.

4.4. Packet Loss Rate

We tested the proposed algorithm using a previously trained model in a different
network scenario. The throughput changes with the packet loss rate as illustrated in
Figure 9a, and the RTT is shown in Figure 9b.

(a)

(b)

Figure 9. Link quality of schemes across different packet loss rates with flow number 2: (a) through-
put; (b) RTT.
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When packet loss occurs, QUIC with congestion control algorithms that take packet
loss events as a signal, such as QUIC with Cubic and QUIC with NewReno, frequently enter
fast recovery, resulting in low throughput and low RTT. While QUIC with BBR requires
constant probing of the network, QUIC with Remy relies on a state-action table. It is difficult
for them to balance throughput and RTT. Our algorithm can efficiently identify the overall
state of the network and can output relevant actions by periodically collecting the network
state. As the packet loss rate increases, the throughput performance of our algorithm is less
affected, and it is the best among the different packet loss rates. Furthermore, our proposed
algorithm achieves higher throughput analso has better packet loss tolerance ability than
QUIC with Remy and QUIC with BBR.

4.5. Flow Number

Then, the packet loss rate was set to 2.5%, and we modified the number of flows
and compared the throughput and delay performance of different QUIC implementations.
The results are shown as Figure 10a,b. Figure 10a represents the total link throughput.
Figure 10b indicates the average RTT.

(a)

(b)

Figure 10. Link quality of schemes for different flow numbers with packet loss rate of 2.5%:
(a) throughput; (b) RTT.

Owing to the presence of random packet loss, algorithms that take packet loss events
as congestion occurrence signals fail to accurately identify the cause of congestion. In
the policies of these congestion control methods, the current link can only support a low
throughput; thus, the throughput is at a low level. In this case, the flows barely affect each
other. As a result, as shown in Figure 10a, the total throughput of the link linearly increases
with the number of flows. They cannot accurately estimate the link BDP and occupy the
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full link bandwidth, so the average link RTT is close to the default RTT. Compared with
QUIC with BBR and QUIC with Remy, PBQ-enhanced QUIC reduces the detection process
of link BDP and achieves excellent throughput and RTT by optimizing the reward function.

5. Conclusions

In this study, we first developed a two-level regulatory mechanism PBQ, which
combines the heuristic algorithms BBR and DRL to approximate PPO. The convergence
rate of the model is accelerated by using BBR to estimate the specific transmission rate.
Moreover, we proposed PBQ-enhanced QUIC, an implementation of QUIC that uses
PBQ as a congestion control algorithm. Unlike QUIC with heuristic congestion control
algorithms, our QUIC implementation learns congestion control rules from experience by
using RL signals. Therefore, our QUIC implementation can be better adapted to various
network settings.

As shown in Section 4.2, the combination with BBR can effectively speed up the
convergence of the PPO during the training phase on the premise of ensuring link quality.
As shown in Sections 4.2 and 4.4, compared with other QUIC versions, PBQ-enhanced
QUIC achieves higher throughput performance in various network settings. PBQ-enhanced
also has better RTT performance than QUIC with BBR and QUIC with Remy. We think
that combining DRL methods with traditional algorithms to design congestion control
mechanisms for QUIC will be a major trend in the future, and PBQ-enhanced QUIC
provides a new idea to do so.

In future work, we plan to build a testbed in real-world networks and test PBQ-
enhanced QUIC on it. We will improve the PBQ-enhanced QUIC based on its performance
in real-world networks. Moreover, different applications have different requirements
on network metrics, so we plan to design congestion control algorithms for different
applications by taking advantage of the feature that the congestion control part of QUIC is
implemented in user mode. We expect different applications to perform efficiently on the
same network.
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Abbreviations

The following abbreviations are used in this manuscript:

TCP Transmission Control Protocol
HOL Head-of-line
QUIC Quick UDP Internet Connection
RTT Round-trip time
DRL Deep reinforcement learning
PBQ Proximal bandwidth-delay quick optimization
BBR Bottleneck bandwidth and round-trip propagation time
PPO Proximal policy optimization
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CWnd Congestion window
IoT Internet of Things
UDP User Datagram Protocol
BDP Bandwidth-delay product
RL Reinforcement learning
PCC Performance-oriented congestion control
QTCP Q-learning TCP
MsQUIC Microsoft QUIC
RFC Request for comments
ACK Acknowledge character
IETF Internet Engineering Task Force
TLS Transport layer security
HTTP Hyper Text Transfer Protocol
AIMD Additive increase multiplicative decrease
C/S Client/server
LEDBAT Low extra delay background transport

References

1. Langley, A.; Riddoch, A.; Wilk, A.; Vicente, A.; Krasic, C.; Zhang, D.; Yang, F.; Kouranov, F.; Swett, I.; Iyengar, J.; et al. The QUIC
Transport Protocol: Design and Internet-Scale Deployment. In Proceedings of the ACM SIGCOMM, Los Angeles, CA, USA, 21–25
August 2017.

2. Jacobson, V. Congestion avoidance and control. ACM SIGCOMM Comput. Commun. Rev. 1988, 18, 314–329. [CrossRef]
3. Sander, C.; Rüth, J.; Hohlfeld, O.; Wehrle, K. Deepcci: Deep learning-based passive congestion control identification. In

Proceedings of the 2019 Workshop on Network Meets AI & ML, Beijing, China, 23 August 2019; pp. 37–43.
4. Chen, X.; Xu, S.; Chen, X.; Cao, S.; Zhang, S.; Sun, Y. Passive TCP identification for wired and wireless networks: A long-short term

memory approach. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference
(IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 717–722.

5. Brown, N.; Sandholm, T. Safe and nested subgame solving for imperfect-information games. Adv. Neural Inf. Process. Syst. 2017,
30, 1–11 .

6. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T. Mastering
chess and shogi by self-play with a general reinforcement learning algorithm. arXiv 2017, arXiv:1712.01815.

7. Winstein, K.; Balakrishnan, H. TCP ex Machina: Computer-Generated Congestion Control. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, Hong Kong, China, 27 August 2013.

8. Dong, M.; Meng, T.; Zarchy, D.; Arslan, E.; Gilad, Y.; Godfrey, P.B.; Schapira, M. PCC Vivace: Online-Learning Congestion Control.
In Proceedings of the 15th Usenix Symposium on Networked Systems Design and Implementation (Nsdi’18) 2018, Renton, WA,
USA, 9–11 April 2018; pp. 343–356.

9. Li, W.; Zhou, F.; Chowdhury, K.R.; Meleis, W. QTCP: Adaptive Congestion Control with Reinforcement Learning. IEEE Netw. Sci.
Eng. 2019, 6, 445–458. [CrossRef]

10. Abbasloo, S.; Yen, C.-Y.; Chao, H.J. Classic Meets Modern: a Pragmatic Learning-Based Congestion Control for the Internet.
In Proceedings of the Annual conference of the ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication, Online, 10–14 August 2020; pp. 632–647.

11. Jay, N.; Rotman, N.; Godfrey, B.; Schapira, M.; Tamar, A. A Deep Reinforcement Learning Perspective on Internet Congestion
Control. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019;
pp. 3050–3059.

12. Clemente L, Seemann M. Quic-go. Available online: https://github.com/lucas-clemente/quic-go (accessed on 3 August 2016).
13. Microsoft. msquic. Available online: https://github.com/microsoft/msquic (accessed on 26 October 2019).
14. Kharat, P.; Kulkarni, M. Modified QUIC protocol with congestion control for improved network performance. IET Commun. 2021,

15, 1210–1222. [CrossRef]
15. Cloudflare. Quiche. Available online: https://github.com/cloudflare/quiche (accessed on 1 February 2021).
16. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017

arXiv:1707.06347.
17. Cardwell, N.; Cheng, Y.; Gunn, C.S.; Yeganeh, S.H.; Jacobson, V. BBR: Congestion-Based Congestion Control: Measuring

bottleneck bandwidth and round-trip propagation time. Queue 2016, 14, 20–53. [CrossRef]
18. Ha, S.; Rhee, I.; Xu, L. CUBIC: A New TCP-Friendly High-Speed TCP Variant. ACM SIGOPS Oper. Syst. Rev. 2008, 42, 64–74.

[CrossRef]
19. Iyengar, J.; Thomson, M. RFC 9000 QUIC: A UDP-Based Multiplexed and Secure Transport. Omtermet Emgomeeromg Task Force; ACM

Digital Library: New York, NY, USA, 2021.
20. Yan, P.; Yu, N. The QQUIC Transport Protocol: Quantum-Assisted UDP Internet Connections. Entropy 2022, 24, 1488. [CrossRef]
21. Kurose, J.F.; Ross, K.W. Computer Networking: A Top-Down Approach, 7th ed.; Pearson FT Press: Upper Saddle River, NJ, USA, 2016.

38



Entropy 2022, 25, 294

22. Floyd, S.; Kohler, E.; Padhye, J. Profile for Datagram Congestion Control Protocol (DCCP) Congestion Control ID 3: TCP-Friendly Rate
Control (TFRC); RFC: Marina del Rey, CA, USA, 2006; pp. 2070–1721.

23. Henderson, T.R.; Lacage, M.; Riley, G.F.; Dowell, C.; Kopena, J. Network simulations with the ns-3 simulator. Sigcomm Demonstr.
2008, 14, 527.

24. Gawlowicz, P.; Zubow, A. ns-3 meets OpenAI Gym: The Playground for Machine Learning in Networking Research. In
Proceedings of the 22nd International Acm Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
Miami Beach, FL, USA, 25–29 November 2019; pp. 113–120. [CrossRef]

25. De Biasio, A.; Chiariotti, F.; Polese, M.; Zanella, A.; Zorzi, M. A QUIC Implementation for ns-3. In Proceedings of the 2019
Workshop on NS-3, University of Florence, Florence, Italy, 19 June 2019.

26. Xu, L.; Harfoush, K.; Rhee, I. Binary increase congestion control (BIC) for fast long-distance networks. In Proceedings of the IEEE
INFOCOM 2004, Hong Kong, China, 7–11 March 2004; pp. 2514–2524.

27. Rossi, D.; Testa, C.; Valenti, S.; Muscariello, L. LEDBAT: the new BitTorrent congestion control protocol. In Proceedings of the
19th International Conference on Computer Communications and Networks, Zurich, Switzerland, 2–5 August 2010; pp. 1–6.

28. Floyd, S.; Henderson, T.; Gurtov, A. The NewReno Modification to TCP’s Fast Recovery Algorithm; RFC: Marina del Rey, CA,
USA, 2004; pp. 2070–1721.

29. Brakmo, L.S.; O’Malley, S.W.; Peterson, L.L. TCP Vegas: New techniques for congestion detection and avoidance. ACM SIGCOMM
Comput. Commun. Rev. 1994, 24, 24–35. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

39



Citation: Yuan, Q.; Lv, M.; Zhou, R.;

Liu, H.; Liang, C.; Cheng, L. Use of

Composite Multivariate Multiscale

Permutation Fuzzy Entropy to

Diagnose the Faults of Rolling

Bearing. Entropy 2023, 25, 1049.

https://doi.org/10.3390/e25071049

Academic Editor: Yanchun Liang

Received: 8 June 2023

Revised: 5 July 2023

Accepted: 10 July 2023

Published: 12 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Use of Composite Multivariate Multiscale Permutation Fuzzy
Entropy to Diagnose the Faults of Rolling Bearing

Qiang Yuan 1,2,*, Mingchen Lv 2,*, Ruiping Zhou 1, Hong Liu 2, Chongkun Liang 2 and Lijiao Cheng 2

1 School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology,
Wuhan 430070, China

2 School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan 316022, China
* Correspondence: yuanqiang@zjou.edu.cn (Q.Y.); mingchenlv@outlook.com (M.L.)

Abstract: The study focuses on the fault signals of rolling bearings, which are characterized by
nonlinearity, periodic impact, and low signal-to-noise ratio. The advantages of entropy calculation in
analyzing time series data were combined with the high calculation accuracy of Multiscale Fuzzy En-
tropy (MFE) and the strong noise resistance of Multiscale Permutation Entropy (MPE), a multivariate
coarse-grained form was introduced, and the coarse-grained process was improved. The Composite
Multivariate Multiscale Permutation Fuzzy Entropy (CMvMPFE) method was proposed to solve
the problems of low accuracy, large entropy perturbation, and information loss in the calculation
process of fault feature parameters. This method extracts the fault characteristics of rolling bearings
more comprehensively and accurately. The CMvMPFE method was used to calculate the entropy
value of the rolling bearing experimental fault data, and Support Vector Machine (SVM) was used for
fault diagnosis analysis. By comparing with MPFE, the Composite Multiscale Permutation Fuzzy
Entropy (CMPFE) and the Multivariate Multiscale Permutation Fuzzy Entropy (MvMPFE) methods,
the results of the calculations show that the CMvMPFE method can extract rolling bearing fault
characteristics more comprehensively and accurately, and it also has good robustness.

Keywords: fault diagnostic method; multivariate multiscale permutation fuzzy entropy; composite
multivariate multiscale permutation fuzzy entropy; rolling bearing

1. Introduction

Rolling bearings are one of the most important components of mechanical equipment,
and their safety and reliability are crucial for the operation of machines and industrial
production. Due to long-term use and complex environmental factors, rolling bearing
failures are inevitable and can lead to shortened remaining useful life or damage and
casualties of property [1–3]. As a result, demand for bearing failure diagnosis is also
increasing. The timely diagnosis of defects and the choice of repairs or replacements are
beneficial in theory and practice for the safety of production [4].

Currently, academics in different countries are conducting extensive research into
rolling bearing problems. Among them, the extraction of the characteristics of fault param-
eters is a key link in the process of using machine learning methods for fault diagnosis
research. Rolling bearing failure signals have features such as nonlinearity, periodic tran-
sience, and low signal-to-noise ratio. It is difficult to apply common methods such as
time domain analysis, frequency domain analysis, and time-frequency domain analysis
to these features. Therefore, it is proposed to utilize the statistical analysis advantage of
entropy in the field of rotating machinery fault diagnosis. Specifically, by calculating the
entropy value of rolling bearing fault data, a more comprehensive and accurate assessment
of the complexity of the fault data can be achieved. This approach effectively reflects the
fault characteristics of the bearings and improves the efficiency of rotating machinery fault
classification. Thus, it serves as a highly effective method for extracting features from
rolling bearing fault data [5,6].
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Zhuang et al. [7], Minhas et al. [8], and Mantas et al. [9] have been successfully
applied to mechanical error diagnosis entropy algorithms such as sample entropy, fuzzy
entropy, and permutation entropy in a series of ways [10]. However, the above-mentioned
research only analyzed fault signals on a single scale, ignoring information implied by
different scale factors. Rohit et al. [11] combined multiscale permutation entropy and
adaptive neuro-fuzzy classifier to extract MPE features and demonstrated the potential of
the proposed method in diagnosing early bearing faults. Multiscale overcomes the defect
that entropy calculations under a single scale condition are not sufficient to analyze time
series comprehensively. However, there are some limitations in processing only a single
index of entropy at multiple scales, ignoring information contained in other coarse-grained
sequences under the same scale factor. Traditional multiscale algorithms are limited by
data length. As the scale increases, entropy errors increase gradually, and the probability of
unknown entropy increases. Mohamed et al. [12] combined the fuzzy entropy of empirical
modal decomposition, principal component analysis, and self-organizing graph neural
network for the fault diagnosis of bearings, and the results not only correctly assessed the
degradation of rolling bearings but also identified highly sensitive defects for different
types of bearing failures. Jin et al. [13] proposed an improved segmented multivariable
multiscale fuzzy entropy as a flawed feature with a rate of up to 99% flaw detection.
Coarse-grained time selects composite coarse-grained time to solve the problem of losing
other coarse-grained sequences under the same scale factor. Furthermore, in complex
composite coarse grains at different scales, only coarse grains based on mean cause a loss of
useful information, resulting in a calculated entropy value that cannot fully and accurately
characterize the complexity of the time series [14]. As a result, the poly coarse-grained form
was proposed to solve the above problems [15–17].

This paper presents a novel method for calculating permutation fuzzy entropy by
combining the high calculation accuracy of fuzzy entropy with the strong noise resistance
of permutation entropy. The proposed method incorporates the concept of sorting sym-
bolization into the calculation process of fuzzy entropy. The permutation fuzzy entropy
calculation method is enhanced through composite multiscale processing to address the
issue of unstable entropy calculation at large scale factors. To ensure the comprehensive
and accurate extraction of information from fault signal samples, the composite multiscale
permutation fuzzy entropy method is utilized. The article introduces the concept of a
multivariate coarse-grained method as a solution to the problem of loss of fault feature
information during entropy calculation. The three coarse-grained forms based on mean,
root, mean square, and variance are presented, and a Composite Multivariate Multiscale
Permutation Fuzzy Entropy (CMvMPFE) method is established. The article then applies
this model to calculate the entropy value of the extraction of fault features for four bearing
states’ data on the public rolling bearing test bench of Case Western Reserve University
in the United States, and the results of the experimental data analysis indicate that the
CMvMPFE model proposed in this article is capable of efficiently extracting four bear-
ing state feature parameters and accurately distinguishing four states. The calculations
demonstrate that this model has a high level of accuracy in entropy calculation and is
also highly resistant to noise. Furthermore, the model takes into account the stability,
continuity, and completeness of the entropy calculation. Overall, the research demonstrates
the effectiveness of CMvMPFE in characterizing bearing states, making it a valuable tool
for studying rolling bearing fault feature extraction and identification. The study covers
the following main topics:

(1) In this paper, a new fault feature extraction entropy calculation method called CMvMPFE
is proposed for signals with non-linear characteristics, periodic impact, and low signal-
to-noise ratio. The method is based on fuzzy entropy and permutation entropy and
introduces the concepts of composite multiscale and multivariate coarse-grained.

(2) The MPFE, CMPFE, MvMPFE, and the proposed CMvMPFE methods are used to
calculate entropy values and extract features from four states of bearing test data. The
extracted feature parameters are divided into test data and training data. The SVM
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model is trained using the training data, and the trained SVM is used to classify and
identify the bearing states of the experimental data. The accuracy of fault identification
is compared and analyzed.

(3) This study utilizes the CMvMPFE proposed in this article to perform fault feature
extraction entropy calculation and analysis of different distribution locations of the
same fault type and different fault depths of the same fault location.

The rest of this paper is organized as follows. Section 2 introduces the composite
multivariate multiscale permutation fuzzy entropy method and basic fuzzy entropy and
permutation entropy methods and introduces the CMvMPFE-SVM fault diagnosis method.
Section 3 introduces the relevant feature extraction results and the CMvMPFE-SVM diagno-
sis results based on the CWRU dataset. Section 4 introduces the robustness analysis results
of the CMvMPFE (rms). Finally, the conclusion is drawn in Section 5.

2. Composite Multivariate Multiscale Permutation Fuzzy Entropy

2.1. Fuzzy Entropy and Permutation Entropy
2.1.1. Fuzzy Entropy

Fuzzy entropy (FE) is an improvement upon sample entropy, where the unit step
function in sample entropy is replaced by the exponential function e−(d/r)n, known as the
fuzzy function. This replacement ensures the continuity of entropy values and maximizes
the self-similarity values of the vectors. It is used to measure the similarity between two
vectors. The definition is as follows:

(1) For a time series u(i) = {u(1), u(2), . . . , u(N)} of length N, the first step is to
determine the vector dimension m. Next, we reconstruct the time series u to obtain a
new sequence:

Xm
i = u(i), u(i + 1), . . . , u(i + m − 1)− u0(i), i = 1, 2, . . . , N − m + 1. (1)

The continuous sequence of m elements starting from the i-th point, where m repre-
sents the embedding dimension, is subtracted by the mean value u0(i), where

u0(i) =
1
m ∑m−1

j=0 u(i + j). (2)

(2) The maximum distance dm
ij between two reconstruction vectors Xm

i and Xm
j is

defined as dm
ij = d

[
Xm

i , Xm
j

]
.

dm
ij = d

[
Xm

i , Xm
j

]
= max

k∈(0,m−1)
|(u(i + k)− u0(i))− (u(j + k)− u0(j))|

i, j = 1, 2, . . . , N − m, i 	= j
(3)

(3) Fuzzy membership function is defined as:

Am
ij = e

[
−(

dm
ij

r
)

n]
. (4)

The fuzzy membership function is an exponential function, with n representing its
boundary gradient and r representing the similarity tolerance, typically taken within the
range of 0.1 to 0.25 times the standard deviation (SD) of the original data.

(4) We define the function as follows:

Cm
i n, r =

∑N−m+1
j=1,j 	=i Am

ij

N − m
; (5)
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Therefore, we obtain

φm(n, r, N) =
∑N−m+1

i=1 Cm
i (n, r)

N − m + 1
. (6)

(5) Similarly, after increasing the vector dimension to m + 1, we can repeat the above
steps to obtain φm+1(n, r, N):

φm+1(n, r, N) =
∑N−m+1

i=1 Cm+1
i (n, r)

N − m + 1
. (7)

(6) Fuzzy entropy is defined as follows:

FE(m, n, r, N) = lnφm(n, r, N)− lnφm+1(n, r, N) (8)

2.1.2. Permutation Entropy

Permutation entropy (PE), similar to FE, was initially designed to quantify the com-
plexity of a time series. However, PE does not consider the specific numerical values of the
time series data. Instead, it introduces the notion of permutations based on comparisons of
adjacent data points [18]. Its definition is as follows:

(1) For a time series of length N: X(i), i = 1, 2, . . . , N, perform phase space reconstruc-
tion to obtain the following time series matrix:

⎡
⎢⎢⎢⎢⎢⎢⎣

x(1) x(1 + t) . . . x(1 + (m − 1)t)
x(2) x(2 + t) . . . x(2 + (m − 1)t)
. . . . . . . . . . . .

x(i) x(i + t) . . . x(i + (m − 1)t)
. . . . . . . . . . . .

x(K) x(K + t) . . . x(K + (m − 1)t)

⎤
⎥⎥⎥⎥⎥⎥⎦, i = 1, 2, . . . , K, (9)

where t is the time delay, usually taken as 1; m is the permutation dimension, generally
taken in the range of 3~7. K = N − (m − 1)t; and each row represents a reconstructed
component, with a total of K reconstructed components.

(2) Sort the m data of each reconstructed component in ascending order; that is,

x(i + (j1 − 1)t) � x(i + (j2 − 1)t) � · · · � x(i + (jm − 1)t). (10)

If x(i + (ji1 − 1)t) = x(i + (ji2 − 1)t), then sort according to the size of the value i.
Thus, each reconstructed vector X(i) is mapped to a new symbolic sequence U(i).

(3) Calculate the probability Pi of each symbol sequence occurring, where ∑ P = 1,
and I = 1, 2, . . . , k, k ≤ m!. There are m! different ways to arrange m different symbols.

(4) By analogy with the definition of information entropy, calculate permutation
entropy as follows:

Hp(m) = −∑k
i=1 PilnPi, (11)

when Pi =
1

m! , each symbol has an equal probability, and at this time, the permutation
entropy H(m) is at its maximum, which is ln(m!).

(5) Normalization. For convenience, the entropy value range is adjusted to 0 to 1
and normalized:

Hp =
H(m)

ln(m!)
. (12)

The variation of the permutation entropy (Hp) reflects and amplifies the local subtle
changes in the time series. A higher value of Hp indicates a higher level of randomness or
complexity in the time series. Conversely, a lower value of Hp suggests a more regular or
predictable behavior in the time series.
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2.2. Permutation Fuzzy Entropy

In this study, we proposed a Permutation Fuzzy Entropy (PFE) algorithm that com-
bines the accuracy of fuzzy entropy with the simplicity and noise resistance of permutation
entropy. The algorithm achieves this by introducing the symbolization idea of permutation
entropy into fuzzy entropy. The first step of the algorithm involves performing a sorting
symbolization on the original time series to generate a new sequence. To obtain the permu-
tation fuzzy entropy of the original sequence, first, create a new sequence that reflects the
immediate trend of the original time series through values between 1 and m!. This ensures
that the trend of the new sequence is consistent with the trend or complexity of the original
time series. Next, calculate its fuzzy entropy using the following specific calculation steps:

(1) According to (9), reconstruct the phase space of a time series of length N: X(i),
i = 1, 2, . . . , N to obtain a time series matrix.

(2) According to (10), sort the m data of each reconstructed component in ascending
order. When j1 < j2, there is x(i − (j1 − 1)t) ≤ x(i − (j2 − 1)t) [19,20]. In this way, after
rearranging, a total of m! symbol sequences are obtained. The m! symbol sequences,
respectively, corresponded to the values between 1 and m!, so that the original time series
X(i) is transformed into a new sequence U(i), with each element taking values between 1
and m!:

U(i) : 1 ≤ i ≤ N − (m − 1)t. (13)

(3) Calculate the fuzzy entropy of the new sequence U(i) [21]; thus, the PFE of the
original sequence can be obtained.

2.3. Composite Multivariate Multiscale Permutation Fuzzy Entropy

Composite Multiscale Permutation Fuzzy Entropy (CMPFE) is a method that combines
coarse-grained sequences and PFE to extend single-scale PFE to multiscale MPFE, which
reflects the complexity of multiscale time series. The method involves extending a single
coarse-graining method to a multivariate coarse-graining method to reduce the loss of
information in time series. The specific process is as follows.

For the new sequence U(i) obtained after sorting and symbolizing as described above,
it is subjected to coarse-graining to obtain the coarse-grained sequence yj(τ):

yj(τ) =
1
τ ∑jτ

i=(j−1)τ+1 xi, 1 � j � N
τ

, (14)

where τ is the scale factor. When τ = 1, the coarse-grained sequence is the original sequence.
N/τ represents the length of the sequence after coarse-graining at different time scales
(τ > 1). The coarse-graining process when τ = 2 is shown in Figure 1.

Figure 1. The coarse-graining process of MPFE when τ = 2.

As the scale factor increases, the length of the coarse-grained sequence decreases.
This highlights the need for a sufficiently long time series to ensure accurate results in
multiscale analysis. However, using MPFE may result in a loss of information from other
coarse-grained forms at the same scale, leading to significant deviations in calculation
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results. Therefore, it is important to enhance the coarse-graining process of MPFE. When
the scale factor is τ, the composite coarse-grained sequence y(τ)k,j is obtained:

y(τ)k,j =
1
τ ∑jτ+k−1

i=(j−1)τ+k xi, 1 � j � N
τ

, 1 � k � τ, (15)

where k is the sliding sequence number at a certain time scale τ. For a single scale factor τ,
only one coarse-grained sequence is generated, while the composite generates τ coarse-
grained sequences by smoothing the moving order. Figure 2 illustrates the coarse-graining
process when τ = 2.

Figure 2. The coarse-graining process of CMvMPFE whe τ = 2.

To calculate the CMPFE, first, calculate the fuzzy entropy of τ coarse-grained sequences
separately at the same scale factor; then, average the τ multiscale permutation fuzzy entropy
values of multiscale permutation.

CMPFE =
1
τ

τ

∑
k=1

PFE (16)

The CMPFE method, based on mean coarse-graining, still has limitations in dealing
with fault signals. To address this issue, a new multivariate coarse-graining method
is proposed. This method utilizes three different forms of coarse-graining: mean, root
mean square (RMS), and variance (VAR). The coarse-graining processes for each form are
as follows.

Coarse graining based on MEAN:

y(τ)k,j =
1
τ ∑jτ+k−1

i=(j−1)τ+k xi. (17)

Coarse-graining based on RMS:

y(τ)k,j =

√
1
τ ∑jτ+k−1

i=(j−1)τ+k x2
i . (18)

Coarse-graining based on VAR:

y(τ)k,j =
1
τ ∑jτ+k−1

l=(j−1)τ+k (xi − x)2, x =
1
τ ∑jτ

i=(j−1)τ+1 xi. (19)

To ensure comprehensive analysis, this study analyzed the Multivariate Multiscale
Permutation Fuzzy Entropy (MvMPFE) and compared it with the CMPFE and CMvMPFE
feature entropy values. The four characteristic entropy values of MPFE, CMPFE, MvMPFE,
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and CMvMPFE are used to extract bearing fault characteristics and compare their effective-
ness. The best representation is then selected as a fault characteristic for fault diagnosis.

2.4. Parameter Seslection

In the CMvMPFE algorithm, there are a total of 7 parameters involved: 1© time delay
τ; 2© permutation dimension m; 3© embedding dimension M; 4© similarity tolerance r;
5© boundary gradient n of the fuzzy function; 6© scale factor τ; and 7© sample length N.

Based on previous studies [22,23], it is suggested to select a dimension of permutation
m ranging from 3 to 7. After conducting experiments, we discovered that the optimal
result was achieved when m = 7 and τ = 1. It is important to note that if r is too large,
valuable information may be lost; while if it is too small, the desired effect may not be
achieved. Typically, r is set to 0.1~0.25 SD (where SD represents the standard deviation
of the original time series). In this paper, the similarity tolerance r = 0.15 SD is used.
Increasing the embedding dimension M includes more information in the reconstruction
process but also increases calculation length and amount. According to [24], M = 2 is used.
The boundary gradient n is a weight in calculating the similarity between fuzzy entropy
vectors. According to [25], it is set to n = 2. The scale factor can be set to a value greater
than 10. To better observe the information on a larger scale, τ = 16 is taken here.

2.5. Diagnostic Process

The method for bearing fault diagnosis based on CMvMPFE (rms) and SVM involves
the following steps:

(1) Signal acquisition, wherein bearing vibration signals of four states are collected,
and three sets of data for each state are selected, with each set containing 2048 data points;

(2) Features extraction, wherein parameters are set, and MPFE, CMPFE, MvMPFE,
and CMvMPFE are calculated for each set of data to construct a feature vector set;

(3) Fault diagnosis, wherein the obtained feature vector set is randomly divided into
training and test sets. The training samples are used to train the SVM classifier model, and
the test set is used to diagnose faults using the trained SVM model, resulting in the fault
diagnosis outcome.

Figure 3 shows the fault diagnosis process.

 
Figure 3. Fault diagnosis process.
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2.6. CMvMPFE Procedure

CMvMPFE-SVM Procedure

load CWRU dataset
Data = data fragment with length 2048
tau = scale factor
for tau = 1 to 16
for i = 1 to tau
Select the ith to end data from data
Roughening of the selected data
Symbolize the coarse-grained data
Calculates the fuzzy entropy of the symbolized data
end for
Average the entropy values of tau
end for
SVM is used for fault diagnosis and the diagnostic accuracy of the extracted en tropy value

features is calculated
Preprocess the data labels and divides the test and training sets
xlsread (feature vector set)
Train = training sample data
Test = Test sample dataBuild a support vector machine
Obtain the highest diagnostic rate of CMvMPFE and output the diagnostic results

3. Verification of Rolling Bearing Fault Feature Extraction Method Based
on CMvMPFE

The proposed method, CMvMPFE, improves the accuracy of signal feature extraction
compared to MPFE and CMPFE. The resulting entropy feature is more stable. The rolling
bearing fault diagnosis method using CMvMPFE and SVM involves the following steps:

Step 1: We selected vibration signal data for four states (inner ring failure (IR), outer
ring failure (OR), rolling element failure (B), and normal (N)) based on the characteris-
tics of the rolling bearing test bench data from Case Western Reserve University in the
United States.

Step 2: To analyze the influence of different entropy calculation methods on the
extraction of fault signal feature samples, the entropy values of vibration signal samples
from four rolling bearing states were calculated using four methods: MPFE, CMPFE,
MvMPFE, and CMvMPFE.

Step 3: The resulting entropy values were then plotted on characteristic curves, with
the scale factor as the abscissa. Through this analysis, we compared and analyzed the
effectiveness of the four entropy calculation methods.

3.1. Data Collection

To validate the proposed method, we utilized it for analyzing experimental data
obtained from the Bearing Data Centre of Case Western Reserve University in the United
States. The experimental test data utilized in this study pertained to rolling bearings.
The test system is illustrated in Figure 4, with the 6205-2RSJEM SKF deep groove ball
bearing being the model used at the drive end. The rolling bearing was subjected to electric
spark machining to create fault points with a diameter of 0.5334 mm (21 mils). Vibration
signals were collected at the drive end in four states: normal (N), inner ring (IR), outer
ring (OR), and rolling element (B), at a speed of 1797 r/min and a sampling frequency of
12 KHz. A total of 80 sets of data were collected, with 20 sets for each state. It is important
to note that the sample length cannot be too short as it can result in large errors in the
multiscale process. To ensure accuracy in our analysis, we set the signal length of each state
to 2048 data points and collected 20 sets of data for each state, resulting in a total of 80 sets.
The resulting time-domain waveforms for normal (N), rolling element failure (B), inner
ring failure (IR), and outer ring failure (OR) can be seen in Figure 5:
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Figure 4. Rolling bearing test system.

Figure 5. Vibration signals of four states.

From Figure 5, the vibration signals of the three fault states exhibit obvious periodic
shocks compared to the normal state. They have a certain degree of regularity, indicating
that the fault signals are more self-similar. In addition, there is a distinguishable pattern
of effects between different fault states. Therefore, entropy can be used to determine the
condition of the bearing. During the process of acquiring signals, noise interference is a
common problem, and the complexity of the signal is often high. Analyzing fault-related
information at different time scales can be difficult, as there may not be clear differences
between the four states on the time-domain waveform. To address this issue, three sets were
randomly selected from each of the four states, and twelve sets of data were analyzed under
different parameter conditions. The outer ring failure was selected in the 3 o’clock direction.

3.2. Signal Characteristic Analysis

Rolling bearings inevitably produce vibrations in both normal and faulty states. The
fault signals of bearings manifest as periodic impact signals, where the occurrence of faults
is reflected in changes in the frequency and amplitude of the original signal. The spectro-
grams of the four state signals are shown in the Figure 6. By analyzing the impulsiveness
and cyclostationarity, we can gain insights into the presence of faults, anomalies, or distur-
bances in a system, aiding in diagnosis, prognosis, and decision-making for maintenance or
corrective actions. Hence, based on the impulsiveness and gyroscopic stability of bearing
vibration signals, Qing Ni et al. [2] proposed a new bearing prognosis scheme. These
characteristics of bearing signals align well with the advantages of entropy calculation in
statistical analysis. In addition, impulsiveness is also a valid bearing failure feature [26].
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Figure 6. Spectrogram of vibration signals of four states.

Impulsiveness
Impulsiveness refers to the characteristic of a signal or system that exhibits abrupt

and sudden changes or impulses. It is associated with the occurrence of instantaneous
and high-amplitude events within the signal. Impulsiveness can manifest as sharp spikes
or spikes with short durations in the time-domain representation of the signal. It is often
characterized by high peak amplitudes and rapid changes in signal values. Understanding
the impulsiveness of signals provides valuable information about the dynamic behavior
and integrity of systems, helping to ensure their reliability, safety, and performance.

Cyclostationarity
Cyclostationarity refers to the property of a signal where statistical properties exhibit

periodic variations over time. The vibration signals of rolling bearings have periodic
changes over time, and this change itself is also periodic, resulting in the generation of
cyclic stability. In cyclostationary analysis, the focus is on studying the cyclostationary
features of a signal, such as cyclic autocorrelation (see Figure 7) and cyclic power spectral
density (see Figure 8).

Figure 7. The cyclic autocorrelation function graph of four state signals.

From Figures 7 and 8, the periodicity of the bearing vibration signal during the cycli-
cally stable process and the power under the main frequency components corresponding
to each state can be reflected.
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Figure 8. The cyclic power spectrum of four state signals.

3.3. Feature Extraction

For the selected 12 sets of data, we calculated their MPFE, CMPFE, MvMPFE and
CMvMPFE, respectively. The entropy curves obtained are shown in Figure 9.

 
(a) (b) 

 
(c) (d) 

Figure 9. Cont.
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(e) (f) 

Figure 9. MPFE, CMPFE, MvMPFE (var), MvMPFE (rms), CMvMPFE (var), and CMvMPFE (rms)
values of sample data: (a) MPFE; (b) CMPFE; (c) MvMPFE (var); (d) MvMPFE (rms); (e) CMvMPFE
(var); (f) CMvMPFE (rms).

The results from Figure 9a indicate that the MPFE curve is disorderly and can only
differentiate between normal and faulty states. On the other hand, the entropy value
curves for the three fault states are mixed and difficult to distinguish. Figure 9b shows that
the CMPFE curve does not show significant improvement compared to the MPFE curve.
However, the entropy value curve remains chaotic, making it challenging to effectively
identify the bearing fault state. Consequently, the feature extraction for identifying faults is
not effective. In comparison to the MPFE and CMPFE curves, the MvMPFE curve depicted
in Figure 9c exhibits an improved ability to differentiate between different state signal
samples. However, it is limited in its capacity to distinguish between four states, indicating
the need for increased granularity and diversified analysis. The MvMPFE curve is able
to distinguish between upper and lower positions to some extent and provides a general
trend. However, the entropy value distribution of rolling bearing vibration signals in the
same state remains relatively dispersed, which limits its effectiveness in extracting rolling
bearing fault characteristics.

The comparison shows that the two CMvMPFE curves maintain the correct position
distribution and trend of entropy values for different bearing state signals. However, the
entropy values for the same state with the scale factor are more concentrated, indicating
that CMvMPFE’s ability to represent faults is enhanced after compounding. It effectively
distinguishes different bearing states and can be used as a rolling bearing fault feature. The
CMvMPFE (var) curve lacks smoothness and information completeness when the scale
factor is τ = 1. On the other hand, the CMvMPFE (rms) curve is optimal in terms of both
curve smoothness and scale information completeness.

3.4. Fault Diagnosis

Based on the analysis, it is evident that CMvMPFE (rms) is an effective method for
accurately extracting fault features of bearings. Therefore, in this study, the CMvMPFE (rms)
of the signal sample was utilized as the input for the fault classifier for identification. A
support vector machine was chosen as the classifier. The study collected 20 sets of vibration
data for each type, with 10 sets randomly selected for training and the remaining 10 sets
for testing. The training samples were used to train the classifier to obtain a classification
model with optimal parameters. The trained classifier was then used to identify faults in
the test samples. The diagnostic results of MPFE, CMPFE, MvMPFE (rms), and CMvMPFE
(rms) methods are shown in Figure 10.
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(a) (b) 

 
(c) (d) 

Figure 10. MPFE, CMPFE, MvMPFE (rms), and CMvMPFE (rms) identification results: (a) MPFE;
(b) CMPFE; (c) MvMPFE (rms); (d) CMvMPFE (rms).

The four states are labeled as follows: 1-N, 2-B, 3-IR, and 4-OR. From Figure 10, it can
be observed that the MPFE model has three groups of misclassifications: two groups of
inner race faults are misclassified as rolling element faults, and one group of outer race
fault is misclassified as a rolling element fault. The CMPFE model exhibits two groups
of misclassifications, where rolling element faults are mistakenly classified as normal.
Similarly, the MvMPFE (rms) model also has two groups of misclassifications, where two
groups of normal states are classified as rolling element faults. On the other hand, the
CMvMPFE model achieves perfect classification results for all the data, indicating that
CMvMPFE (rms) possesses excellent fault representation capability.

Based on Figure 10, it can be inferred that the recognition accuracies of the four models
are 92.5%, 95%, 95%, and 100%, respectively. Similarly, CMvMPFE (rms) achieves the
highest accuracy among the four models, as shown in Table 1.

Table 1. Identification accuracy.

Feature Models Accuracy Rate

MPFE 92.5%
CMPFE 95.0%

MvMPFE (rms) 95.0%
CMvMPFE (rms) 100%

52



Entropy 2023, 25, 1049

Furthermore, considering precision, recall, and F1-Score as evaluation metrics, the
confusion matrix for each of the four models, based on their recognition results, is presented
in Figure 11.

Figure 11. MPFE, CMPFE, MvMPFE (rms), and CMvMPFE (rms) confusion matrix: (a) MPFE;
(b) CMPFE; (c) MvMPFE (rms); (d) CMvMPFE (rms). (Green indicates the number of normal
classified as normal, gray indicates the number of rolling element faults classified as rolling element
faults, red indicates the number of inner ring faults classified as inner ring faults, and blue indicates
the number of outer ring faults classified as outer ring faults).

Since each sample has equal weight, we choose the micro-average metric. From the
confusion matrix, we can obtain the precision (P), recall (R), and F1-score (F1) of the four
models, as shown in Table 2.

Table 2. P, R, and F1 values for the four models.

Model P R F1

MPFE 0.925 0.925 0.925
CMPFE 0.95 0.95 0.95

MvMPFE (rms) 0.95 0.95 0.95
CMvMPFE (rms) 1 1 1

When the confusion matrix is a square matrix, we have P = R = F1. From Table 2,
we can conclude that CMvMPFE (rms) achieves the highest score, indicating the best
performance or superior fault representation capability.

3.5. Comparing Computational Costs

Compared with existing methods, the CMvMPFE method proposed in this paper has
the following advantages in terms of computational cost:

(1) Computational resource requirements: the method in this paper is simple and effective,
with low hardware cost requirements, and the calculation software only MATLAB
2022b required.

(2) Model size cost: The CMvMPFE method has a small model and fast calculation speed.
The calculation time of 12 groups of feature curves is shown in Figure 12. From
Figure 12, it can be seen that the time spent on each calculation is basically consistent,
the program is stable, and the calculation is reliable.

(3) Algorithm complexity and tuning cost: The algorithm of the method proposed in this
paper is simple, and mainly based on the existing fuzzy entropy and permutation
entropy, as well as the concept of composite coarse-graining. The subsequent tuning
cost is small, and the scale factor, permutation dimension, etc., can be optimized and
adjusted. The syntax logic of the algorithm can also be optimized and improved to
further speed up the calculation.
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Figure 12. The calculation time of each feature curve for four states.

4. Robustness Analysis of CMvMPFE (rms)

In the fault diagnosis process, it is essential that the fault features are not only capable
of effectively representing faults but also possess universality and robustness. This enables
the fault extraction feature method to be applied across various scenarios and working
conditions, making it an excellent method for fault diagnosis.

4.1. Feature Signal Extraction of the Same Fault Type at Different Distribution Positions

For verifying the same outer ring fault, we selected feature signals from different
distribution positions and performed composite multi-element multi-scale permutation
fuzzy entropy calculation and analysis on the three positions of 3 o’clock, 6 o’clock, and
12 o’clock. The analysis revealed that the composite multiscale permutation fuzzy entropy
based on root mean square provided the best results. Therefore, we selected CMvMPFE
(rms) as the feature signal extraction method, and the results are presented in Figure 13.

Figure 13. CMvMPFE (rms) of outer ring faults at different distribution positions.
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Based on the findings presented in Figure 13, the entropy value distribution of the
outer ring faults at the 3 o’clock and 6 o’clock positions show a similar trend, where the
values increase first and then decrease with the scale factor. However, the entropy value
distribution of the outer ring fault at the 12 o’clock position follows a different pattern,
where the values decrease first and then increase and decrease with the scale factor. These
results demonstrate that CMvMPFE (rms) is not only capable of distinguishing different
state rolling bearing faults, but also effectively identifies faults at different distribution
positions, i.e., 3 o’clock, 6 o’clock, and 12 o’clock set on the outer ring, indicating the
method’s robustness.

4.2. Extraction of Characteristic Signals at the Same Fault Location at Different Fault Depths

Effective fault characteristics should not only be capable of identifying the presence
of a fault but also distinguishing between different fault states and their distribution at
various locations. Furthermore, it should be able to differentiate between fault depths at
the same location. In this study, vibration signal data of the inner ring of a rolling bearing
at a speed of 1797 r/min were analyzed under five different working conditions: normal
state, and fault depths of 7 mils, 14 mils, 21 mils, and 28 mils. The entropy value of the
characteristic parameters of the five different fault depths were calculated using CMvMPFE
(rms), and the results are presented in Figure 14.

Figure 14. CMvMPFE (rms) of different fault depths of the inner ring at the same speed.

As illustrated in Figure 14, the distribution of entropy values in the normal state
initially increases with the scale factor and then remains stable. On the other hand, the
entropy value trend for inner ring fault characteristics at various depths decreases as the
scale factor increases. The CMvMPFE (rms) method can effectively differentiate between
normal and fault states and even distinguish between different fault depths, resulting in a
satisfactory outcome.

5. Conclusions

(1) This paper introduces a new entropy algorithm called CMvMPFE (rms) for charac-
terizing the state of vibration signals. The proposed algorithm aims to address the
limitations of the incomplete extraction of fault characteristic information under a
single scale and the low calculation accuracy and poor anti-interference of multiscale
fuzzy and multiscale permutation entropy. The experimental results demonstrate
that CMvMPFE (rms) can accurately and completely extract the fault characteristic
information of vibration signals. Additionally, the obtained entropy values exhibit
better consistency, accuracy, and stability.

(2) This paper proposes a new method for diagnosing faults in rolling bearings. The
method is based on CMvMPFE (rms) and SVM, and experimental data are used for
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calculation and comparative analysis. The results demonstrate that the proposed
method outperforms existing methods in terms of fault characteristic extraction and
pattern recognition accuracy.

(3) To verify the robustness and anti-interference ability of the entropy calculation method
proposed by CMvMPFE (rms), in this paper, three situations were analyzed and calcu-
lated. These included the extraction of characteristic signals at different distribution
locations for the same fault type, the extraction of characteristic signals at different
fault depths at the same fault location, and the extraction of fault characteristics at dif-
ferent speeds at the same fault depth. Results indicate that the new method proposed
in this paper exhibits good robustness and strong anti-interference ability.

However, only three coarse-grained forms is still not comprehensive enough, and the
coarse-grained forms need to be expanded.
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Abstract: A recommender system (RS) is highly efficient in extracting valuable information from a
deluge of big data. The key issue of implementing an RS lies in uncovering users’ latent preferences on
different items. Latent Feature Analysis (LFA) and deep neural networks (DNNs) are two of the most
popular and successful approaches to addressing this issue. However, both the LFA-based and the
DNNs-based models have their own distinct advantages and disadvantages. Consequently, relying
solely on either the LFA or DNN-based models cannot ensure optimal recommendation performance
across diverse real-world application scenarios. To address this issue, this paper proposes a novel
hybrid recommendation model that combines Autoencoder and LFA techniques, termed AutoLFA.
The main idea of AutoLFA is two-fold: (1) It leverages an Autoencoder and an LFA model separately
to construct two distinct recommendation models, each residing in a unique metric representation
space with its own set of strengths; and (2) it integrates the Autoencoder and LFA model using a
customized self-adaptive weighting strategy, thereby capitalizing on the merits of both approaches. To
evaluate the proposed AutoLFA model, extensive experiments on five real recommendation datasets
are conducted. The results demonstrate that AutoLFA achieves significantly better recommendation
performance than the seven related state-of-the-art models.

Keywords: data science; deep neural network; Latent Feature Analysis; multi-metric recommender
system; matrix representation

1. Introduction

In the current era characterized by abundant information, individuals are confronted
with a deluge of extensive data [1–4]. Notable examples include the colossal amount of
data generated by Google, reaching the scale of petabytes, and Flickr, which produces
terabytes of data on a daily basis [5,6]. The challenge at hand is to devise an intelligent
system capable of extracting relevant information from these vast datasets [7–9]. One
practical approach to tackle this challenge is the utilization of a recommender system (RS).
RSs play crucial roles in enhancing online services, contributing to both business growth
and improved user experiences [10]. Typically, a user-item rating matrix is employed to
capture user preferences across various items such as news, short videos, music, movies,
and commodities [11]. In this matrix, each row represents a specific user, each column
corresponds to a specific item, and each entry signifies a user’s preference for a particular
item [3]. The key to implementing an RS lies in uncovering users’ latent preferences for
different items based on this user-item rating matrix [12,13].

Numerous approaches have been proposed for implementing an RS. Among them,
the Latent Feature Analysis (LFA) model has gained significant popularity in industrial
applications due to its efficiency and scalability [14]. When applied to a user-item rating
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matrix, the LFA model projects users and items onto a shared low-dimensional Latent
Feature space [15]. By training two low-dimensional matrices using the observed entries
only [16], the LFA model can estimate the missing entries by leveraging these trained
matrices [17–20]. As a result, the LFA model offers advantages in terms of efficiency and
scalability, particularly in industrial contexts. However, it should be noted that the LFA
model is a linear model and may not effectively address complex non-linear relationships
between users and items [21].

In recent times, the rapid advancement of deep learning has led to the widespread
adoption of deep neural networks (DNNs) [22–24] in RSs [25,26]. DNNs have emerged
as a promising approach for capturing complex non-linear relationships between users
and items [27,28]. In the pursuit of implementing RSs, various DNN-based models have
been proposed, with significant emphasis placed on devising sophisticated structures that
can better accommodate user behavior data [29]. However, a notable difference between
DNN-based models and the Latent Feature Analysis (LFA) model lies in their approaches
to handling data [30–34]. While DNN-based models often operate on complete data,
the observed entries within a user-item rating matrix, the reality is that RS-generated
user-item rating matrices tend to exhibit low rating density [35–38]. This means that a
significant portion of the matrix remains empty or contains missing ratings. Consequently,
DNN-based models face challenges in effectively addressing the prevalent data sparsity
issues in RSs [12,13,39,40].

Upon the aforementioned discussions, it becomes apparent that the LFA and DNN-
based models have distinct advantages and disadvantages. Consequently, relying solely on
either the LFA model or the DNN-based model cannot ensure optimal recommendation
performance across diverse real-world application scenarios. To tackle this challenge, this
study proposes a novel hybrid recommendation model called AutoLFA, which combines
Autoencoder [41] and LFA techniques. The main concept behind AutoLFA is two-fold:
(1) It leverages an Autoencoder and an LFA model separately to construct two distinct
recommendation models, each residing in a unique metric representation space with its own
set of strengths, and (2) it integrates the Autoencoder and LFA models using a customized
self-adaptive weighting strategy, thereby capitalizing on the merits of both approaches.
By incorporating elements from both the LFA model and DNN-based models, AutoLFA
can deliver superior recommendation performance across various real-world application
scenarios. This paper contributes to the field in the following ways:

1. It proposes an AutoLFA model that aggregates the merits of both the LFA model and
the DNN-based model by a customized self-adaptive weighting strategy;

2. Theoretical analyses and model designs are provided for the proposed AutoLFA model;
3. Extensive experiments on five real recommendation datasets are conducted to evaluate

the proposed AutoLFA model. The results demonstrate that AutoLFA achieves signif-
icantly better recommendation performance than the related state-of-the-art models.

2. Related Work

Collaborative Filtering (CF) stands as a popular and effective approach for imple-
menting an RS [2]. Its fundamental principle involves utilizing historical user behavior
data to uncover similarities between users and items, thereby predicting users’ potential
preferences for items. Matrix factorization serves as a prominent CF method, which typi-
cally maps the user-item rating matrix into two Latent matrices to explore the similarity
between users and items [12]. Subsequently, the development of the LFA model introduced
a notable distinction. Unlike matrix factorization, the LFA model exclusively trains the
Latent Feature model using observed entries within the user-item rating matrix. As a result,
LFA exhibits high efficiency and scalability, particularly in industrial applications [12,13].
Over time, several sophisticated LFA models have emerged, including those that consider
data characteristics [42], incorporate non-negativity constraints [43], adopt generalized and
fast-converging approaches [44], focus on smooth L1-norm regularization [12], employ prob-
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abilistic methods [45], apply dual loss [13], utilize prediction sampling [46,47], prioritize
confidence-driven techniques [48], incorporate posterior neighborhood regularization [49],
employ ensemble approaches involving multiple spaces and norms [50], explore graph
regularization [51], and embrace deep structured architectures [52]. However, it is essential
to note that the LFA model is inherently shallow and linear in nature. Consequently, it faces
challenges when attempting to capture the deep non-linear relationships between users
and items embedded within complex user-item rating matrices [21].

In recent times, Deep Neural Networks (DNN) have gained significant traction in the
development of Collaborative Filtering (CF)-based RSs due to their powerful non-linear
learning capabilities derived from deep learning structures [53]. DNN-based models
aim to reduce the user-item rating matrix into a low-dimensional space to capture the
similarities between users and items. A comprehensive review of DNN-based RSs was
conducted by Zhang et al. [29]. Various sophisticated DNN-based models have emerged,
including hybrid Autoencoder-based approaches [54], Autoencoder-based methods [41],
multi-task learning-oriented techniques [11], graph neural network (GNN)-based mod-
els [55], neural factorization-based approaches [56], Autoencoders combined with radial
basis function-based methods [57], attentional factorization-based models [58], hybrid deep
models [28], biased Autoencoder-based techniques [21], and convolutional matrix factoriza-
tion approaches [59]. However, it is worth noting that DNN-based models face challenges
in addressing data sparsity problems since they are trained on complete data rather than
solely relying on the observed entries within a user-item rating matrix [13]. Unfortunately,
user-item rating matrices generated by RSs often exhibit very low rating densities.

Notably, although many LFA-based and DNN-based models have been built to achieve
commendable recommendation performance, each approach has its own set of advantages
and disadvantages. In comparison, the proposed AutoLFA is a hybrid recommendation
model that combines the strengths of both Autoencoder and LFA techniques. This combina-
tion is controlled by a customized self-adaptive weighting strategy, ensuring that AutoLFA
leverages the merits of both the LFA and DNN-based models, ultimately leading to superior
recommendation performance across various real-world application scenarios.

3. Preliminaries

Definition 1 (user behavior data): Let M be a set of users, and N be a set of items. The matrix
X ∈ R with |M| rows and |N| columns records the interactions between different users and
items. Here, xmn represents the specific interaction specification of user m on item n. The vector
xm = {xm1, · · · xm|N|} denotes the behavioral data of user m across all items, while each item n can
be represented as a vector xn = {x1n, · · · x|M|n}. A binary matrix B ∈ R with |M| rows and |N|
columns distinguish the observed and unobserved interactions of X:

bmn =

{
1 if xmn observed
0 otherwise

(1)

where bmn denotes the specific entry on B.

Definition 2 (problem): In recommender systems, two primary tasks exist: rating prediction and
ranking prediction. Our proposed model is more suited to rating prediction, which aims to learn a
parametric model denoted as f(·) using observed ratings of X in order to predict the unobserved ones.
The prediction process can be represented as follows:

f (M, N; θ) → X. (2)
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Here, θ represents the parameters of f(·). The objective function of f(·) is to minimize the
empirical risk, expressed as:

L( f ) = ∑
m∈M,n∈M

ε( f (m, n; θ), xmn). (3)

In this Equation, ε(·) denotes the error function that measures the distance between the
predicted output x̂mn from f(m, n; θ) and the true rating xmn.

4. The Proposed AutoLFA

As mentioned above, traditional approaches, such as Latent Feature Analysis (LFA),
offer efficiency and scalability but may not capture complex non-linear relationships. On
the other hand, deep neural networks (DNNs) show potential in capturing non-linear
relationships but face challenges in dealing with data sparsity issues. Inspired by this
finding, we propose AutoLFA with the aim of addressing both the challenge of LFA’s
inability to capture complex non-linear relationships and the difficulty faced by DNN-based
models in handling data sparsity issues. Figure 1 depicts the architecture of our proposed
model, which can be separated into three steps: (1) Feed the user behavior data into the
LFA-based and Autoencoder-based models separately; (2) obtain the predictions of the
unobserved value from these two models; (3) aggregate the predictions of two models with
a self-adaptive ensemble method to obtain final prediction X̂. To illustrate the principle of
Auto-LFA, we provide an example of predicting x22 in Figure 1. The predicted values from
the two predictors differ by 3.5 in the LFA-based model and 2 in the Autoencoder-based
model. These predictions are then weighted to derive the final prediction of 2.9. Next, we
will provide a detailed description of AutoLFA.

Figure 1. The architecture of the proposed AutoLFA model.

4.1. The Latent Feature Analysis-Based (LFA-Based) Model

Given a user behavior matrix X, an LFA-based predictor aims to train two Latent
Feature matrices U of size |M| × d and V of size d × |N| to generate the rank-d ap-
proximation X̂ of X is based on the known entry of X, in which d is much smaller than
min{|M|, |N|}. In this context, the row vectors of U represent user characteristics, while
the column vectors of V represent item characteristics in the Latent Feature space.

We utilize the inner product space with an L2-norm
2

2|| ||L as the Loss function in the

LFA-based model to measure the distance between X and X̂, as demonstrated below:

L(U, V) =
1
2
‖ B  (X − X̂)

2
L2

=
1
2
‖ B  (M − UV)2

L2
(4)
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where  denotes the Hadamard product. According to [12,13], regularization is crucial
in preventing overfitting. By incorporating Tikhonov regularization into Equation (4),
we obtain:

L(U, V) =
1
2
‖ B  (X − UV) ‖2

L2
+

λ1

2
(‖U‖2

L2
+ ‖V‖2

L2
). (5)

Here, λ1 is a hyperparameter that controls the intensity of its regularization penalty. It is
worth noting that since the user cannot fully access all items leading X to be sparse, it is
necessary to expand Equation (5) into a density-oriented form to improve efficiency, as
follows [12,13]:

L(U, V) =
1
2 ∑

xmn∈Xo

(xmn −
d

∑
k=1

umkvkn)

2

+
λ

2 ∑
xmn∈Xo

(
d

∑
k=1

u2
mk +

d

∑
k=1

v2
kn). (6)

Here, umk represents the entry at the u-th row and k-th column of U, and vkn represents the
entry at the k-th row, n-th column of V, and Xo is the observed entries of X. We train the
matrices U and V with the Adam optimizer [16] to obtain better prediction results.

4.2. The Autoencoder-Based Model

We chose the representative I-AutoRec [41] as the Autoencoder-based model. Formally,
when given a user behavior data matrix X, I-AutoRec aims to solve the same problem as
defined in Equation (3). The objective is to minimize the following loss function:

L( f ) = ∑
xn∈M

‖(xn − f (xn; θ)) bn‖2
L2
+

λ2

2
· (‖w1‖2

L2
+ · · ·+ ‖wK‖2

L2
), (7)

where λ2 > 0 represents the regularization factor to prevent I-AutoRec from overfitting. The
parameter set θ = {w1, . . . , wk, b1, . . . , bk} includes the weighted terms wk and the intercept
terms bk of the hidden layers, where k ∈ {1, 2, . . . , K}, bn represents the n-th column of the
index matrix B, and xn corresponds to the item vector xn = {x1n, . . . , x|M|n}.

4.3. Self-Adaptive Aggregation

Ensemble learning is a practical approach to combining multiple models. It is essen-
tial for the base models to exhibit diversity and accuracy [13]. To ensure diversity, we
employ different types of models. Additionally, the representative LFA-based model and
Autoencoder-based I-AutoRec ensure accuracy. As a result, the base models fulfil the two
requirements for ensemble learning. To aggregate the models, we adopt a self-adaptive
aggregation method based on their loss values on the validation set. The underlying
principle is to increase the weight of the t-th base model if its loss decreases in the i-th
training iteration or otherwise decreases. To comprehensively understand this idea, we
will introduce relevant definitions to facilitate theoretical analysis.

Definition 3 (Fractional Loss of Base Models): The fractional loss of the t-th base model at the
i-th iteration, denoted as Flt(i), is computed as follows:

Flt(i) =
√

∑
m∈M,n∈N,(M,N∈Γ)

((xmn − x̂t
mn)× mmn)2/‖T‖0

x̂t
mn =

⎧⎪⎨
⎪⎩

d
∑

k=1
umkνkn if t= 1

f (m, n; θ) if t= 2

, (8)

where ||·||0 represents the L0-norm of a matrix which calculates the number of non-zero elements
of it, and Γ is the validation subset of X.

62



Entropy 2023, 25, 1062

Definition 4 (Cumulative Loss of Base Models): We let Clt(i) be the cumulative loss of Flt

until the i-th training iteration and calculate as follows:

Clt(i) =
i

∑
j=1

Slt(j). (9)

Definition 5 (Ensemble Weights): The ensemble weight Ewt for the t-th base model can be
computed using the following formula:

Ewt(i) =
e−δClt(i)

2
∑

l=1
e−δClt(i)

. (10)

Here, δ represents the equilibrium factor that controls the ensemble weights of the aggregation
during the training process. Considering Definitions 3 to 5, the final prediction of AutoLFA in the
i-th training iteration can be denoted as:

x̂mn =
2

∑
t=1

Elt(i) · x̂t
mn. (11)

4.4. Theoretical Analysis

The loss of the AutoLFA model at the i-th training iteration is represented as Fl(i) and
computed as follows:

Fl(n) =
√

∑
m∈M,n∈N,(M,N∈Γ)

((xmn − x̂mn)× bmn)2/ ‖ Γ ‖0, (12)

where x̂mn is calculated using align (11).

Definition 6 (Cumulative Loss of AutoLFA): The cumulative loss of the AutoLFA model is
represented as Cl(i) and can be expressed as:

Cl(i) =
i

∑
j=1

Fl(j). (13)

Theorem 1. For an AutoLFA model, assuming the Clt(i) of the base models lies between [0, 1], and
if Ewt(i) is set according to align (10) during training, the following alignment holds:

Cl(I) ≤ min
{

Clt(I) | t = 1, 2
}
+

ln 4
δ

+
δI
8

, (14)

where I is the maximum iteration.

By setting δ =
√

1/ ln I in Theorem 1, the upper bound becomes:

Cl(I) ≤ min{Clt(I)|t = 1, 2}+ ln 2
√

ln I +
I

8
√

ln I
, (15)

where ln 2
√

ln I + I
8
√

ln I
is bound by I linearly. This leads us to the following proposition.
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Proposition 1. With δ =
√

1/ ln I, the inequality holds:

Cl(I) ≤ min
{

Clt(I)
∣∣t = 1, 2

}
+ const, (16)

where the limit as I approaches infinity, const = 19.45.

Remark 1. Proposition 1 indicates that Cl(I) is constrained by min{Clt(I) | t = 1, 2} + const,
with δ =

√
1/ ln I. Remarkably, each base variant with a different foundation allows them to

exist in separate metric spaces. The ensemble weight in align (10) ensures that the AutoLFA
model’s loss is always lower than the base models and benefits from the capabilities derived from
the LFA and DNN-based models. Additionally, Proposition 1 is not intended to demonstrate the
accuracy improvement of AutoLFA on the test set but rather to establish that the model possesses the
advantages of the basic models. By showing that the proposed model achieves a smaller loss compared
to each basic model used separately, it indicates that the model retains the respective strengths of the
basic models without compromising its ability to fit the data.

5. Experiments

In this section, we aim to address the following research questions (RQs) through
subsequent experiments:

• RQ 1: Does the proposed AutoLFA model outperform state-of-the-art models in
accurately predicting user behavior data?

• RQ 2: How does the AutoLFA model self-adaptively control the ensemble weights of
its base models during the training process to ensure optimal performance?

• RQ 3: Are the base models of AutoLFA diversified in their ability to represent the
same user behavior data matrix, thereby enhancing the performance of AutoLFA?

• RQ 4: What is the impact of the number of Latent Features and hidden units in the
base models on the accuracy of AutoLFA?

5.1. General Settings

Datasets: For our experiments, we utilize five commonly used user-item datasets,
as summarized in Table 1 These datasets include MovieLens_1M, MovieLens_100k, and
MovieLens_HetRec from the MovieLens website, the Yahoo dataset from the Yahoo website,
and the Douban dataset obtained from an open-access code. Table 1 summarizes the details
of these datasets. The datasets are divided into train–validate–test sets using a ratio of
70%–10%–20%.

Table 1. Properties of all the datasets.

No. Name |M| |N| |HO| Density *

D1 MovieLens_1M 6040 3952 1,000,209 4.19%
D2 MovieLens_100k 943 1682 100,000 6.30%
D3 MovieLens_HetRec 2113 10,109 855,598 4.01%
D4 Yahoo 15,400 1000 365,704 2.37%
D5 Douban 3000 3000 136,891 1.52%

* Density denotes the percentage of observed entries in the user-item matrix.

Evaluation Metrics: The primary objective of representing the user-item matrix is to
predict missing ratings accurately. To assess the prediction accuracy of the tested models,
we employ two evaluation metrics: root mean square error (RMSE) and mean absolute
error (MAE), which are calculated according to [52].

Baselines: Our proposed MMA model is compared against seven state-of-the-art
models: AutoRec (an original model), MF, and FML (Latent Feature Analysis-based models),
and NRR, SparseFC, IGMC, and GLocal-K (deep-learning models). A brief description of
these competing models is provided in Table 2.
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Table 2. Descriptions of all the contrasting models.

Model Description

MF
[10]

A representative LFA-based model for factorizing user-item matrix data in recommender systems.
Computer 2009.

AutoRec
[41] A notable DNNs-based model for representing user-item data in recommender systems. WWW 2015.

NRR
[11]

A DNNs-based multi-task learning framework for rating prediction in recommender systems.
SIGIR 2017.

SparseFC
[27]

A DNNs-based model that reparametrizes weight matrices into low-dimensional vectors to capture
important features. ICML 2018.

IGMC
[55] A GNNs-based model for inductive matrix completion without using side information. ICLR 2019.

FML
[9]

An LFA-based model that combines metric learning (distance space) and collaborative filtering.
IEEE TII 2020.

GLocal-K
[57]

A DNNs-based model for generalizing and representing user-item data in a low-dimensional space with
important features. CIKM 2021.

Implementation Details: For all datasets, we set the learning rate to 0.001 for two
models. We set the number of hidden units for the Autoencoder to 500 and the number of
latent factors for the LFA model 30 to achieve better performance. The final testing results
are obtained from the best-performing model, which exhibits the lowest prediction error
on the validation set during training. The training process terminates when the preset
threshold for training iterations is reached. All experiments are conducted on a GPU server
with two 2.4 GHz Xeon Gold 6240 R CPUs, 376.40 GB RAM, and 4 Tesla V100 GPUs.

5.2. Performance Comparison (RQ. 1)
5.2.1. Comparison of Prediction Accuracy

Table 3 presents the prediction accuracies of all models from D1 to D5. Statistical
tests, including loss/tie/win analysis, the Wilcoxon signed-ranks test [60], and the Fried-
man test [21], are performed to analyze these results. The loss/tie/win analysis identifies
cases where AutoLFA’s RMSE/MAE is higher/same/lower than other competitors. The
Wilcoxon signed-ranks test is a non-parametric pairwise comparison method that deter-
mines if AutoLFA’s prediction accuracy is significantly higher than each comparison model
based on p-values. The Friedman test compares the performance of multiple models across
multiple datasets using F-rank values, with lower values indicating higher prediction
accuracy. The comparative experiment results are normalized for better interpretation
before conducting the Wilcoxon signed-ranks test and the Friedman test. The statistical
analysis results of loss/tie/win, the Wilcoxon signed-ranks test, and the Friedman test are
presented in the third-to-last, second-to-last, and last rows of Table 3. Key observations
from Table 3 are as follows:

• AutoLFA achieves the lowest RMSE/MAE in most cases, with only ten cases of loss
and one case of a tie in comparison. The total count of loss/tie/win cases is 7/1/62.

• All p-values are below the significance level of 0.1, indicating that AutoLFA outper-
forms all competitors in terms of prediction accuracy.

• AutoLFA obtains the lowest F-rank among all participants, confirming its highest
accuracy across all datasets.

These observations highlight that AutoLFA achieves the highest prediction accuracy
for predicting missing user data compared to other models.
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Table 3. Performance comparison of AutoLFA and its competitors.

Dataset Metric MF AutoRec NRR SparseFC IGMC FML Glocal-K AutoLFA

D1
RMSE 0.857 • 0.847 • 0.881 • 0.839 ◦ 0.867 • 0.849 • 0.839 ◦ 0.842
MAE 0.673 • 0.667 • 0.691 • 0.656 ◦ 0.681 • 0.667 • 0.655 ◦ 0.664

D2
RMSE 0.913 • 0.897 • 0.923 • 0.899 • 0.915 • 0.904 • 0.892 • 0.887
MAE 0.719 • 0.706 • 0.725 • 0.706 • 0.722 • 0.718 • 0.697 0.699

D3
RMSE 0.757 • 0.752 • 0.774 • 0.749 • 0.769 • 0.754 • 0.756 • 0.744
MAE 0.572 • 0.569 • 0.583 • 0.567 • 0.582 • 0.573 • 0.573 • 0.562

D4
RMSE 1.206 • 1.172 • 1.227 • 1.203 • 1.133 ◦ 1.176 • 1.204 • 1.167
MAE 0.937 • 0.900 • 0.949 • 0.915 • 0.848 ◦ 0.937 • 0.905 • 0.895

D5
RMSE 0.738 • 0.744 • 0.726 • 0.745 • 0.751 • 0.762 • 0.737 0.737
MAE 0.588 • 0.588 • 0.573 • 0.587 • 0.594 • 0.598 • 0.580 ◦ 0.584

Statistic
loss/tie/win 0/0/10 0/0/10 0/0/10 2/0/8 2/0/8 0/0/10 3/1/6 7/1/62 *

p-value 0.0039 0.0039 0.0039 0.039 0.0195 0.039 0.0977 -
F-rank 5.7 3.75 6.6 3.5 5.9 5.45 3.05 2.05

* The total loss/tie/win cases of AutoLFA. • The cases in which AutoLFA wins the other models in comparison.
◦ The cases in which AutoLFA loses the comparison.

5.2.2. Comparison of Computational Efficiency

Figure 2 depicts the total time required for all participating models to reach the optimal
RMSE on the validation dataset during training. The following observations can be made:

• LFA-based models generally exhibit higher computational efficiency compared to
DNN-based models, as they are trained on observed user behavior data, unlike DNN-
based models.

• Due to their complex data form and architecture, GNN-based models consume sig-
nificant computational resources and time. From Figure 2, it is evident that IGMC
surpasses 3000 s in time costs.

• Except for slightly longer time consumption on dataset D4, AutoLFA’s time con-
sumption falls between LFA-based and GNN-based models. It is slightly higher than
the original Autoencoder-based model but faster than other DNN-based models in
most cases.

Figure 2. The histogram graph of the total time cost to reach the optimal accuracy of all the
participating models.

Based on these observations, we can conclude that the relatively simple structure of
the base models in AutoLFA allows for acceptable total time costs after ensembling two
base models.
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5.3. The Self-Ensembling of MMA (RQ. 2)

To discuss the self-adaptive control of AutoLFA in ensembling different variant models
and ensuring its performance, we monitor the variations of ensemble weights between its
base models.

Monitoring ensemble weight variations: Figure 3 illustrates the changes in ensemble
weights from D1 to D5, yielding the following observations:

• In most cases (e.g., Figure 3a–d), the ensemble weights of the Autoencoder-based
model gradually increase and surpass the LFA-based model as the training progresses
until the base models are fitted.

• In some instances, the LFA-based model’s weight may exceed that of the Autoencoder-
based model. For example, in Figure 3e, the ensemble weight of the LFA-based model
is greater than those of the Autoencoder-based model due to their faster convergence.

   
(a) D1 (b) D2 (c) D3 

  

 

(d) D4 (e) D5  

Figure 3. The changes in ensemble weights during the training process.

In conclusion, based on the experimental results and observations above, we can infer
that AutoLFA effectively leverages different types of models. By aggregating these models
in the ensemble stage, AutoLFA surpasses other state-of-the-art models in predicting
missing ratings with only minor sacrifices in computational resources.

5.4. Distribution of Latent Features of Base Models (RQ. 3)

In order to investigate the diversity of the base models of AutoLFA and their abilities
to predict the user behavior data matrix, we visually analyze the encoder output of the
Autoencoder-based model, which represents the Latent Features of an Autoencoder model,
and the Latent Features of the LFA-based model. The distribution of these Latent Features
for the base models across all datasets is depicted in Figure 4. To analyze the distribution,
we employ a Gaussian function and examine factors such as expectation (μ) and standard
deviation (σ). The measurements of the full width at half maximum (FWHM) and the height
of the Gaussian curve are also presented. From Figure 4, the following observations emerge:

• The distribution of Latent Features in the Autoencoder-based model tends to have
more values concentrated at the extremes (i.e., 0 or 1), as shown in Figure 4f,h,i, while
in the LFA-based model, the distribution tends to follow a normal distribution.

• After encoding, the Autoencoder-based model’s Latent Features are more likely to
exhibit unusually high values within specific ranges. In contrast, in the LFA-based
model, there are no extreme values, as depicted in Figure 4a,c,d.
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• In some cases, the distribution of Latent Features in the Autoencoder-based model
appears to be slightly more uniform compared to the LFA-based model, as illustrated
in Figure 4e,j.

  
(a) LFA-based model on D1 (f) AE-based model on D1 

  
(b) LFA-based model on D2 (g) AE-based model on D2 

  
(c) LFA-based model on D3 (h) AE-based model on D3 

  
(d) LFA-based model on D4 (i) AE-based model on D4 

  
(e) LFA-based model on D5 (j) AE-based model on D5 
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Figure 4. The distribution histogram of LFs of LFA-based and Autoencoder-based models from
D1 to D5.

The observed information above indicates that the Autoencoder-based and LFA-based
models have distinct representation characteristics, allowing AutoLFA to benefit from their
different representation abilities. Consequently, AutoLFA ensures accurate prediction of
missing ratings.
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5.5. Influence of Numbers of Latent Features and Hidden Units to Base Models (RQ. 4)

We further investigate the impact of the number of Latent Features and hidden units
in the base models on AutoLFA. Figure 5 illustrates the RMSE and MAE of AutoLFA as the
number of Latent Features and hidden units varies simultaneously across D1 to D5. The
following observations can be made from Figure 5:

• Increasing the number of Latent Features/hidden units from 2/20 to 20/300 results
in a rapid improvement in the accuracy of AutoLFA. During this range, AutoLFA
substantially increases accuracy without incurring significant computational costs.

• Once the number of Latent Features/hidden units reaches 25/400, the rate of accuracy
improvement becomes less prominent in Figure 5b–d.

   
(a) D1 (b) D2 (c) D3 

  

 

(d) D4 (e) D5  

Figure 5. The line graphs of RMSE and MAE of AutoLFA from D1 to D5 as the number of Hidden
Units and Latent Factors vary.

These observations suggest that setting the number of Latent Features/hidden units
as 30/500 allows AutoLFA to achieve optimal accuracy in most cases without imposing
significant computational resource demands. Although this setting may not yield the
highest accuracy in certain cases, it remains relatively close to the optimal value.

6. Conclusions

This paper proposes a novel hybrid recommendation model by combining Autoen-
coder and LFA models, termed AutoLFA. Its main idea is two-fold: (1) It leverages an
Autoencoder and a Latent Feature Analysis (LFA) model separately to construct two dis-
tinct recommendation models, each residing in a unique metric representation space with
its own set of strengths, and (2) it integrates the Autoencoder and LFA models using a cus-
tomized self-adaptive weighting strategy. As such, the merits of the LFA and DNN-based
models are combined into the AutoLFA model, making it achieve superior recommen-
dation performance under various real-world applications. The experiments investigate
four research questions on five real recommendation datasets. The results verify that the
proposed AutoLFA outperforms several state-of-the-art models. In the future, we plan to
aggregate more variants of LFA-based and deep neural networks (DNNs)-based models to
achieve better recommendation performance.
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Abstract: Feature selection is a crucial process in machine learning and data mining that identifies the
most pertinent and valuable features in a dataset. It enhances the efficacy and precision of predictive
models by efficiently reducing the number of features. This reduction improves classification accuracy,
lessens the computational burden, and enhances overall performance. This study proposes the
improved binary golden jackal optimization (IBGJO) algorithm, an extension of the conventional
golden jackal optimization (GJO) algorithm. IBGJO serves as a search strategy for wrapper-based
feature selection. It comprises three key factors: a population initialization process with a chaotic
tent map (CTM) mechanism that enhances exploitation abilities and guarantees population diversity,
an adaptive position update mechanism using cosine similarity to prevent premature convergence,
and a binary mechanism well-suited for binary feature selection problems. We evaluated IBGJO on
28 classical datasets from the UC Irvine Machine Learning Repository. The results show that the
CTM mechanism and the position update strategy based on cosine similarity proposed in IBGJO can
significantly improve the Rate of convergence of the conventional GJO algorithm, and the accuracy
is also significantly better than other algorithms. Additionally, we evaluate the effectiveness and
performance of the enhanced factors. Our empirical results show that the proposed CTM mechanism
and the position update strategy based on cosine similarity can help the conventional GJO algorithm
converge faster.

Keywords: feature selection; machine learning; classification; chaotic; cosine similarity; golden jackal
optimization

1. Introduction

Machine learning and data mining have expanded in many fields, including active mat-
ter, molecular and materials science, nature language process (NLP) and biomedicine [1–3].
To create more complex machine learning models, many datasets with high-dimensional
feature spaces are created [4,5]. However, as the dimensionality of data increases, there
are more and more redundant features, and it becomes more difficult to train models with
high generalization ability. Therefore, it is necessary to perform feature selection to solve
these problems. Feature selection is a critical step in data mining and machine learning
that involves identifying the most relevant and useful features within a dataset or set of
characteristics. Predictive models can be more effective and precise by eliminating redun-
dant or unnecessary features. This improves classification accuracy and helps algorithms
generalize better to new data, prevent overfitting, and produce more accurate predictions.
In addition to these benefits, feature selection can help uncover hidden relationships within
the data and provide more insightful explanations for predictive models.

Unsupervised Feature Selection methods can be classified into three main approaches,
similar to supervised and semi-supervised feature selection [6,7]. These approaches are
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determined by the feature selection strategy employed, including filter, wrapper, and
embedded methods [8,9]. In particular, filter methods rank the features according to the
calculated scores by using a statistical metric to assign each feature a meaningful score.
However, they might use up more computational resources. In the wrapper method, the
selection subset obtained by the selection algorithm is evaluated using a classifier, and
feature selection is guided by the feedback of the classifier [10]. As a result, the accuracy of
the wrapper method is greater than the filtering method, as indicated by [11]. Furthermore,
feature selection is regarded as a component of the machine learning training phase, which
makes embedding methods a particular case of packing methods [12,13].

Meanwhile, it is possible to think of feature selection as a global group optimization
problem. In particular, some of the original dataset answers the optimization problem,
which can be resolved using exhaustive and heuristic search techniques [14]. In contrast to
heuristic search methods, exhaustive search methods typically have higher computational
costs, especially for high-dimensional datasets [4]. Using meta-heuristic search techniques
may be a more practical way to solve the feature selection problem [14]. Therefore, it is
essential to choose features using efficient methods.

Evolutionary algorithms (EAs) have recently been used to solve feature selection chal-
lenges for the global search capacity of feature selection methods. Numerous researchers
have used various population intelligence techniques to address feature selection issues,
including the cuckoo search (CS) [15], genetic algorithm (GA) [11], particle swarm opti-
mization (PSO) [12], whale optimization algorithm (WOA) [16], sparrow search algorithm
(SSA) [17], harris hawks optimization (HHO) [18,19] and variants of these algorithms, for
dealing with the feature selection problems. For instance, Hegazy et al. [20] attempt to en-
hance the basic SSA structure to increase the solution accuracy, reliability, and convergence
speed. Additionally, Behrouz et al. propose an unsupervised probabilistic feature selection
algorithm using ant colony optimization [21].

The golden jackal optimization (GJO) algorithm is one of the EAs, and research has
demonstrated that it is both efficient and simple to apply [22]. Nevertheless, despite its
extensive use, the conventional GJO algorithm may have certain drawbacks, such as insuffi-
ciently exploiting issue areas. In addition, the no free lunch (NFL) theory contends that no
single algorithm is capable of solving every optimization problem [23]. The conventional
GJO algorithm was created to solve continuous optimization issues. There might be better
choices for feature selection tasks involving binary solution spaces. These circumstances
drive us to improve the conventional GJO to make it better suited for feature selection tasks.

The main contributions of this paper are summarized as follows:

• We aim to simultaneously reduce the number of selected features and improve the
classification accuracy. Specifically, we design a fitness function to achieve these
optimization objectives jointly.

• We propose an improved binary golden jackal optimization algorithm (IBGJO) to
solve the designed fitness function. First, IBGJO introduces a chaotic tent map to
improve the exploitation capability of conventional GJO. Second, a new position-
updating mechanism by cosine similarity is proposed to balance the exploitation and
exploration capabilities of the algorithm. Finally, a binarization strategy is introduced
to transfer the continuous solution space to the binary ones, making it suitable for
dealing with feature selection solutions.

• We conduct various experiments to assess the performance of the proposed IBGJO
with the comparative algorithms on 28 classical UC Irvine (UCI) Machine Learning
Repository datasets in terms of average fitness value, average classification accuracy,
average CPU running time and average number of selected features.

The rest of this paper is organized as follows. Section 2 gives a brief overview of
the related work. Section 3 designs the formulated fitness function of feature selection.
Section 4 gives the details of IBGJO. Section 5 presents the experimental results. Finally,
Section 6 concludes this paper and suggests the future works.

91



Entropy 2023, 25, 1128

2. Related Work

The significance of wrapper-based selection techniques in feature selection optimiza-
tions cannot be overlooked [24,25]. These methods operate on the premise of treating
feature selection as a black box, and employ meta-heuristic algorithms and classifiers to
obtain the optimal subset [26]. Numerous classical meta-heuristic algorithms have under-
gone modifications to tackle the feature selection problem, such as binary bat algorithm
(BBA) [27], bare bones particle swarm optimization algorithm (BPSO) [12], binary gray wolf
optimization algorithm (BGWO) [28], binary gravitational search algorithm (BGSA) [29],
and so on.

In recent times, an increasing number of novel algorithms have been proposed to
enhance the optimization of feature selection problems based on the wrapper approach,
due to their vital significance. For instance, Al-Tashi et al. [30] examine binary optimization
utilizing hybrid grey wolf optimization for feature selection in their paper. To resolve
feature selection issues, a binary version of the hybrid grey wolf optimization (GWO) and
PSO is suggested. In 2019 [31], binary variations of the butterfly optimization algorithm
(BOA) are suggested and utilized to choose the best feature subset for classification pur-
poses. A self-adaptive particle swarm optimization (SaPSO) approach is suggested by
Xue et al., especially for large-scale feature selection [32]. The two-archive multi-objective
artificial bee colony algorithm (TMABC-FS) is a multi-objective feature selection approach
that Zhang et al. investigate to satisfy diverse decision-makers’ criteria [33]. To increase the
predictability of the hospitalization expense model, a novel method proposed based on the
GA for feature selection and parameter optimization of the support vector machine (SVM)
in 2019 [34]. Aimed at finding distinguishing characteristics across several class labels,
Zhang et al. [35] offer an embedded multi-label feature selection approach with manifold
regularization. To develop a more affordable computational model for voice analysis-based
emotion categorization, Dey et al [36] offer a meta-heuristic feature selection (FS) method
employing a hybrid of equilibrium optimization (EO) and golden ratio optimization (GRO)
algorithms. Wang and Chen [37] propose an improved whale optimization algorithm
(CMWOA) that integrates chaotic and multi-swarm techniques to accomplish parameter
optimization and feature selection simultaneously for SVM in 2020. For feature selection
issues in medical diagnosis, a hybrid crow search optimization method integrated with
chaos theory and fuzzy c-means algorithm was proposed in 2020 [38].

Several leading-edge researchers have focused on GJO algorithms for optimizing
feature selection. Initially designed to address continuous problems, GJO requires transfer
functions to convert it into a binary form (BGJO) [39] that can effectively handle feature
selection optimizations. While some studies have made strides in addressing feature
selection challenges across a variety of contexts, it is important to note that the NFL [23]
theorem holds that no method can solve every optimization problem. Furthermore, none of
the aforementioned research has identified optimal subsets of variables across all datasets
tested. Nonetheless, given the strong potential of conventional GJO in this area, our aim
in this study is to incorporate several enhanced factors into conventional GJO with the
objective of improving the efficiency of feature selection optimizations.

3. Problem Formulation

In this study, feature selection aims to minimize the number of chosen features while
improving the classification accuracy, which can be defined as a multi-objective optimiza-
tion problem [40]. To consider the two objectives of optimization, we constructed the
following fitness function:

fFitness = α · Er + β · Fs

Fa
(1)

where Fs and Fa stand for the number of chosen features and the total number of features,
respectively, and Er is the classification error rate of a certain classifier. Additionally, the
weights used to balance these two goals are α and β.
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The formulated feature selection problem has a nonlinear discrete search space with
numerous potential local minimum points. As a result, we suggest the binary IBGJO
algorithm to address the feature selection problem.

4. Proposed Improved Golden Jackal Optimization Algorithm for Feature Selection

The following section provides a succinct overview of the conventional GJO algorithm
and its key principles. Additionally, the conventional GJO algorithm is reviewed before
delving into a comprehensive discussion of the proposed IBGJO algorithm’s formulation.

4.1. Conventional Golden Jackal Optimization

The conventional GJO algorithm is inspired by the hunting behavior of golden jackal
pairs and adopts a swarm-based approach [22]. Figure 1 shows the entire foraging process
of the golden jackal pair. The whole foraging process includes searching for prey, tracking
and surrounding of prey, attacking prey and capturing prey. This section delves into the
mathematical modeling of the conventional GJO algorithm.

(a) Pair of golden jackals. (b) Golden jackals searching for prey.

(c) Tracking and surrounding of prey. (d) Launching an attack. (e) Capturing prey.

Figure 1. The stages of golden jackal pair hunting.

4.1.1. Search Space Formulation

The initial solution of the golden jackal optimization algorithm is also uniformly
distributed on the search space, which is similar to other metaheuristic methods, and its
distribution is as follows:

Y0 = Ymin + rand × (ub − lb) (2)

where Y0 represents the initial randomized population, and ub and lb denote the upper and
lower boundaries of the decision variables. Moreover, rand is a random number that falls
within the range of [0, 1]. The initialization procedure involves generating a foundational
Prey matrix, with the male and female jackals occupying the first and second positions,
correspondingly. The composition of the Prey is illustrated as follows:
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Prey =

⎡
⎢⎢⎣

Y1,1 Y1,2 · · · Y1,d
Y2,1 Y2,2 · · · Y2,d

: : : :
Yn,1 Yn,2 · · · Yn,d

⎤
⎥⎥⎦ (3)

where Yij stands for the i-th prey’s j-th dimension. There are n preys and d variables in
total. The prey position can be regarded as an optimal solution. During optimization, an
objective function is used to assess the fitness of each prey, with the resulting fitness values
being compiled into a matrix:

FOA =

⎡
⎢⎢⎣

f (Y1,1; Y1,2; · · · ; Y1,d)
f (Y2,1; Y2,2; · · · ; Y2,d)

:
f (Yn,1; Yn,2; · · · ; Yn,d)

⎤
⎥⎥⎦ (4)

where f is the objective function, Yij displays the value of the j-th dimension of the i-th
prey, and FOA is the matrix for storing each prey’s fitness. A male jackal (MJ) is the most
suitable, and a female jackal (FMJ) is the second most suitable. The jackal couple finds the
appropriate prey location.

4.1.2. Searching for Prey (Exploration Stage)

With their remarkable capability to detect and pursue prey, jackals can usually track
down food successfully. Nevertheless, there are instances when their attempts fail, and the
potential prey evades capture, prompting the jackals to give up and search for alternative
sources of sustenance. During hunts, the MJ takes the lead, while the FMJ follows closely
behind, and the mathematically modelled jackal pairs hunt as follows:

Y1(t) = YM(t)− E.|YM(t)− rl.Prey(t)| (5a)

Y2(t) = YFM(t)− E.|YFM(t)− rl.Prey(t)| (5b)

where t represents the current iteration, Prey(t) is the vector indicating the prey’s position.
In contrast, YM(t) and YFM(t) are the positions of the MJ and FMJ, respectively. The
revised positions of MJ and FMJ in relation to the prey are represented by Y1(t) and Y2(t).
The prey’s evasive energy E is computed as:

E = E1 ∗ E0 (6a)

E0 = 2 ∗ r − 1 (6b)

E1 = c1 ∗ (1 − (t/T)) (6c)

E0 depicts the beginning state of the prey’s energy, while E1 represents the prey’s declining
energy, where r is any random value between 0 and 1.

T stands for the max iteration number and c1 is a constant value of 1.5. E1 decreases
linearly across iterations, from 1.5 to 0. In Equations (5a) and (5b), the distance between the
jackal and the prey is calculated by |Y(t)− rl.Prey(t)|. Depending on how well the prey
manages to evade the jackal, this distance is either added to or deducted from its present
location. The vector of random numbers rl in Equations (5a) and (5b) represents the Lévy
movement and is based on the Lévy flight. Prey is multiplied by rl to imitate Lévy-style
prey movement, which is comparable to MPA [41] and is computed as follows:

rl = 0.05 ∗ LF(y) (7)
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LF is the Lévy flight function, which is calculated as follows:

LF(y) = 0.01 × (μ × σ)/
(∣∣∣v(1/β)

∣∣∣); σ =

⎛
⎝ Γ(1 + β)× sin(πβ/2)

Γ
(

1+β
2

)
× β ×

(
2

β−1
2

)
⎞
⎠1/β

(8)

where β is constant set to 1.5 and u, v are random values inside of (0, 1). The jackal positions
are updated by averaging Equations (5a) and (5b), which results in the following:

Y(t + 1) =
Y1(t) + Y2(t)

2
(9)

4.1.3. Tracking and Pouncing the Prey (Exploitation Stage)

As prey are pursued by jackals, their evasive energy declines, leading to the eventual
encirclement of the prey by a pair of jackals identified in an earlier phase. Once encircled,
the prey is attacked and consumed by the jackals. The following mathematical model is
a representation of the hunting behaviour of male and female jackals that hunt in pairs,
which is as follows:

Y1(t) = YM(t)− E.|rl.YM(t)− Prey(t)| (10a)

Y2(t) = YFM(t)− E.|rl.YFM(t)− Prey(t)| (10b)

where Prey(t) is the position vector of the prey during the current iteration t, and YM(t)
and YF M(t) indicate the position of the MJ and FMJ. The updated MJ and FMJ positions in
relation to the prey are represented by Y1(t) and Y2(t). Equation (6a) determines the prey’s
evading energy, or E. The jackal positions are updated in accordance with Equation (9).

The purpose of rl in Equations (10a) and (10b) is to allow for arbitrary behavior in
the exploitation stage, favoring exploration and avoiding local optima. Equation (7) is
used to determine rl. In the final iterations, this component aids in avoiding local optima
sluggishness.

As a result of jackals moving closer to the prey, the factor can be carefully considered.
Typically, natural obstacles stand in the way of jackals’ proper and swift movement toward
their prey. This is the goal of rl during the exploitation stage.

4.1.4. Switching from Exploration to Exploitation

The escape energy of the prey is utilized in the conventional GJO algorithm to transi-
tion from exploration to exploitation. Throughout avoiding behavior, prey energy signifi-
cantly decreases. In light of this, Equation (6a) is used to represent the evasive energy. Every
repetition, the initial energy E0 deviates arbitrarily from the range of −1 to 1. The prey
is physically waning when E0 value decreases from 0 to −1, but when E0 value increases
from 0 to 1, it indicates an improvement in the strength of prey.

According to Figure 2, the altering avoiding energy E decreases over the iteration
procedure. When |E| > 1, jackal partners hunt for prey that is exploring in different
areas, and when |E| < 1, the jackal attacks the prey and engages in predation, as depicted
in Figure 1.

To sum up, the conventional GJO search procedure starts with the random generation
of a population of prey (possible solutions). MJ and FMJ hunting couples calculate the
location of the prey during iterations. Each prospective member of the population updates
their separation from the jackal pair. To emphasize exploration and exploitation, the E1
parameter is decreased from 1.5 to 0, accordingly. When E > 1, the hunting pair of golden
jackals strays from their victim, and when E < 1, it gathers at the prey. The conventional
GJO algorithm is finally completed by satisfying an end criterion. Algorithm 1 presents the
conventional GJO algorithm’s pseudo-code.
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(a) i f (E < 1) (b) i f (E > 1)

Figure 2. Attacking and searching for prey.

Algorithm 1 Conventional Golden Jackal Optimization

Require: The size of population Npop, solution dimension Ndim, the max number of itera-
tions Tmax, lower and upper bounds Lb, Ub, the fitness function, the golden jackal GJ,
prey, etc.

Ensure: The best solution found in the search process
1: Initializing the population through random mechanism
2: While (t < Tmax)
3: Calculate the fitness values of preys
4: Y1 = best prey (Male Jackal position)
5: Y2 = second best prey (Female Jackal Position)
6: for (each prey)
7: Update the evading energy E using Equations (6a), (6b) and (6c)
8: Update rl using Equations (7) and (8)
9: if (|E| >= 1) // (Exploration phase)

10: Update the prey position using Equations (5b), (5a) and (9)
11: if (|E| < 1) //(Exploitation phase)
12: Update the prey position using Equations (10a), (10b) and (9)
13: end for
14: t = t + 1
15: end While
16: return Y1

4.2. The Proposed IBGJO

This section introduces the enhancement factors in the proposed IBGJO algorithm,
including the random population initialization strategy based on the Chaotic Tent map, the
optimal location update mechanism based on cosine similarity, and the sigmoid function
used to discretization the continuous solution space problem. Finally, the complexity of the
IBGJO algorithm was analyzed.

4.2.1. Chaotic Tent Map for Initiate Population

In the conventional GJO algorithm, initial population information is generated ran-
domly, which can pose difficulties in retaining population diversity and hinder the algo-
rithm’s effectiveness in achieving the optimal solution. In contrast, the chaotic tent map
(CTM) mechanism is characterized by randomness, ergodicity, and regularity. It can be
used either to generate the initial population or as a perturbation during the optimization
process [37,42]. This approach overcomes the limitation of the algorithm becoming trapped
in a suboptimal local solution, thereby improving its search efficiency compared to the
original algorithm. The CTM mechanism is described as Algorithm 2.

96



Entropy 2023, 25, 1128

Algorithm 2 Chaotic Tent Map (CTM) Mechanism
Define and initialize the related parameters: the size of population Npop, solution dimension
Ndim, chaotic tent map threshold a, low boundaries lb and up boundaries ub, respectively.

1: For i = 1 to Npop
2: For j = 1 to Ndim
3: If rand < a
4: xi,j = rand

a
5: Else
6: xi,j = a · (1 − rand)
7: xi = lb + xi · (ub − lb)
8: return mean of x
9: For i = 1 to Npop

10: For j = 1 to Ndim
11: If xi,j < mean
12: xi,j = 0
13: Else
14: xi,j = 1
15: return x

where a is the tent map’s call threshold, generally set as 0.5. In IBGJO, we use a CTM as the
initialization mechanism. Considering the different dimensions of datasets, we provide
Hillvalley in 28 datasets as an example of population initialization. As shown in Figure 3,
the number of golden jackals in the population is 20, and the dimension is 100. And in
Figure 3, the points labelled as random population initialization are denoted in red, while
the points labelled as CTM population initialization are represented in blue. As can be
seen, compared with the random mechanism, the CTM mechanism has good distribution
and randomness. Therefore, the initialized population is more evenly distributed in the
search space, which is more conducive to the algorithm’s optimization efficiency and
solution accuracy.
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Random and Chaotic Tent map for Initialize Population

Figure 3. Random and CTM mechanisms for initialize population, where red dot represents the
random mechanism, and blue represents CTM mechanism.

4.2.2. Cosine Similarity for Position Update

The conventional GJO algorithm (Algorithm 3) updates the position of jackals by
Equation (9) during the iteration process, equivalent to using the mean as a more optimal
solution. Although this method can ensure the smoothness of jackal position updates, it
has some drawbacks. The most obvious flaw is that it does not consider the correlation
between different features. When there is a correlation between features, using the mean
update mechanism may lead to some features being overemphasized or ignored, thereby
affecting the model’s performance. In addition, when the data distribution is uneven, using
the mean update mechanism may lead to poor prediction performance of the model for
specific data. Therefore, we propose cosine similarity for positions updating of FMJ and MJ.
Compared with the mean update mechanism, the advantage of using cosine similarity as
the update mechanism is that it can consider the correlation between different features, thus
updating model parameters more accurately. In addition, cosine similarity is not affected
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by vector length and data distribution and is suitable for high-dimensional data [43]. The
mathematical model of cosine similarity is defined as follows:

Cossim(Y1(t), Y2(t)) =
Y1(t) · Y2(t)

‖Y1(t)‖‖Y2(t)‖ (11)

where the Y1(t) and Y2(t) represent the position of FMJ and MJ, respectively, and the ·
means dot product. ||Y1(t)|| and ||Y2(t)|| represent the lengths of FMJ and MJ, respectively.
The value range of Cossim(Y1(t), Y2(t)) is [−1, 1]. In this paper, we improve the cosine
similarity between golden jackal pairs, using the absolute value as the weight of position
update, which is defined as follows:

Y(t + 1) = Y1(t)× |Cossim(Y1(t), Y2(t))|+ Y2(t)× (1 − |Cossim(Y1(t), Y2(t))|) (12)

Algorithm 3 Improved Binary Golden Jackal Optimization

Require: The size of population Npop, solution dimension Ndim, the max number of itera-
tions Tmax, lower and upper bounds Lb, Ub, the fitness function, the golden jackal GJ,
prey, etc.

Ensure: The best solution found in the search process
1: Initializing the population through chaotic tent mechanism by Algorithm 2
2: While (t < Tmax)
3: Calculate the fitness values of preys
4: Y1 = best prey (Male Jackal position)
5: Y2 = second best prey (Female Jackal Position)
6: for (each prey)
7: Update the evading energy E using Equations (6a), (6b) and (6c)
8: Update rl using Equations (7) and (8)
9: if (|E| >= 1) // (Exploration phase)

10: Update the prey position using Equations (5b), (5a) and (12)
11: if (|E| < 1) //(Exploitation phase)
12: Update the prey position using Equations (10a), (10b) and (12)
13: end for
14: t = t + 1
15: end While
16: return Y1

4.2.3. Binary Mechanism Sigmoid

The solutions in conventional GJO are continuous and can be updated using the
Equations (5a), (5b), (10a) and (10b) directly. However, the solution space of the formulated
feature selection problem is discrete, which cannot be handled by conventional GJO. There-
fore, it is suitable for feature selection problems by introducing a binary mechanism to map
the solutions from continuous to discrete space. For the solution mappings in this work,
the commonly used S-shaped transfer function [44], i.e., the Sigmoid function, is applied
to conventional GJO and IBGJO. The details of this function are as follows. Moreover, the
binary mechanism is elucidated in Equations (13) and (14) as follows:

xsig =
1

1 + e−x , (13)

xbinary =

{
1, Nrandom ≤ xsig

0, Nrandom > xsig
(14)

where xbinary is the converted binary solution of the feature selection problem, and Nrandom
is a random number used as the threshold. Figure 4 presents the binary mechanism that
we used in this paper.
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Figure 4. Sigmoid Binary transfer function.

4.3. Feature Selection Based on IBGJO

A solution could be viewed as a golden jackal for the formulated feature selection
problem when employing the suggested IBGJO. Consequently, the answer could be stated
as follows:

g = (G1, G2, G3 . . . , GNdim) (15)

where Ndim represents the number of features while Npop is the number of individuals,
thus, the IBGJO population is expressed as follows:

pop =

⎡
⎢⎢⎢⎣

g1
g2
...

gNpop

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

G1
1 G1

2 G1
3 · · · G1

Ndim

G2
1 G2

2 G2
3 · · · G2

Ndim
...

...
...

...
...

GNpop
1 GNpop

2 GNpop
3 · · · GNpop

Ndim

⎤
⎥⎥⎥⎦ (16)

4.4. Computational Complexity

The complexity of the conventional GJO algorithm depends on various factors, includ-
ing the size of the individuals Npop, and the number of iterations Tmax. The exploration
phase or exploitation phase is performed in each iteration. Therefore, the overall time
complexity of conventional GJO consists of the exploration and exploitation phase. Thus,
the overall time complexity of conventional GJO is given as follows:

O(GJO) = O(Tmax(O(exploration) + O(exploration)))

= O(Tmax(Npop · Ndim + Npop · Ndim))

= O(Tmax · Npop · Ndim)

(17)

Since the structure of the proposed IBGJO is similar to conventional GJO, therefore,
the computational complexity of IBGJO is also determined to be O(Tmax · Npop · Ndim). As
a result, for a given feature selection problem, IBGJO does not require noticeably more
computation time than conventional GJO, as both conventional GJO and IBGJO algorithms
possess equivalent computational complexity. Notably, the average execution time of IBGJO
in the experimental results is better than that of conventional GJO; this may be attributed
to the enhanced factors employed in IBGJO, which will help improve the searchability of
IBGJO and promote its fast convergence.
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5. Experiments and Analysis

In this section, we conduct tests to evaluate the performance of the proposed IBGJO
algorithm for dealing with feature selection problems. First, the datasets and setups used
in the experiments are introduced. Then, the test results obtained by IBGJO and several
comparison algorithms are presented and analyzed. Moreover, several other algorithms
are selected for comparison.

5.1. Datasets and Setup

In this work, we provide the datasets used in this article and the parameter settings
for the experiment.

5.1.1. Benchmark Datasets

This section introduces the benchmark datasets used in different algorithms’ evalua-
tions and parameter setups. Due to the fact that the UCI dataset covers multiple fields, such
as Life, Social, Physical and so on, many research works use the UCI dataset as the bench-
mark data. For example, 10, 14, 16 and 20 datasets in the UCI dataset were respectively
selected as experimental data in [21,45–47]. Therefore, the datasets used in our experiments
refer to some datasets in their work and has been expanded to 28 datasets. By using these
well-known datasets, we intended to facilitate comparisons with existing algorithms and
provide a basis for future research. The primary information of these datasets is shown
in Table 1.

Table 1. Benchmark datasets.

No. Dataset Instances Features Classses Attribute Type Area

D1 Arrhythmia 452 278 16 Categorical, Integer, Real Life
D2 Breastcancer 699 10 5 Integer Life
D3 BreastEW 569 30 2 Real Life
D4 Congress 435 16 2 Categorical Social
D5 Connectionist 208 60 2 Real Physical
D6 Dermatology 366 34 6 Categorical, Integer Life
D7 Diabets 768 8 7 Categorical, Integer Computer
D8 German 1000 24 2 Categorical, Integer Business
D9 HeartEW 270 13 2 Categorical, Real Life
D10 Heart-StatLog 270 13 2 Categorical, Real Life
D11 Hillvalley 606 100 2 Real N/A
D12 Ionosphere 351 34 2 Integer, Real Life
D13 Krvskp 3196 36 2 Categorical Game
D14 Low-res-spect 531 102 9 Integer, Real Physical
D15 Lung 72 326 7 Integer Life
D16 Lung-Cancer 32 56 3 Integer Life
D17 Lymphography 148 18 8 Categorical Physical
D18 Parkinsons 1040 26 2 Integer, Real Life
D19 Planning 182 13 2 Real Computer
D20 Sonar 208 60 2 Real Physical
D21 Spect 267 22 2 Categorical Life
D22 Steel-plates 1941 27 7 Integer, Real Physical
D23 Thyroid 7200 21 3 Categorical, Real Life
D24 Tic-tac-toe 958 9 2 Categorical Game
D25 WDBC 569 31 2 Real Life
D26 Wine 178 13 3 Integer, Real Physical
D27 Zoo 101 16 7 Categorical, Integer Life
D28 RNA-Seq 802 16384 4 Real Life
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5.1.2. Experiment Setup

We compare IBMRFO with several other algorithms for feature selection experiments,
including BCS, BGWO, BHBA, BMPA, BGJO, and IBGJO. It should be noted that all
algorithms use the exact binary mechanisms. At the same time, BGJO is a binary version of
the conventional GJO algorithm. IBGJO parameters are based on those of the conventional
GJO algorithm, which has only one adaptive coefficient vector. Unlike other algorithms,
conventional GJO and IBGJO require no additional tuning. The critical parameter choices
for these algorithms are presented in Table 2, with specific values based on prior evidence
of consistently strong performance in the literature for each algorithm, enabling effective
feature comparison.

Table 2. Key parameters of different algorithms.

No. Algorithm Parameters

1 BCS Discovery probability = 0.25, α = 1

2 BGWO α =[2,0]

3 HBA β = 6, C = 2, vec f lag= [1, −1]

4 MPA P = 0.5, FADS = 0.2

5 BGJO e0 = [−1, 1]

6 IBGJO e0 = [−1, 1]

Moreover, because both the proposed IBGJO and these comparison algorithms are meta-
heuristics, the size of the population and the number of iterations directly impact them. To
guarantee that the comparison is fair, the population size and the number of algorithm iterations
must be consistent. The population size and iteration count for each algorithm in this study are
set to 20 and 200, respectively. Additionally, to prevent the experiment’s random bias, each
algorithm is independently performed 30 times in these chosen datasets, as suggested by the
central limit theorem. The experiment’s Intel(R) Core(R) I9-12900KF CPU and 64 GB of RAM
were employed. Using Python 3.9.12 and the KNN [48] (k = 5) based on Euclidean distance
measurement, we put the trials into practice. It is worth noting that a common approach has
been employed in several previous works where 80% of the instances are used for training
purposes, while the remaining instances are reserved for testing. Moreover, in the fitness
function α and β are set to 0.99 and 0.01, respectively.

5.2. Feature Selection Results

This section presents the feature selection results of various algorithms in terms of
average fitness function value, convergence speed, average accuracy, and average CPU
time. Also, the best results are shown in bold.

5.2.1. Performance Evaluation

To explicitly demonstrate the performance of various algorithms, the fitness function
values achieved by those algorithms are shown in Table 3. Table 3 shows the numerical
statistical results of each dataset’s average fitness function value and standard deviation
(std) of different algorithms. For the average fitness values on 28 datasets, BCS, BGWO,
BHBA, BMPA, BGJO, and IBGJO, they achieved the best performance on 3, 3, 5, 7, 9, and
14 datasets, respectively. This demonstrates our conjecture that BGJO may have a good
exploration ability but lacks exploitation performance. Thus, by introducing the improved
factors to conventional BGJO, the proposed improvement factors are practical. Compared
with conventional BGJO, IBGJO has an advantage on average fitness value in 21 datasets.
Moreover, IBGJO obtains the best stds of fitness values in 11 datasets, which means that
IBGJO is more stable than others regarding feature selection.
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Table 3. Average fitness function values obtained by different algorithms.

Datastet
BCS BGWO BHBA BMPA BGJO IBGJO

Fitness Fitness Fitness Fitness Fitness Fitness

D1 0.3526 ± 0.0042 0.3440 ± 0.0080 0.3489 ± 0.0052 0.3491 ± 0.0050 0.3477 ± 0.0041 0.3482 ± 0.0038
D2 0.0268 ± 0.0000 0.0297 ± 0.0029 0.0268 ± 0.0000 0.0268 ± 0.0000 0.0268 ± 0.0000 0.0272 ± 0.0000
D3 0.0452 ± 0.0015 0.0505 ± 0.0054 0.0440 ± 0.0006 0.0433 ± 0.0009 0.0437 ± 0.0006 0.0433 ± 0.0009
D4 0.0274 ± 0.0025 0.0309 ± 0.0045 0.0256 ± 0.0020 0.0259 ± 0.0028 0.0253 ± 0.0020 0.0269 ± 0.0018
D5 0.1427 ± 0.0055 0.1391 ± 0.0131 0.1382 ± 0.0072 0.1383 ± 0.0095 0.1378 ± 0.0070 0.1362 ± 0.0095
D6 0.0165 ± 0.0017 0.0175 ± 0.0032 0.0149 ± 0.0013 0.0169 ± 0.0017 0.0144 ± 0.0017 0.0139 ± 0.0017
D7 0.2557 ± 0.0000 0.2588 ± 0.0042 0.2557 ± 0.0000 0.2557 ± 0.0000 0.2557 ± 0.0000 0.2557 ± 0.0000
D8 0.2523 ± 0.0037 0.2572 ± 0.0076 0.2517 ± 0.0027 0.2535 ± 0.0032 0.2503 ± 0.0030 0.2505 ± 0.0035
D9 0.1629 ± 0.0066 0.1733 ± 0.0104 0.1590 ± 0.0052 0.1587 ± 0.0044 0.1543 ± 0.0040 0.1537 ± 0.0046
D10 0.1463 ± 0.0054 0.1595 ± 0.0238 0.1392 ± 0.0030 0.1414 ± 0.0049 0.1450 ± 0.0025 0.1440 ± 0.0024
D11 0.4113 ± 0.0031 0.3995 ± 0.0064 0.4089 ± 0.0039 0.4076 ± 0.0041 0.4088 ± 0.0042 0.4079 ± 0.0042
D12 0.1374 ± 0.0048 0.1326 ± 0.0112 0.1325 ± 0.0074 0.1267 ± 0.0056 0.1307 ± 0.0058 0.1293 ± 0.0070
D13 0.0361 ± 0.0039 0.0373 ± 0.0053 0.0336 ± 0.0024 0.0379 ± 0.0029 0.0325 ± 0.0025 0.0316 ± 0.0026
D14 0.1170 ± 0.0016 0.1148 ± 0.0035 0.1156 ± 0.0021 0.1154 ± 0.0019 0.1157 ± 0.0023 0.1148 ± 0.0018
D15 0.1316 ± 0.0069 0.1265 ± 0.0171 0.1230 ± 0.0093 0.1224 ± 0.0088 0.1216 ± 0.0098 0.1197 ± 0.0107
D16 0.0386 ± 0.0113 0.0379 ± 0.0116 0.0327 ± 0.0072 0.0312 ± 0.0061 0.0302 ± 0.0006 0.0301 ± 0.0005
D17 0.5696 ± 0.0088 0.5837 ± 0.0167 0.5618 ± 0.0069 0.5639 ± 0.0104 0.5651 ± 0.0055 0.5645 ± 0.0053
D18 0.0988 ± 0.0116 0.1129 ± 0.0071 0.0962 ± 0.0108 0.0879 ± 0.0077 0.0903 ± 0.0104 0.0882 ± 0.0085
D19 0.2752 ± 0.0054 0.2992 ± 0.0233 0.2719 ± 0.0011 0.2749 ± 0.0052 0.2716 ± 0.0000 0.2716 ± 0.0000
D20 0.1147 ± 0.0057 0.1094 ± 0.0137 0.1095 ± 0.0059 0.1092 ± 0.0080 0.1070 ± 0.0081 0.1035 ± 0.0078
D21 0.2766 ± 0.0067 0.2792 ± 0.0121 0.2707 ± 0.0076 0.2736 ± 0.0075 0.2678 ± 0.0071 0.2708 ± 0.0055
D22 0.3193 ± 0.0324 0.4235 ± 0.1062 0.3286 ± 0.0344 0.2953 ± 0.0272 0.2687 ± 0.0126 0.2731 ± 0.0140
D23 0.0276 ± 0.0019 0.0314 ± 0.0049 0.0248 ± 0.0014 0.0252 ± 0.0016 0.0239 ± 0.0014 0.0238 ± 0.0014
D24 0.1523 ± 0.0000 0.1541 ± 0.0098 0.1523 ± 0.0000 0.1523 ± 0.0000 0.1564 ± 0.0000 0.1564 ± 0.0000
D25 0.0462 ± 0.0018 0.0537 ± 0.0082 0.0443 ± 0.0007 0.0437 ± 0.0007 0.0440 ± 0.0006 0.0437 ± 0.0008
D26 0.0517 ± 0.0033 0.0621 ± 0.0128 0.0491 ± 0.0021 0.0494 ± 0.0021 0.0483 ± 0.0005 0.0483 ± 0.0004
D27 0.0534 ± 0.0090 0.0794 ± 0.0180 0.0463 ± 0.0061 0.0512 ± 0.0070 0.0442 ± 0.0047 0.0634 ± 0.0051
D28 0.6865 ± 0.0024 0.6634 ± 0.0045 0.6844 ± 0.0024 0.6826 ± 0.0029 0.6828 ± 0.0030 0.6817 ± 0.0.0027

Due to space restrictions, many such figures are divided into three parts, and each
curve is taken from the 15th test. The convergence rates of various algorithms used in
the optimization processes are shown in Figures 5–7. These figures demonstrate that the
proposed IBGJO exposes the best curves on 20 datasets and has the best convergence
capability compared to all other comparison algorithms. Overall, the proposed IBGJO
performs better than other comparison algorithms for solving the formulated feature
selection problem. Note that the effectiveness of different improved factors is further
verified and discussed in Section 5.3.

5.2.2. Features Selection Accuracy of Algorithms

The feature selection accuracy obtained by various algorithms is shown in Table 4. The
IBGJO algorithm achieves the best average accuracies of feature selection results on 14 datasets.
Moreover, IBGJO obtains better accuracy than conventional BGJO in 21 datasets. Thus, com-
pared with other algorithms, the IBGJO algorithm has the best performance in terms of feature
selection accuracies on these selected datasets. The reason could be that the improved factors
can balance the exploration and exploitation abilities, improving the algorithm’s performance.
However, it is crucial to recognize that achieving optimal results for accuracy and the number
of selected features is a challenging tradeoff that varies across datasets.

Therefore, it can be concluded that the proposed IBGJO algorithm displays superior
overall performance in feature selection across the selected datasets as compared to the
other algorithms according to Tables 4 and 5.
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Figure 5. Convergence rates obtained by different algorithms (Part 1).
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Figure 6. Convergence rates obtained by different algorithms (Part 2).
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Figure 7. Convergence rates obtained by different algorithms (Part 3).

5.2.3. Number of Selected Features

The counts of the selected features from the datasets acquired by various techniques
are displayed in Table 5. Similar to the accuracy results, these tables likewise display
the outcomes of numerical statistics. BMPA obtains the best average number of selected
features in the majority of the datasets (20 of 28), which may be regarded as the best
results in the tests compared to other algorithms. This is shown in Table 5. Meanwhile, the
number of features of IBGJO has an advantage in 15 datasets compared to that of BGJO.
It is important to note that there exists a tradeoff between accuracy and the number of
selected features, making it challenging to achieve optimal results for both objectives in
each dataset.
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Table 4. Classification accuracies and standard deviation achieved by different algorithms.

Datastet
BCS BGWO BHBA BMPA BGJO IBGJO

Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

D1 0.6501 ± 0.0043 0.6598 ± 0.0081 0.6539 ± 0.0053 0.6529 ± 0.0050 0.6551 ± 0.0042 0.6546 ± 0.0038
D2 0.9800 ± 0.0000 0.9771 ± 0.0028 0.9800 ± 0.0000 0.9800 ± 0.0000 0.9800 ± 0.0000 0.9786 ± 0.0000
D3 0.9594 ± 0.0010 0.9540 ± 0.0053 0.9598 ± 0.0004 0.9599 ± 0.0007 0.9598 ± 0.0005 0.9603 ± 0.0009
D4 0.9777 ± 0.0023 0.9748 ± 0.0041 0.9795 ± 0.0015 0.9790 ± 0.0025 0.9797 ± 0.0016 0.9777 ± 0.0015
D5 0.8617 ± 0.0054 0.8662 ± 0.0130 0.8663 ± 0.0073 0.8654 ± 0.0095 0.8668 ± 0.0069 0.8683 ± 0.0098
D6 0.9897 ± 0.0020 0.9900 ± 0.0031 0.9915 ± 0.0015 0.9892 ± 0.0018 0.9921 ± 0.0017 0.9923 ± .0018
D7 0.7468 ± 0.0000 0.7445 ± 0.0043 0.7468 ± 0.0000 0.7468 ± 0.0000 0.7468 ± 0.0000 0.7468 ± 0.0000
D8 0.7518 ± 0.0039 0.7476 ± 0.0077 0.7522 ± 0.0028 0.7497 ± 0.0034 0.7538 ± 0.0032 0.7535 ± 0.0037
D9 0.8394 ± 0.0059 0.8299 ± 0.0098 0.8430 ± 0.0048 0.8427 ± 0.0043 0.8473 ± 0.0038 0.8496 ± 0.0037
D10 0.8567 ± 0.0057 0.8444 ± 0.0235 0.8646 ± 0.0035 0.8617 ± 0.0055 0.8569 ± 0.0018 0.8575 ± 0.0019
D11 0.5907 ± 0.0031 0.6037 ± 0.0062 0.5931 ± 0.0039 0.5937 ± 0.0041 0.5932 ± 0.0042 0.5942 ± 0.0042
D12 0.8661 ± 0.0047 0.8715 ± 0.0106 0.8710 ± 0.0072 0.8758 ± 0.0054 0.8727 ± 0.0055 0.8738 ± 0.0066
D13 0.9699 ± 0.0040 0.9698 ± 0.0052 0.9725 ± 0.0024 0.9678 ± 0.0029 0.9736 ± 0.0024 0.9746 ± 0.0026
D14 0.8881 ± 0.0015 0.8910 ± 0.0035 0.8894 ± 0.0021 0.8887 ± 0.0022 0.8893 ± 0.0022 0.8902 ± 0.0018
D15 0.8733 ± 0.0070 0.8788 ± 0.0174 0.8821 ± 0.0095 0.8817 ± 0.0090 0.8833 ± 0.0100 0.8854 ± 0.0109
D16 0.9667 ± 0.0118 0.9675 ± 0.0115 0.9725 ± 0.0075 0.9733 ± 0.0062 0.9750 ± 0.0000 0.9750 ± 0.0000
D17 0.4302 ± 0.0087 0.4164 ± 0.0165 0.4380 ± 0.0069 0.4353 ± 0.0103 0.4344 ± 0.0056 0.4356 ± 0.0056
D18 0.9050 ± 0.0118 0.8905 ± 0.0072 0.9073 ± 0.0112 0.9155 ± 0.0080 0.9132 ± 0.0109 0.9153 ± 0.0090
D19 0.7275 ± 0.0057 0.7039 ± 0.0233 0.7312 ± 0.0013 0.7279 ± 0.0056 0.7316 ± 0.0000 0.7316 ± 0.0000
D20 0.8903 ± 0.0056 0.8963 ± 0.0136 0.8956 ± 0.0061 0.8949 ± 0.0081 0.8978 ± 0.0081 0.9016 ± 0.0079
D21 0.7265 ± 0.0066 0.7243 ± 0.0118 0.7322 ± 0.0077 0.7291 ± 0.0077 0.7353 ± 0.0071 0.7323 ± 0.0054
D22 0.6826 ± 0.0325 0.5773 ± 0.1076 0.6732 ± 0.0347 0.7060 ± 0.0273 0.7332 ± 0.0125 0.7289 ± 0.0140
D23 0.9765 ± 0.0018 0.9733 ± 0.0047 0.9791 ± 0.0014 0.9787 ± 0.0016 0.9800 ± 0.0012 0.9800 ± 0.0012
D24 0.8563 ± 0.0000 0.8543 ± 0.0103 0.8563 ± 0.0000 0.8563 ± 0.0000 0.8521 ± 0.0000 0.8521 ± 0.0000
D25 0.9585 ± 0.0015 0.9508 ± 0.0082 0.9596 ± 0.0000 0.9596 ± 0.0005 0.9598 ± 0.0004 0.9599 ± 0.0006
D26 0.9528 ± 0.0031 0.9428 ± 0.0125 0.9548 ± 0.0019 0.9546 ± 0.0021 0.9556 ± 0.0000 0.9556 ± 0.0000
D27 0.9524 ± 0.0090 0.9270 ± 0.0183 0.9597 ± 0.0065 0.9539 ± 0.0074 0.9618 ± 0.0050 0.9412 ± 0.0046
D28 0.3130 ± 0.0024 0.3379 ± 0.0046 0.3152 ± 0.0025 0.3160 ± 0.0029 0.3168 ± 0.0030 0.0.3179 ± 0.0028

Table 5. Number of selected features obtained by different algorithms with standard deviation.

Datastet
BCS BGWO BHBA BMPA BGJO IBGJO

Features Features Features Features Features Features

D1 174.07 ± 3.05 200.67 ± 10.34 174.30 ± 8.14 151.73 ± 11.51 175.03 ± 8.78 175.13 ± 7.79
D2 7.00 ± 0.00 7.07 ± 0.73 7.00 ± 0.00 7.00 ± 0.00 7.00 ± 0.00 6.00 ± 0.00
D3 14.93 ± 2.43 14.67 ± 2.61 12.57 ± 1.82 11.03 ± 1.87 11.80 ± 1.69 11.87 ± 1.31
D4 8.60 ± 1.62 9.40 ± 1.43 8.47 ± 1.65 8.13 ± 1.50 8.37 ± 1.50 7.80 ± 1.06
D5 35.20 ± 4.37 39.67 ± 4.11 35.43 ± 3.14 30.37 ± 3.11 35.80 ± 3.78 34.63 ± 3.81
D6 21.63 ± 2.63 25.73 ± 2.14 22.23 ± 1.84 21.07 ± 2.10 22.37 ± 2.04 21.63 ± 2.24
D7 4.00 ± 0.00 4.73 ± 0.73 4.00 ± 0.00 4.00 ± 0.00 4.00 ± 0.00 4.00 ± 0.00
D8 15.83 ± 2.19 17.53 ± 2.00 15.30 ± 1.99 13.73 ± 1.88 15.87 ± 2.13 15.53 ± 1.55
D9 5.10 ± 1.19 6.33 ± 1.30 4.60 ± 0.88 3.80 ± 0.79 4.07 ± 0.58 6.23 ± 1.61
D10 5.70 ± 0.90 7.17 ± 1.04 6.60 ± 0.80 5.90 ± 1.33 4.30 ± 1.21 3.90 ± 0.96
D11 60.43 ± 6.32 71.83 ± 4.31 60.30 ± 4.45 52.93 ± 5.30 60.60 ± 4.59 60.83 ± 4.18
D12 16.53 ± 3.19 18.23 ± 2.78 16.20 ± 2.91 12.70 ± 2.25 15.77 ± 2.45 14.73 ± 3.02
D13 22.63 ± 2.12 26.57 ± 2.49 22.87 ± 2.03 21.57 ± 2.73 22.87 ± 1.80 23.13 ± 2.50
D14 61.77 ± 4.47 68.37 ± 4.31 61.03 ± 4.56 52.53 ± 4.79 60.67 ± 4.95 61.03 ± 5.63
D15 200.27 ± 11.05 208.70 ± 14.09 203.43 ± 8.02 170.80 ± 11.77 197.43 ± 11.71 202.13 ± 8.95
D16 31.53 ± 3.74 32.03 ± 3.82 30.57 ± 2.56 27.13 ± 3.20 30.70 ± 3.14 30.03 ± 2.64
D17 9.97 ± 1.70 10.77 ± 1.61 9.70 ± 1.32 8.77 ± 1.82 9.37 ± 1.38 10.20 ± 1.42
D18 10.87 ± 1.77 10.37 ± 2.01 10.27 ± 1.59 9.87 ± 1.86 10.00 ± 1.89 10.17 ± 1.86
D19 6.57 ± 0.50 7.20 ± 1.42 6.93 ± 0.25 6.60 ± 0.49 7.00 ± 0.00 7.00 ± 0.00
D20 36.80 ± 2.79 40.57 ± 3.88 36.53 ± 3.94 31.17 ± 2.88 34.83 ± 3.27 36.30 ± 3.59
D21 12.83 ± 1.27 13.87 ± 1.61 12.40 ± 1.45 12.00 ± 1.83 12.63 ± 1.50 12.77 ± 1.55
D22 13.67 ± 2.01 13.37 ± 1.99 13.80 ± 2.66 11.33 ± 1.78 12.40 ± 1.71 12.63 ± 1.97
D23 8.97 ± 1.28 10.50 ± 1.20 8.63 ± 1.38 8.60 ± 0.95 8.67 ± 1.32 8.27 ± 1.20
D24 9.00 ± 0.00 8.93 ± 0.36 9.00 ± 0.00 9.00 ± 0.00 9.00 ± 0.00 9.00 ± 0.00
D25 15.67 ± 2.37 15.57 ± 2.42 13.50 ± 2.06 11.57 ± 1.71 12.80 ± 1.61 12.23 ± 1.50
D26 6.47 ± 0.76 7.03 ± 1.02 5.67 ± 0.60 5.83 ± 0.90 5.63 ± 0.67 5.53 ± 0.57
D27 10.00 ± 1.53 11.30 ± 1.49 10.17 ± 1.24 9.00 ± 1.21 10.27 ± 0.74 8.33 ± 1.58
D28 10,531.2 ± 442.10 12,951.73 ± 384.55 10,605.6 ± 75.16 8971.07 ± 365.87 10,548.87 ± 109.24 10,511.37 ± 164.68
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5.2.4. Algorithm Execution Time

The average running time of all algorithms is shown in Table 6. Based on the data
presented in Table 6, it is evident that the IBGJO has an advantage in algorithm execution
time. IBGJO is experimented on 28 datasets and compares the performance of different
feature selection algorithms. Among these 28 datasets, our algorithm converged in the least
average time on 19 datasets. This means that our algorithm has higher efficiency and faster
convergence and can select the best subset of features in less time, thereby improving the
performance of the model. This result shows that our algorithm has higher practicability
and feasibility in practical applications.

Table 6. Average CPU time and standard deviation occupied by different algorithms (/s).

Datastet
BCS BGWO BHBA BMPA BGJO IBGJO

Time Time Time Time Time Time

D1 94.33 ± 0.89 588.37 ± 5.68 92.33 ± 1.22 94.50 ± 1.10 449.13 ± 7.94 115.36 ± 12.48
D2 97.03 ± 1.37 121.97 ± 1.25 97.24 ± 0.08 96.84 ± 0.08 111.89 ± 2.34 79.24 ± 5.11
D3 97.64 ± 2.10 157.52 ± 2.76 98.31 ± 0.73 99.59 ± 1.05 139.61 ± 1.83 124.48 ± 10.02
D4 84.62 ± 0.30 116.75 ± 1.30 85.76 ± 0.54 83.37 ± 0.09 108.24 ± 0.22 72.70 ± 8.21
D5 389.48 ± 70.34 234.38 ± 46.57 423.26 ± 68.75 315.16 ± 75.90 471.42 ± 70.29 85.94 ± 8.25
D6 69.31 ± 0.20 135.53 ± 1.93 71.70 ± 0.84 70.96 ± 0.09 115.97 ± 1.54 89.77 ± 3.83
D7 100.13 ± 0.11 122.23 ± 1.44 102.85 ± 0.77 100.28 ± 0.11 112.59 ± 0.10 97.86 ± 14.02
D8 137.66 ± 0.98 192.54 ± 2.72 140.54 ± 1.04 135.96 ± 0.53 174.12 ± 0.63 125.01 ± 16.93
D9 65.53 ± 1.32 90.74 ± 0.51 65.83 ± 0.22 65.31 ± 0.04 82.29 ± 0.38 65.51 ± 8.20
D10 66.23 ± 0.03 92.81 ± 0.78 67.01 ± 0.05 66.53 ± 0.08 61.54 ± 6.94 58.60 ± 3.28
D11 96.49 ± 0.83 278.54 ± 3.70 97.79 ± 0.89 98.97 ± 0.49 228.26 ± 4.15 94.67 ± 19.25
D12 75.61 ± 1.18 142.31 ± 2.82 75.95 ± 0.54 77.32 ± 0.26 122.87 ± 1.38 104.94 ± 6.15
D13 664.07 ± 6.49 635.02 ± 6.44 578.17 ± 4.53 707.68 ± 25.26 630.96 ± 15.30 507.11 ± 89.94
D14 417.71 ± 32.64 192.66 ± 6.09 242.64 ± 49.37 371.89 ± 77.69 123.42 ± 7.40 120.51 ± 7.98
D15 52.69 ± 0.44 637.31 ± 8.29 51.72 ± 0.54 55.87 ± 0.67 473.91 ± 8.00 64.38 ± 6.19
D16 41.03 ± 0.42 144.48 ± 0.45 41.60 ± 0.05 40.72 ± 0.06 111.79 ± 0.68 28.65 ± 0.09
D17 53.97 ± 0.84 88.93 ± 0.49 54.70 ± 0.36 53.14 ± 0.06 54.37 ± 11.06 58.93 ± 10.84
D18 122.17 ± 21.75 126.41 ± 39.18 117.47 ± 9.85 122.53 ± 29.08 115.12 ± 7.12 75.68 ± 7.61
D19 86.25 ± 20.06 120.99 ± 0.71 107.40 ± 20.81 105.63 ± 21.03 100.11 ± 23.92 56.36 ± 8.58
D20 60.99 ± 0.57 173.97 ± 2.53 60.23 ± 0.06 61.72 ± 0.83 138.64 ± 0.14 71.42 ± 12.01
D21 65.07 ± 0.09 107.92 ± 1.98 65.81 ± 0.10 66.57 ± 0.38 97.23 ± 1.23 50.55 ± 0.75
D22 232.57 ± 22.23 478.93 ± 141.93 249.02 ± 76.10 304.31 ± 39.79 281.79 ± 38.30 78.64 ± 2.29
D23 1181.20 ± 68.71 1204.65 ± 108.30 1204.61 ± 86.49 1178.79 ± 69.78 1186.05 ± 72.15 576.16 ± 77.74
D24 123.54 ± 1.21 155.56 ± 2.17 128.09 ± 0.16 121.07 ± 0.15 119.57 ± 10.52 88.02 ± 0.27
D25 96.00 ± 0.86 159.74 ± 2.28 97.21 ± 0.80 98.47 ± 0.63 138.97 ± 1.37 126.37 ± 5.85
D26 55.53 ± 0.10 81.56 ± 0.62 57.16 ± 0.04 55.83 ± 0.07 50.07 ± 4.24 42.41 ± 0.05
D27 51.53 ± 1.03 79.69 ± 0.18 50.41 ± 0.05 49.34 ± 0.04 70.65 ± 0.14 45.02 ± 2.34
D28 9275.34 ± 1507.77 10,200.77 ± 2736.28 9238.49 ± 1519.09 8351.13 ± 1349.94 3107.74 ± 482.36 6432.33 ± 801.44

5.3. Effectiveness of the Improved Factors

In this section, we conduct experiments to evaluate the effectiveness of the introduced
factors in IBGJO. To observe whether these factors can impove the performance of BGJO,
we use BGJO, BGJO with CTM mechanism (T-BGJO), BGJO with CS (C-BGJO), and BGJO
both with CTM mechanism and CS together (IBGJO) to solve the formulated feature
selection problem, respectively. The tests are also conducted on the nine selected datasets:
Arrhythmia, Diabets, Heart-StatLog, Ionosphere, Krvskp, Lung, Parkinsons, Thyroid and
WDBC. The numerical findings generated by these abovementioned algorithms are listed
in Table 7. Overall, all algorithms obtain the same results on the Diabets dataset. This
may be because this dataset has the lowest solution dimension, making it easy to solve.
Furthermore, the convergence rates of different improvement factors used in optimization
are shown in Figure 8. The remaining outcomes are discussed in detail as follows.
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Table 7. Average results obtained by different improved factors of IBGJO.

D1 D7 D10 D12 D13 D15 D18 D23 D25

BGJO

Accuracy 0.6551 0.7468 0.8569 0.8727 0.9736 0.8833 0.9132 0.9800 0.9598
Feature.N 175.03 4.00 4.30 15.77 22.87 197.43 10.00 8.67 12.80
Fitness 0.3477 0.2557 0.1450 0.1307 0.0325 0.1216 0.0903 0.0239 0.0440
Time 449.13 112.59 61.54 122.87 630.96 473.91 115.12 1186.05 138.97

T-BGJO

Accuracy 0.6543 0.7468 0.8519 0.8728 0.9733 0.8829 0.9102 0.9794 0.9598
Feature.N 173.53 4.00 5.27 14.60 23.07 198.47 9.60 8.47 12.80
Fitness 0.3485 0.2557 0.1507 0.1302 0.0328 0.1220 0.0931 0.0244 0.0440
Time 152.07 93.60 56.72 80.57 607.59 41.60 61.62 539.04 104.90

C-BGJO

Accuracy 0.6553 0.7468 0.8574 0.8727 0.9742 0.8838 0.9122 0.9797 0.9597
Feature.N 174.90 4.00 4.37 15.53 22.60 197.07 10.33 8.57 12.90
Fitness 0.3476 0.2557 0.1445 0.1306 0.0318 0.1212 0.0914 0.0241 0.0441
Time 119.85 100.28 63.25 107.20 503.21 59.36 73.73 550.47 127.88

IBGJO

Accuracy 0.6546 0.7468 0.8575 0.8738 0.9746 0.8854 0.9153 0.9800 0.9599
Feature.N 175.13 4.00 3.90 14.73 23.13 202.13 10.17 8.27 12.23
Fitness 0.3482 0.2557 0.1440 0.1293 0.0316 0.1197 0.0882 0.0238 0.0437
Time 115.36 97.86 58.60 104.94 507.11 64.38 75.68 576.16 126.37

Figure 8. Convergence rate comparisons between conventional BGJO, T-BGJO, C-BGJO and IBGJO
on different datasets.
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5.3.1. Effectiveness of the Chaotic Tent Map (CTM) Mechanism

It can be seen from Table 7 that compared with the traditional BGJO algorithm, the
T-BGJO algorithm does not have many advantages in fitness function value or classification
accuracy. However, T-BGJO could efficiently select a fewer number of features than BGJO.
Therefore, CTM has the advantage in feature number over other improved factors with
cosine similarity that can help IBGJO obtain better performance.

5.3.2. Effectiveness of Cosine Similarity Position Update

In most datasets, especially medium-dimensional datasets, C-BGJO outperforms BGJO
and T-BGJO in terms of accuracy of the fitness function values obtained, as shown in Table 7.
This is due to the ability of the proposed CS position updating system to adaptively modify
the searching scope to enhance BGJO’s exploration capabilities. Note that, compared
with the location update mechanism of the conventional BGJO, the CS requires additional
calculation in each iteration. However, the searchability of IBGJO will be more robust with
CS. Therefore, it could increase the convergence time.

5.3.3. Effectiveness of CTM and CS

It can be seen from Table 7 that the CTM mechanism effectively improves the rep-
resentativeness and diversity of the initial population through a chaotic tent map and
prevents the algorithm from falling into local optimum. Using CS as the jackal position
update strategy in the golden jackal optimization algorithm can speed up the convergence
speed of the algorithm and help IBGJO to converge faster. The combination of the two
enhancement factors can effectively improve the algorithmic performance of BGJO in the
field of feature selection.

To summarize, incorporating the two enhancement factors and binary mechanisms
has effectively elevated the performance of the conventional BGJO algorithm and made it
well-suited for feature selection. Furthermore, these components exhibit a complementary
relationship. For instance, utilizing the CTM mechanism on small-sized datasets may cause
the algorithm to encounter local optima frequently. Therefore, incorporating the CS is
essential to address this problem.

5.4. Limitation of IBGJO

Although the experimental simulation results show that the proposed IBGJO algorithm
outperforms some comparative algorithms, it still has some limitations. One limitation
of the IBGJO algorithm is its sensitivity to parameter settings, requiring careful tuning
for optimal performance. Additionally, the scalability of IBGJO to large-scale or high-
dimensional datasets is a concern, as its computational complexity may become prohibitive.
The generalization of IBGJO to different domains and problem types needs further explo-
ration, as specific data characteristics may influence its performance. Furthermore, the
interpretability of the selected feature subsets may not be guaranteed, as the algorithm
prioritizes classification performance over intuitive feature combinations. The effectiveness
and applicability of IBGJO can be improved by reducing the dimensionality of the feature
set on the original dataset and then using the IBGJO algorithm for feature selection and
optimizing the algorithm parameters.

6. Conclusions

The focus of this research work is to improve the classification performance of machine
learning by addressing the issue of feature selection. An improved version of the BGJO
algorithm, referred to as the IBGJO algorithm, is proposed to solve the feature selection
problem. The IBGJO algorithm incorporates the CTM mechanism, CS location updating
mechanism, and S-shape binary mechanism, designed to improve the performance of
conventional BGJO and make it suitable for feature selection problems. Utilizing these
improved factors allows the algorithm to balance its exploitation and exploration abilities
while maintaining population diversity.
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By using the improved factors, we can balance the development of the algorithm and
its ability to explore different options while maintaining diversity within the population. We
conducted experiments to test our proposed algorithm, IBGJO, on 28 well-known datasets
and found that it outperformed other state-of-the-art algorithms such as BCS, BGWO,
BHBA, BMPA and BGJO in terms of feature selection. We also evaluated the effectiveness
of the improvement factors. We found that they helped to enhance the performance of
the conventional golden jackal optimization algorithm. In the future, we plan to propose
additional ways to update the location of the population and combine them with other
evolutionary algorithms to tackle a broader range of optimization problems.
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Abstract: In the context of escalating global environmental concerns, the importance of preserving
water resources and upholding ecological equilibrium has become increasingly apparent. As a
result, the monitoring and prediction of water quality have emerged as vital tasks in achieving
these objectives. However, ensuring the accuracy and dependability of water quality prediction has
proven to be a challenging endeavor. To address this issue, this study proposes a comprehensive
weight-based approach that combines entropy weighting with the Pearson correlation coefficient to
select crucial features in water quality prediction. This approach effectively considers both feature
correlation and information content, avoiding excessive reliance on a single criterion for feature
selection. Through the utilization of this comprehensive approach, a comprehensive evaluation of
the contribution and importance of the features was achieved, thereby minimizing subjective bias
and uncertainty. By striking a balance among various factors, features with stronger correlation and
greater information content can be selected, leading to improved accuracy and robustness in the
feature-selection process. Furthermore, this study explored several machine learning models for
water quality prediction, including Support Vector Machines (SVMs), Multilayer Perceptron (MLP),
Random Forest (RF), XGBoost, and Long Short-Term Memory (LSTM). SVM exhibited commendable
performance in predicting Dissolved Oxygen (DO), showcasing excellent generalization capabilities
and high prediction accuracy. MLP demonstrated its strength in nonlinear modeling and performed
well in predicting multiple water quality parameters. Conversely, the RF and XGBoost models
exhibited relatively inferior performance in water quality prediction. In contrast, the LSTM model,
a recurrent neural network specialized in processing time series data, demonstrated exceptional
abilities in water quality prediction. It effectively captured the dynamic patterns present in time
series data, offering stable and accurate predictions for various water quality parameters.

Keywords: water quality prediction; comprehensive weight-based approach; feature selection;
machine learning; LSTM

1. Introduction

With the increasing human activities associated with industrialization and urbaniza-
tion development, the water quality of coastal rivers is facing escalating and severe threats
and degradation [1]. Coastal rivers play a critical role in connecting land and ocean, and
the water quality directly impacts the well-being and sustainable development of coastal
ecosystems. Therefore, it is imperative to recognize and address the pressing issue of
deteriorating water quality in coastal rivers [2]. To protect river water quality, maintain
the integrity of coastal ecosystems, and ensure sustainable human development, effective
management and protection measures must be implemented [3]. Advanced technological
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means and scientific methods should be employed to strengthen water quality monitoring,
early warning systems, and governance capabilities [4].

Traditional river water quality monitoring and warning technology relies on theoreti-
cal models that encompass physical, chemical, and biological processes [5]. These models
describe and predict changes in water quality parameters by establishing mathematical
equations. Mechanism models typically consider factors such as water flow velocity, flow
rate, water quality parameters, as well as the transport and transformation of pollutants [6].
Common mechanism models include hydrodynamic models, water quality models, and
ecological models. Traditional water-quality-monitoring and early warning technologies
based on mechanism models offer certain advantages [7]. They are grounded in a pro-
found understanding of hydrology, hydrodynamics, water quality, and ecological processes,
thereby exhibiting high interpretability and reliability [8]. These models enable quantitative
prediction and analysis of water quality variations, facilitating the assessment of the health
of the water environment and the formulation of strategies to improve water quality [9].
However, traditional mechanism models also possess certain limitations. Firstly, they typi-
cally require extensive input data and parameters, including flow rate, rainfall, sediment
characteristics, etc., which entail complex data acquisition and processing [10]. Secondly,
establishing and calibrating the model necessitate deep professional knowledge and a
substantial volume of measured data, demanding high technical expertise [11]. Moreover,
the representation of complex water environments and ecosystems by mechanism models
may involve simplifications and idealizations that fail to fully capture the complexity of
real-world situations.

In recent years, there has been extensive research and applications of machine-learning-
based technology for predicting river water quality [12]. In the context of river water
quality prediction, machine learning utilizes a large amount of historical water quality
data to construct accurate prediction models and enable early warning. This technology
offers several advantages [13]. Firstly, it facilitates real-time and continuous monitoring
and prediction of water quality, enhancing the responsiveness and effectiveness of water
quality management. Secondly, machine learning models can automatically learn and
adapt to the complex relationships within water quality data, resulting in more-accurate
predictions [14]. Additionally, these models can incorporate other environmental factors
and meteorological data, thereby improving the accuracy and reliability of water quality
prediction. However, machine learning methods also face challenges and limitations in
predicting river water quality. Issues such as data quality and missing data can impact the
model’s performance [15]. Moreover, training and parameter selection require a certain
level of professional knowledge and experience. Additionally, the interpretability of the
model is relatively low, making it difficult to interpret the predicted results. Therefore,
further research and improvement are necessary to enhance the effectiveness and reliability
of machine learning in river water quality prediction.

The entropy weighting method is an information-theory-based approach used to eval-
uate the information content and importance of features [16]. By computing the entropy
value of features, the purity and discriminability of the features can be measured [17]. By
combining the Pearson correlation coefficient with the entropy weighting method, the
correlation and information content of the features can be comprehensively considered,
avoiding over-reliance on a single criterion for feature selection. This approach enables a
more-comprehensive evaluation of the contribution and importance of features, reducing
subjectivity and uncertainty. By balancing different factors, features with higher correlation
and greater information content can be selected, thereby improving the accuracy and stabil-
ity of feature selection. Both the Pearson correlation coefficient and the entropy weighting
method are relatively simple and intuitive approaches, making them easy to understand
and interpret [18]. By integrating them into feature selection in machine learning, feature-
selection results with higher interpretability and practicality can be obtained. This enhances
the transparency and reliability of the feature-selection process, helping decision-makers
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understand the importance and contribution of features while improving the performance
and interpretability of the model [19].

The objective of this study was to utilize machine learning techniques, in conjunction
with the entropy weight method and Pearson correlation coefficient method as feature-
selection methods, to achieve high-precision prediction of major water quality indicators,
such as Dissolved Oxygen (DO), Ammonia Nitrogen (NH3-N), Total Phosphorus (TP), and
Total Nitrogen (TN). The models considered in this study encompass Long Short-Term
Memory (LSTM), Support Vector Machine (SVM), Multilayer Perceptron (MLP), Random
Forest (RF), and XGBoost. LSTM, as a variant of the Recurrent Neural Network (RNN)
suitable for processing time series data, exhibited superior performance in predicting
water quality changes. By inputting historical water quality data as time series, the LSTM
model can be used to effectively capture long-term dependencies and accurately forecast
future trends in water quality changes. Furthermore, other machine learning models offer
distinct advantages and applicability in water quality prediction, enabling the selection of
appropriate models based on specific requirements.

2. Materials and Methods

2.1. Data Acquisition

The data used for this research were sourced from the China Environmental Monitor-
ing General Station, specifically from the monitoring point at Shijiaoju Section in the Pearl
River Basin. The dataset comprises water quality measurements collected at four-hour
intervals, covering the time period from 8 November 2020 to 28 February 2023. In total,
there are 5058 samples in this dataset, encompassing 9 water quality parameters: Ammonia
Nitrogen (NH3-N), water Temperature (Temp), pH, Dissolved Oxygen (DO), the perman-
ganate index (KMnO4, Total Phosphorus (TP), Total Nitrogen (TN), Conductivity (Cond),
and Turbidity (Turb).

2.2. Data Preprocessing

Data preprocessing is a vital step in machine learning, encompassing various tasks
such as handling outliers, missing values, and data normalization [20]. For this study,
historical monitoring data were collected, including water quality indicators such as tem-
perature, pH, the potassium permanganate index, dissolved oxygen, ammonia nitrogen,
total phosphorus, total nitrogen, turbidity, and conductivity. Firstly, outlier detection was
performed on the data. Outliers can arise due to sensor malfunctions, human errors, or
other factors, resulting in abnormal data points. Statistical analysis is commonly employed
for outlier detection, involving calculations of the mean and standard deviation to identify
values significantly deviating from the mean. If outliers are detected, they can be treated
as missing values or corrected based on the specific circumstances [21]. Next, the focus
was placed on addressing missing values in the data. Linear interpolation was utilized in
this study to fill in the missing values. Linear interpolation estimates the missing values
by considering the linear relationship between known data points. Specifically, for time
series data, the observed values of the preceding and succeeding time points are used to
perform linear interpolation and estimate the missing values. Suppose we want to estimate
the missing value x between the known data points x1 and x2, corresponding to observed
values y1 and y2, respectively. The linear interpolation formula for estimating the value y is
as follows:

y = y1 + (x − x1)
y2 − y1

x2 − x1
(1)

Here, (x − x1) represents the offset of x relative to x1 and ((y2 − y1)/(x2 − x1)) repre-
sents the slope from x1 to x2. By multiplying the offset by the slope and adding it to y1, the
missing value y can be estimated [22].

The advantages of linear interpolation include its simplicity, ease of use, and the ability
to produce reasonably accurate estimation results in certain cases [23]. However, linear
interpolation also has limitations. Firstly, it assumes a linear relationship between data
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points, which may not hold true in all situations. Secondly, it requires a high density of
data points, and sparse or unevenly distributed data may lead to inaccurate estimates.
Additionally, linear interpolation cannot capture nonlinear trends or special patterns in
the data [24]. Therefore, when applying linear interpolation, it is crucial to assess the
characteristics and validity of the data within the specific context and consider the suitability
of alternative interpolation methods [25].

Lastly, data normalization will be performed to eliminate dimensional differences
among different water quality indicators [26]. The chosen method was min–max normal-
ization, which linearly transforms the data to a specific range, typically [0, 1] or [−1, 1],
ensuring that feature variables have similar scales. Min–max normalization can be calcu-
lated using the following formula:

XN =
X − Xmin

Xmax − Xmin
(2)

Here, XN represents the normalized value, X represents the original value, Xmin
represents the minimum value and Xmax represents the maximum value. This formula
maps the original data to a range between 0 and 1.

By following these data preprocessing steps, we can obtain cleaned and prepared data
suitable for the subsequent feature selection, training, and prediction of machine learning
models. This process will enhance the accuracy and stability of the models and provide a
reliable foundation for predicting river water quality.

2.3. Feature Variable Selection
2.3.1. Entropy Weighting Method

The entropy weight method is a technique employed to determine the weights of
multiple indicators. It utilizes the concept of entropy to measure the uncertainty or diversity
of indicators by computing their information entropy [27]. This method finds widespread
application in multi-indicator decision-making, evaluation, and ranking, aiding in address-
ing challenges associated with trade-offs and optimization among multiple indicators [28].
The steps involved in calculating weights using the entropy weighting method based on
information entropy are as follows:

• Calculate information entropy: Compute the information entropy for each indicator.
The information entropy quantifies the uncertainty or diversity of an indicator, with
higher entropy values indicating greater diversity. The calculation formula for the
information entropy is as follows:

H(X) = −∑(Pi × log2 Pi) (3)

Here, H(X) represents the information entropy of the indicator and Pi represents the
normalized value of the indicator.

• Calculate information weight: Determine the information weight for each indicator
based on its information entropy. The calculation formula for the information weight
is as follows:

Wi = (1 − H(Xi)) (4)

Here, Wi denotes the information weight of indicator Xi and H(Xi) represents the
information entropy of indicator Xi.

The information weight reflects the level of information contained within an indicator.
A higher information weight signifies a greater impact of the indicator on the decision
outcome. Hence, information weights can be utilized to assess the significance of indicators
and their contributions to the decision-making process. By calculating the information
entropy and information weights for each indicator, a weight vector can be derived for
subsequent tasks such as multi-indicator decision-making, evaluation, or optimization [29].
Incorporating information weights assists decision-makers in making informed trade-offs
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and selections among indicators, thus enhancing the accuracy and credibility of decisions.
However, it is essential to recognize that information weights solely consider the diversity
and uncertainty of indicators, disregarding their interrelationships. Therefore, in prac-
tical applications, it is crucial to consider additional methods or domain knowledge to
comprehensively assess the indicators [30].

According to the analysis presented in Table 1 and Figure 1, several variables stand
out with relatively higher weights. Specifically, NH3-N, DO, KMnO4, TP, Cond, and
Turb exhibit higher weights compared to other variables. Among these, NH3-N, Cond,
and Turb emerge as particularly influential indicators, indicating their significance and
stronger influence on the decision outcome. Conversely, Temp, pH, and TN display
relatively lower weights, implying their diminished importance and weaker impact on the
decision outcome.

Table 1. Results of information weight calculation using entropy weight method.

Variables Mean
Standard
Deviation

CV Coefficient 1 Weight 2

NH3-N 0.484 0.464 0.958 0.232
Temp 24.504 4.763 0.194 0.047

pH 7.554 0.540 0.072 0.017
DO 7.887 3.642 0.462 0.112

KMnO4 3.715 1.591 0.428 0.104
TP 0.110 0.047 0.427 0.103
TN 3.274 0.672 0.205 0.050

Cond 1264.521 979.968 0.775 0.188
Turb 49.761 30.356 0.610 0.148

1 CV coefficient = standard deviation/mean. 2 The weights are calculated by normalizing the CV coefficients.

Figure 1. Information weight distribution map (according to Table 1).

2.3.2. Pearson Correlation Coefficient Method

The Pearson correlation coefficient is a statistical measure utilized to evaluate the
linear correlation between two continuous variables [31]. It provides information about
the strength and direction of the linear relationship between the variables, making it
a commonly employed method for feature variable selection and evaluation [32]. The
coefficient, denoted as “r”, ranges from −1 to 1. A value of r = 1 indicates a perfect positive
linear relationship, while r = −1 indicates a perfect negative linear relationship. A value of
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r = 0 suggests no linear relationship, indicating no correlation between the variables. The
calculation formula is as follows:

R =
∑(Xi − Xmean)(Yi − Ymean)

NXstdYstd
(5)

Here, R represents the Pearson correlation coefficient, Xi and Yi denote the values of the
variables in the observation matrix, Xmean and Ymean represent the means of the variables,
Xstd and Ystd represent the standard deviations of the variables, and N denotes the number
of observations in the sample.

According to Figure 2, significant correlation coefficients were observed between NH3-
N and pH, DO, KMnO4, TP, and TN, indicating a substantial relationship. DO exhibited
significant correlation coefficients with NH3-N, temperature, pH, KMnO4, TP, conductivity,
and turbidity, indicating significant relationships. Similarly, TP showed significant cor-
relation coefficients with NH3-N, temperature, pH, DO, KMnO4, TN, conductivity, and
turbidity, indicating significant relationships. Likewise, TN exhibited significant correla-
tion coefficients with NH3-N, temperature, pH, KMnO4, TP, conductivity, and turbidity,
indicating significant relationships.

Figure 2. Visualization of Pearson correlation.

2.3.3. Comprehensive Weight Method

The comprehensive weight method is an approach for selecting feature variables that
combines the Pearson correlation coefficient method and the entropy weight method. It
aims to evaluate and select feature variables by calculating their comprehensive weights,
which are obtained by multiplying the Pearson correlation coefficient value of each fea-
ture variable with its corresponding information weight. The formula for calculating the
comprehensive weight is as follows:

VCW = VPCC × VIW (6)

Here, VCW represents the comprehensive weight, VPCC represents the Pearson correlation
coefficient, and VIW represents the information weight. A higher comprehensive weight
indicates a greater importance and relevance of the feature variable in predicting the
target variable.

The comprehensive weight method offers the advantage of considering both linear
relationships and importance factors, resulting in a more-comprehensive evaluation and
selection of feature variables. This, in turn, improves the accuracy and stability of the
feature-selection process. Based on the comprehensive weight calculation results presented
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in Table 2 and Figure 3, the following input variables were selected for predicting the
respective target variables:

• Dissolved Oxygen (DO) prediction: DO, NH3-N, Temp, pH, KMnO4, TP, Cond,
and Turb;

• Ammonia Nitrogen (NH3-N) prediction: NH3-N, DO, KMnO4, TP, and TN;
• Total Nitrogen (TN) prediction: TN, NH3-N, KMnO4, TP, Cond, and Turb;
• Total Phosphorus (TP) prediction: TP, NH3-N, Temp, DO, KMnO4, TN, Cond, and Turb.

Figure 3. The comprehensive weight of input variables under each output variable: (a) DO and
comprehensive weights of its corresponding input variables; (b) NH3-N and comprehensive weights
of its corresponding input variables; (c) TN and comprehensive weights of its corresponding input
variables; (d) TP and comprehensive weights of its corresponding input variables.

119



Entropy 2023, 25, 1186

Table 2. Summary of comprehensive weight results (The comprehensive weight values of different
input variables for predicting the target variable).

Variables DO NH3-N TN TP

NH3-N 0.091 0.232 0.104 0.142
Temp 0.027 0.001 0.009 0.020

pH 0.014 0.007 0.003 0.007
DO 0.112 0.044 0.006 0.054

KMnO4 0.053 0.022 0.057 0.015
TP 0.050 0.063 0.048 0.103
TN 0.003 0.022 0.050 0.023

Cond 0.118 0.007 0.079 0.046
Turb 0.052 0.003 0.022 0.049

These selected input variables were determined based on their respective compre-
hensive weights, which consider both the Pearson correlation coefficient and information
weight. By including these variables in the prediction models, it is expected to enhance the
accuracy and reliability of the predictions for Dissolved Oxygen (DO), Ammonia Nitrogen
(NH3-N), Total Nitrogen (TN), and Total Phosphorus (TP).

2.4. Models
2.4.1. Support Vector Machine

Support Vector Machine (SVM) is a popular supervised learning algorithm utilized for
classification and regression tasks. Its objective is to discover an optimal hyperplane that
effectively separates different classes of samples while maximizing the margin between
them, thereby achieving robust generalization performance [33]. SVM achieves this by
mapping the samples into a high-dimensional feature space and identifying the hyperplane
that maximizes the margin within this space. This hyperplane is defined as the one with the
greatest distance to the nearest samples of different classes, referred to as support vectors,
which play a crucial role in determining the hyperplane’s position.

SVM demonstrates high accuracy and generalization performance, particularly for
small-sized datasets. It exhibits robustness against noise and outliers and is well-suited for
handling high-dimensional data. Moreover, the decision function of SVM is based on the
support vectors, which provide valuable insights into the data distribution and decision
boundary, thus offering interpretability to some extent. However, SVM also has certain
limitations. It can be computationally slow when applied to large-scale datasets, and its
performance may degrade on high-dimensional data or when dealing with imbalanced
classes. Additionally, the selection of appropriate kernel functions and tuning of the related
parameters are important considerations when utilizing SVM [34].

2.4.2. Multilayer Perceptron

Multilayer Perceptron (MLP) is a neural network with an input layer, multiple hidden
layers, and an output layer. It uses weighted connections and nonlinear activation functions
to process data. The network is trained using the backpropagation algorithm, updating
weights to minimize prediction errors. MLP excels in modeling complex patterns and
can be adjusted to fit different task complexities [35]. However, training and prediction
times may be longer for large-scale or high-dimensional data. The model’s performance
depends on factors such as activation functions, the architecture, and the hyperparame-
ters [36]. Multiple metrics should be used for evaluation, considering the model structure,
feature selection, and data distribution. Enhancements can be made through adjustments,
optimization, additional features, or alternative algorithms [37].
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2.4.3. Random Forest

Random Forest is an ensemble learning method that constructs multiple weak learners
based on decision trees. It combines the predictions of individual trees through voting
or averaging to make the final predictions. In each node of the decision tree, Random
Forest considers only a random subset of features for splitting. This selective feature
consideration reduces the correlation between trees, leading to increased model diver-
sity. To create diverse decision trees, multiple training sets are generated using bootstrap
sampling. This process involves randomly selecting samples with replacement from the
original training set, enabling the training of different decision trees [17]. The utilization of
bootstrap sampling enhances model diversity and mitigates overfitting. Random Forest
generates predictions by aggregating the collective decisions of multiple decision trees. In
classification tasks, the prediction is determined by the majority class obtained through
voting, while in regression tasks, the average prediction of the multiple decision trees
is used. Random Forest models are highly proficient in handling high-dimensional and
large-scale data, demonstrating their suitability for complex nonlinear relationships [33].
Furthermore, they exhibit robustness in the presence of missing values and outliers.

2.4.4. Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is an algorithm developed based on the gradient
boosting decision trees approach. It enhances model accuracy and efficiency by incorpo-
rating regularization techniques and parallel computing. XGBoost leverages the gradient
boosting algorithm, which iteratively trains a sequence of decision trees to progressively
enhance the predictive model’s performance. Each tree is trained to rectify the prediction
errors made by the preceding tree, gradually aligning with the negative gradient of the ob-
jective function. To address the risk of overfitting, XGBoost employs various regularization
techniques, including L1 and L2 regularization. Additionally, constraints on tree depth and
leaf weights are applied to manage the model’s complexity and prevent overfitting. These
measures collectively contribute to improving the overall performance and generalization
capability of the XGBoost algorithm [38].

2.4.5. Long Short-Term Memory

Long Short-Term Memory (LSTM) is a specialized variant of Recurrent Neural Net-
works (RNNs) that excels in processing time series data. Unlike conventional RNNs, LSTM
incorporates gating mechanisms that effectively capture and retain long-term dependen-
cies [39]. The core of an LSTM network comprises three essential gate units: the forget
gate, the input gate, and the output gate. These gate units regulate the flow and manipula-
tion of information through learnable weights, thereby controlling the input, output, and
memory processes. By selectively forgetting, updating, and outputting information, LSTM
enables the model to effectively retain and utilize long-term data information, effectively
addressing the challenge of long-term dependencies encountered in traditional RNNs. The
gating mechanisms employed by LSTM also address the issues of vanishing and exploding
gradients, ensuring smooth gradient propagation over extended time intervals [40]. LSTM
exhibits versatility in handling diverse input and output types, including univariate and
multivariate time series data, as well as text data. It offers flexibility in adjusting input
and output dimensions and possesses strong representational capabilities [12]. LSTM has
achieved remarkable success in various domains such as natural language processing,
speech recognition, machine translation, and time series prediction. Consequently, LSTM
finds widespread application in modeling and prediction tasks across a wide range of
practical problems.

2.4.6. Grid Search (GridSearchCV)

In this study, the Grid Search technique (GridSearchCV) was utilized to fine-tune
the parameters of the machine learning model and identify the optimal combination of
parameters, thereby enhancing the model’s performance and predictive capability. Grid
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search systematically explores all potential parameter combinations within the defined
parameter ranges, extensively investigating the parameter space to determine the best
configuration [41]. In practical applications, machine learning models often possess ad-
justable parameters such as the learning rate, regularization parameter, and tree depth,
which significantly impact model performance. By employing grid search, we can me-
thodically evaluate the performance of diverse parameter combinations and identify the
optimal set of parameters to achieve the best model performance. The primary advantage
of this approach lies in its comprehensiveness and intuitive nature. It eliminates the need
for intricate mathematical derivations or optimization algorithms; instead, it involves
specifying the parameter value ranges and exhaustively iterating through all feasible pa-
rameter combinations. Consequently, grid search is straightforward to understand and
implement, providing interpretable results that facilitate a clear understanding of how
different parameter combinations affect the model’s performance [42].

2.5. Model Evaluation

Model evaluation refers to assessing the performance of a trained model to understand
how well it performs on unseen data. The following Table 3 provides the model evaluation
metrics used in this study.

Table 3. Model evaluation methods.

Metric Description Formula

Mean-Squared Error (MSE)

The MSE measures the
average difference between
predicted values and true

values in regression models. It
is calculated as the mean of

the squared differences
between the predicted and

true values.

MSE = (1/n) * Σ(ypred −
ytrue)2

Root-Mean-Squared Error
(RMSE)

The RMSE is the square root
of the MSE and provides a

measure of the average error
between predicted and true
values. It is consistent with
the scale of the true values,

making it easier to interpret.

RMSE = sqrt (MSE)

Nash–Sutcliffe Efficiency
(NSE)

The NSE is a metric commonly
used in hydrological models
to evaluate the fit between

model predictions and
observed values. It considers
the ratio of the sum of squared
differences to the variance of
observed values, subtracted

from 1.

NSE = 1 − (Σ(ypred −
ytrue)2/Σ(ytrue − ymean)2)

Coefficient of Determination
(R2 Score)

The R2 score evaluates the
model’s ability to explain the
variance in the observed data.

It calculates the ratio of the
sum of squared differences

between predicted and
observed values to the total

variance of the
observed values.

R2 Score = 1 − (Σ(ypred −
ytrue)2/Σ(ytrue − ymean)2)
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The evaluation metrics, the MSE and RMSE, are considered favorable when they have
smaller values, while the NSE and R2 score should approach 1. These metrics provide
insights into the predictive performance of the model and facilitate the comparison of
different models to select the most-suitable one [43].

Using GridSearchCV, we conducted a grid search to identify the optimal model struc-
tures and parameter combinations for each model. We also integrated the input variable sets
selected by the comprehensive weight method to make separate predictions for Dissolved
Oxygen (DO), Ammonia Nitrogen (NH3-N), Total Nitrogen (TN), and Total Phosphorus
(TP) in the surface water. Moreover, we divided the dataset into a training set and a test set.
The first 4552 samples were allocated to the training set, while the remaining 506 samples
were designated as the test set. The training set was used to train the models, and the
test set was employed to evaluate the model’s performance and assess its effectiveness in
making predictions.

To enhance the stability and reliability of predictions by mitigating the impact of ran-
dom factors, the model prediction experiments were conducted in parallel for 10 sets. The
final evaluation result for the model’s prediction parameter was obtained by calculating the
average of the R2 values, MSE values, RMSE values, and NSE values from these 10 parallel
experiments. This approach allows for a comprehensive assessment of the model’s per-
formance across diverse experiments, reducing the potential influence of random errors
associated with a single experiment [44]. Running multiple experiments yields a larger
set of data points, which enhances the statistical significance of the evaluation results and
provides a more-comprehensive and -accurate evaluation of the model’s performance.

3. Results and Discussion

3.1. Data Statistics

Based on the analysis of Table 4 and Figure 4, insights can be obtained regarding the
distribution of the data for each variable. Notably, Dissolved Oxygen (DO) and Ammonia
Nitrogen (NH3-N) exhibited substantial fluctuations throughout the year, while Total
Nitrogen (TN) and Total Phosphorus (TP) demonstrated relatively smaller fluctuations.
The standard deviations for Dissolved Oxygen (DO), Ammonia Nitrogen (NH3-N), and
Total Nitrogen (TN) were calculated as 3.642, 0.464, and 0.672, respectively, indicating a
higher level of data variability associated with these variables. Conversely, the standard
deviation for Total Phosphorus (TP) was determined to be 0.047, suggesting a lower level
of data variability.

Figure 4. Fluctuationof water quality variables (The black circle in figure body represents Outlier).
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Table 4. Statistics of various water quality variables’ data.

Variables
Sample

Size
Min Max Mean

Standard
Deviation

Median

DO 5058 0.323 29.370 7.887 3.642 7.160
NH3-N 5058 0.025 3.162 0.484 0.464 0.352

TN 5058 1.811 5.755 3.274 0.672 3.243
TP 5058 0.022 0.331 0.110 0.047 0.101

Dissolved Oxygen (DO) represents the amount of oxygen dissolved in water and
is influenced by various factors, with temperature being one of the primary influences.
Generally, as temperature increases, the concentration of dissolved oxygen decreases. This
relationship implies that higher temperatures lead to lower dissolved oxygen concentra-
tions, while lower temperatures result in higher dissolved oxygen concentrations. The
summer season, typically occurring from June to September in most regions, is associated
with elevated temperatures. Consequently, water temperature rises during this period,
leading to a decrease in dissolved oxygen concentration and lower values of dissolved
oxygen. Conversely, in January and December, lower temperatures prevail, causing the
water temperature to be relatively colder. As a result, the dissolved oxygen concentration
increases, yielding higher values of dissolved oxygen. Although other factors such as
oxygen supply, environmental conditions in the water (e.g., plant growth, water body
mixing), and meteorological changes can influence the dissolved oxygen concentration,
temperature remains the primary factor among them.

Ammonia Nitrogen (NH3-N) exhibits relatively higher concentrations from June to
August each year due to several reasons. Firstly, the summer season corresponds to the peak
period of biological activity in water, involving microorganisms, algae, and bacteria. These
organisms absorb nutrients, including ammonia compounds, from the water for growth
and metabolism, contributing to the release of ammonia nitrogen. Therefore, increased
biological activity during summer results in higher concentrations of ammonia nitrogen.
Secondly, higher air temperatures during summer lead to elevated water temperatures.
Ammonia nitrogen’s solubility is positively correlated with water temperature, meaning
that higher temperatures facilitate the dissociation of ammonia nitrogen molecules from
solids or organic matter, increasing its solubility in water. Additionally, the concentration
of ammonia nitrogen can be influenced by factors such as sediment release, agricultural
and urban discharges, rainfall, and flow variations.

The concentration of Total Phosphorus (TP) shows relatively small and stable fluctua-
tions throughout the year due to several factors. Stable input sources, such as consistent
surface runoff, groundwater, or controlled sediment release, contribute to smaller fluctua-
tions in total phosphorus concentration. Additionally, biological absorption and deposition
processes play a role. Organisms present in the water, such as phytoplankton and algae,
absorb total phosphorus and convert it into biomass. Moreover, some total phosphorus
can also deposit into sediment. These processes help stabilize the concentration of total
phosphorus and reduce fluctuations. Environmental conditions in the water, such as light
intensity, temperature, and dissolved oxygen levels, can also influence total phosphorus
concentration. When these conditions remain relatively stable without significant changes,
the biological transformation and sedimentation processes related to total phosphorus also
remain stable, leading to smaller fluctuations in total phosphorus concentration.

The concentration of Total Nitrogen (TN) remains relatively high from June to Septem-
ber each year. Several factors contribute to this observation. Firstly, the summer season is
associated with increased nutrient inputs due to vigorous plant growth. Factors such as
fertilization in farmlands and green spaces, irrigation in farmlands, and rainfall contribute
to higher nutrient (including nitrogen) inputs into water bodies, resulting in relatively
higher concentrations of total nitrogen during summer. Additionally, summer is charac-
terized by abundant sunlight and higher temperatures, providing favorable conditions
for the growth of algae and phytoplankton in the water. This enhances the mixing of
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nitrogen-rich water from the bottom layer with surface water, contributing to an increase
in total nitrogen concentration.

3.2. Performance Comparison of Models

Based on the findings presented in Table 5 and Figure 5, the predictive performance
of various machine learning models on Dissolved Oxygen (DO) content was evaluated,
leading to a comparative analysis and discussion of each model’s performance in predicting
water quality.

Figure 5. (a) Comparison of real values and predicted values for the SVM model; (b) Comparison of
real values and predicted values for the MLP model; (c) Comparison of real values and predicted
values for the RF model; (d) Comparison of real values and predicted values for the XGBoost model;
(e) Comparison of real values and predicted values for the LSTM model; (f) Performance evaluation
graph for each model.
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Table 5. Performance evaluation of various models for dissolved oxygen prediction.

Models R2 MSE RMSE NSE

SVM 0.820 4.816 2.195 0.823
MLP 0.775 6.128 2.473 0.775
RF 0.720 7.613 2.759 0.720

XGBoost 0.690 8.403 2.899 0.691
LSTM 0.882 3.361 1.827 0.877

The Support Vector Machine (SVM) model achieved notable results with an R2 score of
0.820, an MSE of 4.816, and an RMSE of 2.195 for DO prediction. These values indicate a rel-
atively small average prediction error, showcasing the model’s ability to accurately predict
the DO values. Moreover, the NSE value of 0.823 suggests that the model outperformed
predictions based on the mean value alone. The SVM model’s proficiency in handling
nonlinear relationships is crucial since DO levels are influenced by intricate nonlinear
associations with multiple factors. By mapping the input space to a higher-dimensional fea-
ture space using a kernel function, the SVM model achieves improved fitting of nonlinear
relationships. Additionally, the model’s decision boundary is determined by maximizing
the margin, highlighting its strong generalization capabilities. This capability enables the
SVM model to maintain good prediction performance when confronted with new samples,
effectively avoiding overfitting or underfitting issues. Furthermore, the SVM model demon-
strates resilience in the presence of noisy or outlier-laden data by selectively considering
support vectors, thereby enhancing prediction accuracy. These characteristics collectively
contributed to the model’s commendable performance in predicting the DO levels.

On the other hand, the Multilayer Perceptron (MLP) model exhibited slightly larger
prediction errors compared to the SVM model. The MLP model achieved an R2 score of
0.775, an MSE of 6.128, and an RMSE of 2.473 for the DO prediction. While the prediction
error was slightly larger than that of the SVM model, the NSE value of 0.775 suggests that
the predicted results were comparable to those obtained using the average value. The
performance of the MLP model heavily relies on the design of its network structure. In cases
where the network structure is not suitable, the model may struggle to capture the complex
nonlinear relationship of DO content accurately. Moreover, the MLP model typically
performs better when applied to large-scale and high-quality datasets. Insufficient training
data or the presence of numerous noises or outliers may adversely affect the model’s
performance. Unlike the SVM model, the MLP model involves numerous hyperparameters
that require optimization, such as the number of hidden layer nodes, the selection of the
activation function, and the learning rate. The improper selection or insufficient tuning of
these hyperparameters can negatively impact the predictive performance of the model.

The Random Forest (RF) model demonstrated larger prediction errors compared to
the SVM and MLP models, with an R2 score of 0.720, an MSE of 7.613, and an RMSE of
2.759 for DO prediction. The NSE value of 0.720 indicates that the RF model’s predictions
were slightly inferior to the baseline prediction using the mean value. The performance of
the RF model in predicting DO levels can be influenced by the presence of class imbalance
in the training data. Specifically, the distribution of DO levels showed an imbalance,
with fewer samples in the 0–5 and 15–20 concentration ranges and more samples in the
5–15 concentration range. This imbalance can result in poorer performance of the RF
model when predicting the DO levels within the underrepresented concentration ranges.
Additionally, the performance of the RF model heavily relies on the number and depth
of the decision trees. Opting for a small number of trees or shallow trees may hinder the
model’s ability to capture the complex relationships in the DO levels, leading to larger
prediction errors. Thus, it is essential to carefully select the number and depth of the
decision trees to enhance the RF model’s predictive performance.

The XGBoost model exhibited larger prediction errors compared to the other models,
with an R2 score of 0.690, an MSE of 8.403, and an RMSE of 2.899 for DO prediction. In
comparison to the other models, the prediction error was relatively high. The NSE value
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of 0.691 indicates that the XGBoost model’s predictions were comparable to the baseline
prediction using the mean value. Similar to the Random Forest (RF) model, the performance
of the XGBoost model can be influenced by class imbalance in the training data. If there is
an imbalance in the distribution of the DO levels, with certain concentration ranges having
fewer samples, it can impact the model’s ability to predict DO levels within those ranges.
The XGBoost model possesses strong capabilities in capturing interactions and nonlinear
relationships among features. When the variations in DO levels are complex and driven by
intricate interactions or nonlinear relationships, the XGBoost model may require a larger
number of trees or deeper trees to effectively capture these relationships and enhance the
prediction performance. Consequently, the selection of an appropriate number and depth
of the trees becomes crucial for achieving improved performance with the XGBoost model.

The LSTM model demonstrated high prediction accuracy for the DO values, with an R2

score of 0.882, an MSE of 3.361, and an RMSE of 1.827. These values indicate that the LSTM
model had a small average prediction error and performed with high accuracy in predicting
the DO values. The NSE of 0.877 suggests that the model’s predictions were superior to
those obtained using the average value. The LSTM model is a recurrent neural network
model specifically designed for processing time series data. Given the time dependence of
the DO content, the LSTM model can effectively capture the dynamic changes and trends,
thereby improving the prediction accuracy. Through its gating mechanisms and memory
units, the LSTM model is capable of retaining and updating important information while
disregarding irrelevant information. This long-term memory capability enables the LSTM
model to capture the long-term dependence of the DO content, resulting in improved
prediction accuracy. Moreover, the LSTM model has the ability to automatically learn
and extract features relevant to the DO content prediction. It can adaptively adjust the
weight of features to maximize the extraction of useful information. This feature extraction
capability contributes to the model’s enhanced predictive performance for the DO content.
In summary, the LSTM model performed well in predicting the Dissolved Oxygen (DO)
content due to its effective processing of time series data, long-term memory ability, feature
extraction ability, and capacity to capture the sequential nature and patterns of the DO
content. These factors collectively enable the LSTM model to achieve high prediction
accuracy and demonstrate relatively good performance in DO content prediction.

3.3. Comprehensive Prediction Performance of the LSTM Model

The LSTM model’s architecture comprises of four LSTM layers, each consisting of
56 neurons. To mitigate overfitting, a dropout layer was added after each LSTM layer
with a dropout rate of 0.2. The final layer of the model was a dense layer containing
only one neuron, responsible for generating the prediction results. The input variable
sequence length was set to 30, implying that the model uses water quality data from the
previous 5 days to predict the water quality parameter for the subsequent time period.
Parameter optimization for the model was performed using GridSearchCV, leading to the
identification of the optimal parameter combination as follows: the batch size was 32; the
epochs were 60; the optimizer was Adam.

Based on the findings presented in Table 6 and Figure 6, the LSTM model demonstrated
exceptional predictive performance for key variables such as Dissolved Oxygen (DO), Am-
monia Nitrogen (NH3-N), Total Nitrogen (TN), and Total Phosphorus (TP). Specifically, the
R2 values for these variables were 0.882, 0.830, 0.745, and 0.773, respectively. These values
indicated a strong correlation between the predicted and actual values, highlighting the
effectiveness of the LSTM model. Additionally, the corresponding MSE and RMSE values
were relatively small, indicating low average prediction errors and the overall high perfor-
mance of the LSTM model. The NSE values of 0.829, 0.745, and 0.763 further supported
these results, surpassing the predictions based on the mean values for these variables.

127



Entropy 2023, 25, 1186

Table 6. Performance evaluation of the LSTM model in predicting other water quality variables.

Variables R2 MSE RMSE NSE

DO 0.882 3.361 1.827 0.877
NH3-N 0.830 5.614 2.330 0.829

TN 0.745 5.747 2.352 0.745
TP 0.773 5.683 2.332 0.763

Figure 6. Comparison of LSTM model’s actual and predicted values for other water quality parameters:
(a) Comparison of true and predicted values of DO; (b) Comparison of true and predicted values of
NH3-N; (c) Comparison of true and predicted values of TN; (d) Comparison of true and predicted values
of TP.

However, it is noteworthy that Figure 6c reveals a relatively weaker predictive per-
formance of the LSTM model for TN content, particularly in capturing extreme values
accurately. This observation can be attributed to several contributing factors. Firstly, the
complexity of the model may not be adequate to capture the intricate nonlinear relation-
ships and long-term dependencies within the data, particularly when predicting extreme
values. Therefore, it is recommended to consider utilizing a more-sophisticated model
structure or enhancing the model’s capacity to improve its ability to predict extreme values.
Secondly, improper feature selection could be another influential factor. Although a com-
prehensive weight method, along with the entropy weight method and Pearson correlation
coefficient method, was employed for feature screening, the selection of individual feature
variables may have been subjective. Specifically, when predicting TN content, the input fea-
tures of the LSTM model may not effectively capture the characteristics necessary to handle
extreme information. Thirdly, the presence of noise or outliers in the data can negatively
impact the accurate prediction of extreme values by the model. Lastly, insufficient training
could also contribute to the relatively weaker performance of the LSTM model. To enhance
TN content prediction, it is advisable to increase the training sample size and extend the
training duration to enable the model to fully capture extreme patterns. Insufficient training
samples or a relatively short training period may hinder the model’s ability to effectively
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capture extreme features. To address these potential limitations, future improvements can
include increasing the training sample size, adjusting the model structure, optimizing the
feature selection, and conducting longer training sessions to enhance the overall predictive
performance of the LSTM model for TN content.

The LSTM model’s proficiency in capturing dynamic features and trends in time series
data significantly contributed to its accurate prediction of water quality variables. By lever-
aging its ability to learn temporal relationships and long-term dependencies within the
sequence data, the LSTM model excelled in predicting future values of water quality vari-
ables. Furthermore, its capability to handle nonlinear relationships and complex temporal
patterns further strengthened its performance in predicting water quality variables.

4. Conclusions

The primary objective of this study was to evaluate the predictive capabilities of
various machine learning models for water quality parameters using the entropy weight-
ing method. A comprehensive weighting method was proposed, which combines the
entropy weighting method with the Pearson correlation coefficient method, for feature
selection in water quality prediction. This method takes into account both the information
entropy of the input features and their correlation with the target variable, effectively
identifying the features possessing a significant impact on water quality variable prediction.
The method offers valuable insights for subsequent water quality prediction modeling,
including feature set selection, the reduction of redundant features, and the optimization of
model performance.

Multiple machine learning models were investigated for their applicability in wa-
ter quality prediction, the Support Vector Machine (SVM), Multilayer Perceptron (MLP),
Random Forest (RF), XGBoost, and LSTM models. These models demonstrated varying
capabilities in water quality prediction. SVM, in particular, exhibited good generalization
performance and high prediction accuracy, specifically for the prediction of Dissolved
Oxygen (DO). The MLP model, known for its strong nonlinear modeling capability, per-
formed well in predicting DO and NH3-N, explaining a significant proportion of the target
variable’s variance and exhibiting relatively small prediction errors.

In contrast, the RF model, despite its ability to handle high-dimensional data and
complex relationships, showed relatively poor performance in water quality prediction. It
displayed lower R2 values and higher MSE and RMSE values, indicating larger prediction
errors. This could be attributed to the model’s limitations in capturing complex relation-
ships and extreme values in water quality data, leading to decreased prediction accuracy.
Similarly, the XGBoost model also exhibited relatively poor predictive performance, with
lower R2 values and higher MSE and RMSE values, indicating larger prediction errors. This
might be due to the model’s limited ability to capture complex relationship patterns and
extreme values in the water quality data, resulting in lower prediction accuracy compared
to the other models.

The LSTM model demonstrated excellent water quality prediction capabilities. As
a recurrent neural network model designed to handle sequential data, LSTM possesses
strong memory and long-term dependency modeling capabilities. In water quality pre-
diction, the LSTM model effectively captured dynamic changes in time series data and
consistently delivered outstanding predictive performance for various water quality param-
eters. Its high R2 values and NSE values, along with low MSE and RMSE values, indicated
small average prediction errors and significant improvements over simple mean value
prediction methods.

In summary, the comprehensive weighting method that combines the entropy weight-
ing method and the Pearson correlation coefficient method showed effectiveness in selecting
a feature set for water quality prediction, enhancing the predictive performance of the
models. Through comparative studies, the LSTM model emerged as the top-performing
model for water quality prediction, accurately forecasting variations in different water
quality variables in a stable manner. These research findings provide essential insights for
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water quality monitoring and management, assisting water quality management agencies
in making informed decisions and devising effective management strategies. However,
further research and applications are necessary to explore optimized feature-selection
methods, improve machine learning models, and enhance the accuracy and reliability of
water quality prediction.

Author Contributions: Conceptualization, X.W., Y.L. (Yanchun Liang) and A.T.; methodology, Q.Q.;
software, X.W. and Y.L. (Ying Li); validation, A.T., X.W. and Y.L. (Yanchun Liang); formal anal-
ysis, X.W. and A.T.; investigation, X.W.; resources, Q.Q.; data curation, X.W. and Y.L. (Ying Li);
writing—original draft preparation, X.W.; writing—review and editing, Q.Q., A.T. and Y.L. (Yanchun
Liang); visualization, X.W.; supervision, Y.L. (Yanchun Liang); project administration, Y.L. (Ying Li).
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the NSFC Grant Number 61972174, the Guangdong
Universities’ Innovation Team Grant Number 2021KCXTD015, the Key Disciplines Projects Grant
Number 2021ZDJS138, and the Guangdong Provincial Junior Innovative Talents Project for Ordinary
Universities Number 2022KQNCX146.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data shall be provided by the corresponding authors upon special request.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Deng, T.; Chau, K.W.; Duan, H.F. Machine learning based marine water quality prediction for coastal hydro-environment
management. J. Environ. Manag. 2021, 284, 112051. [CrossRef] [PubMed]

2. Azrour, M.; Mabrouki, J.; Fattah, G.; Guezzaz, A.; Aziz, F. Machine learning algorithms for efficient water quality prediction.
Model. Earth Syst. Environ. 2022, 8, 2793–2801. [CrossRef]

3. Sinha, K.K.; Gupta, M.K.; Banerjee, M.K.; Meraj, G.; Singh, S.K.; Kanga, S.; Farooq, M.; Kumar, P.; Sahu, N. Neural Network-Based
Modeling of Water Quality in Jodhpur, India. Hydrology 2022, 9, 92. [CrossRef]

4. Jung, W.S.; Kim, S.E.; Kim, Y.D. Prediction of Surface Water Quality by Artificial Neural Network Model Using Probabilistic
Weather Forecasting. Water 2021, 13, 2392. [CrossRef]

5. Wang, S.; Peng, H.; Liang, S. Prediction of estuarine water quality using interpretable machine learning approach. J. Hydrol. 2022,
605, 127320. [CrossRef]

6. Wan H.; Xu, R.; Zhang, M.; Cai, Y.; Li, J.; Shen, X. A novel model for water quality prediction caused by non-point sources
pollution based on deep learning and feature extraction methods. J. Hydrol. 2022, 612, 128081. [CrossRef]

7. Liu, J.; Wang, X.; Zhao, Y.; Xu, Y.; Pan, Y.; Feng, S.; Liu, J.; Huang, X.; Wang, H. Nh3 plasma functionalization of UiO-66-NH2 for
highly enhanced selective fluorescence detection of u (vi) in water. Anal. Chem. 2022, 94, 10091–10100. [CrossRef]

8. Zhu, R.; Wang, X.; Panther, J.G.; Wang, Q.; Chakir, S.; Ding, Y.; Huang, Y.; Wang, H. Micro/nanostructured MgO hollow spheres
with selective adsorption performance and their application for fluoride monitoring in water. Sep. Purif. Technol. 2022, 299, 121703.
[CrossRef]

9. Seo, D.; Sigdel, R.; Kwon, K.H.; Lee, Y.S. 3-D hydrodynamic modeling of Yongdam Lake, Korea using EFDC. Desalin. Water Treat.
2010, 19, 42–48. [CrossRef]

10. Rand, J.M.; Nanko, M.O.; Lykkegaard, M.B.; Wain, D.; King, W.; Bryant, L.D.; Hunter, A. The human factor: Weather bias in
manual lake water quality monitoring. Limnol. Oceanogr. Methods 2022, 20, 288–303. [CrossRef]

11. Wang, K.; Band, S.S.; Ameri, R.; Biyari, M.; Hai, T.; Hsu, C.C.; Hadjouni, M.; Elmannai, H.; Chau, K.W.; Mosavi, A. Performance
improvement of machine learning models via wavelet theory in estimating monthly river streamflow. Eng. Appl. Comput. Fluid
Mech. 2022, 16, 1833–1848. [CrossRef]

12. Zhu, M.; Wang, J.; Yang, X.; Zhang, Y.; Zhang, L.; Ren, H.; Wu, B.; Ye, L. A review of the application of machine learning in water
quality evaluation. Eco-Environ. Health 2022, 1, 10. [CrossRef]

13. Alizadeh, M.J.; Kavianpour, M.R.; Danesh, M.; Adolf, J.; Shamshirband, S.; Chau, K.W. Effect of river flow on the quality of
estuarine and coastal waters using machine learning models. Eng. Appl. Comput. Fluid Mech. 2018, 12, 810–823. [CrossRef]

14. Omambia, A.; Maake, B.; Wambua, A. Water quality monitoring using IoT & machine learning. In Proceedings of the 2022
IST-Africa Conference (IST-Africa 2022), Virtual Conference, 16–20 May 2022; pp. 1–8. https://doi.10.23919/IST-Africa56635.202
2.9845590.

15. Kayhomayoon, Z.; Arya Azar, N.; Ghordoyee Milan, S.; Kardan Moghaddam, H.; Berndtsson, R. Novel approach for predicting
groundwater storage loss using machine learning. J. Environ. Manag. 2021, 296, 113237. [CrossRef] [PubMed]

130



Entropy 2023, 25, 1186

16. Cao, R.; Yuan, J. Selection Strategy of Vibration Feature Target under Centrifugal Pumps Cavitation. Appl. Sci. 2020, 10, 8190.
[CrossRef]

17. Yan, X.; Liu, Y.; Jia, M. A Feature Selection Framework-Based Multiscale Morphological Analysis Algorithm for Fault Diagnosis
of Rolling Element Bearing. IEEE Access 2019, 7, 123436–123452. [CrossRef]

18. Li, G.; Zhang, A.; Zhang, Q.; Wu, D.; Zhan, C. Pearson correlation coefficient-based performance enhancement of broad learning
system for stock price prediction. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2413–2417. [CrossRef]

19. Zheng, Y.; Li, Y.; Wang, G.; Chen, Y.; Xu, Q.; Fan, J.; Cui, X. A novel hybrid algorithm for feature selection based on whale
optimization algorithm. IEEE Access 2018, 7, 14908–14923. [CrossRef]

20. Zhang, Y.; Li, C.; Jiang, Y.; Sun, L.; Zhao, R.; Yan, K.; Wang, W. Accurate prediction of water quality in urban drainage network
with integrated EMD-LSTM model. J. Clean. Prod. 2022, 354, 131724. [CrossRef]

21. Ransom, K.M.; Nolan, B.T.; Traum, J.A.; Faunt, C.C.; Bell, A.M.; Gronberg, J.A.M.; Wheeler, D.C.; Rosecrans, C.Z.; Jurgens, B.;
Schwarz, G.E.; et al. A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central
Valley aquifer, California, USA. Sci. Total Environ. 2017, 601–602, 1160–1172. [CrossRef]

22. Rostam, N.A.P.; Malim, N.H.A.H.; Abdullah, R.; Ahmad, A.L.; Ooi, B.S.; Chan, D.J.C. A Complete Proposed Framework for
Coastal Water Quality Monitoring System With Algae Predictive Model. IEEE Access 2021, 9, 108249–108265. [CrossRef]

23. Wang, Z. A Numerical Method for Delayed Fractional-Order Differential Equations. J. Appl. Math. 2013, 2013, 707–724. [CrossRef]
24. Noor, N.M.; Al Bakri Abdullah, M.M.; Yahaya, A.S.; Ramli, N.A. Comparison of linear interpolation method and mean method to

replace the missing values in environmental data set. In Materials Science Forum; Trans Tech Publications: Baech, Switzerland,
2015; Volume 803, pp. 278–281.

25. Liu, P.; Wang, J.; Sangaiah, A.; Xie, Y.; Yin, X. Analysis and Prediction of Water Quality Using LSTM Deep Neural Networks in
IoT Environment. Sustainability 2019, 11, 2058. [CrossRef]

26. Hu, Z.; Zhang, Y.; Zhao, Y.; Xie, M.; Zhong, J.; Tu, Z.; Liu, J. A Water Quality Prediction Method Based on the Deep LSTM
Network Considering Correlation in Smart Mariculture. Sensors 2019, 19, 1420. [CrossRef]

27. Kumar, R.; Singh, S.; Bilga, P.S.; Jatin, K.; Pruncu, C.I. Revealing the Benefits of Entropy Weights Method for Multi-Objective
Optimization in Machining Operations: A Critical Review. J. Mater. Res. Technol. 2021, 10, 1471–1492. [CrossRef]

28. Liu, J.; Hu, Q.; Yu, D. A weighted rough set based method developed for class imbalance learning. Inf. Sci. 2008, 178, 1235–1256.
[CrossRef]

29. Mármol, A.M.; Puerto, J.; Fernández, F.R. The use of partial information on weights in multicriteria decision problems.
J. Multi-Criteria Decis. Anal. 2015, 7, 322–329. [CrossRef]

30. Salman, R.; Nikoo, M.R.; Shojaeezadeh, S.A.; Beiglou, P.H.B.; Sadegh, M.; Adamowski, J.F.; Alamdari, N. A novel Bayesian
maximum entropy-based approach for optimal design of water quality monitoring networks in rivers. J. Hydrol. 2021, 603, 126822.
[CrossRef]

31. Ly, A.; Marsman, M.; Wagenmakers, E.J. Analytic posteriors for Pearson’s correlation coefficient. Stat. Neerl. 2018, 72, 4–13.
[CrossRef]

32. Qiang, L.; Yang, Y.; Yang, L.; Wang, Y. Comparative analysis of water quality prediction performance based on LSTM in the Haihe
River Basin, China. Environ. Sci. Pollut. Res. 2022, 30, 7498–7509. [CrossRef]

33. Naghibi, S.A.; Ahmadi, K.; Daneshi, A. Application of Support Vector Machine, Random Forest, and Genetic Algorithm
Optimized Random Forest Models in Groundwater Potential Mapping. Water Resour. Manag. 2017, 31, 2761–2775. [CrossRef]

34. Kisi, O.; Shiri, J.; Karimi, S.; Shamshirband, S.; Motamedi, S.; Petkovi, D.; Hashim, R. A survey of water level fluctuation
predicting in Urmia Lake using support vector machine with firefly algorithm. Appl. Math. Comput. 2015, 270, 731–743. [CrossRef]

35. Yu, X.; Cui, T.; Sreekanth, J.; Mangeon, S.; Gilfedder, M. Deep learning emulators for groundwater contaminant transport
modelling. J. Hydrol. 2020, 590, 125351. [CrossRef]

36. Gambín, Á.F.; Angelats, E.; González, J.S.; Miozzo, M.; Dini, P. Sustainable Marine Ecosystems: Deep Learning for Water Quality
Assessment and Forecasting. IEEE Access 2021, 9, 121344–121365. [CrossRef]

37. Mohammadi, B.; Guan, Y.; Moazenzadeh, R.; Safari, M.J.S. Implementation of hybrid particle swarm optimization-differential
evolution algorithms coupled with multi-layer perceptron for suspended sediment load estimation. Catena 2021, 198, 105024.
[CrossRef]

38. Osman, A.I.A.; Ahmed, A.N.; Chow, M.F.; Huang, Y.F.; El-Shafie, A. Extreme gradient boosting (Xgboost) model to predict the
groundwater levels in Selangor Malaysia. Ain Shams Eng. J. 2021, 12, 1545–1556. [CrossRef]

39. Ni, L.; Wang, D.; Singh, V.P.; Wu, J.; Wang, Y.; Tao, Y.; Zhang, J. Streamflow and rainfall forecasting by two long short-term
memory-based models. J. Hydrol. 2020, 583, 124296. [CrossRef]

40. Zhanga, J.; Zhub, Y.; Zhanga, X.; Yec, M.; Yangb, J. Developing a Long Short-Term Memory (LSTM) based model for predicting
water table depth in agricultural areas. J. Hydrol. 2018, 561, 918–929. [CrossRef]

41. Jiang, Y.; Li, C.; Zhang, Y.; Zhao, R.; Yan, K.; Wang, W. Data-driven method based on deep learning algorithm for detecting fat,
oil, and grease (FOG) of sewer networks in urban commercial areas. Water Res. 2021, 207, 117797. [CrossRef]

42. Jiang, Y.; Li, C.; Song, H.; Wang, W. Deep learning model based on urban multi-source data for predicting heavy metals (Cu, Zn,
Ni, Cr) in industrial sewer networks. J. Hazard. Mater. 2022, 432, 128732. [CrossRef]

131



Entropy 2023, 25, 1186

43. Aldhyani, T.H.H.; Al-Yaari, M.; Alkahtani, H.; Maashi, M. Water Quality Prediction Using Artificial Intelligence Algorithms.
Appl. Bionics Biomech. 2020, 2020, 6659314. [CrossRef] [PubMed]

44. Qian, J.; Liu, H.; Qian, L.; Bauer, J.; Xue, X.; Yu, G.; He, Q.; Zhou, Q.; Bi, Y.; Norra, S. Water quality monitoring and assessment
based on cruise monitoring, remote sensing, and deep learning: A case study of Qingcaosha Reservoir. Front. Environ. Sci. 2022,
10, 979133. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

132



Citation: Skarbek, W. Cross Entropy

in Deep Learning of Classifiers Is

Unnecessary—ISBE Error Is All You

Need. Entropy 2024, 26, 65.

https://doi.org/10.3390/

e26010065

Academic Editor: Yanchun Liang

Received: 29 November 2023

Revised: 8 January 2024

Accepted: 9 January 2024

Published: 12 January 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Cross Entropy in Deep Learning of Classifiers Is
Unnecessary—ISBE Error Is All You Need

Władysław Skarbek

Faculty of Electronics and Information Technology, Warsaw University of Technology, 00-661 Warszawa, Poland;
wladyslaw.skarbek@pw.edu.pl

Abstract: In deep learning of classifiers, the cost function usually takes the form of a combination of
SoftMax and CrossEntropy functions. The SoftMax unit transforms the scores predicted by the model
network into assessments of the degree (probabilities) of an object’s membership to a given class. On
the other hand, CrossEntropy measures the divergence of this prediction from the distribution of
target scores. This work introduces the ISBE functionality, justifying the thesis about the redundancy
of cross-entropy computation in deep learning of classifiers. Not only can we omit the calculation of
entropy, but also, during back-propagation, there is no need to direct the error to the normalization
unit for its backward transformation. Instead, the error is sent directly to the model’s network.
Using examples of perceptron and convolutional networks as classifiers of images from the MNIST
collection, it is observed for ISBE that results are not degraded with SoftMax only but also with
other activation functions such as Sigmoid, Tanh, or their hard variants HardSigmoid and HardTanh.
Moreover, savings in the total number of operations were observed within the forward and backward
stages. The article is addressed to all deep learning enthusiasts but primarily to programmers and
students interested in the design of deep models. For example, it illustrates in code snippets possible
ways to implement ISBE functionality but also formally proves that the SoftMax trick only applies to
the class of dilated SoftMax functions with relocations.

Keywords: deep learning; cross entropy; normalization function; neural network; model inference;
gradient backpropagation

1. Introduction

A deep model is a kind of mental shortcut [1], broadly understood as a model created
in deep learning of a certain artificial neural network N , designed for a given applica-
tion. What, then, is an artificial neural network [2], its deep learning [3,4], and what
applications [5] are we interested in?

From a programmer’s perspective, an artificial neural network is a type of data process-
ing algorithm [6], in which subsequent steps are carried out by configurable computational
units, and the order of processing steps is determined by (dynamically created) computing
graph. The computing graph is always directed and acyclic (DAG). Interestingly, even
recurrent neural networks, such as the LSTM (Long Short-Term Memory) nets, which are
trained using gradient methods, have DAG-type computational graphs defined.

At the training stage, each group of input data X, i.e., each group of training examples,
technically each batch of training examples, first undergoes the inference (forward) phase on
the current model, i.e., processing through the network N at its current parameters W. As a
result, network outputs Y ← FN (X; W) are produced [7]. The result of the entire network
N with the functionality FN and joined set of parameters W is the result of combining the
results of the activities for individual units U with individual functionalities FU and with
possible individual parameters WU , as well.

Entropy 2024, 26, 65. https://doi.org/10.3390/e26010065 https://www.mdpi.com/journal/entropy133
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Inference︷ ︸︸ ︷
X; W−−→ FN

Y←FN (X;W)−−−−−−−→ ≡

Inference︷ ︸︸ ︷
· · · Xu ; Wu−−−→ FU

Yu←FU (Xu ;Wu)−−−−−−−−−→ · · ·

After the inference phase comes the model update phase, where the current model is
modified (improved) according to the selected optimization procedure [8]. The model update
phase begins with calculating the loss (cost) value Z ← L(Y, Y◦) defined by the chosen loss
function L as well as the inference outcome Y and the target result Y◦.

Inference︷ ︸︸ ︷
X; W−−→ FN

Y←FN (X;W)−−−−−−−→ · · ·

Model update - start︷ ︸︸ ︷
Y,Y◦−−→ L Z←L(Y,Y◦)−−−−−−→

The loss Z depends (indirectly through Y) on all parameters W and what conditions
the next step of the update phase is the determination of sensitivity W of the loss function L
to their changes. The mathematical model of sensitivity is the gradient W .

= ∂L
∂W . Knowing

this gradient, the optimizer will make the actual modification of W in a direction that also
takes into account the values of gradients obtained for previous training batches.

Calculating the gradient with respect to parameters actually assigned to different
computational units required the development of an efficient algorithm for its propagation
in the opposite direction to inference [9,10].

Just as in the inference phase, each unit U has its formula Yu ← FU (Xu, Wu) for
processing data from input Xu to output Yu with parameters Wu, so in the backward gradient
propagation phase, it must have a formula Xu, Wu ← FU (Yu) for transforming the gradients
assigned to its outputs Yu into gradients assigned to its inputs Xu and its parameters Wu.

BackPropagation︷ ︸︸ ︷
X; W←FN (Y;X,Y,W)←−−−−−−−−−−−− FN

Y←− · · ·

Loss function gradient ∂L
∂Y︷ ︸︸ ︷

Y←L(Z;Y,Z)←−−−−−−− L 1= ∂Z
∂Z←−−−

Gradient BackPropagation︷ ︸︸ ︷
· · · Xu ; Wu←FU (Yu ;Xu ,Yu ,Wu)←−−−−−−−−−−−−−−− FU

Yu←− · · ·

Based on such local rules of gradient backpropagation and the created computation
graph, the backpropagation algorithm can determine the gradients of the cost function with
respect to each parameter in the network. The computation graph is created during the
inference phase and is essentially a stack of links between the arguments and results of
calculations performed in successive units [10,11].

Deep learning is precisely a concert of these inference and update phases in the form
of gradient propagation, calculated for randomly created groups of training examples.
These phases, intertwined, operate on multidimensional, deep tensors (arrays) of data,
processed with respect to network inputs, and on deep tensors of gradient data, processed
with respect to losses, determined for the output data of the trained network.

Here, by a deep tensor, we mean a multidimensional data array that has many feature
maps, i.e., its size along the feature axis is relatively large, e.g., 500, which means 500 scalar
feature maps. We then say that at this point in the network, our data has a deep representation
in a 500-dimensional space.

As for the applications we are interested in this work, the answer is those that have at
least one requirement for classification [12]. An example could be crop detection from satel-
lite images [13], building segmentation in aerial photos [14], but also text translation [15].
Classification is also related to voice command recognition [16], speaker recognition [17],
segmentation of the audio track according to speakers [18], recognition of speaker emo-
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tions with visual support [19], but also classification of objects of interest along with their
localization in the image [20].

It may be risky to say that after 2015, in all the aforementioned deep learning classifiers,
the cost function takes the form of a composition of the So f tMax function [21] and the
CrossEntropy function, i.e., cross-entropy [22]. The SoftMax unit normalizes the scores
predicted by the classifier model for the input object into SoftMax scores that sum up to one,
which can be treated as an estimation of the conditional probability distribution of classes.
Meanwhile, cross-entropy measures the divergence of this estimation from the target prob-
ability distribution (class scores). In practice, the target score may be taken from a training
set prepared manually by a so-called teacher [23] or may be calculated automatically by
another model component, e.g., in the knowledge distillation technique [24].

For K classes and nb training examples, the So f tMax function is defined for the raw
score matrix X ∈ Rnb×K as:

[Y ← So f tMax(X)] −→

⎡
⎢⎢⎣Ybi ← eXbi

∑
j∈[K]

eXbj
, b ∈ [nb], i ∈ [K]

⎤
⎥⎥⎦ ,

where the notation [K] denotes any K-element set of indices—in this case, they are class labels.
The CrossEntropy function on the matrix Y, Y◦ ∈ Rnb×K is defined by the formula:

[Z ← CrossEntropy(Y, Y◦)] −→
⎡
⎣Zb ← − ∑

j∈[K]
Y◦

bj loge Ybj, b ∈ [nb], z ∈ R
nb

⎤
⎦

Classifier loss function: Separated Implementation︷ ︸︸ ︷
Scores Inference︷ ︸︸ ︷

classified object−−−−−−−−→ FN
raw scores X−−−−−−−→

Loss EstimationL︷ ︸︸ ︷
raw scores X−−−−−−−→ SoftMax

soft scores Y, Y◦−−−−−−−−→ CrossEntropy
losses Z−−−−→

(1)

When classifiers began using a separated implementation of the combination of the
SoftMax normalization and the CrossEntropy loss, it quickly became evident in practice
that its implementation had problems with scores close to zero, both in the inference phase
and in the backward propagation of its gradient. In formulas of properties 1–3 in Theorem 1
of Section 2, we see from where the problem comes. Only the integration of CrossEntropy
with normalization SoftMax eliminated these inconveniences. The integrated approach has
the following form:

Classifier loss function - Integrated Implementation︷ ︸︸ ︷
Inference︷ ︸︸ ︷

classified object−−−−−−−−→ FN
raw scores X−−−−−−−→

Loss EstimationL︷ ︸︸ ︷
raw scores X,soft scores ,Y◦−−−−−−−−−−−−−−−→ CrossEntropy ◦ SoftMax

losses Z−−−−→
The integrated functionality of these two features has the following redundant mathe-

matical notation:
Z ← [CrossEntropy ◦ So f tMax](X, Y◦) −→

Zb ← − ∑
j∈[K]

Y◦
bj loge

eXbj

∑
i∈[K]

eXbi
, b ∈ [nb]
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This redundancy in notation was helpful in deriving the equation for the gradient
backpropagation for the integrated loss function CrossEntropy ◦ So f tMax. Later, we will
also use for such composition the name So f tCE.

The structure of this paper is as follows:

1. The second section is devoted to mathematics of the SoftMax trick. Its validity is
proved in two ways:

(a) Using gradient formulas for the composition of differentiable functions;
(b) Using the concept of the Jacobian matrix and linear algebra calculus.

2. In the third section titled ISBE Functionality, the conditions that a normalization
unit must meet for its combination with a cross-entropy unit to have a gradient at
the input equal to the difference in soft scores: X = Y − Y◦ are analyzed. Then
the definition of ISBE functionality is introduced, which in the inference phase (I)

normalizes the raw score to a soft score (S), and in the backward propagation phase
(B) returns an error (E), equal to the difference in soft scores. It is also justified why,
in the case of the So f tMax normalization function, the ISBE functionality has, from
the perspective of the learning process, the functionality of the integrated element
CrossEntropy ◦ SoftMax.

3. In the first subsection of the fourth section, using the example of the problem of
recognizing handwritten digits and the standard MNIST(60K) image collection [25],
numerous experiments show that in addition to the obvious savings in computational
resources, in the case of five activations serving as normalization functions, the
classifier’s effectiveness is not lower than that of the combination of the normalization
SoftMax and Cross Entropy. This ISBE property was verified for the activation units
SoftMax, Sigmoid, Hardsigmoid, and Tanh and Hardtanh. The second subsection
of the fourth section reports on how ISBE behaves for a more demanding dataset
CIFAR-10 and a more complex architecture VGG-16.

4. The final fifth section contains conclusions.
5. In Appendix A, the class of functions leading to the dilated SoftMax trick is fully

characterized using concepts of dilation and relocation of function domain.
6. In Appendix B the ISBE functionality is integrated with PyTorch class torch.autograd.

Function.

The main contributions of this research are:

1. Introducing ISBE functionality as simplification and, at the same time, extension of
the functional combination of SoftMax with CrossEntropy.

2. Verification of ISBE feasibility and efficiency on two datasets and three CNN architectures.
3. Enhancement of theoretical background for the concept of SoftMax trick via its general-

ization and full characterization of normalization functions which exhibit this property.

Concluding this introduction, I would like to emphasize that this work is not intended
to depreciate the concept of entropy in the context of machine learning. It has played and
continues to play a key role as a loss function. Its form appears naturally in many data
modeling tasks. For example, in the case of multi-class logistic regression, when computing
optimal weights, maximizing the negative logarithm of the likelihood function directly
leads to the cross-entropy function. In the context of modeling, cross-entropy will remain
an important research tool. The context of the ISBE functionality concerns only the specific
method of calculating the gradient of network parameters for the needs of SGD (Stochastic
Gradient Descent) optimizers. Only this, nothing more.

2. Discrete Cross-Entropy and the SoftMax Trick Property

This section is devoted to the mathematics of the SoftMax trick. Its validity will be
proved in two ways:

1. Using gradient formulas for the composition of differentiable functions,
2. Using the concept of Jacobian matrix and linear algebra calculus.
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The discrete cross-entropy function CE of a target discrete probability distribution
y◦ ∈ [0, 1]K, ∑i y◦i = 1, relative to the calculated by the classifier the probability distribution
y ∈ (0, 1)K, ∑i yi = 1, is defined by the formula:

CE(y◦, y) .
= − ∑

i∈[K]
y◦i loge yi (2)

The notation [K] refers to a sequence of K indexes, such as (1, . . . , K) or (0, 1, . . . , K − 1).
It appears that the gradient of the cross entropy CE(y◦, y) with respect to y is not

defined at the zero components:

∇yCE(y◦, y) = −y◦ ÷ y , (3)

where the operation ÷ for the expression w = u ÷ v, denotes the division of vector u
components by the components of vector v, i.e., wi

.
= ui/vi, i ∈ [K].

In the special case when the vector y ∈ (0, 1)K is calculated based on the vector x ∈ RK

according to the formula yi = So f tMax(x)i = exi / ∑k exk , the gradient of CE with respect
to x has a particularly simple resultant formula. Its simplicity was the reason for the term
SoftMax trick:

y(x) .
= y .

= So f tMax(x), So f tCE(y◦, x) .
= CE(y◦, So f tMax(x))

−→ ∇xSo f tCE(y◦, x)
SoftMax trick

= y − y◦
(4)

Some authors [26] also use the term SoftMax trick for that part of the proof showing
that the derivative of the natural logarithm of the sum of functions exi equals to the
So f tMax function.

The SoftMax trick can be described as a theorem and proved in two ways: the elemen-
tary one and via the matrix calculus. The following theorem includes elementary properties
of the cross-entropy function, optionally preceded by the So f tMax normalization.

Theorem 1. Let y◦ ∈ [0, 1]K, ∑k∈[K] y◦k = 1, be the target probability distribution and y ∈ (0, 1),
∑k∈[K] yk = 1, be the predicted probability distribution. Then

1. For any i ∈ [K], ∂CE(y◦ ,y)
∂yi

=
y◦i
yi

.

2. ∇yCE(y◦, y) = y◦ ÷ y .
=
[

y◦1
y1

, . . . , y◦K
yK

]ᵀ
3. The range of CE covers the positive part of the real axis:{

CE(y◦, y) : y◦ ∈ [0, 1]K, y ∈ (0, 1)K
}
= (0, ∞)

4. Let x ∈ RK be the vector of raw scores, and y◦ be the target probability distribution. Then
So f tMax normalization followed by CE, is defined as follows

So f tCE(y◦, x) .
= − ∑

j∈[K]
y◦j loge

exj

∑k∈[K] exk
.

Contrary to CE only, So f tCE exhibits the bounded gradient:

(a) The Jacobian of So f tMax equals to:

Jacobian(So f tMax)(x) =
∂So f tMax(x)

∂x
= diag[y]− yyᵀ where y = So f tMax(x) .

(b) For any i ∈ [K], ∂[So f tCE(y◦ ,x)]
∂xi

= yi − y◦i , where yi = (So f tMax(x))i .
(c) ∇xSo f tCE(y◦, x) = y − y◦, where y = So f tMax(x) .
(d) The range of So f tCE covers the interval (−1, 1) :
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{
So f tCE(y◦, x) : y◦ ∈ [0, 1]K, x ∈ R

K
}
= (−1,+1)

Elementary proof of SoftCE properties.

yi
.
=

exi

∑k exk
−→ ∂[loge(∑k exk )]

∂xi
= yi −→

∂So f tCE(y◦, x)
∂xi

=

∂

⎡
⎢⎣∑j y◦j loge(∑k exk )− ∑j y◦j

xj︷ ︸︸ ︷
loge exj

⎤
⎥⎦

∂xi

= yi

=1︷ ︸︸ ︷
∑

j
y◦j −y◦i = yi − y◦i

Proof of Sof tCE property using matrix calculus.

In matrix notation [27], the property of SoftMax trick has a longer proof, as we first
need to calculate the Jacobian of the So f tMax function [28].

If yj
.
=

exj

∑k∈[K] exk
, then

∂yj

∂xi
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−exj · exi(
∑k∈[K] exk

)2 = −yi · yj, when i 	= j

exi ·
(

∑k∈[K] exk
)
− exi · exi(

∑k∈[K] exk

)2 = yi − y2
i = (1 − yi) · yi,

when i = j

The general formula is
∂yj

∂xi
= (δij − yi)yj . Therefore:(

∂y
∂x

)
ij

.
=

∂yj

∂xi
= δijyj − yiyj = (diag[y])ij − (yyᵀ)ij .

Hence, ∂y
∂x = diag[y]− yyᵀ. From the chain rule

∂[So f tCE(y◦, x)]
∂x

.
=

∂CE(y◦, y(x))
∂x

=

(
∂y
∂x

)ᵀ
· ∂[CE(y◦, y)]

∂y
, where y(x) .

= So f tMax(x)

and the symmetry of So f tMax Jacobian matrix ∂y
∂x , we obtain:

∂[So f tCE(y◦ ,x)]
∂x = (diag[y]− yyᵀ)(−y◦ ÷ y)

= y (y ÷ y)ᵀy◦︸ ︷︷ ︸
1
ᵀ
Ky◦=1

− diag[y ÷ y]︸ ︷︷ ︸
IK

y◦ = y − y◦ (5)

While looking at the above two proofs for the Theorem 1, a question can be raised: Is
it only the So f tMax function that has SoftMax trick property? The answer to this problem
can be found in Appendix A. You can understand why the second proof using Jacobian
matrix and matrix calculus has been presented here.
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3. ISBE Functionality

The ISBE functionality is a proposed simplification of the cost function, combining the
SoftMax normalization function with the cross-entropy function, hereafter abbreviated as
CEall . Its role is to punish those calculated probability distributions that significantly differ
from the distributions of scores proposed by the teacher.

To understand this idea, let us extend the inference diagram for CEall with the back-
ward propagation part for the gradient. We consider this diagram in its separate version,
omitting earlier descriptions for the diagram (1):

Loss InferenceL︷ ︸︸ ︷
X−→ SoftMax

Y, Y◦−−→ CrossEntropy
Z−→

BackPropagation︷ ︸︸ ︷
X

Theorem 1←−−−−−Y−Y◦←−−−−−−−−−− SoftMax
Y; Y, Y◦←−−−− CrossEntropy

Z=1←−−

(6)

The meaning of variables X, Y, Y◦, Z and Z, Y, X appearing in the above diagram (6):

X raw score at the input of the normalization function preceding cross-entropy CE, X ∈ RK,
Y normalization result, so-called soft score ,Y ∈ (0, 1)K,
Y◦ target soft score, assigned to the classified example ,
Z output of cross-entropy CE ,Z ∈ R,
Z formal gradient at the input of the backward propagation algorithm, Z = 1,
Y gradient of cross-entropy CE with respect to Y: Y = ∂Z

∂Y = −Y◦
Y ,

X gradient of cross-entropy CE with respect to X: X Theorem 1←−−−−− (Y − Y◦) .

The key formula here is X ← (Y − Y◦). Its validity comes from the mentioned
Theorem 1 which includes the proof for the Formula (4) associated with the SoftMax
trick property.

The generalized form of this property is given in the Appendix A within the Theorem A1
which includes interesting observations on necessary and sufficient conditions for the
SoftMax trick.

For instance, the Equation (A2) on the form of the Jacobian of the normalization unit
is both a sufficient and necessary condition for its combination with the cross-entropy unit
to ensure the equality (A3). Moreover, this condition implies that an activation function
with a Jacobian of the SoftMax type is a SoftMax function with optional relocation.

Theorem A1 leads us to a seemingly pessimistic conclusion: it is not possible to seek
further improvements by changing the activation and at the same time expect the SoftMax
trick property to hold. Thus, the question arises: what will happen if, along with changing
the activation unit, we change the cross-entropy unit to another or even omit it entirely?

In the ISBE approach, the aforementioned simplification of the CEall cost function
involves precisely omitting the cross-entropy operation in the inference stage and practically
omitting all backward operations for this cost function. So what remains? The answer is
also an opportunity to decode the acronym ISBE again:

1. In the inference phase (I), we normalize the raw score X to Y = So f tMax(X),
characterized as a soft score (S).

2. In the backward propagation phase (B), we return an error (E) equal to the difference
between the calculated soft score and the target score, i.e., X .

= Y − Y◦.

Why can we do this and still consider that in the case of the SoftMax activation function,
the value of the gradient transmitted to the network is identical: XCEall = XISBE

.
= Y − Y◦?

The answer comes directly from the property XCEall = Y−Y◦, formulated in Equation (4),
which as it was already mentioned, was proved in the Theorem 1 as the SoftMax trick property.
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We thus have on the left the following diagram of data and gradient backpropagation
through such a unit. On the right, we have its generalization to a ScoreNormalization

unit instead of SoftMax unit.

ISBE Inference︷ ︸︸ ︷
X−→ SoftMax

Y, Y◦−−→
ISBE BackPropagation︷ ︸︸ ︷

X←Y−Y◦←−−−−− Subtract
Y, Y◦←−−

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

generalize−−−−−→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ISBE Inference︷ ︸︸ ︷
X−→ Score Normalization

Y, Y◦−−→
ISBE BackPropagation︷ ︸︸ ︷

X←Y−Y◦←−−−−− Subtract
Y, Y◦←−−

Which activation functions should we reach for in order to test them in the ISBE technique?

1. The SoftMax activation function should be the first candidate for comparison, as it
theoretically guarantees behavior comparable to the system containing cross-entropy.

2. Activations should be monotonic so that the largest value of the raw score remains
the largest score in the soft score sequence.

3. Soft scores should be within a limited range, e.g., [0, 1] as in the case of SoftMax and
Sigmoid, or [−1,+1] as for Tanh.

4. The activation function should not map two close scores to distant scores. For ex-
ample, normalizing a vector of scores by projecting onto a unit sphere in the p-th
Minkowski norm meets all the above conditions. However, it is not stable around zero.
Normalization x

‖x‖p
maps, for example, two points ε,−ε distant by 2 · ‖ε‖p to points

distant exactly by 2, thus changing their distance 1
‖ε‖p

times, e.g., a million times, when

‖ε‖p = 10−6. This operation is known in Pytorch library as normalize function.

The experiments conducted confirm the validity of the above recommendations.
The Pytorch library functions SoftMax, sigmoid, tanh, hardsigmoid, hardtanh meet
the above three conditions and provide effective classification at a level of effectiveness
higher than 99.5%, comparable to CrossEntropy ◦ SoftMax. In contrast, with the function
normalize, the optimizer failed to converge on the same MNIST(60K) collection and with
the same architectures.

What connects these good normalization functions F : RK → RK, of which two are
not even fully differentiable? Certainly, it is the Lipschitz condition occurring in a certain
neighborhood of zero [29]:

x ∈ R
K, ‖x‖p ≤ ε −→ ‖F(x)‖p ≤ c‖x‖p , where c is a certain constant .

Note that the Lipschitz condition meets the expectations of the fourth requirement
on the above list of recommendations for ISBE. Moreover, we do not expect here that the
constant c be less than one, i.e., that the function F has a narrowing character.

We also need a recommendation for teachers preparing class labels, which we represent
as vectors blurred around the base vectors of axes IK = [e1, . . . , eK], ei[j]

.
= δij:

1. example blurring value μ, e.g., μ = 10−6:

ẽi[j] ← (1 − μ)δij +
μ

K − 1
(1 − δij)

2. when the range of activation values is other than the interval [0, 1], we adjust the
vector ẽi to the new range, e.g., for tanh the range is the interval (−1,+1) and then
the adjustment has the form:

ẽi ← 2 · ẽi − 1, i = 1, . . . , K

Finally, let us take a look at the code for the main loop of the program implemented
on the Pytorch platform.
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1. This is what the code looks like when loss_function is chosen as nn.CrossEntropyLoss:

for (labels,images) in tgen:

outputs = net(images)

loss = loss_function(outputs, labels)

optimizer.zero_grad()

loss.backward()

optimizer.step()

2. Now we introduce the ISBE option for SoftMax activation and replace the call for loss
function by soft error calculation:

for (labels,images) in tgen:

outputs = net(images)

soft_error = SoftMax(outputs) - labels

optimizer.zero_grad()

outputs.backward(soft_error)

optimizer.step()

More options, including the definition of ISBE functionality, can be found in Appendix B.
Of course, the above code snippets are only intended to illustrate how easy it is to add the
functionality of ISBE to an existing application.

4. Experiments

What do we want to learn from the planned experiments? We already know from
theory that in the case of the SoftMax activation, we cannot worsen the parameters of the
classifier using cross-entropy, both in terms of success rate and learning time.

Therefore, we first want to verify whether theory aligns with practice, but also to check
for which normalization functions the ISBE functionality does not degrade the model’s
effectiveness compared to CEall .

The learning time tISBE should be shorter than tCE. Still, to be independent of the
specific implementation, we will compare the percentage of the backpropagation time in
the total time of inference and backpropagation:

τ
.
=

backpropagation time
inference time + backpropagation time

× 100% (7)

From many quality metrics, for simplicity, we choose the success rate (also called
accuracy), defined as the percentage of correctly classified elements from the test collection
MNIST(10K)

α =
number of correct classifications

size of the test collection
× 100% (8)

We want to know how this value changes when we choose different architectures and
different activations in the ISBE technique, as well as different options for aggregating
cross-entropy over the elements of the training batch.

4.1. Experiments with MNIST Dataset

Firstly, we evaluate the efficiency of the ISBE idea on the standard MNIST(60K) image
collection and the problem of their classification.

We have the following degrees of freedom in our experiments:

1. Two architecture options

• Architecture N0 consists of two convolutions C and two linear units F ,

of which the last one is a projection from the space of deep feature vectors of
dimension 512 to the space of raw scores for each of the K = 10 classes:
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image−−−−→I 1

28yx C
32

3k2s C
64

3k2s D20F
512

F
10 class scores−−−−−−−→

as by STNN notation [30], for instance⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
32

3k2s
means 32 convolutions with 3 × 3 masks, sampled with a stride of 2,

D20
DropOut—a unit zeroing 20% of tensor elements,

F
512

a linear unit with a matrix A ∈ R?×512,

here ? = 64—it is derived from the shape of
the tensor produced by the previous unit .

• Architecture N1 consists of two blocks, each with three convolutions—it is a
purely convolutional network, except for the final projection:

image−−−−→I 1

28yx C
32

3k C
32

3k pC
32

5k2s D40 C
64

3k C
64

3k pC
64

5k2s D40 C
128

4k F
10 class scores−−−−−−−→

Note that the last convolution in each block has a p requirement for padding, i.e.,
filling the domain of the image with additional lines and rows so that the image
resolution does not change.

2. Three options for reducing the vector of losses in the CrossEntropyLoss element:
none, mean, sum.

3. Five options for activation functions used in the ISBE technique:

• SoftMax: yi ← exi

∑
j∈[K]

exj
, i ∈ [K],

• Tanh: yi ← exi − e−xi

exi + e−xi
, i ∈ [K],

• HardTanh: yi ←
⎧⎨
⎩

−1 if xi ≤ −1
xi if − 1 < xi < +1
+1 if + 1 ≤ xi

⎫⎬
⎭, i ∈ [K],

• Sigmoid: yi ← 1
1 + e−xi

, i ∈ [K],

• HardSigmoid: yi ←
⎧⎨
⎩

0 gdy xi ≤ −2
xi+2

4 gdy − 2 < xi < +2
+1 gdy + 2 ≤ xi

⎫⎬
⎭ =

HardTanh(xi/2) + 1
2

,

i ∈ [K].

The results of the experiments, on the one hand, confirm our assumption that the
conceptual Occam’s razor, i.e., the omission of the cross-entropy unit, results in time savings
τ, and on the other hand, the results are surprisingly positive with an improvement in the
metric of success rate α in the case of hard activation functions HardTanh and HardSigmoid.
It was observed that only the option of reduction by none behaves exactly according to
theory, i.e., the success rate is identical to the model using So f tMax normalization. Options
mean and sum for the model with entropy are slightly better than the model with SoftMax.

The consistency of models in this case means that the number of images incorrectly
classified out of 10 thousand is the same. The experiments did not check whether it concerns
the same images. A slight improvement, in this case, meant that there were less than a few
or a dozen errors, and the efficiency of the model above 99.6% meant at most 40 errors per
10 thousand of test images.
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4.1.1. Comparison of Time Complexity

We compare time complexity according to the metric given by the Formula (7).
In the context of time, Table 1 clearly shows that the total timeshare of backpropagation,

obviously depending on the complexity of the architecture, affects the time savings of the
ISBE technique compared to CrossEntropyLoss—Table 2. The absence of pluses in this
table, i.e., the fact that all solutions based on ISBE are relatively faster in the learning phase,
is an undeniable fact.

The greatest decrease in the share of backpropagation, over 3%, occurs for the Sigmoid
and So f tMax activations. The smallest decrease in architecture N0 is noted for the soft
(soft) normalization function Tanh and its hard version HardTanh. This decrease refers
to cross-entropy without reduction, which is an aggregation of losses calculated for all
training examples in a given group into one numerical value.

Table 1. Comparison of the metric τ, i.e., the percentage share of backpropagation time in the total
time with inference. The share τCE of cross-entropy with three types of reduction is compared with
five functions of soft normalization. The analysis was performed for architectures N0 and N1.

Net Mean None Sum Hsigmoid Htanh Sigmoid SoftMax Tanh

N0 60.61% 59.56% 59.98% 58.31% 58.21% 57.38% 57.45% 59.07%

N1 54.89% 53.92% 53.98% 52.68% 52.33% 51.75% 51.95% 52.11%

N r
1 54.45% 53.92% 54.00% 52.78% 52.30% 51.67% 51.73% 52.11%

Table 2. Metric Δτ
.
= τISBE − τCE, i.e., the decrease in the percentage share of backpropagation time

in the total time with inference. The analysis was performed for architectures N0 and N1.

Net CE Loss Hsigmoid Htanh Sigmoid SoftMax Tanh

N0 mean −2.30% −2.40% −3.23% −3.16% −1.54%
N0 none −1.25% −1.35% −2.18% −2.11% −0.50%
N0 sum −1.67% −1.77% −2.60% −2.53% −0.92%

N1 mean −2.21% −2.56% −3.14% −2.94% −2.79%
N1 none −1.24% −1.59% −2.17% −1.97% −1.82%
N1 sum −1.30% −1.65% −2.23% −2.03% −1.87%

Inspired by the Theorem A1, which states that the relocation of the So f tMax function
preserves the SoftMax trick property, we also add data to the Table 1 for the network N r

1 .
This network differs from the N1 network only because the normalization unit has a trained
relocation parameter. In practice, we accomplish training with relocation for normalization
by training with the relocation of the linear unit immediately preceding it. This is done by
setting its parameter: bias = True.

As we can see, the general conclusion about the advantage of the ISBE technique in terms
of time reduction for the model with the relocation of the normalization function is the same.

4.1.2. Comparison of Classifier Accuracy

Comparison of classifier accuracy and differences in this metric are contained in
Tables 3 and 4. The accuracy is computed according to the Formula (8).

The number of pluses on the side of ISBE clearly exceeds the number of minuses. The
justification for this phenomenon requires separate research. Some light will be shed on
this aspect by the analysis of learning curves—the variance in the final phase of learning is
clearly lower. The learning process is more stable.
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Table 3. In the table, the success rate of three classifiers based on cross-entropy with different
aggregation options is compared with the success rate determined for five options of soft score
normalization functions. The analysis was performed for architectures N0 and N1.

Net Mean None Sum Hsigmoid Htanh Sigmoid SoftMax Tanh

N0 99.45% 99.41% 99.47% 99.50% 99.50% 99.56% 99.41% 99.45%

N1 99.61% 99.58% 99.59% 99.64% 99.66% 99.64% 99.62% 99.63%

N r
1 99.55% 99.64% 99.64% 99.61% 99.66% 99.69% 99.63% 99.57%

Table 4. Change in success rate between models with cross-entropy and models with soft score
normalization function. The analysis was performed for architectures N0 and N1.

Net CE Loss Hsigmoid Htanh Sigmoid SoftMax Tanh

N0 mean 0.05% 0.05% 0.11% −0.04% 0.00%
N0 none 0.09% 0.09% 0.15% 0.00% 0.00%
N0 sum 0.13% 0.03% 0.09% −0.06% −0.02%

N1 mean 0.03% 0.05% 0.03% 0.01% 0.02%
N1 none 0.06% 0.08% 0.06% 0.04% 0.05%
N1 sum 0.05% 0.07% 0.05% 0.03% 0.04%

In Table 4, we observe that, with the exception of the function So f tMax, which on
several images of digits performed worse than the model with cross-entropy, the soft
activations have an efficiency slightly or significantly better. However, we are talking about
levels of tenths or hundredths of a percent here. The largest difference noted for the option
SoftMax was 15-hundredths of a percent, meaning 15 more images correctly classified.
Such differences are within the margin of statistical error.

The use of relocation for the normalization function does not provide a clear conclusion—for
some models, there is a slight improvement; for others, there is a slight deterioration. It
is true that the ISBE functionality with sigmoid activation achieved the best efficiency of
99.69%, but this is only a matter of a few images.

Within the limits of statistical error, we can say that the ISBE functionality gives the
same results in recognizing MNIST classes. Its advantages are:

• of decrease time in the total time,
• simplification of architecture, and therefore playing the philosophical role of Occam’s razor.

4.1.3. Visual Analysis

Further analysis of the results will be based on the visual comparison of learning curves.
First, let us see on three models cross-entropy-mean, SoftMax, sigmoid their loss and

efficiency curves obtained on training data MNIST(54K) and on data intended solely for model
validation MNIST(6K). These two loss curves are calculated after each epoch. We supplement
them with a loss curve calculated progressively after each batch of training data (see Figure 1).

Let us note the correct course of the train loss curve with respect to the progres-
sive loss curve—both curves are close. The correct course is also for the validation loss
curve—the validation curve from about epoch 30 is below the training curve, maintaining
a significant distance. This effect was achieved only after applying a moderate input image
augmentation procedure via random affine transformations in the pixel domain.

Correct behavior of learning curves was recorded both for the models with entropy and
for models with the ISBE functionality. This also applies to classifier performance curves.
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1. Curves of loss functions can appear together as long as the type of function is identical,
which entails a similar range of variability for loss function values. One might wonder
what measure of loss to adopt in the case of ISBE since this technique, in fact, does not
calculate loss values. We opt for a natural choice of mean square error for errors in
soft scores:

LISBE = MSE(Y, Y◦) .
=

1
nb

· ‖Y − Y◦‖2
2

where nb is the batch size.
For such defined measures, it turns out that only the option of reduction by summing
has a different range of variability, and therefore it is not on the Figure 2.

2. In the case of classifier accuracy, a common percentage scale does not exclude placing
all eight curves for each considered architecture. However, due to the low trans-
parency of such a figure, it is also worth juxtaposing different groups of curves of the
dependency α(e). The accuracy α of the classifier MNIST(60K) is calculated on the test
set MNIST(10K).

Figure 1. Learning curves on training and validation data for the N1 network and three models:
cross-entropy-mean, SoftMax, sigmoid. The horizontal reference line represents the accuracy of
test data computed after the last epoch.

Sets of curves, which we visualize separately for architectures N0, N1 are:

• All options for loss functions (3) and soft score functions (5),
• CE none, CE mean, CE sum versus SoftMax,
• CE none, CE mean, CE sum versus tanh, hardtanh,
• SoftMax versus sigmoid, hardsigmoid,
• SoftMax versus tanh, hardtanh,
• SoftMax versus sigmoid, tanh.

Due to space constraints, we show learning curves and classifier effectiveness graphs
only for architecture N1 in Figures 2 and 3.
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Figure 2. Loss charts of learning in comparisons of CE versus ISBE options. In the first row:
(1) all options for loss functions and soft score functions; (2) CE none, CE mean versus SoftMax;
(3): CE none, CE mean versus tanh, hardtanh. In the second row: (1) SoftMax versus sigmoid,

hardsigmoid; (2) SoftMax versus tanh, hardtanh; (3) SoftMax versus sigmoid, tanh.

In Figure 2 we can clearly observe four clusters of models:

• CrossEntropyLoss based with reduction option sum (as out of common range it was
not shown),

• CrossEntropyLoss based with reduction options none, and mean,
• ISBE based with normalizations to range [0, 1] including functions

So f tMax, Sigmoid, and HardSigmoid,
• ISBE based with normalizations to range [−1, 1] including functions Tanh, and HardTanh.

Within a cluster, the loss curves behave very similarly. Interestingly, the loss curves in
ISBE-based clusters tend to the same value greater than zero. In contrast, cross-entropy-
based curves also tend to the same limit. However it is clearly greater than ISBE one.

Now, we will pay more attention to test learning curves. We generate test learning
curves on the full set of test data MNIST(10K). After each epoch, one point is scored towards
the test learning curve. We will show these curves in several comparative contexts.

Accuracy charts of learning (see Figure 3) were obtained to compare cross entropy
(CE) performances versus ISBE performance. We have:

• Comparison of CE versus soft options:

1. all options for loss functions and soft score functions
2. CE none, CE mean versus SoftMax,
3. CE none, CE mean versus tanh, hardtanh.
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• Comparison of SoftMax versus other soft options:

1. SoftMax versus sigmoid, hardsigmoid,
2. SoftMax versus tanh, hardtanh,
3. SoftMax versus sigmoid, tanh.

In the case of classifier accuracy curves, the variances in the clusters described above are
smaller than in the union of clusters. Close to the final epochs, all curves tend to be chaotic
within the range of (99.4, 99.7).

Figure 3. Accuracy charts of learning in comparisons of CE versus ISBE options. In the first row:
(1) all options for loss functions and soft score functions; (2) CE none, CE mean versus SoftMax;
(3): CE none, CE mean versus tanh, hardtanh. In the second row: (1) SoftMax versus sigmoid,

hardsigmoid; (2) SoftMax versus tanh, hardtanh; (3) SoftMax versus sigmoid, tanh.

Visualizing the effectiveness of classifiers for different architectures of different com-
plexities, although more obvious, also has research value (see Figure 4):

• CE none, CE mean, CE sum from N0 versus CE none, CE mean, CE sum from N1,
• CE none, SoftMax from N0 versus CE none, SoftMax from N1,
• SoftMax, sigmoid from N0 versus SoftMax, sigmoid from N1,
• sigmoid, tanh from N0 versus sigmoid, tanh from N1,
• sigmoid, hardsigmoid from N0 versus sigmoid, hardsigmoid from N1,
• tanh, hardtanh from N0 versus tanh, hardtanh from N1.

Figure 4 shows the better performance of N1 compared to N0. Moreover, we can
observe slightly more stable behavior for ISBN-based curves than for cross-entropy-based.
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Figure 4. Accuracy charts of learning in comparisons of CE versus ISBE options and architecture
N0 versus N1. In the first row: (1) CE none, CE mean, CE sum; (2) CE none, SoftMax; (3): SoftMax,
sigmoid. In the second row: (1) sigmoid, tanh; (2) sigmoid, hardsigmoid; (3) tanh, hardtanh.

4.2. Experiments with CIFAR-10 Dataset

In this subsection, the CIFAR-10—the more demanding than MNIST dataset is consid-
ered in the context of ISBE functionality. Moreover, the VGG feature extractor with more
than 14 M parameters, i.e., more than 10 times larger model than N1, is joined to make
further tests. In Figure 5, we can compare sample images from MNIST dataset and CIFAR-10

dataset. What is immediately observed is the background of objects classified—the uniform
black for MNIST and the natural scene in case of CIFAR-10. It is the main reason that despite
the almost perfect fit achieved by VGG-16 on the training set CIFAR-10 of 50 thousand
images,the best results on the independent testing dataset of 10 thousand images are near
93%. The best results known w CIFAR-10 for all architectures attempted so far are near
95%—about one percent more than the record achieved by human beings.

Figure 5. Comparing sample images from MNIST and CIFAR-10 datasets. CIFAR-10 classes: plane,
car, bird, cat, deer, dog, frog, horse, ship, truck.
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The architecture VGG-16 was presented by Simonyan and Zisserman in their seminal
paper [31], Very Deep Convolutional Networks for Large-Scale Image Recognition. VGG-16 model
now serves the community as the universal image feature extractor. Its structure has the
following sequential form:

rgb−→I 3

32yx Cbr
64

3 Cbr
64

3 mP2

vgg1−−→Cbr
128

3 Cbr
128

3 mP2

vgg2−−→Cbr
256

3 Cbr
256

3 Cbr
256

3 mP2

vgg3−−→

Cbr
512

3 Cbr
512

3 Cbr
512

3 mP2

vgg4−−→Cbr
512

3 Cbr
512

3 Cbr
512

3 mP2

vgg5−−→F
10 class scores−−−−−−→

Like for the two architectures N0,N1 tested for MNIST, the optimizer used for model
updates is still AdaM with exponential decay of learning rate with respect to epochs.
However, now the initial learning rate is 0.1, not 0.01.

In Figure 6, we can observe better convergence for all ISBE options than for the cross-
entropy. Moreover, during testing, the loss value for CE is slowly increasing, starting at
about epoch 30, while for all ISBE options, it is stabilizing on the fixed level.

Figure 6. Loss and accuracy charts for VGG-16 architecture and CIFAR-10 dataset. In the loss chart
for training, we can observe better convergence for all ISBE options than for cross-entropy.

From the results presented in Figure 7, it is visible that in the training and testing
stages, there are different clusterings for ISBE options:

• In training, there are three groups of ISBE options: {hardtanh}, {tanh, hardsigmoid},
{sigmoid, SoftMax}.

• In testing there are two groups: {tanh, hardtanh} and {SoftMax, sigmoid,

hardsigmoid}.

The significant gap between tanh, hardtanh and other ISBE options can be explained
by different ranges for the first group and for the second one, i.e., (−1,+1) versus (0, 1). It
is not fully clear why in the training stage hardtanh is separate to tanh.

Figure 7. Loss charts for VGG-16 architecture and CIFAR-10 dataset within epochs 40–80 and 80–120
(only ISBE options are shown). During testing, we can observe two clusters for convergence: the
sigmoid cluster and the tanh cluster.
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In Figure 8, the accuracy for cross-entropy and all ISBE options can be compared.
It is observed that hard versions are inferior to others. However, while testing, a slight
advantage is achieved by the hyperbolic tangent tanh.

Figure 8. Accuracy charts for VGG-16 architecture and CIFAR-10 dataset within epochs 40–80 and
80–120. Each horizontal line denotes the maximum accuracy for the option of the same color.

Ultimately, we have bad news on time savings when using autograd interface. Con-
trary to MNIST experiments where ISBE functionality was implemented by the direct re-
placement of CE loss in the main learning loop, the CIFAR-10 experiments were using the
definition of ISBE_func class being the extension to torch.autograd.Function class. It
seems that the general mechanism of interfacing to C++ used by PyTorch in this case, is
less efficient than for cross_entropy function. This is perhaps the reason that functionality
with fewer operations takes slightly more time while the same functionality without explicit
use of autograd mechanism gives always time savings up to 3%.

5. Conclusions

Cross-entropy CE as a loss function owes much to normalization performed by the
SoftMax activation function. In the backward gradient backpropagation phase, only this
activation, through perfect linearization, can prevent the explosion or suppression of the
gradient originating from CE. What we call the SoftMax trick, as a mathematical phe-
nomenon, is explained by the theory presented in the second section and its extension
in Appendix A. There is proof that such linearization can only be realized by a function
F : RK → RK with a Jacobian identical to that of the SoftMax function. In turn, such a
Jacobian can only be derived for the dilated and relocated versions of the SoftMax function.

For further research, there remain practical aspects of a more general Theorem A1
implying that dilated and relocated versions of SoftMax are the only ones having the
property of dilated SoftMax trick. However, it is quite intuitive that the dilation vector could
be used to deal with class unbalanced datasets.

Should we, therefore, celebrate this unique relationship between activation and cost
function? In this work, we have shown that it is rather beneficial to use the final effect of
the action of this pair, namely the linear value equal to Y − Y◦, which can be calculated
without their participation. This is exactly what the ISBE functionality does—it calculates
the soft score vector in the forward step to return in the backward step its error from the
target score.

To determine the normalized score, the ISBE functionality can use not only the SoftMax
function, as it is not necessary to meet the unity condition, i.e., to ensure a probability
distribution as scores of the trained classifier. At least four other activation functions
sigmoid, tanh and their hard versions HardSigmoid and HardTanh perform no worse.
The choice of these final activations was rather a matter of chance, so researchers face
further questions. How do we normalize raw scores and appropriately represent (encode)
class labels in relation to this normalization to not degrade the classifier’s results? What
properties should such normalization functions have? Experiments suggest that meeting
the Lipschitz condition in the vicinity of zero may be one of these properties.
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The theoretical considerations presented prove that the ISBE functionality in the
process of deep model learning correctly simulates the behavior of the CrossEntropy unit
preceded by the SoftMax normalization.

The experiments showed that the ISBE functionality saves the time of forward and
backward stages up to 3%, and the effectiveness of the classifier model remains unchanged
within the margin of statistical error. Obviously, those gains are strongly dependent on
datasets and network architectures.

In turn, a more complex case of integrating ISBE functionality with AD tools (Auto-
Grad) of a given platform can be solved for PyTorch by copying the proven code from
Appendix B. However, as we described in the section on experiments with CIFAR-10, the
time savings were consumed by this kind of interfacing to autograd system.
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Appendix A. Functions Giving the SoftMax Trick for Cross-Entropy

While looking on the two proofs for the Theorem 1 an interesting question arises: is it
only the So f tMax function that has SoftMax trick property? It seems possible that there are
others, as for any differentiable function F : Rn → Rn, the starting point for reasoning is
the same:

∂[CE(y◦, F(x))]
∂x

y .
=F(x)
=

(
∂F(x)

∂x

)ᵀ ∂[CE(y◦, y)]
∂y︸ ︷︷ ︸

−y◦÷y

=

(
∂F(x)

∂x

)ᵀ
(−y◦ ÷ y)

The following theorem fully characterizes functions that have the dilated SoftMax
trick property.

Theorem A1 (On the properties of the SoftMax trick).
For a differentiable function F : RK → RK, the following three properties are equivalent:

1. F is a generalized SoftMax function if there exist a reference point c ∈ RK and a dilation
vector d ∈ RK, such that for every x ∈ RK:

y = F(x) = So f tMax(d  x − c) , (A1)

where  operation is the component-wise multiplication.
2. F has a dilated SoftMax-type Jacobian, if there exists dilation vector d ∈ Rk, such that for

every x ∈ RK:

Jacobian(F)(x) .
=

∂F(x)
∂x

= diag[d  y]− y(d  y)ᵀ .
= (Dy − yyᵀ)Dd , (A2)

where y = F(x), Dy
.
= diag[y], Dd

.
= diag[d] .

3. F possesses the dilated SoftMax trick property, if for every target vector y◦ ∈ [0, 1]K, and

x ∈ RK its Jacobian matrix ∂F(x)
∂x satisfies the following equation:(

∂F(x)
∂x

)ᵀ
(−y◦ ÷ y) = Dd(y − y◦) = d  (y − y◦) , where y = F(x) . (A3)
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Proof of Theorem A1.

We prove the implications in the following order: (2) −→ (3), (3) −→ (2), (1) −→ (2),
(2) −→ (1) .

• Proof of implication (2) −→ (3):

If the Jacobian ∂F(x)
∂x of the function F is of the dilated SoftMax type, then for y = F(x):(

∂F(x)
∂x

)ᵀ
(−y◦ ÷ y) = Dd(Dy − yyᵀ)(−y◦ ÷ y)

= Dd

⎛
⎜⎜⎝y

1
ᵀ
Ky◦=1︷ ︸︸ ︷

(y ÷ y)ᵀy◦ − diag[y ÷ y]︸ ︷︷ ︸
IK

y◦

⎞
⎟⎟⎠ = Dd(y − y◦) = d  (y − y◦)

• Proof of implication (3) −→ (2): Denote the axis unit vector j by ej ∈ RK. Then
(ej)i = δij. Substitute into property (A3) the target score vector y◦ .

= ej. Then

di(yi − (ej)i) =

(
∂F(x)

∂xi

)ᵀ
(−ej ÷ y) = ∑

k∈[K]

∂yk
∂xi

·
(−δkj

yk

)
=

∂yj

∂xi
·
(
−1
yj

)

Therefore
∂yj
∂xi

= di · ((ej)i − yi)yj
(ej)i=δij
= di · (δij − yi)yj. Swapping i with j we obtain:

∂yi
∂xj

= (δji − yi) · dj.
Thus,

∂y
∂x

= (diag[y]− yyᵀ) d = (Dy − yyᵀ)Dd = diag[d  y]− y(d  y)ᵀ .

• Proof of implication (1) −→ (2):

If yj
.
=

edjxj−cj

∑k∈[K] edkxk−ck
, then

∂yj

∂xi
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−edjxj−cj · edixi−ci · di(
∑k∈[K] edkxk−ck

)2 = −(diyi) · yj, when i 	= j

di · edixi−ci ·
(

∑k∈[K] edkxk−ck
)
− edixi−ci · edixi−ci · di(

∑k∈[K] edkxk−ck

)2

= di(yi − y2
i ) = (1 − yi) · (diyi), when i = j

The general formula is
∂yj

∂xi
= (δij − yj)(diyi) . Therefore:(

∂y
∂x

)
ji

.
=

∂yj

∂xi
= δij(diyi)− yj(diyi) = (diag[d  y])ji −

(
y(d  y)ᵀ

)
ji .

Hence, ∂y
∂x = diag[d  y]− y(d  y)ᵀ = (Dy − yyᵀ)Dd

• Proof of implication (2) −→ (1):

If ∂yi
∂xi

= ((1 − yi) · yi) · di and
∂yj
∂xi

= −yjyidi then the diagonal of the Jacobian matrix
gives us differential Equations [32], from which we can determine the general form of
the function yi(x), i ∈ [K] :

152



Entropy 2024, 26, 65

∂yi
(1 − yi) · yi

= di∂xi −→
∫ ( 1

yi
+

1
1 − yi

)
∂yi =

∫
di∂xi

−→ loge
yi

1 − yi
= dixi + C(k 	= i) −→ yi =

edixi

edixi + e−C(k 	=i)︸ ︷︷ ︸
zi

−→ yi =
edixi

zi
, where zi = zi(x1, . . . , xK) > 0

−→ loge zi = dixi − loge yi

Now we calculate the partial derivatives
∂loge zj

∂xi
. If i 	= j, then

∂[loge zj]

∂xi
=

∂[djxj − loge yj]

∂xi
= − 1

yj

−yjyidi︷︸︸︷
∂yj

∂xi
= yidi

For i = j, the result is the same:

∂[loge zi]

∂xi
=

∂[dixi − loge yi]

∂xi
= di − 1

yi

(1−yi)yidi︷︸︸︷
∂yi
∂xi

= di − (1 − yi)yidi
yi

= yidi

Therefore, for any j ∈ [K], we have K equalities:
∂[loge zj ]

∂xi
= diyi =

∂[loge z1]
∂xi

, i ∈ [K].
This means that vector fields for each pair of functions loge zj and loge z1 are identical.
Integrating these fields yields the same function up to a constant cj: loge zj = loge z1 +

cj, j ∈ [K]. Consequently, zj = z1 · ecj , j ∈ [K], and therefore yj =
edjxj

z1ecj
=

edjxj−cj

z1
.

From the unity condition, we can now determine the value of z1:

1 = ∑
k∈[K]

yk = ∑
k∈[K]

edkxk−ck

z1
−→ z1 = ∑

k∈[K]
edkxk−ck −→ yj =

edjxj−cj

∑
k∈[K]

edkxk−ck
.

Note that the above theorem excludes the functions Sigmoid, Tanh and HardSigmoid,

HardTanh from the group of functions for which we can apply the SoftMax trick. Namely,
in the vector version, all these functions, none of them can be considered as the special
form of the generalized SoftMax function. It is obvious fact, but to give a formal reason, we
observe that all those functions operate on each component of vector x independently, i.e.,
the result yi depends only on argument xi. In the generalized SoftMax function, yi depends
on all arguments x1, . . . , xn.

Appendix B. ISBEISBEISBE Functionality in PyTorchPyTorchPyTorch

Appendix B.1. Testing Soft Options-Direct Way

ISBE functionality can be introduced to our training procedures in many ways.

1. The simplest way of replacing the call of the cross-entropy function is by calling
So f tMax and, after, subtracting target hot vectors or their soften versions, calling the
backward for the net output:

for (labels,images) in tgen:

outputs = net(images)

soft_error = SoftMax(outputs) - labels

optimizer.zero_grad()

outputs.backward(soft_error)
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optimizer.step()

2. If we want to test more options and compare them with cross-entropy, the loop code
will extend a bit:

for (labels,images) in tgen:

outputs = net(images)

if no_cross_entropy:

if soft_option=="SoftMax":

soft_error = SoftMax(outputs) - labels

if soft_option=="tanh":

soft_error = tanh(outputs) - (2.*labels-1.)

elif soft_option=="hardtanh":

soft_error = hardtanh(outputs) - (2.*labels-1.)

elif # ...

# next options

optimizer.zero_grad()

outputs.backward(soft_error)

else:

loss = loss_function(outputs, labels)

optimizer.zero_grad()

loss.backward()

optimizer.step()

3. If we prefer to have a visually shorter loop, then by introducing the variable soft_function

and extending the class DataProvider with matching target labels for a given soft
option, we finally obtain a compact form:

for (labels,images) in tgen:

outputs = net(images)

if no_cross_entropy:

soft_error = soft_function(outputs) - labels

optimizer.zero_grad()

outputs.backward(soft_error)

else:

loss = loss_function(outputs, labels)

optimizer.zero_grad()

loss.backward()

optimizer.step()

4. However, if we want to register ISBE functionality as torch.autograd.Function then
we have to follow the instruction of PyTorch on this kind registration. The effect is
described in the next subsection.

Appendix B.2. ISBE Functionality with Automatic Differentiation

In order to make ISBE_func callable in both inference and backpropagation stage we
have to define three static methods in extension of class torch.autograd.Function:

class ISBE_func(torch.autograd.Function):

@staticmethod

def forward(...)

<body of forward>

@staticmethod

def setup_context(...)

<body of setup_context>

@staticmethod

def backward(...)

<body of backward>
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The whole job is performed in the body of forward static method. Other two methods
simply switch tensors:

1. Body of forward:

def forward(raw_scores, labels,

options=dict(soft=’SoftMax’, num_classes=10, eps=1e-8)):

K = options[’num_classes’]

eps = options[’eps’]; soft_option = options[’soft’]

one_hots = torch.nn.functional.one_hot(\

labels, num_classes=K)*(1-K*eps)+eps)

if soft_option==’SoftMax’:

soft_scores = torch.nn.functional.SoftMax(raw_scores,dim=1)

target_scores = one_hots

elif soft_option==’sigmoid’:

soft_scores = torch.nn.functional.sigmoid(raw_scores)

target_scores = one_hots

elif soft_option==’hardsigmoid’:

soft_scores = torch.nn.functional.hardsigmoid(raw_scores)

target_scores = one_hots

elif soft_option==’tanh’:

soft_scores = torch.nn.functional.tanh(raw_scores)

target_scores = 2.*one_hots-1.

elif soft_option==’hardtanh’:

soft_scores = torch.nn.functional.hardtanh(raw_scores)

target_scores = 2.*one_hots-1.

soft_scores.requires_grad = False

soft_errors = soft_scores - target_scores

mse_soft = torch.mean(soft_errors**2)

return mse_soft, soft_errors, soft_scores

2. Body of setup_context:

def setup_context(ctx, inputs, output):

raw_scores, labels, options = inputs

mse_soft, soft_errors, soft_scores = output

ctx.set_materialize_grads(False)

ctx.soft_errors = soft_errors

3. Body of backward:

def backward(ctx, grad_mse, grad_errors, grad_scores):

return ctx.soft_errors, None, None

We cannot directly call the forward static function. We have to use apply method.

def isbe_func_(raw_scores, labels,

options=dict(soft=’SoftMax’, num_classes=10, eps=1e-8)):

return ISBE_func.apply(raw_scores, labels, options)

We could also simplify the use of options if there is a global object ‘ex’ which includes
its reference:

isbe_func = lambda raw_scores,labels:\

isbe_func_(raw_scores, labels, options=ex.loss_options)[0]

Instead of a method backwardon PyTorch tensor we could use its wrapper isbe_backward:

isbe_backward = lambda soft_error: soft_error.backward()
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Finally we can also hide the options for the F.cross_entropy function:

tones_ = torch.ones(ex.batch_size).to(ex.device)

cross_entropy_func = lambda x,t:\

F.cross_entropy(x,t,reduction=ex.loss_options[’reduction’],

label_smoothing=ex.loss_options[’label_smoothing’])

ce_backward = lambda loss: loss.backward(tones_[:loss.size(0)])\

if ex.loss_options[’reduction’]==’none’ else loss.backward()
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Abstract: The measurement of vertebral rotation angles serves as a crucial parameter in spinal assess-
ments, particularly in understanding conditions such as idiopathic scoliosis. Historically, these angles
were calculated from 2D CT images. However, such 2D techniques fail to comprehensively capture
the intricate three-dimensional deformities inherent in spinal curvatures. To overcome the limitations
of manual measurements and 2D imaging, we introduce an entirely automated approach for quan-
tifying vertebral rotation angles using a three-dimensional vertebral model. Our method involves
refining a point cloud segmentation network based on a transformer architecture. This enhanced
network segments the three-dimensional vertebral point cloud, allowing for accurate measurement of
vertebral rotation angles. In contrast to conventional network methodologies, our approach exhibits
notable improvements in segmenting vertebral datasets. To validate our approach, we compare
our automated measurements with angles derived from prevalent manual labeling techniques. The
analysis, conducted through Bland–Altman plots and the corresponding intraclass correlation coef-
ficient results, indicates significant agreement between our automated measurement method and
manual measurements. The observed high intraclass correlation coefficients (ranging from 0.980 to
0.993) further underscore the reliability of our automated measurement process. Consequently, our
proposed method demonstrates substantial potential for clinical applications, showcasing its capacity
to provide accurate and efficient vertebral rotation angle measurements.

Keywords: predictive models; deep learning; attention works; point cloud; automatic measurement

1. Introduction

Adolescent idiopathic scoliosis, characterized by complex three-dimensional deformi-
ties involving coronal, sagittal, and axial imbalances, demands precise measurement for
comprehensive evaluation. Accurate assessment is crucial for gauging scoliosis severity,
choosing the most appropriate treatment strategies, and effectively monitoring disease
progression. Notably, vertebral rotation plays a pivotal role in the enigmatic pathogenesis
of scoliosis [1]. Vrtovec [2] introduced a quantitative method automating the identification
of the vertebral body’s median plane, enhancing rotation evaluation. Wang [3] validated
a novel three-dimensional ultrasound technique for quantifying vertebral rotation, high-
lighting its practicality. Recently, the orthopedic community has increased its focus on
axial plane rotational deformities, reflecting heightened interest in this aspect [4,5]. This
collective research underscores the growing importance of accurately measuring vertebral
rotation, enhancing our understanding of scoliosis etiology and clinical management.

In cases of spinal curvature, CT images may obscure parts of vertebral bodies and
pedicles, necessitating observations from multiple angles. Identifying individual pedicles
on a curved spine using 2D images can be challenging [6,7]. However, a 3D vertebral
model offers a promising solution, reducing potential CT imaging errors and providing
a better understanding of spinal structures. Utilizing spatial angle assessments on these
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models can yield highly precise scoliosis angle measurements, which is crucial for guiding
scoliosis treatment.

Previous methods relied on spinous process positions or pedicle shadows in 2D
images, limiting angle estimations. In contrast, our proposed technique directly employs
a 3D vertebral model, accurately establishing a vertebra’s local coordinate system by
incorporating data from end plates and pedicle positions. This innovation can enhance
angle measurements and improve the precision of spinal assessments, with the primary
aim of reducing errors resulting from vertebral asymmetry, leading to more reliable and
accurate results.

The key contributions of our work are as follows:

(1) We propose a novel clinically relevant method for measuring vertebral rotation an-
gles. Addressing the limitations of traditional two-dimensional imaging techniques,
we introduce an automated angle measurement approach specifically designed for
three-dimensional vertebral models. This represents a significant advancement over
traditional two-dimensional imaging techniques;

(2) We propose a transformer-based point cloud segmentation network that incorporates
distance distribution entropy into the corresponding point cloud downsampling algo-
rithm. It is noteworthy that our approach achieves significant progress in predicting
the upper and lower endplates of specific vertebrae.

2. Related Work

2.1. Point Cloud Processing

Convolutional neural networks (CNNs) have significantly expanded their role in
recognizing and segmenting geometric data, achieving breakthroughs in image classifi-
cation [8]. However, 3D point cloud data lacks the standardized alignment principles of
images due to its direct embedding in three-dimensional space.

A pioneering step in this direction was taken by Charles R. Qi et al., who introduced
the PointNet network architecture, later refined as PointNet++ [9,10]. PointNet was the first
deep neural network capable of directly processing raw point clouds, performing tasks such
as point cloud classification and semantic segmentation using inherent point cloud data.
Subsequently, researchers addressed PointNet’s limitations and developed methodologies
for directly utilizing point cloud data in various point cloud analysis applications [11],
emphasizing the interrelationships between points within the PointNet++ framework.
Mao et al. [12] have proposed a new interpolation convolution operation, InterpConv, to
address the learning and understanding challenges of point cloud features. To address
the challenge of Multilayer Perceptrons (MLPs) inadequately capturing the geometric
structure and contextual information of point clouds, Xie et al. [13] proposed GRNet.
They regularized unordered point clouds into a 3D grid, ultimately achieving improved
performance in point cloud completion tasks.

Recent years have seen the integration of convolution into point cloud data for point
cloud segmentation [14–17]. Attention mechanisms [18], particularly self-attention mecha-
nisms, have proven effective in capturing contextual information, making them suitable
for point cloud processing tasks. The emergence of Point Transformer (PT) [19] and Point
Cloud Transformer (PCT) [20] represents successful models for point cloud segmentation
leveraging the transformer mechanism.

2.2. Vertebral Rotation Angle Measurement

The advent of deep learning technology has brought forth a novel wave of interdisci-
plinary applications across various engineering domains. In the realm of vertebral rotation
angle measurement, neural network-based methodologies have garnered significant at-
tention for automating the segmentation of vertebral bodies and pedicles. Noteworthy
contributions include the work of Bakhous et al. [21], who introduced a CNN-based re-
gression model aimed at enhancing vertebral pedicle localization and the estimation of
vertebral rotation angles. Veena Logithasan et al. [22] developed a CNN-powered machine
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learning algorithm to autonomously compute the AVR (Apical Vertebral Rotation) on PAx
radiographs using the Stokes method. Shahin Ebrahimi et al. [23] devised an automated
pedicle detection system, employing image analysis, machine learning, and rapid man-
ual landmark identification, serving as a quantitative VAR (Vertebral Apical Rotation)
assessment tool for scoliosis patients. Zhang et al. [24] pioneered a computer-aided ap-
proach, integrating Hough transform and snake model techniques to semi-automatically
gauge the Cobb angle and vertebral rotation on PAx radiographs. Devlin G. et al. [25]
conducted spinal parameter measurements and correlation evaluations using standing
PA radiographs, employing the Stokes method for vertebral rotation angle quantification.
Quang N. Vo et al. [26] explored the reliability and accuracy of AVR measurements utilizing
centerpoints from the vertebral body or transverse process on three-dimensional ultrasound
images. Daniel Forsberg et al. [27] devised a fully automated approach for estimating AVR
through images from computed tomography scans. An examination of recent research into
vertebral rotation angle measurement methods reveals that a predominant focus remains
on automated measurements derived from 2D CT images. However, these 2D approaches
are susceptible to projection bias and often overlook the patient’s transverse plane. These
conventional 2D techniques fail to fully capture the intricacies of three-dimensional spinal
curvature deformities, particularly in the context of vertebral axial rotation, which holds
considerable significance.

2.3. EOS Imaging System

The EOS imaging system is a cutting-edge, low-radiation, and highly accurate method
for assessing spinal curvature. Some studies [28–31] have used EOS images to create
comprehensive 3D spine reconstructions, forming the basis for measuring vertebral rotation
angles with specialized software. While EOS imaging has been used to reconstruct 3D
vertebral models in certain studies, measuring vertebral rotation angles often involves
time-consuming manual point marking. In contrast, our method allows for direct and
automated determination of these angles from the 3D models. Importantly, our automated
approach shows strong agreement with manual measurements, enhancing its suitability
for clinical assessments.

3. Materials and Methods

3.1. Point Cloud Sampling Method

In the context of point cloud downsampling, selecting a subset of original points to
represent the entire point cloud proves effective in reducing the overall number of points,
thereby minimizing storage and processing costs. Common downsampling methods en-
compass random sampling, voxel downsampling, grid downsampling, adaptive sampling,
and other techniques.

To attain a uniformly distributed point cloud, we opt for the Farthest Point Sam-
pling (FPS) algorithm. However, given the uneven density in vertebral point cloud data,
particularly in regions such as vertebral bodies and arches, the traditional FPS sampling
algorithm may struggle to achieve uniform point sampling. In response to this challenge,
we implement an enhanced version of the FPS algorithm, integrating distance distribution
entropy for improved results. Distance distribution entropy provides a more comprehen-
sive understanding of the distance distribution within the point cloud. By considering
the distance distribution of points and their surroundings, it allows for a more intelligent
selection of the farthest sampling points, thereby enhancing the informativeness of the
sampling process.

For a given point cloud, the first step is to calculate the distances between each point
and every other point, forming a distance matrix D. The calculation is as follows:

H = −∑
i
(Pilog(Pi + ε)) (1)

160



Entropy 2024, 26, 97

In this formula, firstly, the distance matrix D is flattened into a one-dimensional array,
removing distances on the diagonal (i.e., distances from points to themselves), resulting in
an array D

′
containing distances for all pairs of points. Next, the array D

′
is discretized

into a histogram to obtain a frequency distribution P.

3.2. Local Information Extraction Module

The self-attention mechanism, initially proposed for assessing word correlations in
different positions, is well-suited for connecting various positions within local point clouds.
This adaptability is a significant factor in the success of transformers in handling 3D
point clouds.

Once the 3D point cloud is divided into blocks using the KNN algorithm, the self-
attention operator is employed to calculate the output features FSA from the corresponding
input features Fin within a local field F. The calculation is as follows:

FSA = so f tmax(
QK�
√

da
)(V) (2)

where Q, K and V are the query, key, and value metrics, and da is the dimension of the
query and key vectors.

Due to rigid transformations, the absolute coordinates of the same point cloud can
vary significantly. To address this, we introduce a position encoding function δ:

δ = φ(xyz) (3)

where φ is an MLP with two layers and one ReLU nonlinearity.

Fin = ϕ(concat( f , δ)) (4)

where ϕ is a linear layer, and we do this by concatenating the original features and the
transformed position encoding information as the final input features.

In the original model, the Self-Attention (SA) module is enhanced with the Rela-
tion Attention (RA) mechanism to improve point cloud feature representation. This is
accomplished by using the Laplace matrix L (where L = D − A) to replace the adjacency
matrix A in the graph convolution network, where D is the diagonal matrix. The deviation
between the self-attention feature and the input feature is calculated through element-
wise subtraction:

FRA = Fin − FSA (5)

where Fin is the features of the input, FSA is the features obtained by self attention transfor-
mation, and FRA enhances the feature representation of the point cloud.

Then the characteristics of the final output Fout can be expressed as:

Fout = RA(Fin) = LBR(FRA) + Fin (6)

where LBR is a network that combines Linear, BatchNorm and ReLU layers. Figure 1 shows
the local information extraction module.

Figure 1. Relative attention (RA), xyz are the coordinates of the input clouds, f is the original feature
of the input, LBR combines Linear, BatchNorm, and ReLU layers, and SA is the self attention.
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3.3. Architecture Design

The Transformer’s self-attention mechanism excels in point cloud tasks, outperforming
PointNet models in benchmarks. Farthest Point Sampling (FPS) ensures comprehensive
point cloud coverage and uniformity. In our experiments, FPS sampled points to predict
vertebral body upper and lower plate locations using a trained network, reducing the point
count. Upsampling for point cloud segmentation follows, as shown in Figure 2.

Figure 2. Downsampling and Upsampling. N1 and N is the number of point clouds, d, d1, d2and d3

is the corresponding dimension.

We adopt the U-Net framework [32], renowned for its excellence in medical image
segmentation. For upsampling, we utilize the U-Net’s deconvolution method. After each
downsampling, interpolation points preserve previous feature information. Local-global
features from skip connections are maintained to ensure invariance. This seamless fusion
of local and global features helps mitigate limitations compared to simple concatenation.

Our network begins with input point clouds, expanding dimensionally to 64 through
an MLP. It goes through four downsampling stages and four upsampling stages, with the
Relation Attention (RA) module applied after each downsampling step.

The input embedding projects the point cloud into a higher-order feature space using
an MLP. Downsampling utilizes local max-pooling to capture local-global features, pre-
venting the information loss associated with direct global pooling. Upsampling employs
trilinear interpolation, while skip connections aggregate information.

Our network design, similar to U-Net, incorporates skip connections to enable contin-
uous integration of global and local features, enhancing discriminative feature generation.
Figure 3 provides an illustration of our network’s framework.

Figure 3. The network. N is the number of point clouds input to the network, RA is the local
information extraction module, MLP is the multi-layer perceptron, and s is the number of point
cloud categories.
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3.4. The Measure of Vertebral Rotation Angle

The algorithmic steps for the automated measurement of vertebral rotation angles are
as follows: First, import the vertebral model and perform point cloud sampling. Next, for
the sampled vertebral point cloud, utilize a pre-trained neural network model to predict
the corresponding point clouds for the vertebral endplates and pedicle roots. Finally, based
on the obtained predicted point clouds, we conduct the measurement of the corresponding
point cloud’s rotation angles. Figure 4 shows the procedure of the algorithm to calculate
the vertebral rotation angle.

Figure 4. Procedure of the algorithm to calculate the vertebral rotation angle.

3.4.1. Model Import and Point Cloud Sampling

By utilizing vtk’s three-dimensional reconstruction functionality, we obtained a three-
dimensional spine model based on CT images. Subsequently, we employed vtk’s bounding
box functionality for manual segmentation, obtaining the corresponding individual ver-
tebra. The respective vertebra models can then be converted into point cloud-formatted
data. For the acquired three-dimensional point cloud data, we applied a furthest point sam-
pling algorithm in conjunction with distance distribution entropy, resulting in uniformly
distributed point cloud data for the vertebrae.

3.4.2. Vertebral Endplate and Pedicle Recognition

We use our network to train on an existing dataset of vertebral endplate point clouds
and then apply this trained model to predict new vertebral endplate point clouds. After
generating these predicted point clouds, we divide them into two distinct sections based
on their spatial distribution. We then determine the centers of these individual segments.
Figure 5 displays the expected point clouds for the upper and lower endplates of the
vertebrae. The point cloud highlighted in red represents the outcome of our network’s
prediction for the vertebral endplates, while the green spheres in the image represent the
corresponding endplate centers.

We employ our network to train the generated pedicle dataset. For the anticipated
pedicle point cloud, we apply the K-means clustering algorithm to partition this particular
section of the point cloud into two distinct segments. Subsequently, the corresponding
cluster centers are identified. In Figure 6, the highlighted red region represents the point
cloud of the vertebral pedicles predicted by our model, while the green spheres symbolize
the corresponding pedicle centers obtained through the K-Means clustering algorithm.
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(a) (b)

Figure 5. Recognition of vertebral endplate point clouds. (a) The top view of the vertebrae; (b) the
corresponding side view.

(a) (b)

Figure 6. Recognition of the point clouds of vertebral pedicle. (a) The top view of the vertebrae;
(b) the corresponding side view.

3.4.3. Vertebral Rotation Angle Measurement

To measure the vertebral rotation angle in the 3D vertebral model, we follow a spe-
cific methodology:

(1) Transverse Plane Selection: The vertebral centroid, positioned at the midpoint of the
line connecting the midpoints of the upper and lower endplates of the vertebrae,
serves as the center of the transverse plane. The normal vector of this plane is defined
by the line connecting the midpoints of the upper and lower endplates. Figure 7a
depicts the vertebra’s transverse plane;

(2) Local Coordinate System: We establish a local coordinate system with the vertebra
centroid as the origin point. In this coordinate system, the Y-axis is defined by the
line connecting the midpoint of the pedicle and the vertebra centroid. The vector
connecting the upper and lower endplates defines the z-axis, while the x-axis is
computed using the cross product of the vectors representing the y- and z-axes.
Figure 7b illustrates this sequential process;

(3) Angle Calculation: Figure 8 illustrates the method for measuring vertebral rotation
angles. This angle is formed between the vector representing the projection of the
local coordinate system’s Y-axis onto the global coordinate system’s Y-axis within the
vertebra’s transverse plane. Following this methodology, we accurately determine
the vertebral rotation angle in the 3D vertebral model. The red and green lines
represent the respective projected vectors of the local coordinate system and the
global coordinate system’s Y-axis on the transverse plane.
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(a) (b)

Figure 7. (a) The transverse plane of the vertebrae; (b) the local coordinate system of the vertebra.

(a) (b)

Figure 8. (a) The measurement of the vertebral rotation angle; (b) the corresponding side views.

4. Experimental Results and Comparisons

In this section, we evaluate the network used in this paper, compare it with other
networks, and apply it to the vertebral rotation angle measurement.

4.1. Data Preparation

The dataset used in our study is sourced from SpineWeb (dataset3), a freely accessible
online resource. Our approach involves downloading the data to facilitate our research
endeavors. Each CT image sequence is equipped with element spacing details, accessible
directly from the file header. To construct the 3D vertebral model, we harness the power
of VTK, an open-source toolkit renowned for its capabilities in three-dimensional recon-
struction. This process involves the aggregation of sequential CT images of the vertebrae,
enabling us to generate a comprehensive three-dimensional spine model.

Subsequently, we capitalize on VTK’s functionalities to undertake manual segmen-
tation on the model. This intricate segmentation process enables us to precisely isolate
and select the specific vertebra of interest from the three-dimensional spine model. The
resulting selection serves as the fundamental data source for our analysis, providing a
robust foundation for our research efforts.

4.1.1. Generate Point Cloud Data for Vertebral Endplate and Pedicle

Regarding the obtained vertebral model, we perform manual labeling using the
marking functionality in vtk. Specifically, we allocate a label of 1 to the point cloud data
corresponding to the marked endplates. In contrast, for the remaining point cloud data, we
assign a label of 0. The visual depiction of this procedure, illustrating the manual marking
of the vertebrae model plane, is presented in Figure 9.

In Figure 9, we provide a comprehensive guide on how to execute the manual labeling
process for the upper and lower endplate planes of the vertebrae. This process was
facilitated using the versatile vtk open-source toolkit. The left side of Figure 9 illustrates
the steps involved in manual labeling using vtk. Following this labeling, we proceed to
attribute a label of 1 to the resultant point cloud and designate the label 0 for the remaining
point cloud data, as depicted on the right side of Figure 9. This thorough process ensures
the accurate distinction of the labeled endplates and sets the stage for subsequent analyses.
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Figure 9. Manual marking of the vertebrae model plane.

Furthermore, we conduct the extraction of data from the vertebral pedicle within the
vertebral bone model. This extraction process is primarily facilitated through the utilization
of the bounding box feature provided by the VTK toolkit. The operational process of
employing the VTK bounding box to effectively capture the vertebrae aligned with the
pedicle is graphically depicted in Figure 10.

To elucidate, we designate a label of 1 for the point cloud data that corresponds to
the intercepted pedicle of the vertebrae. Conversely, the remaining point cloud data is
assigned a label of 0. This comprehensive labeling process not only precisely differentiates
the pedicle regions but also sets the groundwork for subsequent analytical pursuits.

Figure 10. Manual extraction of the pedicle data from the vertebrae model.

4.1.2. Generation Point Clouds and Labels

The training data is generated through the labeling of point clouds corresponding
to vertebral endplates, yielding the corresponding training data labels. The presence
of multiple point clouds for each vertebral model, coupled with the varying point cloud
counts across these models, poses a challenge for directly training subsequent deep learning
networks. To address this issue, it becomes necessary to uniformly downsample the point
cloud counts to a fixed value, given the varying numbers of point clouds for different
vertebral models.

One effective approach for this uniform downsampling is the furthest point sampling
algorithm (FPS), which maintains the shape of the sampled point cloud while achieving
uniformity in point distribution. By employing FPS, we homogeneously collect labeled
point cloud data, transforming it into a structured format comprising 3072 points.

To augment the number of vertebrae within the corresponding labeled dataset, we
expand the dataset using two FPS samples drawn from the labeled dataset. This expansion
strategy contributes to a more robust and diverse training dataset, thereby enhancing the
effectiveness of subsequent deep learning processes.

4.2. Evaluating the Network

First, we evaluate the network using the publicly accessible ShapeNet dataset and
conduct comparisons with other networks. The ShapeNet dataset has 16 categories and a
total of 16,881 shapes annotated with 50 parts. The Shapenet dataset comprises 3D models
from multiple categories, encompassing objects of various shapes and types. This allows for
an examination of model performance across diverse object types in comparative studies
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of segmentation networks. Furthermore, it is widely used as a standard dataset in point
cloud research.

We train using the Adam optimizer with a learning rate of 0.003, a decay rate of 0.5, a
batch size of 4, and an epoch of 200.

During the training process, we utilize the cross-entropy loss function. We compare
the obtained probability distribution from the Softmax function with the true labels and
compute the cross-entropy loss. If the true labels are represented as a one-hot encoded
vector y, where the i-th element yi indicates whether the sample belongs to the i-th class,
the cross-entropy loss is calculated as:

L(y, so f tmax(z)) = −
C

∑
i=1

yilog(so f tmax(z)i) (7)

where the raw output z is a C-dimensional vector, and C is the number of component
categories in the point cloud.

IoU represents, in point cloud segmentation, the ratio of the intersection and sum of
the true labels and predicted values for the class. mIoU is the mean intersection over union
for each class in the dataset.

mIoU =
1
K
∗

K

∑
k=1

TPk
TPk + FPk + FNk

∗ 100% (8)

where K represents the number of categories, TPk represents the number of correctly
predicted point clouds in category k, FPk represents the number of point clouds that were
misclassified as category k, and FNk represents the number of point clouds where points of
category k are misclassified as other categories.

We evaluate our segmentation results on the ShapeNet dataset using the mean inter-
section over union (mIoU) as our evaluation metric. Table 1 presents these results.

Table 1 reveals that our network’s performance does not consistently surpass other
point cloud segmentation networks across all ShapeNet dataset categories. However, our
method excels in specific categories, particularly those featuring complex structures and
smaller, indistinct components. Notably, our network demonstrates exceptional segmen-
tation accuracy when dealing with objects characterized by complex structures, such as
the Motor category. Furthermore, due to the complex shape of vertebrae, our network is
well-suited for segmenting vertebral data.

Table 1. The result for the part segmentation on the ShapeNet. The metric is mIoU(%) on points.

Mean Airplane Bag Cap Car Chair Earphone Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate Board Table

PointNet 81.5 79.8 65.6 75.4 68.9 87.9 68.3 88.8 82.2 77.6 94.8 44.2 85.8 75.0 50.7 70.6 81.5
PointNet++ 83.6 81.4 75.1 81.0 76.7 89.8 78.2 90.1 81.5 82.3 95.2 60.8 90.6 78.5 52.9 72.5 81.2

DGCNN 83.9 80.9 65.1 68.4 75.7 90.3 69.5 89.8 84.9 84.5 95.3 48.3 87.9 74.3 42.9 70.6 82.9
Point Transformer 81.4 78.3 74.3 78.4 69.8 88.9 75.4 89.4 83.5 81.7 94.7 60.0 80.2 74.6 49.9 68.5 78.4

Point Cloud Transformer 83.2 82.0 67.7 82.2 73.0 89.2 76.0 89.6 85.0 80.6 95.2 51.9 89.1 78.1 49.1 69.6 82.1
PointMLP 84.3 81.2 70.7 80.4 76.2 90.1 73.2 90.1 86.6 83.1 95.5 56.4 91.1 80.7 48.3 74.6 82.8

Ours 83.6 79.1 75.2 78.6 74.4 89.4 74.6 90.2 86.7 83.4 95.0 61.1 91.4 78.5 54.6 68.8 82.4

The bold and italicized font indicates the best segmentation performance compared to other networks for
that category.

Table 2 illustrates whether the combination of distance distribution entropy with FPS
influences the accuracy of predicting the vertebral dataset. From Table 2, it is evident
that the results obtained after preprocessing vertebral point cloud data with distance
distribution entropy are significantly superior to those obtained without using distance
distribution entropy.
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Table 2. The result for the part segmentation on the vertebral dataset. The metric is mIoU(%)
on points.

1 2 3 4 5 6 7 8 9 10

FPS 95.1 95.9 96.5 93.7 96.1 97.0 98.1 96.3 97.3 97.1

FPS + entropy 95.3 96.3 97.1 96.1 96.4 96.6 98.6.5 96.5 97.6 97.3

4.3. Pedicle Recognition Effect

Accurate angle measurement relies on establishing the Y-axis of the local coordinate
system through two pedicle centers. Precise pedicle recognition is critical for minimizing
potential errors, making the statistical analysis of pedicle recognition essential.

Table 3 presents a randomly selected subset of 10 vertebral model datasets from
the complete dataset. Given the intricate spatial structure of the vertebrae, our network
demonstrates superior segmentation accuracy compared to alternative networks in the
majority of vertebral datasets.

Table 3. The result for the part segmentation on the vertebral dataset. The metric is mIoU(%)
on points.

1 2 3 4 5 6 7 8 9 10

PointNet 93.7 96.1 96.9 91.5 97.6 95.8 94.6 95.4 97.6 96.4

PointNet++ 94.7 95.1 96.3 94.5 96.9 96.1 97.5 95.1 97.2 97.5

DGCNN 95.4 96.1 96.3 97.7 97.2 97.1 98.7 96.4 97.4 97.5

Point Transformer 95.3 95.4 97.1 93.4 96.8 96.4 97.2 96.3 97.3 96.7

Point Cloud Transformer 94.6 95.3 96.3 94.8 97.2 95.5 94.6 94.6 97.4 97.2

PointMLP 92.6 95.7 97.1 98.3 97.0 97.2 97.3 96.1 97.2 97.2

Ours 95.6 96.2 97.3 94.9 97.2 97.2 98.9 96.7 97.8 97.6

The bold and italicized numbers indicate the best segmentation performance for the corresponding vertebra.

Figure 11 vividly illustrates the clustering results for segmented vertebral body point
clouds using different techniques. The blue point cloud in the figure represents the pre-
dicted vertebral pedicle point cloud, and the corresponding black spheres depict the
clustering centers obtained through K-means clustering. By comparing it with the manu-
ally segmented vertebral pedicle point cloud, it can be observed that our proposed method
outperforms other networks in predicting vertebral pedicle point clouds (the predicted blue
point cloud is closer to the manually segmented point cloud). Our experiments reveal that
K-means effectively groups various methods for obtaining vertebral pedicle point clouds
into two clusters, closely aligned with actual pedicle centers. Notably, our method consis-
tently produces clustering centers that closely match manual segmentation, emphasizing
its effectiveness and accuracy in this critical analysis.

We conduct experiments on 10 randomly chosen vertebral bone datasets, calculat-
ing the displacement distances between their clustering centers and those obtained from
manual segmentation. Table 4 displays the average offset distance. We use the distance
(mm) as the evaluation metric. Our proposed network generates centroids that closely
match manually derived centroids when using the K-means clustering algorithm. These
segmentation results underscore the potential of our network in establishing the local coor-
dinate system of vertebrae and computing vertebral rotation angles. This comprehensive
assessment demonstrates the effectiveness and promise of our approach for improving
vertebral rotation angle measurements, with potential applications in clinical evaluation
and diagnosis.
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Table 4. Comparison of the average offset distances between the clustering centers of multiple
network-based pedicle segmentation results on the test set with respect to the reference cluster centers
derived from manually labeled pedicles. We use the distance (mm) as the evaluation metric.

PointNet PointNet++ DGCNN PT PCT PointMLP Ours

Left Pedicle 3.621 1.823 3.947 2.479 1.906 2.075 1.773

Right Pedicle 2.738 1.960 4.520 2.059 2.007 2.560 1.188

PointNet PointNet++ DGCNN PT

PCT PointMLP Ours Manual

Figure 11. Demonstration of the clustering effect of the pedicle point clouds segmented in different ways.

4.4. Measurement Results

We initially select 10 vertebral models randomly and then conduct measurements
using both manual and automated methods. For manual measurements, 3 observers
measure each vertebra 10 times, and the results are averaged. Additionally, we employ our
automated measurement program to measure each vertebra 10 times.

Manual measurements involve marking the four points of the vertebral endplate
(top, bottom, left, and right) and determining the midpoint of these points to establish the
endplate’s center. We then extract the corresponding point cloud of the pedicle using an
envelope box. The K-means algorithm is utilized to find the cluster centers of the left and
right pedicles, and the corresponding angles are calculated.

To validate our proposed automated measurement method, we randomly selecte10
vertebral models and conduct both manual and automated measurements, each repeated 10
times. Figure 12 visualizes the measurement variability using Bland–Altman plots, which
display a total of 100 points distributed across 10 distinct patterns. Each point represents
a measurement pair, and points within the same pattern correspond to the same study
subject. Importantly, points within the same pattern cluster closely together, indicating
consistency within each subject. It is noteworthy that only 4 points (4% of the data) fall
outside the limits of agreement (LoA).

This outcome suggests that there is no significant systematic difference when compar-
ing differences between manual and automated measurements. The majority of mea-
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surements closely align, affirming the validity of our proposed automated measure-
ment method.

Figure 12. Bland–Altman plots (i.e., the difference between two measurements plotted against their
mean) for measurements from manual and automatic measurements. Additional horizontal lines
correspond to the mean difference of the measurements (dashed-dotted) and to the lines of agreement
(dashed), i.e., the 95% CI for the difference of the measurements. The 10 different patterns in the
figure represent 10 different vertebral models.

Table 5 shows the final results of the manual measurements as well as the average
of the automatic measurements. The table presents the mean of 10 randomly selected
vertebral models subjected to 10 manual measurements by 3 observers and the mean of
10 automated measurements. The analysis of the error in the automatic measurement of the
angle is mainly due to the fact that the center of the upper and lower endplate point cloud
of the predicted vertebrae is used in the generation of the vertebral medial surface, which
may lead to deviations in the final angle measurement due to incomplete segmentation
of the vertebral endplate point cloud. To address this issue we took multiple automated
measurements to average the results of their automated measurements.

Table 5. Manual and automatic measurement results. The metric is ◦.

Model Observe1 Observe2 Observe3 Automatic

1 3.57 2.69 3.11 2.62
2 12.85 12.33 12.12 11.70
3 11.31 10.85 11.87 11.40
4 12.38 12.78 10.53 11.35
5 8.95 8.81 9.23 8.99
6 7.44 7.47 7.08 6.20
7 2.44 2.64 1.92 2.01
8 2.46 3.57 3.20 2.67
9 2.20 2.30 1.67 2.09

10 2.34 1.94 1.36 2.19
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To evaluate the accuracy of the automatic angle measurement, we use the evaluation
metric ICC, and the model we use is a two-way mixed model of multiple measurements
and absolute agreement (Table 6). Its calculation formula is as follows:

ICC =
MSR − MSE

MSR + MSC−MSE
n

(9)

where MSR represents the mean square for rows, MSE represents the mean square for error,
MSC represents the mean square for columns, and n represents the number of subjects.

Table 6. ICC using a two-way mixed model with absolute agreement, comparing the correlation
in-between manual measurements and automatic measurements.

ICC 95% CI

Automatic-Observe1 0.987 [0.904, 0.997]
Automatic-Observe2 0.985 [0.929, 0.996]
Automatic-Observe3 0.991 [0.967, 0.998]
Observe1-Observe2 0.993 [0.971, 0.998]
Observe1-Observe3 0.983 [0.933, 0.996]
Observe2-Observe3 0.980 [0.925, 0.995]

The mean differences and the 95% confidence intervals between the manual measure-
ments were: 0.56◦ ± 0.40◦, −0.39◦ ± 0.54◦, 0.33◦ ± 0.63◦(Observe1-Observe2, Observe1-
Observe3, Observe2-Observe3). The results between automatic and manual measurements
were: −0.47◦ ± 0.47◦, −0.42◦ ± 0.47◦, −0.09◦ ± 0.43◦(Automatic-Observe1, Automatic-
Observe2, Automatic-Observe3). The difference between automatic measurement and
manual measurement is at the same level as the difference between manual measurements
performed by different observers.

Using the intraclass correlation coefficients in Table 6, we can see that the ICC ranges
between 0.980 and 0.993, which indicates that there is a high level of consistency between
manual measurements and the automated measurements proposed by us.

4.5. Performance and Results Analysis

Comparative evaluations between our automated measurement method and manual
measurements reveal a high level of agreement, supported by the Bland–Altman plots and
ICC values. The strong agreement observed between automatic and manual measurements,
as well as among different manual observers, suggests that our automated method has the
potential to effectively replace manual measurements. However, Table 6 indicates a slight
decrease in ICC values between automatic and manual measurements and among different
manual measurements. This decrease is attributed to the estimated offset of the vertebral
body center and the corresponding offset of the pedicle center.

Our local information extraction module, incorporating location codes into original in-
put features and computing local features using our proposed relation attention mechanism,
plays a pivotal role in our approach. The experimental results highlight our network’s su-
periority in segmenting specific object parts, particularly excelling in segmenting vertebral
point cloud data, including the upper and lower endplates of vertebrae and partial point
clouds of the pedicle. Comparative analyses with other networks consistently demonstrate
our network’s superior performance in both endplate and pedicle segmentation.

However, our experiment has some limitations, one of which stems from the computa-
tional load introduced by incorporating a local point cloud information extraction module
in our network. While this addition results in a certain improvement in training accuracy, it
also increases the computational workload during the training process, thereby impacting
the operational efficiency of the network. Therefore, in the future, we plan to explore modi-
fications to this local information extraction strategy to enhance the operational efficiency
of the network.
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Another limitation stems from our approach to establish the symmetry plane of
vertebrae using centroids based on upper and lower endplate point clouds. This approach
may encounter challenges with incomplete segmentation of the vertebrae point cloud,
such as partial endplate segmentation. In cases of uneven segmentation, our method,
while improving endplate recognition to some extent, might produce incorrect centroid
predictions due to non-uniform segmentation.

To address this limitation, future efforts should aim to enhance the vertebrae point
cloud segmentation network by incorporating inherent features of vertebrae point clouds.
This customized approach could lead to more accurate segmentation results, effectively
addressing the unique characteristics of vertebrae models. Additionally, modifying the
algorithm to incorporate insights from point cloud completion and other techniques could
improve measurement accuracy for incomplete vertebrae point cloud models. These
refinements will contribute to a more robust and comprehensive measurement methodology
suitable for complex real-world scenarios in clinical applications.

5. Conclusions

In this paper, we successfully introduce an automated measurement method based on
three-dimensional vertebral models, particularly suitable for evaluating spinal deformities
in idiopathic scoliosis patients. Compared to traditional manual measurement methods,
our automated approach demonstrates significant advantages in terms of accuracy and
efficiency. Through comparisons with manual measurements, we validate the consistency of
our automated measurement method among different observers and showcase its superior
performance in vertebral model segmentation. Despite the significant success of our
method, we acknowledge some limitations in the experiment. In future research, we focus
on improving the local information extraction strategy to enhance the operational efficiency
of the network. Additionally, efforts are directed towards further optimizing the vertebrae
point cloud segmentation network to overcome challenges associated with incomplete
segmentation. We believe these improvements will facilitate the application of our method
in complex clinical scenarios, providing a more accurate and reliable tool for the assessment
of spinal deformities.
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Abstract: Due to the success observed in deep neural networks with contrastive learning, there
has been a notable surge in research interest in graph contrastive learning, primarily attributed
to its superior performance in graphs with limited labeled data. Within contrastive learning, the
selection of a “view” dictates the information captured by the representation, thereby influencing the
model’s performance. However, assessing the quality of information in these views poses challenges,
and determining what constitutes a good view remains unclear. This paper addresses this issue by
establishing the definition of a good view through the application of graph information bottleneck
and structural entropy theories. Based on theoretical insights, we introduce CtrlGCL, a novel method
for achieving a beneficial view in graph contrastive learning through coding tree representation
learning. Extensive experiments were conducted to ascertain the effectiveness of the proposed view
in unsupervised and semi-supervised learning. In particular, our approach, via CtrlGCL-H, yields an
average accuracy enhancement of 1.06% under unsupervised learning when compared to GCL. This
improvement underscores the efficacy of our proposed method.

Keywords: graph contrastive learning; coding tree representation; structural entropy

1. Introduction

Contrastive learning has demonstrated its effectiveness in various domains, includ-
ing computer vision [1–3], natural language processing [4,5], and graph representation
learning [6]. Specifically, in the context of graph representation learning, graph contrastive
learning (GCL) [7] has proven to be a valuable approach. GCL boosts the performance of
downstream tasks by pre-training a Graph Neural Network (GNN) on extensive datasets,
often characterized by limited or absent annotations. This method has evolved into a
practical self-supervised learning technique for effectively capturing graph representations.

In the realm of graph contrastive learning, two key modules have been delineated:
graph augmentation and contrastive learning methodologies [8]. Similar to contrastive
learning methods in other domains, those designed for graphs aim to enhance agreement
among positive examples while minimizing it among negative samples. Graph augmen-
tation employs diverse strategies such as node dropping, edge perturbation, attribute
masking, and subgraph operations to generate augmented views [7]. Researchers have
highlighted the pivotal role of view quality in the performance of contrastive learning
models [9] and have focused on constructing effective views for graphs through data aug-
mentation [10,11]. Unlike images, generating high-quality contrastive samples for graphs
is challenging due to the intricate structural information embedded in graphical data [12].
This raises the following fundamental questions regarding how to address these challenges:

(1) What defines a good view?
(2) What information should a good view include or exclude?
(3) How can a good view be generated?
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Recently, the information bottleneck (IB) theory has been applied to learn graph
representation [13]. This has inspired the proposition that a good view for graph repre-
sentation should possess minimal yet sufficient information, i.e., the essential information.
Consequently, a metric for quantifying the quality of information embedded in graphs is
indispensable. Taking cues from information theory, particularly the quantification of infor-
mation in communication systems [14], researchers have grappled with the formidable task
of measuring graph structural information, considered one of the “three great challenges
for half-century-old computer science” [15]. Recently, the concept of structural entropy for
graphs has been introduced to measure the uncertainty of graph structures, thus addressing
this challenge [16]. This theory posits that minimizing uncertainty in a graph, or reducing
its structural entropy, unveils the essential structure of the graph. In essence, a good view
aims to minimize structural uncertainty, providing minimal yet sufficient information, and
maximize benefits in graph contrastive learning with the least cost.

In this research, we present a novel approach named CtrlGCL (refer to Figure 1) de-
signed for graph contrastive learning, with a primary focus on the concept of a “good view”
as defined earlier. Our methodology employs an optimization algorithm to decode essential
structures by minimizing structural entropy. This decoding process generates coding trees,
which represent essential structures corresponding to the given graphs. Subsequently,
drawing inspiration from the message-passing mechanism inherent in Graph Neural Net-
works (GNNs), we propose an encoder tailored for learning representations from these
coding trees, effectively capturing essential information. In comparison to existing effective
views in previous studies, we conducted comprehensive experiments covering both semi-
supervised and unsupervised learning across various graph classification benchmarks. The
results demonstrate superior performance compared to state-of-the-art (SOTA) methods.
The contributions are as follows:

• We are the first, to the best of our knowledge, to formulate a definition for a “good
view” in the context of graph contrastive learning, grounded in the theories of graph
information bottleneck and structural entropy.

• Drawing on these theoretical insights, we introduce CtrlGCL as a method to actualize
the concept of a good view for graph contrastive learning, employing coding tree
representation learning.

• Our proposed methodology for constructing good views was comprehensively as-
sessed across various benchmarks, encompassing unsupervised and semi-supervised
learning scenarios. The results consistently showcase its superior performance com-
pared to state-of-the-art methods, underscoring the efficacy of our approach.
In this article, the initial section provides a comprehensive overview of the background
and outlines our specific contributions. The subsequent section delves into the existing
research on graph contrast learning and structural entropy. Following that, the third
section elucidates our theory and delineates the instantiation of our model. Moving
forward, the fourth and fifth sections expound upon the experimental setup and
present the obtained results. Finally, the concluding section encapsulates the essence
of our study, providing a succinct summary of our findings.
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Figure 1. Framework. Our framework with the decoded essential graph structure for contrastive
learning consists of two blocks. We adopt a view from previous works regarding graph contrastive
learning. As for our good view, the original graphs are taken for coding tree transformation, and the
representation for contrastive loss estimation can be obtained through the coding tree encoder.

2. Related Work

2.1. Graph Contrastive Learning

In the wake of the success achieved by contrastive learning in Convolutional Neural
Networks (CNNs) for unsupervised image representation learning [2,9], the application
of contrastive learning for graph representation learning has gained traction due to the
scarcity of labels in real-world network data [7,10–12,17]. However, unlike image data
augmentation, which does not demand extensive domain knowledge, augmentation in
graph data is more intricate and challenging to analyze, posing difficulties in generating
high-quality contrast samples [12,17,18]. Thus, the investigation of the contrastive view
becomes a pivotal aspect of graph contrastive learning. Initially, contrastive pairs were
constructed from different graph components, forming diverse contrastive modes [6,19–21].
More recently, inspired by the heuristics view design in computer vision, GCL introduced
four types of views with random augmentation [7]. However, the optimal view combi-
nations needed extensive evaluation. Subsequent works, like JOAO, proposed a search
strategy based on the Min–Max principle for efficient view selection [11]. Similarly, AD-
GCL aimed to produce graph views through learnable edge dropping [10]. Furthermore,
LP-Info introduced a view-producing model via graph generation to avoid prefabricated
data augmentations that required domain knowledge [17]. In addition to these foundational
studies on GCL, an increasing number of researchers have employed the GCL methodology
for recommendation systems. Specifically, CGI [22] adheres to the design principles of
AD-GCL, learning to determine whether to drop an edge or node under the guidance of
the information bottleneck principle. On the other hand, LightGCL [23] opts for graph
reconstruction, leveraging singular-value decomposition for contrastive augmentation.

Despite the effectiveness of these graph views on various tasks, the data augmentations
proposed, such as random perturbation, in existing methods may introduce structural
damage and noisy information [7,10]. Similarly, learnable views through graph generation
(i.e., LP-Info and LightGCL), based on different experimental settings, may not prevent
artificially introduced noise. Additionally, methods like AD-GCL and CGI, relying on
forced edge dropping, might suffer from graph structure damage and yield an undesirable
performance in various regularizing settings [10]. In contrast, CtrlGCL provides theoretical
guiding principles for contrastive view generation via an optimization algorithm that
avoids random corruption and artificially introduced noisy information.
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2.2. Structural Entropy

The need to measure information in communication networks gave rise to information
entropy [14]. Several metrics have been developed for quantifying information in graphs.
p(G) may be used to evaluate the entropy of graphs worldwide [24]. Different methods
attempt to quantify the structural entropy of nodes in a signal network. Based on distance,
the first example of local graph entropy measurement was presented [25]. Subsequently,
numerous research projects were undertaken in an effort to quantify a graph’s structural
information from various angles. These projects included Gibbs entropy [26], parametric
graph entropy [27], and von Neumann entropy [28]. However, these definitions all de-
structure the graph into an unstructured probability distribution and then apply Shannon
entropy to define the information of the graph. Therefore, these metrics do not suit the
measurement of structural information, which is crucial for graphs and the key to the
success of GNNs. In addition, these graph entropy definitions are only statistical mechanics
approaches, providing an approach to comparing the different models of networks rather
than an approach to figure out the minimal structural entropy of a given graph.

In more recent work, structural entropy was introduced and applied to evaluate the
hierarchical structure complexity in a graph [16]. It was based on coding trees. Structural en-
tropy was further established and used for decoding the fundamental graph structure, with
an emphasis on measuring graph information through fixed hierarchical structures [29].

3. Materials and Methods

3.1. Preliminaries

Here, we introduce some preliminary concepts and notations. In this study, given a
set of graphs G = G1, G2, · · · , GM, every graph can be written as G = (V , E), where V and
E are the sets of nodes and edges, respectively. The graph G may have node attributes
XV = Xv|v ∈ V .

3.1.1. Graph Representation Learning

Graph Neural Networks (GNNs) with a message-passing method were used as en-
coders in this work. The purpose of GNNs is to learn a vector hG ∈ R for the whole graph
G and an embedding vector hv ∈ R for each node. The initial node representation hv

is updated iteratively using the GNN, starting at h(0)v = Xv. When an L-layer GNN is
used, each node representation’s update takes into account data from the nodes that are
nearby within L hops. According to Gilmer et al. [30], the L-layer of a GNN may be written
as follows:

h(l)v = f l
U(h

(l−1)
v , f (l)M ((h(l−1)

v , h(l−1)
u )|u ∈ N(v))), (1)

where h is the node representation of v in the L-th layer, N(v) is the neighborhood node
set for node v, f l

U is the update function in the L-th layer, and f l
M is the trainable message-

passing function in the L-th layer. The node representation hv is similar to a subgraph in
that it is a summary of the nearby nodes. As a result, the whole-graph representation is
formalized as follows after L iterations:

hG = fR(hv|v ∈ V), (2)

where the readout function that pools the final collection of node representations is denoted
by fR.

3.1.2. The Mutual Information Maximization

Graph contrastive learning operates under the mutual information maximization
(InfoMax) principle [20], where the objective is to maximize the degree of correspondence
between a graph’s representations and various augmented perspectives. The goal of the
graph representation hG is to capture the unique characteristics of the graph G such that
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the representation can effectively distinguish this graph from others. The following is how
mutual information maximization aims to be expressed:

InfoMax: max I(G; hG), where G ∼ PG, (3)

where I(·) signifies the mutual information between two random variables, and PG repre-
sents the distribution defined over the graph G.

3.1.3. Methodology

In this section, we begin by outlining our theoretical reasoning and then attempt to pro-
vide a definition of a good perspective. We next offer a particular instantiation of the good
view tailored for graph contrastive learning, building upon structural information theory.

3.2. The Essential Structure with Minimal Structural Uncertainty

Given the challenge of limited labeled data in real-world graph datasets, obtaining
meaningful representations and establishing effective pre-training is contingent upon self-
supervised models delving into the intrinsic information of graphs [31]. The choice of
“views” in self-supervised learning becomes pivotal as it dictates the information encapsu-
lated by the model’s representation [9]. While there have been prior works addressing the
design of effective views for graph contrastive learning from various perspectives [7,10],
none of them offer a clear definition of a good view aligned with the fundamental objective
stated above. Our investigation seeks to fill this gap by providing a precise definition of
what constitutes a good view in the context of graph contrastive learning.

In the realm of computer vision, researchers have provided an empirical solution,
suggesting that a good view involves compressing the mutual information between views
while preserving information relevant to downstream tasks [9]. The notion of the infor-
mation bottleneck, or more precisely the graph information bottleneck (GIB), has been
presented in relation to Graph Neural Networks (GNNs) [13]. A similar approach is put
out by GIB, which drives our investigation into what makes a good perspective for graph
contrastive learning. Models can obtain minimum yet adequate information for a particular
task by simultaneously minimizing mutual information between the input and the output
(i.e., min I(G; f (G))) and maximizing it between the model’s output and the target (i.e.,
max I( f (G); Y)). The following is how the GIB aim is stated:

GIB: max
f

I( f (G); Y)− βI(G; f (G)), (4)

where β is a positive constant and (G, Y) ∼ PG×Y . We suggest that, under the framework of
GIB, an optimal perspective for graph contrastive learning should capture the least amount
of information necessary for tasks that come after, hence optimizing gains at the lowest
possible expense.

It is undoubtedly important to note that the first part of GIB needs target-specific data
for the job at hand (that is, Y), which presents difficulties for the self-supervised training
framework. This challenge, however, directs our attention to the latter portion of GIB,
which is independent of such target-related data. This feature clarifies the investigation
of what, in the context of graph contrastive learning, makes a good view. Moreover,
the goal of decreasing the mutual information between the input graph and the learnt
representation (that is, min I(G; f (G))) emphasizes the essential information that graph
contrastive learning ought to include. This goal supports the notion that an excellent
perspective should emphasize gathering pertinent details while reducing redundancy,
providing insightful information for efficient graph representation learning.

To delve deeper into the essential information of graphs, we establish a property that
a good view should possess:
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Definition 1. A good view is intended to be a substructure of the corresponding graph to mitigate
the introduction of artificially induced noise.

In computer vision, important information is frequently obtained via random dis-
turbance of the data, and the generated noise is known to support robust representation
learning [9]. Graph augmentation is more difficult to interpret and less intuitive than data
augmentation on photos, which does not require in-depth topic expertise. It is challenging
to produce high-quality contrastive samples for graphs because of this complexity [12,17].
Thus, we argue that random perturbation should not be used to introduce fake noise in a
decent representation of graphs.

Given a normal graph G and its G∗ view, the mutual information between G and G∗
may be written as follows:

I(G∗; G) = H(G∗)−H(G∗|G), (5)

where the entropy of G∗ is H(G∗), and the conditional entropy of G∗ conditioned on
G is H(G∗|G) (for simplicity, we ignore the graph encoder f without losing generality).
According to the definition of Shannon entropy [14], the uncertainties of G∗ and G are also
represented by the variables H(G∗) and H(G), respectively.

Furthermore, we may deduce that H(G∗|G) = 0 since, in accordance with Definition 1,
the information encoded in G∗ is a subset of the information in G. Thus, it is possible to
reduce the mutual information to the following:

I(G∗; G) = H(G∗). (6)

Consequently, to capture the essential information of the input graph, we need to
minimize the uncertainty of graph G, expressed as min,H(G∗). Here, we provide the
definition of a good view for graph contrastive learning (GCL).

Definition 2. The good view of a graph should have minimal structural uncertainty.

Shannon entropy is a useful measure for assessing structural information in graphs,
but it is not appropriate for our purposes. Brooks posed the dilemma of how to characterize
a graph’s underlying data in a way that makes it possible to understand its fundamental
structure [15]. Shannon likewise considered whether communication graph analysis could
be aided by a structural theory of information [32].

To measure the uncertainty of a graph’s structure, the notion of structural entropy was
recently proposed and described on graphs [16]. This structural information theory states
that a coding tree encodes a graph. The structural entropy of a graph G = (V , E) on its
coding tree T is defined as

HT(G) = − ∑
vτ∈T

gvτ

vol(V) log
vol(vτ)

vol(v+τ )
, (7)

where gvt denotes the number of edges with an endpoint in the leaf node partition of vt, v+t
is the parent of vt, and vol(V) and vol(vt) are the sums of degrees of leaf nodes in V and vt,
respectively. Moreover, vt is a nonroot node in T and can also be viewed as a node subset
⊂ V according to its leaf node partition in T.

The objective is to find the ideal coding tree T with the smallest entropy, or minT HT(G),
in order to interpret the fundamental structure of graph G with the least amount of struc-
tural uncertainty. A coding tree with a matching constant height is preferable because
real-world networks frequently have a natural structure with a defined hierarchy. Here, the
ideal coding tree with a height of k is decoded using the k-dimensional structural entropy:

Hk(G) = min
∀T:Height(T)=k

HT(G). (8)
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An Instantiation of Essential Structure Decoding and Representation

In this subsection, we will initially present a practical instantiation for decoding the
essential structure to minimize structural uncertainty. Following this, we will introduce a
novel Graph Convolutional Network (GCN) for the coding tree representation based on
Graph Neural Networks (GNNs).

We seek a method to decode the coding tree of height k from a given graph, guided by
the notion of k-dimensional structural entropy. A coding tree T can be created for a graph
G = (V , E), with vr serving as the tree’s root node and V serving as its leaf nodes. Two
functions for the coding tree T are defined as follows:

Definition 3. Let T be any coding tree for the graph G = (V , E), where the leaf nodes are V and
the root node is vr. In T, let vi ∈ vr.children and vj ∈ vr.children be any two nodes (vi, vj).
Defining a function MERGET(vi, vj) for T that inserts a new node vε between (vi, vj) and vr

vε.children ← vi; (9)

vε.children ← vj; (10)

vr.children ← vε; (11)

Definition 4. In accordance with the configuration described in Definition 3, given any two nodes
(vi, vj), where vi ∈ vj.children. Create the function deleteT(vi) for T in order to merge vi.children
with vj.children and delete vi from T:

vj.children ← vi.children; (12)

Algorithm 1 provides a greedy algorithm based on the two provided functions that
computes the coding tree with a given height k using structural entropy minimization.
More specifically, starting from the bottom, a full-height binary coding tree is created. In
this step, the goal is to maximize the decrease in structural entropy by merging two child
nodes of the root to produce a new division in each iteration. In the second step, we must
eliminate nodes from the previous full-height binary coding tree in order to compress it
to meet a set number of graph coarsenings. Each time, we take an inner-node from T,
and after removing it, T has the lowest structural entropy. With the help of structural
entropy, we have already created a coding tree with a certain height k at the conclusion
of the second step. When implementing hierarchical pooling based on such a coding tree,
there can be nodes that, due to cross-layer linkages, do not have an immediate successor
in the following layer. This will result in nodes being missing. As a result, in order to
maintain the integrity of information transfer across layers and to avoid interfering with
G’s structural entropy on the coding tree T, we must complete the third step. Ultimately,
T = (VT , ET), VT = (VT

0 , . . . ,VT
k ), and VT

0 = V may be used to create a coding tree T for
the provided graph G. Furthermore, it is possible to obtain the cluster assignment matrices
from ET , that is, S = (S1, . . . , Sk).

Complexity analysis of Algorithm 1. With hmax representing the height of the cod-
ing tree T following the first step, the runtime complexity of Algorithm 1 is O(2n +
hmax(m log n + n)). During the structural entropy reduction process, hmax will be about
log n, since coding tree T tends to be balanced. Algorithm 1’s runtime roughly grows
linearly with the number of edges, as a network often has more edges than nodes, namely
m � n. The algorithm under consideration maintains two data structures: a coding tree
and a graph. The space complexity of the algorithm is O(m + n), where n denotes the
number of nodes and m represents the number of edges. Specifically, the graph requires
O(n + m) space. The coding tree, on the other hand, necessitates O(n) space, given that the
number of nodes in the coding tree is less than or equal to 2n.
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Algorithm 1 Coding tree with height k via structural entropy minimization.
Input: a graph G = (V , E), a positive integer k > 1
Output: a coding tree T with height k

1: Generate a coding tree T with a root node vr and all nodes in V as leaf nodes;
2: // Stage 1: Bottom to top construction;
3: while |vr.children| > 2 do
4: Select vi and vj from vr.children, conditioned on

argmax(vi ,vj)
{HT(G)−HTMERGE(vi ,vj) (G)};

5: MERGE(vi, vj);
6: end while
7: // Stage 2: Compress T to the certain height k;
8: while Height(T) > k do
9: Select vi from T, conditioned on

argminvi{HTREMOVE(vi) (G)−HT(G)|
vi 	= vr & vi /∈ V};

10: REMOVE(vi);
11: end while
12: // Stage 3: Fill T to avoid cross-layer links;
13: for vi ∈ T do
14: if |Height(vi.parent)− Height(vi)| > 1 then
15: insert a new node vε between vi and vj;
16: end if
17: end for
18: return T;

Coding tree representation learning. The coding tree functions act as a compact
representation of the original graph structure, preserving its essential information while
minimizing redundancy and avoiding noise introduced during augmentation. To seam-
lessly integrate the coding tree into the graph contrastive learning architecture, a novel
encoder is introduced. In order to capture the hierarchical structure of nodes within the
coding tree, a tree positional encoding mechanism is employed. This mechanism enables
the model to distinguish nodes located at different depths. The positional embedding pi

for nodes of height i is defined as follows:

pi = PositionEncoder(i), (13)

where PositionEncoder(i) generates unique embeddings for each layer of the coding tree.
In practical experiments, the implementation of PositionEncoder utilizes the embedding
layer provided by PyTorch.

The encoder, a novel recursive neural network, propagates information iteratively
from the bottom to the top. The process begins with the leaf nodes, and as iterations
progress, the model gradually learns representations for each non-leaf node by aggregating
the representations of its descendants. This iterative process culminates in the derivation of
the representation for the root node. We utilize a Gated Recurrent Unit (GRU) [33] as the
aggregate function. Consequently, the representation of a non-leaf node with height i in the
coding tree is computed as

r̂i
v = ∑u∈C(v) r(i−1)

u , (14)

ri
v = GRU

(
pi, r̂i

v

)
, (15)
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where ri
v is the hidden representation of node v, p(i) is taken as the input, and r̂i

v is the
aggregated information from the children of node v, which represents the hidden state.
More specifically, ri

v is given by

si
v = σ

(
Ws pi + Usr̂i

v

)
, (16)

zi
v = σ

(
Wz pi + Uzr̂i

v

)
, (17)

r̃i
v = tanh

(
Wr pi + Ur(si

v  r̂i
v)
)

, (18)

ri
v = (1 − zi

v) r̃i
v + zi

v  r̂i
v, (19)

where σ is the logistic sigmoid function,  denotes element-wise multiplication, W∗ and
U∗ refer to weight matrices used for linear transformations of vectors that control how the
input and hidden state are combined to produce the new state ri

v.
Complexity analysis of coding tree learning. The runtime complexity is O(nd2). This

process involves a propagation step, which traverses the tree from the leaf nodes to the
root, taking O(n) time. At each node, the GRU executes update and reset operations, both
of which involve matrix multiplications. Assuming the dimension of the hidden feature to
be d, these operations require O(d2) time. The space complexity of the learning process is
O(nd + d2), determined by the storage of the node features and the parameters of the GRU.
Each node in the tree possesses a d-dimensional feature vector, hence storing the features
for all tree nodes requires O(nd) space. The GRU parameters, which are of size O(d2), also
contribute to the space complexity.

For the contrastive loss calculation, xk
root (i.e., the feature vector of the root node) can

be used to represent the entire coding tree. However, recognizing the distinct functionality
of the natural hierarchy, we incorporate the embedded information from each iteration
through skip connections. Specifically, we learn the coding tree with concatenated layer
representations:

rT = [POOL({r0
v|v ∈ V0

T}) ; POOL({r1
v|v ∈ V1

T}) ; . . . ; xk
root)], (20)

where ri
v is the hidden representation and k is the height of tree T. In particular, POOL

in Equation (20) will be implemented by the widely used pooling approaches, such as
summation or averaging.

4. Experiment Setup

In this section, we dedicate ourselves to evaluating CtrlGCL through extensive experi-
ments. We begin by describing the experimental setup for graph classification, covering
both semi-supervised and unsupervised learning scenarios. Subsequently, we validate
the effectiveness of the proposed good view against state-of-the-art (SOTA) competitors,
contrasting with pre-defined rules for graph augmentation.

Given that our good view is orthogonal to previous works on graph augmentations,
we conduct additional analyses to demonstrate the collaborative capabilities of CtrlGCL
with existing approaches. This comprehensive evaluation aims to showcase the versatility
and effectiveness of CtrlGCL across various experimental settings and in collaboration with
diverse graph augmentation strategies.

4.1. Datasets

Various benchmarks for view validation are adopted from TUDatasets [34]. Specifically,
we utilized six datasets for social networks, including IMDB-BINARY, IMDB-MULTI,
COLLAB, REDDIT-MULTI-5K, REDDIT-BINARY, and GITHUB; two datasets for small
molecules, including NCI1 and MUTAG; and two datasets for bioinformatics, including
PROTEINS and DD.

We performed trials for several graph property prediction tasks on a large variety
of datasets from different disciplines. We offer thorough explanations of each of the ten
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benchmark datasets utilized in this investigation. The statistics for these datasets are
summarized in Table 1.

Social Network. IMDB-BINARY and -MULTI are products of a movie set working
together. Actors or actresses are represented as nodes in these two databases, while their
collaboration in a certain film is represented by edges. Every graph has a label that relates to
the genre of the particular film that it is connected to. Comparably, COLLAB is a scientific
domain collaboration dataset made up of three public collaboration datasets: condensed
matter physics, high-energy physics, and astronomy. For the graphs in this benchmark,
researchers from different fields have created different ego networks. The study field that
each graph’s nodes belong to is indicated by its label. The balanced datasets REDDIT-
BINARY or -MULTTI-5K have graphs that each represent an online discussion, and the
nodes stand for users. If two nodes reply to one other’s comments, then an edge is formed
between them. Sorting each graph into the appropriate community or subreddit is the
current work at hand.

Bioinformatics. Protein structure diagrams are included in DD. Every node symbolizes
an amino acid, and edges arise when two nodes are separated by less than 6 A◦. If a protein
is an enzyme or not, it is indicated on the label. A dataset known as PROTEINS has
secondary structural elements (SSEs) as its nodes. If two nodes are next to one another in a
3D space or in the provided amino acid sequence, then an edge exists between them. Three
discrete labels that stand for helices, sheets, or turns are found in the dataset. The NCI1
dataset comes from the field of chemical informatics, where each input graph is used as a
representation of a compound: each vertex represents an atom of a molecule, and the edges
between vertices represent bonds between atoms. This dataset is related to anti-cancer
screening, where chemicals are evaluated as positive or negative for cellular lung cancer. A
total of 37 distinct labels make up this dataset. Seven different graph types are found in
MUTAG, which are formed from 188 different carcinogenic aromatic and heteroaromatic
nitro chemicals. Ten datasets were used, and their characteristics are compiled in Table 1.

Table 1. Statistics for the datasets from TUDataset.

Dataset #Graphs #Classes Avg. #Nodes Avg. #Edges

REDDIT-BINARY 2000 2 429.63 497.75
COLLAB 5000 3 74.49 2457.78
REDDIT-MULTI-5K 4999 5 508.52 594.87
IMDB-MULTI 1500 3 13.00 65.94
IMDB-BINARY 1000 2 19.77 96.53
GITHUB 12,725 2 113.79 234.64
MUTAG 188 2 17.93 19.79
NCI1 4110 2 29.87 32.30
DD 1178 2 284.32 715.66
PROTEINS 1113 2 39.06 72.82

4.2. Configuration

Our two-block contrastive learning framework with the decoded basic graph structure
is illustrated in Figure 1. In the block pertaining to graph augmentations, we utilize
the identical GNN architectures with their original hyper-parameters under different
experiment circumstances, as per the methodology used in GraphCL (the first technique
for graph contrastive learning) [7]. To be more precise, we utilized GIN with 32 hidden
units and 3 layers for unsupervised representation learning and ResGCN with 128 hidden
units and 5 layers for semi-supervised learning. Furthermore, graphs with a default
augmentation strength of 0.2 were subjected to the same data augmentations.

The number of tree encoder layers for coding tree representation learning was de-
termined by the tree height, which ranges from two to five. There were two layers in
each iteration of the MLP (Multilayer Perceptron). In order to preserve uniformity with
GraphCL across the different experiment configurations, the encoder’s hidden dimensions
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are specified with the corresponding setting. The optimal hyper-parameter combination
was determined based on the performance on the validation sets.

Semi-Supervised Learning. We performed five trials for each dataset, with a 10% label
rate, meaning that each experiment corresponds to a 10-fold assessment, as described in [7].
For every experiment, we present the accuracy (%) mean, and standard deviation. A grid
search was used to set the epoch number to {20, 40, 60, 80, 100} and the learning rate to
{0.01, 0.001, 0.0001} for pre-training. We fine-tuned using the same parameters as described
in [7]: learning rate of 0.001, batch size of 128, hidden dimension of 128, and 100 epochs of
training for the pre-trained models.

Unsupervised Learning. Each experiment was carried out five times, and as shown
in [20], each experiment corresponds to a 10-fold assessment. For every experiment,
we present the accuracy (%) mean, and standard deviation. Models were tested every
10 epochs and trained for 20 epochs in order to learn the graph representations. The batch
size was 128 and the hidden dimension was 32.

Data Augmentations on Graphs. There are four common categories of data augmenta-
tions for graph-structured data, which correspond to the data augmentations utilized in
GraphCL [7].

Edge Perturbation. Here, the connectivities in G are disturbed by arbitrarily adding or
removing a specific percentage of edges. This operation is predicated on the notion that the
semantic meaning of G is relatively resilient to variations in edge connection patterns. To
add or remove each edge, we further adhered to an independent, identically distributed
(i.i.d.) uniform distribution.

Node Dropping. Node dropping, given the graph G, randomly discards a subset of
vertices and their connections. This procedure makes the assumption that the semantic
meaning of G is unaffected by the missing portion of vertices. The default independent
and identically distributed uniform distribution governs each node’s dropping probability.

Attribute Masking. With attribute masking, models are prompted to retrieve masked
vertex attributes by utilizing their context, that is, the remaining attributes. The underlying
premise of this operation is that the model’s predictions are not substantially impacted by
the missing partial vertex information.

Subgraphs. Using a random walk, this procedure samples a subgraph from G. It
makes the assumption that G’s partial local structure can effectively retain its semantics.

4.3. Learning Protocols

We employed the necessary learning techniques to enable fair comparison with state-
of-the-art (SOTA) efforts. All data were utilized for model pre-training in unsupervised
representation learning [20], after which the learnt graph embeddings were fed into an SVM
classifier for 10-fold cross-validation. Two learning settings were used for semi-supervised
learning [7]. Only the training dataset was used for pre-training when the datasets had a
public training/validation/test split. Ten percent of the training data was used for fine-
tuning, and the validation/test sets yielded the final assessment findings. All samples were
used for pre-training on datasets without these splits, and assessment and fine-tuning were
carried out across ten assessments.

4.4. The Compared Methods

In the two-block design of CtrlGCL, there were three types of results: (1) only graph
embedding, termed CtrlGCL-G; (2) only coding tree embedding, termed CtrlGCL-T; (3) and
the hybrid of graph embedding and coding tree embedding, termed CtrlGCL-H.

In unsupervised learning, we adopted eight baselines that fall into three categories.
We used the published hyper-parameters of these methods. The first set included three
state-of-the-art (SOTA) kernel-based methods: GL [35], WL [36], and DGK [37]. The
second set comprised four heuristic self-supervised methods: node2vec [38], sub2vec [39],
graph2vec [40], and InfoGraph [20]. GraphCL, the last technique in this group, uses the
same pre-established augmentation rules on graphs for unsupervised learning [7]. The
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default augmentation ratio was 0.2 (dropping, perturbation, masking, and subgraph). In
addition to the individual use of particular data augmentation, GraphCL uses augmentation
pools for contrastive learning. Specifically, biological molecules are treated using node
dropping and subgraphs; all augmentations are applied to dense social networks; and for
sparse social networks, all except attribute masking are employed.

Under semi-supervised learning, we considered five baselines:

(1) A naive GCN without pre-training [7], which is directly trained with 10% labeled data
from random initialization.

(2) GAE [41], a predictive method based on edge-based reconstruction in the pre-training phase.
(3) Infomax [6], a node-embedding method with global–local representation consistency.
(4) ContextPred [19], a method using sub-structure information preserving.
(5) GraphCL [7], the first graph contrastive learning method with data augmentations.

5. Results

5.1. Unsupervised Learning

In the context of unsupervised learning, Table 2 summarizes the classification accuracy
of CtrlGCL and the comparative approaches. When considering the baselines, the results
show a notable boost in performance with the addition of a good view. When the last
column for average rank is taken into account, the three CtrlGCL variations have the
highest ranks. Significantly, our techniques outperform the competing approaches on all
seven benchmarks, with the exception of NCI1. In addition, in the case without kernel-
based techniques, CtrlGCL-G consistently achieves the maximum accuracy. Our findings
indicate that, in unsupervised learning scenarios, our techniques regularly beat the most
advanced approaches.

In addition to the overall superior performance of CtrlGCL, we delved deeper into
the specific performance of each variant. As indicated by the marker ∗ in Table 2, we
identified the best performances among the three variants. Among the four datasets
in social networks, CtrlGCL-T achieves the highest accuracies on COLLAB and IMDB-
BINARY, while CtrlGCL-H outperforms on the REDDIT datasets. Notably, the edge
density (average edges divided by average nodes) of COLLAB and IMDB-BINARY is
much higher than that of the REDDIT datasets, suggesting higher structural uncertainty
in COLLAB and IMDB-BINARY. Therefore, the performance of CtrlGCL-T/H on social
networks confirms the effectiveness of the proposed good view in minimizing structural
uncertainty. Additionally, for datasets with higher structural uncertainty, the proposed
good view provides high-quality graph representation, while for datasets with lower
structural uncertainty, the proposed method presents sufficient information for performance
improvement. In bioinformatics datasets, a similar phenomenon can be observed on the
PROTEINS dataset, which also has higher edge density. However, different results are
shown in DD, where the non-structural properties of this type of protein may explain the
variation. For the other two datasets with lower edge density, CtrlGCL-G, which employs
graph embedding, shows the best performance, implying lower structural uncertainty in
these two sets.
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Table 2. The average classification accuracies (%), along with their standard deviations (±Std.),
obtained from five separate runs of the compared methods via unsupervised representation learning.
The bold text highlights the best overall performances among all methods. The marker ∗ indicates
the best performance among the three variations of CtrlGCL. The term A.R. stands for average rank,
which is used to assess the relative performance of each method. The results for the baselines were
obtained from previously published works.

NCI1 PROTEINS DD MUTAG COLLAB RED-B RED-M5K IMDB-B A.R.

Avg. #Nodes 29.87 39.06 284.32 17.93 74.49 429.63 508.52 19.77
Avg. #Edges 32.30 72.82 715.66 19.79 2457.78 497.75 594.87 86.53

GL - - - 81.66 ± 2.11 - 77.34 ± 0.18 41.01 ± 0.17 65.87 ± 0.98 8.3
WL 80.01 ± 0.50 72.92 ± 0.56 - 80.72 ± 3.00 - 68.82 ± 0.41 46.06 ± 0.21 72.30 ± 3.44 6.7
DGK 80.31 ± 0.46 73.30 ± 0.82 - 87.44 ± 2.72 - 78.04 ± 0.39 41.27 ± 0.18 66.96 ± 0.56 5.7

node2vec 54.89 ± 1.61 57.49 ± 3.57 - 72.63 ± 10.20 - - - - 9.3
sub2vec 52.84 ± 1.47 53.03 ± 5.55 - 61.05 ± 15.80 - 71.48 ± 0.41 36.69 ± 0.42 55.26 ± 1.54 10
graph2vec 73.22 ± 1.81 73.30 ± 2.05 - 83.15 ± 9.25 - 75.78 ± 1.03 47.86 ± 0.26 71.10 ± 0.54 7.0
InfoGraph 76.20 ± 1.06 74.44 ± 0.31 72.85 ± 1.78 89.01 ± 1.13 70.65 ± 1.13 82.50 ± 1.42 53.46 ± 1.03 73.03 ± 0.87 4.3
GraphCL 77.87 ± 0.41 74.39 ± 0.45 78.62 ± 0.40 86.80 ± 1.34 71.36 ± 1.15 89.53 ± 0.84 55.99 ± 0.28 71.14 ± 0.44 4.0

CtrlGCL-G 79.00 ± 0.72∗ 75.79 ± 0.27 78.15 ± 0.56 90.21 ± 0.66 * 70.73 ± 0.65 89.85 ± 0.56 55.27 ± 0.32 72.30 ± 0.24 2.9
CtrlGCL-T 74.92 ± 0.53 76.01 ± 0.42 * 77.34 ± 1.03 88.50 ± 1.30 74.12 ± 0.47 * 88.67 ± 0.60 52.26 ± 0.69 73.58 ± 0.44 * 3.4
CtrlGCL-H 78.86 ± 0.38 75.85 ± 0.46 78.76 ± 0.57 * 90.17 ± 0.97 71.44 ± 0.45 90.21 ± 0.65 * 56.13 ± 0.30 * 72.78 ± 0.64 2.0

5.2. Semi-Supervised Learning

Under semi-supervised learning, the accuracies of our models and the compared meth-
ods are presented in Table 3. Notably, GtrlGCL is better than these state-of-the-art (SOTA)
methods across all benchmarks. With the exception of CtrlGCL-T’s poor performance,
CtrlGCL-G and CtrlGCL-H rank as the top two methods overall. Specifically, CtrlGCL-G
achieves the highest accuracy on three out of the seven benchmarks, while CtrlGCL-H
holds this position in four out of the seven benchmarks. These results demonstrate the ef-
fectiveness of our methods under semi-supervised learning. The results from Table 3 show
that GtrlGCL-H, which incorporates both graph embedding and coding tree embedding,
achieves the highest mean rank and significant performance improvement compared to
CtrlGCL-G. This validates the effectiveness of our proposed good view in semi-supervised
learning. However, the poor performance of GtrlGCL-T is a concern. Nonetheless, the
overall results demonstrate the value of our methods in semi-supervised learning, with
CtrlGCL-G and CtrlGCL-H ranking highly.

Table 3. The comparison approaches’ average accuracies (%) and standard deviations (±Std) during
semi-supervised learning with 10% labels. The strategy that performed the best overall is highlighted
in the bold text. Average rank, or A.R., is used to evaluate the relative effectiveness of each approach.
The baseline results are from previously released publications.

NCI1 PROTEINS DD COLLAB RED-B RED-M5K GITHUB A.R.

No Pre-Train 73.72 ± 0.24 70.40 ± 1.51 73.56 ± 0.41 73.71 ± 0.27 86.63 ± 0.27 51.33 ± 0.44 60.87 ± 0.17 7.0
GAE 74.36 ± 0.24 70.51 ± 0.17 74.54 ± 0.68 75.09 ± 0.19 87.69 ± 0.40 53.58 ± 0.13 63.89 ± 0.52 5.0
Infomax 74.86 ± 0.26 72.27 ± 0.40 75.78 ± 0.34 73.76 ± 0.29 88.66 ± 0.95 53.61 ± 0.31 65.21 ± 0.88 4.0
ContextPred 73.00 ± 0.30 70.23 ± 0.63 74.66 ± 0.51 73.69 ± 0.37 84.76 ± 0.52 51.23 ± 0.84 62.35 ± 0.73 7.3
GraphCL 74.63 ± 0.25 74.17 ± 0.34 76.17 ± 1.37 74.23 ± 0.21 89.11 ± 0.19 52.55 ± 0.45 65.81 ± 0.79 3.3

CtrlGCL-G 74.72 ± 0.26 74.65 ± 0.54 76.33 ± 0.43 74.26 ± 0.27 89.40 ± 0.23 52.93 ± 0.37 65.92 ± 0.64 2.1
CtrlGCL-T 71.80 ± 0.35 73.31 ± 0.47 75.63 ± 0.58 73.36 ± 0.35 88.70 ± 0.15 52.11 ± 0.34 65.39 ± 0.58 5.6
CtrlGCL-H 75.09 ± 0.22 73.85 ± 0.53 75.82 ± 0.65 75.18 ± 0.22 89.35 ± 0.27 53.73 ± 0.28 66.01 ± 0.66 1.7

5.3. Orthogonal to Graph Augmentations

In this section, we evaluate the collaborative potential of CtrlGCL by integrating it with
four established graph augmentation techniques: AD-GCL [10], JOAO [11], AutoGCL [42],
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and RGCL [8]. These approaches introduce innovative strategies for generating augmented
views, and we explore their synergy with CtrlGCL in an unsupervised learning setting.

AD-GCL [10]. We used the same configurations as before in the cooperative experi-
ment with AD-GCL, and we swapped out its anchor view with the proposed good view
from CtrlGCL. The approaches were assessed using a linear classifier after they had been
trained using the relevant self-supervised goal. We adhered to the linear assessment
methodology presented in AD-GCL [10]. Specifically, once the encoder provides represen-
tations, a Logistic (+L2) classifier is trained on top and evaluated for classification tasks.
The classifier was implemented using Scikit-learn [43] or LibLinear [44] solvers. Finally,
the lone hyper-parameter of the downstream linear model, that is, the L2 regularization
strength, is grid searched among {0.001, 0.01, 0.1, 1, 10, 100, 1000} on the validation set for
every single representation evaluation. Accuracy (%) was selected as the test parameter in
accordance with the usual procedure. Every AD-GCL experiment was ran ten times using
a different set of random seeds. For every dataset, we provided the mean and standard
deviation of the associated test measure.

The encoder utilized in the joint experiment with AD-GCL was the GIN encoder [45].
To guarantee a fair comparison, the encoder was fixed and not adjusted while performing
self-supervised learning (i.e., embedding dimension, number of layers, pooling type) for
all the approaches. This decision was made with the intention of completely attributing
any performance disparity to the self-supervised goal and excluding the encoder design.
The GIN encoder was configured with the following unique hyper-parameters: a batch
size of 32, a hidden dimension of 32, five GIN layers, summation as the graph readout
function, and a dropout set at 0.5. Adam was used for optimization, and the learning rates
in AD-GCL were adjusted to be within {0.01, 0.005, 0.001} for both the encoder and the
augmenter. Since asymmetric learning rates for the augmenter and encoder tend to render
the training non-stable, the learning rate was set to 0.001 for all datasets and experiments
were carried out to ensure stability [10]. Using the validation set, the number of training
epochs was selected as {20, 50, 80, 100, 150}.

JOAO(v2) [11]. We used the same experimental setup as the original study in our
collaboration with JOAO, but we made the following significant change: we swapped
out one of the two views with the “good view” suggested in CtrlGCL. We were able
to assess the effectiveness of our suggested view selection technique as a result. In this
experiment, GIN was also adopted as the basic graph encoder [45], while non-linear SVM
was employed for evaluation as GraphCL. To strike a compromise between the contrastive
loss and view distance, the hyper-parameter γ introduced in JOAO was adjusted within
the range {0.01, 0.1, 1}. Notably, because multiple projection heads were used, JOAOv2
was pre-trained twice as many epochs than JOAO, despite our 20 epochs of pre-training
JOAO. With this modification, we were able to evaluate the relative performance of the two
approaches and make a direct comparison.

AutoGCL [42]. We adopted the naive training strategy proposed in AutoGCL to make
a fair comparison. Specifically, we retained one of the two graph generators and assigned
our proposed anchor view to the blank position. In particular, AutoGCL extends the layer
number of the graph encoder from 3 to 5 and the hidden size from 32 to 128. Moreover,
AutoGCL was pre-trained with 30 epochs rather than 20 epochs.

RGCL [8]. In cooperation with RGCL [8], we faithfully followed the experiment
settings revealed in their codes while replacing one of the two rationale-augmented views
with SEGA. Note that, the tuned hyper-parameters in RGCL include the learning rate,
sampling ratio ρ, loss temperature τ, and loss balance λ. In particular, RGCL was pre-
trained on 40 epochs in total and evaluated every 5 epochs.

The unsupervised learning classification accuracies (%) of CtrlGCL in collaboration
with the four methods for augmentations are presented in Table 4. The last column displays
the average accuracies (%) over all datasets, and the three versions of CtrlGCL always
suppress their corresponding partner view, highlighting the efficacy of the proposed good
view in minimizing structural uncertainty. Specifically, when combined with AD-GCL-
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FIX, CtrlGCL-T achieved the highest accuracies on three out of the nine datasets, while
CtrlGCL-H outperformed on the remaining six benchmarks. Despite a few setbacks in
the collaboration with JOAO, the overall superior performance underscores the success
of CtrlGCL in these extensive experiments. Furthermore, when paired with AutoGCL,
CtrlGCL-T attained the highest accuracies on two out of the eight datasets, while CtrlGCL-
H excelled on five out of the eight benchmarks. In the case of RGCL, the collaboration
yielded the highest results on all eight datasets. To elaborate, CtrlGCL-G outperformed
on the MUTAG dataset, CtrlGCL-T excelled on the RED-B and IMDB-B datasets, and
CtrlGCL-H achieved the best results on the remaining five datasets.

Table 4. The average accuracy (%) ± standard deviation (over five times) of various methods used in
unsupervised learning. Boldface type highlights the best performances for each individual dataset.
A.A. signifies the average accuracy across all datasets. The results of AD-GCL-FIX, JOAO(v2),
AutoGCL, and RGCL were obtained from their respective papers.

View1 View2 NCI1 PROTEINS DD MUTAG COLLAB RED-B RED-M5K IMDB-B IMDB-M A.A.

AD-GCL-FIX 69.57 ± 0.51 73.59 ± 0.65 74.49 ± 0.52 89.25 ± 1.45 73.71 ± 0.27 85.52 ± 0.79 53.00 ± 0.82 71.57 ± 1.01 49.04 ± 0.53 71.05

CtrlGCL-G
AD-GCL-Fix

69.93 ± 0.73 73.76 ± 0.57 74.62 ± 0.43 89.63 ± 1.54 73.77 ± 0.56 85.75 ± 0.67 53.88 ± 0.63 71.76 ± 0.57 49.44 ± 0.98 71.39
CtrlGCL-T 69.78 ± 0.32 74.61 ± 0.81 75.55 ± 0.51 88.20 ± 1.20 73.97 ± 0.55 86.73 ± 0.55 53.52 ± 0.31 72.32 ± 0.49 50.83 ± 0.34 71.72
CtrlGCL-H 70.38 ± 0.76 74.57 ± 0.50 75.84 ± 0.64 89.89 ± 0.69 75.03 ± 0.36 87.74 ± 0.39 54.29 ± 0.54 72.28 ± 1.40 50.03 ± 0.81 72.23

JOAO 78.07 ± 0.47 74.55 ± 0.41 77.32 ± 0.54 87.35 ± 1.02 69.50 ± 0.36 85.29 ± 1.35 55.74 ± 0.63 70.21 ± 3.08 74.75

CtrlGCL-G
JOAO

75.99 ± 0.59 74.95 ± 0.42 77.70 ± 0.85 87.12 ± 2.46 69.58 ± 0.27 86.57 ± 1.22 54.69 ± 0.73 71.46 ± 0.17 74.88
CtrlGCL-T 73.32 ± 0.37 75.44 ± 0.54 76.29 ± 0.55 85.13 ± 1.79 72.82 ± 0.35 86.09 ± 0.94 54.63 ± 0.64 71.74 ± 1.26 74.43
CtrlGCL-H 76.19 ± 0.77 75.18 ± 0.63 78.27 ± 1.32 87.70 ± 1.31 71.80 ± 0.33 86.79 ± 1.31 56.17 ± 0.67 71.66 ± 0.42 75.47

JOAOv2 78.36 ± 0.53 74.07 ± 1.10 77.40 ± 1.15 87.67 ± 0.79 69.33 ± 0.34 86.42 ± 1.45 56.03 ± 0.27 70.83 ± 0.25 75.01

CtrlGCL-G
JOAOv2

77.81 ± 0.73 75.22 ± 0.94 77.84 ± 0.84 87.82 ± 2.17 69.34 ± 0.31 87.97 ± 0.80 56.11 ± 0.33 71.68 ± 0.74 75.47
CtrlGCL-T 77.37 ± 0.31 75.94 ± 0.88 77.67 ± 0.48 86.77 ± 1.08 72.76 ± 0.27 87.32 ± 0.60 55.49 ± 0.32 72.52 ± 0.79 75.73
CtrlGCL-H 78.04 ± 0.19 75.25 ± 0.41 78.37 ± 1.26 88.53 ± 2.45 70.18 ± 0.34 87.98 ± 0.29 56.15 ± 0.29 72.50 ± 0.94 75.87

AutoGCL 82.00 ± 0.29 75.80 ± 0.36 77.57 ± 0.60 88.64 ± 1.08 70.12 ± 0.68 88.58 ± 1.49 56.75 ± 0.18 73.30 ± 0.40 76.60

CtrlGCL-G
AutoGCL

81.77 ± 0.32 75.63 ± 0.77 77.94 ± 0.85 88.84 ± 1.34 71.98 ± 0.83 88.75 ± 1.03 56.93 ± 0.28 73.87 ± 0.68 76.93
CtrlGCL-T 81.04 ± 0.41 76.43 ± 0.67 78.29 ± 0.59 88.63 ± 1.29 72.49 ± 0.47 89.59 ± 1.48 57.27 ± 0.75 73.95 ± 0.87 77.21
CtrlGCL-H 81.84 ± 0.53 76.38 ± 0.54 78.31 ± 1.37 89.03 ± 1.01 72.68 ± 0.23 89.88 ± 1.21 57.43 ± 0.37 73.94 ± 0.99 77.44

RGCL 78.14 ± 1.08 75.03 ± 0.43 78.86 ± 0.48 87.66 ± 1.01 70.92 ± 0.65 90.34 ± 0.58 56.38 ± 0.40 71.85 ± 0.84 76.15

CtrlGCL-G
RGCL

79.28 ± 0.94 75.28 ± 0.72 79.45 ± 0.63 88.87 ± 1.46 72.73 ± 0.55 90.47 ± 0.77 56.58 ± 0.41 72.19 ± 0.67 76.86
CtrlGCL-T 78.95 ± 1.53 75.87 ± 0.45 79.12 ± 0.88 87.50 ± 1.75 73.11 ± 0.24 90.90 ± 0.62 56.82 ± 0.29 72.75 ± 0.66 76.88
CtrlGCL-H 79.42 ± 0.82 76.21 ± 0.46 79.54 ± 1.14 88.79 ± 1.87 73.14 ± 0.37 90.75 ± 0.84 57.28 ± 0.42 72.61 ± 0.94 77.22

5.4. Memory Efficiency

To evaluate the scalability of the proposed approach, we conducted an in-depth
analysis of the GPU memory efficiency of CtrlGCL on Erdos–Renyi graphs [46]. In line
with the methodology employed in prior research [47], we generated Erdos–Renyi graphs
by modulating the number of nodes n while maintaining the edge size m at twice the
number of nodes m = 2n. As depicted in Figure 2, our CtrlGCL demonstrates high memory
efficiency, attributable to the computational efficiency of the tree encoder. This characteristic
renders it particularly practical for large-scale graph applications. Notably, a comparison of
memory usage across different tree heights with the same graph size reveals that the GPU
memory consumption remains relatively constant, further underscoring the scalability of
our proposed approach.
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Figure 2. GPU memory efficiency of CtrlGCL with varying input graph sizes.

6. Conclusions

In this study, our focus is on exploring a good view for graph contrastive learning.
Upon leveraging insights from the structural information and graph information bottleneck
theory, we proposed the definition that a good view should possess minimal structural
uncertainty for a graph. Taking this concept further, we introduced CtrlGCL, a practical
implementation for graph contrastive learning through coding tree representations. Our ap-
proach utilized an optimization algorithm driven by structural entropy to approximate the
minimization of structural uncertainty, resulting in coding trees that encapsulate essential
graph information. The encoder, designed with the convolution mechanism of GNNs, was
tailored for learning representations from coding trees. The effectiveness of our proposed
approach was extensively validated across various benchmarks in both unsupervised and
semi-supervised learning. This validation was reflected in the average ranking and av-
erage accuracy, demonstrating superior performance compared to other state-of-the-art
methods. Specifically, our approach, implemented via GtrlGCL-H, yielded an average
accuracy enhancement of 1.06% in the context of unsupervised learning when compared to
GraphCL. In the semi-supervised learning scenario, CtrlGCL-G outperformed GraphCL,
with an increase of 0.22%. Notably, in orthogonal experiments, almost all versions of
CtrlGCL-H surpassed the corresponding baselines by more than 1% for average accuracy
under unsupervised learning.

Despite the superiority of the proposed “good view” for graph contrastive learning
based on structural entropy, the current definition of structural entropy only considers
the structural information. This limitation may affect tasks such as node classification
and link prediction that heavily rely on node features, potentially limiting the benefits of
the proposed good view. Our future research direction entails enhancing our methods
through the refinement of the structural entropy theory or by exploring the amalgamation
of multiple entropy measures. The emphasis on minimizing uncertainty in node features
suggests promising avenues for future research, exploration, and improvement. We look
forward to continuing our work in this exciting field.
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46. Erdős, P.; Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 1960, 5, 17–60.
47. Baek, J.; Kang, M.; Hwang, S.J. Accurate Learning of Graph Representations with Graph Multiset Pooling. In Proceedings of the

International Conference on Learning Representations, Vienna, Austria, 4 May 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

192



Citation: Vinodkumar, P.K.;

Karabulut, D.; Avots, E.; Ozcinar, C.;

Anbarjafari, G. Deep Learning for 3D

Reconstruction, Augmentation, and

Registration: A Review Paper.

Entropy 2024, 26, 235.

https://doi.org/

10.3390/e26030235

Academic Editor: Amelia Carolina

Sparavigna

Received: 13 November 2023

Revised: 1 March 2024

Accepted: 5 March 2024

Published: 7 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Review

Deep Learning for 3D Reconstruction, Augmentation,
and Registration: A Review Paper

Prasoon Kumar Vinodkumar 1, Dogus Karabulut 1, Egils Avots 1,*, Cagri Ozcinar 1

and Gholamreza Anbarjafari 1,2,3,4,*

1 iCV Lab, Institute of Technology, University of Tartu, 50090 Tartu, Estonia;
prasoon.vinodkumar@ut.ee (P.K.V.); dogus.karabulut@ut.ee (D.K.); chagri.ozchinar@ut.ee (C.O.)

2 PwC Advisory, 00180 Helsinki, Finland
3 iVCV OÜ, 51011 Tartu, Estonia
4 Institute of Higher Education, Yildiz Technical University, Beşiktaş, Istanbul 34349, Turkey
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Abstract: The research groups in computer vision, graphics, and machine learning have dedicated a
substantial amount of attention to the areas of 3D object reconstruction, augmentation, and registra-
tion. Deep learning is the predominant method used in artificial intelligence for addressing computer
vision challenges. However, deep learning on three-dimensional data presents distinct obstacles and
is now in its nascent phase. There have been significant advancements in deep learning specifically
for three-dimensional data, offering a range of ways to address these issues. This study offers a
comprehensive examination of the latest advancements in deep learning methodologies. We examine
many benchmark models for the tasks of 3D object registration, augmentation, and reconstruction.
We thoroughly analyse their architectures, advantages, and constraints. In summary, this report
provides a comprehensive overview of recent advancements in three-dimensional deep learning and
highlights unresolved research areas that will need to be addressed in the future.

Keywords: deep learning; 3D reconstruction; 3D augmentation; 3D registration; point cloud; voxel;
neural networks; convolutional neural networks; graph neural networks; generative adversarial
networks; review

1. Introduction

Autonomous navigation, domestic robots, the reconstruction of architectural models
of buildings, facial recognition, the preservation of endangered historical monuments,
the creation of virtual environments for the film and video game industries, and aug-
mented/virtual reality are just a few examples of real-world applications that depend
heavily on the identification of 3D objects based on point clouds. A rising number of
these applications require three-dimensional (3D) data. Processing 3D data reliably and
effectively is critical for these applications. A powerful method for overcoming these
obstacles is deep learning. In this review paper, we concentrate on deep learning methods
for reconstruction, augmentation, and registration in three dimensions.

The processing of 3D data employs a wide range of strategies to deal with unique
problems. Registration, which entails matching several point clouds to a single coordinate
system, is one key issue. While conventional approaches rely on geometric changes
and parameter optimisation, deep learning provides an all-encompassing approach with
promising outcomes. Augmentation is another technique for deep learning employed in 3D
data processing, and it entails transforming current data while maintaining the integrity of
the underlying information to produce new data. Since augmentation may provide new
data points that enhance the accuracy and quality of the data, it is a useful technique for
resolving problems with data quality and completeness. The final technique in this analysis
is called reconstruction, which entails building a 3D model from a collection of 2D photos or
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a 3D point cloud. This is a difficult task since 3D geometry is complicated and 3D data lack
spatial order. In order to increase the accuracy and effectiveness of reconstruction, deep
learning algorithms have made substantial advancements in this field by proposing novel
architectures and loss functions. Overall, these methods have shown promise in resolving
the difficulties involved in interpreting 3D data and enhancing the accuracy and value of
3D data.

1.1. Our Previous Work

We have previously conducted [1] an in-depth review of recent advancements in deep
learning approaches for 3D object identification, including 3D object segmentation, detec-
tion, and classification methods. The models covered in our earlier article were selected
based on a number of factors, including the datasets on which they were trained and/or as-
sessed, the category of methods to which they belong, and the tasks they carry out, such as
segmentation and classification. The majority of the models that we surveyed in our earlier
study were validated, and their results were compared with state-of-the-art technologies
using benchmark datasets such as SemanticKITTI [2] and Stanford 3D Large-Scale Indoor
Spaces (S3DIS) [3]. We discussed in detail some of the most advanced and/or benchmark-
ing deep learning methods for 3D object recognition in our earlier work. These methods
covered a range of 3D data formats, such as RGB-D (IMVoteNet) [4], voxels (VoxelNet) [5],
point clouds (PointRCNN) [6], mesh (MeshCNN) [7], and 3D video (Meta-RangeSeg) [1,8].

1.2. Research Methodology

In this paper, we provide a comprehensive overview of recent advances in deep-
learning-based 3D object reconstruction, registration, and augmentation as a follow-up
to our earlier research [1]. It concentrates on examining frequently employed building
components, convolution kernels, and full architectures, highlighting the benefits and
drawbacks of each model. Over 37 representative papers that include 32 benchmark and
state-of-the-art models and five benchmark datasets that have been used by many models
over the last five years are included in this study. Additionally, we review six benchmark
models related to point cloud completion over the last five years. We selected these papers
based on the number of citations and implementations by other researchers in this field
of study. Despite the fact that certain notable 3D object recognition and reconstruction
surveys, such as those on RGB-D semantic segmentation and 3D object reconstruction, have
been published, these studies do not exhaustively cover all 3D data types and common
application domains. Most importantly, these surveys only provide a general overview
of 3D object recognition techniques, including some of their advantages and limitations.
The current developments in these machine learning models and their potential to enhance
the accuracy, speed, and effectiveness of 3D registration, augmentation, and reconstruction
are the main reasons for our selection of these particular models. In real-world situations,
the use of many of these models in a pipeline has the potential to improve performance
even more significantly and achieve even better outcomes.

2. 3D Data Representations

2.1. Point Clouds

Raw 3D data representations, like point clouds, can be obtained using many scanning
technologies, such as Microsoft Kinect, structured light scanning, and many more. Point
clouds have their origins in photogrammetry and, more recently, in LiDAR. A collection
of randomly arranged points in three dimensions, known as a point cloud, resembles
the geometry of three-dimensional objects. The implementation of these points results
in a non-Euclidean geometric data format. A further way to describe point clouds is to
describe a collection of small Euclidean subsets with a common coordinate system, global
parametrisation, and consistency in translation and rotation. As a result, determining
the structure of point clouds depends on whether the object’s global or local structure is
taken into account. A point cloud can be used for a range of computer vision applications,
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including classification and segmentation, object identification, reconstruction, etc. It is
conceptualised as a collection of unstructured 3D points that describe the geometry of a
3D object.

Such 3D point clouds can be easily acquired, but processing them can be challenging.
Applying deep learning to 3D point cloud data is riddled with difficulties. These issues
include point alignment issues, noise/outliers (unintended points), and occlusion (due to
congregated scenery or blindsides). Table 1 provides the list of 3D reconstruction models
using point cloud representation reviewed in this study. The following, however, are the
most significant challenges in applying deep learning to point clouds:

Irregular: Depending on how evenly the points are sampled over the various regions
of an object or scene, point cloud data may include dense or sparse points in different parts
of an item or scene. Techniques for subsampling can minimise irregularity, but they cannot
get rid of it entirely.

Unordered: The collection of points acquired around the objects in a scene is called a
point cloud, and it is frequently preserved as a list in a file. These points are earned by
interacting with the objects in the scenario. The set itself is referred to as being permutation-
invariant since the scene being shown remains constant regardless of the order in which
the points are arranged.

Unstructured: A point cloud’s data are not arranged on a conventional grid. The dis-
tance between each point and its neighbours is individually scanned; therefore, it is not
always constant. The space between two adjacent pixels in a picture, on the other hand,
remains constant and can only be represented by a two-dimensional grid.

Table 1. 3D reconstruction models using point cloud data representation.

Model Dataset
Data
Representation

PointOutNet [9]
ShapeNet [10],
3D-R2N2 [11] Point Cloud

Pseudo-renderer [12] ShapeNet [10] Point Cloud

RealPoint3D [13]
ShapeNet [10],
ObjectNet3D [14] Point Cloud

Cycle-consistency-based
approach [15]

ShapeNet [10],
Pix3D [16] Point Cloud

3D34D [17] ShapeNet [10] Point Cloud

Unsupervised learning
of 3D structure [18]

ShapeNet [10],
MNIST3D [19] Point Cloud

2.2. Voxels

Using three-dimensional volumes is an alternative way of representing three-dimensional
surfaces using a grid of constant size and dimensions. Three-dimensional data can be
represented as a regular grid in three-dimensional space. Voxels are a three-dimensional
data description method that defines how an object in three-dimensional space is spread
across all three dimensions of a scene. Voxels are used to model 3D data by defining
the distribution of the 3D object across the scene’s three dimensions. By identifying the
occupied voxels as visible, occluded, or self-occluded, viewpoint information about the 3D
shape may also be conveyed. Encoding the view information for a 3D shape enables the
occupied voxels to be classified as either visible blocks or self-occluded voxels. These grids
are maintained either as a binary occupancy grid, where the cell values represent the voxel
occupancy, or as a signed distance field, where the voxels represent the distances to the
zero-level set that represents the surface boundary. The binary occupancy grid is the more
prevalent storage format of the two. Table 2 provides the list of 3D reconstruction models
using voxel representation reviewed in this study.
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Despite the simplicity of the voxel-based representation and its capacity to encode
information about the 3D shape and its viewpoint, it is constrained by one main constraint:

Inefficient: The inefficiency of voxel-based representation stems from the fact that it
represents both occupied and unoccupied portions of a scene, which creates an excessive
need for memory storage. This is why voxel-based representations are unsuitable for
high-resolution data representation.

Table 2. 3D reconstruction models using voxel data representation.

Models Dataset
Data
Representation

GenRe [20]
ShapeNet [10],
Pix3D [16] Voxels

MarrNet [21]
ShapeNet [10],
PASCAL3D+ [22] Voxels

Perspective Transformer
Nets [23] ShapeNet [10] Voxels

Rethinking reprojection [24]

ShapeNet [10],
PASCAL3D+ [22],
SUN [25],
MS COCO [26]

Voxels

3D-GAN [27]
ModelNet [28],
IKEA [29] Voxels

Pix2Vox++ [30]
ShapeNet [10],
Pix3D [16],
Things3D [30]

Voxels

3D-R2N2 [11]
ShapeNet [10],
PASCAL3D+ [22],
MVS CAD 3D [11]

Voxels

Weak recon [31]
ShapeNet [10],
ObjectNet3D [14] Voxels

Relative viewpoint
estimation [32]

ShapeNet [10],
Pix3D [16],
Things3D [30]

Voxels

2.3. Meshes

3D meshes are one of the most commonly used ways to represent 3D shapes. A 3D
mesh structure is composed of a set of polygons called faces, which are represented in terms
of a set of vertices that describe the mesh’s coordinates in 3D space. The connection list
associated with these vertices describes how they are connected to one another. Following
the grid-structured data, the local geometry of the meshes can be described as a subset
of Euclidean space. Table 3 provides the list of 3D reconstruction models using mesh
representation reviewed in this study.

Meshes are non-Euclidean data where the known properties of the Euclidean space,
such as shift-invariance, operations of the vector space, and the global parametrisation
system, are not well defined. Learning from 3D meshes is difficult for two key reasons:

Irregular: Deep learning approaches have not been effectively extended to such irregu-
lar representations, and 3D meshes are highly complex.

Low quality: In addition, such data typically contain noise, missing data, and resolution
issues. Figure 1 shows 3D data representations of the Stanford Bunny [33] dataset with
point cloud, voxel, and mesh data representations [34].
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Figure 1. The 3D data representations of the Stanford Bunny [33] model: point cloud (left), voxels
(middle), and 3D mesh (right) [34].

Table 3. 3D reconstruction models using mesh data representation.

Model Dataset
Data
Representation

Neural renderer [35] ShapeNet [10] Meshes

Residual MeshNet [36] ShapeNet [10] Meshes

Pixel2Mesh [37] ShapeNet [10] Meshes

CoReNet [38] ShapeNet [10] Meshes

3. 3D Benchmark Datasets

The datasets used in deep learning for 3D registration, augmentation, and reconstruc-
tion significantly influence the model’s accuracy and effectiveness. In order to train and
assess deep learning models for 3D registration, augmentation, and reconstruction, it is
imperative to have access to a wider variety of representative datasets. Future studies
should concentrate on creating larger and more realistic datasets that include a variety of
real-world objects and environments. For 3D registration, augmentation, and reconstruc-
tion, this would make it possible to develop even deeper learning models that are more
reliable and accurate. This article will only list the most common datasets that have been
used by the 3D object registration, augmentation, and reconstruction models discussed in
this survey paper in Sections 3 (3D reconstruction), 4 (3D registration), and 5 (3D augmenta-
tion). This includes the ModelNet [28], PASCAL3D+ [22], ShapeNet [10], ObjectNet3D [14]
and ScanNet [39] datasets. Datasets that are specific only to some 3D recognition models
will not be included in this survey. Table 4 provides the properties of data provided by
different datasets.

Table 4. Benchmarking datasets included in this survey.

Datasets
Number of

Frames
Number of

Labels
Object Type

5 Common
Classes

ModelNet [28] 151,128 660
3D

CAD
Scans

Bed,
Chair,
Desk,
Sofa,
Table

PASCAL3D+ [22] 30,899 12
3D

CAD
Scans

Boat,
Bus,
Car,

Chair,
Sofa
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Table 4. Cont.

Datasets
Number of

Frames
Number of

Labels
Object Type

5 Common
Classes

ShapeNet [10] 220,000 3135
Scans of Artefact,

Plant, Person

Table,
Car,

Chair,
Sofa,
Rifle

ObjectNet3D [14] 90,127 100
Scans of Artifact,

Vehicles

Bed,
Car,

Door,
Fan,
Key

ScanNet [39] 2,492,518 1513

Scans of
Bedrooms,

Kitchens, Offices

Bed,
Chair,
Door,
Desk,
Floor

3.1. ModelNet

By combining 3D CAD models from 3D Warehouse, 261 CAD model websites in-
dexed with the Yobi3D search engine, common item categories searched from the SUN
database [25], models from the Princeton Shape Benchmark [40], and models from the SUN
database that contain at least 20 object instances per category, ModelNet [28] is a large-scale
object collection of 3D computer graphics CAD models. Both the total number of categories
and the total number of occurrences per category were constrained in a number of earlier
CAD datasets. The writers thoroughly examined each 3D model and removed extraneous
elements from each CAD model, such as the floor and thumbnail images, such that each
mesh model had just one item from the designated category. ModelNet is almost 22 times
larger than the Princeton Shape Benchmark [40] which contains 151,128 3D CAD models
representing 660 distinct item categories. ModelNet10 and ModelNet40 are mostly used for
classifying and recognising objects.

3.2. PASCAL3D+

Each of the 12 categories of 3D stiff objects that can be found in PASCAL3D+ [22]
contains more than 3000 individual items. Pose estimation and the detection of 3D objects
are also possible applications for the dataset. In addition to that, it might function as a
baseline for the community. Images from PAS-CAL show a lot more diversity and more
closely resemble actual situations. As a result, this dataset is less skewed than those that
are gathered in controlled environments. Viewpoint annotations are continuous and dense
in this dataset. The perspective is usually discretised into numerous bins in the current
3D datasets. Consequently, detectors that have been trained on this dataset may be more
broadly capable. The objects in this collection are truncated and occluded; such objects are
typically disregarded in the 3D datasets available today. Three-dimensional annotations
are added to 12 rigid categories in the PASCAL VOC 2012 [41] dataset using PASCAL3D+.
A selection of CAD models that cover intra-class variability are downloaded for each
category. The closest CAD model in terms of 3D geometry is then linked to each occurrence
of an object inside the category. Additionally, a number of 3D landmarks inside these CAD
models have been discovered, and annotators have labelled the landmarks’ 2D positions.
Eventually, an accurate continuous 3D posture for each item in the collection is generated
utilising the 3D–2D correspondences of the landmarks. Consequently, the CAD model that
corresponds with each item, along with 2D landmarks and the 3D continuous position,
makes up its annotation.
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3.3. ShapeNet

More than 50,000 CAD models are available in ShapeNet [10], a significant collection
of shapes organised into 55 categories. Additionally, there are annotations for semantic fea-
tures and categories. This large dataset consists of semantic category labels for models, rigid
alignments, parts, bilateral symmetry planes, physical sizes, and keywords, in addition to
further recommended annotations. ShapeNet had over 3 million models indexed when
the dataset was released, and 220,000 models had been categorised into 3140 categories.
ShapeNetCore is a subset of ShapeNet, which has over 51,300 unique 3D models. There
are annotations for 55 common item categories. ShapeNetSem is a subset of ShapeNet,
which includes 12,000 models. It is more condensed yet has 270 more thorough categories.
By making ShapeNet the first large-scale 3D shape dataset of its sort, it has advanced
computer graphics research in the direction of data-driven research, building on recent
advancements in vision and NLP. It has also supported a wide class of newly revived
machine learning and neural network approaches for applications dealing with geometric
data by offering a large-scale, extensively annotated dataset.

3.4. ObjectNet3D

Despite having 30,899 photos, PASCAL3D+ [22] is still unable to fully capture the
variances of common item categories and their geometric variety due to its limitation in
the number of object classes (12 total) and 3D forms (79 total). A large-scale 3D object
collection with more item categories, more 3D forms per class, and precise image-shape
correspondences is provided by ObjectNet3D [14]. This dataset is comprised of a total
of 90,127 photos in 100 distinct categories. Annotations pertaining to the 3D posture as
well as the shape of each 2D object found in the photographs are provided. It is also
useful for problems involving the development of proposals, the detection of objects in two
dimensions, and the estimation of poses in three dimensions. For the automotive category,
for instance, 3D forms of sedans, SUVs, vans, trucks, etc., are provided. The sizes of these
three-dimensional forms have been normalised to fit [1] within a unit sphere, and they
have been oriented in accordance with the category’s primary axis (e.g., front view of a
bench). Additionally, each 3D form has a set of personally chosen keypoints that may be
used to identify significant points in photos or 3D shapes. In total, 783 3D shapes from all
100 categories have been gathered in this manner.

3.5. ScanNet

ScanNet [39] is a collection of RGB-D scans of real-world locations with extensive
annotations. It contains 2.5 million RGB-D pictures from 1513 scans taken in 707 different
settings. Due to its annotation with approximated calibration parameters, camera postures,
3D surface reconstructions, textured meshes, dense object-level semantic segmentations,
and aligned CAD models, the scope of this research is substantial. A capture pipeline is
created to make it simpler for novices to obtain semantically labelled 3D models of situations
in order to establish a framework that enables many individuals to gather and annotate
enormous amounts of data. Data are collected, and off-line processing is performed on
RGB-D video. The scene is completely 3D reconstructed and semantically labelled. With the
use of ScanNet data, 3D deep networks can be trained, and their performance on a variety
of scene comprehension tasks, such as 3D object categorisation, semantic voxel labelling,
and CAD model retrieval, can be assessed. ScanNet has several different kinds of places,
including offices, homes, and bathrooms. A versatile framework for RGB-D acquisition and
semantic annotations is offered by ScanNet. Cutting-edge performance on a number of 3D
scene interpretation tasks is made possible with the support of ScanNet’s fully annotated
scan data. Finally, crowdsourcing employing semantic annotation tasks is used to collect
instance-level item category annotations and 3D CAD model alignments for reconstruction.
The RBG-D reconstruction and semantic annotation framework is shown in Figure 2.

199



Entropy 2024, 26, 235

Figure 2. RBG-D reconstruction and semantic annotation framework of ScanNet [39] dataset.

Similar to our previous work [1], to determine which model performs better with
each of these datasets, we attempted to compare the performance of the models that
use them. While some of the models analysed in this study concentrate on computation
time (measured in milliseconds), others focus on performance metrics like accuracy and
precision. The majority of these models have assessed their efficacy using visual shape
identification of the objects rather than numerical values. As a result, we were unable to
compare the performance of these models using the datasets provided.

4. Object Reconstruction

Two types of traditional 3D reconstruction techniques exist: model-driven and data-
driven techniques. The goal of the model-driven approaches is to align the item types in a
library with the geometry of the objects created using digital surface models (DSMs), such
as point clouds [42]. By using this method, the topological correctness of the rebuilt model
can be guaranteed; nevertheless, issues might arise if the object shape has no candidates in
the library. Additionally, the production accuracy is decreased by model-driven procedures
since they only use a small fraction of the pre-defined shapes that are provided in the model
libraries. Furthermore, modelling complicated object structures might not be possible.
A DSM (often in the form of a point cloud) is used as the main data source in data-driven
approaches, and the models are created from these data overall, without focusing on any
one parameter. The primary issue with the data-driven technique is the possibility of
unsuccessful segment extraction, which could result in topological or geometrical errors
throughout the intersection process. Typically, data-driven techniques lack robustness and
are extremely susceptible to data noise. Because data-driven methods are sensitive to noise,
pre-processing data is a crucial step in preventing inaccurate outcomes [43].

4.1. Procedural-Based Approaches

The extensive and demanding field of automated reconstruction of 3D models from
point clouds has attracted significant attention in the fields of photogrammetry, computer
vision, and computer graphics due to its potential applications in various domains, in-
cluding construction management, emergency response, and location-based services [44].
However, the intrinsic noise and incompleteness of the data provide a hurdle to the auto-
mated construction of the 3D models and necessitate additional research. These methods
extract 3D geometries of structures, such as buildings, solely through a data-driven process
that is highly dependent on the quality of the data [45,46].

Procedural-based techniques use shape grammars to reconstruct interior spaces while
taking advantage of architectural design principles and structural organisation [47,48].
Because these methods take advantage of the regularity and recurrence of structural parts
and architectural design principles in the reconstruction, they are more resilient to data
incompleteness and uncertainty. Shape grammars are widely and successfully utilised in
the field of urban reconstruction for 3D synthesising architecture (e.g., building façades) [49].
This procedural-based strategy is less sensitive to inaccurate and partial data than the data-
driven alternatives. Several academics have successfully proposed shape grammars based
on integration with a data-driven method to procedurally recreate building façade models
from observation data (i.e., photos and point clouds) in order to reconstruct models of real
settings [50,51].

However, because indoor and outdoor contexts differ from one another, the façade
grammars cannot be used directly there. The translation of architectural design knowl-
edge and principles into a grammar form, which guarantees the topological accuracy of
the rebuilt elements and the plausibility of the entire model, is generally where shape-
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grammar-based systems have their advantages [44]. A set of grammar rules is necessary
for procedural-based approaches, and in the grammar-based indoor modelling techniques
currently in use, the parameters and rule application sequence are manually specified. How-
ever, these techniques are frequently restricted to straightforward architectural designs,
such as the Manhattan design [48,52].

4.2. Deep-Learning-Based Approaches

Artificial intelligence (AI) is profoundly altering the way the geographical domain
functions [53]. There is hope that the constraints of traditional 3D modelling and reconstruc-
tion techniques can be solved by the recently established deep learning (DL) technologies.
In recent years, there has been a lot of study on 3D reconstruction using deep learning,
with numerous articles covering the subject. Comparing the DL approaches to the tra-
ditional methods, state-of-the-art results were obtained [54–56]. With the recent rapid
growth in 3D building models and the availability of a wide variety of 3D shapes, DL-based
3D reconstruction has become increasingly practical. It is possible to train DL models to
recognise 3D shapes and all of their attributes [43].

Computational models with several processing layers can learn data representations
at different levels of abstraction using deep learning (DL) [57]. The two primary issues with
traditional 3D reconstruction techniques are as follows. Initially, they require numerous
manual designs, which may result in a build-up of errors, but they are barely capable
of automatically picking up on the semantic aspects of 3D shapes. Second, they rely
heavily on the calibre and content of the images in addition to a properly calibrated camera.
By employing deep networks to automatically learn 3D shape semantics from pictures or
point clouds, DL-based 3D reconstruction techniques go beyond these obstacles [43,58].

4.3. Single-View Reconstruction

Over the years, single-image-based 3D reconstruction has progressed from collecting
geometry and texture information from limited types of images to learning neural network
parameters to estimate 3D shapes. Real progress in computational efficiency, reconstruction
performance, and generalisation capability of 3D reconstruction has been demonstrated.
The very first deep-learning-based approaches required real 3D shapes of target objects
as supervision, which were extremely difficult to obtain at the time. Some researchers
have created images from CAD models to extend datasets; nevertheless, such synthesised
data lead to a lack of generalisation and authenticity in the reconstruction results. Some
studies have used ground truth 2D and 2.5D projections as supervision and reduced
reprojection losses throughout the learning process, such as contour, surface normal, and so
on. Later, techniques that compared projections of the reconstructed results with the input
to minimise the difference required less supervision. Overall, the field of single-image-
based 3D reconstruction is rapidly evolving, and the development of new techniques and
architectures is paving the way for more accurate and efficient reconstruction methods.
Table 5 provides the list of single-view 3D reconstruction models reviewed in this study.

Table 5. Single-view 3D reconstruction models reviewed in this study.

Nr. Model Dataset
Data
Representation

1 PointOutNet [9]
ShapeNet [10],
3D-R2N2 [11] Point Cloud

2 Pseudo-renderer [12] ShapeNet [10] Point Cloud

3 RealPoint3D [13]
ShapeNet [10],
ObjectNet3D [14] Point Cloud

4
Cycle-
consistency-based [15]
approach

ShapeNet [10],
Pix3D [16] Point Cloud
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Table 5. Cont.

Nr. Model Dataset
Data
Representation

5 GenRe [20]
ShapeNet [10],
Pix3D [16] Voxels

6 MarrNet [21]
ShapeNet [10],
PASCAL3D+ [22] Voxels

7
Perspective
Transformer [23]
Nets

ShapeNet [10] Voxels

8 Rethinking
reprojection

ShapeNet [10],
PASCAL3D+ [22],
SUN [25],
MS COCO [26]

Voxels

9 3D-GAN [24]
ModelNet [28],
IKEA [29] Voxels

10
Neural
renderer [35] ShapeNet [10] Meshes

11
Residual
MeshNet [36] ShapeNet [10] Meshes

12 Pixel2Mesh [37] ShapeNet [10] Meshes

13 CoReNet [38] ShapeNet [10] Meshes

4.3.1. Point Cloud Representation

PointOutNet [9]: When compared to voxels, a point cloud is a sparse and memory-
saving representation. PointOutNet was proposed to reconstruct objects from a single
image in early methods that used point clouds as the output of deep learning networks.
PointOutNet has a convolution encoder and two parallel predictor branches. The encoder
receives an image as well as a random vector that throws off the prediction. One of the
branches is a fully connected branch that captures complex structures, while another is
a deconvolution branch that generates point coordinates. This network makes good use
of geometric continuity and can produce smooth objects. This research introduced the
chamfer distance loss, which is invariant to the permutation of points. This loss function
has been adopted by many other models as a regulariser [59–61]. The system structure of
the PointOutNet model is shown in Figure 3. With the distributional modelling module
plugged in, this system may produce several predictions.

Pseudo-renderer [12]: The authors of the pseudo-renderer model use 2D convolutional
operations to gain improved efficiency. First, they employ a generator to predict 3D build-
ings at unique view points from a single image. They then employ a pseudo-renderer to
generate depth images of corresponding views, which are later used for joint 2D projection
optimisation. They predict denser, more accurate point clouds. However, there is usually
a limit to the number of points that cloud-based representations can accommodate [62].
When calculating the colour of a pixel, occlusion is taken into consideration by determining
a weighted sum of the points’ colours depending on the points’ effects. In order to avoid
optimising the occluded points, this model chooses the point that is closest to the camera
for a particular pixel [63]. This study uses 2D supervision in addition to 3D supervision
to obtain multiple projection images from various viewpoints of the generated 3D shape
for optimisation by using a combination of binary cross-entropy loss function with L1 loss
function [64]. The pseudo-renderer model’s pipeline is depicted in Figure 4. The authors
suggest using a structure generator based on 2D convolutional processes to predict the
3D structure at N perspectives from an encoded latent representation. The 3D structure at
each perspective is transformed to the canonical coordinates in order to merge the point
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clouds. The pseudo-renderer creates depth pictures from fresh perspectives and then uses
them to jointly optimise 2D projection. This is based just on 3D geometry and has no
learnable parameters.

Figure 3. System structure of PointOutNet [9] model.

Figure 4. Pipeline of pseudo-renderer [12] model.

RealPoint3D [13]: The authors of the RealPoint3D model built fine-grained point clouds
using a nearby 3D shape as an auxiliary input to the reconstruction network. By giving
instructions to the closest form from the ShapeNet, RealPoint3D attempts to recreate 3D
models from nature photographs with complicated backgrounds [65,66]. To integrate 2D
and 3D features adaptively, the model introduces an attention-based 2D–3D fusion module
into the network. By projecting the pixel information from a given 2D image into a 3D
space, the method creates point cloud data. It then calculates the chamfer distance and
produces a projection loss between the generated and actual point cloud data. The network
itself is made up of a 2D–3D fusion module, a decoding section, and an encoding section.
The input image’s 2D features and the input point cloud data’s 3D features are extracted
throughout the encoding process. The preceding step’s image and spatial characteristics
are generated by the 2D–3D fusion module. Finally, the object’s anticipated 3D point clouds
are produced by the decoding phase [67]. Figure 5 shows the network architecture of the
RealPoint3D model.

A cycle-consistency-based approach [15]: The authors of this model reconstruct point
clouds from images of a certain class, each with appropriate foreground masks. They
train the networks in a self-supervised manner using a geometric loss and a pose cycle
consistency loss based on an encoder-to-decoder structure, as it is expensive and difficult
to collect training data with ground truth 3D annotations. The training impact of multi-
view supervision using a single-view dataset is simulated by employing training images
with comparable 3D shapes. In addition to two cycle-consistency losses for poses and 3D
reconstructions, this model adds a loss-ensuring cross-silhouette consistency [68]. This
model uses cycle consistency, which was introduced in CycleGAN [69], to prevent unsu-
pervised learning from annotating 2D and 3D data. It may, however, produce deformed
body structures or out-of-view images if unaware of the previous distribution of the 3D
features, which would interfere with the training process. Viewed as a basic self-supervised
technique, cycle consistency uses the original encoded attribute as the generated image’s
3D annotation [70]. In an analysis-by-synthesis approach, this model uses a differentiable
renderer to infer a 3D shape without using ground truth 3D annotation [71]. Figure 6 shows
an overview of the cycle-consistency-based approach.
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Figure 5. Network architecture of RealPoint3D [13] model.

Figure 6. Overview of cycle-consistency-based approach [15].

Point-based techniques use less memory, but since they lack connection information,
they need extensive postprocessing [72]. Although point clouds are simple 3D representa-
tions, they ignore topological relationships [62]. Since point clouds lack a mesh connection
structure, further processing is required in order to extract the geometry from the 3D model
using this representation [73].

4.3.2. Voxel Representation

GenRe [20]: A voxel representation is an early 3D representation that lends itself
well to convolutional operations. The authors of GenRe train their networks with 3D
supervision to predict a depth from a given image in the same view and estimate a single-
view spherical map from the depth. They then employ a voxel refinement network to
merge two projections and generate a final reconstruction result. This model predicts a
3D voxel grid directly from RGB-D photos using the shape completion approach. This
research produces a generalisable and high-quality single-image 3D reconstruction. Others
use less supervision in the learning procedure instead of needing 3D ground truth. This
model divides the process of converting 2.5D to 3D form into two phases: partial 3D
completion and complete 3D completion. This approach differs from the method of directly
predicting the 3D shape from 2.5D. To represent the whole surface of the object, the model
processes the depth map in turn using an inpainted spherical map and a partial spherical
map. Ultimately, the 3D shape is produced by the voxel reconstruction network by combining
the back projection of the inpainted spherical image with the depth map. On untrained classes,
experimental results demonstrate that the network can also produce outcomes that are more
in line with ground truth. These algorithms can rebuild 3D objects with resolutions of up
to 128 × 128 × 128 and more detailed reconstruction outcomes. Still, there is a significant
difference when it comes to the appearance of actual 3D models [64]. Higher resolutions
have been used by this model at the expense of sluggish training or lossy 2D projections,
as well as small training batches [74]. Learning-based techniques are usually assessed on
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new instances from the same category after being trained in a category-specific manner.
That said, this approach calls itself category-agnostic [75]. Figure 7 shows the network
architecture of the GenRe model.

Figure 7. Network architecture of GenRe [20] model.

MarrNet [21]: This model uses depth, normal map, and silhouette as intermediate re-
sults to reconstruct 3D voxel shapes and predicts 3D shapes using a reprojection consistency
loss. MarrNet contains three key components: (a) 2.5D sketch estimation, (b) 3D shape
estimation, and (c) a reprojection consistency loss. From a 2D image, MarrNet initially
generates object normal, depth, and silhouette images. The 3D shape is then extrapolated
from the generated 2.5D images. It employs an encoding–decoding network in both phases.
Finally, a reprojection consistency loss is used to confirm that the estimated 3D shape
matches the generated 2.5D sketches. In this work, a multi-view and pose supervised tech-
nique is also obtained. This approach avoids modelling item appearance differences within
the original image by generating 2.5D drawings from it [76]. Although 3D convolutional
neural networks have been used by MarrNet [21] and GenRe [20] to achieve resolutions
of up to 1283, this has only been accomplished with shallow designs and tiny batch sizes,
which causes training to go slowly [77]. Due to the global nature of employing image
encoders for conditioning, these models exhibit weak generalisation capabilities and are
limited by the range of 3D-data-gathering methods employed. Furthermore, in order to
guarantee alignment between the predicted form and the input, they need an extra pose
estimation phase [78]. This model uses ShapeNet for 3D annotation, which contains objects
of basic shapes [79]. Also, it relies on 3D supervision, which is only available for restricted
classes or in a synthetic setting [80]. A complete overview is illustrated in Figure 8.

Figure 8. Network architecture of MarrNet [21] model.

Perspective Transformer Nets [23]: This method introduces a novel projection loss for
learning 2D observations in the absence of 3D ground truths. To reconstruct 3D voxels,
the authors employ a 2D convolutional encoder, a 3D up-convolutional decoder, and a
perspective transformer network. They reached cutting-edge performance at the time.
When rendering a pixel, all of the voxels along a ray that project to that pixel are considered.
The final pixel colour can be selected with this model. When displaying voxels, the gradient
problem brought on by primitive shape displacement does not arise since a voxel’s location
is fixed in three dimensions. Using camera settings, this model projects the voxels from
the world space to the screen space and performs more computationally efficient bilinear
sampling. Using this strategy, every pixel has an occupancy probability assigned to it.
Casting a ray from the pixel, sampling each corresponding voxel, and selecting the one with
the highest occupancy probability yields this result [63]. In addition to mainly focusing on
inferring depth maps as the scene geometry output, this method has also shown success
in learning 3D volumetric representations from 2D observations based on principles of
projective geometry [81]. This method requires object masks [82]. Because the underlying
3D scene structure cannot be utilised, this 2D generative model only learns to parameterise
the manifold of 2D natural pictures. It struggles to produce images that are consistent
across several views [83]. The complete network architecture is illustrated in Figure 9.
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Figure 9. Network architecture of Perspective Transformer Nets [23] model.

Rethinking reprojection [24]: The authors of this model, in contrast to the previous
research, reconstruct pose-aware 3D shapes from a single natural image. This model uses a
well-known, highly accurate, and resilient approach called reprojection error minimisation
for shape reconstruction. It demonstrates how well the genuine projection on the image is
recreated by an approximated 3D world point [84]. This approach trains shape regressors by
comparing projections of ground truths and predicted shapes [85]. Usually, images contain-
ing one or a few conspicuous, distinct items are used to test this strategy [86]. The network
reconstructs the 3D shape in a canonical posture from the 2D input. The posture parameters
are estimated concurrently by a pose regressor and subsequently applied to the rebuilt
canonical shape. Decoupling shape and posture lowers the number of free parameters
in the network, increasing efficiency [87]. In the absence of 3D labels, this model uses
additional 2D reprojection losses to highlight the border voxels for rigid objects [88]. Most
of the time, this approach assumes that the scene or object to be registered is either non-
deformable or generally static [89]. This representation is limited in terms of resolution [90].
Figure 10 shows the proposed methods of p-TL and p-3D-VAE-GAN models.

Figure 10. Proposed methods for reconstructing pose-aware 3D voxelised shapes: p-TL (parts 1 and
3) and p-3D-VAE-GAN (parts 2 and 3) [24] models.

3D-GAN [27]: The authors of this model present an unsupervised framework that
combines adversarial and volumetric convolutional networks to produce voxels from a
probabilistic latent space. They enhance the network’s generalisation capacity. Using
volumetric convolutions, the developers of this model demonstrated GANs that could
create three-dimensional (3D) data samples. They created new items such as vehicles,
tables, and chairs. They also demonstrated how to convert two-dimensional (2D) images
into three-dimensional (3D) representations of the objects shown in those images [91].
Using this model, visual object networks [92] and PrGANs [93] generate a voxelised 3D
shape first, which is then projected into 2D to learn how to synthesise 2D pictures [94]. This
approach’s generative component aims to map a latent space to a distribution of intricate
3D shapes. The authors train a voxel-based neural network (GAN) to produce objects.
The drawback is that GAN training is notoriously unreliable [95]. Figure 11 shows the
generator in the 3D-GAN model mirrored by the discriminator.
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Figure 11. The generator in 3D-GAN [27] model.

Methods to generate voxels frequently do not provide texture or geometric features,
and the generating process at high resolution is hampered by the 3D convolution’s large
memory footprint and computational complexity [96]. Nevertheless, point cloud and
voxel-based models are frequently predictable and only provide a single 3D output [97].
Although point clouds and voxels are more compatible with deep learning architectures,
they are not amenable to differentiable rendering or suffer from memory inefficiency
problems [98].

4.3.3. Mesh Representation

Neural renderer [35]: Building differentiable rendering pipelines is the goal of a new
discipline called neural rendering, which is making quick strides towards producing con-
trolled, aesthetically realistic rendering [99]. The authors of this model use an integrated mesh
rendering network to reconstruct meshes from low-resolution images. They minimise the
difference between reconstructed objects and their respective ground truths on 2D silhouettes.
The authors suggest a renderer called neural 3D mesh renderer (NMR) and bring up two
problems with a differentiable renderer called OpenDR [100]. The gradient computation’s
locality is the first problem. Only gradients on border pixels can flow towards vertices due to
OpenDR’s local differential filtering; gradients at other pixels are not usable. This characteristic
might lead to subpar local minima in optimisation. The derivative’s failure to make use of
the target application’s loss gradient—such as picture reconstruction—is the second problem.
One technique employed for evaluation involves visualising gradients (without revealing
ground truth) and assessing the convergence effectiveness of those gradients throughout the
optimisation of the objective function [63]. In the forward pass, NMR carries out conventional
rasterisation, and in the backward pass, it computes estimated gradients [101]. For every
object instance, the renderings and splits derived from this model offer 24 fixed elevation
views with a resolution of 64 × 64 [82]. The objects are trained in canonical pose [72]. This
mesh renderer modifies geometry and colour in response to a target image [102]. Figure 12
shows the single-image 3D reconstruction.

Figure 12. Pipeline for single-image 3D reconstruction [35].

Residual MeshNet [36]: To reconstruct 3D meshes from a single image, the authors
present this model, a multilayered framework composed of several multilayer perceptron
(MLP) blocks. To maintain geometrical coherence, they use a shortcut connection between
two blocks. The authors of this model suggest reconstructing 3D meshes using MLPs in
a cascaded hierarchical fashion. Three blocks of stacked MLPs are used for hierarchical
mesh deformation in the suggested design, along with a ResNet-18 image encoder for
feature extraction. To conduct the fundamental shape deformation, the first block, which
has one MLP, is supplied with the coordinates of a 2D mesh primitive and image features.
The next blocks include many stacked MLPs that concurrently alter the mesh that was
previously deformed [103]. The trained model was built on a chamfer distance (CD)-based
goal, which promotes consistency between the generated meshes and the ground truth
meshes [67]. This work, however, has challenges in reconstructing smooth results with
proper triangulation. The majority of mesh learning techniques aim to achieve a desired
shape by deforming a template mesh using the learned shape beforehand, since altering
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the mesh topology is difficult. This model uses progressive deformation and residual
prediction, which adds additional details while reducing learning complexity. Despite
having no complicated structure, it results in significant patch overlaps and holes [104].
This model is used to produce meshes automatically during the finite element method
(FEM) computation process. Although this does not save time, it increases computing
productivity [105]. Figure 13 shows the network structure of Residual MeshNet.

Figure 13. Main network structure of Residual MeshNet [36].

Pixel2Mesh [37]: This model reconstructs 3D meshes of hard objects using a cascaded,
graph-based convolutional network to obtain greater realism. The network extracts percep-
tual features from the input image and gradually deforms an ellipsoid in order to obtain
the output geometry. The complete model has three consecutive mesh deformation blocks.
Each block enhances mesh resolution and estimates vertex positions, which are later used to
extract perceptual image features for the following block. However, several perspectives of
the target object or scene must be included in the training data for 3D shape reconstruction,
which is seldom the case in real-world scenarios [99]. Figure 14 shows an overview of the
Pix2Mesh framework.

Figure 14. Cascaded mesh deformation network [37].

Other research, in addition to the above, proposes reconstructing inherent deforma-
tions in non-rigid objects. Non-rigid reconstruction tasks from a single image typically
require additional information about the target objects, which can be predicted during the
process or provided as prior knowledge, such as core structures and parameterised models.

CoReNet [38]: This model is a coherent reconstruction network that collaboratively
reconstructs numerous objects from a single image for multiple object reconstruction.
The authors of this model suggest three enhancements by building on popular encoder–
decoder designs for this task: (1) a hybrid 3D volume representation that facilitates the
construction of translation equivariant models while encoding fine object details without
requiring an excessive memory footprint; (2) ray-traced skip connections that propagate
local 2D information to the output 3D volume in a physically correct manner; and (3) a
reconstruction loss customised to capture overall object geometry. All objects detected in
the input image are represented in a single, consistent 3D coordinate without intersection
after passing through a 2D encoder and a 3D decoder. To assure physical accuracy, a ray-
traced skip connection is introduced. CoReNet uses a voxel grid with offsets for the
reconstruction of scenes with many objects; however, it needs 3D supervision for object
placement and identification [82]. Instead of using explicit object recognition, CoReNet
used a physical-based ray-traced skip link between the picture and the 3D volume to
extract 2D information. Using a single RGB picture, the method reconstructs the shape and
semantic class of many objects directly in a 3D volumetric grid [106]. As of late, CoReNet
has been able to rebuild many objects on a fixed grid of 1283 voxels while preserving
3D position data in the global space. Additionally, training on synthetic representations
restricts their practicality in real-world situations [107]. Figure 15 shows the pipeline of 3D
reconstruction using this model.
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Figure 15. Pipeline of 3D reconstruction using CoReNet [38].

Table 6 provides the advantages and limitations of single-view 3D reconstruction
models reviewed in this study. In brief, these approaches show the potential of deep
learning for 3D object reconstruction using mesh representation. Nevertheless, most of these
methods do not have the ability to dynamically change the template mesh’s topology [108].
The majority of these mesh-based techniques do not involve postprocessing, but they
frequently call for a deformable template mesh made up of many three-dimensional patches,
which results in non-watertight meshes and self-intersections [72].

Table 6. Advantages and limitations of single-view 3D reconstruction models.

Model Advantages Limitations

PointOutNet [9]

Introduces the chamfer distance loss, which
is invariant to the permutation of points
and is adopted by many other
models as a regulariser.

Utilises less memory, but since they lack
connection information, they need extensive
postprocessing.

Pseudo-renderer [12]

Uses 2D supervision in addition to 3D
supervision to obtain multiple projection
images from various viewpoints of the
generated 3D shape for optimisation.

Predicts denser, more accurate point clouds
but is limited to the amount of points that point
cloud-based representations can accommodate.

RealPoint3D [13]
Attempts to recreate 3D models from
nature photographs with complicated
backgrounds.

Needs an encoder to extract the input image’s 2D
features and input point cloud data’s 3D features.

Cycle-
consistency-based
approach [15]

Uses a differentiable renderer to infer a
3D shape without using ground truth
3D annotation.

Cycle consistency produces deformed body
structure or out-of-view images if it is unaware
of the previous distribution of the 3D features,
which interferes with the training process.

GenRe [20]
Can rebuild 3D objects with resolutions
of up to 128 × 128 × 128 and more detailed
reconstruction outcomes.

Higher resolutions have been used by this model
at the expense of sluggish training or lossy 2D
projections, as well as small training batches.

MarrNet [21]
Avoids modelling item appearance
differences within the original image by
generating 2.5D drawings from it.

Relies on 3D supervision which is only available
for restricted classes or in a synthetic setting.

Perspective
Transformer
Nets [23]

Learns 3D volumetric representations
from 2D observations based on principles
of projective geometry.

Struggles to produce images that are consistent
across several views as the underlying 3D scene
structure cannot be utilised.

Rethinking
reprojection [24]

Decoupling shape and posture lowers the
number of free parameters in the network,
increasing efficiency.

Assumes that the scene or object to be registered
is either non-deformable or generally static.

3D-GAN [27]
Generative component aims to map a
latent space to a distribution of intricate
3D shapes.

GAN training is notoriously unreliable.

Neural
renderer [35] Objects are trained in canonical pose. This mesh renderer modifies geometry and colour

in response to a target image.

Residual
MeshNet [36]

Reconstructing 3D meshes using MLPs
in a cascaded hierarchical fashion.

Produces mesh automatically during the finite
element method (FEM) computation process, although
it does not save time increasing computing productivity.

Pixel2Mesh [37]
Extracts perceptual features from the input
image and gradually deforms an ellipsoid in
order to obtain the output geometry.

Several perspectives of the target object or scene are
not included in the training data for 3D shape
reconstruction, as in real-world scenarios.

CoReNet [38]
Reconstructs the shape and semantic class
of many objects directly in a 3D volumetric
grid using a single RGB image.

Training on synthetic representations restricts
their practicality in real-world situations.
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Numerous organised formats, such as voxel grids, point clouds, and meshes that
display heterogeneity per element, are used to store 3D data. For instance, the topology and
quantity of vertices and faces might vary throughout meshes. Because of this variability,
it is challenging to apply batched operations on 3D data in an effective manner with the
tensor-centric primitives offered by common deep learning toolkits such as PyTorch [101].

These studies do not address multi-object analysis, but they do provide intriguing
solutions to their particular issues with single object pictures [109]. All that is needed for
these tasks is single-view self-supervision. Even with this tremendous advancement, these
techniques nonetheless have two main drawbacks: (1) ineffective bottom-up reasoning,
in which the model is unable to capture minute geometric features like concavities; and
(2) incorrect top-down reasoning, in which the model just explains the input perspective
and is unable to precisely recreate the entire 3D object shape [110]. The drawback of this
single-category technique is that data cannot be pooled across categories, which might
be useful for tasks like viewpoint learning and generalisation to previously unknown
categories of objects (zero-shot [111] or few-shot [112] learning) [113]. There are restrictions
on the kinds of scenes that can be reconstructed using these methods, as they are designed
to only use a single input view at test time [82]. Results from single-view 3D reconstruction
are typically incomplete and inaccurate, particularly in cases where there are obstructions
or obscured regions [114].

4.4. Multiple-View Reconstruction

The apparent uncertainty in the object is decreased and the number of occluded
portions is increased when images taken from different angles are fed into the network.
Traditionally, there have been two kinds of reconstruction from several perspectives. Re-
building a static item from a number of images is the first step; reconstructing a moving
object’s three-dimensional structure from a movie or several frames is the second. In order
to match up the incomplete 3D shapes into a full one, both of these algorithms use images to
estimate the camera posture and matching shape. As a result, three-dimensional alignment
and posture estimation are challenging. First, deep learning techniques are introduced
into multi-image reconstruction to address this problem. Next, from the input images, 3D
shapes are immediately generated by deep neural networks. Moreover, the rebuilding
procedure takes a lot less time when end-to-end structures are used. Table 7 provides the
list of multi-view 3D reconstruction models reviewed in this study.

Table 7. Multiple-view 3D reconstruction models reviewed in this study.

Nr. Model Dataset
Data
Representation

1 3D34D [17] ShapeNet [10] Point Cloud

2
Unsupervised
learning
of 3D structure [18]

ShapeNet [10],
MNIST3D [19] Point Cloud

3 Pix2Vox++ [30]
ShapeNet [10],
Pix3D [16],
Things3D [30]

Voxels

4 3D-R2N2 [11]
ShapeNet [10],
PASCAL3D+ [22],
MVS CAD 3D [11]

Voxels

5 Weak recon [31]
ShapeNet [10],
ObjectNet3D [14] Voxels

6
Relative
viewpoint
estimation [32]

ShapeNet [10],
Pix3D [16],
Things3D [30]

Voxels
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4.4.1. Point Cloud Representation

3D34D [17]: The authors of this model employ a UNet encoder, producing feature
maps to produce geometry-aware point representations of object categories unseen dur-
ing training. For 3D object reconstruction, this study employs multi-view images with
ground truth camera postures and pixel-aligned feature representations. A stand-alone 3D
reconstruction module that was trained using ground truth camera postures is used by this
model [115]. This work has made generalisation a clear goal. The goal of this study is to
obtain a more expressive intermediate shape representation by locally assigning features
and 3D points [116]. This is an object-centred approach. This work was the first to exam-
ine the generalisation characteristics of shape reconstruction using previously unknown
shape categories. This approach emphasises reconstruction from many perspectives, uses
continuous occupancies, and evaluates generalisation to previously undiscovered cate-
gories [117]. The study focused on reconstruction from several perspectives and examined
feature description bias for generalisation [118]. While this 3D reconstruction technique
performs admirably on synthetic objects rendered with a clear background, it may not
translate well to actual photos, novel categories, or more intricate object geometries [75].
According to this research, contemporary learning-based computer vision techniques are
unable to generalise to data that is not distributed evenly [119].

Unsupervised learning of 3D structure from images [18]: The authors of this model train
deep generative models of 3D objects in an end-to-end fashion and directly from 2D images
without the use of 3D ground truth, and then reconstruct objects from 2D images via
probabilistic inference. This purely unsupervised method is built on sequential generative
models and can generate high-quality samples that represent the multi-modality of the data.
With a primary focus on inferring depth maps as the scene geometry output, this study
has demonstrated success in learning 3D volumetric representations from 2D observations
using the concepts of projective geometry [81]. In [120], synthesised data are used. Ref. [121]
explores the use of 3D representations as inductive bias in generative models. Using
adversarial loss, the technique presented in [122] usually optimises 3D representations
to provide realistic 2D images from all randomly sampled views. An effort based on
policy gradient algorithms performs single-view 3D object reconstruction using the non-
differentiable OpenGL renderer with this model. Nevertheless, only basic and coarse
forms may be recreated in the collection [63]. Figure 16 shows the overall framework for
this model.

Figure 16. Proposed framework of unsupervised learning of 3D structure from images [18].

Overall, these techniques offer significant progress in the area of multi-view recon-
struction, enabling the generation of 3D models from 2D data in a more accurate and
efficient manner. There is still room for improvement, especially when it comes to better
alignment accuracy and estimating camera poses. Further research and development in
this area could lead to even more sophisticated techniques for generating 3D models from
multiple images.
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4.4.2. Voxel Representation

Pix2Vox++ [30]: The authors of this model listed three limitations for RNN-based
methods. First, permutation variance prevents RNNs from reliably estimating the 3D
geometry of an item when they are presented with the same collection of pictures in various
sequences. Second, the input pictures cannot be properly used to improve reconstruction
outcomes due to RNNs’ long-term memory loss. Finally, as input pictures are analysed
sequentially without parallelisation, RNN-based algorithms take a long time. To overcome
these limitations, the authors proposed an encoder–decoder structure framework called
Pix2Vox [123] based on RNNs. The authors introduced Pix2Vox++ [30] by making some
improvements to the previously created Pix2Vox [123] model. In the Pix2Vox++ [30]
network, the authors replaced the backbone of Pix2Vox [123], VGG, with ResNet. The
authors of this model proposed Pix2Vox++ to generate a coarse volume for each input
image. They fuse all of the coarse volumes using a multi-scale context-aware fusion module,
followed by a refiner module to correct the fused volume. Primarily using synthetic data,
such as from ShapeNet, this model learns to rebuild the volumetric representation of
basic objects [124]. Pix2Vox++’s reconstruction findings are able to precisely recreate the
general shape but are unable to provide fine-grained geometries [125]. Because of memory
limitations, the model’s cubic complexity in space results in coarse discretisations [126].
The visual information is transferred from the image encoder to the 3D decoder using
only the feature channels (such as element-wise add, feature concatenation, and attention
mechanism). The 3D decoder only receives implicit geometric information with limited
semantic attributes, which serves as guidance for shape reconstruction. The decoder can
quickly detect and recover such geometric information. On the contrary, the particular,
detailed shape of these attributes will be determined by the detailed semantic attributes.
However, throughout the reconstruction process, the decoder will seldom discover these
semantic properties since they are intricately intertwined with one another in image features.
The resolution for voxel data is often constrained due to the cubic growth of the input
voxel data, and further raising the resolution would result in unacceptably high computing
costs [127]. The accuracy of the method will become saturated when the number of input
views exceeds a specific scale (e.g., 4), indicating the challenge of acquiring complementary
information from a large number of independent CNN feature extraction units [128].
Figure 17 shows the proposed framework for this model.

Figure 17. Proposed framework of Pix2Vox++ network [30].

3D-R2N2 [11]: Deeply influenced by the conventional LSTM framework, 3D-R2N2
generates 3D objects in occupancy grids with only bounding box supervision. In an
encoder–LSTM–decoder structure, it merges single- and multi-view reconstruction. The 3D
convolutional LSTM selectively updates hidden representations via input and forget gates.
It successfully manages self-occlusion and refines the reconstruction result progressively as
additional observations are collected. An overview of the network is presented in Figure 18.
Despite the ability to preserve earlier observations, methods based on such structures
may fail when presented with similar inputs and are restricted in their ability to retain
features in early inputs. Using encoder–decoder architectures, this technique converts
RGB image partial inputs into a latent vector, which is then used to predict the complete
volumetric shape using previously learned priors. Fine shape features are lost in voxel-
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based methods, and since their normals are not smooth when produced, voxels look very
different from high-fidelity shapes [95]. This CNN-based method only works with coarse
64 × 64 × 64 grids [129]. This approach has significant memory use and computational
overhead [61]. Since voxels are logical extensions of image pixels, cutting-edge methods for
shape processing may be transferred from image processing. Nevertheless, low-resolution
outcomes are typically produced because voxel representations are limited by GPU memory
capacity [130].

Figure 18. An overview of the 3D-R2N2 network [11].

Weak recon [31]: This method explores an alternative to costly 3D CAD annotation and
proposes using lower-cost 2D supervision. Through a ray-trace pooling layer that permits
perspective projection and backpropagation, the proposed method leverages foreground
masks as weak supervision. By constraining the reconstruction to remain in the space of
unlabelled real 3D shapes, this technique makes use of foreground masks for 3D recon-
struction. Using ray-tracing pooling, this model learns shapes from multi-view silhouettes
and applies a GAN to further limit the ill-posed issue [131]. This method is limited to
low-resolution voxel grids [132]. The authors decided to employ GANs to represent 2D
projections rather than 3D shapes when investigating adversarial nets for single-image 3D
reconstruction. However, their reconstructions are hampered by this weakly supervised
environment [133].

Relative viewpoint estimation [32]: The authors of this model propose teaching two
networks to address alignment without 3D supervision: one to estimate the 3D shape
of an object from two images of different viewpoints with corresponding pose vectors
and predict the object’s appearance from a third view; and the other to evaluate the
misalignment of the two views. They predict a transformation that optimally matches the
bottleneck features of two input images during testing. Their networks are also focused on
generalising previously unseen objects. When estimating relative 3D poses among a group
of little or non-overlapping RGB(-D) images, perspective variation is significantly more
dramatic in regions where few co-visible regions are identified, making matching-based
algorithms inappropriate. The authors of this model suggest using the hallucination-then-
match paradigm to overcome this difficulty [134]. The authors point out that supplying an
implicit canonical frame by using a reference image and formulating posture estimation as
predicting the relative perspective from this view are the basic requirements to make zero-
shot pose estimation a well-posed issue. Unfortunately, this technique does not extend to
the category level; it can only predict posture for instances of a single item [135]. Figure 19
shows an overview of the shape-learning approach of this model.

Table 8 provides the advantages and limitations of multi-view 3D reconstruction
models reviewed in this study. Point clouds, voxel grids, and mesh scene representations,
on the other hand, are discrete, restricting the amount of spatial resolution that can be
achieved, meaning they only sample the smooth surfaces underneath a scene sparingly,
and they frequently require explicit 3D supervision [83].

Figure 19. An overview of the shape-learning approach [32].
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Table 8. Advantages and limitations of multi-view 3D reconstruction models.

Model Advantages Limitations

3D34D [17]
Obtains a more expressive intermediate
shape representation by locally assigning
features and 3D points.

Performs admirably on synthetic objects
rendered with a clear background, but not
on actual photos, novel categories, or more
intricate object geometries.

Unsupervised
learning of
3D structures [18]

Optimises 3D representations to provide
realistic 2D images from all randomly
sampled views.

Only basic and coarse shapes can be reconstructed.

Pix2Vox++ [30]
Generates a coarse volume for each
input image.

Because of memory limitations, the model’s cubic
complexity in space results in coarse discretisations.

3D-R2N2 [11]

Converts RGB image partial inputs into a
latent vector, which is then used to predict
the complete volumetric shape using
previously learned priors.

Only works with coarse 64 × 64 × 64 grids.

Weak recon [31]
Alternative to costly 3D CAD annotation,
and proposes using lower-cost 2D
supervision.

Reconstructions are hampered by this weakly
supervised environment.

Relative
viewpoint
estimation [32]

Predicts a transformation that optimally
matches the bottleneck features of two
input images during testing.

It can only predict posture for instances of a single
item and does not extend to the category level.

5. Registration

Determining the correlation between point cloud data of the same image acquired from
several methods might be useful in some scenarios. By calculating the transformation for
the optimal rotation and translation across the point cloud sets, 3D point cloud registration
algorithms reliably align different overlapping 3D point cloud data views into a full model
(in a rigid sense). The distance in a suitable metric space between the overlapping regions
of two distinct point cloud sets is small in an ideal solution. This is difficult since noise,
outliers, and non-rigid spatial transformations all interfere with the process. Finding the
optimal solution becomes significantly more difficult when there is no information about
the starting posture of various point cloud sets in space or the places where the sets overlap.
Table 9 provides the list of 3D registration models reviewed in this study.

Table 9. 3D registration models reviewed in this study.

Nr. Model Dataset
Data
Representation

1 CPD [136] Stanford Bunny [33] Meshes

2 PSR-SDP [137] TUM RGB-D [138] Point Cloud

3 RPM-Net [139] ModelNet [28] Meshes

4 DeepICP [140]
KITTI [141],
SouthBay [142]

Point Cloud,
Voxels

5 3D-SmoothNet [143] 3DMatch [144]
Point Cloud,
Voxels

6 3D multi-view
registration [145]

3DMatch [144],
Redwood [146],
ScanNet [39]

Point Cloud

5.1. Traditional Methods

Traditional 3D registration methods can be classified based on whether the under-
lying optimisation method used is global or local. The most well-known works in the
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global category are based on global stochastic optimisation using genetic algorithms or
evolutionary algorithms. However, their main drawback is the computation time. On the
other hand, the majority of studies performed in 3D registration nevertheless have local
optimisation methods.

CPD [136]: The Coherent Point Drift (CPD) algorithm considers the alignment as a
probability density estimation problem where one point cloud set represents the Gaussian
mixture model centroids and the other represents the data points. The transformation
is estimated by maximising the probability of fitting the centroids to the second set of
points. The movement is forced to move coherently as a group to preserve the topological
structure. The authors introduced this approach, which uses the methodology for maxi-
mum likelihood parameter estimation and establishes a probabilistic framework based on
Gaussian mixture models (GMMs) [147]. Registration was reformulated by the authors as
a probability density estimation issue. The first set of points served as the centroids of the
GMMs that were fitted using likelihood maximisation to the data or points from the second
set. To ensure that the centroids moved coherently, extra effort was taken [148]. While
GMM-based methods might increase resilience against outliers and bad initialisations, local
search remains the foundation of optimisation [149].

PSR-SDP [137]: The authors of this model studied the registration of point cloud sets in
a global coordinate system. In other words, with the original set of n points, we want to find
the correspondences between (subsets of) the original set and m local coordinate systems,
respectively. The authors consider the problem as a semi-definite program (SDP) within the
application of Lagrangian duality, and this allows for verifying the global optimality of a
local minimiser in a significantly faster manner. The registration of numerous point sets is
solved by this approach using semi-definite relaxation. By using a convex SDP relaxation,
the non-convex constraint is relaxed [150]. Lagrangian duality and SDP relaxations were
used to tackle the multiple point cloud registration problem. This problem was investigated
further in this model, where it was demonstrated that the SDP relaxation is always tight
under low-noise regimes [151]. A study of global optimality requirements for point set
registration (PSR) with incomplete data was presented using this approach. This approach
used Lagrangian duality to provide a primal problem candidate solution, allowing it to
retrieve the associated dual variable in closed form. This approach provides poor estimates
even in the presence of a single outlier because it assumes that all measurements are inliers
(i.e., have little noise), a situation that rarely occurs in practice [152].

RPM-Net [139]: RPM-Net inherits the idea of the RPM algorithm, introduces deep
learning to desensitise the initialisation, and improves network convergence with learned
fusion features. In this method, the initialisation assignments are based on the fusion of
hybrid features from a network instead of spatial distances between points. The optimal
annealing parameters are predicted by a secondary network, and a modified chamfer
distance is introduced to evaluate the quality of registration. This method outperforms
previous methods and handles missing keypoints and point cloud sets with partial visibility.
RPM-Net presents a deep-learning-based method for rigid point cloud registration that is
more resilient and less susceptible to initialisation. The network created by this approach
is able to solve the partial visibility of the point cloud and obtain a soft assignment of
point correspondences [150]. This model’s feature extraction is geared particularly towards
artificial, object-centric point clouds [153]. By leveraging soft correspondences that are
calculated from the local feature similarity scores to estimate alignment, this approach
avoids the non-differentiable nearest-neighbour matching and RANSAC processes. RPM-
Net also makes use of surface normal data [154]. Because of matches that are heavily
tainted by outliers, this model’s resilience and applicability in complicated scenarios does
not always live up to expectations [155]. This approach looks for deep features to find
correspondences; however, the features that are taken out of point clouds have a low
capacity to discriminate, which results in a high percentage of false correspondences and
severely reduces the accuracy of registration. In order to establish soft correspondences
from local characteristics, which might boost resilience but reduce registration accuracy,
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RPM-Net suggests a network that predicts the ideal annealing parameters [156]. Figure 20
shows the network architecture of this model.

Figure 20. An overview of the RPM-Net network [139].

5.2. Learning-Based Methods

DeepICP [140]: This is an early end-to-end framework achieving comparable regis-
tration accuracy to the state-of-the-art traditional methods for point cloud registration.
The algorithm utilises PointNet++ [157] to extract local features, followed by a point-
weighting layer that helps select a set of keypoints. Once a set of candidate keypoints
is selected from the target point cloud set, they pass through a deep-feature-embedding
operation together with the keypoints of the source set. Finally, a corresponding point gen-
eration layer takes the embeddings and generates the final result. Two losses are incurred:
(1) the Euclidean distance between the estimated corresponding points and the ground
truth under the ground truth transformation, and (2) the distance between the target under
the estimated transformation and the ground truth. These losses are combined to consider
both global geometric information and local similarity. By creating a connection using the
point cloud’s learned attributes, this study improved the conventional ICP algorithm using
the neural network technique. This method takes a large amount of training time on the
dataset, despite its good performance. If the test data change significantly from the training
data, the algorithm’s output will not be optimal. Consequently, there are stringent data
limits with the neural-network-based enhanced ICP technique [158]. A solution to the point
cloud registration problem has been offered [159]. Rather than utilising ICP techniques, this
approach might directly match the local and target point clouds in addition to extracting
descriptors via neural networks [160]. It still takes a lot of computing effort to combine
deep learning with ICP directly [150]. The architecture of the proposed end-to-end learning
network for 3D point cloud registration is demonstrated in Figure 21.

Figure 21. The architecture of DeepICP [140].

3DSmoothNet [143]: 3DSmoothNet matches two point cloud sets with a compactly
learned 3D point cloud descriptor. At first, the model computes the local reference frame of
the area near the randomly sampled keypoints. This is followed by the near areas being
transformed into voxelised smoothed density value representations [161]. Then, the local
feature of each keypoint is generated by 3DSmoothNet. The features extracted by this
cloud descriptor will be utilised by a RANSAC approach for producing registration results.
The proposed 3D point cloud descriptor outperforms traditional binary-occupancy grids,
and it is the first learned, universal matching method that allows transferring trained mod-
els between modalities. For feature learning, this approach suggests a rotation-invariant
handcrafted feature that is fed into a deep neural network. Deep learning is used as a
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feature extraction technique in all these strategies. Their goal is to estimate robust corre-
spondences by learning distinguishing characteristics through the development of complex
network topologies or loss functions. This experiment demonstrates that while applying
deep learning directly will not ensure correctness, applying mathematical theories of regis-
tration directly will require enormous amounts of computing effort [150]. This approach
is designed to mitigate voxelisation and noise artefacts. The receptive field is limited to
a predetermined size, and the computational cost is significantly increased by this early
work’s outstanding performance, which is still based on individual local patches [153].
Fully convolutional geometric features (FCGFs) is the fastest feature extraction method and
is 290 times faster than 3DSmoothNet [162].

3D multi-view registration [145]: Following 3DSmoothNet, the authors proposed a
method that formulates conventional two-stage approaches (typically an initial pairwise
alignment followed by a global refinement) in an end-to-end learnable convention by
directly learning and registering all views in a globally consistent fashion. Their work
improves a point cloud descriptor studied in [162], using a soft correspondence layer that
pairs different sets to compute primary matches. These matches are then fed to a pairwise
registration block to obtain transformation parameters and corresponding weights. Finally,
these weights and parameters are globally refined by a novel iterative transformation
synchronisation layer. This work is the first end-to-end algorithm for joint learning of both
stages of the registration problem. This model outperforms previous two-stage algorithms
with higher accuracy and less computational complexity. This method utilises FCGF [162]
to solve the multi-way registration problem [163]. The primary use for this technique is
indoor point clouds [164]. Figure 22 shows the proposed pipeline for this method.

Figure 22. Proposed pipeline for 3D multi-view registration [145].

Table 10 provides the advantages and limitations of 3D registration models reviewed
in this study. This category offers the following two benefits: (1) A point feature based on
deep learning may offer reliable and precise correspondence searches. (2) By applying a
straightforward RANSAC approach, the correct correspondences might result in accurate
registration outcomes. Nevertheless, there are limitations to these kinds of methods: (1) A
lot of training data are required. (2) If there is a significant distribution discrepancy between
the unknown scenes and the training data, the registration performance in such scenes
drastically decreases. (3) To learn a stand-alone feature extraction network, they employ
a different training procedure. In addition to registration, the learned feature network is
used to determine point-to-point matching [150].

Table 10. Advantages and limitations of 3D registration models.

Model Advantages Limitations

CPD [136]

Considers the alignment as a probability
density estimation problem, where one
point cloud set represents the Gaussian
mixture model centroids, and the other
represents the data points.

While GMM-based methods might increase
resilience against outliers and bad
initialisations, local search remains the
foundation of the optimisation.

PSR-SDP [137]
Allows for verifying the global optimality
of a local minimiser in a significantly
faster manner.

Provides poor estimates even in the presence
of a single outlier because it assumes that all
measurements are inliers.

RPM-Net [139]
Able to solve the partial visibility of the
point cloud and obtain a soft assignment
of point correspondences.

Computational efficacy increases as the
number of points in the point clouds increases.
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Table 10. Cont.

Model Advantages Limitations

DeepICP [140]

By creating a connection using the point
cloud’s learned attributes, this study
improved the conventional ICP algorithm
using the neural network technique.

Takes a lot of computing effort to combine
deep learning with ICP directly.

3DSmoothNet [143]
First learned, universal matching method
that allows transferring trained models
between modalities.

290 times slower than FCGF [162] model.

3D multi-view
registration [145]

First end-to-end algorithm for joint
learning of both stages of the registration
problem.

A lot of training data are required.

6. Augmentation

The proliferation of 3D data collection equipment and the rising availability of 3D
point cloud data are the result of recent advancements in 3D sensing technology. Despite
the fact that 3D point clouds offer extensive information on the entire geometry of 3D
objects, they are frequently severely flawed by outliers, noise, and missing points. Many
strategies, including outlier removal, point cloud completion, and noise reduction, have
been proposed to solve these problems; however, the implementation and application differ.
While point cloud completion techniques try to fill in the missing portions of the point
cloud to provide a comprehensive representation of the object, outlier removal strategies try
to detect and eliminate points that do not adhere to the overall shape of the object. On the
other hand, noise suppression approaches work to lessen the impact of random noise in
the data in order to enhance the point cloud’s quality and accuracy. Table 11 provides the
list of 3D augmentation models reviewed in this study.

Table 11. 3D augmentation models reviewed in this study.

Nr. Model Dataset
Data
Representation

1 MaskNet [165]
S3DIS [3],
3DMatch [144],
ModelNet [28]

Point Cloud

2 GPDNet [166] ShapeNet [10] Point Cloud

3 DMR [167] ModelNet [28] Point Cloud

4 PU-Net [168] ModelNet [28],
ShapeNet [10] Point Cloud

5 MPU [169] ModelNet [28],
MNIST-CP [19] Point Cloud

6 CP-Net [170] ModelNet [28] Point Cloud

7 SampleNet [171] ModelNet [28],
ShapeNet [10] Point Cloud

6.1. Denoising

While better data gathering methods may result in higher-quality data, noise in point
clouds is unavoidable in some circumstances, such as outdoor scenes. A number of de-
noising methods have been put forward to stop noise from affecting point cloud encoding.
Local surface fitting (e.g., jets or MLS surfaces), local or non-local averaging, and statis-
tical presumptions on the underlying noise model are examples of early conventional
approaches. Since then, learning-based techniques have been put forward that, in the
majority of situations, perform better than traditional solutions.

MaskNet [165]: The authors of this model presented MaskNet for determining outlier
points in point clouds by computing a mask. The method can be used to reject noise in
even partial clouds in a rather computationally inexpensive manner. This approach, which
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uses learning-based techniques to estimate global descriptors of each point in the point
cloud in addition to a global feature of the point cloud, was presented to address the
sparse overlap of point clouds. After that, a predicted inlier mask is used to compute the
transformation using these features. This model’s ability to effectively tackle the partial-to-
partial registration problem is one of its key advantages. However, this model’s primary
drawback is that it requires the input of both a partial and complete point cloud [172]. It
requires a point cloud without outliers as a template. Voxelisation or projection are required
to convert the initial point clouds into structured data because of the chaos of point clouds.
Due to the inevitable rise in computing load and loss in geographical information in
certain categories, this process results in issues with significant time consumption and
inaccuracy [173]. The feature interaction module of MaskNet is meant to take two point
clouds as input and output the posterior probability [174]. To anticipate whether points
in template point clouds coincide with those in source point clouds, it makes use of a
PointNet-like network. But only in the template point cloud can it identify the overlapping
points [175]. One typical issue with raw-point-based algorithms is that they assume a
considerable overlap or good starting connections between the provided pair of point
sets [176]. MaskNet is not easily transferred to other tasks or real-world situations due
to its high sensitivity to noise [177]. According to this method, the extracted overlapping
points are assumed to be entirely correct, and they are thought to have equivalent points.
However, the accuracy of the overlapping spots that the network estimates cannot be
guaranteed [178]. Figure 23 shows the architecture of this model.

Figure 23. Architecture of MaskNet [165].

However, all of the aforesaid deep learning approaches are fully supervised and
require pairs of clean and noisy point clouds.

GPDNet [166]: The authors of this model proposed a new graph convolutional neural
network targeted at point cloud denoising. The algorithm deals with the permutation-
invariance problem and builds hierarchies of local or non-local features to effectively
address the denoising problem. This method is robust to high levels of noise and also has
structured noise distributions. In order to regularise the underlying noise in the input
point cloud, GPDNet suggests creating hierarchies of local and non-local features [179].
Edge-conditioned convolution (ECC) [180] was further expanded to 3D denoising problems
using this approach [181]. The two primary artefacts that affect this class of algorithms are
shrinkage and outliers, which result from either an overestimation or an underestimation of
the displacement [182]. The point clouds’ geometric characteristics are often oversmoothed
using GPDNet [183].

DMR [167]: The authors of this model presented a novel method to use differentiably
subsampled points for learning the underlying manifold of a noisy point cloud. The pro-
posed algorithm is different from the aforementioned methods as it resembles more of
a human-like cleaning of a noisy point cloud using multi-scale geometric feature infor-
mation as well as supervision from ground truths. This network can also be trained in
an unsupervised manner. A simple implementation of the graph convolutional network
(GCN) is unstable as the denoising process mostly deals with local representations of
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point neighbourhoods. In order to learn the underlying manifold of the noisy input from
differentiably subsampled points and their local features with minimal disruption, DMR
relies on dynamic graph CNN (DGCNN) [184] to handle this problem [179]. In this model,
the patch manifold reconstruction (PMR) upsampling technique is straightforward and effi-
cient [185]. This method’s downsampling step invariably results in detail loss, especially at
low noise levels, and it could also oversmooth by removing some useful information [182].
The goal of these techniques is to automatically and directly learn latent representations for
denoising from the noisy point cloud. Its overall performance on noise in the actual world
is still restricted though [186]. Figure 24 shows the architecture of this model.

Figure 24. Illustration of the proposed DMR network [167].

6.2. Upsampling

In 3D point cloud processing, upsampling is a typical challenge when the objective is to
produce a denser set of points that faithfully depicts the underlying geometry. Though the
uneven structure and lack of spatial order of point clouds present extra obstacles, the prob-
lem is analogous to the image super-resolution problem. Points had to be adjusted in
the early, traditional point cloud upsampling techniques, which were optimisation-based.
Although these approaches frequently yielded satisfactory results, their application was
limited since they assumed smooth underlying geometry. Recently, data-driven approaches
have emerged for point cloud upsampling, which have demonstrated significant improve-
ments over traditional methods.

PU-Net [168]: PU-Net is one such approach that uses a multi-branch convolutional unit
to expand the set of points in a point cloud by learning multi-level features for each point.
During the end-to-end training of PU-Net, both reconstruction loss and repulsion loss are
jointly utilised to improve the quality of the output. PU-Net learns the representation from
the raw point dataset using unsupervised methods. This model learns sparse and irregular
point clouds. Each point’s multi-level features are learned, and the enlarged feature is
obtained by applying multi-branch convolution. This feature is then divided to rebuild
the point cloud. PU-Net consists of four components: patch extraction, which gathers
point clouds of different sizes; point feature embedding, which extracts the point clouds’
local and global geometric information; feature expansion, which increases the number
of features; and coordinate reconstruction, which implements the expanded features’ 3D
coordinates [187]. It is a LiDAR-based technique that uses raw LiDAR scans to learn high
level point-wise information. From each high-dimensional feature vector, many upsampled
point clouds are then reconstructed [188]. Recovering the 3D shape of objects that have
only partially been observed can be achieved to a limited extent by upsampling point
clouds. Moreover, there would be a noticeable increase in latency if the whole point cloud
was upsampled. A low-density point cloud can be converted to a high-density one via
point cloud upsampling. Nevertheless, during training, they require high-density point
cloud ground truths [189]. This model only learns spatial relationships at a single level of
multi-step point cloud decoding via self-attention [190]. With exceptionally sparse and non-
uniform low-quality inputs, this network might not generate findings that are believable.
PU-Net replicates the point features and processes each copy independently using different
MLPs in order to upsample a point collection. But the enhanced features would be too close
to the inputs, degrading the quality of the upsampling [191]. The detailed architecture of
PU-Net is presented in Figure 25.
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Figure 25. Architecture of PU-Net [168].

MPU [169]: The authors of this model proposed an adaptive patch-based point cloud
upsampling network that was inspired by recent neural image super-resolution methods.
This network is trained end-to-end on high-resolution point clouds and emphasises a
certain level of detail by altering the spatial span of the receptive field in various steps.
It is a LiDAR-based technique that uses raw LiDAR scans to learn high-level point-wise
information. From each high-dimensional feature vector, it then reconstructs many upsam-
pled point clouds [188]. Recovering the 3D shape of objects that have only partially been
observed can be achieved to a limited extent by upsampling point clouds. Moreover, there
would be a noticeable increase in latency if the whole point cloud was upsampled. A low-
density point cloud can be converted to a high-density one via point cloud upsampling.
Nevertheless, during training, they require high-density point cloud ground truths [189].
This model only learns spatial relationships at a single level of multi-step point cloud
decoding via self-attention [190]. With exceptionally sparse and non-uniform low-quality
inputs, this network might not generate findings that are believable. A multi-step progres-
sive upsampling (MPU) network was provided by the authors in order to reduce noise
and preserve information. This approach divides a 16× upsampling network into four
consecutive 2× upsampling subnets to upsample a point set incrementally in numerous
phases. The training procedure is intricate and needs more subgroups for a greater upsam-
pling rate, even if details are better maintained in the upsampled output [191]. The amount
of computing memory used during training is higher. More significantly, this approach
cannot be used for completion tasks and is restricted to upsampling sparse locations [192].
Figure 26 shows an overview of the MPU network with three levels of detail.

Figure 26. Overview of MPU with 3 levels of detail [169].

Even with the recent advancements, point cloud upsampling still faces difficulties,
particularly when managing intricate structures with a range of densities and imperfec-
tions. Another problem is that the quality of the input has a significant impact on the
quality of the point clouds that are created. More investigation is required to create point
cloud upsampling algorithms that are more effective and efficient in order to overcome
these obstacles.

6.3. Downsampling

In practical settings, the point cloud often contains a large number of points due to
the use of high-density data acquisition sensors. While some applications benefit from this
density, increased computation and low efficiency are common issues. One conventional
approach is downsampling the point cloud using a neural network.

CP-Net [170]: The authors of this model propose a critical points layer (CPL) that
downsamples the points adaptively based on learned features. The following network layer
receives the points with the most active features from this critical points layer [193]. CPL
globally filters out unimportant points while preserving the important ones. The proposed
CPL layer can be used with a graph-based point cloud convolution layer to form CP-Net.
When using this approach, the final representations typically retain crucial points that take
up a significant amount of channels [194]. This graph-based downsampling approach uses
K-nearest neighbours (K-NNs) to locate neighbouring points, in contrast to the majority of
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graph-based point cloud downsampling techniques. In addition, the global downsampling
technique known as the critical points layer (CPL) has very high computing efficiency.
A graph-based layer and the suggested layer can be used to create a convolutional neural
network [195]. It is not possible to describe the underlying geometric structures of points
or to properly capture the non-local dispersed contextual correlations in geographical
locations and semantic information using this point-based approach that has recently been
presented, which needs complex network designs to aggregate local features [196,197], as
shown in Figure 27.

Figure 27. General overview of CP-Net [170].

SampleNet [171]: SampleNet is a differentiable sampling network used for reconstruc-
tion and classification tasks in point clouds [198]. It introduces a differentiable relaxation
for point cloud sampling by approximating sampled points as a mixture of points in the
original point cloud. This network can be used as a front to networks for multiple tasks,
unlike conventional approaches that do not consider the downstream task. With this
model, the sampling procedure for the representative point cloud classification problem
becomes differentiable, allowing for end-to-end optimisation [194]. For the downstream
tasks, SampleNet suggests a learned sampling strategy [199]. In this work, the creation
of additional data points is how sampling is accomplished [200]. This neural network
is intended to choose the keypoints more accurately [201]. By choosing already-existing
points from the point cloud, this method restricts itself [202]. The model fails to attain
a satisfactory equilibrium between maintaining geometric features and uniform density.
Following the sampling process, the original point clouds’ moving least squares (MLS)
surfaces are modified [203]. There are two major drawbacks to this method: it requires
supervised annotations in the form of labels. The first is the restricted scalability due to the
high cost of building a systematic annotation strategy and obtaining human annotations.
Second, when several objects are present in labelled data obtained in the field (e.g., from a
vehicle-mounted LiDAR sensor), it becomes very difficult and time-consuming to deter-
mine whether points in a point cloud of 10,000 points belong to a car, the street, or another
automobile [204]. Figure 28 shows the training of the proposed method.

Figure 28. Training of the proposed sampling method [171].

Table 12 provides the advantages and limitations of the 3D augmentation models re-
viewed in this study. All things considered, traditional techniques for downsampling point
clouds frequently result in more computation or the removal of significant points. Sam-
pleNet [171] and CP-Net [170] provide answers to these problems. While SampleNet [171]
presents a differentiable relaxation for point cloud sampling, which may be used as a front
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to networks for numerous tasks, CP-Net [170] globally filters away unnecessary points
while maintaining the significant ones. These recent developments provide the groundwork
for future improvements in downstream tasks and are critical to 3D point cloud processing.

Table 12. Advantages and limitations of 3D augmentation models.

Model Advantages Limitations

MaskNet [165]
Rejects noise in even partial clouds in a
rather computationally inexpensive
manner.

Requires the input of both a partial and
complete point cloud.

GDPNet [166]

Deals with the permutation-invariance
problem and builds hierarchies of local
or non-local features to effectively
address the denoising problem.

The point clouds’ geometric characteristics
are often oversmoothed.

DMR [167]
Patch manifold reconstruction (PMR)
upsampling technique is straightforward
and efficient.

Downsampling step invariably results in detail
loss, especially at low noise levels, and could also
oversmooth by removing some useful information.

PU-Net [168]
Both reconstruction loss and repulsion
loss are jointly utilised to improve the
quality of the output.

Only learns spatial relationships at a single level
of multi-step point cloud decoding via self-attention.

MPU [169]

Trained end-to-end on high-resolution
point clouds and emphasises a certain
level of detail by altering the spatial
span of the receptive field in various steps.

Cannot be used for completion tasks and is restricted
to upsampling sparse locations.

CP-Net [170]
Final representations typically retain
crucial points that take up a significant
number of channels.

Potential loss of information due to the
down-sampling process.

SampleNet [171]

Sampling procedure for the representative
point cloud classification problem becomes
differentiable, allowing for end-to-end
optimisation.

Fails to attain a satisfactory equilibrium between
maintaining geometric features and uniform density.

7. Point Cloud Completion

Point clouds are the most widely used depiction of 3D data, and they are frequently
used in practical applications. However, acquired point clouds are typically highly incom-
plete and sparse due to self-occlusion and poor sensor resolution, which hinders further
applications. Thus, recovering complete point clouds is an essential task, the main goals
of which are to densify sparse surfaces, infer missing sections, and preserve the details of
incomplete observations. Because point clouds are inherently chaotic and unstructured
(especially when taken from real-world settings), their completion is typically non-trivial.
Table 13 provides the advantages and limitations of point cloud completion models re-
viewed in this study.

PCN [205]: A coarse-to-fine point set generator and a permutation-invariant, non-
convolutional feature extractor were combined by the model’s designers to create a single,
end-to-end trained network. PCN is an encoder–decoder network, where the encoder
produces a k-dimensional feature vector from the input point cloud. Using this feature
vector as input, the decoder generates a coarse and detailed output point cloud. The loss
function, which is used to train the entire network via backpropagation, is calculated
between the outputs of the decoder and the ground truth point cloud. The authors did
not specifically mandate the network to maintain the input points in its output, in contrast
to an autoencoder. On the contrary, the network acquires knowledge of a projection from
the space of incomplete observations to the space of fully formed shapes. This network’s
primary drawback is that the encoder requires training data to be prepared in partial
shapes since it expects a test input that is identical to the training data [95]. The lack of
utilisation of object completion and shape creation architectures, like PCN [205], by 3D
object detectors during the LiDAR point cloud inference could result in improved detection
performance [206]. This point cloud completion method’s max-pooling process during the
encoding phase, where fine-grained information is lost and scarcely recoverable during the
decoding phase, is its bottleneck [61]. This model, which focuses on object-level completion,
works under the assumption that a single item has been found manually and that the input
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consists only of the points on this object. Consequently, this model is not appropriate for
the goal of object detection [189]. Figure 29 shows the architecture of PCN.

Figure 29. Architecture of PCN [205].

Unpaired scan completion network [207]: The authors provide an unpaired point-based
scan completion technique that can be learned without having explicit correspondence
between example complete shape models (like synthetic models) and incomplete point sets
(like raw scans). Due to the lack of specific instances of real complete scans required by this
network, large-scale real 3D scans that are already available (unpaired) can be used directly
as training data. This is accomplished by creating a generative adversarial network (GAN),
in which the input is transformed into a suitable latent representation by a generator, also
known as an adaptation network, so that a discriminator is unable to distinguish between
the transformed latent variables and the latent variables derived from training data (i.e.,
whole-shape models). Working in two distinct latent spaces with independently learned
manifolds of scanned and synthesised object data, the generator intuitively performs the
crucial operation of transforming raw partial point sets into clean and complete point sets.
This model struggles to generate diverse samples, capture fine-grained details, or condition
on sparse inputs. However, it can infer believable global structures [97]. Training GANs
can be difficult due to common errors such as mode collapse [208]. This model, which
focuses on object-level completion, works under the assumption that a single item has been
found manually and that the input consists only of the points on this object. Consequently,
this model is not appropriate for the goal of object detection [189].

Morphing and sampling-based network [209]: A network that completes the partial point
cloud in two steps has been proposed by the authors. Using an autoencoder architecture,
a set of 2-manifold-like surface elements that can be 2D parameterised is used in the first
stage to put together an entire point cloud. In order to obtain an evenly distributed subset
point cloud from the combination of the coarse-grained prediction and the input point
cloud, a sampling procedure is used in the second stage. Then, given the point cloud,
a point-wise residual is learned, allowing for fine-grained features. This model uses the
earth mover’s distance (EMD) as a better metric for measuring completion quality be-
cause, by solving the linear assignment problem, it forces model outputs to have the same
density as the ground truths [210]. This model relieves the structural loss brought on by
MLPs and recovers the entire point cloud of an object by estimating a group of parametric
surface elements [211]. This approach frequently disregards the spatial correlation be-
tween points [190]. This model lacks the conditional generative ability based on partial
observation, instead generating complete shapes mostly through learning a deterministic
partial-to-complete mapping [212]. Although this approach produces encouraging results
when applied to in-domain data, it is difficult to generalise to out-of-domain data, which
includes real-world scans or data with various incomplete forms [213]. Figure 30 shows
the architecture of the morphing and sampling-based network.

PF-Net [214]: This model accepts a partial point cloud as input and only outputs
the portion of the point cloud that is missing, not the entire object, in order to maintain
the original part’s spatial arrangements. As a result, it helps the network concentrate on
identifying the location and structure of missing components by preserving the geometrical
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features of the original point cloud after restoration. Using a new feature extractor called
combined multilayer perception (CMLP), the authors propose a multi-resolution encoder
(MRE) to extract multilayer features from the partial point cloud and its low-resolution
feature points. The missing point cloud is also intended to be generated hierarchically using
a point pyramid decoder (PPD). PPD is a multi-scale generating network that predicts
primary, secondary, and detailed points from layers with varying depths. It is based on
feature points. The lack of utilisation of object completion and shape creation architectures,
like PF-Net [214], by 3D object detectors during the LiDAR point cloud inference could
result in improved detection performance [206]. This point cloud completion method’s
max-pooling process during the encoding phase, where fine-grained information is lost
and scarcely recoverable during the decoding phase, is its bottleneck [61]. In the ShapeNet-
55 benchmarks, PFNet, which aims to predict objects’ missing components directly, fails
because of the huge diversity [61]. This approach is still unable to predict a point splitting
pattern that is locally structured. The primary issue is the fact that this approach solely
concentrates on increasing the number of points and reconstructing the overall shape,
neglecting to maintain an organised generation process for points inside specific regions.
This makes it challenging to capture localised, intricate 3D shape structures and geometries
using this method [190]. This model’s intricate design results in a comparatively large
number of parameters [215]. Figure 31 shows the architecture of PF-Net.

Figure 30. Architecture of MSN [209].

Figure 31. Architecture of PF-Net [214].

GRNet [211]: In order to regularise unordered point clouds and specifically maintain
the structure and context of point clouds, the authors introduce 3D grids as intermediary
representations. Gridding, gridding reverse, and cubic feature sampling are the three differen-
tiable layers that make up the Gridding Residual Network (GRNet), which is proposed
for point cloud completion together with 3D CNN and MLP. In the process of gridding,
an interpolation function that quantifies the geometric relationships of the point cloud
is used to weight the eight vertices of the 3D grid cell that each point in the point cloud
resides in. The network then uses a 3D convolutional neural network (3D CNN) with
skip connections to learn spatially and contextually aware features, filling in the gaps in
the incomplete point cloud. Gridding reverse then replaces each 3D grid cell with a new
point whose location is the weighted sum of the 3D grid cell’s eight vertices, converting
the resulting 3D grid into a coarse point cloud. By concatenating the features of the cor-
responding eight vertices of the 3D grid cell that the point lies in; then, the following
cubic feature sampling recovers features for every point in the coarse point cloud. To obtain
the final finished point cloud, an MLP receives the features and the coarse point cloud.
This model, which focuses on object-level completion, works under the assumption that a
single item has been found manually and that the input consists only of the points on this
object. Consequently, this model is not appropriate for the goal of object detection [189].
It is difficult to maintain a well-organised structure for points in small patches due to the
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discontinuous character of the point cloud and the unstructured prediction of points in
local regions in this method [125]. Rebuilding low-resolution shapes is the only use for
GRNet’s voxel representation. This model’s intricate design results in a comparatively
large number of parameters [215]. Figure 32 shows the overview of GRNet.

Figure 32. Overview of GRNet [211].

SnowflakeNet [190]: This model focuses specifically on the process of decoding incom-
plete point clouds. The primary building block of SnowflakeNet is its layers of snowflake
point deconvolution (SPD), which simulate the creation of whole point clouds similar to the
snowflake growth of points in three dimensions. This model creates points gradually by
piling one SPD layer on top of another. Each SPD layer creates child points by dividing their
parent point and inheriting the shape properties that the parent point captures. The purpose
of disclosing geometrical details is to enable the use of a skip-transformer in SPD to identify
point splitting modes that are most appropriate for specific localities. The current SPD
layer is split by the skip-transformer, which uses an attention mechanism to summarise the
splitting patterns from the previous SPD layer. The network is able to predict extremely
detailed geometries because the locally compact, structured point cloud generated by
SPD can precisely capture the structural properties of 3D shapes in limited patches. This
model’s intricate design results in a comparatively large number of parameters [215]. Point
clouds are sparse, thus recovering surfaces from them requires non-trivial postprocessing
using traditional techniques [216]. There are two inherent limitations to the global feature
structure that is extracted from partial inputs by this model. Firstly, fine-grained details are
lost easily during pooling operations in the encoding phase and are difficult to recover from
a diluted global feature during generation. Secondly, such a global feature is captured from
a partial point cloud, which represents only the “incomplete” information of the visible
part and goes against the goal of generating the complete shape [217]. Figure 33 shows the
overview of SnowflakeNet.

Figure 33. Overview of SnowflakeNet [190].

Table 13. Advantages and limitations of point cloud completion models.

Model Advantages Limitations

PCN [205]
Acquires knowledge of a projection
from the space of incomplete observations
to the space of fully formed shapes.

Requires training data to be prepared in
partial shapes since it expects a test input
that is identical to the training data.

USCN [207]
Does not require explicit correspondence
between example complete shape models and
incomplete point sets.

Training GANs can be difficult due to
common errors such as mode collapse.

MSN [209] Uses EMD as a better metric for
measuring completion quality.

Frequently disregards the spatial correlation
between points.

PF-Net [214]
Accepts a partial point cloud as input
and only outputs the portion of
the point cloud that is missing.

Model’s intricate design results in a
comparatively large number of parameters.

GRNet [211]
Uses 3D grids as intermediary representations
to maintain unordered point clouds.

Difficult to maintain an organised structure
for points in small patches due to the
discontinuous character of the point cloud.

SnowflakeNet [190] Focuses specifically on the process of
decoding incomplete point clouds.

Fine-grained details are lost easily during
pooling operations in the encoding phase.
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8. Conclusions

This article presents a thorough examination of deep learning models applied in the
areas of 3D reconstruction, registration, and augmentation. This study delivers an com-
prehensive overview of diverse models employed for these specific tasks. The advantages
and disadvantages of the mentioned models are thoroughly analysed, highlighting the
appropriateness of each approach for the specific task. In addition, the study analyses
multiple datasets encompassing diverse activities and various 3D data formats. Deep
learning has shown promising results in the areas of 3D registration, augmentation, and re-
construction. The objective of this survey was to examine the techniques used by deep
learning frameworks for analysing and enhancing 3D image representation, augmentation,
and reconstruction. The review of the literature thoroughly examined the advantages
and disadvantages of different computer vision algorithms, network architectures, 3D
structured data representation, and comparative data methodologies. Several point cloud
completion techniques were also examined in relation to the advancement of deep-learning-
based image processing technology.

Each phase of the generic methodology for 3D reconstruction, augmentation, and reg-
istration can be accomplished utilising distinct algorithms. Distinct methods are required
for each constructed object, depending on its size, texture, and visual arrangement. In addi-
tion to efficient algorithms, the development of sensors has the potential to enhance the
precision of 3D reconstruction in the future. Neural network modelling has numerous
advantages. These operations are crucial for various sectors, including robots, autonomous
autos, and medical imaging. The problem-solving precision and effectiveness of these
domains have experienced a substantial improvement due to the efforts of deep learning
models. In order to enhance the performance of these models, a significant amount of
additional effort needs to be invested; the field is still in its early stages of development.

While there may be some who argue that traditional, non-deep-learning methods are
more advantageous in certain situations, the review has demonstrated that deep learn-
ing models have consistently achieved state-of-the-art results in most cases. Given this
evaluation, future research endeavours should prioritise the development of more accu-
rate and efficient models capable of handling increasingly larger and more complex data.
Moreover, the introduction of new datasets that more accurately represent real-life sce-
narios can help improve the effectiveness of these models. Furthermore, one attractive
avenue for future research involves exploring the concatenation of diverse models to obtain
enhanced outcomes.
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Abbreviations

The following abbreviations are used in this manuscript:

3D Three-dimensional
2D Two-dimensional
LiDAR Light detection and ranging
RGB-D Red, green, blue plus depth
CAD Computer-aided design
MLP Multilayer perceptron
CNN Convolutional neural network
FCGFs Fully convolutional geometric features
GPU Graphics processing unit
RAM Random access memory
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