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Abstract: Vertical electrical sounding (VES) as a geoelectrical method has proven its effectiveness
throughout the history of groundwater geophysical investigation. In this sense, VES was carried
out 47 in the study area with the aim of determining the geometry and limits of Quaternary basaltic
aquifer formations and, above all, the location of electrical discontinuities in the area located in
the north of Morocco, between the center of Almis Guigou and the city of Timahdite. This area is
experiencing an overexploitation of the groundwater due to excessive pumping and the development
of intensive agriculture activities, resulting in a continuous decrease in piezometric levels. The
processing of the diagrams by WINSEV software showed the presence of an electrically resistant
surface level, attributed to basaltic formations, of the Quaternary age, whose thicknesses reach at least
150 m to the SW of the area. This level is superimposed on a moderately conductive horizon which,
according to local geology, corresponds to Pliocene marl and limestone alternations. The correlation
of VES interpretation models allowed us to elaborate thematic maps and geoelectrical sections which
illustrate the vertical and lateral extension of the basaltic reservoir as well as its thickness, which
decreases in general from the south-west to the north-east; however, the main electrical discontinuities
also correspond to faults and fractures, and they show a NE–SW direction sub-parallel to the major
accidents of the Middle Atlas. A prospectivity map of the local aquifer was generated, coinciding
with regional fault lines and confirmed by the alignment of very good flowing water boreholes. This
geophysical study by electrical sounding shed light on the geometry and extension of the aquifer and
opened avenues to draw further conclusions on its physical and hydrodynamic characteristics, as
well as to optimize the future siting of groundwater exploitation boreholes through the elaboration of
the local aquifer prospectivity map.

Keywords: vertical electrical sounding; groundwater; hydrogeophysics; Tabular Middle Atlas;
applied geophysics; agriculture; Morocco
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1. Introduction

The plain of Guigou, located in the center of Morocco between the town of Timahdite
and the village of Almis Guigou, has seen an important development in agricultural
activities in recent decades, especially in the production of potatoes and onions, which are
very well known and in demand in the Moroccan market. Indeed, this crop, which is very
demanding in terms of irrigation water, is at the origin of the overexploitation of the water
table in the said region. This need is manifested by the decrease in pumped flows and,
consequently, the phenomenal drop in the piezometric level [1].

In this respect, detailed knowledge of the aquifer system is of great interest for the
optimal management of groundwater resources in such a region [2–6]. The aquifer exploited
in the region is formed by Plio-Quaternary basalts with Miocene and Cretaceous marl and
limestone formations as a semi-impermeable bedrock. The fracturing affecting these
basalts plays a key role in the circulation of groundwater and impacts the productivity
of hydrogeological boreholes. In addition, there are few hydrogeological studies of the
Plio-Quaternary basaltic aquifer in the region [1,7], and there are none based on geophysical
surveys, which means that this aquifer is still poorly known and needs to be explored
in detail.

The geoelectrical method, with its three most widely used techniques (tomography,
profiling and vertical drilling), has long been considered the most widely used geophysical
method for the characterization of aquifer systems in the world [8–21].

Due to its simplicity of implementation and cost-effectiveness compared to other
methods, the vertical electrical sounding (VES) technique has proven to be very useful in
mapping aquifer systems, the geological layers forming their impermeable bedrock and
the detection of structural anomalies corresponding to faults and fractures [4,22–25].

In this study, we used the vertical electrical sounding (VES) technique to map the
aquifer system of the Guigou plain. The main objectives of this study included the following:
(i) to identify the electrical horizons of the subsoil; (ii) to determine the geological layers
forming the aquifer; (iii) to determine the geometry of the aquifer system; (iv) to estimate
the depth of the impermeable bedrock; and (v) to locate the geoelectrical discontinuities
and determine their role in groundwater drainage.

2. Geological Background

The Moroccan Middle Atlas, shown in Figure 1, where our study area is located, is a
chain structured during the Alpine orogeny. It is subdivided into two units: to the west is
the Tabular Middle Atlas (TMA) unit, and to the east is the Folded Middle Atlas (FMA)
unit [26,27]. The passage between these two units is underlined by a network of faults
called the North Middle Atlas accident (NMAA). The Guigou plain is located at the south-
eastern edge of the TMA and along the NE–SW NMAA [27–29]. It corresponds to a collapse
ditch about 5 km wide and 40 km long, essentially filled with volcanic lava and traversed
by Oued Guigou, which constitutes its alluvial plain [1,7,30]. The chronological succession
of the geological formations of the Middle Atlas begins with the sandstone-pelitic series
constituting a base attributed to the Paleozoic era, which is structured by the Hercynian
orogeny [26,31–35]. In angular discordance, a thick series from the Triassic age composed
of lower and upper argillites and framing a basaltic complex of doleritic-type rocks rests
on this base [28,35–37]. This series is underlain by the carbonate formations of the Lias,
which are interspersed with marl and limestone of the Dogger age to the Mio–Pliocene
age [32]. Locally at TMA, the Quaternary period is represented by volcanic lavas of a
basaltic nature. These lavas come from craters located to the north of the study area, the
most important of which are Jbel Habri, Chedifat and Bou-Ahsine [28,38]. At their exit,
following the example of our study area in the Guigou plain, these lava flows used the
slopes to occupy the depressions [28,38]. In this plain, in addition to these basalt flows
which predominantly outcrop, there are also some marl and limestone formations from the
Mio-Pliocene period which outcrop mainly in the NE part in the form of small plateaus at
the foot of the folded Middle Atlas [7,34].
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Figure 1. (a) General geological map of Morocco showing the location of the Middle Atlas Mountain;
(b) Simplified geological map of the Middle Atlas extracted from the geological map of Morocco at
1/200,000, showing the location of the study area; (c) Sketch of the geological map of the Middle
Atlas where the study area marked by the red polygon.

Tectonically, the TMA is characterized by brittle rather than folded deformation [7,28,33,39].
Indeed, two major fault networks can be distinguished, namely the NMAA fault network
and the Tizi-n-Tretten (TNTA) fault network with a NE–SW direction. These two major
accidents are part of the same fault system inherited from the Hercynian orogeny, which
was replayed several times during the Alpine orogeny [26,40,41]. These faulted structures
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that shape the TMA are easily mapped on the ground, except in areas covered by basaltic
flows [28,38].

3. Materials and Methods
3.1. Vertical Electrical Sounding (VES) Basic Principle and Data Acquisition

The geoelectrical method, using the vertical electrical sounding (VES) technique,
consists of measuring the variations in apparent resistivity (ρa) as a function of depth. In
principle, the measurement protocol consists of injecting an electric current of intensity
(I) through two current electrodes (A and B) and measuring the potential differences
(∆V) created between the two receiving electrodes (M and N), called potential electrodes
(Figure 2).
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Figure 2. (a) General scheme of a soil-resistivity measurement using the Schlumberger configuration
with a four−electrode device (ABMN), (b) bi−logarithmic diagram for the representation of VES
measurements.

According to Ohm’s law, the apparent resistivity is a function of ∆V, I and the geometric
coefficient (K). It is calculated by the following formula:

ρa =
∆V

I
∗K And K = 2π

(
1

1
AM + 1

AN + 1
BM − 1

BN

)

The curve ρa = f
(

AB
2

)
is obtained by plotting the apparent resistivity values ρa

against AB/2 (half spacing of the current electrodes, which can reach up to 101 km) in a
bi-logarithmic scale.

In the present study, the measurement of VES data at forty-seven stations was car-
ried out and arranged according to seven profiles that were generally oriented NW–SE,
perpendicular to the general direction of the flow of the volcanic lava. The coordinates of
the measurement stations were taken by a Garmin MAP-64 s GPS. A Syscal Pro resistivity
meter was used to acquire geoelectrical data. This automated instrument is powerful in DC
electrical readings with the transmitter and receiver integrated in the same instrument. The
measurements were made using the Schlumberger configuration. The distance between the
current injection electrodes (AB) varied logarithmically from 6 to 1000 m for each measuring
station. The position of the measuring stations was organized according to the profiles with
a spacing of 3 to 5 km between them (Figure 3). The direction of the spread of the power
cables was NE–SW, in the same direction as the regional fault system, to avoid polarity
reversals created by the presence of faults or anomalous geological contacts. At the same
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time, measurements of the piezometric level of the water table using a 200 m piezometric
probe were acquired.
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3.2. Data Processing and Resistivity Interpretation

The VES data acquired were subjected to a series of processing steps to facilitate
their interpretation, summarized in four steps. In the first step, the VES diagrams were
first smoothed to eliminate all outliers. They were then inverted using Geosoft’s Winsev
software, which allows each diagram to be broken down into well-defined electrical levels
in terms of thickness and resistivity. The models of the VES diagrams were calibrated
by lithological logs of the three existing hydrogeological boreholes (Figure 3). In the
second step, the geoelectric levels of the VES models of each profile (Figure 3) were
correlated horizontally. Consequently, four geoelectrical sections were drawn up to follow
the evolution of the resistivity and the thickness of the formations crossed in both the
vertical and lateral directions. Then, the third step was to interpolate the VES data using the
inverse distance weighting (IDW) method. Four thematic maps were produced, including
two iso-resistivity maps, a bedrock-depth map and a thickness map of the main reservoir.
Finally, based on the main geoelectrical characteristics extracted from the geoelectrical
sections and maps, coupled with the available geological information, the fourth step
concerned the elaboration of the groundwater prospectivity map. Figure 4 shows the
methodological flowchart applied in this work, described in the four steps above.
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Figure 4. The methodological flowchart used in this study.

4. Results and Discussion
4.1. Geological Significance of Resistivities and VES Categories

The processing and analysis of the electrical boreholes made it possible to identify
three categories of VES (C1, C2 and C3), characterizing the whole study area, based on the
shape of the curve and the succession of electrical levels (resistant, conductive, two-layer
intermediates, etc.). The table below gives a summary of the inversion results and the
interpretation of typical VES in each category (Figure 5).

The first category, C1, was the most dominant, containing a total of 30 VES measure-
ments. A typical VES curve is represented by the 4P1 diagram (Figure 5). The interpretation
of the latter is based on the lithological data from borehole 254/30. The diagram of VES4P1
shows, from bottom to top, the presence of the following geoelectric levels (Figure 5): (i) a
relatively conductive bedrock with a resistivity of 170 Ωm, located at a depth of 152 m and
attributed to fairly compact Pliocene marlstone; (ii) a moderately resistant level of 450 Ωm
resistivity and a thickness of 75 m that can be made to correspond to water-bearing basalts;
(iii) a very resistant complex formed by two levels, a first lower level of with a resistivity of
2043 Ωm and a thickness if 55 m, which could correspond to dry and fairly compact basalts,
surmounted by an upper level with a resistivity of 1347 Ωm and a thickness of 21 m, most
probably attributed to weathered basalts on the surface; and (iv) a superficial level that is
2 m thick, representing the vegetal soil.
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Figure 5. Diagrams and interpretation models of typical SEV of each category and the borehole data
with its corresponding lithological logs.

The second category (C2) contained a total of 9 VES measurements. This category is
represented by the diagram of 1P3, the typical shape of the curves of which is given in
Figure 5. An examination of the 1P3 diagram shows, from bottom to top, the presence of
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the following geoelectrical levels: (i) a succession of moderately conductive to resistant
levels, with resistivity varying between 40 Ωm and 177 Ωm, and thickness being 122 m,
which corresponds to the marl–limestone intercalation of the Pliocene; and (ii) a 12 m
thick resistant ensemble representing the Quaternary basalts, which were altered at the
beginning, then dry before becoming slightly damp afterwards.

The third category (C3) contained a total of 08 VES measurements. The curve of
the electrical borehole 8P3 (Figure 5), which is the representative of this category, shows,
from bottom to top, the presence of the following geoelectrical levels: (i) a very resistant
substratum with a resistivity of 500 Ωm. It is also very deep, located at a depth of 207 m, and
could be the equivalent of Pliocene limestone and sandstone or any underlying formation
(e.g., Jurassic limestones); (ii) a succession of moderately conductive to resistant levels, from
resistivities of 50 Ωm to 250 Ωm, and 206 m thick, which would correspond to Pliocene
marl and limestone; and (ii) a superficial conductive level, 1 m thick, which can be made to
correspond to the vegetal soil.

4.2. Geoelectrical Section Analysis

Geoelectrical sections (GSs) yield the visualization of lateral and vertical variations
of resistive and conductive horizons, as well as possible electrical discontinuities. Based
on the correlation between the interpreted and inverted VES patterns, seven GSs were
performed along the N–S, NW–SE and E–W directions.

It should be noted that due to the sometimes-large distance between electrical sound-
ings in the same profile, correlations may be influenced by the presence of structural
discontinuities, such as faults and fractures, making it difficult to correlate, which requires
calibration with existing borehole data.

Only the four most representative cuts of these directions are presented and discussed
in this work, namely GS1 (Profile 1), GS2 (Profile 3), GS3 (Profile 5) and GS4 (Profile 7).
Figures 6–9 show these geoelectrical cross-sections and for each one, a simplified cross-
section has been drawn with the same horizontal and vertical scale.

Section GS1, grouping the VES of profile 1 (Figure 6), shows the gradual plunge of the
marl–limestone bedrock towards the north and, consequently, an increase in the thickness
of the basaltic flow from the south to the north. The presence of the North Middle Atlas
accident (NMAA) and the corresponding satellite faults to the south of the profile is a
physical argument that justifies the electrical discontinuities between holes 1P1 and 2P1
and between holes 2P1 and 3P1. It is highly likely that because of the faulting in this
corridor, the marl and limestone bedrock revealed by boreholes 1P1 and 2P1 may have
risen. The rising bedrock prevented the basaltic flow from flowing southwards. Section
GS1 has been correlated with data from borehole NIRE 254/30.

Section GS2 (Figure 7) groups the electrical soundings carried out in profile 3. It
shows a gradual sinking of the marl and limestone bedrock towards the south, unlike the
previous section, which generated a synclinal depression into which the basalts flowed with
a thickness that increased from north to south. The existence of electrical discontinuities
between boreholes 1P3 and 2P3 and between 2P3 and 3P3 corresponds to the continuity of
NMAA satellite faults, leading to the uplift of the marl–limestone bedrock at the level of
borehole 2P3, according to a horst structure, which prevented the flow of basaltic flows
towards the south.

Section GS3 (Figure 8) at the level of profile 5, shows that the top of the marl–limestone
bedrock forms a bowl structure where boreholes 4P5 and 5P5 show the lowest points.
Towards the two north-western and south-eastern extremities, a rise in the roof is observed,
which implies a decrease in the thickness of the overlying basaltic flows. A geophysical
discontinuity was recorded between electrical boreholes 5P5 and 6P5, which may represent
a fault or a simple flexure of the bedrock.
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Section GS4 (Figure 9) is oriented E–W towards the north-eastern edge of the study
area and follows profile 7. In this section, the thickness and extent of the basalts are clearly
reduced. The maximum thickness reached by the basalts is 20 m, which was recorded
in the middle of the section. Furthermore, a decrease in the thickness of these basalts is
highlighted towards the west side where it reaches less than 5 m on the one hand. On the
other hand, going towards the east end, this thickness progressively decreases until the
bedrock outcrops.

4.3. Interpretative Map Analysis

The apparent iso-resistivity maps show the dispersion and lateral variation of the
apparent resistivity (ρa) in the study area for different slices of the ground. Two iso-
resistivity maps have been developed (ρaAB=80 m and ρaAB=200 m). The analysis of the
apparent resistivity map ρaAB=80 m presented in Figure 10a for a line length of AB = 80 m,
corresponding to an investigation depth of about 15 m, allowed us to distinguish the
following areas: (i) highly resistive areas (ρa >200 Ωm), corresponding to zones where
the basalts are quite thick, notably in the SW of the study area; (ii) quite conductive areas
(ρa ≤ 100 Ωm), located in the east and north-east of the study area. This decrease in
apparent resistivity (ρa) is most probably linked to the absence of basalts on the surface;
(iii) the rest of the map is occupied by intermediate resistivity (100 ≤ ρa ≤ 200 Ωm),
occupying large areas and corresponding to zones where basalts are present with small
thicknesses, or they are more altered. For a deeper slice, the map ρaAB=200 m (Figure 10b)
corresponds to a depth of investigation of about 30 m, and this map roughly follows the
pattern of the previous map ρaAB=80 m and shows a very resistant zone (ρa ≥ 500 Ωm),
located SE of the study area. This increase in ρa reflects the presence of very resistant terrain
corresponding to basalts. A relatively conductive zone (ρa ≤ 100 Ωm) is located to the
north-east of the surveyed area. This decrease in electrical resistivity is due to the presence
of Pliocene marl and marl–limestone soils from the surface. The zones of intermediate
resistivity (100 ≤ ρa ≤ 500 Ωm) correspond to areas where the basalts are of low thickness
above the Pliocene marl–limestone bedrock.

The isohypse map of the marl–limestone bedrock (Figure 10c) shows that the roof
altitude varies between 1800 m, recorded at the upstream end of the plain, and 1460 m, the
minimum value recorded downstream. It shows, in a general way, the behavior of the roof
of the marly–limestone substratum, which gradually plunges from the south-west to the
north-east in accordance with the flow of Oued Guigou and the water table. The isopach
map represents the thickness distribution of the basaltic aquifer. The examination of this
map (Figure 10d) shows that the maximum values are located to the south-west of the study
area, mainly at the level of the electrical boreholes of profile 1 where the thickness values
are close to 150 m. Overall, the thickness of the basaltic formations decreases progressively
from the south-west to the north-east, with a slight increase in profiles 5 and 6.

4.4. Tectonic and Hydrogeological Implications

This work, based on geophysical reconnaissance by VES, shows the existence at
depths of a more or less conductive level corresponding to calcareous marl alternations,
surmounted by a very resistant level attributed to Quaternary basalts with a thickness that
reaches at least 150 m in the south-western part of the study area. These thicknesses are
consistent with those found by A. Bentayeb and C. Leclerc [38]. These basaltic formations
have good hydrodynamic characteristics, which can yield significant flows depending on
their degree of fracturing, and their rate of recharge [1].

The production of qualitative geoelectrical maps in terms of apparent resistivity made
it possible to identify conductive areas and resistant areas that were interpreted differently
according to the different lengths of the injection line. The conductive patches were
attributed to the sub-cropping of the marl and limestone bedrock formations, while the
resistant patches reflected the presence of fairly thick basalts. The quantitative isohypse
map of the marl–limestone bedrock roof shows, as do the geoelectrical sections, that this
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roof gradually dips from the south-west to the north-east. The maximum elevation of a
roof at this level would be to the order of 1900 m towards the south-west of the surveyed
area, and it records the coast of 1480 m towards the north-east with a difference in altitude
of 420 m for a distance of 32,000 m and a gradient of 1.3%.
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The main geoelectrical characteristics extracted from the geoelectrical sections and
maps, coupled with the geological information available on this area, allowed us to elabo-
rate on the aquifer prospectivity map presented in Figure 11. The alignment of electrical
discontinuities allowed the continuity of lineaments between the geoelectrical sections to
be estimated and the orientation and interpretation of these lineaments in terms of faults or
fractures to be deduced. These fractures show a NE–SW direction sub-parallel to the major
accidents of the Middle Atlas, highlighted by numerous old works [1,7]. The work of Am-
rani and Hinaj (2016) demonstrated that groundwater flows in the Plio-Quaternary aquifer
system follow the NE–SW trend, with multi-gap faults affecting the collapsed zone of the
Guigou Plain. In this sense, these physical discontinuities play a major hydrogeological role
in the preferential circulation of groundwater. The local aquifer prospectivity map shown
in Figure 11 outlines the potential alignment of regional faults deduced from the electrical
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discontinuities (EDs). The zones of passage of these faults between the electrical sections
are confirmed by the alignment of the boreholes with particularly good water flows.
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The lineaments in red correspond to the zones of passage of the electrical discontinu-
ities. On the other hand, those in brown reflect the faulted structures as they are mapped
on the ground from the structural and geological maps of the study area. Subsequently, the
superposition of the results obtained allowed us to identify the most favorable areas for
the installation of groundwater exploitation wells. To justify this choice, a hydrogeological
survey was carried out, which showed that the position of the boreholes with a good flow
rate (Q > 10 L/s) coincide with the favorable zones (see Figure 11). On the other hand,
low-flow boreholes (Q < 5 L/s) are located far from favorable areas and medium-flow
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boreholes (5 L/s < Q < 10 L/s) are located near favorable areas. The results of this study
will serve as a guide to optimize the location of new wells and/or boreholes.

5. Conclusions

The present work demonstrates the importance of using VES geoelectrical data in the
characterization of aquifers. This technique was applied to target areas of high groundwater-
flow potential in the Guigou plain between the town of Timahdite and the village of Almis
Guigou. The results obtained led to detailed map of the electrical discontinuities corre-
sponding to fracture zones affecting the basalts forming the main aquifer. Iso-resistivity,
the marl–limestone bedrock and basalt thickness maps were generated to characterize
this aquifer.

The analysis and Interpretation of all the VES measurements show the presence of a
very resistant upper level with a thickness varying between 0 and 150 m, attributed to the
basaltic formations of the Quaternary age, followed by a moderately conductive horizon
with a resistivity of about 90 Ωm. According to local geological data, this conductive
level corresponds to Pliocene marl and limestone alternations. The correlation between
the geophysical models obtained from the VES interpretations and their confrontation
with local geological data and the lithological sections of the mechanical drillings made
it possible to draw a certain number of geoelectrical sections, which reflect the evolution
of the thickness and resistivity of the basalts above the marl–limestone bedrock. Indeed,
the marl and limestone formations generally plunge from the south-west to the north-east
with the presence of geophysical discontinuities, which locally interrupt this plunge. These
detected electrical discontinuities could be interpreted in terms of a manifestation of the
scarping of the satellite faults of the North Middle Atlas accident, which blocked the flow
of basalts southwards and formed this basaltic aquifer, preventing the flow of basalts.

The integration of geophysical and geological field knowledge has led to a more
informed regional tectonic interpretation and assessment of the hydrogeological prospects
of the region. To this end, the results of this geophysical survey have made it possible
to better characterize the geometry of the Quaternary basaltic aquifer and the electrical
discontinuities and its Pliocene calcareous marl substratum. Thus, this study constitutes
a basic document to help decision makers better manage the siting of water boreholes in
order to ensure the good integrated management of the region’s groundwater resources.
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Abstract: Seismic reflection utilizes sound waves transmitted into the subsurface, reflected at rock
boundaries, and recorded at the surface. Interpretation of their travel times and amplitudes are the key
for reconstructing various geomorphological features across geological time (e.g., reefs, dunes, and
channels). Furthermore, the integration of surface geomorphology technique mapping, such as digital
elevation models, with seismic geomorphology can increase land and marine feature modelling
and reduce data uncertainty, as well. This paper presents an overview of seismic and surface
geomorphology techniques and proposes an integrated workflow for better geological mapping, 3D
surface imaging, and reconstruction. We intend to identify which techniques are more often used
and which approaches are more appropriate for better output results. We noticed that an integration
of surface and subsurface geomorphology techniques could be beneficial for society in landscape
mapping, reservoir characterization, and city/regional planning.

Keywords: quantitative geomorphology; seismic geomorphology; seismic reflection; 3D imaging;
earth surface reconstruction; remote sensing; aerial photogrammetry; geological mapping;
integrated geomorphology

1. Introduction

Seismic reflection interpretation has existed for decades, beginning with a two-
dimensional (2D) seismic reflection method and developing into a more intensive three-
dimensional (3D) method. The primary components of seismic interpretation are seismic
reflection data coupled with geologic depositional and tectonic models. These provide
a framework for integrating borehole, microseismic, outcrop, and modern landscape
analogue data that result in a realistic earth surface (geomorphology), subsurface recon-
struction, and reservoir model [1–10]. Meanwhile, a proper understanding of seismic
reflection data is a necessary precursor to successful interpretation [1,11–23]. The seismic
reflection data utilize the transmission of a sound wave (triggered by an air gun, vibroseis,
etc.) that propagates into the subsurface and is reflected to the surface when encounter-
ing an interface between two different rock properties, such as density and velocity. The
reflected sound wave is recorded at the surface by receivers that measure its amplitude
and arrival time (two-way travel time). Later, the recorded data are processed utilizing
mathematical and signal processing techniques to produce an image of the subsurface. The
seismic processing workflow could be different from one dataset to another depending
on the geological conditions, target, processor, etc. The processing of seismic reflection
data could be utilized in commercial software, e.g., Vista™ (Schlumberger), SeisSpace
ProMax™ (Halliburton), Echos™ (Paradigm), Geovation™ (CGG), and many more. In
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addition, open source and free license software are also available, e.g., Madagascar, Seismic
UNIX (Colorado School of Mines), SEPlib (University of Stanford), any many more.

The advancements in seismic acquisition and processing have provided significant
improvements to the quality and resolution of seismic data; thus, the extraction of detailed
geological information (and ultimately the development of a realistic 3D geological model)
is becoming a reality. Plan-view images of the depositional elements and depositional
systems (on a large scale) were provided by 3D seismic data, in which the morphology
of these elements could be extracted from a seismic cube. Analysis of such images could
significantly enhance predictions of the spatial and temporal distributions of subsurface
lithology (reservoirs, sources, and seals), fluids, compartmentalization, and stratigraphic
trapping capabilities. Furthermore, it can contribute to an enhanced understanding of
process sedimentology, sequence stratigraphy, and tectonics [15,20,24–42].

Seismic geomorphology itself is the study of the subsurface using plan-view images
from three-dimensional seismic data and aims to extract geomorphological, depositional,
and other geologically significant features [12,15,20,27,29,43]. Seismic geomorphology,
which depends on the interpretation of plan-view seismic images, is rapidly developing on
several fronts, including [29]:

• Understanding the development of seascapes and landscapes in clastic and carbonate
settings;

• Advances in workflows directed toward lithological prediction through the integration
of seismic stratigraphy and seismic geomorphology;

• Revising and improving sequence stratigraphic models;
• Development of new and increasingly sophisticated analytical techniques.

Furthermore, the quantification of geomorphology from seismic reflection data fea-
tures morphometric analysis of (for instance) sediment conduits that play an impor-
tant role in the quantitative interpretation of sedimentary processes and paleoenviron-
ments [39,44–53]. Morphometry includes:

• Height, defined as the vertical distance within a sediment conduit from its base to spill
point;

• Top width, defined as the horizontal distance between two spill points;
• Base width, defined as the horizontal distance between two points in its floor;
• Cross-sectional area (CSA), defined as the area of a sediment conduit perpendicular to

its axis;
• Aspect ratio, defined as the ratio between width and height of the sediment conduit’s CSA;
• Sinuosity, defined as the ratio between a reference point and the sediment conduit’s axis;
• Gradient, calculated from depth changes along the sediment conduit.

Moreover, surface geomorphology is the study of earth’s physical land–marine surface
features: its forms, processes, origin, development, and evolution that finally form a land–
marine feature [54–61]. Nevertheless, shallow subsurface processes, other than surface and
atmospherics processes, also play an important role on shaping the earth’s land–marine
forms (the evolution of topography). This subsurface process is mainly related to the
geological processes including tectonics, volcanic activity, earthquakes, sedimentation,
groundwater activity, sea-level changes, etc.

Furthermore, surface geomorphological data acquisition techniques, such as:
1. Quantitative geomorphology approaches have shown a great potential for identi-

fying the location of geomorphological boundaries [62–64], the distance, surface, and the
volume of geomorphological processes evolution [62,65–67].

2. Remote sensing techniques from space using radar sensors for supporting geomorpho-
logical interpretation of slow-moving coastal geohazards [68,69] or for monitoring subsurface
deformation for interferometric analysis on a regional [70,71] or continental scale [72].

3. In situ and proxy geomorphological mapping techniques using unmanned aerial
vehicles (UAV) photogrammetry, optical survey (for fine-scale topographic data), LIDAR
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(Light Detection and Ranging), and any geographic information systems whose mapping
provides reliable surface geomorphology data [73,74].

Apart from techniques and approaches used for data acquisition, surface geomorphol-
ogy data processing algorithms and software have recently been developed and improved.
Most of the earth observation satellite images available in Google Earth Engine (GEE) can be
analyzed based on algorithms and a software interface of GEE Python application program-
ming interface [75]. van Natijne et al. [76] used SAR images available in GEE to assess the
potential of Interferometric Synthetic Aperture Radar (InSAR)-based deformation tracking;
the authors demonstrated that the deformation could be detected on at least 91% of the
global landslide-prone slopes. Other open-source software such as QGIS and SNAP desktop
have been developed for the analysis of Optic and Radar images. The development of aerial
photogrammetry technology has been accompanied by the launch of powerful Geographic
Information System (GIS) software [77,78] such as Pix4D Mapper [79], Agisoft PhotoScan [80],
and ArcMap for LiDAR and orthophoto quantitative analysis and geobody extraction.

Recent advances in technology (especially remote sensing) have provided a wider and
larger area coverage of the earth’s surface with high spatial resolution and free access (with
term and conditions). In addition, near-surface or deep-surface acquisition data tools like
seismic reflection data could provide results of deeper and wider areas (compared to other
subsurface data) when it comes to depth of penetration (km scale) and lateral area (km2 scale),
respectively. Therefore, the aim of this study is to review seismic and surface geomorphology
techniques already existing in the energy industry and academia and relate them to 3D earth
subsurface imaging, reconstruction, sedimentary architecture, and geomorphological feature
extraction from seismic reflection and surface geomorphology data. These techniques that are
part of seismic geomorphology are grouped into the following main themes: seismic attributes,
seismic sedimentology (including slicing techniques), volume rendering and geo-body ex-
traction, and machine learning. In addition, the integration of seismic geomorphology and
surface geomorphology techniques is proposed through an integrated surface and subsurface
workflow toward a reliable 3D model of the earth and its geomorphology.

It is important to note that this research was conducted in the framework of Recovery
Assistance for Cohesion and the Territories of Europe (REACT-EU) for Italian National
Operational Program” PON Research and Innovation 2014-2020" projects on innovation
and green issues (DM 1062/2021) granted in December 2021. The project was financed
for green research project aiming at studying quantitative geomorphology from images.
This research review intends to answer some questions such as where and which seismic
and surface geomorphology techniques are used more often in identifying marine and
land surface features? which approaches and technologies give better results? information
in-dicating the possible combinations of technologies to obtain the best quality results and
the ratios of different technologies were also analyzed. In addition, more details about the
use of software for data processing are provided. In the future, the results of this research
review will be based on during marine deep sediments identification for a new strategy of
coastal protection in Sicily and for Italian coastal protection in general.

2. Review Method and Protocol

This review follows the guidelines of general literature review papers by Mohamed
Shaffril et al. [81], Munn et al. [82], Snyder [83], and Xiao and Watson [84], where there are
two main stages of the literature review method that have been implemented:

1. Planning the review: identifying why this review paper is needed and identification
of research questions.

2. Conducting the review: selection of primary research, data extraction, and result
reporting.

There are many studies about the reconstruction of past land and marine geomorpho-
logical features using seismic reflection data. However, there lacks an in-depth compilation
of these techniques when they are combined with surface geomorphological techniques
for present reconstruction (surface and shallow subsurface). Meanwhile, the utilization of
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other geophysical techniques (e.g., ground penetrating radar, gravity, magnetic, resistivity,
electrical resistivity tomography, passive seismic, and seismic refraction) has indicated a
significance increase during the last decade for present surface and shallow subsurface
geomorphological reconstruction [85–87]. Furthermore, this compilation is important for
research, as well as the industrial community to give a holistic view on seismic reflection
and surface geomorphological techniques available for reconstructing the land and marine
geomorphological features. Thus, the acquired data would be utilized in maximal and ef-
fective ways to be able to have better results and decrease the cost of production. Therefore,
some research questions are:

• R.Q.1 What is the meaning of seismic geomorphology?
• R.Q.2 What are the available seismic geomorphology techniques?
• R.Q.3 How is the integration of seismic and surface geomorphology techniques ac-

complished?
• R.Q.4 Which technique is most often used and which approach gives better results?

This review utilizes research papers from the period of 2000 to 2022 in worldwide
databases (Table 1). The paper-searching strategy included both manual and automatic
search strategies to retrieve seismic geomorphology and surface geomorphology techniques
from online databases including Scopus, Web of Science, GeoScienceWorld, and Multidisci-
plinary Digital Publishing Institute (MDPI). The manual search was based on the authors
experience and expertise having worked with these techniques for many years, while the
automatic search utilized specific keywords related to the research question. The keywords
were “seismic geomorphology”, “surface geomorphology technique”, and “integrated seis-
mic and surface geomorphology” with no filters on affiliation, country, or funding sponsor.
However, the following filters were applied on the automatic searching strategy: subject
area (earth science), document type (article and book chapter), and language (English).

Table 1. Summary of seismic and surface geomorphology research papers used in this review with
the source of database.

Database Keywords Records Total

Scopus
Seismic geomorphology 1197

Surface geomorphology technique 590 1841
Integrated seismic and surface geomorphology 54

Web of Sciences Seismic geomorphology 1229
Surface geomorphology technique 613 1926

Integrated seismic and surface geomorphology 58

Geoscience World
Seismic geomorphology 3990

Surface geomorphology technique 3498 10,031
Integrated seismic and surface geomorphology 2543

Google Scholar Seismic geomorphology 3480
Surface geomorphology technique 12,700 19,040

Integrated seismic and surface geomorphology 2860
Seismic geomorphology 45

MDPI Surface geomorphology technique 43 90
Integrated seismic and surface geomorphology 2

The primary paper selection criterion utilized screening the titles and recognizable
authors in seismic geomorphology and surface geomorphology techniques. This created
restrictions to only select the original articles published in high-quality journals. In addition,
duplicate results on the different keywords and irrelevance with keywords (e.g., only
considering single keywords) were also removed. The secondary paper selection criterion
was based on the following eligibility (exclusion and inclusion) criteria:

Inclusion Criteria:

• Research paper is published in peer-reviewed and good journal, represented in major
indices with high impact factor.

• Research paper is accessible.
• Research paper has relevant content to seismic geomorphology and surface geomor-

phology techniques.

Exclusion Criteria:
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• Research paper is published in non-peer-reviewed journal.
• Research paper is inaccessible.
• Research paper has no relevant content to seismic geomorphology and surface geo-

morphology techniques.

3. Seismic Attributes

A seismic attribute is any measure (quantitatively) of seismic data that helps in-
terpreters to visually enhance or quantify features and geomorphologies of interpretive
interest [88–95] (Figure 1). The development of seismic attributes has been integrated with
seismic reflection interpretation and has roots extending back to the 1930s when geophysi-
cists started to interpret (pick) travel-times with coherent reflections on recorded seismic
field data [95].
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Figure 1. Seismic attributes (Root-Mean-Square Amplitude) showing geomorphology of the paleo-
seabed reef features. Source: courtesy of Virtual Seismic Atlas (VSA), 2015 (www.seismicatlas.org,
accessed on 1 January 2015). (VSA author: Henry Posamentier).

The development of seismic technology has always preceded the development of
seismic attributes that could be a powerful tool in delineating geomorphological features,
identifying prospective hydrocarbon volumes, etc. Hundreds of seismic attributes are
in existence today, and this number will increase over time. Several seismic attributes
duplicate one another, while others are obscure, unstable, or unreliable; other seismic
attributes are purely mathematical quantities or are not truly attributes [89,95–97].

Many authors have different classifications of seismic attributes; for example, Taner [93]
divided the attributes into the following two general categories: geometrical attributes
and physical attributes. The purpose of geometrical attributes is to enhance the visibility
of the geometrical characteristics or reflection characteristics of the seismic data such as
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seismic reflection configuration (including seismic facies), the reflection intensity of seismic
events, dip, azimuth, and continuity. These geometrical attributes have the main function of
enhancing seismic interpretation of sequence stratigraphy, seismic stratigraphy, fault, and
structural interpretation. On the other hand, the physical attributes pertain to the physical
parameters of the subsurface, and, therefore, relate to lithology and pore fluids (reservoir
characterization). These include instantaneous phase, correlation coefficient, instantaneous
frequency, (attributes derived from analytical seismic traces), interval velocity, amplitude
versus offset, and normal moveout (attributes derived from pre-stack data).

Brown [90] classified seismic attributes using a tree structure in which time, amplitude,
frequency, and attenuation were the main branches that further branched out into post-
stack and pre-stack categories with horizon and window mediums. Time attributes are very
useful on providing faults and structural geological information; these include residual, dip
azimuth and magnitude, curvature, edge, illumination, coherence, semblance, covariance,
trace difference, etc. Amplitude attributes work very well on enhancing stratigraphic
interpretation and reservoir information, including amplitude versus offset, reflection am-
plitude, relative impedance, reflection strength, amplitude ratio, root-mean-square (RMS)
amplitude, average energy, variance of amplitude, maximum amplitude, etc. Frequency
attributes are very useful for identifying and extracting reservoir information (e.g., sand-
stone reservoir with gas); these include instantaneous frequency, time derivative frequency,
spectral decomposition, arc length, dominant frequency, etc. Lastly, attenuation attributes
could help us in identifying and extracting other reservoir information (e.g., permeability
information); these include instantaneous Q factor, slope instantaneous frequency, slope
spectral frequency, etc.

Liner et al. [98] introduced a general seismic attribute that was developed following a
singularity analysis of migrated seismic data and wavelet transform decomposition. This
attribute provided a dense layer model of the subsurface that contained many structural
and stratigraphic details (complement coherence and impedance seismic attributes) where
these kinds of geological features were associated with singularities (discontinuities in
seismic impedance). In addition, this seismic attribute does not require well controls for
enhancing reservoir interpretation of migrated seismic data; nevertheless, well controls
give an advance petroleum reservoir characterization.

Sidney and references therein [99] provided a classification of seismic attributes based
on (1) wave kinematics or dynamic categories and (2) geologic reservoir feature categories.
These include:

(1) Amplitude (reflection strength, RMS amplitude, etc.), waveshape (apparent polarity
and maximum peak amplitude), frequency (instantaneous frequency and average
zero crossing), attenuation (amplitude slope and attenuation of sensitive bandwidth),
phase (instantaneous phase and response phase), correlation (length and average),
energy (reflection strength and vibration energy), and ratios (ratio of adjacent peak
amplitudes).

(2) Bright and dim spots (slope of reflection strength), unconformity traps (average cor-
relation), oil and gas bearing anomalies (instantaneous real amplitude), thin layer
reservoirs (finite frequency–bandwidth energy), stratigraphic discontinuity (apparent
polarity), clastic–carbonate differentiation (ratio of adjacent peak amplitudes), struc-
tural discontinuity (maximum–minimum correlation), and lithology pinch-out (cosine
of instantaneous phase).

Furthermore, seismic attributes are often considered a form of “inversion”, a process
widely used to transform seismic reflection data into valuable and meaningful geomor-
phological elements and reservoir properties that can later be integrated into detailed
geomorphology, reservoir geology, and simulation modeling. This inversion method inte-
grates seismic and wellbore data from which an attribute such as acoustic impedance is
derived from sonic and density logs and is subsequently used to populate their properties
into the seismic cube [26,100–102].
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Al-Shuhail, Al-Dossary, and Mousa [89] introduced “digital image processing” as
a complement for seismic attribute analysis where advances in digital image-processing
algorithms and computing technology are able to identify and delineate geological and
geomorphological features from seismic reflection data. In addition, the removal of random
noises and artifacts from seismic reflection data such as velocity push-down or pull-ups,
seabed multiples, acquisition and processing footprints, etc., can be solved utilizing dig-
ital image-processing techniques including edge/structure-preserving smoothing algo-
rithms [89]. This kind of technique also provides automatic interpretation based on seismic
attribute analysis. In particular, these techniques performed very well on fault and channel
detection using several seismic attributes such as edge detection, coherence, dip, curvature,
randomness, and spectral decomposition.

4. Seismic Sedimentology

Seismic sedimentology is the use of seismic data in the study of sedimentary rocks
(lithology, thickness, and fluid properties) and the depositional processes by which they
were formed by revealing their sedimentary and erosional geomorphology and their rela-
tionship with preserved landforms [43,103–105]. The main tools of seismic sedimentology
are ninety-degree phasing of the seismic data, seismic lithology, seismic slicing, and seismic
geomorphology [43]. In addition, a display of seismic attributes on geologic time surfaces
is another important tool of seismic sedimentology. However, there are strict limitations
and conditions under which reservoir geometries and geomorphology can be optimally
delineated on time and/or horizon slices [43,106]. This seismic sedimentology approach,
which attempts to resolve the resolution of seismic reflection data, is a supplement for
the existing seismic stratigraphy where the seismic response to sedimentary layers and
geomorphological surfaces may act differently at low and high resolutions [43].

The ninety-degree phasing of seismic data attempts to provide the best correlation be-
tween the seismic trace, wireline lithologic logs, and stratigraphic architecture (especially in
a thin-bed depositional unit) by providing a symmetrical waveform to be tied directly with
the acoustic impedance profile [43,104,107,108]. The unique and symmetrical ninety-degree
phasing of seismic data will eliminate the dual polarity of the thin-bed response (less am-
plitude distortion) that created better seismic image of thin-bed reflection termination and
configuration (seismic facies), lithology, impedance profiles, and stratigraphy [43,107,108].

Seismic lithology is a reservoir geophysics technique that converts seismic traces
into acoustic impedance logs (seismic inversion) to produce an acoustic impedance vol-
ume (valid impedance model) for lithologic and stratigraphic imaging at high resolu-
tions [43,104,106]. This seismic sedimentology technique is very useful for identification
and characterization of the thin-bed reservoir from 3D seismic reflection data. The thin-bed
parameters might be consisting of (but not limited to) sand/shale ratio, lithofacies, shale
(sand) content (as a pseudo-log), thickness of sandstone, etc. In addition, Dvorkin, Gutier-
rez, and Grana [21] provide the relationships between lithology (sandstone and shale),
fluid, porosity, clay content, and acoustic impedance that can validate seismic lithology
results, which are:

• Shale with medium-porosity gas sand.
• Shale with low-porosity gas sand.
• Gas sand and wet sand.
• Wet sand and shale.

The seismic slicing technique usually consists of time or depth, horizon, and stratal
slicing types in 3D seismic reflection data that (together with seismic attribute) provide the
geomorphology of geological features (Figure 2). The time or depth and horizon seismic
slicing are self-explanatory, whereas the stratal slicing technique utilizes the horizontal
seismic resolution of 3D seismic reflection data and spatially correlates the geological
interpretation (especially at reservoir scale) in a geological timeline (Chronostratigraphy).
Nevertheless, Zeng [109,110] suggests that some of parameters need to be understood to
make this technique valid, which are:

23



Appl. Sci. 2022, 12, 9611

• Good quality geologic-time framework should be in place.
• Depositional system should be linear with lateral changes in thickness.
• No significant angular unconformity.
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Figure 2. 3D view of dip angle (right images) and depth root-mean-square (RMS) amplitude slice
from 3D seismic reflection data (left images) of (a) Type 1, (b) Type 2, (c) Type 3, and (d) Type 4
channel complexes in the Canterbury Basin, offshore of New Zealand [46]. Note that the black dashed
line is the channel outline, while the red dashed line is the area of the contourite deposit.

Based on the analytical technique, seismic geomorphology involves the extraction
and study of preserving subsurface landforms that utilizes plan-view images from 3D
seismic reflection data by seismic slicing and seismic attribute techniques [27,29,43,111].
As part of the seismic sedimentology techniques, seismic geomorphology needs to be
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integrated (complementary) and evaluated with other seismic sedimentology techniques
(i.e., the ninety-degree phasing of seismic data, seismic lithology, and seismic slicing) for
maximum benefit on the extracting geology, geophysics, and reservoir information out of
3D seismic reflection data [24,26,43]. A study conducted by Deiana et al. [112] revealed that
paleo-landscape geomorphological attributes can be extracted from seismic data acquired
by MBES. By analyzing these data, the authors noticed that it was possible to identify the
geometrical position of a beach rock located at 45 m of water depth (Figure 3).
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Figure 3. Geomorphological sketch of the San Pietro continental shelf. Submerged paleo-landscape
from LGM (20 ka) to 9 ka [112].

5. Volume Rendering and Geobody Extractions

The earth has always been three dimensional (3D). Such dimensions can be acquired
using UAV [113] and analyzed for paleo-seismic offset studies (Figure 4). Today, seismic
technology is able to image a small portion of the earth using 3D seismic reflection data
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(primarily for energy purposes) to identify, isolate, and extract seismic anomalies (e.g.,
geomorphology, reservoirs, fluids, volcanic features, salt, etc.). Volume rendering and the
red-green-blue (RGB) blending method as part of the seismic geomorphology technique
allow users to interactively blend multiple seismic reflection volumes, identify and isolate
areas of interest, and extract any relevant geologic and geomorphologic features from a 3D
object called a geobody [25,26,114–121].
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Figure 4. (a) Digital elevation model with contour lines (0.25 m interval) for R1, R2 and R3. (b) Interpretation
of terrace risers and reconstruction of the ~7 m offset. (c) Reconstruction of the ~30 m offset [113].

In volume rendering, the volume is considered as a semi-transparent medium for each
pixel of the screen, and the computation of a volume rendering integral accumulates the
voxels’ contribution along a virtual viewing ray [114–117,119–123]. On the other hand,
the seismic volume rendering process is a display of all data within a seismic volume at
the same time. By rendering a seismic volume and working with the opacity to make it
partially opaque (high amplitude) and partially transparent (crossover amplitudes), it is
possible to identify hidden structural, geomorphological, or depositional features.

However, at times, it is difficult to identify areas of interest with volume rendering. There-
fore, the RGB method is the best option for this situation because it allows for the blending of
different seismic attributes, and its opacity scale uses the primary colors (red, green, and blue),
which facilitates better visualization of geological and geomorphological features [114].

Furthermore, Chopra and Marfurt [116] suggested that co-rendering seismic attributes
(blending two or more seismic attributes) into a single 3D seismic volume could demon-
strate the maximum value of volumetric interpretation of seismic reflection data. In addi-
tion, a false-color guidance of red-green-blue blending on co-rendering seismic attributes
are as follows [116]:

• Red for lower values (less significant geological features).
• Green for intermediate values that represent geological features.
• Blue for higher values that represent more geological features.
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After visualizing and isolating a 3D object through seismic volume rendering or RGB
blending, the geobody can then be extracted (Figure 5). The volumetric of this geobody
can then be calculated, or it can be directly sampled in a geological model as a discrete
object to condition the petrophysical modelling. The resulting property can then be used in
a similar way as a facies model to condition the petrophysical property models [114,121].
Therefore, the geobody provides anomalous subsurface geological features of interest to
rapidly visualize the orientation, geometry, and extent in three-dimensional ways [119]. In
addition, this geobody extraction also visualizes the geomorphological features with rock
or physical properties from 3D seismic reflection data, and once these features are depth
converted (from millisecond to meter), then such metric calculations could be possible with
other supporting parameters.
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Nowadays, computer technology, as well as the ability to process large-scale seismic
reflection data, makes volume rendering and geobody extraction a common tool in the
visualization of geology, geophysics, and reservoir features out of 3D seismic reflection data.
In addition, volume rendering and geobody extraction provide more realistic subsurface
features with some uncertainties based on data resolution and the workflow that was
implemented in the study. Nevertheless, geological understanding of the studied area
as well as integration with other subsurface datasets (e.g., wells, gravity, magnetic, etc.)
are needed for obtaining more geologic interpretations (higher levels of confidence in
interpretations) and low uncertainty on the subsurface model.

6. Machine Learning

Seismic reflection interpretation is usually a time-consuming process (especially with
low-quality data) when the interpreter analyzes seismic data at a standard industrial
workstation. This long process (potentially months) also influences the result, since the
interpreter is a human that could have emotional biases when working on a project for
long period of time, which might lead to less objectivity. Machine learning in seismic
interpretation (seismic geomorphology, in particular) utilizes applied statistics that build
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computational models using various machine learning techniques such as random forests,
decision trees, support-vector machines, convolutional neural networks, deep neural net-
works, and generative adversarial networks [124–128]. This requires input data that will be
processed for training using applied statistics with computational algorithms to produce
reliable outputs (Figure 6).

With today’s trend toward digitalization and automation, this process will significantly
reduce seismic interpretation to a very short period, possibly hours or minutes depending
on the size of the seismic reflection data. Furthermore, the utilization of machine learning
in seismic interpretation processes covers most of the subsurface areas, including surfaces,
geomorphology and facies interpretation, e.g., [129–141], faults and fracture interpretation,
e.g., [139,142–147], and geological volume-global interpretation, e.g., [128,148–150].

Machine learning in horizon seismic interpretation is an important aspect on identifi-
cation geomorphology, faults, reservoir, etc. Lou, Zhang, Lin, and Cao [137] introduced that
seismic horizons follow the reflector dip, thus having similar instantaneous phase values
(the same horizons). Therefore, automatic horizon-interpretation algorithms need to imple-
ment the integration between the reflector dip and instantaneous phase attributes [137].
Another type of machine learning on horizon seismic interpretation is utilizing dislo-
cated horizons (faulted, truncated, etc.) where dynamic time warping and unwrapped
instantaneous phase-constraint are used to correlate horizon grids in a 3D window [133].

Geomorphological interpretation using 3D seismic reflection data is usually time-
consuming, and machine learning with automation processes definitely helps to reduce
the working hours of an interpreter. Infante-Paez and Marfurt [134] and La Marca and Be-
dle [140] presented unsupervised machine learning (self-organizing maps) on identification
of deep-water and volcanic seismic facies, geomorphology, and architectural elements. Ku-
mar and Sain [132] presented supervised learning based on an artificial neural network to
automate the identification and delineation of mass-transport deposits’ geomorphological
surfaces and bodies out of 3D seismic reflection data (offshore).

Manual seismic facies interpretation makes the results very subjective, depending on
the experience and knowledge of the interpreter. Zhang, Chen, Liu, Zhang, and Liu [131]
presented automatic seismic facies interpretation utilizing deep learning, the convolu-
tional neural network, and encoder–decoder architecture, whereas Singh, Tsvankin, and
Naeini [141] utilized Bayesian inference on supervised and semi-supervised deep learning
on a shallow marine prograding delta offshore of the Netherlands.

Faults and geological volume interpretations take most of the interpreter’s time in man-
ual 3D seismic interpretation. Wu, Liang, Shi, and Fomel [145] introduced “FaultSeg3D”,
an automatic and machine-learning tool that used an end-to-end convolutional neural
network to produce an image-to-image fault segmentation. Di and AlRegib [147] presented
a semi-automatic fault or fracture seismic interpretation not using the conventional-based
fault interpretation on displacement, but utilizing seismic geometry analysis. Furthermore,
3D seismic interpretation is usually done using a 2D interpretation view with dependency
on the human interpreter. de Groot [148] and de Groot, et al. [151] introduced “global
seismic interpretation” as a seismic volume interpretation where the algorithm correlates
amplitude and time lines in the pre-calculated seismic dip field.

Nevertheless, this automation and time reduction produces results that the interpreter
needs to validate. We have to keep in mind that machine learning is only a tool that helps
interpreters to work effectively and should not be relied on entirely.
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7. Integrated Seismic Geomorphology with Surface Geomorphological Techniques

Seismic geomorphology, which consists of seismic attributes, seismic sedimentology,
volume rendering, and geobody extraction, is a unique seismic interpretation method that
produces reliable geomorphology (both surface and geobody) out of seismic reflection data.
Nevertheless, the integration of surface and subsurface techniques such as digital elevation
models (i.e., LIDAR, photogrammetry, and surface outcrops) and seismic geomorphology
could lead to reduced data uncertainty and better geological mapping, 3D earth surface
imaging (geomorphology), and reconstruction.

Appl. Sci. 2022, 12, 9611  15  of  24 
 

porosity, permeability, etc.) will be a bridge between seismic geomorphology and surface 

geomorphology (seismic forward modelling). The final surface geomorphology product 

is a geomorphology volume that could render and extract specific geomorphology feature 

(Geobody). Furthermore, the seismic geomorphology and geobody need to be compared 

to produce a reliable 3D model of the earth and its geomorphology. In addition, results 

from all the techniques will depend on the quality of the data that has limitations as func‐

tions of vertical and horizontal data resolutions. Therefore, the results and technological 

preference are very dependent on data resolution. Nevertheless, all techniques should be 

implemented in order to reduce the uncertainty coming from the data. 

In addition, this kind of integration is also beneficial for reducing the uncertainty that 

is produced by surface and subsurface data, whereas more accuracy  is always needed 

utilizing  updated  technology  for  surface  and  subsurface  data.  Finally,  our  integrated 

workflow that helps for better geomorphological mapping as well as 3D earth surface im‐

aging and reconstruction could be applicable with available and similar datasets world‐

wide. 

 

Figure 7. Proposed integrated seismic (with addition of wellbore data, if available) and surface ge‐

omorphology workflow for a reliable 3D model of the earth and its geomorphology. 

8. Discussions and Results Overview 

Several seismic and surface geomorphology techniques exist for delineating, identi‐

fying, and extracting the geomorphology features from both seismic reflection and surface 

geomorphology data (Table 2). 

The  seismic attribute  technique  (including geometrical attribute:  seismic  facies)  is 

widely used as the first approach of quantitatively identifying geological and geomorpho‐

logical features from seismic reflection data. Therefore, this kind of seismic geomorphol‐

ogy technique is often used in industry and academia since its introduction back in the 

Surface

SeismicGeological field 
survey

Quantitative geomorphology,
Remote sensing techniques 

(Interferometry and optic sensing),
Proxy geomorphological mapping (aerial 

photogrammetry, LiDAR, etc.)

Surface features elevation acquisition/ 
Geomorphological features extraction

Facies filtering and 
elevation modeling

Impedance model

Seismic forward 
Modeling

Horizons and faults 
interpretation

Seismic Geomorphology

Comparison
Quantitative analysis and 

Geobody extraction

Wellbore

Formation 
stratigraphy

Lithology, 
facies and rock 

properties

Reliable 3D 
Geomorphology and 

Earth Model

Subsurface

Figure 7. Proposed integrated seismic (with addition of wellbore data, if available) and surface
geomorphology workflow for a reliable 3D model of the earth and its geomorphology.
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This integration could be beneficial for society in various aspects, including mapping
and mitigating landslides and earthquake hazards, engineering geology for building,
surface-groundwater identification and utilization, city planning (land-use mapping and
landscape planning), halt and reverse land degradation, characterization of sustainable
energy on the land surface, better environmental management, etc. Seismic reflection
data and geology itself are often difficult to correlate [4,153–160]. This is because of the
different factors used to describe the two in terms of units, scales, time, and resolutions. In
addition, surface data also have different factors compared to subsurface data. Therefore,
we propose an integrated workflow that consists of geological fieldwork, remote sensing
techniques, quantitative geomorphology, an aerial photogrammetry-based point-cloud
(digital outcrop modelling), surface outcrops, LIDAR (surface data), and seismic reflection
data (i.e., seismic geomorphology for subsurface data) to bridge the gap between seismic
reflection data (geology) and surface outcrops to produce a reliable 3D model of the earth
and its geomorphology (Figure 7).

Subsurface data mainly consists of seismic and wellbore data (and other data, e.g.,
gravity, magnetic, ground-penetrating radar, etc). The basic interpretations from this
subsurface dataset are horizon (utilizing formation stratigraphy from wellbore) and fault
interpretations that lead to seismic geomorphology, lithology, facies, and rock properties
(Figure 7). The surface data is a combination of geological field work data (lithology, faults,
geomorphology, etc.) and surface geomorphological techniques, e.g., drone photogram-
metry (digital outcrop model), LIDAR, etc. The basic interpretation from this surface
geomorphology technique is surface geomorphological feature identification and char-
acterization. This feature usually extends and relates to the subsurface, and the seismic
geomorphology technique is needed to image the subsurface and correlate this surface
feature with its subsurface counterpart. Since there is a difference domain between two
datasets (depth, amplitude values, etc.), an impedance model (consisting of mainly density
and velocity data) with facies and a rock model consisting of rock properties (e.g., density,
porosity, permeability, etc.) will be a bridge between seismic geomorphology and surface
geomorphology (seismic forward modelling). The final surface geomorphology product is
a geomorphology volume that could render and extract specific geomorphology feature
(Geobody). Furthermore, the seismic geomorphology and geobody need to be compared to
produce a reliable 3D model of the earth and its geomorphology. In addition, results from
all the techniques will depend on the quality of the data that has limitations as functions of
vertical and horizontal data resolutions. Therefore, the results and technological preference
are very dependent on data resolution. Nevertheless, all techniques should be implemented
in order to reduce the uncertainty coming from the data.

In addition, this kind of integration is also beneficial for reducing the uncertainty that is
produced by surface and subsurface data, whereas more accuracy is always needed utilizing
updated technology for surface and subsurface data. Finally, our integrated workflow
that helps for better geomorphological mapping as well as 3D earth surface imaging and
reconstruction could be applicable with available and similar datasets worldwide.

8. Discussions and Results Overview

Several seismic and surface geomorphology techniques exist for delineating, identify-
ing, and extracting the geomorphology features from both seismic reflection and surface
geomorphology data (Table 2).
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Table 2. Seismic geomorphology technical analysis.

Techniques Geomorphological
Analysis and Frequency Scale and Resolution Results Ratios (In Time)

and References

Seismic attribute Most cases, often used Vertical (20–30 m) &
horizontal (10–20 m)

Good (Depends on data
quality) 1980s—now, see chapter 3

Seismic sedimentology In special cases
(e.g., thin bedded)

Vertical (2–10 m) &
horizontal (10–20 m) Good for thin bedded 2010s—now, see chapter 4

Volume rendering and
geobody extraction

In special cases (e.g., (3D
seismic reflection data)

Vertical (20–30 m) &
horizontal (10–20 m)

Good (Depends on data
quality) 2000s—now, see chapter 5

Machine learning Becoming often (Last
decade)

Vertical (20–30 m) &
horizontal (10–20 m)

Good (Needs human
validation) 2010s—now, see chapter 6

Integrated seismic and
surface geomorphology Not often, lack of reference Vertical (2–10 m) &

horizontal (10–20 m)
Better (Reducing result

uncertainty) Proposed (This study)

The seismic attribute technique (including geometrical attribute: seismic facies) is widely
used as the first approach of quantitatively identifying geological and geomorphological fea-
tures from seismic reflection data. Therefore, this kind of seismic geomorphology technique
is often used in industry and academia since its introduction back in the 1980s. The results
offered by this technique really depend on the quality of seismic reflection data together
with human knowledge and experience (Table 2). The seismic sedimentology technique is a
relatively new technique that deals with thin-bedded geology and geomorphology (Table 2),
thus, it needs the human knowledge and experience to provide a good result. Thin-bedded
features could be in a range of 2 to 10 m thick with horizontal resolution of the conventional
seismic reflection data. This kind of technique is usually ignored when the seismic attributes
technique could solve the problem of imaging geomorphological features from seismic reflec-
tion data. Furthermore, volume rendering and geobody extraction depend on the availability
of 3D seismic reflection data (Table 2). Application of this technique will also be dependent
on the objective of the project; it is mainly used for volume calculation of the geological and
geomorphological features. The results offered would depend on the quality of the seismic
reflection data (Table 2). The machine learning technique could also be applied on the seismic
geomorphology technique to speed up the interpretation processes. Nowadays, this kind
of technique is often used, but the results offered always need to be validated by human
experience and knowledge (Table 2). The surface geomorphology techniques combining
a large number of emerging space and proxy-remote sensing technologies are presented
as the best techniques used for local, regional, and continental geomorphological studies
(Table 3). Such techniques improve the ability to acquire the surface feature of elevation and
to extract geomorphological features. In addition, the proliferation of a large number of GEE
and GIS software allow for facies filtering and elevation modeling in quantitative analysis
and geobody extraction studies, and eventually allowing the development of a reliable 3D
geomorphological earth surface model.
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Table 3. Surface geomorphology technical analysis.

Techniques Geomorphological
Analysis

Scale
of Studied Area Results References

Remote sensing
techniques

Surface
Depressions

Surface processes
Surface deformation

Local,
Reginal,

Continental

Information on the
location, distance,

and volume

Melis et al. 2021 [59]
Muzirafuti et al. 2020 [52]

Borzì et al. 2021 [64]
Bianco et al. 2021 [65]

Randazzo et al. 2020 [67]
Cigna et al. 2021 [68]

Mantovani et al. 2016 [69]
Jiang et al. 2021 [71]

Crosetto et al. 2020 [72]
van Natijne et al. 2022 [76]

Proxy geomorphological
mapping (aerial

photogrammetry, LiDAR.)

Surface and marine
processes

Surface and marine
features

Regional
local

Information on the
location, distance,

and volume,
3D models

Randazzo et al.2020 [67]
Anders et al. 2021 [62]

Bonasera et al. 2022 [63]
Muzirafuti et al. 2021 [73]

Deiana et al. 2021 [112]
Gao et al. 2017 [113]

Geological field survey Surface and marine
processes Local

Information on the
location, distance,

and volume

Bonasera et al. 2022 [63]
Taufani et al. 2021 [155]

Quantitative
geomorphology

Marine
sedimentary features Local

Information on the
location, distance,

and volume
Distefano et al. 2021 [51]

Muzirafuti et al. 2021 [73]

Finally, the integration of the seismic and surface geomorphology workflow is pro-
posed to give better results for reconstructing land and marine features (Figure 7 and Table 1).
The data quality together with human knowledge and experience will influence the results,
but this integrated workflow will reduce the uncertainty about the results since it combines
several seismic and surface geomorphology techniques that can complement each other.

9. Conclusions

We presented a review of seismic and surface geomorphology techniques for imaging
and reconstructing land and marine geomorphology features, and we have revealed that:

• Seismic geomorphology is a subsurface (including near surface) study that extracts
geomorphology features out of 3D seismic reflection data.

• Active proxy of surface geomorphology techniques and remote sensing techniques
have huge potential in vertical and horizontal deformation monitoring.

• The reconstruction of high-resolution images of land and marine surface features
by surface and subsurface geomorphology techniques is reliable through several
techniques, including seismic sedimentology, volume rendering, geobody extraction,
quantitative geomorphology approaches, and mapping.

• The integration of surface and subsurface techniques provides more realistic and
suitable 3D models of the earth and its geomorphology. In addition, it enhances the
interpretation of sedimentary processes, geomorphology, the earth’s surface, the pale-
oenvironment, economical prospective, natural hazards, etc. Therefore, we propose a
workflow that integrates surface and subsurface techniques to provide realistic and
acceptable earth models.
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Abstract: Earth Observation services guarantee continuous land cover mapping and are becoming of
great interest worldwide. The Google Earth Engine Dynamic World represents a planetary example.
This work aims to develop a land cover mapping service in geomorphological complex areas in the
Aosta Valley in NW Italy, according to the newest European EAGLE legend starting in the year 2020.
Sentinel-2 data were processed in the Google Earth Engine, particularly the summer yearly median
composite for each band and their standard deviation with multispectral indexes, which were used
to perform a k-nearest neighbor classification. To better map some classes, a minimum distance
classification involving NDVI and NDRE yearly filtered and regularized stacks were computed to
map the agronomical classes. Furthermore, SAR Sentinel-1 SLC data were processed in the SNAP to
map urban and water surfaces to improve optical classification. Additionally, deep learning and GIS
updated datasets involving urban components were adopted beginning with an aerial orthophoto.
GNSS ground truth data were used to define the training and the validation sets. In order to test the
effectiveness of the implemented service and its methodology, the overall accuracy was compared
to other approaches. A mixed hierarchical approach represented the best solution to effectively
map geomorphological complex areas to overcome the remote sensing limitations. In conclusion,
this service may help in the implementation of European and local policies concerning land cover
surveys both at high spatial and temporal resolutions, empowering the technological transfer in
alpine realities.

Keywords: land cover; Sentinel-1 SAR; Sentinel-2; deep learning; Google Earth Engine; SAGA GIS;
ESRI ArcGIS Pro; ESA SNAP; mountains; EAGLE; geomorphological complex areas

1. Introduction

Earth Observation (EO) data services are becoming very popular because of the
significant increase in satellite missions and geospatial cloud-based platforms such as the
Google Earth Engine and Microsoft Planetary [1,2]. New investments in the space economy
have boosted the technological transfer in different fields opening new opportunities
in terms of applied science [3–5]. It is worth noting that both the public and private
sectors in alpine and rural areas are still far behind. Therefore, it is more crucial to fill
this gap by realizing and exporting useful EO tools to strengthen the monitoring and
study of the biophysical components of different territories and use public funds more
efficiently and effectively [6–8]. This would permit mountainous areas to keep up, stay
competitive and bring innovation even in apparently distant contexts. In particular, the
Copernicus program, as well as many other scientific EO programs around the world,
provide vast amounts of geographical datasets that may aid in achieving European and
international technological transfer goals of to face considerable issues such as climate
change, sustainable development and social inclusion worldwide [9–11].

Appl. Sci. 2023, 13, 390. https://doi.org/10.3390/app13010390 https://www.mdpi.com/journal/applsci39



Appl. Sci. 2023, 13, 390

Recently, Google announced its realization of the Dynamic World project. Dynamic
World is a near real-time 10 m spatial resolution global land use land cover (LULC) dataset
produced using deep learning and is freely available and openly licensed. It is the result of
a partnership between Google and the World Resources Institute to produce a dynamic
dataset of the physical material on the surface of the Earth. Dynamic World is intended to be
used as a data product for users to add custom rules and assign final class values, producing
derivative land cover maps. The main key innovation of Dynamic World is represented
by near-real time image enabling the mapping of LULC every 5 days depending on the
location and adopting Sentinel-2 top-of-atmosphere per-pixel probabilities across nine land
cover classes with a 10 m GSD.

This EO service based on the Google Earth Engine is very powerful but regarding
the accuracy in mountainous areas such as the Alps, it presents considerable criticalities.
First, there is a strong confusion between the concept of land coverage and use (the first
can be mapped by satellite, the second can only generally be used for certain uses such
as mowing). Second, the system uses a probabilistic approach, not a deterministic one.
Therefore, at a planning level, some problems can be encountered (e.g., a misleading
biophysical component defined as an incorrect class for a forest or built up areas defined as
water after snowmelt in alpine areas). Third, the Dynamic World training set distribution is
almost completely absent in mountainous and alpine areas. Typically, these areas are the
most complex to map for remote sensing. Furthermore, the classes are designed to map
global changes at high resolution using fewer classes which do not answer to the local needs
for land covers that adopt the new European EAGLE guidelines and that have local robust
accuracies that are only obtainable with a continuous ground truth data validation set.

The EIONET Action Group on land monitoring in Europe (known as EAGLE group)
is an open assembly of technical experts from different European Economic Area (EEA)
Member States, mostly in their roles as national reference center (NRC) on LC. Currently,
the development of the EAGLE concept and methodology is being funded by the EEA
within the framework of the Copernicus program. In Italy, LC monitoring is performed
by the Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA). For their
activities and policies, many user communities such as decision-makers, non-governmental
organizations, European communities, scientists and researchers require various sorts of
LC information [12]. LC data, for example, are used to assess the progress toward the
UN Sustainable Development Goals (SDGs) targets [13], such as target 15.3 which relates
to achieving land degradation neutrality (LDN) by 2030 [14]. Despite the importance of
LC data in environmental monitoring and planning, the number of accessible national
products is limited and their qualities are not always appropriate. The EAGLE idea was
built on a clear difference between land cover and land use, and it is described in a matrix
consisting of three descriptors: land cover components (LCC), land use attributes (LUA)
and additional characteristics (LCH). The descriptors can be merged to develop unique
categorization systems for various needs or to detect correspondences with existing classes
while maintaining the independence of the three descriptors [15]. There are numerous
algorithms for examining land cover, starting with the classification of satellite images.
The most appropriate approach is determined by factors such as the type of data, class
distribution, research interests and classifier interpretability, as well as the balance between
the objectives and the available resources. In general, the automatic classification systems
are more time consuming as the data dimension and volume grow and data interpretation
might become problematic at times [16]. Supervised classifications may be used to analyze
large amounts of data as they are based on selecting a sufficient number of training samples
with known values [17], which are then used to predict unknown values in the testing
data [18]. As a result, it’s critical to choose examples that fully depict the diversity of the
studied territory’s characteristics.

Nowadays, the CORINE Land Cover (CLC) ensures a high level of thematic detail and
a lengthy historical series, but it is limited in terms of geographical detail and updating
frequency (https://land.copernicus.eu/pan-european/corine-land-cover, viewed on 6
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November 2022). In recent years, the high-resolution layers (HRLs) made it possible to
describe the principal land cover classes in high spatial detail while maintaining a multi-
year update frequency. However, the low accuracies in the classification of alpine areas still
persist [19]. At the same time, Copernicus national-scale products are still available with
high thematic and spatial depth, including Urban Atlas, Riparian Zones, Coastal Zones
and Natura 2000, but these are only for specific locations. The most recent official product
is the CORINE LAND COVER v.2018 (CLC). However, this product does not permit a
detailed mapping of the territory especially in alpine areas [20]. Nevertheless, in recent
years, some institutions, academic centers and private enterprises have tried to overcome
the spatial resolution issue by creating prototypal products at the national level by adopting
Copernicus EO Data [21,22]. New evidence is represented by the 10 m land cover produced
by ESRI on a global scale with 10 classes even if there are strong limitations and errors
in the alpine area due to the absence of a local confusion matrix [23]. Another example
linked to the Italian context is the prototypal LC of the whole Italian territory performed
by the ISPRA for the year 2018. This LC proposes a methodology with the joint use of the
optical, multispectral and radar data of Sentinel 1 and Sentinel 2 [12]. However, following
the choice of the adopted input data and the need to map an entire territory, it has strong
limits in mountainous areas. Compared to the validation set, these areas are low and are
not adequate for mapping mountainous territories in detail as suggested by [19].

As previously mentioned, a robust local EO service only based on satellite remote
sensing data can only map land cover (hereinafter called LC) with a higher accuracy.

In particular, only the definition of LC is fundamental, because in many existing
classifications and legends it is confused with land use. LC is defined as the observed
(bio)physical cover on the Earth’s surface. According to this definition, land covers include
forests, agricultural areas, human settlements, glaciers, water and wetlands per the Direc-
tive 2007/02 of the European Commission [24,25]. When considering LC in a very pure
and strict sense, it should be confined to describe vegetation and man-made features. Con-
sequently, the areas where the surface consists of bare rock or bare soil are describing land
itself rather than LC. Additionally, it is disputable whether water surfaces are considered
land cover. However, in practice, the scientific community usually describes those aspects
under the term LC as well as some agricultural types of cover such as orchards, vineyards
and pastures.

The application of Sentinel-2, Sentinel-1 and PlanetScope in land cover mapping have
rapidly spread since 2020 [26]. Earth Observation data applications from multi-platform
sensors, in particular from Sentinel-2, Sentinel-1 and PlanetScope, are mainly focused on
plain areas [27]. There is still a lack of local application mountainous area. Most of classi-
fication approaches are based on single one-shot classifications or combined approaches
with two supervised classifications from optical and SAR data [28]. Others are focused on
multimodal remote sensing data fusion from open-access and commercial EO data in cloud
platform, such as the Google Earth Engine, and in deep learning classification (mainly
focused on classifying a single geometrical land cover component such as urban areas) [29].
Nevertheless, a mixed hierarchical approach adopting different sensors and several clas-
sifications to improve the land cover quality on mountainous areas still continues to be
minutely explored and exploited.

Under this scenario, the development of a local LC EO continuous service according
to the new EAGLE guidelines is becoming of great interest to the public administration
at the alpine level and beyond. In fact, at the national level in Italy, the Istituto Superiore
Per la Protezione e Ricerca Ambientale (ISPRA) produced and updated the national land
consumption map, as well as several national land use and LC maps [21,22], but they do
not necessary fit with alpine needs. Conversely, other regional products are frequently
produced with CLC and are not up to date [30,31] or, in the case of high resolution global
updated products such as Dynamic World, they do not answer to the local needs in terms
of the accuracies, methodologies followed and legends. Therefore, in order to fill the gap of
a lack of a LC at high resolution and answering to the EAGLE requests, the Aosta Valley

41



Appl. Sci. 2023, 13, 390

autonomous region charged the Regional Cartographic Office to develop a new map with
a 10 m GSD. This body commissioned the regional public company INVA spa, in particular
the GIS unit, to carry out this work. The intent was to create a static product and service
capable of dynamically mapping the Aosta Valley territory according to the required needs.

Therefore, the principal aim of this work is to present the new Aosta Valley LC and
create a scalable and economically sustainable local EO service capable of mapping LC
according to the EAGLE guidelines. The EO service developed adopted SAR Sentinel-1;
Sentinel-2; PlanetScope and updated GIS local datasets to overcome the common troubles
that remote sensing (RS) has in mountainous areas due to the topography, weather condition
and shadows, as well as uniform LC class distributions.

2. Study Area

The EO Geospatial service was developed in the Aosta Valley autonomous region
in NW Italy. It is the smallest Italian region in terms of surface extent, located in the
mid-west of the Alps. It is surrounded by the four highest mountain massifs in Italy:
Mont Blanc, which is also the highest peak in Europe, the Cervino-Matterhorn (4478 m),
Monte Rosa (4634 m) and Gran Paradiso (4061 m). The conformation of the entire regional
territory is the result of the work of many glaciations [32,33]. Therefore, considering the
mountainous topography of the whole Aosta Valley territory, a specific EO geospatial land
cover procedure was developed based on the EAGLE guidelines (see Figure 1).
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3. Materials

The development of the present EO geospatial local service is scalable to other geomorphologi-
cal complex areas, such as other mountain territories, and is based on the following datasets:

- Copernicus Sentinel-2A surface reflectance data to map the land cover components
- Copernicus Sentinel-1A and B SLC and GRD data to map urban and water components,

respectively
- PlanetScope four band data to define a part of the training and validation set
- GIS updated datasets such as GNSS ground truth data to define both the training set

and the validation set.
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3.1. Multispectral Optical Datasets

The Sentinel-2 (hereinafter called S2) mission is part of the European Copernicus pro-
gramme. The satellite acquires multispectral optical data with a spatial resolution between
10–20 m as a function of the considered band. The temporal resolution is 5 days due to two
twin satellites, S2A and S2B. The multispectral optical data were obtained and processed in
the Google Earth Engine (GEE) referring to the COPERNICUS/S2_SR collection. Sentinel-2
is a high-resolution, broad-spectrum, multispectral optical mission that supports the Coper-
nicus Land Monitoring Service, including monitoring vegetation, soil and water cover and
observing inland waterways and coastal areas. Sentinel-2 L2 data were downloaded from
the Copernicus SciHub (the official distribution portal of the Earth Observation data in
question). The images were pre-processed in Sen2cor (the official tool released by the Euro-
pean Space Agency—ESA). The EO data S2 that was pre-processed in Sen2cor contained
12 spectral bands of UINT16 (see Table 1). The images were ortho-projected in WGS84 and
were in ground reflectance rescaled in dimensionless values from 0 to 10,000 starting from
the existing DN to calculate the ground reflectance by removing the atmospheric contribu-
tion. There are also three QA bands for each scene, one of which (QA60) is a bitmask band
with cloud mask information. In GEE, clouds can be removed as an alternative to using
pixels in QA quality using COPERNICUS/S2_CLOUD_PROBABILITY. In this case, the QA
bands were used.

Table 1. A simple overview of the Sentinel-2 surface reflectance product collection composition in
the Google Earth Engine.

Bands Description Spatial Resolution (m)

B1 Aerosols 60
B2 Blue 10
B3 Green 10
B4 Red 10
B5 Red Edge 1 20
B6 Red Edge 2 20
B7 Red Edge 3 20
B8 NIR 10

B8A Red Edge 4 20
B9 Water vapor 60

B11 SWIR 1 20
B12 SWIR 2 20
SCL Mask 10

MSK_CLD_PRB Cloud probability mask 20
QA10-60 Cloud mask 10–60

A yearly median composite imagery ranging from 1 May 2020 to 30 September 2020
without clouds and shadows was realized. The S2 data were used to create yearly harmo-
nized and filtered NDVI and NDRE stacks with a 10 days step to map woody crops.

PlanetScope, as part of the private space program Planet acquired by Google with its
ultra-high spatial resolution microsatellites, is increasingly becoming a reference reality in
remote sensing activities due to the possibility of accessing the data free of charge for edu-
cation and research purposes (https://www.planet.com/markets/education-and-research,
last access on 6 November 2022). Starting with the daily data acquired by PlanetScope,
a stack was created, including all the acquisitions in the reference period of study. With
a self-developed GEE algorithm, a composite imagery was generated covering the same
period as S2. This image was adopted as an extra product in the validation phase and in
the definition of the training sets during a photo-interpretation phase. It is worth noting
that the PlanetScope micro-satellites acquire multispectral optical data on a daily basis in
four bands with a ground sample distance (GSD) of around 3 m with various levels of
processing. In this case, geo-referenced and atmospheric calibrated products in surface
reflectance were adopted. Considering that these data are not open-access and have a fee
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for use except in scientific purposes, they can be considered optional in the development of
a fully free EO geospatial local service. However, they represent a useful tool during the
suggested workflow.

3.2. Sentinel-1 SAR Dataset

The Sentinel-1 mission is part of the European Copernicus programme. The satellite
acquires radar data with a spatial resolution between 5–40 m depending on the acquisition
mode. The temporal resolution is 5 days due to two twin satellites, S1A and S1B.

The radar data were retrieved from the NASA Alaska Satellite Facility (ASF, https:
//asf.alaska.edu/, last accessed 7 November 2022) and processed in the SNAP v.8.0.0 [34]
and the Google Earth Engine (GEE) [1,35].

The Sentinel-1 (hereinafter called S1) mission provides data from a dual-polarized C-
band SAR (Synthetic Aperture Radar) instrument. The Google Earth Engine provided only
the Sentinel-1 ground range detected (GRD) collection. Each scene was preprocessed with
the Sentinel-1 Toolbox in the SNAP using the following steps: (1) thermal and other noise
removal, (2) Speckle–Lee filter application, (3) radiometric calibration, (4) ground correction
using DTM 10m VDA (normally SRTM 30m worldwide) and (5), the final corrected values
for the ground were converted into decibels via log scaling (10 × log10 (x)).

The level-1 data were processed into either single look complex (SLC) and/or ground
range detected (GRD) products. The SLC products preserved the phase information and
were processed at the natural pixel spacing whereas the GRD products contained the
detected amplitude and were multi-looked to reduce the impact of speckle. In particular.
the level-1 SLC (IW) interferometric wide products (IW) were adopted [36].

The IW swath mode was the main acquisition mode over land and satisfied the
majority of the service requirements (Richards 2009 [37]). As mentioned before, the SLC IW
data were adopted by creating two separate datasets with the same orbit, frame and path
of the scene in the study area. The two time series stacks, including all scenes ranging from
1 January 2020 to 31 December 2020 in ascending and descending mode, were considered.
Those characteristics are reported in Table 2. As reported by [38], the main distortion
in SAR data was the elevation displacement. In a radar image, the displacement was
toward the sensor and became quite large when the sensor was nearly overhead. The
displacement increased with a decreasing incidence angle. The characteristics resulting
from the geometric relationship between the sensor and the terrain that were unique to
radar imagery were foreshortening, layover and shadowing. The topographic features
such as mountains and artificial targets such as tall buildings were displaced from their
desired orthographic position. The effect was removed from an image through independent
knowledge of the terrain profile.

Table 2. SAR stacks parameters criteria.

Absolute Orbit Number Polarization Frame Path Flight Direction

24,789 VV+VH 146 88 ASCENDING
24,417 VV+VH 441 66 DESCENDING

The ascending and descending values were both processed in the SNAP v.8.0.0 and
then imported into the GEE to create a mosaicked-median composite to reduce the geomet-
ric distortions in the slopes where, normally, a given acquisition mode occurs.

3.3. GIS Products and Ground Data

In this EO service, other datasets were also considered.
First, the digital terrain model (DTM) from the Aosta Valley autonomous region with

a 2 m GSD was resampled in SAGA GIS with a nearest neighbor algorithm in order to
perfectly overlay the Sentinel imagery. It is worth noting that the DTM was acquired with
flight lidar sensors in 2008.
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Second, the training set was defined as different ESRI shapefile polygons per each
class in order to train the classifier. This dataset was defined from one side by object-based
segmentation (OBIA) using red, green, blue, near-infrared, red edge and shortwave bands
and considering the spectral signatures and the photo-interpretation analysis by adopting
the ground truth data polygon (GTDP).

Third, the validation set was defined through the ESRI shapefile polygons to validate
the classification. This dataset was obtained both through photo-interpretation and in-
the-field GTDP. The validation was carried out in two phases: the first by calculating the
confusion matrix by adopting the dataset obtained from S1 and S2 processing bands and
finally by assessing the classification accuracy after merging each part.

It is worth noting that a Garmin 64S and Lemon GPS smartphone application devel-
oped by the Italian GeneGIS company were also used to define the GTDP.

As mentioned before, the collection of such data allowed us to populate both the
training set and the validation set. In particular, a random GTDP selection was performed
in SAGA GIS vers. 8.2.0. with an allocation of 70% of the GTDP to the training set and 30%
of the GTDP to the validation set.

Finally, the Italian AGEA (Agency for Disbursements in Agriculture) yearly air flights
imagery coupled with the Aosta Valley 2018 Orthophoto were used to perform deep
learning on built-up areas and refine the final product with a minimum mapping unit of
100 m2 in order to keep the product coeval with the Sentinel datasets.

Generally, the tools adopted were the GEE [1], the SNAP vers. 8.0.0 to obtain and
calibrate the data during the pre-processing phase, Orfeo Toolbox vers 8.0.0 [39,40], SAGA
GIS vers.8.0.0 [41] to perform the classification during the processing phase and QGIS with
GRASS and R v.3.0.1 [42–44] during the post-processing phase to prepare the final product.

4. Methods
4.1. Sentinel-2

The S2 data were obtained from the GEE. In particular, the collection COPERNI-
CUS/S2_SR was used. A self-developed algorithm performed in the GEE was adopted to
create the median composites. The S2 composite stack included bands, spectral indices
and standard deviations. These input parameters are reported in Table 3. The S2 stack,
including the DTM aspect and slope, was adopted as the input data during the classifica-
tion while the S1 output layers served to better refine the urban and water classes. Each
composite image was generated starting with the EO data available every 10 days for the
period from 1 May 2020 to 30 September 2020 (t), i.e., the summer weather season, in order
to correctly map the glacial surface of the territory falling within the ablation period and
observe the vegetation during the phenological active season. It is worth noting that the
generated composite images consisted of the median value for each pixel in the reference
period t. For S2, we considered all the images that satisfied the condition in which each
pixel had cloud cover equal to zero (the clouds and shadows were suitably masked and
the pixel, if cloudy, was considered in the definition of the median value of the reflectance
of each band). The S2 input data were reported in Table 3 as the input dataset for the
k-nearest neighbor supervised classification considering all the classes. The input dataset
was normalized.

Table 3. S2 input datasets.

ID Bands/Index Description

1 “B2” Blue
2 “B3” Green
3 “B4” Red
4 “B5” Vegetation Red Edge 1
5 “B6” Vegetation Red Edge 2
6 “B7” Vegetation Red Edge 3
7 “B8” NIR
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Table 3. Cont.

ID Bands/Index Description

8 “B8A” Vegetation Red Edge 4
9 “B11” SWIR 1
10 “B12” SWIR 2
11 “B2_STD” Standard deviation Blue
12 “B3_STD” Standard deviation Green
13 “B4_STD” Standard deviation Red
14 “B5_STD” Standard deviation Red Edge 1
15 “B6_STD” Standard deviation Red Edge 2
16 “B7_STD” Standard deviation Red Edge 3
17 “B8_STD” Standard deviation NIR
18 “B8A_STD” Standard deviation Red Edge 4
19 “B11_STD” Standard deviation SWIR 1
20 “B12_STD” Standard deviation SWIR 2
21 “NDVI” Normalized Difference Vegetation Index

22 “NDVI_STD” Standard deviation Normalized Difference
Vegetation Index

23 “BSI” Bare Soil Index
24 “BSI_STD” Standard deviation Bare Soil Index
25 “NDWI” Normalized Difference Water Index

26 “NDWI_STD” Standard deviation Normalized Difference Water
Index

27 “NDSI” Normalized Difference Snow Index

28 “NDSI_STD” Standard deviation Normalized Difference Snow
Index

29 “TCB” Tasseled Cap Brightness
30 “TCB_STD” Standard deviation Tasseled Cap Brightness
31 “TCG” Tasseled Cap Greenness
32 “TCG_STD” Standard deviation Tasseled Cap Greenness
33 “TCW” Tasseled Cap Wetness
34 “TCW_STD” Standard deviation Tasseled Cap Wetness
43 DTM Digital Terrain Model 10 m
44
45

Slope
Aspect

Terrain Slope
Terrain aspect

The spectral indexes reported in Table 3 were calculated as follows using the S2
coefficient reported in (https://www.indexdatabase.de, last access 7 November 2022):

NDVI Normalized Difference Vegetation Index [45–49]

NDVI =
NIR − RED
NIR + RED

BSI Bare Soil Index [50]

BSI =
(SWIR 1 + RED)− (NIR + BLUE)
(SWIR 1 + RED) + (NIR + BLUE)

NDWI Normalized Difference Water Index [51,52]

NDWI =
NIR − SWIR 1
NIR + SWIR 1

NDSI Normalized Difference Snow Index [53–56]

NDSI =
NIR − SWIR 1
NIR + SWIR 1

TCB (Tasseled Cap Brightness) [57–60]
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(BLUE ∗ 0.3037) + (GREEN ∗ 0.2793 + (RED ∗ 0.4743) + (NIR ∗ 0.5585) + (SWIR1 ∗ 0.5082) + (SWIR2 ∗ 0.1863)

TCG (Tasseled Cap Greenness) [57–60]

(BLUE ∗ −0.2848)+ (GREEN ∗ −0.243)+ (RED ∗ −0.5436)+ (NIR ∗ 0.7243)+ (SWIR1 ∗ −0.0840)+ (SWIR2 ∗ −0.1800)

TCW (Tasseled Cap Wetness) [57–60]

((BLUE ∗ 0.1509) + (GREEN ∗ 0.1973) + (RED ∗ 0.3279) + (NIR ∗ 0.3406) + (SWIR1 ∗ −0.7112) + (SWIR2 ∗ −0.4572))

4.2. Sentinel-1

S1 SAR images were used only to map urban and water components in addition to
the optics. The other classes were mapped only with optical remote sensing due to the
fact that SAR distortions in mountainous areas do not permit higher accuracy land cover
mapping. Therefore, the data offered by optical remote sensing are the only data in alpine
environments that are truly capable of offering consistent and reliable mapping, despite
being bound to atmospheric conditions. However, due to the composite in land cover, it is
possible for it to be overcome.

In order to create a mask for urban areas, as first step, pairs of S1 SLC images were
downloaded from the NASA ASF. In particular, to achieve interferometry with an exact
repeated coverage, only images derived from the same satellite sensor in the exact ac-
quisition mode were used (ascending or descending see Table 2). Due to the low rate
of urbanization in recent years in the Aosta Valley (in terms of an increase in built-up
structures), the changes in the urban footprint observed within the last couple of years
can be neglected if considering the spatial resolution of the Sentinel-1 SAR sensors (deep
learning was performed to refine this). Therefore, we can consider the urban footprint as
a constant value for all the Sentinel-1 images acquired within a single-year time frame.
The use and interpretation of SAR imagery require a series of complex pre-processing
procedures, which we ran on ESA’s SNAP v.8.0.0 software. Such procedures refer to the
standard preprocessing commonly applied to Sentinel-1 products to derive interferometric
coherence [61,62]. The interferometry was conducted only on those images pairs which
had a perpendicular baseline possibly more of 130 m within the year (in the e.g., 2020) and
a temporal baseline lower than 10 days. We reported the available adopted pairs from the
ASF in Table 4.

Table 4. SAR S1 images pairs with the distance baseline and days.

S1 Pairs Ascending Orbit
(Product n◦, Baseline, Temproal Distance in Days between the Two Acqusitions)

S1A_IW_SLC__1SDV_20200430T172
327_20200430T172354_032360_03BE

E8_2356

S1B_IW_SLC__1SDV_20200
506T172238_20200506T1723

05_021464_028C15_773E
136 m 5

S1B_IW_SLC__1SDV_20200530T172
240_20200530T172307_021814_02968

0_5539

S1A_IW_SLC__1SDV_2020
0605T172329_20200605T172
356_032885_03CF21_34AB

152 m 7

S1A_IW_SLC__1SDV_20200804T172
333_20200804T172400_033760_03E9B

C_E6AD

S1B_IW_SLC__1SDV_20200
810T172255_20200810T1723

22_022864_02B66E_1179
152 m 6

S1A_IW_SLC__1SDV_20200828T172
334_20200828T172401_034110_03F5F

E_8B79

S1B_IW_SLC__1SDV_20200
903T172253_20200903T1723

20_023214_02C15A_3F08
162 m 6
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Table 4. Cont.

S1 Pairs Ascending Orbit
(Product n◦, Baseline, Temproal Distance in Days between the Two Acqusitions)

S1B_IW_SLC__1SDV_20200903T172
253_20200903T172320_023214_02C15

A_3F08

S1A_IW_SLC__1SDV_2020
0909T172335_20200909T172
402_034285_03FC20_A288

159 m 6

S1B_IW_SLC__1SDV_20201009T172
254_20201009T172321_023739_02D1

C8_57D8

S1A_IW_SLC__1SDV_2020
1015T172336_20201015T172
402_034810_040E9B_A403

134 m 6

S1B_IW_SLC__1SDV_20201114T172
240_20201114T172307_024264_02E22

F_E4D7

S1A_IW_SLC__1SDV_2020
1120T172335_20201120T172
402_035335_0420C3_E828

144 m 7

S1 Pairs Ascending orbit

S1A_IW_SLC__1SDV_20200112T053
523_20200112T053550_030763_03871

C_D73E

S1B_IW_SLC__1SDV_20200
118T053455_20200118T0535
22_019867_02592E_ADC0

165 m 5

S1B_IW_SLC__1SDV_20200211T053
455_20200211T053522_020217_02647

9_497E

S1A_IW_SLC__1SDV_20200
217T053522_20200217T0535

48_031288_03996E_2722
155 m 7

S1A_IW_SLC__1SDV_20200324T053
522_20200324T053549_031813_03AB

B5_4955

S1B_IW_SLC__1SDV_20200
330T053455_20200330T0535
22_020917_027ABA_DC4C

129 m 5

S1B_IW_SLC__1SDV_20200505T053
456_20200505T053523_021442_028B5

C_A52F

S1A_IW_SLC__1SDV_20200
511T053523_20200511T0535

50_032513_03C3F4_2251
138 m 7

S1B_IW_SLC__1SDV_20200118T053
455_20200118T053522_019867_02592

E_ADC0

S1A_IW_SLC__1SDV_2020
0124T053522_20200124T053
549_030938_038D40_8123

147 m 7

In particular, we adopted the approach described by the ESA guidelines available
in [63–65] by introducing a variation in the type of classification. In this case, the maximum
likelihood was not chosen. Instead, random forest and batch processing were created to
involve all the selected pairs. It is worth noting that co-registration and terrain-shadow
correction were performed in the ESA SNAP v.8.0.0.0 toolbox. See more detail in Figure 2.

We used both that polarizations (VH and VV) on all the SAR input data, hence the output
coherence image consisted of two separate raster files related to the different polarizations.

In terms of the processing procedure, we selected only the bursts that covered our
study area (the Aosta Valley autonomous region) from the original product. In addition,
we computed the coherence estimation using a range window size of 10 pixels. Finally,
we employed the Range–Doppler terrain correction method, which used the 10 m Aosta
Valley DTM implemented in the SNAP repository, selecting ED50-UTM 32 N (EPSG: 23032)
as the projected reference system, and selecting an average output resolution of 10 m.
The output coherence image consisted of two different bands, reporting interferometric
coherence values (from 0 to 1) for the two polarizations (VH and VV). It is worth noting
that the coherence between the two SAR images expressed the similarity of the radar
reflection between them. Any changes in the complex reflectivity function of the scene
were manifested as a decorrelation in the phase of the appropriate pixels between the
two images.

Within this type of raster, it was possible to extract the urban footprint by apply-
ing supervised (and unsupervised) classification algorithms. In this case, a supervised
classification was performed starting with the training set. Since we were interested in
distinguishing only two different classes, i.e., urban and non-urban areas, we aggregated
all non-urban land cover types into the same class (such as glaciers, lawn pastures, needle
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forests. etc.). A random forest classifier was performed in the SNAP. We specified the
maximum number of decision trees in the RF classifier at 500 as the optimal value to achieve
good noise removal and a homogeneous response [63–65]. Following the instructions in the
ESA online material [66], we applied the interferometric coherence processing methodology
outlined in the previous section to a set of S1 data obtained from January to December 2020.

The classification images produced from S1 imagery consisted of a discrete raster, with
all the pixels classified into either “urban” or “non-urban” values (with values of 1 and 0,
respectively) and water or “non-water”.
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4.2.1. Water Mask

The calibration process was done following the [67] approach. Additionally, the
normalized difference polarization index (NDPI) and the cross ratio (CR) were calculated
to examine water and humid areas.

Four S1 stacks were created defining the GRD Sigma0 dB product, considering the
ascending and descending modes for the VV and VH bands used in the NDPI and CR
computations (see Table 1 in the materials section). In places where SAR geometrical
distortion often impacts a portion of the imagery taken in the ascending or descending
mode, these stacks of bands were finally trimmed using an aspect layer recovered by the
10 m DTM VDA. The angle of view and the aspect layer were taken into consideration
beginning with the ancillary and metadata files during the clipping to exclude areas affected
by significant distortions in both the ascending and descending mode as described by [38].

In order to fill the gaps left in each stack by the removal of the sections that were
severely impacted by the distortions, the stacks were finally mosaicked. In the case of both
the distortions, we evaluated those portions with a higher incidence angle in accordance
with [38,62]. SAGA GIS was used for this task. The finished stack was then uploaded into
the GEE to produce an annual SAR synthetic composite in order to compute the NDPI and
CR. As indicated earlier, the SAR composite was employed to map the water component
more accurately.

To assess the water area components, the following SAR bands and indexes (Table 5)
were adopted after a pre-processing phase and the creation of a composite to reduce the
SAR distortions.

Table 5. SAR Sentinel-1 GRD bands in water mapping.

S1 GRD

ID Bands/Index Description

1 “VV Single co-polarization, vertical transmit/vertical receive

2 “VH” Dual-band cross-polarization, vertical
transmit/horizontal receive

3 “VV_STD” Standard deviation single co-polarization, vertical
transmit/vertical receive

4 “VH_STD” Standard deviation dual-band cross-polarization,
vertical transmit/horizontal receive

5 “NDPI” Normalized Difference Polarization Index

6 “NDPI_STD” Standard deviation Normalized Difference Polarization
Index

7 “CR” Cross ratio
8 “CR_STD” Standard deviation cross ratio

NDPI and CR has been calculated as follows:
NDPI Normalized Difference Polarization Index [68]

NDPI =
VH − VV
VH + VV

CR Cross ratio [68]

CR =
VH
VV

As demonstrated by [69] in a complex morphological context, the SAT approach
was more effective than the Otsu thresholding method. Therefore, these bands were
included to map surface water areas through a robust stepwise automatic thresholding
(SAT) approach [69]. The SAT approach consisted of the following steps. (1) SAR data
was pre-processed to create a backscattering coefficient that was georeferenced with high
resolution LiDAR-derived DEM (in this case the Aosta Valley DEM with 2 m step resampled
at 10 m). (2) SAT for relief displacement and de-speckle filtering was used to reduce noise
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in the data. (3) The conversion to dB was performed in the SNAP vers.8.0.0. In fact, the
strength of the radar signal reflected from a unit area on the corresponding point in the
scene determined the pixel value of the SAR image. The backscatter coefficient β0 was
calibrated and employed to convert the values from the digital number to the reflectivity
of the surface objects. The target’s radar cross-section per surface unit with regard to the
local incidence angle was parameter β0. After that, all SAR data were transformed from
raw data to power units (decibels-dB). The de-speckle filter was used to eliminate the salt
and pepper noise while keeping the edges and the textural structures prior to the data
analysis due to the speckle effect created by the coherent radiation used by radar systems.
A Speckle–Lee filter with a 5-pixel by 5-pixel window was adopted, resulting in a unique
valley-hill pattern in the histogram that represented a better distinction between water
and non-water surfaces. Additionally, a normalization between the incident angles were
performed. In order to identify a proper threshold, a set of third-order polynomials was
employed to fit the histogram in a manner of moving steps. The reason for this was that the
third-order polynomial had a shape that best described the histogram of the backscattering
coefficient after de-speckling and was easier to identify the turning points compared to the
higher order polynomials.

Each pixel in the SAR image was identified as either land or water after the threshold
was established, depending on whether its value was smaller or greater than the threshold.
Through an iterative method that maximized between-class variations while simultaneously
minimizing within-class variance, the threshold value was established. Finally, using the
primary input pre-processed S1 GRD dataset and splitting the training set into water and
non-water areas, a supervised classification (random forest) was carried out in the SNAP
v.8.0.0 to improve the mapping of water areas.

4.2.2. Land Cover Legend Definition

The reference legend of the new Aosta Valley land cover and relative EO geospatial
continuous service was agreed with the ISPRA and in particular the Land Remote Sensing
Unit. The legend proposed perfectly reflected the new European guidelines defined by
the EAGLE group. The EAGLE legend foresees more detailed levels at high resolution
than those proposed in Dynamic World with a deterministic and probabilistic approach,
allowing for detailed mapping of the various biomes at least at a European level. In
particular, the new EAGLE legend moves away from the old Corine Land Cover which
is tied to a mixture of cover and use similar to Dynamic World. In particular, given the
characteristics of the mountainous areas, an expansion and more detailed definition for
certain classes deemed of interest by local stakeholders was proposed. In Appendix A,
the EAGLE–ISPRA legend was reported along with the agreements from the ISPRA for
geomorphological complex areas such as the Aosta Valley region.

4.3. Training Set and Validation Set Definition

In order to better understand the spatial extent distribution of each class and determine
the ideal number of training areas for each class in the training set, a K-means unsupervised
classification with 15 classes was conducted after constructing the initial input dataset.
Regarding the last criteria, there needed to be enough training pixels for each spectral class
to enable accurate estimations of the components of the covariance matrix and the class
conditional mean vector. The covariance matrix for an N-dimensional multispectral space
was symmetric and has a size of N*N. Therefore, it required an estimation from the training
data for 1/2N (N + 1) unique elements. It took at least N (N + 1) independent samples to
keep the matrix from being singular. The good news was that each N-dimensional pixel
vector contained N samples (one for each waveband). As a result, only (N + 1) independent
training pixels were necessary. Since it was challenging to guarantee the independence of
the pixels, more than the minimum amount was chosen. [37,70] advocate for using as many
as 100 N training pixels per class, with 10 N being the lowest practical number. Therefore,
a minimum of 250 polygons (containing a minimum of 5 pixels) were computed for this
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categorization, taking only the spectral bands and relative indices without the standard
deviation (see Figure 3).
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The object-based segmentation (OBS) approach was performed using the mean shift
algorithm available on the Orfeo Toolbox software v.8.0.0 [71,72]. The OBS algorithms
aimed at minimizing the spectral heterogeneity of the polygons by comparing the relative
spectral properties of the neighboring pixels. The resulting segmentation vector layer (SVL)
was generated according to a previously defined minimum mapping unit of 300 m2. In
particular, the segmentation was performed with reference to the S2 bands performing a
bilinear resampling on those without a native 10 GSD. Then, the images were segmented
based on an internally homogeneous spectral response. The segments were then vector-
ized to generate the corresponding vector layer. During the segmentation, the required
parameters were set to the values shown in Table 6. The SEG was then used to explore
the internal features other than the spectral signatures, such as the recurrent radiometric
patterns (texture) and the shape. Some of these polygons were then randomly extracted
and others were created by analyzing the signatures of the entire stack to define the training
areas, including GTDP.

Table 6. Segmentation settings in SAGA GIS.

Segmentation Parameter Settings

Spatial radius 3 pixels
Range radius 100 DN

Mode convergence threshold 0.1
Maximum numerous of iterations 200

Minimum region size 3 pixels

As previously mentioned, the regions of interests (ROI) per each class were defined
mostly on the field and partially by applying both a segmentation and a spectral signature-
photo interpretation phase. Figure 3 depicts the distribution of the ROIs in the study area.
Each ROI per class had a number of polygons up to 250. An overall of 4300 ROIs were
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defined and 70% of them were adopted as the training set 30% as the validation set. In
the developed EO local service, the ROI detection and the relative changes through time
were performed by coupling a self-developed semi-automatic technique. The fact that the
technique required a manual check in case of an anomaly was linked to the reason that a
simple probabilistic approach such as those developed in Dynamic World by Google did
not permit the mapping of the real changes that happen with a high degree of accuracy,
especially in alpine areas.

In the first phase a pixel-based analysis into each of the ROIs were performed in the
GEE by analyzing the variance of each of the S2 bands. If the median value per each
band received a variance value at the time t + 1 up to 1.5 of its previous variances at the
time t (considering the same seasons, in the example the summer meteorological season)
a second phase followed. In this phase, a photo-interpretation with different EO images
such as PlanetScope was performed as well as the ground detection and a change in the
ROI in the necessary training polygon class. This empirical formula was developed to
analyze the specific case of the Aosta Valley autonomous region. It is worth noting that
the S1 data showed an intrinsic time-phase decorrelation in the case of the SLC product
and geomorphological effects due to the territory in SLC and GRD products. Therefore,
the radar backscatter is not recommended to be considered in this procedure regarding the
entire ROIs LC components.

1

∑
n=λS2

σ2
λ(t0)(λS2) ≥

1

∑
n=λS2

1.5 σ2
λ(t0+1)(λS2)

where:
σλ(t0)

2(λS2) is the sum of the variances of each of the S2 bands at the time t0.
σλ(t0+1)

2(λS2) is sum of the variances of each of the S2 bands at the time t0 + 1.

4.4. Supervised Classification Algorithms

Starting with the S2 input dataset and the training set, the supervised classifications
were performed in SAGA GIS vers. 8.0.0 and the confusion matrix was computed. Given the
characteristics of the S2 input dataset and the analyzed alpine territory, the best performing
algorithms adopted were the k-nearest neighbors classification-KMC and the minimum
distance with pre-segmentation (SNIC) by applying a distance threshold of 50. The k-
nearest neighbors (k-NN) is an algorithm used in pattern recognition for the classification
of objects based on the characteristics of the objects in close proximity to the ones considered.
It is a non-parametric classification method. In both cases, the input is the closest k training
example in the feature space. The output depends on whether the k-NN is used for
classification or regression. In the k-NN classification, the output is a membership in a class.
An object is classified by a plurality vote of its neighbors, with the object assigned to the
most common class among its k closest neighbors (k is a positive, typically small, integer).
If k = 1, the object is simply assigned to the class of that single closest neighbor. In the k-NN
regression, the output is the property value for the object. This value is the average of the
closest neighboring k values. On the other hand, the minimum distance classifier is used to
classify unknown image data to classes which minimize the distance between the image
data and the class in the multi-feature space. The distance is defined as an index of the
similarity so that the minimum distance is identical to the maximum similarity. Therefore,
the minimum distance technique uses the mean vectors of each endmember and calculates
the Euclidean distance from each unknown pixel to the mean vector for each class. All
pixels are classified to the nearest class unless a standard deviation or distance threshold is
specified, in which case some pixels may be unclassified if they do not meet the selected
criteria. The classification was performed following a hierarchical approach described in
the analysis section.
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4.5. Deep Learning Using the Convolutional Neural Network (CNN)

Deep learning is a type of machine learning that relies on multiple layers of nonlinear
processing for feature identification and pattern recognition, described in a model. Deep
learning models can be used on different tools or by performing Python codes related to
libraries such as PyTorch, Keras, TensorFlow, Onnx, Fats.ai etc. In this case, open-source
libraries and Python scripts were integrated with ESRI ArcGIS Pro v.2.8 for object detection,
object classification and image classification. In order to extract the building and roads, deep
learning techniques using convolutional neural networks (CNNs) were adopted starting
with the ortho-rectified images acquired by air flights over the Aosta Valley region. In
particular, the two images regarding the AGEA (Agency for Disbursements in Agriculture)
2020 and the Aosta Valley 2018 orthophoto were used.

An inferencing process was performed to extract the roads and buildings. This phase
was crucial because the information learned during the deep learning training process was
put to work in detecting similar features in the datasets. ESRI ArcGIS Pro uses an external
third-party framework and model definition file to run the inference geoprocessing tools.
Therefore, the library and dependencies were appropriately installed. In this case, the
two models provided by ESRI and edited accordingly considering the alpine areas were
adopted. It is worth noting that the model definition files and (.dlpk) packages can be
used multiple times as inputs for the geoprocessing tools, allowing for the assessment of
multiple images over different locations and time periods using the same trained model.

The main settings adopted to perform CNN deep learning on ArcGIS Pro are reported
in Table 7.

Table 7. Deep learning CNN settings in ArcGIS Pro v.2.8.

PARAMETERS INPUT SETTINGS

Input Raster Orthophoto.ecw
Output Detected Object Buildings and Roads

Model Definition: Edited models from ESRI .dplk
Padding: 32

Batch_size: 16
Threshold 0.9

Filtering threshold 99.999
Return_bboxes False

Non-Maximum SuppressionOther parameters CheckedDefault

ENVIRONMENTS INPUT SETTINGS

Processing Extent Raster extent
Processor Type

GPU id
Cell size

Parallel processing

GPU
Default

Raster native GSD
8

It is worth noting that filtering and threshold is normally not present in the parameter
settings. In fact, to avoid deep filtering out features, in this case buildings and roads, with a
surface less than 100 m square, a script was realized to include this command and perform
this analysis during the building extraction phase.

5. Results and Discussion

The classification was performed following a hierarchical approach. First, a supervised
k-nearest neighbor classification-KMC OpenCV considering all classes was performed. The
KMC classification was carried out by normalizing the dataset due to the diversity of the
input variables to make them homogeneous. The parameters adopted in the k-nearest
neighbor classification-KMC (OpenCV) were a number of neighbors equal to 8, a training
method classification and a type of Brute Force algorithm [41].
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It is worth noting that the water and urban areas classified with SAR and urban deep
learning were joined together with the urban and water classes that were mapped with
the optical data to improve these classes especially in isolated mountain villages. This
improved these classes by performing a semi-automatic GIS procedure. During this joining
phase, a minimum mapping unit (mmu) of 100 m was considered. Therefore, only the pixels
that have this mmu were mapped as urban while the other pixels that did not intersect
with urban (both SAR/deep learning and optic multispectral) with less than 100 m were
considered as classified by the optical data.

Since woody crops were particularly complex to discriminate (hereinafter called
WC), performing only a KMC classification due to the single multispectral composite
input dataset did not permit us to consider the whole phenological active season. A
hierarchical classification approach was then implemented to try to overcome this issue.
In particular, the developed EO service foresaw the first classification (considering the S2
main input dataset) with all the classes according to the new EAGLE land cover legend and
a subsequent one with only WC class. In the end, the two classifications were subjected to
a mosaicking process by first applying an overlap for WC. Then, the doubtful areas were
corrected manually by photo-interpretation of composite PlanetScope imagery.

Regarding the WC class, a supervised minimum distance classification (MDC) was
performed, including the following input datasets: a yearly cloud-shadow masked NDVI
stack filtered (Savitzky-Golay) [73–75] and regularized at 10 days times-steps [76] on the
GEE, and an annual stack of the NDRE index (normalized difference red-edge index for
agriculture) following the same procedure of the NDVI stack [77]:

NDRE =
NIR − RE
NIR + RE

NDVI composite Entropy [32,78]

HNDVI = −
N−1

∑
i=0

N−1

∑
j=0

NDVIi,j log
(
NDVIi,j

)

where NDVIi,j is the NDVI value at the i-th row and the j-th column in the local square window,
measuring N pixels. For this study, a kernel window size of 10 × 10 pixels was adopted.

Using Rao’s Q Diversity index on the S2 NDVI composite [79], Rao’s Q is calculated
using half the squared Euclidean distance. Therefore, the resulting index is [80]:

Q = ∑ ∑ dij∗pi∗pj

where pi and pj are the proportion of the area for each category per the rows and columns
in the pairwise distance dij.

The pattern analysis of the S2 NDVI composite used the following parameters:
(a) dominance, (b) diversity, (c) relative richness and (d) fragmentation [81]. Then, the KMC
data were mosaicked using as first overlap onto the MDC to refine only the WC class. The
same was done considering urban and water masks mapped using the S1 data. As a last
step, a simple filter was performed using a radius greater than 20 m. Furthermore, in the
final classification, deep learning features considered in the urban and anthropic areas were
included and the confusion matrix computed.

The scalable Earth Observation service to map land cover in geomorphological com-
plex areas beyond the Dynamic World developed for the Aosta Valley region are reported
in Figure 4.
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The parameters reported in the confusion matrix [82] were: overall accuracy, errors
of commission and omission, user and producer accuracy, sum users and sum producers
and unclassified pixels (in this case each pixel were classified). The sum user indicates the
number of pixels for each class in each row while the sum producer represents the number
of pixels for each class in each column. The overall accuracy is calculated by summing
the number of the correctly classified values and dividing it by the total number of values.
Finally, the kappa coefficient measures the agreement between the classification and the
truth values.

It is worth noting that a comparison with traditional methods was followed to prove
the real effectiveness of the suggested approach and the developed EO services. Therefore,
the k-coefficients were computed per each approach.

A traditional approach that adopted only the optic multispectral data was followed by
performing a unique one-shot classification using KMC. A combined approach adopted
a single KMC supervised classification with the optical data, considering all the classes
and the two classifications involving only urban and water with random forest and SAT,
respectively, including SAR data. Finally, the mixed hierarchical approach with the two
optical supervised classifications (KMC + MD), the two SAR classifications (for urban and
water respectively) and deep learning was described in this work.

The hierarchical approach improved the quality of the obtained classifications, as
shown in Table 8.

Table 8. Accuracies.

Approach Overall Accuracy K-Coefficient

Traditional approach 88% 0.88
Combined approach 89% 0.89

Mixed Hierarchical approach 97% 0.97

56



Appl. Sci. 2023, 13, 390

The developed EO service represented a valuable to map land cover at high temporal
and spatial resolutions. The combined application of S1 (only for a couple of classes) and
S2 EO data coupling deep learning techniques boosted the classification of land cover
components in geomorphological complex areas such as the Alps. It is worth noting that
the S1 data were adopted only to better map urban and water areas due to misleading
classifications that may occur due to the physical limitations of SAR in mountainous areas.
Moreover, the S1 processing especially related to interferometry required high performance
computing machines and would not permit a rapid land cover mapping. The developed EO
service was considered to be scalable to other morphological complex realities, in particular
the mountainous areas. The realized EO local service with free EO data and open-source
tools, except from ESRI ArcGIS (that can be replaced by QGIS and Python script for deep
learning), represented a possible workflow to perform ongoing territorial planning and
management. The present EO service led to an important technology transfer in the Aosta
Valley territory answering various requests at different levels (European, national and local).
This EO service will streamline the implementation of local policies concerning land cover
monitoring and assessment. In this regard, the Aosta Valley, similar to many Italian regions,
needs to assign development funds to each municipality every year, which are largely
based on the distribution and extension of the land cover components within its borders.
The maps developed with the present EO service can be freely downloaded in an ESRI
shapefile format or be requested in raster (.tif) from the official Aosta Valley geoportale,
reachable at this link (last access 11 November 2022): https://geoportale.regione.vda.it/
download/carta-copertura-suolo/. The land cover developed starting with the reference
year 2020 is reported in Figure 5 with its confusion matrix in Figure 6.
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6. Conclusions

EO services regarding land cover mapping are crucial to monitor and assess land
cover changes and propose useful sustainable management and planning policies. Free
Copernicus data, offered by S1 and S2 missions as well as PlanetScope may play a great
role in land cover mapping. Nevertheless, the exploitation of these kinds of EO data is well
known in literature. However, there is still a lack in the development of robust services
to map mountainous areas (such as the Alps) with a high level of accuracy according
to the newest EAGLE guidelines. In this regard, this work has successfully explored a
possible scalable and repeatable service for mountainous areas that predominantly uses
optical data, but also use radar data for some components, aiming to compensate native
SAR acquisition mode distortions by adopting a mixed hierarchical approach to map land
cover. This geospatial service based on EO data may help with the implementation of
European, global and local policies concerning land cover mapping both at high spatial and
temporal resolutions to assess land cover changes due to anthropic pressure and climate
change and pursue a sustainable development perspective, empowering the technological
transfer in mountainous realities with a higher degree of detail beyond the GEE-based
Dynamic World.
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Appendix A

A legend description is described as follows.

RAVA Legend EAGLE—ISPRA Legend Description

Urban and anthropic areas (111) Artificial abiotic surfaces

Surfaces strongly influenced by anthropic activity and
characterized by human settlements. These are areas in

which structures are built without distinction for the
intended use or are under construction, as well as roads,

airports, railways, parking lots and any artifact capable of
determining a permanent or semi-permanent loss of the soil

resource, including caves and mines.

Shrubland and transitional
woods
(324)

Shrubland

Natural or natural-shaped surfaces. Areas characterized by
arboreal species and generally sparse woods near grazing

areas or areas with reduced herbaceous vegetation and
rocks (such as rubble). These areas indicate the dynamics of
the ecological forest succession following the abandonment
of grazing areas and consequent expansion of forest areas or

following disturbances to natural or anthropogenic
disturbances to the forest.

Woody crops
(221)

Not defined
(considered separately

vineyards and orchards)

Surfaces characterized by the presence of various cultivation
systems, in particular orchards and vineyards. Surfaces
influenced by human activity and agronomic practices.

Water surfaces
(512)

Water

Natural or natural-shaped surfaces. Areas characterized by
the presence of bodies of water such as natural lakes of

fluvial and/or glacial origin, artificial reservoirs and bodies
of water in wetlands.

Water courses
(511)

Water
Natural or natural-shaped surfaces. Areas characterized by
the presence of watercourses such as rivers, streams along

runoff lines and slope impluviums.

Needle-leaved forests
(312)

Needle-leaved

Natural or natural-shaped surfaces. Wooded areas
characterized by a prevalent and widespread presence of
coniferous trees on a given surface (larch, spruce, fir, pine,

Douglas fir, etc.)

Broad-leaved forests
(311)

Broad-leaved forests

Natural or natural-shaped surfaces. Wooded areas
characterized by a prevalent presence of broad-leaved trees
on a given surface (oak, chestnut, ash, maple, linden, alder,

birch, poplars, etc.)

Mixed forests and moors
(313)

Not defined

Natural or natural-shaped surfaces. Wooded areas
characterized by the presence of both broad-leaved and

conifers with no evident prevalence and sometimes shrubs
or the presence of heather (Erica spp. and

Calluna vulgaris L.).
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RAVA Legend EAGLE—ISPRA Legend Description

Permanent snow and ice
(335)

Permanent snow and ice

Natural surfaces. Areas characterized by the presence of
glaciers and glaciated surfaces such as seracs, icefalls and
frozen or snow-covered surfaces such as snowfields in the
considered observation period. It should be noted how the

measurements carried out fall within the full ablation
season and can, therefore, constitute a useful data on the

perimeter in this sense. The rock glaciers entirely covered by
debris and rocks are not included in this class, preferring to
follow a criterion of spectral uniformity based on the typical

characteristics of remote sensing with s1-s2 data in the
context of the Copernicus Programme that are capable of
investigating the surfaces, not the subsoil, as indicated in

international scientific literature regarding both optical and
sar remote sensing data of these missions. Therefore, we

refer to the rock class.

Natural grasslands and alpine
pastures

(321)
Defined as generic pastures

Natural or natural-shaped surfaces. Areas characterized by
natural evolution or by pastoral management conditioning
practices. These areas are characterized by the presence of

medium-high altitude herbaceous species.

Lawn pastures
(231)

Defined as generic pastures

Natural-shaped surfaces. Areas characterized by
herbaceous cover conditioned by pastoral and agronomic
practices in this case mowing, haymaking and eventual

irrigation. The areas can be characterized by both grazing
and mowing.

Bare rocks
(332)

Consolidated surfaces
Natural surfaces. Areas characterized by the presence of

outcropping rocks and coherent non-vegetated soils.

Discontinuous herbaceous
vegetation of medium-low

altitude
(909)

Not defined
(only an unconsolidated class is

present in a non-vegetated
macro-class)

Natural or natural-shaped surfaces. Areas characterized by
unconsolidated soils with continuous vegetation cover over
time as they have reduced annual vegetation, xeric sparse
vegetation or poorly managed grassing with little or no

agronomic conditioning practices. This coverage also
includes rock jumps provided with vegetation spots with

occasional but not very powerful soils and extremely
limited or absent vegetation.

Sparse herbaceous vegetation at
high altitudes

(333)

Herbaceous vegetation
permanenet

Natural surfaces. Areas characterized by the presence of
scarce but permanent vegetation that is difficult to graze

given both the characteristics of the vegetation and, in some
cases, the slope. These are high-altitude surfaces near rocks

or natural grasslands and woods.

Alpine wetlands
(410)

Defined as generic wetlands

Natural surfaces. Areas characterized by the presence of
wetlands at different altitudes such as swamps, peat bogs
and vegetation typical of these areas. Only the stretches of

water in correspondence with these areas return to the
water bodies.
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Abstract: The Samaria Gorge is a dominant geomorphological and geological structure on Crete
Island and it is one of the national parks established in Greece. Due to the complex tectonics and the
stratigraphic ambiguities imprinted in the geological formations of the area, a comprehensive review
of the geological models referring to the geological evolution of the area is essential in order to clarify
its geomorphological evolution. In particular, the study area is geologically structured by the Gigilos
formation, the Plattenkalk series and the Trypali unit. Regarding lithology, the Gigilos formation
predominantly includes phyllites and slates, while the Plattenkalk series and the Trypali unit are
mainly structured by metacarbonate rocks; the Plattenkalk series metacarbonate rocks include cherts,
while the corresponding ones of the Trypali unit do not. Furthermore, the wider region was subjected
to compressional tectonics, resulting in folding occurrences and intense faulting, accompanied by
high dip angles of the formations, causing similar differentiations in the relief. Significant lithological
differentiations are documented among them, which are further analyzed in relation to stratigraphy,
the tectonics, and the erosion rate that changes, due to differentiations of the lithological composition.
In addition, the existing hydrological conditions are decisive for further geomorphological evolution.

Keywords: geomorphological and geological features; Samaria Gorge; White Mountains; Crete; Greece

1. Introduction

The western part of Crete is predominantly structured by Plattenkalk Group geological
formations, which belong to the Hellenides foreland [1]. However, the stratigraphically
lowest formations of this group are additionally documented in Central Crete, where the
bed inversion occurred [2]. This complicated geological structure, which significantly
affects geomorphological evolution, resulted in proposing three different geological models
for the wider area [3–7], while the need for implementing cutting-edge techniques was
generated, in order to display them accurately; this is achieved by implementing three-
dimensional (3D) geological modeling [8,9].

Three-dimensional geological modeling was initiated in the early 60s as a tool for
improving mining excavation. In particular, the 3D fixed block model was an initial
application, performed for tectonically deformed stratified deposit excavation [10,11], as
well as the gridded seam model, which was implemented on tectonically undisturbed
ore deposits [12]. Regarding geological simulation, Houlding [13] proposed boundary
representation, which is based on geological mapping data recorded during fieldwork;
these are imprinted in an artificial environment and subjected to geometrical rules, while
representative geological cross-sections and preexisting legends of geological formations
are necessary for 3D geological composition.

Considering both the proposed geological models and the 3D geological modeling prin-
ciples, the objective of this paper is to review the proposed geological models of the Samaria
area, in order to link the geological regime, geological formation properties (lithology, tec-
tonics and stratigraphy) and the drainage network to the geomorphological evolution.
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2. Geology of Crete Island

Crete Island is located just over the active subduction zone of the African plate be-
neath the Eurasian one ([14] and references therein), resulting in the gradual uplift of the
entirety of Crete [15]), characterized by complicated active tectonics. The Alpine tectonos-
tratigraphic regime indicates complexity as the various units and lithological formations
covering the island are controlled by compressional tectonics, such as folding, thrust sheets
etc. [16]. In particular, the major tectonic units of Crete (stratigraphically from the lower
to the upper one) are the following [17–23]: (i) Plattenkalk Group (parautochthonous),
(ii) Phyllite Nappe, (iii) Tripolis Nappe, (iv) Pindos Nappe and (v) Uppermost Nappe
(Figure 1).

Various lithological formations, composing these nappes, tectonically overlie different
parts of the parautochthonous formations of the Plattenkalk Group, which is predominantly
structured by HP/LT-affected metamorphic rocks [18,24]. Furthermore, the Ravdoucha
(slate-carbonate) beds tectonically overlie the dynamometamorphic sequence in different
sites of Western Crete, constituting the lower part of the Tripolis unit, whilst the upper part
includes the carbonate sequence and flysch (Figure 1). The Tripolis unit is approximately
aged between the Middle and Upper Triassic, while the corresponding age of the over-
lying Pindos (or Olonos-Pindos) unit ranges between the Upper Triassic and the Middle
Palaeocene [25–29].

It is worth mentioning that the Tripolis and Pindos geotectonic zones, which are part of
the External Hellenides, tectonically underlie the allochthonous Internal Hellenides nappes,
and they are characterized as the “Uppermost unit”; this unit constitutes complicated
lithofacies, a tectonic complex consisting of a nappes pile [2].
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Seidel et al. [23]).

In particular, these different nappes are as follows (from the uppermost to the low-
ermost): (i) ophiolites nappe (serpentinized peridotites, gabbros, diorites, dolerites and
diabases) of Lower Jurassic–Upper Cretaceous age. The vast majority of ophiolites are ex-
posed at the central part of Crete and they are placed at the top of the Uppermost unit [30],
extending in areas that vary from a few hundred square meters to several square kilometers,
(ii) Asterousia nappe (meta-silt, mica, chlorite, epidotite gneisses and schists, amphibolites
and marbles) of Lower Jurassic–Upper Cretaceous age, (iii) Vatos nappe (dark siltstones,
limestone beds and sandstones alternations) of Upper Jurassic age, (iv) Arvi nappe (basalts
and pillow lavas) of Upper Cretaceous age. Eventually, the Alpine formations which
extend in different Crete regions underlie the Neogene and Quaternary units of various
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thicknesses; these formations are associated with the post-orogenetic processes that oc-
curred in the area. The uppermost Quaternary formations, affecting the geomorphological
evolution of the area, unconformably overlie the Neogene formations or the pre-Neogene
bedrock [31,32]. They consist of loose or compact terrestrial formations (Pleistocene or
more recent), documented as colluvial deposits or alluvial fans.

The Samaria Gorge is located in the White Mountains mass in the southwestern part
of Crete (Figure 2), being one of the National Parks of Greece (established in 1962). It is
considered as one of the most significant geomorphological structures in the Mediterranean
region, and it extends in an N–S direction for approximately 13 km. The global recognition
of the Samaria Gorge is documented by numerous international distinctions: (1) UNESCO
Man and the Biosphere Reserve, (2) European Diploma of Protected Areas, awarded by the
Council of Europe, (3) European Biogenetic Reserve of the Council of Europe, (4) Important
Bird Areas by the Birdlife International and (5) NATURA 2000 protected area, under
code GR4340014 (Zone of Special Protection: ZSP), and it is considered as one of the most
significant geotopes of Greece. Furthermore, the wider area of the White Mountains belongs
to the Natura 2000 European Network of Protected Areas, under code GR4340008H, and it
is certified as a Place of Universal Importance (PUI).
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Figure 2. (a) Digital Elevation Model (DEM) of Samaria Gorge; (b) Location of Samaria Gorge
in Greece.

The Samaria Gorge is also characterized by complicated tectonics, affecting the geo-
logical and geomorphological features of the area. It represents the geological profile of the
region, highlighting the Plattenkalk Group geological formations (Figure 3), which is the
lower parautochthonous group of all the sequences, structuring the White Mountains’ core,
as well as the major mountain masses of Crete (Mt Talea, Mt Psiloritis, Mt Lasithiotika etc.).
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It is worth noting that the lower tectonic units, such as the Fodele (including the Galinos
beds) and Sisses beds [1] are lacking in the study area.
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Regarding the geological formations of the Plattenkalk Group, they are geomorpho-
logically associated with the sharp topographic relief of the area, as well as with the steep
slopes that are presented. Moreover, the drainage network density, and mainly the river
crossing the gorge, contributes decisively to the geomorphological configuration of the
area. The erosion caused by the river flow is directly related to precipitation; the increased
winter precipitation is expressed by significant water flow quantities, recorded in the winter
period between May and October. On the contrary, the limited precipitation from June
to September (summer period) results in lower flow water quantities and hence a lower
erosion rate.

Concerning the northern part of the Samaria Gorge, a different geological formation
(Gigilos formation) is documented, which outcrops as a tectonic window structure, while a
smoother relief is observed; despite the numerous drainage network branches, the main
river, mentioned above, is absent. Considering the elevation variety and the drainage
network, the Samaria river catchment area shows significant differentiations between the
northern and the southern part, related both to the shape and extension. In addition, dense
forest is documented in the northern part of the study area, related to the aforementioned
factors [33]. Particularly, nine distinct land ecotopes have been identified in the Samaria
Gorge, including 162 plant species, while 36 of them are protected and characterized as
endangered [34].

3. Geology of the Study Area

The Samaria Gorge area is geologically structured by Neogene–Quaternary geological
formations, as well as by Alpine bedrock. The geological and topographical complex-
ity of the study area has been highlighted by various researchers, who contributed to
the theoretical background establishment. In these proposals, the following geological
formations/terms are referred to:

The “Plattenkalk” term, which was initially introduced by Chalikiopoulos [35], de-
scribes a thin- to medium-bedded crystalline limestone sequence, including chert intercala-
tions or/and nodules, located in Eastern Crete. Numerous geological studies, performed
in the Peloponnese and Crete regions, consider that this sequence is predominantly exhu-
mated as a tectonic window throughout these regions. On the contrary, Creutzburg [36]
applied a different terminology, introducing the “Madara-Kalke” term in order to describe
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a thick complex of white to dark recrystallized limestones («mächtiger Komplex»), bedded
in the lower part and unsorted in the upper part. The Triassic age was questioned as it
underlies the Permian “Phyllites-Quartzites” unit.

Regarding the Western Crete region, the “underlying system of the Plattenkalk” term
was introduced by Tataris and Christodoulou [3] to describe a system of approximately
300 m in thickness that consists of phyllites, dolomites, microbreccia limestones, cherts and
clays, while numerous Upper Triassic occurrences (with Ostrea, Myophoria and probably
Halobia) are documented within the dark, thin-bedded limestones.

In the geological map of Crete (1:200,000 scale) constructed by Creutzburg et al. [37],
the aforementioned beds are defined as the “Gigilos formation”, which underlies the
Plattenkalk” formation. On the contrary, Fytrolakis [38] proposed the existence of a tec-
tonic unconformity between the Gigilos beds and the Plattenkalk formation; the gradual
stratigraphic transition is the potential between the two formations, and the estimated
age of the Gigilos formation is Liasian–Doggerian. Furthermore, apart from the common
clastic sediment alternations (clays, calc-phyllites, sandstones, microbreccia limestones), an
additional formation was identified, which resembles flysch and consists of clays with a
thin gypsum layer, thin-bedded sandstones and thin-bedded, clastic limestones.

Therefore, according to various researchers [17,31,38–41], the generally accepted geo-
logical model highlights an anticlinic megastructure occurrence, which considers Mt Gigilos
as the core [6,7]. It should be emphasized that the Trypali unit dolomitic limestones are
documented southwest of the Samaria Gorge, while the corresponding underlying system
of the Plattenkalk Group is not. The Trypali dolomitic limestones tectonically overlie the
Plattenkalk formation, while the in-between contact is accompanied by a tectonic breccia,
locally exceeding 2 m thick.

In particular, the Trypali unit and Plattenkalk Group constituting the bedrock of
the wider area of Samaria Gorge show different lithological characteristics; intensively
brecciated, strongly karstified, predominantly carbonate formations dominate in the Trypali
unit, characterized by their cellular texture, resembling rauhwackes. The Plattenkalk
Formation consists of thin-bedded marbles, including chert intercalations and/or nodules,
while the underlying Gigilos Formation rocks consist of alternations of metaclastic and
metacarbonate rocks with cherts.

4. Data and Methodology

The 3D geological model construction was performed by applying software packages,
which are widely implemented in geosciences. In particular, the presentation of the first
and the second models was carried out using the ArcGIS 10.6.1 software package, while
the third one was performed by the SURPAC2000 software package. The methodological
process of geological models in the ArcGIS 10.6.1 software package includes the georef-
erencing of the original geological maps [3,4] and the existing formations’ digitalization;
moreover, a colored legend was extracted based on the age of each formation. Then, a
detailed digital elevation model (DEM) of the study area was implemented, resulting in the
three-dimensional configuration of geological formations; for this purpose, the ArcScene ap-
plication (extension of ArcGIS 10.6.1 software) was applied. Regarding the corresponding
process in the SURPAC2000 software package, the principles of digitalization are identi-
cal to the ArcGIS 10.6.1 software package ones, while limited technical differentiations
are documented.

5. Results—Discussion
5.1. Geological Models Review

Based on the various approaches concerning the geology of the Samaria Gorge, and
the theoretical background improvement, different geological models were proposed,
highlighting the geological regime of the wider area. Particularly, three geological models
have been proposed by: (a) Tataris and Christodoulou [3,4]—1st model, (b) Pavlaki and
Perleros [5]—2nd model, (c) Manutsoglu et al. [6,7]—3rd model.
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Regarding the 1st model [3,4] shown in Figure 4, the underlying bed system of Plat-
tenkalk (after Chalikiopoulos [35]) is characterized by the following lithological formations
(stratigraphically from the upper to the lower one): (a) Phyllites, (b) Gray–white grayish,
massive carbonates with sparse chert nodules, (c) Gray limestones with a cellular texture
(in some locations), (d) Thin-bedded limestones with marl intercalations, (e) Dark, massive
limestones with chert nodules and phyllite intercalations, (f) Calcitic phyllites and dark,
crystalline limestones alternations, (g) Crystalline limestones, (h) Calcitic phyllites and
dark, crystalline limestone alternations and (i) Calcitic phyllites. According to this model,
the Plattenkalk system consists of thin-bedded, crystalline limestones, including nodules
and/or thin chert intercalations and thin phyllite intercalations. These limestones are
locally documented in a thick-bedded form, without chert occurrences, maintaining the
crystallization. Moreover, the transition of these formations to calcitic phyllites is observed.
The formations system, overlying Plattenkalk, includes a lower sequence of limestones
and dolomites (Madara-Kalke), and an upper sequence consisting of phyllites, quartzites,
rauhwackes, gypsum, limestones, eruptive formations and iron ores.
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formations.

According to Pavlaki and Perleros [5], the 2nd model (shown in Figure 5) suggests
that the underlying system of the Plattenkalk includes: (a) Thin-bedded alternations of clay
phyllites and (meta)sandstones with low-grade metamorphism, marls, as well as sparse
thin-bedded limestones and chert occurrences. This sequence is also known as “Gigilos
beds”; (b) A carbonate system, subjected to different tectonic phases of folding and uplift. It
is characterized by significant thickness in the greatest part of the White Mountains region,
and it is divided into (a) White-grayish–whitish marbles, locally cracked, showing karstic
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features, (b) Stromatolitic dolomites and (c) Black dolomites, showing a cellular texture,
strongly cracked with karstic features.

Regarding the Plattenkalk series, the upper members consist of thick-bedded carbonate
formations, alternating with green, calcitic phyllites, while brown-black slates are locally
documented (White Mountains metaflysch). The lower members consist of thin-bedded
and strongly recrystallized gray-black limestones and dolomites, forming beds with thin
chert intercalations and nodules.

Finally, the overlying Trypali unit, strongly karstified and tectonically affected, in-
cludes (meta)carbonate formations, which locally show a conglomerate-breccia formation.
In particular, the upper horizons consist of coarse carbonate conglomerate-breccia forma-
tions and recrystallized limestones–dolomitic limestones, while the corresponding lower
ones include strongly recrystallized, white-grayish, thick-bedded and cracked limestones,
as well as dark dolomites.
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According to Manutsoglu et al. [6,7], the 3rd model (Figure 6), which considers the
study of Soujon et al. [40], the Plattenkalk Group of the White Mountains, consists of
the “Mavri” and the “Aloides” formations, which include the following lithologies (from
the upper to the lower): (a) Carbonate breccia, (b) Dolomitic marbles with chert nodules,
(c) Chert-clay-carbonate sequence, (d) Thin-bedded calcitic marbles with chert intercala-
tions and nodules, (e) Medium-bedded to thin-bedded calcitic marbles with chert nodules
and layers and (f) Thin-bedded marbles with red/green calc-silt horizons and cherts. In
addition, the upper part includes marls and calc-schists (Kalavros formation), which are
considered the White Mountains metaflysch. Eventually, the Trypali unit overlies the
Plattenkalk Group sequence.

Considering the aforementioned viewpoints, we correlated the geological-lithological
formations of the models highlighting the similarities and differences between them. The
results are summarized in Table 1.
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Table 1. Correlation of the proposed geological models for the wider Samaria Gorge area.

1st Model (by Tataris and Christodoulou [3,4]) 2nd Model (by Pavlaki and
Perleros [5])

3rd Model (by
Manutsoglu et al. [6,7])

Formations system, overlying Plattenkalk:
a. Upper sequence

b. Lower sequence—Madara-Kalke (limestones
and dolomites)

Trypali unit Trypali formation

Plattenkalk system: crystalline, light gray–dark
gray limestones with phyllite intercalations.
Thin-bedded with chert intercalations and

nodules. The uppermost horizons are
thick-bedded without cherts, changing locally

into calcitic phyllites.

White Mountains metaflysch:
Thick-bedded carbonate formations
with intercalations of green, calcitic

phyllites Aloides formation

Plattenkalk: (detailed lithological
description in the text)

Underlying bed system of Plattenkalk: phyllites,
dolomites, limestones, quartz sandstones and

slates. These formations are documented in the
Klados and Trypiti Gorges, as well as within the

Gigilos and Poria areas.

System underlying the Plattenkalk:
division into metacarbonate and
metaclastic formations (detailed

lithological description in the text)

Gigilos (Mavri) formation

5.2. Geomorphological Evolution of Samaria Gorge

Sea-level change is a significant factor affecting the geomorphological evolution of a
region. In particular, numerous and various sea-level changes have occurred throughout the
Mediterranean Sea since the Middle Pleistocene, due to climate change ([42] and references
therein), and therefore Crete Island was correspondingly affected.

Especially, the Samaria Gorge’s geomorphological evolution is based on the combina-
tion of lithology, stratigraphy, tectonics, karstic processes and erosion, resulting in an intense
topographic relief configuration, as well as in the formation of a surface and underground
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drainage network. In general, the Samaria Gorge structure is part of the Samaria River
catchment area (Figure 7), composed of geological formations with different vulnerabilities.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 14 
 

Sea-level change is a significant factor affecting the geomorphological evolution of a 
region. In particular, numerous and various sea-level changes have occurred throughout 
the Mediterranean Sea since the Middle Pleistocene, due to climate change ([42] and ref-
erences therein), and therefore Crete Island was correspondingly affected. 

Especially, the Samaria Gorge’s geomorphological evolution is based on the combi-
nation of lithology, stratigraphy, tectonics, karstic processes and erosion, resulting in an 
intense topographic relief configuration, as well as in the formation of a surface and un-
derground drainage network. In general, the Samaria Gorge structure is part of the Sa-
maria River catchment area (Figure 7), composed of geological formations with different 
vulnerabilities. 

 
Figure 7. Catchment area of Samaria River, including the drainage network and springs outlets. 

Particularly, post-Alpine formations (recent alluvial deposits, slope debris and fans, 
terraces and Quaternary formations) aged between the Quaternary to the present (Figure 
8) affect the geomorphological evolution of the area. Specifically: 

Recent alluvial deposits, slope debris and fans include sand, dune or torrent deposi-
tions formed in different depositional environments. Slope debris and fans are 

Figure 7. Catchment area of Samaria River, including the drainage network and springs outlets.

Particularly, post-Alpine formations (recent alluvial deposits, slope debris and fans,
terraces and Quaternary formations) aged between the Quaternary to the present (Figure 8)
affect the geomorphological evolution of the area. Specifically:

Recent alluvial deposits, slope debris and fans include sand, dune or torrent deposi-
tions formed in different depositional environments. Slope debris and fans are additionally
documented, forming variable debris cones. In particular, the slope debris is derived
from the older formations weathering, resulting in rock fragment occurrences, which are
displaced by gravity, forming loose and compact sediments. Alluvial fans differ from
slope debris due to the different clastic parts’ distribution, while they display sorting and
layering. Furthermore, alluvial fans significantly contribute to different geomorphological
evolutions depending on the climate environment [43,44].

Terrace formations have predominantly been formed at the exit of Samaria Gorge, as
well as the adjacent gorges, while they have been interpreted as an index of the marine
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environment; the estimated thickness ranges between one and several meters. The material
of their formation derived from alluvial deposits and fans, while the intense tectonic activity,
which uplifts the wider area, results in the formation of beach rocks, which are also uplifted,
forming terraces.

The Quaternary formations are divided into Lower and Upper parts. Particularly, the
Lower Quaternary formations include marls, sandstones and conglomerates, while the
Upper Quaternary ones are characterized by torrential origin and consist of sandy marls,
clays, sandstones and conglomerates, with considerable thickness. Similarly to the terraces,
they are affected by significant tectonic activity.
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Furthermore, the Gigilos formation (northern part of the Samaria Gorge), which is 
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Furthermore, the Gigilos formation (northern part of the Samaria Gorge), which is
part of the Alpine formations, is susceptible to erosion, as, in this formation, phyllites
and slates with smooth dip angles are predominantly included (Figure 9a). In particular,
the minerals composing these formations, such as moscovite, kaolinite, montmorillonite
and illite, are prone to erosional processes. Therefore, these lithological properties affect
the catchment area shape, which is significantly widened in the northern part. On the
contrary, the Plattenkalk (metacarbonate formations with chert intercalations consisting of
calcite/dolomite and cryptocrystalline silicon dioxide, respectively) formation is character-
ized by steep slopes along the southern part of Samaria Gorge (Figure 9b), resulting in the
narrowing of the catchment area throughout this part. Moreover, it should be mentioned
that the low (25◦–35◦) and high angles (75◦–85◦) of slopes which are observed in the Gigilos
and Plattenkalk formations, respectively, resulted from local erosion activity. Moreover,
remarkable karstic features are documented, especially in the southern part of the Samaria
Gorge (Figure 10).

Regarding groundwater permeability, the Gigilos formation is considered imperme-
able, as the watertight horizons of chert and schists restrict the downward movement
of the water. Therefore, the limited infiltration and the high surface drainage result in a
high runoff coefficient, affecting the geomorphological relief. Moreover, the lithological
alternation between the metaclastic and metacarbonate rocks, as well as the extended
fracture, favors the formation of low-capacity aquifers, represented by low-discharge value
springs. However, some of these springs, located within the Gigilos beds, show significant
discharge values, such as the Mytatouli (5.9 m3/h) and Potistiria (5.3 m3/h) springs [45].
It is worth mentioning that the transmissibility of the Gigilos formation is significantly
lower than the corresponding one of the Trypali unit. Regarding the Plattenkalk series,
it consists of several hundreds of meters of crystalline limestone and dolomite, while it
is interbedded with watertight horizons of chert and schists. These horizons restrict the
downward movement of the water and strongly influence its movement and concentration
in the overlying carbonate formation of the Trypali unit. The transmissibility of the Trypali
carbonate formations ranges between 0.1 to 1 m2/sec, which is equivalent to permeability
between 10−3 and 10−2 m/sec [46].
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6. Conclusions

Considering the models relating to geological processes and their relationship with geo-
morphological features, the following concluding remarks arise for the Samaria Gorge area:

1. The entire region is a part of a megastructure, with the core of Mt Gigilos, consisting
of unsorted, dolomitic stromatolite limestones. On either side of the mountain, the
dip direction of the formations is differentiated, maintaining the same NNE–SSW
striking, indicating that Mt Gigilos is a tectonic window.

2. Although the proposed models are detailed and provide different aspects of the
geological regime of the study area, we conclude that the 3rd model is more accurate
as the Trypali unit’s occurrence at the southwestern part of Samaria Gorge suggested;
this is verified by field observations.

3. According to the field observations, this megastructure dips in the NE direction,
resulting in the geological formations’ intense erosion rate. Therefore, the geological
formations’ inclination, which is directly associated with tectonic processes, occurred
in the area, controlling the geomorphological evolution of the region.

4. The lithology constitution, combined with the tectonic evidence, is a significant factor
affecting the geomorphological relief. In particular, the phyllite and slate formations
(Gigilos formation) with medium dip angles are characterized by smooth relief. On
the contrary, the metacarbonate formations of the Plattenkalk Group, accompanied
by high (up to vertical) dip angles, show sharp slopes on both sides of the river that
crosses the Samaria Gorge and form slopes with heights of up to 300 m in some
locations.

5. Overall, the Samaria Gorge constitutes a typical catchment area, in which the surface
runoff is favored in the northern part, due to the lithological formations, while the
underground one is favored in the southern part, respectively.
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Abstract: Unmanned aerial vehicles (UAVs) can provide valuable spatial information products for
many projects across a wide range of applications. One of the major challenges in this discipline is the
quality of positioning accuracy of the resulting mapping products in professional photogrammetric
projects. This is especially true when using low-cost UAV systems equipped with GNSS receivers for
navigation. In this study, the influence of UAV flight direction and camera orientation on positioning
accuracy in an urban area on the west bank of the Euphrates river in Iraq was investigated. Positioning
accuracy was tested in this study with different flight directions and camera orientation settings
using a UAV autopilot app (Pix4Dcapture software (Ver. 4.11.0)). The different combinations of
these two main parameters (camera orientation and flight direction) resulted in 11 different flight
cases for which individual planimetric and vertical accuracies were evaluated. Eleven flight sets of
dense point clouds, DEMs, and ortho-imagery were created in this way to compare the achieved
positional accuracies. One set was created using the direct georeferencing method (without using
GCPs), while the other ten sets were created using the indirect georeferencing approach based on
ground truth measurements of five artificially created GCPs. Positional accuracy was found to vary
depending on the user-defined flight plan settings, despite an approximately constant flight altitude.
However, it was found that the horizontal accuracy achieved was better than the vertical accuracy
for all flight sets. This study revealed that combining multiple sets of images with different flight
directions and camera orientations can significantly improve the overall positional accuracy to reach
several centimeters.

Keywords: unmanned aerial vehicle (UAV); flight parameters; positional accuracy; indirect
georeferencing; evaluation; accuracy analysis

1. Introduction

The positional accuracy of UAV geospatial products is affected by numerous factors,
including the nature of the survey area and its morphological characteristics [1]. The other
main factors that affect the positional accuracy of UAV products are the model of the UAVs,
the type and accuracy of the navigation and orientation instruments on board the UAVs,
the camera specification, the ground sensing distance (GSD) [2], the degree of overlap, the
UAV flight altitude, and the number and configuration of ground control points (GCPs) [3].
Several previous studies have analyzed and investigated the effects of these factors on
the positional accuracy of UAV products [4]. In general, the positional accuracy of UAV
products has been tested and analyzed in some studies and research as follows [5]:

In 2015, Whitehead and Hugenholtz used GCPs and Pix4D software to photogram-
metrically map a gravelly river channel and achieved a horizontal accuracy of 0.048 m
(RMSEH) and vertical accuracy of 0.035 m (RMSEZ), which were compatible with the
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accuracy standards developed by the American Society for Photogrammetry and Remote
Sensing (ASPRS) for digital geospatial data at the 0.1-m RMSE level [6].

Next, Hugenholtz et al. (2016) compared the spatial resolution of three cases of UAV
imagery acquired during two missions to a gravel pit. The first case was a surveillance-level
GNSS/RTK receiver (direct georeferencing), the second was a lower-level GPS receiver
(direct georeferencing), and the third was a lower-level GPS receiver with GCPs (indirect
georeferencing). The horizontal and vertical accuracies were RMSEH = 0.032 m and
RMSEZ = 0.120 m in the first case, RMSEH = 0.843 m and RMSEZ = 2.144 m in the second
case, and RMSEH = 0.034 m and RMSEZ = 0.063 m in the third case, respectively [7].

Later, Lee and Sung (2018) evaluated and analyzed the positional accuracy of UAV
mapping with onboard RTK without GCPs compared with UAV mapping without RTK
with different numbers and configurations of GCPs. In the case of the non-RTK method
with GCPs, the horizontal and vertical accuracies were 4.8 and 8.2 cm with 5 GCPs, 5.4
and 10.3 cm with 4 GCPs, and 6.2 and 12.0 cm with 3 GCPs, respectively, depending
on the number of GCPs. The horizontal and vertical accuracies of the non-RTK method
without GCPs deteriorated to about 112.9 and 204.6 cm, respectively. The horizontal and
vertical accuracies of the RTK-onboard-UAV method without GCPs were 13.1 and 15.7 cm,
respectively [8].

In addition, Yang et al. (2020) investigated the influence of the number of GCPs on the
vertical positional accuracy of UAV products. This study was conducted on sandy beaches
in China. The authors concluded that the number 11 was the optimal number of GCPs in
this study area and had a vertical RMSE of about 15 cm [9].

Further, Štroner et al. (2021) investigated georeferencing of UAV imagery aboard GNSS
RTK (without GCPs). The researchers evaluated and analyzed the reasons for the high-
altitude error, which is a challenge for this technique. They proposed strategies to reduce
these types of errors. Several missions were conducted in two study areas with different
flight altitudes and image-capturing axes [10]. This study showed that a combination of
two flights at the same altitude but with vertical and oblique image acquisition axes could
reduce the systematic vertical error to less than 3 cm. In addition, this study demonstrated
for the first time the linear relationship between the systematic vertical error and the
variation of the focal length. Finally, this study proved that georeferencing without GCPs is
a suitable alternative to using GCPs.

All these studies have produced important results and paved the way for further
studies. However, few studies have addressed the effects of camera orientation on posi-
tional accuracy. Similarly, there have been no studies that have addressed the effects of
the direction of the flight lines and their position within the study area on the positional
accuracy values.

This paper fills this gap by investigating the effects of camera orientation and flight
direction on positioning accuracy. It also investigates and analyzes the positioning accuracy
of UAV products to improve this accuracy, especially vertical accuracy.

There were several limitations related to the steps involved in carrying out work for
this research, including those related to the possibility of obtaining a drone and those
related to the possibility of obtaining security clearances. This was in addition to the social
determinants related to the inhabitants’ refusal to be photographed from above, given that
there was a kind of intrusion of disturbances, especially at lower elevations. Therefore, we
made sure to choose the time of filming when the presence of people was minimal, taking
into account the appropriate weather conditions.

2. Importance of This Research

All conventional surveying, whether using a global positioning system (GPS), a total
station, or other surveying equipment, requires a great deal of time, effort, and labor.
Sometimes the sites where engineering work is performed are harsh and hazardous envi-
ronments where it is difficult for humans to freely move. To reduce the time, labor, and
manpower required for conventional survey work, photogrammetry has been used to sur-
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vey land areas and locations of engineering projects. The latest findings of researchers and
professionals in this field have been related to the use of unmanned aerial vehicles (UAVs)
to produce survey maps, digital elevation models (DEMs), orthophotos, and 3D models.

The creation of maps using drones, like other surveying work, differs in its positional
accuracy. Therefore, this research was very important because it dealt with the testing,
evaluation, and analysis of the positional accuracy of geospatial data products using drones.
In this study, positional accuracies without ground control points (direct georeferencing)
and with ground control points (indirect georeferencing) were tested using different combi-
nations of image sets acquired with different camera orientations and flight directions.

In reviewing previous studies that have addressed the evaluation and analysis of
positional accuracy, it was found that positional accuracy varies from one study to another,
as it is influenced by many different factors. It was also noted that the topic of positional
accuracy, especially in the vertical, is still in need of renewed study and research, and this
was one of the motivations for this study. In this study, UAV photogrammetry products
were tested to determine if they are accurate enough to replace current GNSS and total
station surveying methods in engineering, cadastral, and topographic surveying [11].

3. Materials and Methods

The work methodology in this study included two main phases: the fieldwork phase
and the office work phase. The fieldwork included selecting the study area, defining and es-
tablishing ground control points and checkpoints, measuring their coordinates with a global
positioning system (GPS), and conducting aerial photography with a UAV. The office work
included the preparation of the flight plan, data processing, extraction of map products
(dense point cloud, DEMs, and orthophotos), and evaluation of positional accuracies.

In this study, the effects of flight direction and camera orientation on UAV photogram-
metry geospatial products were studied and analyzed. For this purpose, photogrammetric
flight missions were conducted using low-cost UAVs equipped with consumer-level image
sensors and low-quality navigation and attitude sensors. Different combinations of image
sets were used to evaluate the effects of some parameters such as the use of GCPs, the image
acquisition angle, and the flight direction on the positioning accuracy of the UAV products.

Figure 1 shows the methodology proposed in this study, which included the main
phases mentioned above and the steps and tasks performed for each phase. The UAV flights
in this study were performed using a Mavic 2 manufactured by the Chinese company DJI-
Innovation Technology Co. LTD (Figure 2a). This multi-rotation rotary drone has a diameter
of only 30 cm and weighs only 2 kg. The Mavic 2 can fly autonomously and is controlled
by route-planning software that also takes off and returns automatically. The autonomous
flight time of the drone is about 25 min per battery group. The Mavic 2 is equipped with
a Hasselblad L1D-20c camera from the manufacturer. This camera provides an image of
12.825 × 8.550 mm, a focal length of 10 mm, and an image size of 5472 × 3648 pixels.

3.1. Study Area

The study area was a rural region which was located on the southern bank of the
Euphrates river in Al-Anbar Governorate in the western part of Iraq. It was part of a
residential area, as indicated by the yellow line in Figure 2b, with an average built-up area
of 150 × 200 m. This area consisted of several internal roads, blocks of buildings, some
undeveloped land, and residential buildings, most of which were two-story buildings.
The height of the buildings varied from 4 to 12 m. In this area, there were also scattered
plantings such as trees and home gardens.
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3.2. Flight Planning and Data Acquisition

For any photogrammetric work with UAVs or even with conventional technology,
flight planning must first be performed. This step requires some activities, such as obtaining
a flight permit, selecting appropriate software, studying the characteristics of the project
area, the specifications of the onboard digital camera, and the ground sample distance
(GSD) value [12]. Also, the selection of weather conditions suitable for the flight process
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is one of the most important factors contributing to the success of the study. In this study,
the field survey was conducted in a rural region away from vital places between ten to
twelve o’clock on 18 November 2022. Shooting in the morning was selected so that the
sun’s rays could shine without much misdirection, and the wind speed was very low so as
to not affect the drone’s course.

Three flights were conducted over the study area to verify and evaluate the positional
accuracy of the UAV photogrammetry products and the influencing factors. Depending on
the flights performed, multiple datasets were created, differing in acquisition angle, flight
direction, and the georeferencing method. To compare the positional accuracies, eleven
groups of dense point clouds, DEMs, and orthoimages with different parameters were
created in this study (see Table 1).

Table 1. The eleven cases of processed images in this study.

No. of Case Georeferencing
Method

Combinations
Image Acquisition Angle/Flight Lines Direction No. of Images

1 Without GCPs 90◦/Longitudinal flight lines 113

2

With Five GCPs

90◦/Longitudinal flight lines 113

3 90◦/Transverse flight lines 120

4 70◦/Longitudinal flight lines 126

5 70◦/Transverse flight lines 115

6 90◦/Longitudinal flight lines + 90◦/Transverse flight lines 113 + 120 = 233

7 90◦/Longitudinal flight lines + 70◦/Longitudinal flight lines 113 + 126 = 239

8 90◦/Longitudinal flight lines + 70◦/Transverse flight lines 113 + 115 = 228

9 90◦/Transverse flight lines + 70◦/Longitudinal flight lines 120 + 126 = 246

10 90◦/Transverse flight lines + 70◦/Transverse flight lines 120 + 115 = 235

11 70◦/Longitudinal flight lines + 70◦/Transverse flight lines 126 + 115 = 241

Pix4Dcapture software (Ver. 4.11.0) was used to create the flight plan in this study,
as shown in Figure 3. The flight altitude was set at 60 m with 75% longitudinal overlap
and 70% transversal overlap for all UAV photogrammetry tasks. Taking into account the
specific imaging time of the UAV used, three tasks were performed in this study.
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The first task was to select the GRID MISSION option in the Pix4Dcapture software,
set the acquisition angle to 90◦ (vertical), and align the flight lines along the length of the
study area (Figure 3b). These parameters resulted in a GSD value of 1.41 cm/pixel. In this
task, 113 images were acquired.

The second task was also selected as a GRID MISSION option in the Pix4Dcapture
software, and the acquisition angle was also set to 90◦ (vertical), but the direction of the
flight lines was set in the direction of the width of the study area (Figure 3c). With these
parameters, the GSD value was 1.41 cm/pixel, and the number of images in this task was
120 images.

In the third task, the DOUBLE GRID MISSION option of the Pix4Dcapture software
was selected and the oblique acquisition angle was set to 70◦. With these parameters, the
GSD value was 1.50 cm/pixel, and the number of images in this task was 241. The images
in this task were divided into two groups: one group with flight lines along the length of
the study area, which contained 126 images, and the other group with flight lines along
the width of the study area, which contained 115 images. All missions were planned as
autonomous flights. Figure 4 shows examples of four consecutive images acquired during
this study.
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Figure 4. Samples from four adjacent images; the top two images were taken in one flight line and
the bottom two images were taken in an adjacent flight line. (a) DJI_0891. (b) DJI_0892. (c) DJI_0908.
(d) DJI_0909.

3.3. GCP and CP Distribution

The UAV used in this study was not equipped with precise navigation and orientation
instruments, so a sufficient number of GCPs in the study area had to be established and
measured before the UAV flight for georeferencing [6]. This step had two main objectives:

1. The identification and measurement of ground control points (GCPs) for indirect
georeferencing.

2. The identification and measurement of checkpoints (CPs) to determine and evaluate
the positional accuracy of the generated dense point cloud, DEMs, and orthophotos [13].
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Field measurements before flights included measuring the coordinates of ground
control points and checkpoints using a GNSS/RTK base station and rover [7]. The GCP
and CP markers were precisely fabricated from square iron sheets with a side length of 50
cm and divided into four identical parts, which were assigned different colors (black and
white) to facilitate their visibility and distinction by drone imagery (Figure 5).
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of CPs.

In this study, 18 points were set and measured (numbered from 1 to 18). Point 1 was
used as a reference point or base station, 5 points served as ground control points (GCPs)
for indirect georeferencing, and 12 points were used as checkpoints (CPs) to calculate the
positional accuracy of the work products. All points were placed in appropriate distribution
throughout the study area (Figure 6) and were visible in the images. The GNSS survey of
the GCPs and CPs was performed in RTK mode. The planimetric coordinate system was
the UTM zone 38N with the geodetic reference system WGS84. The altimetric coordinate
system was the EGM96 geodetic model for converting ellipsoidal heights to orthometric
heights [14].

3.4. Photogrammetric Processing

All images in this study were processed using Agisoft Metashape Professional soft-
ware, version 1.8.0 [15], and the parameters chosen for the different steps are listed in
Table 2. Agisoft Metashape is a software tool based on Structure from Motion (SfM) for
bundle adjustment and Multiview Stereo (MVS) for dense image matching. This software
was the appropriate choice for the reconstruction of DEMs and orthophotos for the scene.
The images were automatically processed in this software, except for some interventions in
some details, such as the identification and measurement of ground control points (GCPs)
and checkpoints (CPs), which were manually performed by the user.
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The processing of UAV images in Agisoft Metashape software was performed in the
following main steps [2]:

1. Import images, GNSS data, and IMU data.
2. Align images for interior and exterior orientation and generate a sparse point cloud.
3. Import and mark GCPs.
4. Optimize the camera.
5. Build a dense point cloud using image matching methods.
6. Create of a mesh and texture.
7. Generate a DEM.
8. Create an orthophoto.

In this study, eleven sets of the dense point cloud, DEMs, and orthomosaic were
created from the combinations of the acquisition images; one set was processed based on
the direct georeferencing method (without GCPs), and the other ten sets were processed by
indirect georeferencing using five GCPs. In all cases, the dense point cloud was used to
create DEMs, and the last one was used to create the orthophoto for each image. Then, the
orthophoto images were aligned to create the orthomosaic for the study area.

3.5. Accuracy Assessment

As mentioned earlier, field measurements were made at eighteen fixed points in the
study area using GNSS/RTK before the flight and imaging procedure. One of these points
was monitored for approximately 5 h as it served as a reference point. Then, the remaining
points were monitored and measured relative to this base point. Five of these points were
used as ground control points (GCPs) in indirect georeferencing, and the remaining twelve
served as checkpoints (CPs) to verify the accuracy of the digital elevation models and the
resulting orthophotos.

The checkpoints were used to calculate the positional accuracy of the DEMs and
orthophotos produced. The positional accuracy was determined from the value of the
calculated errors between the observed coordinates of the CPs using GNSS/RTK measure-
ments and the predicted coordinates of the CPs from the geospatial data products (DEMs
and orthophotos). In addition, the root mean square errors (RMSEs) were calculated for the
east (X), north (Y), and vertical (Z) coordinates, as well as the total RMSE.
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Table 2. Setting parameters of Agisoft Metashape used in this study.

Processing Steps Parameters Chosen Value

Align Photos

Accuracy High

Key point limit 40,000

Tie point limit 4000

Optimization Fit all constants (f, cx, cy, k1–k4, p1, p2,
b1, and b2)

Build Dense Cloud
Quality Medium

Depth filtering Moderate

Build Mesh

Source data Dense cloud

Surface type Height field

Face count High

Interpolation Enabled

Point classes All

Build Texture

Texture type Diffuse map

Source data Images

Mapping mode Adaptive orthophoto

Blending mode Mosaic

Texture size/count: 4096

Build DEM

Projection Geographic

Coordinate system WGS 84/UTM zone 38N

Source data Dense cloud

Interpolation Enabled

Point classes All

Resolution 0.0532556 m

Build Orthomosaic

Projection Geographic

Coordinate system WGS 84/UTM zone 38N

Surface Mesh

Blending mode Mosaic

Pixel size 0.013 m

4. Results and Discussion

This study tested the positional accuracy of geospatial products created from UAV
imagery processed with and without GCPs and examined the effects of camera orientation
and flight direction. The positional accuracy results for the eleven cases are shown in
Table 3. The results showed that the horizontal and vertical accuracies of the geospatial
data mainly depended on the quality of the GNSS and IMU on board the UAV, and whether
or not GCPs were used in the photogrammetric processing [16]. Overall, the achieved
horizontal accuracy was better than the vertical accuracy in all cases. The RMSEs resulting
from direct georeferencing based on the consumer-grade GNSS and IMU showed that the
accuracy was severely degraded with an H-RMSE and Z-RMSE of more than 1 and 2 m,
respectively.
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Table 3. The positional accuracies of the eleven cases. [red color for maximum error, green color for
minimum error].

No. of Case E. errs. (m) N. errs. (m) Z. errs. (m) Tot. err. (m)

1 1.830 1.203 2.885 3.622

2 0.028 0.019 0.054 0.064

3 0.029 0.029 0.112 0.120

4 0.026 0.036 0.366 0.368

5 0.066 0.080 0.059 0.120

6 0.007 0.017 0.048 0.052

7 0.074 0.125 0.107 0.181

8 0.044 0.028 0.022 0.057

9 0.049 0.039 0.043 0.076

10 0.062 0.082 0.071 0.125

11 0.008 0.009 0.028 0.031

From the results of the positional accuracy test, reproduced in Table 3, it is clear that
the discrepancy was either on the horizontal or vertical planes. From these results, the effect
of flight direction and camera orientation on the level of this accuracy was also evident. It
can be seen that the best positional accuracy was obtained in the eleventh case (3 cm), in
which the DOUBLE GRID MISSION option of the Pix4Dcapture software was selected to
create the flight plan [17]. In this case, the images were acquired with an acquisition angle
of 70◦, regardless of whether the flight direction was longitudinal or transversal.

Figure 7 shows the plots of X, Y, Z, and the total RMSE values for all eleven cases
(from the first to eleventh cases). This figure shows the significant difference in RMSEs
between the first and other cases, since the first case was based on direct georeferencing,
although the onboard GNSS and IMU were of low quality [18]. For further explanation,
Figure 8 shows the values of X, Y, Z, and the total RMSEs for the last ten cases (from the
second to eleventh cases).
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Figures 7 and 8 show that the most influential part of the RMSEs in positional accuracy
concerned heights (Z-RMSEs) [19]. From the study of all cases, it can be seen that the
Z-RMSEs were strongly influenced by the image acquisition angle and flight direction,
especially when the checkpoints (CPs) were at a high elevation while the ground control
points (GCPs) were at ground level. In this study, the GCPs used for georeferencing,
numbered 2, 7, 12, 15, and 18, were at ground level, and all checkpoints except numbers
4 and 11 were also at ground level. Checkpoints 4 and 11 were located on the roof of the
second floor (about 8 m above ground level). Therefore, these checkpoints had large Z
errors in all cases, especially in cases with longitudinal flight lines and 70◦ acquisition
angles as in case four.

4.1. Positional Accuracy Test Results Depending on Flight Direction

To investigate the effect of flight direction on positional accuracy, all other parameters
were set the same, including the orientation of the camera perpendicular to the ground
at a 90◦ angle; the flight direction relative to the study area was the only variable. This
resulted in three cases (two, three, and six) where the direction of the flight was longitudinal,
transversal, or a combination of both directions. As shown in Figure 9, the results indicated
that when the angle of detection was 90◦, the accuracy obtained with the longitudinal flight
direction (6 cm) was better than that with the transversal flight direction (12 cm). However,
the best accuracy was generally obtained with the combined acquisition of the longitudinal
and transversal flight directions (5 cm).
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On the other hand, if all parameters were set the same and the camera orientation
in this test was set to 70◦, and the only variable was the direction of flight, then there
were three cases (4, 5, and 11). In this case, the accuracy obtained with the longitudinal
flight direction (36 cm) was very poor and the accuracy obtained with the transversal flight
direction (12 cm) was the best compared with the first case (Figure 10). This was due to the
different detection angles (90◦ and 70◦). In addition, the accuracy was still the best when
the longitudinal and transversal flight directions were combined (3 cm).
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4.2. Positional Accuracy Test Results Depending on Camera Orientation

To analyze the effect of individual camera orientation on positional accuracy, all other
parameters were set the same, including the direction of flight longitudinally to the study
area. This resulted in three cases (two, four, and seven) where the camera orientation axis
was taken perpendicular (90◦), oblique (70◦), and both together. As shown in Figure 11,
the results showed that for the longitudinal flight direction, the positioning accuracy of the
vertical acquisition angle (90◦), which was 6 cm, was better than that in the other cases. The
worst positioning accuracy (36 cm) was obtained with an oblique detection angle (70◦). This
difference was very reliable because at an oblique acquisition angle (70◦), the geometric
distortions increased at large distances, as in the case of the longitudinal flight direction.
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Figure 11. The impact of camera orientation (longitudinal flight direction).

On the other hand, if all parameters were set equal and the direction of flight was
chosen as traversing relative to the study area, and the only variable was the camera
orientation, then three cases were obtained (three, five, and ten). The results showed
that the overall accuracy of the three cases in this test was almost the same (12 cm). The
horizontal accuracy was better with a vertical acquisition angle (90◦), while the vertical
accuracy was better with an oblique acquisition angle (70◦) (Figure 12).
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Figure 12. The impact of camera orientation (traversal flight direction).

Figure 13 shows the sparse point cloud, dense point cloud, 3D model, DEM, and
orthomosaic of the study area for the eleventh case.
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Figure 13. Geospatial products for the eleventh case: (a) sparse point cloud, (b) dense point cloud,
(c) 3D model, (d) DEM, (e) orthophoto mosaic.
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5. Conclusions

We investigated the positional accuracy of UAV geospatial products and analyzed the
influences of flight direction and camera orientation on this accuracy. For this purpose,
many sets of DSMs and orthophoto mosaics were created by processing UAV images
without GCPs and then with five GCPs at different combinations of flight directions and
image acquisition angles. In this study, 474 images were acquired from a DJI Mavic 2 multi-
rotary UAV equipped with a Hasselblad camera during three flight missions. The workflow
in this project was conducted using a case study on the west bank of the Euphrates river in
Iraq. The flight altitude was set at 60 m and the overlap in the forward and lateral directions
was set at 75% and 70%, respectively. For the first two missions, the images were acquired
with a vertical (90◦) image acquisition angle, and for the third mission, an oblique (70◦)
image acquisition angle was set.

The calculated root means square errors (RMSEs) in the horizontal and vertical planes
showed that the horizontal accuracy was higher than the vertical accuracy in all cases. This
result supports previous studies that have looked at the horizontal and vertical accuracies
of UAV geospatial data. In this study, it was shown that processing UAV imagery using
a direct georeferencing method for low-cost UAVs resulted in low-accuracy geospatial
data products even at low altitudes. The RMSEs (X, Y, Z, and total) for geospatial data
products in the first case were 1.830, 1.203, 2.885, and 3.622 m, respectively. The indirect
georeferencing approach led to high accuracy, where the RMSEs decreased to several
centimeters. On the other hand, this study found that a fusion of two sets of images
acquired with different acquisition angles and flight directions could significantly improve
positional accuracy. This result was evident from the analysis of the RMSEs (X, Y, Z, and
total) of the geospatial products for the last ten cases. The highest positional accuracy for
these ten cases came from the eleventh case, where the processed imagery, in this case,
combined imagery acquired with a 70◦ acquisition angle with longitudinal flight direction
and imagery acquired with a 70◦ acquisition angle with a transversal flight direction. The
X, Y, Z, and total RMSEs for this case were 0.008, 0.009, 0.028, and 0.031 m, respectively.
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Abstract: The gypsum-anhydrite rocks in the abandoned quarry at Dingwall (Nova Scotia, Canada)
are subjected to physical and chemical weathering, including hydration of the anhydrite, i.e., its
transformation into secondary gypsum under the influence of water. This process is known to lead
to the localized volume increase of the rock and the formation of spectacular hydration landforms:
domes, tepees and ridges. Cavities appearing in the interior of these domes are often unique hydration
caves (Quellungshöhlen in German). For the first time, this paper gives detailed geomorphometric
characteristics of the 77 dome- and tepee-like hydration landforms growing today at Dingwall based
on their digital surface models and orthophotomaps, made with the method of photogrammetry
integrated with direct measurements. The length of hydration landforms varies from 1.86 to 23.05 m
and the relative height varies from 0.33 to 2.09 m. Their approximate shape in a plan view varies
from nearly circular, through oval, to elongated with a length-to-width ratio rarely exceeding 5:2.
Length, width and relative height are characterized by moderate mutual correlation with proportional
relations expressed by linear equations, testifying that the hydration landforms generally preserve
the same or very similar shape independent of their sizes. The averaged thickness of the detached
rock layer ranges from 6 to 46 cm. The size of the forms seems to depend on this thickness—the
forms larger in extent (longer) generally have a thicker detached rock layer. Master (and other) joints
and, to a lesser extent, layering in the bedrock influence the development of hydration landforms,
particularly by controlling the place where the entrances are open to internal cavities or caves. Three
structural types of the bedrock influencing the growth of hydration forms were recognized: with
master joints, with layering and with both of them. The latter type of bedrock has the most complex
impact on the morphology of hydration landforms because it depends on the number of master joint
sets and the mutual orientation of joints and layering, which are changeable across the quarry. The
durability of the hydration forms over time depends, among others, on the density of fractures in the
detached rock layer.

Keywords: anhydrite; gypsum; hydration landforms; weathering; photogrammetry; geomorphometric
analysis; structural analysis

1. Introduction

The hydration forms of relief described in this paper are rare morphological forms
appearing in the weathering zone of gypsum-anhydrite rocks [1–9]. They are more or
less convex in shape and reach up to 2–3 m in height and over several meters in lateral
extension. Their origin is related to the phenomenon of volume increase during hydration
of exposed anhydrite rocks under the influence of surface and subsurface waters [10–12]
(and further references in [13,14]). During this process, which can be called expansive
gypsification of anhydrite [14], the anhydrous calcium sulfate (the mineral anhydrite;
CaSO4) transforms into calcium sulfate dihydrate (CaSO4·2H2O; gypsum) according to the
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reaction: CaSO4 + 2H2O→ CaSO4·2H2O. This reaction can lead to volume increase only if
the system is open, i.e., when the water is added from the outside [11].

The term hydration form was first used by Hunt et al. [3] (p. 6) for characteristic
small-scale forms of relief “unique to karst developed on anhydrite” when “anhydrite
hydrates and is changed into gypsum” and “experiences a 1.557 times increase in volume.”
They described hydration polygons, domes and crusts in Tripolitania province in Libya.
Earlier, hydration domes with internal hydration caves were recognized in the Harz Mts.
region in Germany [15].

The majority of the known hydration forms are created as a result of the localized
hydration of the anhydrite substrate, leading to volume expansion and local uplift of the
surface layer of the rock split of the substrate. These forms commonly show a narrow empty
fissure or cavity inside [6,16–18], rarely are they massive [3,19]. Some empty cavities reach
sizes large enough to be called caves. They are up to 1.5 [5,7] or even 2.3–2.4 m high [4,20],
providing the possibility for an adult man to enter inside. The name hydration caves or
swelling caves (Quellungshölen in German) was proposed for them [15,21–24]. Caves of this
type are very rare in the world [25–27].

The convex hydration forms of the relief were apparently created by expansion of
the rock material taking place locally, very close to the surface. According to Breisch and
Wefer [17], the shape of the forms is generally a product of eccentrically acting compressive
stress within the localized hydration zone. The differential expansion greater at the surface
than in the rock interior causes detachment of the surface layer of the rock and its uplift,
leading to empty dome- or tepee-like hydration forms, including pressure ridges. The
volume expansion of the rock material is led by displacive crystallization of secondary
gypsum, exerting crystallization pressure on the surroundings [14]. It has been recognized
that these processes and expansions leading to the growth of the forms take place not only
within the uplifted layer but also in the nearest vicinity of the forms [4,28].

The hydration forms of relief have a specified origin, shapes and sizes, and occur as
discrete objects on the Earth’s surface. Thus, they show the basic features defining land-
forms [29–31], and as such, they can be a subject of geomorphometric analysis [30,32–35].

Hydration landforms may occur in groups, creating a rare type of morphology, which
can be called a hydration landscape. The discussed forms (as well as the similar weath-
ering forms of the relief—gypsum tumuli [36,37])—can be considered a unique type of
landform characteristic of sulfate karst [38] (pp. 125–126), yet not satisfactorily recognized
and known.

Occurrences of hydration forms and caves have been documented in many places
around the world, both in natural (e.g., Woodward Co. in Oklahoma, Ottawa Co. in Ohio,
Culberson Co. in Texas, and Eddy Co. in New Mexico in the USA, Alberta in Canada, and
Tripolitania in Libya) and artificial exposures of anhydrite rocks [3,4,15–17,19,22,39–50].
However, so far, only four places are known with remarkable amounts of these forms
creating spectacular hydration landscape: most notably at environs of Walkenried at the
south margin of Harz Mts. in Germany [2,4,6,15,47,49,51–53], in the abandoned quarry at
Pisky in Ukraine [13,18,54–60], on the small Alebastrovyye Islands in Russia [5] and at the
abandoned quarry at Dingwall in Canada [6–9,14,48,61]. Among them, the site at Dingwall
in Canada (Figures 1 and 2a–e), studied by the authors, is the largest in number and size
of hydration forms and caves. This permits the investigation of their geomorphometric
features in a statistical way.

During the growth of these landforms, the rock creates a generally convex shape,
described as dome-like, but also tepee-like, triangular in cross-section (tents in [48]) [6,61].
The other authors called them gypsum bubbles due to their predominantly dome-like
shape [6,17,39,48], mounds [5,16], and blisters [42,48], but because of their similarity to
the characteristic low wall-less army tents—also tents or A-tents [48,62]. Based on the
observation of changes in the form shape over time (Figure 2e,f) [7,9], it has been proposed
that the shape of the forms from Dingwall will change from a dome (bubble) to a tepee
(tent [48]), similar to the case of the hydration form called Waldschmiede in Germany [4,49].
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Figure 1. Location of the abandoned gypsum quarry at Dingwall, eastern Canada, along with
Windsor Group. Quarry is divided into the western field (WF), the central field (CF) and the eastern
field (EF). Source of maps: ArcGIS program (Esri, Redlands, CA, USA) and http://maps.stamen.com
(accessed on 25 June 2022).

Figure 2. Cont.
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INITIAL STAGE YOUTH STAGE MATURE STAGE SENILE STAGE DESTRUCTION STAGE 

Figure 2. Hydration landscape and landforms at Dingwall in photographs taken with the use of
UAV (a–c) and digital camera (d,e) and interpretation of their development (f); (a) northern part
of the CF (Figure 1); (b) view of the CF showing form no. 15 with hydration cave named Personal
Grotto (see Section 4.1) with the author (D.Ł.), (a) and (b) photographs were taken on 28 August 2019;
(c) the largest hydration cave, Ramesh Cave seen from above (the authors F.V., A.J., D.Ł. are on the
photograph taken on 21 September 2018); (d,e) sixteen-year morphological evolution of exemplary
hydration dome from mature to destruction stage; note the development of weathering debris from
massive anhydrite bedrock, such as one on which Susanne Vladi is sitting; form without identification
number located 10 m east of the Ramesh Cave (see Section 4.1); (f)—evolution stages of domed (upper
row) and tepee-like (lower row) anhydrite hydration form associated with changes in mineralogical
composition (A–anhydrite, G–gypsum); maximum relative height is indicated by red arrow [57].

An intermediate form similar to both was called the rounded tent [48]. Deformations
formed during gypsification can also take a more diverse, irregular and difficult to define
shape, such as a bridge [18], or elongated forms, such as long ridges, called pressure
ridges [7].

The studied tepee-like hydration landforms represent the morphological equiv-
alent of the well-known tepee structures commonly recorded in carbonate and evap-
orite rocks [63] but differ from them in not forming polygonal ridges but creating
isolated forms rounded in a plan view. Only the elongated hydration pressure ridges
co-occurring with the studied forms are equivalents of the typical tepee structures.
Many tepee-like hydration landforms are similar to granite A-tents or “pop-ups” land-
forms [62,64–66]. On the other hand, the dome-like hydration forms are very similar to
those of the gypsum tumuli [36,37,67].

Hydration forms usually develop on the anhydrite-dominated bedrock, characterized
by varying degrees of coverage by fractures but also with massive structures [4,5,14]. The
fractures are not only the migration path of the fluids, causing the transition of anhydrite
to gypsum and generating the development of forms. They also influence the shape and
orientation of the growing forms. Stenson [48] found at Dingwall that when fractures
are present in the bedrock, “tents” with sharp crests and triangular vertical cross-sections
develop, while in the absence of them, the rock deforms in a more “plastic” way, generating
more rounded forms, such as bubbles or blisters. Near Walkenried, the dependence of
the position and elongation of hydration domes and the accompanying depressions on
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the system of joints have been documented by Reimann [4]. In turn, the elongation of
hydration forms from the Alebastrovyye Islands was found to be generally parallel to the
strike of the anhydrite layers [5].

Lateral sizes of the discussed forms reach values of more than 10 m (Table 1) [2,5,8,18],
in extreme cases of pressure ridges, even 25 m [61]. The largest documented hydration
landform was the Great Dome at Pisky, which has dimensions of 18.1 × 15.5 × 3.0 m, with
an inner cave of 9.5× 7.8× 1.2 m [18,58]. The other large hydration form found in the forest
near Walkenried was Waldschmiede (Forest Forge). Its dimensions in 1933 were 10.0× 7.0×
1.9 m [68] and its inner cave measured a few years earlier was 8.0 × 7.5 × 2.0 m in size [53].
The height of this growing cave was 2.3 m, although their lateral sizes shrunk [1,4,58].
Another hydration form of extraordinary size is the Ramesh Cave in the Dingwall quarry,
with dimensions of 9.95 × 4.10 × 1.32 m [8]. Documented sizes of hydration caves are often
changeable and grow or decrease with time [4,9,49]. A detached rock layer is commonly
from a few cm to several tens of cm thick [5,6,18,51,53,61], and in extreme cases, in side parts
of forms 200 cm thick [9]. The thicker layers, as a rule, occur above the largest hydration
caves [45].

Table 1. Morphometric data of anhydrite hydration landforms (including pressure ridges at Dingwall)
and hydration caves at Pisky, Walkenried, the Alebastrovyye Islands and Dingwall.

Site Name/
Province/
Country

Pisky/
Lviv Oblast/

Ukraine

Walkeried/
Lower Saxony/

Germany

Alebastrovyye
Islands/
Novaya

Zemlya/Russia

Dingwall/
Nova Scotia/

Canada

References [7,13,18,20,28,54–60] [1,2,4,6,7,49,51,68] [5] [6–9,14,48,61]

Number of
documented

hydration forms
99 26 unknown number 69 *

Area with
hydration

relief
200 × 300 m 1300 × 600 m 800 × 150 m 1800 × 1400 m

Range of
dimensions

of hydration forms

length: 0.58–18.1 m
width: 0.32–15.5 m
height: 0.05–3.0 m

length: <10 m
width: 7.0 m
height: <3 m

length: 3–15 m
width: 1–10 m

height: 0.5–1.5 m

length: <25 m
width: 0.8–8.2 m
height: 0.1–2.4 m

Range of
dimensions

of inner hydration caves

length: <9.5 m.
width: <7.8 m
height: <2.4 m

length: <10 m
width: <7.5 m
height: <2.3 m

length: unknown
width: unknown

height: <1.5 m

length: <10.7 m
width: <6.6 m

height: <1.32 m

*—data after Stenson [48].

Until now, the most frequently used methods in the study of hydration forms were
standard geological and geomorphological observations, drawing and photographing.
Measurements of the most important dimensions, such as length, width and height, were
made with a ruler, but also a laser rangefinder. Moreover, the azimuth of elongation was
measured with a geological compass and location was noted by a GPS device [18,48].
Terrestrial photogrammetry was recently used at Pisky, which, in combination with ArcGIS
(Esri, Redlands, CA, USA) and Photoscan (Agisoft LLC, St. Petersburg, Russia) computer
programs, was the basis for supplementary morphometric measurements [57,60]. To
measure the change in the distance between the two points in time, the benchmark method
with metal bolts was used [6,60]. At Dingwall, Stenson [48] applied statistical analysis of
measured geomorphometric parameters of 69 hydration landforms (Table 1), calculating,
inter alia, the average or the minimum and maximum value, and also calculated unknown
parameters on the basis of already determined dimensions. However, Dingwall does not yet
have detailed and comprehensive documentation of aerial and terrestrial photogrammetry
and geomorphometric analysis based on these data.
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Morphometric three-dimensional features, sizes and spacings are crucial for charac-
terizing any landform [29] and also for remote recognition of them both on Earth and the
other planets [30,69]. Hydration forms of relief analogous to terrestrial ones can potentially
be present on Mars [70].

The aim of this paper is to give the geomorphometric characteristics of the anhydrite
hydration landforms from Dingwall. The shapes, sizes and other distinctive morphological
features of these poorly known forms are described quantitatively with the use of pho-
togrammetric and statistical methods of analysis for the first time. Our study is based on the
examination of a relatively large number of forms and supplements to previous information
on this subject. We also attempted to recognize the influence of the structural elements of
the weathering anhydrite bedrocks, such as joints and layering, on the morphology of the
hydration forms and their evolution. The hydration forms from Dingwall are compared
with similar hydration forms and other landforms found elsewhere on the substrate of
weathering anhydrite and gypsum rocks.

2. Study Area

The studied quarry is located on the north side of Cape Breton Island in Victoria Co.,
on the edge of both Dingwall and Cape North villages (Figure 1). The mining of gypsum in
the excavation was carried out by the National Gypsum Company in 1933–1955 [71,72].

The bedrock of the study area consists of Precambrian igneous-metamorphic rocks
intruded by Devonian magmatic bodies with a predominantly granite composition [71,73].
The bedrock is covered with the Carboniferous evaporitic-clastic deposits [71], which
include the Horton Group (Tournaisian) [74] and the Windsor Group (Visean) [71], the
latter exposed at Dingwall quarry (Figure 1). The next younger rocks are Quaternary in
age and are related to the activity of the Wisconsinan ice sheet, lasting from 75 or 65 to
11–10 ka [75,76]. It left the layers of tills lying on the eroded Carboniferous and older rocks.

The gypsum-anhydrite layers in the studied quarry show a variable arrangement. The
data collected in the field and from the available maps [71] indicate that the predominant
dip is in the eastern direction and its value mostly oscillates between 15◦ and 30◦, but also
is horizontal (see Section 4.6.3) [14].

The outcrop is characterized by several meters deep, vertically elongated and narrow
in shape Schlottenkarren (densely packed, funnel-shaped sinkholes draining into vertical
cylindrical shafts [76,77]). According to Moseley [76], they can be either exhumed forms
originating before the ice sheet comes or post-glacial in age. Currently, the Dingwall area is
subjected to intensive karst solution, including the formation of gypsum karren [48,78].

The climate of Dingwall is temperate and cold [14]. According to ClimateCharts.
net [79,80] in the quarry area (34 m a.s.l., based on data from 1901–2019), the precipitation
reaches 1242.7 mm/year with monthly values between 85.8 mm (in July) and 136.6 mm
(in November). The mean temperature is 4.7 ◦C. The coldest month is February, with
an average temperature of −6.7 ◦C, and the warmest one is August, with an average
temperature of 16.4 ◦C.

3. Materials and Methods
3.1. Field and Laboratory Photogrammetric Works

Fieldworks were led during two expeditions in 2018 (10–26 September) and 2019
(15–29 August). We measured all the largest dome- and tepee-like hydration forms with
internal caves and the largest hydration chambers using a laser range finger and tape
measure. Smaller hydration domes and tepee-shaped forms of a few to several tens of
centimeters in height and less than ca. 1.8 m in diameter in a plan view are very abundant
at the site (e.g., see Section 4.1) (Figure 7 in [9]). These as well as badly damaged forms
(Figure 2d,e) and some pressure ridges up to 1 m or more in height were omitted from our
quantitative documentation. We also did not measure irregular detachments of the rock
layers (see Section 4.1) and extensive, almost flat uplifts of these layers, with an extension
of several meters or more.
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Our investigations focused on convex hydration landforms showing significant
sizes—those that attain more than about 2 m in diameter. The basic identification
criteria used for their recognition were as follows: (1) pronounced convex shape, (2) the
presence of a cavity under the rock surface; when this cavity was invisible, then its
presence was detected by the rumble sound during hitting the ground with a hammer.

The hydration forms were recorded by direct measurements and photogrammetric
methods using Unmanned Aerial Vehicle (UAV) and digital cameras. Photogrammetry was
also used to visualize the bottom of the quarry and the individual forms. During field work,
the form was identified with the assignation of a documentation number, its most important
morphometric parameters (Table 2; Figure 3) and the location. The delimitation of the
forms in the plan view was outlined on the basemap of the orthophotomap with the use
of a portable mobile device (Lenovo Yoga Tab 3, Hong Kong, China). Joints and fractures
were measured with a geological compass and distances with the laser rangefinder and the
tape measure.

Table 2. Geomorphometric parameters measured and computed for 74 hydration forms, including
symbol, unit, formula, maximum, minimum and average value, references and frequency distribution di-
agrams (horizontal axis has the same unit as the parameter, vertical axis is the number of measurements).

Name of
Parameter

Symbol, Unit and
Formula (If

Applied)

Maximum–
Minimum;

Average Value
Number of

Measurements References
Simplified
Frequency

Distribution
Diagrams

Length * a (m) 1.86–23.05; 5.25 74
[36] modified;
[67] modified;

[81] modified; [82,83]

Width b (m) 0.92–9.01; 8.38 74
[36] modified;
[67] modified;

[81] modified; [82,83]

Relative height hr (m) 0.33–2.09; 0.83 74 [84] modified

Thickness of
detached layer e (m) 0.06–0.46; 0.21 54 [18,36,64]

Coefficient
of circularity C (–) (a − b)/a 0.04–0.73; 0.33 74 [18,36,67]

Azimuth of
elongation
orientation

Az (◦) 0–176 ****; 84 68 New

Bulge degree B (–) b/hr 1.82–8.58; 4.28 74 [84]

Fracture
density

FD (m/m2)
ΣLs/P *** 0.04–3.38; 0.85 69 [85,86] modified

Length of the
entrance line ** — (m) 0.30–4.52; 1.21 98 New

Azimuth of the
entrance line ** — (◦) 0–177 ****; 92 98 New

Azimuth
of entrance ** — (◦) 0–350 ****; 92 92 [18]

Direction of
maximum lateral

expansion
— (◦) 3–67, 80–115,

130–176 ****; 83 66 [66] modified

*—measurements do not involve small hydration forms with a length less than 1.8 m, **—parameter concerns the
entrance to hydration cavity or cave inside the form, ***—explanations of symbols in the text (see Section 3.2.2),
****—range of the values.
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Figure 3. Morphometric parameters of domed (top left) and tepee-like hydration forms (top right)
with method of measuring and calculation of the thickness of detached rock layer using cross sections
through .las data, presented both on schematic drawings (a) and exemplary DMSs (c), and types
of fractures recorded within hydration landforms including those inherited from master joints (b);
a—length of the form in plan view; b—width of the form in plan view; Az—azimuth of elongation
orientation; e—thickness of detached rock layer; emin—the smallest, measured thickness; emax—the
largest, measured thickness; hr—relative height; hmax—the largest value of elevation within extent
of the form; hmin—the smallest value of elevation within extent of the form. Further explanations
in the text.

The applied methodology of photogrammetric documentation is described in the
previous work of the authors [7], the other papers [87–89], the instructions for the program
used [90] and in the supplementary materials (Figure S1). These works mainly involved
the use of the Photoscan program (Agisoft LLC, St. Petersburg, Russia) based on the
Structure-From-Motion method [89]. The usefulness and effectiveness of the applied
photogrammetric methodology in geospatial analysis have been demonstrated in many
papers (e.g., [91]).

99



Appl. Sci. 2022, 12, 7374

3.2. Methodology of Dataset Analysis
3.2.1. Analysis of Morphology and Morphometry

An orthophotomap and a Digital Surface Model (DSM) were created for every studied
hydration landform involving its surroundings. The forms are most commonly domed
(e.g., Figure 2b) or tepee-like in shape (e.g., Figure 2c). The basis for distinguishing the
tepee-shaped forms is the presence of at least two rock slabs with semi-flat or concave
morphology, raised in place of their contact and leaning against each other, “pressing” each
other from opposite directions, occupying the dominant part of the form, usually in the
middle of it. The dome, on the other hand, has a dominant rounded (convex) shape without
a sharp crest.

The geomorphometric parameters for the characteristics of the studied landforms were
adopted from descriptions of the analogous domed forms of relief: hydration forms [18,48],
gypsum tumuli [36,37,67], drumlins [82,83,92], and granite A-tents [64,66]. Some param-
eters were modified and the new ones were also introduced as described below. The
geomorphometric description of the landforms was carried out during both field and office
work and was adapted to their convex morphology.

During the office work, photogrammetric data and data obtained as a result of their
further processing, such as 3D and 2.5D models [93], orthophotomaps, point clouds with
extension .las and DSMs were collected and elaborated. These works mainly involved
ArcGIS, Photoscan, Excel and Corel Draw X9 programs.

Work in the ArcGIS program (Esri, Redlands, CA, USA) began with the transfer of
the extent line for each of the 74 identified hydration forms to the orthophotomap of the
area (3 forms were excluded from the analysis because of the lack of photogrammetric
data; see Table S1). Based on the extent of the form, lines of the longest axis (length of
the form, a—longer axis; Figure 3) were drawn and measured on the map similarly to
Spagnolo et al. [82] and Maclachlan and Eyles [83], as the longest straight line possible
within the mapped forms area. Then, the width of the form (b—short axis; Figure 3)
perpendicular to the a axis was drawn and measured [82,83]. The crest lines through the
points of maximum curvature of the majority of contours were also marked (Figure 3) [92].

An orientation of the axis a, i.e., elongation of the form, was computed to acquire the
azimuth of elongation orientation Az of every form and, on the basis of these measurements,
to generate a rose diagram. On the basis of the DSM, the Zonal Statistic as Table tool [94]
(pp. 327, 349) was used to measure the values of elevations (in m a.s.l.) marked by hmax and
hmin (Figure 3). Value hmax is the peak at the highest elevation point (usually located in the
middle of the form) while hmin is the lowest elevation point of the hydration form within
its extent. The relative height of form hr is understood as the form altitude range and is the
result of subtraction hmin from hmax (see [84]). This value does not take into account the
hillslope of the terrain surface, which at Dingwall is generally minimal. When the forms
were overgrown with vegetation, the covered part was excluded from the calculation of
relative height.

As part of the statistical analysis realized in the Excel program for all the calculated
parameters (Table 2), a simple linear regression analysis was performed to reveal the
possible regular relationships between these parameters [95]. The regression lines were
generated and the Pearson correlation coefficient was calculated. For the values: a, b, hr, the
regression line was fixed at a point (0,0) in the coordinate system to obtain a more realistic
equation of their mutual dependence. All the values (a, hr, B, C; see below) were used to
create their frequency distribution diagrams (histograms). They were further analyzed in
order to select or distinguish the characteristic groups that best reflect the real state.

The length and width of the hydration forms were used to calculate the coefficient of
circularity (C), characterizing the degree of elongation according to the formula [18,36]:

C = (a − b)/a (1)
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It was calculated in a similar way as the so-called flattening in case of elliptical
objects [67]. For its value closest to 0, the form is the most round; for the value closest to
1, the form is the most elongated. The coefficient of circularity is a parameter analogous
to the elongation (degree of elongation, E), calculated as the ratio a/b often used in the
description of similar forms of relief [81,84]. The relationship between both parameters is
described by the formula:

C = 1 − 1/E (2)

The ratio called bulge degree (B) was calculated as in the case of drumlins [84] by
the formula:

B = b/hr (3)

It was used in order to determine the convexity of hydration forms quantitatively. The
increasing value of the ratio b/hr informs about a higher flattening.

A detached rock layer in the studied forms is characterized by a thickness (e in
Figure 3) measured perpendicularly to the surfaces of this layer, as in the case of the A-tent
landforms [64] or gypsum tumuli [18,36,67]. Based on the field measurements and detailed
cross-sections, its thickness was determined, and when .las data were not available, only
field measurements were taken into account. Cross-sections were made thanks to the .las
format data generated in Photoscan (Agisoft LLC, St. Petersburg, Russia) and analyzed in
the ArcGIS program (Esri, Redlands, CA, USA). The cross-sections were drawn, as shown in
Figure 3, in the ArcGIS program using the Stack Profile tool. Where the rock layer thickens
considerably toward the margin of the form, the thickness measured in these places was
not considered.

Additionally, the orientation of entrances to an internal space or cave of hydration
forms was analyzed. The entrance is defined as breaking the continuity of the detached rock
layer, revealing the interior of the form. Some of the internal spaces of the forms are large
enough for direct adult human exploration and therefore represent hydration caves [27,96],
or, strictly speaking, proper caves sensu Curl [96,97]. On the orthophotomap, the upper
edge of the entrances was commonly seen as a more or less long and straight line (entrance
line; Figure 3). These lines were marked and their orientations were determined to detect
some regularities of their orientations and a possible influence of the structure of bedrock
on entrance formation. Only the entrance lines that show the minimal length of 0.30 m or
more were marked. In cases where the lines were curved, they were approximated to the
straight lines, while in the case of an entrance creating two distinct lines, the azimuths of
both lines were measured separately (see Figure 3). The influence of the bedrock structure
on the development of entrances was examined by tracing the fractures and layering visible
in the quarry and comparing their orientation with the orientation of the entrance lines.
Entrance lines were used to mark the azimuth of the entrance to the cave or cavity as
generally normal to these lines. The azimuths directed out of the internal space of the forms
were calculated and analyzed statistically.

3.2.2. Analysis of Structural Elements

The characteristics of the structural elements included the mentioned layering and frac-
tures. They were documented in order to recognize their relationship with the morphology
of the hydration forms (their elongation, orientation of entrances).

The strike and dip of the gypsum-anhydrite layers were measured directly in the
quarry, and the strike of the layers visible in the bedrock was traced and documented as
lineaments on the orthophotomaps in the ArcGIS program (Esri, Redlands, CA, USA).

Similarly, the fractures were both measured directly and traced using the orthopho-
tomap in the ArcGIS program (Esri, Redlands, CA, USA). Attention was paid to fractures
showing the features of systematic joints and master joints [98]. Traces of such fractures or
joints were recognized on the orthophotomap and marked on areas of the quarry where
they were best seen. The tilt value of these structures was assumed to be vertical or nearly
vertical, based on the direct field measurements and observations. Joints and fractures
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measured in the quarry were analyzed on Angelier diagrams, whereas joint traces on the
quarry bottom were characterized on rose diagrams [99]. The rose diagrams (in the ArcGIS
program using polar plots), unlike the traditional ones, took into account the length of the
fractures, which translated into a more realistic analysis. The description of the fractures
was based on the terms and classifications presented by Peacock et al. [100].

To characterize the deformation a rock has undergone to give convex hydration forms,
we attempted to determine the direction of the maximum lateral (horizontal) expansion
(or extension) within this surface layer (Figure 3) in a similar way as Ericson and Olvmo
(Figure 9 in [66]) designated the direction of extension in A-tens (see also [65]). The maxi-
mum lateral expansion (MLE) was marked as normal to the line of the crest of the form.
The wavy-shaped crests were approximated to straight lines and MLE was assumed to be
normal to this line. In many cases where precise determination of the direction of the MLE
was difficult or impossible, it was marked arbitrary. The relations of MLE to elongation of
the forms were investigated by determining the angles between both directions.

Attention was paid to the fractures occurring on the surface and in the vicinity of the
hydration forms. Their orientations were measured to reveal the influence of master joints
on the development of fractures within hydration forms and in relation to the direction
of MLE [85]. The intersections of fractures were studied to determine the order of their
generation [100,101]. In addition, the surface density of fracture traces [102] in 3D space,
FD, was calculated for every form according to the modified formula [85] and similar to the
trace density formula [86]:

FD =
ΣLs

P
(4)

where:

Σls—sum of the length of the fracture traces within the hydration form surface measured
in 3D (m)
P—surface area of hydration form (m2)

4. Results

The generated photogrammetric models and their survey, taking into account field
observations and statistical analysis of the collected data, provided the basis for morpholog-
ical and structural analyses of the hydration forms. Photogrammetric data include several
good-quality 3D and 2.5D models of hydration landforms (see Figure S1 for more details).
A map of the quarry with marked traces of fractures and layers, as well as the extent of
hydration forms, is a main result of the work (Figure S8). The complete documentary and
statistical data are presented in Supplementary Materials (Table S1, Figures S1–S9), as well
as on video materials available on Youtube.com (profile name: hydration caves), which
present a comprehensive view of the hydration landscape. The photographic and carto-
graphic documentation of the studied hydration forms is presented both in Supplementary
Materials and on the website [103].

4.1. Morphology of the Quarry Bottom

The quarry, divided into three parts: WF, CF and EF (Figures 1 and 4), occupies about
78 ha at an altitude of 0–53 m a.s.l. with the lowest terrain in the EF and south of the CF.
The rocks are very well exposed and only in places covered with low sparse vegetation.
Young trees up to 1.5 m high grow in the oldest parts of the exploitation fields, containing
more weathering debris. Small ponds occur in several places and the EF is partially covered
by periodic wetlands (Figures 4 and S3).

At the end of mining operations in 1955, the bottom of the quarry, mostly cut in
the anhydrite bedrocks, was left generally flatted and remained exposed to weathering.
Hydration domes and ridges (“pressure blisters” and “pressure-ridges”) growing at the
quarry bottom, as well as already destroyed ones, were observed as early as 1969, testifying
to their earlier development [104]. A present-day rough, uneven relief of the rocky bottom
is mainly a product of expansive hydration of anhydrite due to the reaction with waters
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of meteoric derivation. This process has been acting since 1955 and from the 1930s at
the earliest—in places where the first gypsum mining was started. The relief produced
by present-day dissolution (karren, [78]) is of minor importance. The created hydration
landscape dominates in many parts of the quarry (Figures 2, 4 and 5a,b). The large
hydration domes and tepee-shaped forms, with a relative height of above 0.5–1.0 m and
an extension in a plan view up to several and a dozen meters, are the most distinctive
products of expansive hydration. Seventy-seven of these forms were documented, of which
three were only partly measured and did not have photogrammetric records (Figure 4,
Table S1). Within the examined forms and in their vicinities, numerous fractures are present,
including fractures belonging to the master joint system. The formation of new fractures,
evidently younger than the master joints, was documented by photographs (e.g., Figure 4
in [8]; Figure 5 in [9]). They have apparently been formed due to present-day weathering,
including anhydrite hydration [14].

Figure 4. The map of 77 studied anhydrite hydration landforms at Dingwall (source of base maps:
ArcGIS program (Esri, Redlands, CA, USA) and nsgi.novascotia.ca); forms mentioned in the text are
numbered (full numeration is shown on the maps in Figure S3).
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Figure 5. Hydration relief of the Dingwall site; (a,c) part of the quarry bottom with visible bulges,
fractures and a pressure ridge; note unnumbered forms not measured in this study. (b,d) Dome-like
hydration forms with entrances to the inner cave (no. 1) and smaller cavity (no. 2); see Figure 4 for
the location of the forms.

The rock surface of hydration forms is solid but also covered with loose gypsum-
anhydrite weathering debris composed of cm-mm-sized sharp-edged rock fragments [8].
This debris develops relatively rapidly with time, which is very well seen in the photographs
taken several years apart (Figure 2d,e). In the oldest parts of the quarry, initial soil and
vegetation have developed on the debris, forming a several cm thick weathering mantle. In
some parts of the quarry, this weathering mantle (regolith) has been cut by a network of
erosional furrows (Figure S8). Because of the presence of the weathering mantle, debris
and vegetation, the structure of the bedrock is entirely invisible in vast areas of the quarry.

4.2. Distribution of Hydration Landforms

The hydration landforms were recorded only in a few parts of the quarry and were
presented on a topographic map (Figure 4) and a satellite map (Figure S3). The distances
between the forms ranged from less than 0.5 to more than 25 m. Considering the following
three limits of distances—0.5 m, 5 m, and 25 m—four groups were distinguished according
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to the range of a distance between the forms: very sparsely (14%), sparsely (40%), densely
(26%) and very densely (19%) distributed forms (Figure 4). A group is a set of at least two
forms. Two close to each other forms from the CF (no. 1 and 2, Figures 4 and S2) are an
example of a very densely distributed hydration form (Figure 5b,d). The highest number of
forms (31) occurs in the middle of the CF, but they vary, from very sparsely to very densely
distributed (Figure 4).

4.3. Shape and Morphometry of Hydration Landforms

The hydration forms show a diversified shape in a plan view. Most of them are quite
regular and more or less rounded, but some of them are irregular in shape (Table 2). Taking
into account the coefficient of circularity (Table S1, Figure S5), the more regular forms are
divided into round, slightly oval, oval, slightly elongated, elongated and strongly elongated
(Figure 6). The oval and slightly elongated forms constitute 42% of all examined objects,
and 8% of the forms are irregular in shape (7 forms, e.g., Figure 7i). The latter group is the
least numerous (Figure 7b) and has an uncommon geometry without any clear elongation
orientation (Figure 7i, Table S1).

Figure 6. Diagram showing relation of width to length in 74 anhydrite hydration landforms divided
according to hr value and a value, showing the diagram areas for different values of the coefficient
of circularity (a − b)/a, first (Q1), second (Q2) and third (Q3) quartile of a and b value, as well
as showing regression line of the width and length relation for 72 hydration forms (yellow area),
excluding two elongated ridges, supplemented by frequency distribution diagrams of the width and
length. Further explanations in the text.
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Figure 7. Characteristic of the elongation of the hydration forms at Dingwall; (a) rose diagram of az-
imuths of form elongation (Figure 3; N—total number of the forms, I—azimuth interval, M—number
of forms represented by a circle radius); (b) frequency distribution of forms divided into groups
according to coefficient of circularity (Table 2), including irregular forms (Figure 6); (c–i) examples
of variously elongated forms and irregular form presented on orthophotomaps: (c) round form;
(d) slightly oval form; (e) oval form; (f) slightly elongated form; (g) elongated form; (h) strongly
elongated form; (i) irregular form.

The most dominant azimuths of the landform elongation have values of 0–5◦, 15–20◦,
65–75◦, and 140–150◦ (Figure 7a). These dominant orientations poorly coincide with the
orientations of master joints, although these joints create as many as five distinct sets (see
Section 4.6.1). Additionally, direct field observations indicate that, despite the presence
of the characteristic-oriented master joints in the particular parts of the quarry, the forms
occurring there show rather random elongation (Figure S8).

Elongation of the landforms shows oriented relations with direction of MLE and is
perpendicular to it, with an accuracy of ±5◦, in 46% of forms, and parallel to it, with the
same accuracy, in 29% of forms.

The relationship between landform elongation and the strike of layers is unclear.
There is a certain convergence of dominant orientations of elongation and layering in
several hydration forms, e.g., in the southern part of CF. In places, the traces of strike are
perpendicular or at some acute angle to the elongation of the forms (Figure S8).
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The measured lengths of the landforms range from 1.86 to 23.05 m (Table 2, Figure 6).
The measurements clearly showed that the longer the forms, the less frequently they occur
(Figure 6). From the length frequency distribution, the limits of 4 and 8 m were established,
situated in intervals of occurrence of low frequency length values, as the most closed to
natural limits for dividing the forms according to sizes into the following groups: the
small, the medium-size, and the large forms (constituting 34%, 57% and 9% of all the
objects, respectively; Figures 6 and S5). Among the 74 measured hydration forms, the
largest (longest) form is 23.05 m in length and up to 8.02 m wide (no. 17, Tables 2 and S1,
Figures 4 and S2). It stands out from the others with its strongly elongated shape, the
morphology of a pressure ridge, a tepee-like shape in cross section, and an outstanding
relative height of 2.08 m. On the other hand, the shortest documented form is 1.86 m
long and has almost the lowest relative height of 0.35 m. It is a form with a distinct tepee
shape and characteristic concave bending of detached layers (no. 66, Tables 2 and S1,
Figures 4 and S2).

According to general shape, 52 dome- and 25 tepee-like forms were distinguished,
representing 67.5% and 32.5% of all the studied objects (Table S1).

The relative heights of the landforms range from 0.33 to 2.09 m (Table 2), and half of
the recorded values range from 0.56 to 1.05 m. Again, using the frequency distribution of
the relative heights, two limits of 1.0 and 1.5 m were determined within the low-frequency
intervals on the histogram, and considering these limits, the forms were classified into
three groups: the low forms (72%), the medium height forms (22%), and the high forms
(7%) (Figures 6 and S5). The highest hydration form shows a relative height of 2.09 m
and is characterized by a domed shape (no. 49, Figures 4 and S2, Table S1). Such a large
height of that form corresponds to the largest area of the internal cave, 29.4 m2 (the Damian
Cave [61]).

The width of the landforms appears to change proportionally to their length, except
for the most elongated forms represented by the two pressure ridges (no. 3 and no. 17,
Figure 6). Similarly, the relative height seems to change proportionally to both the length
and width of the forms (Figure S6). The linear correlation between the discussed parameters
can be expressed by the following equations, characterized by relatively large values of
correlation (Pearson) coefficients (r), indicating moderate correlation (Figures 6 and 8) [95]
(p. 529).

b = 0.67a (5)

hr = 0.16a (6)

hr = 0.23b (7)

Figure 8. Correlation coefficient r for relations of relative height with length and width and also for
the relationship between length and width computed for 74 anhydrite hydration forms.
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Stenson [48] obtained the best correlation between the height and the width of the
forms (expressed by the ratio height/width ≈ 0.16, n = 69). Our data suggest the best
correlation between the length and the width (Figures 6 and 8).

The frequency distribution of b/hr ratio shows that the average bulge degree of the
studied forms is 4.28 (Table 2, see Figure S5). This parameter has an exceptionally high
value of 8.58, indicating the least convex form, with a relative height ca. eight times less
than its width (no. 68, Figure 9a, Table S1). In spite of its flatness, this form has an internal
hydration cave, which is a proper cave with a proper entrance sensu Curl [96,97,105], i.e., an
open cavity large enough to crawl inside by a man. On the other hand, the lowest value of
bulge degree 1.82, indicating the greatest convexity, is recorded in the typical tepee-shaped
form with a relative height of only ca. two times less than its width and created by two rock
slabs leaning against each other (no. 15, Figure 9b and Figure S2, Table S1). This strongly
bulged form also currently has an internal cave (in 2019), reaching 1.27 m in height (the
Personal Grotto, Figure 9b). The height of this cave continues to rise (Figure 13 in [9]).

Figure 9. Anhydrite hydration landforms with extreme values of bulge degree (b/hr ratio); (a) form
no. 68 with the highest value of bulge degree visible on the 3D model; (b) form no. 15 with the lowest
value of bulge degree. See Figure 4 or Figure S3 for the locations of these forms.

Generally, it can be noticed that, on average, the tepee-shaped forms have a slightly
higher convexity (average b/hr is 3.69) than dome-shaped forms (average b/hr is 4.51; see
Figure S5). The degree of bulge does not correlate with the length of the forms in a linear
manner (Figure 10a). Such a correlation is also weak between bulge degree and width
(Figure 10b) and bulge degree and coefficient of circularity (Figure 10c). Generally, it is seen
that the higher convexity is reached by forms with a smaller length (Figure 10a), and the
lower bulge degree by forms with a smaller width (Figure 10b).

Figure 10. Cont.
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Figure 10. (a–c) Dependence of bulge degree on length (a), width (b) and coefficient of circularity
(c) of the anhydrite hydration landforms (Figure 3); (d) dependence of thickness of detached layer
on length of the hydration forms. Diagrams (a,b,d) take into account the size groups of the forms
according to length of the long axis a and diagram (c) takes into account the groups of the forms
according to coefficient of circularity.

4.4. Detached Layer

The averaged thickness of the detached and uplifted gypsum-anhydrite layer for
54 hydration landforms ranges from 6 to 46 cm, with an average value of 21 cm
(Tables 2 and S1, Figure S4). It is generally observed that the greater the length of the
forms, the greater the thickness of detached layers (Figure 10d). There is no visible differ-
ence between the thickness of the detached layer in the tepee- and dome-shaped forms.

4.5. Inner Cavity

Documented internal cavities of the studied 74 hydration landforms involve 48 proper
caves, including 43 caves with a proper entrance [96,97]. The other cavities are too small to
be a proper cave or cannot be verified whether they are such caves because of restricted
access to their interior. The lengths of the documented 47 caves and cavities are from 0.70
to 8.87 m, and the range of the heights is from 0.28 to 1.35 m (data from 2019, in 2008 the
length of the Ramesh Cave was larger—its floor space was ca. 10.7 × 6.6 m and it was
1.10 m high, which makes this cave the largest known hydration cave in the world) [8,61].
The largest cavities were identified in domed forms; the tepee-shaped forms had a relatively
smaller inner space. The ceiling is generally flat, with a slightly rugged surface, but it also
shows fractures and thin protruding rolled rock layers. Larger rock fragments fell from
the ceiling, crystalline gravel derived from the till and leaves cover the bottom. Caves are
predominantly opened only from one side; rarely, they have two entrances (Figure S2).
Inlets leading to several caves are too narrow for an adult man to crawl inside.

The entrance lines (with the minimal length ≥0.30 m) were determined in 69 of the
74 hydration landforms (Figure 11). The length of the entrance line marked on the map
(in six cases—two distinct lines) ranges from 0.30 to 4.52 m (Table 2). A single entrance
documented by the entrance line occurs in 48 forms, two entrances appear in 20 forms and
three entrances in one form. They lead both to proper caves, enabling humans to enter, and
to smaller cavities.
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Figure 11. Morphometric features of entrances to hydration caves and cavities and their relation to
master joints and layering; (a–d) exemplary anhydrite hydration landforms showing parallelism of
the entrance lines (Figure 3) with master joint system (a), layering (b), and fractures within form
related neither to master joints nor layering (c) and the form with lack of any regular relations
between entrances and above features (d); (e,f) rose diagrams of the orientation of the entrance lines
(e) and directions of the entrance (from inside the form to the outside) (f) with red arrow symbolizing
dominating azimuths (N—total number of the forms, I—azimuth interval, M—number of forms
represented by a circle radius); (g) rose diagram of the values of angles between entrance lines and
directions of MLE (Figure 3); (h)—frequency distribution of entrances according to coincidence (more
or less common orientation) of entrance lines with listed linear features and to lack of any visible
relations with these features (irregular). The master joints and layering in the vicinity of forms
illustrated in (c,d) are seen in Figure S8.

In 23% of cases, the entrance line coincides with some master joints in the vicinity of
the form and in 21% with layering (Figure 11h). However, entrance lines are also more
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or less parallel to the other fractures, probably generated mostly by expansive hydration
(Figure 11h). The rose diagram of entrance lines azimuths points out two dominant
orientations: more common 100◦ and less common 173◦ (Figure 11e). The former orientation
appears to coincide with the master joints set A (Figure 12a–c,e,f) and the latter with the
common strike orientation (Figure 11d,f). Many entrance lines are irregularly oriented
(Figure 11d,h). Azimuths of the directions of entrances are variously spread out, but the
north direction is the most numerous (Figure 11f).

Figure 12. System of master joints recorded in the quarry at Dingwall; (a) joints measured in bottom
and walls of the quarry within area marked by green rectangle (shown on Angelier diagram, upper
hemisphere; upper left, N—number of measurements) and joints traces documented in particular
parts of the quarry (shown on rose diagrams numbered 1–5; N—total number of fractures, L—total
length of fractures, M—maximum length of a circle radius) together with dominant direction of
layering; (b–f) fragments of the orthophotomap showing characteristic sets of joints A–E documented
in particular parts of the quarry marked on figure (a); each set is marked with the same characteristic
color on the map and in circles at bottom right. Note the rotation of main joint set A across the quarry.
In all the figures (a–f), north is in the same orientation as in figure (a); *—data after Neale [71].
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Most commonly, the entrances have opened with entrance lines parallel to the MLE,
which means that they are simultaneously perpendicular to the crests of the forms (Figure 7e).
In some cases, the entrance line is oblique or rarely perpendicular to that direction
(Figure 11g).

4.6. Fractures and Layers
4.6.1. System of Master Joints and Fractures

Within the entire quarry, more than 754 fractures and traces of fractures were doc-
umented as lineaments and most of them represent joints (Figure S8). Well-developed
systematic joints with an approximate vertical orientation were identified in six areas
(Figure 4). These joints appear at a distance from ca. 0.5–2.0 m up to 10.0 or more meters
(Figures 5a,c, 11a and 12). Twenty-seven joints and fractures were measured directly in
the quarry (Figure 12). Azimuths of joint traces show significant similarity in orientation,
permitting recognition of three main sets A, B and C and two less pronounced sets D
and E (Figure 12). From one to four of these sets were observed to occur together in one
place (Figure 12b,c,e). Joint set A (red in Figure 12) is commonest and has changeable
azimuths and an average acute angle in relation to set B (dark blue line). The fractures
measured in the north of the CF (Figure 12a, upper left) are mainly equivalents of joint sets
A and C recognized in this part of the quarry (areas 1 and 2; Figure 12a). The joint system
tends to cut the layering at angles of 40–90◦, except in the northernmost part of the quarry
(Figure 12a).

4.6.2. Fractures of Hydration Forms

Fractures in the detached rock layer cut it at right and oblique angles or parallel to its
top or base. They represent both extension and shear types occurring with the opening
between fracture walls and without any space-separating walls. The landform surface is
dominated mainly by transverse fractures parallel to the MLE direction, as well as lon-
gitudinal, equally frequent ones perpendicular to this direction (Figures 3b and 7c,e,f).
Irregular fractures (oblique to the MLE direction, Figure 3b) occur in a smaller amount than
the abovementioned ones, but they can still be found in 34 of the 74 investigated forms.
Spherical (Figures 3b and 5a,c) and radial fractures (form no. 22, Figure S2) are by far the
least common. Spherical fractures are associated with the effects of spheroidal weather-
ing of anhydrite blocks subjected to hydration [14], described elsewhere as “cannonball”
structures [106].

The presence of joints cutting the forms and continuing outside of them representing
the above-described sets A–E are characteristic of 28 of the 74 examined forms. Such joints
are excellently visible in the exemplary form in EF (Figures 11a and S8).

The surface density of fractures in the detached rock layer (recorded in 69 forms;
five forms were without visible fractures) ranges from 0.04 to 3.38 m/m2 (Table 2,
Figures 13 and 14b). The areas of the quarry with the large impact of the master joints
are characterized by a higher FD value compared to other areas (Figure 13). For all the
hydration landforms, regardless of whether they are connected with master joints or not,
the density of fractures is only slightly larger for the tepee-shaped forms than for the
dome-shaped ones (Figure 13). The highest average FD is recorded in the SW part of the
EF influenced by the master joint system, where one form is characterized by a plentiful
amount of fractures and the largest recorded FD of 3.38 m/m2 (no. 67, Figures 4, 13 and S8;
Table S1).
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Figure 13. Fracture surface density FD for 74 anhydrite hydration landforms taking into account
dome-like shape (circle symbol) and tepee-like shape (triangle symbol), relation to master joints
(claret color), lack of relation to master joints (blue color, further explanations in the text) and location
in the EF of the quarry (yellow color). Average values of FD are presented for both particular groups
of forms and for all forms (n—number of measurements).

Figure 14. Dependence of surface density of fracture traces on thickness of detached rock layer
(a) and on length of form (b), taking into account size classification of landforms according to length
of axis a (Figures 3 and 6).

For 48 hydration landforms with measured thickness of detached layer, the density
of fractures is variable, both very large and modest (Figure 14a). The lower FD values
are usually connected to greater thickness. For a thickness lower than or equal to 20 cm,
the surface density can attain as much as almost 3 m/m2, but if the thickness is higher
than 20 cm, then this density does not overpass 1.66 m/m2. Additionally, the relationship
between FD and the length of forms indicates that the smaller forms attain a higher fracture
density (Figure 14b).

4.6.3. Strike and Dip of Layers

Traces of layering seen on the surface of the bedrock were documented as lineaments
on the orthophotomap of the quarry bottom. Because the surface of the bottom is approxi-
mately horizontal, these traces represent strikes of the layers quite well. In some places of
the bedrock, the layers are not visible because of the cover of weathering debris (e.g., in
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surroundings of forms no. 24–28, 58 and 61 in NW part of the CF). Where seen, these
traces are often oriented in one generalized azimuth but also run in a wavy manner, rapidly
changing the orientation or even forming closed, oval structures (Figure 11d) [14,57]. The
rose diagrams of the azimuths of the strike lines (lineaments) were created separately
for eight parts of the quarry (Figure S8). The diagrams demonstrate that the dominant
azimuths of strike are in the ranges of 16◦–48◦ and 147◦–172◦. The dominant dip is to the
east (Figure 12) [71].

4.7. Morphological Relationships and Structural Characteristics of Hydration Forms
4.7.1. Distribution

The expansive anhydrite hydration causes numerous and variable rock deformations
at the bottom of the quarry. The accomplished observations demonstrate that the formation
of the most distinctive convex hydration forms analyzed in this paper takes place rather
in a non-uniform and irregular manner throughout the area, which is the opposite way of
many ordered natural landforms, such as drumlins, patterned grounds, dunes or ripples
showing regular spacing (e.g., [29,107]). In contrast to the ordered forms, the distribution of
hydration forms is very variable; they occur with different densities throughout the quarry.
Such a way of distribution, also noted in the other occurrences of dome- and tepee-like
hydration landforms (Pisky, Walkenried), is not easy to explain. It seems that most of
all, it is related to the features of anhydrite rocks controlling the anhydrite gypsification,
which was discussed in a separate publication [14] but also to the topographic condition
influencing the water migration paths.

4.7.2. Sizes

The values of the basic morphometric parameters for the 74 forms (length, width, rela-
tive height) show a relatively good (“moderate” [95]) mutual correlation for the relations:
hr − a, hr − b, and a − b, characterized by simple Equations (5)–(7) (see also [48]). Such
correlations suggest that the studied landforms, irrespective of their size, show fixed pro-
portions of the mentioned parameters. Therefore, as in the case of the gypsum tumuli [36],
their morphological evolution appears to follow the same or similar simple rules. In terms
of shape, they are thus relatively regular landforms “printed” in the landscape, with nearly
the same fixed proportions of the basic morphometric parameters (compare [84] p. 189).

The recorded variability of the measured basic dimensions can be explained by asyn-
chronous initiation of the form growth, i.e., different ages of the forms [48]. Stenson [48]
also supposed that the size of the forms depends on the depth of anhydrite hydration.
Many of the studied objects represent so-called non-equilibrium landforms, i.e., landforms
that are still growing or decaying [29]. Such forms usually show broader size ranges than
more “stable” equilibrium forms, such as bedforms.

The dome- and tepee-like hydration landforms from Dingwall show specified vari-
ations in size and shape. They are limited in size, which is a characteristic feature of any
landform defined as a discrete object [29,30]. We do not have quantitative data for the
determination of their lower size limit, but it seems to be a few tens of centimeters or less
(Figure 7 in [9]) [48]. Their maximum length attains ca. 23 m, a maximum width—ca.
9 m and a maximum relative height—slightly over 2 m. The large forms are, however,
distinctly relatively rare, which is a typical feature of the majority of landforms [29]. Small-
and medium-size forms with lengths in the range of 1.8 to 8.0 m are the most common
and constitute 90% of the studied forms. A similar frequency distribution of lengths of
hydration forms, with evidently rare larger forms, was documented at Pisky [57].

The basic dimensions of the hydration landforms at Pisky, Walkenried, Dingwall and
the Alebastrovyye Islands sites are very similar. As evidenced by the ranges of their lengths,
they reached a maximum value of more than 10 and even 20 m (Table 1). Heights are also on
the same scale, reaching 2–3 m. In this regard, dome- and tepee-like hydration landforms
are evidently globally scale-specific [29], although this conclusion is based on limited data
from only fourth sites on Earth. A worldwide similarity of these hydration forms in sizes is

114



Appl. Sci. 2022, 12, 7374

also present within the thickness range of the detached rock layer, which is from a few cm
to nearly 50 cm at Dingwall and Walkenried [2,4], also in the Alebastrovyye Islands, as
indicated by the drawings of forms [5], but at Pisky the thickness exceeds 50 cm in some
cases reaching over 100 cm [18,58]. The slight differences in size parameters between
the forms from the four discussed sites (Table 1) presumably reflect the environmental
differences between the particular localities. Thus, the hydration forms at these sites are, to
some extent, regionally or locally scale-specific [29].

4.7.3. Shape

During the development of hydration landforms, the rock layer rising on the bottom
of the quarry creates a variety of shapes in a plan view, which were approximated to round,
oval and elongated. The irregular shape formation in a plan view is manifested in a curved
or even winding course of the erected rock and the formation of three arms, the crests of
which do not give an unambiguous orientation to elongation.

Among the studied landforms, dome-like shapes, characterizing 2/3 of all the forms,
predominate over the tepee-shapes. Stenson [48] distinguished blisters (domes), rounded-
tents and A-tents (tepees) at Dingwall. We have found, however, that it is difficult to
distinguish between the blisters and the rounded-tents and have classified both forms as
dome-like forms according to the introduced criteria. Nevertheless, our almost 20 years
of study of the site have revealed changes in the domed to tepee-like shape, as Stenson
did [48]. However, we also noticed the constant domed shapes of many hydration forms
during the same period of evolution.

The values of bulge degree (b/hr) are variable. On the basis of the realized research, it
appears that the tepee-shaped forms are characterized by the lower value of b/hr, being
more privileged to create steep surfaces and lift the top up. This, in turn, may indicate
that the tepee-shaped forms could be created as a result of the action of larger expansive
gypsification deforming the rock or deeper hydration, as supposed by Stenson [48].

Orientation of the crest line and direction of the MLE supply information on the way of
creation of the particular hydration landforms and, among others, on the formation of their
shape (reflected by the mentioned morphometric parameters). They provide information
on the method of deformation or strain, which is mainly dependent on the place and course
of anhydrite hydration and thus on the petrological structure of the bedrock [14]. In the
later stages of the discussed landforms’ development, the hydration and volume increase
have apparently been concentrated in the vicinity of the erected forms within which, at
that time, the hydration processes have slowed down [4] (Figure 15 in [9]) [28,49]. In the
case of the studied landforms, particularly those with the tepee shape (Figure 3, right),
the centers of accelerated volume expansion were located near the forms, somewhere on
their opposite sides, indicated by the MLE direction. Such forms have risen by pushing
the detached rock slabs against each other just from these opposite sides in a way similar
to buckling [98]. The centripetal displacements of the rock slabs are well documented in
the case of such tepee-like forms (Figure 43 in [4]) (Figure 6c–e in [9]) [49] proving this
interpretation. Restoration of the course of the deformational processes is, however, not a
subject of this paper devoted to the morphometric characteristics of hydration landforms.

4.7.4. Entrance to Internal Caves or Cavities

Entrances to the internal cavity of elevated hydration landforms are quite a common
feature. They allow access to the interior of hydration forms and, in the case of 43 cavities
being proper caves [96,105], entry and direct examination. The entrance within a detached
rock layer was opened by the collapse or uplift of a part of the rock, commonly along with
the flat fractures visible as a straight line in a plan view (Figures 2d and 11d). Many of
these fractures existed before the uplift of the layer and represent some joint sets developed
in the bedrock. This is clearly evident from the parallel orientation of many entrance lines
and such joints (like set A) and also directly from the continuity of the fracture forming the
entrance line with the joint in the bedrock near the form. These older fractures have easily
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been widened or opened during the growth of the form, particularly due to the differential
movements of the disconnected fracture walls and blocks on opposite sides of the fractures.

Moreover, the same orientation of the entrance lines and layering suggest that the
fractures responsible for the creation of the entrances easily opened along with the bedding
of the bedrock. Indeed, some newest fractures opening recently in the weathering anhydrite
rocks are parallel to the layering (Figure 5b–d in [9]) and minor fractures parallel to the
bedding are also noted (Figure 5i,l in [14]). However, it is remarkable that one-third of the
entrances have been created in an irregular manner. Such entrances prove it difficult to
recognize factors influencing their orientation and origin. Thus, many entrances have been
created without a clear connection with the bedrock structure. Simultaneously, the entrance
line is predominantly parallel to the MLE direction, which informs about the expected
orientation of the inlets to the inner cave or cavity (Figure 11g).

The formation of single or two entrances to the cavity progresses from both the
marginal and central parts of the forms, as in the case of gypsum tumuli landforms in the
Sorbas region in Spain, where erosion is an important factor in broadening small inlets to
the size of a large entrance [36,37].

4.7.5. Relation to Gypsum Tumuli

The origin of gypsum tumuli is not related to anhydrite dissolution and succeeding
gypsum crystallization, but solely to the crystallization of secondary gypsum after gypsum
dissolution within weathering gypsum rocks taking place in an arid or semi-arid climate
or microclimate [36,37,108]. Morphologically, gypsum tumuli are generally domes similar
to many anhydrite hydration landforms; however, they form tepee-shaped forms either,
although much less frequently [37]. Researchers of gypsum tumuli in the Spanish region of
Sorbas have recognized their maximum length up to 11.7 m [67], whereas in Sicily, up to
11 m [109] or 15 m [108], which is similar in value to the size of hydration forms. Similar to
hydration landforms, the largest gypsum tumuli are less common. On the other hand, both
hydration forms and gypsum tumuli have similar small dimensions in a plan view—a few
tens of centimeters [37].

The significant morphometric difference between the hydration landforms and gyp-
sum tumuli, as noted earlier [36,48], is a different height, determined as a maximum of
1.30 m for gypsum tumuli, which is significantly less than the 2.09 m recognized for the
forms at Dingwall, ca. 3 m at Pisky [18,60] and 3 m for the Waldschmiede in Walkenried [4].
The difference between the maximum height of the tumuli and the hydration landforms
is even larger, taking into account that the reported “height” of gypsum tumuli is not a
real relative height but the distance measured from the bottom of the internal cavity to the
top of the form [67]. The other morphometric difference is the higher convexity reached
by hydration landforms, reflected by the ratio of elevation (relative height) to their lateral
dimensions [36] (p. 927). There are also some differences in the shape of both forms related
to different mechanisms of volume expansion and potentially higher volume increase and
more complicated deformations in case of anhydrite hydration (resulting, e.g., in a higher
steepness of side parts of the mature hydration forms such as Waldschmiede, the Great
Tepee from Pisky, or some forms from Dingwall) [1,4] (Figure 6b,d in [9]) [18,49,61]. Some
other structural differences between anhydrite hydration landforms and gypsum tumuli
were noted by Calaforra and Pulido-Bosch [36].

4.7.6. Structural Characteristic

Stenson [48] recorded at Dingwall large hydration landforms (>2.0 m) with thicknesses
of detached layer <10 cm and also small forms (<1.0 m) showing a thickness of >35 cm
and concluded that the thickness depends neither on the size nor on the type (blister or
tent) of hydration forms. Our data suggest, however, that the size of the forms depends to
some extent on this thickness—the landforms larger in extent (longer) have a remarkably
thicker detached rock layer (Figure 10d). The same rule was recognized very clearly in the
gypsum tumuli [36,67]. The larger thickness of the detached layer may be related to deeper
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localized hydration. Herrmann [45] believed that the greater the thickness of the detached
layer, the greater the hydration cave.

The surface of hydration forms is commonly strongly fractured, and the majority of
fractures are evidently the result of expansive anhydrite hydration. They formed during
the growth of the landforms, when rock slabs rise up, deform, bend, break and push against
each other. However, as proved above, some fractures have been evidently inherited from
the joint system in the bedrock, occurring in the place where the hydration form is now.
These joints commonly widened during the rise of the detached rock layer. The master
joints significantly contribute to a greater density of fractures, recorded, e.g., in the EF (see
Figure 12). It was demonstrated that with decreasing fracturing, the dimensions of forms
increase, both in length and height (see Figure S3). This feature is related to the strength of
the rock, which is significant when the rock is not fractured and weakens as soon as it is
more fractured. The hydration forms densely covered with fractures, as rocks documented
worldwide [110] are more prone to erosion and rapid transition into the destruction stage.

In addition, the density of fractures generally decreases when the thickness of the raised
layer increases (Figure 14a), just as in the case of joints in sedimentary rocks, where the joint
spacing increases with the rise in thickness of the rock layers [111,112]. In addition, contrary
to Stenson’s [48] opinion, fractures have been formed just as easily within both domed and
tepee-shaped forms because both of them have a similar number of fractures (Figure 13).

4.8. Bedrock Structure Impact for Hydration Forms

Our observations suggest that the morphology of hydration forms at Dingwall is depen-
dent on the structure of the anhydrite bedrock (Figure S9). In particular, the location of the
entrances to the inner cavities and the way they have been opened are strongly dependent
on the structural features of the rocks, such as master (and other) joints and layering. These
features, the presence or absence of joints and layering, and surface fracture density appear to
be the important factors controlling the development and structure of the hydration landforms
at Dingwall. In general, three structural types of bedrocks can be distinguished, involving
both master joints and pronounced layering, or one of them (Figure 15a–c).

Figure 15. (a–c) Three structural types of bedrock influencing the development of hydration land-
forms. Note that the location of the entrances to hydration cavities and caves is determined by the
presence of master joints and/or layering in the bedrock. Further explanations in the text.
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4.8.1. Master Joints

These joints were present in the rock layer before they underwent detachment and
uplift. The joints forming particular sets cross-cut, causing that the bottom of the quarry
is usually divided into segments with triangular, rhombic or polygonal contours (e.g.,
Figure 11a) (Figure 1e in [14]). The presence of these blocks significantly influences the
structure of the developing hydration landforms, fracture density and fracture orientations.
Rock within the range of the form at the beginning of its uplift inherits older fractures or
joints (Figure 3b). They affect its strength and cause distortions of the layer separated from
the bedrock. Such distortions are mainly manifested by the collapse of fragments of the
elevated rock, along with inherited fractures and the formation of entrances to the internal
cavity. The collapse may occur along two fractures (joint sets) intersecting at a certain angle
and creating segments (Figure 15a,c). Movements along the fracture surface may also lead
to an uplift of the rock layer on one side of the fracture; on the other side, the rock may
remain lower.

New fractures are also generated by expansive anhydrite hydration connected inter
alia with the direction of MLE, affecting the development of landforms and their morphol-
ogy (Figure 3b). These fractures—not related to earlier masters and other joints—are also
the reason for weakening the strength of the rock layer. They equally favor the direction
and location of rock detachment and uprising, and they are also a place for the formation
of entrances to the inner cavity (Figures 11d and 15a).

4.8.2. Strike of Layers

Another impact on the morphology of hydration landforms is the strike of the rock
layers. Observing its azimuth, it could be supposed that a similar orientation has some
entrances to the internal cavities of the growing landforms (entrance lines; Figure 3) and
also fractures within them. Moreover, in some cases, the orientation of the layers seems
to control the azimuth of the elongation of the discussed forms. These observations lead
to the conclusion that the strike of rock layers guides both the shape and orientation of
the hydration landforms (direction of their elongation), as in the case of the site at the
Alebastrovyye Islands [5], but in the study area that impact is less pronounced (Figure 15b).

4.8.3. Master Joints and Strike of Layers

The occurrence of both master joints and prominent layering in the bedrocks influences
the development of hydration landforms even more (Figure 15c). The joints increase the
fracture density, determine the structure of the growing form and affect the orientation
of the entrance to the cavity. The strike of the layers can also influence the direction of
elongation of the form. However, the influence of these factors is more complex and hardly
predictable because it depends on the number of master joint sets (from 1 to 4), as well as
the mutual orientation of joints and layering, which are changeable across the quarry.

5. Conclusions and Final Remarks

It was demonstrated that expansive hydration of anhydrite during the weathering of
these rocks leads to the creation of peculiar convex landforms characterized by defined
sizes and shapes. Such landforms studied in the abandoned gypsum quarry at Dingwall
have developed for more than 65 years, counting since the time of anhydrite bedrock
exposure, i.e., longer than the growth of hydration forms at the Pisky site and much shorter
than at the Walkenried site, where the hydration continues for more than 300 years [52].
At present, the majority of the studied landforms (estimated at about 91%) seem to be in
the mature or senile stage of development (Figure 2f). 62% of them have internal proper
caves [96,97], being a unique speleological object known as hydration or swelling caves.
Among them is one of the largest hydration caves, measuring 10.7 × 6.6 × 1.10 m.

The landforms from Dingwall, similar to the other mentioned sites, are characterized
by defined sizes and shapes. The two basic shapes include dome-like, dominating and
tepee-like, less frequent; the latter is defined by a sharp crest. In a plan view, the landforms
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vary from circular through oval to elongated in shape, with length (a) to width (b) ratio
rarely exceeding 5:2 (Figure 6). These shapes are an idealized approximation of the real
shapes, which are commonly irregular and complex and difficult to define and classify,
particularly in the case of “senile” forms undergoing destruction.

The sizes of the studied landforms are limited. Most commonly, they are 1.8–8.0 m
in length (90% of forms). The lower limit of length was not determined precisely, but
presumably is a few tens of centimeters. The upper limit is 23 m, and as a rule, the longer
the form, the less frequently it occurs. The relative height ranges from 0.33 to 2.09 m and
is 0.83 m on average. The frequency distribution of sizes (length, width, relative height)
confirms the general rule observed in the dimensions of many landforms characterized
by “large numbers of small values and smaller numbers of large ones” [29] (p. 62). All of
the obtained histograms appear to show right-skewed distributions, although the smallest
sizes were not documented (Figure 6, Table 2).

The size of the hydration landforms depends mainly on the thickness of the detached
rock layer—the thicker the layer, the larger the hydration form.

The length (a), width (b) and relative height (hr) for the majority of forms overall
show proportional relations, testifying that the hydration landforms preserve generally the
same or very similar shape independent of their sizes. The relations between these basic
parameters can be expressed by the following equations: b = 0.67a, hr = 0.16a, hr = 0.23b;
with correlation (Pearson) coefficients (r) of 0.77, 0.75, and 0.63, respectively, indicating
moderate correlation.

The convexity of hydration landforms was characterized by a b/hr ratio—bulge degree.
It ranges from 1.82 for the most convex forms to 8.58 for the least convex forms. According
to the average value of this parameter, the domed forms are slightly less convex than the
tepee-shaped ones.

Maximum lateral expansion, measured normally to the approximated crest line of the
landforms, provides information on the strain responsible for the creation of their convex
shape. Simplifying informs us about the direction of dominating “forces” pushing up
or buckling the detached layer. Although MLE was most commonly normal or nearly
normal to the elongation of the forms (46% of them), quite often, it was parallel to the
elongation (29% of forms; Figure 7d,g). It can be concluded that the centers of accelerated
greater volume expansion (crystallization of the secondary gypsum) were presumably
located at sites near the erected forms, situated as a rule normally to their elongation or,
less commonly, along this direction.

The development of hydration landforms depends on the structure of the bedrock
on which they occur. The joint system present in the bedrock is inherited by the growing
landforms—master joints are recognizable on almost half of the hydration forms. These
earlier fractures determined the way of opening the entrance to the inner cavities or caves
and weakened the stability of the lifted layers.

The layering in the massive bedrock without joints may control the orientation of both
the landform elongation and the entrance to the internal cavity. The bedrock with both
mentioned features has a more complex impact on the growing hydration forms, which
depends on the mutual orientation of the layering and joints. Such landforms develop in a
more complicated and unpredictable manner.

The number of fractures on the surface of hydration forms varies significantly. Both
landforms without fractures and those with densely distributed fractures (with their total
length up to 33.5 m per 10 m2) have been documented. Fractures are most common in the
hydration forms developed on the bedrock disturbed by the extensive master joint system
and are the least common in forms growing on the substrate without any visible joints
or fractures.

Fractures on the landform surfaces are represented by the most common transverse,
longitudinal and irregular ones, and the uncommon ones, such as spherical and radial.
The durability of landforms over time depends on the number of fractures associated
with them.
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The authors hope that the presented geomorphometric documentation and charac-
teristics of the hydration landforms will help in remote recognition of such forms and in
distinguishing them from other similar objects, as well as in a better understanding of their
not entirely clear origin.

The photogrammetric models and maps of the zone of the weathering anhydrite will
help in monitoring, further analysis and study of the ongoing morphological evolution of
the Dingwall quarry area.

In closing, it should be emphasized that expansive anhydrite hydration is still not a
well-recognized process that requires further study. This process, which leads to swelling
of the ground surface, can be very destructive. It currently takes place with highly catas-
trophic results in several urban and industrial areas around the world [14] (with references
therein) [113–115]. In spite of many studies, engineering knowledge on how to prevent,
control and stop this process is still insufficient. The Dingwall site is an excellent place
where many aspects of the anhydrite hydration process can be directly investigated, and
we hope that further research will contribute to addressing many of the unsolved anhydrite
hydration problems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12157374/s1, Table S1: Inventory of hydration landforms
with basic morphometric parameters and GPS locations; Figure S1: Applied photogrammetric
method—equipment, course of work and results; Figure S2: Hydration landforms on the or-
thophotomaps and digital surface models; Figure S3: Location of hydration landforms on the
base map of satellite images with characteristics of their sizes; Figure S4: Location of hydra-
tion landforms with measured thickness of the detached layer on the base map of the satellite
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K., Eds.; GIMPO Agencja Wydawniczo-Poligraficzna: Warsaw, Poland, 2020; pp. 145–213. (In Polish with English Summary)
[CrossRef]
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Abstract: This study investigated digital terrain models and options for their evaluation and effective
usage. The most important result of this study was the introduction of the slope reduction method
for low-detail elevation models. It enabled accurate results of passability analyses by performing
adjustments of slopes. In addition, the goal was to determine the strengths and weaknesses of
selected data for use in cross-country mobility analyses, followed by recommendations on how to
use these databases efficiently to obtain accurate results. The selection of elevation databases (1 m,
5 m, 10 m, 30 m) was determined by the focus of data development projects of NATO and current
scientific research projects of the Ministry of Defence of the Czech Republic. Key findings showed
potential for use in practise for all tested elevation models. Efficient usage of low-detail models
in CCM analyses is limited; nevertheless, they can be augmented with additional vector data or
automated remote-sensing technologies.

Keywords: DEMs; cross-country mobility; slope analysis; terrain vehicles; geospatial support
in NATO

1. Introduction

Terrain passability analysis as an integral part of battlefield intelligence plays a key
role in military operations. Digital elevation models (DEMs) are the most detailed and
up-to-date source of landscape information in comparison with other types of data (soil,
forests, roads, settlements, etc.). The terrain relief is also the most stable part of the
landscape. From the military perspective, DEMs are one of the only reliable sources of
information for detailed, accurate and rapid terrain analyses. On the other hand, the
quality of elevation models varies substantially depending on an area of the world. North
Atlantic Treaty Organization (NATO) nations’ territory is covered with data with a high
resolution and accuracy. The availability of high-quality data beyond European territory
might be very limited (e.g., processed ready-to-use 1 m terrain models). Therefore, any
output analysis from the data is constrained as well. It is essential to know what effect the
detail of individual terrain models and slope models derived from them has on the results
of terrain passability analyses. Besides the military perspective, there are other domains
that have analysed DEMs for the extraction of landscape information. Study [1] referred
to the impact on the protection of water resources, and photogrammetry-based mapping
of microrelief forms was studied in [2,3], which used tri-stereo Pleiades images for the
morphometric measurement.

The basis of this article was a study of the currently most used DEMs in the Czech
Republic and NATO. To include different aspects of landscapes abroad, available global
databases were included in the study as well. The results and recommendations of the
article were aimed mainly at the NATO environment, i.e., NATO Command Structure,
NATO Force Structure and NATO nations’ use cases. The analysis was performed by
evaluating slopes from DEMs with the method of raster analysis, including implementing
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the influence of soils and the quality of terrain surfaces. Values of slopes and results
of cross-country movement (CCM) analysis were compared for each terrain model in
selected areas.

The key approach of the article, i.e., identifying the influence of slope accuracy on
the results of CCM analyses, was based on both national and international studies. The
basic methodology of analysis of elevation models was given in [4]. The study compared
the accuracy of heights of terrain models with measured values in the field and assigned
them specific output statistics. These statistics showed the specific advantage of 5 m × 5 m
DEMs. It combined both assets in terrain detail and data availability across the world
that are needed for practical use, such as visibility or passability analysis. Despite some
problems with accuracy, especially in areas of significant microrelief shapes, DEMs comply
with the declared accuracy and they are a major contribution to the field of geoinformatics
and terrain analysis. The conducted tests confirmed the declared accuracy of all tested
Czech models (used also in this article). Analysis of terrain measurements of the accuracy
of elevation models, carried out by the University of Defence, Brno, and a comparison
of the possibilities of using available elevation models with different levels of accuracy
were the main prerequisites for a new, as yet unpublished methodology aimed at eval-
uating the influence of microrelief shapes generated from various elevation models on
military mobility.

A stereo-vision-based terrain passability estimation method for off-road mobile robots
is presented in [5]. The method models surrounding terrain using either sloped planes or a
digital elevation model, based on the availability of suitable input data. This combination
of two surface-modelling techniques increases the range and information content of the
resulting terrain map. As defined in [6], the greatest asset to global elevation models are
the TanDEM-X and ALOS projects. The TanDEM-X satellite mission has now mapped
the Earth’s global topography with a spatial resolution of 0.4 arc-sec (about 12 m). While
TanDEM-X is a commercial mission, a down-sampled elevation model (WorldDEM) with
a 3 arc-sec resolution (commensurate to SRTM) and global coverage, the ALOS system is
a new 3D model of the Earth’s surface of up to a 0.15 arc-sec (5 m) resolution. It will be
generated from optical stereoscopy carried out aboard the ALOS satellite. The option of
comparing various terrain models can be studied from [7]. It assesses uncertainties in a de-
rived slope and aspects from a grid of DEMs. A quantitative methodology was developed
for objective and data-independent assessment of errors generated from the algorithms
that extract morphologic parameters from grid-based digital elevation model (DEM). The
generic approach is to use artificial surfaces that can be described by mathematical models;
therefore the ‘true’ output value can be pre-determined to avoid uncertainty caused by
uncontrollable data errors. A prospective development and usage of a new surface model,
namely, TanDEM-X High-Resolution Elevation Data Exchange Program (TREx), was in-
troduced in [8]. Using this model to replace insufficient low detailed elevation models
seems to be the only option to cover the information gap in some locations. One of the most
important impacts of TREx is that it brings accurate results of the terrain analysis from
a global perspective. The most useful analyses that can be gathered from it are visibility,
propagation of radio signals, searching for areas suitable for air landing and route planning.
Data can be procured in its raw form, but users may encounter issues with its extensive
processing [9]. Global models can also be substituted for more detailed models in the case
of the availability of local LIDAR data [10,11].

The CCM model used in NATO is called New NATO Reference Mobility Model
(NRMM); see [12] for a detailed description. The analyses of the model and its gaps are
in [13,14]. The NRMM was originally used to facilitate a comparison between vehicle
design candidates by assessing the mobility of existing vehicles under specific terrain
scenarios but has subsequently and most recently found expanded use in support of
complex decision analyses associated with vehicle acquisition and operational planning
support. A study [15] verified the usability of NRMM in new, so far untested conditions. It
is based on a comparison of the empirically based NRMM with the physics-based Nepean
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Tracked Vehicle Performance Model (NTVPM) for assessing the cross-country performance
of military tracked vehicles. The NRMM can be used strictly for the tactical level of
planning. Such detailed data is not available across the whole Supreme Commanders of
Allied Powers in Europe’s (SACEURs) area of interest (AOI). The AOI is an extended area
beyond the territory of NATO nations where NATO can operate [16,17]. Global availability
of high-detail elevation models is limited; therefore, other simplified CCM models must
be considered. Future requirements of NATO towards CCM analyses are defined in [18],
emphasising the ongoing important position of passability analyses in military planning.

The research of the CCM model in the Czech Republic at the University of Defence at
the Department of Military Geography and Meteorology focuses on creating a system of
coefficients representing various land features and conditions. Their analyses and imple-
mentations defining soil impact are in [19,20], refs. [21–23] focused on forest passability,
refs. [24,25] describing problematics of microrelief obstacles and [26–29] consist of all envi-
ronmental elements in one complex study. This approach was also partially included in
the evaluation of data in the article. It is mainly in a form that considers which level of
detail is required for data usability in the Czech military CCM model. Talhofer analysed
the spatial database quality influence on the modelling of movement of vehicles in terrain
in [30]. This general assessment of the quality of geospatial data can serve as a template for
how to compare various datasets, including elevation models.

A similar approach as that found in the Czech Republic can be found among authors
from other nations. Raster analysis is the main method used in the Polish CCM cartographic
model [31,32]. This form was also assumed for the results of the article. The research
introduced in [33] was specifically taken into consideration. It defines variances between
elevation models with a focus on high-detail models (0.5 m, 1.0 m, 2.5 m, 5.0 m). It shows
that the passable area of a smaller tested location is larger with higher detail terrain models.
However, when studying large areas in a global aspect, where only lower-detail elevation
models are available (5 m, 10 m, 30 m), the passable area is larger with lower-detail models.
Processing and adjustment of these elevation models are necessary to obtain reliable CCM
analysis results that correspond to the real terrain conditions. The other national models
and studies are based on a vector line tactical level CCM analysis [34,35]. They do not
consider the unavailability of detailed data; therefore, they do not fit within the focus of
this article. Their focus was on automated navigation in the terrain. From the global point
of view, this may be the only option before any global high-resolution elevation database
is developed.

Elevation models are an important part of the complex analysis of the movement of
vehicles in terrain; however, they cannot be considered in analyses without including other
data and aspects. The data focus should be put on soil databases. The analysis of the Czech
environment is introduced in [36]. The study considered the modelling of geographic and
meteorological effects on vehicle movement, focusing on soil conditions and penetrometry;
see also [37]. It consisted of an analysis of the characteristics of soil databases. The situation
was similar to that of elevation models. National soil databases are relatively detailed
enough to support digital terrain models with sufficient accuracy, but the global models
are overly generalised and they cannot be used in detailed CCM analyses. Global data
can be improved with methods for automatic refinement of soil databases [38] using an
algorithm for refining soil data via comparison with relief models in a test grid with a cell
of 100 m × 100 m.

Apart from soil databases, vector databases comprising features of the terrain should
be taken into account for accurate passability analyses. One of the most used vector
databases in NATO is the Multinational Geospatial Co-Production Program (MGCP) [39]. It
is not completely a global database, though it has full coverage of the AOI. Since updating
vector databases at the global scale can be substantially challenging, a new trend of using
open-source data is rising. The OpenStreetMap is an example of a rapidly developing
universal vector database [40]. NATO will most probably be using this kind of data more
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often in the near future. In general, contemporary vector databases do not consist of all
features that are needed to enable accurate tactical-level CCM analyses.

Currently, there are no DEMs that would meet the requirement of high detail and
global coverage at the same time in order to fulfil the needs of NATO and cooperating
civilian organisations. The aim of this research was to verify the possibilities of usage of
lower detail DEMs in practical tasks, predominantly in CCM analyses. The main asset of
this study rested in a proposal for processing elevation models for their efficient evaluation
in passability analyses done in larger areas.

2. Materials and Methods
2.1. Utilised Methods

The research in the article focused preferentially on elevation models to define the
strengths and weaknesses of the models without any external influences. The compar-
ison of the DEMs was based on preparing a suitable representative sample of data and
determining a proper method of evaluation. Data from the Czech Republic was selected
to test the accuracy of the slopes that were calculated from DEMs: Digital Terrain Model
3rd generation, 4th generation and 5th generation (DTM 3, DTM 4, DTM 5) and Digital Ter-
rain Elevation Data 2 (DTED 2). The selection of the models was based on their occurrence
in different parts of the globe. Whilst models with a resolution of up to 1 m predominate
in Europe, areas of potential foreign operations are covered predominantly at most with
elevation models with a maximum resolution of 30 m. Naturally, more accurate models
might be locally available as well, e.g., laser scanning data. Nonetheless, from a military
operation perspective, short notice ready-to-use terrain models with global coverage are
the ultimate goal in the military environment. This excludes potential surface models that
have other disadvantages for accurate CCM analyses. The challenge for elevation databases
and their versatile usage is that any additional extensive processing of data prevents it
from being operationally usable.

Although the key part of this research was based on the proper selection of elevation
data, its usability in CCM analyses was guaranteed only with a suitable processing method.
This article introduced its own approach to elevation data evaluation. This method was
based on generating random points and general statistical comparisons of their slope
values. The second part of the study was a comparison of the reliability of data, which
was achieved by evaluating passability with a raster analysis for selected military vehicles.
Five operationally representative areas were selected for the tests.

The analyses in the study were undertaken with the software ArcGIS 10.4.1 with its
Toolbox functionalities; for points statistics, Extract values to points was used; and for
areal statistics, Slope and Zonal statistics were used. Microsoft Excel 2019 was utilised for
generating and evaluating statistical functions, e.g., mean slope and standard deviation. A
major method used was the comparative method of map results or statistical results. The
overview of the methodology and steps used in this research is in Figure 1.

2.2. Selected Digital Elevation Models

The digital terrain model (DTM) approximates the terrain surface or part of it by using
a system of points in 2D space with specified height values. These points are predominantly
organised into a regular grid or, in more detailed models, a triangular irregular network
(TIN) [41]. Both these variants were included in the study. DEMs are the most important
basis for evaluating the terrain relief. It varies according to spatial accuracy, where the
height accuracy is lower than the position accuracy. In comparison with other types of data
(e.g., vegetation, roads), the terrain does not change much in terms of extent and speed
of changes, and thus, can be considered the most reliable. An overview of the elevation
models considered in this study is in Table 1.
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Table 1. An overview of global elevation data and data from the territory of the Czech Republic and
their altitude accuracy [4]. Unlike the rest of the models, DTM 5 is formed by an irregular grid of
points (TIN).

Terrain Models Resolution (m) Vertical Accuracy (m)

Global Models

SRTM 1 30 m × 30 m 16–20 m
SRTM 3 90 m × 90 m 16–20 m
DTED 1 90 m × 90 m 3–20 m
DTED 2 30 m × 30 m 3–15 m

TREx 12 m × 12 m 2–10 m

Czech National Models

DTM 3 10 m × 10 m 1–7 m
DTM 4 5 m × 5 m 0.3–1 m
DTM 5 TIN—min. 1 m × 1 m 0.18–0.3 m

Local Models

LIDAR data TIN—min. 1 m × 1 m 0.3 m

Global data is represented by Shuttle Radar Topography Mission (SRTM) radar data
with an average detail of 30 m × 30 m [42]. Furthermore, some areas of the world are
covered with DTED models with data levels 0, 1 and 2 [43], which are derived from other
various methods of collecting altitude data (for example from SRTM). In 2015, a project
of the new accurate global altitude model TREx was established. It is a joint project of
NATO nations and non-member partners of the Alliance. It is based on the method of
laser scanning. Because of the demanding character in terms of its time and capacity
consumption, the project is particularly oriented towards specific locations of interest,
primarily areas of deployment of troops of NATO nations.

This project was based on a similar principle as the creation of the global vector
database MGCP [8]. TREx is a surface model and, therefore, also contains objects on the
terrain (e.g., buildings, forests). Although a digital terrain model is not derived from the
TREx data, a new initiative for the automatic generation of a 12 m model was scrutinised.
TREx raw data in a combination with DTED 2 data can be used to interpolate a digital
terrain model with a resolution of 12 m × 12 m, although the resulting accuracy is low.
The main usage of such a model is currently for the MGCP topographic map concept. The
contour lines are so far generated from DTED 2, which has limitations regarding use cases
of terrain analyses.

The other option for detailed elevation data is local laser-scanning-based data. In areas
of military operations, an accurate altitude model created from light detection and ranging
(LIDAR) data is often the only detailed source [10]. It was the most accurate available
source of altitude data in the International Security Assistance Force (ISAF) operation [11].
Its usability is versatile but obtaining this kind of data is time consuming. In the case of a
crisis, the only option is ready-to-use lower-detail global elevation models.

From the elevation data perspective, a representative territory among NATO nations
is the Czech Republic. Local sources in the Czech Republic are represented by various
models: DTM 3 (10 m × 10 m), DTM 4, (5 m × 5 m) and DTM 5 (1 m × 1 m). Their
creation and updating are based on a joint laser-scanning project of the Czech Office for
Surveying, Mapping and Cadastre (ČÚZK) and the Office of Military Geography and
Hydrometeorology (VGHMÚř). The most detailed model is the DTM 5. Since 2016, it
has fully covered the territory of the Czech Republic and a local update of the model is
subsequently underway [44].

DTM 5 was taken as a template and comparative database for analyses within this
study. The detail of DTED 2 is not sufficient in comparison with DTM 4 and DTM 5;
nonetheless, it is the only available detailed global terrain model for a large part of the
foreign territory beyond the borders of NATO countries (in the AOI). DTED 1 is also the
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utilised global model; however, its basic 100 m × 100 m grid is completely insufficient for
passability analyses. Large area CCM analyses use Global World Soil Database as a source
of information about types of soils. Its scale is 1:500k and its detail is very insufficient. For
this reason, small-scale CCM map outputs can use DTED 1 as an input elevation model for
an overall picture.

Currently, a global elevation model created within the TREx project with a basic grid
dimension of 12 m × 12 m is being developed [8]. This dimension is very close to DTM
3. Therefore, this model was selected for testing in order to determine its relationship
with more detailed models and with DTED 2. TREx as a surface model is generally not
appropriate for direct implementation in the passability analysis. On the other hand, it
can be used without much loss of accuracy, for example, in the flat regions of Afghanistan
or Mali.

2.3. Selection of Areas for Testing

To ensure the complexity of analyses, suitable areas representing the landscape of
potential NATO foreign operations were selected. The selection represents possible types
of reliefs across the AOI. Five different areas with a range of 3 km × 3 km are described in
Table 2. The advantage was that each location represents a different type of terrain. This
meant that areas with prevailing plains, hills and mountains were included. In terms of the
morphometric division, the predominant plains and hills of selected locations represented
the type of territory where military operations are conducted most often.

Table 2. Characteristics of the 5 selected locations (3 km × 3 km) for testing the elevation models.

Area Mean Slope Mean Altitude
(Above Sea Level) Coordinates (WGS84)

Dobruška 6◦ 420 m 50.31◦ N, 16.22◦ E
Horní Cerekev 5◦ 645 m 49.32◦ N, 15.25◦ E

Znojmo 3◦ 211 m 48.83◦ N, 16.16◦ E
Kdyně 9◦ 576 m 49.39◦ N, 13.11◦ E

Dolní Morava 15◦ 670 m 50.11◦ N, 16.86◦ E

2.4. Selection of Vehicles for Testing

The impact of different elevation models must be tested not only in various territories
but also with CCM parameters of different military vehicles. The aim of selecting suitable
military vehicles was to create a balanced sample with a basic division into wheeled and
tracked vehicles. The following vehicles were selected for data analysis:

• Off-road light vehicle—Land Rover DEFENDER 110 (LRD 110);
• Wheeled truck—TATRA T815 6 × 6 (T815);
• Infantry armoured tracked vehicle—Bojové vozidlo pěchoty 2 (BVP-2).

The selected vehicles are among the main currently used ones in the armed forces of
the Czech Republic and partially also in NATO. Each of these vehicles has its own specifics,
either in terms of technical parameters or driving characteristics; see the information given
in [45]. Vehicle testing did not take place physically in the terrain and is based solely on
theoretical research. This took the form of a site survey of local conditions and their possible
impact on vehicles.

3. Results

The testing of the quality of digital terrain models was based on the utilisation of
two methods. The first method was involved analysing the accuracy of derived slopes from
the models. The second method was a comparison of the results of a CCM raster analysis
for three selected vehicles.
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3.1. Comparison of the Accuracy of Slopes Derived from Digital Terrain Models

The comparison of the accuracy of slopes was based on the usage of the tool Create
random points in ArcMap. With this tool, 50,000 randomly placed points in the selected areas
were created (five locations with 3 km × 3 km areas). A minimum distance between points
of three meters was set (points were 3 m or more apart) to ensure a more even distribution.
Values of slopes were assigned from the prepared slope maps of individual data sets to the
generated points using the tool Extract values to points. The points were then divided into
classes with a step of inclination of 5◦ and comparative statistics were calculated for each
class. Mean values and standard deviations were selected as test statistics. The resulting
set of values of the most important statistics is shown in Table 3. The average slope was
calculated as the mean value of the slope within one class. The average difference was
given by subtracting slopes of a selected data set from the DTM 5. The standard deviation
of the difference from the DTM 5 indicated the extent to which slope values were spread
within one class.

Table 3. A comparison of slopes in random points generated from elevation models and their statistics.

Slope Classes Mean Slope (◦) Mean Slope Difference from DTM 5 (◦)

Quantity Slope DTM 5 DTM 4 DTM 3 DTED 2 DTM 4 DTM 3 DTED 2

10,134 0–5◦ 3.14 4.09 5.21 5.17 0.95 2.07 2.02
12,389 5–10◦ 7.17 7.28 7.54 6.82 0.11 0.37 −0.35
6946 10–15◦ 12.37 12.07 11.74 9.94 −0.30 −0.62 −2.43
5933 15–20◦ 17.45 16.59 15.42 12.59 −0.87 −2.03 −4.86
5696 20–25◦ 22.49 21.41 19.11 15.85 −1.08 −3.39 −6.64
4987 25–30◦ 27.38 26.05 22.37 18.09 −1.33 −5.01 −9.29
2679 30–35◦ 32.10 29.81 23.37 18.33 −2.29 −8.72 −13.77
740 35–40◦ 36.95 31.24 22.80 15.75 −5.72 −14.15 −21.20
191 40–45◦ 42.00 33.36 22.64 14.23 −8.64 −19.36 −27.77
96 45–50◦ 47.41 37.25 26.36 10.48 −10.16 −21.05 −36.93
54 50–55◦ 52.53 40.48 28.51 8.73 −12.05 −24.02 −43.80
55 55–60◦ 57.48 46.31 30.92 6.90 −11.17 −26.56 −50.58
41 60–65◦ 62.82 48.48 26.30 5.42 −14.34 −36.51 −57.39
35 65–70◦ 67.43 51.05 31.97 5.80 −16.38 −35.46 −61.63

50,000 Total 14.27 13.77 12.64 10.54 −0.50 −1.63 −3.73

Figures 2–4 show histograms of all values of the standard deviations of slopes without
division into classes, unlike in Table 3, where the values were divided into slope classes. The
goal was to verify the trends in the accuracy of the data with two different methods. The
histograms showed a deviation of the average value from the zero value for all elevation
models, and at the same time, the range of standard deviations was compared. The lower
the detail of the model, the higher the variance.

The comparison of the accuracy of slopes derived from elevation models produced
the following results.

The number of points in each class did not represent an even distribution but fit more
suitably to real conditions. Slopes up to 15◦ were 59% of the points and slopes above 30◦

were 8% of the points. The key threshold slopes for the assessment of passability, from 15◦

to 30◦, represented 33% of the total number of determined slopes. This was sufficient due
to the higher number of testing points. Graphs evaluating the characteristics of elevation
models with individual classes of 5◦ inclination are shown in Figures 5–7.
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The assessment of the specific slope values and digital terrain models resulting from
the analysis of Figures 2–7 is given below.

Evaluation of specific slope values (slope classes):

• Low-detail elevation models did not differ from high-detail ones for lower slope values
(slope values were very similar). The basic threshold was up to 10◦ for lower-detailed
models (10–30 m) and up to 30◦ for medium-detailed models (5 m).

• Slopes up to 5◦—The average slope value was higher in all tested models than in
DTM 5. More detailed terrain models (DTM 5) had a more gradual slope in the lowest
class. This inversed effect was specifically found in the flat areas only.

• Slopes 5–10◦—The average values of slopes were very close for all models and the
standard deviations were not very high either. It is possible to use less-detailed models
in terrain analyses for slopes up to 10◦.
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• Slopes 10–30◦—Almost a linear increase in slope could be observed depending on the
resolution of a model. The average deviations with DTM 5 also had a linear increase.
The more detailed the model, the greater the proportion of higher slopes. This slope
class was still relatively reliable in all models (except DTED 2).

• Slopes above 30◦—The comparative graphs deviated from the trend of the curves due
to a smaller number of values, especially above 40◦ (see Figure 4).

Evaluation of digital terrain models (a comparison with DTM 5—1 m × 1 m):

• The less detailed the model, the bigger the deviation of the average slope and the
bigger the variance in the standard deviation.

• The 5 m × 5 m models (DTM 4)—Achieved small deviations below 1◦ for slopes
up to 20◦. For bigger slopes, especially above 40◦, the slope was almost less than
one-third lower than in DTM 5. DTM 4 was suitable for slopes up to 20◦, the use is not
recommended for slopes above 40◦.

• The 10 m × 10 m models (DTM 3)—Achieved small deviations below 1◦ for slopes
up to 15◦, and at 30◦, the slope exceeded the limit of one-third of the slope difference
compared to DTM 5. DTM 3 was suitable for slopes up to 15◦; for slopes above 30◦, it
is not recommended.

• The 30 m × 30 m models (DTED 2)—They differed from DTM 5 by 1◦ already after 10◦

of slope inclination; from this value, the difference in inclination compared to DTM 5
was lower by more than one-third. Areas with inclinations above 50◦ in DTM 5 had
less than 10◦ in DTED 2. The detail of the DTED 2 network of 30 m × 30 m points did
not allow for identifying a more fragmented terrain relief. DTED 2 could only be used
to determine slopes up to 10◦.

3.2. Comparison of the Accuracy of Digital Terrain Models Using Raster Passability Analysis

Properties of digital terrain models can also be studied from the view of their use in
the decision-making processes of commanders and staff. Data properties are evaluated
from the area difference in the calculated passability. A difference was given by comparing
selected models with the most detailed data (e.g., the difference between DTM 3 and
DTM 5). Each pixel was assigned one of three passability values (GO, SLOW GO, NO GO)
according to the parameters calculated from the traction curves of selected vehicles. For
the calculation of the parameters, see [16]. This was based on the findings of the evaluation
of dynamics of vehicle movement in the terrain of [46,47]. A total area of all pixels was
then converted to percentages of passable, hardly passable, and impassable terrain. Map
comparisons of the results of CCM analysis for the T815 vehicle and all tested terrain
models are shown in Figure 8. A summary of passable area deviations between lower detail
models and DTM 5 is displayed in Table 4.
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Figure 8. The result of the cross-country mobility analysis of a selected locality for the vehicle T815.
A detailed look at a selected valley in the Dobruška locality. Testing was done with the method of
raster analysis of the evaluation of pixels for various DEMs (DTM 5, DTM 4, DTM 3, DTED 2).

Table 4. Average deviations of the passable area calculated from elevation models (DTM 4, DTM 3,
DTED 2) in comparison with DTM 5 with different parameters (vehicle type, humidity); results are
mean values for five 3 km × 3 km areas, max–maximum available slope for the respective conditions,
1% deviation of the area means 9 hectares out of 900 hectares of one area and area deviations of
elevation models with DTM 5 are always positive (larger passable areas).

CCM Parameters
Average Deviations of Passable Area in Comparison with DTM 5 (%)

DTM 4 DTM 3 DTED 2

T815 GO moist (max slope = 6.25◦) 1.32 2.71 4.39
T815 GO semi-moist (max slope = 12.08◦) 1.31 2.54 3.32

LRD GO dry (max slope = 16.17◦) 1.11 2.32 3.45
LRD GO + SLOW GO semi-moist (max slope = 21.82◦) 0.77 1.83 2.37
BVP2 GO + SLOW GO semi-moist (max slope = 28.81◦) 0.33 0.98 1.08

The raster analysis of passability produce the following results:

1. Deviations in passable area (GO):

• The more detailed the model of terrain, the smaller the passable area.
• The passable area of 851 ha (out of a total of 900 ha of one 3 km × 3 km area) in

DTM 5 represented

# 860 ha in DTM 4 (1% larger passable area);
# 870 ha in DTM 3 (2% larger passable area);
# 880 ha in DTED 2 (3% larger passable area).

• These ratios may significantly vary in different types of landscape (mountains) or
surface conditions (impassable soils) but have the same trend.

2. Deviations in the hardly passable area (SLOW GO):

• The position and structure of hardly passable area remained unchanged in all models.

3. Deviations in the impassable area (NO GO):

• The total area of impassable territory increased with the detail of a used model.
• The impassable area in DTM 5 (15 ha) represented
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# 75% of the area in DTM 4 (12 ha);
# 33% of the area in DTM 3 (5 ha);
# 20% of the area in DTED 2 (3 ha).

4. Influence of other factors on the deviation of the passable area:

• The better the passability conditions, the smaller the area deviation when using
less accurate relief models (see Table 4); this applied to the following conditions:

# lower soil moisture;
# more suitable soil types (clayey-sandy);
# more powerful vehicles (suitable for cross-country movement).

5. Evaluation of digital terrain models:

• The 1 m × 1 m models (DTM 5):

# The accurate model was suitable for detailed CCM analysis.

• The 5 m × 5 m models (DTM 4):

# The deviation of the area of the passable terrain was small;
# DTM 5 was more suitable for fragmented terrain in detailed CCM analyses.

• The 10 m × 10 m models (DTM 3):

# The impassable area was not usually displayed in flat territories in these models
(steeper slopes with shorter lengths);

# The area of the impassable territory was close to DTM 5 in mountainous areas
with long slopes;

# The model could be used for less detailed CCM analyses.

• The 30 m × 30 m models (DTED 2):

# The impassable area was not usually displayed in flat areas in these models;
# The impassable area was close to DTM 5 in mountainous areas with long slopes;
# Reliable results of CCM analysis could not be achieved with DTED 2.

3.3. Efficiency Improvements of the Elevation Models

Before any wider global data improvements were introduced, the only option for more
accurate CCM analyses was to implement a methodology regarding how to efficiently use
low-detail elevation models. The usability of these models can be achieved by adjusting the
maximum slope limits for a passable terrain. A hardly passable terrain can be considered
impassable in low-detail models. To obtain similar results for the area of passability
as high-detail elevation models, adjustments in Table 5 had to be performed. These
adjustments need to be applied to elevation models based on the traction parameters
of a vehicle (maximum reachable slope), which were calculated from traction curves or the
DMA (Defence Mapping Agency) model; for details, see [16]. The values in Table 5 were
calculated from the mean slope values of elevation models for each slope class (see Table 3).
Afterwards, these values had to be modified according to the results of CCM map analyses,
displayed in Tables 4 and 6 and as map results in Figures 8–10.

Table 5. Adjustments of maximum slope value reachable by a vehicle for passable (GO) and hardly
passable terrain (SLOW GO) that were needed to achieve more accurate results for CCM analyses.
Modifications calculated for DTM 4 (5 m × 5 m), DTM 3 (10 m × 10 m) and DTED 2 (30 m × 30 m).

GO or SLOW GO
Slope Value (◦)

Reduced Slope Values (◦)

DTM 4 DTM 3 DTED 2

10 9.9 9.6 9.3
15 14.5 13.4 12.8
20 19.0 17.3 16.4
25 23.5 21.2 19.8
30 27.8 25.1 23.6
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Table 5. Cont.

GO or SLOW GO
Slope Value (◦)

Reduced Slope Values (◦)

DTM 4 DTM 3 DTED 2

35 32.0 29.0 27.0
40 36.0 32.8 30.5
45 40.0 36.5 34.0

Table 6. The comparison of the extent of passable, hardly passable, and impassable areas with
different elevation models (DTM 5, DTM 4, DTM 3, DTED 2) without slope corrections and with
slope corrections. Location: Kdyně, 6 km × 6 km, moist conditions, GO max slope = 10◦, SLOW GO
max slope = 20◦. The main improvements in the results are displayed as bold values.

DTM 5
Area (%)

DTM 4
Area (%)

DTM 3
Area (%)

DTED 2
Area (%)

No slope
corrections

GO 72.01 73.17 74.44 73.04
SLOW GO 24.71 24.70 24.40 26.07

NO GO 3.28 2.13 1.15 0.90

With slope
corrections

GO 72.01 72.65 72.06 69.19
SLOW GO 24.71 24.35 24.77 26.59

NO GO 3.28 3.00 3.17 4.23

If a calculated maximum reachable slope for a hardly passable terrain (SLOW GO)
for a vehicle was, for example, 25◦, then by using the 10 m × 10 m elevation model, the
maximum reachable slope was only 21.2◦ and the CCM analysis map should be adjusted.
DTM 5 served as the most accurate model database to calculate the slope deviations of
other elevation models from the real terrain. DTM 5 is a very accurate model (1 m × 1 m)
but still deviates from the real terrain. Given the trends of lower-detail models displayed in
Table 5, the estimated maximum reachable slope value reductions for DTM 5 would be 0.2◦

for 20◦ slopes, 0.5◦ for 30◦ slopes and 1.5◦ for 45◦ slopes. The accuracy of slope reductions
was tested for a different extent and conditions. The tests were performed in the form of
CCM map analysis in a 3 km × 3 km area in Dolní Morava (arid and moist conditions),
a 6 km × 6 km area in Kdyně (moist conditions) and five combined selected areas of
5 km × 5 km (moist conditions). The main comparative characteristics were variations of
passable/impassable area between corrected models and models not corrected. The other
characteristic was a comparison of the position of a hardly passable and impassable terrain.
The results with the calculated slope reductions (Table 5) were more accurate and were
markedly closer in position to the most detailed elevation model, namely, DTM 5, than
results without slope reductions (see Tables 6–9).

Table 7. The comparison of the extent of passable, hardly passable, and impassable areas with
different elevation models without slope corrections and with slope corrections. Location: Dolní
Morava, 3 km × 3 km, moist conditions, GO max slope = 10◦, SLOW GO max slope = 20◦. The main
improvements in the results are displayed as bold values.

DTM 5
Area (%)

DTM 4
Area (%)

DTM 3
Area (%)

DTED 2
Area (%)

No slope
corrections

GO 43.67 44.25 43.77 43.72
SLOW GO 36.36 37.37 40.79 42.53

NO GO 19.97 18.38 15.44 13.76

With slope
corrections

GO 43.67 43.61 41.12 38.89
SLOW GO 36.36 35.49 35.16 37.03

NO GO 19.97 20.90 23.72 24.08
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Figure 9. The map comparison of the CCM analysis with different elevation models (DTM 5, DTM 4,
DTM 3, DTED 2) without slope corrections and with slope corrections. The slope corrections en-
abled accurate results of CCM analysis for lower-detail models. DTM 5 (1 m × 1 m) served as the
reference model.
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Figure 10. A map comparison of the CCM analysis with different elevation models (DTM 5, DTM 4,
DTM 3, DTED 2) without slope corrections and with slope corrections. The slope corrections enabled
more accurate results of CCM analysis for lower-detailed models. DTM 5 (1 m × 1 m) served
as the reference model Choosing a larger area (6 km × 6 km) confirmed the correctness of the
slope-reduction method.
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Table 8. The comparison of the extent of passable, hardly passable, and impassable areas with
different elevation models without slope corrections and with slope corrections. Location: Dolní
Morava, 3 km × 3 km, arid conditions, GO max slope = 20◦, SLOW GO max slope = 30◦. The main
improvements in the results are displayed as bold values.

DTM 5
Area (%)

DTM 4
Area (%)

DTM 3
Area (%)

DTED 2
Area (%)

No slope
corrections

GO 80.03 81.62 84.56 86.24
SLOW GO 16.12 15.29 14.38 12.89

NO GO 3.85 3.09 1.06 0.87

With slope
corrections

GO 80.03 79.10 76.28 75.92
SLOW GO 16.12 15.50 18.70 17.81

NO GO 3.85 5.40 5.02 6.27

Table 9. The comparison of the extent of passable, hardly passable, and impassable areas with
different elevation models without slope corrections and with slope corrections. Combined 5 areas,
3 km × 3 km, moist conditions, GO max slope = 10◦, SLOW GO max slope = 20◦. The main
improvements in the results are displayed as bold values.

DTM 5
Area (%)

DTM 4
Area (%)

DTM 3
Area (%)

DTED 2
Area (%)

No slope
corrections

GO 77.34 78.55 79.28 80.54
SLOW GO 16.64 16.35 16.72 16.27

NO GO 6.02 5.09 4.00 3.19

With slope
corrections

GO 77.34 78.24 77.91 76.82
SLOW GO 16.64 15.86 15.61 15.55

NO GO 6.02 5.90 6.48 7.63

The accuracy of the selected method of slope corrections could be observed from an
extent of impassable terrain calculated from the selected elevation models. The impassable
area was significantly more accurate with implemented slope corrections. More important
is the fact that these slope adjustments allowed for distinguishing hardly passable and
impassable terrain with noticeably higher precision.

On the right side of the map (Figure 9) is a valley that represents an impassable
obstacle. Without corrections, the valley was evaluated as hardly passable when using
DTM 3 and DTED 2. With implemented corrections, the valley was correctly displayed as
impassable also in these lower detail models. Furthermore, shapes of other major terrain
features representing hardly passable terrain were displayed more accurately (e.g., a small
valley in the lower-left corner of the map). The detail of DTM 5 allowed for displaying a
fragmented terrain (e.g., top left corner).

These locations are usually joined as one area in lower detail models, especially with
details that were 10 m × 10 m and above. This was the reason for the higher ratio of
impassable terrain with corrected slopes. Due to the fragmented terrain, the mentioned
location was, in the end, completely impassable. This meant that the lower-detailed models
were displaying the correct situation. The results in Figure 9 were confirmed in Figure 10
for a different location.

The extent of the impassable area is given with the corrections adjusted to a more real
coverage and position. It shows that the determination of impassable and hardly passable
areas when using a lower-detail elevation model can be very variable. The method of
slope correction was the right way to improve a current state, which was verified by better
coverage results in comparison with DTM 5.

4. Discussion

The results of analyses of the digital terrain models DTM 5, DTM 4, DTM 3 and
DTED 2 showed different qualities based on the resolution of the network of points. Each
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elevation model had its possible usage in practise: from the most detailed 1 m × 1 m model,
namely, DTM 5, with a universal usage to the low detail model 30 m × 30 m with limited
use cases, mostly for small-scale overview maps. Currently, the lower detail elevation
models are not used efficiently. Efficient use can be achieved by adjusting the accuracy
to high-detail elevation models. These adjustments would increase the usability of all
elevation models. Before implementing any modifications to digital terrain models, other
types of data need to be considered as well.

Individual parts of the landscape, i.e., terrain relief and soil cover, are represented by a
different quality of data. Terrain relief is covered with detailed and accurate elevation mod-
els in the territory of European states. They are suitable for planning military operations
down to the tactical level. Soil and surface conditions data is less reliable for detailed CCM
analyses. This data has little detail or inaccurate determination of soil type boundaries. It is
necessary to consider the shortcomings of the data used to properly interpret the results of
passability analyses.

4.1. Evaluation of Digital Terrain Models

Digital terrain models are not globally available in adequate detail (minimum 10 m × 10 m)
and area coverage to support any possible location for a foreign operation at short notice.
Currently, it is not possible to perform accurate and detailed CCM analyses in missions abroad
without the use of mobile mapping devices (satellite systems, drones), which use various types
of sensors and technologies (photogrammetry, laser scanning, radar data, etc.). The biggest
disadvantage of this mobile sensors approach is the time delay (months) in collecting and
processing data to cover the entire area of a recently established operation. The solution lies
in creating a universal database with complete coverage and sufficient detail. This coverage
should include the entire NATO area of interest (AOI), which reflects NATO nations’ territory
and the NATO area of responsibility (AOR) covering adjacent territories in Europe, the western
part of Asia and the northern part of Africa. NATO does not have sufficient resources to create
or purchase such data. Nevertheless, it could utilise the capabilities of national geographic
services, the Multinational Geospatial Support Group (MN GSG), the NATO Communication
and Information Agency (NCIA) or a type of direct support of foreign operations, which was
done using a Resolute Support Reach-Back Afghanistan Cell (RS RAC). After some time, a
military operation is supplied with detailed data, which corresponds to the production in the
territories of NATO nations [48]. Nevertheless, sufficient data that would cover immediate
needs in the case of a crisis operation are not available, either in the required extent or quality.

Models with a basic resolution of at least 1 m × 1 m (e.g., DTM 5) are the most
detailed terrain models of NATO member countries. However, models with a resolution
of 5 m × 5 m (e.g., DTM 4) are also sufficient in their detail to achieve accurate results of
passability analyses. This type of model can be less demanding in terms of data flow for
calculations via a network. DTM 3 corresponds in detail with the new worldwide terrain
surface model TREx. At this level of detail (10 m × 10 m), the model cannot be used for
detailed CCM analyses. Nonetheless, data can be used for less fragmented terrain without
vegetation cover. This is the case for some foreign operations, such as in Mali. These areas
are already mostly covered by the TREx model. DTED 2 is a low-detail elevation model that
allows for only general terrain analyses. The optimal terrain model with a balanced ratio of
detail and accuracy of the results of passability analyses when considering the complexity
of its acquisition is a model with a resolution of 5 m × 5 m. The goal of geographical
development within NATO should be to ensure comprehensive coverage with enhanced
data in the NATO AOI.

4.2. Usability of Soil Databases in CCM Analyses

Soil databases with sufficient quality are not available in the areas of foreign military
operations. Despite a lower accuracy in comparison with elevation models, soil databases
can be used for terrain analyses. However, to achieve the required detail of data, a more
accurate mapping of soil type boundaries would be necessary. For example, in the territory
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of the Czech Republic, the Digital Soil Map 1:50,000 need to be updated [20]. Since DTM 4
was identified as a sufficiently accurate terrain model, the optimal density of measurement
points for soil characteristics is 5 m × 5 m at the boundaries between soil types. Apart from
geometric accuracy improvement, other information needs to be added to the assessment
of soil types, such as an actual soil moisture level and an assessment of the quality of the
surface itself. Vector databases that contain surface roughness and vegetation coverage
parameters with sufficient detail and area coverage do not exist. Accurate soil databases
would not be much use without this additional surface information.

From the global perspective, universal soil data is represented by the Harmonized
World Soil Database (HWSD), which combines various national soil databases. Its detail
is very low and represents a scale of 1:500,000. It can only be used for lower-accuracy
estimates of passability analysis for the operational and up to the strategic level of military
planning. A detailed study of improvements of the HWSD and its usability in national
systems was given in [49]. One of the possible options to replace low-detailed surface data
is the Destination Earth initiative. It is a project of the European Commission with the aim
of collecting and evaluating satellite images. One of the important use cases of this project
for the CCM analysis domain is the evaluation of surface temperatures to determine soil
and surface types. Even though this method is not accurate enough, it can improve data
availability in territories of potential conflicts across the world [50].

A study [51] showed that if the terrain has arid or semi-moist conditions, then the
influence of soil types in the CCM can be disregarded. The only significant exception was
the alluvial soil type, which occurs in some humid valleys. Except for arid conditions, these
valleys are impassable for most types of vehicles (track or wheeled). The other exception
is a sandy surface, which substantially limits the movement of wheeled vehicles. A vast
majority of soil types are different from the alluvial and sandy types. Therefore, the focus
should be put on distinguishing correct humidity conditions of the surface and properly
processing a utilised elevation model.

4.3. Recommendations for Improvements of Elevation Models

The introduced method of slope reduction for the usability of low detail elevation
models in CCM analyses was affirmed as correct. All results showed an improvement in
the accuracy of passable areas, both in extent and position (as shown by the Figure 10 map
comparisons and Tables 6–9 numbers in bold). However, the size and number of testing
areas were limited. Verifying this concept at a global scale would require extensive data
testing in large areas across Europe, Asia and Africa for various elevation data sources.
The key element is also a focus on specific restricted areas for passability. These are hilly
and mountain areas, where a key slope limit of approximately 30◦ occurs more often than
in other types of terrain. Additional testing sites should make the slope reduction values
presented in Table 5 more accurate. Further slope adjustments to the values in Table 5
would probably only be minor.

Global detailed data readiness is something that NATO currently lacks. The usability
of digital terrain models is not limited to only high-detail models. NATO can use low-
resolution models in foreign operations in a time frame before any detailed elevation
data is procured, e.g., LIDAR data. Low-detail elevation models can fulfil this aim via
the additional processing of data introduced in this chapter using the method of slope
reduction. Accurate CCM analyses cannot be achieved without including microrelief
forms in the analysis. DTM 5 (1 m × 1 m) consists of all microrelief objects, for example,
embankments. The other elevation models mostly do not consist of these objects. Remedy
can be achieved with vector data that consists of roads and other line or point objects
that are important for passability. These objects could be incorporated into analyses with
low-detail elevation models as impassable obstacles. The current ongoing project of the
global vector database MGCP can serve as a source of information for objects on the terrain.
Nowadays, expectations for improvements in global elevation models are focused on the
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TREx project. TREx is a surface model; therefore, its usage for accurate CCM analyses
is limited.

Nevertheless, new methods for processing TREx data into the form of a digital terrain
model are currently in development. Although this might make a new global digital
elevation model with a resolution of 12 m × 12 m available, the accuracy of altitude of
areas formerly consisting of forest and built-up areas is low. The reason for this is that data
from these locations are interpolated from lower detail models, e.g., DTED 2. TREx is also
available in its raw unprocessed form as a cloud of points. Using this data can allow for
rapid reaction analyses for any crisis region across the world. The disadvantage is in more
complicated processing, mostly because of the overly large data volume.

So far, no global elevation model has met all requirements needed for accurate CCM
analyses. Global coverage with ready-to-use data is the highest priority. The second priority
is the detail of an elevation model, which ideally should be 5 m × 5 m. The surface model,
such as TREx, is not a sufficient replacement for a regular digital terrain model. For the
moment, the only possible solution for this would be the use of automated systems fitted
on military vehicles that evaluate passability parameters in real time. Even though the
capability of automated navigation of military vehicles is not widespread in NATO, the
systems will become the future of CCM modelling.

To compare the influence of the use of different elevation models on the determination
of terrain passability, different statistical methods can be used. The use of the parametric
ANOVA method would be possible under the assumption of a normal distribution of data.
However, this distribution does not occur in the event of extreme changes in the terrain, e.g.,
changes in adhesion due to precipitation. For non-parametric analysis of the variance of
GO, SLOW GO and NO GO areas, it is possible to use, for example, the Kruskal–Wallis test
or multiple comparisons with the adjustment of the significance level using the Bonferonni
method. However, the validity of these methods must be verified via physical testing of
off-road vehicles in different types of terrain.

The main conclusion of the study is that under the current conditions, the usability of
the selected elevation databases for accurate and detailed comprehensive CCM analyses is
limited. A future focus should be to find a clear solution that allows for utilising existing
databases efficiently; see also [52–55]. The essential part is also adopting selective measures
for data collection for CCM analyses in real time using means of remote detection of
passability parameters. That includes monitoring necessary methods and technologies
of an automated vehicle driving in space and making active steps to implement them
into practise.

5. Conclusions

This research studied the possibilities for raster analyses of elevation models and
other options for their evaluation and effective usage. One of the most important results of
this study was the introduction of the method of slope reduction for low-detail elevation
models. Furthermore, the goal was to determine the strengths and weaknesses of selected
data for use in cross-country mobility analyses, supplemented by recommendations on
how to use these databases efficiently. The selection of databases was determined by the
focus of data development projects of NATO and current scientific research projects of the
Ministry of Defence of the Czech Republic. The presented methodology of data assessment
for the purposes of military geographical analysis of the terrain can be further used in
military practice, e.g., in foreign missions where high-detail data may not be present. Key
findings of the elevation models analysis show the potential of their usage in practise.
DTM 5, which is a model with a minimum resolution of a grid of points of 1 m × 1 m,
is the most detailed model in terms of the evaluation of slopes and passability. It can be
replaced by using DTM 4 (5 m × 5 m) in terrain analyses, for example, the slope reduction
for 30◦ slopes is 2.2◦. The elevation model with lower detail DTM 3 (10 m × 10 m) had a
4.9◦ slope reduction for 30◦ slopes and DTED 2 (30 m × 30 m) had a 6.4◦ reduction. These
models can be used for general analyses of less fragmented terrain.
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The selected areas, where analyses were performed, were a balanced sample of the
landscape. It allowed for the assessment of the most important terrain parameters that
have a fundamental influence on the conduct of military operations. Nevertheless, it is
necessary to perform a complete validation of the slope reduction method from other
various representative regions across NATO AOR (territory of NATO nations) and NATO
AOI (territory beyond NATO nations). A larger number of locations would enable a
more accurate determination of the reliability of databases when used in the cross-country
mobility analysis. The challenge NATO has is a limited global short-notice availability
of detailed digital terrain models. Without these models, no detailed and accurate CCM
analysis can be performed. The only option is to process available elevation models into a
form that allows for acceptable results, such as the slope reduction method.
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Abstract: A timely and accurate damage assessment of buildings after an earthquake is critical for the
safety of people and property. Most of the existing methods based on classification and segmentation
use two-dimensional information to determine the damage level of the buildings, which cannot
provide the multi-view information of the damaged building, resulting in inaccurate assessment
results. According to the knowledge of the authors, there is no related research using the deep-
learning-based 3D reconstruction method for the evaluation of building damage. In this paper, we
first applied the deep-learning-based MVS model to reconstruct the 3D model of the buildings after an
earthquake using multi-view UAV images, to assist the building damage assessment task. The method
contains three main steps. Firstly, the camera parameters are calculated. Then, 3D reconstruction
is conducted based on CasMVSNet. Finally, a building damage assessment is performed based on
the 3D reconstruction result. To evaluate the effectiveness of the proposed method, the method was
tested in multi-view UAV aerial images of Yangbi County, Yunnan Province. The results indicate that:
(1) the time efficiency of CasMVSNet is significantly higher than that of other deep learning models,
which can meet the timeliness requirement of post-earthquake rescue and damage assessment. In
addition, the memory consumption of CasMVSNet is the lowest; (2) CasMVSNet exhibits the best
3D reconstruction result in both high and small buildings; (3) the proposed method can provide
detail and multi-view information of damaged buildings, which can be used to assist the building
damage assessment task. The results of the building damage assessment are very similar to the
results of the field survey.

Keywords: multi-view UAV images; deep learning; CasMVSNet; building damage classification

1. Introduction

Earthquakes are one of the most serious natural disasters affecting humans. They
cause many houses to be damaged and collapse, severely affecting the safety of both people
and property. One of the key issues after an earthquake is the assessment of the damage of
buildings. The results of the assessment can provide important information for disaster
relief work. The timely and accurate assessment of damaged buildings is critical for rescues
and consequential loss assessment.

Traditionally, post-earthquake building damage is evaluated and counted via manual
field surveys, but this method is often time-consuming and laborious. Yamazaki et al. used
the QuickBird satellite image after the Ms6.8 earthquake on the Mediterranean coast of
Algeria and classified damaged buildings into five grades using the visual interpretation
image method [1]. However, atmospheric conditions, such as cloud cover, will affect the
image quality and lead to inaccurate evaluation.
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With the development of artificial intelligence, machine-learning-related technologies
have been gradually applied to the post-earthquake building damage assessment. Li
et al. used remote sensing data before and after the earthquake through the decision tree
method, in which the damaged buildings were divided into four grades [2]. The neural
network of the genetic algorithm (GA) and the neural network composed of multi-layer
perceptron (MLP) are used to predict the risk level of damage to reinforced-concrete (RC)
structures [3,4]. The method achieves detailed investigation and inspection of buildings
before the earthquake, reducing the loss of life and property. SMART SKY EYE (smart
building safety assessment system using UAV) evaluates building wall cracks by analyzing
natural factors based on machine learning methods such as random forest and support
vector machine (SVM) [5]. However, these generalization capabilities are poor and the
performance of the model is affected when the study area changes.

Compared with machine learning, convolutional neural networks (CNNs) based on
deep learning have strong image processing abilities, strong feature learning and visual
recognition abilities, and are widely used in building damage assessment. The dual-
temporal methods use CNN to extract information on the characteristics of the images
before and after the earthquake to determine the degree of damage to the building [6].
Ci et al. used deep-learning-based automatic detection and classification methods to
evaluate and classify the loss levels of buildings in Ludian earthquake aerial images [7].
However, these methods can only achieve good performance when there are few categories,
which cannot meet the needs for post-earthquake housing damage assessment. Ji et al.
also combined machine learning and deep learning methods to evaluate five types of
damage to buildings and improve the evaluation performance of damaged buildings using
a combination of texture information from random forests and deep features extracted by
CNN [8].

The above methods use two-dimensional semantic information to complete the dam-
age assessment of the building, but they only contain damage information on one side
of the building. Therefore, there is a big difference between the assessment results and
the actual damage. On the contrary, three-dimensional semantic stereo information can
provide structural features and height information of buildings. It is helpful to evaluate
the damage grade of buildings after an earthquake. Mustafa et al. extracted the damaged
information of buildings based on the differences in elevation between images before and
after the earthquake [9]. However, the applicability of this method is limited due to the
difficulty in obtaining pre-disaster and post-disaster digital elevation models (DEM). On the
contrary, the 3D model efficiently reconstructed using the UAV can describe more detailed
information of walls, beams, columns, and roofs from multiple angles [10,11]. Stepinac
et al. used a laser scanner and a drone to generate 3D point clouds, after which the damage
assessment of the building was performed by analyzing the three-dimensional structure of
the building [12]. The scheme is expensive and is not suitable for large-scale 3D reconstruc-
tion. SMART SKY EYE used commercial software for 3D reconstruction and found defects
in building structures using 3D models to complete the damage assessment of buildings [5].
However, the commercial software was developed from conventional methods [13–15],
such as pix4d [16], smart 3d [17], and PhotoScan [18]. They improve the quality of 3D
model, but the efficiency cannot meet the urgent needs of post-earthquake assessment.

In recent years, some multi-view stereo (MVS) networks based on deep learning
have been widely used in 3D-reconstruction-related research [19]. The basic principle
of MVS based on deep learning is to calculate the depth map of all images to com-
plete the 3D reconstruction of the whole scene [20]. Based on the DTU dataset [21],
MVSNet [20] completed the 3D reconstruction end-to-end for the first time. RMVSNet [22]
used the GRU structure [23] to improve its regularization method, making large-scale
3D reconstruction possible. Subsequent improvements proposed by D2HC-MVSNet [24],
AA-RMVSNet [25], and CasMVSNet [26] have further improved network performance.
Among them, CasMVSNet uses a multi-layer cascading method to compute the coarse-to-fine
depth information [27,28], with higher computational efficiency and reconstruction quality.
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However, all of the models mentioned above were tested in public datasets, which
are mainly used to validate and evaluate different improved MVS networks. In addition,
to the knowledge of the authors, there is little research that has used deep-learning-based
MVS models to complete the damage assessment of buildings. The generalization ability of
the model is the most important ability to move towards engineering applications, so it is
necessary to use real post-earthquake image data analysis to evaluate the performance of
the method. At the same time, these data also fill the gaps in the application of this method
to the damage assessment of buildings after earthquakes [29,30]. Therefore, the objective of
the study is to propose a deep-learning-based MVS method that is suitable for assessing
building damage after an earthquake. Most importantly, the applicability of different 3D
reconstruction models for post-earthquake building damage assessment is explored from
the point view of time efficiency and the construction performance.

The remainder of this paper is organized as follows. Section 2 introduces the dataset
used in this study. The methodology is presented in Section 3. In Section 4, the experimental
details and results are shown. In Section 5, the performance of different methods is
discussed. Finally, the conclusion is shown in Section 6.

2. Datasets

In the experiment, all MVS networks based on deep learning were trained on the
public DTU dataset [21]. The data contained a wide range of scenarios, including housing
models. The training data used 119 scenes, each containing 49 different view images
with a pixel resolution of 640 × 512, with seven different intensity illuminations added
to all images. The dataset was shot and calibrated by industrial manipulators, which
can obtain high-precision camera parameters and improve the training of MVS networks.
The dataset was downloaded from https://github.com/YoYo000/MVSNet (accessed on
29 August 2022) [20].

The dataset used in this study contained post-earthquake images of Yangbi County,
Dali Prefecture, Yunnan Province, which occurred with an earthquake of magnitude 6.4 on
21 May 2021 with a focal depth of 8 km and an epicenter at 25.67 degrees north latitude and
99.87 degrees east longitude. As shown in Figure 1, a total of 411 UAV images with a pixel
resolution of 5472 × 3648 (W × H) were obtained and 153 houses in the area were studied.
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3. Methodology

The flow chart of the proposed method is shown in Figure 2, consisting of 3 steps:
(1) calculation of camera parameters, (2) 3D reconstruction of MVS using deep learning
method, (3) building damage assessment based on the result of the 3D reconstruction.
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3.1. Calculation of Camera Parameters

When using the deep-learning-based MVS method to reconstruct the UAV image in
the earthquake area, the COLMAP based on incremental SfM (structure-from-motion) [31]
technology is used to complete the sparse reconstruction part to calculate camera parame-
ters [20]. Incremental SfM is a processing method for sequential iterative reconstruction
of 3D scenes. As shown in Figure 3, it usually starts with feature extraction and feature
matching and then generates 3D models of scenes through geometric verification iteration.
Next, the selected two-view is used as the basis of the model, and the registration of the new
image is gradually added and the reconstruction is refined by triangulation and bundle
adjustment (BA). After sparse reconstruction, the camera parameters of each image and the
horizontal depth range of the model from the camera are output.
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Figure 3. Principle of COLMAP [31].

The processed data are calibrated by the image and camera parameters, and there
will be a slight deviation from the original image. In order to adapt to the input of each
multi-view semantic stereo network, the image processed by COLMAP is preprocessed
to a uniform size, and the image is restored to the original size. According to the image
scaling ratio, the same scaling is performed on the camera internal parameters, including
the main point offset coordinates and the camera focal length.
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(1)

In Formula (1), W is the width of the image, H is the height of the image, u and v are
the coordinates of the principal point of the image, and f is the focal length of the camera.
Others are scaled corresponding parameters.
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3.2. 3D Reconstruction Based on CasMVSNet

Considering the time cost and hardware equipment requirements for the three-
dimensional modeling of UAV images, this study uses CasMVSNet [26] for 3D recon-
struction due to its faster processing speed and higher accuracy. CasMVSNet extends the
regularization of cost volume using 3D CNN [32] in MVSNet, which can better capture
spatial feature information and use a multi-layer cascade method from coarse to fine. The
multi-scale feature maps extracted from the feature extraction part are matched to construct
cost volume with different resolutions. In the previous stage, the rough depth information
was obtained via the calculation of the small-resolution feature map, and this is used to
adaptively narrow the range of depth calculated by the higher resolution feature map in
the next stage.

As shown in Figure 4, to obtain the multi-scale feature map and calculate the depth at
different stages, the feature extraction part uses the feature pyramid network (FPN) method
to extract the feature map with three scale resolutions, and their size is reduced by [33]
times compared to the original image. Based on the above multi-scale feature map, the cost
volume is constructed in stages from small to large. As shown in the green line in Figure 4,
the depth information calculated by the cost volume with smaller resolution in the previous
stage restricts the depth range of the homography transformation in the next stage to the
depth value of this calculation. In fact, the depth interval of the previous stage is refined,
and a smaller cost volume is constructed, which not only reduces the amount of calculation
but also consumes explicit memory when calculating more accurate depth maps.

H(k+1)
i

(
d(k) + ∆(k+1)

)
=
(

d(k) + ∆(k+1)
)

KiTiT−1
0 (2)
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The differentiable homography [20] of CasMVSNet in different stages is as follows:
The depth value of different stages is modified to d = d(k) + ∆(k+1), where k refers to the
number of stages. The depth range for the next stage is calculated by adding the depth
result d(k), calculated in the previous stage, to the residual depth ∆(k+1). As shown in part
W of Figure 4, with the change in the feature map, the intrinsic parameters of the camera are
scaled equally. Using these parameters, the feature maps of the auxiliary view are warped
into the reference image view space, and the cost volume is constructed by aggregating the
cost matching the auxiliary view feature maps and the reference image feature maps.

3.3. Assessment of Damaged Buildings

AeDES [34] provides five grades for damaged buildings. Each grade lists detailed
close-range pictures of houses. The examples include detailed parameters, such as the
width of the wall cracks and the internal structure of the damaged building. Therefore,
it is more suitable for field survey. The European Macro-Earthquake Magnitude in 1998
(EMS-98) [35] also classifies damaged buildings into five grade levels in detail, and each
level provides a schematic diagram of macroscopic structural damage. Therefore, this
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sub-standard is more suitable for visual inspection of the 3D model reconstructed using the
above method to obtain a post-earthquake damage assessment of buildings. Table 1 shows
the detailed descriptions and examples of building damage classifications. Then, according
to the EMS-98 standard and the result of 3D reconstruction, a visual interpretation was
conducted to determine the damage level of the building.

Table 1. Detailed description of buildings with different damage level.

Reinforced Concrete Masonry Buildings 3D Model Classification of Damage
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4. Experiment and Results
4.1. Experimental Details

The generalization ability of the model is the most important engineering application
ability. The model trained on the high-precision camera parameter DTU dataset [21] was di-
rectly used to test the UAV image data of Jinniu Village in Yangbi, Yunnan. The experiment
was carried out on a computer with an Intel Xeon (R) W-2295 3.00 GHz * 36 processor and
a 24 GB GeForce RTX3090/PCle/SSE2 graphics processor.

The network was trained for 16 epochs, with an initial learning rate of 0.001, which
was reduced by a factor of 2 after 10, 14, and 16 epochs. The pixel resolution of the input
image in the network was fine-tuned according to the original public test parameters. The
stage of CasMVSNet was set to 3, numdepth was set to 192, ndepths was set to corresponded
to {48, 32, 8} and interval_scale was set to 1.06.

4.2. Results

The efficiency of 3D reconstruction and the quality of the model are critical for damage
assessment of buildings after an earthquake and also take into account the hardware
requirements for implementing the work. On the basis of the above experiments, we
quantitatively analyzed and compared the results of three indicators of statistical time
consumption, video memory consumption, and visual modelling of different methods. For
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AA-RMVSNet and D2HC-MVSNet, numdepth was set to 192 and interval_scale was set
to 1.06.

4.2.1. Time Consumption

Table 2 is the time comparison of different methods. We divided the reconstruc-
tion time into two parts: the time for calculation of camera parameters and the time of
3D reconstruction. As can be seen from the table, camera parameters were calculated for
deep learning methods based on COLMAP, so the time for the first part was always 61 min.
In terms of 3D reconstruction, we set up two sets of resolution experiments to compare the
time of 3D reconstruction. When the resolution of the input image was 1184 × 800 (pixel),
the time consumption of AA-RMVSNet and D2HC-MVSNet was approximately 10 times
and 7.8 times that of CasMVSNet, respectively. When the resolution of the input image
increased to 2160 × 1440 (pixel), the time consumption of CasMVSNet was also significantly
lower than the other methods. As indicated in the table, the 3D reconstruction time of
AA-RMVSNet and D2HC-MVSNet was about 9.6 times and 8.6 times that of CasMVSNet,
respectively. The CasMVSNet method took the shortest time and had the highest efficiency.

Table 2. Time consumption of various methods.

Meth Calculating Camera Parameters 3D Reconstruction (min)
1184 × 800 Pixel 2160 × 1440 Pixel

AA-RMVSNet 61 163 499
D2HC-MVSNet 61 124 447

CasMVSNet 61 16 52

The reason for the time difference is that both D2HC-MVSNet and AA-RMVSNet use
a recurrent neural network to regularize the cost map at each depth in the cost aggregation
part. Compared with D2HC-MVSNet, AA-RMVSNet adds an Inter-view AA module to the
feature extraction part for multi-scale feature fusion and adds the Inter-view AA module
before aggregating cost volume, which takes the longest time. The CascMVSNet model
uses a cascading approach to calculate the pixel depth from coarse to fine. The depth range
is roughly divided at the initial stage, and the calculation result is then discretized into a
depth range for the next stage. Given that the sum of its depth intervals at each stage is
much smaller than the depth interval values of the above two methods, and CascMVSNet
uses a 3D CNN method that is faster than the recurrent neural network for cost aggregation,
the method is the shortest and most efficient.

4.2.2. Memory Consumption

Table 3 shows the results of the memory consumption of different deep-learning-based
MVS networks. As can be seen from the table, the memory consumption of CasMVSNet
was the lowest. When the resolution of the input image was 1184 × 800, the memory
consumption of CasMVSNet was 9232 MiB and 500 MiB lower than that of AA-RMVSNet
and D2HC-RMVSNet, respectively. When the resolution of the input image increased
to 2160 × 1440, the memory consumption between different models was more distinct.
Compared with the memory of 9955 MiB of CasMVSNet, the memory consumption of
D2HC-RMVSNet was 4400 MiB higher. The memory consumption of AA-RMVSNet was
the largest, which was about 2.3 times that of CasMVSNet.

Table 3. Memory consumption of various deep learning methods in different sizes of images.

Meth 1184 × 800 (MiB) 2160 × 1440 (MiB)

AA-RMVSNet 13659 22933
D2HC-MVSNet 4907 14395

CasMVSNet 4407 9995
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The reason for this phenomenon is that CasMVSNet narrows the depth range as the
resolution of the feature map increases, building a smaller cost volume at each stage to
lower the memory consumption compared to the other two deep learning methods. The
D2HC-MVSNet network using a recurrent neural network instead of 3D CNN for cost
aggregation decomposes the whole cost volume into a cost map at each depth. The memory
consumption is slightly higher than that of CasMVSNet in low-resolution performance, but
with the increase of input image resolution, its consumption will be significantly higher
than that of the CasMVSNet model. The AA-RMVSNet model is improved on the basis of
the D2HC-MVSNet model. The Inter-view AA module added to the model performs pixel-
level weighted aggregation on the cost volume constructed from multiple perspectives, so
the model is higher than the other two models in memory consumption.

4.2.3. Result of 3D Reconstruction

As shown in Figure 5, the visualization results of different 3D reconstruction methods
are displayed in CloudCompare [36]. As can be seen from the figures, all the methods
exhibited relatively good results and were able to reflect the multidimensional details of
the damaged building. Compared to the higher part of the building, the UAV obtained
more detailed building information and could obtain more detailed stereo semantic infor-
mation in the modeling process to complete stereo matching. Therefore, all of the methods
performed well in this type of building. The Intra-view AA added in the feature extraction
part of AA-RMVSNet maintained the correlation between the original geometric features
of the image and the Inter-view AA added in the cost aggregation part on the basis of
fusing multi-scale features. Compared to D2HC-MVSNet, both improved the accuracy of
the 3D model. Unlike AA-RMVSNet and D2HC-MVSNet, CasMVSNet uses a multi-layer
cascaded and gradually refined depth calculation method, which can better reflect the
advantages of finer division and calculation of depth information when dealing with UAV
image reconstruction. The building wall information in the 3D model reconstructed by this
method was complete and delicate.

4.2.4. Result of the Evaluation

In this study, the point cloud generated by the 3D reconstruction was converted to
3DTiles format and imported into a seismic information visualization system, which was
developed based on Cesium. In Figure 6, the model is marked with a Web page as a
carrier to visually view the results of the assessment of the disaster situation. Address at
www.peteralbus.com:8085 (accessed on 29 August 2022).

Based on the results of the above comparison, in this experiment, the reconstruction re-
sults of the CasMVSNet network were selected to evaluate the damage grade of 153 houses
in the Jinniu Village area according to the EMS-98 standard. Furthermore, the proportion of
the number of damaged houses at each grade to the total number of houses was calculated
and compared with the evaluation results of other methods in this area. In total, two
comparison methods were involved. The first was the result obtained by Zhang et al. In
this research, visual interpretation was conducted on orthophotos of UAV images of the
old street near the Yunlong Bridge in Yangbi County [37]. Another method was visual
interpretation using spliced orthophotos. The comparison results are shown in Table 4.
As can be seen in the table, our results are very close to those of the other two methods.
Compared to the results of the field survey, the relative error was 1.3%, 1.0%, 0.6%, 1%,
and 0.6% for G0, G1, G2, G3, and G4, respectively, which indicates the effectiveness of the
proposed method.
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Table 4. Comparison of the results of the 2D and 3D assessment ratio and field survey.

Assessment of Damage Orthophoto Field Survey 3D Models

G0 22.7% 20.3% 21.6%
G1 37.7% 37.7% 36.7%
G2 21.6% 26.1% 25.5%
G3 13.2% 10.1% 11.1%
G4 4.8% 5.8% 5.2%

Total 100% 100% 100%

5. Discussion

Timeliness is the most important factor for the damage assessment of buildings after
an earthquake. Therefore, the applicability of different MVS models for post-earthquake
building damage assessment is discussed from the point of view of the network structures
and the robustness. As shown in Figure 7, similar to CasMVSNet, deep-learning-based
multi-view stereo networks, such as D2HC-MVSNet and AA-RMVSNet, have mostly been
improved on the basis of MVSNet. The initial MVSNet uses the 3D CNN method to
regularize the cost volume and generate the probability. The soft argmin [38] operation
calculates the depth value for each pixel in a winner-take-all manner and estimates the
initial pixel-level depth map. Finally, the reference image is used to refine the depth map
to improve the accuracy of the boundary region and complete refined pixel-level depth
map estimation. However, as the input image size increases, the parameters of the model
increase exponentially, so the method requires higher memory consumption.
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5.1. Network Structure

D2HC-MVSNet improves the R-MVSNet GRU gating to some extent, with more
powerful loop convolution units and dynamic consistency checking strategies. Firstly, the
network uses dilated convolution [39] to obtain a larger range of feature information in the
2D feature extraction part, connects the feature output via different convolutional layers,
and aggregates context feature information without losing resolution. D2HC-MVSNet
introduces a cyclic encoding–decoding HU-LSTM structure [24] to regularize the cost
volume along the depth direction in the cost aggregation part, and realizes the connection
memory of the same size features along the depth direction on the feature map of each scale
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in the regularization process. This method not only aggregates the spatial geometric context
information of the cost map but also preserves the cost aggregation output of the original
resolution size with lower memory consumption. However, this method decomposes the
cost volume into cost maps at each depth and processes them sequentially using a recurrent
neural network, resulting in a slower computational efficiency of the network. When used
to assist in assessing the damage level of houses in post-earthquake areas, it cannot meet
the urgent needs of this work.

AA-RMVSNet is improved on the basis of D2HC-MVSNet. The feature extraction part
uses the common CNN to obtain the high-dimensional information of the image. The last
two downsamplings output the feature maps of the original image with 1/4 and 1/16 size
32 channels, respectively. One of the innovations of this method is that an Intra-view AA
module composed of deformable convolution [40,41] is added to the feature extraction
part, which is used to adaptively aggregate the features of different scales and regions with
different texture richness. This module processes the feature maps of the last three layers
through deformable convolution and then upsamples the output of the last two layers
after processing, and integrates with the previous layer as the final output of the feature
extraction part, maintaining the geometric shape of the object in the image to the greatest
extent when extracting features. In addition, when the network aggregates the cost volume
of multiple perspectives, the Inter-view AA module is added to suppress the mismatched
pixels by pixel-level weighting, and the pixels with higher matching correlations are given
greater weight, rather than the matching results of all perspectives being treated equally.
In short, the network fully retains the original geometric information of the object in the
image and pays attention to the correlation problem after matching each perspective, thus
improving the quality of 3D reconstruction. However, this method also uses the recurrent
neural network, joining the above two optimization methods. Therefore, the quality of 3D
reconstruction is guaranteed but the time efficiency is not well balanced when used in the
post-earthquake building damage assessment work, and the added Inter-view AA module
makes the network’s memory consumption higher, resulting in higher GPU hardware
requirements when carrying out this work.

5.2. Robustness

Through the MVS network modeling channel based on deep learning, the post-
earthquake housing damage assessment work is completed—that is, from the public close-
range experimental data migration to the real image of the UAV in the post-earthquake
area and reconstruction of the 3D model—so whether the model has good robustness
is extremely important. MVS network modeling based on deep learning completes 3D
modeling in the form of calculated depth maps, so higher-resolution depth maps can
reconstruct finer 3D models. The dilated convolution used by D2HC-RMVSNet takes into
account the features of a larger field of view, and AA-RMVSNet refines feature extraction
and filter matching results, both of which improve when rebuilding 3D models. However,
when used for high-resolution post-earthquake regional UAV image reconstruction, the
series of models obtain higher-resolution depth maps by fine-tuning the max_w and max_h
of the input image. However, from the experimental results, both methods have large
fluctuations in time consumption and memory consumption. However, the CasMVSNet
method constructs a smaller cost volume, so it has better stability at this time.

The MVS series networks based on deep learning calculate the pixel depth information
based on the assumption of discrete depth intervals. Therefore, when using the UAV
image data of large scenes to reconstruct the 3D model of the post-earthquake region, the
single-stage networks of D2HC-RMVSNet and AA-RMVSNet can fine-tune and refine the
discrete depth intervals. However, the above two networks use the RNN method, so it
will increase the workload of the recurrent neural network when fine-tuning the assumed
discrete intervals. CasMVSNet can not only improve the robustness of 3D reconstruction
by refining the discrete depth intervals of each stage of the network, but also refine the
depth map output in the final stage by increasing the level of the network. In this way,
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CasMVSNet realizes the 3D reconstruction of UAV image data in large scenes after the
earthquake. Whether the number of stages of the network is adjusted or the discrete
depth interval is refined, it will refine the calculation of depth information and provide
better stability.

6. Conclusions

In this work, a multi-view stereo (MVS) method based deep learning was first applied
to assist in assessing the damage level of buildings in post-earthquake areas. The method
was tested in aerial UAV images from Yangbi County, Yunnan Province. The time consump-
tion, memory consumption, and the performance of 3D reconstruction of different models
were compared. In addition, the applicability of different 3D reconstruction models was
discussed. A number of conclusions can be made as follows: (1) the time efficiency of Cas-
MVSNet is significantly higher than that of other deep learning models, and the memory
consumption is the lowest, which can meet the timeliness requirement of post-earthquake
rescue and damage assessment; (2) CasMVSNet exhibited the best 3D reconstruction result
in both high and small buildings; (3) the deep-learning-based 3D reconstruction method
can provide the detail and multi-view information of damaged buildings, which can be
used to assist the building damage assessment task. The assessment results were very close
to the results of the field survey.

The main contributions of our study can be summarized as follows: (1) we first
attempted to use deep-learning-based MVS to UAV aerial 3D reconstruction and building
damage assessment research, which can provide 3D information for post-earthquake rescue
and loss assessment; (2) the applicability of different MVS models for 3D reconstruction of
UAV images have been analyzed and discussed.

The limitation of the proposed method is that the damage level of the buildings is
determined by visual interpretation. In the future, we will devote efforts to construct a
network to realize the automatic classification of buildings, based on the results of the
3D reconstruction.
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Abbreviations

UVA unmanned air vehicle
GA genetic algorithm
MLP multi-layer perceptron
RC reinforced-concrete
SMART SKY EYE smart building safety assessment system using UAV
CNN convolutional neural networks
DEM digital elevation models
MVS multi-view stereo
SfM structure-from-motion
BA bundle adjustment
FPN feature pyramid networks
EMS-98 European Macro-Earthquake Magnitude in 1998
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Abstract: Remote sensing of coastal sediments for the purpose of automated mapping of their
physical properties (grain size, mineralogy and carbonate content) across space has not been widely
applied globally or in South Africa. This paper describes a baseline study towards achieving this aim
by examining the spectral reflectance signatures of field sediment samples from a beach–dune system
at Oyster Bay, Eastern Cape, South Africa. Laboratory measurements of grain size and carbonate
content of field samples (n = 134) were compared to laboratory measurements of the spectral signature
of these samples using an analytical spectral device (ASD), and the results interrogated using different
statistical methods. These results show that the proportion of fine sand, CaCO3 content and the
distributional range of sediment grain sizes within a sample (here termed span) are the parameters
with greatest statistical significance—and thus greatest potential interpretive value—with respect
to their spectral signatures measured by the ASD. These parameters are also statistically associated
with specific wavebands in the visible and near infrared, and the shortwave infrared parts of the
spectrum. These results show the potential of spectral reflectance data for discriminating elements
of grain size properties of coastal sediments, and thus can provide the baseline towards achieving
automated spatial mapping of sediment properties across coastal beach–dune environments using
hyperspectral remote sensing techniques.

Keywords: grain size analysis; coastal sediments; analytical spectral device; hyperspectral data

1. Introduction

Sediment properties of sandy beaches and sand dunes, including grain size, carbonate
content, moisture content, organic content, magnetic susceptibility and grain mineralogy,
are most commonly measured and quantified based on field observations or field sampling,
and then laboratory analysis of these samples using different analytical equipment [1–4].
Following this, a range of statistical techniques (e.g., calculation of moment measures, mul-
tivariate analyses) can be used on the grain size data in particular, in order to characterise
sediment properties and to interpret depositional processes and environments and their
changes over time and space, e.g., [5–11]. This standard methodology has been undertaken
on many beaches and dunes worldwide, resulting in an understanding of spatial patterns
of different sediment properties (based mainly on grain size) across different coastal depo-
sitional environments, e.g., [12–15]. The main problem of such a field-based approach is
that it provides only a limited view of local-scale coastal sediment properties and dynam-
ics, which is often strongly affected by the specific spatial and temporal context of field
sampling at individual sites. In addition, studies also use different sampling strategies and
methods of data analysis, which means that results from these individual studies may not
be comparable. By contrast, remote sensing methods using a variety of platforms have po-
tential to consistently map and quantify spatial patterns of sediments and landforms across
beach–dune systems, and this has been undertaken in several studies e.g., [16–21]. There
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are fewer studies, however, that have examined spectral data on sediment properties and
stratigraphy. Sediment cores have been examined using different hyperspectral imaging
techniques, mainly in the shortwave infrared (SWIR) wavebands, in order to identify strati-
graphic variations in sediment grain size and mineralogy [22–24]. These studies have been
used to produce spectral time series maps that represent variations in sediment properties
through the cores, rather than identify individual spectra that represent certain sediment
endmembers. There are only a few studies that have examined the spectral properties of
sediments in coastal environments, and these have considered the role of variations in
water content and mineralogy as key factors influencing their spectral signatures [18,25].
Mineral compositions can then be used to derive endmembers for spatial modelling.

Most work on spectral signatures of sediment has been done on river depositional
environments [26,27], and work on coastal sediments can be informed by these previous
studies. For example, river and coastal sediment samples in NE Italy were evaluated
by Ciampalini et al. [28] using an analytical spectral device (ASD) in order to derive a
spectral library representing sample grain size and mineralogy, which was then compared
to laboratory results. Principal component analysis was then used to identify sediment
provenance endmembers. The same research approach was used by Ibrahim et al. [19]
along the Belgian coast. Grain size properties along beaches were examined using Landsat
visible, near infrared (VNIR) and thermal infrared bands in SE India [29], but these bands
may have been influenced by a high concentration of heavy minerals (50–80%) at this
site. Using IKONOS imagery, Park et al. [30] showed that all spectral bands have a good
correlation (>0.8) with grain size, and Williams and Greeley [31] showed that different
spectral bands from synthetic aperture radar imagery are affected by surface moisture.
Thus, there are several studies that have analysed the spectral properties of beach sand but
these have tended to focus on the role of local environmental factors rather than the appli-
cation of different techniques or methodologies. A key question is how location-specific
measurements can be applied to similar depositional settings elsewhere [27,32] or how
patterns of (for example) grain size, calcium carbonate (CaCO3), organic carbon or biomass
content can be mapped across space using automated remote sensing techniques [21,33–35].

Although field and laboratory hyperspectral devices have been used to derive data
on coastal sediment properties [16,28,36], there have been hitherto no published studies
using the spectral properties of sediments from coastal settings in South Africa. This
study uses laboratory hyperspectral measurements of sediment samples collected from a
beach–dune system on the coast of South Africa, focusing on relationships between selected
properties of the field samples (including grain size and carbonate content) and their
associated spectral signatures. The aims of this study are to describe the nature of beach–
dune samples in terms of their spectral signatures and to examine these relationships
using statistical methods. This can be considered as a first step towards developing a
robust methodology for automated mapping of sediment properties across beach–dune
environments applicable globally.

2. Study Area and Methods

The study area examined, from which surface sediments were sampled, is at Oyster
Bay, Eastern Cape Province, South Africa (Figure 1). Prevailing winds in this region are
towards the northeast (in summer) and the west/northwest (in winter). Tidal range is high
microtidal/low mesotidal and swell waves from the Southern Ocean have a significant
wave height of >5 m [37]. Oyster Bay is an asymmetrical zeta-shape embayment [38] with
an extensive sandy beach that is 6.1 km in total length and with a variable beach width of
30 to 290 m at low tide. Bedrock headlands to the east and west define the overall shape
of the bay. An extensive supratidal zone is present, containing parallel-aligned transverse
dunes with crests that are 40–50 m apart, similar to those found elsewhere along the South
African coast [39]. Dune migration periodically blocks off the mouth of the incoming
Klipdrift River. The landward boundary of the supratidal dunes at the back of the beach is
marked by dune migration into a zone of highly vegetated and variably cemented linear
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palaeodunes that extend for ~40 km along this coastline. These ridges broadly correspond
to the Nahoon Formation of the late Pleistocene Algoa Group, covering the period of
marine isotope stages 5 to 2 inclusively [40–42]. Holocene-age dunes in this region, fronting
the eroded older dunes, correspond to largely unvegetated foredunes of the Schelm Hoek
Formation and are composed of unconsolidated calcareous aeolian sand [43].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 22 
 

African coast [39]. Dune migration periodically blocks off the mouth of the incoming Klip-

drift River. The landward boundary of the supratidal dunes at the back of the beach is 

marked by dune migration into a zone of highly vegetated and variably cemented linear 

palaeodunes that extend for ~40 km along this coastline. These ridges broadly correspond 

to the Nahoon Formation of the late Pleistocene Algoa Group, covering the period of ma-

rine isotope stages 5 to 2 inclusively [40–42]. Holocene-age dunes in this region, fronting 

the eroded older dunes, correspond to largely unvegetated foredunes of the Schelm Hoek 

Formation and are composed of unconsolidated calcareous aeolian sand [43].  

 

Figure 1. (a) Location of the study area at Oyster Bay, Eastern Cape, South Africa; (b) large-scale 

geomorphic setting of Oyster Bay with the sampling region (panel c) shown in the red box; (c) dis-

tribution of sediment sampling points 006–139 (background image in (c) from Google Earth, image 

date 25 August 2013, which is the latest available image before the sampling period). 

Surficial (top 5 cm) sediment samples (~400 g each, n = 134, labelled 6–139) were col-

lected in the field across the beach–supratidal dune system in the centre of the Oyster Bay 

embayment (Figure 1c). A random sampling approach was used but covering the full 

width of the beach including the intertidal zone. These samples were bagged, labelled, 

and sampling locations and their geomorphic settings marked using a Garmin Etrex 20 

handheld GPS (x y accuracy ± 3 m). In addition, shells of different species (that were bro-

ken and did not contain organisms) were also collected from the intertidal zone. Samples 

were of the Cape brooding oyster (Ostrea atherstoni, sample 1), Brown mussel (Perna perna, 

sample 2), Agulhas ridged nut clam (Lembulus belcheri, sample 3), Southern cuttlefish (Se-

pia australis, sample 4), and a mixed shell sample combining these and other shell species 

found within the intertidal zone (sample 5) (Figure 2). In the laboratory, shell samples (n 

= 5) were dried and crushed using a pestle and mortar to generate broken fragments >2 

Figure 1. (a) Location of the study area at Oyster Bay, Eastern Cape, South Africa; (b) large-scale
geomorphic setting of Oyster Bay with the sampling region (panel c) shown in the red box; (c) distri-
bution of sediment sampling points 006–139 (background image in (c) from Google Earth, image date
25 August 2013, which is the latest available image before the sampling period).

Surficial (top 5 cm) sediment samples (~400 g each, n = 134, labelled 6–139) were
collected in the field across the beach–supratidal dune system in the centre of the Oyster
Bay embayment (Figure 1c). A random sampling approach was used but covering the full
width of the beach including the intertidal zone. These samples were bagged, labelled,
and sampling locations and their geomorphic settings marked using a Garmin Etrex
20 handheld GPS (x y accuracy ± 3 m). In addition, shells of different species (that were
broken and did not contain organisms) were also collected from the intertidal zone. Samples
were of the Cape brooding oyster (Ostrea atherstoni, sample 1), Brown mussel (Perna perna,
sample 2), Agulhas ridged nut clam (Lembulus belcheri, sample 3), Southern cuttlefish
(Sepia australis, sample 4), and a mixed shell sample combining these and other shell species
found within the intertidal zone (sample 5) (Figure 2). In the laboratory, shell samples (n = 5)
were dried and crushed using a pestle and mortar to generate broken fragments >2 mm
diameter. Sediment samples were dried, sieved to remove the >2 mm fraction, and a
subsample (~50 g) evaluated for CaCO3 content using the loss on ignition method. In this
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method, the subsample was weighed, combusted in a muffle furnace for 5 h at 950 ◦C,
and reweighed. Combustible CaCO3 content (% of sample mass) was then calculated.
Three replicates were undertaken for each sample, and the results averaged. Variation
between the replicates was commonly <0.1%. The grain size distribution for each sample
was measured using a Mastersizer 3000 Hydro EV for the size range 0.01–2000 µm with
a subsample size of ~5 g. Each subsample was sonificated for 20 s prior to measurement,
and five individual grain size distribution patterns were measured using the Mastersizer,
and the average taken. The key grain size distribution parameters (D10, D50, D90, kurtosis,
skewness, standard deviation and mean) generated by the Mastersizer software were used
for analysis. Additionally, a derived parameter herein called span, which describes the
width of the particle size distribution, was calculated as

Span =
(D90 − D10)

D50
(1)

where D90 and D10 are the 90th and 10th percentile values of the grain size distribution,
and D50 is the median grain size.
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Figure 2. Shell samples collected from Oyster Bay. (a) Cape brooding oyster (Ostrea atherstoni,
sample 1); (b) Brown mussel (Perna perna, sample 2); (c) Agulhas ridged nut clam (Lembulus belcheri,
sample 3); (d) Southern cuttlefish (Sepia australis, sample 4).

The spectral signatures of sediment and shell samples were acquired under controlled
environmental conditions in the laboratory using an Analytical Spectral Device (ASD)
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FieldSpec®3spectrometer (ASD Inc., Boulder, CO, USA) and a light mug (Figure 3). The
instrument measures wavelengths from 350 to 2500 nm and compares samples to a white
reference panel. The 2 mm-sieved sediment and shell samples were placed in 100 mL
glass bottles (Figure 3) and then placed on top of the light mug to measure the reflectance
from each sample. Five spectral scans were captured for each sample to ensure spectral
stability and an average reflectance was considered for further analysis. The spectrometer
was calibrated using the white reference Spectralon® (Figure 3). The spectrometer was
recalibrated after every 20 sample scans. The spectral measurement were stored in a
notebook computer connected to the device. Figure 3 shows the laboratory setup used in
this study.
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Figure 3. Laboratory spectral measurement system. The system involves an ASD spectroradiometer
and a light mug device.

Following ASD data collection, the spectral data were first combined and converted
from digital numbers to reflectance values using the ViewSpecPro® software. The spectral
resolution was 1 nm which causes several data redundancy difficulties and affects the
processing time. The spectral data also went through several pre-processing steps including
removing noise-affected spectra located at the edge of the scans. First, the reflectance data
less than 375 nm and greater than 2460 nm were removed from further analysis in order to
disregard edge effects. Second, the moisture absorption spectral bands (at ~2500, 1950 and
1450 nm; [44]) were therefore eliminated from the final pre-processing stage. A correlation
analysis was first performed on the data to identify the spectral wavelengths that show a
significant association with different sediment properties. Based on the correlation analysis,
specific wavelength regions were then selected. Linear regression analysis and partial least
squares regression analysis were then performed on the selected spectral wavelengths based
on the magnitude of the correlation coefficient. The data were partitioned into training and
testing datasets. Approximately 70% (94 samples) of the dataset was used for the statistical
model training, and 30% (40 samples) was used for model testing and validation.
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3. Results
3.1. Site Geomorphology and Sediment Dynamics

Oyster Bay contains transgressive transverse dunes within the supratidal part of the
beach (Figure 1b), and in the field these are observed to be asymmetric in profile and actively
migrating towards the northeast, in the direction of the regional prevailing wind [45] and
reflecting the relatively high sediment availability in Oyster Bay. The transgressive dunes
show steep slipfaces (Figure 4b) and migrating free dunes over the beach surface (Figure 4c).
Older vegetated dunes are left as residual eroded hummocks (Figure 4d).
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Figure 4. Dune and beach morphology at Oyster Bay. (a) Dissipative beachface within the lower part
of the beach system; (b,c) migrating transverse dune ridges within the supratidal zone; (d) erosional
hummock of an older vegetated dune system, now isolated within the upper part of the beach.

3.2. Sediment Properties

Detailed laboratory analysis of sediment sample grain size data (Table 1) shows that
the samples (n = 134) are remarkably uniform. In terms of texture, samples are dominantly
(98%) medium sand with only one sample fine grained and two samples coarse grained. In
terms of sorting, most samples (66%) are well sorted, 31% are moderately well sorted and
3% moderately sorted. For skewness, 98% are near symmetrical and 2% are coarse skewed.
CaCO3 values vary from 8.22% to 27.29%. For kurtosis, >99% are mesokurtic and only
one sample is leptokurtic. The sediment samples were collected from backshore, beach,
dune crest, ramp, slipface and interdune positions (Figure 1c). There are some statistically
significant differences between grain size end-members (fine and coarse/very coarse sand)
and CaCO3 values between some of these sampling positions (Table 2), in particular in
beach samples where wave action can contribute to sediment sorting and from supratidal
dunes where wind transport leads to effective sediment sorting. As a result, there are some
statistical differences between D10, D90 and D50 values.
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Table 2. Table of p-values obtained for different sediment properties from different sampling locations
(Table 1), analysed using Fisher’s partial least squares discriminant analysis. Significance levels are:
ˆ 0.1, * 0.05, ** 0.01 and *** 0.001.

Location D10 D50 D90 CaCO3 Fine Sand Medium
Sand

Coarse
Sand

Very Coarse
Sand

Backshore, beach 0.0002 *** 0.0004 *** 0.0041 ** 0.0455 * 0.0120 * 0.2313 0.0003 ** 0.0148 *

Backshore, crest 0.0265 * 0.0318 * 0.0475 * 0.0005 ** 0.1433 0.9129 0.0221 * 0.1460

Backshore,
interdune 0.8668 ˆ 0.5823 0.5154 0.9509 0.7269 0.8188 0.3936 0.8481

Backshore, ramp 0.1903 0.3554 0.6308 0.9566 0.0472 * 0.5359 0.7108 0.9965

Backshore, slip face 0.4271 0.4077 0.5417 0.0813 ˆ 0.2634 0.7330 0.4244 0.9953

Backshore, trough 0.4534 0.8241 0.7296 0.0782 ˆ 0.3678 0.8872 0.9339 0.4140

Beach, crest 0.0113 * 0.0144 * 0.0817 ˆ 0.5547 0.0814 ˆ 0.1914 0.0192 * 0.0967 ˆ

Beach, interdune 0.0038 ** 0.0141 * 0.0757 ˆ 0.1113 0.0803 ˆ 0.2343 0.0283 * 0.0674 ˆ

Beach, ramp <0.0001 *** <0.0001 *** 0.0022 * 0.0705 ˆ <0.0001 *** 0.5811 0.0003 ** 0.0241 *

Beach, slip face 0.0069 ** 0.0076 ** 0.0365 * 0.0067 ** 0.0172 * 0.3404 0.0081 * 0.1989

Beach, trough <0.0001 * <0.0001 *** 0.0032 ** 0.0002 *** 0.0004 ** 0.1425 <0.0001 *** 0.0379 *

Crest, interdune 0.1626 0.3588 0.4935 0.0148 * 0.5158 0.7372 0.4968 0.4123

Crest, ramp 0.0007 *** 0.0036 ** 0.0235 * 0.0031 ** 0.0004 ** 0.5245 0.0163 * 0.2081

Crest, slip face 0.0879 ˆ 0.0868 ˆ 0.1549 0.0015 ** 0.0819 ˆ 0.6903 0.0820 ˆ 0.5586

Crest, trough 0.0001 *** 0.0019 ** 0.0328 * <0.0001 *** 0.0018 ** 0.7333 0.0039 * 0.4294

Interdune, ramp 0.2232 0.2070 0.3184 0.9891 0.0532 ˆ 0.4740 0.2720 0.8547

Interdune, slip face 0.4023 0.2783 0.3484 0.0957 ˆ 0.2141 0.8496 0.2197 0.9095

Interdune, trough 0.4658 0.4445 0.6438 0.1765 0.2997 0.8822 0.3813 0.7004

Ramp, slip face 0.9154 0.7360 0.7257 0.0839 ˆ 0.9405 0.5169 0.5545 0.9972

Ramp, trough 0.4020 0.3912 0.3970 0.1098 0.1386 0.4083 0.6216 0.4729

Slip face, trough 0.6099 0.4454 0.4397 0.2822 0.4334 0.7691 0.3904 0.7306

Analysis of the covariation between different sediment properties shows that there
are statistically significant relationships between several property types (Table 3). The
properties that refer specifically to dimensional values of the grain size distribution (D10,
D50 and D90) show evidence for very high correlation coefficients (<0.95) which is indicative
of autocorrelation. Dimensionless parameters of skewness and kurtosis show more variable
relationships but are also relatively strongly correlated (both positively and negatively)
with grain size variables. The nondimensional parameter span broadly expresses the
distributional range of particle sizes within the sample (Equation (1)) and thus has a high
correlation coefficient with distributional parameters (Table 3). The independent parameter
of CaCO3 content shows a strong positive (negative) relationship with coarse (fine) sand
because of the mechanical break up of marine shells over time, forming relatively large
shell fragments mixed in with coarse mineral sand [46].

Averaged spectral characterisation of sediment samples from different geomorphic
positions at Oyster Bay are presented in Figure 5. There are generally similar patterns seen
at all positions, consistent with their generally similar sediment grain size compositions
(Table 2), with some consistent variability in the water absorption bands. There is greatest
variability in particular within the SWIR at ~1850–2400 nm. It is also notable that beach
samples show somewhat more variability than samples from other positions, with higher
reflectance values (compared to other positions) in the VNIR and lower values in the SWIR
(Figure 5a). Based on the high correlation coefficients of beach samples with fine sand
and CaCO3 values (Table 2), we therefore speculate that this spectral variability of beach
samples reflects the disproportionate influence of fine sand and CaCO3 from shell fragments
within these samples. The nature of these samples are now explored in more detail.

176



Appl. Sci. 2022, 12, 6826

Table 3. Pearson Product Moment Correlation of different sediment properties across all samples
(n = 134). F = fine, M = medium, C = coarse and VC = very coarse. Variable span is defined in the text.
Significance levels are: ˆ 0.1, * 0.05, ** 0.01 and *** 0.001.

D10 D50 D90 Kurtosis Skewness CaCO3 F Sand M Sand C Sand VC Sand

D10 1.000

D50 0.951 *** 1.000

D90 0.754 *** 0.903 *** 1.000 ***

Kurtosis 0.139 0.318 *** 0.634 *** 1.000

Skewness −0.252 ** −0.477 *** −0.793 *** −0.890 *** 1.000

CaCO3 0.571 *** 0.679 *** 0.698 *** 0.337 *** −0.463 *** 1.000

F sand −0.914 *** −0.918 *** −0.761 *** −0.156 ˆ 0.300 *** −0.557 *** 1.000

M sand −0.201 * −0.332 *** −0.451 *** −0.383 *** 0.478 *** −0.411 *** 0.030 1.000

C sand 0.928 *** 0.984 *** 0.872 *** 0.266 ** −0.443 *** 0.679 *** −0.880 *** −0.393 *** 1.000

VC sand 0.414 *** 0.603 *** 0.853 *** 0.813 *** −0.895 *** 0.566 *** −0.367 *** −0.529 *** 0.545 *** 1.000

Span 0.403 *** 0.642 *** 0.902 *** 0.782 *** −0.941 *** 0.593 *** −0.493 *** −0.469 *** 0.616 *** 0.885 ***

3.3. Spectral Analysis of Sediment Samples

The spectral variation at the VNIR and SWIR bands can be examined in detail using
the correlation matrices between selected sample particle size characteristics and CaCO3
content. Here, we systematically calculate the correlation coefficient of D10, CaCO3, D90,
fine sand and kurtosis at 1 nm wavelength increments through the NVIR and SWIR
wavebands (Figure 6). This shows that certain parts of the spectrum are associated with
greater (positive or negative) correlation coefficient values and thus are more useful in
terms of discriminating between different sediment properties at those wavelengths. For
example, in the range ~700–1350 nm there is a clear discrimination between high positive
correlations for D10 and D90 and high negative correlation for fine sand (Figure 6). Here,
kurtosis and CaCO3 shows no correlation. Likewise, in the range ~1850–2450 nm there
is greater statistical discrimination between fine sand (highest positive correlation) and
CaCO3 (highest negative correlation) values. By contrast, the region ~1450–1700 nm is not
useful for discriminating any sediment properties, because there are very low correlation
coefficients throughout (i.e., all correlation coefficients are around zero).

The statistical relationships of CaCO3 values, fine sand and grain size span to different
wavelengths are described in Table 4, which shows the outputs of a linear regression
model for each variable. The results highlight that certain wavelengths have a statistically
significant relationship to some sediment properties. For example, CaCO3 shows greatest
significance in the wavelength range ~1052–1252 nm, which falls within the VNIR part
of the spectrum. Fine sand has the greatest significance at shorter VNIR wavelengths
(~852–952 nm), and span shows significance in isolated parts of the spectrum (2300, 2400 and
2447 nm) at the end of the SWIR range, which may be an artefact of sediment composition
within the sample as a whole, e.g., [47]. Water absorption at the 1352 nm waveband has a
strong signal and therefore this waveband is removed from the analysis (Table 4) in order
to avoid erroneous overfitting.
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Figure 5. Results of spectral analysis of samples from different geomorphic positions at Oyster Bay.
(a) Full average spectrum for samples from the different position; detailed results at (b) the VNIR
(552–1352 nm) and (c) SWIR (1852–2450 nm) parts of the spectrum.
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Figure 6. Correlation coefficient between reflectance values at different spectral wavelengths and
sediment CaCO3, and particle size characteristics.

Table 4. Analysis of p-values of linear regression of CaCO3, fine sand and grain size span with selected
wavelengths (see Figure 5). Significance levels are: ˆ 0.1, * 0.05, ** 0.01 and *** 0.001.

Wavelength (nm) CaCO3 Fine Sand Span

552 0.0928 ˆ 0.6264 0.9885

652 0.2507 0.9883 0.4891

752 0.7211 0.0928 ˆ 0.0734 ˆ

852 0.7343 0.0096 ** 0.1257

952 0.9410 0.0026 ** 0.2164

1052 0.0077 ** 0.7944 0.3640

1152 0.0100 * 0.9415 0.2201

1252 0.0087 ** 0.4923 0.1494

1462 0.0834 ˆ 0.2163 0.3150

1552 0.3162 0.8246 0.2073

1652 0.2605 0.9801 0.1364

1752 0.1525 0.8957 0.1300

1789 0.1064 0.0480 * 0.0158 *

1962 0.0264 * 0.7977 0.0528 ˆ

2028 0.4413 0.4095 0.2356

2082 0.9618 0.5296 0.6334

2152 0.4212 0.4293 0.7909

2200 0.5897 0.5675 0.6655

2252 0.3046 0.0789 ˆ 0.3075

2300 0.0098 ** 0.4795 0.0085 **

2335 0.1032 0.8612 0.8394
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Table 4. Cont.

Wavelength (nm) CaCO3 Fine Sand Span

2338 0.1530 0.8069 0.7031

2350 0.7137 0.0696 ˆ 0.4356

2352 0.2443 0.0253 * 0.9282

2370 0.3290 0.2500 0.7780

2400 0.3596 0.3150 0.0041 **

2420 0.3237 0.1892 0.2231

2435 0.2855 0.0127 * 0.7258

2447 0.6500 0.0760 ˆ 0.0024 **

2450 0.2281 0.0470 * 0.5175

Adjusted R2 0.8978 0.7510 0.5510

Overall p-value 2.2 × 10−16 *** 2 × 10−16 *** 4.88 × 10−16 ***

CaCO3 values can be estimated using single wavelength relationships as:

CaCO3 = 54.1 − 98.37R2335

(
R2 = 0.718, n = 94

)
(2)

where R2335 is reflectance at the 2335 nm wavelength. A similar model performance can
be achieved at the wavelength between 2038 and 2435 nm. A multilinear relationship can
improve the model estimation as follows:

CaCO3 = 38.99 + 460.23R2200 − 1272.89R2300 + 1158.99R2335 − 409.99R2370(
R2 = 0.872, n = 94

) (3)

where R2200, R2300, R2335, R2335, and R2335 are reflectances at the 2200, 2300, 2335 and 2370
nm wavelengths, respectively. Fine sand can be estimated using the following linear rela-
tionship:

F Sand = 179.06R2450 − 41.01
(

R2 = 0.463, n = 94
)

(4)

where F Sand is the fine sand percentage, and R2450 is reflectance at the 2450 nm wavelength.
Fine sand values can also be estimated using the reflectance from the wavelengths ranging
between 552 and 1789 nm. This can also be used to develop an improved model to estimate
the fine sand percentage as follows:

F Sand = 21.55 − 364.86R1462 + 369.07R2082

(
R2 = 0.721, n = 94

)
(5)

where F Sand is the fine sand percentage and R1462 and R2082 are reflectances at the 1462
and 2082 nm wavelengths, respectively. Span had very poor performing models when
a single band was utilised. For example, the following model was the best performing
single-wavelength model:

Span = 2.15 − 2.43R2038

(
R2 = 0.183, n = 94

)
(6)

where R2038 is the reflectance at the 2038 nm wavelength. A multilinear model can be
developed using highly correlated wavelengths ranging between 852 and 2450 nm, as
shown below:

Span = 1.68 − 24.66R852 + 29.62R952 + 59.44R2252 − 131.36R2300 + 79.47R2350−
73.27R2400 + 62.52R2447

(
R2 = 0.516, n = 94

) (7)
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where R852, R952, R2252, R2300, R2350, R2400, and R2447 are reflectances at the 852, 952, 2252,
2300, 2350, 2400 and 2447 nm wavelengths, respectively.

Fine sand and span are not well predicted using single wavelength models (see Table 4),
whereas CaCO3 shows a much stronger relationship. The models were then validated using
40 independent samples that were not used in the model development (Figure 7). It is no-
table that a multilinear model leads to a better fit between measured and estimated values.
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Cross-validation of the output of the linear regression model (Table 4) through compar-
ison between predicted and measured samples is shown in Figure 8. R2 values, adjusted for
the number of variables considered in each model, are higher for CaCO3 with decreasing
values for fine sand and span. An increased degree of scatter reflects the inability of the
model to describe all of the sample points, and this is particularly the case for span (see
Figure 7). Thus, CaCO3 and fine sand values show the most robust statistical relationships
to the spectral measurement data.
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The spectral characteristics of shell samples 1–5 are presented in Figure 9. Throughout,
this shows higher absorption values in the SWIR with consistent dips between all samples
at the wavelengths ~1100, 1600 and 2000 nm. The latter may correspond to the water
absorption wavelength at ~1950 nm. There is also a very slight jump in reflectance at the
water absorption wavelength at ~1450 nm. In addition, the individual shell samples show
some variability in the VNIR bands in particular, because of the different shell colours
present (Figure 2).
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Figure 9. Spectral reflectance results for shell samples (SH) 1–5.

In order to consider whether there are any spectral differences between individual
sediment samples with different values of CaCO3, fine sand and span, the samples with
the highest and lowest values of these parameters (Table 1) are compared to each other
(Figure 10). All these samples reflect the aggregated patterns shown in Figure 5a, in which
there are decreases in reflectance in the water absorption bands. The samples also show
that, irrespective of individual values of CaCO3, fine sand and span, there are similar
reflectance values in the range 1400–1950 nm (see Figure 6). In more detail, comparison of
the CaCO3 values within individual samples shows that shorter wavelengths have a higher
reflectance where higher CaCO3 values are present, but that the sample with the lowest
CaCO3 values has a higher reflectance at longer wavelengths (Figure 10a). This is mirrored
by the results for fine sand (Figure 10b), where the signature for the sample with the lowest
amount of fine sand (i.e., the coarsest sample) is very similar to the sample with the highest
amount of CaCO3. The reason for this is that broken marine shells (as the source of CaCO3
in the sample) give rise to coarse rather than fine sediment [46]. The parameter span, as a
reflection of sediment sorting, tends to reflect the presence of coarser outliers in the sample
(see the potential autocorrelation with coarse sediment in Table 3) and is therefore of less
interpretive significance than either CaCO3 or fine sand (see Figure 8).
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4. Discussion

The presence of a wave-dominated shoreface and wide supratidal zone with mi-
grating transverse dunes (Figures 1 and 4) is typical of the south- and southeast-facing
South African coast, in which the dunes have a net eastward migration rate of some
3–12 m yr−1 [39,48,49]. Sediment grain size analysis of field samples from Oyster Bay
shows that overall they are fairly texturally uniform but with some significant differ-
ences in properties between different beach–dune sub-environments (Table 2) and a wide
range of carbonate contents (Table 1). The values obtained for grain size properties are
similar to other beach–dune systems in the region, e.g., [50,51]. The relatively limited
textural and compositional differences mean that it is sometimes difficult to distinguish
between such coastal samples, especially in wave-dominated shoreface environments
and wind-affected supratidal environments, where sediments are relatively well sorted
e.g., [2,4,11,52]. This is certainly the case with beach–dune sediments along the South
African coast, e.g., [39,45,49,51,53]. However, detailed statistical analysis shows that differ-
ent landforms and beach–dune settings at Oyster Bay have different sediment properties
(Table 2). This is particularly the case with grain size endmembers (fine and coarse sand)
and CaCO3 values that reflect the presence of broken marine shells (not land snail shells)
and thus a shoreface source. It is also notable that there are similar overall spectral sig-
natures of all samples (Figure 5), irrespective of their depositional environment (Table 2),
which means that the depositional environment of any one sediment sample cannot be
resolved by their spectral signature alone. One potential reason for this is that all of the
field sediment samples examined here are quartz-dominated (data not shown) and thus,
variations in mineralogy cannot be considered as a significant control on their spectral
signatures, unlike in previous studies, e.g., [29,47,54]. Although the spectral signature
of interstitial water is a dominant feature in other previous studies of coastal sediments
e.g., [25,26,32], we deliberately excluded this by drying the samples prior to analysis. This
enabled the spectral data of the Oyster Bay samples to be a better representation of grain
size and CaCO3 properties (Figure 6), which is the primary aim of this study.

Spectral characteristics of sand systems (beaches, dunes and deserts) have been ex-
amined in several studies, e.g., [54,55], and these highlight the potential application of
spectral analysis techniques to inform on, in particular, mineralogy and depositional envi-
ronments [29,32,34–36,47]. Similar to this study, the VNIR part of the spectrum has been
previously identified as the most useful in terms of sediment discrimination [55]. There are
fewer studies, however, that have looked at grain size data and CaCO3 content. In detail,
the spectral reflectance of these samples, however, revealed some fundamental differences
between CaCO3 content, fine sand proportion and span (Figure 6). These properties also
show statistically significant correlations with certain wavelengths (Table 4). However,
despite the evidence for some differences in spectral reflectance at different wavelengths for
samples with different values of CaCO3 and fine sand (Figure 10), this does not mean that
spectral reflectance can be used to predict values of these sediment properties in unknown
samples. This is because measured reflectance values at any wavelength are the net result
of all grains within the entire sample and not one single component such as shell fragments.
In addition, detrital sediment samples of different provenance or found in different depo-
sitional environments could have a range of lithologies, water, organic content or other
materials, such as microplastics, that may affect spectral reflectance, e.g., [56]. Previous
field studies also show the spectral dominance of water absorption signals, e.g., [18,25],
and these tend to drown out any signals related to sediment grain size or CaCO3, hence
the methodology applied in this study.

These results and their caveats highlight that the potential for spatial mapping of sedi-
ment properties across beach–dune environments using hyperspectral imaging techniques
may be challenging because of (1) the uncertainties associated with the interpretation of
spectral signatures, even under laboratory conditions, and (2) the multiple environmental
factors that may be present in a natural beach–dune environment and that may also affect
spectral reflectance signatures, including microtopography, vegetation/algae, and salt and
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water content. Studies on tidal flats also highlight specific problems related to silt and mud
particles and chlorophyll content [25,30,35], and these also have to be considered along
coastlines that may contain many different types of depositional settings, as well as the
spatial transitions between them.

5. Conclusions

This study, based on field samples from a South African beach–dune system, shows
both the complexity and potential of hyperspectral techniques to analyse the properties of
these samples (with respect to grain size and CaCO3 content), and their limitations. The
major conclusions from this study are:

Statistically, CaCO3, fine sand and span are the most important sediment properties in
terms of their ability to distinguish between coastal depositional environments (Table 3);

These properties in particular have distinctive spectral signatures in different parts of
the VNIR and SWIR wavebands (Table 4);

Fine sand and CaCO3 in particular are clearly distinguishable at ~1850–2450 nm in the
SWIR waveband (Figure 6);

Shell content (giving rise to CaCO3 values) and different shell types show somewhat
different spectral signatures (Figure 9).

It is notable that previous studies have not described these sediment properties using
such analytical techniques and in such a level of detail. The results from this study provide
the basis for working towards the automated mapping of a beach–dune environment using
hyperspectral satellite data, which must be seen as a long-term goal vital for ongoing
monitoring of climate change-sensitive environments.
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Abstract: Pixel-based classification is a complex but well-known process widely used for satellite
imagery classification. This paper presents a supervised multi-classifier pipeline that combined
multiple Earth Observation (EO) data and different classification approaches to improve specific land
cover type identification. The multi-classifier pipeline was tested and applied within the SCO-Live
project that aims to use olive tree phenological evolution as a bio-indicator to monitor climate change.
To detect and monitor olive trees, we classify satellite images to precisely locate the various olive
groves. For that first step we designed a multi-classifier pipeline by the concatenation of a first
classifier which uses a temporal Random-Forest model, providing an overall classification, and a
second classifier which uses the result from the first classification. IOTA2 process was used in the first
classifier, and we compared Multi-layer Perceptron (MLP) and One-class Support Vector Machine
(OCSVM) for the second. The multi-classifier pipelines managed to reduce the false positive (FP) rate
by approximately 40% using the combination RF/MLP while the RF/OCSVM combination lowered
the FP rate by around 13%. Both approaches slightly raised the true positive rate reaching 83.5% and
87.1% for RF/MLP and RF/OCSVM, respectively. The overall results indicated that the combination
of two classifiers pipeline improves the performance on detecting the olive groves compared to
pipeline using only one classifier.

Keywords: pixel-based classification; Random-Forest; Multi-layer Perceptron; One-class Support
Vector Machine

1. Introduction

Image classification, in remote sensing, refers to the assignation of thematic classes to
image pixels [1] and classification approaches can be mainly divided into unsupervised clas-
sification and supervised classification [2]. Unsupervised classification has some benefits
such as a minimum user involvement and less time consuming as there is no training pro-
cess necessary [3]. However, unsupervised classification is usually less accurate compared
to the supervised classifiers, especially when the radiometric distance between two classes
is minor. On the other hand, while it has the drawback of having to prepare the training
data, supervised classification is perceived as more suitable for accurate and complex
classification tasks [4] and to identify spatial objects. Some examples of commonly used
supervised pixel-based classification include Machine Learning algorithms such as Random
Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) [5,6].

The algorithms mentioned above propose generally a binary or a multi-class classi-
fication approach, meaning that two or more classes are needed to train the model. In
some cases, when the ground truth is limited or when users want to target only one land
cover type, a one-class classification model could improve the final classification map [7].
For one-class classification, a training data set for the desired land cover type is needed
and the model learns only from that positive data set and optimizes the spectral distances
between the positive data and other objects [8]. Some examples of one-class classifiers
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include Support Vector Data Description (SVDD) and One-class Support Vector Machine
(OCSVM) [7]. In order to classify satellite imagery, a method based on several classifica-
tion models which is called Multiple-Classifier System (MCS) is perceived to be able to
improve the accuracy of classification performance [9]. According to Brownlee [10], not
only does MCS perform better than a single classifier, but it is also more robust especially
for the overfitting issue. Du et al. [9] divided MCS into two main categories: concatenation
system, and parallel system and some applications of the MCS concept are presented by
Bühlmann [11] and Benediktsson [12]. The concatenation system uses the output of the
first classifier as an input for the next, while for the parallel system, the results of several
independent classifiers are combined based on different possible strategies to produce the
final one [9].

In this study, we tested and applied our classification pipeline within SCO-Live, a
CNES funded project. SCO-Live is a collaborative project between ACRI-ST, ARGANS and
CAPG (Community of agglomeration of the country of Grasse) [13], which aims to use olive
trees as a bio-indicator to monitor climate change. If some previous study monitored olive
trees health and water status, none present an accurate approach to solely identify olive
groves and to correlate their phenological change with climate change. SCO-Live project
is the first to propose a complete processing chain and form identification to ecological
analysis in the Southeast of France. To follow and analyze olive trees through time, we first
need to identify olive groves’ location for our area of interest. A field campaign to localize
all olive groves is too expensive and time consuming without the insurance to locate them
all. Satellite imagery allow us to visualize a large area (100 km × 100 km for Sentinel-2)
and olive groves can be identify and extracted with a classification process. A temporal
Random Forest algorithm is used within the IOTA2 processing chain (hereinafter referred
to as the baseline pipeline).

Our objective is to improve the performance of olive groves detection from the baseline
pipeline using the supervised concatenated multi-classifier pipeline. Furthermore, we also
compared the performances between a binary (2-class) and a unary (1-class) approach.

2. Materials and Methods
2.1. Study Area

The area of interest is located in Southeast France (Figure 1) within the Alpes-Maritime
over 272.1 km2. The experiment is centred in Grasse and its surroundings including Saint-
Cezaire-sur-Siagne, Cabris, and Saint-Vallier-de-Thiey. Olive trees can be found around
these areas either in the wild, planted in the small-scale private garden, or as a grove in
olive farms.
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2.2. Satellite Images

Our process is using Sentinel-2 Level 2A data downloaded from the Copernicus open
access hub. Multiple images for the tile identified by the reference T32TLP were used
to properly identify the olive grove’s reflectance spectrum evolution according to the
phenological stages throughout the year. In the Mediterranean area, olive phenological
steps are described by Sanz–Cortés [14] and Torres [15] and EO data were selected according
to the main stage of development as described in Table 1.

Table 1. Earth Observation data selection and their corresponding phenological stage.

Phenological Steps File Name Acquisition Date Cloud Cover

Dormancy period after harvesting S2B_MSIL2A_20190125T103319_N0211_R108_T32TLP_20190125T134253 25 January 2019 6.74%

Flowering period S2A_MSIL2A_20190430T103031_N0211_R108_T32TLP_20190430T140106 30 April 2019 5.86%

Early-stage of fruit growth S2B_MSIL2A_20190724T103029_N0213_R108_T32TLP_20190724T135539 24 July 2019 3.67%

Late-stage of fruit growth S2B_MSIL2A_20190912T103019_N0213_R108_T32TLP_20190912T141218 12 September 2019 0.18%

Harvest season S2A_MSIL2A_20191106T103231_N0213_R108_T32TLP_20191106T112019 6 November 2019 11.87%

The RPG (Registre Parcellaire Graphique) dataset and the SCO-Live project citizen
field observations were used to create a reference and to evaluate the resulting classification
map. The RPG data is provided by the French National Institute of Geographic and
Forest Information (IGN). It is a vector file containing a detailed description of the various
vegetation and crop types in France. The document is freely available on the IGN web
site and updated every year. Olive groves are identified within the RPG 2019 shapefile by
the code “OLI”. The SCO-Live project relies on citizen science to collect field information.
Citizen science is a process that involves individuals to perform some experiments requiring
a low scientific level [16]. Another aspect of citizen science is to involve individuals in
field data collection by providing all the tools required for intuitive data collection. Within
the SCO-Live project, an application has been developed and distributed to allow citizens
to contribute by identifying and locating olive trees and groves. The resulting data base
gathers all observation made and stores the information in a georeferenced point vector file
which contains for each location various information on olive trees exploitation such as
crops type, stage of growth, possible damage, etc. All olive observations are located within
a global 5 m spatial accuracy linked with the individual phone GPS accuracy.

All data set are georeferenced and projected to the coordinate reference system of
EPSG:32632 (WGS84/UTM zone 32N).

2.3. Satellite Imagery Classification

Table 2 describes the different pipelines that are used and compared in this study.

Table 2. The list of pipelines used in this study.

Pipeline Classifier(s) Description

Baseline pipeline Random Forest The pipeline that used one classifier

Multi-classifier pipeline 1 Random Forest + Multi-layer
Perceptron

Pipeline using a multi-classifier system random forest and
a binary classification approach in its second classifier

Multi-classifier pipeline 2 Random Forest + One-class Support
Vector Machine

Pipeline using a multi-classifier system, random forest
and a unary classification approach in its second classifier
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2.3.1. Baseline Pipeline

The baseline pipeline using Random-Forest (RF) [17] is implemented within the IOTA2
framework. IOTA2 (infrastructure for land use by automatic processing using Orfeo toolbox
application) is an open-source land cover mapping framework developed by the French
Center for Spatial Studies of Biosphere (CESBIO) [18]. The framework implements a classi-
fication pipeline using several libraries such as Orfeo Toolbox and Scikit-Learn to perform
a temporal supervised pixel-based classification. IOTA2 process, as described in Figure 2,
produces a land cover map where each pixel is assigned to a class by processing the surface
reflectance taken at different times (multi-temporal images). Only the valid pixels (selected
based on the various Sentinel-2 masks and the SCL—Scene CLassification—band) are
processed and the different features listed in the configuration file are extracted. As part of
the default features extracted, various spectral indices, such as NDVI (Normalized Differ-
ence Vegetation Index) and NDWI (Normalized Difference Water Index), are calculated to
support land cover type identification.
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The baseline pipeline classifies the input images into Urban, Forest, Nature, Grassland,
and Olive classes. The reference data for the baseline pipeline was created by referencing
the RPG dataset for Olive class and by photointerpretation and spectral indices analysis for
other classes.

2.3.2. Multi-Classifier Pipeline

The multi-classifier pipeline presented in Figure 3 was built by combining the baseline
pipeline with either a binary classification or a unary (one-class) classification. The first
classification overclassifies all vegetation types to ensure that all possible vegetation types
are captured in one vegetation class, and those pixels are re-classified by the second classifier
to separate the vegetation into different classes. The final classification map is obtained by
combining the result from the first and second classification processes.
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Figure 3. The multi-classifier pipeline.

In this study, two possibilities for the second classifier have been tested and are listed as
follows: the Multi-layer Perceptron (MLP) [19] and the One-class Support Vector Machine
(OCSVM) [20]. The MLP performs a binary classification using the architecture shown in
Figure 4, and it consists of one input layer, two hidden layers and one output layer. The
input layer has a number of nodes equal to the number of features corresponding to the
five dates, ten bands and six spectral indices that were used. Hence, it made an input layer
have 80 nodes. For the two hidden layers, the activation function used is Rectified Linear
Unit (ReLU). After the activation function, a Batch Normalization layer (BatchNorm) is
added to allow faster model training and allow the use of a larger learning rate. Before the
output layer, a Softmax function is set to turn the output values into probabilities such that
all nodes in the output class will amount to 1. The output layer consists of nodes equal
to the number of classes, which is 2 because the MLP will perform binary classification
between Olive and Non-olive classes. For the training phase, the Cross Entropy loss
function was used, and the weights and biases of the model were adjusted by the Adam
optimizer. OCSVM on the other hand, conducts a unary classification that focuses only
on the identification of one class. The kernel used for the OCSVM model was the Radial
Basis Function (RBF) kernel. The ν parameter, which is the noise tolerance when the model
learns to set the boundary for the training data, was set to 0.5, and the γ parameter, which
is the width of the Gaussian curve in the RBF kernel, was set to 0.1.
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The multi-classifier pipeline firstly classifies the pixels into Forest, Impervious, and
Vegetation classes and then further classifies Vegetation pixels into Olive, and Non-olive
classes. Impervious class includes the urban areas, bare land and other non-vegetation
objects. Forest class comprises forest areas and dense dark vegetation areas. Vegetation
class contains olive groves, trees and other vegetation that is not categorized as Forest. The
reference data for the multi-classifier pipeline was also created by interpreting the satellite
imagery, analyzing spectral indices, and referencing RPG dataset.

2.3.3. Evaluation Method

To evaluate the performance of the multi-classifier pipeline and the accuracy of the
resulting maps, various methods are applied. First, we visually compared the three land
cover maps produced by each pipeline and to highlight the differences between them, we
performed raster subtraction focusing on Olive class. To realize this, the classes that are
not olive were regrouped into one Non-olive class and we compared the olive class spatial
distribution for the baseline classification and both MLP pipeline and OCSVM pipeline
classification maps. The change in area was quantified from the subtraction raster to obtain
the surface loss of each class.

To evaluate the performance of the new multi-classifier pipeline, we calculated the True
Positive Rate (TPR) and the False Positive Rate (FPR) to check if there is an improvement in
the olive trees detection with the multi-classifier pipeline compared to the baseline pipeline.
Moreover, the comparison of MLP and OCSVM is also observed. TPR was calculated based
on the SCO-Live project citizen field observations using the following equations:

True Positive Rate =
Correctly predicted points

Total points
× 100% (1)

A point is considered correct if there is at least one pixel of predicted Olive class
in the point’s location and its eight neighboring pixels as the spatial accuracy of GPS is
considered.

On the other hand, the calculation of FPR was based on the non-olive vegetation
polygons vector of the RPG dataset that are located inside the area of interest. We defined
the incorrect pixels as the Olive class pixels inside those polygons, and computed FPR
using following equations:

False Positive Rate =
Incorrectly predicted pixels

Total pixels
× 100% (2)

3. Results
3.1. Classification Pipeline Resulting Maps

From the three experimented pipelines, we have obtained various classification maps
that are presented in Figure 5.

The baseline pipeline classified the input images into 5 classes: Urban, Forest, Nature,
Grassland and Olive, while the two other ones assigned the pixels into Forest, Impervious,
Olive and Non-olive classes. We observed significant visual changes between the map
resulting from the one classification process and the ones resulting from the multi-classifier
pipeline. We identified a significant decrease in the coverage of the olive class (represented
in dark green on all land cover maps) in the multi-classifier pipeline’s map. This can be
confirmed particularly in the West, Northwest, and North of the area of interest.
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The differences in olive detection can be observed on the subtraction maps presented
in Figure 6.
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We can confirm that the area of Olive pixels changing to Non-olive pixels, which are
represented in orange color, is emphasized in the area where we observed the significant
decrease of olive coverage. Furthermore, we also observed that there are more pixels that
turned into Non-olive class than into Olive class as orange coverage is broader than the
green one. The change of these areas was calculated and results are presented in Table 3.
The quantification of area in orange reached approximately 62.5 km2 and 42.9 km2 for
the baseline-MLP and the baseline-OCSVM respectively. On the other hand, the area that
changed from Non-olive to Olive in both subtractions is about 16 km2.

Table 3. The total area in km2 based on each change category.

Raster Subtraction Change Category Area [km2]

Baseline–MLP
Non-olive to Olive 16.8
Olive to Non-olive 62.5

No change 192.9

Baseline–OCSVM
Non-olive to Olive 16.3
Olive to Non-olive 42.9

No change 212.9
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3.2. Performance Evaluation

The evaluation of performance intends to check if there is an improvement in the
olive trees detection by the multi-classifier pipeline compared to the baseline pipeline.
Table 4 shows the TPR of the baseline pipeline and the multi-classifier pipelines. The multi-
classifier pipeline using MLP raised the TPR to 83.5% while the pipeline using OCSVM
reached 87.1%. The improvement is also observed in FPR, which is described in Table 5.
The multi-classifier pipeline decreased the FPR by approximately 40% and 13% using MLP
and OCSVM respectively, compared to the FPR calculated in the baseline pipeline.

Table 4. True positive rate of the three pipelines.

Pipeline True Positive Rate

IOTA2 81.7%
IOTA2 + MLP 83.5%

IOTA2 + OCSVM 87.1%

Table 5. False positive rate of the baseline pipeline and the multi-classifier pipelines.

Pipeline False Positive Rate

IOTA2 42.5%
IOTA2 + MLP 1.4%

IOTA2 + OCSVM 28.9%

4. Discussion

The results have demonstrated that the significant difference between the baseline
pipeline and the multi-classifier pipeline was highlighted in the change of pixels from Olive
class to Non-olive class. As we simultaneously observed a decrease of FPR with both MLP
and OCSVM, meaning that we reduced the number of wrongly classified pixels in Olive
class, we can assume that most of pixels firstly classified as olive were misclassified. For
confirmation, we conducted a field survey for some areas where the classification maps
showed different predictions between baseline and multi-classifier pipeline. Most of our
field observations validated that the pixels firstly classified as olive by the baseline pipeline
but not by multi-classifier pipeline were indeed not olive trees in the field. In some areas,
we could find green oak and white oak trees in the misclassified regions of the baseline
pipeline. We hypothesize that these oak trees may possibly contribute to the confusion of
the classification by the model in the baseline pipeline.

In addition to the decrease in misclassification of olive trees, we could also observe
from the TPR calculation of the SCO-Live project field observation data that the correct
detection of olive trees rose slightly despite the reduction of Olive class coverage in the
multi-classifier pipeline. This suggests that the multi-classifier pipeline improves the overall
performance of olive detection, which aligned with the theory of using more than one
classifier in a system to target a better accuracy at the price of complexity [21]. Furthermore,
the improvement of detection can also be linked to the division of classification tasks in the
multi-classifier pipeline. By assigning the first classifier to predict all vegetations first and
letting the second classifier to further classify the vegetations into olive trees or not, the
pipeline performs hierarchical classification [22], where a specified land type is identified
after a more a general classification.

With SVM as a one-class approach and MLP as a two-class approach, the results
proved that both have raised the performance of olive detection. In our use-case, because
we need to minimize the noise around of the classified olive trees pixels, we perceived that
the two-class MLP is more suitable for our project as it lowered the FPR significantly while
maintaining a good TPR. However, we found that using one-class SVM in our data can
achieve even better results in detecting the olive trees (positive data). Therefore, the use of
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one-class approach can be an interesting and promising solution for other use cases where
we only have data for one category of land cover.

5. Conclusions

Pixel-based classification is widely used for satellite imagery analysis. In this paper,
we presented the use of multi-classifiers to compare its results and performances with the
scenario using only one classifier. Within the frame of the SCO-Live project that aims to
identify olive groves to monitor climate change impact, we evaluated our results based on
the SCO-Live database and field data. The results indicated that multi-classifier pipelines
(MLP and OCSVM) showed better performances in both detecting olive trees and lowering
the misclassification compared to single classifier pipeline. In addition, we observed that
using both one-class and two-class approaches as the second classifier in multi-classifier
pipeline improves the quality of detection. However, from our field campaign, we found
that a confusion between oak trees and olive trees often occurs during the classification
process. A further and more complete spectral analysis of both species might highlight
some spectral differences at specific season allowing a better discrimination of both types.
Furthermore, with the newest version of the SCO-Live database, we can access more
detailed information on the various farming conditions (irrigation, health) that affect olive
trees’ spectral response. This new information needs to be considered to further improve
the resulting classification. Moreover, quantifying the computational cost and comparing
other pairs of classifiers in the pipeline will be an interesting experiment to give more
insight on the multi-classifier pipeline.
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Abstract: In object-oriented remote sensing image classification experiments, the dimension of the
feature space is often high, leading to the “dimension disaster”. If a reasonable feature selection
method is adopted, the classification efficiency and accuracy of the classifier can be improved. In this
study, we took GF-2 remote sensing imagery as the research object and proposed a feature dimension
reduction algorithm combining the Fisher Score and the minimum redundancy maximum relevance
(mRMR) feature selection method. First, the Fisher Score was used to construct a feature index
importance ranking, following which the mRMR algorithm was used to select the features with the
maximum correlation and minimum redundancy between categories. The feature set was optimized
using this method, and remote sensing images were automatically classified based on the optimized
feature subset. Experimental analysis demonstrates that, compared with the traditional mRMR,
Fisher Score, and ReliefF methods, the proposed Fisher Score–mRMR (Fm) method provides higher
accuracy in remote sensing image classification. In terms of classification accuracy, the accuracy of
the Fm feature selection method with RT and KNN classifiers is improved compared with that of
single feature selection method, reaching 95.18% and 96.14%, respectively, and the kappa coefficient
reaches 0.939 and 0.951, respectively.

Keywords: object-oriented; feature selection; Fisher Score; mRMR

1. Introduction

The spectra, textures, and geometry of high-resolution remote sensing images are very
rich, and different features describe ground objects from different angles [1,2]. To give full
play to the advantages of the spectral, texture, and geometric features of high-resolution
remote sensing images, object-oriented classification usually allows more features to
participate in classification. If all features participate in classification, the processing
speed is greatly reduced, while the classification accuracy is reduced in the case of limited
training samples [3,4]. Therefore, how to select the optimal features from the feature
space to participate in classification is the primary problem to be solved in the field of
high-resolution image object-oriented classification [5,6]. Feature selection is an important
task in data mining and machine learning and can effectively reduce the dimension of
data and improve the performance of algorithms [7,8]. With the increase in data, feature
selection has become an indispensable part of data processing [9]. The purpose of feature
selection is to remove irrelevant or redundant features, retain useful features, and obtain
appropriate feature subsets [10]. Feature selection methods can be divided into three
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series: filter, wrapper, and embedded [11]. Among them, filter methods directly evaluate
the statistical performance of all the training data, as this is independent of the subsequent
learning algorithm. Although it has the advantage of fast speed, it has a large performance
deviation from the subsequent learning algorithm and is not effective when considering
big data features [12]. Wrapper methods evaluate a subset of features with respect to the
training accuracy of the subsequent learning algorithm and have the advantage of small
deviation, but this type of method is large in size and involves significant computational
burden [13]. Embedded methods combine the advantages of the above methods to some
extent, but the difficulty with this type of method is the need to construct a suitable
function optimization model [14].

From the above analysis, it is clear that the various types of methods have limitations in
feature selection. In order to address these limitations, we selected the Fisher Score [15,16]
and mRMR [17] as filter methods for comparison with decision tree [18,19] and random
forest methods, respectively. The RF [20,21], k-nearest neighbors (kNN) and support
vector machine (SVM) approaches were combined for image classification. Filter methods
can be divided into unsupervised, semi-supervised, and supervised feature selection
methods [22,23]. At present, supervised feature selection methods include Relief-F [24],
mRMR, and Fisher Score. The Relief-F algorithm is a typical filtered feature optimization
algorithm, which calculates the weights of feature variables, ranks them, and then extracts
the optimal set of features. The Relief-F algorithm is highly efficient and suitable for
most data. The mRMR algorithm is a feature optimization method based on mutual
information theory, which is used to maximize the correlation between a selected feature
subset and the category, while ensuring that the redundancy between the selected features
is as small as possible [25,26]. The Fisher Score is an effective criterion for judging the
sample features, derived from Fisher’s linear discriminant, which finds feature subsets
in the feature set space that maximize the distance between different categories of data
points while minimizing the distance between those in the same category. Based on the
above, we chose to combine the Fisher Score and mRMR algorithm to downscale the feature
space of remote sensing images, where the Fisher Score is used to calculate the ratio of the
variance within each feature class and the variance between each feature class, while the
mRMR algorithm is used to filter out those features with the greatest relevance to the target
category and the least redundancy between them. Finally, the filtered features are used
as feature subsets. In this study, the feature dimension of the remote sensing image was
reduced by combining two feature selection methods, and the optimal feature subset was
obtained through feature dimension reduction, which can reduce the classification time of
classifier and improve the classification accuracy of the image. We also selected different
types of feature selection methods to verify the ability of the Fm feature dimensionality
reduction. In addition, we utilized a variety of classifiers and selected the one suitable for
Fm by comparing their overall classification accuracy.

2. The Study Area and the Data Source
2.1. Study Area

The study area is located in Guang’an area, Sichuan Province, China, between 106◦38′–
106◦41′ E and 30◦27′–30◦29′ N. According to a ground cover map of the study area, the
ground objects in this area can be classified as water, vegetation, bare ground, buildings,
and roads. The location of the study area is shown in Figure 1.
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Figure 1. Location and imaging of the study area: (a) administrative boundary map of Sichuan
Province; (b) pre-processed image.

2.2. Data Source and Preprocessing

The data came from the China Centre for Resources Satellite Data and Application
(https://data.cresda.cn/#/home, accessed on 10 January 2022). The data used were multi-
spectral and panchromatic ortho-corrected images obtained by the GF-2 satellite in August
2020, including multi-spectral data at 4 m resolution (four bands of red, green, blue and
near-red) and panchromatic data at 1 m resolution [27]. Radiation calibration, atmospheric
correction, geometric rectification, and alignment were performed on the CF-2 images
using the ENVI software, while the NNDiffuse Pan-Sharpening fusion algorithm was used
to generate multi-spectral remote sensing data with 1 m resolution.

3. Research Methods

Object-oriented classification methods based on feature selection mainly include the
steps of image pre-processing, multi-scale segmentation, construction of initial feature
space, and image classification. The technical process is depicted in Figure 2. Firstly, the
image data were preprocessed based on ENVI5.3. The detailed preprocessing process is
shown in Section 2.2. Secondly, eCognition9.0 was used to segment the image, and then
some objects were selected as training samples to calculate the eigenvalues of spectral,
texture and geometric features of each sample. Third, based on PyCharm software, five
feature selection methods were used to screen out feature subsets. Finally, four machine
learning classifiers were used to train the training samples and classify the images. The
accuracy of the classified remote sensing images was evaluated using validation samples.
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3.1. Build the Feature Space

Based on the ground object types in the study area as well as empirical knowledge,
the initial feature space constructed in this study contained 32 features. Spectral features
included the mean and standard deviation in bands 1–4 of the GF-2 images; geometric
features included the area, length, and width of objects; and texture features included
homogeneity, contrast, heterogeneity, angular second moment, entropy, and the correlation
between the gray-level co-occurrence matrix (GLCM) and gray-level difference vector
(GLDV). The feature information is shown in Table 1.

Table 1. Feature information.

Feature Type Feature Name Number of Features

Spectrum Mean value of bands 1–4, Standard deviation of
bands 1–4, Brightness, Max. diff, NDVI, NDWI 12

Geometry Area, Length, Width, Length/Width, Density,
Compactness, Border length, Number of pixels 8

Texture Homogeneity, Contrast, Dissimilarity, Ang. 2nd
moment, Entropy, Correlation, StdDev, Mean 12

3.2. Feature Selection

There are many kinds of image features. Choosing appropriate features can improve
the accuracy and efficiency of object-oriented automatic classification. The principle of
feature selection is to reduce the total quantity of data while not reducing the classification-
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related information by obtaining a small subset of features to achieve the purpose of feature
optimization.

(1) Fisher Score feature weight calculation. The Fisher Score provides an effective method
for feature selection, which mainly identifies features with strong performance. When it is as
small as possible within a class and as large as possible between classes, the optimal feature
subset can be selected [28–30]. Let the inter-class variance of the kth feature in the data set be
expressed by S(k)B . Then, the calculation formula is shown in Equation (1) [28,29].

S(k)
B =

c

∑
i=1

ni
n
(m(k)

i −m(k))
2

(1)

where c denotes the number of sample classes, n denotes the total number of samples, ni

denotes the number of samples in the ith class of the sample, m(k)
i denotes the mean of the

values taken by the samples in the ith class on the kth feature, and m(k) denotes the mean of the
values taken by the samples in all classes on the kth feature. Let the intra-class variance of the
kth feature on the data set be denoted by ni. Then, the formula is shown in Equation (2) [28,29]:

S(k)
w =

1
n

C

∑
i=1

∑
x∈wi

(x(k) −m(k)
i )

2
(2)

where x(k) denotes the value of sample x on the kth feature and wi denotes the ith class
sample. The weight coefficient of the kth feature on the data set is denoted by J f isher(k).
The calculation formula is shown in Equation (3) [28,30]:

J f isher(k) =
S(k)

B

S(k)
w

(3)

(2) mRMR filtering feature subset. The mRMR algorithm is a heuristic feature selec-
tion algorithm which calculates the correlation between features and attributes based on
an evaluation function, ranks the original features, and obtains a feature set with high
correlation and few redundant features [31–33].

The mutual information [34] is first calculated in order to determine the correlations
between features and between features and categories. The mutual information formula
for variables M and N is [32]:

I(M; N) = ∑
m∈M

∑
n∈N

p(m, n)log
p(m, n)

p(m)p(n)
(4)

where p(m) and p(n) denote the probability density functions of the random variables m and
n, and p(m, n) denotes the joint probability density function of the random variables m and n.
The greater the mutual information, the greater the correlation between M and N. A feature
subset S containing K features is searched to maximize the correlation between the K features
and a category c. The maximum correlation is calculated as shown in Equation (5) [31,32]:

maxD(S, c), D =
1
|S| ∑

xi∈S
I(xi; c) (5)

The correlation between feature set S and class c is determined by the average of all
mutual information values between each feature xi and class c, and k sets with maximum
average mutual information are selected. Subsequently, the redundancy between the k features
is eliminated, where the minimum redundancy is calculated as shown in Equation (6) [31,32]:

minR(S), R =
1
|S|2 ∑

xi ,xj∈S
I
(
xi, xj

)
(6)
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The maximum correlation and minimum redundancy are combined to form the mRMR
algorithm, and the formula for calculating D and R using the operator Φ(D, R) is shown in
Equation (7) [17,31]:

maxΦ(D, R), Φ = D− R (7)

Using this feature selection criterion, the features are selected by maximizing the
defined operator Φ(), using an incremental search method. Based on the feature subset
Sk−1, the kth feature is calculated from the remaining feature space X− Sk−1, which is made
to maximize Φ() using the following equation, that is, the incremental feature selection
optimization formula [17,31]:

max
xj∈X−Sk−1

[
I
(
xj; c

)
− 1

k− 1 ∑
xi∈Sk−1

I
(

xj; xi
)
]

(8)

The weight of each feature is calculated according to the Fisher Score, and features with
higher weight have better classification ability. As the correlation between features is not
calculated, redundant features cannot be removed. However, the mRMR algorithm can obtain
the feature subset that has the maximum correlation with the target category and the least
redundancy, but it cannot obtain the weight coefficient of each feature, and the extracted feature
subset cannot reflect the difference of the effect of different features on the classification.

Firstly, the Fisher Score calculation method was used to build the ranking rules of
feature index importance, and the features with larger weight were selected by calculating
the weight value of each feature. The feature vector with a high weight can be used as the
dominant vector of the classification set, and the feature vector with a low weight has less
influence on the classification result. Then, the mRMR algorithm was used to calculate
the selected features, and the features with the maximum correlation and the minimum
redundancy between the categories were selected. Therefore, by combining the Fisher
Score and mRMR algorithms for feature dimension reduction, an optimal feature subset
can be obtained.

In addition to the above two methods, in order to verify the reliability in the experi-
ment, the commonly used recursive feature elimination (RFE) algorithm (a wrapped feature
selection method) and logistic regression (LR) algorithm (an embedded feature selection
method) were selected.

(3) RFE is a greedy algorithm [35]. It takes the whole data set as the starting point of
the search and uses a feature ordering approach to select backward sequences from the
whole set, eliminating one feature with the lowest ranking each time, until the feature
subset that is most important for the classification results is selected. In the iterative process
of the above steps, the order in which features are eliminated depends on their importance.
The RFE algorithm requires a suitable classifier for modeling and prediction, for which the
linear regression model was used in our experiment.

(4) LR is a machine learning model with simple form and good interpretability [36].
The LR model studies the multiple regression relationship formed between one dependent
variable and multiple independent variables. Assuming a vector x = (x1, x2, . . . , xn) of
n independent variables, representing n characteristics of each sample, and letting the
conditional probability p(y = 1|x ) = p be the probability of occurrence of an event x
relative to an observed quantity, the LR model [36] can be expressed as

p(y = 1|x ) = 1
1 + e−g(x)

(9)

where g(x) = w0 + w1x1 + . . . + wnxn, w0, w1, . . . , wn are the weights estimated with
maximum likelihood.
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3.3. Image Classification

In the classification process, the choice of classifier is an important factor determining
the classification results. The CART decision tree, RF, k-nearest neighbors (kNN), and
support vector machine (SVM) methods comprise four different classification algorithms.

The basic principle of CART is to form the test variables and the target variables into a
data set, select the optimal segmentation features by calculating the Gini coefficient, then
build a binary tree according to the feature values. These steps are cycled until the sample
set to be classified reaches a stopping condition. There are two conditions for stopping:
One is that there are no more feature variables for the target classification, and the other is
that all samples of a given node belong to the same class. If the sample points of the stop
classification node are of multiple classes, the node is specified as the class with the highest
number of subclasses, and a new leaf is created within that class [37]. The binomial tree
structure of the CART decision tree greatly improves the operational efficiency compared
to the multinomial tree structure of the traditional decision tree [38].

The RF algorithm is an integrated classifier based on multiple decision trees. Through a
bootstrap sampling method, a subset of samples is randomly selected from the original data
as training samples, and decision trees are constructed for each training sample separately.
A randomly selected feature is used as a node (m < N) of the decision tree, which is split
and grown based on the amount of feature information. The training process is iterated
until the maximum tree depth set by the user is reached or the splitting cannot continue [39].
An RF consists of N decision trees, and voting is used for each decision tree to obtain the
final classification result [40]. RF has the advantage of high prediction accuracy, coupled
with the fact that it is less prone to overfitting. Therefore, it has been widely used for image
classification in high-resolution remote sensing data sets.

The kNN classification algorithm is a relatively simple machine learning algorithm [41].
In remote sensing image classification, this method determines the nearest k neighbors by
calculating the distance between the samples to be classified and the training samples, then
judges according to the categories of these k neighbors selected. The category to which the
k neighbors belong the most is selected, and the samples to be classified are considered to
belong to this category.

The SVM is a new machine learning method developed on the basis of statistical
learning theory [42,43]. It is a non-parametric classifier. Based on the structural risk mini-
mization criterion, the SVM solves image classification and regression problems by finding
the optimal classification hyperplane in the high-dimensional feature space. According
to the limited sample information, the best compromise between learning accuracy and
learning effect can be obtained. The support vector machine has the advantages of simple
implementation and high operational efficiency.

The above four classification algorithms each have their own advantages. In this
study, all four algorithms are used to classify the optimized feature combination and the
unoptimized full feature combination.

4. Object-Oriented Classification Process

The image segmentation in this study used the multi-scale segmentation [44] algo-
rithm, where the segmentation parameters were determined by control variates. The
basic principle of the control variates method is that all other parameters are unchanged,
while only one of them is adjusted, and the best segmentation parameter combination
is determined by adjusting the parameter values until each segmentation parameter is
determined. Firstly, the shape factor and compactness factor are set as a fixed value, and
then different segmentation scale parameters are set. The smaller the segmentation scale
parameter, the larger the segmentation degree, and the more objects after segmentation.
When the segmentation parameter is large, the image is undersegmented, and several
ground objects are segmented into one object. After comparison, we found that when the
segmentation scale is 80, the segmentation result is the best, and all different ground objects
are divided. The size of shape factor and compactness factor also affect the segmentation
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result. A small form factor leads to poor segmentation of results, while a large form factor
leads to excessively fragmented results. The compactness factor uses the shape criterion to
optimize the results of the affected objects considering the overall compactness. When the
shape factor is set to 0.1 and the compactness factor is set to 0.5, the segmentation effect of
the experimental study area is better. After experimental analysis, when the segmentation
scale, shape factor, and compactness factor were 80, 0.1, and 0.5, respectively, a relatively
good segmentation effect was obtained, as depicted in Figure 3.
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Figure 3. Typical ground object segmentation plot: (a) buildings; (b) water; (c) roads; (d) bare land.

4.1. Feature Selection Results

As the classification results of image classification are influenced by the number of
samples and spatial location, stratified random sampling was adopted for each category
of features, such that the number of samples in each category was proportional to the
total area of the category. We selected 2/3 of the segmented objects to extract the features,
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including texture, geometric, and spectral feature values, while the remaining samples
were used for accuracy testing.

To explore the importance ranking of the relevant features, the top 15 features obtained
with the five feature selection methods are listed in Table 2, while the proportions of
different types of features in different subsets are shown in Table 3. The results show
that the features screened by different feature selection methods presented significant
differences. In general, spectral and texture features accounted for a large proportion of the
top 15 features. Figure 4 shows the correlation coefficient matrix of the top 15 features of
different feature selection methods. The darker the grid color, the smaller the correlation
coefficient between the features, and the more negative the correlation between the two
features. On the contrary, the larger the correlation coefficient between features, the more
positive the correlation between the two features.

Table 2. Top 15 features using various FS methods.

Fm Fisher mRMR REF LR

Standard_G NDVI Standard_R GLCM_Entropy GLCM_Ang_2nd
moment

Density NDWI NDVI Compactness GLCM_Correlation
Standard_R Mean_NIR Length/Width Standard_B NDWI

Mean_B Mean_B GLCM_StdDev Standard_R Width
Width_Pxl Area_Pxl Standard_G LengthWidt GLCM_Mean

Border_length Standard_B Density GLCM_StdDev length
NDVI Standard_NIR Compactness GLCM_Dissimilarity GLDV_Entropy

Max_diff Max_diff GLCM_Correlation GLCM_Mean_ GLCM_Homogeneity
GLDV_Entropy Mean_R GLCM_Dissimilarity Mean_B GLCM_StdDev

Standard_B Width Mean_B Mean_G Density
NDWI Mean_G Width_Pxl Mean_NIR max_diff

Mean_NIR GLCM_Homogeneity NDWI Mean_R Standard_NIR
GLDV_Ang_2nd moment Standard_G Number_of_ Standard_G Length/Width

Mean_R GLCM_Ang_2nd
moment Standard_B GLDV_Entropy NDVI

GLCM_Homogeneity Brightness GLCM_Mean Standard_NIR Standard_G

Table 3. Summary of the characteristics in the different categories of the top 15 characteristics
according to Table 2.

Feature Selection
Method Feature Description Spectral Geometric Texture

Fm
Number of features 9 3 3
Top 15 feature ratios 60.00% 20.00% 20.00%

Fisher
Number of features 11 2 2
Top 16 feature ratios 73.33% 13.33% 13.33%

mRMR
Number of features 7 5 4
Top 17 feature ratios 46.67% 33.33% 26.67%

REF
Number of features 8 2 5
Top 18 feature ratios 53.33% 13.33% 33.33%

LR
Number of features 5 4 6
Top 19 feature ratios 33.33% 26.67% 40.00%

208



Appl. Sci. 2022, 12, 8845

Appl. Sci. 2022, 12, 8845 10 of 20 
 

Mean_NIR GLCM_Homogeneity NDWI Mean_R Standard_NIR 

GLDV_Ang_2nd mo-

ment 
Standard_G Number_of_ Standard_G Length/Width 

Mean_R 
GLCM_Ang_2nd mo-

ment 
Standard_B GLDV_Entropy NDVI 

GLCM_Homogeneity Brightness GLCM_Mean Standard_NIR Standard_G 

 

  
(a) (b) 

  
(c) (d) 

Appl. Sci. 2022, 12, 8845 11 of 20 
 

 
(e) 

Figure 4. The correlation matrix of the top 15 features of the five feature selection methods: (a) Fm; 

(b) Fisher; (c) mRMR; (d) RFE; (e) LR. 

Table 3. Summary of the characteristics in the different categories of the top 15 characteristics ac-

cording to Table 2. 

Feature Selection Method Feature Description Spectral Geometric Texture 

Fm 
Number of features 9 3 3 

Top 15 feature ratios 60.00% 20.00% 20.00% 

Fisher 
Number of features 11 2 2 

Top 16 feature ratios 73.33% 13.33% 13.33% 

mRMR 
Number of features 7 5 4 

Top 17 feature ratios 46.67% 33.33% 26.67% 

REF 
Number of features 8 2 5 

Top 18 feature ratios 53.33% 13.33% 33.33% 

LR 
Number of features 5 4 6 

Top 19 feature ratios 33.33% 26.67% 40.00% 

Overall, the spectral features appeared significantly more frequently than the geo-

metric and texture features. In the filtered feature selection method, NDVI, NDWI, 

Mean_B, Standard_B, Standard_G, and Width features were all present, while the number 

of texture features was more than 1/3. The mRMR and RFE algorithms selected seven fea-

tures among the first 15 features which were the same, showing strong consistency. In 

addition, the LR algorithm appeared to choose more geometric and texture features, 

reaching 50% of the features in each category. 

From the feature extraction results, it can be seen that spectral features were the most 

numerous. From the remote sensing images of the research area, the vegetation and water 

areas were larger than other land features, and NDVI and NDWI can effectively extract 

vegetation and water bodies. Secondly, there were many geometric features. Ground ob-

jects are usually characterized by large area and complex spectral features. It is difficult to 

distinguish objects such as roads and construction land from other ground objects only 

using spectral features, but they can be effectively classified using geometric features. 

  

Figure 4. The correlation matrix of the top 15 features of the five feature selection methods: (a) Fm;
(b) Fisher; (c) mRMR; (d) RFE; (e) LR.

209



Appl. Sci. 2022, 12, 8845

Overall, the spectral features appeared significantly more frequently than the geomet-
ric and texture features. In the filtered feature selection method, NDVI, NDWI, Mean_B,
Standard_B, Standard_G, and Width features were all present, while the number of texture
features was more than 1/3. The mRMR and RFE algorithms selected seven features among
the first 15 features which were the same, showing strong consistency. In addition, the LR
algorithm appeared to choose more geometric and texture features, reaching 50% of the
features in each category.

From the feature extraction results, it can be seen that spectral features were the most
numerous. From the remote sensing images of the research area, the vegetation and water
areas were larger than other land features, and NDVI and NDWI can effectively extract
vegetation and water bodies. Secondly, there were many geometric features. Ground
objects are usually characterized by large area and complex spectral features. It is difficult
to distinguish objects such as roads and construction land from other ground objects only
using spectral features, but they can be effectively classified using geometric features.

4.2. Comparison of Classification Results

As shown in Figure 5 below, based on the four classification methods, the trend of
overall accuracy was obtained by continuously increasing the number of feature fields, and
the feature selection methods were compared. As the number of features increased, the
overall accuracy gradually improved. When the number of features reached about 15, the
classification accuracy decreased slightly with an increase in the number of features, then
remained stable. Therefore, in the process of object-oriented classification experiments,
when too many features are involved in the classification, it may not be possible to achieve
the optimal classification results, and instead the classification accuracy and classification
efficiency are reduced. Overall, filtered feature selection methods presented better results
than wrapped methods, while embedded feature selection methods presented the worst
results. Furthermore, the SVM classification results were relatively stable, and the impact
of different feature selection methods on the classification accuracy was smaller than the
use of other classification methods.

Figure 5. Cont.
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Figure 5. The variation trend of number of features and overall accuracy of five feature selection
methods with different classifiers: (a) CART; (b) RF; (c) KNN; (d) SVM.

According to Figure 6, the proposed Fm was found to have higher overall accuracy than
the other feature selection methods with both RF and kNN classifiers, with accuracies of 95.18%
and 96.14%, respectively. Although it was not optimal with the CART and SVM classifiers,
the overall accuracy still achieved good results. This indicates that the combined scheme of
Fisher Score and mRMR algorithm can obtain high-accuracy classification results with specific
classifiers and can outperform both wrapped and filter feature selection methods.
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Figure 6. The optimal accuracy of four features with different classifiers was selected.

As shown in the bar chart, the overall accuracy of Fm is better than the other four
feature selection methods. In the CART classifier, the overall accuracy of Fm is 3.28%,
5.27%, and 6.61% higher than mRMR, RFE, and LR, respectively, and 0.41% lower than
Fisher Score. In the SVM classifier experiment, the overall accuracy of Fm is higher than
Fisher Score, RFE, and LR, respectively, and the overall accuracy of Fm is 0.39% lower than
mRMR. Among RT and KNN classifiers, Fm achieves the highest overall accuracy, which is
0.38%, 3.03%, 2.12%, and 6.94% higher than Fisher Score, mRMR, REF, and LR and 0.58%,
3.18%, 2.12%, and 5.78% higher than Fisher Score, mRMR, and LR, respectively.

In the case of limited samples, excessive features do not improve the classification accuracy
of the image. However, the classification accuracy can be improved to a certain extent by taking
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into account the correlation between features through the mRMR algorithm or only considering
the separability of a single feature through the Fisher Score algorithm. Our experiments
showed that the proposed Fm method can effectively improve the classification accuracy of
high-resolution remote sensing images with the RF and kNN classifiers.

4.3. Classification Results

For further analysis, the optimal combinations of the four classification methods and
five feature selection methods were selected—Fisher–CART, Fm–RF, Fm–kNN, and mRMR–
SVM—and the classification graphs of these four combinations are shown in Figure 7.
Meanwhile, in order to analyze the accuracy of the classified ground objects, the overall
accuracy, as well as kappa coefficients, were calculated to evaluate the classification results,
based on the decoded flags and visually decoded sample points, as shown in Table 4, as
well as the specific land-cover classification accuracies.
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Table 4. Accuracy of ground cover classification.

Fisher-CART Fm-RF Fm-KNN mRMR-SVM

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Roads 95.00% 76.61% 97.00% 93.26% 93.00% 95.87% 97.00% 89.81%
Buildings 74.00% 91.02% 85.00% 91.40% 92.00% 91.08% 85.00% 94.44%

Water 92.93% 97.87% 93.94% 97.90% 96.96% 98.96% 97.98% 98.97%
Bare land 97.14% 94.44% 100% 90.90% 98.57% 94.52% 98.57% 97.18%
Vegetation 99.33% 98.68% 99.33% 99.33% 99.33% 98.67% 99.33% 98.03%

Overall
accuracy 91.52% 95.18% 96.14% 95.76%

Kappa 0.8923 0.939 0.951 0.9461
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From the analysis in Table 4, the producer’s and user’s accuracies for water, bare
land, and vegetation in all four scenarios were greater than 94%. The water and vegetation
extraction was improved, followed by that of bare land. The reason for this is that sparse
grass can be classified as vegetation and bare land, and it is difficult to accurately determine
which type the associated features belong to. The extraction effect of buildings and roads
was relatively poor as the resolution of the images was high, and some narrow roads
were interspersed among the buildings, making it easy to divide the roads and buildings
together during segmentation, causing confusion between the two types of features. From
the overall accuracy of the four schemes, the overall accuracy of Fm–RF, Fm–kNN, and
mRMR–SVM were all greater than 95%, which indicates that Fm can better combine and
optimize feature subsets and improve the classification ability of the used feature sets.
All of the feature selection methods based on Fm could achieve effective surface feature
information extraction. Meanwhile, the RFE and LR classification methods did not present
high classification accuracy. Wrapper feature selection methods rely on feature models and
specific machine learning algorithms, and the optimal feature combinations change as the
learners change, which, in some cases, can have detrimental effects. In our experiment,
there were negative values in the NDVI and NDWI feature values, and there was a data
imbalance; for the embedded LR feature selection method, it is difficult to solve the data
imbalance problem. In conclusion, both the single filtering feature selection methods
and the combination of the proposed two filtering feature selection methods presented
good performance, and filtering feature selection methods can more easily obtain better
classification results when performing object-oriented classification.

4.4. Validation of the Fm Method

In order to test the effectiveness of the Fm method, we selected different research
areas and GF-2 images and carried out experiments. The classification results and overall
accuracy with different classifiers are shown in the Figure 8.

Figure 8. Cont.

214



Appl. Sci. 2022, 12, 8845

Figure 8. Fm classification image with different classifiers: (a) CART; (b) RF; (c) KNN; (d) SVM.

As shown in Table 5, Fm achieves better classification results in the different study
area. The overall accuracy of Fm with CART, RF, KNN, and SVM classifiers were 88.67%,
92.04%, 91.08%, and 88.68%, respectively. The kappa coefficient also reached 0.8545, 0.8979,
0.8852, and 0.8546, respectively. The overall accuracy of RF and KNN is better than that
of the CART and SVM, which is consistent with the experimental results above. Verified
experiments show that Fm can effectively reduce the dimensionality of high-dimensional
data and obtain the optimal feature subset. RF and KNN classifiers are more suitable for
image classification combined with Fm.

Table 5. Overall accuracy and kappa coefficient of Fm with different classifiers.

CART RF KNN SVM

Overall accuracy 88.67% 92.04% 91.08% 88.68%
Kappa 0.8545 0.8979 0.8852 0.8546

5. Conclusions

In this paper, an algorithm combining the Fisher Score and mRMR algorithms is pro-
posed to address the problem of high dimensionality of the feature space in object-oriented
classification. Although Fisher Score and mRMR feature selection methods have good
applicability in feature screening, a single method cannot take into account the redundancy
between features and the correlation between features and categories at the same time.
The Fisher Score algorithm does not take into account the redundancy between features,
and the mRMR algorithm cannot reflect the differences in the role of different features in
classification. The combination of the Relief and mRMR algorithms can effectively make
up for their shortcomings. After the experiments involving four different machine learning
classification methods, the overall accuracy of Fm combined with RF and KNN is better
than that of RF and CART.

Through a comparative test of four kinds of classifiers, we determined that: (1) Fea-
ture selection can allow for the elimination of redundant features, and high classification
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accuracy can still be achieved when using a small number of features. Accordingly, filtered
feature selection methods were found to perform better than wrapped and embedded
feature selection methods. (2) Two classifiers—RF and SVM—exhibited better stability
than the other two classifiers as the number of features increased during the experiment.
(3) In this study, the proposed Fm feature selection method was used in the classification
experiment and showed the best performance when used with the RF and kNN classifiers,
allowing for better optimization of the feature set. The final classification accuracy and
efficiency were improved obviously by using the Fm feature subset. The overall accuracy of
the Fm–RF and Fm–kNN approaches reached 95.18% and 96.14%, respectively. The kappa
coefficient reached 0.939 and 0.951, respectively. Except for the mapping accuracy of Fm-RF
construction land, the mapping accuracy and user accuracy of Fm-RF and Fm-KNN both
reached more than 91%.
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Abstract: One of the primary purposes of forest fire research is to predict crisis situations and, also,
to optimize rescue operations during forest fires. The research results presented in this paper provide
a model of Cross-Country Mobility (CCM) of fire brigades in forest areas before or during a fire. In
order to develop a methodology of rescue vehicle mobility in a wooded area, the structure of a forest
must first be determined. We used a Digital Surface Model (DSM) and Digital Elevation Model (DEM)
to determine the Canopy Height Model (CHM). DSM and DEM data were scanned by LiDAR. CHM
data and field measurements were used for determining the approximate forest structure (tree height,
stem diameters, and stem spacing between trees). Due to updating the CHM and determining the
above-mentioned forest structure parameters, tree growth equations and vegetation growth curves
were used. The approximate forest structure with calculated tree density (stem spacing) was used for
modeling vehicle maneuvers between the trees. Stem diameter data were used in cases where it was
easier for the vehicle to override the trees rather than maneuver between them. Although the results
of this research are dependent on the density and quality of the input LiDAR data, the designed
methodology can be used for modeling the optimal paths of rescue vehicles across a wooded area
during forest fires.

Keywords: forest fire; rescue vehicle; vegetation structure; optimal pathfinding; canopy height model
(CHM)

1. Introduction

Forest fires are very frequent crisis situations, especially in dry or arid landscapes [1].
The prediction of forest fire occurrence depends on knowledge of the factors that affect
the fires and on the technologies that facilitate the monitoring and modeling the spread
of the fire. Ganteaume et al. [2] analyzed the most common human and environmental
factors driving forest fire ignition. The primary factors that directly cause forest fires
are natural (lightning strikes, seismic and volcanic activity, etc.) or human (carelessness
and activities such as arson, slash-and-burn agriculture, fire-fallow cultivation, machinery
sparks, discarded glass bottles or cigarette butts, military activity, etc.). The factors that
determine fire spread are as follows: forest type and structure (distances between trees,
DBH, canopy height, tree crown density, etc.); meteorological conditions (precipitations,
temperature, wind speed, air humidity, cloudiness, soil moisture, etc.); topographic (mor-
phological shapes of terrain, orientation of relief slopes, etc.); geological and pedological
(underground structure, soil structure, and terrain surface color); and season and time of
day, which determine the amount of available sunlight and temperature, etc. The tech-
nologies that facilitate the monitoring and modeling of a forest structure and the spread
of forest fires include the sensor types for vegetation data collection and forest structure
determination and technologies for monitoring and modeling the spread of fire. Blair,
Rabine, and Hofton [3] described the Laser Vegetation Imaging Sensor (LVIS), which
operates at altitudes of up to 10 km aboveground and is capable of producing data for
topographic mapping with dm accuracy and vertical height and structure measurements of
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vegetation. The LVIS instrument is also suitable for subcanopy ground elevation mapping.
Lim et al. [4] described many of the initial studies of the application of LiDAR for forestry
focused on verifying through statistical analysis that LiDAR could be used to accurately
measure forest attributes. The focus has been on canopy tree heights given the nature
of this attribute as a predictor variable for other forest attributes, such canopy density.
Hyyppä et al. [5] analyzed existing algorithms and methods of airborne laser scanning that
are used for extraction of the canopy height and individual tree information. Aschoff and
Spiecker [6] described an algorithm for detecting trees in a semiautomatic way. Gobakken
and Næsset [7] analyzed the effects of forest growth on laser-derived canopy metrics. Car-
son et al. 2004 [8], Ahlberg et al. [9], and Su et al. [10] provided the overview of LiDAR
applications in forestry. By comparing these methods based on laser scanning, it can be
stated that, at present, an approximate forest structure for modeling the movement of
rescue vehicles can be determined. At the metric density of the DSM (CHM), the error in
tree positioning can reach values in decimeters, sometimes up to meters, depending on
the structure and type of the canopy. At the decimeter density of the DSM points out, it is
possible to calculate the tree position errors in centimeters to decimeters. When comparing
the possibilities of using LiDAR and aerial optical images, both methods have advantages
and disadvantages. Aerial images provide both spatial and image information, but they do
not allow, unlike LiDAR, full automation to determine the forest structure.

However, the use of LiDAR and aerial optical images may be problematic in the area
of fire because of the clouds or smoke generated by the fire. In these situations, radar
methods can be used to measure forest parameters. The mapping of forest units by radar is
described, for example, by Martoni et al. in [11]. Kugler et al. [12] compared the LiDAR and
radar methods for determining the heights of the forest in three areas: boreal, temperate,
and tropical. The correlations achieved confirm the possibility of combining the use of both
forest mapping methods. Additionally, Cazcarra-Bes et al. [13] described the possibilities
of the horizontal and vertical forest structure mapping from radar using data obtained
by synthetic aperture radar tomography. The use of radar methods is, however, limited
in terms of the accuracy of the determination of the characteristics of individual trees.
Furthermore, Landsat or Sentinel 2 global satellite data can be used to monitor forests
before and during a fire. Sentinel 2 with a multispectral instrument (MSI) with 13 spectral
channels in the visible/near-infrared (VNIR) and shortwave infrared spectral range (SWIR)
and three bands for vegetation mapping can provide the crisis management with actual
data in the shortest possible time, especially during a forest fire. The data accuracy (about
20 m) does not allow a more accurate mapping of the internal forest structure—see, e.g.,
Puletti et al. [14].

Technologies for monitoring and modeling the spread of a fire are divided into stages:
prediction, during the fire, and post-fire [15]. Milz and Rymdteknik [16] described the
technologies of detection and the spread of the forest fires by using satellite-borne remote
sensing techniques. However, the technologies of fire monitoring and distribution are
limited by the availability of up-to-date data from satellites, planes, UAVs, or terrestrial
observations. We also need to know the prediction of the spread of a fire to deploy rescue
vehicles. Koo et al. [17] described possible solutions using a physical model for the forest
fire spread rate. This model successfully evaluated wind and slope effects of a fire on
forest vegetation.

The above-mentioned factors and technologies are very important for the teams (fire
brigades, military units, health services, and police) that are deployed to rescue people and
reduce the damage during forest fires. Remote sensing support is very important for rescue
units when they are moving across vegetation before and during a fire and, also, for the
decision to deploy aircraft. We can use LiDAR and aerial image data to create a navigation
analysis for rescue (fire brigade or military) vehicles—see also [18–20]. These data can
be supplemented by active fire scenes using infrared sensors or aerial or UAV images.
Among the most effective data sources for Cross-Country Movement (CCM) navigation
and optimal pathfinding across a forest are LiDAR data and the products of its analysis.

220



Appl. Sci. 2022, 12, 3939

A prerequisite for the success of this analysis is an up-to-date picture of vegetation data
obtained by laser scanning. This precondition is especially crucial for forest stands, where
data become quickly outdated due to vegetation growth.

The primary focus of this article was the LiDAR data update for the forest stand
structure, a simulation of the creation of a forest structure with the subsequent creation
of a model for navigating the movement of a rescue vehicle between trees as obstacles in
the terrain. The reason for designing the method of detecting the current forest structure
was that LiDAR data in the Czech Republic is gradually becoming obsolete as a result
of tree growth. The following procedure was chosen: (1) Selection of the most common
type of forest stands in the territory of the Czech Republic with the predominant spruce
tree (Picea abies). Obtaining LiDAR data characterizing DSM with a density of 1 × 1 m.
(2) Obtaining inventory data on the growth of spruce trees from MENDEL University, Brno.
(3) Detection of DSM accuracy by geodetic and photogrammetric method. (4) Corrections of
tree heights due to DSM density and tree growth. (5) Creation of forest structure by random
distribution. (6) Selecting a simulated area where a fire could occur (older, drier forest).
(7) Calculating the simulated shortest route for a particular vehicle (outside the area of the
fire). The research results presented in this paper represent a new methodology of updating
a digital surface model (DSM) or canopy height model (CHM) using the equations of tree
growth and vegetation growth curves. DSM and Digital Elevation Model (DEM) data
evaluated for forestry passability were scanned by LiDAR in 2013. CHM data and field
measurements were used for determining the approximate forest structure (tree height,
DBH, and stem spacing between trees). The described methods were tested on a spruce
forest stand composed only from one type of tree—Sitka spruce (Picea abies), situated
approximately 300 m south of the village of Brno-Utechov (see Figure 1), where the heights
of trees in the Krtiny Training Forest Enterprise (TFE) area were detected and measured.
This spruce forest was chosen because of the availability of a series of aerial photos and
LiDAR data. Additionally, the forest is highly representative, as it contains the tree species
most commonly found in many Central European countries. The current age of this forest
is about 30 years.
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The approximate forest structure with the calculated tree density (stem spacing) was
used for modeling fire brigade vehicle maneuvers between the trees. DBH data were used
in cases where it was easier for the vehicle to override the trees rather than maneuver
between them. DBH data were also used for the calculation of the distances between trees.
Due to the availability of a DSM with a density of 1 × 1 m, it was impossible to precisely
determine the locations of individual trees, so a random simulated forest structure was
created based on the number of trees per hectare.

The article describes the methodology of calculation of the rescue vehicle movement
using simulated areas of a burning forest. In the case of a real fire, we can use the above-
mentioned LiDAR data (DSM data) or current data from different sensors. The type of
sensors and the accuracy of the data obtained will have a significant impact on the terrain
analysis and search algorithm for optimal rescue vehicle routes. Only some scattered
and low-resolution data of the fire can help. If the optimal route for a special vehicle
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(fire-resistant rescue vehicle, tank, etc.) that will move through a burning forest is to be
calculated, we will need detailed vegetation and elevation data with a meter or decimeter
resolution for reconnaissance of fallen trees, boulders, etc.

2. Materials and Methods

Interventionary studies involving animals or humans, and other studies that require
ethical approval, must list the authority that provided approval and the corresponding
ethical approval code. For modeling forest passability for fire brigade vehicles, it was first
necessary to specify a forest structure using the DSM of a forest created from a LiDAR data
source using DEM, photogrammetric method, and tachymetry to correct the tree heights. In
order to update the CHM and determine the above-mentioned forest structure parameters,
tree growth equations and vegetation growth curves were used. However, DSM forest data
change quite rapidly, so it was necessary to adjust the CHM and forest structure model.
Having an updated forest structure, we finally created a model of its passability by a chosen
fire brigade vehicle Tatra 815.

2.1. Forest Structure Determination

The most important elements of forest structure determination for modeling vehicle
passability across vegetation are the average distances between trees and DBH. When
determining the forest structure while not using the most recently acquired LiDAR data, it
can be assumed that the older trees are taller (see [21–24] and Figure 2), the diameter of the
trunks grow, the distances and between trees also grow over time, but the number of trees
per unit area decreases. In order to derive the age, distances, and DBH of trees from their
height, a homogeneous forest, composed only from one type of spruce, was chosen. All
following equations and vegetation growth curves were provided by the Mendel University
in Brno and obtained from inventory data.

The number of trees per square unit N·ha-1 depends on the age of vegetation, slope
and other parameters (see Fatehi et al. [25]). We can express it using Formula (1) [26,27]:

N = B·t−m, (1)

where B and m are the constants of vegetation stand quality, and t is an age.
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When we know the age of the vegetation (which can be derived from the height) we
can determine the number of trees per hectare (N)—see [21]. The number of trees per
unit area is also highly important for determining the average distances between trees
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within a given forest unit—Mean Tree Spacing (MTS). We can express the MTS using
Formula (2) [21,28]:

MTS ∼=
√

40, 000
π·N − MDBH (2)

where N—number of trees per 1 ha, and MDBH—mean DBH.
The last important element of forest structure is DBH. Tree trunks are measured at the

height of an adult’s breast. However, this is defined differently in different countries and
situations. The convention is now 1.3 m above ground level. The DBH of trees is a function
of the N—number of trees per 1 ha, the age of vegetation, slope, and other parameters. We
can express it using Formula (3):

N = B·DBH−k, DBH = (N/B)k (3)

where B and k are the constants of the vegetation stand quality. Each type of tree has its
own constant B and k—see also [26].

All of the above-described methodology defining the relationships between forest
structure parameters were applied in the context of obsolete LiDAR data acquired in 2013.
The procedure for determining the individual parameters of the forest structure is shown
in Figure 3.
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Figure 3. Dependence of forest structure determination.

The heights of the trees are extracted from LiDAR or DSM data. The ages of trees are
possible to determine from the inventory data or from the growth equations and parameters.
Additionally, the number of trees and DBH can be directly determined from the inventory
data or calculated from N.

2.2. Forest Structure Updating

For determining the CHM while not using the most recently acquired LiDAR data
(from 2013), it was necessary to recalculate the tree height according to spruce age—see
Figure 2 and Formula (1). For determining the forest structure parameters, LiDAR data and
the derived DSM (CHM) were used. Since the default DSM data density was 1 m × 1 m, it
was necessary to verify how the actual spruce heights differ from the heights determined
by the DSM. Verification was done using a photogrammetric evaluation of the aerial
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photographs and geodetic method (tachymetry) for accuracy verification—see also [21].
Geodetic measurements of the positions of 116 trees and their heights were carried out
by a total station Leica TC 1500. Geodetic survey of the tree heights was taken as the
most accurate measurement method. Those tree height estimations were determined
photogrammetrically in different time periods with the aid of color aerial photographs. The
Military Geographical and Hydrometeorological Office (VGHMÚř) Dobruška took them at
regular photographing periods in the Czech Republic (2003, 2006, 2009, 2012, and 2014).
A detailed description of the photogrammetric evaluation was given in [21]. Tree height
LiDAR data do not match those more accurate from aerial photographs due to the fact that
the density of the reflected laser beams (1 m × 1 m) is not sufficient enough to catch the
peaks of trees—see the red dots in Figure 4. The LiDAR average tree height is 6 m less than
the average height determined by the photogrammetric method [22]. Photogrammetric
evaluation and tachymetric verification revealed that, because of the lower density of the
LiDAR data (1 m × 1 m), the treetops were not captured, and DSM needed to be corrected
(increase in height)—see the red lines in Figure 4.
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Figure 4. Dependence of a forest structure determination.

Figure 4 shows a series of average spruce heights from 2003, 2006, 2009, 2012, and 2014
determined for the photogrammetry (blue points) and the average height of the same forest
determined from the DSM in 2013 from the LiDAR data (red point). The height difference
for 2013 was about 6 m; that is, we needed to adjust the values of the DSM heights (CHM)
for this constant. Due to the corrected elevations of the DSM, it was possible to define a
new forest structure (see the methodology above) and calculate the tree distances and stem
diameters. For the forest structure simulation, the normal Gauss distribution of distances
and DBH were used. The mean values of height, distance, and DBH were used at 18 m,
4 m, and 0.25 m.

2.3. Passability Model

To find the optimal route through the forest, it is necessary to know: parameters of the
vehicle, parameters of the trees, start and end points of a route, and impassable areas. The
most important parameters of a vehicle are vehicle width (VW), length, turning radius, and
tolerance (T)—see Figure 5.
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Figure 5. Fire and tested vehicles. (a) Fire vehicle Tatra 815 4 × 4, Length/Width/Height: 7950/2550/
3000 mm. (b) Tested terrain vehicle Tatra 815 8 × 8, Length/Width/Height: 8950/2550/3300 mm.

T determines the minimum distance of the vehicle from a trunk to pass between
two trees safely. To simplify the passability model, T also replaces the effect of other
vehicle parameters (length, turning radius, etc.). In turn, tree parameters refer to those
characteristics that are key to finding the optimal route in the forest. In our case, those
parameters are stem simulated coordinates, mean tree spacing (MTS), mean DBH, mean
riding corridor (MRC), and a VW. We can express the relationship between MTS, MDBH,
and MRC (see Figure 6) using Formula (4):

MRC = MTS − MDBH. (4)
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Figure 6. The relationship between particular tree spacing, DBH, and riding corridor.

If we do not know the exact coordinates of each tree (which is the usual situation), we
can generate the simulated forest structure from average values—see the procedure above.
We use the process of random tree deployment to determine the probability of crossing
the forest.

The start and end points of a route can be substituted by an initial and final area in a
forest region. It is usually not possible to go between these points or areas directly, and we
must maneuver between tree stems. Impassable objects (steep slopes, rocks, lakes, rivers,
burning forest, etc.) can be obtained from GIS databases or using aerial or satellite images.
For the purposes of modeling vehicle mobility in the above-described forest, the impassable
areas of the simulated burning polygons were chosen, though other objects (obstacles)
were not considered. To search the optimal vehicle route, the following algorithms were
used (see Figure 7): Voronoi graph and Delaunay triangulation, Dijkstra algorithm, and
optimization of the fractional line.

Figure 7 shows the positions of individual trees (Vertex M)—blue points. The closest
two trees to the given tree create the Delaunay triangle—Figure 7b, and the most secure
route sections (Voronoi edges) are intersected in the Voronoi nods—blue lines in Figure 7c.
The Dijkstra algorithm was used to find the shortest routes from the nod of the graph given
to all other nods—see also [23,24]. Using Figure 7c, we can simulate a forest path (see
Figure 7d). Trees that were obstacles are marked in red, and Voronoi nods (pale blue points)
are connected with Voronoi edges (dark blue lines). All Voronoi edges are rated by weights.
These weights may represent the distances or time for which a vehicle passes through the
Voronoi edges. In the event that we search for the shortest route from point 1 to point 15,
the condition of the minimum sum of the Voronoi edges (weighing) is to be compliant with
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the shortest route—red line in Figure 7d passing through Voronoi nods 1-3-7-6-11-12-14-15,
since the sum of route segment values (3.0 m + 3.3 m + 0.8 m + 3.8 m + 1.2 m + 2.1 m +
1.6 m) = 15.8 m is the smallest (shortest) compared to all possible routes connecting points
1 and 15.
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3. Results

The result of the creation of a forest structure from data obtained from the original
forest (see Figure 8) by generating random tree positions is shown in Figure 9. The size of
the analyzed forest area was 140 × 80 m (11,200 m2). The length of the vehicle’s passage was
212 m. The direct path between the starting point and the target is shown by a black line.
This path is generally unrealistic due to the tree stem obstacles (displayed as green points).
All possible paths (blue closed Voronoi polygons) that match the tree distances and vehicle
parameters have been computerized using Dijkstra algorithm and displayed in Figure 8
using our own software tools. Unfinished Voronoi polygons (ending between trees) are
nonbinding paths where the width of the vehicle does not allow passage between trees. We
can choose any of these blue passable routes, but only one will be the shortest (fastest)—the
red highlighted route. This route traverses around (between) the burning forest polygons.
The simulation of the polygons displaying the fire areas was done completely at random
by adding the points around the impassable zones (orange areas). These areas can be
complemented e.g., by satellite images or aerial photos. If we wanted to avoid these risky
places, we would have to create a security zone around the burning polygons—so-called
buffers—using GIS tools.
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Figure 9. Navigation on the shortest vehicle route (red track) avoiding the burning forest (orange
areas). Randomly spaced trees, approx. scale 1:1000.

There are also displayed the routes inside the areas of fires (blue lines inside the orange
polygons)—see Figure 9. These routes can be used later when the fires end, but they are
primarily not included into the calculation of the shortest route. For some types of vehicles,
such as tanks, we can also choose the route through the burning area and calculate the route
segments inside the orange polygons. The influence of other elements of the terrain (slope
gradient, soil properties, terrain surface roughness, forest paths, etc.) are not calculated.

The above-mentioned result of seeking an optimal forest path partially affected by a
fire may be modified in case when the forest structure is regular triangular or rectangular.
There are displayed all the possible routes and the shortest route—red line in the triangular
forest structure in Figure 10.
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The methodology for finding the optimal rescue vehicle path was based on verifying
the input data. Determining a forest structure from DSM data can be very unreliable,
especially when LiDAR data are obsolete. Therefore, the use of growth curves of trees
and derived vegetation parameters were used. These parameters were determined on a
relatively small area. Verification of the vegetation parameters by photogrammetric and
geodetic pathways lasted several months. The results of the presented model are valid
for the designated coniferous forest. The general application of the optimal vehicle route
determination will depend on the type of trees (coniferous, deciduous, and mixed). The
author assumes that the presented model for finding the optimal route of a vehicle will be
better utilized with the development of mapping methods aimed at determining the exact
coordinates of the trees.

4. Discussion

The described methodology for determining the possibility of moving the fire brigade
vehicles in forest vegetation can be used if tree position data or forest structure (generated
from photogrammetric data or from LiDAR data) are available. In both cases, the same
algorithm can be used to find the optimum forest path. In case we have more precise
tree coordinates (from terrestrial or remote sensing sensors), the calculated route of the
vehicle will be more reliable. Although the methods of directly determining the exact
tree position by remote sensing data are constantly developing, the forest structure is
often determined using DSM (CHM) methods. This is due to the financial cost of the
high density of LiDAR data, as well as the personnel demand for data acquisition using
photogrammetric methods. The quality of the photogrammetric evaluation depends on
the scale of the images and the evaluator’s experience. The main problem is to target the
marker at the tree’s top point, which is above the tree trunk. The accuracy of tree position
evaluation is higher for coniferous trees than for leafy vegetation. The disadvantage of
the photogrammetric method is the lower performance of manual evaluation compared
to the possibility of automated evaluation of LiDAR data. LiDAR methods are faster
than photogrammetric methods, and they allow a more efficient assessment of the forest
structure and determination of the possibilities of vegetation passability without a manual
evaluation. LiDAR methods can also be better combined with other remote sensing data
sources (infrared, multispectral, radar, etc.). For example, an infrared spectrum can be
used to map environmental and fire temperature characteristics, and at night, multispectral
imagery can be used to classify species, and radar data is appropriate for mapping a burning
forest covered with smoke or clouds. However, these methods have a disadvantage when
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scanning vegetation with a low density of DSM elevation points (smaller than 1 m × 1 m)
and in the case of DTM data absence. On the other hand, the repeated photogrammetric
evaluation of the representative forest stands and the data from DSM could bring about
a new approach for forest growth analysis and could be a sufficient method for DSM
updating in different growth conditions of forest stands.

The results of this experiment showed that this method is fully applicable for the
DSM generated from LiDAR data. The method can be appropriately implemented as
a relatively inexpensive updating tool for GIS technology between two laser scanning
campaigns of a territory. This method can also be refined using the growth curves of
individual types of trees. Forest growth characteristics are very important due to the age
of LiDAR DSM data. The results of photogrammetric measurements from aerial images
taken at consecutive time intervals and statistical calculations show that the growth curves
of the trees are initially steeper, but vegetation growth later slows. It is also necessary to
investigate the relationships between the natural environment factors and specific canopy
growth. The above-mentioned DSM updating method could be used for many applications,
e.g., in forestry, military, etc.—see, e.g., [29–33]. It should be noted that the tree height
correction values decrease with the increasing density of the LiDAR data. At the DSM
density 1 m × 1 m, the average correction is approx. +6 m. At the DSM points density of
1 dm × 1 dm, it is possible to estimate the average height corrections of spruce trees in
decimeters, depending on the age of the vegetation. Height corrections of the DSM can
significantly affect the computationally generated forest structure and, hence, the vehicle
motion models. The resulting model of forest crossing by a vehicle will depend, to a large
extent, on the quality of the forest structure data. This study focused on a spruce forest—the
predominant tree species in Central Europe. In general, it can be said that the species of
vegetation may be variable in different forest groups. From this point of view, the study
presented in this article can be considered as partially applicable. Using LiDAR/DSM
data, the determination of the deciduous forest structure and positioning of the tree trunks
will be more difficult, especially due to the crown surface diversity. From this point of
view, it can be assumed that the model of finding the optimal vehicle path through the
deciduous forest will be less reliable. The success of these models will largely depend on
the resolution, coverage, and actuality of LiDAR data, as well as on the accuracy of the
forest fire localization data. It should be noted that the use of this methodology in practice
has a number of limitations resulting from data that cannot include all objects in the forest,
such as lying trees, stones, low tree branches, etc. [34].

Tree branches can be an important obstacle to the movement of rescue vehicles. It
mainly concerns young forests or deciduous forests, where branches are thicker and located
below the ground. In coniferous stands, the lower branches of older trees are dry and
thin and do not represent a major obstacle for heavy wheeled or tracked vehicles. Below
is Table 1, containing measured data of tree branching; the lowest branches were about
1–2 cm thick. The measurement of tree canopy branching was performed only on trees for
which resistance tensile forces were measured, not on all the trees in the area.

The problem is how to get the lower branch data. For this purpose, we plan to use
LiDAR data with a resolution in cm [35–37] and use the last but one reflection for this
measurement. Additionally, terrestrial LiDAR could help to solve this problem—we tested
it on a small area in March 2022—see Figure 11 below.

The author assumes that, in the near future, it will be possible to solve the coordinates
of trees, their DBH, and the characteristics of tree crown branches.

The spread of fire, depending on a number of factors, can be very variable, and
actual data from burning areas will not always be available. Additionally, visibility can be
significantly affected by smoke and the daytime. It should be noted that the calculation
of the optimal vehicle route was based on the width of the vehicle. The reliability of
route determination also depends on other vehicle parameters, such as vehicle length and
height and minimum turning radius. This model did not even include a case where the
vehicle would go back (e.g., in case of a spreading fire). For the more accurate calculations
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of a vehicle route, the impact of the side slope should be also considered. Notable was
also the driver’s ability to overcome difficult terrain and to maneuver between trees in
crisis situations.

Table 1. Branch position of selected trees.

Tree Num. Tree Stem Diameter
DBH (cm)

Height of Dry
Branches (cm)

(φ 1–2 cm)

Height of Semi-Dry
Branches (cm)

Height of
Green Branches

(cm)

Tree Height
(cm)

1 21.0 310 820 1080 1750
2 19.5 350 800 1040 1600
3 12.8 460 690 950 1460
4 19.0 490 870 1150 1730
5 13.9 none 720 930 1590
6 17.0 230 450 990 1710
7 17.8 380 510 650 1710
8 12.4 550 850 920 1470
9 22.1 170 500 1030 1730

10 18.3 330 770 900 1640
11 19.0 400 570 840 1640
12 16.7 560 830 970 1620
13 25.3 360 830 960 2050
14 23.7 none 340 1040 1870
15 22.9 350 550 930 1730
16 15.3 none 370 780 1525
17 14.3 260 470 750 1490
18 22.0 280 580 770 1550
19 10.8 none 380 650 1100
20 10.5 none 320 515 1030
21 14.5 770 990 1180 1770
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5. Conclusions

The primary aim of this article was to introduce the theoretical aspects, methods, and
results of modeling the possibilities of firefighting rescue vehicle mobility in forest areas
during fires using remote sensing data. The main result of the presented research is the
methodology of the forest structure creation from DSM data, updating due to the growing
vegetation parameters, as well as the proposal of the methodology of finding the optimum
path of the vehicle to cross the forest, which is considerably more difficult than navigation
on the roads.

Although the presented methods are approximate and their applications depend on
a number of other factors, the author of the article believes that the presented methods
and research results will be applicable in relation to the severity of damage caused by fire.
The author also expects further developments of the vehicle navigation methodology in
forest regions and the calculations of other factors influencing the search for optimal rescue
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vehicle routes (low vegetation, lower branches of trees, inclination of slopes, soil influence,
terrain surface, etc.). It will also be important to develop the theory and modeling of fire
spread in forest areas and to link these models to rescue vehicle navigation.
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21. Rybansky, M.; Zerzán, P.; Břeňová, M.; Simon, J.; Mikita, T. Methods for the update and verification of forest surface model. In
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives; International Society
for Photogrammetry and Remote Sensing: Praha, Czech Republic, 2016; pp. 51–54.

22. Rybansky, M.; Brenova, M.; Cermak, J.; Van Genderen, J.; Sivertun, Å. Vegetation structure determination using LIDAR data and
the forest growth parameters. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Kuala Lumpur,
Malaysia, 13–14 April 2016; Volume 37, p. 12031.

23. Rybansky, M. Modelling of the optimal vehicle route in terrain in emergency situations using GIS data. In Proceedings of the IOP
Conference Series: Earth and Environmental Science, Kuching, Malaysia, 26–29 August 2013; Volume 18, p. 12131.

24. Parsakhoo, A.; Jajouzadeh, M. Determining an optimal path for forest road construction using Dijkstra’s algorithm. J. For. Sci.
2016, 62, 264–268. [CrossRef]

25. Fatehi, P.; Damm, A.; Leiterer, R.; Bavaghar, M.P.; Schaepman, M.E.; Kneubühler, M. Tree Density and Forest Productivity in
a Heterogeneous Alpine Environment: Insights from Airborne Laser Scanning and Imaging Spectroscopy. Forests 2017, 8, 212.
[CrossRef]

26. Matthews, R.W.; Jenkins, T.A.R.; Mackie, E.D.; Dick, E.C. Forest Yield: A Handbook on Forest Growth and Yield Tables for British
Forestry; Forestry Commission: Edinburgh, Scotland, 2016; pp. 1–92, ISBN 978-0-85538-942-0.

27. Rybansky, M. The Cross–Country Movement—The Impact and Evaluation of Geographic Factors; CERM: Brno, Czech Republic, 2009;
p. 113, ISBN 978-80-7204-661-4.

28. Simon, J.; Kadavý, J.; Macků, J. Forest Economic Adjusting; MZLÚ: Brno, Czech Republic, 1998. (In Czech)
29. Hubacek, M.; Kovarik, V.; Kratochvil, V. Analysis of Influence of Terrain Relief Roughness on Dem Accuracy Generated from

Lidar in the Czech Republic Territory. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B4, 25–30. [CrossRef]
30. Cibulová, K.; Sobotková, Š. Different Ways of Judging Trafficability. Adv. Mil. Technol. 2006, 1, 77–87.
31. Hošková-Mayerová, S.; Talhofer, V.; Hofmann, A. Mathematical modell used in decision-making process with respect to the

reliability of geo database. Procedia Soc. Behav. Sci. 2010, 9, 1652–1657. [CrossRef]
32. Stodola, P.; Mazal, J. Optimal Location and Motion of Autonomous Unmanned Ground Vehicles. WSEAS Trans. Signal Processing

2010, 6, 68–77.
33. Pokonieczny, K. Automatic military passability map generation system. In Proceedings of the International Conference on

Military Technologies (ICMT), Brno, Czech Republic, 31 May–2 June 2017; pp. 285–292.
34. Abdullahi, S.; Kugler, F.; Pretzch, H. Prediction of stem volume in complex temperate forest stands using TanDEM-X SAR data.

Remote Sens. Environ. 2016, 174, 197–211. [CrossRef]
35. Štroner, M.; Urban, R.; Línková, L. A New Method for UAV Lidar Precision Testing Used for the Evaluation of an Affordable DJI

ZENMUSE L1 Scanner. Remote Sens. 2021, 13, 4811. [CrossRef]
36. Surový, P.; Kuželka, K. Acquisition of Forest Attributes for Decision Support at the Forest Enterprise Level Using Remote-Sensing

Techniques—A Review. Forests 2019, 10, 273. [CrossRef]
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Abstract: Due to its unique geographic and tectonic location, the Bou Azzer inlier has drawn increased
interest in mining studies. The inlier’s basement structure remains subject to investigation meanwhile
faults and igneous rocks affect the local geology. In order to comprehend the Bou Azzer inlier’s
structure, we use aeromagnetic data. The edge enhancement method described in this work is based
on the gradiometry tensor analysis (GTA) of aeromagnetic data, which yields estimated magnetic
tensors, rotational invariants, horizontal invariants, computed strike lines, and Eigensystems. This
study’s primary objective is to use GTA to define structural boundaries in complicated geological and
tectonic environments. The vertical and horizontal positions of the geological border’s limits have
been determined via analysis of the acquired answers. The borders of the anomalous sources are
marked in space by the lowest eigenvalue. According to the research, the inlier demonstrates potential
for further mineralization with regard to its complicated structure, which is mostly dominated by
WNW-ESE, ENE-WSW, NE-SW and E-W trending lineaments with varying depths between 3.45 and
9.06 km. Certainly, the derived structural scheme has enabled the identification of various formations
that may be favorable for the circulation of mineralizing fluids, facilitating the concentration of
economically valuable mineral deposits, similar to existing metal reserves in the examined area.

Keywords: geophysics; gradient tensor analysis; rotational invariants; horizontal invariants; eigensystems

1. Introduction

Enhancing the data to highlight key aspects is one of the main goals in the analysis
of aeromagnetic data. In addition to providing information on lithological changes and
structural trends, aeromagnetic prospecting also defines lateral changes in susceptibility
contrast. Gradients themselves can be used to infer the properties of subsurface structures.

From a mining point of view, the Bou Azzer inlier hosts two important mines: the
cobalt mine of Bou Azzer associated with the ophiolitic complex whose mineralization is in
the form of lenses and veins, and the mine of Bleïda marked by the presence of significant
copper indices in the form of lenses.

Aeromagnetic data are analysed using gradient tensor and other operators to identify
many positions of the geological borders. The greatest amplitudes like horizontal gradients
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which can be replaced by horizontal components of gradient tensor were employed by [1]
with the intention of identifying geologic near-vertical borders from aeromagnetic anoma-
lies. The boundaries displayed the highest values signifying sharp disparities in lateral
susceptibility. Gradiometers have enabled the recent ability to conduct measurements
of all the tensor elements. For the purpose of distinguishing structural characteristics
from potential field gradient tensor data, many mapping approaches have been devised.
Researchers in [2] calculated the gravity–magnetic tensor invariants across a sophisticated
model simulating a basement surface with both horizontal and vertical faults.

In the interest of estimating source depth, ref. [3] demonstrated that the greater nega-
tive eigenvalue is analogous to the greatest negative bend acquired from typical potential
field anomalies. Geologic contacts were identified [4] by means of the horizontal gravity–
magnetic gradient tensor. Horizontal gravity gradients that have been seen or calculated
from magnetic data are used to define the eigenvalues of the Hessian matrix in [5–7] as de-
scribed by a linear feature analysis. Refs. [8,9] imaged subsurface geology using invariants
derived from horizontal gravity gradient components.

A method for using the gravity–magnetic gradient tensor was developed by [8].
According to [10], the eigenvector of the entire tensor gravity–magnetic gradient matrix
that corresponds to the least eigenvalue may be used to predict the striking direction of
quasi 2D entities. According to [11], the sub-vertical plugs, dikes, or diatremes connected
to alkaline encroachments are imaged by the rotational and horizontal invariants of the
gravity–magnetic gradient tensor. The different tensor components were merged into
invariants by [12], who also specified information on geologic contact and body shape.

To identify the margins of anomalous sources, we compute and map strike lineaments
(θ) using processed rotational invariants (I0, I1, I2) and horizontal invariants (Ih1, Ih2).
This technique was used to construct the gradient tensor of the aeromagnetic data from
Bou Azzer.

2. Geological Background

The Bou Azzer-El Graara Inlier (BAEI) (Figure 1A–C) is linked with two nearby
depressions, Bou Azzer then El Graara, situated 45 km southwest of Ouarzazate city.
It spreads approximately 20 km from Taznakht to Bleïda in a WNW-ESE direction. The
Tissoukine and Tasla synclines surround it from the north and south, respectively. The BAEI
was formed during the excavation of the Anti-Atlas Major Accident (AAMA), representing
an amount of the earliest Pan-African seams.

In the southern inlier part, the Tachdamt-Bleïda Set, it is thought that remains of the
Tonian platform came into existence on the northern border of the West African Craton
(WAC). Based on recent tectonic and lithological classifications along with newly acquired
geochronological information, it encompasses the most ancient rock formations within the
BAEI. During this period of rifting, there is a distinctive emission of tholeiitic to alkaline
basalts, initially approximated at 788 ± 10 Ma and more lately, around 883 Ma [13].

The Assif n’Bougmmane-Takroumt complex’s metamorphic rock formations stretch
from west-northwest to east-southeast. These formations create separate elevated areas in
Bou Azzer, Tazigzaout, Oumlil, and the primary elevated region of the Bougmmane massif
situated in the Takroumt region, located north of the Tachdamt-Bleïda group. These meta-
morphic rocks were previously thought to belong to the Paleoproterozoic (PI) basement.
However, recent geochronologic data suggest that they are younger and are now attributed
to Cryogenian dates [14,15].
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They consist of amphibolites, metagabbros, augen gneiss, and micaschists in their
lithology [15]. The protoliths of these rocks have geochronological dates ranging between
730 million years and 752 million years ago within the Tazigzaout Complex [17], and
from 745 million years to 755 million years ago in both the Bou Azzer massif and the
Oumlil massif [15]. Furthermore, there are extra geological characteristics, including a
mafic intrusion within the Bougmmane Complex established 700 million years ago, along
with two veins of micas leucogranodiorite in the Tazigzaout massif, dated at 705 million
years ago and 701 million years ago [18], and another at 695 Ma in the Oumlil massif, which
all cross-cut these rocks [15]. These findings suggest that an orthogneissification event
occurred earlier than 700 Ma during the Lower Cryogenian period.

Similarly, to the northeastern side of the BAEI, within the Tichibanine-Ben Lgrad
area, one can find rocks formed from volcanic arcs, including rhyolites, microgabbros and
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basalts, alongside volcano-sedimentary formations like cinerites, sandy siltstones, dacite
and felsic tuffs. The dating of the dacite and felsic tuffs, using U/P on zircon, reveals ages
of 767 million years and 761 million years, respectively [19].

Ref. [20] was the first to characterize the famed Neoproterozoic supracrustal ophio-
lite found at BAEI. It is composed of ophiolite slices from ultramafic to mafic, connected
to mélanges of volcanic sediments that have been invaded by intrusions related to sub-
duction [21]. Ultramafic cumulates of wehrlites, harzburgites and dunite lenses, and
clinopyroxenolites, a crustal gabbroic unit’s section, basaltic pillow lavas a complex of
sheeted dykes are all parts of the BAO series. The BAO and the Khzama orb in the Siroua
window are examples of the pan-African oceanic lithosphere, which was thrust onto the
northern boundary of the WAC (West African Craton) as stated in reference [22]. Its precise
age remains a topic of debate despite various speculative indirect estimates [16].

However, the Khzama plagiogranite within the Siroua ophiolite provides the most
accurate age estimation for the Central Anti-Atlas ophiolite, pinpointing it at 762 million
years old [23]. Around 660 Ma to 640 Ma, a series of quartz diorite intrusions (located in the
Bou Azzer massifs, Ousdrat, Taghouni, Ait Ahmane and Bou Frokh) intruded Cryogenian
rocks in the Bouazzer region. These intrusions occurred during the Pan-African paroxysm,
characterized by sinistral deformation [24].

The Bou Azzer-El Graara Cryogenian foundational layer is covered by non-metamorphic
clastic and volcanic deposits from the Ediacaran period in an unconformable manner. The
lower units encompass the Tiddiline and Bou Lbarod-Iouraghene Groups, formed approxi-
mately 625 million years ago, primarily consisting of andesite and ignimbrite within an active
margin setting. Additionally, the age of Tiddiline deposits, defined by fault boundaries and
interspersed with rhyolitic layers, date back 606 million years. Before the deposition of the
580 million year old Bleïda granodiorite in a later Pan-African transpressional event, the
Tiddiline deposits experienced uplift and folding [25].

The Ouarzazate Group, a large volcano-sedimentary post-collisional complex, corre-
sponds to the Upper Ediacaran period [15]. Within this time frame (580–570 million years
ago), the Aourz geological background dominate with volcanic ignimbritic facies having a
dacitic-rhyolitic formation, and the Jbels composition is branded by alternating andesitic
rhyolites-ignimbrites and flows.

Above the Late Ediacaran Ouarzazate Group, there is a paraconformable overlay of
rich-carbonate Adoudou composition. Taroudant Set, representing a transgressive unit from
the Early Paleozoic to Late Proterozoic, comprises several marine deposits. Concurrently,
the volcanic complex at Jbel Boho, known as Alougoum, was assigned an age ranging
between 529 million years and 531 million years [26]. The Paleozoic succession persists
with the Tata Group during the Cambrian period, succeeded by the internal Feijas, Tabanit,
external Feijas, first and second Bani, as well as Ktaoua transgression groups spanning
from the Cambrian to the Ordovician era.

Understanding the Mesozoic and Cenozoic evolution of the Anti-Atlas region is limited
by the absence of relevant sedimentary successions. The Anti-Atlas has experienced the
influence of various Lower Liassic mafic dykes aligned in a northeast-southwest direction,
which are associated with the CAMP magmatic event, signifying the breakup of Pangea
during the Triassic-Jurassic transition. Notably, the Foum Zguid dyke, which crosses the
BAEI, stands out as the most prominent of these dykes.

The present Anti-Atlas topography emerged during the Neogene period, coinciding
with the High Atlas uplift, following several burial and exhumation phases [27].

3. Material and Methods
3.1. Description of the Aeromagnetic Data

This study made use of geophysical data acquired during a comprehensive survey
of Morocco, conducted by Canadian Fugro Airborne Surveys Corporation for MMETSD
between October 1998 and May 1999 [28]. The survey was an integral component of the
National Geological Mapping Project, encompassing the entire Anti-Atlas region.
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The latter refers to a comprehensive initiative with two primary objectives: first, to
enhance searching for minerals in the Anti-Atlas area, which stands out as one of the
most important metallogenic regions in Morocco, and second, to consolidate geoscientific
databases. The study made use of a high-resolution data collection generated from an aerial
geophysical survey on the part of providing accurate structural and geology cartography
of the research region. Specifically, this research focuses on aeromagnetic data obtained
from a rectangular region measuring 40 km by 69 km surrounding the BAEI (Figure 1). The
data were captured using an optically pumped cesium vapor magnetometer that operates
using pumping, featuring a level of sensitivity of 0.01 nT, and a data collection frequency
of 10 samples per second was applied.

For the airborne magnetic survey, the N30◦ E flying path was utilized, set apart at
intervals of 500 m. The magnetic sensor’s height above the terrain was set to approximately
30 m, and the tie lines were perpendicular with N120◦ E direction, a spacing of 4000 m.
These parameters allowed for the collection of a substantial amount of magnetic field
data, covering a total distance of 5700 km. As an advantage of these survey settings, a
high-resolution aeromagnetic survey of the research region was effectively conducted. The
preliminary handling of the unprocessed data involved standard levelling, noise reduction,
diurnal adjustment, and other essential steps.

The contractor performed the gridding of the magnetic data using the minimal cur-
vature technique, yielding a standardized square grid with a grid spacing of 250 m (half
of the line interval, regardless of the data sampling rate) [29]. Aeromagnetic maps of Bou
Azzer Inlier Reduced to the north pole and the Residual Aeromagnetic map of Bou Azzer
Inlier (Figure 2), computed by [28], were referenced using the southern Moroccan Lambert
metric coordinate projection. The residual magnetic field performed by [28] shows a very
agitated magnetic relief and a certain heterogeneity with the presence of several anomalies
(Figure 2A), the observed class ranging from −900 nT to 1800 nT.
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3.2. Gradiometric Tensor

Aeromagnetic assessments are frequently employed in geophysical local surveys
aimed at unexploded ordinance surveillance, geology mapping, and mineral prospecting
(UXO). Using a single total field magnetometer, aeromagnetic traditional surveys only yield
assessments of the total magnetic intensity (TMI).

Different sensors provide precise measurements of the entire field gradient. These
yields detailed data about shallow geological characteristics, which remain unaltered by
diurnal fluctuations and the magnetic field background of the region. As an illustration
of the gradient tensor measurement’s power, the Canadian Geological Survey initiated an
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aeromagnetic gradiometer program in Canada, developing short baseline aeromagnetic
gradiometers back in 1975 [30–32].

In recent years, there has been the development of gradiometers that use supercon-
ducting quantum interference devices (SQUIDs). These devices have been demonstrated to
be successful for observing geomagnetic phenomena. IPHT Jena has successfully created
and tested full tensor magnetic gradiometer systems based on LTSQUIDs (low-temperature
superconducting quantum interference devices) for various targets [33,34].

Vector surveys offer significant advantages, and the interpretability of magnetic sur-
veys is greatly improved through the use of the complete magnetic gradient tensor (MGT),
This describes how the three field components change in space along three perpendicu-
lar axes. This comprehensive MGT opens up possibilities for applications like magnetic
navigation, air anti-submarine warfare, UXO detection and more. As a result, multiple
geophysical firms are in the process of creating complete-tensor magnetic gradiometer
systems. However, there are additional engineering obstacles that need to be addressed to
create a functional airborne SQUID gradiometer system [34].

The Magnetic Gradient Tensor (MGT) can be derived by transforming the potential
field. Based on potential field theory, it is feasible to calculate the various potential fields
and gradient elements overhead magnetic sources [35]. Consequently, gridded data for
Total Magnetic Intensity (TMI) could be employed to generate the components of the
gradient tensor [36].

The gradient tensor can alternatively be obtained by measuring the total-field gradients
in either the vertical or horizontal directions [37]. There is no requirement to perform
derivative operations, which could be unstable on Fourier domain, toward computing the
gradient tensor from the total field gradient. Utilizing data on triaxial magnetic gradients
allows for a more effective determination of gradient tensor components. However, in [37],
triaxial aeromagnetic gradients were not taken into consideration, and instead, the observed
vertical gradient was derived by means of the horizontal gradient.

While gradiometer (or tensor) data are becoming more prevalent, especially in aerial
gravity surveys, magnetic data are still often collected as a single value [38]. Gradiometer
data involve the collection of nine gradient magnetic or gravity values for each point,
instead of just one overall field magnitude [39]. This implies that more data sets are available
for modeling, which can aid in resolving ambiguity issues during the modeling process.

3.3. The Art of Gradient Tensor Analysis

Tensors are an extension to the concepts of scalars, vectors and matrices. A tensor
is represented as an organized multidimensional array of numerical values. A practical
example of this is the magnetic gradient tensor (Figure 3) [37]:

B =




dBx
dx

dBx
dy

dBx
dz

dBy
dx

dBy
dy

dBy
dz

dBz
dx

dBz
dy

dBz
dz


 =




Bxx Bxy Bxz
Byx Byy Byz
Bzx Bzy Bzz


 (1)

where Bx, By and Bz are: x, y and z magnetic field components. The sheer volume increase
in measured data presents many opportunities for new input into source detection and
forward modelling algorithms. Tensors can be categorized based on their rank or order [40].
This categorization is evident in the count of components that a tensor has within an
N-dimensional space. Hence, a tensor with order p comprises Np components.

For instance, in a three-dimensional Euclidean space, the number of components in a
tensor is 3p. From this, for example:

# A zero-order tensor (p = 0) contains a single element and is referred to as a scalar.
Physical quantities that only possess magnitude are depicted using scalars;

# A tensor of order one (p = 1) consists of three elements and is termed a vector. Quanti-
ties that encompass both magnitude and direction are depicted using vectors. Bx is an
example of a first rank tensor component;
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# A tensor of order two (p = 2) comprises nine elements and is commonly illustrated
using a matrix. Bxx = dBx

dx is an example of a second rank tensor component;

# A tensor of order three (p = 3) has twenty-seven components. Bxxy = d2Bx
dx dy is an

example of a third rank tensor component.
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A structure tensor is a matrix derived from the gradient of a function. It is a second
order tensor (Figure 3) (has components such as Bxy), and has 2D and 3D forms (can
be represented by either two or three variables). The 3D form is used in gradiometer
surveys. Assume that B is a function of three variables (x, y, z). We can recognize that since
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H = −∇ϕ, this implies that (in SI units) Bx = −µ0
dϕ
dx , By = −µ0

dϕ
dy , Bz = −µ0

dϕ
dz Therefore,

the structure tensor would be [41]:

B = ∇⊗ µ0∇ϕ =
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Bzx Bzy Bzz


 (3)

where ⊗ is the dyadic product. Since the magnetic field represents a gradient of potential,
where the tensor elements correspond to second-order derivatives of the scalar potential
(ϕ). As a result, the tensor components exhibit symmetry. Therefore:

Bxy = Byx, Byz = Bzy, Bxz = Bzx (4)

According to Laplace’s equation:

∇2 ϕ = 0 (5)

∇× B = 0 (6)

From this it can be seen that:

Bxx + Byy + Bzz = 0 (7)

Based on previous equations we have:

B =




Bxx Bxy Bxz
Byx Byy Byz
Bzx Bzy Bzz


 =




Bxx Bxy Bxz
Bxy Byy Byz
Bxz Byz −Bxx − Byy


 (8)

This means that there exist only five distinct and unconnected tensor components with
magnetic and gravity data. For magnetic data these are Bxx, Bxy, Bxz, Byy, Byz.

Refs. [42,43] explore a different type of tensor representation that is based on ampli-
tudes and phases.

A tensor measurement can be transformed using eigenvalues and eigenvectors. Each
reading is divided into its orthogonal rotation matrix, invariant eigenvalue amplitudes, and
local to the survey reference frame eigenvectors. The amplitude and phase of the tensor are
represented by the eigenvalue amplitudes and eigenvector rotations. The amplitude-phase
form respects the inherent physical features of tensors while enabling extremely quick and
reliable processing of tensor data.

A thorough summary of eigenvector analysis of the tensor is provided by [36]. The
link between these values is as follows if we define a tensor measurement as the matrix B
with a scalar eigenvalue and eigenvector ν:

Bv = λv (9)

The eigenvalues are determined through the solution of the characteristic equation.
Det(B−λI). Expanding this, we get:

λ3 + I1λ− I2 = 0 (10)
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where:

I1 = ByyBzz + BxxByy + BzzBxx− B2
xyB2

yy = λ1λ2 + λ1λ3 + λ2λ3 =
−
(
λ2

1 + λ2
2 + λ2

3
)

2
(11)

I2 = det(B) = BxxByyBzz + BxxB2
yz + BzzB2

xy − 2BxyBxzByzB2
xy = λ1λ2λ3 (12)

where λ1 ≥ λ2 ≥ λ3. Applying eigenvector analysis to our tensor equation, as shown in
the previous equation, we obtain 3 eigenvalues and 3 eigenvectors. The rotation matrix R
which has as its columns the eigenvectors [ν̂1, ν̂2, ν̂3], diagonalises B when applied to it. It
is straightforward to verify that the following holds:

RT BR = RT




Bxx Bxy Bxz
Byx Byy Byz
Bzx Bzy Bzz


R =




λ1
λ2

λ3


 (13)

The eigenvalues, and any combination thereof, are the tensor rotational invariants. [36]
makes extensive use of one such rotational invariant, specifically, the standardized source
magnitude. It is defined as:

µnss =
√
−λ2

2 − λ1λ3 (14)

In contrast to magnitude of the tensor (Frobenius norm) |B|, ref. [36] notes that it is
entirely isotropic in the vicinity of a dipole source. It is perfect for inverse operation (total
magnetic field calculation).

As a result, the previous formulation may be used to determine the horizontal invari-
ants of the FTG map the edge of units (Figure 4). They are characterized as:

Ih1 =
√

B2
xz + B2

yz (15)

Ih2 =

√
B2

xy +

(
Byy − Bxx

2

)2
(16)

The gradient tensor determinant of 2-D structures, according to [10], is equal to zero.
The first system for which the x-axis corresponds with the strike direction will be obtained
if the coordinate system is then rotated such that it lines up with the striking direction.,

the element ∂2g
∂x2 becomes zero. Although this does not really occur in practice, the optimal

striking direction can be identified if the matrix is rotated around the z-axis to decrease this
component. You may compute this rotation angle [44–46] (Figure 5) using:

θ =
1
2

arctan

(
2

Bxy
(

Bxx + Byy
)
+ BxzByz

B2
xx − B2

yy + B2
xz − B2

yz

)
(17)
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Figure 4. Processed Horizontal invariants from calculated Gradient Tensor of Bou Azzer Inlier.
(A) Lh1. (B) Lh2.
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4. Results and Discussion
4.1. Bou Azzer Magnetic Field

Given the great geological and structural complexity of the region, the residual mag-
netic field map shows a variety of anomalies. Thus, after examining the residual Aero-
magnetic map of Bou Azzer inlier (Figure 2A) we notice the presence of a large bipolar
anomaly-oriented WNW-ESE, which runs along the central part of our study area, with a
length exceeding 10 km. It is a linear anomaly with a positive pole more developed than
the negative pole. In such a context at this latitude and with an inclination of the magnetic
field which is around 45◦, it is obvious that this structure has an NNE dip.

A second linear bipolar anomaly is situated in the eastern section of the inlier. It
forms an elongated feature stretching in the northeast to southwest direction, covering
approximately ten kilometers. It signifies a consistent continuation beyond the main
geological formation. An additional set of anomalies was identified within the research
area. These anomalies exhibit circular shapes and belong to a distinct group. The initial
anomaly is positioned to the south of the central WNW-ESE structure within the geological
formation. Its circular appearance suggests it might be a result of a basic magmatic
intrusion. The second anomaly is situated to the southeast of the study region. Currently, it
is challenging to differentiate among the various anomalies since all these formations exhibit
significant consistency on both sides of their originating sources. As a result, the utilization
of enhancement filters becomes crucial for accurately interpreting the aeromagnetic data.
Hence, to ensure accurate comprehension, it is vital at this phase to employ a range of filters
aimed at enhancing the analysis. This might involve attenuating prolonged wavelength
anomalies in some cases or amplifying it in others.

Examination of the RTP map (Figure 2B), allowed for the detection of several linear
and circular formations with varying amplitudes. In furtherance of perceiving their origin,
the contours lines of the positive RTP data values were overlapped on the geological Bou
Azzer inlier map (Figure 6). We will address each anomaly separately in the following
sections. We will begin by interpreting the positive anomalies and then move on to the
negative anomalies and those with lower intensity.
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BAOA: This anomaly (Figure 2B) corresponds to the ophiolite complex of Bou Azzer
which runs along the central part of our inlier along a WNW-ESE axis, showing a value
greater than 2240 nT. The elevated magnetic susceptibility is attributed to the rock’s nature.
As previously mentioned, the ophiolitic complex has undergone near-complete serpen-
tinization, accounting for the heightened magnetic intensity observed within this formation.
This axis is evidently shifted by several strike-slip faults.

FZDA: This anomaly (Figure 2B) corresponds to the famous Foum-zguid mafic dyke.
It displays a value greater than 2000 nT (Figure 2A,B). This dyke is formed mainly by
dolerites which explains its high magnetic susceptibility. The FZ dyke extends over more
than 200 km along a linear NE-SW fracture. Its lower Jurassic age (Lias), suggests that it
was formed during the opening of Tethys. This large dyke is an integral portion of the
Central Atlantic Magmatic Province (CAMP) [47,48].

JBA: This anomaly showing a value of about 2100 nT (Figure 2B) is linked to the basic
magmatism of Jbel Boho, then located south of the ophiolitic complex, this circular anomaly
has been the subject of several studies. This magmatism is known for its richness in rare
earth and copper which makes it one of the important districts in the inlier. The igneous
formation includes a central syenitic core surrounded by extensive flows of volcanic lava,
characterized as trachytes, andesites and basalts, which extend for tens of kilometers from
the complex’s center. These volcanic stones are found within the lower portions of a
sequence of carbonate rocks that were deposited at the same time [49].

BDA: This anomaly displaying a value of about 200 nT (Figure 2B) located SE of the
inlier to the east of the FZ dyke, corresponds to the basic complex formed mainly by basalts
which belongs to the Tachdamt-Bleïda platform, this anomaly sticks perfectly with the
famous mining district of Bleïda marked by the presence of copper mineralization in the
form of lenses.

AD: The negative magnetic anomaly (Ad) displaying a value of about −150 nT
(Figure 2B), unquestionably represents the Adoudounian sedimentary cover. The neg-
ative values reflect the deep aspect of the said cover, it is a thick sedimentary filling having
originated at the level of a deep sedimentary basin. This series, more than 2000 m thick
here, rests unconformably on the series of the Ouarzazate Group [16].

GN: The negative Gn anomaly displaying a value of about−400 nT (Figure 2B) located
south of the ophiolitic complex is related to granitoids (quartz diorite) of upper cryogenic
age. They occurred during the Pan-African deformation [15].
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Zn: This anomaly displaying a value of about −50 nT (Figure 2B) located in the
northwest fringe of the inlier and which is in the form of an arc with weak magnetic field
values corresponds to the northeast limit of the Zenaga inlier (Zn).

4.2. Gradient Tensor Analysis of Bou Azzer Inlier

The approach employed (GTA) still performant in highlighting shallow formations in
all directions (Figures 4, 5 and 7), thus its application allows us to highlight a basic complex
(Bc) of the Tonian—Cryogenian series of Tachdamt-Bleïda which lies in the center between
the ophiolitic complex of Bou Azzer and Jbel Boho. It is mainly composed of basalts, which
explains its high magnetic susceptibility. Note also that a fragment of serpentinite known
as Takeroumt’s (Tk) was also better understood by applying this gradient, the latter is
associated with the Cryogenian oceanic subduction system. We also note the continuous
interruption of the Foum Zguid dyke all along the NE-SW axis, which corroborates with
the geological map, thus the responses obtained at the level of the Horizontal invariants
reflect the deep character of said dyke. It is noted that the application of GTA allowed us to
attenuate the noise effect.
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Note that it is difficult at this stage to carry out a precise mapping of the study area
given the great contrast that appears at the level of the gradient tensor maps, but one can
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easily detect a certain number of tectonic events having affected the study area. On the
one hand, there is a slight offset at the level of serpentinites at the level of the Ait Ahmane
sector. This is due to the presence of a fracture N70◦ with sinistral lateral rejection, it is acts
of Irthem fault (Figures 4 and 7). On the other hand, we have detected at the level of the
Foum Zguid dyke a fracture oriented N120 with a sinistral component which corresponds
to the AMAA. We note that throughout the ophiolitic complex several fractures appear
(Figure 7), they are mainly oriented N40 to N60 with a left lateral strike-slip movement.
Note that throughout the northern part of the ophiolitic complex, we notice the presence
of a strong negative vertical gradient which can probably be attributed to the Anti-Atlas
Major Accident (Figure 3).

Meanwhile, the GTA enables us to separate closely spaced bodies and allows clear
visualization of the plunging bodies, which will allow us to determine the plunging
direction. The aforementioned GTA will help locate the maxima above the causative
sources. Therefore, it will ensure a good visualization of magmatic intrusions, especially
those of a basic nature as present in the study area (Figure 7A).

We note that the aforementioned study region is distinguished by the presence of a fa-
mous ophiolitic complex, with 70% serpentinization. The obtained results (Figures 4, 5 and 7A)
easily allow one to identify the anomalies of high magnetic susceptibility. Through the anal-
ysis of the map, we observe that the Bou Azzer complex represents a solitary serpentine
structure along the WNW-ESE axis, confirming the fragmented nature of said ophiolitic
complex. It is worth noting that the aforementioned complex exhibits a northward plunging
direction. Similarly, we observe a lateral continuity towards the west of the Takeroumt’s
serpentinite fragment.

Also, GTA allows the balancing of anomalies originating from both shallow and deep
origins and to accentuate specific features of interest (Figures 5 and 7A), such as the edges of
magnetic bodies. GTA can emphasize the edges of the anomalies identified in the Bou Azzer
sector. We would like to point out that the cobaltiferous and nickeliferous mineralization
is located at the contact between the ophiolitic complex, in other words, between high-
amplitude anomalies and the surrounding rocks. Hence, it is important to map these
contacts. This method exhibits remarkable traits, as it generates peak amplitudes at the
edges of the source and equalizes signals originating from both shallow and deep sources.
The application of this method extends to both synthetic and real data. Its effectiveness is
assessed by comparing it to other contour detection methods found in previous literature
that rely on derivatives.

The black lines (Figures 3 and 5) and the colored lines (Figure 7) demonstrate the
undeniable effectiveness of our method in accurately indicating the location of the bound-
aries of causative bodies, even for anomalies caused by numerous intrusive sources. It
is worth noting that the northern contact between serpentinites and basic rocks in the
uplifted block shows a straight alignment, as does the southern contact. However, we must
then emphasize that the most significant deposits are located on the southern interaction
among quartz diorite and serpentinite. The application of GTA in the Bou Azzer uplifted
block has yielded effective results. Thus, Figure 4 displays the amplitude maxima of hori-
zontal invariants along the edges of the ophiolitic complex, marked by a tectonic contact
with the surrounding rocks. In this case, regarding Figure 5, it becomes easy to identify
the geological lineaments with theta map, enabling a better comprehension of the area’s
tectonic history. The effect of depth has been observed in the extension of the ophiolitic
complex in the north-western part of the uplifted block. From a structural standpoint, the
major Anti-Atlas fault-oriented WNW-ESE is more clearly visible on the gradient tensor
maps (Figure 3), snaking through the northern portion of the aforementioned ophiolitic
complex. We emphasize that the contact between the basic magmatism of Jbel Boho and the
surrounding rocks is subcircular (Figure 4). Therefore, we recall that the northern contact is
marked by the presence of dolomitic beds from the lower Adoudounian, while the southern
contact is marked by the presence of dolomites. For the Foum Zguid dyke, we note that the
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maxima are located on either side of the center of said dyke [28]. Then said maxima show
an elongation along the NE-SW direction.

4.3. Structural Analysis

Examination of the first rose diagram (Figure 7B) shows that the observed geological
faults extracted from the geological map are globally dispersed among main directions
ENE-WSW, E-W and WNW-ESE. In return, the rose diagram relating to the magnetic
lineaments shows that the latter are aligned in lightly diverse orientations, NE-SW, NW-SE
and fewer ostensibly N-S. The noticeable contrast in these alignments can be associated
with the underlying structural composition of the basement resulting from the magnetic
interpretation. These structures are entirely hidden beneath Quaternary sediments, and
consequently, they are not depicted on the geological map. Moreover, the coverage of the
geophysical data exceeds the limits of the Bou Azzer inlier.

The NE-SW direction particularly represents strike-slip faults that cause a notable
offset of the ophiolitic body.

The WNW-ESE to E-W (Figure 7C) directions are particularly evident in the inlier cen-
tral zone, this is the main orientation of the Bou Azzer ophiolitic complex, these directions
represent the faults inherited from the Pan-African orogeny and which were reactivated
in the long term until the uplift by Variscan deformation [15,16]. It is a period marked
by a generalized shortening, at the level of the central and eastern Anti-Atlas, so we are
witnessing a reactivation of the Precambrian structures along the Major Anti-Atlas Accident
which led to the raising of the inlier along a NW-SE axis [50].

The structural rose diagram (Figure 7D) shows that the lineaments display an E-W,
NE-SW, WNW-ESE main trend and N-S less important direction.

The obtained results demonstrate that the studied region is prominent owing to its high
structural complexity resulting from polyphase tectonics at the level of the Bou Azzer inlier.

4.4. Tectonic Implications

Regarding the structural analysis of the Bou Azzer inlier, we were able to highlight
several fault families representing different tectonic episodes that affected the study area.
It is noted that this variety of direction is the result of polyphase tectonics. As mentioned
above, the obtained results revealed the following structures:

• The family of faults showing directions N◦020 and N◦030 particularly concerns the
old basement [51] (Figure 7B,C).

• Faults N◦020, N◦040, N◦060, N◦070, N◦100, N◦120, N◦130 and N◦140 mainly affect
Upper Proterozoic formations [52] (Figure 7B,C).

• The Infracambrian and Paleozoic cover formations are affected by families, N◦020,
N◦030, N◦060 and N◦070 [15] (Figure 7B,C).

Studies conducted by various authors [15,16,51,52] have concluded that:
The main Pan-African B1 phase is marked mainly by the N030◦ to N050◦ dextral faults

and by the N140 to N160◦ sinistral faults. This phase is responsible for the exhumation
of the ophiolitic complex by the process of obduction. This is a WNW-ESE-oriented
compression phase.

The late main Pan-African phase B2 is distinguished by a significant tightening at
the level of the inlier, thus we find two large families of faults: the family N◦150◦ to 160◦

dextral strike-slip, and a family N◦70 sinistral strike-slip. The tightening is oriented N020◦

to N030◦.
The post Pan-African period is marked by a distensive phase, giving rise to faults

oriented N70◦. This phase is marked by the formation of grabens with detrital filling. This
phase is followed by a major extensive phase marked by normal synsedimentary faults
N20◦ and N70◦.

The Hercynian phase corresponds to a period of reactivation of the N70◦ faults. This
is a compressive event marked by a sinistral movement of these faults. The latter have
dextral inverse NW-SE conjugates.
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4.5. Mining Implications

In the Bou Azzer inlier, the structural study combining geological and geophysical
data (GTA) has proven effective in analyzing the structural and geodynamic evolution
of the inlier. Note that the majority of hydrothermal mineral deposit types seem to have
originated from extensive hydrothermal systems often concentrated near significant crustal
features (faults and crustal discontinuities) [53]. This is the case for the mineralization at
the level of the Bou Azzer inlier which displays an intimate relationship with the Ophiolitic
complex of Bou Azzer and surrounding rocks. This association suggests that a deeply
embedded structure served as a conduit for concentrating mineral-rich fluids through
the crust. Nevertheless, these substantial structures may not always be evident at the
surface (e.g., the Carlin Trend) [54]. Therefore, the significance of employing gradient
tensor analysis lies in its ability to identify these underlying formations that are not visible
on the geological map.

The mineralized structures within the Bou Azzer mining district can be categorized
into five primary orientations: East-West, West-Northwest to East-Southeast, Northeast-
Southwest, Northwest-Southeast, and North-South. These orientations align with the
magnetic lineaments that have been identified.

Cobaltiferous and nickeliferous mineralization in the Bou Azzer mining district pref-
erentially developed in old tectonic breccia bodies located between serpentinites and
magmatic intrusions (quartz diorites). This configuration testifies to the existence of old
normal faults WNW-ESE having participated in the exhumation of deep mantle rocks. The
contact between seawater and magmatic bodies leads to hydrothermal reactions at the
origin of mineralogical transformations leading to the formation of both cobalt and nickel.

The WNW-ESE and ENE-WSW families represent the major pan-African accidents.
They are sinistral in nature and linked to the compressive episode affecting the entire
Anti-Atlas chain. The WNW-ESE trending faults represent drains for the circulation of
hydrothermal fluids. Furthermore, the NE-SW and E-W trending lineaments constitute the
structural framework in which the mineralization is situated.

It should be noted that the vein system at the level of the cobaltiferous deposit of Bou
Azzer presents numerous movement criteria which diverge according to the orientation of
the vein. Measurements taken in situ and ex situ have shown that the veins tend mainly
from N10◦ to N70◦ E with a main dip towards W or NW, respectively, and values close
to 60–80◦ (Figure 8). Indeed, the veins oriented N70◦ E are associated with a left lateral
movement [55] (Figure 9A), while those oriented N-S present a right lateral movement [55]
(Figure 9B).
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The copper mineralization at the level of the Bleïda mining district located SE of the
inlier is associated with brittle, secant faults on the Pan-African structures. These faults are
in the N070◦ direction with left-lateral movement [56] (Figure 10).
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Faults trending N110 at 130◦ are associated with a replay zone of Pan-African ductile
structures [56] (Figure 10). These faults would constitute a feeder zone for copper-rich fluids
then circulating in the N070◦ faults and precipitating copper sulfides along these faults.

5. Conclusions

The GTA conducted in the central Anti-Atlas, particularly in the Bou Azzer inlier,
using high-resolution aeromagnetic data, proved beneficial and allowed us to address
several issues. It identified several favorable areas for mineralization, and helped to solve
part of the mystery regarding the polarity of the subduction plane.
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The geophysical study with GTA in the Bou Azzer inlier revealed the presence of sev-
eral positive and negative anomalies. The main positive anomaly, occupying the core region
of the investigated area, is directly related to serpentinized oceanic rocks, while the other
positive anomalies are associated with basic intrusions. The detected negative anomalies
are closely related either to quartz diorites or to the Adoudounian sedimentary cover.

In terms of structural analysis, the investigation conducted using geological and
geophysical data was able to confirm the results obtained in previous studies. Several
fault families were identified, namely WNW-ESE and ENE-WSW families associated to
the Pan-African episode, and the NE-SW family related to the post-orogenic episode, thus
confirming the previously mentioned polyphase tectonics.

Regarding the mineralized structures, this study demonstrates that the vein system
is undoubtedly controlled by the NE-SW faults, while the massive mineralization fol-
low the WNW-ESE family. The Bou Azzer inlier lives up to its reputation as a premier
metallogenic province, as the conducted study highlighted several zones that showed
promising indicators, encouraging future detailed prospecting campaigns to confirm the
obtained results.

The use of findings from previous studies like [20,24,57] has proven to be effective,
as it has highlighted several promising zones characterized by high structural complexity
and strong alterability. We have detected a zone closely related to mantle rocks known for
their cobalt enrichment. Another zone has also attracted interest, as it is associated with
the basic complex of the Tachdamt-Bleïda platform, where a copper mineralization in the
form of lenses is present.

Therefore, we recommend tightening the grid spacing in future geophysical surveys
to achieve higher resolution, and conducting reconnaissance drilling in the areas deemed
favorable for mineralization. Additionally, we suggest applying other geophysical methods
such as gravimetry, electromagnetism, and electrical surveys to accurately cross-reference
different geophysical signatures.
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Abstract: The concept of land surface temperature (LST) encompasses both surface energy balance
and land surface activities. The study of climate change greatly benefits from an understanding of
the geographical and temporal fluctuations of LST. In this study, we utilized an improved version of
the TFSW algorithm to retrieve the LST from the Medium resolution spectral imager II (MERSI-II)
data for the first time in Pakistan. MERSI-II is a payload for the Chinese meteorological satellite
Fengyun 3D (FY-3D), and it has the capability for use in various remote sensing applications such as
climate change and drought monitoring, with higher spatial and temporal resolutions. Once the LSTs
were retrieved, accuracy of the LSTs were investigated. Later, LST datasets were used to detect the
spatiotemporal variations of LST in Pakistan. Monthly, seasonal, and annual datasets were utilized
to detect increasing and decreasing LST trends in the regions, with Mann–Kendall and Sen’s slope
estimator tool. In addition, we further revealed the long-term spatiotemporal variations of LST by
utilizing Moderate Resolution Imaging Spectrometer (MODIS) LST observations. The cross-validation
analysis shows that the retrieved LST of MERSI-II was more consistent with the MODIS MYD11A1
LST product compared to the MYD21A1. The spatial distribution of LSTs demonstrates that the
mean LST exhibits a pattern of spatial variability, with high values in the southern areas and low
values in the northern areas; there are areas that do not follow this trend, possibly due to reasons of
elevation and types of land cover also influencing the LST’s spatial distribution. The annual mean
LST trend increases in the northern regions and decreases in the southern regions, ranging between
−0.013 and 0.019 ◦C/year. The trend of long-term analysis were also consistent with MERSI-II,
excepting region II, with increasing effects. This study will be helpful for various environmental and
climate change studies.

Keywords: remote sensing; spatiotemporal; land surface temperature; MODIS; MERSI-II

1. Introduction

Land surface temperature (LST) is one of the key parameters in the land surface physi-
cal process on regional and global scales, and an accurate LST is essential for the study, such
as agricultural drought monitoring, climate change [1,2], estimating air temperature and
evapotranspiration [3,4], analyzing land cover change, and urbanization [5,6]. Traditionally,
ground measurements cannot practically achieve an aim that measures the LST over wide
and continuous areas. With the development of remote sensing from space, satellite remote
sensing is a powerful and effective method for analyzing the spatiotemporal variation of
LST over the entire globe with a sufficiently high spatial–temporal resolution. It can provide
multi-temporal, multi-spectral, and real-time data. In this way, remote sensing is become
more applicable and highly preferred compared to traditional ground measurements.

The spatiotemporal variation of LST is important for detecting changes in land surface
characteristics and understanding climate change. This study utilizes MERSI-II sensor
data, which provides a unique opportunity for monitoring the changes in LST at spatial
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and temporal scales. The MERSI-II sensor is carried by the Chinese FY-3D polar-orbiting
meteorological satellite, which has a higher temporal and spatial resolution than the MODIS
satellite, and can be utilized as a backup data source for global LST measurements. MERSI-
II is equipped with two thermal infrared (TIR) channels (bands 24 and 25), and provides a
spatial resolution of up to 250 m, which confirms the basic requirements for LST estimation.
Until now, a few studies have been published on LST retrieval from FY-3D MERSI-II
data [7–9]. The SW algorithm is categorized as a multi-channel algorithm because of its
superior accuracy when compared to in situ data; the algorithm is considered one of the
most mature methods for retrieving LST using TIR remote sensing, and it has a wide
application range [10,11]. LST products are generally generated for various satellite sensors
using various algorithms based on the intended research aims, and the retrieval of LST
utilizing TIR data has made significant development [12]. In this study, we introduced
the application potential of the recently listed Two-Factor Split Window (TFSW) algorithm
modified by Du et al. [7] for the MERSI-II instrument, to analyze the spatiotemporal
variation of LST and validation in Pakistan for the first time. The average mean absolute
error and R2 of the TFSW algorithm was 1.97 K and 0.98, respectively, retrieved from
MERSI-II data [7].

On a global scale, the mean temperature was 1.2 ± 0.1 ◦C and 1.39 ◦C (in Asia);
for 2020, this was above the 1850–1900 baseline data. Pakistan is highly vulnerable to
climate change [13,14]. The most prominent devastating consequences of climate change
are increases of floods, storms, droughts, and heatwaves [13]. The research study conducted
by Adnan et al. [15] for Pakistan shows a total change of a temperature warming trend
up to 0.2 ◦C since the beginning of the last century by incorporating a long-term time
series (1876–1993) using reconstructed temperature data. During 1901–2007, the overall
increase in the area-weighted mean temperature of Pakistan was 0.64 ◦C, and it has been
continuously rising at 0.06 ◦C per decade [16].

Until now, studies about LST monitoring at the country level are rare, and a few
studies have been published regarding LST monitoring at small regional scales such as
Mumtaz et al. [17], who examined the spatiotemporal changes in land use land cover
(LULC) and investigated its effects on LST using 20 years of data and a CA-Markov model
specially for the two urban cities. Arshad et al. [18] reported that the urban land cover of
Faisalabad city in Pakistan caused higher regional temperatures according to the result of
LULC changes. Similarly, Saleem et al. [19] considered the normalized difference vegetative
index (NDVI) as a primary factor of LULC change to identify the role of urban land cover
in the context of LST change for the cities of Lahore, Faisalabad, and Multan in Pakistan.
From the above literature, it has been observed that most studies have been related to
urbanization, and LULC and its contribution to the LST at city levels except for at the
country level.

As global LST has been rising, the LST can no longer be believed to be static. As
a result, the country requires a focus of LST monitoring to support various aspects of
climate change and environmental studies in the future. Hence, the objective of the study
is (i) the MERSI-II data that are available, which are important for LST; these (ii) data
are cross-validated with MODIS data and then (iii) applied to assess the spatiotemporal
analysis of LST during the years from 2018 to 2021 for different regions of Pakistan.

2. The Study Region and the Data
2.1. The Study Region

Pakistan is counted as an agricultural country with differential topography and cli-
matology. Figure 1 shows spatial distribution of landcover types, elevation and five sub-
regions of the country. According to the land utilization report generated by the Statistics
Bureau of Pakistan [20], an area of 34.15 million hectares (Mha) is cultivable/agricultural
land, while the rest of the 23.60 Mha area are not available for cultivation. Two-thirds of
the area in the country lies in an arid zone, which provokes slight climatic changes such as
an increase of floods, heatwaves, and droughts, etc. [13]. With regard to climate, during
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the winter season, the average temperature recorded is between 2 and 23 ◦C throughout
Northern Pakistan (Upper Indus Basin), while it is 14–20 ◦C in Southern Pakistan (Lower
Indus Basin) [21,22]. During the summer season, the average maximum temperature can
reach up to a range of 42–44 ◦C in the southern areas, whereas the northern areas can expe-
rience an average temperature of between 23 and 49 ◦C [21]. The total annual precipitation
varies from greater than 2000 mm in the north to less than 250 mm in the south [21,23].
Pakistan has two major precipitation systems that produce rainfall. The monsoon system
from the Bay of Bengal releases rain in the southeast and east from June, and continue until
September [24]. Western disturbances from December to March brought precipitation to
northern and western areas of Pakistan [24].
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Figure 1. Geographical location of the study region. (a) Land cover types in Pakistan during
2019, derived from the MODIS MCD12Q1 Version 6 data product. (b) Five homogeneous and
contiguous regions were developed, which are similar to the climatic regions developed by [13].
(c) Digital Elevation Model based on the ASTER 30 m Digital Elevation Model.

2.2. The FY-3D MERSI-II Data

FY-3D MERSI-II satellite data have very high potential usages for various research
fields. Climate change, water vapor estimation, numerical weather forecast, space weather
prediction, and ecosystem monitoring are just a few of the many applications for the FY-
3D MERSI-II satellite data [25]. The above-mentioned applications would benefit from a
method that accurately and quickly retrieves LST from the MERSI-II data (i.e., the TFSW
algorithm) [7]. Table 1 and Figure 2 compare the required bands of MERSI-II with the
corresponding ones of MODIS for LST estimation. MERSI-II is similar to MODIS in certain
ways, particularly in terms of wavelength frequency and band parameters. MERSI-II is a
modified version of the first-generation same track type satellite sensors in terms of data
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quality, band number, resolution, and other factors, in order to increase the detection range
for various application areas. According to the TFSW algorithm characteristics, Bands
24 and 25 of MERSI-II are selected for LST estimation. The spectral response function of the
MODIS (Band 31/32) and MERSI-II (Band 24/25) TIR bands are shown in Figure 2. From
Table 1 and Figure 2, it can be clearly observed that the TIR band range of MERSI-II and
MODIS is similar, and that the central wavelength is also similar to some extent. It is also
verified that the MODIS data can be used for validation purposes. This study uses FY-3D
MERSI-II Level-1B radiance data downloaded from the Fengyun Satellite Data Archiving
Portal (http://satellite.nsmc.org.cn) (accessed on 20 April 2022).

Table 1. FY-3D sensor characteristics that correspond to the MODIS TIR Bands are commonly used
for retrieving land surface temperature.

Instrument Country Launch
Time Sensor Channel Wavelength

(µm) Resolution

FY-3D China 2017 MERSI-II B24
B25

10.30–11.30
11.50–12.50 1000 m

MODIS USA 1999 Aqua B31
B32

10.78–11.28
11.77–12.27 1000 m
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2.3. The MODIS Data

Terra and Aqua are the sensors of the MODIS satellite, which collects data at a high
frequency of two observations per day, accessed from portal (https://lpdaac.usgs.gov/
products/mod11a1v061/) (accessed on 6 May 2022). Its LST products are among the most
mature methods, and have been evaluated in numerous previous studies [26–30]. As we
know, the MERSI-II was launched in recent years, and it provide data from 2018, which
is not enough to understand the spatiotemporal variations of LST in a broader way at
historical scales. Therefore, the MODIS 1 km LST products (MYD11A1 and MYD21A1)
were used in this study for two purposes, the first being to cross-validate the LST retrieved
from MERSI-II, and second, to evaluate the long-term LST trend for the period between
2005 and 2018. We chose observations from the Terra satellite that provide an estimate of
the daily maximum and minimum temperatures. The LST observations were monitored
carefully for visual interpretation to ensure that the average LST pixels were within the
acceptable quality range for accurate analysis.
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3. Materials and Methods
3.1. The TFSW Algorithm for LST Retrieval

The radiance is measured at the top of the atmosphere (TOA) in the TIR bands as
follows, using the radiative transfer theory, assuming a cloud-free atmosphere in thermo-
dynamic equilibrium [31]:

Bi(Ti) = εiBi(Ts)τi + R↑ atmi + (1 − εi)R↓ atmiτi (1)

where Bi is the Plank function, Ti is the brightness temperature (BT), εi is the emissivity,
Bi(Ts) is the radiance measured when the surface is a blackbody with a surface temperature
of Ts, τi is the total atmospheric transmittance (AT), R↑ atmi is the upwelling radiance, and
R↓ atmi is the downwelling radiance. The SW technique represents LST as a straightforward
linear or nonlinear combination of the TOA brightness temperatures of two adjacent bands
based on differential water vapor absorption in two neighboring TIR bands. This method
does not require real-time atmospheric profiles [32]. Due to its practicality and efficiency,
the SW algorithm is therefore frequently utilized in LST retrieval. The SW algorithm is
one of the most widely utilized delegate algorithms that has produced various satellite
LST products [33]. Wan [34] developed a more sophisticated generalized split window
approach for the MODIS Collection 6 LST product.

Qin et al. [35] developed a TFSW algorithm for LST retrieval from the NOAA-AVHRR
Bands 4 and 5, completely based on the mathematical derivation from the thermal radiance
transfer equation. The TFSW algorithm uses a series of linear combinations of two apparent
temperatures, the corresponding band-averaged emissivity, and transmittance, to estimate
the MERSI-II LST as follows:

Ts =A0 + A1T24 − A2T25 (2)

A0 = a24[D25(1 − C24 − D24)/(C24D25 − C25D24)] − a25[D24 (1 − C25 − D25)/(C24D25 − C25D24)] (3)

A1 = 1 + D24/(C24D25 − C25D24) + b24 [D25 (1 − C24 − D24)/(C24D25 − C25D24)] (4)

A2 = D24/(C24D25 − C25D24) + b25[D24 (1 − C25 − D25)/(C24D25 − C25D24)] (5)

C24 = ε24τ24 (6)

D24 = [1 − τ24] [1 + (1 − ε24) τ24] (7)

C25 = ε25τ25 (8)

D25= [1 − τ25] [1 + (1 − ε25) τ25] (9)

where Ts is the retrieved FY-3D MERSI-II LST (K), A0, A1, and A2 are the internal parameters,
Ti is the brightness temperature (BT) of the FY-3D MERSI-II TIR band i (i = 24 or 25), τi
is the AT for band i, εi is Land Surface Emissivity (LSE) for the band i, and ai, and bi are
the constants for the band i. The constants for the two FY-3D MERSI-II TIR bands are
determined as follows:

Li = Bi (T)/[∂Bi (T)/∂T] ≈ Bi (T)/{[Bi (T + ∆T) − Bi (T)]/∆T} (10)

where Li is the derivative of the Planck function Bi (T) with temperature T for the FY-3D
MERSI-II TIR band i, which could be approximated as [Bi (T + ∆T) − Bi (T)]/∆T for the
determination of the constants as follows:

Li = ai + biTi (11)

where ai and bi are the constants for the band i. It assumes Li with T from −50 ◦C to 50 ◦C
for the two FY-3D MERSI-II TIR bands, and then the constants are finally determined as
follows: a24 =−53.477, b24 = 0.3951; a25 =−57.087, and b25 = 0.4292. With these constants, it
is able to retrieve LST from the FY-3D MERSI-II TIR bands under the conditions where the
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two required parameters AT and LSE are estimated. This algorithm is just for the cloud-free
pixels’ LST estimation. Thus, the cloud detection product was used as the cloud mask layer
to filter clear-sky pixels.

The LST retrieval algorithm (Equation (2) requires three major parts: (1) radiation
calibration for the computation of brightness temperature, (2) water vapor content, and
(3) atmospheric transmittance based on water vapor. A more detailed description of these
parameters and its calculation methodology required for the improved TFSW algorithm
can be found in [7,25].

3.2. Calculation of the LSE for FY-3D MERSI-II

After the emissivity of bare soil εsi for the FY-3D MERSI-II TIR bands 24 and 25 were
calculated from the bare soil emissivity of the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) TIR bands 13 εs13 and 14 εs14, the land surface emissivity
εi of each FY-3D MERSI-II pixel could be further estimated with the mixed pixel emissivity
model, the FY-3D MERSI-II vegetation emissivity εvi, and the corresponding vegetation
cover fraction Pv had been calculated from the FY-3D MERSI-II NDVI data. According to
Du et al. [7] the emissivity for the FY-3D MERSI-II data can be calculated as follows:

εi = εvi Pv + εsi (1 − Pv) (12)

where εi is the LSE of the FY-3D MERSI-II data and εvi is the vegetation emissivity used
to estimate the LSE for FY-3D MERSI-II TIR bands 24 and 25, which has the value as
εv24 = 0.982 and εv25 = 0.984, respectively; εsi is the bare soil emissivity for LSE estimation.
The FY-3D MERSI-II multi-year average bare soil emissivity image could be obtained from
the ASTER (Global Emissivity Dataset) GED database’s mean emissivity to replace the bare
soil emissivity constant usually used in the VCM method; this can represent changes in
bare soil’s emissivity in space, enhancing the precision of emissivity inversion.

In terms of the following, LSE for a pixel can be simply understood as a weighted mix
of vegetation and bare soil emissivity [36], as follows:

εi = εvi Pv + εsi (1 − Pv) (13)

where εi is the emissivity, εsi and εvi represent the emissivity of bare soil and vegetation in
channel i, and Pv is the proportional of vegetation, which is calculated as follows:

Pv = [(NDVIa − NDVImin)/(NDVImax − NDVImin)] (14)

NDVImin represents the value of bare soil and NDVImax represents the value of vegetation.
The emissivity values of each surface type (i.e., bare soil and vegetated portion) were

traditionally determined using spectral library data, which is accurate for the vegetated
portion’s high and low-contrast emissivity. However, soil emissivity in the TIR bands
may vary significantly due to the various mineral components, soil moisture content, and
surface roughness. Therefore, it is necessary to estimate each pixel’s emissivity of the soil
type component. A detailed description can be found in the works of Wang et al. [37,38], to
utilize the ASTER GED Product for thermal bands.

3.3. Comparison

The correctness of the TFSW algorithm was tested using a number of statistical tech-
niques, including the Pearson correlation coefficient (R), the root mean square deviation
(RMSD), and bias. The equations for these statistical metrics are as follows:

R =
∑n

i=1(xi − x)(yi − y)√
∑(xi − x)2

√
∑(yi − y)2

(15)
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where xi are the estimated data, yi is the MODIS LST product from the ith time, x is the
overall average of the estimated data, y is the average of the MODIS data over the study
period, and R is the Pearson correlation. In this scenario, R is between minus and plus 1.

RMSD =

√
∑N

i=1(Estimatedi −MODISi)

N
(16)

Bias = ∑N
i=1(Estimatedi −MODISi)

N
(17)

where N represents the number of pixels. RMSD was performed to see how well the
particular variable correlation explained the observed variance. The difference between the
actual and estimated variables is referred to as bias.

3.4. Linear Analysis of LST Variation in Pakistan

Monthly, seasonal, and yearly data were processed from the daily data to identify
LST fluctuations in Pakistan. The following equation was used to calculate the mean
temperatures at various temporal scales:

LSTm =
∑N

i=1(Ti)

N
(18)

where LSTm represents the mean of the month, season, or year Ti satellite overpass times,
and N is the number of times. We comprehensively analyzed the spatial variation of LST
through the annual, seasonal, and monthly variation rates of LST, and focused on the
regions with an obvious variation trend from the 2018 to 2021 years’ data. In this study, the
spring (March to May), summer (June to August), autumn (September to November), and
winter (December to February) seasons were utilized to classify Pakistan’s seasons into
four categories. The linear monthly, seasonally, and yearly changes of temperature were
calculated as:

Change in LST = LST2018 − LST2021 (19)

3.5. Trend Analysis

The next step was to compute the spatiotemporal LST distribution after comparing
the data’s quality. An examination of the trends using statistics was then carried out.
Many statistical trend analysis techniques, including linear trend analysis, polynomial
trend analysis, harmonic trend analysis, and Mann–Kendall (MK) trend analysis, have
already been employed in related investigations [39]. In order to evaluate the statistical
significance of the trends and to precisely estimate the amplitude of the changes in LST,
the Sen’s slope estimator and the non-parametric MK methods were utilized in this study.
Numerous research projects have used the non-parametric MK test because it does not rely
on any assumptions about the distribution of the data or the linearity of the trend [40]. The
alternative hypothesis indicates that there is a monotonic decreasing or increasing trend,
whereas the null hypothesis in the calculation of this test asserts that there is no trend in
LST data over time. The equations to use the MK test are as follows:

S = ∑n−1
k=1 ∑n

j=k+1 sgn
(
Xj − Xk

)
(20)

sgn
(
Xj − Xk

)
=





1, i f Xj > Xk
0, i f Xj = Xk
−1, i f Xj < Xk

(21)

Var(Smk) =
n(n− 1)(2n + 5)−∑

q
p=1 tp

(
tp − 1

)(
2tp + 5

)

18
(22)
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Xj and Xk are two consecutive data values in an n-dimensional data set. The term “sgn”
represent sign function. For a normal distribution, E(S) = 0 with the variance, and the S
statistic behaves roughly the same. Here, q is the total number of affiliated groups in the
data set, and tp is the number of input values contained within the p-th affiliated group. By
utilizing above equations, Zmk is calculated as follows:

Zmk =





S−1√
Var(Smk)

, i f S > 0

0, i f S = 0
S+1√

Var(Smk)
, i f S < 0

(23)

A statistically reliable trend identification tool is Zmk. A Zmk positive sign indicates an
upward trend, while a Zmk negative sign indicates a downward trend. The null hypothesis
is rejected if the absolute value of Zmk > Z1/2, where Z1/2 is obtained from the normal
cumulative distribution tables.

The estimator of Sen [41], which is defined by Equations (24) and (25), was used to
calculate the real slope of an existing trend.

Qi =
Xj−Xk

j− k
f or all j > k (24)

There will be N = n (n − 1)/2 slope Qi estimations if the time series has n Xj values.
The median of these N values of Qi is Sen’s slope estimator which calculated as follows:

Qmed =

{
Q[ N+1

2 ], i f N is odd
1
2

(
Q[ N

2 ] + Q[ N+1
2 ]

)
, i f N is even

(25)

3.6. Procedure of the Study

Figure 3 shows the research procedure and technical methods, including the detailed
steps for retrieving LST from the MERSI-II data. The following are the steps that this
study takes as its main approach: We start by obtaining Level 1 radiance data from the
FY-3D satellite data portal. Second, we estimate the LST and its required parameters of
the TFSW algorithm. Third, we conducted a cross-validation analysis on the retrieved LST
to determine the algorithm’s applicability and usefulness. Finally, the application of the
algorithm was applied for the detailed spatial and temporal analyses of LST for Pakistan.
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4. Results
4.1. Cross-Validation between MERSI-II, and MYD11 and MYD21 MODIS LST Products

The validation of LST based on the measured data is a difficult task. Wan et al. [42] put
his extensive efforts toward correctly verifying the MODIS LST products with the measured
data. His findings reveal that the MODIS MYD11A1 LST product in the experimental area
are accurate to within 1 ◦C. Hence, for relative error analysis, we used the MYD11A1
and MYD21A1 LST products, and the MERSI-II-estimated LST data. The LST of two
different raster datasets (MYD11A1/MYD21A1 and MERSI-II) were extracted by using
the shapefiles of different sub-regions over the study area; the results of differences in LST
between the MERSI-II, and the MODIS MYD11A1 and MYD21A1 products are shown in
Figures 4 and 5.

It was observed that the RMSD between MERSI-II, MYD11A1 and MYD21A1 ranged
from 1.71 to 5.31 ◦C throughout the year, over the sub-regions of Pakistan. The highest
RMSDs were recorded in region IV in both the LST products, and they were the lowest in
region V, which was an average of annual record. Regarding bias, region II showed the
highest negative trend when compared to MYD11A1, and the highest positive trend of bias
were observed in region IV in a comparison of both products. The highest error in RMSE
was possibly due to various reasons, such as heterogeneous surfaces producing larger
errors due to uneven surface features. The LST retrieved from remote sensing data was
the instantaneous LST at the moment of sensor imaging. The imaging time of the original
images used for the retrieval of MERSI-II LST and MYD11AI and MYD21A1 LST differed,
and the sensor calibration accuracy also differed. Thus, the LST results of the same area
slightly differed due to retrieval using different remote sensing data sources.
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The LST distributions in all datasets were almost same under clear sky conditions (as
shown in Figure 5), with only minor deviations being observed in MERSI-II, possibly the
stripe noise problem of the sensor. According to the latitudinal profile, it can observed that
the LST of MERSI-II was close the MYD11A1 LST product as compared to the MYD21A1,
and the overall RMSD errors were also smaller when compared with the MYD11A1 product.
However, the image acquisition times of both sensors were similar to some extent, but not
identical, and the MODIS LST product itself contained some minor errors when compared
to the ground data. In this regard, when we compared MERSI-II’s retrieved LST with the
MODIS LSTs products, the results are merely a spatial analysis of the LSTs, and relative
errors are not perfectly precise.

4.2. Spatial Distribution of the Annual Mean LST

The spatial distribution of the annual mean LSTs of Pakistan is almost the same
in 2018 and 2021; small variations were observed, as the time span (i.e., 4 years) is not
very long. The annual mean LST of Pakistan ranged between −15 and 55 ◦C (Figure 6).
A bar chart was developed to demonstrate the linear change of the annual mean LST
between 2018 and 2021 over the sub-regions of the study area, and differential variations
in pixel scale between two raster datasets were performed to validate substantial upward
or downward variations. It was observed from the annual mean LST that 2018 was the
coldest year (33.63 ◦C), while 2021 was the warmest (34.42 ◦C). The temperature difference
between the coldest and warmest years was about 0.79 ◦C.

When the geographical characteristics of the location are considered, it was discovered
that the low elevation increased thermal insulation, resulting in a greater LST. In terms of
geographical cover, Pakistan’s greatest desert, Thar, is located around the Indian border in
the southeast. The desert covers an area of 175,000 square kilometers, including significant
regions of Pakistan and India. It is Pakistan’s largest desert, and Asia’s only subtropical
desert that absorbs sun radiation. During the analysis of the spatial distribution of annual
mean LST throughout the sub-regions, the region II exhibits the highest annual mean LST,
varying between 41 and 42 ◦C. The same scenario was observed in region I. Due to various
geographical surface features, region III is slightly different, with a mean LST of 36 ◦C.
Region IV is the transitional zone between the temperate and severe climate zones; the
annual mean LST of this region is around 31 ◦C, but it varies greatly across the landscape.
The lowest LST values were discovered in region V, which were decreased by up to −22 ◦C;
however, in the southern parts of this region, the temperature was increased up to 39 ◦C.
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Figure 6. Spatial distribution of annual mean LST in Pakistan. (a–d) Mean LSTs of 2018, 2019,
2020, and 2021. (e) LST difference between 2018 and 2021 on spatial scales. (f) Bar chart for mean LST
difference for sub-regions of Pakistan.

We calculated the linear mean LST difference by subtracting the data values from two
raster datasets. The warming and cooling of the LST trend were shown by positive and
negative values. Figure 6e depicts the results after subtracting the initial and final raster
data values at the pixel scale, while Figure 6f depicts the mean annual difference. Northern
Pakistan is cooled more than Southern Pakistan, resulting in the highest cooling effect in
the north and a moderate cooling effect in the south. However, many locations of region IV
have an LST difference of less than 0 ◦C, which is primarily cooling. The largest warming
trend (0.68 ◦C) was identified in region I, whereas the minimum warming trend (0.32 ◦C)
was recorded in region IV. The explanation for the cooling trend in region V is unknown,
possibly due to the missing data of thin clouds. The warming tendencies in regions I and II,
on the other hand, are due to changes in their geographical land cover types.

4.3. Trend Analysis of the Annual Mean LST

The MK trend test results (Table 2) of LST for the Pakistan showed positive and
negative trends during the time span of 2018 to 2021. In this section, the positive values
represent increasing, and the negative values represent decreasing trends in the regions,
the p-value decides the level of significance, and the slope indicates the magnitude of LST.
The highest increasing trend (0.019 ◦C/year) at a 10% level of significance was observed
in region V. The other regions also showed increasing trends, but these were insignificant.
The lowest decreasing trend was observed in region I at a 5% level of significance, with a
magnitude of −0.013 ◦C/year, which was lowest among the other regions. However, as
evidenced from the minimum and maximum values of Table 2 and Figure 7, there are lot
of areas that experience significant increasing and decreasing trends, but these are very
small in area. Figure 7 shows the spatial distribution of the MK parameters. The most
important significant trends can be observed from Figure 7d, which shows increasing
trends in the northern areas and decreasing in the southern areas. The slope of the LST per
year throughout the study region ranged between −0.013 and 0.019 ◦C/Year.
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Table 2. MK trend test (Z) statistics, Sen’s slope, and p value for the LST trends analysis.

Region
MK Z-Score Slope

(◦C/Year)
p-Value

Min Max Mean

I −4.97 3.57 −1.86 ** −0.013 0.05

II −3.97 3.14 0.23 0.003 0.63

III −3.28 3.58 0.23 0.003 0.61

IV −3.39 3.51 0.07 0.001 0.71

V −2.25 3.96 2.10 * 0.019 0.10
Note: Where “*” and “**” indicate the significance of the test at 5% and 10% levels of significance.
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4.4. Spatial Distribution of Seasonal LST and Trend Analysis

The spatial distribution of the seasonal mean LST rises with decreasing latitude, similar
to the yearly mean LST, with low values in the northern and high values in the southern
regions of the country. However, there are differences between each seasonal dataset.
Because the Earth’s axis is tilted relative to the orbital plane, the solar elevation angle
fluctuates throughout the year, making winter cold and summer hot. To further reveal the
LST changes, seasonal means were processed from the daily averages of the LST data to
calculate the trend analysis through the MK test, along with the slope (Table 3). Based on
the classification of the four seasons throughout the study region, seasonal variation has an
important effect on LST across Pakistan.
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Table 3. The mean LST difference along with standard deviation at seasonal scales.

Season Region Z-Score Slope (◦C) p-Value

Spring

I 0.93 0.03 0.40

II −0.14 −0.01 0.52

III −0.71 −0.03 0.44

IV −0.19 −0.01 0.70

V −0.95 −0.06 0.30

Summer

I 1.22 0.04 0.32

II 2.46 ** 0.07 0.05

III 2.31 *** 0.07 0.1

IV 2.22 ** 0.08 0.05

V 3.00 * 0.20 0.01

Autumn

I −1.06 ** −0.08 0.05

II 0.42 0.02 0.61

III 0.84 0.04 0.43

IV 0.84 0.03 0.44

V 1.93 * 0.15 0.10

Winter

I 1.54 0.11 0.18

II 1.42 0.12 0.20

III 2.03 ** 0.17 0.05

IV 1.95 *** 0.13 0.10

V 1.88 *** 0.20 0.10
Note: Where “*”, “**” and “***” indicate significance of the test at 1%, 5%, and 10% levels of significance.

The results of the spatial–temporal changes of LST over different seasons are given in
Figure 8. The overall mean of the seasonal LST varies from −26 to 60 ◦C throughout Pak-
istan. During the overall seasons, the highest LSTs were observed in region II, particularly
in the summer season, which reached up to 50.86 ◦C, which is the highest among the other
regions and seasons. This result can be attributable to the fact that the annual rainfall is
below average. Furthermore, barren ground, which is more susceptible to LST changes
than vegetation-covered land, could be another factor for the rise in LST. Similarly, the
lowest LST were observed in region V in all seasons, especially in the winter season, where
the mean LSTs of this region were decreased up to −9.7 ◦C; there are some places that
contain higher LSTs, especially in the southern parts of that region. During the autumn and
spring seasons, similar trends were observed, followed by winter and summer, especially
in regions II and V. The mean LSTs of the spring and autumn season reached up to 42 and
46 ◦C, respectively, in region II.

The results of the trend analysis and Sen’s slope at seasonal scales were presented in
Table 3. The highest increasing trend (0.20 ◦C) at a 1% level of significance (p < 0.01) was
observed in region V during the summer season; there were also increasing events in other
seasons, except for the spring season. Another warming event was observed in region II
during the summer season. Contrary, the highest cooling trend was observed in region
I during the autumn season (−0.08 ◦C) which is highest among all seasons and regions.
The factors attributed to this cooling trend could be the Khirthar mountainous regions,
which cover an area of about 9000 square kilometers, with the highest peak of 2260 m.
Due the high altitude, the LST of this region does not significantly increase in 2018 and
2021. When we investigate the low altitude/flat surfaces, the only region IV is a region
where the change rate of LST significantly increases significantly in the summer seasons
throughout the season, and the highest heating trend has a magnitude of 0.08 ◦C.
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4.5. Monthly Average Change Analysis

Figures 9 and 10 provide the overall monthly LST spatial distribution and the differ-
ence of LST between 2018 and 2021. The spatial variation of LST can easily determined
using the monthly datasets of FY-3D MERSI-II data, and the LSTs were gradually increased
from January, reached their peak in June to August, and then they declined throughout
Pakistan. The highest mean LSTs during 2018 and 2021 were recorded in June (43.6 ◦C),
and the lowest in January (14.3 ◦C). In terms of sub-regions, the monthly LST variations
were followed by annual and seasonal trends. Throughout the monthly analysis, region II
contained the highest LST and region V, the lowest; these highest and lowest LST values
possibly differed due to the latitudinal change and the geographical land cover types. Ac-
cording to Figure 10, a warming trend were observed in region II throughout the monthly
results except for the January (−0.93) and December (−0.83) months, which resulted in
that the LSTs in 2021 were higher than 2018. However, region V does not follow decreasing
or increasing trends; there are many cooling and warming trends observed because of the
surface heterogeneity and snow cover. Regarding region IV, there are some events in the
monthly analysis that follow the cooling trends compared to the 2018 and 2021, but they are
not a priority for discussion. The monthly change analysis was calculated by subtracting
the monthly rasters between 2018 and 2021. The MK trends analysis was never applied
over a monthly basis due to the limited availability of temporal data.
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Figure 10. The monthly mean variations of LST over different sub-regions of Pakistan during
2018 to 2021.

4.6. Long-Term Interannual Variations of LST

Long-term interannual variations of LST are crucial for the investigation of the LST
warming and cooling trends. From the above analyses, we observed that the FY-3D MERSI-
II data and the TFSW algorithm performed well for understanding the LST variations
throughout Pakistan in 2018 and 2021; the validations results also supported their use-
fulness. However, the FY-3D MERSI-II is a recently launched satellite; to understand the
spatial–temporal variations of LSTs to a broad extent requires the crucial contribution of
historical data (i.e., over 10 years). The MODIS MYD11A1 product is fully mature and is a
widely used LST product at global scales. To understand the interannual LST variations in
Pakistan, we used MODIS LST data from 2005 to 2018.

The long-term spatial patterns of LST (2005 and 2018) are like the above mentioned
annual mean LST trends of MERSI-II. The long-term annual mean LST varies from −29 to
55 ◦C across Pakistan (Figure 11). The spatial–temporal variation between 14 annual LST
raster datasets were performed to demonstrate the change that occurred in Pakistan through
MK trend analysis and Sen’s slope estimator, and a line chart was introduced to show a
mean LST and histogram for an individual year. Figure 11 shows how the mean annual LST
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(◦C) varied across the country over this time. The coldest year (34.16 ◦C) was 2012, and the
warmest year (35.53 ◦C) was 2016. The coldest and warmest years were separated by about
1.37 ◦C. Similar to the MERSI-II annual mean LST, with increasing latitude, the MODIS
annual LST likewise decreased; it had low values in the northern areas and high values
in the southern areas. The MODIS annual LST also decreased with increasing latitude:
it had low values in the northern regions and high values in the southern regions. The
LST trend for every year (from 2005 to 2018) followed this increasing and decreasing trend
throughout Pakistan.
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Figure 11. The spatial distribution of the mean LSTs and trend variables. (a) Annual LST in 2005,
(b) annual LST in 2018, (c,d) significant increase and decrease along with Sen’s slope from 2005 to 2018.

The MK trend results show almost similar trends, as we have seen for MERSI-II, but
the slopes per year of the annual mean LST are very small, as displayed in Figure 11c,d.
The slopes were found to be between −0.01 and 0.01 ◦C/year throughout Pakistan. In
regions II and V, there was a considerable increasing tendency at a 5% level of significance,
with a slope of 0.0046 and 0.0047 ◦C/year. Region I exhibited a considerable decreasing
trend of roughly −0.0024 ◦C/year. The various increasing and decreasing trends in other
regions of the study are insignificant. The results of the long-term interannual variations of
MODIS are consistent with an annual mean LST of the FY-3D MERSI-II data. The positive
slope and the positive correlation of the LSTs in regions I and II are directly related to their
geographical land cover types, which have already been discussed in the above sections.

The greatest interannual differences were found in regions I, II, and V. In contrast, there
was less interannual variability in region IV. The greatest interannual disparities may be due
to changes in the surfaces’ vegetation cover. This is because the thermal characteristics of
the Earth’s surfaces with high vegetation cover differ from those of the Earth’s surface with
low vegetation cover. The increase in vegetation cover helps to increase the soil moisture
content, which helps to prevent soil erosion and desertification. Surface temperatures in
the equatorial and temperate regions are often higher in areas with low vegetation cover
than in areas with high vegetation cover.

Furthermore, Figure 12 shows the mean LST of individual year and histogram of
years between 2005 and 2018, and it was observed that the LST trend was almost same,
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with small deviations throughout the years. The country’s maximum areas of LST were
approximately 28 to 50 ◦C.
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5. Discussion

The TFSW algorithm’s accuracy and adaptability were evaluated by comparing the
LSTs of MERSI-II with MYD11A1 and MYD21A1 LST over various study regions. The
LST difference ranged between 1.74 and 5.2 ◦C over the different regions of Pakistan. The
MERSI-II LST performs well with the MODIS MYD11A1 LST product; the error range
was between 1.94 and 4.27 ◦C, which is slightly higher but close to the several published
studies [7,12,43,44]. The regions that experience the highest LST difference could possibly
be due to the surface types, and the presence of humidity produces larger uncertainties [44].
Regarding the LST distribution, the highest LSTs were observed in the southern areas,
and the lowest in the northern areas. The amount of solar radiation energy received by
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the ground decreases as latitude increases. As a result, the annual mean LST distribution
pattern is characterized by high values in the southern regions and low values in the
northern parts. There are, however, some locations that do not follow this trend. Because
the areas where the Indus River flows, particularly in the country’s central lower latitudes,
are largely productive, resulting in moderate heat preservation on the ground, it has a
lower annual mean LST than its nearby places. The great mountainous region occurred
in northern areas, which is Pakistan’s greatest altitude region, with an average elevation
of above 5000 m. Because the location is at a high elevation, the air near the surface is
thin, resulting in poor heat retention on the ground and a lower annual mean LST than
in other parts of the country. According to the MK trend analysis, the highest warming
impacts (0.019 ◦C/Year) were noted in the northern areas, with a high level of significance.
This scenario was also observed in seasonal trends as well as long-term analysis trends.
The reasons for this increasing are possibly the impacts of global warming and climate
change [45]. By taking into account meteorological data from two sites, Ali et al. [46] looked
into changes in temperature in the Upper Indus Basin. In line with this investigation, they
observed that the mean temperature increased by 0.63 ◦C in Skardu, whereas it recently
declined by 0.137 ◦C in Gilgit. The source of the decreasing trends in southern region I is
unknown. There are strong increasing trends through seasonal and monthly analyses in
regions I and II. The lack of rain and growing drought have had a substantial impact on
the temperature fluctuations of Southern Pakistan. The hottest temperatures have had a
significant detrimental influence on Pakistan’s primary crops, such as wheat and cotton.
Early in the spring season, a minor heat wave (13 days over the usual 2–3 ◦C temperatures)
resulted in a 28 percent decline in wheat grain yield.

When evaluating the results, it is important to take into account the limitations of
the current study. The remote sensing data are not enough to obtain precise LST trends.
However, the various factors that affect LSTs are still not considered in this study, such as
elevation, land cover types, and water vapor; even the NDVI has a considerable influence
on LSTs [47]. To ensure the reliability of the results, future studies should employ LST data,
including elevation, land cover types, water vapor, etc.

6. Conclusions

During MERSI-II’s operation in orbit, China’s satellite remote sensing observation
capabilities were increasing. This sensor is the first imaging instrument in the world that
can acquire thermal infrared data with a spatial resolution of 250 m and 1000 m. The MERSI-
II data can be used to precisely recover the land surface temperature using the recently
developed TFSW algorithm. The Moderate Spectral Resolution Atmospheric Transmittance
Model simulation dataset served as the source for the SW algorithm coefficients (MOD-
TRAN). In a comparison of the retrieved LST and the MODIS MYD11A1 and MYD21A1
LST product, it was found that the MERSI-II LST is more reliable and achieves a better
accuracy in a comparison with MYD11A1.

In order to study the spatiotemporal changes in LSTs, the FY-3D MERSI-II LST data
have never before been employed in Pakistan on this scale. MK trend analysis and Sen’s
slope estimator were applied to identify significant changes. Due to the limited availability
of the MERSI-II data (i.e., 4 years), the MODIS MYD11AI product was utilized to understand
the interannual variations of LSTs in Pakistan. Considering both satellites, these conclusions
were noticed: (1) The annual mean LST in Pakistan often follows a pattern with high values
in the southern parts and low values in the northern regions, which is consistent with the
rule that solar radiation intensity decreases with increasing latitude. However, the spatial
distribution of LST is also influenced by elevation and the types of land cover. (2) The
spatial distribution of the annual mean LST was almost similar during the study period.
The trend analysis shows that the northern areas (region v) have increasing LST trends. The
LST changed on average by 0.019 ◦C/year, increasing in the northern parts and decreasing
by 0.013 ◦C/Year in the southern regions. With regard to the sub-regions, a maximum LST
were observed in region II, and a greater warming trend were also observed in this region,
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with a rapidly increasing rate of 0.0046 ◦C/year when utilizing long-term data, with the
p-value also being consistent with the slope.

Due to the influence of the stripe noise in the MERSI-II TIR pictures, the validation
of the recovered LST utilized may be a little inaccurate in comparison. Even yet, some
in-depth and in situ confirmations are still needed. In order to fully utilize the MERSI-II
TIR photos, further work should concentrate on stripe noise removal, as well as confir-
mation with ground-based stations, particularly in the American regions. Additionally,
LST variations are crucial elements that affect and that restrain climate change in various
ways. Governmental institutions and groups that are concerned with the environment
must therefore pay close attention to changes in the LST, in order to define climate change.
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Abstract: The tropical Rainfall Measuring Mission TRMM 3B42 V7 product and its successor,
the Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM IMERG high-
resolution product GPM IMERG V5, have been validated against rain gauges precipitation in an arid
mountainous basin where ground-based observations of precipitation are sparse, or spatially undis-
tributed. This paper aims to evaluate hydro-statically the performances of the TRMM 3B42 V7 and
GPM IMERG V05 satellite precipitations products SPPs, at multiple temporal scales, from 2014 to
2017. SPPs are compared with the gauge station and show good results for both statistical and
contingency metrics with notable values R > 0.94. Moreover, the rainfall-runoff events implemented
on the hydrological model were performed at 3-hourly time steps and showed satisfactory results
based on the obtained Nash–Sutcliffe criteria ranging from 94.50% to 57.50%, and from 89.3% to
51.2%, respectively. The TRMM product tends to underestimate and not capture extreme precipita-
tion events. In contrast, the GPM product can identify the variability of precipitation at small time
steps, although a slight underestimation in the detection of extreme events can be corrected during
the validation steps. The proposed method is an interesting approach for solving the problem of
insufficient observed data in the Mediterranean regions.

Keywords: TRMM 3B42 V7; GPM IMERG V5; rain gauge; Mediterranean climate; hydrological modeling

1. Introduction

Precipitation is a major force in global climate change and plays a vital role in hy-
drological and meteorological applications [1]. As a significant phenomenon in nature,
precipitation has complex characteristics of spatiotemporal variations. It is one of the
critical components of the global exchange of the surface material, the hydrological cycle,
and disaster prevention [2,3].

The variability of precipitation in mountainous areas directly affects local agriculture
and the ecological environment [4,5]. Moreover, the heavy precipitation events that oc-
curred in mountainous areas frequently generate flash floods [6]. Therefore, the acquisition
of reliable precipitation information in mountainous areas is of great significance to social
and economic development and related scientific research [7]. Rain gauge observation
could provide a moderately accurate method for a point-based precipitation measurement.
However, rain gauges in mountainous regions are often scarce, irregular, and sometimes
unavailable [4,8]. Thus, in the applications that need high spatiotemporal resolution pre-
cipitation data, such as flood disaster forecasts, gauge data are regularly insufficient [9,10].
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Contrary to rain gauge precipitations, satellite remote sensing has the advantages of thor-
oughly scanning the entire study region and convenient access to the data [11], providing
an alternate way to monitor precipitation at regional and global scales [12,13].

In recent decades, a series of high spatiotemporal resolutions satellite precipitation
products (SPPs), have been produced with the development of various space-borne and
related satellite-based precipitation retrieval algorithms, such as Artificial Neural Networks
(PERSIANN) [14], National Oceanic and the Atmospheric Administration/Climate Predic-
tion Center (NOAA/CPC) morphing technique (CMORPH) [15,16], as well as the Climate
Hazards Group InfraRed Precipitation with Station data (CHIRPS) [17], the Tropical Rain-
fall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) [18], and the
Integrated Multi-satellitE Retrievals for (GPM) mission (IMERG) [19].

Compared to these satellite precipitation products, the TRMM 3B42V7 precipitation
product performance is higher than other products, especially in estimating extreme precipi-
tation events in several areas worldwide [20,21]. TRMM was launched in November 1997 by
the National Aeronautics and Space Administration (NASA) with the Japanese Aerospace
Exploration Agency (JAXA) collaboration. The TRMM Version-7 offers quasi-global cover-
age (50◦ N–50◦ S) precipitation estimates at a high spatial resolution of (0.25◦ × 0.25◦) and
temporal resolution of 3 h [18].

Given the excellent successes of the TRMM, the GPM Core Observatory satellite was
set in motion by NASA and JXAX as a successor of TRMM in February 2014. Compared
with TRMM, the potential of GPM to detect liquid and solid precipitation is improved by
carrying a space-borne dual-frequency precipitation radar [22]. Additionally, the GPM Core
Observatory carrying a conical scanning multichannel microwave imager offers a wider
measurement range [19]. The lately released IMERG further expands quasi-global coverage
from (50◦ N–50◦ S) to (60◦ N–60◦ S) and provides precipitation estimates with a more
satisfactory spatial resolution of (0.1◦ × 0.1◦) and temporal resolution of 30 min [23].

Since the deliverance of IMERG products, many studies have been conducted to eval-
uate and compare the performance of TMPA and IMERG products regarding rain gauges
observations in many regions, such as the USA [24], Brazil [25], Japan [26], China [27],
South Korea [28], Malaysia [29], Pakistan [30], South America [31], Cyprus [32], Egypt [33],
and Morocco [34,35]. However, most of these studies indicate that (IMERGV5) had greater
performance in the characterization of precipitation variability and precipitation detection
aptitude, with only slight improvements compared to TMPA products.

This study evaluated statistically and hydrologically the precipitation estimates of the
(3B42 V7) and (IMERG V05) satellites regarding ground-based precipitation monitoring
over the Zat Mountain semi-arid watershed located in the Moroccan High Atlas. The
purpose of this study is to solve a major problem due to the unavailability of precipitation
measurement stations, which leads to a considerable lack of data, and therefore difficulties
to work on scientific aspects such as flood forecasting and water management. The aims of
this paper are (1) to evaluate and statistically compare the performance of the precipitation
products (3B42 V7) and (IMERG V05) at several temporal scales in the Zat basin, and (2) to
assess the precipitation detection capability of the satellite sensors (3B42 V7) and (IMERG
V05), and (3) to be able to evaluate the ability of the SPPSs to reproduce rainfall events and
to demonstrate their ability to provide meaningful information in hydrological modeling
and flood forecasting.

2. Materials and Methods
2.1. Study Area

The Tensift basin is considered one of the main basins of Morocco, covering an area of
20,450 km2 around Marrakech city, from the High Atlas Mountains to the Atlantic coast.
This watershed is characterized by a semi-arid climate expressed by low rainfall, and high
evaporation. Most of the Tensift flow comes from its five main tributaries, which have their
source on the northern slopes of the High Atlas, which includes the Zat basin.
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Zat watershed is a sub-basin of the Tensift catchment, and is also an Atlas tributary
located on the left bank of the Tensift river and situated in the Moroccan High Atlas
Mountains (Mount Toubkal, the highest mountain in North Africa) in the South EST of
Marrakech city. Geographically, the sub-basin is located between latitude 31◦30′ and 31◦45′

North and longitude 7◦30′ and 7◦45′ West. It is drained by the Zat River, which measures
89 km, often has very steep slopes with an average of 19%, and covers a total area of about
520 km2 (Figure 1). The hypsometry of the catchment varies from 3777 m (above sea level)
upstream to the Taferiat station where the outlet is at an altitude of 756 m [36].
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Figure 1. The geographical location of the Zat basin and rain gauge station used in the study.

This sub-basin is characterized by a Mediterranean climate strongly influenced by
altitude. The Taferiat hydrometric station controls the discharge of the Zat basin, and also
serves as a rain gauge. It receives an annual rainfall average of 523 mm/year; precipitation
is mainly concentrated during the rainy period from October to April and a hot and dry
period from May to September. Therefore, this study region is subject to frequent flash
floods and droughts [36].

2.2. Dem

The terrain pre-processing started with the reconditioning of the Digital Elevation
Model (DEM). The DEM tiles of resolution is approximately 30 m. It was downloaded from
the United States Geological Survey (USGS). This DEM was clipped along the border of the
basin using the polygon shapefile of the county downloaded from ESRI (Figure 1).

2.3. Rain Gauge Data

Rain gauge measurements are 10-min time scales precipitation data, collected from
the only meteorological station of this basin shown in (Figure 1) located at the outlet of
Zat basin, covering a period from 2014 to 2017. Data sets were provided by the Tensift
Hydraulic Basin Agency. These data were used as a benchmark for evaluating TRMM
3B42 V7 and GPM IMERG V05 SPPs. All that was provided by this station were subject
to strict quality control such as climate limit value inspection, and station extreme value
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inspection [37]. In addition, the daily, monthly, and yearly precipitation values were
accumulated from 10-min observations.

2.4. Satellite Precipitation Data

This study evaluated two different satellite precipitation products SPPs, the TRMM
3B42 V7, and the GPM IMERG V05 compared to the gauge station at different time scales,
from 1 September 2014 to 31 August 2017, in order to assess their reliability, and define
their capabilities.

The period was chosen according to the available precipitation and discharge data.
The Taferiat station was installed in 2012, and the available flow data extends to 2017 only.
This limited the temporal interval of the study. Moreover, the GPM satellite was launched
in 2014, which explains the choice of the beginning year of the data series.

2.4.1. TRMM 3B42 V7

The TRMM 3B42 V7 precipitation products were generated by using the TRMM
3B42 Version 7 algorithm [18]. It was designed to combine various microwaves MW, and
infrared IR satellite-based precipitation estimates with gauge adjustments observations to
provide 3-hourly quasi-global quantitative precipitation estimates. The 3B42 V7 product
was derived by bias adjusting the near-real-time product with the GPCC monthly gauge-
analysis precipitation data set, and it has a two-month latency [1]. The product can produce
rational precipitation estimates in a 0.25◦ spatial resolution with a quasi-global coverage
(50◦ S–50◦ N). In this study, the TRMM 3B42 V7 daily precipitation product was acquired
from the Precipitation Measurement Mission (PMM) website (https://giovanni.gsfc.nasa.
gov/giovanni/ (accessed on 16 May 2022)).

2.4.2. GPM IMERG V5

The GPM project is the result of a collaboration between (NASA) and (JAXA). The GPM
satellite carries two primary sensors: the multi-channel GPM Microwave Imager (GMI), and
the Dual-frequency Precipitation Radar (DPR). This product is expected to provide the next-
generation global observations of rain and snow and improve weather and precipitation
forecasts through the assimilation of instantaneous precipitation information [26]. The
IMERG V05 uses the Goddard Profiling Algorithm to retrieve precipitation estimates
from the GPM constellation using various precipitation-relevant satellite PMW sensors.
Thereafter, the precipitation estimates are gridded and inter-calibrated into the GPM
combined instrument product, further interpolated, and re-calibrated by the CPC Morphing-
Kalman Filter Lagrangian time interpolation and the PERSIAN-Cloud Classification System
recalibration schemes. IMERG is the Level 3 precipitation estimation algorithm of GPM,
which provides three different daily IMERG products, which include IMERG Day 1 Early
Run (near-real-time with a latency of 6 h), IMERG Day 1 Late Run (reprocessed near-real-
time with a latency of 18 h) and IMERG Day 1 Final Run (gauged-adjusted with a latency
of four months) products [38]. In this study, we evaluated the latest released GPM IMERG
Version 5 (IMERG V5), the dataset produced at NASA Goddard Earth Sciences (GES). The
IMERG precipitation products have a relatively finer spatial 0.1◦ spatial resolution with
spatial coverage from 60◦ S to 60◦ N and temporal (half-hourly) resolution. The daily
precipitation data were accumulated to obtain monthly and annual precipitation. The
GPM (IMERG V05 final run) precipitation data were downloaded from the PMM website
(https://giovanni.gsfc.nasa.gov/giovanni/ accessed on 20 May 2022)).

2.5. Statistical Evaluation of Satellite Precipitation Products

Different methods were used to compare the 3B42 V7 and IMERG V05 products with
the gauge precipitation data from the Taferiat station, depending on temporal evolution
by considering (sub-hourly, daily, monthly, and yearly) time steps. However, both studied
satellite products have different spatial and temporal resolutions of (0.25◦/3 h 3B42 V7 and
(0.1◦/30 min for IMERG V05), respectively, while the rain gauge station is located at the
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basin outlet and provides 10-min precipitation measurements of precipitation and runoff.
For a reliable comparison, the used method is to plot the point precipitation data from
the gauges to the same grid scale as the SPPs, either by spatial interpolation or simply by
calculating the average. In addition, ref. [39] pointed out that the interpolation can lead to
uncertainties due to systematic errors of the gauge density. Therefore, in our case, a direct
comparison was used, extracting the numerical data from the SPPs and measuring the
precipitation, adjusting them simultaneously to compare them to each other.

Furthermore, to evaluate the ability of the SPPs to estimate extreme rainfall events,
it was decided to use them as input data in the HEC-HMS hydrological model. Indeed,
the rainfall measurement station is not precise and poorly distributed spatially, especially
in the mountainous regions of the High Atlas, which is a real issue for research work on
hydrological modeling and flood forecasting. Consequently, it is important to evaluate
the rainfall estimated by the satellites to demonstrate their ability to provide significant
information and to approve their use as an alternative source of rainfall measurement data,
especially during extreme precipitation events.

2.5.1. Continuous Statistical Indices

The assessment and comparison of the SPPs was conducted on the basis of the overall
assessment (continuous statistical measures) and the precipitation detection capability
(categorical statistical measures).

In addition, the capability of the SPPs to measure different precipitation intensity
classes and flood periods was evaluated as well (Table 1). Four statistical measures were
selected: correlation coefficient (CC), root mean square error (RMSE), and bias (bias), which
were calculated to statistically evaluate the two PPS products.

Table 1. Statistical metrics for evaluating IMERG V5 and 3B42 V7 products.

Statistical Index Units Reference Values Equation Reference

Correlation Coefficient (CC) Ratio 1 CC =
∑N

i=1(Pi−P)(Si−S)√
∑N

i=1(Pi−P)
2

∑n
i=1(Si−S)2

[40]Root Mean Square Error (RMSE) mm 0 RMSE =

√
∑N

i=1(Pi−Si)2

N
Bias mm 0 Bias = ∑N

i=1(Pi−Si)
∑N

i=1 N

Probability of Detection (POD) Ratio 1 POD = a
a+c

[41]
False Alarm Ratio (FAR) Ratio 0 FAR = b

a+b
Critical Success Index (CSI) Ratio 1 CSI = a

a+b+c
Frequency Bias Index (FBI) Ratio 1 FBI = a+b

a+c

Where N represents the number of samples; Si and S are gauge observations and their
average; Pi and P represent satellite estimates and their average, respectively.

Additionally, a denotes the number of rainfall events that were observed and detected;
c, is the number of rainfall events that failed to be detected by the satellite; b, denotes the
number of rainfall events detected by the satellite that did not occur; the threshold for
identifying a precipitation event is 0.2 mm/day.

2.5.2. Categorical Statistical Indices

To evaluate the precipitation detection capability of IMERG V05 and 3B42 V7 products,
four categorical statistical indices were calculated to assess the ability of PPSs. The most
common measures, counting Probability of Detection (POD), False Alarm Ratio (FAR),
Critical Success Index (CSI), and Frequency Bias Index (FBI) are used in this study. The
values of all categorical statistical measures are between 0 and 1.

The POD indicated the ratio of the number of precipitation events correctly detected
by satellites among all real precipitation events. The FAR is the ratio of false alarming
precipitation events to the total number of detected precipitation events. The FBI repre-
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sents the fraction of falsely detected precipitation events (false alarm) compared to the
total number of detected precipitation events, and indicates whether the dataset tends to
overestimate (FBI > 1) or underestimate (FBI < 1) precipitation events. The CSI reported
the number of correct predictions of a rain event divided by the total number of successes,
false alarms, and failures.

2.6. Hydrological Model

The Hydrologic Engineering Centre’s Hydrologic Modeling System (HEC-HMS) is
designed to simulate the rainfall-runoff processes of dendritic watershed systems. It is a de-
terministic, semi-distributed, event-based/continuous, mathematically-based (conceptual)
model. It is able to model in a wide variety of geographical regions and different climatic
contexts, such as arid and semi-arid mountainous climates, several studies having been
carried out in the Tensift region. The HEC-HMS model was chosen mainly because it was
previously validated in the same study area, and because it provided good and realistic
results [36,42,43] in order to assess the applicability of the model in such an environment,
using different approaches (event-based and continuous modeling).

The HEC-HMS model consists of four components: the basin model, the meteoro-
logical model, the control specifications, and the input data. The basin model provides
information about the physical properties of the model, such as basin areas and stream
reach connectivity. Similarly, the meteorological model includes information related to pre-
cipitation data. The control specification section contains information related to the timing
of the model, the timing of a storm event, and the type of time interval (second, minute,
hour, or day) that is required to be used in the model. Finally, the input data component
contains the parameters or boundary conditions for the basin and weather models. The
main input data used for this study are satellite and in situ precipitation and observed flow,
as well as the different basin characteristics (number of curves, soil, LULC) resulting from
the HEC-GeoHMS process. The method used in this paper includes the SCS-CN (Soil Con-
servation Service) curve number, the Clark unit hydrograph, and the base flow recession,
which are necessary to determine the hydrological loss rate, runoff transformation, and
base flow. The model was used in a lumped way (as we only have one measuring station at
the downstream of the basin, which does not allow to do semi-distributed modeling). This
approach aims to calibrate three rainfall events for each product, and then three more for
observed rainfall. A total of 15 events were calibrated, 12 of which were satellite products,
and 3 of which were observed data. The validation used a 3H time step of precipitation by
implementing the model with different sources of precipitation data, such as observed and
satellite precipitation with observed runoff, to evaluate the ability of SPPs to reproduce
rainfall events from 2014 to 2017.

3. Results
3.1. Statistical Evaluation

The SPPs were statically compared against the ground observations to evaluate their
accuracy and reliability. Table 2 lists the evaluation results of statistical metrics (CC, RMSE,
and Bias) thought the entire study period over the Zat basin.

Table 2. Statistical metrics results of 3B42 V7 and IMERG V5 precipitation estimates at multiple time
scales from 2012 to 2017.

TRMM GPM

3 h Daily Monthly Yearly 3 h Daily Monthly Yearly

CC 0.12 0.38 0.79 0.94 0.4 0.59 0.81 0.86
RMSE 1.41 0.9 2.15 16.75 1.35 3.26 1.69 21.1

Bias 0.22 0.22 0.85 0.21 0.25 1.52 1.37 1.49
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The rainfall time series of the two selected satellite products and the rain gauge at
different timescales in the Zat basin are illustrated in Table 2. In general, the 3B42 V7 and
IMERG V5 products present similar chronological precipitation patterns to those of the
gauge. However, it can be seen that the product 3B42 V7 underestimates the 3 h and the
daily precipitation, while the product IMERG V05 showed good performance on the 3 h and
the daily timescale (Table 2). Regarding the monthly and annual time scale precipitation
series, the product 3B42 V7 and IMERG V05 clearly showed good results.

3.2. Contingency Statistics

The categorical statistical metrics of 3B42 V7 and IMERG V5 at different time scales
are shown in Table 3.

Table 3. Contingency statistical metrics results of 3B42 V7 and IMERG V5 precipitation estimates at
multiple time scales from 2014 to 2017.

TRMM GPM

3 h Daily Monthly Yearly 3 h Daily Monthly Yearly

POD 0.13 0.39 0.89 1 0.58 0.82 1 1
FAR 0.79 0.66 0.08 0 0.83 0.81 0.07 0
CSI 0.08 0.22 0.82 1 0.14 0.18 0.92 1
FBI 0.65 1.17 0.97 1 3.63 4.37 1.07 1

The precision of 3B42 V7 and IMERG V5 at 3 h, daily, monthly and annual scales were
compared and analyzed. IMERG V05 demonstrated better performance than 3B42 V7 in
detecting small time scale precipitation events, with high values of POD and CSI (0.13, 0.39
vs. 0.58, 0.82) and (0.08, 0.22 vs. 0.14, 0.18), respectively (Table 3), as well as reasonably high
values of FAR and FBI (0.79, 0.66 vs. 0.83, 0.81) and (0.65, 1.17 vs. 3.63, 4.37), respectively.

The performance of the categorical statistical measures at the monthly and annual
levels are shown in (Table 3). 3B42 V7 and IMERG V05 produced good results for rainfall
estimation, with POD values and CSI values (0.99, 1 vs. 1, 1) and (0.07, 0 vs. 1.07, 1),
respectively. Similarly, for the FAR and FBI, the results obtained were close to the perfect
values, (0.08, 0 vs. 0.08, 0) and (1, 1 vs. 1.09, 1), respectively.

In general, IMERG V05 is better at detecting precipitation events, in particular at
capturing precipitation traces and solid precipitation at a 3-hourly and daily scale, while
3B42 V7 can estimate precipitation on a large time scale.

3.3. Hydrological Evaluation of Discharge Simulation Using Two SPPs

The HEC-HMS model was used to calibrate and validate the 3 h of rainfall events from
(1 September 2014) to (31 August 2017), at the level of the Zat basin, using the rainfall and runoff
data from the Taferiat gauge station and satellite precipitation products. The four episodes that
we chose to present are the most representative and complete of the data series.

The hydrological calibration and validation were carried out according to two
different scenarios.

The obtained calibration and validation results are very satisfactory; the Nash–Sutcliffe
coefficients obtained for calibration and validation are on average 88.20% and 57.50%, re-
spectively (Tables 4 and 5). The episode calibrations were performed by manual adjustment
of the parameters in a way that does not lead to the deviation of the parameters from their
real physical meaning, and which allows for a better understanding of each calibration
parameter. This method requires a lot of time and effort to understand the behavior of each
parameter and approximate it to the natural condition of the event occurrence. On the other
hand, the objective function optimization method is simple and practical for function-based
investigations but may ignore the real physical meaning of the parameters. Therefore, this
paper combines the two methods to adjust the model parameters.
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Table 4. Summary range of calibrated parameter values.

Model Parameters Calibration Ranges

Loss parameters
Initial Abstraction (mm) -

Curve Number (CN) 46–83
Impervious (%) 0–10

Transform parameters Time of concentration (HR) 0.1–5.5
Storage Coefficient (HR) 2.6–25.6

Baseflow parameters
Initial discharge (m3/s) 0.3–2.8

Recession constant 0.6–0.8
Ratio 0.3–0.5

Table 5. Episodes calibration settings.

Id Events Curve Number Time of Concentration Recession Constant Nash–Sutcliffe RMSE

Calibration

Gauge
precipitation

20 November 2014 51 0.1 0.6 0.88 0.4
21 March 2016 60 0.6 0.55 0.88 0.3

3 May 2016 63 2 0.29 0.83 0.4
16 December 2016 60 9 0.3 0.58 0.7

3B42V7

20 November 2014 54 0.6 0.6 0.79 0.5
21 March 2016 67 0.1 0.6 0.67 0.6

3 May 2016 65 10 0.3 0.77 0.5
16 December 2016 61 4 0.6 0.64 0.6

IMERGV5

20 November 2014 52 0.1 0.6 0.84 0.5
21 March 2016 50 0.9 0.6 0.84 0.4

3 May 2016 44 3.1 0.3 0.79 0.5
16 December 2016 62 6.15 0.38 0.62 0.6

Mean 0.76

In this paper, eleven parameters were calibrated by maintaining the maximum and
minimum intervals of calibration parameters based on the literature. The intervals of the
calibrated parameter used are illustrated in Table 4.

Scenario 1 calibration: simulation and calibration using precipitation from both satel-
lite products with observed fluxes, by adjusting the model parameters values until the
model results acceptably match the observed data.

Scenario 2 validation: due to the limited sample size, the model was validated using
the leave-one-out resampling approach; for the n flood events, each event i is successively
removed, in order to find the relationship between the root-soil moisture measured by
the time domain reflectometry “TDR” tool and the two models’ most sensitive calibration
parameters (Curve Number “CN”, and time of concentration “TC”). A new CN was then
re-estimated (Calculate CN) using the remaining n-1 episode. The CN calibration and
the Tc parameters for an event i are set to the median of the calibrated parameters for
the n-1 episodes. The calculated CN values obtained by this procedure are then used to
model flood event i, and the simulated discharge is compared to the observed discharge.
The validation results for the 15 events are presented in Table 6, indicating better model
performance when using the SCS-CN model and taking into account soil moisture, with
Nash coefficients between 0.51 and 0.82, using the leave-one-out procedure [43].
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Table 6. Episodes validation results.

Id Events Calculated CN Nash-Sutcliffe RMSE

Validation

Gauge
precipitation

20 November 2014 60.39 0.58 0.6
21 March 2016 56.98 0.64 0.6

3 May 2016 59.03 0.83 0.4
16 December 2016 55.83 0.51 0.7

3B42V7

20 November 2014 59.2 0.52 0.7
21 March 2016 65.9 0.56 0.7

3 May 2016 63.05 0.61 0.6
16 December 2016 60.18 0.63 0.6

IMERGV5

20 November 2014 39.5 0.71 0.6
21 March 2016 50.5 0.74 0.5

3 May 2016 47 0.73 0.5
16 December 2016 49 0.57 0.7

Mean 0.64

3.3.1. Event of 20 November 2014

This event represents a torrential flood; since the flood was generated by extreme
precipitation spread over more than 15 days, it is the most intense event in the data set. The
maximum flow reached was (123, 75 m3/s). However, the soils were saturated, resulting in
high permeability and an increase in the runoff coefficient of the watershed.

The results of the calibration of the 3B42V7 and IMERG V05 rainfall data with the
observed flow illustrated in the hydrographs of the Figure 2, show that the simulated flow
curves were globally well reproduced for both products at the flood rise and the recession
part, although the peaks flow were not reached by both products.
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Figure 2. Calibration of the episode 20 November 2014, using 3B42V7 and IMERG V05 rainfall
products and observed runoff data as input.

Based on the results the 3B42V7 calibration is satisfactory, as this product has a good
capacity to record the high precipitation intensity during rainy episodes.

Furthermore, the IMERG V05 product does not have the ability to capture heavy
precipitation; this is well demonstrated in the calibration results. The evaluation criteria
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are suitable RMSE = 0.5 for both products and a Nash of 79.20% and 70.10% for 3B42V7
and IMERG V05, respectively.

The validation hydrographs results in (Figure 3) were well reproduced for both prod-
ucts. The rise and the recession curves were well reproduced for 3B42V7, noting a slight
underestimation of precipitation, but in general, this product well estimates heavy precip-
itation events. The IMERG V05 was not able to reproduce the validation hydrograph of
this event. The rising curve was underestimated in the first pick as it represents the heavier
precipitation during this event, and the other two picks were underestimated, the peak
flow was not reached. This is because of the inability of this product to properly estimate
the heavy precipitation.
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The evaluation criteria are acceptable with an RMSE of 0.7 for both products, and
a Nash of 52.20% and 66.50%, respectively.

3.3.2. Event of 21 March 2016

This event represents the typical characteristics of a freshet caused by the melting of
snowfall upstream of the Zat watershed. With the progressive increase of temperatures, the
snow cover at the summit of the Atlas Mountains starts melting and feeding the streams of
the mountainous basins including the study basin. This usually causes significant flooding
during the occurrence of moderate rainfall episodes.

The hydrograph of Figure 4 is well calibrated, the simulated flow curves were differ-
ently reproduced for both products. Concerning 3B42V7 SPPs, the rise and the recession
curves were well reproduced, but the peak flow was underestimated due to the fact that
this satellite product is not able to reproduce the low precipitation. However, IMERG V05
hydrograph is well reproduced at the rise, the recession, and the peak flow.
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Figure 4. Calibration of the episode 21 March 2016, using 3B42V7 and IMERG V05 rainfall products
and observed runoff data as input.

The evaluation criteria are good with an RMSE of 0.3 and 0.3 and a Nash of 66.5% and
83.7% for 3B42V7 and IMERGV5 products.

On the other hand, the hydrographs of validation are also differently reproduced for
the two SPPs (Figure 5).
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Figure 5. Validation of the episode of 21 March 2016, of 3B42V7 and IMERG V05 rainfall prod-
ucts and observed runoff data as input using the means calibration parameters of the gauge
precipitation calibration.

The 3B42V7 underestimates the precipitation; as noticed this episode is generated by
the effect of snowmelt, with the occurrence of light precipitation, and for this reason, the
following product estimates poorly the slight precipitation as previously indicated, and
consequently underestimates the value of precipitation during the event.
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However, IMERGV5 has shown good performance in detecting small precipitation
events; on the validation hydrograph the simulated curve is well reproduced at all levels.
This is due to the fact that this product is capable of estimating small precipitation events
with short time steps. This resolution has been well confirmed once more at this event.

The evaluation criteria are good with an RMSE of 0.7 and 0.6 for the product 3B42 V7
and IMERG V05, and a Nash of 56.20% and 74.20. 9%, respectively.

3.3.3. Event of 3 May 2016

The hydrological model results showed a reasonable fit between the shape of the simu-
lated and observed hydrographs. Figure 6 shows a chronological comparison of simulated
and observed streamflow at the watershed outlet for a calibration period of 3–5 May 2016
(we limit ourselves to modeling short-duration floods for which the evapotranspiration
process is negligible). Although the measured peak flow values did not exactly match the
simulated peak flow values for both products, there was a slight improvement for IMERG
V05. The model tended to underestimate the streamflow, since the river flow was already
high due to snowmelt, and this was added to the runoff caused by the flood, which the
model did not take into account.
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Figure 6. Calibration of the episode 3 May 2016, using 3B42V7 and IMERG V05 rainfall products and
observed runoff data as input.

On the other hand, the volumes were well respected and the rise and fall curves were
generally well reproduced with a slight improvement on the IMERG V05 side. The results
of the evaluation criteria for both products 3B42V7 and IMERG V05 are satisfactory with
NSE ranging from 76.80% to 79.30%, respectively.

After following the validation procedures previously mentioned in Section 3.3.4, the
comparison of the observed and simulated hydrographs showed that the model underesti-
mates the point flows, due to the non-conclusion of the snowmelt process. However, Figure 7
shows a good trend in the reproduction of the observed and simulated discharge curves, with
an NSE of 61.30% for 3B42V7, and 72.90% for IMERG V05, which are good results.
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Figure 7. Validation of the episode of 3 May 2016, of 3B42V7 and IMERG V05 rainfall prod-
ucts and observed runoff data as input using the means calibration parameters of the gauge
precipitation calibration.

3.3.4. Event of 16 December 2016

The event represents a winter rain-storm characterized by liquid precipitation down-
stream and snow upstream of the watershed. This type of rain-storm is very frequent
during the winter, especially in the high mountains of the Atlas.

The hydrographs of calibration in Figure 8 represent a simulated flow curve quite
illustrative; the rising curve and the recession were well reproduced for both products
3B42V7 and IMERG V05, contrary to the peak flow which has not been reached for the
3B42V7. However, the evaluation criteria are acceptable and represent an NSE of 63.50%
and 61.90%, respectively.
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products and observed runoff data as input.

On the other hand, Figure 9 illustrates the validation graphs of each product, although
the curves of the simulated flows are not well reproduced for both products, which underesti-
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mated winter precipitations since they are a mixture of rainfall and snowfall. The evaluation
criteria are acceptable with an NSE of 63.20% for 3B42V7, and 57.20% for IMERG V05.
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In this paper, an efficient method has been developed for the first time in a country with
a Mediterranean climate, on the mountainous watersheds of the Moroccan High Atlas with
low density and irregularity of precipitation and flow measurement stations. This is a good
method to apply to solve the problem of deficiency of observed data in these regions.

4. Conclusions

SPPs are important precipitation data alternatives, particularly in high mountain
watersheds, where measurement gauge stations are poorly distributed or absent. These
products will mainly help in the simulation of river flows, flood forecasting, and water
resources management in arid to semi-arid regions. This study conducted a complete
performance evaluation of two satellite products—the TRMM (3B42 V7) and the GPM—
(IMERG V05) using observations (sub-hourly, daily, monthly, and yearly) collected from the
only gauge station of the Zat basin, named Taferiat station, and located at the downstream
of the watershed. The watershed is characterized by a Mediterranean climate and moun-
tainous topography, and the study was analyzed over 3 years, from 1 September 2014 to 31
August 2017. To evaluate the accuracy of 3B42 V7 and IMERG V05 satellite precipitation
products, several quantitative, categorical, and statistical measurements were used: (R,
RMSE, Bias) were used to quantitatively analyzed the accuracy of satellite precipitation
products, and (POD, CSI, FAR, and FBI) were used to evaluate the precipitation detection
capability of satellite precipitation products, and to simulate satisfactorily the flooding
events in hydrological model.

The conclusions resulting from this study are summarized as follows:

(1) 3B42 V7 and IMERG V05 products performed well in estimating sub-hourly, daily,
monthly, and annual precipitation compared to observed data from the Taferiat
station. 3B42V7 underestimated low precipitation events but well estimated heavy
precipitation with small time step. However, the monthly and annual precipitation
were well captured. While IMERGV05 overestimates heavy precipitation episodes
and has a good ability to detect low precipitation in small time step, the monthly and
the yearly precipitation are well estimated by this product.
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(2) Compared to the ground applications, 3B42V7 and IMERG V5 showed acceptable
correlation results at the sub-hourly and daily time scales. However, IMERG V05
performed slightly better than 3B42 V7 for the detection of sub-hourly and daily
precipitation at the measuring station. The categorical statistical measures values
showed high values of POD and CSI, as well as reasonably high values of FAR and
FBI, noting that the results of the categorical measures are good. In general, IMERG
V05 is better at detecting precipitation events, in particular at capturing precipitation
traces and solid precipitation at a 3-hourly and daily scale, while 3B42 V7 can estimate
precipitation on a large time scale.

(3) The hydrological calibration and validation were performed according to two different
scenarios; scenario 1 aims to simulate and calibrate events using rainfall from both
satellite products with observed flows, while scenario 2 of validation uses the leave-
one-out resampling approach; for the n flood events, in order to find the relationship
between the root-soil moisture measured and the most sensitive model parameters
(CN calibration, and time of concentration “TC”). The obtained results are satisfactory
for all calibration and validation parts, the NSE coefficients ranging between 74.75%
and 63.31%, respectively. The main point to remember is that the 3B42V7 product
does not have a good ability to capture small rainfall events in a short time step, in
fact, it underestimates the rainfall. On the other hand, the IMERG V05 product has
an excellent capacity to record small rainfall events, which is well demonstrated in
the validation graphs. Therefore, it is recommended to use this product for flood
modeling and forecasting. The proposed method is an interesting approach to apply
for solving the problem of insufficient observed data in the Mediterranean regions.
The present manuscript provides a valuable reference for precipitation monitoring
and forecasting in mountainous regions characterized by a Mediterranean climate, as
well as in basins with few or poorly distributed rainfall stations.

Therefore, the results of this study are of great importance for analyzing the prospect’s
application of SPPs at different time scales. This paper is one of the first papers developing
a comparative approach of satellite rainfall products to observe gauge data in nnthe Moroc-
can High Atlas; they could indeed serve researchers as a reference work both in Morocco
and neighbouring countries with similar climates and areas with irregular or sparse rain
gauge networks.
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Abstract: The network Voronoi diagram has been extensively applied in many fields, such as influence
area construction, location selection and urban planning, owing to its high accuracy and validity
in space division. Taking advantage of parallel processing and auto-wave division of the pulse
coupled neural network (PCNN), an algorithm for generating a weighted network Voronoi diagram
is proposed in this paper. First, in order to better accommodate the scenes of urban facility points
and road networks, the PCNN is improved. Second, the speed of the auto-wave in the improved
PCNN is calculated by the weights of the facility points and the attributes of the related road network.
Third, the nodes in the road network are considered as neurons, the facility points are projected
onto the nearest road segments and the projected points are treated as initial neurons. The initial
neurons generate auto-waves simultaneously, and the auto-waves transmit along the shortest path
from neurons to other neurons with the calculated speed until all the neurons are fired. During this
procedure, the road network and the corresponding space are assigned to the initial neurons and the
weighted network Voronoi diagram is constructed. The experiments on the specific region with the
real POIs present the feasibility, applicability and efficiency of the algorithm.

Keywords: map generalization; weighted network Voronoi diagram; point cluster simplification;
network Voronoi polygon

1. Introduction

As an excellent tool for spatial analysis and spatial optimization, the Voronoi diagram
has been applied in various fields [1–3]. Originally, it was defined through a set of n points
P = {P1, . . . , Pn} (termed generator points or generators) on the plane, where the Euclidean
distance between an arbitrary point pi and a generator point p is d (p, pi) [4–6]. In these terms,
the ordinary planar Voronoi diagram is defined as a set of polygons, Vor = {Vor1, . . . , Vorn},
where the polygon Vori is given by

Vori =
{

p
∣∣d(p, pi) ≤ d(p, pj), j 6= i, j = 1, . . . , n

}
(1)

An example of a Voronoi diagram is illustrated in Figure 1. It can be seen that the
distance between points is computed by Euclidean distance in the planar Voronoi diagram.

However, in the real-world cases, the accessibility between points that stand for geo-
graphic objects are generally constrained by road networks [7,8]. The Euclidean-distance-
based Voronoi diagram is less proper as a subdivision of network space. In the literature,
although there are many phenomena that occur on a network or alongside a network, they
are often analyzed based on the planar Voronoi diagram. Therefore, it is significant to
propose methods to build applicable Voronoi diagrams in the network space.

The network Voronoi diagram replaces the plane with network space (such as a road
network) compared with the planar Voronoi diagram. Correspondingly, distances defined
on a network (such as the shortest path distance between two points) [6,9] are applied
instead of the Euclidean distance, which can be defined as:
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Vor = {Vor1, Vor2, . . . , Vorn} (2)

where Vori = {P|d(p, pi) ≤d(p, pj)}; d(p, pi) is the distance between an arbitrary point pi
and a generator point p in the network [10–12]. It is a better choice for spatial division
and analysis [6], and it has been widely utilized. Harn et al. (2021) found an optimal
partition that minimizes the overall delivery time of all trucks based on the weighted
road network Voronoi diagram [13]. Gotoh et al. (2017) proposed and evaluated a search-
ing scheme for a biochromatic reverse k-nearest neighbor with a network Voronoi dia-
gram [14]. Xie et al. (2011) studied the maximal covering spatial optimization based on
network Voronoi diagram [15]. Tu et al. (2014) proposed the method for logistics routing
optimization based on a network Voronoi diagram [16]. Miller (1994) presented a method
for market area delimitation [17].

Appl. Sci. 2022, 12, 6011 2 of 14 
 

 
Figure 1. An example of the planar Voronoi diagram. 

The network Voronoi diagram replaces the plane with network space (such as a road 
network) compared with the planar Voronoi diagram. Correspondingly, distances de-
fined on a network (such as the shortest path distance between two points) [6,9] are ap-
plied instead of the Euclidean distance, which can be defined as: 

Vor = {Vor1, Vor2,…, Vorn} (2)

where Vori = {P|d(p, pi) ≤d(p, pj)}; d(p, pi) is the distance between an arbitrary point pi and a 
generator point p in the network [10–12]. It is a better choice for spatial division and anal-
ysis [6], and it has been widely utilized. Harn et al. (2021) found an optimal partition that 
minimizes the overall delivery time of all trucks based on the weighted road network Vo-
ronoi diagram [13]. Gotoh et al. (2017) proposed and evaluated a searching scheme for a 
biochromatic reverse k-nearest neighbor with a network Voronoi diagram [14]. Xie et al. 
(2011) studied the maximal covering spatial optimization based on network Voronoi dia-
gram [15]. Tu et al. (2014) proposed the method for logistics routing optimization based 
on a network Voronoi diagram [16]. Miller (1994) presented a method for market area 
delimitation [17]. 

In this study, we propose an algorithm for dynamically constructing network Voro-
noi diagrams. The approach attempts to take advantage of the properties of concurrency 
and auto-wave distribution of the PCNN. The basic idea is that auto-waves are generated 
from initial neurons and transmit along the shortest path between neurons at a calculated 
speed until all the neurons are fired and the transmitting of auto-wave stops. 

The organization of this paper is as follows. Section 2 introduces the improved 
PCNN. In Section 3, the procedures of generating the weighted network Voronoi diagram 
on the basis of the improved PCNN are described. Experiments are illustrated and dis-
cussed in Section 4. Finally, conclusions and future works are presented in Section 5. 

2. Related Work 
Currently, several achievements have been made in the construction of network Vo-

ronoi diagrams. Ai et al. (2015) presented a constrained network Voronoi diagram using 
stream flowing ideas [11]. The method by Tan et al. (2012) calculates the network distance 
using the shortest-path tree technique [18]. Okabe et al. (2008) formulated six types of 
generalized network Voronoi diagram [6]. In existing studies, the typical method is the 
algorithm based on the shortest path distance, in which the “extended shortest path trees” 
are built and the weight shortest path distance are considered to generate the network 
Voronoi diagram. Inspired by the extension operators in mathematical morphology used 
in computing ordinary Voronoi diagrams [19–21], this paper proposes an algorithm for 

Figure 1. An example of the planar Voronoi diagram.

In this study, we propose an algorithm for dynamically constructing network Voronoi
diagrams. The approach attempts to take advantage of the properties of concurrency and
auto-wave distribution of the PCNN. The basic idea is that auto-waves are generated from
initial neurons and transmit along the shortest path between neurons at a calculated speed
until all the neurons are fired and the transmitting of auto-wave stops.

The organization of this paper is as follows. Section 2 introduces the improved PCNN.
In Section 3, the procedures of generating the weighted network Voronoi diagram on the
basis of the improved PCNN are described. Experiments are illustrated and discussed in
Section 4. Finally, conclusions and future works are presented in Section 5.

2. Related Work

Currently, several achievements have been made in the construction of network
Voronoi diagrams. Ai et al. (2015) presented a constrained network Voronoi diagram using
stream flowing ideas [11]. The method by Tan et al. (2012) calculates the network distance
using the shortest-path tree technique [18]. Okabe et al. (2008) formulated six types of
generalized network Voronoi diagram [6]. In existing studies, the typical method is the
algorithm based on the shortest path distance, in which the “extended shortest path trees”
are built and the weight shortest path distance are considered to generate the network
Voronoi diagram. Inspired by the extension operators in mathematical morphology used
in computing ordinary Voronoi diagrams [19–21], this paper proposes an algorithm for
constructing the weighted network Voronoi diagram by integrating the ideas of the shortest
path distance and extension operators.

The standard pulse coupled neural network (PCNN) is a type of neural network
with a biology background, which is developed for image processing and pattern recog-
nition. It has been used in research fields such as image processing. Deng et al. (2022)
obtained smooth and unbroken single pixels based on it [22]. Yang et al. constructed a
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novel model of sparse representation for image denoising based on improved PCNN [23].
Basar et al. (2022) proposed a novel and robust defocus-blur segmentation scheme consist-
ing of a local ternary pattern (LTP) measured alongside the pulse coupled neural network
(PCNN) technique [24]. A new fusion algorithm of infrared and color visible images based
on multi-scale transformation and adaptive PCNN was proposed by Shen et al. (2021) [25].
We found that its properties of concurrency and auto-wave distribution are helpful to
establishing the network Voronoi diagram [14], especially solving the pairs shortest path
problem. The auto-wave distribution can be applied into the situation of the generator
growing in all directions simultaneously, which is similar to the previously mentioned
extension operators. On the other hand, its characteristics of concurrency can improve
the efficiency of the algorithm. However, before the model is applied to the process of
constructing the network Voronoi diagram, it should be adjusted in several aspects, because
the iteration process is complicated and it is difficult to control the auto-wave transmission
in the standard PCNN.

3. Improved PCNN
3.1. Structure of the PCNN

The standard PCNN, also known as the third artificial neural network, is a laterally con-
nected feedback network of pulse coupled neurons without requiring any training [26,27].
The standard neuron model is given by Figure 2 and the following equations [28–30]:

Fij[n] = e−αF Fij[n− 1] + VF∑
kl

MijklYkl [n− 1] + Iij (3)

Lij[n] = e−αL Lij[n− 1] + VL∑
kl

WijklYkl [n− 1] (4)

Uij[n] = Fij[n]
(
1 + βLij[n]

)
(5)

Yij[n] =

{
1 Uij[n] > Eij[n]
0 otherwise

(6)

Eij[n + 1] = e−αE Eij[n] + VEYij[n] (7)

where the index (i, j) and index (k, l) refer to the current neuron and its neighbors. I denotes
the external stimulus. F is feeding input, and L is linking input in iteration n. M and W
represent linking synapse weights. Internal activity U is generated by the modulation of F
and L through linking strength β. The neuron will be stimulated when the internal activity
U is greater than the dynamic threshold E. In addition, VF, VL and VE are normalizing
constants; and the parameters αF, αL and αE are the time constants [31].
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Drawn by its characteristics of auto-wave and concurrency, we planned to incorporate
the PCNN into the construction process, but in the standard PCNN model, the iteration
process is complex and the transmission method of auto-wave is hard to control. In order
to make the PCNN more suitable for the construction of the network Voronoi diagram,
an improved PCNN is proposed.
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3.2. Structure of the Improved PCNN

The principle of the improved PCNN can be summarized in the following three
aspects: (1) all points in the point cluster and all nodes in the road network are considered
as the neurons, in which the points in the point cluster are treated as initial neurons; (2) the
initial neurons will generate an auto-wave simultaneously, and the auto-wave transmits
along the road segments from a neuron to another at a certain speed; (3) the transmission
speed of the auto-wave on a certain road segment is determined by the importance of its
initial neuron and the attributes of the passed road segments.

The structure of the improved model is shown in Figure 3, and it can be represented
with the following equations.

Epm [n + 1] =





VE if Yp[n] = 1

min(S[n] + Wqp[n], Ep[n]) if Yp[n] = 0, Yq[n] = 1 and p ∈ Rq

Ep[n] otherwise

(8)

S[n + 1] = S[n] + ∆S[n] (9)

Yp[n + 1] =

{
1 if S[n + 1] ≥ Ep[n + 1]

0 otherwise
(10)

Wqp[n + 1] =

{
VE if Yp[n + 1] = 1 and p ∈ Rq

Wqp[n] otherwise
(11)

where n is the iteration number and Ep stands for the dynamic threshold of neuron p. VE
represents a constant with a large value. 4S is the speed of the current auto-wave. S is
the distance between the initial neuron and the current iteration. YP is determined by the
comparison between the current wavelength S and the threshold Ep. Wpq represents the
connection weight between neuron p and neuron q. Rq is the neighbor set of the neuron q.
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4. Network Voronoi Diagram Construction Based on the Improved PCNN

The construction of the planar Voronoi diagram can be described as follows: each entity
within the Voronoi diagram expands outward to gain growth area and finally encounters
the expansion from neighboring entities [16,17]. Similarly, in the process of generating the
network Voronoi diagram, each initial neuron generates an auto-wave simultaneously, and
the auto-waves compete the growth area by expanding along the shortest path between
neurons. The competition will not stop until all the neurons are fired and the transmitting
auto-wave stops. As a result, the routes and the area taken by generators delineate their
impacting range in network space, which can be considered as network Voronoi diagram
of the certain point set.

The concrete steps of the construction can be concluded as: Firstly, the initialization is
down so that all facility points can be projected onto the related road segments. Secondly,
the projected points act as initial neurons in the improved PCNN, and generate auto-wave
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simultaneously. The speed of auto-wave is calculated and then the auto-wave transmits
along the shortest path between neurons. Finally, the road segments conquered by a specific
auto-wave and their related space are identified as its initial neuron’s impacting region.
Until all the nodes are fired, the network Voronoi diagram of corresponding facility points
is successfully generated. The flowchart of the algorithm is shown in Figure 4, and the
following describes the procedure in detail.
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As shown in Figure 4, the new algorithm includes three procedures:

− Initialization;
− Speed calculation;
− Transmission of the auto-wave.

4.1. Initialization

On the map, the points do not exactly lie on the road segments because the roads are
usually represented as lines. In order to match the points with the road segments, the ini-
tialization of the improved PCNN model includes points’ projection and the establishment
of the connection relationship matrix between neurons.

4.1.1. Points’ Projection

The first step of the algorithm is projecting all the points in the point cluster onto the
road segments, aiming at locating the positions of initial neurons (points in the point cluster)
on the road network in the improved PCNN model. As shown in Figure 5, perpendiculars
from points P1–P5 to the nearest road segments are able to be found. The intersection
(marked as P1

′–P5
′) between the perpendiculars and the road segments can be regarded as

the projection of the points.
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4.1.2. Connection Relationship Matrix between Neurons

The key of the algorithm is that the auto-waves emitted from different points broadcast
along the shortest path between neurons. In order to find the shortest path between neurons,
the connection relationship matrix, which stores the distances between neurons, should be
constructed at first, as shown in Formula (12).
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W =




w11 w12 . . . w1n
w21 w22 . . . w2n
. . . . . .
wn1 wn2 . . . wnn


 (12)

where n is the total number of the neurons. The weight between neuron i and j is denoted
as wij, which assigns the length of the road if there is connection between neuron i and j, or
infinity if there is no connection between neuron i and j.

4.2. Transmission of the Auto-Wave

After initialization, the auto-wave will be generated from the initial neurons and then
transmit along the shortest distance from the current neuron to the next neuron. In this
procedure, the transmission speed of the auto-wave is computed based on the importance
of initial neurons and attributes of road segments. The speed needs to be calculated at first,
and then transmission will be done.

4.2.1. Speed Calculation

In real traffic networks, some roads are one-way and some roads are two-way, which
play different roles in the transportation system. Similarly, the facilities themselves also
have different importance with respect to different functions, which can affect the impact-
ing regions of facilities. Therefore, these factors should be considered while computing
transmission speed. For instance, the auto-wave will transmit quicker to compete for a
larger growth area if it is generated from an important point and expand along an important
road. These impact factors are illustrated specifically as follows:

• Direction of the roads

The auto-wave can only expand along the road if its expanding direction is the same
as the direction of the road. Otherwise, the transmission of the auto-wave should be
terminated. For example, if the road merely permits moving from west to east, the auto-
wave expanding from east to west must stop on this road. This can be expressed by
Formula (13):

DR = F(N1, N2) (13)

where DR is the direction factor of the current road segment. F (N1, N2) is a direction
function which equals to 1 if the auto-wave is the same as the direction of the road and
equals to 0 otherwise.

• Grades of the roads

As we all know, the traffic capacities of roads are different. Generally, a road of a
higher grade has a higher traffic capacity, and the auto-wave can transmit quicker along
these kinds of roads correspondingly. Formula (14) is defined to represent the differences:

GR = W(R) (14)

where GR is grade factor of the current road segment, and function W(R) denotes the grade
function of the road segment.

• Grades of the points

The higher the grade of a point is, the larger its impact range, which can be represented
as Formula (15):

GP = W(N) (15)

where GP is the grade factor of the current point, and function W(N) denotes the importance
of the initial neuron.

By considering all above factors, the transmitting speed can be defined as Formula (16),
where k is the speed of the auto-wave which is generated from initial neurons, weight 1,
and transmits along the road segment of weight 1.

LRN = k× DR × GR × GP = k× F(N1, N2)×W(R)×W(N) (16)
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As shown in Figure 6, if the unit speed of the auto-wave (generated by neurons of
weight 1 and expanding on the road segment of weight 1) is set as 10 m per iteration, the
speed of the auto-wave generated from point P is 20 m per iteration (Vp1) when expanding
along road segment PN2, and 0 m per iteration (Vp2) when expanding along road segment
PN1. VQ1 (the speed of the auto-wave generated from point Q and expanding along road
segment QN6) is 10 m per iteration, and VQ2, which represents the speed on road segment
N6N5, is 20 m per iteration.
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4.2.2. Transmission of the Auto-Wave

In the improved PCNN, the auto-wave which is generated simultaneously by initial
neurons will expand along the shortest path between neurons with the above-calculated
speed, until all the neurons are fired and the transmitting auto-wave stops. The concrete
steps are described as follows:

(1) Initialization of networks’ parameters

The initial iteration number is set as n = 0. The projected points in point cluster and all
the nodes in road network are regarded as neurons, and the projected points are chosen as
initial neurons (bm) whose initial state is set to be fired (Ybm [0] = 1). The initial neurons are
regarded as the mother neurons of other neurons (par(p) = bm). VE is a constant satisfying
condition: VE > (n − 1) Wmax, in which N is the total number of the neurons, and Wmax
represents the maximum value of the connection weight between neurons. The initial
dynamic threshold of iteration is set as EP [0] = VE, YP [0] = 0, S [0] = 0,4S [0] = 0.

(2) Operation of the improved PCNN

Step1: Dynamic threshold of iteration (EP[n]) is calculated by the Formula (8).
Step2: The transmission speed of the auto-wave (LBn) is updated according to Formula

(16), and the current wave velocity is set as4S[n] = LBn.
Step3: The current wavelength is calculated by Formula (9) as: S[n] = S[n − 1] +4S[n].
Step4: The current dynamic threshold (EP[n]) is compared with the current wavelength

(S[n]). If S[n] ≥ EP[n], then YP[n] = 1, which means neuron P is fired successfully in the nth
iteration. Otherwise, YP[n] = 0 and the current neuron P is not fired yet.

Step5: The connection weight Wqp[n + 1] is updated by Formula (11).
Step6: Turn to step 1 to repeat the above steps, until all the neurons are fired and the

transmitting auto-wave stops.
The initial state of the points and the road network is shown as Figure 7a. If the

weights of the point and the road segments are ignored, which means all the points have
the same importance and all the road segments are two-way and have the same importance,
the end state of auto-wave transmission is shown as Figure 7b. When the weights of
the points and the road networks are all considered and the auto-wave transmits with
different speed on different road segments, the end state is shown in Figure 7c. In Figure 7c,
the auto-wave generated from the projection points expands along road segments at the
speed calculated by Formula (9). It will transmit along the shortest path between neurons
until all the neurons are fired. In Figure 7b,c, the black dotted lines represent the road
segments which were not passed by the auto-wave. The appearance of this type of road
segment is because the auto-wave travels along the shortest path between neurons in the
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improved PCNN. As soon as the neurons ahead are fired (i.e., the shortest path toward the
current neurons is found already), the current auto-wave that travels toward them will stop.
For example, in Figure 7c, the auto-wave generated from point P3

′ (marked in purple) stops
at point r2, because at that very moment the neuron ahead of the auto-wave (r2) is fired
by another auto-wave (marked in red). In the end, r1 r2 is the road segment that is never
reached by any auto-wave. This kind of road segment is assigned to two initial neurons
if the two nodes of the road segment are fired by auto-waves generated from two initial
neurons (r1 r2 for example). Otherwise, the road segments are assigned to the only initial
neurons (r3 r4 for example). According to this method, these untouched road segments are
assigned to the corresponding neurons, and the result is as shown in Figure 8. It can be
seen that the road segments (marked in different color) and the corresponding space are
assigned to different points.
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4.3. The Construction of the Weighted Network Voronoi Diagram

As described above, the construction of the weighted network Voronoi diagram can
be summarized as the following steps:

(1) Preprocess the network data: 1© All the nodes are found and regarded as the neurons
in the improved PCNN, and the road network is divided by the nodes into road
segments. 2© The point cluster is projected onto the road segments, and the projection
points are set as initial neurons. 3© The connection relationship matrix between
neurons is computed.

(2) Perform transmission based on the improved PCNN: The auto-waves generated
from the initial neurons expand along the corresponding road segments with the
speed calculated by the Formula (9); they look for and travel along the shortest paths
between neurons simultaneously. The auto-wave will not stop until all the neurons
ahead have been fired.

(3) Repeat (2) until all the neurons are fired and the transmitting auto-waves stop.
(4) Road segments that are not used by any auto-wave are assigned to the corresponding

initial neurons. So far, the road network and the corresponding space are assigned to
the initial neurons and the weighted network Voronoi diagram has been constructed.
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As shown in Figure 8, the network space is distributed to different points according
to the weights of the points and the attribution of the road segments by the shortest
path principle.

5. Experiment Studies and Discussion
5.1. Experiments

To illustrate the soundness of the proposed algorithm, experiments were conducted
on the data of a district in a big city, which consists of 2820 road segments (50 national
highways, 44 provincial ways, 892 urban first-grade ways, 1834 urban second-grade ways)
and 148 educational institutions in three grades. The initial state is shown in Figure 9a.
The state at the beginning of the auto-wave transmission is shown as Figure 9b, in which
the auto-waves generated from different initial neurons are marked in different colors.
Figure 9c shows the final state of auto-wave transmission, where the road segments that
are not traveled along by the auto-waves are assigned to the corresponding initial neurons.
Finally, the weighted network Voronoi diagram is generated as shown in Figure 9d.
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For comparison, experiments using ordinary weighted Voronoi diagram were per-
formed on the same point cluster (Figure 10).
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5.2. Discussion

It can be seen in Figures 9d and 10 that: (1) the ordinary weighted Voronoi diagram
cut the network planar smoothly, and the weighted network Voronoi diagram cut the
network planar unevenly, for the road network is usually unevenly distributed and there
is a slight chance to connect original facility points by a straight line. (2) The ordinary
weighted Voronoi diagram ignores the influence of the road network where the point
cluster is located; thus, the final results would be the same even if the point cluster were
put into different road networks. However, the weighted network Voronoi diagram is
constructed while fully considering the attributes of road networks, and the importance of
points, which ends up providing results more suitable to real life. (3) The weighted network
Voronoi diagram is close to the ordinary weighted Voronoi diagram when the road network
around the point is dense enough. For instance, the shaded areas (A in Figure 9d and A′ in
Figure 10), which represent the impacting regions of the same points calculated by the two
methods, are similar in both shape and size, due to the large density of the road network
related to the point. If the following three assumptions stand—(1) the road network density
is large enough and any two facility points can be connected by roads similar to straight
lines, (2) all the roads in road network are of the same weight and (3) all the roads in road
network are two-way—it can be inferred that the weighted network Voronoi diagram will
be nearly the same as the ordinary weighted Voronoi diagram. However, in fact, the road
networks are usually unevenly distributed, and different roads in road network always
have different attributes, such as grades and directions. Therefore, it is doubtless that the
weighted network Voronoi diagram is a better choice for the representation of the impact
scope of a point cluster rather than the ordinary weighted Voronoi diagram.

A comparison experiment based on the idea of the shortest path was performed on
the same data. The weighted network Voronoi diagram was constructed using the tool
SANET (http://sanet.csis.u-tokyo.ac.jp/), as shown in Figure 11b. It can be deducted that
the method based on the idea of the shortest path ignores some of influence factors, such
as the attributes of the related road networks. For instance, the road segments next to the
points P1 and P2 are of higher grade in Figure 11a, so the auto-waves transmit faster along
them, resulting in larger impacting regions of P1 and P2 than in Figure 11b. In addition, as
shown in Table 1, experiments with different unit speed were performed, and performance
parameters of the proposed algorithm for constructing weighted network Voronoi diagrams
are described in Table 1. It can be seen that the iteration number is directly related to the
transmission speed of the auto-wave, which can be adjusted according to the practical
situation. It can be seen that the time complexity of the algorithm mainly depends on the
transmission speed of the auto-wave in the improved PCNN, which is able to be adjusted
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according to the attributes of the point cluster and the related road network to meet the
requirements of accuracy and efficiency. For example, the unit speed of the auto-wave can
be set a larger value if the average distance between neurons is small, or a smaller value if
the higher accuracy is demanded.

Appl. Sci. 2022, 12, 6011 12 of 14 
 

practical situation. It can be seen that the time complexity of the algorithm mainly de-
pends on the transmission speed of the auto-wave in the improved PCNN, which is able 
to be adjusted according to the attributes of the point cluster and the related road network 
to meet the requirements of accuracy and efficiency. For example, the unit speed of the 
auto-wave can be set a larger value if the average distance between neurons is small, or a 
smaller value if the higher accuracy is demanded. 

 
Figure 11. A comparison between the weighted network Voronoi diagram using the model of im-
proved PCNN and that based on the idea of the shortest path. 

Table 1. Performance parameters of the algorithm for constructing weighted network Voronoi dia-
grams. 

Experiment Unit Speed of the 
Auto-Wave (m) 

Number of Iterations Construction Time(s) 

Figure 9 
1 1323 9.3 
5 321 2.1 

6. Conclusions 
This paper proposed an algorithm with which to generate weighted network Voronoi 

diagrams based on improved PCNN. Experiments showed that: (1) owing to the idea of 
parallel processing and shortest path transmission of the improved PCNN, the construc-
tion process is intuitive and conforms to the basic ideas of the original Voronoi diagram 
but with a different distance metric. (2) The influences of the point cluster and the related 
road network are taken into account as weights in the computation, and the constructed 
weighted network Voronoi diagram can better define the boundaries of the service region 
of the corresponding point. 

The improved PCNN and the algorithm can also be extended to linear facilities and 
polygon facilities; and it will be our future work to introduce more semantic information 
into the construction, based on which, the weighted network Voronoi diagram for linear 
and polygon facilities will be constructed. 

Author Contributions: X.L. and H.Y. proposed the methodology. X.L. performed the experiments 
and wrote the draft of the manuscript. H.Y. guided the research and revised the manuscript. All the 
authors contributed to the development of the proposed generalization algorithm and this manu-
script. All authors have read and agreed to the published version of the manuscript. 

Figure 11. A comparison between the weighted network Voronoi diagram using the model of
improved PCNN and that based on the idea of the shortest path.

Table 1. Performance parameters of the algorithm for constructing weighted network Voronoi diagrams.

Experiment Unit Speed of the Auto-Wave (m) Number of Iterations Construction Time(s)

Figure 9 1 1323 9.3
5 321 2.1

6. Conclusions

This paper proposed an algorithm with which to generate weighted network Voronoi
diagrams based on improved PCNN. Experiments showed that: (1) owing to the idea of
parallel processing and shortest path transmission of the improved PCNN, the construction
process is intuitive and conforms to the basic ideas of the original Voronoi diagram but
with a different distance metric. (2) The influences of the point cluster and the related
road network are taken into account as weights in the computation, and the constructed
weighted network Voronoi diagram can better define the boundaries of the service region
of the corresponding point.

The improved PCNN and the algorithm can also be extended to linear facilities and
polygon facilities; and it will be our future work to introduce more semantic information
into the construction, based on which, the weighted network Voronoi diagram for linear
and polygon facilities will be constructed.
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