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Abstract: Snow Lotus Seed (SLS), esteemed for its nutritional and market value, faces challenges
of authentication due to the absence of appropriate testing standards and methods. This results
in frequent adulteration of SLS sourced from Gleditsia sinensis (G. sinensis) with other plant seeds
endosperm. Traditional chloroplast DNA barcoding methods are inadequate for species identification
due to the absence of chloroplasts in G. sinensis seeds endosperm. In this study, the homology of
11 ITS genes among 6 common Gleditsia species was analyzed. Universal primers suitable for these
species were designed and screened. A DNA barcoding method for distinguishing SLS species was
developed using Sanger sequencing technology, leveraging existing GenBank and Barcode of Life
Data System (BOLD) databases. Optimized sample pretreatment facilitated effective DNA extraction
from phytopolysaccharide-rich SLS. Through testing of commercial SLS products, the species origin
has been successfully identified. Additionally, a novel instance of food fraud was uncovered, where
the Caesalpinia spinosa endosperm was used to counterfeit SLS for the first time. The study established
that the developed DNA barcoding method is effective for authenticating SLS species. It is of great
significance for combating food fraud related to SLS, ensuring food safety, and promoting the healthy
development of the SLS industry.

Keywords: Gleditsia sinensis; DNA barcoding; species identification; food fraud; Snow Lotus Seed

1. Introduction

Snow Lotus Seed (SLS), known as “Zao Jiao Mi” in Chinese, is a product made from
the dried mature fruits of the artificially cultivated Gleditsia sinensis, through the processes
of pod removal, seed extraction, soaking, steaming, endosperm extraction, and drying [1].
After soaking in water, SLS becomes translucent and resembles the Tian Shan snow lotus,
which is how it earned its name. It is primarily used in the preparation of sweet soups
and desserts and is mainly produced in China’s Guizhou and Yunnan provinces. The
main component of SLS is oligosaccharides, and it is rich in plant dietary fiber and various
minerals. With high energy and low fat, it is considered a healthy food choice and is
well loved by many consumers [2]. Zhijin County in Guizhou Province is recognized as
China’s largest processing center for SLS, with an annual processing and sales volume
exceeding 1000 tons, capturing over 90% of the market share. Its products are widely
acclaimed and distributed globally. SLS has also become an important characteristic
economic agricultural product for local farmers in Zhijin County to abolish poverty and
become rich [3,4]. However, due to the limited annual production of SLS, its production and
processing currently depend largely on manual labor, leading to low processing efficiency.
This is a major reason for its relatively high market price. As a result, some unethical

Foods 2024, 13, 2580. https://doi.org/10.3390/foods13162580 https://www.mdpi.com/journal/foods1
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traders substitute the endosperm of other plant seeds for SLS processing and sales, seeking
substantial profits from this practice. The shape and color of these plant seed endosperms
closely resemble those of Gleditsia sinensis. After being processed into finished SLS products,
consumers find it even more difficult to accurately identify the species’ origin based solely
on appearance. On one hand, this type of food fraud seriously undermines consumer
interests and fosters the detrimental “Bad money drives out good money” phenomenon,
hindering the healthy and sustainable development of the SLS industry [5]. On the other
hand, commercially available SLS products derived from unidentified plant seeds may pose
certain food safety risks. Currently, there have been no reported methods for authenticating
the species of SLS products, making law enforcement against SLS food fraud increasingly
challenging. Therefore, there is an urgent need to develop accurate methods for verifying
its species authenticity.

In recent years, food adulteration detection technology has emerged as a prominent
research focus within the global food industry. DNA-based molecular biology techniques
have gained widespread recognition as highly accurate methods for species identification.
Technologies such as PCR and its derivatives are extensively employed to verify the
authenticity of plant-derived species like coffee and fruit juices [6,7]. Researchers have
also utilized methods such as SRAP, SSR, transcriptome analysis, and genome sequencing
for identifying plant varieties and distinguishing between male and female plants [8–11].
However, these approaches often suffer from issues such as instability, complex analyses,
cumbersome procedures, or high costs. Real-time PCR, considered the gold standard
for biological species identification, excels in targeted identification of specific species
but faces challenges in identifying unknown species [12]. With the advancement and
widespread adoption of Sanger sequencing technology, DNA barcoding has emerged as
a powerful tool for taxonomic studies, especially for identifying unknown species [13].
Chloroplast DNA (cpDNA) is particularly suitable for species differentiation due to its
matrilineal inheritance in most plants and slow evolutionary rate [14,15]. Several cpDNA
genes such as rbcL, matK, psbA-trnH, and ycf1b have been identified as effective targets for
DNA barcoding to accurately distinguish plant species [16–19]. Among these, the rbcL and
matK genes are established targets for standard plant species barcodes recognized by the
Barcode of Life Data System (BOLD) [20]. However, as the endosperm of SLS contains
abundant plant polysaccharides, its DNA content is naturally low and lacks chloroplast
DNA. Processing steps such as steaming and drying further exacerbate DNA fragmentation
and loss. Moreover, many traditional universal DNA barcodes for plants amplify long
target segments (600~1200 bp) [21,22], with most targeting chloroplast genes, thus they are
not suitable for species identification of SLS raw materials and commercial products.

Hence, in order to address the challenge of lacking available methods for species
identification of raw materials and commercial products of SLS, this study constructed a
DNA barcoding method for identifying the species origin of SLS by analyzing the sequence
information from the ITS region of nuclear genes in various common Gleditsia species
(Figure 1). Through testing, this method has good amplification performance and differ-
entiation ability for common Gleditsia species and can be used for species identification
of raw materials and commercially available products of SLS. This study offers technical
support for verifying the authenticity of SLS species, which is crucial for combating food
fraud, safeguarding consumer interests, and promoting the green, healthy, and sustainable
development of SLS and its associated industries.
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was obtained. Each sample was repeated 3 times and the DNA obtained was placed at −20 
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Figure 1. DNA barcoding assay for the authentication of commercially available SLS products.

2. Materials and Methods
2.1. Samples

The seeds of Gleditsia sinensis, Gleditsia japonica, and Gleditsia microphylla were obtained
from Guangdong Provincial Key Laboratory of Food Quality and Safety. Gleditsia delavayi
seeds were procured from the Gleditsia delavayi planting base (Meihui Gleditsia delavayi
planting Base, Lianghe, China). Gleditsia fera seeds were collected from South China
Agricultural University. After washing all seeds twice with sterilized water, they were
soaked overnight in water at room temperature. Subsequently, the endosperm extracted
by dissecting the seed coat with a surgical blade was dried at 60 ◦C in a DHG 9420(A)
electric forced air-drying oven (Bluepard instruments Ltd., Shanghai, China) for 4 h [23].
Finally, the endosperm samples were stored at −20 ◦C. The 30 samples of commercially
available SLS were procured from Yunnan (Samples 1~5), Guizhou (Samples 6~10), Shaanxi
(Samples 10~15), Henan (Samples 15~20), Hebei (Samples 20~25), and Shandong (Samples
25~30) provinces (Figure 2).
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Figure 2. Thirty commercially available SLS products collected for this study.

2.2. DNA Extraction

The DNA was extracted from SLS samples using the DP360 Plant DNA Extraction Kit
(Tiangen Biochemical Technology Ltd., Beijing, China), and the instructions were improved
for use. Briefly, SLS samples were pulverized by a WFB-D1 wall-breaker (Westinghouse
Electric Ltd., Ningbo, China) and passed through an 80-mesh sieve to remove large particles
that were not completely pulverized. A 20 mg powder sample was mixed with 800 µL
of lysis buffer and 20 µL of RNase A (10 mg/mL) in an EP tube at 65 ◦C for 10 min.
Subsequently, 200 µL neutralization buffer was added to the tube and mixed thoroughly
and place it on ice for 10 min. The sample was placed on ice for 10 min, and then the
procedure was followed as described in the product manual until the sample DNA was
obtained. Each sample was repeated 3 times and the DNA obtained was placed at −20 ◦C
for storage.

2.3. Primer and PCR Amplification

A total of 11 ITS genes from Gleditsia sinensis (MH808446.1, AF510019.1), Gleditsia
japonica (AF510012.1, AF510014.1, AF510010.1), and Gleditsia microphylla (AF510027.1), Gled-
itsia triacanthos (AF509977.1, AF509981.1, AF509974.1), Gleditsia delavayi (AF510009.1) and
Gleditsia fera (AF510026.1) six Gleditsia species were downloaded from GeneBank database.
Sequence homology analysis was performed using the “Clustal W Method” in MegAlign
software version 7.1.0 (DNASTAR, Inc., Madison, WI, USA), and the conserved regions
were selected for the design of generic DNA barcoding primers for Gleditsia (Figure 3). The
four most common Gleditsia seed endosperm DNAs, Gleditsia sinensis, Gleditsia japonica,
Gleditsia microphylla, and Gleditsia delavayi, were used for generalization testing of SLS
DNA barcoding primers. Common plant DNA barcoding universal primers for ITS gene
were also used for comparative suitability testing of SLS [24–26]. The PCR reaction was
performed in 50 µL containing 41 µL of 1.1× T6 Super PCR Mix (Tsingke Biotech Ltd.,
Beijing, China), 2 µL of 10 µM each forward and reverse primer, and 5 µL of DNA template
(10 ng/µL). The thermal cycling parameters were shown as follows: pre-denaturation at
98 ◦C for 2 min, followed by 39 cycles of 98 ◦C for 10 s, 56 ◦C for 15 s, and 72 ◦C for 15 s

4
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with a final extension at 72 ◦C for 5 min. Sterile ultrapure water as a template was used
as a negative control to ensure that the PCR reaction was not contaminated. All primers
(Table 1) were synthesized by GENEWIZ (GENEWIZ Biotechnology Ltd., Suzhou, China).
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Figure 3. The homology analysis for 11 ITS genes from 6 Gleditsia species. The red and blue
dashed boxes are the DNA barcoding forward and reverse primer design regions, respectively.
Differential bases are labeled in green. The accession numbers of the ITS genes from top to bottom in
the image belong to the following species: Gleditsia sinensis, Gleditsia sinensis, Gleditsia microphylla,
Gleditsia japonica, Gleditsia japonica, Gleditsia japonica, Gleditsia delavayi, Gleditsia fera, Gleditsia triacanthos,
Gleditsia triacanthos, Gleditsia triacanthos.

Table 1. Information of the oligonucleotides used in this work.

Primer Oligonucleotide (5′-3′) Amplicon (bp) Reference

G-F GCGGAAGGATCATTGTCGA
550 This study.

G-R GGTCTCGAGGTTTCGCTCTT
ITS-F GGAAGTAAAAGTCGTAACAAGC

731 [25]ITS-R TCCTCCGCTTATTGATATGC
ITS2-F ATGCGATACTTGGTGTGAAT

450~550 [24]ITS2-R GACGCTTCTCCAGACTACAAT

2.4. Sanger Sequencing

The above PCR amplification products and 100 bp DNA ladder (Tsingke Biotech Ltd.,
Beijing, China) were electrophoresed on a 2% agarose gel to determine the size of the bands.
After confirming the successful amplification, the amplified products, together with the
corresponding amplification primers, were submitted to GENEWIZ Biotechnology Ltd. for
Sanger sequencing using the standard procedure of ABI 3730 DNA sequencing platform.
To ensure the accuracy of the sequencing results, the PCR products were sequenced in both
directions in this study. Sequencing results were returned by DNASTAR. Lasergene.v7
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software (DNASTAR, Inc., Madison, WI, USA) for sequence splicing and manual sequence
correction when necessary.

2.5. Phylogenetic Analysis

The acquired sequences were first subjected to homology analysis using the BLAST
tool [27]. The phylogenetic analysis was conducted using the following BLAST tool work-
flow: the corrected sequence was inputted and searched against the nucleotide collection
(nr/nt) within standard databases. The “Organism” field was specified as “plants”, while
other parameters were maintained at default settings. Sequence comparison was performed
using the “Highly similar sequences (megablast)” algorithm in the Program Selection col-
umn. Subsequently, a Max Seq Difference of 0.75 was applied based on the BLAST results
to construct a phylogenetic tree using the Neighbor Joining method [28].

This study also utilized the Barcode of Life Data System (BOLD) [29] to conduct
secondary homology analysis on the acquired sample sequences, thereby reaffirming the
origin of the analyzed specimens. Due to the limited gene targets, rbcL and matK, located
exclusively in chloroplast DNA, the barcode database (Plant identification) within the BOLD
System is insufficient for identifying SLS, which lacks chloroplast DNA. Consequently,
corrected sequences from SLS samples were submitted to the “FUNGAL IDENTIFICATION
[ITS]” database within the “IDENTIFICATION ENGINE” module for homology analysis.

3. Results and Discussion
3.1. DNA Barcoding Primers for SLS

The widely cited plant DNA barcoding universal primer pairs ITS-F/ITS-R and ITS2-
F/ITS2-R were employed in this study to assess their amplification capability across five
common varieties of SLS. Through multiple amplification tests, it was observed that both
primer pairs exhibited limited universal amplification ability for SLS varieties sourced from
the market (Figure 4A). Specifically, ITS-F/ITS-R showed better recognition and amplifica-
tion performance for SLS DNA from G. sinensis and G. fera, but struggled with DNA from
G. microphylla, G. japonica, and G. delavayi. Similarly, ITS2-F/ITS2-R effectively amplified
SLS DNA from G. microphylla and G. fera, but encountered challenges in recognizing and
amplifying DNA from G. sinensis, G. japonica, and G. delavayi. Upon analysis of this primer
with Gleditsia, these two sets of reported universal primer pairs for plant DNA barcoding
differed to some extent from the ITS gene sequences of Gleditsia, resulting in insufficient
recognition and binding of different DNAs from Gleditsia, making it difficult to achieve
universal amplification of SLS DNAs from common species sources. Thus, by reanalyzing
the homology of 11 ITS genes of 6 Gleditsia species, this study designed and screened to
obtain DNA barcoding universal amplification primers: G-F and G-R, suitable for common
species of SLS in the market. Through testing, the G-F and G-R primers can better identify
the DNA of five common Gleditsia species originating from SLS in the market, and all of
them can obtain a single electrophoretic band amplicon of about 550 bp in size (Figure 4B),
which can be used for Sanger sequencing and subsequent species analysis.
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of different species of SLS. Numbers 1–6: ITS-F and ITS-R were used for amplification. Numbers
7–12: ITS2-F and ITS2-R were used for amplification. M: 100 bp DNA Ladder. Numbers 1–6 and 7–12:
No template control, Gleditsia sinensis, Gleditsia microphylla, Gleditsia japonica, Gleditsia delavayi, and
Gleditsia fera. (B) DNA from different species of SLS were tested for amplification versatility ability of
primers G-F and G-R. M: 100 bp DNA Ladder. Numbers 1–4: DNA templates were obtained from
Gleditsia sinensis, Gleditsia microphylla, Gleditsia japonica, and Gleditsia delavayi, respectively. Number 5:
Gleditsia fera. N: No template control.

3.2. The Authenticity of Commercial SLS Products

After 30 commercial SLS products were sequenced by Sanger, the sequence results were
verified by simultaneous comparison with both GenBank and BOLD databases, and the
species with the highest homology and consistent results between the two databases were
selected as the species to which the SLS products belonged. The results showed that 28 of
the samples successfully obtained target amplicons and completed Sanger sequencing and
subsequent analysis (Figure 5). Two samples (26 and 29) failed to yield PCR amplification
despite multiple attempts at DNA extraction, primarily because successful DNA sample
acquisition was never achieved for these samples. Additionally, alternative DNA extraction
methods using Magnetic Particle Adsorption (CZ307, Biomed Biotech, Beijing, China) and
CTAB precipitation [30] were also employed on samples 26 and 29, but these methods also
yielded minimal results. After observing and sensory tasting of the two samples, it was
found that both samples had noticeably larger shapes and sweeter tastes, indicating they
were artificially manufactured SLS with added sucrose. Our analysis suggests that it is
highly likely that the use of additives such as sucrose and edible gel during processing
further prevented the already limited DNA in the samples from being released normally.
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Of the 28 successfully sequenced SLS products, only 8 samples were confirmed to be of
true G. sinensis origin after comparison of the 2 databases, amounting to less than one-third
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(26.6%) of the total samples (Table 2). Nearly two-thirds of the other number of products
originated from G. microphylla (nine samples) and G. japonica (nine samples), which is a
food fraud in the form of impersonation by a closely related species. Surprisingly, two
samples (3 and 14) were found to not belong to any Gleditsia species based on the results
of this sequencing analysis. The target sequences of these samples showed 100% homology
with Caesalpinia spinosa in the BOLD database and with Tara spinosa in GenBank. Since
Tara spinosa is a synonym of Caesalpinia spinosa, which belongs to the genus Caesalpinia,
this represents food fraud involving species from a different genus. In conclusion, more
than two-thirds of the 30 SLS products analyzed in this study were processed from seed
endosperm of plants belonging to the same genus or different genera with G. sinensis. This
widespread practice indicates prevalent food fraud involving SLS, highlighting the critical
need to address the authenticity of SLS products.

Table 2. DNA barcode sequencing results of 30 SLS samples were compared with information from
GenBank and BOLD databases.

Sample No.
GenBank BOLD Species

Judgment a
Species Accession Total Score Similarity (%) Species Score Similarity (%)

1 Gleditsia
sinensis AF510020.1 1020 100 Gleditsia

sinensis 548 99.64 R

2 Gleditsia
sinensis AF510020.1 1011 99.82 Gleditsia

sinensis 543 99.63 R

3 Tara spinosa OQ411711.1
OQ411709.1 872 100 Caesalpinia

spinosa 472 100 F

4 Gleditsia
microphylla AF510027.1 667 100 Gleditsia

microphylla 359 99.72 F

5 Gleditsia
microphylla AF510027.1 985 99.63 Gleditsia

microphylla 533 98.9 F

6 Gleditsia
microphylla AF510027.1 662 100 Gleditsia

microphylla 356 99.72 F

7 Gleditsia
sinensis AF510020.1 937 99.61 Gleditsia

sinensis 504 99.41 R

8 Gleditsia
japonica MH710914.1 1002 99.82 Gleditsia

japonica 539 100 F

9 Gleditsia
japonica MH710914.1 996 99.82 Gleditsia

japonica 540 99.82 F

10 Gleditsia
microphylla AF510027.1 667 100 Gleditsia

microphylla 359 99.72 F

11 Gleditsia
japonica MH710914.1 675 100 Gleditsia

japonica 365 100 F

12 Gleditsia
japonica MH710914.1 680 100 Gleditsia

japonica 368 100 F

13 Gleditsia
microphylla AF510027.1 665 99.73 Gleditsia

microphylla 357 99.72 F

14 Tara spinosa OQ411710.1 713 100 Caesalpinia
spinosa 475 99.38 F

15 Gleditsia
japonica MH710914.1 1000 100 Gleditsia

japonica 541 100 F

16 Gleditsia
japonica MH710914.1 1013 100 Gleditsia

japonica 548 100 F

17 Gleditsia
japonica MH710914.1 1005 100 Gleditsia

japonica 544 100 F

18 Gleditsia
microphylla AF510027.1 1005 99.64 Gleditsia

microphylla 543 99.27 F
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Table 2. Cont.

Sample No.
GenBank BOLD Species

Judgment a
Species Accession Total Score Similarity (%) Species Score Similarity (%)

19 Gleditsia
sinensis AF510020.1 1024 100 Gleditsia

sinensis 550 99.64 R

20 Gleditsia
sinensis AF510020.1 1013 100 Gleditsia

sinensis 544 99.64 R

21 Gleditsia
microphylla AF510027.1 1000 99.82 Gleditsia

microphylla 539 99.45 F

22 Gleditsia
japonica MH710914.1 1005 99.64 Gleditsia

japonica 545 99.82 F

23 Gleditsia
microphylla AF510027.1 1005 99.82 Gleditsia

microphylla 542 99.45 F

24 Gleditsia
sinensi AF510020.1 833 99.56 Gleditsia

sinensis 449 99.12 R

25 Gleditsia
sinensis AF510020.1 992 100 Gleditsia

sinensis 533 99.63 R

26 / / / / / / / N

27 Gleditsia
japonica MH710914.1 1014 100 Gleditsia

japonica 549 100 F

28 Gleditsia
sinensis AF510020.1 1003 100 Gleditsia

sinensis 539 99.63 R

29 / / / / / / / N

30 Gleditsia
microphylla AF510027.1 990 99.63 Gleditsia

microphylla 535 99.26 F

a R: Real, the sample is sourced from Gleditsia sinensis. F: Fake, the sample is not sourced from Gleditsia sinensis. N:
Sequencing was incomplete.

3.3. New Discovery for Authenticity Identification of SLS

After identifying the species origin of 30 commercial SLS products by the DNA bar-
coding method established in this study, only 26.6% of the samples were authentic SLS
of G. sinensis origin, and the remaining samples were typically economically motivated
adulteration (EMA) (Figure 6). Based on our field research at the SLS processing and
distribution center in Guizhou, we believe there are currently three main instances of food
fraud in the SLS products sold in the market: adulteration with closely related species
belonging to the Gleditsia genus, misrepresentation of species such as Caesalpinia spinosa
that do not belong to the Gleditsia genus, and the production of artificially enhanced SLS
using sucrose and other additives for weight gain purposes.
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(26 and 29) failed to identify the species, accounting for 6.7% of the total (Unknown). The remaining
samples identified the species as Gleditsia sinensis, Gleditsia microphylla, Gleditsia japonica, and Cae-
salpinia spinosa, accounting for 26.6%, 30%, 30%, and 6.7% of the total tested samples, respectively.
(B) Based on sensory tasting, 30% (9 out of 30) of the SLS products were found to be adulterated with
added sugar for increased weight, while the remaining 70% (21 out of 30) were products without
added sugar.

3.3.1. Adulteration of Closely Related Species of the Same Genus

Through our analysis of commercially available SLS products, we discovered that
the endosperms from Gleditsia microphylla and Gleditsia japonica were frequently used to
adulterate SLS, deceiving consumers into believing it was genuine Gleditsia sinensis. These
adulterated samples, using closely related species to impersonate G. sinensis, accounted for
60% (Gleditsia microphylla 30% and Gleditsia japonica 30%) of the samples tested and represent
a significant form of food fraud in the SLS market today (Figure 6A). G. microphylla, G.
japonica, and G. sinensis are closely related species within the same genus, sharing similar
genetic relationships and exhibiting very similar shapes and colors in their endosperms.
This similarity makes it challenging to distinguish the origin of the species, whether in raw
material form or as processed SLS products. Additionally, because the nursery costs for
G. microphylla are significantly lower, only one-tenth of those for G. sinensis [31], and G.
japonica seeds are smaller with less endosperm fullness, the prices of both G. microphylla and
G. japonica seeds are lower compared to G. sinensis seeds. This has led to some growers and
unscrupulous merchants selling seeds from G. microphylla and G. japonica disguised as G.
sinensis seeds for the production of high-value SLS to make a profit. While the endosperms
of G. microphylla and G. japonica also contain a considerable amount of plant polysaccharides
and exhibit a translucent, gelatinous state when soaked in water, whether these endosperms
can be safely consumed as food has not been definitively reported. Therefore, the practice of
using closely related species from the genus Gleditsia to masquerade as G. sinensis-origin SLS
not only infringes upon consumers’ rights to accurate information but also poses potential
food safety risks. Overall, this behavior highlights the need for stricter oversight and
authentication measures in the SLS industry to ensure transparency and consumer safety.

3.3.2. Caesalpinia Spinosa: A Newly Identified Non-Gleditsia Species Involved in
Adulterating SLS

In this study, 2 (sample 3 and 14) of the 30 commercial SLS products were identified as
belonging to the Caesalpinia spinosa (Tara spinosa), accounting for 6.7% of the total samples
(Figure 6A). It is distantly related to G. sinensis and belongs to a different genus in the
Fabaceae. However, the Caesalpinia spinosa has pods with a similar appearance to the G.
sinensis, and the seed endosperm is also rich in phytopolysaccharides, which are not directly
distinguishable from SLS after processing. Caesalpinia spinosa is native to Peru and Ecuador
in South America, and its seeds are the raw material for the production of the edible Tara
gum [32,33]. Because of the large area under cultivation and the high yield and cheap price
of the seeds of a single plant, there are unscrupulous merchants who use the endosperm
of Caesalpinia spinosa seeds to process and pretend to be high-value SLS to obtain huge
profits. Although the Tara gum produced from its seeds can be used as a food additive,
it does not mean that the entire seed endosperm can be used directly as an edible part.
Therefore, utilizing Caesalpinia spinosa seed endosperms in the production of SLS products
still carries some undisclosed risks, greatly infringing upon consumers’ right to knowledge
and economic interests.

3.3.3. Artificially Manufactured Weighted SLS with Added Sucrose

Combined with the previous field research and the analysis of this commercially
available samples of SLS, we also found food fraud in samples where sugar and other
additives were mixed with low-grade or small SLS to increase the weight of the product for
profit. In the blind SLS samples test, nine samples (sample 8, 9, 10, 12, 13, 14, 26, 29, 30)
intentionally had sugar added to increase product weight, accounting for as much as 30%
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of the total samples (Figure 6B). These sugared samples were all larger than the common
SLS form, and the surface was not smooth, sticky to the touch, and sweet to the taste when
licked directly. Two of these samples, moreover, were so likely to be due to, for example,
excessive sugar adulteration, that the sample DNA could not be successfully extracted for
subsequent analysis. In addition, the authors have made several field research trips to
Maochang Town in Zhijin County, the largest SLS processing and distribution center in
China. Through exchanges with local SLS manufacturing workers and wholesalers, it was
indirectly confirmed that the use of white granulated sugar to adulterate SLS has become
one of the most important means for some unscrupulous traders to obtain huge profits. As
the price of sugar (~0.8 USD/kg) is much lower than the market price of SLS (60 USD/kg),
the difference between the two is more than 60 times, and the use of sugar processing
to obtain sugary SLS can be made to make SLS weigh 2–5 times than its original weight,
leading to profit. This artificially weighted SLS, although it uses edible white sugar, is not
only a consumer fraud, but a criminal offense against consumers expecting to stay in shape
or for patient populations on low-sugar diets.

4. Conclusions

In this study, we developed a DNA barcoding method for the identification of species
adulteration in raw materials for the production of high-value SLS and commercial products
by designing ITS universal amplification primers. The method has good target identification
and amplification performance for common G. sinensis, G. microphylla, G. japonica, G. delavayi,
and G. fera species. By analyzing both GenBank and BOLD databases simultaneously, SLS
from G. microphylla and G. japonica sources were accurately distinguished as G. sinensis
sources. Moreover, the fraudulent use of the endosperm of the seed of a non-Gleditsia
plant as SLS was also accurately identified. Through testing of commercial SLS products,
this study found that more than 70% of the products were adulterated to varying degrees.
Building on authors’ previous field investigations, this study systematically reports, for the
first time, three major kinds of food adulteration targeting high-value SLS products. The
first new finding of food fraud in which the seed endosperm of Caesalpinia spinosa, a plant
species of a different genera, was used for processing and was passed off as SLS. This study
fills the gap in the authenticity identification method of high-value SLS species. It provides
technical support to confirm the authenticity of raw material sources for SLS-processing
enterprises, as well as for food regulatory-related agencies to combat SLS species fraud. It is
also hoped that the establishment of the methodology in this study will draw the attention
of the relevant food legislature to the establishment of relevant analytical and certification
standards for high-value SLS so that healthier and safer SLS-related foods can be developed.
This will promote the healthy and sustainable development of the SLS industry, and at the
same time, it will also enable the consumers to obtain more protection for their health and
economic interests.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods13162580/s1, The results (5′-3′) of Sanger sequencing for 30
Snow Lotus Seed products amplified using G-F/G-R primers.
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Abstract: The geographical origin of foods greatly influences their quality and price, leading to
adulteration between high-priced and low-priced regions in the market. The rapid detection of such
adulteration is crucial for food safety and fair competition. To detect the adulteration of Polygonati
Rhizoma from different regions, we proposed LIBS-VNIR fusion based on the deep learning network
(LVDLNet), which combines laser-induced breakdown spectroscopy (LIBS) containing element
information with visible and near-infrared spectroscopy (VNIR) containing molecular information.
The LVDLNet model achieved accuracy of 98.75%, macro-F measure of 98.50%, macro-precision of
98.78%, and macro-recall of 98.75%. The model, which increased these metrics from about 87% for
LIBS and about 93% for VNIR to more than 98%, significantly improved the identification ability.
Furthermore, tests on different adulterated source samples confirmed the model’s robustness, with
all metrics improving from about 87% for LIBS and 86% for VNIR to above 96%. Compared to
conventional machine learning algorithms, LVDLNet also demonstrated its superior performance.
The results indicated that the LVDLNet model can effectively integrate element information and
molecular information to identify the adulterated Polygonati Rhizoma. This work shows that the
scheme is a potent tool for food identification applications.

Keywords: LIBS; VNIR; Polygonati Rhizoma; deep learning; adulteration

1. Introduction

Polygonati Rhizoma (PR), which is called Huangjing in China, is the rhizome of a
liliaceous plant from the genus Polygonatum Mill and has been used in traditional food
and medicine in China for centuries [1]. PR contains a range of essential compounds such
as sugars, lipids, proteins, carotenoids, vitamins, amino acids, and trace elements, which
can resist hidden hunger and makes it a potential high-quality crop [2,3]. Rich in com-
pounds like polysaccharides and flavonoids, it offers numerous health benefits, including
anti-aging, anti-diabetic, anti-fatigue, and anti-cancer effects [4–7]. PR has traditionally
been used in clinical practices to treat age-related diseases, diabetes, lung diseases, fatigue,
feebleness, and indigestion in China, India, Pakistan, Iran, and Japan [4,8]. The wide range
of medicinal benefits and the increasing demand for PR in various therapeutic applications
underscore the importance of ensuring its authenticity and quality. PR is cultivated in
various geographical regions, with China being the main producer. However, the geo-
graphical origin of PR affects the quality, drug effect, and price [9,10]. Products certified
as protected geographical indications (PGIs) are more popular with consumers and have
higher prices. Consequently, unscrupulous traders often mislabel the origins or adulterate
PGI products with inferior products or products from other regions to increase profits,
causing both healthy and wealthy losses to consumers [9]. In the market, consumers are
concerned about whether the product is pure, adulterated, or pure counterfeit. Therefore,
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the accurate identification of adulterated PR from different geographical origins is essential
to protect consumer health and maintain fair trade practices.

Current identification methods for the geographical origin of foods and medicinal
materials primarily include manual identification, chromatography, mass spectrometry, and
DNA molecular identification [11–15]. However, manual identification requires extensive
professional knowledge and is unsuitable for processing products (dry whole root, slice,
powder). Chromatography, mass spectrometry, and DNA molecular identification are time-
consuming, expensive, environmentally unfriendly, and complicated to operate [15–17].
Also, the adulteration of powder samples from different geographical origins has created
challenges in these technologies. Therefore, there is an urgent need for a real-time, rapid,
direct, efficient, and high-precision method to identify adulterated foods or medicinal
materials from different regions.

Currently, some researchers use laser-induced breakdown spectroscopy (LIBS) and
near-infrared spectroscopy (NIR) LIBS to identify geographical origin and adulterated
foods or medicinal materials products, due to their advantages such as fast and in situ
analysis [18–21]. For instance, Nie et al. employed visible and near-infrared spectroscopy
(VNIR) for the quantitative analysis of the adulteration of Sophora flavescens powder or
corn flour in Notoginseng powder, yielding a predictive R-squared value within the range
of 0.86 to 0.94 [22]. Zhao et al. demonstrated the utility of LIBS in analyzing Chinese
yam adulterated with cassava and the rhizome of winged yam, with R-squared values
reaching 0.9570 [23]. Akin et al. employed LIBS in the analysis of corn and sorghum
flour mixtures, achieving a good R-squared result of 0.965 [24]. Some researchers have
also fused LIBS and VNIR to achieve better identification results [25]. For example, Zhao
et al. used the fusion of LIBS and hyperspectral imaging (400–1000 nm) data to improve
ginseng samples’ geographical origin identification accuracy from 96.9% and 94.75% to
98.8% [26]. Collectively, these studies described above verified the potential of LIBS and
NIR techniques in the identification of adulterated samples, especially the fusion of LIBS
and VNIR, which has a better effect. Combining the elemental and molecular information
obtained from these two techniques makes it possible to achieve a more comprehensive and
accurate identification of adulterated materials. The subtle chemical and morphological
changes between these materials of the same species but with different geographical origins
pose a significant challenge for adulteration identification, and single-modal analysis makes
it difficult to achieve a high level of identification accuracy. However, there is no report on
the identification of adulterated PR from different geographical origins. For food quality
identification, the research on the fusion method of LIBS and VNIR at the atomic and
molecular levels is rarely studied.

Since foods or herbal medicines are rich in elemental and molecular information, based
on the complementary advantages of LIBS in elemental analysis and VNIR in molecular
analysis, together, they can provide a comprehensive assessment of the authenticity of PR.
Therefore, the purpose of this study is to propose a deep learning model that effectively
combines LIBS and VNIR to improve the accuracy of adulteration identification. We
proposed an LIBS-VNIR fusion based on a deep learning network (LVDLNet) to detect
adulteration in PR sourced from different regions in this study. The model was explained
and verified from different aspects. Finally, the study confirmed that the fusion of LIBS
and VNIR was feasible and effective in identifying adulterated PR. This work provides a
powerful solution for the efficient, accurate, precise, and robust detection of adulteration,
which is expected to enhance the integrity and safety of the food supply chain.

2. Samples and Experimental System
2.1. Sample Preparation

The highest quality PR, produced in Jiuhua Mountain and its surrounding areas in
Qingyang County, southern Anhui, is certified as a PGI in China [6,27]. In this experiment,
PR from Qingyang County was adulterated with cheaper PR from Dandong City, Liaoning
Province. To ensure the authenticity of the samples, our staff personally collected the PR
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from their respective regions of origin. After the collection, the samples were cleansed with
deionized water to eliminate surface dust and debris. Subsequently, they were sliced to
a thickness of approximately 2 mm. These slices were then dried to constant weight at
a controlled temperature of 60 ◦C within an electric blast drying oven (101-0B, Shaoxing
Shangcheng Instrument Manufacturing Co., Ltd., Shaoxing, China). The dried samples
were subsequently crushed and ground to a fine powder, passing through an 80-mesh sieve
to ensure uniformity.

In actual market conditions, there are instances where cheaper Polygonati Rhizoma (PR)
is used to completely impersonate more expensive PR from famous origins. There are also
situations where the cheaper PR is mixed into the more expensive PR for sale, and a small
amount of adulteration is insignificant for counterfeiters. To simulate the market adulteration
practices, PR from Dandong City was systematically blended with PR from Qingyang County
in incremental proportions ranging from 0% to 100% in steps of 20% (ω/ω). The adulterated
samples contained 0, 20, 40, 60, 80, and 100% (ω/ω) adulterated levels. Specifically, the
adulteration percentages refer to the weight percentage of PR from Dandong City in the
mixture. For instance, a 0% level indicates pure PR from Qingyang County, while a 100%
level signifies a mixture composed entirely of PR from Dandong City. Intermediate levels
at 20%, 40%, 60%, and 80% represent the respective proportions of the Dandong City PR
in the blend. The resulting mixtures were then compacted into pellets, each weighing two
grams, using an electric tablet press exerting a substantial pressure of 24 tons over one minute.
The pressed pellets, characterized by a thickness of approximately 3 mm and a diameter of
20 mm, were employed for our subsequent analyses. Two replicate samples were made
for each concentration gradient to eliminate individual differences in samples. A total of
12 pressed pellets were prepared for measurement without further treatment. To evaluate the
robustness of our proposed model, we also prepared another batch of samples by blending
PR from Baise City in Guangxi Province with authentic PR from Qingyang County, adhering
to the stringent criteria outlined in our previous methodology.

2.2. Setup and Measurement

The schematic diagram of the experimental setup used in this work is shown in
Figure 1. This experimental setup mainly consisted of two parts: one was the VNIR ac-
quisition setup, and the other was the LIBS acquisition setup. The VNIR spectra of the
samples were collected first. All VNIR spectra were collected using a VNIR spectrometer
(QE65pro, spectral ranges: 350–1100 nm; Ocean Optics, Inc., Dunedin, USA) equipped with
a Halogen lamp light source (Avalight-HAL-Mini, Avantes B.V., Apeldoom, Netherlands).
The samples were placed on an X-Y-Z motion platform (DZY110TA-3Z, Beijing Jiangyun
Juli Technology Co., Ltd., Beijing, China) to enable spectral collection at different positions.
For the spectral collection process, a precision optical fiber probe was positioned perpen-
dicularly above each sample, thereby enabling the acquisition of the diffuse reflectance
spectra. The integration time for each scan was 10 milliseconds, and each spectrum was
obtained by averaging ten consecutive scans at each spatial point. In total, 100 distinct
spectra per pellet sample were collected at 100 different spatial points. Consequently, for
each proportion (adulteration level) of the adulterated samples, we amassed 200 spectra,
culminating in a comprehensive dataset comprising 1200 VNIR spectra for six adulteration
levels. Each VNIR spectrum had a dimension of 1 × 997.

After the VNIR acquisition, the samples were moved to the LIBS acquisition setup
through the displacement platform. For the LIBS acquisition setup, a Q-switched Nd: YAG
laser (Beamtech Optronics, Nimma-400; pulse duration: 8 ns; flattened Gaussian beam;
Beamtech Optronics Co., Ltd., Beijing, China) operating at 532 nm, 1 Hz, and 130 mJ was
used as the ablation source. The laser beam was reflected by a 45◦ mirror and focused by a
quartz lens (focal length: 150 mm) onto the sample surface to generate plasmas. The plasma
emission was collected by a collector and transmitted by fiber to a six-channel spectrometer
(AvaSpec-ULS4096CL-EVO; spectral ranges: 196–874 nm; minimum gate width: 9 µs;
Avantes B.V., Apeldoom, Netherlands). The gate delay and width were set to 2 µs, and
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9 µs, respectively. A digital delay generator (LDG 3.0, Wuhan NRD Laser Engineering
Co., Ltd., Wuhan, China) synchronized the laser and spectrograph. The experiment was
conducted in the air atmosphere. For each pellet sample, 400 spectra were obtained and
then averaged to 100 spectra to improve the stability of spectral intensity. Thus, 200 spectra
for each proportion and 1200 spectra in total were obtained. Each LIBS spectrum had a
dimension of 1 × 24,564.
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3. Method
3.1. The Framework of LVDLNet

To realize the identification of adulteration, we propose the LVDLNet framework
shown in Figure 2. The proposed LVDLNet includes three main parts: DL-LIBS, which
extracts element information; DL-VNIR, which extracts molecular information; and the
information fusion part.
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3.2. Element Information Extraction by DL-LIBS

The LIBS spectrum can provide element information. The LIBS spectrum lines of PR
from two different origins are shown in Figure 3. It can be seen that the LIBS spectral lines
of PR from different origins are similar and contain the same elements, with variations
primarily in intensity. Distinguishing the origin based solely on individual elemental
spectral lines poses challenges, particularly when PR from different sources is mixed.
Hence, employing chemometrics becomes essential for discerning these differences.
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The characteristic dimension of LIBS full spectrum is 24,564, which contains much in-
valid information. To reduce background and noise interference, researchers usually select
the spectral peak of the element spectral line for analysis [28,29]. Only a few researchers
selected the spectral interval (the interval of spectral line profile), which contains the charac-
teristics of spectral wing and the Full Width at Half Maximum (FWHM) [30]. Selecting only
the spectral peak will lead the loss of some effective information. Therefore, the selection of
a spectral line profile interval is considered in this study. Specifically, for the analysis of PR,
we have identified 18 elemental spectral lines with robust signal quality. These lines, with
varying numbers of data points across their waveform intervals, are detailed in Table 1.
It is observed that each spectral line is characterized by a unique distribution of points,
with an average of approximately 14 points. Figure 4 illustrates the waveform intervals
for two typical elemental lines: (a) Si I 288.17 nm, which comprises 7 points; and (b) Ca
II 396.79 nm, which includes 22 points. Notably, the central 14 points of Ca II 396.79 nm
can contain almost the entire waveform of the spectral line, exceeding the FWHM while
retaining the critical information for analysis.
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Table 1. The LIBS elements’ spectral interval and number of points.

Elements Wavelength
(nm) Interval (nm) Points Operation

Points
after

Operation

C 247.86 247.72–248.04 11 Zero Padding 14
Mg 280.28 280.16–280.46 11 Zero Padding 14
Mg 285.23 285.08–285.37 11 Zero Padding 14
Si 288.17 288.09–288.26 7 Zero Padding 14
Al 309.29 309.23–309.36 10 Zero Padding 14
Ca 315.89 315.79–315.98 14 Retention 14
Ca 317.93 317.83–318.08 18 Interception 14
Ca 393.34 393.12–393.51 17 Interception 14
Ca 396.79 396.65–396.94 22 Interception 14
Ca 422.64 422.49–422.75 11 Zero Padding 14
Na 588.99 588.90–589.11 14 Retention 14
Na 589.59 589.52–598.71 14 Retention 14
N 742.53 742.30–742.75 9 Zero Padding 14
N 744.35 744.07–744.79 14 Retention 14
N 746.89 746.66–747.38 14 Retention 14
K 766.55 766.23–766.92 14 Retention 14
K 769.89 769.62–770.31 14 Retention 14
O 844.64 844.38–844.96 14 Retention 14

To extract elemental information from the LIBS spectrum effectively, we introduce a
deep learning model, as illustrated in Figure 5, termed DL-LIBS. This model initiates the
extraction process by performing a convolution operation on the elemental spectral interval
to capture the waveform information inherent to each line. To simplify this operation, we
standardized the size of the convolution kernel to ensure that it encompassed the complete
waveform of each spectral line. Given that 14 data points can contain almost the entire
waveform of the vast majority of spectral lines, we set 14 as the convolution kernel size.
This selection ensured that the kernel width was sufficient to cover the spectral line’s
FWHM, thereby providing a robust basis for the convolution operation.
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To standardize the data to a consistent set of 14 points, we employed a triad of strate-
gies tailored to varying spectral profiles: (a) Zero Padding: When the spectral interval
comprised fewer than 14 data points, we increased the interval with zero values at both
sides, thereby expanding the point total to 14; (b) Retention: For intervals that naturally
aligned with the 14-point criterion, we maintained the existing data points without al-
teration; (c) Interception: When the spectral interval exceeded 14 points, we selectively
extracted a central subset of 14 points, while ensuring that this selection spanned beyond
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the FWHM to preserve the most representative segment of the spectral line. The treatment
of each spectral line interval is also shown in Table 1. These standardization strategies
allow for a uniform input into the subsequent stages of the model. After the convolution
operation, the 18 result values obtained from the 18 spectral lines were fed into the bidirec-
tional long short-term memory (Bi-LSTM) network. The network can identify the nonlinear
relationship between spectral lines, improving the accuracy of element information extrac-
tion. Next, the extracted LIBS element information was input into the fully connected layer
to achieve preliminary classification.

3.3. Molecular Information Extraction by DL-VNIR

Given the challenges in distinguishing mixed adulterated PR using elemental informa-
tion alone, this study introduces the utilization of VNIR molecular information to augment
the identification analysis. The VNIR spectra of PR with different adulteration concentra-
tions are shown in Figure 6. The VNIR spectra of PR elucidate the presence of multiple
absorption bands, with the band situated at approximately 670 nm corresponding to the
characteristic chlorophyll absorption band [31]. Additionally, the band observed near 920
nm is associated with the second overtone of the O-H stretching vibration, while the band
at 970 nm corresponds to the second overtone of another O-H stretching mode [32]. It can
be seen that the VNIR spectra with different adulteration degrees have higher similarity
and slightly different intensities.
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Figure 6. The VNIR spectra of Polygonati Rhizoma with different adulteration concentrations.

To extract effective molecular information from the VNIR spectra, we present the
framework for the DL-VNIR model in Figure 7. The complexity of near-infrared spectra,
characterized by significant overlap and discontinuity, poses a challenge to the direct
extraction of component-related information and the subsequent provision of spectral
analysis. Unlike discrete points, near-infrared spectra are often manifested as broad bands,
a consequence of the myriad vibrational and rotational modes through which molecules
interact with light, leading to an extensive array of absorption features. Conventional
approaches to feature selection in near-infrared spectroscopy, such as peak and trough
detection, have focused on isolated points within these spectral features, often overlooking
the information contained within the complete waveform [33,34]. Unlike these traditional
methods, our strategy involved an initial selection of the waveband data encompassing
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both peaks and troughs. The selected intervals of VNIR are shown in Table 2. This selection
process targeted five specific wavebands, each representing a significant peak or trough.
By employing this refined approach, we effectively condensed the original VNIR data
dimensionality from 1044 to 375, retaining valid information while reducing the complexity
of the dataset.
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Figure 7. The framework of DL-VNIR. (VNIR: visible and near-infrared spectroscopy; Different
colored areas represent different intervals of selection. Boxes of different colors correspond to
intervals of the same color).

Table 2. The selected intervals of VNIR.

Interval (nm) Points

350.00–400.02 63
639.88–690.76 67
830.92–930.41 136
940.65–960.35 27

966.90–1026.31 82

Subsequently, we computed the first derivative of the selected intervals, capitalizing
on each waveform’s unique degree of change characteristic. We could quantify the ab-
sorption variation rate across specific wavelength ranges by utilizing the spectrum slope.
This approach effectively mitigated the interference from noise and baseline fluctuations,
thereby enhancing the sensitivity of the analysis to subtle changes in sample concentration,
composition, or structural attributes [31]. Such optimization is instrumental in elevating
the precision of VNIR spectral analysis. The calculated waveform slopes were fed into a
fully connected layer. Ultimately, this facilitated the extraction of molecular information
and enabled VNIR to preliminary classify the samples.

3.4. Information Fusion

In this study, we harnessed the complementary strengths of LIBS and VNIR to per-
form an analysis of the samples. LIBS provides an in-depth elemental fingerprint, while
VNIR offers a detailed molecular profile. Integrating these two modalities is essential
for thoroughly understanding the sample characteristics. In the information fusion part,
we adopted the Add function to amalgamate LIBS and VNIR data, which is an effective
approach in dual-mode data fusion. By combining the data of LIBS and VNIR, this method
maintains the integrity and unique attributes of element and molecular information and
avoids the possibility of excessive information mixing. The flexibility of the Add function
makes it suitable for processing input data of different dimensions and effectively avoids
the loss of information [35]. After the operation of the Add function, the Add feature vector
was sent to the classification layer to obtain the final results. This final step was crucial as it
translated the integrated information into a definitive classification outcome.

3.5. Implementation Details

Both LIBS and VNIR obtained 1200 spectra. The dataset was randomly divided into
a training set, validation set, and test set according to the ratio of 7:1:2. Thus, the dataset
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had 840 pairs for training, 120 for validating, and 240 for testing. The training set was
used to train the model to establish a prediction model. The validation set was a set of
samples left separately during the model training process, which was used to evaluate the
performance of the model during the training process and to adjust the parameters and
select the model. During the training process, by evaluating the performance of the model
on the validation set, the overfitting or underfitting of the model could be found in time,
and the hyperparameters of the model could be adjusted according to the results of the
validation set. The test set was used to evaluate the final performance and generalization
ability of the model. It was a dataset used to simulate the performance of the model in real
scenes. All the results presented in this study are test set results. To avoid overfitting, we
used data enhancement technology in the training set. Specifically, by adding white noise
to the spectral data, and then combining the original spectral data with the spectrum after
adding noise, the data expansion of the training set sample was realized. In addition, in the
model design, batch normalization and a Dropout layer were added to reduce the risk of
overfitting of the model.

In this work, the macro-average evaluation criteria was used to evaluate the model
performance. The accuracy (Acc), macro-precision (Mac_P), macro-recall (Mac_R), and
macro-F measure (Mac_F) were applied as evaluation metrics [36]. Acc is the ratio of
the number of correctly classified samples to the total number of samples. Mac_P is the
arithmetic mean of the precision of each category, where the precision is the proportion of
the actual positive samples in the predicted positive samples. Mac_R is the arithmetic mean
of the recall of each category, where the recall is the proportion of the actual positive sample
and the predicted positive sample. Mac_F is the weighted harmonic average of precision
and recall, providing a single score that balances both the precision and recall of the model.
These metrics offer a comprehensive assessment of the model’s predictive capabilities
and are essential for understanding the reliability of our results. The data processing was
carried out on PyTorch 2.0 with a PC of INTEL i7 12700KF CPU (Intel Corporation, Santa
Clara, USA), 32G DDR4 RAM (Kingston Technology Corporation, Fountain Valley, USA),
and an NVIDIA RTX 3060 GPU (NVIDIA Corporation, Santa Clara, USA)). The size of
the GPU was 12 G. The epoch and the batch size were set to 500 and 32, respectively. The
learning rate was all set to 0.0005.

4. Results and Discussion
4.1. Visualization Analysis with t-SNE

To observe the clustering effect of different adulterated samples, the full spectral data
were visually analyzed with t-SNE. Figure 8 shows the visualization result of t-SNE. It can
be seen from the figure that there is a particular clustering effect for different adulterated
samples, indicating the feasibility of classification using both LIBS and VNIR data.
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4.2. Comparison with Different Baseline Models

In LVDLNet, we used DL-LIBS to extract element information and make a preliminary
classification, and DL-VNIR was used to extract molecular information and make a pre-
liminary classification. Then, the two kinds of information were fused to realize the final
classification. Table 3 shows the results of a single modality and dual modalities. The four
evaluation metrics of DL-LIBS and DL-VNIR were less than 88%, and 94%, respectively.
However, the LVDLNet model achieved good results. The Acc, Mac_F, Mac_P, and Mac_R
of the LVDLNet model were 98.75%, 98.50%, 98.78%, and 98.75%, respectively. The four
indicators of the LVDLNet model all exceeded 98%, demonstrating its ability to effectively
synthesize LIBS and VNIR data for the enhanced classification accuracy of adulterated
PR. Additionally, the confusion matrices for the baseline models are depicted in Figure 9,
which facilitates a clear comparison of the classification proficiency between the LVDLNet
model and the individual DL-LIBS and DL-VNIR models. For example, in the case of a 0%
adulteration level, seven spectral lines from the LIBS data were mistakenly identified as
corresponding to a 60% adulteration level, while three spectral lines from the VNIR data
suffered the same error. The predictive accuracy for all these lines was successfully rectified
upon implementing the fusion process. This further shows that the fusion of LIBS element
information and VNIR molecular information can improve classification accuracy.

Table 3. Comparison results of baseline models.

Models Acc Mac_F Mac_P Mac_R

DL-LIBS 0.8708 0.8710 0.8780 0.8708
DL-VNIR 0.9375 0.9373 0.9378 0.9375
LVDLNet 0.9875 0.9850 0.9878 0.9875
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4.3. Effectiveness of Interval Selection

To verify the effectiveness of the selected intervals in this work, the classification
effects of different feature inputs were compared. In the comparison, the LIBS spectral
peak and intervals were selected as the feature inputs, and the VNIR intervals and full
spectra were chosen as the feature inputs. In addition to the DL-LIBS and DL-VNIR models,
Principal Component Analysis (PCA) and Support Vector Machine (SVM) were used for
verification. PCA and SVM are commonly used in spectral analysis for feature extraction
and pattern recognition algorithms, respectively.

The results are shown in Table 4. For DL-LIBS, when the LIBS peak was used as the
input, the result was poor, and the four evaluation metrics were about 50%. However, when
the LIBS interval was used as the input, the metrics increased to over 87%. For DL-VNIR,
the VNIR full-spectra analysis showed slightly higher results than the selected intervals.
However, the difference in this result was considered negligible when considering that
the intervals with fewer features achieved a classification accuracy similar to full spectra.
When using the PCA-SVM model, the spectral interval could also produce better results for
LIBS and VNIR data. The above results verify the effectiveness of the selected intervals for
the information extraction of LIBS and VNIR in this work. Compared to the LIBS peaks,
the LIBS intervals contain more spectral information. Compared to the VNIR full spectra,
the selected VNIR intervals essentially contain the information of the full spectrum.

Table 4. Comparison of results under different feature inputs.

Models Input Acc Mac_F Mac_P Mac_R

DL-LIBS
LIBS Peaks 0.5042 0.4909 0.4783 0.5042

LIBS
Intervals 0.8708 0.8710 0.8780 0.8708

DL-VNIR
VNIR

Intervals 0.9375 0.9373 0.9378 0.9375

VNIR Full
Spectra 0.9458 0.9452 0.9450 0.9458

PCA-SVM

LIBS Peaks 0.7875 0.7871 0.7873 0.7875
LIBS

Intervals 0.8250 0.8236 0.8233 0.8250

VNIR
Intervals 0.9000 0.9006 0.9014 0.9000

VNIR Full
Spectra 0.8958 0.8928 0.8969 0.8958

4.4. Comparison with Conventional Machine Learning

To evaluate the performance of the model, the result of the deep learning model pro-
posed in this work was compared with the results of conventional machine learning models.
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The analysis encompassed four distinct conventional machine learning classifiers: Linear
Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), SVM, and Extreme Learning
Machine (ELM). Similarly, PCA was first used for the feature extraction of selected LIBS
and VNIR intervals. After feature extraction, the features were input into the classification
model for classification. The classification results for the LIBS and VNIR datasets are
presented in Table 5.

Table 5. Comparison results of conventional machine learning and deep learning.

Models Acc Mac_F Mac_P Mac_R

LIBS VNIR LIBS VNIR LIBS VNIR LIBS VNIR

PCA-LDA 0.6083 0.8750 0.6016 0.8732 0.5976 0.8723 0.6083 0.8750
PCA-KNN 0.7625 0.8708 0.7626 0.8708 0.7643 0.8723 0.7625 0.8708
PCA-SVM 0.8250 0.9000 0.8236 0.9006 0.8233 0.9014 0.8250 0.9000
PCA-ELM 0.7333 0.8792 0.7342 0.8757 0.7406 0.8827 0.7333 0.8792

DL-LIBS 0.8708 - 0.8710 - 0.8780 - 0.8708 -
DL-VNIR - 0.9375 - 0.9373 - 0.9378 - 0.9378
LVDLNet 0.9875 0.9850 0.9878 0.9875

Among the four conventional machine learning models, PCA-SVM achieved the best
results for both LIBS and VNIR data. However, the deep learning model proposed in this
work attained better results. For LIBS data, DL-LIBS improved the results of PCA-SVM
from about 82% to more than 87%. For VNIR data, DL-VNIR improved the results of
PCA-SVM from about 90% to more than 93%. Moreover, by the fusion of LIBS and VNIR,
the LVDLNet model improved the indicators to more than 98%. This demonstrates the
superiority of the proposed deep learning model over conventional machine learning
technology. Deep learning models can better capture nonlinear relationships in data and
adapt to complex and variable data than conventional machine learning.

4.5. Universal Verification

To establish the broad applicability of our model, additional verification was conducted
using adulterated samples which blended PR from Baise City in Guangxi Province with
the authentic PR from Qingyang County. The results are shown in Table 6. As shown in the
table, the results of LVDLNet were also better than the single-modality results of DL-LIBS
and DL-VNIR. The Acc, Mac_F, Mac_P, and Mac_R of the LVDLNet model were 96.25%,
96.25%, 96.30%, and 96.25%, respectively. LVDLNet raised the evaluation indexes from 87%
of DL-LIBS and 86% of DL-VNIR to over 96%. This verifies that the models proposed in
this study can effectively identify adulterated PR between different geographical origins,
proving the effectiveness and robustness of the proposed models.

Table 6. Results of universal verification.

Models Acc Mac_F Mac_P Mac_R

DL-LIBS 0.8792 0.8776 0.8777 0.8792
DL-VNIR 0.8625 0.8563 0.8607 0.8625
LVDLNet 0.9625 0.9625 0.9630 0.9625

5. Conclusions

Food adulteration identification is essential for protecting consumers’ interests, but
no universal method has been widely adopted, especially in industrial scenarios. This
study presented a novel deep learning framework, LIBS-VNIR fusion based on a deep
learning network (LVDLNet), for identifying adulterated Polygonati Rhizoma (PR). In
the LVDLNet model, an interval point standardization strategy in LIBS and a refined
peak and trough focus in VNIR data processing improved signal clarity and extraction
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efficiency. By integrating LIBS elemental information with VNIR molecular information, we
enhanced the accuracy of authentication. The LVDLNet model achieved good results, with
the accuracy (Acc), macro-F measure (Mac_F), macro-precision (Mac_P), and macro-recall
(Mac_R) being 98.75%, 98.50%, 98.78%, and 98.75%, respectively. It significantly enhanced
the classification evaluation metrics, increasing them from approximately 87% for LIBS
and 93% for VNIR to over 98%. Additionally, tests on various adulterated source samples
further confirmed the efficacy of the LVDLNet model, with all four classification metrics
improved from about 87% for LIBS and 86% for VNIR to above 96%. In addition, this work
confirmed the classification effect of the proposed method from different feature inputs
and conventional machine learning models. All in all, this study presented a pioneering
deep learning framework that synergizes LIBS and VNIR to effectively detect adulterated
PR, offering a novel perspective and methodology for identifying food adulteration. Future
work can apply this deep learning framework to a wider range of samples, including more
different origins and different types of foods, which may be affected by adulteration.
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Abstract: Honey contains a wide range of inorganic substances. Their content can be influenced,
i.e., by the type of soil on which the bee pasture is located. As part of this study, the mineral profile
of 32 samples of honey from hobby beekeepers from the Czech Republic wasevaluated and then
compared with soil types in the vicinity of the beehive location. Pearson’s correlation coefficient
was used to express the relationship between mineral substances and soil type. There was a high
correlation between antroposol and Zn (R = 0.98), Pb (R = 0.96), then between ranker and Mn (0.95),
then regosol and Al (R = 0.97) (p < 0.05). A high negative correlation was found between regosol and
Mg (R = −0.97), Cr (R = −0.98) and between redzinas and Al (R = −0.97) (p < 0.05). Both positive and
negative high correlations were confirmed for phaeozem. The CART method subsequently proved
that the characteristic elements for individual soil types are B, Ca, Mg, Ni, and Mn. The soil types of
cambisol, fluvisol, gleysol, anthrosol, and kastanozem had the closest relationship with the elements
mentioned, and it can therefore be assumed that their occurrence indicates the presence of these soil
types within the range of beehive location.

Keywords: traces elements; Czech beekeepers; sustainability; GIS

1. Introduction

Honey is very variable in its composition. In addition to basic substances such as
sugars and water, honey also contains a diverse array of mineral components, including
essential minerals and potentially toxic elements. The composition of honey is strongly
influenced by natural and anthropogenic influences. Although mineral substances and
potentially toxic elements subgroups are less significant components of honey by volume,
they play a vital role in evaluating its quality [1,2].
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It is essential that honey is free of potential contaminating substances. It is estimated
that the honey bee forages on plants growing in an area from 7 to 28 km2, depending on
their need for food and its availability [3]. Honey bees collect pollen as a source of amino
acids, fats, minerals, proteins, starch, sterols and vitamins. A diverse selection of floral
sources is required for a bee to get all her nutritional needs [4]. Honey bees interact with a
variety of matrices that can be measured for contaminant accumulation, such as freshly
collected pollen, honey, stored pollen, and beeswax. Honey composition is the result of
many processes, is useful for gathering information about the environment, and can be a
suitable bioindicator of environmental pollution [5,6].

The idea of using bees and honey in the field of the environment goes back to J.
Svoboda (1961) and E. Crane (1984), who believed that bees could provide valuable data
on the environmental impact the authors proved that potentially toxic elements such as Cd,
Pb and metalloid As in bees and bee products correspond as indicators of environmental
pollution [7,8]. In research from 1962, J. Svoboda’s team recorded an increase in the content
of the radionuclide strontium 90 in the environment through the monitoring of bees—most
likely as a result of nuclear testing. In the following years, bees were increasingly used to
monitor environmental pollution by potentially toxic elements in geological and urban
surveys [9,10]. As Leita et al. (1996) [11] suggested, a network of hives located next to
polluted areas can provide data for monitoring heavy metal emissions from specific sources.
Ruschioni et al. (2013) [12] also show that trends in metal contamination correlate with
weather patterns and anthropogenic activities in the region where samples were obtained.
Honey has nutritional, medicinal, and prophylactic properties, which are contributed to
by its chemical components. The concentration of mineral compounds ranges from 0.1%
to 1.0%. In comparison with nectar honeys, honeydew honeys are higher in minerals,
resulting in higher electrolytic conductivity [13]. Also, the mineral content influences the
color and taste of honeys. The higher the quantity of metals and the darker the color is,
the stronger the taste they will have [14]. The mineral profile is dominated by potassium,
followed by calcium, magnesium, sodium, sulfur, and phosphorus. Trace elements include
iron, copper, zinc, and manganese [15,16]. The main mineral substances come mainly from
soil and nectar-bearing plants but can also come from anthropogenic sources [17,18].

There are relations between the mineral profile of honey and a soil type [19,20]. Ac-
cording to the international soil classification system, soils are divided into different groups,
especially by particle size, texture classes, and mineral composition [21,22].

The Czech Republic has a very diverse spectrum of soil types. The mountains are
dominated by coniferous forests, under which podzol soils are formed. In the lowlands,
which are a very warm region, chernozems are found. The occurrence of different types
of soils is also influenced by altitude, slope, and biota. For example, alluvial soils, for the
formation of which sufficient water is essential, are most often found near watercourses [23].
The Czech Geological Survey provides a detailed map of soil types, of which it is possible to
evaluate the connection with the location of bee colonies. The mutual relationship between
soil type and mineral substances in honey can be used to predict the geographical origin
of honey. The aim of this study was to verify the influence of soil types according to the
international classification on the mineral profile of honey depending on the total area of
the soil type in the beehive location. A partial goal was to verify the correlation dependence
of the mineral composition of honey and soil type and to describe the mineral profile
depending on the soil type.

2. Materials and Methods

In this study, 32 multifloral honey samples were collected and harvested between 2019
and 2020 in the Czech Republic, Moravia. The honeys were collected from hobby beekeep-
ers and harvested at the University of Veterinary Sciences with the same equipment to
eliminate the impact of different harvesters. The pollen profile and locality are summarized
in Table S1 and Figure S1. The quantitative melissopalynology analysis was performed
with semiautomated acquisition according to the previous study [24].
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The World Reference Base for Soil Resources (WRB) classification system [22] was used.
The area of WRB for the beehive location was processed by QGIS 3.28 (QGIS Development
Team, 2023); soil data were taken from the national geoportal https://geoportal.gov.cz/
(accessed on 1st April 2024) [25], where the soils are classified according to new soil
systems [26].

In the collected data, 16 soil types were observed with different area sizes. The area
and frequency of each soil type are detailed in Table 1. In general, hive locations were
represented by more than one soil type, and the same soil type was observed in different
hive locations. The evaluated area of soil type was represented by approximate bee flying
distances of 3 km. In total, the 28.27 km2 for each hive location were evaluated. Honey
samples were collected in situ by the research team directly from the hives. The GPS
coordinates, land use data, and botanical profiles of the surrounding area were documented
in a detailed questionnaire. The GPS coordinates of each hive served as the central point for
a 3 km radius buffer zone. Within this defined buffer zone, soil-type data were extracted
and analyzed.

Table 1. Soil type frequency and area.

Categories Frequencies Lands Area (km2) %

Anthrosol 8 24.147 2.669
Cambisol 26 427.149 47.218

Chernozem 7 92.438 10.218
Fluvisol 26 95.405 10.546
Gleysol 21 36.620 4.048

Kastanozem 14 66.888 7.394
Luvisol 13 52.301 5.781

Pararendzina 6 20.171 2.230
Pelozem 6 31.849 3.521

Phaeozem 2 8.905 0.984
Podzol 2 10.307 1.139

Pseudogley 15 20.158 2.228
Ranker 5 1.242 0.137
Regosol 7 11.010 1.217

Rendzinas 4 2.663 0.294
Water Bodies 8 3.388 0.375

The mineral content was determined by Inductively Coupled Plasma Mass Spectrom-
etry ICP-MS 7900 (Agilent, Santa Clara, CA, USA) according to the STN EN 15763 [27],
UNI EN 13805 [28], and UNI EN 13804 [29] in honey samples. The B, Na, Mg, Al, K, Ca,
Cr, Mn, Fe, Ni, Cu, Zn, As, and Pb content were determined in each sample. The methods,
including qualitative parameters, are described in Document S1.

The data were statistically evaluated by Xlstat 2024.2.0 (Adinsoft, Denver, CO, USA).
The data follow normal distribution according to the Shapiro–Wilk test. For comparison
of mineral content, ANOVA (post-hoc, Tukey HSD) and Pearson correlation coefficient
were used. Due to the variation in soil types across different locations, statistical analyses
were conducted using weighted correction methods. This approach adjusts for differences
in sample size, ensuring that each observation contributes appropriately to the analysis.
Weighted corrections were applied to ANOVA, Pearson correlation, and Classification and
Regression Trees CART analyses. CART, based on a machine learning algorithm, was used
to distinguish soil type based on mineral profile. The location of the hive positions was
visualized in Excel 356 (Microsoft, Redmond, WA, USA).

3. Results and Discussion

The average mineral profile of Czech honey and its comparison with other European
countries is shown in Table 2. The influence of the habitat of bees on the quality of their
honey has been investigated in many studies [17]. Habitats influence the characteristic
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properties of honey, not only from the point of view of sensory uniqueness or the content of
biologically active substances but also from the point of view of the mineral profile of the
substances contained. The mineral composition of honey has been used in several studies,
both for the characterization of bee honey [30–34] as well as a tool for proof of honey
adulteration [33,35–38]. The mineral composition of honey is related to bee pasture [39]
and is therefore significantly influenced by botanical taxa in the vicinity of the site [40] but
also by geographic location and soil composition [41].

The measured values point to differences in the mineral composition of honey, which
are related to both its botanical and geographical origin. However, it is clear from the
comparison that K (1365.2 mg/kg) is the most represented element, followed by Ca
(148.8 mg/kg), Na (36.9 mg/kg), and Mg (35.1 mg/kg). The greatest representation of
K agrees with the results of other authors [33,35,39,41]. The representation of Ca and Na
may differ depending on the country where the honey comes from when Italy (Latium
region) and Turkey (Antolia) had a greater representation of Na [41,42]. In other studies,
Ca was more represented, see Table 2, the same finding was confirmed in the Czech Re-
public (Moravia). All of the major mineral elements did not exceed the tolerable upper
intake level (UI) for the adults, which are for Ca, Mg and Zn Fe, 2500, 250, and 25 mg/kg,
respectively. For K, Mn, Mn, and Fe, there is not evidence in the EU for tolerable upper
intake levels [43–45]. Considering the consumption of 1.7 kg [46] in the EU, honey is not a
risk food, even in terms of potentially toxic elements.

Table 2. Comparison of the average mineral profile of honeys from different geographical areas.

Present
Study

(Moravia
Region)
(n = 32)

Italy a

(Siena)
(n = 50)

Italy b

(Latium
Region)
(n = 84)

Spain c

(n = 40)

Spain d

(Galicia)
(n = 22)

Spain
e

(n = **)

Turkey f

(Anatolia)
(n = 30)

Ireland g

(n = 50)

Portugal
(Castelo

Branco) h

(n = 16)

Poland
i

(n = 30)

Hungary j

(n = 34)

K
(mg/kg) 1365.2 1195 472 1124 1345 1778 296 566 701.87 1585.6 610.2

Ca
(mg/kg) 148.8 257 47.7 169 ** 113 51 111 28.36 35.52 92.3

Na
(mg/kg) 36.9 96.6 96 76 115 279 118 98 31.04 29 **

Mg
(mg/kg) 35.1 56.7 37 39 77 136 33 31 74.00 ** 17.6

Zn
(mg/kg) 3.5 1.82 3.1 3.9 2.0 5.65 2.7 5 1.23 2.6 3.7

Mn
(mg/kg) 2.3 1.54 3.0 3.4 5.2 ** 1.0 4 2.78 2.72 2.1

Fe
(mg/kg) 0.7 3.07 4.5 ** 3.7 9.19 6.6 8 0.97 3.8 1.4

B
(mg/kg) 11.1 ** ** 5.43 ** ** ** ** ** 5.17 **

** Not provided, a [41]; b [34]; c [35]; d [47]; e [29]; f [42]; g [48]; h [49]; i [50]; j [51].

As already mentioned, there can be more reasons for the different representations of
mineral substances. Our study has shown that one of the factors influencing the mineral
composition, specifically the content of K, Mg, and Mn, is the type of soil on which the
colonies are located. Mineral representation in plants depends on the type of soil and the
density of the root system, the amount of precipitation, and the mineral composition of
the subsoil [52]. The average values of mineral substances in honey with respect to the soil
types of the observed beehive location are indicated in Table 3. The most K was found in
honey with a majority of podzol; on the contrary, the lowest amount was found in honeys
from phaeozem, chernozem, and pseoudogley (p < 0.05). Higher K values in some types of
soils can be explained by the fertilization of these soils [53]. Podzol soils also yielded higher
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amounts of Mg in honey (p < 0.05). High amounts of Ca were found in the honeys around
the gleysols and rankers, but no statistically significant difference was found between the
Ca content in the soils.

Table 3. Comparison of the major mineral substance profiles of soil types in honey (mg/kg).

Soil Al B Ca K Mg Mn Na Zn

Gleysol 392.2 a 9.7 a 196.9 a 1604.9 abcd 34.1 ab 1.8 a 41.7 ab 3.8 a

Cambisol 513.1 a 10.3 a 167.7 a 1463.3 abcd 34.7 ab 2.8 a 35.6 b 4.1 a

Luvisol 431.8 a 10.6 a 163.9 a 1559.6 abcd 32.3 ab 1.9 a 42.8 ab 3.7 a

Anthrosol 20.6 a 14.7 a 161.3 a 1427.8 abcd 35.9± ab 1.1 a 36.4 b 6.3 a

Podzol 11 a 14.1 a 174.7 a 2099 a 45.7 a 2.8 a 32.7 b 2.9 a

Pelozem 25.3 a 14.7 a 163.9 a 1844.6 abc 43.7 ab 2.5 a 32.4 b 2.9 a

Rendzinas 49.6 a 9.6 a 152.5 a 1884.6 ab 33.4 ab 4.1 a 31.8 b 5.3 a

Fluvisol 318.1 a 10.7 a 129.5 a 1398.6 abcd 33.9 ab 2.5 a 35.5 b 2.9 a

Ranker 144.6 a 11 a 189.2 a 1272.6 abcd 38.3 ab 1.5 a 33.2 b 2.8 a

Kastanozem 553.4 a 11.2 a 127.6 a 963.7 abcd 29.2 ab 1.7 a 35.5 b 3.6 a

Chernozem 318.2 a 11.7 a 125.3 a 665.1 cd 28.6 ab 0.5 a 45.1 ab 3.4 a

Pseudogley 54.5 a 15.1 a 119.2 a 666.6 cd 29 ab 1.4 a 32.6 b 3.1 a

Pararendzina 13.1 a 13.7 a 115.3 a 878.7 bcd 32.7 ab 1.7 a 25.1 b 3.6 a

Regosol 71.9 a 15.7 a 133.5 a 985.6 abcd 30.2 ab 1.2 a 28.4 b 2.7 a

Phaeozem 31.9 a 9.7 a 96.1 a 477.7 d 26.3 ab 0.3 a 64 a 1.7 a

Water
Bodies 36.6 a 10.7 a 109.7 a 916.6 abcd 24.5 b 1.8 a 26.5 b 2.3 a

Different letters mean significant differences between raw (p < 0.05).

For B, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, and Pb, statistical differences in the content of
mineral substances in honey and the types of soil were not confirmed. This finding is due
to the large variability of the measured values, while differences in the mineral composition
of individual soil types were observed (Tables 3 and 4), especially for B, Al, Mn, and Zn
(p > 0.05).

Table 4. Comparison of the minor mineral substances profiles of soil types in honey (mg/kg).

Soil As Cr Cu Fe Ni Pb

Gleysol 0.008 0.151 0.302 0.787 0.211 0.090
Cambisol 0.006 0.131 0.342 0.717 0.224 0.100
Luvisol 0.007 0.141 0.299 0.796 0.200 0.095

Anthrosol 0.008 0.151 0.370 0.749 0.173 0.086
Podzol 0.009 0.130 0.387 0.576 0.261 0.059

Pelozem 0.009 0.121 0.361 0.562 0.249 0.060
Rendzinas 0.008 0.130 0.366 0.591 0.184 0.072

Fluvisol 0.007 0.111 0.322 0.662 0.165 0.082
Ranker 0.005 0.128 0.425 0.621 0.144 0.066

Kastanozem 0.008 0.109 0.264 0.863 0.148 0.067
Chernozem 0.006 0.113 0.307 0.698 0.126 0.074
Pseudogley 0.005 0.132 0.183 0.562 0.211 0.048
Pararendzina 0.005 0.119 0.223 0.606 0.201 0.070

Regosol 0.006 0.092 0.249 0.502 0.165 0.052
Phaeozem 0.007 0.120 0.256 0.543 0.107 0.055

Water
Bodies 0.006 0.100 0.172 0.481 0.127 0.043

Note: As, Cr, Cu, Fe, Ni, and Pb were no significant differences between raw (p < 0.05).

The minor mineral substances such as As, Cr, Cu, Fe, Ni, and Pb are summarized in
Table 4. Potentially toxic elements such as Pb and metalloid As can contaminate honey due
to environmental pollution and Al. Higher concentration in Al in comparison with Pb and
As was also confirmed in the Hungarian study, but the total amount of Al was lower than
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was detected in our study [51]. In our study, statistical differences between soil types and
Pb and As were not determined. Cu, Fe, Ni, and Zn are essential nutrients for organisms,
including bees and plants. Statistical differences with soil type have not been confirmed
(Table 4). Low concentrations of minor mineral substances in honey were also confirmed in
other studies [51,54].

In order to better express the relationship between mineral substances and soil types,
the Pearson correlation coefficient was further used. The correlation between soil type and
mineral substances is shown in Table 5. There was a high correlation between antroposol
area and Zn (R = 0.98), Pb (R = 0.96), then between ranker area and Mn (0.95), then regosol
area and Al (R = 0.97) (p < 0.05). A high negative correlation was between regosol area and
Mg (R = −0.97), Cr (R = −0.98) and between the redzinas area and Al (R = −0.97) (p < 0.05).

A positive and negative high correlation was also confirmed for phaeozem, but this
result is compromised by an error, which is due to the small representation of this soil in
the analyzed localities, both in terms of total representation (1%) and frequency (number of
occurrences: 2) (Table 5). At the same time, the frequency corresponded to two beehive
locations where the phaeozem represented 20% and 10% of the given locality. Further
research is still needed to define a conclusion for this type of soil so that it is included in
more locations in a wider representation.

The relationship between mineral composition and plants has been confirmed in
various studies, mostly focusing on plant mass, leaves, seeds, and roots [55–58]. Several
studies [59,60] confirmed the effect of soil type on the nectar production of the nectar-
bearing plant called mānuka (Leptospermum scoparium). Ca, Mn, and Fe contained in soil
types had a positive effect on production. The amount of Ca also affects the number of
flowers on plants [61,62]. The influence of soil type on the growth of other honey plants
(Salix caprea and Prunus padus) was confirmed by [61]. On another honey plant, Allium
ursinum, the influence of soil mineral composition on nectar production was also confirmed,
where the influence of phosphorus was confirmed. The influence of humus, K, Fe, and
Mn on the number of flowers was confirmed, while Mn also had an influence on the total
nectar content. From the above, we expected that the effect on the mineral substances in
honey is manifested due to higher nectar-producing capacity and the number of flowers on
soils with a suitable mineral composition and a layer of humus. In our study, statistical
differences between the type of soil and the content of Ca, Fe, and Mn in honey were not
confirmed (Table 3), but the correlation dependence with the type of soil was confirmed
(Table 5).

Therefore, methods of higher statistics were applied to verify the relationship between
soil type and mineral composition, which allows for the comparison of several variable
parameters. Classification and Regression Trees (CART) were utilized. CART is a machine
learning algorithm that recursively splits the dataset based on features to predict a target
variable (response). It constructs a decision tree suitable for classification, where the target
variable represents categories or classes. In regression, the target variable represents a
continuous variable. The CART reaches the best correct classification rate in comparison
with not supervised (PCA) and supervised (LDA and QDA) classification for mineral
substances [36] and for other honey parameters [63].
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According to the CART, the B, Ca, Mg, Ni, and Mn in honey samples are characteristic
of all soil types in our study. The soil types of cambisol, fluvisol, gleysol, anthrosol, and
kastanozem were most closely related to the above-mentioned mineral substances found
in honey and can, therefore, be assumed to have a major influence on the mineral content
of honey (Table 6). An overall summary of the classification is provided in Figure S2.
Cambisol and fuvisol are the most common soils in the Czech Republic. While cambisols
are represented both in hilly areas and uplands and in mountains; fuvisols, on the other
hand, were formed mainly in lowlands, especially along larger rivers [64]. In the Czech
Republic, 58% of agricultural land is of the cambisol type [65]. These soils are poor in
minerals; thus, in order to achieve adequate production, crops grown on them must be
regularly fertilized, which affects their mineral profile [66]. According to CART, therefore,
honeys with a large proportion of cambisol were mainly represented by a low content of B,
Ca, and Mg, with the exception of the Ni content in honey, which increased with a larger
area of cambisol in the vicinity of bee colonies.

Table 6. Regression classification rules for mineral substances.

Nodes Soil (Prediction) Rules

Node 1 Cambisol All cases
Node 2 Cambisol If B ≤ 14.59 then Soil = Cambisol in 62.9% of cases
Node 3 Cambisol If B (14.59; 15.87] then Soil = Cambisol in 8.8% of cases
Node 4 Cambisol If B (15.87; 16.49] then Soil = Cambisol in 10% of cases
Node 5 Gleysol If B (16.49; 17.05] then Soil = Gleysol in 11.8% of cases
Node 6 Fluvisol If B > 17.05 then Soil = Fluvisol in 6.5% of cases
Node 7 Fluvisol If B ≤ 14.59 and Ca ≤ 162.10 then Soil = Fluvisol in 41.8% of cases
Node 8 Cambisol If B ≤ 14.59 and Ca (162.10; 179.20] then Soil = Cambisol in 5.3% of cases
Node 9 Cambisol If B ≤ 14.59 and Ca (179.20; 189.20] then Soil = Cambisol in 5.3% of cases
Node 10 Anthrosol If B ≤ 14.59 and Ca (189.20; 215.30] then Soil = Anthrosol in 2.4% of cases
Node 11 Cambisol If B ≤ 14.59 and Ca > 215.30 then Soil = Cambisol in 8.2% of cases
Node 12 Cambisol If B (14.59; 15.87] and Mg ≤ 30.22 then Soil = Cambisol in 4.1% of cases
Node 13 Anthrosol If B (14.59; 15.87] and Mg > 30.22 then Soil = Anthrosol in 4.7% of cases
Node 14 Cambisol If B (15.87; 16.49] and Ca ≤ 109.60 then Soil = Cambisol in 8.2% of cases
Node 15 Cambisol If B (15.87; 16.49] and Ca > 109.60 then Soil = Cambisol in 1.8% of cases
Node 16 Kastanozem If B (16.49; 17.05] and Ni ≤ 0.13 then Soil = Kastanozem in 5.9% of cases
Node 17 Cambisol If B (16.49; 17.05] and Ni (0.13; 0.27] then Soil = Cambisol in 4.1% of cases
Node 18 Cambisol If B (16.49; 17.05] and Ni > 0.27 then Soil = Cambisol in 1.8% of cases
Node 19 Anthrosol If B > 17.05 and Mg ≤ 34.69 then Soil = Anthrosol in 4.7% of cases
Node 20 Fluvisol If B > 17.05 and Mg > 34.69 then Soil = Fluvisol in 1.8% of cases
Node 21 Fluvisol If B ≤ 14.59 and Ca ≤ 162.10 and Mg ≤ 31.49 then Soil = Fluvisol in 29.4% of cases
Node 22 Cambisol If B ≤ 14.59 and Ca ≤ 162.10 and Mg (31.49; 37.11] then Soil = Cambisol in 4.1% of cases
Node 23 Cambisol If B ≤ 14.59 and Ca ≤ 162.10 and Mg (37.11; 42.41] then Soil = Cambisol in 4.1% of cases
Node 24 Anthrosol If B ≤ 14.59 and Ca ≤ 162.10 and Mg > 42.41 then Soil = Anthrosol in 4.1% of cases
Node 25 Cambisol If B ≤ 14.59 and Ca (179.20; 189.20] and Mg ≤ 37.65 then Soil = Cambisol in 2.9% of cases
Node 26 Cambisol If B ≤ 14.59 and Ca (179.20; 189.20] and Mg > 37.65 then Soil = Cambisol in 2.4% of cases
Node 27 Cambisol If B ≤ 14.59 and Ca > 215.30 and Mn ≤ 2 then Soil = Cambisol in 7.1% of cases
Node 28 Cambisol If B ≤ 14.59 and Ca > 215.30 and Mn > 2 then Soil = Cambisol in 1.2% of cases

The presence of fluvisol in the vicinity of the beehive location was manifested by
a low content of B, Ca, and Mg in honey (29.4% of cases) or a low content of B and Ca
(41.8% of cases) but in some cases, the presence of this type of soil led to a high content
of B (6.5% of cases). These differences are explained by the type of soil, where fluvisol
represents river sediments that can be affected by anthropogenic activity [67]. This fact is
also indicated by the high content of Pb (Table 3), although in the discrimination according
to CART, Pb was not significant, which is caused by the variability of this factor. Another
type of soil that has been confirmed to have an effect on the mineral composition of honey
is anthrosol. This type of soil is significantly transformed by human activity, mostly with
originally less fertile soil [68], which, within the CART discrimination, was manifested by a
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higher representation of Ca and Mg. A high content of Ca and Mg is typical for anthrosol,
while their higher content is due to both anthropogenic activity and sandy or sandstone
subsoil [68,69]. Another type of soil influencing the mineral profile of honey, according to
CART, was kastanozem. This type of soil is typical for pastures, steppes, meadows, and
anthropogenic analogs [70]. Kastanozem was manifested by a high content of B and a
low content of Ni. These soils are characterized by available Ca, Mg, and Na cations. In
our study, only a higher Na content (Table 3) was confirmed in honey in relation to the
amount of kastanozem in the location of the bee colonies. The content of B and Ni can be
affected by anthropogenic activity (fertilization), but there is not enough information in the
scientific literature about its content and availability for plants. Pollution as the reason for
their higher content cannot be assumed because other metals such as Pb, As, Cu, and Zn
have not been confirmed in honey.

4. Conclusions

The mineral profile of honey can be influenced, among mechanisms, by the type of
soil on which the beehive is located and which occurs within its flying range. In this study,
positive high correlations were confirmed with certain soil types and specific elements,
namely phaeozem with Na and K, as well as ranker with Mn, regosol with Al, and anthrosol
with Zn and Pb, while a negative correlation between phaeozem with B, Mg, Al, Ca, Cr,
Mn, Fe, Ni, Zn, regosol with Mg, Cr, and rendzinas with Al (p < 0.05). The higher statistics
methods subsequently proved that some elements are characteristic of the given soil type.
Using CART analysis, the linear regression dependence between Ca, B, Mg, and Mn and the
cambisol, anthrosol, fluvisol, and kastanozem soils was confirmed. The mutual relationship
between soil type and mineral substances in honey can be used to predict the geographical
origin of honey. When working with national map data, soil profiles can be used to predict
the mineral profile of honey using minerals such as B, Ca, Mg, Ni, and Mn and subsequently
authenticate its geographical origin.
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15. Lachman, J.; Kolihová, D.; Miholová, D.; Košata, J.; Titěra, D.; Kult, K. Analysis of Minority Honey Components: Possible Use for

the Evaluation of Honey Quality. Food Chem. 2007, 101, 973–979. [CrossRef]
16. Anklam, E. A Review of the Analytical Methods to Determine the Geographical and Botanical Origin of Honey. Food Chem. 1998,

63, 549–562. [CrossRef]
17. Porrini, C.; Sabatini, A.G.; Girotti, S.; Ghini, S.; Medrzycki, P.; Grillenzoni, F.; Bortolotti, L.; Gattavecchia, E.; Celli, G. Honey bees

and bee products as monitors of the environmental contamination. Apiacta 2003, 38, 63–70.
18. Solayman, M.; Islam, M.A.; Paul, S.; Ali, Y.; Khalil, M.I.; Alam, N.; Gan, S.H. Physicochemical Properties, Minerals, Trace Elements,

and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 219–233.
[CrossRef]

19. González-Porto, A.V.; Martín Arroyo, T.; Bartolomé Esteban, C. How Soil Type (Gypsum or Limestone) Influences the Properties
and Composition of Thyme Honey. Springerplus 2016, 5, 1663. [CrossRef] [PubMed]
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Volume 1.
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Abstract: Pu-erh tea is a famous tea worldwide, and identification of the geographical origin of Pu-erh
tea can not only protect manufacture’s interests, but also boost consumers’ confidence. However, tree
age may also influence the fingerprints of Pu-erh tea. In order to study the effects of the geographical
origin and tree age on the interactions of stable isotopes and multi-elements of Pu-erh tea, 53 Pu-erh
tea leaves with three different age stages from three different areas in Yunnan were collected in 2023.
The δ13C, δ15N values and 25 elements were determined and analyzed. The results showed that δ13C,
δ15N, Mg, Mn, Fe, Cu, Zn, Rb, Sr, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu had
significant differences among different geographical origins (p < 0.05). Mn content was significantly
influenced by region and tree age interaction. Based on multi-way analysis of variance, principal
component analysis and step-wised discriminant analysis, 24 parameters were found to be closely
related to the geographical origin rather than tree age, and the geographical origin of Pu-erh tea can
be 100.0% discriminated in cross-validation with six parameters (δ13C, δ15N, Mn, Mg, La, and Tb).
The study could provide references for the establishment of a database for the traceability of Pu-erh
tea, and even the identification of tea sample regions with different tree ages.

Keywords: geographical origin; pu-erh tea; tree ages; mineral elements; stable isotope

1. Introduction

Pu-erh tea, made by large-leaf tea species (Camellia sinensis var.assamica), is one of the
top ten famous teas in China and is a geographical landmark product of Yunnan [1]. Pu-erh
tea is made from Yunnan large-leaf sun-blue maocha. Under the protection of geographical
indications, the tea is made by special processing technology, including primary processing
(picking, fixing, rolling, and sun-drying) and the blending and pressing of Pu-erh raw tea,
the mentation and finishing of Pu-erh ripe tea, as well as the post processing [2]. Excep-
tionally, plenty of nutrients such as protein, amino acids, carbohydrates, tea polyphenols,
and tea pigments have been reported in Pu-erh tea [3]. Pu-erh has multiple health benefits
such as anti-cancer [4], antioxidant [5], anti-hypertensive [6], and hypolipidemic proper-
ties [7–9]. In recent years, the demand for Pu-erh tea has increased rapidly, and consumers
have increasingly higher requirements for the quality of Pu-erh tea. The government and
enterprises are committed to promoting the development of Pu-erh tea production in the
direction of intensification, continuity, technology and digitization.

At present, Pu-erh tea has been listed as a geographical indication product. However,
due to its high quality and price, especially raw Pu-erh tea, there are frequently phenomena
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of substandard quality and fake origin in the market. As a result, there is an urgent
need to establish a stable and reliable traceability technology of raw Pu-erh tea’s origin,
and to obtain a fresh and authentic identification model by sampling from the original
place of origin. Currently, the common traceability methods applied to tea, herbs and
spices include chromatographic, spectroscopic and electrochemical methods such as high-
performance liquid chromatography [10], gas chromatography mass spectrometry [11],
near-infrared spectroscopy [12,13], electronic nose and electronic tongue [14]. In addition,
mineral elements [15–17] and stable isotopic ratios [18] were also effective fingerprints
for geographical traceability. Liu et al. detected four stable isotopes (C, N, H, and O)
and 20 elements in green tea samples from different provinces of China, and the correct
discrimination rate of green tea samples from different origins was 92.30% [19]. Ni et al.
examined the ability to discriminate the geographic origin of green tea by determining
the multi-element content and stable isotope signature of flat green tea samples from
different origins, combined with the decision tree (DT) method. Under the validation of
cross-validation and the “blind” dataset, the prediction accuracy was more than 70.00%,
and the discrimination accuracy of green tea from different origins was 90.00% [20].

Among them, the multi-element and stable isotopic ratios were closely related with
local geological background (soil [21], water [22], etc.) and environment (temperature [23],
precipitation [24], etc.), which proved to be effective tools for geographical traceability. As
for the geographical traceability of Pu-erh tea, Zhang et al. analyzed 41 elements in 98
Pu-erh tea samples in Yunnan Province. The results showed that the average concentrations
of Fe and Pb in tea samples from Pu-erh were significantly higher than those in other
production areas, Mn and Cr were generally higher in Xishuangbanna production area,
while Ba and rare earth elements showed higher concentrations in Lancang Pu-erh tea
samples. As a result, the geographical origins of Pu-erh tea could be distinguished based
on the concentrations of 12 elements combined with chemometric analysis [25]. Li et al.
conducted an exploration of the content of eight microelements in raw Pu-erh tea to assess
the safety risk related to the storage year [26]. The above literature indicates that researchers
mostly focus on mineral element and isotope analysis of tea leaves from different regions,
and it is feasible to identify the origin of Pu-erh tea by mass-spectrometric techniques.
However, the mineral element and isotopic ratios of tea leaves are not only related to
the origin (soil, water, climate) [27,28], but the above parameters may also be influenced
by factors such as variety and age of the tree [29,30]. However, there are few reports on
the influence of tree age on the fingerprint analysis of fresh Pu ‘er leaves from different
geographical origin. Therefore, we will focus on the of different origin, tree age and other
factors as a new research idea in this paper.

In this study, the stable isotopic ratios and mineral elemental contents in fresh leaves
of Pu-erh tea from different regions and tree ages were collected. The C and N stable
isotopes and the elemental contents in tea leaves were analyzed. The indicators mainly
influenced by the region and less affected by tree age were screened to establish the robust
discriminative model. Based on the above results, the study could lay the theoretical
research foundation for the systematic research and database construction work on the
origin traceability technology of Pu-erh tea.

2. Materials and Methods
2.1. Sample Cultivation and Collection

The main production areas (Jinggu County and Ning’er County in Yunnan Pu’er tea
City, and Bangdong Township in Lincang City) were selected within the limited area of
Geographical Indication Product Pu-erh tea [31]. Two tea gardens were selected in each
county. About 200 g of young ‘bud’ leaves (one bud and two leaf) from large-leaf tea species
was sampled from tea trees at each sampling site from 26 to 29 March in 2023. Furthermore,
specific information including the geographical location information (longitude, latitude,
and altitude information) and tree age of Pu-erh tea trees was also recorded. The detailed
information is shown in Table 1.
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Table 1. The sample numbers, location, and tree age of tea geographical origins.

Region Number of Samples N Latitude (deg) E Longitude (deg) Altitude (m) Tree Age (Year)

Jinggu 24 23.7227 100.6877 1842–1901
20~100 (12),
100~200 (6),

>200 (6)

Bangdong 14 23.9374–23.9397 100.3532–100.3562 1633–1739
20~100 (8),

100~200 (3),
>200 (3)

Ning’er 15 23.2548 101.0822 1614
20~100 (5),

100~200 (5),
>200 (5)

2.2. Sample Pretreatment

The leaves were cleaned before drying so as to remove dust and dirt. All tea samples
were put into a dryer at 40 ◦C to obtain a constant weight. Subsequently, the dried samples
were finely ground into a uniform powder using a plant crusher. The resulting powder was
then passed through a 100-mesh sieve to achieve a homogeneous particle size. All samples
were uniformly stored at 4 ◦C for further analysis.

2.3. Multi-Element Analysis

The digestion process for each sample closely followed the methodology outlined in
our prior research [1]. Approximately 0.25 g of the homogenized sample was subjected to a
2-h treatment with 6 mL of concentrated HNO3 in Teflon digestion vessels. Subsequently,
2 mL of BV-III grade H2O2 was added to each vessel and allowed to react for 30 min. After
the release of nitrogen oxides, the digestion vessels were introduced into a microwave
digestion instrument (CEM MARS Xpress, Charlotte, NC, USA) and heated gradually to
180 ◦C for 40 min.

The ICP-MS operational parameters were as follows: radio frequency power at 1280 W,
atomizing chamber temperature at 2 ◦C. The cooling gas, carrier gas, and auxiliary gas were
set at flow rates of 1.47 L min−1, 1 L min−1, and 1 L min−1, respectively. To ensure accuracy,
the CRM of tea flour (GBW10016) underwent digestion and determination using the same
procedure. All sample determinations were performed in triplicate, with a re-measurement
undertaken if the relative standard deviation of internal standard concentration exceeded
5%. Element concentration data were corrected based on dry matter after being adjusted
for water content measured before digestion. The quality control (LOD, LOQ, recovery,
etc.) of the instrument for the mineral element determination is shown in Table S1.

2.4. Stable Carbon and Nitrogen Isotope Analysis

Dry tea samples (0.5–0.6 mg) were carefully weighed into 6.0 mm × 4.0 mm tin
capsules and introduced into an elemental analyzer (vario PYRO cube, Elementar Company,
Langenselbold, Germany) equipped with an autosampler. Carbon and nitrogen elements
within the samples were combusted at 1020 ◦C, converting them into CO2 and NOx gases.
Subsequently, the NOx was reduced to N2 through a copper wire at 600 ◦C before entering
an isotope ratio mass spectrometer (IsoPrime100, Isoprime Company, Stockport, UK) via a
Conflo III dilutor.

The final stable isotope ratios are expressed as δ notation relative to international
standard (Vienna Pee Dee Belimnite (VPDB) for carbon, atmospheric nitrogen (AIR) for
nitrogen), according to the following equation:

δ (‰) = (Rsample/Rstandard − 1) × 1000,

where δ (‰) represents the δ13C and δ15N values, and R is the ratio of 13C/12C or 15N/14N.
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For scale normalization and quality assurance, tea samples were analyzed together
with reference materials including USGS40 (L-glutamic acid; δ13CVPDB = −26.389‰, δ15Nair
= −4.5‰) and urea (δ13CVPDB = −43.26‰, δ15Nair = −0.56‰) for δ13C and δ15N values.
Each sample was analyzed three times. The instrumental precision for stable isotope ratio
measurements based on the reference materials was ≤0.2‰ for δ13C values, ≤0.2‰ for
δ15N values, ≤3‰ values, respectively.

2.5. Statistical Analysis

The statistical analyses of the data, including one-way analysis of variance (one-way
ANOVA), multiway analysis of variance (multiway ANOVA), principal component analysis
(PCA) and linear discriminant analysis (LDA), were carried out with SPSS for Windows
version 22.0 (SPSS Inc., Chicago, IL, USA).

One-way ANOVA was applied to elements to test whether the differences in average
elemental values are related to considered geographical origins. With post-hoc analysis
conducted using either Dunnett’s or Tukey’s test for multiple comparisons according to the
result of Bartlett’s test for equal variances. Multiway ANOVA was applied was to quantify
the contributions of geographical origin, tree age and their interactions (three factors) to the
total variance in element levels. A factor with a larger ratio of relative variance indicates
the greater influence relative to the other factors.

Principal component analysis (PCA) is used to transform a set of correlated variables
into a set of uncorrelated principal components (PCs) that explain the greatest possible
amount of variation in the data, and to provide a comprehensive data visualization [32].
Upon applying PCA to the analytical data for three geographical origins, tea samples could
be preliminarily clustered (the first four PCs). In addition, we used Fisher’s linear discrimi-
nation analysis (LDA) to assess the effectiveness of the elements for the identification of
tea origin traceability. Linear discriminant analysis (LDA) is a supervised procedure that
maximizes the variances between categories and minimizes the variances within categories
by creating new variables (discriminant functions). The reliability of the discriminant
model was also verified by the cross-validation method (leave-one-out method).

3. Results
3.1. Comparison of Isotopic Ratios and Mineral Contents from Different Regions

The mean values and standard deviations of mineral element contents in Pu-erh tea
samples from different regions are shown in Table 2. The mineral elements (Mg, Mn, Fe,
Cu, Zn, Rb, Sr, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) and isotopes
(δ15N and δ13C) had significant differences among different geographical origins (p < 0.05).
The mineral elements (Mg, Mn, Fe, Cu, Rb, Sr, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb and Lu) and isotopes (δ15N and δ13C) had significant differences between the two
geographical origins of Jinggu and Bangdong (p < 0.01). The mineral elements (Mn, Y, Gd,
Tb, Dy, Ho, Er, Tm, Yb and Lu) had significant differences between the two geographical
origins of Jinggu and Ning’er (p < 0.01). The mineral elements (Mg, Mn, Rb, Sr, Y, La,
Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) and isotopes (δ15N and δ13C) had
significant differences between the two geographical origins of Bangdong and Ning’er
(p < 0.01). Specifically, the highest elemental content of K was found in Ning’er tea samples,
and the Fe, Sr, Tb contents and δ15N were significantly higher in Pu-erh tea samples from
Jinggu than in other regions, the elemental contents of Mg, K and Ca were higher in Pu-erh
tea samples from Bangdong, while the δ13C value and the elemental contents of Mg, Mn, Y,
Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu were significantly higher in Pu-erh tea samples
from Ning’er than in other regions. Box plots of stable isotope ratios and mineral contents
in Pu-erh tea in different regions are shown in Figure 1.
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Figure 1. Box plots of stable isotope ratio and mineral content in Pu-erh tea in different regions. a–c in
the same row indicated that there are significant differences among regions at p < 0.05 level. Note:
◦ indicates outliers, and the number in the upper right corner represents the number of in-dividuals
that are outliers; * denotes outliers, the number in the upper right corner represents the number of
individuals that are outliers.

Table 2. Stable isotope ratios and mineral contents in Pu-erh tea from different regions.

Element Jinggu Bangdong Ning’er

δ13C (‰) * −25.16 ± 0.83 a −26.77 ± 0.61 b −24.82 ± 1.16 a

δ15N (‰) ** 4.06 ± 3.35 a −0.11 ± 0.66 c 2.39 ± 1.30 b

Mg (mg/kg) ** 1776.176 ± 184.688 b 2077.253 ± 152.236 c 1601.886 ± 201.680 a

K (mg/kg) 19,617.81 ± 1591.58 a 19,701.25 ± 1035.70 a 20,368.84 ± 1833.42 a

Ca (mg/kg) 4193.70 ± 820.56 a 4184.00 ± 486.66 a 3864.72 ± 469.04 a

Mn (mg/kg) ** 376 ± 139 c 790 ± 219 b 1159 ± 359 a

Fe (mg/kg) * 155 ± 164 a 70 ± 22 b 84 ± 20 b

Cu (mg/kg) * 12.7 ± 2.5 b 15.2 ± 1.1 a 14.3 ± 2.5 a

Zn (mg/kg) * 34.7 ± 5.9 ab 37.3 ± 4.8 a 32.9 ± 4.2 b

Rb (mg/kg) * 75 ± 21 a 28 ± 6 b 65 ± 17 a

Sr (mg/kg) ** 14 ± 5 a 7 ± 2 c 11 ± 4 b

Y (µg/kg) * 876.96 ± 79.77 b 843.16 ± 120.60 b 1020.33 ± 125.51 a

La (µg/kg) * 119.86 ± 38.80 a 25.08 ± 4.42 b 123.80 ± 68.58 a

Pr (µg/kg) * 24 ± 8 a 6 ± 2 b 29 ± 14 a

Nd (µg/kg) * 88.38 ± 30.35 a 24.53 ± 6.16 b 115.51 ± 54.43 a
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Table 2. Cont.

Element Jinggu Bangdong Ning’er

Sm (µg/kg) ** 18 ± 6 b 6 ± 2 c 25 ± 12 a

Eu (µg/kg) ** 5.0 ± 1.2 b 2.7 ± 0.8 c 6.5 ± 2.3 a

Gd (µg/kg) ** 16 ± 5 b 7 ± 3 c 26 ± 11 a

Tb (µg/kg) ** 1122.8 ± 238.5 a 630.6 ± 124.7 b 219.6 ± 110.1 c

Dy (µg/kg) ** 13 ± 4 b 6 ± 2 c 21 ± 9 a

Ho (µg/kg) ** 2.7 ± 0.7 b 1.2 ± 0.5 c 4.3 ± 1.6 a

Er (µg/kg) ** 9 ± 3 b 3 ± 1 c 13 ± 5 a

Tm (µg/kg) ** 1.2 ± 0.5 b 0.4 ± 0.2 c 1.9 ± 0.8 a

Yb (µg/kg) ** 8 ± 3 b 3 ± 1 c 13 ± 5 a

Lu (µg/kg) ** 3.6 ± 1.8 c 8.5 ± 2.9 b 11.8 ± 3.9 a

Data are shown as the mean ± standard deviation. a–c in the same row indicated that there are significant
differences among regions at p < 0.05 level. * means significant difference (p < 0.05), ** means highly significant
difference (p < 0.01).

The mean values and standard deviations of mineral element contents in deep soil
(30–60 cm) from different regions are shown in Table 3. The mineral elements (Mg, K,
Ca, Mn, Fe, Cu, Zn, Rb, Sr, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu)
had significant differences among different geographical origins (p < 0.05). The mineral
elements (Mg, K, Mn, Zn, Rb, Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho and Er) had significant
differences between Jinggu and Bangdong (p < 0.01). The mineral elements (Mg, K, Mn, Fe,
Cu, Zn, Rb, Sr, Y, Eu, Tb, Dy, Ho, Er, Tm, Yb and Lu) had significant differences between
Jinggu and Ning’er (p < 0.01). The mineral elements (Mg, Fe, Cu, Zn, Rb and Sr) had
significant differences between Bangdong and Ning’er (p < 0.01). In summary, the trends of
the elements (Mn, Rb, Tb and Dy) in the soil in the three geographic regions were consistent
with those in Pu-erh tea.

Table 3. Mineral contents in deep soil (30–60 cm) from different regions.

Element Jinggu Bangdong Ning’er

Mg (µg/kg) * 4973.044 ± 1006.566 a 2381.777 ± 168.522 b 1535.505 ± 76.886 b

K (mg/kg) * 27.28 ± 2.41 a 10.85 ± 0.08 11.55 ± 0.27 b

Ca (µg/kg) * 66.26 ± 22.42 a 51.38 ± 5.59 ab 37.26 ± 1.24 b

Mn (µg/kg) ** 1264 ± 46 b 1470 ± 40 a 341 ± 26 c

Fe (mg/kg) * 38 ± 5 a 32 ± 1 a 17 ± 1 b

Cu (µg/kg) * 57.2 ± 7.8 a 49.3 ± 1.6 a 18.4 ± 0.3 b

Zn (µg/kg) ** 156.1 ± 14.7 a 96.9 ± 3.1 b 42.9 ± 2.1 c

Rb (µg/kg) ** 134 ± 13 a 49 ± 4 c 82.36 ± 2.04 b

Sr (µg/kg) ** 28 ± 4 b 36 ± 0 a 20 ± 1 c

Y (µg/kg) * 18.18 ± 1.35 a 11.66 ± 0.85 b 9.68 ± 1.80 b

La (µg/kg) * 40.03 ± 2.05 a 27.05 ± 1.64 b 31.82 ± 7.64 ab

Pr (µg/kg) * 9 ± 0 a 5 ± 0 b 6 ± 2 b

Nd (µg/kg) * 34.81 ± 1.35 a 18.09 ± 1.27 b 20.85 ± 7.20 b

Sm (µg/kg) * 7 ± 0 a 3 ± 0 b 4 ± 2 b

Eu (µg/kg) ** 0.8 ± 0.1 a 0.5 ± 0.0 b 0.3 ± 0.0 c

Gd (µg/kg) * 6 ± 0 a 2 ± 0 b 3 ± 1 b

Tb (µg/kg) * 0.7 ± 0.1 a 0.3 ± 0.0 b 0.4 ± 0.1 b

Dy (µg/kg) * 4 ± 0 a 2 ± 0 b 2 ± 1 b

Ho (µg/kg) * 0.7 ± 0.1 a 0.4 ± 0.0 b 0.3 ± 0.1 b

Er (µg/kg) * 2 ± 0 a 1 ± 0 b 1 ± 0 b

Tm (µg/kg) ** 0.2 ± 0.0 a 0.2 ± 0.0 b 0.1 ± 0.0 c

Yb (µg/kg) ** 2 ± 0 a 1 ± 0 b 1 ± 0 c

Lu (µg/kg) ** 0.2 ± 0.0 a 0.1 ± 0.0 b 0.1 ± 0.0 c

Data are shown as the mean ± standard deviation. a–c in the same row indicated that there are significant
differences among regions at p < 0.05 level. * means significant difference (p < 0.05), ** means highly significant
difference (p < 0.01).
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As can be seen from Table 4, the canonical correlation analysis (CCA) extracted a total
of 9 groups of typical variables, of which 7 groups of typical variables had a correlation
coefficient of 0.317, and 8 groups of typical variables had a correlation coefficient of 0.111.
As can be seen in Figure 2, when CCA1 was taken as a benchmark, the contents of Nd,
La, Pr, Sm, Gd, Mn, Yb, Dy, Fe, Tm, and Ce were positively correlated with soil elemental
content, and Eu, Cu, Rb, K, Se, Ca, Tb, and Y were negatively correlated with soil elemental
content, of which the content of Ho in tea was weakly correlated with soil elemental content;
when CCA2 was taken as a benchmark, the content of Zn, and Sr in tea was positively
correlated with soil elemental content, Eu, Cu, Rb, K, Se, Ca, Tb, and Y were positively
correlated with soil elemental content, and Eu, Cu, Rb, K, Se, Ca, Tb, and Y were positively
correlated with soil elemental content. The contents of Eu, Cu, Rb, K, Se, Ca, Tb, and Y
were negatively correlated with the soil element contents, and the content of Mg in tea
was weakly negatively correlated with the soil element contents. At the same time, the soil
characteristics of the different regions (pH, EC, etc.) are shown in Table 5. Among them,
the highest pH value was found in Bangdong, which was significantly different from the
other two regions (p < 0.01). The lowest EC value was found in Ning’er, which was highly
significantly different from the other two regions (p < 0.01).

Table 4. The canonical correlation coefficients.

Canonical Variable Correlation Coefficient

1 −0.077
2 −0.150
3 −0.069
4 −0.255
5 −0.246
6 −0.215
7 0.317
8 0.111
9 0.371
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Table 5. The soil characteristics of the different regions (pH, EC, etc.).

Region Bangdong Jinggu Ning’er

pH 5.48 ± 0.15 a 5.07 ± 0.17 b 5.03 ± 0.06 b

EC (µs/cm) 46.98 ± 0.93 a 34.99 ± 5.97 b 24.21 ± 5.64 c

a–c in the same row indicated that there are significant differences among regions at p < 0.05 level.
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3.2. Comparison of Isotopic Ratios and Mineral Contents from Different Tree Ages

The mean values and standard deviations of mineral element contents in Pu-erh tea
samples of different ages are shown in Table 6. In addition to Zn, other mineral elements
(Mg, K, Ca, Mn, Fe, Cu, Rb, Sr, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu)
and isotopes (δ13C and δ15N) did not show any significant differences (p > 0.05) among tree
ages. Among them, the elemental content of Zn was higher in Pu-erh tea samples aged
100~200 than in other ages. Specifically, the elemental differences among tree ages for each
region are shown in Table 7. In the region of Bangdong, significant differences (p < 0.05)
were found for δ13C and the contents of Ca, Zn, Ho, and Yb in tea leaves among different
tree ages. However, the contents of Ca, Pr, Nd, Sm, Eu and Gd in tea leaves had significant
differences in the region of Ning’er (p < 0.05).

Table 6. Stable isotopes and mineral contents in Pu-erh tea from different tree ages.

Element 20~100 100~200 >200

δ13C (‰) −25.19 ± 1.27 a −25.56 ± 1.07 a −25.86 ± 1.37 a

δ15N (‰) 1.82 ± 2.30 a 2.43 ± 2.93 a 2.36 ± 2.43 a

Mg (mg/kg) 1758.798 ± 257.603 a 1799.159 ± 335.310 a 1808.026 ± 233.497 a

K (mg/kg) 20,348.89 ± 1777.85 a 19,778.20 ± 1233.41 a 19,528.80 ± 1504.73 a

Ca (mg/kg) 4109.37 ± 567.86 a 3826.25 ± 757.32 a 4137.37 ± 431.45 a

Mn (µg/kg) 821 ± 481 a 889 ± 363 a 855 ± 400 a

Fe (mg/kg) 1171 ± 124 a 86 ± 50 a 80 ± 20 a

Cu (mg/kg) 13.9 ± 2.5 a 15.2 ± 2.5 a 13.4 ± 1.7 a

Zn (mg/kg) * 34.4 ± 4.7 ab 37.1 ± 5.9 a 32.4 ± 4.0 b

Rb (mg/kg) 62 ± 25 a 51 ± 23 a 55 ± 25 a

Sr (mg/kg) 10 ± 4 a 112 ± 6 a 12 ± 5 a

Y (µg/kg) 935.15 ± 137.55 a 942.68 ± 126.28 a 916.89 ± 159.38 a

La (µg/kg) 109.72 ± 68.93 a 68.80 ± 46.51 a 94.24 ± 74.79 a

Pr (µg/kg) 25 ± 16 a 16 ± 9 a 20 ± 14 a

Nd (µg/kg) 95.70 ± 61.48 a 61.80 ± 35.75 a 79.98 ± 55.41 a

Sm (µg/kg) 21 ± 13 a 13 ± 7 a 17 ± 11 a

Eu (µg/kg) 5.4 ± 2.6 a 4.3 ± 1.8 a 5.1 ± 2.3 a

Gd (µg/kg) 20 ± 13 a 14 ± 7 a 18 ± 11 a

Tb (µg/kg) 638.3 ± 478.3 a 520.7 ± 306.6 a 560.2 ± 351.2 a

Dy (µg/kg) 16 ± 10 a 12 ± 6 a 146 ± 9 a

Ho (µg/kg) 3.3 ± 2.0 a 2.5 ± 1.2 a 3.0 ± 1.8 a

Er (µg/kg) 10 ± 6 a 8 ± 4 a 9 ± 5 a

Tm (µg/kg) 1.4 ± 1.0 a 1.1 ± 0.7 a 1.3 ± 0.9 a

Yb (µg/kg) 9 ± 6 a 7 ± 4 a 9 ± 5 a

Lu (µg/kg) 9.9 ± 5.4 a 7.9 ± 3.3 b 9.2 ± 4.0 c

Data are shown as the mean ± standard deviation. a–c in the same row indicated that there are significant
differences among tree ages at p < 0.05 level. * means significant difference (p < 0.05).
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3.3. Multi-Way Analysis of Variance for Stable Isotopic Ratios and Elements

A combined analysis of variance across three regions and three tree ages was per-
formed using the general linear model (GLM) procedure of SPSS (Table 8). Regions and tree
age were considered as fixed factors, and the effects were portioned into different sources,
such as region (R), age (A), and region × age (R × A). In total, the stable isotope values
(δ15N and δ13C) and the mineral contents (Mg, Mn, Rb, Sr, Y La, Pr, Nd, Sm, Eu, Gd, Tb,
Dy, Ho, Er, Tm, Yb, and Lu) in Pu-erh tea were highly significantly influenced by region
(p < 0.01), the contents of Fe and Zn in Pu-erh tea were significantly influenced by region
(p < 0.05), whereas R × A had significant effects on Mn content (p < 0.01).

Table 8. Mean square of each stable isotope and element by analysis of variance.

Source of
Variation Region (R) Age (A) R × A Error

DF 2 2 4 44
cc (‰) 16.162 ** 0.453 0.783 0.918

δ15N (‰) 89.32 ** 4.98 3.31 3.24
Mg (mg/kg) 940,372.990 ** 214.532 16,805.581 35,097.374
K (mg/kg) 320,175.52 4,407,718.36 1,902,670.37 2,576,350.83
Ca (mg/kg) 343,041.76 441,090.52 973,706.97 223,680.31
Mn (mg/kg) 212,6241 ** 45,782 38,559,311 ** 88,978,814
Fe (mg/kg) 28,113 * 12,679 7124 8161
Cu (mg/kg) 12,380.3 9732.2 1244.7 5492.3
Zn (mg/kg) 77,533.4 * 48,583.2 22,130.5 21,778.1
Rb (mg/kg) 7,570,777 ** 208,510 230,305 211,491
Sr (mg/kg) 231,854 ** 32,516 34,624 13,801
Y (mg/kg) 178.84 ** 4.56 2.25 15.11
La (mg/kg) 51.79 ** 2.90 2.40 2.32
Pr (µg/kg) 2357 ** 82 152 95

Nd (mg/kg) 35.45 ** 1.23 2.20 1.38
Sm (µg/kg) 1466 ** 56 95 61
Eu (µg/kg) 60.9 ** 1.3 4.9 2.7
Gd (µg/kg) 1439 ** 28 97 57
Tb (mg/kg) 2068.2 ** 0.0 0.0 0.0
Dy (µg/kg) 954 ** 11 48 39
Ho (µg/kg) 39.5 ** 0.7 1.6 1.4
Er (µg/kg) 363 ** 2 18 13
Tm (µg/kg) 9.5 ** 0.0 0.5 0.4
Yb (µg/kg) 364 ** 5 22 13
Lu (µg/kg) 215.4 ** 3.8 5.5 11.3

* means significant effect (p < 0.05), ** means highly significant effect (p < 0.01).

3.4. Principal Component Analysis of Isotope Ratios and Mineral Content of Pu-erh Tea from
Different Regions

Through the above effects of region, tree age and their interaction on the isotope
ratios and mineral contents of Pu-erh tea, 22 characteristic mineral elements related to the
regions, including Mg, Mn, Fe, Zn, Rb, Sr, Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb,
Lu, δ13C and δ15N were screened. The screened 22 characteristic mineral elements were
subjected to principal component analysis of different regions, and the results are shown
in Table S2. Four principal components were obtained with a cumulative contribution
of 82.54%. Principal component 1 mainly contains δ13C, δ15N, Fe, Cu, Sr, Y, La, Pr, Nd,
Sm, Eu, Gd, Tb, Ho, Er, Tm, Yb and Lu, and the contribution rate is 57.76%, principal
component 2 mainly contains δ15N, Cu, Sr, Y, Pr, Nd, Sm and Dy element information, and
the contribution rate is 13.43%, principal component 3 mainly contains the information
of δ15N and Mg, Cu, Rb, Pr, Nd, Sm, Eu, Tb and Dy elements, and the contribution rate
is 6.76%, principal component 4 mainly contains δ13C, Fe, Cu, Rb, Sr and La information
with a contribution rate of 4.60%. The four most important variables were Nd, Sm, Eu,
Gd, Tb, Ho, Er, Tm, Yb and Lu in PC1, and δ15N, Sr, Y and Dy in PC2, and Mg in PC3,
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respectively (Figure 3a). Meanwhile, three origin samples (Ning’er, Jinggu, Bangdong)
were correctly distinguished. And they are distributed in different spatial regions. It shows
that the selected mineral elements and stable isotope origin traceability fingerprint can be
used to distinguish Pu-erh tea from different origins (Figure 3b). The Pu-erh tea samples
from three geographical origins were distributed in different spatial distributions. The
results indicated that these elements could be used for the identification of the geographical
origin of Pu-erh tea.

Foods 2024, 13, x FOR PEER REVIEW  11  of  16 
 

 

contribution rate is 13.43%, principal component 3 mainly contains the information of δ15N 

and Mg, Cu, Rb, Pr, Nd, Sm, Eu, Tb and Dy elements, and the contribution rate is 6.76%, 

principal component 4 mainly contains δ13C, Fe, Cu, Rb, Sr and La  information with a 

contribution rate of 4.60%. The four most important variables were Nd, Sm, Eu, Gd, Tb, 

Ho, Er, Tm, Yb and Lu in PC1, and δ15N, Sr, Y and Dy in PC2, and Mg in PC3, respectively 

(Figure 3a). Meanwhile, three origin samples (Ning’er, Jinggu, Bangdong) were correctly 

distinguished. And they are distributed in different spatial regions. It shows that the se-

lected mineral elements and stable isotope origin traceability fingerprint can be used to 

distinguish Pu-erh  tea  from different origins  (Figure 3b). The Pu-erh  tea samples  from 

three geographical origins were distributed in different spatial distributions. The results 

indicated  that  these  elements  could  be used  for  the  identification  of  the  geographical 

origin of Pu-erh tea. 

 
 

(a)  (b) 

Figure 3. Discriminant function scores of Pu-erh tea of different regions. (a) The Pu-erh tea samples 

from different origin sources were plotted using principal component scores; (b) The scores of Pu-

erh tea from different origin sources were plotted using the scores of PC1, PC2, and PC3. 

3.5. Discriminant Analysis of Isotope Ratio and Mineral Element Content of Pu‐erh Tea from 

Different Regions 

Stepwise discriminant analysis was conducted on Mg, Mn, Fe, Zn, Rb, Sr, Y, La, Pr, 

Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, δ13C and δ15N, and seven indicators were 

selected to establish the discriminant model. The cross-validation model was also used to 

obtain the classification results of Pu-erh tea samples from three regions, as shown in Table 

S3. Based on the discriminant model using the screened elements, the classification results 

showed that both original and cross-validation of correct discriminant rates could reach 

100%. The result indicated that a discriminative model consisting of these elements was 

fully capable of correctly discriminating samples. 

The discrimination model formula is as follows: 

YBangdong = −44.943 δ13C + 0.081 δ15N + 0.42 Mg + 2.863 × 10−5 Mn + 8.186 × 10−6 Rb + 0.175 La + 0.101 Tb − 675.771 

YNing’er = −48.217 δ13C − 3.003 δ15N + 0.054 Mg + 4.555 × 10−5 Mn − 3.021 × 10−4 Rb + 0.129 La + 0.068 Tb − 739.961 

YJinggu = −45.218 δ13C − 3.404 δ15N + 0.031 Mg + 4.504 × 10−5 Mn − 1.039 × 10−4 Rb + 0.220 La + 0.034 Tb − 621.148 

As shown in Figure 4, the distribution of Pu-erh tea from different regions was ob-

tained. As was seen from the figure, the Pu-erh tea samples from the three regions were 

completely distinguished and located in different spaces, and there was a certain spatial 

range between  the  regions,  indicating  that  the selected  indicators  related  to  the  region 

were accurate and effective. 

Figure 3. Discriminant function scores of Pu-erh tea of different regions. (a) The Pu-erh tea samples
from different origin sources were plotted using principal component scores; (b) The scores of Pu-erh
tea from different origin sources were plotted using the scores of PC1, PC2, and PC3.

3.5. Discriminant Analysis of Isotope Ratio and Mineral Element Content of Pu-erh Tea from
Different Regions

Stepwise discriminant analysis was conducted on Mg, Mn, Fe, Zn, Rb, Sr, Y, La, Pr,
Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, δ13C and δ15N, and seven indicators were
selected to establish the discriminant model. The cross-validation model was also used to
obtain the classification results of Pu-erh tea samples from three regions, as shown in Table
S3. Based on the discriminant model using the screened elements, the classification results
showed that both original and cross-validation of correct discriminant rates could reach
100%. The result indicated that a discriminative model consisting of these elements was
fully capable of correctly discriminating samples.

The discrimination model formula is as follows:

YBangdong = −44.943 δ13C + 0.081 δ15N + 0.42 Mg + 2.863 × 10−5 Mn + 8.186 × 10−6 Rb + 0.175 La + 0.101 Tb − 675.771

YNing’er = −48.217 δ13C − 3.003 δ15N + 0.054 Mg + 4.555 × 10−5 Mn − 3.021 × 10−4 Rb + 0.129 La + 0.068 Tb − 739.961

YJinggu = −45.218 δ13C − 3.404 δ15N + 0.031 Mg + 4.504 × 10−5 Mn − 1.039 × 10−4 Rb + 0.220 La + 0.034 Tb − 621.148

As shown in Figure 4, the distribution of Pu-erh tea from different regions was ob-
tained. As was seen from the figure, the Pu-erh tea samples from the three regions were
completely distinguished and located in different spaces, and there was a certain spatial
range between the regions, indicating that the selected indicators related to the region were
accurate and effective.
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As can be seen from Table 9, the model was validated by determining the indicators
(δ13C, δ15N, Mg, Mn, Rb, La, and Tb) of nine Pu-erh tea samples from Bangdong. All the
samples were correctly discriminated, and a correct discrimination rate of 100.00% was
obtained.

Table 9. The external validation based on the indicator of new Pu-erh tea samples.

Region δ13C δ15N Mg Mn Rb La Tb

Bangdong

−26.01 1.40 2,724,050.97 1,235,282.25 90,404.89 523.63 8.20
−25.98 2.74 2,772,521.47 1,066,798.51 86,209.27 289.25 6.09
−27.43 3.19 2,632,641.73 1,043,034.78 96,223.16 214.16 4.73
−27.91 2.75 2,686,877.79 916,569.28 102,914.99 367.90 6.83
−26.16 2.57 3,067,714.29 969,110.57 133,737.01 375.74 5.66
−25.36 2.50 2,658,854.62 737,281.79 108,884.34 242.07 5.16
−25.68 2.31 2,482,755.05 1,006,464.11 102,004.56 391.33 7.49
−25.32 1.93 2,760,370.63 1,260,159.98 120,953.10 295.24 7.58
−26.30 2.57 2,543,127.79 947,274.99 95,336.29 369.31 6.56

4. Discussion

In our study, there were significant differences in stable isotopes among the three
regions. The lowest δ13C value was found in Pu-erh tea leaves from the Bangdong region,
while no significant difference was found between the other two regions. The δ13C value
in tea leaves was shown as follows: Ning’er > Jinggu > Bangdong, while the tendency of
latitude for the three regions was the same, which indicated that the δ13C values in tea
leaves increased with the higher latitude, which is consistent with the previous results [33].
Generally, tea areas at low latitudes have high average annual temperatures and receive
more light radiation on the surface of the ground. Pu-erh tea, as a C3 plant, utilizes the
Calvin photosynthetic pathway for CO2 assimilation. The δ13C values in plants have
been found to correlate with the ratio of intercellular CO2 and CO2 from the surrounding
environment (Pi/Pa) [34]. This correlation reflects the variability in CO2 sources (both
concentrations and δ13C values) across different regions. Specifically, higher latitude is
often associated with higher atmospheric CO2 concentrations, which in turn results in
variations in physiological processes and δ13C values within Pu-erh tea. In addition, the
δ13C values of Pu-erh tea samples with different geographical origins ranged from −24.58‰
to −27.15‰, falling in the range of C3 plants (−34‰ to −24‰) [35], and the result was
agreed with a previous report in which δ13C values for Chinese green tea varied between
−28.5‰ and −24.5‰ [36]. The observed variation in δ15N value was found in Pu-erh tea
from the Bangdong region, while there was no significant difference in values. Numerous
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investigations have showcased the correlation between fertilizer application in agricultural
techniques and the δ15N levels in plants. Traditionally, synthetic nitrogen-based fertilizers
exhibit nitrogen isotope values ranging from −4‰ to 4‰, while organic fertilizers generally
manifest higher δ15N values and exhibit a considerably broader spectrum (2–30‰) than
their synthetic counterparts [37]. It is worth mentioning that distinct synthetic nitrogen
fertilizers may also display varying δ15N values.

In addition, the contents of mineral elements such as Rb, La, Pr, and Nd were lower
in Pu-erh tea leaves from the Bangdong region, while no significant difference was found
between the other two regions. There were significant differences in the contents of mineral
elements (Fe) in Pu-erh tea leaves in the Jinggu region compared with other regions. This
might be because the mineral elements in plants were closely related to the mineral contents
in the regional soil [38]. The mineral contents in soils were mainly influenced by conditions
such as soil-forming parent material, soil pH, climate, and precipitation, which formed
the specific elemental fingerprints among different regions. The characteristics of the “soil-
plant” system led to variations in the composition of trace elements in plant tissues. At
the same time, compared with the previous mineral elements of Pu-erh tea, especially the
Mg values of Pu-erh tea samples with different geographical origins ranged from 1797.00
to 2273.50 mg/kg, agreeing with a previous report in which Mn values for Pu-erh tea
varied between 381.65 to 878.15 mg/kg [39]. For Pu-erh tea from Yunnan Province, the total
amount of Eu (0.010 ± 0.002 µg/g) was close to a previous report in which the content of
Eu was 6.49 ± 2.30 µg/kg, and the Yb content (0.019 ± 0.006 µg/g) was also similar with
the previous report, with the Yb content was 12.25 ± 4.66 µg/kg [40]. Furthermore, the
mineral element content (e.g., Zn) in Pu-erh tea is also influenced by the age of the tea trees.
Differences in Zn content can arise as a result of variations in the growing environment of
tea trees of different ages, given that Zn constitutes one of the vital trace elements needed
for plant growth and development. However, additional comprehensive investigations are
required to establish the pattern of change in the content of other mineral elements across
different ages of Pu-erh tea trees.

Although previous studies have obtained good discrimination for the geographical
origins of tea by using the stable isotope techniques or mineral element techniques [41,42],
the combination of two techniques was used for the first time to effectively identify the
origin of fresh Pu-erh tea, obtaining a high overall correct classification rate (100.0%) and
cross-validation rate (100.0%).

5. Conclusions

In this study, δ13C and δ15N values and 24 elemental contents of Pu-erh tea samples
from different regions and tree ages were comprehensively analyzed. Based on the multi-
way analysis of variance, only those significantly influenced by region were screened to
better distinguish between samples of different geographical origins. Using the screened
elements, step-wised discriminant analysis with 100.0% correct discrimination and 100.0%
cross-validation was obtained, and a discriminant model was established with only six
parameters (δ13C, δ15N, Mn, Mg, La, and Tb), indicating that the elements screened in
relation to origin were accurate and effective. Therefore, it is technically feasible to screen
the effective stable isotope and mineral elements to discriminate the origin of Pu-erh tea.
In addition, the study could also provide a reference for the establishment of a database
for the traceability of Pu-erh tea’s geographical origin. Because the tree age of 100 years
is a variable, the data should be available for identification in the second year. However,
it requires resampling for validation. Two tea plantations were chosen from each region,
which were representative to a certain extent but still this is not many. Therefore, further
expansion of the production areas under study is needed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods13030473/s1, Table S1: Stable isotopes and mineral contents
in Pu-erh tea from different tree ages; Table S2: Principal component analysis table of characteristic
mineral elements; Table S3: Classification results of Pu-erh tea from different regions; Table S4:
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Stable isotope and mineral element content in Pu-erh tea samples from different regions (Tree age,
variety, etc.).
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Abstract: SWATHtoMRM technology was used in this experiment to further identify and trace the
sources of Dendrobium devonianum and Dendrobium officinale produced in the same area using TOF and
MS-MRM. After the conversion of the R package of SWATHtoMRM, 191 MRM pairs of positive ions
and 96 pairs of negative ions were obtained. Dendrobium devonianum and Dendrobium officinale can be
separated very well using the PCA and PLS-DA analysis of MRM ion pairs; this shows that there are
obvious differences in chemical composition between Dendrobium devonianum and Dendrobium offici-
nale, which clearly proves that the pseudotargeted metabolomics method based on SWATHtoMRM
can be used for traceability identification research. A total of 146 characteristic compounds were
obtained, with 20 characteristic compounds in Dendrobium devonianum. The enrichment pathways
of the characteristic compounds were mainly concentrated in lipids and atherosclerosis, chagas
disease, fluid shear stress and atherosclerosis, proteoglycans in cancer, the IL-17 signaling pathway,
the sphingolipid signaling pathway, diabetic cardiomyopathy, arginine and proline metabolism,
etc., among which the lipid and atherosclerosis pathways were more enriched, and 11 characteristic
compounds affected the expression levels of IL-1, TNFα, CD36, IL-1β, etc. These can be used as a
reference for research on variety improvement and active substance accumulation in Dendrobium
devonianum and Dendrobium officinale.

Keywords: time-of-flight mass spectrometry; identification; Dendrobium devonianum; Longling area

1. Introduction

Dendrobium devonianum is a characteristic Chinese herbal medicine produced in the
Longling area of Yunnan, China, and it is also a Chinese plant that can be eaten as food [1–3].
Dendrobium devonianum has good biological health effects [4,5], and the geographical lo-
cation where it grows has a large impact on it. Among them, the Longling area produces
nationally important products, but the Dendrobium devonianum that grows in other parts of
Yunnan is not a notable product [6]. In order to counterfeit Dendrobium devonianum pro-
duced in the Longling area of Yunnan, Dendrobium officinale is often planted in the Longling
area and sold as Dendrobium devonianum. Although the appearance and shape of Dendro-
bium devonianum and Dendrobium officinale produced in the Longling area are different, it
is difficult to identify when it is dried or crushed into a powder, which seriously affects
the quality evaluation and origin traceability of Dendrobium devonianum [7]. Therefore, it is
essential to establish an effective Dendrobium devonianum traceability technology.

High-resolution mass spectrometry is one of the commonly used and effective trace-
ability technologies [8–11]. In our laboratory, TOF and UPLC-PDA have also been used to
trace the origins of Dendrobium devonianum and Dendrobium officinale produced in the same
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area; Dendrobium devonianum and Dendrobium officinale can be better distinguished through
relevant PCA and VIP analyses, etc., but the number of confirmed differential markers
obtained was small, and the amount of characteristic information about the differential
markers was low [7,12]. This also shows that, although they have a wide coverage, TOF
or UPLC-PDA have a dynamic range, quantitative accuracy, and significantly reduced
sensitivity, and the final characteristic information total obtained is less [13–15].

With the emergence of sequential windowed acquisition of all theoretical fragment
ions to multiple reaction monitoring (SWATHtoMRM) technology, the problems of the low
sensitivity of mass spectrometry in full scan mode and accuracy and reliability in the process
of structure identification have been effectively solved. Through a non-targeted analysis
of SWATH data, the generation of MRM ion pair information, and the targeted analysis
of each correlated MRM ion pair, SWATHtoMRM technology combines the powerful
qualitative ability of SWATH technology with the precise quantitative ability of MRM
technology to achieve high coverage and accurate quantification of known and unknown
metabolites detected in a non-targeted analysis [16]. At present, this has been widely used
in metabolomics, foodomics, etc. [17–19].

In order to obtain as much information as possible about the characteristic compounds
in Dendrobium devonianum produced in the Longling area of Yunnan, SWATHtoMRM
technology was used in this experiment to further identify and trace the sources of Den-
drobium devonianum and Dendrobium officinale produced in the same area using TOF and
MS-MRM to analyze the known and unknown metabolites in Dendrobium devonianum
and Dendrobium officinale to obtain more information on the characteristic metabolites in
Dendrobium devonianum.

2. Materials and Methods
2.1. Sample Collection and Preparation

Twenty-six samples of Dendrobium devonianum and Dendrobium officinale, thirteen each,
were collected from the Longling area of Yunnan, China, in 2020. Each collected sample
was composed of 10 fresh branches, kept under the same growth condition. The branches
were cut into lengths of about 5 cm, dried at 60 ◦C, crushed at a high speed, passed through
a 0.28 µm sample sieve, and stored in the laboratory at 4 ◦C in the dark.

2.2. Chemicals and Reagents

HPLC-grade acetonitrile, isopropanol, and methanol were purchased from Merck
(Darmstadt, Germany). HPLC-grade ammonium acetate and formic acid were purchased
from DiKMA Technologies (Beijing, China). Ultrapure water was prepared using Elga’s
water system (Wycombe, UK).

2.3. Sample Preparation and Analysis
2.3.1. Sample Preparation and Instrumental Method

First, 2 g of sample was placed into a 50 mL centrifuge tube, 20 mL of methanol–water
solution (V:V = 90:10) was added and vortexed for 1 min, then ultrasonic was extracted for
30 min and centrifuged at 5000 r/min for 5 min, and the supernatant was filtered through a
0.22 µm filter membrane.

The SCIEX X500R QTOF system (Framingham, MS, USA) used was equipped with
an ExionLC AD ultra-high-performance liquid chromatography (Framingham, MS, USA)
and Waters ACQUITY UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm, Waters, Milford,
MA, USA). Referring to the relevant parameters in reference [7]: solvent A was 2 mM
ammonium acetate in ultrapure water with 0.01% formic acid, and B was the mixed solution
of acetonitrile, isopropanol, and water (V:V:V = 47.5:47.5:5) containing 2 mM formic acid
and 0.01% formic acid. The flow rate for UPLC was 0.4 mL/min with the following
gradients: 10% B (0~5.0 min), 10% B~50% B (5.0~6.0 min), 50% B~95% B (6.0~15.0 min),
95% B~100% B (15.0~20.0 min), 100% B (20.0~35.0 min), 100% B~5% B (35.0~35.1 min), and
5% B (35.1~40.0 min). The injection volume was 5 µL. Data were collected using primary
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and secondary mass spectrometry, among which the MS scan range was 100~1500 m/z,
and the MS IDA scan range was 50~1500 m/z, CE = ±30 V.

2.3.2. MRM Data Collection

The wiff format of the sample data collected via TOF was converted to the mzXML
format using MSConvert software (3.0.4140), and the R package (4.3.1) of SWATHtoMRM
was used for the conversion of MRM transitions. Twenty-six samples were analyzed using
the AB SCIEX 4500 system (Framingham, MS, USA). The same chromatographic column
and gradient elution conditions as in QTOF-MS data collection were used, along with the
converted MRM transition and schedule mode (MRM detection window: 50 s), where the
DP was uniformly ±50 V and the collision energy was uniformly ±40 V. At the same time,
the same volume of the extraction solution of each sample in this experiment was drawn
and mixed to make a quality control sample (QC). During the sample analysis process, the
analysis of QC samples was performed after every 5 samples to monitor the sensitivity and
stability of the instrument and to perform a subsequent data analysis and correction.

2.3.3. Data Processing and Statistical Analysis

The ions whose response peak area was lower than 102 were deleted, and the ion pairs
with a high response intensity were retained, which were analyzed using the peak area
response of each ion pair of the QC sample. Lists of peak areas corresponding to MRM
were imported into MetaboAnalyst (https://www.metaboanalyst.ca/ (accessed on 7 July
2023)) for a principal component analysis (PCA), ANOVA, false discovery rate (FDR), and
VIP analysis to find differential MRM ion pairs. Differential MRM ion pairs were compared
to TOF data using ion pair information and the peak time to obtain primary and secondary
mass spectrum information of differential compounds, and the chemical structure was iden-
tified using the Natural Product s-TCM Library_1.0 established by SCIEX and the online
ChemSpider database (HMDB, Massbank, Pubmed, etc.). In order to further analyze the
possible signaling pathways affecting differential metabolites, the differential metabolites
were imported into the MetaboAnalyst5.0 (https://www.metaboanalyst.ca/ (accessed on 7
July 2023)) online website to analyze the main enriched KEGG biosynthetic pathways.

3. Results
3.1. Analytical Characteristics of SWATHtoMRM Method

After the conversion of the R package of SWATHtoMRM, the ion pairs were obtained,
in which the positive ions totaled 2439 pairs of MRMs and the negative ions totaled
601 pairs of MRMs (Supplementary File S1). From the m/z distribution of the parent ions
in Figure 1, it can be seen that the MRM of the positive ions was mainly concentrated in the
range of 300–600. After screening the ion pairs with the low-level response QC samples,
191 MRM pairs of positive ions and 96 pairs of negative ions were obtained (Supplementary
File S2).

3.2. MRM Data Analysis

As can be seen from Figure 2, the MRM ion pairs obtained after screening were
analyzed using a PCA, and the degree of polymerization of the QC was high, indicating
that the data were stable and the quality was guaranteed. It can be seen that Dendrobium
devonianum and Dendrobium officinale can be separated very well using a PCA analysis; this
shows that there are obvious differences in the chemical composition between Dendrobium
devonianum and Dendrobium officinale.
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Figure 1. Molecular weight distribution of compounds converted using SWATHtoMRM.
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Figure 2. Loading plots of PCA of Dendrobium devonianum and Dendrobium officinale (T: Dendrobium
officinale, Z: Dendrobium devonianum, QC: QC samples).

The difference in the comparisons in this experiment is mainly reflected in the differ-
ence in the peak areas of the common components contained in Dendrobium devonianum and
Dendrobium officinale. The two principal components, PC1 and PC2, accounted for 27.0%
and 23.8% of the total difference, respectively, indicating that by comparing the difference
in the peak area of the common components in Dendrobium devonianum and Dendrobium
officinale, it is possible to effectively distinguish Dendrobium devonianum and Dendrobium
officinale. It also shows that the ion pairs converted using SWATHtoMRM were analyzed
via PCA, and the two Dendrobium samples were densely gathered together, which clearly
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proves that the pseudotargeted metabolomics method based on SWATHtoMRM can be
used for traceability identification research.

On the other hand, PLS-DA was also used for the analysis, and the analysis results
were consistent with the PCA, and Dendrobium devonianum and Dendrobium officinale can be
separated well (Figure 3), as can be seen in the PLS-DA cross-validation data (Figure 4).
R2 is the correlation coefficient of cross validation, and the values of components of 1–5
were 0.96224, 0.98362, 0.99473, 0.99767, and 0.99929, respectively, which were close to 1,
indicating that their fitting degree was good. Q2 represents the predictive performance of
the PLS-DA model, and Q2 was higher than 0.9, so it can be considered a very good model
in this experiment.
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3.3. ANOVA, FDR, and VIP Analysis

ANOVA, FDR, and VIP analyses were performed on the obtained MRM ion pairs, and
the MRM ion pairs with a p-value < 0.01, FDR < 0.05, and VIP > 1 were selected as the
ion pairs with large differences. A total of 146 characteristic compounds were obtained
(Supplementary File S3).

As shown in Figures 5 and 6, the retention time of the 146 characteristic compounds
was mainly the range of 6–20 min, and the molecular weight was mainly concentrated
between 200 and 300 and 500 and 700. According to the chromatographic conditions in
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Section 2.3.1, during a time period of 6–15 min, the organic phase was from 50 to 95%, and
at 15–20 min, the organic phase was from 95 to 100%. The main elution components were
medium and medium-to-small polar compounds, which were the same as the main compo-
nents in Dendrobium, which were consistent with alkaloids, flavonoids, phenanthrenes, and
bibenzyls [20].
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Figure 5. Scatter plot of 146 characteristic compounds.
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graph represent the number of characteristic compounds in that molecular weight range).

It can be seen from the analysis of the VIP scores (Figure 7), volcano map (Figure 8),
and heat map (Figure 9) of the 50 compounds with large differences that, as shown in
Table 1, there were 20 characteristic compounds in Dendrobium devonianum, the content of
Dendrobium devonianum was larger than that of Dendrobium officinale, and the content of
30 characteristic compounds was smaller than that of Dendrobium officinale. The difference
in the contents of the common compounds was the largest (p = 6.32× 10−17), which may be
the characteristic component of Dendrobium devonianum; the three differential compounds
with a reduced content may be the characteristic components of Dendrobium officinale.
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As shown in Figure 10, the contents of the five characteristic compounds of Dendrobium
devonianum and Dendrobium officinale were very different. The normalized concentrations of
the five characteristic compounds were close to +1 and −1, respectively, and the difference
can be clearly seen after normalization.
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Table 1. Information on characteristic compounds.

Compound
Code

Precursor
Ion (m/z)

Product
Ion (m/z)

Retention
Time (min)

p Value FDR VIP
Changes in Content

Dendrobium
devonianum

Dendrobium
officinale

P1291 438.2390 70.0651 6.60 6.32 × 10−17 2.20 × 10−14 1.8749 ↑ ↓
N443 533.1296 124.9909 6.64 1.24 × 10−16 2.20 × 10−14 1.8719 ↓ ↑
P1473 476.2134 137.0597 6.90 7.73 × 10−16 9.17 × 10−14 1.8630 ↓ ↑
P1472 476.1928 137.0236 6.67 1.81 × 10−15 1.61 × 10−13 1.8583 ↓ ↑
N81 239.0707 196.0524 7.79 3.52 × 10−15 2.50 × 10−13 1.8544 ↓ ↑

P2281 682.5257 248.2375 15.73 1.11 × 10−14 6.57 × 10−13 1.8472 ↑ ↓
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Table 1. Cont.

Compound
Code

Precursor
Ion (m/z)

Product
Ion (m/z)

Retention
Time (min)

p Value FDR VIP
Changes in Content

Dendrobium
devonianum

Dendrobium
officinale

N495 609.1449 311.0557 6.66 7.31 × 10−14 3.72 × 10−12 1.8335 ↑ ↓
P2594 811.6109 235.0970 6.69 1.34 × 10−13 5.97 × 10−12 1.8287 ↓ ↑
P998 374.1813 154.0624 7.00 2.92 × 10−13 1.16 × 10−11 1.8220 ↓ ↑

P1135 401.1601 167.0706 6.93 4.30 × 10−13 1.53 × 10−11 1.8185 ↓ ↑
P79 144.1019 70.0650 0.73 1.68 × 10−12 5.43 × 10−11 1.8053 ↑ ↓
P483 272.2222 105.0698 7.66 2.19 × 10−12 6.49 × 10−11 1.8026 ↑ ↓

P1996 613.2288 167.0703 6.99 3.79 × 10−12 1.04 × 10−10 1.7966 ↓ ↑
N500 614.2169 61.9883 5.61 6.18 × 10−12 1.57 × 10−10 1.7911 ↓ ↑
N113 273.1128 137.0238 7.68 2.06 × 10−11 4.89 × 10−10 1.7764 ↓ ↑
P688 315.9915 119.0186 0.56 3.73 × 10−11 8.29 × 10−10 1.7686 ↓ ↑
N100 271.0969 213.0553 8.07 5.57 × 10−11 1.17 × 10−9 1.7630 ↓ ↑
N358 459.1506 149.0598 6.94 1.32 × 10−10 2.61 × 10−9 1.7504 ↓ ↑
P2192 665.1730 271.0600 6.80 1.44 × 10−10 2.71 × 10−9 1.7490 ↑ ↓
P2127 643.2394 167.0702 6.97 1.58 × 10−10 2.82 × 10−9 1.7476 ↓ ↑
N778 861.5465 279.2321 16.08 2.15 × 10−10 3.64 × 10−9 1.7429 ↑ ↓
P44 121.0647 78.0463 7.39 3.33 × 10−10 5.39 × 10−9 1.7357 ↓ ↑

N338 443.3365 309.3152 15.45 5.58 × 10−10 8.63 × 10−9 1.7270 ↓ ↑
P1286 436.2185 219.0805 6.72 7.55 × 10−10 1.12 × 10−8 1.7217 ↓ ↑
P2082 631.4929 81.0186 15.11 1.66 × 10−9 2.36 × 10−8 1.7072 ↑ ↓
P1082 393.2233 107.0491 3.00 4.90 × 10−9 6.71 × 10−8 1.6853 ↓ ↑
P1146 404.1015 93.0698 9.13 6.77 × 10−9 8.93 × 10−8 1.6783 ↑ ↓
P2630 826.6767 262.2528 18.95 1.03 × 10−8 1.31 × 10−7 1.6689 ↑ ↓
P976 369.2637 277.2160 9.85 4.70 × 10−8 5.77 × 10−7 1.6318 ↑ ↓
P2453 760.5814 299.0617 17.01 5.26 × 10−8 6.24 × 10−7 1.6289 ↓ ↑
P2561 798.6059 601.5166 17.00 9.51 × 10−8 1.09 × 10−6 1.6126 ↓ ↑
N384 483.1995 134.0368 7.33 1.03 × 10−7 1.15 × 10−6 1.6103 ↓ ↑
P2194 666.5303 531.4039 15.11 1.27 × 10−7 1.37 × 10−6 1.6043 ↑ ↓
P2586 808.6658 262.2528 18.95 1.60 × 10−7 1.68 × 10−6 1.5976 ↑ ↓
P912 353.2686 93.0697 9.75 1.73 × 10−7 1.76 × 10−6 1.5953 ↑ ↓

P1038 384.3474 69.0697 13.67 2.04 × 10−7 2.01 × 10−6 1.5904 ↑ ↓
P1262 430.1715 145.0284 6.97 2.95 × 10−7 2.84 × 10−6 1.5789 ↑ ↓
P1229 425.1161 245.0510 0.65 7.76 × 10−7 7.14 × 10−6 1.5470 ↓ ↑
N320 430.9467 114.9882 0.57 7.83 × 10−7 7.14 × 10−6 1.5467 ↓ ↑
P2058 625.2548 421.1464 7.20 8.59 × 10−7 7.64 × 10−6 1.5434 ↓ ↑
P2046 621.5454 147.1170 18.71 1.05 × 10−6 9.01 × 10−6 1.5364 ↓ ↑
N140 289.1076 137.0239 7.10 1.06 × 10−6 9.01 × 10−6 1.5359 ↓ ↑
P2651 836.6972 262.2531 19.89 1.11 × 10−6 9.16 × 10−6 1.5344 ↑ ↓
P479 271.0966 182.0728 7.44 1.68 × 10−6 1.36 × 10−5 1.5190 ↓ ↑

P2451 760.5056 299.0617 17.01 2.10 × 10−6 1.66 × 10−5 1.5106 ↓ ↑
N841 961.6075 112.9853 16.45 3.22 × 10−6 2.49 × 10−5 1.4939 ↓ ↑
P2018 616.3460 313.2734 11.22 7.40 × 10−6 5.61 × 10−5 1.4588 ↑ ↓
N371 470.1507 128.0353 0.75 8.85 × 10−6 6.51 × 10−5 1.4509 ↓ ↑
P2874 986.6047 611.4668 13.52 8.96 × 10−6 6.51 × 10−5 1.4504 ↑ ↓
P2021 617.3496 313.2734 11.35 9.75 × 10−6 6.95 × 10−5 1.4465 ↑ ↓

P: positive; N: negative; ↑: content went up; ↓: content went down.

3.4. Structural Identification of Characteristic Compounds

Using the Natural Products s-TCM Library_1.0 and online ChemSpider database, a
total of 34 characteristic compounds were identified, including 20 in the positive ion mode
and 14 in the negative ion mode, as shown in Table 2.

Table 2. Information on characteristic compounds identified.

Compound
Code Compound Name Molecular

Formula Adduct Ion Mass
Error (ppm) References

P44 * 4-Hydroxybenzoic acid C7H6O3 [M − H2O + H]+ 0.8 [21]
P79 * Stachydrine C7H13NO2 [M + H]+ −0.2 [22]
P119 Phenylalanine C9H11NO2 [M + H]+ 0.6 [23]
P215 2-(Acetylamino)-2,6-dideoxy-α-L-galactose C8H15NO5 [M + H]+ 0.6 [24]
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Table 2. Cont.

Compound
Code Compound Name Molecular

Formula Adduct Ion Mass Error
(ppm) References

P296 4-[(5-Hydroxy-3-methyl-1-oxo-2penten-1-yl)
amino]-butanoic acid methyl ester C11H19NO4 [M + H]+ −0.4 _

P338 Pinostilbene C15H14O3 [M + H]+ −0.4 [25]
P365 Linamarin C10H17NO6 [M + H]+ −0.2 [26]
P414 3-hydroxy-4′, 5-dimethoxybibenzyl C16H18O3 [M + H]+ −0.4 [27]
P465 Adenosine C10H13N5O4 [M + H]+ 0.5 [28]

P483 * Naringenin C15H12O5 [M + H]+ 0 [29,30]
P495 Palmitic acid C16H32O2 [M + NH4]+ 0.4 [31]
P508 Dendrobin A C16H18O4 [M + H]+ 0.5 [32]
P522 Stearidonic acid C18H28O2 [M + H]+ −0.5 [33,34]

P688 * Vanilloside C14H18O8 [M + H]+ 1 [35]
P987 Tetradecanoyl-L-Carnitine C21H41NO4 [M + H]+ −0.1 [36,37]

P998 * N-(3,4,6-Tri-O-acetyl-β-D-glucopyranosyl)
piperidine C17H27NO8 [M + H]+ 0.1 _

P1291 *
2-Propen-1-yl-2-(acetylamino)-2-deoxy-3-O-

β-D-galactopyranosyl-6-Omethyl-α-D-
galactopyranoside

C18H31NO11 [M + H]+ 0.5 _

P1799 Dendronobiloside A C27H48O12 [M + H]+ −0.9 [38]
P2058 Heytrijumalin I C34H40O11 [M + H]+ 0.2 [39]
P2453 Acanthoside D C34H46O18 [M + H]+ −0.5 [40,41]
N45 Shikimic acid C7H10O5 [M − H]− 0.6 [42,43]
N50 D-Galactose C6H12O6 [M − H]− 2.7 [44,45]

N81 * Moscatin C15H12O3 [M − H]− 1.4 [46,47]
N100 * Tristin C15H16O4 [M − H]− 0.3 [48,49]
N110 Erianthridin C16H16O4 [M − H]− 1.7 [50,51]

N113 * Dendrophenol C16H18O4 [M − H]− 1.4 [52,53]
N141 Dendroxine C17H25NO3 [M − H]− 2.1 [54,55]
N229 Pinellic acid C18H34O5 [M − H]− 2.5 [56,57]
N241 D-(+)-Trehalose C12H22O11 [M − H]− 1.7 [58]
N341 Dendroside G C21H34O10 [M − H]− 0.4 [59,60]

N358 * Dendromoniliside B C21H32O11 [M − H]− 0.3 [61]
N404 Raffinose C18H32O16 [M − H]− 1 [62,63]
N484 Vicenin-2 C27H30O15 [M − H]− 0.5 [64,65]

N495 * Rutin C27H30O16 [M − H]− 1 [66]

* The difference value was the compound before rank 50.

3.5. KEGG Pathway Analysis of Dendrobium devonianum and Dendrobium officinale

According to the 11 of the top 50 characteristic compounds with a confirmed chem-
ical structure obtained above, a KEGG pathway analysis was performed, and the top
20 pathways with p≤ 0.05 were selected for visual depiction. As shown in Figure 11, the en-
richment pathways of the characteristic compounds were mainly concentrated in the lipids
and atherosclerosis, chagas disease, fluid shear stress and atherosclerosis, proteoglycans in
cancer, IL-17 signaling pathway, sphingolipid signaling pathway, diabetic cardiomyopathy,
arginine and proline metabolism, etc., among which the lipid and atherosclerosis pathways
were more enriched and 11 characteristic compounds could better affect the expression
levels of IL-1, TNFα, CD36, IL-1β, etc. (Figure 12). On the other hand, this also proved that
the metabolic processes of lipids and atherosclerosis can be better regulated by Dendrobium
devonianum, which is consistent with the biological health effects of Dendrobium nobile
reported in the literature [67–69], which can be used as a reference for future research on
variety improvement and active substance accumulation in Dendrobium devonianum and
Dendrobium officinale.
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4. Conclusions

In this study, SWATHtoMRM technology was used in this experiment to further
identify and trace the sources of Dendrobium devonianum and Dendrobium officinale produced
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in the same area using TOF and MS-MRM. After the conversion of the R package of
SWATHtoMRM, the ion pairs were obtained, in which the positive ions totaled 2439 pairs of
MRMs, and the negative ions totaled 601 pairs of MRMs. After screening the ion pairs with
low-level response QC samples, 191 MRM pairs of positive ions and 96 pairs of negative
ions were obtained. Dendrobium devonianum and Dendrobium officinale can be separated very
well via a PCA analysis of MRM ion pairs; this shows that there are obvious differences
in chemical composition between Dendrobium devonianum and Dendrobium officinale. The
difference in the comparisons in this experiment mainly reflect the differences in the peak
areas of the common components contained in Dendrobium devonianum and Dendrobium
officinale. This also shows that the ion pairs converted using SWATHtoMRM were analyzed
via PCA, and the two Dendrobium samples were densely gathered together, which clearly
proves that the pseudotargeted metabolomics method based on SWATHtoMRM can be
used for traceability identification research. On the other hand, Dendrobium devonianum and
Dendrobium officinale can be separated well via PLS-DA, as can be seen through PLS-DA
cross validation. The R2 values of components 1–5 were 0.96224, 0.98362, 0.99473, 0.99767,
and 0.99929, respectively, which were close to 1, indicating that their fitting degree was
good, and the Q2 was above 0.9, which indicates a very good model.

The ANOVA FDR and VIP analyses were performed on the obtained MRM ion pairs.
A total of 146 characteristic compounds were obtained. There were 20 characteristic com-
pounds in Dendrobium devonianum; the content of Dendrobium devonianum was larger than
that of Dendrobium officinale; and the content of 30 characteristic compounds was smaller
than that of Dendrobium officinale. The difference in the contents of the most common
compounds was the largest (p = 6.32 × 10−17), which may represent the characteristic
component of Dendrobium devonianum; three differential compounds with reduced contents
may be the characteristic components of Dendrobium officinale. The enrichment pathways
of the characteristic compounds were mainly concentrated in the lipids and atherosclero-
sis, chagas disease, fluid shear stress and atherosclerosis, proteoglycans in cancer, IL-17
signaling pathway, sphingolipid signaling pathway, diabetic cardiomyopathy, arginine
and proline metabolism, etc., among which the lipid and atherosclerosis pathways were
more enriched and 11 characteristic compounds could better affect the expression levels
of IL-1, TNFα, CD36, IL-1β, etc., which can be used as a reference for future research on
variety improvement and active substance accumulation in Dendrobium devonianum and
Dendrobium officinale.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/foods12193608/s1: Supplementary File S1: MRMTransition; Supplemen-
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Abstract: Accurate species identification, especially in the fishery sector, is critical for ensuring food
safety, consumer protection and to prevent economic losses. In this study, a total of 93 individual
frozen–thawed cuttlefish samples from four different species (S. officinalis, S. bertheloti, S. aculeata, and
Sepiella inermis) were collected from two wholesale fish plants in Chioggia, Italy. Species identification
was carried out by inspection through morphological features using dichotomic keys and then
through near-infrared spectroscopy (NIRS) measurements. The NIRS data were collected using a
handled-portable spectrophotometer, and the spectral range scanned was from 900–1680 nm. The
collected spectra were processed using principal component analysis for unsupervised analysis and a
support vector machine for supervised analysis to evaluate the species identification capability. The
results showed that NIRS classification had a high overall accuracy of 93% in identifying the cuttlefish
species. This finding highlights the robustness and effectiveness of spectral analysis as a tool for
species identification, even in complex spatial contexts. The findings emphasize the potential of NIRS
as a valuable tool in the field of fishery product authentication, offering a rapid and eco-friendly
approach to species identification in the post-processing stages.

Keywords: chemometrics; support vector machine; untargeted method; food inspection; seafood

1. Introduction

The genus Sepia, as classified by Linnaeus in 1758, represents a group of considerable
commercial importance, encompassing approximately 100 species [1]. This genus stands as
the largest among the three genera identified within the Sepiidae family, as established by
Leach in 1817. Among the European cuttlefish species, Sepia officinalis holds a significant
position as the prevailing genus in the Mediterranean Sea (FAO fishing area 37). Never-
theless, its presence extends further to encompass the Eastern North and Central Atlantic
Oceans (FAO fishing areas 27 and 34, respectively) [2].

Accurate species identification, especially in the fishery sector, is critical for ensuring
food safety by detecting harmful toxins (i.e., domoic acid) or parasites (i.e., Dicyemid para-
site) that may be present in certain cephalopods species [3,4]. Dichotomous keys serve as
valuable tools utilized by scientists and professionals in the food industry to enable rigorous
classification and taxonomy, ensuring accuracy and reliability in species identification for
scientific investigations and commercial applications alike. Species identification is gener-
ally conducted on unprocessed products by an official authority and food business operator
through visual analysis by examining the morphological characteristics of cuttlefish, i.e.,
coat color, corneal membrane, horny beak, and siphon structure. The anatomical complex-
ity of these structures necessitates highly skilled personnel and specialized techniques to
ensure accurate identification [5]. However, current identification techniques have notable
limitations. In particular, the taxonomic approach is not applicable when morphological
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characteristics have been removed (i.e., cuttlebone, statoliths, beaks, and radula [6]), and the
dichotomous keys employment are difficult to consider due to inconsistent description of
the catalog proposed. However, molecular analysis for identification purposes overcomes
these limitations applying to whole or prepared products; indeed, despite the significant
accuracy provided by molecular methods, it is crucial to acknowledge that these techniques
often rely on a limited sample size. This is primarily attributed to the resource-intensive
nature of molecular analyses, which require specific reagents, laboratory infrastructure, and
skilled personnel, making them expensive and time-consuming processes [7]. Additionally,
the primary DNA-based methods utilized, such as PCR and DNA sequencing, due to the
long preparation step of the sample, are not conducive to rapid and cost-effective species
identification in field settings.

A strategic, economic, non-destructive, rapid, and easy alternative approach applicable
in every phase of the supply chain can be represented by the Near-InfraRed Spectroscopy
(NIRS) technology for food control purposes [8–11]. Indeed, the Commission Implement-
ing Regulation (EU) 2022/2503 has recently recognized the value of untargeted analysis
(NIRS/UV-VIS) as a supporting device in assessing the physical status (fresh/frozen–
thawed) of fishery products during official control [12]. The implementation of a fast and
suitable technique to identify fishery species meets the need of food regulatory demand
to comply with the labeling laws but also to protect the interest of the seafood business
operator and consumers, guaranteeing the truthfulness of the supply chain in seafood
products without the sample destruction [13]. To the best of our knowledge, studies on
species identification using InfraRed Spectroscopy have primarily concentrated within the
Teleost infraclass, and there is a lack of research specifically targeting cephalopod species
identification using handheld-portable Near-Infrared Spectroscopy devices. In light of
this, the present study aims to address this gap by focusing on four distinct cuttlefish
species. Therefore, the primary aim is to assess the significant potential of Near-Infrared
Spectroscopy (NIRS) in precisely identifying these prepared cuttlefish species at the initial
stages of the complex supply chain.

2. Materials and Methods
2.1. Cuttlefish Sampling and Species Identification

A total of 93 individual frozen–thawed cuttlefishes of 4 species were collected in
June 2022 from two wholesale fish plants in Chioggia (Venice, Italia). The species identifica-
tion was performed prior to product processing as part of the company’s self-monitoring
process. The procedure involved evaluating the morphological features of the cuttlefish
species, which were obtained prior to the sample preparation methods, adhering to the stan-
dardized protocols of the company. The species considered included S. officinalis (3 batches;
n = 31 and n = 9 samples fished in 27.7 and in 34 FAO fishing areas, respectively), S. bertheloti
(1 batch; n = 9 samples fished in 34 FAO fishing areas), S. aculeata (1 batch; n = 10 samples
fished in the 51 FAO fishing area), and Sepiella inermis (2 batches; n = 19 and n = 15 samples
fished in the 57 and 71 FAO fishing areas, respectively).

2.2. NIR Data Collection

The whole and refrigerated cuttlefish samples were subjected to NIRS measurement
after the company’s standard procedures, which involved removing the skin, gut, and
bones and storing the samples on ice. A PoliSPEC NIR (ITPhotonics in Breganze, Italy)
portable spectrophotometer was used to obtain spectral data from each sample through a
round scanning window of 3.2 cm2 placed in direct contact with the surface of the sample
and scanning along the mantle. The spectral range scanned was from 900–1680 nm with a
resolution of 2 nm. The individual spectrum of each cuttlefish was obtained by averaging
the scans collected continuously for 5 s. The spectral data were recorded in reflectance units
(R) and subsequently converted to absorbance units using the poliDATA 3.0.1 software
(ITPhotonics in Breganze, Italy) by taking the logarithm of the reciprocal of R.
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2.3. Identification Species Model

In the study, spectral data from cuttlefishes were analyzed in two forms: untreated
and treated using different methods, namely standard normal variate (SNV), Savitzky–
Golay, and derivative (none, first, and second). The investigation aimed to evaluate the
best results and assess the effects of these treatments on the cuttlefish spectral data. The
NIRS spectral data were processed using R software version 4.0.2 (R Core Team, 2020)
for both unsupervised and supervised methods. For the unsupervised analysis, Principal
Component Analysis (PCA) was employed as a descriptive tool to visualize the data
distribution. On the other hand, the supervised approach involved utilizing Support Vector
Machine (SVM), as reported in the works of Currò et al. [8,14]. Concisely, the SVM model
was developed using the ‘caret’ package, employing both the svmLinear and svmRadial
kernels. The training dataset underwent repeated hold-out-validation. For multi-class
classification (classes > 3), the ‘one-against-one’ approach was utilized, entailing training k
(k − 1)/2 binary classifiers and determining the appropriate class through a voting scheme.
To improve the SVM performance, a grid search was conducted to fine-tune the C-value
(Cost) in the Linear classifier and the Radial Basis Function sigma. This process involved
exploring different combinations of these parameters to identify the most suitable model
configuration. The SVM was employed in the development of the calibration model to
assess the NIRS classification potential for species identification. Briefly, the complete
dataset was divided into two sets: a training set and a testing set. The training set, which
accounted for 70% of the samples (n = 66), was used to develop discrimination models.
The testing set, representing 30% of the samples (n = 27), was employed to evaluate and
validate the developed model. To validate the model, a hold-out validation approach was
utilized. The dataset was split again, with 70% allocated to the training set for repeated
cross-validation (with 10 settings and 5 repeats) and the remaining 30% forming the testing
set. Table 1 provides a comprehensive breakdown of all sampled cuttlefish, along with
their distribution into training and testing sets, including their respective varieties and the
FAO fishing area of origin.

Table 1. Sample description according to the training and testing sets used in the hold-out validation.

n. of Samples n. Per Species FAO Fishing Area

Training 66
S. bertheloti, n. 7 34

S. officinalis, n. 28 27.7 (n. 22); 34 (n. 6)
S. aculeata, n. 7 51

Sepiella inermis, n. 24 57 (n. 13), 71 (n. 11)

Testing 27
S. bertheloti, n. 2 34

S. officinalis, n. 12 27.7 (n. 9); 34 (n. 3)
S. aculeata, n. 3 51

Sepiella inermis, n. 10 57 (n. 6); 71 (n. 4)

3. Results and Discussion

Species substitution in the fish industry is a widespread issue, particularly aggravated
in post-processing stages at retailers and supermarkets. The deliberate substitution of
high-value species with lower-quality alternatives is the most commonly observed form
of fish fraud [15]. However, accidental substitution can also occur when species closely
resemble each other, leading to mistaken identities. This practice primarily affects processed
products and fillets that are challenging to identify using traditional morphological analysis.
The inherent complexities in species identification significantly contribute to the prevalence
of this problem, especially in retail settings.

Among the results observed using untreated and treated data, the best performances
were obtained for raw spectral data and were described in the following sections.
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3.1. Exploratory Results

Principal Component Analysis (PCA) was employed as an unsupervised method
to qualitatively visualize differences among cuttlefish samples related to the different
species offering a straightforward means of identifying potential clusters of samples [16].
In particular, Figure 1 depicts the score plots of the first three PCs of the groups of cuttlefish
species. Notably, PC1, PC2, and PC3 explained 68%, 28%, and 3% of the total variance.
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Figure 1. Principal component score plot for PC1, PC2, and PC3 of raw spectra.

The high variance explained by PC1 indicates that it effectively captures the significant
and relevant characteristics inherent in the raw spectrum. This emphasizes the importance
of PC1 in representing the primary sources of variation among the samples. This obser-
vation implies that species identification could potentially be facilitated by leveraging the
distinct spectral attributes present in the samples. However, a partial separation among
samples related to the different cuttlefish species was observed, suggesting that species
identification could be possible due to the different spectral attributes of the samples as-
sociated with the characteristics of the species considered. Nonetheless, it is important to
acknowledge that while PCA is valuable for dimensionality reduction and highlighting
major sources of variance, it may not capture all intricacies related to species classification,
thus explaining the partial overlapping among groups.

The findings align with the outcomes of previous studies conducted by Ottavian
et al. [17] and Lv et al. [18], where PCA was used for classifying fish species. These
studies demonstrated that PCA groups’ segregation provided promising results for species
classification; thus, the congruence between these studies and the current research suggests
that PCA is a suitable method for exploring data trends in species differentiation.

Figure 2 illustrates the average raw spectra acquired from cuttlefish species within
the specified range (900–1680 nm). The observed divergences between species can likely
be attributed to variations in their physical and chemical properties, which, in turn, are
influenced by differences in their habitats and diets [14]. These environmental factors
play a crucial role in shaping the spectrum of each species showing a noticeable graphical
divergence among the species.
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3.2. Classification by Species

In recent years, there has been an exploration of the application of NIRS to recognize
different fishery species [16,19]. However, to date, research on species identification uti-
lizing NIRS has predominantly focused on species within the Teleost infraclass. In detail,
the study of Cavallini et al. [10] focused on differentiating between two closely resem-
bling flatfish species, Synaptura cadenati (Guinean sole; n = 50) and Pleuronectes platessa
(European plaice; n = 50). The fillets of these species were analyzed using portable NIRS
devices operating at wavelengths of 740–1070 nm and 908–1676 nm, as well as a benchtop
NIRS device operating at wavelengths of 800–2500 nm. The collected spectra were then
subjected to chemometric analysis employing Partial Least Squares-Discriminant Analysis
(PLS-DA) classification model. Such a study demonstrated an accuracy of 94.1% in species
classification using the portable NIRS device and an accuracy of 90.1% using the benchtop
device. In the study conducted by Ottavian et al. [17], fish minced samples were classified
according to the species considered (Sparus aurata, n = 106; Mullus barbatus, n = 106; Solea
vulgaris, n = 88; Xiphias gladius, n = 175) using a NIRS reflectance device and a PLS-DA
classification model. The samples were categorized, obtaining a classification accuracy of
100% in validation.

The study of Lv et al. [18], using an NIRS reflectance device (1000–1799 nm) and
chemometrics (PCA-Linear Discriminant Analysis) to distinguish among seven different
carp species (Hypophthalmichthys molitrix, n = 100; Mylopharyngodon piceus, n = 100; Aris-
tichthys nobilis, n =100; Ctenopharyngodon idellus, n = 100; Cyprinus carpio, n = 80; Carassius
auratus, n = 100; Parabramis pekinensis, n = 70), showed a complete classification capabil-
ity (100%). Analog outcomes were noted in the investigation conducted by Alamprese
et al. [20], wherein Mullus surmuletus (Red mullet) and Pseudupeneus prayensis (Atlantic
mullet) were successfully identified using FT-NIR through the application of the Soft Inde-
pendent Modelling of Class Analogies (SIMCA) technique. In contrast, the study conducted
by Cozzolino et al. [21] demonstrated a lower classification capability compared to pre-
vious studies, probably because it was performed on by-products using an NIRS device
(1100–2500 nm) to collect spectra. The classification accuracy (using Linear Discriminant
Analysis) achieved using fish meals from Salmon salar, Micromesistius poutassau, and other
species such as Scomber scombrus and Clupea harengus ranged from 70% to 90%. These
studies demonstrate the potential of NIRS combined with chemometric analysis for species
identification and classification in various fish species. The accuracy levels achieved vary
across the studies, which can be influenced by factors such as the type of fish species, the
specific NIRS device used, the wavelength range, and the analytical techniques employed.
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However, to the best of our knowledge, there is a noticeable gap in studies that specifically
explore cephalopod species identification.

Indeed, to address the existing research gap, the present study focuses on four distinct
cuttlefish species, including Sepia officinalis and Sepia bertheloti, which have overlapping
distributions in the Central and Eastern Atlantic (FAO fishing area 34). The study aimed
to assess the Near-Infrared Spectroscopy (NIRS) classification capability in differentiating
and recognizing these cuttlefish species. From the obtained confusion matrix (Table 2), the
overall accuracy of the NIRS classification was found to be 93%.

Table 2. Performance of classification of Support Vector Machine model to discriminate cuttlefish
according to the species in hold-out validation.

Reference Species

Predicted Species S. bertheloti S. officinalis S. aculeata Seppiella inermis

S. bertheloti 2 0 0 0
S. officinalis 0 12 2 0
S. aculeata 0 0 1 0

Seppiella inermis 0 0 0 10

Overall Accuracy (%) 93
Balanced Accuracy (%) 100 93 66 100

The balanced accuracy, calculated for each class, demonstrated complete accuracy for
the S. bertheloti and Sepiella inermis species. However, it was lower (93%) for S. officinalis
and the lowest (67%) for S. aculeata species. Among the 27 samples in the test set, only 7%
of cuttlefish were misclassified. The SVM linear classification model used in this study
exhibited a perfect sensitivity (100%) in detecting positive cases for S. bertheloti, S. officinalis,
and Sepiella inermis. This indicates that the model accurately identified all instances of these
species in the dataset, reflecting a high level of accuracy in species detection. These results
provide encouraging prospects for species identification and classification tasks using NIRS
technology. However, the model showed lower sensitivity in identifying S. aculeata species,
with two out of three samples being misclassified as S. officinalis. This misclassification
affected the specificity of S. officinalis (86%). Nevertheless, the model demonstrated high
specificity in correctly identifying negative cases for S. bertheloti, S. aculeata, and Sepiella
inermis species. In the present study, there were four species considered, and two of
them (S. bertheloti and S. officinalis) overlapped for the 34 FAO fishing area collections
(Central Atlantic Oceans). However, this overlap did not have any negative impact on
species identification. Similar to the study conducted by Varrà et al. [22], the present
study confirmed that the samples exhibited different spectral attributes associated with
the characteristics of each species. Indeed, despite sharing the same fishing area, the
distinct spectral properties allowed for accurate identification and differentiation between
S. bertheloti and S. officinalis. This finding emphasizes that even when species overlap
spatially (habitat), their unique spectral attributes remain reliable markers for species
identification and are more prominently identified through the supervised approach. In
detail, with NIRS being an untargeted approach, the combination of essential molecular
vibrations and overtones associated with specific functional chemical groups highlight the
capability of NIRS to classify cuttlefish based on species as a qualitative trait. Specifically,
this differentiation is attributed to the evaluation of the molecular phenotype derived
from averaging the vibration modes of all molecules within the specimen. The molecular
phenotype exhibits variations among species within the same genus, reflecting their distinct
genome expression [23,24].

4. Conclusions

This study highlights the efficacy of NIRS classification in identifying the four species
of cuttlefish examined. Despite an overall high accuracy of 93% in species identification,
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it is imperative to account for greater sample variability within each species to enhance
the precision of the classification process. Nonetheless, the findings underscore the po-
tential of rapid, eco-friendly, and easy-to-use NIRS devices for the online authentication
of cuttlefish species, especially when morphological characteristics have been removed
and the dichotomous keys employment are difficult to be considered (prepared product).
However, the practical implications of these results are substantial; indeed, the ability
to swiftly analyze a large number of samples not only strengthens consumer protection
against adulteration and fraudulent claims but also empowers commercial stakeholders to
verify the trustworthiness of their suppliers and ensure the integrity of received prepared
products. Furthermore, this approach provides a legitimate means to investigate suspected
fraudulent activities, enabling the evaluation and substantiation of such claims through
more sophisticated analyses. This study contributes to highlighting the potential of NIRS-
based species identification as a valuable tool for quality control and supply chain integrity
in the context of fishery product authentication.
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Abstract: The recent increase in international fish trade leads to the need for improving the traceability
of fishery products. In relation to this, consistent monitoring of the production chain focusing on
technological developments, handling, processing and distribution via global networks is necessary.
Molecular barcoding has therefore been suggested as the gold standard in seafood species traceability
and labelling. This review describes the DNA barcoding methodology for preventing food fraud
and adulteration in fish. In particular, attention has been focused on the application of molecular
techniques to determine the identity and authenticity of fish products, to discriminate the presence of
different species in processed seafood and to characterize raw materials undergoing food industry
processes. In this regard, we herein present a large number of studies performed in different countries,
showing the most reliable DNA barcodes for species identification based on both mitochondrial (COI,
cytb, 16S rDNA and 12S rDNA) and nuclear genes. Results are discussed considering the advantages
and disadvantages of the different techniques in relation to different scientific issues. Special regard
has been dedicated to a dual approach referring to both the consumer’s health and the conservation
of threatened species, with a special focus on the feasibility of the different genetic and genomic
approaches in relation to both scientific objectives and permissible costs to obtain reliable traceability.

Keywords: molecular barcoding; fraud; mislabelling; species identification

1. Seafood Commerce and Fraud

The global fish production industry plays a crucial role in national economies, sup-
porting an estimated 59.5 million jobs in the primary sector of capture fisheries and aqua-
culture [1]. Dealing with the most valuable traded food commodity worldwide, seafood
has also become a fundamental income product for developing countries with net exports
valued more than sugar, tobacco, meat and rice combined [1,2]. Staggering numbers high-
light a constant worldwide increase both in the sector of natural seafood capture and in
aquaculture production. According to available data, global fish production has reached
almost 300 million tonnes [3], also considering world aquaculture, which accounts for
about one third of total fish production [1]. In 2018, aquaculture fish production was
dominated by finfish (54.3 million tonnes—47 million tonnes from inland aquaculture
and 7.3 million tonnes from marine and coastal aquaculture); molluscs, mainly bivalves
(17.7 million tonnes) and crustaceans (9.4 million tonnes) [1].

However, if there is production, there is also consumption. In fact, according to the
FAO [1], global food fish exploitation increased at an average annual rate of 3.1% from
1961 to 2017, a rate almost twice than the annual world population growth (1.6%) for the
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same period, and higher than all the other animal protein foods (meat, dairy, milk, etc.),
which increased by 2.1% per year. At the individual level, global fish consumption rose by
122% from 1990 to 2018 [1]. The annual per capita seafood consumption of fisheries and
aquaculture products approximately doubled in 2018 compared to the level in the 1960s.
In particular, per capita fish consumption grew significantly from 9.0 kg in 1961 to 20.5 kg
in 2018, by about 1.5% per year [1]. Europeans consume, on average, 24.4 kg per person
of fishery products annually, 4 kg more than the world average [4]. Despite persistent
differences in levels of fish consumption between regions and states, significant trends
and trajectories were observed [5]. All the above cited data are graphically illustrated in
Figure 1.
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The rise of international fish trade leads to the need to improve the traceability of
fishery products. In relation to this, innovation must be introduced at technological level to
support the consistent production increase, with a special focus on the monitoring chain
assessing product handling, processing and distribution via global networks [6]. A wide
number of fish species are nowadays commercialized for human consumption on a world
scale, most of which derive from aquaculture production and fishery activities [7]. On the
other hand, cultural improvements and attention from the media has led consumers to
demand more comprehensive and precise information on fish labelling. Therefore, issues
concerning food quality and safety have recently become crucial points, also considering
the still-frequent habit of fish species substitutions under certain conditions.

In fact, species substitution happens to expand profits; higher value species are re-
placed with other less precious, often cheaper, less well-known or even illegal and protected
species [8,9]. Fish traceability is nowadays fundamental to avoid substitutions that may
carry hidden risks for consumers; basic consequences may be health problems that occur
primarily through the consumption of cryptic species coming from contaminated areas
without any sanitary checks or able to trigger allergy problems [10,11]. It must be remarked
that species substitution might even occur accidentally when taxa are difficult to recognize
at a morphological level, and consequently the systematics of closely related species are
trivial [4].

The European Union (EU), within the renewal plan of the Common Fisheries Policy
and the Common Market Organization, has introduced new requirements for the labelling
of fisheries and aquaculture products through the Cape IV of Regulation EU No. 1379/2013.
Although this regulation requests appropriate species traceability and labelling (scientific
binomial nomenclature based on genus and species collectively with the common name),
the identification of processed species is frequently difficult to perform. Morphology-
based identification methods may lead to incorrect species identification. Nowadays, more
innovative methods and technologies are used to assess taxa determination and authenticity.
Molecular diagnostic techniques have been developed to identify food fraud using different
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approaches, from the use of single proteins through enzyme-linked immunosorbent assay
(ELISA) [12] or species-specific DNA sequences (DNA Barcode) [13] to near infrared
spectroscopy [14] or modern genomic approaches [15].

In relation to the above cited issues, the aim of this review is to highlight the main
barcoding approaches to identify the most reliable ones, which are able to allow affordable
taxonomic identification of cryptic seafood species and limit commercial fraud that might
threaten the consumer’s health or the survival of endangered species.

The review has been prepared searching mainly in “ResearchGate”, “Google Scholar”,
“PubMed”, “Scopus” and “Web of Science”. Considering that a high-quality search cannot
rely on a single database, inclusion of different datasets is helpful to obtain more reliable
literature. High-impact journals were preferred to avoid scarce quality of data and, above
all, to have a wider audience.

2. DNA Barcoding and Seafood Mislabelling

In recent years, molecular barcoding (DNA barcoding) has been suggested as the gold
standard in forensic taxonomy [16] and can be considered a further development of the
previously applied technique proposed by Bartlett and Davidson [17]. About 30 years ago,
these scientists presented an innovative methodology directed at cryptic food identification
based on the use of short nucleotide regions for species authentication called Forensically
Informative Nucleotide Sequence (FINS). This technique consists of a specific segment
of DNA amplified using PCR and combines DNA sequencing and phylogenetic analysis
to identify the most closely related taxon. Despite that, the modern concept of DNA
barcoding was not established yet; the actual idea of DNA barcoding was developed
in 2003 by Hebert et al. [18]. DNA barcoding is the analysis of variability in a specific
genomic region, which is therefore designated the “DNA barcode”, to be compared with
specific databases of previously analysed sequences that become a priori reference DNA
fragments determined for the species of interest [3]. The predominant precept driving DNA
barcoding is the amplification of homologous genes by means of PCR and subsequent
DNA sequencing. Sequences of interest are used as a “barcode” to determine the identity
and authenticity of food products, for example, for DNA identification of various plant
and animal species, to discriminate the presence of different taxa in processed food and
to assess the presence of raw materials in food industry processes [19]. DNA barcodes
consist of a standardized short sequence of DNA (in the range 400–800 bp) that, in theory,
should be easily generated and characterized for all species [20]. The central notion of
DNA barcoding asserts that a short sequence of DNA should display low variability
within species and greater differentiation between species [20]. Kress and Erickson [21]
proposed three criteria that have to be satisfied to consider a gene region as a DNA barcode:
(i) contain significant species-level genetic variability and divergence, (ii) possess conserved
flanking sites for developing universal PCR primers for wide taxonomic application and
(iii) have a short sequence length to facilitate current capabilities of DNA extraction and
amplification.

Nowadays, although both mitochondrial (mtDNA) and nuclear (nDNA) genes are
involved in variegated approaches, the most reliable barcodes for the discrimination of
different animal species are obtained using the mitochondrial gene coding for cytochrome c
oxidase 1 (COI) and cytochrome b (cytb) [18,22–25]. In particular, the most-used DNA barcode
for seafood identification is a ~650 bp fragment of the mitochondrial gene COI. Many
studies have shown the applicability of COI barcoding for accurate identification of a wide
range of fish species and mislabelling detection [24,26–30].

It must be remarked that the use of mitochondrial markers for species’ correct taxon-
omy displays several advantages with respect to nDNA (Table 1). In particular, mtDNA has
a matrilinear inheritance and is not subjected to recombination. For this reason, nucleotide
variation within the same taxon is at a minimum level while, in nDNA, great differentiation
emerges among different species [3]. In fact, in spite of the high mutation rate of some
mitochondrial regions, COI and cytb are conserved genes within each species.
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Table 1. Comparison of advantages and disadvantages of mitochondrial and nuclear DNA.

mtDNA nDNA

High number of copies of mtDNA Useful when occur hybridization
and introgression

Advantages Matrilinear inheritance
Low variability within species and

greater differentiation between

Disadvantages Nomenclature difficulties in
differentiating closely related species Subjected to recombination

Single copy genes present in each cell

Another advantage can be referred to the high number of copies of mtDNA contained
in the same specimen that allows a more reliable amplification in case of degraded samples
such as those derived from processed seafood. It is noteworthy that DNA redundancy is
generated by several contemporary copies of mtDNA within the same tissue; attention
must be dedicated to the correct evaluation of data, and alternative analyses using nDNA
might also be considered.

3. DNA Mini-Barcoding for Processed Seafood

Some of the processing and preservation techniques used with commercial seafood
products might cause a limitation when full-length barcode regions (~650 bp) need to be
analysed. In relation to the type of processing, the DNA may be degraded into fragments
with sizes lower than 350 bp [31]. This is often the case with commercial fish, for which
the correct preservation based on stable refrigerated conditions is a major issue along
the entire production chain: fishing, transportation and distribution [32]. In addition,
the quantity and quality of extracted DNA from processed seafood is affected by several
additives, preservatives and flavours that these products contain [33]. In relation to this, a
mini-barcoding approach has been suggested as valuable alternative to solve these prob-
lems and to obtain a reliable amplification of degraded DNA extracted from processed
seafood. Precisely, the DNA mini-barcoding extrapolates reliable shorter DNA fragments
(e.g., 100–200 bp) within the lost full length. DNA mini-barcoding is therefore a power-
ful method to recover DNA sequence information from specimens containing degraded
DNA [23,32–38].

In particular, Shokralla et al. [33] developed an appropriate set of six mini-barcode
primer pairs targeting short (127–314 bp) fragments of the cytochrome c oxidase I region.
Results were successful after examining over 8000 DNA barcodes from species listed in
the U.S. Food and Drug Administration (FDA) Seafood List. Authors obtained the greatest
mini-barcoding success rate with the individual primer pair SH-E (226 bp). The success rate
of targeting short primers reached a value of 88.6%, and it was higher than full-length DNA
barcode primers that displayed a success rate of 20.5% [33]. In relation to this, Armani
et al. [35] demonstrated that compared to full length COI barcode (655 bp), a mini barcode
of 190 bp increased the success rate of PCR amplification from degraded DNA samples.
In fact, 655 bp amplicon amplified from 91% (fresh) to 50% (cooked) and 81% (ethanol-
preserved) samples, while the proposed 190 bp amplicon amplified 100% (cooked) and
94% (ethanol-preserved) samples. Chakraborty et al. [39] found that a 154-bp fragment
from the transversion-rich domain of 1367 COI barcode sequences can successfully delimit
species in the three most diverse orders of freshwater fishes (Cypriniformes, Siluriformes
and Perciformes). Interestingly, variegated approaches can be applied according to the
researcher experience and the type of product: Sultana et al. [38] proposed a novel mini
barcode marker (295 bp) to discriminate fish species in both raw and processed states,
while Pollack et al. [40] analysed in the same year the effects of cooking methods on DNA
integrity using both full-length (655 bp) and mini-barcodes (208–226 bp). The highest
overall success rate was found for one of the tested mini-barcodes (SH-E mini-barcode),
regarding canned samples. Recently, Filonzi et al. [32] performed molecular analysis of
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71 commercial fish samples based on mini-COI sequencing, testing two different primer
sets. The first pair of universal primers called “Fish_mini” (295 bp) was the one proposed
by Sultana et al. [38], while the second primer pair (SH-E, 226 bp) called “Fish_miniE” was
tested following the protocol suggested by Shokralla et al. [33]. “Fish_miniE” successfully
amplified 62 samples out of 71, reaching an amplification success rate of 87.3%, while
“Fish_mini” displayed a positive result in 69 of 71 samples and a success rate of 97.2%.

It is noteworthy that the DNA mini-barcoding method might show loss of discrimina-
tory power, especially for species that are closely related. Therefore, a key point to select a
DNA barcode region is the presence of enough polymorphisms to allow discrimination
among species in combination with high homology to design common primers [3]. From
this point of view, the COI sequence of a small mini-barcode fragment (≥100 bp) carries
the information required for identification of individual species with more than 90% of
resolution [33]. However, it must be remarked that when the barcode length is too short
(≤150 bp), further problems may emerge. In fact, despite the fact that the DNA region
could be easily amplified, the correct species attribution might not be retrieved via direct
comparison, and an erroneous identification could happen due to overlapping of closely
related taxa [38].

4. The Impact of Seafood Frauds on Human Health

As mentioned above, a food fraud is committed when food is illegally placed on the
market, most of the time for financial gain. Deliberate mislabelling and replacement of high-
value species with cheaper ones is defined an Economically Motivated Adulteration (EMA)
and is considered fraud [41]. In a specific document published in 2013 by the European
Parliament, seafood was identified as the second most likely food item to be subject to fraud,
following olive oil [42]. This voluntary or involuntary practice can also lead to unexpected
events concerning different aspects of human health (from food allergies to poisoning and
to multiorgan disfunctions). For example, roasted fillet products of codfish called Xue Yu
(order Gadiformes) are largely consumed in China [43]. According to Xiong et al. [44], out
of a total of 153 samples of roasted Xue Yu fillet products collected from 16 cities in China,
only 42% of the samples were identified as belonging to Gadiformes, while the others were
Scorpaeniformes, Tetraodontiformes and Lophiiformes. Moreover, the identification of
poisonous Lagocephalus spp. from 37 samples highlighted the danger of mislabelling for
human health. The consumption of this poisonous fish leads to several diseases: diarrhoea,
body and organ (liver, kidney) weight loss, oxidative stress evidenced by an increase in
lipid peroxidation (TBARS) and, conversely, a decrease in activities of such antioxidant
enzymes as SOD, catalase and GSH-Px in different tissues (blood cells, liver, kidneys)
as well as a decrease in alanine aminotransferase (ALT) and alkaline phosphatase (ALP)
concentrations detected in blood plasma [45]. Furthermore, some species’ flesh can be toxic
if not treated properly. Lowenstein et al. [46] showed how several New York City sushi
restaurants sold Escolar (Lepidocybum flavorunneum) as a variant of “white tuna”. Escolar is
a species banned for sale in Italian and Japanese markets due to high-risk health concerns.
The large amount of wax esters in the lipidic fraction of its raw flesh is responsible for toxic
activity over the gastroenteric apparatus [47]. Some species such as Solea solea, Pleuronectes
platessa and Merluccius merluccius were mislabelled with less valuable species including
Pangasius hypophthalmus in South Italy [48]. Pangasius farms were found contaminated by
heavy metals in the Mekong River (Vietnam) with a potentially unhealthy status for human
consumption [49].

5. Implications for the Conservation of Endangered Species

Another important aspect is that food fraud threatens the conservation of several
endangered species. The International Union for the Conservation of Nature (IUCN) was
founded in 1948 and was the first international organization to deal with environmental
sustainability. It soon became the world’s most comprehensive association dedicated to the
global conservation of endangered animal, fungi and plant species. Among IUCN tools, the
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Red List is a fundamental indicator of the conservation status of the world’s biodiversity.
Far more than a list of species, it is a strategic document to inform and define guidelines for
species preservation, helpful for policy makers both at regional and global levels [50]. In
particular, the “The IUCN Red List of Threatened Species” reports all living beings showing
conservation issues, listed in different categories of severity: NE (not evaluated), DD (data
deficient), LC (least concern), NT (near threatened), VU (vulnerable), EN (endangered),
CR (critically endangered), EW (extinct in the wild), RE (regionally extinct), EX (globally
extinct) [50].

One of the most common seafood frauds based on a species substitution occurs
in the swordfish (Xiphias gladius, NT) trade [51]. X. gladius species substitution usually
involves the taxon Selachimorpha. Currently, 153 shark species are classified as vulnerable
(VU), endangered (EN) or critically endangered (CE) by the International Union for the
Conservation of Nature [50]. Furthermore, 14 of them are listed in Appendix I, II or III by
the Convention on International Trade in Endangered Species of Wild Fauna and Flora
(CITES), which regulates their international commercial trade. The fact that the flesh of
many fish species is similar in appearance, taste and texture [1] means that fraudulent
practices could be unnoticed, especially in processed fish products. Ferrito et al. [51]
reported the identification of the species Prionace glauca (Blue shark, NT), Mustelus mustelus
(common smoothhound, EN) and Oxynotus centrina (angular roughshark, EN) in slices
labelled as swordfish bought in fishmarkets in Southern Italy. Shehata et al. [52] reported a
case of an individual of Sphyrna lewini (scalloped hammerhead, classified EN) mislabelled
as Prionace glauca (blue shark, NT). A similar finding was previously reported by Willette
et al. [53]. This fraudulent mislabelling of fish products is quite widespread and affects other
endangered species. Juveniles of Thunnus obesus (VU), T. alalunga (LC), T. albacares (LC) and
T. thynnus (LC) are sold as anchovy [54]. Although some of these species are considered LC
on a global scale, most of their populations are seriously threatened at the regional level.
This is particularly the case of the Mediterranean Sea. Anyway, Selachimorpha is one of
the most mislabelled taxa. The shortfin mako Isurus oxyrinchus, which has recently been
assessed in the “EN” category [50], is often sold, similarly to the Lamnidae, Lamna nasus
(VU) (Porbeagle), as swordfish in some fish markets of Santiago (Chile); respectively, 2.13%
of swordfish samples were shortfin mako and 6.39% were identified as porbeagle [55].
Interestingly, French and Wainwright [56] used DNA barcoding to identify the presence
of shark DNA in pet food commercialized in Singapore. The most common identified
sharks were the blue shark Prionace glauca, an overexploited species, and Carcharinus
falciformis (silky shark), the latter listed in CITES Appendix II and “vulnerable” in the Red
List [50]. In Filonzi et al. [32], a barcoding investigation was carried out in Italian fish
markets over the last 10 years. Results have shown an improved situation compared to
previously presented data from the same authors, witnessing a general improvement in the
management and control of Italian fish markets [24]. Nevertheless, two samples labelled as
Katsowomus pelamis, not directly involved in conservation issues, turned out to be either
Thunnus thynnus (LC) or Thunnus maccoyii (EN). Similarly, Lamna nasus (VU) was Isurus
oxyrinchus (EN), a more endangered species [32]. According to Lowenstein et al. [46], 19 out
of 68 sushi products based on tuna purchased from 31 restaurants in Manhattan (New York
City) and Denver (Colorado) were T. thynnus (LC) or the endangered southern bluefin tuna
(T. maccoyii, EN), though 9 out of 31 restaurants that were involved did not list these species
on their menus.

Interestingly, two bluefin tuna species, yellowfin and albacore, are no longer critically
endangered, and the recent revision of IUCN classification has removed these species from
the major risk categories [50]. The unexpectedly fast recovery bears witness to the effort
dedicated over the past decade to end overfishing and limit unauthorized trading. On the
other hand, researchers caution that, unlike tunas, many other marine species remain highly
endangered. In fact, more than a third of the world’s sharks and rays are still threatened to
extinction due to overfishing, illegal commerce, habitat loss and climate change.
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A further problem related to conservation of endangered species concerns the habit
of using same/similar common names generating a sort of confusion over different taxa.
For example, in the internal market of Brazil, which is an important country managing
shark fisheries, besides being one of the largest importers of shark meat worldwide, several
elasmobranch species are traded under the common popular name “caçao”. In 2018,
Almeròn Souza et al. [57] published a study about “caçao” fish, analysing 63 samples
with DNA barcoding based on mitochondrial COI gene. As a result, they found DNA
coming from 20 different species, 18 of which belonged to seven elasmobranch orders. It is
noteworthy that some species belonged to such evolutionary distant taxa as Xiphias gladius.
Considering IUCN criteria, 47% of the detected elasmobranch species were threatened at
the global level, while 53% were threatened and 47% critically endangered in Brazil [57].

As shown in Table 2, seafood fraud is a common widespread practice all around the
world. Sharks and unidentified local fish are the most involved species. In some cases,
mislabelling also involves endangered species, frustrating fauna conservation measures.
It must therefore be remarked that DNA barcoding is one of the most effective analysis
tools to discover dangerous, unhealthy and unethical activities in commercial fisheries. The
capability of mitochondrial and nuclear markers to allow fast identification processes has
represented a turning point not only for food safety issues but also in the field of wildlife
crime investigations. Interestingly, molecular tools not only support a fast taxonomic
identification but may also define population genetic parameters.

Table 2. Examples of seafood mislabelling concerning species included in the IUCN “Red List”
detected with DNA barcoding.

Reference Collected Sample Species Discovered Global
“Red List” World Region

“Caçao” fish Carcharhinus brachyurus VU Brazil
“Caçao” fish Galeorhinus galeus CR Brazil
“Caçao” fish Gymnura altavela EN Brazil
“Caçao” fish Myliobatis goodei VU Brazil
“Caçao” fish Narcine brasiliensis NT Brazil
“Caçao” fish Prionace glauca NT Brazil
“Caçao” fish Pseudobatos horkelii CR Brazil

Almeròn-Souza F. et al.,
2018 [57] “Caçao” fish Rhizoprionodon lalandii VU Brazil

“Caçao” fish Rhizoprionodon porosus VU Brazil
“Caçao” fish Sphyrna lewini CR Brazil
“Caçao” fish Sphyrna zygaena VU Brazil
“Caçao” fish Squalus mitsukurii EN Brazil
“Caçao” fish Squatina occulta CR Brazil
“Caçao” fish Xiphias gladius NT Brazil
“Caçao” fish Zapteryx brevirostris EN Brazil

Engraulis encrasicolus Thunnus albacares LC Europe
Engraulis encrasicolus Thunnus alalunga LC Europe

Thunnus alalunga Thunnus thynnus LC Africa
Blanco-Fernandez C. et al.,

2021 [54] Thunnus alalunga Thunnus obesus VU Africa

Merluccius capensis Gadus morhua VU Africa

Katsowomus pelamis Thunnus thynnus LC Italy
Filonzi L. et al., 2021 [32] Katsowomus pelamis Thunnus maccoyii EN Italy

Lamna nasus Isurus oxyrinchus EN Italy

Lowenstein J.H. et al.,
2009 [46] Thunnus sp. Thunnus thynnus LC USA

Thunnus sp. Thunnus maccoyii EN USA

Dufflocq P. et al., 2022 [55] Xiphias gladius Isurus oxyrinchus EN Chile
Xiphias gladius Lamna nasus VU Chile
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Table 2. Cont.

Reference Collected Sample Species Discovered Global
“Red List” World Region

Ferrito V. et al., 2019 [51] Xiphias gladius Mustelus mustelus EN Italy
Xiphias gladius Oxyntus centrina EN Italy

Conger sp. Micropogonias furnieri LC Brazil
Salmo salar Thunnus alalunga NT Brazil

Thunnus sp. Seriola zonata LC Brazil
Thunnus sp. Lepidocybium flavobrunneum LC Brazil
Thunnus sp. Salmo salar LC Brazil
Thunnus sp. Seriola lalandii LC Brazil
“White fish” Thunnus obesus VU Brazil
“White fish” Salmo salar LC Brazil

Staffen C.F. et al., 2017 [58] Peprilus paru Micropogonias furnieri LC Brazil
Micropogonias undulatus Prionace glauca NT Brazil

Lepidocybium
flavobrunneum Ruvettus pretiosus LC Brazil

Flounder gen. Isopisthus parvipinnis LC Brazil
Flounder gen. Micropogonias furnieri LC Brazil
Epinephelus sp. Micropogonias furnieri LC Brazil

Molva sp. Micropogonias furnieri LC Brazil
Pangasius pangasius Micropogonias furnieri LC Brazil

Salmo salar Seriola zonata LC Brazil
Salmo salar Prionace glauca NT Brazil
Salmo salar Micropogonias furnieri LC Brazil

Carcharias taurus Prionace glauca NT Brazil
Xiphias gladius Trichiurus lepturus LC Brazil

Cynoscion regalis Isopisthus parvipinnis LC Brazil

Barbuto M. et al., 2010 [59] Mustelus mustelus Squalus acanthias VU Italy
Mustelus mustelus Prionace glauca NT Italy
Mustelus mustelus Galeorhinus galeus CR Italy
Mustelus mustelus Alopias superciliosus VU Italy
Mustelus mustelus Isurus oxyrinchus EN Italy

6. DNA Barcode Regions
6.1. Cytochrome c Oxidase I (COI) Gene

The cytochrome c oxidase I (COI) gene is the preferred sequence that serves as a “bar-
code” to identify and delineate the animal life form [22]. This DNA barcoding region
is called the Folmer region and consists of a 648–655 bp long DNA segment near the
5’ end of mitochondrial cytochrome c oxidase subunit 1. This region was first proposed
by Folmer et al. [60] to identify metazoans and used in several studies on insects [38,61],
mammals [62,63], amphibians [64], reptiles [65] and birds [18]. Considering birds, Hebert
et al. [18] described a success rate of species identification from 98% to 100%. Ward et al. [26]
proposed the COI mitochondrial gene as a barcode marker in fish. In particular, 207 species,
mainly Australian marine fish, were sequenced for the 655 bp region of the mitochondrial
cytochrome oxidase subunit I gene, demonstrating that cryptic fish species are revealed
through the discovery of deep divergence of COI sequences within currently recognized
species. However, to recover the variable segment flanking on both sides of the COI region,
multiple rounds of PCR and multiple primer combinations were required [26]. Ivanova
et al. [27] improved the COI barcoding protocol through identifying a primer set that could
ensure wider use on more taxonomic groups, focusing on fishes. Primer cocktails were
tested in 94 fish to identify the different COI sequences. Interestingly, the COI-2 primer
cocktail was developed for mammalian barcode region amplification [63] but was proven
to work in fish as well. Conversely, the COI-3 cocktail developed for fish was very effective
in mammals, amphibians and reptiles. Together, these cocktails amplified the barcode
region for every tested species [27]. The mitochondrial COI gene has been implemented as
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the preferred barcode region for the animal kingdom because it provides regular resolution
at the species level and it is a region present in a large number of species [34,66]. For this
reason, in the following years, COI barcoding became a standard method for the identifica-
tion of fish specimens and products, Ref. [59] due to the need of finding adequate tools to
confirm species authenticity and product labelling to avoid commercial fraud [59,67,68].
Seafood authentication and food safety became a wide scientific interest all over the world.
In this regard, Filonzi et al. [24] developed molecular barcoding using 650 bp of COI gene
to identify seafood frauds in Italy. A special focus was put on Italian commercial markets
during 2008 when the results were obtained in 69 processed fish products belonging to
27 teleost species. DNA barcoding using Sanger’s sequencing revealed incorrect labelling
in 22 samples (32%). Among the replaced species, 18 (26%) were severe frauds from both
economic and nutritional perspectives [24]. Armani et al. [35] dedicated further atten-
tion to ethnic seafood sold in the Italian market. Sixty-eight variously processed ethnic
seafood products were collected from the Italian market and full cytochrome c oxidase
DNA barcode (FDB, ~655 bp) or a mini-COI barcode (MDB, ~139 bp) were performed.
Discrepancies between labelling and molecular identification were revealed in 48.5% of all
products. In particular, two samples were labelled as squid but identified as Lagocephalus
spp., which is a poisonous puffer fish species banned from the EU market. This result
confirmed the importance of DNA barcoding as a golden tool for protecting consumers’
health and economic interests [35].

During recent decades, using the analysis of the cytochrome c-oxidase I gene sequence,
seafood mislabelling was identified in different countries of Europe such as Germany [37],
Italy [32,69], United Kingdom [8,70], France [71], Spain [72], Greece [73], Portugal [74] and
Northern Europe [75]. The work proposed by Tinacci et al. [76] underlined the urgency
to review and update the Bulgarian official seafood list. Ninety-seven labelled seafood
products collected from Bulgarian wholesalers were analysed using COI barcoding and
revealed a species substitution rate of 17.7%. The analysis of the official seafood denomina-
tion label highlighted the presence of commercial and scientific names not included within
the official list (59.2%), the lack of a scientific name (34.1%), the incomplete reference to the
catching area (85.2%) and the absence of the fishing gear (55.2%). Pardo et al. [77] focused
their studies on fish mislabelling rate in the mass caterer (HoReCa) sector across Europe.
A total of 283 samples were collected in 180 mass cafeterias inside commercial outlets in
23 European countries. Molecular analysis based on the COI gene sequence revealed that
26% of the samples were mislabelled.

Several studies were performed in different places such as South America [28,78],
Asia [79–81], the US [53,82,83], Africa [84,85] and Australia [86,87]. In relation to this,
Cawthorn et al. [88] estimated the prevalence of species substitution and fraud prevailing
in commercial fish in the South African market. The region of the COI gene was sequenced
from 248 fish samples collected in seafood wholesalers and retail outlets. DNA barcoding
was able to provide unambiguous species-level identifications, and 9% of samples from
wholesalers and 31% from retailers were identified as different species from the ones
indicated. Munguia-Vega et al. [89] conducted a DNA barcoding study in three cities within
Mexico and sequenced the COI gene in 376 fish samples sold as 48 distinct commercial
names at fish markets, grocery stores and restaurants. Overall, the study mislabelling rate
was 30.8%. Dissimilar mislabelling rates [3,90] have been shown depending on countries,
species groups, the dealer, strict regulation of government, the processing of fish and the
year. In Europe, for example, Bénard-Capelle et al. [71] detected only 14 mislabelling cases
(3.7%) among the 371 samples collected in France. On the contrary, the average seafood
mislabelling in Belgium was 31.1%, while the substitution of bluefin tuna was up to 95% [75].
A similar scenario characterizes the rest of the world; indeed, high rates of mislabelling,
using the COI gene, were observed in North America, respectively, 47% in the USA [53] and
41.2% in Canada [91]. In contrast, in South Korea, one of the biggest seafood markets in the
world with strict laws of the Korean Government, a low mislabelling rate was found by Do
et al. [92]. This study used the COI gene to investigate mislabelling of 157 seafood samples;
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12 mislabelling cases were found with a mislabelling rate of 7.6%. A wide variety of fish
products have been studied using DNA barcoding, but little investigation of sushi, poke
and ceviche dishes sold at restaurants has been performed. In relation to this, Kitch and
colleagues [93] dedicated their research to this type of product based on raw fish, analysing
105 samples collected in Orange County (CA). Among these, 103 samples were positively
identified using DNA barcoding and a species substitution rate of 23.3% was evidenced.
On the other hand, non-congruent labelling was found in 45.6% of samples, while 63.1% of
samples had some form of mislabelling. When the assessment was stratified in relation to
the product category, ceviche had the highest overall mislabelling rate with 85.3%, followed
by poke with 61.8% and sushi with 42.9%. Some authors [72,93] hypothesized that a general
lower rate occurred in specimens obtained from local grocery stores in comparison with
larger supermarkets, wholesalers or restaurants.

At last, the suitability of the COI gene for species identification using the mini-barcode
version must be remarked. The proposal of a wide set of primers [33] allows the application
of this approach to detect short informative fragments useful for analysing particularly
degraded samples (see dedicated Section 3 in this review).

6.2. Cytochrome b (cytb) Gene

In 1989, Kocher et al. [94] identified the cytochrome b region as a possible genetic
marker for species identification. A standard set of primers headed for conserved mtDNA
regions was amplified and sequenced in more than 100 animal species, among which were
mammals, amphibians, birds, some invertebrates and fishes. The results of this study
showed different genetic variability between different species of the same biological class.
This unexpected taxonomic utility of cytochrome b (cytb) primers provided opportuni-
ties for phylogenetic and population research [94]. Several studies proposed mtDNA for
species identification, considering this particular genome one of the most useful for phy-
logenetic work [95–98]. At the beginning of the twenty-first century, the mitochondrial
cytb gene was probably the best-known mitochondrial gene in terms of the structure and
function of its protein product [99,100]. Parson et al. [101] attempted to identify DNA from
44 different animal species covering the five major vertebrate groups (15 mammals, 22 birds,
1 amphibian, 2 reptiles, and 4 fish species). The cytb fragment was amplified, sequenced and
compared to the database’s homologous 300 bp fragment sequence. Similarly to Ivanova
et al. [27], who defined the best primer set to assess the correct taxonomic groups using COI
sequences (see previous chapter), Sevilla et al. [102] tried to improve the cytb barcoding
protocol for fish. A set of 21 PCR primers and amplification conditions were developed
to barcode any teleost fish species according to their mitochondrial cytochrome b gene
sequences. Overall, the above procedure yielded > 99.9% successful amplifications [102].
In fish, cytb has also proved to be a useful marker for the identification of seafood species
and/or resolving species phylogenies [25,103–106]. In particular, mt cytb has been used to
identify flatfish, gadoids, anchovies, eels, scombroids and many other species [107–112].
Cytb barcoding as a molecular method involving DNA sequencing can be successfully
used for fish species identification, giving a key contribution to the correct labeling of fish
products [6,24,113,114]. For instance, using cytb sequences, Marko et al. [6] showed that
70% of 22 red snapper samples (Lutjanus campechanus) from US markets were less-valuable
species of Lutjanidae.

Armani et al. [115] analysed the genera Neosalanx and Protosalanx belonging to the
Salangidae fish family, also known as icefish or silverfish, which is imported processed
from China to Italy. Direct gene sequencing was carried out to taxonomically classify the
correct species in 10 specimens of Neosalanx taihuensis directly collected from Lake Taihu.
In addition, 200 specimens of icefish whose indirect origin was attributed to 40 markets
(27 from Italy and 13 from China) were analysed with the same technique. The main
purpose of the taxonomic approach was to investigate any potential mislabelling. Obtained
cytb sequences identified 90% of market samples as N. taihuensis. The data rose to 93% when
only products collected in Italy were considered. Interestingly, 15% of samples coming
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from Italian markets were mislabelled, thus confirming the existence of commercial fraud
at an international level. In similar research, Ha et al. [116] carried out an analysis of
10 processed fillets collected from department stores in Hanoi (Vietnam). Only four of
these products matched common and corresponding scientific names after the appropriate
barcoding evaluation. The other six samples exhibited inappropriate labelling, switching
from P. hypophthalmus into P. boucourti. Although no real commercial fraud was found in
these products, the correct scientific names of fish species should always be considered
for elaborated products as they are publicly available in supermarkets where people have
no specific consciousness of this problem [116]. Meanwhile, Cutarelli et al. [117] analysed
60 samples of canned fish belonging to three genera and five species collected by Italian
Health authorities: PIF (Border Inspection Posts), NAS (Anti-Sophistication Police) and
ASL (Local Health Authority). The species declared were confirmed in all samples except
two, which were labelled as Thunnus alalunga instead of Thunnus thynnus. All other
samples were correctly labelled as Thunnus albacares, Thunnus obesus, Sardina pilchardus
and Engraulis encrasicolus [117]. Gomes et al. [118] evaluated the authenticity of 107 frozen
fillets tagged as Gurijuba (Sciades parkeri) and Uritinga (Sciades proops) bought from local
markets located on the northern Amazon coast. About 16% of fillets initially attributed to
S. parkeri were substituted with S. proops. Forensic analysis using mtDNA markers proved
to be highly efficient in the discrimination of processed seafood, providing unequivocal
taxonomy. In fact, commercial fraud pertaining to Gurijuba fillets was discovered using cytb
sequences as a barcode in fish [118]. The same markers were adopted by Souza et al. [119]
to estimate the mislabelling prevalence of seafood displayed in street markets, fishmongers,
supermarkets and restaurants of Rio de Janeiro (Brazil). Analyses were carried out between
2012 (n = 77) and 2020 (n = 183). Nearly 50% (130/260) of the analysed products had
no correspondence. It is noteworthy that the frequency of mislabelling varied across the
commercialization chain. Once again, a split evaluation displayed higher mislabelling
values detected in street markets (61%) and restaurants (82%) compared to fishmongers
(38%) and supermarkets (22%). The most commonly exploited species as substitutes
were Pangasianodon hypophthalmus (75%) and Xystreurys rasile (17%). Substitute taxa were
usually lower priced, supporting an economic motivation as the general idea formulated
for mislabelling. These results reinforce the need for updated and consistent regulations
addressed to a more stringent control of sales of a wide variety of species in street markets
and restaurants [119].

6.3. 16S rDNA and 12S rDNA

The two ribosomal RNAs, 12S rRNA (819 to 975 bp in vertebrates) and 16S rRNA
(1571 to 1640 bp in vertebrates) genes, similarly to other mitochondrial genes, have numer-
ous nucleotide substitutions, suggesting their use as a tool for species identification [120].
In relation to this, the mitochondrial 12S rRNA and/or 16S rRNA genes have been used as
molecular markers to identify mammals, birds, shrimp and other species [121–127].

In particular, the mitochondrial gene coding for 12S rRNA has been reported to
be an excellent tool for the authentication of fish and seafood due to its mutation rate,
acceptable length and availability of sequence information in databases [128]. Meanwhile,
there is evidence that the 16S rDNA is adequate for discriminating some Epinephelus
and Mycteroperca species from non-target species [129]. Various studies were carried
out to investigate and implement the use of these rRNA genes as molecular markers
for species identification. Variants belonging to 12S and 16S molecular markers have
been used to identify a wide variety of flatfish, eel, cardinalfish, cephalopods, mackerel,
hairtail species, crab and several others [39,128,130,131]. Worldwide, 12S and 16S rDNAs
have become valuable barcoding tools to assess seafood fraud verification cases. Their
application to high-value fish has been demonstrated by Von der Heyden et al. [132], who
tested several widely available and generally expensive fish in South African high-priced
markets utilizing mtDNA 16S rRNA sequencing. Interestingly, half of 178 tested samples
revealed mislabelling with a special focus on kob. In fact, 84% of kob fillets, Argyrosomus
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spp, provided an attribution to other species, such as mackerel, croaker and warehou.
Phylogenetic analyses supported the general idea of frequent species substitution among
barracuda, wahoo and king mackerel. Genetic analyses gave the opportunity to reveal that
red snapper fillets included those of river snapper Lutjanus argentimaculatus, which is a
prohibited species for sale in South African markets. From preliminary population genetic
comparisons, some 30% of kingklip samples probably had their origin in New Zealand
rather than southern Africa. A similar mislabelling rate was found in seafood products
sold in South America. In northern Brazil, an investigation was carried out for critically
endangered species’ (Pristis perotteti, largetooth sawfish) commercialization in fish markets,
typically labelled as “sharks”. Based on partial DNA sequences of the mitochondrial
16S, 55% of samples were unequivocally identified as P. perotteti, while the others (45%)
belonged to the families Carcharhinidae and Ginglymostomatidae [133]. Considering one
of most exploited species in Caribbean regions, also including part of South America, Lee-
Charris et al. [134] focused their attention on the common snook Centropomus undecimalis,
realizing that populations drastically decreased in that marine sector due to overfishing and
environmental degradation. Thus, there is a market imbalance between the availability of
snook products and their demand by consumers, which generates such fraudulent actions
as species substitution. Therefore, to investigate the existence of mislabelling in common
snook products, 15 fresh snook fillets from six of the main fish markets and 44 frozen
snook fillets from the five commercial brands available in Santa Marta (Colombia) were
identified through molecular barcodes (16S rDNA and COI). A sort of discrepancy emerged
between department stores and local shops. In fact, an astonishing 98% of processed fillets
were found to be fraudulent in the commercial markets in comparison to a much lower
involvement of fish shops, where only a single case was registered. The species used to
substitute snook included the Pacific bearded brotula Brotula clarkae (38 samples), the Nile
perch Lates niloticus (4 samples) and the acoupa weakfish Cynoscion acoupa (1 sample) [134].
To contribute to the current knowledge on mislabelling rates in Europe, some studies
have been performed on seafood products in Spain [135,136]. Horreo et al. [135] tested
77 fish dishes from 53 different restaurants located in nine districts of Madrid (Spain).
A short fragment of the 16S rDNA was sequenced and compared with sequences in
databases to verify that seven species or genera and almost 30% of the samples were
mislabelled. Mislabelling was present in 37% of the sampled restaurants and 71% of the
sampled districts.

In more recent years, several researchers have verified the presence of seafood fraud
in Asia [137–139]. Hossain et al. [137] experimented with a pair of universal primers with
the aim to target a 198 bp fragment of the mitochondrial 16S rDNA to assess species iden-
tification in partially degraded samples. The 16S rRNA gene was tested on 24 processed
fish products commonly consumed in Malaysia. The newly developed marker success-
fully identified 92% of the tested commercial fish products based on 96–100% sequence
similarities. Five out of 24 (20.8%) fish products revealed a considerable degree of species
mislabelling. According to its limited fragment length, the new molecular marker devel-
oped in Hossain et al. [137] is a reliable tool to identify fish species even in highly processed
products. Results were particularly helpful to detect species substitutions with the objective
to protect both consumers’ health and economic interests [137]. Xing et al. [138] compared
the results obtained using the shorter sequence of the mitochondrial region of 16S rDNA
(~220 bp) with a region of COI gene to test a variety of sold animal-derived food products
in the Chinese market. More precisely, 52 samples, quite variegated and including meat,
poultry and fish purchased from retail companies and online sources, were assessed. Ap-
proximately 94% of the samples generated barcode sequences. On the opposite, the failure
rate for barcodes based on the entire COI region was 44%. Despite this, they obtained
valuable data using the 16S rDNA mini-barcode from 87% of the COI-failed cases. Overall,
the survey revealed that 23% of animal-derived products were mislabelled and, in most
cases, contained undeclared species [138].
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A higher mislabelling rate was also found in canned tuna sold in Taiwan. Chang
et al. [139] sequenced two mitochondrial regions, 16S and the control region (D-Loop), to
assess 90 canned tuna products, also including 25 animal food items. Results revealed that
Sarda orientalis, Euthynnus affinis, Auxis rochei and Auxis thazard are commonly exploited
as substitutes in place of declared tuna products. Specifically, only 63.33% of investigated
samples are true canned tuna, i.e., containing Thunnus species or skipjack tuna [139]. On
the other hand, a low mislabelling rate was found in the study of Helgoe et al. [140], in
which Atlantic cod (Gadus morhua) samples (n = 546) were collected from local markets, su-
permarkets and restaurants from eight cities across Spain. DNA barcoding was performed
used PCR-based assays of the mitochondrial cytochrome oxidase-I (COI) and 16S rRNA
loci. A 6.2% mislabelling rate was discovered. Although no evidence emerged for possible
distinct geographic patterns of mislabelling, biologic samples obtained from restaurants
were more likely to be mislabelled than those sampled in department stores. In relation to
sample preparation, such processed products as elaborated or salted/smoked fish were
more likely to be mislabelled than fresh or frozen products. Common ling (Molva molva),
haddock (Melanogrammus aeglefinus), saithe (Pollachius virens) and Alaska pollock (Gadus
chalcogrammus) were the most common substitutes, while Nile perch (Lates niloticus) and
striped catfish (Pangasianodon hypophthalmus) were the most taxonomically dissimilar to
Atlantic cod.

6.4. Nuclear DNA

Despite the advantages of using mtDNA for species identification, some nDNA tar-
gets have also established to be successful in the recognition of fish and seafood species.
Frequently, nuclear genes have been used in combination with mitochondrial genes to
improve the efficiency and robustness of the analysis. In fact, to overcome limitations
connected to mtDNA in defining closely related taxa, different regions of nDNA have
been proposed as helpful markers to reach a reliable identification. In particular, nuclear
regions are fundamental to solve issues related to hybridization and introgression [3]. The
most common is the nuclear 5S rRNA gene (5S rDNA), which consists of a small 120 bp
conserved region coding for 5S rRNA and a variable region of noncoding DNA, termed the
non-transcribed spacer (NTS), that has a species-specific length and sequence [141–143].
In particular, the 5S rRNA gene has been used to identify gadoids, salmonids, sharks,
mackerel and others [143–146]. Perez and Garcia-Vazquez [147], using PCR amplification
and sequencing of the nuclear 5S rDNA, demonstrated that hake products commercialized
in southern European (Spanish and Greek) market chains presented more than 30% of in-
correct species labelling. DNA analysis showed that tails and fillets were more mislabelled
than other products, and African species were substitute species for products labelled
as American and European taxa [147]. Triantafyllidis et al. [148] used the 5S rRNA gene
as molecular marker for detecting and quantifying allergenic fish species contained in
Greek commercial seafood labelled with generic and unspecific names. Almost 85% of
the analysed products contained highly allergenic hake or grenadier species and only 15%
contained less histaminergic species such as cod and haddock [148]. Frigerio et al. [149]
performed a new set of primers on the 5S rDNA and non-transcribed spacer (NTS) on
27 processed and unprocessed products collected at the Milan fish market and across differ-
ent Italian supermarkets. In their research, a new DNA mini-barcoding region suitable for
species identification was identified [149].

Another important nDNA region which has been used for species identification is the
intronless nuclear rhodopsin gene (RHO) [150], which has been proposed for recognizing
teleost fishes by Sevilla et al. [102]. Under certain circumstances, such as hybridization
and introgression that are frequent in fish populations, the intronless nuclear rhodopsin
gene results to be a useful additional marker for fish species identification in combination
with mtDNA targets [91,151]. In particular, Abdullah and Rehbein [152,153] demonstrated
the usefulness of the rhodopsin gene as nuclear marker for fish species differentiation,
particularly tuna food products from Indonesian markets.
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Variations in the gene coding for 18S rDNAs allowed the identification of four species
of abalone in Thailand, Haliotis asinina, H. ovina and H. varia [154]. Several authors used the
18S rDNA for fish identification [155–157]. 18S rDNA-barcode possesses several advan-
tages: the complete 18S rRNA gene sequence displays different variability levels [158]; a
well-developed 18S rDNA-sequence library, including a wide spectrum of taxa, is available
on Genbank and facilitates the identification of variable and conserved regions; the pres-
ence of multiple nuclear copies [159] increases the probability of amplifying degraded prey
DNA from predator faeces and, thus, increases the sensitivity of the method [160].

Finally, the myosin heavy chain 6 cardiac muscle alpha gene (MYH6) has been used
to identify genetic diversity between species [161,162]. In particular, Ramirez et al. [161]
proposed this gene to highlight the phylogenetic relationships among the Laemolyta genus.
Twenty-four samples of four valid nominal Laemolyta species were investigated using
barcoding analysis.

7. DNA Barcoding Databases

The organization and storage of sequences in several comprehensive and consistent
barcode databases is one of the major strengths of the DNA barcode-based technologies
related to species identification, authentication and phylogenetic analysis [163–165].

In most cases, each database contains an organized set of information concerning species
name, voucher data, collection records, specimen identifiers and genetic sequences [164].
The computation of nucleotide variation, using evolutionary models such as the Kimura2-
parameter distance method [166], allows to assess the correct match between the target
and reference sequences. To ensure the correct identification, the database must contain
reference sequences representing that species; this implies the accuracy of the association
between the loaded sequences and the referred species, and this may be a problem especially
in seafood cases due to many morphological similarities between different species and
taxa [167].

DNA barcoding is successfully applied to seafood for many reasons: (1) in comparison
to other animal sources (e.g., cattle, sheep, goat, horse) where taxonomic discrimination
must be carried out at race level, the assessment of seafood is mainly performed on a high
number of species and the effectiveness of this technique is therefore enhanced; (2) classical
identification approaches are not useful in many cases, particularly with processed food;
(3) in seafood more than in other living groups, molecular identification can go further
than the species level, allowing in several cases the identification of varieties that belong to
local natural resources and hence the identification of the geographical origin of a certain
product [163].

The support of bioinformatics associated with the laboratory approach is therefore
fundamental. One of the most popular public databases is GenBank, which is part of
the NCBI (International Nucleotide Sequence Database Collaboration) that also includes
the DNA DataBank of Japan (DDBJ) and the European Nucleotide Archive (ENA). Con-
ceived in 1982, at this time, there are more than 200 million sequences (release Aug 2022:
239,915,786 sequences). From 1982 to the present, the number of bases in GenBank has
approximately doubled every 18 months [168]. GenBank also has a useful tool that provides
a rapid sequence comparison to identify unknown species. This software, called BLAST
(Basic Local Alignment Search Tool), directly approximates alignments that optimize a
measure of local similarity between sequences and calculates the statistical significance
of matches [169]. This database is also widely used in food safety to perform correct
specimen identification due to the many available sequences. Despite this, it has been
criticized as being susceptible to problems such as incorrect species identification and
missing information [170], especially with fish and seafood [171].

It must be remarked that despite the large number of sequences so far deposited in
GenBank, the database is not appropriately dedicated to seafood and, therefore, a lack of
information or unreliable taxonomy may complicate correct species attribution [3]. For this
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reason, more specific databases dedicated to barcoding or fish species are more helpful for
the solution of traceability issues.

Alternatively to GenBank, the Barcode of Life Database (BOLD) is a cloud-based data
storage and shared platform that supports the assembly and use of DNA barcode data. It
has been created by the organization iBOL, which has the main purpose of developing a
globally accessible DNA-based system for the discovery and identification of all multicel-
lular life [172]. Currently, BOLD consists of more than 11 million sequences belonging to
243,000 animal species. All the stored barcodes have been deposited after identification
by expert taxonomists. Moreover, BOLD has a useful component called BOLD-IDS, an
identification engine tool that provides, whenever possible, a match between the target
barcode sequence and the referred one, allowing a taxonomic assignment.

Both BOLD and Genbank concern all species and, in food safety, they are widely
used for specimen identification of many products, from raw to processed food [163],
but also for the detection of parasite and pathogens in human and animal food [173,174].
BOLD identification normally achieves higher acceptability and scientific merit since it is
based on verified sequences and tagged specimens. However, BOLD records suffer from
some shortcomings such as a low number of species, and it usually depends on GenBank
sequences. Some pitfalls were documented, such as mistakes in private submission or
records gleaned from the GenBank database that can create incorrect identification when
BOLD-IDS are used [38,175].

With the aim to collect and assemble standardized DNA barcode sequences within a
well-organized reference library to aid the molecular identification of all fish species, the
Fish Barcode of Life Initiative (FISH-BOL) is a concerted global research project launched
in 2005 [164,176]. FISH-BOL currently has DNA barcode records in place for nearly
8000 species. So far, several studies have shown a high success rate of DNA barcod-
ing for species identification [177] using FISH-BOL, with 93% of freshwater species and
98% of marine species tested with unambiguous taxa differentiation [167].

Fish-Trace is a public European database which has been created to compile and
deliver accessible data and material needed for the genetic identification of marine fish
species in Europe. Fish-Trace consists of 220 species belonging to 75 different families [178].
To minimize the risk of incorrect association between the loaded sequence and the referred
species, all the fish specimens have been identified by taxonomists and stored in natural
history museums [179]. Every sequence loaded contains metadata information of both
sampling and geographic origin. The Fish-Trace catalogue is based on two genes, one
mitochondrial (cytb) and one nuclear (rhodopsin), used in analysis validation and quality
control. Although Fish-Trace is specifically dedicated to fish species, its data are limited to
European species based only on two genes, not on COI, which nowadays represents the
most reliable one.

Further, Aquagene is a free-access database of genetic information of marine species.
This database now consists of 603 species referenced by 1093 individuals and 1383 barcodes.
All species are characterized by multiple gene sequences including the standard COI
barcoding gene together with cytb, MYH6 and RHO, therefore facilitating unambiguous
species determination even for closely related species or those with high intraspecific
diversity. Moreover, it is possible to find data concerning the sampled specimen, such as
digital images, voucher number and geographic origin [180].

It is noteworthy that one of the strengths of this technology is the availability of many
sequences stored in multiple databases. Although this may allow reliable comparisons, it
can also generate a certain degree of complexity in species identification due to different
variations on the information sources. This usually occurs more often in seafood identifica-
tion due to many morphological similarities in closely related groups [167]. As shown in
Table 3, expert-verified databases present a lower number of species, while NCBI Genbank,
despite a large number of species and sequences, suffers from the absence of data validation
and a lack of sample information [179]. In this regard, in some cases, the same barcode
produces different results in those databases [32,38]. For this reason, integration of different
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databanks coupled to an expert based judgment is fundamental for reaching a reliable
specific attribution, integrating the result provided from the databases and the sampling
information [32].

Table 3. DNA barcoding principal database specifications.

Database Molecular
Markers Taxa N◦ of

Sequences World Region

GenBank All All 239 milions All

BOLD COI, ITS, rbcL,
matK

Animal, Plants,
Fungi, Protists 11 milions All

FISH-BOL COI Freshwater and
Marine Species Not Available All

Fish-Trace cytb, rhodopsin Marine Species Not Available Europe

Aquagene
COI, cytb,

MYH6,
rhodopsin

Marine Species 1383 Central Eastern
Atlantic

8. Evolution of Seafood Barcoding through the Genomic Era

New genomic technologies (NGTs) have been developed over the last two decades.
NGTs may lead to several and variegated advantages in the fields of food safety, agriculture,
industry and pharmaceutics. A connection between genomics and food issues is also
considered in “The Farm to Fork Strategy”, which is a focal point of the European Green
Deal with the intent to make food systems fair, healthy and environmentally friendly.
Among different approaches, DNA sequencing is still fundamental to trace elaborated
foods that gather a mixture of sources within a single product. Although the traditional
Sanger sequencing technology is still the gold standard for species identification, innovative
approaches are emerging to analyse processed seafood samples that may contain more than
one species [15]. According to the above-mentioned concepts, in the last decade, genomics
techniques have become more common and exploited in all fields in science and have
consequently led to technological improvements and a decrease in costs.

Alternative next-generation DNA barcodes have been proposed, starting from inno-
vative approaches in taxonomy and population genetics [181]. In particular, Restriction
Site Associated DNA (RAD) sequencing has been proposed to distinguish closely related
species. This technique is very efficient at generating sequence data from many thousands
of nuclear loci; however, taxon-specific optimization is requested and precludes the ap-
plication of RAD sequencing as a universal barcoding approach. Approaches based on
genome skim are mostly used for floristic species and will therefore not be considered
in this manuscript, while a more common method is based on the use of capture probes.
Probe sets are being developed for both mitochondrial and nuclear markers, and they may
offer powerful extended barcodes. However, the need to develop probes having wide
phylogenetic coverage is still a limiting step.

On the other hand, Next Generation Sequencing (NGS) has been proposed as the
most valuable substitute to the classical Sanger approach. The major difference between
Sanger technology and NGS is the capacity of the latter technique to identify up to 15 or
more different fish species potentially present in a single highly processed product [182].
The progress of NGS has recently spread out as no other technique has done before. Its
ability to sequence millions of small DNA fragments in parallel has revolutionized the
genomic research. In fact, the simultaneous identification of animal and plant species in
food products is one of the main goals to reach a reliable food safety using high-throughput
sequencing formats [183,184].

Most of literature in this field has been increasing exponentially since the last 5 years,
and the majority of approaches are nowadays managed through the Ion TorrentTM and
IlluminaTM technologies. Kappel et al. [185] exploited metabarcoding using the Illumina
MiSeq platform, targeting two short cytb fragments useful for tuna species identification
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in mixtures containing one to four species. Results provided precise sequence recoveries,
allowing the identification of a minimum percentage of Katsuwonus pelamis (around 1%
w/w) mixed inside major quantities of Thunnus alalunga within the same canned product.
In the same year, Carvalho et al. [186] explored barcoding with the Ion torrent PGM
method for the identification of fish species in highly processed codfish products, reporting
a mislabelling rate of 41%. Giusti et al. [187] analysed surimi products, applying the
same technology, using 16S rDNA barcodes from a wide range of fish and cephalopod
species. The authors verified that 37.5% of the products were mislabelled, 25% declared
a species different from those identified and 25% did not label the presence of molluscs.
Wang et al. [15] tested the feasibility of next-generation sequencing in identifying mixed
salmon products sold in Shanghai. Salmon samples containing up to eight species were
amplified using 16S rDNA mini-barcode primers and sequenced on an Illumina HiSeq2500
platform. All species were accurately identified, and mixtures as low as 1% (w/w) could be
detected. Both Sanger and NGS techniques were used to compare species identification,
and a final cross-validation was obtained with real-time PCR to verify the accuracy of
the DNA metabarcoding technology. DNA barcoding and metabarcoding of commercial
salmon food products revealed the presence of mislabelling in 16 of 32 (50%) samples.
The characterization of novel nuclear targets functional to flatfish samples identification
was performed by Paracchini et al. [188] in silico study and NGS. Samples of various
species of the Pleuronectidae family were analysed using short candidate nuclear regions.
The advantages of these novel targets over the mitochondrial ones were demonstrated
particularly for the capability to identify hybrid individuals, as well as multiple fish species
in complex mixtures. More precisely, the ring finger protein 41 gene, also known as Nrdp1,
showed the highest level of species differentiation, followed by the genes encoding the
homeobox C13a/C13b proteins and midline 2 [188]. Two years later, the same research
group [189] proposed additional nuclear genes and four non-coding regions assessed on
raw or mildly treated commercial products. Using the NGS technique, gadoid species were
successfully identified in complex mixtures and processed samples.

Interestingly, the NGS method can recover complete or near-complete barcodes under
challenging experimental conditions, even in century-old samples where DNA is highly
degraded [190]. Nevertheless, NGS represents a valuable tool to detect bacterial contami-
nation in seafood with the aim of avoiding food-borne diseases [191], which represent an
additional threat to consumers in addition to species substitution, particularly in popular
tourist destinations [58].

It must be remarked that the application of NGS in food science is quite a recent
acquisition and therefore under continuous development. The constant search for the best
approach in terms of time, costs, quality and efficiency to obtain entire mitogenome se-
quences is leading to new advances both in terms of laboratory activities and bioinformatics
tools for data analysis. Continued improvements in sequencing platforms and analysis
tools will make this approach even more reliable and cost effective very shortly [192].

9. Conclusions

To protect consumers from food frauds and health hazards and to improve the mon-
itoring of species endangered by overfishing and illegal commercial activities, reliable
molecular tools to perform barcoding DNA analysis were developed. In this review, we
explored and presented a wide number of barcoding approaches with a special focus on fish
species traceability both in terms of taxonomic identification and labelling. The proposed
methods can identify with high accuracy the different species (or even lower taxa) in a wide
range of raw and processed seafood products. For each method, a plethora of different
studies has been discussed highlighting the main advantages and pitfalls.

Considering the overall evaluation and the highlighted differences between more
classical markers and novel nuclear and mitochondrial barcoding regions, it is noteworthy
that the choice for the best approach must still consider variegated aspects that have to
be evaluated under an expert-based judgement. As a matter of fact, the combination of

97



Foods 2023, 12, 2420

different methods to improve the accuracy scores of correct identifications seems the best
practical way to reach a reliable species validation. Nevertheless, independent or integrated
data-sharing platforms are nowadays available to align, validate and classify the generated
barcoding sequences.

The recent description and application of novel powerful genomics technologies
open new perspectives. Innovative approaches based on NGS may generate millions of
sequence reads in parallel, also under challenging experimental conditions, such as sample
degradation due to bad preservation within the commercial pathway. Its power will have
to be fully implemented in the future to reach constant improvements in terms of time,
costs, quality and efficiency with the aim of increasing the application of DNA barcoding
as one of most effective tools to discover unethical activities in seafood consumption.
On the other hand, it must be remarked that constant technological improvements in
the fields of molecular genetics and genomics make biotechnological approaches more
reliable. Adaptation of protocols starting from DNA extraction coupled to enrichment
techniques [192] up to bioinformatic elaboration of millions of available sequences [181]
allows the presentation of barcoding as an affordable strategy becoming more and more
popular, also considering the continuous fall of costs.
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Abstract: The effect of fertilizer supply and light intensity on the distribution of elemental contents
(%C and %N) and light stable isotopes (C, N, H, and O) in different rice fractions (rice husk, brown
rice, and polished rice) of two hybrid rice cultivars (maintainer lines You-1B and Zhong-9B) were
investigated. Significant variations were observed for δ13C (−31.3 to −28.3‰), δ15N (2.4 to 2.7‰),
δ2H (−125.7 to −84.7‰), and δ18O (15.1‰ to 23.7‰) values in different rice fractions among different
cultivars. Fertilizer treatments showed a strong association with %N, δ15N, δ2H, and δ18O values
while it did not impart any significant variation for the %C and δ13C values. Light intensity levels
also showed a significant influence on the isotopic values of different rice fractions. The δ13C values
showed a positive correlation with irradiance. The δ2H and δ15N values decreased with an increase
in the irradiance. The light intensity levels did not show any significant change for δ18O values in
rice fractions. Multivariate ANOVA showed a significant interaction effect of different factors (light
intensity, fertilizer concentration, and rice variety) on the isotopic composition of rice fractions. It is
concluded that all environmental and cultivation factors mentioned above significantly influenced
the isotopic values and should be considered when addressing the authenticity and origin of rice.
Furthermore, care should be taken when selecting rice fractions for traceability and authenticity
studies since isotopic signatures vary considerably among different rice fractions.

Keywords: light intensity; fertilizer treatment; stable isotopes; hybrid rice; cultivar; fractionation
mechanism

1. Introduction

Rice (Oryza sativa L.) is a major cereal crop consumed by half of the global population
and widely planted in Asia, Africa, and parts of America. In 2020, the total area under rice
cultivation exceeded 195 million hectares. The quality characteristics of rice are mainly
associated with its growing conditions, and recently the traceability of rice back to its
growing origins has gained increasing interest from consumers, producers, and related
industries since it is vulnerable to economic fraud [1]. Many methods have been developed
to address the authenticity of rice, including multi-element, spectroscopic, omic, and DNA-
based analysis [2–5]. Most recently, stable isotope analysis (SIA) has been widely employed
to authenticate organic rice, determine its geographic origin, and identify rice cultivars [6,7].
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However, there may be unknown stable isotope effects on rice, caused by cultivar type, light
intensity, environmental factors, and fertilizer treatments which may reduce the accurate
determination of its geographical origin, especially when it is procured from nearby or
adjoining localities. Therefore, identifying the range of stable isotope compositions (δ13C,
δ15N, δ2H, and δ18O) in different rice fractions according to the differences in light intensity
level, fertilizer type and concentration, and cultivar/variety would improve the validity of
traceability methods for rice and its products.

Different factors such as plant physiology, photosynthetic processes, climatic factors
(temperature, sunshine, humidity, precipitation), and cultivation practices have been shown
to induce stable isotope fractionation in plants [8]. Generally, the δ13C values of plants
reflect plant photosynthetic processes and water use efficiency. Carbon found in mature
rice grains originates from the assimilation of CO2 during the grain filling period [9]. Solar
irradiance is the main factor that affects the net CO2 assimilation rate and high temperature
is also associated with stomatal closure and a reduction in CO2 assimilation. Conversely, if
the temperature is below the optimum range, the net CO2 assimilation rate will become
light-limited and lead to reduced photosynthetic productivity [10]. In addition, plant
photosynthesis is also affected internally by photozymes, hydrolase C3 reductase, and CO2
fixation enzymes [11]. This internal physiological response is referred as the physiological
index which mainly reflects stomatal conductance, transpiration rates, net photosynthetic
rate, and intercellular CO2 concentration. Plant δ2H and δ18O values reflect physical factors
such as rainfall and evapotranspiration, and are also associated with plant physiological
parameters such as transpiration and stomatal conductance [12]. Nitrogen isotopes are
mostly associated with farming practices, crop types, and soil characteristics and also reflect
significant correlations between plant growth, photosynthetic capacity, and respiration
rate [8,12].

Many studies have reported the limitation of stable isotopes in addressing the authen-
ticity of agro-products when the samples are procured from close geographical locations
or from a region where the same agricultural practices (fertilizer, etc.) are adopted [13].
Therefore, it is very important to understand the effects of different factors (light intensity,
fertilizer type and concentration, and cultivar type) on the composition of rice stable iso-
topes. To explore these effects, we conducted two field experiments with a split plot design
using two commonly used Chinese hybrid rice cultivars (maintainer lines) Zhong-9B and
You-1B. The objective of this study was to investigate the variability of %C, %N, δ13C,
δ15N, δ2H, and δ18O values in different rice fractions (husk, polished rice, and brown rice)
in response to different fertilizer regimes and light intensity levels, and to identify how
light shading and fertilizer application control isotopic ratios in rice. The results from this
study will contribute more insight into the localized climatic, environmental, and farming
effects on the isotopic composition of rice and will allow us to better predict rice origin and
authenticity using stable isotope-based traceability models.

2. Material and Methods
2.1. Field Experiment

Field trials were carried out in 2018 at an experimental field at the China National Rice
Research Institute (CNRRI) in Fuyang, Zhejiang province. Two commonly used hybrid
rice maintainer lines (Zhong9B and You1B, which are the most popular cultivars in China
provided by CNRRI), were studied. In total, three nitrogen treatments (N0, N6, and N12)
with three light intensities (shading; 50% and 75%, and non-shading; ambient light) were
arranged in a split plot design. The size of each plot was 10 m2 with 3 replicates for
each treatment. Nitrogenous fertilizer was applied as 0 kg/ha (N0), 90 kg/ha (N6), and
180 kg/ha (N12), respectively, at different growing stages including basal planting, tillering,
and heading stages which accounted for 50%, 30%, and 20% of the application, respectively.
Phosphate fertilizers were used only as basal fertilizer, whereas potash was used as both
basal and tillering fertilizers and the fertilizer proportion was N:P:K = 1:0.5:0.5, respectively.

107



Foods 2023, 12, 1832

In the case of N0, urea was not applied during the entire production period. In
total, 450 kg/ha of super phosphate was applied as basal fertilizer and 150 kg/ha of
potash as basal (75 kg/ha) and tillering stage (75 kg/ha), respectively. For N6 treatment,
195 kg/ha of urea was applied, including 97.5kg/ha as basal fertilizer, 58.5 kg/ha as tillering
fertilizer (7 to 9 days after transplanting), and 39 kg/ha as heading fertilizer (30 days after
transplanting), respectively. In the case of N12 treatment, a total of 390 kg/ha of urea was
applied, of which 195 kg/ha was basal fertilizer, 117 kg/ha was tillering fertilizer, and
78 kg/ha was applied as heading fertilizer. The application rate of phosphate and potash
fertilizers for both N6 and N12 treatments were the same as N0.

For the light intensity investigation, natural sunlight treatment, LS-0 (0% shading,
no shading), and shaded treatments, LS-50 (50% shading) and LS-75 (75% shading) were
applied. In the shaded treatments, plants were shaded with a shading screen/net. For
LS-50, one layer was used and for LS-75 two layers of shading screen were applied over
the top of the rice plants.

2.2. Elemental Content and Isotope Ratio Measurements

Rice grains (2 kg) from each plot were harvested at maturity and subsequently threshed
by a hulling machine equipped with a rice polisher (PY-200, Hubei Pinyang Technology
Co., Ltd., Xiaogan, China) to obtain different fractions including brown rice (BR), polished
rice (PR), and rice husk (RH). All fractions were air-dried, then ground into a fine powder,
and finally dried at 50 ± 2 ◦C for 24 h. The samples were stored in desiccators until further
analysis. For the determination of elemental contents (% C, % N) and isotopes (δ13C and
δ15N), dried powdered samples were weighed (4.5 to 5.5 mg) and packed into tin capsules
(3 mm × 5 mm). The samples were combusted in an elemental analyzer (Vario Pyro Cube,
Elementar, Hanau, Germany) and the combustion gases were analyzed using an isotope
ratio mass spectrometer (IRMS) (IsoPrime100, Isoprime Ltd., Manchester, UK). Sample
combustion was carried out in a combustion furnace at 1150 ◦C and reduction in the N2Ox
gases to N2 over copper wire occurred at 850 ◦C. An inert gas (He) with a flow rate of
230 mL/min was passed through a CentrION prior to mass spectrometry. Acetanilide (Puriss.
p.a., Sigma-Aldrich) was used to calibrate elemental % C and % N. For δ13C and δ15N
analysis, multipoint calibration was applied using reference standard materials including
B2155 (protein, δ13C = −27.0‰, δ15N = +6.0‰), IAEA-CH-6 (sucrose, δ13C = −10.4‰),
USGS40 (L-glutamic acid, δ13C = −26.4‰, δ15N = −4.5‰), USGS64 (glycine, δ13C = −40.8‰,
δ15N = +1.8‰), and IAEA-N-2 (ammonium sulfate, δ15N = +20.3‰). The δ13C and δ15N
values were measured relative to V-PDB and AIR, respectively.

For δ2H and δ 18O isotopes, around 1.0 mg powdered sample of each fraction was
weighed into silver capsules (6 mm × 4 mm) and analyzed using EA (Vario Pyro Cube,
Elementar, Hanau, Germany) IRMS (IsoPrime100, Isoprime Ltd., Manchester, England).
Reference materials USGS54 (Canadian lodgepole pine, δ2H = −150.4‰, δ18O = +17.8‰)
and USGS55 (Mexican ziricote, δ2H = −28.2‰, δ18O = +19.1‰) were used to calibrate
the δ2H and δ18O measurements. Samples and reference materials were freeze-dried at
−60 ◦C for three days to remove all adsorbed water and subsequently equilibrated for
five days in the laboratory and exposed to local atmospheric conditions prior to H and O
analysis. Pyrolysis was performed at 1450 ◦C to convert organic H and O to gaseous H2
and CO, respectively, and finally the analytes were transferred into the IRMS for isotope
determination. The δ2H and δ18O values were measured relative to Vienna Standard Mean
Ocean Water (V-SMOW). All the samples were analyzed in triplicate. Reference materials
were sourced from the International Atomic Energy Agency (IAEA, Vienna, Austria) and
the United States Geological Survey (USGS, Reston, Virginia, United States). B2155 was
supplied by Elemental Microanalysis (Okehampton, United Kingdom). The analytical
precision for δ13C, δ15N, δ2H, and δ18O was less than ±0.1‰, ±0.2‰, ±2‰, and 0.5‰,
respectively. The delta values (δ) were calculated as follows:

δE =
(

Rsample / Rstandard

)
− 1 (1)
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where δE represents δ13C, δ15 N, δ2H, and δ18O whereas Rsample and Rstandard represent the
13C/12C, 15N/14N, 2H/1H, or 18O/16O ratios in samples and reference materials, respectively.

2.3. Data Analysis

The effect of light intensity, fertilizer type and concentration, cultivars, and their
interaction were studied using %C, %N, δ13C, δ15 N, δ2H, and δ18O of different rice fractions
with multivariate analysis of variance. Light shading level, fertilizer type and concentration,
and cultivars were considered as fixed variables. Differences among the treatments were
evaluated using Duncan’s test at a significance level of 0.05. All analyses were performed
using R software (version 3.0.3).

3. Results and Discussion
3.1. Multivariate ANOVA for Elemental Content and Isotope Ratios

Multivariate analysis of variance was applied to evaluate the effect of different factors
such as variety (vty), shading level, and fertilizer (nitrogen) concentration on the carbon
(%C), nitrogen (%N), δ13C, δ15N, δ2H, and δ18O values of different rice fractions, including
polished rice (PR), brown rice (BR), and rice husk (RH). The results are summarized in
Table 1 and shown in Figure 1. The results showed that the carbon content (%C) in different
rice fractions was not affected by vty, light shading, fertilizer, or their interactions. For
%N, light shading showed a significant influence on the total nitrogen content of PR and
BR; however, no significant difference was observed in RH under different light shading
levels. Moreover, an interaction (vty × light shading) effect was also observed for PR
(Figure 1a). In the case of δ13C, light shading and variety significantly contributed to all
rice fractions. The interaction (vty × fertilizer)/(vty × light shading) effect also showed
significant influence for PR and (vty × light shading) for RH. No interaction effect was
observed for BR (Figure 1b–d).

Table 1. A combined analysis of variance for different influencing factors on the stable carbon (δ13C),
nitrogen (δ15N), oxygen (δ18O), and hydrogen (δ2H) values among different rice fractions.

Pr (>F)

Factor %C %N δ13C (‰) δ15N (‰) δ2H (‰) δ18O (‰)

Polished Rice

Fertilizer (N) 0.300 0.168 0.241 0.007 ** 0.003 ** 0.903
Light shading (LS) 0.624 0.000 *** 0.000 *** 0.001 ** 0.000 *** 0.408

Variety (vty) 0.960 0.011 * 0.000 *** 0.541 0.222 0.004 **
N × LS 0.945 0.528 0.291 0.061 0.190 0.893
Vty × N 0.289 0.072 0.007 ** 0.043 * 0.028 * 0.367
Vty × LS 0.889 0.033 * 0.016 * 0.000 *** 0.030 * 0.456

Brown Rice

Fertilizer (N) 0.061 0.007 ** 0.775 0.014 * 0.005 ** 0.848
Light shading (LS) 0.208 0.000 *** 0.000 *** 0.001 ** 0.000 *** 0.920

Variety (vty) 0.398 0.339 0.000 *** 0.338 0.029 * 0.683
N × LS 0.432 0.630 0.087 0.073 0.273 0.954
Vty × N 0.662 0.354 0.439 0.583 0.187 0.287
Vty × LS 0.876 0.602 0.258 0.000 *** 0.114 0.403

Rice Husk

Fertilizer (N) 0.326 0.165 0.344 0.002 * 0.974 0.000 ***
Light shading (LS) 0.081 0.053 0.000 *** 0.002 ** 0.829 0.008 **

Variety (vty) 0.833 0.000 *** 0.000 *** 0.004 ** 0.000 *** 0.000 ***
N × LS 0.208 0.581 0.153 0.015 * 0.541 0.283
Vty × N 0.476 0.217 0.279 0.695 0.253 0.000 ***
Vty × LS 0.586 0.363 0.025 * 0.000 *** 0.708 0.000 ***

Note: *** Indicates highly significant at p < 0.001, ** p < 0.01, and * p < 0.05.

The δ15N values in RH, PR, and BR were significantly affected by fertilizer concentra-
tion, shading level, and interaction (vty × shading level) effects (Figure 1e–g). Significant
interaction effects (vty × fertilizer) on δ15N were also observed for PR (Figure 1h) and
(fertilizer × light) for RH (Figure 1i). The fertilizer concentration and shading levels were
the major factors that contributed significant variation among all rice fractions. In the
case of δ2H, the fertilizer concentration and shading level showed a significant difference
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for PR and BR, whereas no significant difference was observed for RH. The interaction
(vty × fertilizer)/(vty × light shading) effect was only observed for PR (Figure 1j,k). Only
cultivar imparted a significant variation for the δ2H values in RH. In the case of δ18O, differ-
ent trends were observed. Almost all factors contributed to a significant variation for RH but
no significant differences were observed for BR and PR. The interaction (vty × fertilizer)/
(vty × light shading) effects for δ18O are shown in Figure 1l,m, respectively.

  

  

  

   
Figure 1. Cont.
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Figure 1. Interaction effects for the δ13C, δ15N, δ2H, and δ18O values among rice varieties (vty),
fertilizer concentration (N), and light intensity of different rice fractions. (a) vty × light (PR, %N);
(b) vty × N (PR, δ13C); (c) vty × light (PR, δ13C); (d) vty × light (RH, δ13C); (e) vty × light (PR, δ15N);
(f) vty × light (BR, δ15N); (g) vty × light (RH, δ15N); (h) vty × N (PR, δ15N); (i) N × light (RH, δ15N);
(j) vty × N (PR, δ2H); (k) vty × light (PR, δ2H); (l) vty × N (RH, δ18O); (m) vty × light (RH, δ18O).

3.2. Elemental and Isotope Differences between the Rice Varieties

Differences in the %C, %N, δ13C, δ15N, δ2H, and δ18O values among the different
rice cultivar fractions under different fertilizer concentrations and light intensities were
determined. The results showed significant differences for all the analyzed parameters
except for %C. Multiple comparisons were made between %N, δ13C, δ15N, δ2H, and δ18O
values (Figure 2). The %N in RH showed a strong significant difference between the two
rice varieties. The total %N of You-1B rice (1.8 ± 0.2%) was significantly higher than Zhong-
9B rice (1.5 ± 0.4%). Similarly, the δ13C values of You-1B RH (−30.8‰), PR (−28.3‰), and
BR (−29.1‰) were significantly higher than Zhong-9B (−31.3‰, −29.2‰, and −29.7‰),
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respectively. The lower δ13C values of Zhong-9B rice suggest higher water use efficiency.
Different factors are responsible for genetic variations in the δ13C values, including diffusive
conductance, water use efficiency, stomatal activity, etc. [14]. For the δ18O values, the two
varieties also showed significant differences for PR and RH. Higher δ18O values of You-1B
RH (23.7‰) indicate higher transpiration rates. Our results are consistent with previous
findings where a similar trend was observed for δ18O variations among different rice
cultivars [15]. Differences in the δ18O values are mainly due to the vegetative cycle of
water [16].

A different pattern was observed for the δ2H values. You-1B BR (−88.6‰) and RH
(−125.7‰) were significantly lower than Zhong-9B BR and RH (−84.7‰ and −117.0‰),
respectively. This difference suggests that less water fractionation occurred in Zhong-9B
rice. A previous study also reported a significant difference in the δ2H values among
different rice cultivars [17].

The δ15N values also followed the same trend where Zhong-9B rice values were higher
than You-1B, although the difference in traits between rice varieties was primarily reflected
in RH. δ15N values of PR, BR, and RH in Zhong-9B and You-1B rice was (2.6‰, 2.5‰,
2.7‰) and (2.5‰, 2.4‰, and 2.4‰), respectively. Our results are consistent with previous
findings where significant differences in the δ15N values among different rice cultivars
were reported [18].

Figure 2. Cont.
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Figure 2. Variation of %N, δ13C, δ15N, δ2H, and δ18O values in the polished rice (PR), brown rice (BR),
and rice husk (RH) between two rice varieties. *** Indicates high significance at p < 0.001, ** p < 0.01,
and * p < 0.05 (Duncan’s test).

3.3. Effect of Fertilizer Regimes on Elemental and Isotope Values of Rice Fractions

The effect of different fertilizer treatments on the %C, %N, δ13C, δ15N, δ2H, and δ18O
values was measured and the results are shown in Figure 3. %N did not show any significant
effect among the rice fractions and the only interaction effect (variety × nitrogen) was
detected in PR rice (Table 1). The %N and δ15N values among different rice fractions were
significantly affected by nitrogen fertilizer application levels. The %N and δ15N values of
different rice fractions under different fertilizer concentrations (N0, N6, and N12) followed
different patterns of accumulation. Figure 3 shows that the %N of rice grains was higher
when subjected to higher nitrogen application levels. The %N for BR (1.8 ± 0.2%) grown
under N12 conditions was significantly higher than N6 (1.6 ± 0.26%) and N0 (1.6 ± 0.2%),
respectively. However, the δ15N value for N0 was significantly higher than N6 and N12
indicating that the synthetic urea fertilizer application level was negatively correlated with
the δ15N values in different rice fractions (Figure 3).
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Figure 3. The value of %N, δ15N, δ2H, and δ18O stable isotopes in rice husk (RH), polished (PR),
and brown rice (BR) under different nitrogen fertilization levels. *** Indicates high significance at
p < 0.001, ** p < 0.01, and * p < 0.05 (Duncan’s test).

These results appear consistent with previous findings which suggest conventionally
fertilized rice has lower δ15N values compared to control samples (without fertilizer) [19].
The interpretation of δ15N signatures in plant tissues is generally complex since it can
differ from the nutrient source as 15N fractionation occurs during plant physiological
processes, mainly during nitrogen uptake, nitrate assimilation, and reduction, as well as
during remobilization to the rice grain [20,21]. Lower δ15N values in the fertilized plant
fractions during pre-anthesis reflect the direct N availability from the fertilizer applied.
Discrimination against 15N occurs during the assimilation of inorganic nitrogen within the
plant, and the enzymes responsible for this isotope discrimination include nitrate reductase
and glutamine synthase [22].

Higher N assimilation rates in fertilized plants enhance the uptake of inorganic fertil-
izer which results in the reduction in 15N in fertilized plants compared to non-fertilized
plants [22]. In addition, the isotopic discrimination against 15N is marginal in non-fertilized
rice ears (glumes, awns, grains) as compared to fertilized rice ears, probably because N lim-
itation prevents discrimination and promotes a higher efficiency for N remobilization [23].
The higher amount of N carried over into the grain results in a higher 15N discrimination.
This fact suggests a decrease in the δ15N values for the rice grain in fertilized plants com-
pared to non-fertilized plants. Discrimination within the plant is lower in the non-fertilized
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grains (N0; lacking nitrogen fertilizer) because the ratio between the plant demand vs.
available N is high [24].

Nitrogen fertilizer application had a significant effect on the δ2H values in PR and
BR. The highest δ2H values in PR (−73.2‰) and BR (−83.2‰) were observed for the N12
treatment which indicates that the δ2H values increased with N fertilizer level. There is
limited literature on this topic, which restricts the discussion of this mechanism, although a
similar trend was observed for the δ2H values in a previous study, where it was reported
that BS-fertilized (biogas slurry) rice had higher δ2H values than a control rice (without
fertilizer) [19]. The effects of nitrogen application levels on the δ18O values contrasted with
δ2H values. There was no significant effect in the PR and BR grains, probably due to a
weak or no effect on grain morphological parameters, and a lack of N effect on stomatal
conductance and transpiration rates [25].

A significant difference was observed in the δ18O values in RH. The mean δ18O
values for N6 (21.3‰) and N12 (20.2‰) treatments were significantly lower than N0
treatments (22.9‰) suggesting that the δ18O values in RH decreased with increasing
nitrogen fertilization. Lower δ18O values in RH than the rice grain may be associated with
progressive enrichment in plant components from the root, to the stem, to the leaf, and
finally to the grain, as well as physiological factors such as dehydration and plant tissue
degradation that occurs during husk development [26].

3.4. Elemental and Isotopic Variations among Different Light Shading Treatments

Different shading treatments including LS-0, LS-50, and LS-75 were applied and the
effect was observed on the %N, %C, δ13C, δ15N, δ2H, and δ18O values of different rice
fractions. The experiment was performed using two shading treatments (LS-0 and LS-50)
for rice plants grown with fertilizer treatment N0 and N6, respectively (Figure 4a), and three
shading treatments (LS-0, LS-50, and LS-75) for rice plants cultivated using N12 fertilizer
treatment (Figure 4b). The shading effect on the %N, %C, δ13C, δ15N, δ2H, and δ18O values
of rice grown under different fertilizer treatments followed the same pattern. The light
shading treatment showed a significant effect on the %N, δ15N, δ13C, and δ2H values in
different rice fractions. The values of %N were significantly lower at LS-0 than that of LS-50
and LS-75 in all three rice grain fractions. In the case of PR, the highest %N value was
observed LS-75 (2.3 ± 0.2%) followed by LS-50 (2.0 ± 0.2%) and the lowest was observed in
LS-0 (1.6 ± 0.1%), respectively. The δ15N values followed a unique pattern. It can be seen in
Figure 4b that the δ15N signature among different rice fractions was significantly higher in
LS-50 compared to LS-0 (non-shaded), but it decreased in LS-75. No significant difference
was found in the δ15N values for LS-0 and LS-75. Further investigation is required to
explore this mechanism since no literature was found that explained this phenomenon in
rice. However, previous research has shown that the effect of maize kernel shading (40%)
on %N at different stages showed a decrease in the %N content (up to 60%) compared to the
control (ambient sunlight), which is not consistent with our study [27]. This crop difference
suggests that plant physiological characteristics can impart significant crop variation for N
uptake, retention, utilization, and isotopic fractionation.

The δ13C values among different rice fractions also showed significant variations for
different shading treatments. The %C values of LS-0 in different rice fractions including
PR (−28.3‰), BR (−28.8‰), and RH (−30.5‰) were significantly higher than those of
LS-50 (29.5‰, −30.0‰, −31.6‰), and LS-75 (−29.7‰, −30.1‰, −31.5‰), respectively,
indicating that at greater light intensity, the 13C isotopic fractionation is higher. In previous
studies, a similar trend in δ13C values for citrus, grapefruit, and banana plants were reported
under different shading treatments [10,28,29]. The δ13C values are positively correlated
with irradiance and a similar trend of increasing δ13C values with increasing irradiance
has been found in banana plants [28]. The δ13C values have been shown to be negatively
correlated to internal CO2 concentration in plants during carbon uptake, so a decrease in
δ13C values under shaded treatments indicates increased conductance during the time that
the CO2 was fixed and/or a decreased photosynthetic rate [10]. Another study argued
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that lower δ13C values in shaded treatments clearly indicated that shading disrupted the
photosynthate metabolism, reducing the photosynthate accumulation in grains [30].
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 Figure 4. The %N, δ13C, δ15N, δ2H, and δ18O values in rice husk (RH), polished (PR), and brown
rice (BR) under (a) two different light shading levels and (b) three different light shading levels.
*** Indicates high significance at p < 0.001, ** p < 0.01, and * p < 0.05 Duncan’s test).
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The δ2H values also showed significant variations for PR and BR. In PR, the highest
δ2H value (−65.3‰) was found in LS-75 followed by LS-50 (−69.3‰), and the lowest was
observed in LS-0 (−77.0‰), respectively. The same trend was observed for BR and there
were significant differences between LS 50/75 and LS-0. Soil water (from groundwater,
irrigation water, or precipitation) is the main source of δ2H in plants, and the present
results indicate that different light intensities affect the δ2H values of soil water, causing the
δ2H signature of rice grains to vary through transpiration. No significant difference was
observed for the δ18O values among the different rice fractions at different light intensities.

4. Conclusions

In this study, the effect of cultivar type, fertilizer supply, and light intensity on the
distribution of elemental contents and light stable isotopes (C, N, H, and O) in different
rice fractions were investigated. Significant variations were observed for δ13C, δ15N, δ2H,
and δ18O values of different rice fractions among different cultivars. Fertilizer applica-
tion rates showed a strong association with %N, δ15N, δ2H, and δ18O values, although
there was no significant variation in the %C and δ13C values. The light intensity levels
also showed a significant influence on isotopic contents among different rice fractions.
The δ13C values showed a positive correlation with irradiance. The δ2H and δ15N values
decreased with an increase in the irradiance. It is concluded that all factors mentioned
above significantly influence isotopic values and should be considered when addressing
the authenticity of rice. Furthermore, care should be taken when selecting the rice fraction
for future studies as isotopic signatures vary considerably among different rice fractions.
The findings from this study will have a significant impact on understanding different
climatic trends (seasonal and annual) and fertilizer effects on rice and allow better under-
standing of isotopic variability for different geographical regions, farming practices, and
environmental conditions.
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Abstract: DNA-metabarcoding is becoming more widely used for routine authentication of meat-
based food and feed products. Several methods validating species identification methods through
amplicon sequencing have already been published. These use a variety of barcodes and analysis
workflows, however, no methodical comparison of available algorithms and parameter optimization
are published hitherto for meat-based products’ authenticity. Additionally, many published methods
use very small subsets of the available reference sequences, thereby limiting the potential of the
analysis and leading to over-optimistic performance estimates. We here predict and compare the
ability of published barcodes to distinguish taxa in the BLAST NT database. We then use a dataset
of 79 reference samples, spanning 32 taxa, to benchmark and optimize a metabarcoding analysis
workflow for 16S rDNA Illumina sequencing. Furthermore, we provide recommendations as to
the parameter choices, sequencing depth, and thresholds that should be used to analyze meat
metabarcoding sequencing experiments. The analysis workflow is publicly available, and includes
ready-to-use tools for validation and benchmarking.

Keywords: DNA metabarcoding; amplicon sequencing; food authenticity; food adulteration; next
generation sequencing; bioinformatics; validation; benchmarking

1. Introduction

Commercial food and feed are subjected to international regulations, ensuring that
they are safe and conform to the packaging declarations. Meat products are especially
prone to adulteration. This can be the replacement of expensive ingredients with cheaper
meat products, misinformation by the addition of undeclared components, or the absence
of declared components [1,2]. Classical DNA-based methods such as Polymerase Chain
Reaction (PCR) amplification, restriction fragment length polymorphism, or DNA-chips, as
well as protein-based methods such as ELISA are limited by their target-based approach.
As such, their results are limited to a binary answer regarding a single component and
they may not be able to identify all ingredients present in a sample. Sanger sequencing,
on the other hand, is a widely used untargeted method for the identification of food
ingredients. Unlike targeted methods, untargeted methods do not require prior knowledge
of specific targets and can analyze a broader range of ingredients. However, it should be
noted that the Sanger sequencing application is limited to pure samples [1]. MALDI-based
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methods are being developed to overcome these challenges, but the collection of reference
spectra is still a work-intensive process [3]. Next-generation sequencing (NGS) methods
for food authenticity have been developed in the last decade, taking advantage of the
untargeted possibilities of the technology and of existing extensive databases of nucleotide
sequences [4,5].

Some NGS methods focus on a metagenomics approach, i.e., sequencing of all DNA-
sequences in a sample [6,7]. Other methods use a metabarcoding approach, in which a small
conserved DNA fragment is amplified and sequenced, while sequence differences allow
for specific taxa identification [8–14]. This method allows untargeted species identification
and increased parallelization of sample processing and analysis, while taking advantage of
the massive amount of reference sequences available in dedicated databases. The choice of
barcode is however non-trivial and can have a strong effect on the method’s performance:
barcodes should be short enough to still be detectable in highly degraded samples, while
still allowing to distinguish between closely related organisms [15]. Metabarcoding presents
several advantages over metagenomics: decreased costs, larger reference collections, and
less complex analysis, however at the cost of lower taxonomic resolution, being limited
to a subset of the taxonomy, and being prone to PCR artifacts [16]. For these reasons,
metabarcoding methods are currently widely used for food authenticity determination in a
wide-range of matrices [8–12,14,17–19].

Various methods for sample preparation and sequencing of meat products were
validated and published, focusing on the two main short-read sequencing technolo-
gies [8,10,11,13,14]. While the IonTorrent platform offers proprietary data analysis solutions,
a number of alternative bioinformatics workflows are published for Illumina sequencing
data [8,9,11,14]. However, currently published workflows present various drawbacks:
(1) none of them is freely available beyond the publication; (2) parameter choices in these
workflows appear to be arbitrary, with no comparison of different parameters and/or tools,
and can widely differ between workflows; (3) most validations were performed using a very
limited subset of reference databases, yielding over-optimistic validation performances.

Our goal here is three-fold. Firstly, we aim to assess the possibilities of using large
databases such as the NCBI NT database [4] for metabarcoding analysis and compare
predicted performances of different metabarcoding methods. Secondly, our goal is to
benchmark a selection of algorithms and parameter sets and validate an optimized analysis
workflow. To this end, we used a dataset of 79 real samples, spanning 32 individual taxa.
We methodically optimized the bioinformatics analysis on this dataset and present a set of
parameters for optimal analysis performance. Lastly, we calculate the accuracy of the analy-
sis and formulate recommendations regarding the limit of detection and sequencing depth.
Both the dataset and software programs used in this study are made freely available to help
future improvement and practical applications in food authenticity analysis laboratories.

2. Materials and Methods
2.1. Reference Material

The 79 reference samples used in the study were acquired from commercial providers
DLA Proficiency Tests GmbH (www.dla-lvu.de; accessed on 1 December 2022), Laborvergle-
ichsuntersuchungen Gbr, (www.lvus.de; accessed on 1 December 2022), and LGC Standards
(www.lgcstandards.com; accessed on 1 December 2022) were part of interlaboratory ring
trials [10], or prepared from certified reference materials or materials whose identity was
determined by a certified veterinarian and Sanger sequencing (see Table S1). Some of these
samples were used in a previous study [9].

Samples were prepared and sequenced as previously described [9]. Raw sequencing
data are deposited to the European Nucleotide Archive with Project accession PRJEB57117.

Down-sampling was performed using the SeqTK ‘sample’ tool [20]. The sample size
and replicate number were concatenated and used as a seed for the random read selection
process. The same seed was used on forward and reverse reads.
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The BLAST NT database was downloaded on 12 November 2021 and the tax dump
files on 19 November 2021 [4].

2.2. In Silico Barcode Analysis

Recovery and analysis of the barcode sequences from the BLAST NT Database [4] was
performed using the BaRCoD v1.1.1 pipeline [21]. Briefly, the nucleotide database was
filtered to include only Amniote sequences. Primer sequences (Table S2) were searched
using the BLAST+ command line tools, with parameters reproducing the implementation
of the Primer-BLAST tool. For this, we used a coverage value of 80% and an identity
value of 65% [22,23]. Sequences flanked by facing primer sequences were considered
barcodes and extracted, and a new BLAST database was created using these sequences.
Barcode sequences were then dereplicated in a taxon-wise fashion, primer sequences
were removed using cutadapt [24], and global pairwise alignment was performed with
VSearch [25]. The pairwise alignments were used to calculate hamming distances. To
determine a consensus level for each sequence, we considered all sequences within a given
identity level (1-hamming distance/sequence length), the lowest node shared by a majority
of taxa was determined as a consensus taxon determined using TaxidTools [26], and the
NCBI taxonomy classification [4]. Conspecific probability was calculated as previously
described [27].

2.3. Metabarcoding Analysis

Sequencing data analysis was performed with FooDMe v1.6.3 [28]. Parameters indi-
cated thereafter were used if not specified otherwise in the text or figures.

2.3.1. Reads Preprocessing

Primer sequences (Table S2) and their reverse complements were trimmed from the 5′

and 3′ ends of the reads, respectively, using cutadapt [24] with an error rate of 0.1. Trimmed
reads were filtered with fastp [29] to discard reads shorter than 50 bp and trim trails using
a window of 4 bp with a minimal quality of 25.

2.3.2. De Novo Identity Clustering

Identity clustering was performed with VSearch [25]. Reads were merged with the
‘–fastq_mergepairs’ function, and a quality filter was applied to keep pseudo-reads between
70 and 100 bp and a maximum of 2 expected errors. Pseudo-reads were dereplicated before
being clustered with the ‘–cluster_size’ function, using identity levels between 0.97 and
1.0 (dereplication), and OTUs were sorted by size, discarding clusters with less than 2 reads.
If required, chimeras were detected and removed using the ‘–uchime_denovo’ function.

2.3.3. Denoising

Denoising was performed with DADA2 [30]. Read pairs were filtered to remove those
with more than 2 expected errors using the ‘filterAndTrim’ function. Forward and reverse
error rates were determined with the ‘learnError’ function, and reads were corrected using
the error model in the ‘dada’ function. Finally, corrected reads were merged with the
‘mergePairs’ function while allowing for 1 mismatch. If necessary, chimeras were detected
and filtered using the ‘removeBimeraDenovo’ function using the ‘per-sample’ method.

2.3.4. Taxonomic Assignment

A mask was created for the BLAST NT database [4] by filtering sequence ID corre-
sponding to Vertebrate taxa. Sequences corresponding to extinct taxa were then filtered
from this list. OTUs or ASVs were then searched against the masked database using the
BLAST+ program [22] using ‘megablast’ searches with filters for e-value (1.0× 10−10), iden-
tity (97), and coverage (100). Results were then filtered by applying a bitscore filter [31] of 4,
meaning that for each OTU/ASV, matches with a bitscore difference to the best match for
this cluster above 4 were discarded. The consensus taxon for each cluster was determined
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with TaxidTools [26] by applying a majority vote on the matching taxa, with a minimum
threshold of 0.51. The consensus corresponds to the lowest node common to at least X
fractions of the taxa, X being the consensus level [32].

2.4. Performance Analysis

Run performances were determined using the ‘benchmark’ module of FooDMe [28].
The observed compositions of each sample were compared to their expected values
(Table S1). For this, a concentration threshold of 0.1% was applied and correspondences
between expected and predicted values were considered at the genus level. Precision scores,
recall scores, average precision scores, and F-scores were calculated using the appropri-
ate functions of the ‘scikit-learn’ or ‘yardstick’ libraries [33,34]. Euclidean distance was
determined with NumPy’s ‘linalg.norm’ function [35]. Relative error was determined as
E = |predicted − expected| ÷ expected.

2.5. Figure Preparation and Statistical Analysis

Figures were prepared in R using the ‘tidyverse’, ‘ggpubr’, ‘rstatix’, ‘yardstick’, and
‘cowplot’ libraries [34]. Variations within groups were analyzed using the Kruskal-Wallis
test. Variations between groups were analyzed using ANOVA on quantile-normalized
values (Average precision) or original values (Distance). Yield, average precision, and
distance distribution were compared using the Wilcoxon test and p-values were corrected
for multiple comparisons using FDR correction. Different levels of p-values threshold are
indicated as follows: n.s. (p ≤ 1); * (p < 0.05); ** (p < 0.01); *** (p < 0.001); **** (p < 0.0001).

3. Results
3.1. Barcode Specificity

Successful identification of the taxon associated with each barcode depends on both
the availability of the sequences in the reference database and their differentiability from
sequences associated with other taxa. Several distinct methods have been published for
birds and mammals barcoding (Table 1 and Table S2) [8,11,14,36–38], targeting different con-
served genes: the 16S ribosomal small subunit (16S), Cytochrome B (cytB), or Cytochrome
oxidase 1 (COI/COX1). The 16S rDNA-based metabarcoding method published by Dobro-
volny et al. in 2019 [11] is currently being adopted as an official method by the German
consumer protection authorities and its performances were carefully measured in a recent
series of studies [9–11,39]. We, therefore, chose to focus our benchmarking and optimization
efforts on this method. Nevertheless, we wanted to compare the predicted performances
of this method to other published barcoding methods, as potential shortcomings could be
overcome by an alternative barcode.

Table 1. Comparison of barcode number and assignment rank for different targets.

Method
Number of

Taxids
Retrieved

Median
Number of
Barcode per

Taxid a

Median
Length of

Barcode [bp] b

97% Identity 100% Identity
Sequences Assigned at Max. Sequences Assigned at Max.

Species Level
[%]

Genus Level
[%]

Species Level
[%]

Genus Level
[%]

16S_dobrovolny 7701 3 75 66.77 85.36 81.98 93.27
16S_xing 6383 3 204 78.53 95.07 93.29 98.21

cox1_palumbi 2293 5 522 90.16 97.82 97.08 98.63
cytB_meyer 10,909 25 333 91.31 98.47 95.29 98.89

cytB_palumbi 10,078 35 741 94.55 99.17 97.93 99.56
cytB_VDLUFA 18,136 16 220 89.95 98.52 94.38 98.85

miniCOI_palumbo 5482 2 151 82.55 95.46 92.86 97.71

a Unique sequences only. b Not including primer sequences.

For this purpose, we first extracted all Amniota (the clade grouping birds and mam-
mals taxa, as well as reptiles) barcode sequences for seven different primer sets using a
local implementation of the Primer-BLAST algorithm [21,23]. For each different barcode,
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we determined all other barcodes within 97% identity distance. We then determined the
taxonomic assignment consensus that would result in either a 97% or 100% identity clus-
tering for this sequence, based on a strict majority consensus of all barcodes clustering
together at the identity level (Table 1).

Of over 35,000 Amniota taxa represented in the BLAST NT database, the methods
based on cytochrome B amplification were the ones that yielded barcodes for the most
taxa (over 10,000), with the VDLUFA method yielding barcodes for over 18,000. The
COX1/COI methods, on the other hand, were the most restricted, yielding barcodes for
under 5500 taxa. All methods yielded high assignment quality for both 97% identity and
100% identity, with more than 95% and 97% of barcodes being assigned at the genus level
or below, respectively. The 16S-based method published by Dobrovolny et al. (2019) [11]
performed significantly worse at the 97% identity level, with 10% fewer barcodes assigned
at the genus level or better, and only slightly worse at the 100% identity level. This might
be because the amplicon sequence for this method is especially short (~75 bp excluding
amplification primers).

Because most taxa in the BLAST NT database are not relevant for food authenticity,
we looked closer at a list of food- and feed-stuff-relevant or -adjacent species curated by the
German Consumer Protection and Food Safety Office [40,41]. We examined whether each
barcoding method could retrieve at least one barcode for each mammal and bird species in
this list (Table 2).

Table 2. Food- and feed- relevant and -adjacent species amplifiability predictions for different
barcoding methods. A ‘+’ indicates that at least one sequence was retrieved for the given organism
using the method in the header, and a grayed ‘0’ indicates that no sequence was retrieved for
this organism.

Organism Taxid Common Name 16S Dobro-
volny 16S Xing COX1

Palumbi
cytB

Meyer
cytB

Palumbi
cytB

VDLUFA
MiniCOI
Palumbo

Addax
nasomaculatus 59515 Addax + + + + + + +

Ailuropoda
melanoleuca 9646 Giant panda + + 0 + + + +

Alcelaphus
buselaphus 59517 Hartebeest + + 0 + + + +

Alcelaphus caama 59519 Red hartebeest + + 0 + + + +
Alces alces 9852 Eurasian elk + + 0 0 0 + +

Alectoris chukar 9078 Chukar partridge + + + + + + +
Ammotragus lervia 9899 Barbary sheep + + + + + + +

Anas
platyrhynchos 8839 Duck + + + + + + +

Anser anser 8843 Greylag goose + + + + + + +
Anser cygnoides 8845 Chinese goose + + 0 + + + +
Anser indicus 8846 Bar-headed goose + + + + + + +
Anser rossii 56281 Ross’ goose 0 0 0 0 0 0 0
Antidorcas
marsupialis 59523 Springbok + + + + + + +

Bison bison 9901 Bison + + 0 + + + +
Bison bonasus 9902 Wisent + + + + + + +

Bos mutus 72004 Yak + + 0 + + + +
Bos taurus 9913 Cattle + + + + + + +

Bubalus bubalis 89462 Water buffalo + + + + + + +
Cairina moschata 8855 Muscovy duck + + 0 + + + +

Canis lupus 9612 Grey wolf, dog + + + + + + +
Capra aegagrus 9923 Wild goat + + + + + + +

Capra hircus 9925 Domestic goat + + + + + + +
Capra ibex 72542 Ibex + + + + + + +
Capreolus
capreolus 9858 Roe deer + + 0 + + + +

Cavia porcellus 10141 Guinea pig + + 0 + + + +
Cervus elaphus 9860 Red deer + + + + + + +
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Table 2. Cont.

Organism Taxid Common Name 16S Dobro-
volny 16S Xing COX1

Palumbi
cytB

Meyer
cytB

Palumbi
cytB

VDLUFA
MiniCOI
Palumbo

Cervus nippon 9863 Sika deer + + 0 + + + +
Columba livia 8932 Domestic pigeon + + 0 + + + +

Connochaetes gnou 59528 Black wildebeest + + 0 + + + +
Connochaetes

taurinus 9927 Blue wildebeest + + + + + + +

Coturnix coturnix 9091 Common quail + + 0 + + + +
Coturnix japonica 93934 Japanese quail + + 0 + + + +

Cygnus olor 8869 Mute swan + + 0 + + + +
Dama dama 30532 Fallow deer 0 0 0 0 0 + 0
Damaliscus
pygargus 9931 Bontebok + + + + + + +

Equus asinus 9793 Donkey + + + + + + +
Equus caballus 9796 Horse + + + + + + +
Equus quagga 89248 Plain zebra 0 0 0 0 0 + 0
Equus zebra 9791 Mountain zebra + + + + + + +
Felis catus 9685 Cat + + + + + + +

Gallus gallus 9031 Chicken + + + + + + +
Gazella dorcas 37751 Dorcas gazelle + + 0 + + + +

Gazella
subgutturosa 59529 Black-tailed

gazelle + + 0 + + + +

Glis glis 41261 Fat dormouse + + 0 + + + +
Hippotragus niger 37189 Sable antelope + + 0 + + + +

Kobus
ellipsiprymnus 9962 Waterbuck + + 0 + + + +

Lama glama 9844 Llama + + + + + + +
Lepus europaeus 9983 European hare + + 0 + + + +

Macropus
fuliginosus 9316 Western gray

kangaroo + + 0 0 0 + 0

Macropus
giganteus 9317 Eastern gray

kangaroo + + 0 + + + +

Marmota marmota 9993 Alpine marmot 0 0 0 0 0 0 0

Martes martes 29065 European pine
marten + + 0 + + + +

Meleagris
gallopavo 9103 Turkey + + + + + + +

Muntiacus reevesi 9886 Reeves’ muntjac + + 0 + + + +
Mus musculus 10090 Mouse + + + + + + +

Myodes glareolus 447135 Bank vole + + + + + + +

Numida meleagris 8996 Helmeted
guineafowl + + 0 + 0 + +

Oryctolagus
cuniculus 9986 Rabbit + + + + + + +

Oryx dammah 59534 Scimitar-horned
oryx + + + + + + +

Oryx gazella 9958 Gemsbok + + + + + + +
Osphranter

robustus 9319 Common
wallaroo + + 0 + + + +

Osphranter rufus 9321 Red kangaroo + + + + + + +
Ovibos moschatus 37176 Musk ox + + 0 0 0 + +

Ovis aries 9940 Sheep + + + + + + +
Ovis orientalis 469796 Asiatic mouflon + + + + + + +

Phasianus
colchicus 9054 Common

pheasant + + 0 + + + +

Rangifer tarandus 9870 Reindeer + + + + + + +
Rattus norvegicus 10116 Rat + + + + + + +
Struthio camelus 8801 Ostrich + + 0 + + + +

Sus scrofa 9823 Pig + + + + + + +
Syncerus caffer 9970 African buffalo + + + + + + +

Tragelaphus oryx 9945 Eland + + + + + + +
Tragelaphus spekii 69298 Sitatunga + + 0 + + + +

Vulpes vulpes 9627 Red fox + + + + + + +

Surprisingly, the 16S and the VDLUFA-cytochrome B methods performed better on
the selected species than all other methods. This is likely due to the higher conservation
of the primer-binding regions for these methods across the birds and mammals classes.
Notably, no methods could find barcodes corresponding to Anser rossii (Ross’ goose) and
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Marmota marmota (alpine marmot), which might reflect the absence or bad quality of
mitochondrial sequences for these species in the database. The 16S methods were unable to
retrieve barcodes for Dama dama (fallow deer) and Equus quagga (plains zebra), whereas the
VDLUFA method was able to. The inability of the Dobrovolny method to amplify fallow
deer was reported before [9] and the method has since then been improved to overcome
this problem [42].

Aside from that, the 16-based Dobrovolny method [11] features several advantages.
Firstly, the very short amplicons make this method the most suitable for highly processed
matrices, where DNA might be heavily degraded [15,43]. Secondly, its ability to amplify
most species of interest (Table 2) and a large spectrum of Amniota taxa (Table 1) was shown
in silico. Thirdly, there is a growing body of literature on the suitability of this method
for metabarcoding experiments, including interlaboratory validation [9–11]. This method
also presents some drawbacks, namely comparatively bad predicted performances at 97%
identity clustering, and the species rank for 100% identity clustering (Table 1). However,
for meat speciation in food and feed, identification at the genus level is usually sufficient
for the detection of fraud.

3.2. Workflow Benchmarking and Optimization

The metabarcoding data analysis workflow can be separated into three main phases:

1. Reads preprocessing, where primer sequences are removed, and bad quality bases
are trimmed;

2. Clustering, where reads satisfying a given identity level are grouped together;
3. Taxonomic assignment, where clusters of reads are assigned to taxonomic nodes.

Each of these steps can be performed using a variety of different algorithms, each with
several parameters, whose values can have a strong impact on the quality of the analysis.
Several studies of meat-products metabarcoding have been published in the past years, each
using different analysis workflows and reference databases (Table S3). In order to objectively
compare different algorithms and parameters, we collected 16S metabarcoding experiments
for 79 different samples, totalizing 32 different species (Table S1). The dataset is enriched
for taxa at around 1%, which is the threshold commonly used in diagnostic laboratories
as a lower limit for legal action in case of undeclared species. For each parameter set, we
analyzed all samples assigning reads using the full BLAST NT database. The workflow’s
performances were determined both qualitatively and quantitatively. Qualitatively, we
compared the observed and expected composition of the samples at the genus level, and
we calculated the average precision, which is the geometric mean of the precision and recall.
Quantitatively, we determined the yield of the analysis as the number of reads retained
through to taxonomic assignment and calculated the Euclidean (or L2) distance between the
vector of predicted values and the vector of expected values, reflecting how far predictions
are from the expected compositions of the samples.

3.2.1. Benchmarking Clustering Parameters

The main bottleneck of the analysis is to obtain read clusters that accurately de-
scribe the real composition of the sample. Several clustering methods have been de-
scribed, amongst which de novo identity clustering and denoising are the main represen-
tatives [30,44–46]. We here compared the effects of clustering reads with a 95%, 97%, and
100% (dereplication) identity threshold and using denoising (Figure 1).

While the clustering algorithm choice made no significant difference in the qualita-
tive and quantitative accuracy of the results (Figure 1A,B), the denoising method had a
significantly higher yield than de novo clustering with either identity level (Figure 1C). The
median yield for denoising was 99%, with most samples above 98%, whereas it fell to a
median yield of 97% for dereplication, with samples as low as 93% yield. Additionally, the
clusters produced by the denoising algorithm were much closer to the real sample compo-
sition, as shown by the splitting level, calculated by taking the log10 of the ratio of cluster
number to expected components in each sample (Figure 1D). The splitting level median
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was close to one for denoising, indicating that each “real” sequence was split between
10 clusters. This level was increasingly high with increasing identity level for the de novo
identity clustering method. It reached a median value of 2.5 for the dereplication, indicating
that each “real” sequence was split between over 300 clusters. This had a significant impact
on the run time of the workflow (Figure 1E). The dereplication method ran over 20 min per
sample per core, whereas other methods ran for under 10 min per sample per core. This is
consistent with previous work showing a more accurate clustering using denoising [27,45].
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the range of the distribution. Differences between the groups’ means were tested with the Wilcoxon
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the number of predicted sequence clusters. (E) Average analysis runtime for the 79 samples dataset,
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of the distribution, the included white boxplots represent the range (lines), quartiles (box edges) and
median (middle line of the boxes) of the distribution, and outliers are represented by a black point.
Different levels of p-values threshold are indicated as follows: *** (p < 0.001); **** (p < 0.0001).

When using denoising, we noticed that it was important to allow for one mismatch
for reads merging (Figure S1). Using a strict identity for merging resulted in a considerable
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yield loss of up to 8%, while allowing one mismatch did not affect the quantitative and
qualitative accuracy of the results while maximizing yield. This is due to the short size
of the amplicon, which combined with a long read length means that the entire barcode
(~75 bp) is used as an overlapping sequence for merging.

We also checked whether detecting and filtering chimeric reads after denoising in-
fluenced the results. Although filtering chimera slightly affected yield, in the order of a
few percent of the reads, neither the quantitative nor the qualitative performances of the
workflow were affected (Figure S2). This likely indicates that very few chimeric sequences
are formed during both PCR and sequencing steps using the previously published 16S
method [9,11].

In conclusion, we show here that all four tested clustering algorithms yield similar
results. However, using denoising while allowing one mismatch in the overlapping se-
quences during read merging maximizes yield and gives clusters closer to the expected
sample composition.

3.2.2. Optimization of Taxonomic Assignment

Consensus sequences for each cluster need to be assigned to a taxonomic node. This
was done using the ‘megablast’ tool by looking for highly similar sequences in the BLAST
NT database. As only part of the database is relevant for the identification of birds and
mammals, the database was pre-filtered to exclude taxa not belonging to the Vertebrate
clade. A BLAST search typically yields many results, most of which are far off the target.
In order to narrow the search, several filters are available [31]. We applied a first hard filter
consisting of an expect-value (E-value; describes the number of hits one might expect to
see by chance in the database) and an identity level (the fraction of identical nucleotides
between hit and query) thresholds. Results were then post-filtered using bitscore difference
to keep only results within a certain distance to the best result for this query. Finally, each
cluster was assigned to a taxonomic node based on a minimal consensus level, between 51%
(majority consensus) and 100% (last common ancestor). Using this process, it is possible to
assign a taxonomic node to all clusters, even with divergent results, although the consensus
may be at the genus or higher rank [32].

The E-value threshold did not influence the assignment accuracy (Figure S3). This is
due to the downstream decision of considering only the top results from the BLAST search.
It is, however, important to note that using an E-Value threshold lower than 1.0 × 10−20

returned no hits from the BLAST search.
Because the multiple filtering process can have complex synergistic effects, we used

a matrix design to test a range of values for each filter: BLAST identity level was varied
between 95% and 100%, bitscore difference between 0 and 8 bits, and minimal consensus
between 51% and 100%. We then checked if any filter, or combination of filters, had a
significant effect on the result’s accuracy using analysis of variance (ANOVA).

The ANOVA of average precision values showed a significant effect on each individual
filter (Figure 2A). As well as combined effects of the minimal consensus and bitscore
filters. However, when omitting the parameter value of 8 for the bitscore filter, which
gave significantly worse results than any other (Figure 2C), the interaction effect was not
observed anymore. We, therefore, analyzed each effect individually. Average precision
improved gradually with improving BLAST identity values, yielding the best results for
100% identity values (Figure 2B). In this context, the bitscore filter was redundant with the
identity filter and yielded similar results for any value below 8 (Figure 2C). Consensus
gave the best results with values of 80% or below, the value of 100% (last common ancestor)
gave significantly worse results (Figure 2D).
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For the Euclidean distance, ANOVA only detected a significant effect of the consensus
filter (Figure 2E). Here again, all values below 100% yielded similar results (Figure 2F).
The loss of quantitative accuracy at 100% is most likely due to the decrease in qualitative
performance at this level, leading to a misassignment of sequences, ultimately resulting in
a different predicted composition.

Based on these results, the taxonomic assignment appears very robust to different
filtering values within the measured ranges. Best results are observed with a BLAST
identity value of 100%, the bitscore difference filter should allow for a maximum of 4 bits
difference and consensus should be determined using a majority vote (51%). More stringent
parameters (lower bitscore difference and higher minimum consensus level) could be used
if necessary to distinguish highly similar sequences, without predicted adverse effects.

3.3. Detection Limit

A common strategy to filter noise from real signals is to set a minimal proportion
threshold under which the signal is considered negative. To find the optimal threshold,
we calculated precision, and recall in 0.01% of total composition increments (Figure 3A).
Recall rapidly decayed after 1%, consistent with the fact that many components were
present at a 1% proportion in the dataset. Precision rapidly increased before reaching a
plateau at around 0.1%. To find the optimal threshold, we calculated the F2-score, which
is the geometric mean of the recall and precision, whereby the recall is considered twice
as important as the precision. The F2-score maximum was reached at a threshold value of
0.093%, which can be rounded to 0.1%. This threshold value agrees with the previously
published values for small curated databases [10,11].
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Figure 3. Workflow performances and determination of a minimal composition threshold. (A) The
precision-recall curve shows the precision (blue), recall (green) and F2-scores (red) over a range
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is log10 scaled. (B) Relative quantification error in the function of the expected proportion in the
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3.4. Performance Evaluation

Based on the choice of parameters and threshold exposed previously, we calculated
various performance metrics for the workflow at both species level, which is the highest
resolution that can reasonably be obtained, and genus level, which, although not as res-
olutive as species, generally yields sufficient information for authenticity determination.
At the species and genus levels, respectively, we observed a precision of 90% and 98%,
meaning that 10% and 2% of the determined taxa were not expected in the samples. We
also observed a recall of 93% and 96%, respectively, meaning that 7% and 4% of the taxa
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present in the sample were not found (Table 3). These results include 18 samples containing
fallow deer (Dama dama) to various levels (Table S4). As we showed earlier, and as was
previously published, fallow deer is a known miss for the 16S Dobrovolny method used
here [9]. When correcting for fallow deer, the precision and recall increased to 90% and
96% at the species level, and 98% and 99% at the genus level. This is slightly lower than
the previously reported 100% precision and recall for the method. However, these reports
were based on the use of a custom database containing 51 entries at most [9–11]. The
database used here contains entries for 16S sequences of over 7700 taxa (Table 1). It should
be noted that the performance values reported here are slightly under-estimated. This is
due to the fact that some proficiency test samples contain trace amounts of species not
added intentionally, e.g., LVU_2018_B, DLA45/2019-2, and DLAptAUS2/2020-3.1, where
the majority of participants detected red deer, goat, and horse, respectively, in addition
to the expected species [47]. Similarly, several prediction errors are likely linked to incor-
rect sample compositions: both replicates of the LGC 7244 samples are false negative for
chicken, due to chicken being detected under the 0.1% threshold, which was also reported
in a previous study with another bioinformatic method [9]. The same study reported a goat
positive result for the unintentional traces of goat in sample DLA45/2019-2, which we also
observed with our method.

Table 3. Qualitative performance summary of the workflow.

Evaluation Rank

Confusion Matrix Performance Metrics

True
Positives

False
Positives

False
Negatives Recall Precision

Species a 490 (84%) 56 (10%) 39 (7%) 93% 90%
Species b 490 (86%) 56 (10%) 21 (4%) 96% 90%
Genus a 494 (95%) 6 (1%) 21 (4%) 96% 99%
Genus b 494 (98%) 6 (1%) 3 (1%) 99% 99%

a Including 18 Dama dama components. b Corrected for Dama dama.

We also measured the quantitative performance of the workflow by comparing ex-
pected vs. predicted proportions of components in the samples. For this, we calculated the
absolute value of the difference between expected and predicted proportions and normal-
ized it by the expected proportion (Figure 3B). The relative quantification error peaked at
about 60% for components present at 1% in the samples and decreased to a few percent
for components making up more than half of the sample. However, a large variance was
observed, and the relative error varied to up to five times the expected amount for some
low-concentration components. These values are within the variance reported previously,
which was shown to be comparable to quantitative real-time PCR assays [9].

In conclusion, the workflow presented here is a very robust screening method for
detecting components at 1% or higher. Results should however be interpreted with care
and confirmed with a parallel assay such as quantitative or digital PCR, in particular, if
quantification is needed.

3.5. Effects of Sequencing Depth on Prediction Recall and Variance

To determine the effects of sequencing depth on the precision and robustness of the
results, we selected a subset of 35 samples with at least 350,000 read-pairs each, and whose
composition structure was similar to that of the full dataset (Figure S4). We then randomly
selected subsets of the samples to produce down-samples with 1000 to 200,000 reads each,
in 8 independent replicates. Recall and Euclidean distances were then determined for each
down-sample as previously described.

Apart from the sample with 1000 reads, all sampling depths led to comparable results
in terms of recall and variance thereof (Figure 4A,B). With only 1000, we could observe a
drop in the recall in many samples, which was associated with an increase in the variance
of the recall within sample replicates. Only marginal improvements could be observed
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above 5000 reads, and until 80,000 reads. Above 80,000 reads, no increase in recall could be
measured. The Euclidean distance, however, did not vary across the measured range of
sampling depths (Figure 4C).
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The performance plateau reached at 5000 reads is consistent with a previous study
on environmental samples metabarcoding [48], while theoretical calculations for metage-
nomics experiments proposed 15,000 reads for taxa identification at a 1% threshold [6].
These values are however results of simulations and should be verified experimentally.
Most importantly, these do not account for random noise, which might become more visible
when sequencing at low depths.
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4. Discussion

Our aims here were threefold: (1) Compare the suitability of different published bar-
code sequences to distinguish mammal and bird species in the full BLAST NT database
(2) Optimize the data analysis workflow for Illumina 16S rDNA sequencing using a large
dataset of reference samples representative of typical food samples; (3) Validate the work-
flow and provide minimal input data criteria for accurate and reproducible analysis.

The choice of the barcode for metabarcoding analysis is not trivial and can heavily
influence the results of the experiments. One must consider how common this sequence is
in the taxa of interests, whether it is specific enough to distinguish different species, and
whether it can reliably be amplified from the samples. We here compared a selection of
7 different published barcodes used for either Sanger-based species identification [36–38]
or in metabarcoding experiments [8,11,14]. These sequences target either the 16S rDNA,
COI/COX1, or cytB genes. For each of these, we determined how many taxa could be
retrieved from the BLAST NT database. We measured the taxonomic specificity of each
sequence retrieved this way. Finally, we specifically checked whether a set of usual food
components or contaminants [40] could be identified using these sequences. We observed
that cytB-based methods and especially the VDLUFA method [38], had the best-predicted
performances across the Vertebrate clade. The 16S method from Dobrovolny et al. suffered
from a lower predicted accuracy but was expected to be able to amplify sequences from
most taxa of interest. In addition, it has the advantage of using a very short sequence of
~75 bp, allowing the analysis of highly processed products in which nucleic acids may
be degraded [15]. This method is also currently being validated on a large scale and was
previously shown to work for a range of food and feed products [9,10]. For these reasons,
we chose to focus on this method for the rest of the study. It should however be noted that
we predicted the cytB-based VDLUFA method to perform also very well, amplifying and
distinguishing a large range of species. It could be a good complement to the Dobrovolny
method, provided that the longer sequences of ~220 bp can be amplified from the samples
to analyze.

We then set on optimizing the data analysis workflow by comparing different algo-
rithms and parameter combinations on a set of reference samples. These span 32 taxa
of interest and are enriched for concentrations at around 1%, which is the limit usually
used for legal labeling obligations. The data analysis workflow can be separated into three
main steps. Firstly, the reads are checked for quality, amplification primers and sequencing
adapters are removed, and bad quality trailing bases are trimmed. Then the reads are
grouped into clusters of similar sequences. Finally, each cluster is assigned to a taxonomic
node [49]. With the selected method, the barcode is significantly shorter (~75 bp) than the
sequencing reads (150 bp). In this case, the sequencing read goes through the amplicon.
After primer trimming, the reads are halved, and trailing bad quality bases are already
removed. Optimization of the read trimming was, therefore, not necessary here. This
should, however, be considered when using a longer barcode, or when sequencing with
shorter read lengths available on Illumina platforms.

The clustering step is important as it determines which sequences will be used to in-
terrogate the reference database, and ultimately determine sample composition. Classically,
reads are clustered in Operational Taxonomic Units (OTUs) by identity threshold, in general
with an identity level of 97%, although it was discussed in recent years that much higher
thresholds should be used [27,46]. The accuracy of OTUs is now largely contested, and
new statistical methods have been published that aim at determining Amplicon Sequence
Variants (ASVs) using denoising procedures [30]. ASVs are expected to better represent the
sample composition, whereas OTUs generally overestimate diversity [45]. While OTUs at
97% identity group highly similar sequences and 100% identity would simply dereplicate
sequencing reads without filtering noise, ASVs address both issues by determining the
correct sequences based on read quality scores. However, several publications nuanced
this claim, putting ASVs on par with OTUs [50,51]. Here, we compared the effects of iden-
tity clustering at 95%, 97%, 100% (dereplication), and denoising and found no significant
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differences in terms of prediction accuracy. ASVs did result in a slightly higher yield, and
the number of clusters determined was much closer to the true composition of the sample,
resulting in a faster processing time than dereplication. For these reasons, we chose to keep
working with ASVs, although OTUs led to highly similar results. We expect this result to
be generalizable to different barcodes.

Most published meat-metabarcoding methods used reference databases containing
only a selected number of entries (between 2 and 500). This has the advantage of ensuring
that the database only contains high confidence, high quality sequences and drastically
simplifies taxonomic assignment. However, this has the drawback of hiding a large chunk
of potential adulteration with species not present in the reference database. Taxonomic
assignment using the full BLAST NT database as a reference revealed challenges due to
mislabelling of sequences, the presence of low quality sequences, and large heterogeneity
in taxa representations. We used a set of filters that enabled us to overcome these hurdles.
We restricted the BLAST search by using a mask selecting taxa placed under the Vertebrate
node, thus ensuring that no other sequences would contaminate the results. Furthermore,
we then applied a coverage threshold of 100%, ensuring that only sequences aligning to
the totality of the barcode would be recovered. The minimal identity level required was
varied between 95% and 100%, and we determined that it should optimally be 98% or
higher. We then used a filter based on the bitscore value of each result, representing the
quality of the alignment between the barcode and the reference. Although the E-value is
commonly used for filtering BLAST results, this value varies with the size of the database,
rendering an E-value filter obsolete as the database grows in size, whereas the bitscore only
depends on the alignment and therefore only varies with the barcode used [52]. Therefore,
we determined the bitscore of the best alignment for each barcode sequence and kept only
these results that were within a certain distance of the best results. We found the optimal
value for the bitscore difference to be between 0 and 4. These filtering procedures typically
resulted in a few different possible taxa. In order to determine the most likely taxon for
each sequence, we used a consensus threshold [32] and found the optimal value of the
minimal consensus to be between 51% and 80%. This allowed the assignment of a unique
taxon to each barcode sequence in the sample, albeit at a rank depending on the confidence
of the BLAST result. Most results were assigned at the species or genus level, allowing for a
meaningful interpretation of the results. We expect the parameter choices for the taxonomic
assignment step to be highly dependent on both the database and the barcode used. They
should therefore be revalidated for each barcode and when the database is updated.

Errors stemming from the PCR-amplification and sequencing processes almost always
result in a low amount of wrongly assigned reads that need to be filtered. Fixing a threshold
at which results become significant becomes increasingly difficult as the detection limit
decreases. We here determined the best threshold to be at around 0.1% to optimally balance
precision and recall of the analysis, while ensuring a detection limit at 1% of the true
sample composition. The optimized workflow resulted in 1% of both false-positive and
false-negative results, while the quantification accuracy was comparable to that of other
DNA-based methods [9]. Moreover, the results were identical to those of a previously
published analysis of part of this dataset using a different bioinformatics workflow and a
database consisting of only 51 entries [9]. These validation values indicate that the workflow
allows for robust screening methods. The cost-effectiveness of NGS-based methods is an
important consideration for laboratories. It was previously calculated that metabarcoding
can be more cost-efficient than PCR when parallelizing enough samples [9]. In order to
estimate the number of reads required for a robust analysis, we down-sampled a part of our
dataset and calculated the recall and variability of the analysis for a range of 1000 to 200,000
reads. We determined that the results did not significantly improve beyond 5000 reads.
This is far below the previous recommendations of 120,000 to 200,000 reads [9,11]. There is
therefore a potential for further decreasing the costs of metabarcoding analysis. This result
is in line with previous calculations [48], but should be verified experimentally.
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The use of the full BLAST NT database allows us to take full advantage of the untar-
geted aspect of metabarcoding methods, however, it comes with its own set of limitations
as the database contains some doubtful sequences and annotations and is highly biased
towards commercially interesting and model species. One could consider using the BOLD
database, which is more tightly curated than BLAST [5]. This database is, however, largely
incomplete for 16S rDNA sequences, and more suitable for cytB or COI/COX1 sequences.
Several publications have tried to address this problem directly, either by selecting se-
quences with trustful metadata and setting some quality filters [27], or by assigning quality
scores to each sequence and using them to either filter the database or assign confidence
scores to metabarcoding results [53]. These approaches should be explored in future works,
with the aim of optimizing food authentication methods.

In order to improve reproducible analysis and ease the dissemination of the metabar-
coding methods in laboratories, we packaged the analysis workflow in a free open-source
software [28]. The workflow is implemented using Snakemake [54] and runs on UNIX plat-
forms. It allows for scalable and reproducible automated analysis of amplicon sequencing
runs on Illumina platforms. It also contains a module comparing the workflow’s results to
the theoretical composition of the samples, making the validation process straightforward.
Another module allows us to run the same analysis using different sets of parameters and
compare the results with each other, significantly simplifying the process of finding the
optimal set of parameters for new barcodes or matrices.

5. Conclusions

The results of the present study demonstrate the accuracy and robustness of the
16S metabarcoding method as a tool for meat authenticity testing. This study proposes
standardization of the data analysis and shows that it can be used with non-curated
nucleotide databases such as the BLAST NT database, thereby expanding the detection
range. Furthermore, the workflow presented here is versatile and can be adapted to other
food matrices, such as plants, seafood, insects, or spice mixtures, making it a valuable tool
for a wide range of products. With the increasing demand for transparency and traceability
in the food supply chain, this method has the potential to play a significant role in helping
to ensure that consumers can trust the food they are eating.
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Abstract: Food fraud, even when not in the news, is ubiquitous and demands the development of
innovative strategies to combat it. A new non-targeted method (NTM) for distinguishing spelt and
wheat is described, which aids in food fraud detection and authenticity testing. A highly resolved
fingerprint in the form of spectra is obtained for several cultivars of spelt and wheat using liquid
chromatography coupled high-resolution mass spectrometry (LC-HRMS). Convolutional neural
network (CNN) models are built using a nested cross validation (NCV) approach by appropriately
training them using a calibration set comprising duplicate measurements of eleven cultivars of wheat
and spelt, each. The results reveal that the CNNs automatically learn patterns and representations to
best discriminate tested samples into spelt or wheat. This is further investigated using an external
validation set comprising artificially mixed spectra, samples for processed goods (spelt bread and
flour), eleven untypical spelt, and six old wheat cultivars. These cultivars were not part of model
building. We introduce a metric called the D score to quantitatively evaluate and compare the
classification decisions. Our results demonstrate that NTMs based on NCV and CNNs trained using
appropriately chosen spectral data can be reliable enough to be used on a wider range of cultivars
and their mixes.

Keywords: non-targeted methods; LC-MS; fingerprinting; machine learning; convolutional neural
networks; wheat; spelt; food fraud

1. Introduction

Public awareness around food fraud and food authenticity is mainly driven by high-
visibility media discussions, e.g., in connection with public health consequences or when a
large-scale operation is uncovered and the ensuing scandal brings disrepute to companies or
regulatory authorities [1,2]. However, even when not topical, food fraud is widespread and
exacts considerable economic costs [3,4]. Its manifold manifestations include adulteration,
mislabeling, dilution, substitution, etc. [5]. Establishing procedures and quality indicators
to detect food fraud, therefore, continues to be an important and urgent task [4].

Being one of the most important food crops in the world, wheat, its varieties, and
derived products are defenseless against rampant fraud [6]. Analytical testing for determi-
nation of authenticity and detection of fraud is an important control measure to identify,
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monitor, and act—to ensure consumer safety and punish the perpetrators [7]. The testing
can range from differentiating grain types, e.g., durum, einkorn, spelt, etc. [8], tracing
geographic identity [9], especially protected geographic identity, e.g., that of Fränkischer
Grünkern (a spelt product) [10], testing the presence of adulterants [11,12], and checking
crop growing or harvesting conditions (e.g., organic wheat) [13], among others.

It is reported that spelt (Triticum spelta) is one of the three ancient wheats that are
considered to be the ancestors of modern wheat. The other two are emmer and einkorn.
Genetic data suggests that spelt can occur from the hybridization of bread wheat and emmer
wheat, but only after the first Aegilops-tetraploid wheat hybridization. The considerably
later development of spelt in Europe might be attributed to a later, second hybridization
between emmer and bread wheat [14]. Hence, for centuries, spelt (or “Dinkel” in German)
has remained a major grain in the DACH region (Germany, Switzerland, and Austria) [15].
They are very resilient to austere irrigation conditions while having favorable digestive
and nutritional values [16]. As a consequence, its demand and market price are on the
rise. Lately, spelt has become part of many bakery products, pasta, noodles, and even
beer [17]. In light of accelerating demand and consumption of spelt and spelt-derived
products, it is hard to ignore the possibility of market-driven fraudulent practices. As these
grains command a premium price, there is an economic benefit to devising new tactics for
adulteration, tampering, substitution, etc. Thus, there is a need to address this through the
development of new methods for distinguishing spelt and wheat [18,19]. At this point, it
is necessary to mention that addressing the economic or nutritional benefits of spelt over
wheat is outside the scope of this work.

Spelt is mostly referred to by its phylogenetic and morphological characteristics, but
in practice, unequivocal identification of spelt based on physiological properties is non-
trivial [20–23]. Perhaps this is because of its close botanical relationship with wheat and
crossbreeding over hundreds of years. Consequently, determining whether a cultivar
can be classified as spelt is challenging [22]. Switzerland maintains guidelines laid out
through IP-SUISSE and Bio-Suisse in cooperation with IG Dinkel to regulate the growing
and selling of certain old spelt species (Urdinkel in German) [24]. Thus, the questions
arise: which cultivars are true spelt, and how can they be determined?—the latter being
the more challenging question. The general European Union (EU) legal framework, as
put forward in regulations such as 2017/625 and 1169/2011, aims to ensure food safety
and consumer protection by compelling producers to correctly label ingredients and their
sources [25,26]. In this case, product labeling must be combined with an authentication
analysis of grain ingredients and additives. Under the circumstances of the lack of con-
sensus on which cultivars are truly spelt, the challenge of performing an authentication
analysis is formidable. The challenges of discerning species only snowball when it comes
to processed goods, such as bakery items. In Germany, there is a guideline (Leitsätze des
Deutschen Lebensmittelbuchs für Brot und Kleingebäck) that serves as a guiding principle
for the manufacture and sale of spelt bread [27]. It states that spelt bread must contain at
least 90% spelt. Thereby, processed goods will certainly contain wheat along with spelt,
which only further complicates the process of identifying or detecting spelt for authenticity
testing. Adding newer cultivars of spelt to the mix, such as “pre-spelt,” or “wheat-spelt”
crossed cultivars (together referred to in this work as “untypical spelts”), only increases the
challenge to unequivocally define what is spelt and what is not.

Non-targeted methods (NTMs) are being increasingly developed and deployed in
the detection of food fraud and ratifying the authenticity of food substances [28–30]. An
NTM encompasses analytical measurement, resulting in, e.g., a highly resolved fingerprint
(referred to herein as the wet lab procedure), followed by mathematical modeling and data
evaluation (referred to as the dry lab procedure), without laying a special spotlight on
predetermined analytes of interest [31].

In the wet lab part, mass spectrometry (MS) based testing is a dominant and useful
kind of NTM [32]. Coupling with liquid chromatographic (LC) separation and connection
to a high-resolution (HR) mass analyzer like the time of flight (TOF) enables precise mass
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determination at different retention times (Rt) [33]. The resulting LC-HRMS spectra are
useful to capture the slightest differences between sample populations, which arise because
peptides and proteins in food substances are expressed differentially, not only due to
inherent genetic composition but also due to external factors that might have their genesis
in nature (such as soil type and quality, climatic conditions) or be caused by humans
(agricultural practices, adulteration, mixing, etc.) [34].

The other important component of an NTM is the dry lab, which includes statistical
modeling [31]. Given the complexity and size of the measurement data that is generated
with LC-HRMS, there is a need to resort to contemporary machine learning methods like
neural networks [35,36]. Neural networks have become increasingly popular in different
application areas, including MS, because several studies have been reported in the literature
exploiting neural networks for MS data. The strategies in the reported studies can be
essentially grouped by the different tasks undertaken, for instance, (1) peak pre-processing
such as normalization [37] and peak alignment [38], (2) evaluation of peak features [39–42],
(3) spectra prediction [43], (4) spectral annotation and molecular structure prediction [44,45],
and (5) classification of samples based on the associated spectra. The fifth strategy can be
divided into two types: one that utilizes a peak list or feature list, and the other that uses
the entire spectrum. With the latter, a few reports have explored using 1-d MS spectra with
convolutional neural networks (CNN) [46–48].

CNNs are a type of neural network that have been shown to be powerful for image
processing tasks like face classification and recognition [49,50]. Herein, we aim to apply
these capabilities to parse HR mass spectra with normalized mass windows (SWATH
acquisition) [51] and, thereby, classify spelt or wheat (as illustrated in Figure 1A). An
image can be formed from the 2-d spectral data using the peak height intensities for each
mass/charge (m/z) and Rt (see Figure 1B,C). The combination of 2-D spectral data with
CNNs as an NTM for the classification of spelt and wheat has not been previously reported,
to the best of our knowledge. To this end, in this work, we describe an NTM in which the
wet lab component captures the food fingerprint (peptide marker profile) using LC-HRMS
and the dry lab component uses CNN to learn the differences between the fingerprints and
eventually classify the tested sample. The predicted outcomes are compared using a new
metric that we call the D score.
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Figure 1. Schematic illustration showing the high-resolution liquid chromatography mass spec-
trometry (LC-HRMS) based non-targeted method (NTM) proposed and developed in this work to 
distinguish spelt and wheat. (A) Duplicate samples for each cultivar of spelt and wheat were pre-
pared, and (B) measured using a SCIEX ESI-TripleTOF 5600 with SWATH acquisition. (C) The 2-D 
spectra are depicted as an image with mass by charge (m/z) as the x-axis, retention time (Rt) as the 
y-axis, and intensity as the z-axis. The exemplary images shown are the duplicate measurement 
spectra for Bernstein wheat and Badekrone spelt. (D) A nested cross validation (NCV) approach 
was adopted with a separate calibration and external validation set. Convolutional neural network 
(CNN) models trained with 11-fold internal validation. The log odds values are calculated using 
the output probabilities of the CNN models. (E) Using the log odds, a standardized value called the 
D score is calculated and plotted on a Youden plot. The scores help in the identification of the 
tested sample. A decision threshold score of zero is used in this case. The plot shows exemplary 
point clouds for the spelt (orange squares) and wheat (brown circles) cultivars. 

Figure 1. Schematic illustration showing the high-resolution liquid chromatography mass spec-
trometry (LC-HRMS) based non-targeted method (NTM) proposed and developed in this work
to distinguish spelt and wheat. (A) Duplicate samples for each cultivar of spelt and wheat were
prepared, and (B) measured using a SCIEX ESI-TripleTOF 5600 with SWATH acquisition. (C) The
2-D spectra are depicted as an image with mass by charge (m/z) as the x-axis, retention time (Rt) as
the y-axis, and intensity as the z-axis. The exemplary images shown are the duplicate measurement
spectra for Bernstein wheat and Badekrone spelt. (D) A nested cross validation (NCV) approach was
adopted with a separate calibration and external validation set. Convolutional neural network (CNN)
models trained with 11-fold internal validation. The log odds values are calculated using the output
probabilities of the CNN models. (E) Using the log odds, a standardized value called the D score is
calculated and plotted on a Youden plot. The scores help in the identification of the tested sample. A
decision threshold score of zero is used in this case. The plot shows exemplary point clouds for the
spelt (orange squares) and wheat (brown circles) cultivars.
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2. Materials and Methods
2.1. Description of Spelt and Wheat Samples

Samples for all spelt and wheat cultivars were kindly sourced and provided by the
Institut für Getreideverarbeitung (IGV) GmbH, Nuthetal, Germany. Eleven cultivars each
of typical spelt and wheat were used to train the CNN models. The distinction of whether
it is spelt or wheat was made according to investigations of their marker peptide profiles,
as previously described elsewhere [52]. For the list of eleven cultivars each for spelt and
wheat, see supplementary Table S1. Each of the cultivars was measured in duplicate on
different days (different runs). Together, 44 MS1 spectra constitute the “calibration dataset,”
i.e., all the spectra that were used to train the CNN models. In this communication, we
choose to refer to this as the calibration dataset in accordance with other reports [46,53].
For each of the internal validation folds, the calibration set was split into the training and
testing sets (see Figure 1D). The term “training of models” refers to obtaining the weights
and biases of the neural network through a process of back propagation [54]. Further
details are described in Section 2.3.

Two processed samples were prepared to keep in mind commonly available processed
spelt goods. The first sample was a mixture of spelt flour made of Oberkulmer Rotkorn
with 10% wheat flour T405. The second sample was a spelt bread baked using spelt
flour T630 with 10% soft wheat flour T550. To simulate the flour and bread samples, an
artificial spectral mix was generated by the weighted addition of two spectra. Duplicate
measurements for each of the eleven wheat cultivars were 10% down-weighted and added
to 90% of the spectral intensities of one spectrum of Oberkulmer Rotkorn spelt to yield eleven
pairs of artificial mix spectra. As per the guiding principle for the manufacture and sale
of spelt bread [27], which states that the spelt bread must contain at least 90% spelt, the
maximum possible wheat content of 10% was chosen.

Additionally, eleven cultivars of untypical spelt were sourced. These cultivars of spelt
are known to be either “newer” cultivars of spelt or wheat-spelt crosses; hence, they are
collectively referred to herein as “untypical spelt.” Furthermore, six wheat cultivars were
also sourced whose pedigrees can be be traced to the late 18th to early 19th centuries,
hence being referred to herein as “old wheat” cultivars. For a list of untypical spelt and
old wheat cultivars, see supplementary Table S1. Together, these constitute the “external
validation dataset,” which consists of unseen data used to test the trained models. Just like
the calibration set, for each of the mixture samples and cultivars, duplicate measurements
were performed.

2.2. Wet Lab Procedure

This section briefly describes the sample preparation and LC-HRMS measurements
as part of the wet lab procedure. The detailed MS procedure has been reported as part of
previously conducted targeted studies [51,52].

2.2.1. Sample Preparation, Protein Digestion and Purification

All buffer solutions and dilutions were prepared with water suitable for LC-MS
analysis. Each sample was weighed to 1.0 ± 0.001 g in a 50 mL centrifuge tube, to which
10 mL of extraction buffer was added. Extraction buffer was prepared with 100 mM
ammonium bicarbonate, 4 M urea, and 5 mM 1,4-Dithiothreitol (DTT) (all from Carl Roth
GmbH, Karlsruhe, Germany). The tube was shaken at room temperature for 1 h using an
overhead shaker, after which it was centrifuged at 4000 g for 5 min. 2 mL of the supernatant
was transferred to a 15 mL centrifuge tube and centrifuged again at 7000× g for 5 min.
1 mL of the supernatant was removed and transferred to another 15 mL centrifuge tube,
to which 30 µL of 0.5 M Iodoacetamide (IAA) solution was added. 0.5 M IAA solution
was prepared fresh, as it is light sensitive, by dissolving 11.55 mg of IAA (Sigma-Aldrich,
Taufkirchen, Germany) in 1.25 mL water. The resulting solution was incubated for 20 min by
shaking at 50 ◦C, after which (a) 3000 µL of digestion buffer and (b) 100 µL of chymotrypsin
solution (from bovine pancreas for enzymatic digestion purchased from Sigma Aldrich,
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Taufkirchen, Germany) were added. This is followed by incubation of the reaction mixture
overnight at 25 ◦C. The (a) digestion buffer was prepared by dissolving 1.304 g ammonium
bicarbonate in 25 mL Acetonitrile (ACN) (both from Carl Roth GmbH, Karlsruhe, Germany)
and diluting with 140 mL of water. The (b) chymotrypsin solution was freshly prepared
using activated chymotrypsin (>1000 USP-U/mg) (Carl Roth GmbH, Karlsruhe, Germany)
at a concentration of 8 mg /mL. The digestion reaction was stopped by adding 100 µL of
40% formic acid (FA) (Carl Roth GmbH, Karlsruhe, Germany). The extract obtained was
stored for at least 1 h in the freezer at −20 ◦C, so that most of the fat or wax components
precipitated. The reaction tubes were then centrifuged at 7000× g for 2 min.

The sample extract was desalted and concentrated using an SPE column (Carl Roth
GmbH, Karlsruhe, Germany). For this purpose, the SPE columns were conditioned with
6 mL of buffer A followed by 6 mL water. Buffer A was made by mixing 100 mL water,
100 mL can, and 200 µL FA. Then the entire sample extract was added to the column and
unbound components were washed out by subsequent rinsing with 6 mL of buffer B. Buffer
B was prepared by mixing 200 µL water with 200 µL FA. The eluted peptides were then
concentrated to dryness under nitrogen at 30 ◦C and resuspended in a mixture of 450 µL
buffer B and 50 µL buffer A. Lastly, the mix was centrifuged for 2 min at 7000× g. The
supernatant was diluted with buffer B in a ratio of 1:100 and then measured.

2.2.2. Liquid Chromatography Mass Spectrometry (LC-MS)

Data were acquired using ultra-high performance liquid chromatography triple time
of flight mass spectrometry (UHPLC Triple ToF) (MS/MS) consisting of a micro-flow UH-
PLC expert microLC 200 with an autosampler CTC Pal system and a SCIEX electrospray
ionization (ESI) TripleTOF 5600 with SWATH (sequential window acquisition of all theoret-
ical fragment-ion spectra) acquisition. HRMS data acquisition of MS/MS data was done
using data-independent acquisition (DIA-SWATH) [55]. Although MS2 SWATH data was
also acquired, it was not utilized for the analysis shown in this work. As mentioned earlier,
every measurement was performed in duplicate.

2.3. Dry Lab Pipeline
2.3.1. Spectral Data Preparation

The acquired data were first converted to the mzXML file format from the WIFF
and WIFFSCAN formats using ProteoWizard [56]. All MS datasets were used without
undergoing any preprocessing (e.g., peak alignment, baseline correction) or feature selection
steps. The mzXML file was read in the Python programming language (python.org), and
the MS1 spectra were aggregated to integer mass accuracy. The resulting data were a matrix
of size 1375 (number of scans) and 801 (values of m/z ranging from 400 to 1200 Da). The
aggregation of spectra was performed to make it manageable for CNN model training on a
personal computer. The data matrices were obtained for all the samples in the calibration
set and external validation set, which were then used as input to the CNN models. Each
scan was z-normalized, i.e., subtract the mean of a scan from every peak intensity value
and divide by the standard deviation (SD) of the scan.

2.3.2. Nested Cross Validation (NCV)

Central to the analysis pipeline was the NCV approach shown in Figure 1D. The
calibration set comprised eleven cultivars each for typical spelt and wheat as the two classes
for the CNN model classifier. In this, separate models were trained with a training set
comprising duplicate spectra for (randomly chosen) ten cultivars each of typical spelt and
wheat (totaling forty spectra) and tested on the spectra for the remaining eleventh cultivar
for typical spelt and wheat (totaling four spectra). For instance, in the first fold, spectra for
Badekrone spelt and Bernstein wheat cultivars were kept aside for testing the model trained
on the remaining spectra of the cultivars. In the next fold, spectra for Badensonne spelt and
Brilliant wheat cultivars were kept aside for testing the model trained on the spectra for
the remaining cultivars. In this way, eleven models were trained, corresponding to each
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fold of the internal validation loop. In other words, every cultivar in the calibration set was
used once to test the trained models. The NCV procedure is advantageous because it can
deal with the availability of a limited number of distinct samples (cultivars), each having a
large number of features (peaks). For the external validation dataset, every spectrum was
run through models for each fold of the NCV to obtain a classification outcome in the form
of a probability. The final classification probability for the external validation spectra was
obtained by averaging across all the model outcomes (i.e., the average of eleven models’
outcomes).

2.3.3. Neural Network Analysis

In this communication, a short description is provided for how the neural network
was constructed, assuming that the reader is aware of terms used in the field. The reader is
referred to rich literature available elsewhere for (a) the theoretical fundamentals behind
neural networks and (b) an exhaustive review on the types of neural network architec-
tures [57–61]. A shallow CNN architecture was used with convolutional layers and pooling
layers, each of which was setup using standard settings [62]. All programming was done
in Python (python.org) using the Keras and Tensorflow libraries [63,64]. Four convolution
layers were stacked together to hierarchically capture the inherent patterns within the
spectra. The convolution layers were interspersed with “maximum pooling” layers, which
help reduce the effect of spectral noise in the learned features and emphasize the larger
peak intensities [65]. Together, the above-described apparatus tries to automatically extract
the “features”—which, in this context, are the spectral peaks (or their combinations). We
hypothesize that the features learned by the CNNs directly help to identify a particular
class (spelt or wheat), which otherwise would have been done by a human expert.

For each fold of internal validation, the calibration set was split into a training and a
testing set. According to the NCV approach, CNN models were trained on the training set
and then checked using the testing set. The CNN was trained using gradient descent, which
minimizes a loss function by calculating its partial derivative with respect to the learnable
parameters through backpropagation and iteratively updating them until they converge
for each layer [46,47,54]. The output of the CNN was a probability value (used for the D
score calculation as described in the next section), based on which a binary classification
was obtained (spelt or wheat). The performance of the classifier was tracked by looking at
the confusion matrix, i.e., counts of true positives (TP), true negatives (TN), false negatives
(FN), and false positives (FP). Using these values, Matthew’s correlation coefficient (MCC)
was calculated according to Equation (1). MCC = 1 means a perfect prediction, whereas
MCC = −1 means completely flipped (incorrect) predictions.

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(1)

In this study, the features available to train the CNNs were ample, i.e., ~1 million per
measurement, while the number of cultivars per class was limited (11 each). Hence, it
was important to keep the models “simple” and avoid extensive hyperparameter tuning.
Hyperparameters can be thought of as knobs and dials available to design CNNs and
determine how they are trained. For instance, the number of layers in a CNN, the learning
rate of the gradient descent algorithm, the number of epochs, etc. [40,57]. Tuning these
parameters can result in model predictions being overly dependent on the underlying
training data, i.e., lead to overfitting. This means that when models are trained for a set of
cultivars, they may not perform very well on other types of cultivars.

2.4. Decision Based on D Scores

The newly proposed quantitative score, called the D score, is a measure of the classifi-
cation outcome that can be easily compared for different types of samples, experimental
runs, models, or even laboratories. The classification outcome from the CNN models was
extracted in the form of probabilities (pi). The probabilities were converted to log odds
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ratios. A linear transformation was then performed on the log odds ratio values to scale the
values such that the mean values of the spelt and wheat classes are +1 and −1, respectively
(Equations (2)–(4)). The resultant values are referred to as “D scores.” The linear transfor-
mation parameters (λ, θ) were obtained based on the calibration set of samples, i.e., using
the means of log odds for spelt (µspelt) and wheat (µwheat). The calculated D scores for the
duplicate measurements were then plotted on a Youden plot, as shown in Figure 1E. A
Youden plot is essentially a scatter plot that helps to visualize and analyze data when two
measurement runs on the same type of sample (in this case, the cultivar).

Di = ln
(

pi
1 − pi

)
× λ + θ; f or ith measured sample (2)

where, λ =
2

µspelt − µwheat
and (3)

θ = 1 − λ × µspelt (4)

The decision for classification would be based on a decision threshold, which is chosen
to be zero in this study. Hence, when the D score is positive (Di > 0), then spelt, and when
it is negative (Di < 0), then wheat. In comparison to a qualitative binary classification
(yes/no) outcome, D scores offer three main advantages. First, the distribution of D scores
allows one to evaluate the performance of the model or the method as a whole by calculating
the variation of the scores within a class. This is further discussed in Section 3.3. Secondly,
it allows direct comparison of samples and informs about the relationship between the
compared samples. For instance, 2 samples with D scores of 0.8 and 1 are expected to be
closely related (from their prediction classification) compared to samples with D scores of
+0.8 and −0.8. This is further illustrated in Section 3.2. Finally, D scores are model- and
class-agnostic. Hence, the procedure for calculation and interpretation of D scores will not
change on (a) replacing the neural network model with another (type of) classifier and (b)
when the classes are changed from spelt or wheat to any other generic class A or B (for
example, a white wine from Germany and a white wine from France).

3. Results
3.1. Wet Lab LC-HRMS Measurements

With the purpose of utilizing complete and raw spectra from the LC-MS measurements,
the 2-D spectra for each sample were obtained. The 2-D spectrum can be visualized as
an image. Figure 1C shows exemplary heatmap images for duplicate measurements of
spelt and wheat. The x-axis of the image shows the m/z and the y-axis shows the scans
corresponding to different retention times, and the intensity of the values is indicated by
the color map. The heatmaps are plotted with power-law normalization of the intensity
for better visual contrast. Even on closer inspection, distinction between the patterns (or
fingerprints) is hard to make only with the human eye. Hence, the need for devising
suitable models that are able to parse the data, capture the underlying patterns, and help
distinguish the food items (here, spelt and wheat) is apparent. These images were used as
input for the dry lab model.

3.2. Internal Validation: Youden Plot with the D Scores for Calibration Set

After going through the NCV procedure for internal validation, D scores were obtained
for each of the spectra in the calibration set. Recall, two extracted samples were measured,
hence, two sets of spectra are available for each cultivar, and each cultivar is tested once
with a model trained on cultivars other than itself. Hence, this gives us a D score for the
entire calibration set. The λ and θ values calculated according to Equations (2) and (3) are
−0.13 and −0.02, respectively (see supplementary results Section S2.1). Figure 2A shows a
list of spelt cultivars, where each cultivar is indicated by a point in the magnified cluster of
the plot shown in Figure 2B. Figure 2C shows a Youden plot with point clouds for the spelt
(orange squares) and wheat (brown circles) cultivars in the calibration set. Figure 2D shows
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a magnified cluster of points where each point on the plot represents a wheat cultivar
that is listed in Figure 2E. The Youden plot allows us to intuitively establish the extent of
discrimination (a) between the samples of the two classes (spelt and wheat) and (b) among
the samples of the same class.
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Figure 2. The D scores for the spelt cultivars (orange squares) and for wheat cultivars (brown circles)
in the calibration set are plotted. (A) List of spelt cultivars along with their D scores. (B) A magnified
view of the Youden plot for spelt cultivars. (C) Youden plot with the D scores. (D) A magnified view
of the Youden plot for wheat cultivars. (E) List of wheat cultivars along with their D scores.

The lack of any overlap between the point clouds directly shows the high discrimi-
natory power of the trained models. Considering zero as the decision threshold for the D
scores, when a D score is positive for both measurements, it lies in the first quadrant (top
right) and is predicted to be spelt. Likewise, when it is negative for both D scores, it lies in
the third quadrant (lower left) and is predicted to be wheat. Here, the advantage of the D
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score is evident in being able to immediately identify if the classification outcome is spelt
or wheat (for a list of D scores for the calibration set, see Supplementary Table S2A,B). If
visual proof is insufficient, the classification performance can be summarized using the
Matthews correlation coefficient (MCC), which is suggested to be the most informative of
all the different classification metrics [66]. MCC of +1 is obtained, which shows complete
agreement between the true and predicted classes, making the high classification perfor-
mance very evident. The separation in the D score point clouds shows that CNNs prove
effective in learning visual representations of 2-D spectral data that are passed as images. It
is expected that convolution layers are able to capture the local shifts in the peaks (that are
typically then aligned, corrected, etc. in spectral preprocessing).

3.3. Precision Parameters

It is essential to ensure that the discriminatory power remains adequate (a) when
applied to other sets of data than the training set, covering the entire population falling
under the scope of the method, and (b) under all in-house testing conditions or when
applied to data from different laboratories. Using the D scores, various precision estimates
can be obtained based on concepts laid out in ISO 5725-3 [67]. Note that the standard
describes precision parameters that are given for a sample, but in this context the parameters
are provided for the class (e.g., spelt or wheat and not for a specific cultivar). Here we
calculate the classification SD (the variation of D scores for cultivars within a class) and
intermediate SD (the average variation of D scores for several measurements (at least 2)
of the same cultivar under intermediate conditions, averaged across cultivars of the same
class). The precision estimates for the D score can be obtained by using the approach
described in previous reports [68,69] (see supplementary Table S3).

The single laboratory classification SD is used to check whether the decision threshold
can be considered reliable for the whole population falling within the scope of the classifica-
tion method. SD values of 0.393 and 0.391 are obtained for spelt and wheat, respectively. If
we assume that D scores are normally distributed within each of the two classes, then with
a mean value of 1 and SD of 0.393, the risk of misclassification for spelt, i.e., a value below
zero, would have a probability of Φ

(
−1

0.393

)
≈ 0.5%. Similarly, the risk of misclassification

for wheat, would be 1 − Φ
(

1
0.391

)
≈ 0.5%. Here, Φ denotes the cumulative distribution

function of the standard normal distribution. There is no indication that the point clouds of
D scores for each class are not normally distributed. Thus, the risk of misclassification is
very low (<1%).

With the intermediate SD, the in-house reproducibility of the D score can be described.
We obtained an intermediate SD of 0.075 and 0.074 for spelt and wheat, respectively, which
means that the analytical variability is almost equal to the variability between different
cultivars. It can, therefore, be stated that the analytical variability is more than sufficient for
the purpose of classification between wheat and spelt; on the other hand, the differences
within the spelt cultivars studied are very small and cannot be precisely measured with the
D score. The next section describes how the trained models perform on external validation
samples. Predictions on external validation samples were performed using all the models
trained in the internal validation NCV loops.

3.4. External Validation Set: Processed Goods and Artificial Mixes

Even with the limited number of distinct cultivars used for training a CNN model, the
present study was designed to determine whether successful classification models can be
built using LC-HRMS spectra, and thereby laying the groundwork for an NTM that can be
used in routine (e.g., for official control). The models trained with typical spelt and wheat
varieties are put to the test by using real-world processed goods. Remember that each of the
eleven internal validation models provided an output prediction, which was then averaged
to get an average D score for each external validation sample. Figure 3A shows spelt bread
(orange square) and spelt flour mix (orange diamond) in the expected spelt quadrant, hence
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showing the correct classification. Figure 3B shows a magnified view of the points (for a list
of D scores, see Supplementary Table S4). The resulting D scores for both measurements of
spelt bread are around 0.79 and the scores for the duplicate measurements of spelt flour
mix are around 0.78 and 0.75. Together, the D scores for processed goods indicate a correct
prediction.
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Figure 3. Youden plot showing the D scores for processed goods and artificial mix in the external
validation set in (A) and a magnified section in (B). Spelt bread (orange square), spelt flour mix
(orange diamonds), and artificial spectral mix (orange circles) are shown to be correctly predicted as
spelt.

Turning now to predicting the artificially generated spectral mixes, Figure 3 shows the
D scores (orange circles) for each of the eleven wheat cultivars whose spectra were 10%
downweighed and added to 90% of the spectral intensities of Oberkulmer Rotkorn spelt. The
average D score for these eleven points is around 0.9. Interestingly, the point cloud for the
artificial mix is further away (top right) from the actual processed goods. In other words,
the predictions from CNN models are relatively (and marginally) more confident about the
artificial mix being spelt than the spelt bread and flour. Perhaps this is because the spectra
for bread and flour have a more complex fingerprint than the one resulting from the linear
combination of their constituents. In summary, the predictions on the external validation
set show that successful distinction can be made even on processed spelt samples.

3.5. External Valdiation with Untypical Spelt Cultivars

The next question was to check if other spelt cultivars (that were not used in the
calibration set) could be correctly identified as spelt. Figure 4A shows the cluster of eleven
cultivars (brown squares) lying in the spelt quadrant of the Youden plot, indicating correct
classification. Figure 4B is the zoomed-in section of the plot showing the distribution of
D scores with the corresponding cultivar name (see Supplementary Table S5 for a list of
D scores for untypical spelt). The point cloud is in the first quadrant, showing the correct
classification for spelt. The average D score is 0.57. Comparing this to the average of 1 for
the spelt cultivars in the calibration set (Figure 2B), there is a difference in the prediction
outcome of these untypical (for external validation) and typical (for the calibration set)
spelt. This suggests that the fingerprints, as learned by the CNNs through the spectra of
typical spelt, are dissimilar to those of untypical spelt. This could be linked to the evolving
proteomic fingerprints of older cultivars of spelt (used in the calibration set) compared
to the newer ones in untypical spelt. The larger spread of the points in the Youden plot
for untypical spelt (Figure 4) in comparison to the spread of typical spelt (Figure 2) is
a remarkable result. This can be owing to the dissimilarities between the learned and
predicted fingerprints of typical and untypical spelt cultivars.
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Figure 4. Youden plot showing the D scores for untypical spelt cultivars (A) with the magnified
section in (B). Untypical spelt (brown squares) with their corresponding names, shown to be correctly
predicted as spelt.

3.6. External Validation with Other Wheat Cultivars (Old Wheat Cultivars)

On a similar line of inquiry, further investigations were made to determine whether
old wheat cultivars, which were not part of the model building, can be distinguished from
spelt (or wheat). Figure 5A shows the D scores for six cultivars with the zoomed view
in Figure 5B (brown circles) (see Supplementary Table S6 for a list of D scores for old
wheat). We see that even though five of the six cultivars lie in the wheat quadrant, i.e.,
D scores for five of the six cultivars are negative. However, for one cultivar, Ackermanns
Bayernkoenig, it is positive. With zero as the decision threshold, it can be said that one
cultivar is misclassified. However, all six cultivars are very close to the decision threshold.
The mean D score for the other five is −0.1. Comparing this to the mean value of −1 for
the wheat cultivars in the calibration set, there is a clear distancing from it.
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misclassified. Systematic inclusion of such challenging cultivars along with additional 
ones that were not considered in the study would indeed help to upgrade the NTM. The 
discriminatory power of the method can be further improved by mobilizing the complete 
fragment-ion MS/MS spectrum. 

Figure 5. Youden plot showing the D scores for old wheat cultivars (A) with the magnified section in
(B). The cultivars (brown circles) are shown to be not unambiguously classified as spelt or wheat.

By connecting these results to the pedigree of the cultivar, it may be possible to
explain why they have either positive or close to zero D scores. For instance, Ackermanns
Bayernkoenig an old cultivar, is a cross between wheat and spelt wheat, which could explain
why CNN identifies it as being closer to spelt than wheat. Overall, these samples proved to
be “challenging samples” for the method with the CNN models in their current form [31].
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4. Discussion

This paper describes an NTM comprising LC-HRMS data acquisition as the wet lab
component and using the 2-D MS1 spectral data as inputs for the CNN for classification
tasks as the dry lab component. Note that the wet lab part involves duplicate measurements,
which proves advantageous in capturing the variation due to sample preparation and
measurement. In the dry lab part, the model development employs an NCV approach
that relies on a calibration data set that is split into training and validation sets for each
iteration. The study shows the merits of appropriately (and carefully) choosing datasets
to train classification models. The classification probabilities obtained at the output layer
of the CNN are transformed into a set of standardized numerical values that we call D
scores. D scores provide a quantitative appraisal of the discrimination of two classes, and
the results show how they also provide a visual representation of how clusters of samples
are “related” to each other.

Catering to the question of differentiating spelt from wheat, the distribution of D
scores shows that the CNN models are able to completely distinguish typical spelt and
wheat cultivars with a very low risk of misclassification (<1%). The developed models
were then put to the test to classify processed goods (spelt bread, spelt flour mix) and
artificial mixes. These were correctly identified in all instances tested. We foresee the
use of such an NTM on-site by laboratories of food production companies and official
control, to aid with testing food authenticity and ensuring correct labeling of spelt products.
After the labs have obtained the spectral measurement, it can be run through the models
accessed by means of a suitable application interface, which will provide the D score. We
believe this method adds to the battery of methods that have been reported thus far that
utilize electrophoresis or molecular methods to distinguish spelt and wheat [12,15,19,21].
LC-HRMS measurements give a vast, high resolution, and high-fidelity database for the
cost trade-off. However, when utilized appropriately by training CNNs using NCV, as
described herein, it provides rapid, accurate and cost-effective results.

The CNN models developed as part of the dry lab procedure were further challenged
with cultivars of spelt and wheat that were not part of the training. The untypical spelt were
all correctly classified. D scores for old wheat cultivars were close to the decision, proving
to be challenging samples for the NTM, with one out of six cultivars being misclassified.
Systematic inclusion of such challenging cultivars along with additional ones that were
not considered in the study would indeed help to upgrade the NTM. The discriminatory
power of the method can be further improved by mobilizing the complete fragment-ion
MS/MS spectrum.

An initial objective of the project was to make use of raw aggregated spectra without
any alignment or peak picking, and this work describes a procedure to fulfill that objective.
This is increasingly beneficial when (a) there is no a priori knowledge of which peaks to
focus on, or (b) a combination pattern of several peaks is contributing to the identification
or discrimination of the measured entity (in this case, spelt and wheat), or (c) processed
food samples and matrix effects make it hard to detect the presence of specific marker
peaks.

As previously discussed, bucketing of cultivars into spelt, wheat-spelt, and spelt-
wheat are subjective with overlapping boundaries. All this leads to an unclear definition of
spelt for both consumers and producers, which can be taken advantage of by the latter for
economic benefits. Thus, raising questions about “what is true spelt?” As well as when does
an untypical spelt cultivar stop being referred to as spelt? The NTM described here can help
answer those questions by quantifying (using D scores) the deviations in characteristics
(captured through the LC-MS fingerprint). The results described in Sections 3.5 and 3.6
attest to the potential of the approaches described in this work to help get to a definition
of spelt buckets. A further study involving the utilization of D scores to define what can
be regarded as spelt (or not) is therefore proposed. For example, subjective buckets with
diffused boundaries for spelt can be replaced by well-defined buckets by establishing
suitable quantitative criteria (e.g., a D score greater than 0.5 results in true spelts).
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A variety of NTMs involving proteomic- or metabolomic-based approaches are being
developed to keep pace with new ways of deception with food substances. It is the view of
the authors that NTMs in food testing clearly stand at a crossroads—with great promise for
wide applicability and adoption that can be ushered in by establishing method validation
schemes. Method validation schemes allow for the evaluation of the method’s performance,
which can help standardize the method and bring it into routine use [31]. The provision of a
complete method validation scheme is outside the scope of this work. However, a suitable
scheme can be contemplated to utilize the quantitative D scores to evaluate the precision
parameters. Consequently, performance characteristics like sensitivity and specificity, false-
positive and false-negative rates can also be evaluated based on a chosen threshold score (D
score of zero). The advantages of the proposed procedure of transforming the classification
probabilities into standardized D scores become more evident when measurements across
different laboratories can be directly compared in a validation study (single- or multi-
laboratory).

From one perspective, the study is limited by the small dataset for training neural
networks (calibration set). In such a scenario, one has to be careful with over-fitting
issues. To alleviate these issues, the NCV approach was used, which helps achieve greater
generalization on unseen data. This can be seen in the results for the external validation
samples. Firstly, all processed goods were correctly classified. Secondly, untypical cultivars
and old wheat cultivars were also meaningfully identified. The reader should bear in mind
that this work does not aim and claim to provide the “best” models for classification of
spelt vs. wheat with matchless classification metrics. Rather, the study aims to establish
effective approaches and, thereby, contribute to the growing area of NTMs for food fraud.

In food fraud testing, one can imagine that data corresponding to “authentic” food
samples will always be “limited,” as obtaining truly authentic samples might be burden-
some or impractical. As in this study, knowledge about the real identity of the cultivar relies
on elaborate biochemical tests and known cross-breeding histories. There is an increased
role for the means by which the dataset is obtained or generated to reduce reliance on
large datasets for model building. (a) Conducting duplicate measurements of cultivars, (b)
selecting suitable cultivars as the two classes for the training, and (c) designing folds of the
NCV approach are some of the procedures for systematic curation proposed in this work.

Overall, the described method can be easily (a) extended to include more cultivars
and their mixes and (b) adapted for other application areas, such as the prediction of
geographical identity. Furthermore, the modular nature of the method (wet lab + dry
lab) means alternative approaches (e.g., different LC-MS instruments) can be used. The
procedures, including duplicate measurements, NCV, and calculation of D scores, would
still be applicable, as stated here.

5. Conclusions

This study describes a new NTM in which the wet lab component records the food
fingerprint using LC-HRMS and the dry lab component utilizes CNN to identify the tested
sample. The D score results show correct identification of relevant cultivars, with very low
risk of misclassification. We see promise in the method’s usefulness not only in connection
with the question of the authenticity of different food items and matrices but also, e.g., in
characterizing blood plasma in connection with diagnostic, prognostic, and therapeutic
research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods12010141/s1, Table S1: List of spelt and wheat varieties
used in the study; Table S2A: Log odds and D scores for spelt cultivars in the calibration set; Table S2B:
Log odds and D scores for wheat cultivars in the calibration set; Table S3: Summary of precision
parameters for spelt and wheat; Table S4: Log odds and D scores for processed goods and artificial
mixes; Table S5: Log odds and D scores for untypical spelt cultivars; Table S6: Log odds and D scores
for old wheat cultivars.
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