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Preface

Professor J. Derek Woollins is an outstanding British inorganic chemist who, in particular, made

key contributions to the field of main group synthetic chemistry. After completing his B.Sc. and Ph.D.

at the University of East Anglia, Derek completed his postdoctoral research in Canada, the US, and

the UK before taking a lectureship position at Imperial College, where he stayed for twelve years.

Derek then moved to Loughborough University as the Chair of Inorganic Chemistry, and in 1999, he

moved to a Chair at St Andrews University. At St Andrews, Derek served as the Head of School for

eight years and as a Vice Principal for Research and Innovation for six years. In 2019, Derek took a

position as a Provost of Khalifa University, Abu Dhabi, from which he retired in 2020.

Derek is extremely well known in the academic community, in particular the inorganic and main

group communities, both for his scientific contributions and for his brilliant personality. His scientific

interests revolve around Group 16 and 15 chemistry, in particular S/N, Se, Te, and P chemistry.

Derek’s group established Ph2P2Se4, now named Woollins reagent, as an accessible and powerful

selenating reagent in a range of chemistries. Derek’s efficiency is legendary; the Web of Science

(January 2025) shows Derek to have 609 publications, 13,464 citations, and an H-index of 54.

Derek’s hard-working nature, witty humor, jokes, and general ability to tell a good story about

anything (from science to DIY) made him a legendary lecturer amongst students as well as an

extremely valuable and likeable colleague.

In spring 2023, I agreed to be Guest Editor of a Special Issue of Molecules to celebrate Derek’s

retirement. The title of this Special Issue was formulated to enable all aspects of main group chemistry

to be considered. Manuscripts were received throughout late 2023 and 2024. I was delighted by the

response, which highlights the high esteem in which Derek is held by his colleagues and friends. I

wish to thank all the authors for contributing their papers to this special issue. The quality of their

submissions made my job quite easy and pleasurable!

Petr Kilián

Guest Editor
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Structures and Spectroscopic Properties of Polysulfide Radical
Anions: A Theoretical Perspective
Tristram Chivers 1,* and Richard T. Oakley 2,*

1 Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
2 Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
* Correspondence: chivers@ucalgary.ca (T.C.); oakley@uwaterloo.ca (R.T.O.)

Abstract: The potential involvement of polysulfide radical anions Sn
•− is a recurring theme in

discussions of the basic and applied chemistry of elemental sulfur. However, while the spectroscopic
features for n = 2 and 3 are well-established, information on the structures and optical characteristics
of the larger congeners (n = 4–8) is sparse. To aid identification of these ephemeral species we have
performed PCM-corrected DFT calculations to establish the preferred geometries for Sn

•− (n = 4–8)
in the polar media in which they are typically generated. TD-DFT calculations were then used to
determine the number, nature and energies of the electronic excitations possible for these species.
Numerical reliability of the approach was tested by comparison of the predicted and experimental
excitation energies found for S2

•− and S3
•−. The low-energy (near-IR) transitions found for the two

acyclic isomers of S4
•− (C2h and C2v symmetry) and for S5

•− (Cs symmetry) can be understood by
extension of the simple HMO π-only chain model that serves for S2

•− and S3
•−. By contrast, the

excitations predicted for the quasi-cyclic structures Sn
•− (n = 6–8) are better described in terms of

σ→ σ* processes within a localized 2c-3e manifold.

Keywords: polysulfide chemistry; radical anions; structures; spectroscopic properties; time-dependent
density functional theory

1. Introduction

Polysulfide radical anions Sn
•− (n = 2–8) play a pivotal role as intermediates in the

sulfur↔ sulfide redox cycle [1–4]. The influence of these short-lived species is frequently
invoked in contemporary investigations of sulfur chemistry, including alkali-metal-sulfur
batteries [5–7], organic syntheses [8], biological chemistry [9,10], geochemical processes
involving metal transport [11–13] and quantum-dot sensitized solar cells [14,15]. In so-
lution, polysulfide radical anions are readily oxidized by atmospheric oxygen, but the
smaller members can be trapped in an aluminosilicate matrix and are known to be the
chromophores in yellow (S2

•−), blue (S3
•−) and green (simultaneous presence of S2

•− and
S3
•−) ultramarines [16] and related sodalite-group minerals [17]. The diatomic S2

•− and
the triatomic S3

•− (C2v) radical anions are readily detected in solution or in the solid state
by their characteristic UV-visible, Raman or EPR spectra [18]. Indeed, one or more of these
techniques is commonly invoked to provide evidence for the role of S3

•− as an in-situ
generated reagent in organic synthesis [8].

In contrast to the well-established spectroscopic signatures of S2
•− and S3

•−, evidence
for the larger members of the family (n = 4–8) is fragmentary and often conflicting. Of
these species, S4

•− has a long but somewhat checkered history. In 1970, as part of his
pioneering study on solutions of alkali-metal polysulfides in electron-pair donor solvents,
e.g., DMF, HMPA, Seel attributed a visible absorption at ca. 515 nm to S4

•− [19], but later
the band was reassigned to a dimer [20], an example of which has recently been structurally
characterized in a dinuclear Bi(III)Bi(III) complex [21]. In 1983 Clark et al. investigated the
nature of the sulfur chromophore in ultramarine pink by Raman spectroscopy [22], but they

Molecules 2023, 28, 5654. https://doi.org/10.3390/molecules28155654 https://www.mdpi.com/journal/molecules1
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were unable to distinguish between S4 and S4
•− (or even S3Cl). The association of a 490 nm

band with S4
•− has nonetheless persisted [9,23], and Chiba and co-workers have recently

invoked formation of the radical anion during the photolysis of the closed-shell dianion
S4

2− [24–27]. The use of other techniques to identify S4
•− in solution, notably Raman and

IR spectroscopy [28–30], has been pursued, but band assignments based on calculated
vibrational frequencies have been questioned [3]. Likewise, an EPR signal observed in
solutions of lithium polysulfide solutions in DMF was proposed to belong to S4

•− [31], but
the isotropic g-value (2.031) lies close to that of the dominant radical anion S3

•− (2.029) [32].
In principle, high field EPR spectroscopy could be used to distinguish between these (and
other) polysulfide radical anions, and on this basis Chukanov et al. recently suggested the
presence of S4

•− in various sodalite minerals [33].
The larger anions Sn

•− (n = 5–8) are also acknowledged as potentially important inter-
mediates in the S8 ↔ S2− redox processes, as in the electrochemical reduction of cyclo-S8,
redox transformations in alkali metal-sulfur batteries [27] and the formation of polysulfides
from photoexcited quantum dots [14,15]. Exploration of the stepwise electrochemical reduc-
tion of cyclo-S8 in non-aqueous solvents has been extensively pursued, with formation of
S8

2− generally accepted by the battery community to occur first (Scheme 1) [3]. Initially, in
1970, Merritt and Sawyer claimed the preliminary formation of the one-electron reduction
product S8

•− [34], then revised this interpretation to a two-electron transfer [35], in agree-
ment with the work of Bonnaterre and Cauquis [36] and also supported by results obtained
by Hardacre and coworkers using ionic liquids as the solvent medium [37]. However,
in 2008, the results of a detailed cyclic voltammetric study of the reduction of S8 in vari-
ous solvents were consistent with the formation of S8

2− via two consecutive one-electron
steps [38]. The potential for the involvement of S4

•− in the S8 reduction process has been
argued [39–42], but in the absence of a clear spectroscopic signature for the anion, the
issue has not been resolved. Although symmetrical dissociation of S8

2− to give two S4
•−

radical anions is calculated to be exergonic [43], and an absorption band at ca. 700 nm was
assigned to S4

•− [44,45] in spectrochemical studies of the reduction of sulfur in DMSO and
DMF, others insist that it has never been detected [46].
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Surprisingly, although the preparation and structural characterization of several salts
of the S8

2− were reported more than 30 years ago [47,48], there is limited information on
the behavior of ion-separated salts of S8

2− in non-aqueous solvents. Formation of S8
2−

from S8 has traditionally been interpreted to be followed by disproportionation to S6
2− and

1
4 S8 [39,43,49], the former dissociating to afford S3

•− [48]. However, a disproportionation
process simply represents a mass balance, and belies the reality that the formation of an
eight-membered S8 ring must involve the intermediacy of long chain polysulfide dianions
Sn

2− with n > 8 and, possibly, polysulfide radical anions such as Sn
•− (n = 4, 6) [3]. Alter-

native fates for S8
2− in dilute solution can be envisaged (Scheme 1) in terms of equilibria

involving its symmetric and asymmetric dissociation to afford, in principle, the entire
series of polysulfide radical anions Sn

•− (n = 2–6). Longer chain closed-shell dianions such
as S10

2− and S12
2−, salts of which have recently been characterized [50,51], can then be

viewed as arising from the reverse process, that is, symmetric coupling of the radical anions

2
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S5
•− and S6

•−, respectively, while association of S3
•− and S4

•− yields S7
2−. Unfortunately,

information on the electrochemical reduction of the cyclic allotropes S6 and S7 is lacking.
That being said, in 2002 Dehnicke and coworkers isolated and structurally characterized
crystals of the (orange/red) radical ion salt [Ph4P][S6], the only such characterization of
an ion-separated salt of a polysulfide radical anion [52]. The importance of this result is
discussed below.

As demonstrated in this brief survey, there are many unsettled questions regarding
the basic chemistry of elemental sulfur, in particular relating to the stability, structure and
properties of radical ion products that may be generated during the sequential reduction
of cyclo-S8 or the oxidation of the sulfide ion S2− [1]. These questions have given rise to
ongoing controversies, many relating to the colors of these ephemeral species—what do
they look like, and do they exist if they cannot be seen?

While the colors of S2
•− and S3

•− are well characterized, the optical properties of
the larger putative polysulfide radical anions have been explored only to a very limited
extent. Fabian et al. used density functional theory (DFT) methods to probe the excited
states of S4

•−, and predicted a strong absorption in the near-IR region, with a weaker
band near 350 nm for cis S4

•−(C2v) isomer, which is slightly more stable than the trans
(C2h) isomer [53]. More recently, and using DFT and CASSCF methods, Rejmak confirmed
that the cis S4

•− radical anion could be identified by a strong absorption in the near-IR
region [54] and proposed that the red chromophore in ultramarine red is neutral S4 rather
than the corresponding radical anion. Surprisingly, the excited state properties of the
remaining radical ions in the series, that is Sn

•− (n = 5–8), have never been explored
theoretically, perhaps because even their ground state geometries have remained somewhat
of a puzzle.

The principal objective of the present article is to redress this issue, to fill in the blanks
not only in regard to the spectroscopic signatures of these radical anions, that is, their
excited state properties, but also to establish their ground state structures, particularly in
solution in polar solvents, the media in which they are most likely to be generated.

2. Results
2.1. Structural Trends

In the following sections we describe the structural features and relative energies
provided by spin unrestricted PBE0/D3/def2-QZVP calculations for the family of radical
anions Sn

•− (n = 4–8). The results build upon the earlier systematic studies of Hunsicker
et al. [55], Steudel [40] and Wong [56], but include several alternative shapes not previously
considered. The possible effects of solvation are heavily stressed, as our overall aim has
been to identify structures most likely to be present in solution in the polar solvents
typically used for the spectroscopic observation of these species. To this end we performed
not only standard “gas phase” geometry optimizations but also optimizations employing
the polarized continuum model (PCM) to simulate solvation effects, with DMF (ε = 37.2)
serving as a representative example. As observed by Steudel, the inclusion of solvation
using the PCM approach leads to only minor geometrical adjustments, and for this reason
only the “gas phase” structural parameters are presented in the main text (see Figure
S1 for PCM-adjusted numbers). Solvation effects, however, have important energetic
consequences, favoring structures with large molecular dipoles, and can play a pivotal
role in adjusting the balance between structural alternatives which are otherwise closely
matched energetically.

2.1.1. S2
•− and S3

•−

Like molecular oxygen, the diatomic molecule S2 possesses a triplet ground state [57].
Addition of an electron to one of the two half-filled πg* orbitals, to afford the 2Πg radical
anion S2

•−, leads to an elongation of the S–S bond, calculated here = 1.996 Å. Attachment
of a third sulfur introduces the possibility of structural options for S3

•−, namely linear
(D∞h), equilateral and isosceles triangular (D3h and C2v, respectively); the last is established

3
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as the energetically preferred. Structural parameters calculated here for the 2B1 state, an
S–S bond distance of 1.984 Å and inter-bond angle of 115.7◦, are consistent with previous
estimates [58,59].

2.1.2. S4
•−

Based on both experimental and theoretical evidence [48,49,60] the geometry of a
discrete neutral S4 molecule displays C2v symmetry, consisting of a planar broken-ring
structure with one “long” S–S bond, calculated here = 3.222 Å. The most appealing option
for the corresponding S4

•−anion is also a planar C2v structure (Figure 1a), akin to the
neutral form but with the “long” S–S bond further stretched (calculated here = 3.505 Å).
However, a C2h isomer (Figure 1b), generated from the C2v by a 180◦ rotation about the
central S–S linkage, is also possible.
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Frequency calculations confirm that both the C2v (cis) and C2h (trans) forms are true
energetic minima, the latter being slightly more stable in the gas phase. But the energetic
competition between the two ceases upon inclusion of PCM (=DMF) solvation, with the
centrosymmetric (µ = 0) C2h isomer rising relative to the C2v form by nearly 10 kJ mol−1.
The presence of both isomers in solvents with a low dielectric constant may nonetheless
be possible. Other structures, based on closed rings, have been explored by previous
workers and found to be energetically much more high-lying. Re-examination here of these
variants, none of which represents a true energetic minimum, indicates the centrosymmetric
(µ = 0) D2h modification (Figure 1c), formed by a Jahn–Teller distortion of a putative D4h
geometry [61], is the most stable of the closed-ring group, although it still lies well above
the C2v form and, with the inclusion of PCM, its relative energy rises even higher.

2.1.3. S5
•−

While the structure of neutral S5 is unknown, an open envelope-like or chair shape with
Cs symmetry has been predicted in previous studies [62,63], with the S–S bond bisected by
the mirror plane slightly elongated. We concur with this result, and calculate the unique S–S
distance = 2.157 Å. The apparent weakening may be attributed, in valence bond parlance, to
lone-pair repulsion arising from the eclipsed alignment of the two neighboring S–S bonds.
One-electron reduction to the radical anion S5

•− leads to a variety of structural alternatives,
the most obvious involving complete separation (to 4.095 Å) of the already weakened
mirror-bisected linkage, to afford the distorted Cs chair illustrated in Figure 2a. Vibrational
analysis confirms that the optimized structure represents a true energetic minimum and, as
indicated by the associated Mulliken charge densities, negative charge is heavily localized
on the two sulfurs associated with the “broken” bond. As expected, charge polarization,
and its impact on the molecular dipole, increases with the inclusion of PCM (Table S1).

4



Molecules 2023, 28, 5654

Molecules 2023, 28, x FOR PEER REVIEW 5 of 22 
 

 

in Figure 2a. Vibrational analysis confirms that the optimized structure represents a true 
energetic minimum and, as indicated by the associated Mulliken charge densities, nega-
tive charge is heavily localized on the two sulfurs associated with the “broken” bond. As 
expected, charge polarization, and its impact on the molecular dipole, increases with the 
inclusion of PCM (Table S1). 

 
Figure 2. (U)PBE0/D3/def2-QZVP optimized geometries (distances in Å) for S5•−, with Mulliken 
charges (in italics) and dipole moments µ (in Debye). Relative gas phase and PCM (=DMF) corrected 
total energies Erel are in kJ mol−1. 

Open-chain structures for S5•− are also possible; several variants have been explored 
by previous workers, but in our hands these all gravitate on optimization towards the 
twisted chain (C2 symmetry) minimum shown in Figure 2b. It is almost co-energetic with 
the Cs chair, perhaps not surprisingly as the two structures are interconvertible by a 180° 
rotation of one of the terminal bonds. However, by virtue of the lower dipole moment of 
the open-chain form, a substantial gap opens with the inclusion of PCM. In addition, we 
have considered two “forced” planar modifications, one being the cis-cis C2v geometry 
shown in Figure 2c. While it does not represent a stable minimum, and its relative energy 
is substantially higher than the related Cs chair, its electronic structure provides a useful 
conceptual link (vide infra) to the shorter chain anions (n = 2–4). For the corresponding 
cis-trans isomer, which is isostructural with the closed shell SSNSS− anion [63,64], the en-
ergy gap is considerably less, both in the gas phase (26.1 kJ mol−1) and in DMF (32.6 kJ 
mol−1), but is still not a true minimum. 

2.1.4. S6•− 
Here we have the unique advantage of experimental structural information on both 

the neutral molecule and its radical anion. The cyclic, chair-shaped structure of S6, with 
D3d symmetry and all neighboring bonds staggered, has been characterized crystallo-
graphically [65]; the observed S–S distance = 2.057(18) Å compares well with the value 
calculated here = 2.054 Å (Figure 3). In the corresponding radical anion S6•−, identified in 
the crystal structure of the tetraphenylphosphonium salt [Ph4P][S6], the cyclic chair shape 
is retained (Figure 3a), despite some disorder, but with two elongated S–S bonds = 2.634(4) 
Å [47]. In their report, however, the authors cautioned that the apparently high molecular 
symmetry (C2h) observed for the anion might be dictated by the high lattice symmetry 
(space group C2/c), and provided BP86/TZ2P results indicating that a distorted chair 
structure (Figure 3b) with C2 symmetry was actually more stable. 

From a theoretical perspective, one-electron reduction of the high-symmetry geome-
try of neutral S6 gives rise to an orbitally degenerate ground state for the resulting radical 
anion S6•−. Thus, when using D3h symmetry constraints as a starting point for a geometry 
optimization, the symmetric chair immediately breaks symmetry and undergoes a first-
order Jahn–Teller distortion [61] to C2h symmetry, affording two elongated S–S bonds, cal-
culated here = 2.357 Å (Figure 3a), somewhat shorter than that observed experimentally. 

Figure 2. (U)PBE0/D3/def2-QZVP optimized geometries (distances in Å) for S5
•−, with Mulliken

charges (in italics) and dipole moments µ (in Debye). Relative gas phase and PCM (=DMF) corrected
total energies Erel are in kJ mol−1.

Open-chain structures for S5
•− are also possible; several variants have been explored

by previous workers, but in our hands these all gravitate on optimization towards the
twisted chain (C2 symmetry) minimum shown in Figure 2b. It is almost co-energetic with
the Cs chair, perhaps not surprisingly as the two structures are interconvertible by a 180◦

rotation of one of the terminal bonds. However, by virtue of the lower dipole moment of
the open-chain form, a substantial gap opens with the inclusion of PCM. In addition, we
have considered two “forced” planar modifications, one being the cis-cis C2v geometry
shown in Figure 2c. While it does not represent a stable minimum, and its relative energy
is substantially higher than the related Cs chair, its electronic structure provides a useful
conceptual link (vide infra) to the shorter chain anions (n = 2–4). For the corresponding cis-
trans isomer, which is isostructural with the closed shell SSNSS− anion [63,64], the energy
gap is considerably less, both in the gas phase (26.1 kJ mol−1) and in DMF (32.6 kJ mol−1),
but is still not a true minimum.

2.1.4. S6
•−

Here we have the unique advantage of experimental structural information on both
the neutral molecule and its radical anion. The cyclic, chair-shaped structure of S6, with
D3d symmetry and all neighboring bonds staggered, has been characterized crystallograph-
ically [65]; the observed S–S distance = 2.057(18) Å compares well with the value calculated
here = 2.054 Å (Figure 3). In the corresponding radical anion S6

•−, identified in the crystal
structure of the tetraphenylphosphonium salt [Ph4P][S6], the cyclic chair shape is retained
(Figure 3a), despite some disorder, but with two elongated S–S bonds = 2.634(4) Å [47].
In their report, however, the authors cautioned that the apparently high molecular sym-
metry (C2h) observed for the anion might be dictated by the high lattice symmetry (space
group C2/c), and provided BP86/TZ2P results indicating that a distorted chair structure
(Figure 3b) with C2 symmetry was actually more stable.

From a theoretical perspective, one-electron reduction of the high-symmetry geometry
of neutral S6 gives rise to an orbitally degenerate ground state for the resulting radical
anion S6

•−. Thus, when using D3h symmetry constraints as a starting point for a geom-
etry optimization, the symmetric chair immediately breaks symmetry and undergoes a
first-order Jahn–Teller distortion [61] to C2h symmetry, affording two elongated S–S bonds,
calculated here = 2.357 Å (Figure 3a), somewhat shorter than that observed experimen-
tally. However, as observed earlier, while this centrosymmetric C2h structure represents
a stationary point it is not an energy minimum. Upon release of symmetry constraints, it
undergoes a second-order distortion to the C2 modification (Figure 3b), in which one of
the two elongated S–S bonds in the C2h geometry stretches further to 2.823 Å, a result in
accord with the earlier DFT work [47]. By our calculations the energy difference between
the C2h and C2 structures is large (22.5 kJ mol−1), even in the gas phase, and increases to
27.5 kJ mol−1 with the inclusion of PCM (µ = 0 in the C2h form).
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In addition to the nominally closed-ring variants for S6
•− several open chain options

have been considered. Of these, we find the lowest energy C2 structure (Figure 3c), which
can be converted into the quasi-cyclic form by a ca. 180◦ rotation about the central S–S bond,
constitutes a true minimum. Predictably, in the gas phase the total energies of the two
rotamers are almost identical, but in accord with the low dipole moment of the open chain
form the balance changes sharply in favor of the ring structure when the PCM is included.

2.1.5. S7
•−

Neutral S7 possesses a chair-like structure with Cs symmetry [66,67], with the unique
mirror-bisected bond lengthened to 2.18 Å (calculated here = 2.171 Å) by the effects of
lone-pair repulsion occasioned by the eclipsed alignment of the neighboring bonds, as seen
in c-S5. In the structure of the global energetic minimum for S7

•− the cyclic chair motif
found in the neutral molecule is retained, but the already weakened mirror-bisected linkage
is lengthened to 2.946 Å in the radical anion (Figure 4a), with the associated Mulliken
charge densities heavily localized on the two sulfurs linked by the weakened bond.
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Not surprisingly, a boat-shaped conformation (Figure 4b), in which the unique S–S
bond is a little longer (3.183 Å) than in the chair, is also possible. This feature may be of
relevance to optical properties, as its relative energy lies only slightly above that of the chair
in both the gas phase and solution, so that the two conformers may coexist in equilibrium
in solution. Outside of this pair of quasi-cyclic structures there is an open chain variant
with C2 symmetry (Figure 4c). It represents a local energy minimum, but is significantly
less stable than the chair/boat structures in the gas phase, the gap increasing when PCM
is invoked.
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2.1.6. S8
•−

The eight-membered ring found in orthorhombic α-sulfur displays a classic crown
conformation with D4d symmetry, with all neighboring bonds (measured at 2.055(2) Å,
calculated here = 2.044 Å) mutually staggered [68]. The structural changes accompanying
formation of S8

•− follow a similar pattern to that seen for S6
•−. Addition of an electron to

the cyclo-S8 in D4d symmetry affords a degenerate ground state for the resulting radical
anion, thereby setting up a first order Jahn–Teller distortion [61], which in this case affords
the “squeezed” C2v crown geometry shown in Figure 5a.
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charges (in italics) and dipole moments (µ) in Debye. Relative gas phase and PCM (=DMF) corrected
total energies Erel are in kJ mol−1.

While this high-symmetry structure is not an energy minimum, the possibility of trap-
ping it in a crystal lattice, as in the case of the C2h form of S6

•−, is worthy of consideration.
That being said, upon release of all symmetry constraints the C2v structure evolves into
a C2 variant (Figure 5b) which, like the C2 structure of S6

•−, displays one elongated S–S
bond, calculated here = 2.771 Å. Outside of distorted crown geometries, there are few
energetically viable alternatives. Of these, the open-chain C2-symmetry motif (Figure 5c)
represents the only true minimum, but its energy lies well above that of the C2 crown.
Given its relatively low polarity, inclusion of PCM further widens the energy gap.

In summary, the smaller members (n = 3, 4) of the polysulfide radical anion family
adopt open chain structures, in part because they have no choice, as there is too much
ring strain in the cyclic alternatives. That being said, when alternatives exist, as in the C2v
(cis) and C2h (trans) options for S4

•−, solvent effects may well dictate the outcome, with
the non-centric cis isomer being preferred in polar solvents and the centric trans isomer
possibly being viable in non-polar solvents. For medium-sized rings, i.e., n = 5, 6, closed or
broken-ring structures compete with open-chain variants, and again the choice may depend
upon the polarity of the solvent employed, with polar environments or lattice constraints
(for n = 6)) favoring the cyclic or quasi-cyclic modifications. In the following sections we
focus on the structures most likely preferred in the latter environments. Finally, when
n = 7 and 8, the stability of the cyclic structures clearly outranks the open-chain alternatives,
regardless of solvent effects. Dynamic equilibria between cyclic and acyclic forms are
unlikely, a conclusion which may have consequences for the mechanism of formation of
S8

2− [39].

2.2. Electronic Spectra

Using the polar-medium preferred geometries afforded by the unrestricted DFT calcu-
lations described above, single point TD-DFT calculations were performed on the radical
anions Sn

•− (n = 2–8), to explore the number, nature and energies of the possible electronic
excitations. A compilation of the relevant states, dominant orbital transitions, frequencies
ν, wavelengths λ and oscillator strengths f is provided in Table 1.
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Table 1. TD-DFT electronic excitations for Sn
•− (n = 2–8).

n in Sn•− State Excitation a State ν, eV λ, nm f

2 (D∞h) 2Σg 15β→ 17β 2Σu 3.177 390.3 0.0891

3 (C2v) 2B1 24β→ 25β 2B2 2.059 602.1 0.0920

4 (C2v)
2A2 32β→ 33β 2B2 1.242 998.3 0.0722
2A2 29β→ 33β 2A1 3.533 351.0 0.0286

4 (C2h)
2Bg 32β→ 33β 2Bu 0.954 1299.5 0.0930
2Bg 29β→ 33β 2Ag 3.578 346.6 0.0000 b

5 (C2v)

2B1 40β→ 41β 2B2 0.716 1732.3 0.0734
2B1 38β→ 41β 2A1 2.583 479.9 0.0332
2B1 39β→ 42β 2A1 3.519 352.4 0.1258

5 (Cs)

2A′′ 40β→ 41β 2A′′ 0.685 1809.6 0.0589
2A′′ 38β→ 41β 2A′′ 1.940 638.2 0.0540
2A′′ 37β→ 41β 2A′′ 2.653 467.4 0.0158

6 (C2h) Bg 49α→ 50α Au 1.231 1007.3 0.0445
Bg 48β→ 49β Bg 1.978 627.5 0.0000 b

6 (C2)
2B 48β→ 49β 2B 1.495 829.6 0.0611
2B 46β→ 49β 2B 2.283 543.1 0.0308

7 (Cs chair) 2A′′ 56β→ 57β 2A′′ 1.749 708.7 0.1637

7 (Cs boat) 2A′′ 56β→ 57β 2A′′ 1.435 863.9 0.1729

8 (C2
crown)

2B 64β→ 65β 2B 2.104 589.3 0.1551

a Dominant spin-orbital transitions from unrestricted TD-UωB97X-D/PCM/def2-QZVP calculations, with
PCM = DMF. b Electric dipole forbidden.

As when dealing with geometrical trends, presentation and discussion of the results
is developed according to the value of n, beginning with the three short-chain anions
(n = 2–4), where the electronic excitations are all clearly π→ π*. From there on (n = 5–8)
the non-planar, distorted or broken-ring geometries militate against the use of conventional
σ/π symmetry descriptors which usually aid with band assignments, but for n = 5 the
calculated spectrum can still be rationalized by extension of the simple π-only model.
Finally, the single elongated S–S linkages found in the quasi-cyclic structures (n = 6–8), which
are broadly consistent with localized two-center three-electron (2c-3e) bonds, reminiscent of
those found in transient organic disulfide radical anions (RS-SR)•− [69,70], give rise to low
energy excitations that are best described as σ→ σ* processes within the 2c-3e manifold.

2.2.1. Sn
•− (n = 2–4)

The origin of the electronic excitations in the short-chain radical anions Sn
•− (n = 2–4)

can be readily understood with reference to the manifold of π-orbitals predicted by the
classical Hückel molecular orbital (HMO) linear chain model [71,72], using linear arrays of
overlapping sulfur 3p-orbitals as a basis set. For such systems the eigenvalues ej are given
by the analytical expression ej = α + 2β cos (jπ/N + 1), where α and β are the respective
Coulomb and resonance parameters, and N is the number of orbitals (atomic centers) in the
chain. Schematic plots of the resulting π-energy levels and MOs are illustrated in Figure 6.
Within this framework, a single π → π* excitation ν1 is expected for the diatomic anion
S2
•−, with a slightly lower energy nπ→ π* transition ν1 anticipated for the triatomic chain

S3
•−. Extrapolation to planar open chain S4

•− systems suggests two excitations ν1 and ν2
are possible. Of these, ν1 is predicted to occur at still lower energy, and its magnitude can
be estimated by calibration against the known value of ν1 for S3

•− (λmax = 615–620 nm in
DMF or HMPA) [73]. Based on this simple model the first transition ν1 in both isomers of
S4
•−is predicted to shift well beyond the visible region. For the cis (C2v) isomer a second
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excitation ν2 is anticipated towards the UV region, while for the trans (C2h) form ν2 should
not be observed at all, as it is symmetry-forbidden (g→ g).
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The TD-DFT calculations refine the qualitative predictions of the HMO model, con-
firming the nature of the expected transitions (Figure 7) and affording numerical estimates
for the π→ π* excitation energies involved for both the cis (C2v) and trans (C2h) isomers.
Calculated spectra for Sn

•− (n = 2–4) are shown in Figure 8.
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The close correspondence between experimental λmax values for n = 2 (~400 nm) [18]
and n = 3 (615–620 nm in DMF or HMPA) [73] and those predicted by TD-DFT (Table 1)
provide strong support for the choice of functional, and hence confidence in the calculated
values for n = 4. The results for n = 4 are also in good qualitative agreement with those
reported earlier [48,49], and thus help clarify some of the controversies surrounding the
spectrophotometric identification of putative S4

•− species. For both the cis and trans
isomers, the first transition (ν1, 32β→ 33β) lies at or beyond the edge of the visible region
(998 nm and 1300 nm, respectively), and for the cis isomer the second (ν2, 29β→ 33β) is
predicted to have λmax = 351 nm, placing it relatively close to S2

•− and also many closed-
shell dianionic species, e.g., S3

2− [42], as well as other radical anions, e.g., S5
•− (vide infra),

from which it would be hard to distinguish. For the trans isomer, the second transition
(ν2, 29β → 33β) is symmetry-forbidden and has zero oscillator strength (f = 0). It will
therefore display no signature at all in the visible region, regardless of its concentration
in solution. In this light, assertions that S4

•− has “never been observed” [39,43] by time-
resolved spectroelectrochemistry perhaps deserve a second thought; absence of evidence is
not evidence of absence.

2.2.2. S5
•−

TD-DFT analysis of the optical properties of S5
•−, using the coordinates of the chair-

shaped Cs structure identified above as the most stable in polar media, affords an electronic
spectrum (Figure 9) consisting of a series of bands spread across the entire visible and
near-IR regions. However, in contrast to the three short-chain anions already discussed, the
chair geometry of S5

•− is not planar (although the molecule is bisected by a mirror plane),
as a result of which rigorous characterization of individual orbitals and excitations between
them according to their reflection symmetry in that plane, the classical σ/π classification,
is no longer possible.
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HWHM = 0.18 eV; band assignments in Table 1.

To resolve this difficulty, we examined the orbital make-up and electronic excitations
found for the hypothetical planar variation with C2v symmetry. While it is considerably less
stable than the Cs form, by virtue of increased lone-pair repulsions, its higher symmetry
allows for a clearer evaluation of its spectral signature, particularly in relation to the HMO
open-chain model developed above. Indeed, it is immediately apparent by inspection of
the frontier orbitals illustrated in Figure 10 that excitations 40β→ 41β and 38β→ 41β listed
in Table 1 correspond to the two lowest energy π → π excitations ν1 and ν2 predicted
by the HMO linear chain model with N = 5 (Figure 6). As expected, ν1 lies deep into
the near-IR (λmax = 1732 nm), extending the shift to lower energy seen in cis and trans
S4
•− (λmax = 998 and 1299 nm, respectively), with ν2 likewise red-shifted to λmax = 478 nm

(from 351 nm in cis S4
•−). The third, very intense excitation, from 39β → 42β, with
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λmax = 352 nm, is not related to the chain model, nor even to a π → π transition, but
is rather a lone-pair σ → σ process arising from the artificially enforced planarity of
the structure.

Molecules 2023, 28, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 9. Calculated electronic spectrum of S5•− in DMF, in C2v and Cs symmetry, with HWHM = 
0.18 eV; band assignments in Table 1. 

To resolve this difficulty, we examined the orbital make-up and electronic excitations 
found for the hypothetical planar variation with C2v symmetry. While it is considerably 
less stable than the Cs form, by virtue of increased lone-pair repulsions, its higher sym-
metry allows for a clearer evaluation of its spectral signature, particularly in relation to 
the HMO open-chain model developed above. Indeed, it is immediately apparent by in-
spection of the frontier orbitals illustrated in Figure 10 that excitations 40β → 41β and 38β 
→ 41β listed in Table 1 correspond to the two lowest energy π → π excitations ν1 and ν2 
predicted by the HMO linear chain model with N = 5 (Figure 6). As expected, ν1 lies deep 
into the near-IR (λmax = 1732 nm), extending the shift to lower energy seen in cis and trans 
S4•− (λmax = 998 and 1299 nm, respectively), with ν2 likewise red-shifted to λmax = 478 nm 
(from 351 nm in cis S4•−). The third, very intense excitation, from 39β → 42β, with λmax = 
352 nm, is not related to the chain model, nor even to a π → π transition, but is rather a 
lone-pair σ → σ process arising from the artificially enforced planarity of the structure. 

 
Figure 10. Correlation of spin-restricted TD-DFT frontier orbitals and electronic excitations for S5•− 
in C2v and Cs symmetry. 

With this information in hand, the origin of the optical signature of the Cs form 
emerges. The three lowest-lying states can each be described in terms a single dominant 
excitation from one of the doubly occupied molecular orbitals to the singly occupied mo-
lecular orbital (SOMO), that is, the lowest unoccupied molecular orbital (LUMO) for the 
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•−

in C2v and Cs symmetry.

With this information in hand, the origin of the optical signature of the Cs form
emerges. The three lowest-lying states can each be described in terms a single dominant
excitation from one of the doubly occupied molecular orbitals to the singly occupied
molecular orbital (SOMO), that is, the lowest unoccupied molecular orbital (LUMO) for the
unrestricted β-spins listed in Table 1. Moreover, correlation of the orbitals for the C2v and
Cs geometries confirms that the HMO chain model still applies, albeit more loosely because
of the loss of planarity and consequent σ/π mixing. Thus, while the ordering of orbitals
40 and 41 is reversed, the first excitation, 40β→ 41β (λmax = 1810 nm) can be considered
a quasi- π → π transition related to ν1 in the HMO model. The next two, 38β → 41β
(λmax = 638 nm) and 37β→ 41β (λmax = 467 nm), also involve heavily hybridized orbitals,
but both are quasi- π→ π processes that can be traced back to ν2. The higher energy (>3 eV)
absorptions comprise a series of less well-defined states arising from multiple excitations
(see Table S2).

2.2.3. S6
•−

Addressing the optical properties of the S6
•− anion presents a quandary. The crystal-

lographic evidence indicates a symmetric chair structure with C2h symmetry, while DFT
optimizations point towards a distorted C2 version. There are merits to both positions.
In solution, and in the absence of environmental constraints, the lower-symmetry C2 ge-
ometry is probably preferred, but the high space group symmetry of the [Ph4P][S6] salt
appears to hold the chair in the higher-symmetry C2h form. In that light we have per-
formed TD-DFT calculations on both options, using geometries taken from the respective
structural optimizations.

As a first step, however, we focus on a qualitative model for describing the two
elongated bonds in the symmetric structure. Building on the ideas developed earlier
by Dehnicke and coworkers [47], Figure 11a illustrates the two strongly coupled σ and
σ* orbitals arising from combinations of two S3 fragments. A second-order Jahn–Teller
distortion from C2h to C2 will give rise to mixing of the bg SOMO and bu LUMO, and a
widening of the energy gap between them. Figure 11b refines this model, by showing the
relevant spin-restricted Kohn–Sham orbitals and eigenvalues for the C2 structure, that is,
two heavily hybridized, but basically S–S σ-bonding, occupied orbitals (46 and 48), and a
more localized σ*-orbital (49).
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Figure 11. (a) Sketch of frontier orbital energies following distortion of S6
•− from C2h to C2 symmetry.

(b) Spin-restricted TD-DFT frontier orbitals and electronic excitations for S6
•− in C2 symmetry.

Given this conceptual framework, the optical signatures predicted for the two ge-
ometries are readily explained. As shown in Figure 12, the C2h structure displays a single
well-resolved band with λmax = 1007 nm, which corresponds not to electron promotion
from the HOMO to the SOMO, which is symmetry-forbidden (g→ g) in C2h, but rather
to the SOMO-to-LUMO excitation shown in Figure 11a (49α→ 50α, Table 1). In addition,
there are a series of less well-defined states that give rise to a broad absorption that extends
into the UV region.
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Figure 12. Calculated electronic spectrum of S6
•− in DMF, in C2h and C2 symmetry, with

HWHM = 0.18 eV; band assignments in Table 1.

For the distorted C2 symmetry structure, the excited state manifold is quite different.
Two bands are predicted in the visible and near-IR region (λmax = 543 nm and 830), which
arise primarily from the (now allowed) excitations, 46β→ 49β and 48β→ 49β (Table 1),
from occupied orbitals to the SOMO, both of which are essentially σ→ σ* processes. As in
the case of the C2h geometry, there is a broad band extending into the UV region associated
with a series of higher energy but less well-defined states.

In summary, the optical properties of both variations of the S6
•− radical anion are

associated with transitions associated with the lengthened S–S σ-bonds. In both its excited
and ground states, the S6

•− radical anion behaves like a cyclic molecule.
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2.2.4. S7
•− and S8

•−

The two largest radical anions (n = 7 and 8) are the easiest to analyze, as the structural
perturbations occasioned by addition of an electron to the parent homocycles are small.
Based on the structural parameters provided by the DFT optimizations of the chair and
boat conformers of S7

•−, both of Cs symmetry, and of the C2 distorted crown geometry of
S8
•−, all three rings experience a lengthening of one of the S–S bonds, an effect which can

best be described in terms of the formation of a largely localized 2c-3e σ-bond.
The TD-DFT calculations reinforce this picture, providing a description for the first

excited state which involves promotion of an electron between the associated σ- and σ*-
orbitals of the 2c-3e manifold, that is, the β-spin HOMO and LUMO of the two conformers
of S7

•− (56β→ 57β) and those of S8
•− (64β→ 65β) shown in Figure 13. These transitions

give rise to single bands with large oscillator strength in the low-energy visible or near-IR
region (Figure 14). As expected, there is a notable difference between the band maxima of
the chair (λmax = 709 nm) and boat (λmax = 864 nm) conformations of S7

•− which can be
traced back to the longer S···S separation found in the latter (Figure 4).
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•−,
with HWHM = 0.18 eV; band assignments in Table 1 and Table S2.

The higher transition energy predicted for S8
•− (λmax = 589 nm) can be attributed to

a similar effect, the shorter S···S separation stemming from the mutual staggering of the
neighboring bonds and consequent relief from the effects of lone-pair repulsion. Secondary,
less intense absorptions, with λmax = 474 nm (S8

•−), 358 nm (S7
•−, chair) and 435 nm (S7

•−,
boat), are also predicted. These are associated with poorly defined, higher-lying states
(Table S2), but their presence may aid in identification. That being said, the strong low

13



Molecules 2023, 28, 5654

energy σ→ σ* excitation, which dominates the spectrum of all three species, represents the
most distinguishing optical feature.

3. Discussion

As indicated in the introduction, there are considerable differences of opinion as to
when and where the radical anions Sn

•− (n = 4–8) might be found. While their participation
in the multistep redox equilibria associated with the operation of sulfide/polysulfide
photoconductor cells, alkali-metal/sulfur batteries, as well as in many biological and
organic transformations, is frequently implied, their identification in these complex systems
has, not surprisingly, proved elusive. Equally, extensive and detailed spectroscopic and
spectroelectrochemical studies, utilizing a wide range of techniques (optical, IR, Raman,
EPR spectra), have been unable to provide decisive answers.

The purpose of the present work has been two-fold. Firstly, the most stable structures
of the putative radical anions Sn

•− (n = 4–8) in polar solvents have been identified using
high-level DFT methods. Secondly, TD-DFT calculations, performed on the most stable
structural candidates, have been used to map out the number, nature and energies of the
photochemically accessible excited states for these species. Critical to the validity of this
latter step was the ability to assess the numerical reliability of the methods used (choice of
LC-functional for TD-DFT work) by comparison of the predicted excitation energies with
experimental values for the well-known radical anions S2

•− and S3
•−. Even so, we neither

expect nor claim that the present TD-DFT calculated transition energies will provide a
perfect match with experiment for the larger members of the series, especially for the low-
energy (near-IR and beyond) excitations. Taken together, however, the results on the entire
series of anions Sn

•− (n = 2–8) provide a frame of reference for distinguishing between
different members of the family. Equally important, from an interpretational viewpoint,
has been the use of the classical one-electron HMO chain model [74,75] to anticipate both
the number and approximate energies of π→ π transitions, again using S2

•− and S3
•− as

reference points. The TD-DFT results suggest that the calculated spectra for S4
•−, and

even S5
•−, can be effectively rationalized by this approach. By contrast, the low energy

excitations predicted for the essentially cyclic structures of Sn
•− (n = 6–8) are best described

in terms of σ→ σ* processes within a relatively localized 2c-3e manifold.
The availability of this information opens the door to the design of experimental strate-

gies for the generation, observation and perhaps even isolation of the radical anions Sn
•−

(n = 4–8). We begin by considering the seminal 1991 report by Rauchfuss and coworkers
on the structure and spectroscopic properties of the open-chain octasulfide dianion S8

2−

in the absence of counterion pairing effects [48]. As noted earlier, these authors attributed
the strong band with λmax = 618 nm that emerged upon dilution of a solution of [Mn(N-
MeIm)6][S8] (N-MeIm = N-methylimidazole) in N-MeIm to the presence of the radical
anion S3

•−. At the time they rationalized the generation of S3
•− in terms of a dispropor-

tionation of S8
2− to 1

4 S8 and S6
2−, and subsequent dissociation of the latter, following

the conventional interpretation of the electrochemistry community [35,49]. Other radical
anions, notably Sn

•− (n = 4, 5), were not included in the analysis, in part because their opti-
cal signatures were unknown. Given the present TD-DFT results, however, the potential
involvement of these seemingly missing radical anions can be examined. In particular, we
consider the possibility that both might be formed, along with S3

•−, by either symmetric or
asymmetric dissociation of the S8

2− dianion, as indicated in Scheme 1. In addition to the
overall thermodynamics of such processes [43], mechanistic considerations may also be
important—how easy is it to rupture the distinct S–S bonds along the chain? In response
to this question, we suggest that dissociation may proceed via four-center intermediates,
as illustrated in Scheme 2. Indeed, in the case of symmetric dissociation, an example of a
four-center π-dimer has been characterized crystallographically [21].
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Scheme 2. Symmetric and asymmetric dissociation of S8
2− to the radical anions Sn

•− (n = 3, 4, 5).

As an example of the spectroscopic ramifications of this interpretation, we compare in
Figure 15 the experimental spectrum for the highly diluted solution of S8

2−, as reported
by Rauchfuss, with an equally weighted composite of the TD-DFT calculated spectra for
S3
•− and S5

•−, the two products of an asymmetric dissociation. In the mid-range visible
region, the correspondence is remarkable, not only in terms of the overlap and coalescence
of the two bands calculated for n = 3, 5, but also the presence of the weaker band near
480 nm which, on the present basis, may be assigned to n = 5 (calculated λmax = 467 nm).
Below 400 nm the match is less than ideal, but could be improved by inclusion into the
composite of cis S4

•− (calculated λmax = 351 nm), the unique symmetric dissociation product.
Alternatively, these higher energy absorptions may arise from undissociated S6

2−. That
being said, the absence of bands attributable to S2

•− or S6
•− suggests dissociation of S8

2−

into these species does not occur to any great extent.
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By itself, this single spectral deconvolution exercise does not constitute proof for mul-
tiple dissociation pathways, but critical support for the concept could be readily achieved
by inspection of the near-IR region of dilute solutions of S8

2−, where one or both of the
low-energy (ν1) bands of S4

•− and S5
•− should be present. Moreover, similar spectroscopic

analysis at high dilution of solutions of salts of the known hepta- and hexasulfide dianions
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S7
2− and S6

2− should reveal predicable patterns of radical anions, the former affording
S3
•− and S4

•− (but possibly not S5
•−) and the latter specifically S3

•−; indeed, for S6
2− this

result has already been confirmed [48]. In the same way, observation of the cyclic radical
anions Sn

•− (n = 6–8) may be possible, by examination of highly diluted solutions of long
chain dianions such S10

2− [49] and S12
2− [50].

In addition to routes to the radical anions which rely solely on dissociative equilibria
between radical anions and closed-shell dianions, direct chemical synthesis may be possible,
as in the case of the radical anion salt [Ph4P][S6], which was prepared by the rather unusual
reaction of H2S and Me3SiN3 in the presence of [Ph4P][N3] [52]. If this procedure could
be adapted to incorporate the use of other bulky cations, e.g., PPN+, different crystal
morphologies might be generated. That being the case, would the structure of the resulting
anion be constrained to C2h symmetry, as in [Ph4P][S6], or display the more stable distorted
C2 shape? Even in the solid state, the expected optical signatures (Figure 12) are predicted
to be quite different. Alternatively, not only S6

•− but also S7
•− and S8

•− could be accessible
by electrochemical reduction of the appropriate neutral allotrope [76–78]. The latter two
anions have very distinct optical profiles, although we add the caveat that the footprint of
S8
•− may easily be confused with that of S3

•−.
Chemical reduction methods, for example using organometallic reducing agents such

as cobaltocene, which is known to afford salts of closed [79] and open shell anions [80] with
sulfur-based electron acceptors, may also provide access to salts of S8

•−. In this connection
Woollins et al. obtained the salt [Cp2Co][S3N3] from the reaction of S4N4 with cobaltocene
in THF [81]. This transformation probably involves the initial generation of the radical
anion S4N4

•−, known from electrochemical studies to be formed by one-electron reduction
of S4N4, which then undergoes ring contraction to produce S3N3

− [77].
Just as chemical oxidation of cyclo-S8 has afforded the radical cation S8

•+ [78], treat-
ment of salts of the dianions S7

2− [82] and S8
2− [47,48] with mild oxidants, e.g., iodine or

N-bromosuccinimide, might well yield the corresponding radical anions S7
•− and S8

•−. An
alternative to chemical oxidation is the use of photolysis to generate polysulfide radical an-
ions from the corresponding dianions. This approach is based on the recent work of Chiba
and co-workers on the production of polysulfide radical anions Sn

•− (n = 3, 4) [25–27] via
photolysis of the polysulfide dianion S4

2−, as well as on insights provided by investigations
into the photoelectrochemical oxidation of S2− by metal-sulfide quantum dots [14,15].

Last, but not least, we acknowledge the role that serendipity has played in the ad-
vancement of the chemistry of polysulfide radical anions. For example, the procedures used
to achieve the isolation and characterization of S6

•− [52] and of the π-dimer of S4
•− [21]

would have been difficult to predict a priori, but their somewhat fortuitous discovery
strengthens the conviction that continued exploration will yield new insights. Towards that
end the present results may prove useful.

4. Computational Methods

Unrestricted density functional theory (DFT) calculations were performed with the
Gaussian 16 suite of programs [74], using the default ultrafine integration grids. Geom-
etry optimizations employed the hybrid-adapted Perdew–Burke–Ernzerhof functional
(PBE0) [75,83] and Ahlrichs’ quadruple-ξ valence def2-QZVP basis set [84], without addi-
tional diffuse functions [85] but with Grimme’s empirical correction (D3) [81,86] included to
account for possible dispersion effects [87]. For most anions several geometries, both cyclic
and acyclic, were considered, and wherever a stationary point was located a full vibrational
analysis was performed to determine whether or not it corresponded to a true energy
minimum. Preferred geometries were further optimized with the inclusion of the polarized
continuum model (PCM) [88] to account for the effects of solvation, dimethylformamide
(DMF) being set as a representative polar solvent. Listings of total energies, vibrational
frequencies and cartesian coordinates, with and without PCM, are provided in the SI.

The optical properties of the polysulfide radical anions were explored using single
point unrestricted time-dependent (TD) DFT calculations, with the same def2-QZVP basis
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set and PCM included. The use of several long range corrected (LC) functionals, which
are known to provide reasonable estimates of low energy (charge transfer, Rydberg-like)
excitations in molecular species [89,90], including radicals [91] and sulfur-containing rad-
ical anions [92], was explored. The best results, reported here, employed the empirical
dispersion-corrected density functional ωB97XD [93], which is well recognized for its
overall performance [94]. All tabulated excitation energies refer to spin-unrestricted cal-
culations, but for ease of visualization some of the orbital energy diagrams are based
on spin-restricted wavefunctions. All spectral plots, prepared using Gaussview 6 [95],
employed Gaussian band shapes with the half-width at half maximum (HWHM) value
set at 0.18 eV. The associated extinction coefficients were derived using routines available
within Gaussview. Kohn–Sham wavefunctions were also plotted using Gaussview.

5. Conclusions

The DFT and TD-DFT calculations reported here represent the first comprehensive
attempt both to predict and to rationalize the optical properties of the entire family of
polysulfide radical anions Sn

•− (n = 2–8). Our results confirm earlier predictions [52,53]
that the first π → π transition for both the cis (C2v) and slightly less stable trans (C2h)
isomers of S4

•− should occur in the near-IR region. However, a second π→ π transition at
around 350 nm is expected for the cis isomer of S4

•−. Based on Seel’s early results [19,20],
a band near 490 nm has often been attributed to this species, but these conclusions are
questionable [3]. At least in dilute solution this band may originate from S5

•−, the most
stable form of which possesses an acyclic structure with Cs symmetry, and is predicted to
display three optical absorption bands, two in the visible and one in the near-IR region.

The S6
•− radical anion is an interesting and unique example of a polysulfide radical

anion that has been structurally characterized in the solid state. In the ion-separated
salt [Ph4P][S6] the anion displays a cyclic structure (C2h symmetry) with two long S–
S bonds [51], while DFT geometry optimization points to a distorted cyclic structure
(C2 symmetry) with one long S–S bond as a more stable arrangement. The predicted
electronic spectra for these two forms are very different, with λmax = 1007 nm vs. 830 and
543 nm, respectively.

To date the heptasulfide radical anion S7
•− has received scant attention, but the present

DFT results point to a cyclic structure with two energetically similar conformers, chair
and boat (Cs symmetry), both displaying one long S−S bond best described in terms of
a localized 2c-3e σ-interaction. Electronic excitation within this manifold gives rise to a
strong visible/near-IR absorption with calculated values of λmax = 709 nm and 864 nm for
chair and boat, respectively. The octasulfide radical anion S8

•−, which carries particular
significance as the initial product of the electrochemical reduction of cyclo-S8 [3], is also
predicted to possess a distorted cyclic structure (C2 symmetry) exhibiting, like S7

•−, a
single elongated 2c-3e S−S bond. The associated σ → σ* excitation generates a strong
visible absorption band with a calculated λmax = 589 nm.

Supplementary Materials: The following supporting information (21 pages total) can be down-
loaded at: https://www.mdpi.com/article/10.3390/molecules28155654/s1, Figure S1: Optimized
geometrical parameters; Table S1: Total electronic energies; Table S2: Excitation energies, oscilla-
tor strengths and orbital contributions; Tables S3–S11: Gaussian archive entries; Tables S12–S17:
Frequency calculations.
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Abstract: Sulfur-protected enantiopure P-chiral 1-phosphanorbornane silyl ethers 5a,b are obtained
in high yields via the reaction of the hydroxy group of P-chiral 1-phosphanorbornane alcohol 4 with
tert-butyldimethylsilyl chloride (TBDMSCl) and triphenylsilyl chloride (TPSCl). The corresponding
optically pure silyl ethers 5a,b are purified via crystallization and fully structurally characterized.
Desulfurization with excess Raney nickel gives access to bulky monodentate enantiopure phos-
phorus(III) 1-phosphanorbornane silyl ethers 6a,b which are subsequently applied as ligands in
iridium-catalyzed asymmetric hydrogenation of a prochiral ketone and enamide. Better activity and
selectivity were observed in the latter case.

Keywords: asymmetric hydrogenation; enantiopure; P-chiral phosphines; silylation

1. Introduction

Chiral phosphines play a pivotal role in asymmetric homogeneous catalysis [1–8].
P-stereogenic phosphines, a special class of chiral phosphines, have been well established in
catalysis ever since the pioneering work on asymmetric hydrogenation (AH) employing a
P-chiral ligand was introduced by Horner et al. [9] and Knowles et al. [10]. The development
of the privileged P-chiral ligand (ethane-1,2-diyl)bis[(2-methoxyphenyl)(phenyl)phosphane]
(DIPAMP) by Knowles and coworkers [11] led to the first industrial asymmetric hydrogena-
tion in the production of the drug L-3,4-dihydroxyphenylalanine (L-DOPA) used in the treat-
ment of Parkinson’s disease [12] (Figure 1). A few years later, Noyori, another Nobel prize
winner, and his group developed the axially chiral phosphine 2,2′-bis(diphenylphosphino)-
1,1′-binaphthyl (BINAP) [13] and showed that complexes with ruthenium were effective in
asymmetric hydrogenations of a wide range of olefins and carbonyl compounds [14–17].
Nowadays, AH is considered one of the most important enantioselective syntheses that
gives access to many important optically active compounds. Among the widely used
metals in such reactions, the iridium-catalyzed hydrogenations have been extensively
studied [18–22]. The symmetric Crabtree catalyst [23], the chiral P,N bidentate PHOX lig-
and developed by Pfaltz et al. [24–26] and BIPI ligands by Busacca et al. [27] are key
examples of Ir-based catalysts in hydrogenation reactions. The majority of the developed
procedures employ bidentate hetero-donor P,X (X = N, O) ligands as they were believed to
considerably influence enantioselectivities due to better chirality transfer [28–31]. Thus, the
reluctance to employ monodentate ligands in AH is understandable, especially given the
proven history of success with chelate ligands. However, evidence of high enantiomeric
excess (ee) values in AH achieved using monodentate ligands has been reported [32–35].
Despite the success of the published compounds in enantioselective catalysis, industry and
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academia are still searching for better, more efficient and sustainable catalysts, resulting in
a number of new P-chiral compounds being reported regularly [36–38].
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Figure 1. Previously reported chiral phosphines (top row) and the P-chiral 1-phosphanorbornane
silyl ethers 6a,b (bottom row) reported in this work.

Phospholes are known to undergo hetero-Diels–Alder (HDA) reactions with vari-
ous dienophiles to afford P-heterocyclic compounds [39], and recently, we reported the
unprecedented phospha-aza-Diels–Alder reaction using an N-sulfonyl α-imino ester to
produce 1-phospha-2-azanorbornenes (PANs) [40]. We also showed that the reactive
P–N bond of PANs can be cleaved by both achiral and enantiopure nucleophiles to yield
racemic 2,3-dihydrophosphole and optically pure 1-alkoxy-2,3-dihydrophosphole deriva-
tives, respectively [40,41]. Moreover, the reduction of PAN with lithium aluminum hydride
(LAH) resulted in a seven-membered P-heterocycle [42]. Previously, we reported the
first stereoselective HDA reaction between (5R)-(L-menthyloxy)-2(5H)-furanone (MOxF)
and 2H-phospholes (Scheme 1) to produce P-chiral 1-phosphanorbornenes (2) [43] as
well as P-chiral 7-phosphanorbornenes [44] in high yields. Moreover, the reduction of
1-phosphanorbornenes yields access to 1-phosphanorbornene diol 3. The latter undergoes an
intramolecular Michael addition to afford 1-phosphanorbornane alcohol 4, which can be con-
verted into enantiopure 1-phosphanorbornane bromide for subsequent functionalization [45].
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Herein, we report the one-step synthesis of enantiomerically pure P-stereogenic
1-phosphanorbornane silyl ethers obtained via reaction of the hydroxy group in 4 with
chlorosilanes followed by desulfurization. The application of these ligands in iridium-
catalyzed AH of prochiral enamides, namely methyl-(Z)-α-acetamidocinnamate (MAC),
was studied. To our knowledge, such ligands have not yet been tested in AH nor any other
enantioselective homogeneous catalysis.

2. Results and Discussion
2.1. Synthesis and Characterization of 5a,b

The enantiopure 1-phosphanorbornane alcohol 4 (PNA) is readily prepared in very
good yields [45]. The P-chiral 1-phosphanorbornane silyl ethers 5a,b are obtained by
reaction of PNA 4 with chlorosilanes in dimethylformamide (DMF) in the presence of base
and catalyst (Scheme 2). The formation of silyl ethers is widely exploited for the protection
of alcohols, and numerous suitable silylation reagents have been reported [46–49]. We
selected tert-butyldimethylsilyl chloride (TBDMSCl) and triphenylsilyl chloride (TPSCl),
as the corresponding bulky siloxy groups provide high stability in acidic and basic media
compared to the less sterically demanding trimethylsilyl or triethylsilyl ethers [49,50].
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In this kind of established reaction, the choice of catalyst, solvent and base is important.
Initially, when CH2Cl2 was used as the solvent, the reaction of 4 with TPSCl was much
slower compared to DMF as the solvent. This supports the reported evidence of DMF
acting as a catalyst itself in silylation reactions of alcohols [51]. Consistent with the classical
procedure developed by Corey et al. [52], imidazole was employed as catalyst to afford 5b,
while for the reaction with TPSCl, 4-dimethylaminopyridine (DMAP) was used as it was
previously reported to be a successful catalyst.

Stirring at 20 ◦C overnight resulted in full consumption of PNA as confirmed by
31P{1H} NMR spectroscopy (CDCl3, singlet at 43.4 ppm for 5a and 43.6 ppm for 5b).
Thus, this one-step procedure gives access to 5a,b in very good yields under mild condi-
tions. Pure 5a,b were isolated by crystallization; single crystals suitable for X-ray crystallo-
graphy (Supplementary Materials, Section S3) were obtained by dissolving 5a,b in a hot
iPrOH/n-hexane mixture and cooling to −25 ◦C for 17 h. High chemical (98%) and optical
purity of the UV-active compound 5a were confirmed by HPLC using a chiral column
(Supplementary Materials, Figure S13), while the chemical purity of 5b was verified by
elemental analysis. High-resolution mass spectrometry (HRMS) showed the presence of the
expected ions, namely [5a + H]+ (m/z 491.1617), [5a + NH4]+ (m/z 508.1878), and [5a + Na]+

(m/z 513.1447) or [5b + H]+ (m/z 347.1631) and [5b + Na]+ (m/z 369.1451), respectively.
The molecular structures of 5a,b were also confirmed by 2D NMR spectroscopy.

The enantiopure compounds crystallize in the triclinic space group P1 with two
independent molecules in the unit cell (5a) or in the monoclinic space group P21 with Z = 2
(5b), respectively. The phosphorus atom has a distorted tetrahedral environment (Figure 2).
The Si–O bond lengths are in the range of 164.1(2) to 165.4(2) pm, which is in agreement
with the literature [53,54].
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Figure 2. Molecular structures of 5a and 5b. Hydrogen atoms were omitted for clarity. Only one
of the two independent molecules of 5a is shown. Displacement ellipsoids are drawn at the 50%
probability level.

2.2. Desulfurization of Compounds 5a,b

The P-chiral 1-phosphanorbornane silyl ethers 5a,b can be reduced (desulfurized)
to the corresponding phosphorus(III) derivatives with excess of freshly activated Raney
nickel at room temperature (Scheme 3). No further work up is required after the reaction
is finished. Moreover, this method is mild and tolerates many other functional groups
guaranteeing selective desulfurization of the phosphorus atom. In contrast, treating 5a,b
with the very strong base lithium aluminum hydride (LAH) at 50 ◦C requires further
quenching and has a risk of side reactions. Nevertheless, 31P{1H} NMR spectra (CDCl3) of
the reaction mixtures of 5a and both reducing agents revealed full conversion of the starting
material and formation of 6a (singlet at −45.9 ppm). In contrast, 5b can only be reduced
cleanly with excess Raney nickel (singlet at−46.3 ppm for 6b in the 31P{1H} NMR spectrum
(CDCl3)), while the reduction of 5b with LAH resulted in formation of side products, which
are presumably formed by deprotection of the silyl group. Although the TBDMS and TPS
groups are known to be stable in various media, examples of TBDMS ether cleavage by
LAH have been reported previously [55–57]. Therefore, the reduction of both compounds
was carried out with Raney nickel.
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The structures of 6a,b were fully confirmed by 2D NMR spectroscopy. However, due
to the high oxophilicity of the phosphorus atom, mainly the corresponding oxides were
observed by HRMS ([6a + O + H]+ (m/z 475.1795), [6a + O + Na]+ (m/z 497.1644), [6b + Na]+

(m/z 337.1722), [6b + O + Na]+ (m/z 353.1668), and [6b + O + K]+ (m/z 369.1420)).

3. Catalysis

Bidentate (mixed donor) chiral ligands developed by Pfaltz et al. [58] and
Andersson et al. [59] are mostly used in Ir-catalyzed asymmetric hydrogenation of olefins.
On the other hand, the use of chiral monodentate phosphines in Ir-catalyzed enantioselective
hydrogenation is uncommon. Encouraged by the previous result on an Ir/phosphoramidite
catalyst in AH [34], we evaluated the activity of the bulky monodentate P-chiral 1-phospha-
norbornane silyl ethers 6a,b in the asymmetric hydrogenation of carbonyl compounds and
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olefins. No or minor conversion was observed in the asymmetric hydrogenation of ace-
tophenone (S-1) using [Ir(COD)Cl]2/6a (1 mol%, M:L = 1:3) as catalyst in dichloromethane
(Scheme 4). However, up to 20% conversion was obtained with potassium tert-butoxide as
base (20 mol%), albeit with formation of racemic 1-phenylethan-1-ol (P-1) (Table 1).

Molecules 2023, 28, x FOR PEER REVIEW 6 of 13 
 

 

 

 

Scheme 4. Ir-catalyzed asymmetric hydrogenation of acetophenone using 6a as ligand (* indicates 

a chiral center). 

Table 1. Asymmetric hydrogenation of acetophenone (S-1) employing Ir/6a as catalyst. 

Entry M/L Conversion ee 

1 1:3 - - 

2 a 1:2 - - 

3 a 1:3 6% racemate 

4 b 1:3 20% racemate 
a K2CO3 (20 mol%); b KOtBu (20 mol%). 

Then, the catalytic activities of 6a,b in the asymmetric hydrogenation of the function-

alized olefin methyl (Z)-2-acetamido-3-phenylacrylate as benchmark substrate was stud-

ied. The catalytic experiments were performed by premixing the ligand (6a or 6b) and the 

iridium complex (Scheme 5). The hydrogenation of S-2 proceeds with 98% conversion us-

ing [Ir(COD)Cl]2/6a (5 mol%, M:L = 1:1) as the catalyst, but with poor enantioselectivity 

(Table 2, Entry 1). A similar activity was observed when the catalyst loading was decreased 

to 0.5 mol% (Table 2, Entry 2) in dichloromethane. Changing the solvent to MeOH and 

THF did not improve the ee, but resulted in lower conversion (Table 2, Entry 3 and 4). The 

catalytic activity was not affected by altering the silyl substituent from SiPh3 (6a) to 

SiMe2tBu (6b) (Table 2, Entry 5). Apparently, the bulky silyl group is not in close proximity 

to the catalytically active iridium center. 

  

Scheme 4. Ir-catalyzed asymmetric hydrogenation of acetophenone using 6a as ligand (* indicates a
chiral center).

Table 1. Asymmetric hydrogenation of acetophenone (S-1) employing Ir/6a as catalyst.

Entry M/L Conversion ee

1 1:3 - -

2 a 1:2 - -

3 a 1:3 6% racemate

4 b 1:3 20% racemate
a K2CO3 (20 mol%); b KOtBu (20 mol%).

Then, the catalytic activities of 6a,b in the asymmetric hydrogenation of the func-
tionalized olefin methyl (Z)-2-acetamido-3-phenylacrylate as benchmark substrate was
studied. The catalytic experiments were performed by premixing the ligand (6a or 6b) and
the iridium complex (Scheme 5). The hydrogenation of S-2 proceeds with 98% conversion
using [Ir(COD)Cl]2/6a (5 mol%, M:L = 1:1) as the catalyst, but with poor enantioselectivity
(Table 2, Entry 1). A similar activity was observed when the catalyst loading was decreased
to 0.5 mol% (Table 2, Entry 2) in dichloromethane. Changing the solvent to MeOH and
THF did not improve the ee, but resulted in lower conversion (Table 2, Entry 3 and 4).
The catalytic activity was not affected by altering the silyl substituent from SiPh3 (6a) to
SiMe2

tBu (6b) (Table 2, Entry 5). Apparently, the bulky silyl group is not in close proximity
to the catalytically active iridium center.
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Table 2. Asymmetric hydrogenation of methyl (Z)-2-acetamido-3-phenylacrylate (S-2) using Ir/6a or
6b as catalyst.

Entry Solvent Conversion ee

1 a CH2Cl2 98% 8%

2 b CH2Cl2 >99% 9%

3 b MeOH 90% 8%

4 b THF 50% -

5 c CH2Cl2 95% 8%
Reaction conditions: [Ir(COD)Cl]2/6a (1:2), substrate/catalyst (S/C) = 100, [substrate] = 0.5 mmol, H2 (50 bar),
solvent = dichloromethane, 30 ◦C, 15 h. a 5 mol% catalyst (M:6a = 1:2); b 6a (1 mol%); c 6b (1 mol%).
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4. Conclusions

A highly efficient and facile synthesis of enantiomerically pure sulfur-protected P-
stereogenic 1-phosphanorbornane silyl ethers 5a,b via reaction of the alcohol function of 4
with chlorosilanes is described. Moreover, this method can be applied to prepare a variety
of compounds with desired electronic and steric effects via the appropriate choice of the
corresponding chlorosilane. The phosphorus(III) derivatives 6a,b are readily accessible
via desulfurization of 5a,b with excess Raney nickel. The phosphines 6a,b were tested
as ligands in the Ir-catalyzed asymmetric hydrogenation of acetophenone and methyl
(Z)-2-acetamido-3-phenylacrylate resulting in moderate to high conversions but poor ee.
Further studies on different ligand variations based on the chiral phosphanorbornane motif
and their application in enantioselective catalysis are underway.

5. Materials
5.1. General Information

All air-sensitive reactions were carried out under dry high purity nitrogen using
standard Schlenk techniques. THF was degassed and distilled from potassium. DMF was
degassed and dried under activated 4 Å molecular sieves. TBDMSCl and TPSCl were
purchased from Carbolution (St. Ingbert, Germany) or Sigma Aldrich (St. Louis, MO, USA),
respectively. The NMR spectra were recorded with a Bruker Avance DRX 400 spectrometer
(1H NMR 400.13 MHz, 13C NMR 100.63 MHz, 31P NMR 161.98 MHz) or a Bruker Fourier
300 spectrometer (1H NMR 300.23 MHz, 13C NMR 75.50 MHz). 13C{1H} NMR spectra
were recorded as APT spectra. The assignment of the chemical shifts and configurations
was performed using correlation spectroscopy (COSY) and heteronuclear single quantum
coherence (HSQC) techniques. Tetramethylsilane (TMS) was used as the internal standard
in the 1H NMR spectra and all other nuclei spectra were referenced to TMS using the Ξ-
scale [60]. The numbering scheme of 5a,b and 6a,b is given in the Supplementary Materials.
High-resolution mass spectra (HRMS; electrospray ionization (ESI)) were measured using
a Bruker Daltonics APEX II FT-ICR spectrometer (Billerica, MA, USA). IR spectra were
obtained with an FTIR spectrometer (Nicolet iS5 FTIR by Thermo Scientific, Waltham, MA,
USA) in the range of 400–4000 cm−1 in KBr. Column chromatography was performed
using silica 60 (0.015–0.040 mm) purchased from Merck (Rahway, NJ, USA). UV light
(389 nm) and iodine (saturated atmosphere) were used as staining reagents. The synthesis
of the starting material PNA 4 and Raney nickel activation were carried out according to
the literature [45].

5.2. Synthesis
5.2.1. Synthesis of 5a

TPSCl (0.38 g, 1.28 mmol) was added to a solution of 4 (0.2 g, 0.86 mmol) and NEt3
(0.18 mL, 1.28 mmol) in 12 mL DMF at room temperature. Further 20 mg of DMAP
(0.017 mmol) was added and the reaction mixture was stirred for 17 h at 20 ◦C. The mixture
was washed with sat. aq. NH4Cl solution and the separated organic layer was further
washed with 5 mL water 3 times. The combined organic phases were dried over MgSO4.
The solvent was removed under reduced pressure to give a white powder. The compound
was dissolved in hot iPrOH/n-hexane and then cooled at −25 ◦C for 17 h. The formed
white solid was isolated, washed with 3 mL cold n-hexane 3 times and dried in vacuo to
afford 308 mg of 5a as a white powder. Yield: 308 mg (73%). Single crystals of 5a suitable
for X-ray crystallographic studies were obtained by dissolving 5a in a hot iPrOH/n-hexane
mixture and cooling to −25 ◦C for 17 h (Supplementary Materials, Figure S14).
1H NMR (400 MHz, CDCl3): δ 7.61 (m, 5H), 7.50–7.25 (m, 10H), 4.33 (m, 1H, H-5 or H-6a),
4.16–4.01 (m, 2H), 3.94 (dd, J = 9.9, 5.7 Hz, 1H, H-5 or H-6a), 2.67–2.45 (m, 2H), 2.25 (m,
1H, H-6 or H-7 or H-2), 2.00 (m, 1H), 1.92–1.78 (m, 2H), 1.24 (s, 3H, H-3a or H-4a), 1.20
(s, 3H, H-3a or H-4a) ppm; 13C{1H} NMR (101 MHz, CDCl3): δ 135.4 (s, C-aryl), 135.2 (s,
C-aryl), 133.4 (s, C-aryl quart.), 130.3 (s, C-aryl), 129.8 (s, C-aryl), 128.0 (s, C-aryl), 127.7 (s,
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C-aryl), 86.3 (s, C-quart.), 66.3 (s), 59.0 (d, JC,P = 6.1 Hz), 51.3 (d, 2JC,P = 19.5 Hz, C-quart.),
47.3 (d, 2JC,P = 2 Hz, C-5), 44.8 (d, 1JC,P = 46.7 Hz, C-6), 41.4 (d, 1JC,P = 44.8 Hz, C-2 or
C-7), 40.3 (d, 1JC,P = 51.8 Hz, C-2 or C-7), 23.9 (d, 3JC,P = 7.2 Hz, C-3a or C-4a), 18.3 (d,
3JC,P = 15.9 Hz, C-3a or C-4a) ppm; 31P{1H} NMR (162 MHz, CDCl3): δ 43.4 (s) ppm; HRMS
(ESI, MeCN), m/z: found: 491.1617, calculated for [M + H]+: 491.1624; found: 508.1878, calc.
for [M + NH4]+: 508.1890; found: 513.1447, calc. for [M + Na]+: 513.1444; found: 998.3474,
calc. for [2M + NH4]+: 998.3441; found: 1003.3032, calc. for [2M + Na]+: 1003.2996; IR (KBr,
∼
v/cm−1): 3067 (w), 2975 (w), 2881 (w), 1588 (w), 1485 (w), 1427 (m), 1381 (w), 1369 (w),
1306 (w), 1250 (w), 1189 (w), 1114 (s), 1077 (s), 1053 (m), 1042 (m), 1012 (m), 996 (m), 958 (m),
928 (w), 881 (m), 862 (w), 841 (w), 800 (m), 775 (m), 738 (m), 709 (s), 697 (s), 675 (m), 619 (m),
609 (w), 582 (w), 506 (s), 481 (s), 448 (m), 435 (m).

5.2.2. Synthesis of 5b

TBDMSCl (0.146 g, 0.97 mmol) was added to a solution of 4 (0.15 g, 0.65 mmol) and
NEt3 (0.135 mL, 0.97 mmol) in 10 mL DMF at room temperature. Further 13 mg of imidazole
(0.19 mmol) were added and the reaction mixture was stirred for 17 h at 20 ◦C. The mixture
was washed with sat. aq. NH4Cl solution and the separated organic layer was further
washed with 5 mL water 3 times. The combined organic phases were dried over MgSO4.
The solvent was removed under reduced pressure to give a white powder. The compound
was dissolved in hot iPrOH/n-hexane and then cooled at −25 ◦C for 17 h. The resulting
white solid was washed with 3 mL cold n-hexane 3 times and dried in vacuo to afford
154 mg of 5b as a white powder. Yield: 154 mg (69%). Elemental analysis: C16H31O2PSSi
(346.54) calc. C 55.5%, H 9.0%; found C 55.7%, H 9.1%. Single crystals of 5b suitable for
X-ray crystallographic studies were obtained by dissolving 5b in a hot iPrOH/n-hexane
mixture and cooling to −25 ◦C for 17 h (Supplementary Materials, Figure S15).
1H NMR (400 MHz, CDCl3): δ 4.20–4.07 (m, 2H, H-5a/6a), 3.94 (m, 2H, H-5a/6a), 2.62–2.41
(m, 2H, H-5 or H-6), 2.31 (m, 1H, H-5 or H-6), 2.02 (m, 1H, H-2 or H-7), 1.96–1.83 (m, 2H,
H-7 or H-2), 1.26 (s, 3H, H-3a or H-4a), 1.20 (s, 3H, H-3a or H-4a), 0.88 (s, 9H, H-9a), 0.09 (s,
6H, H-8) ppm; 13C{1H} NMR (101 MHz, CDCl3): δ 86.3 (s, C-quart.), 66.2 (s, C-5a), 58.1 (d,
2JC,P = 5.6 Hz, C-6a), 51.3 (d, 2JC,P = 19.4 Hz, C-quart.), 47.3 (d, 2JC,P = 2.3 Hz, C-5), 44.8 (d,
1JC,P = 47.0 Hz, C-6), 41.6 (d, 1JC,P = 44.8 Hz, C-2 or C-7), 40.3 (d, 1JC,P = 51.8 Hz, C-2 or C-7),
25.8 (s, C-9a), 23.9 (d, 3JC,P = 7.3 Hz, C-3a or C-4a), 18.3 (d, 3JC,P = 16.0 Hz, C-3a or C-4a),
18.1 (s, C-9), −5.5 (d, J = 6.1 Hz, C-8) ppm; 31P{1H} NMR (162 MHz, CDCl3) δ 43.6 (s) ppm;
HRMS (ESI, MeCN), m/z: found: 347.1631, calc. for [M + H]+: 347.1624; found: 369.1451,
calc. for [M + Na]+: 369.1444; IR (KBr,

∼
v/cm−1): 2948 (m), 2925 (m), 2877 (m), 2853 (m),

1497 (w), 1468 (w), 1426 (w), 1383 (w), 1360 (w), 1311 (w), 1258 (m), 1245 (m), 1198 (w),
1162 (w), 1122 (m), 1077 (s), 1041 (m), 1029 (m), 1011 (m), 959 (m), 930 (w), 881 (s), 867 (s),
829 (m), 815 (m), 783 (s), 768 (s), 749 (m), 721 (s), 675 (s), 658 (s), 586 (w), 563 (w), 511 (m),
481 (w), 447 (m).

5.2.3. Synthesis of 6a

Compound 5a (200 mg, 0.41 mmol) was added to a suspension of freshly activated
Raney nickel in THF (ca. 2 g, excess) and stirred for 17 h at room temperature. The clear
solution was filtered and the black solid was washed four times with 5 mL THF each. The
solution was concentrated to give 142 mg of 6a as a white solid (76%). Yield: 142 mg (76%).
1H NMR (400 MHz, THF-d8): δ 7.54–7.44 (m, 3H), 7.39–7.33 (m, 3H), 7.33–7.19 (m, 6H),
7.13 (m, 3H), 3.86 (m, 2H, H-2 or H-7), 3.61–3.51 (m, 2H, H-5a or H-6a), 2.38 (m, 1H, H-6
or H-5), 2.13 (m, 1H, H-5 or H-6), 1.44–1.16 (m, 4H, H-2 or H-7, H-5a or H-6a), 0.99 (s, 3H,
H-3a or H-4a), 0.97 (s, 3H, H-3a or H-4a) ppm; 13C{1H} NMR (101 MHz, THF-d8): δ 135.1
(s, C-aryl), 134.9 (s, C-aryl), 134.2 (s, C-aryl quart.), 129.6 (s, C-aryl), 129.5 (s, C-aryl), 127.5
(s, C-aryl), 127.4 (s, C-aryl), 86.9 (s, C-quart.), 63.7 (s), 62 (d, 1JC,P = 14.9 Hz, C-2 or C-7),
47.5 (d, 2JC,P = 3.3 Hz, C-5), 45.1 (d, 1JC,P = 13.5 Hz, C-6), 38 (d, 1JC,P = 16.0 Hz, C-2 or C-7),
36.7 (d, J = 6.6 Hz, C-6a or C-5a), 23.7 (s, C-3a or C-4a), 17.5 (s, C-3a or C-4a) ppm; 31P{1H}
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NMR (162 MHz, C6D6): δ −45.6 (s) ppm; HRMS (ESI, MeCN), m/z: found: 475.1795, calc.
for [M + O + H]+: 475.1863; found: 497.1644, calc for [M + O + Na]+: 497.1672.

5.2.4. Synthesis of 6b

Compound 5b (53 mg, 0.153 mmol) was added to a suspension of freshly activated
Raney nickel in THF (ca. 0.44 g, excess) and stirred for 17 h at room temperature. The clear
solution was filtered and the black solid was washed four times with 2 mL THF each. The
solution was concentrated to give 31 mg of 6b as a colorless oil (63%). Yield: 31 mg (63%).
1H NMR (400 MHz, C6D6): δ 3.89–3.82 (m, 2H), 3.77–3.67 (m, 2H), 2.34 (m, 1H), 1.95–1.90
(m, 1H), 1.75 (dt, J = 15.4, 3.1 Hz, 1H, H-2 or H-7), 1.43–1.33 (m, 1H), 1.21–1.15 (m, 1H),
1.1 (s, 3H, H-3a or H-4a), 0.91 (s, 9H, H-8a), 0.89 (s, 3H, H-3a or H-4a), 0.29 (s, 6H, H-7)
ppm; 13C{1H} NMR (101 MHz, C6D6): δ 64.1(s, C-5a), 61.3 (d, J = 15.0 Hz, C-6a), 47.6 (d,
2JC,P = 3.6 Hz, C-5), 45.2 (d, 1JC,P = 12.9 Hz, C-6), 38.52 (d, 1JC,P = 15.7 Hz, C-2 or C-7), 37.03
(d, 1JC,P = 6.4 Hz, C-2 or C-7), 25.7 (s, C-9a), 24.5 (s, C-3a or C-4a), 18.1 (s, C-3a or C-4a),
−5.7 (d, J = 11.6 Hz, C-8) ppm; 31P NMR (162 MHz, C6D6): δ −45.6 (s) ppm; HRMS (ESI,
MeCN), m/z: found: 337.1722, calc. for [M + Na]+: 337.1723; found: 353.1668, calc. for
[M + O + Na]+: 353.1672; found: 369.1420, calc. for [M + O + K]+: 369.1412.

5.3. Catalysis
General Procedure for Hydrogenations

Ketone hydrogenation: The hydrogenation experiments were performed in stainless
steel autoclaves charged with an insert suitable for up to 8 reaction vessels (4 mL) with
teflon mini stirring bars. In a typical experiment, a reaction vessel was charged with
[Ir(COD)Cl]2 (1 mol%), ligand (1–3 mol%, as desired) and base (20 mol%) and stirred
for 10–15 min in the dichloromethane (2 mL). Then, acetophenone (S-1, 0.5 mmol) was
added to the reaction vials maintaining the inert atmosphere and the vessels were placed
in a high pressure autoclave. The autoclave was purged two times with nitrogen and
three times with hydrogen. Finally, it was pressurized at 50 bar H2 at 25 ◦C for 12 h.
Afterwards, the autoclave was depressurized and the contents of the reaction vessels
were diluted with EtOAc and filtered through a short pad of silica. The conversion was
determined by GC, GC-MS and NMR measurement and the enantiomeric excess was
measured by chiral GC analysis.

Olefin hydrogenation: The hydrogenation experiments were performed in stainless
steel autoclaves charged with an insert suitable for up to 8 reaction vessels (4 mL) with
teflon mini stirring bars. In a typical experiment, a reaction vessel was charged with
[Ir(COD)Cl]2 (0.5 mol%), ligand (1 mol%) in the appropriate solvent (2 mL). Then, methyl
(Z)-2-acetamido-3-phenylacrylate (S-2, 0.5 mmol) was added to the reaction vials main-
taining the inert atmosphere and the vessels were placed in a high pressure autoclave.
The autoclave was purged two times with nitrogen and three times with hydrogen gas.
Finally, it was pressurized at 50 bar H2 at 30 ◦C for 15 h. Afterwards, the autoclave was
depressurized and the contents of the reaction vessels were diluted with EtOAc and filtered
through a short pad of silica. The conversion was determined by GC, GC-MS and NMR
measurements and the enantiomeric excess was measured by chiral GC analysis.

5.4. X-ray Crystallography Data

The data were collected on a Gemini diffractometer (Rigaku Oxford Diffraction) using
Mo-Kα radiation andω-scan rotation. Data reduction was performed with CrysAlisPro [61]
including the program SCALE3 ABSPACK for empirical absorption correction. All struc-
tures were solved by dual space methods with SHELXT [62] and the refinement was
performed with SHELXL [63]. For 5b, hydrogen atoms were calculated on idealized posi-
tions using the riding model, whereas for 5a, a difference-density Fourier map was used to
locate hydrogen atoms. Structure figures were generated with DIAMOND-4 [64].

CCDC deposition numbers 2287331 for 5a and 2287332 for 5b contain the supple-
mentary crystallographic data for this paper. These data can be obtained free of charge
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via https://www.ccdc.cam.ac.uk/structures/, accessed on 25 May 2023 (or from the
Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK;
fax: (+44)1223-336-033 or deposit@ccdc.cam.uk).

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28176210/s1, NMR spectra of 5a,b and 6a,b,
details for the crystallographic characterization, HPLC data of 5a as well as chromatograms from
catalytic tests are available in the Supplementary Materials.
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Abstract: Two substituted phosphonium tetrahydoxidohexaoxidopentaborate(1-) salts, [iPrPPh3]
[B5O6(OH)4]·3.5H2O (1) and [MePPh3][B5O6(OH)4]·B(OH)3·0.5H2O (2), were prepared by templated
self-assembly processes with good yields by crystallization from basic methanolic aqueous solutions
primed with B(OH)3 and the appropriate phosphonium cation. Salts 1 and 2 were characterized
by spectroscopic (NMR and IR) and thermal (TGA/DSC) analysis. Salts 1 and 2 were thermally
decomposed in air at 800 ◦C to glassy solids via the anhydrous phosphonium polyborates that are
formed at lower temperatures (<300 ◦C). BET analysis of the anhydrous and pyrolysed materials
indicated they were non-porous with surface areas of 0.2–2.75 m2/g. Rhe recrystallization of 1 and 2
from aqueous solution afforded crystals suitable for single-crystal XRD analyses. The structure of 1
comprises alternating cationic/anionic layers with the H2O/pentaborate(1-) planes held together
by H-bonds. The cationic planes have offset face-to-face (off ) and vertex-to-face (vf ) aromatic ring
interactions with the iPr groups oriented towards the pentaborate(1-)/H2O layers. The anionic lattice
in 2 is expanded by the inclusion of B(OH)3 molecules to accommodate the large cations; this results
in the formation of a stacked pentaborate(1-)/B(OH)3 structure with channels occupied by the cations.
The cations within the channels have vf, ef (edge-to-face), and off phenyl embraces. Both H-bonding
and phenyl embrace interactions are important in stabilizing these two solid-state structures.

Keywords: organotriphenylphosphonium salts; π-interactions; pentaborate(1-); phenyl embraces;
phosphonium salts; tetrahydroxidohexaoxidopentaborate(1-); X-ray structures

1. Introduction

Hydrated polyhydroxidooxidoborates and anhydrous polyoxidoborates are a well-
known, naturally occurring classes of compounds [1–9] with many synthetic analo-
gues [3,9–12]. Some of these compounds are industrially important bulk chemicals (e.g.,
Na2B4O5(OH)4·3H2O, tincalconite and the synthetic borax pentahydrate largely produced
from Na2B4O6(OH)2·3H2O (kernite) and Na2B4O5(OH)4·8H2O, borax (tincal)) with many
applications [13–15], whilst others, such as β-BaB2O4 (BBO), have found more special-
ist niche applications in NLO materials [9,16]. Structurally, these polyoxidoborates are
a diverse class of compounds with the polyoxidoborate moieties as discrete insular an-
ions or as more highly condensed polymeric 1-D, 2-D or 3-D anionic networks, and the
associated cations as simple s-, p-, d- or f -block element cations, cationic p- or d-block
complexes or non-metal/organic based [1–16]. With some late transition metals (e.g., CuII,
ZnII, CdII and NiII), oxidoborates can also function as O-donor ligands [17]. Examples
of hydroxidooxidopolyborate salts with phosphorus-containing cations are rare and are
currently limited to [Ph3PNPPh3][B3O3(OH)4]·2.5H2O [18], [Ph3PNPPh3][B5O6(OH)4]·1.5
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H2O [18] and [PPh4][B5O6(OH)4]·1.5H2O [19]; the latter compound has been structurally
characterized by a single-crystal X-ray diffraction (sc-XRD). We have previously pub-
lished thermal studies and BET analysis on materials that were thermally obtained from
pentaborate(1-) salts containing organic cations [20–22]. This manuscript extends our
structural studies on phosphonium salts of pentaborate(1-) anions and examines them
using BET analysis on materials derived thermally from these salts. A schematic drawing
of the tetrahydroxidohexaoxidopentaborate(1-) anion, hereafter generally abbreviated to
pentaborate(1-) [23], is shown in Figure 1.
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Figure 1. Schematic drawing of tetrahydroxidohexaoxidopentaborate(1-) as found in [iPrPPh3]
[B5O6(OH)4]·3.5H2O (1) and [MePPh3][B5O6(OH)4]·B(OH)3

.0.5H2O (2). The oxygen H-bond acceptor
sites are labelled as in Ref. [24].

2. Results and Discussion
2.1. Synthesis

The two new tetraorganophosphonium pentaborate(1-) salts [iPrPPh3][B5O6(OH)4]
·3.5H2O (1) and [MePPh3][B5O6(OH)4]·B(OH)3·0.5H2O (2) were obtained by crystallization
from basic aqueous solutions primed with B(OH)3 and the appropriate substituted phos-
phonium cation, as shown in Scheme 1. The phosphonium iodide salts were converted to
their hydroxide salts by use of an ion-exchange resin and B(OH)3 was used as the boron
source for the pentaborate(1-) salts. The boron-containing substrate B(OH)3, is only present
in aqueous solution as B(OH)3 under acidic conditions [25–27]. At a higher pH, it is present
as rapidly attained equilibrium concentrations of various hydroxidooxidopolyborate an-
ions and [B(OH)4]− [25–27]. The observed crystalline products arise through the cation
templated self-assembly/crystallization processes [28–31], as are often observed in related
systems involving non-metal cations derived from organic amines and B(OH)3 [10,32].
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Scheme 1. Synthesis of compounds 1 and 2.

Compounds 1 and 2 were prepared in excellent yields and were characterized spectro-
scopically (multinuclear NMR, IR) and thermally (TGA/DSC). Porosity data (BET) were
also obtained on materials derived thermally in air from 1 and 2. Crystallization of the
crude products 1 and 2 from H2O afforded crystals suitable for sc-XRD studies (Section 2.4).
The co-crystallization of B(OH)3 with pentaborate(1-) anions, as in 2, has occasionally been
observed in structures with large organic cations [18,33–36].

2.2. Thermal Studies

Organic cation polyborates are known to thermally decompose in air with the for-
mation of glassy B2O3 at 800 ◦C [10,34]. The closely related tetraphenylphosphonium
pentaborate salt, [PPh4][B5O6(OH)4]·1.5H2O, is reported to be thermally decomposed in
a similarly manner [19]. In previous studies, water is lost at lower temperatures with
the formation of ‘anhydrous’ pentaborates and this is followed at higher temperatures
by oxidation of the cation, gaseous evolution, and the formation of darkened intumesced
solids. At higher temperatures again, these solids shrink down to form glassy residual
materials of B2O3 [10,24]. The thermal decomposition of 1 and 2 was studied by TGA/DSC
analysis in air over the temperature range 20–800 ◦C.

The data for 1 were consistent with the initial loss of 5.5 × H2O in the first stage
(<275 ◦C) in an endothermic process to form anhydrous [iPrPPh3][B5O8]. This dehydration
stage involved the loss of interstitial H2O (3.5 × H2O) and condensation/cross-linking of
the B-OH groups (2.0×H2O) as one large continuous step (see Supplementary Information,
Figure S10 for TGA plots). The TGA plot of 2 had a similar profile, with loss of 4.0 × H2O
in the first stage (100–275 ◦C) and the formation of anhydrous [MePPh3][B6O9.5]. Since 2 is
a 1:1 B(OH)3/pentaborate(1-) co-crystal, this material is formulated as an anhydrous hexab-
orate [18,33,34]. This endothermic dehydration step for 2 is a two-stage process involving
the loss of interstitial H2O and partial condensation/cross-linking of the pentaborate B-OH
groups (2.0 × H2O, 100–150 ◦C), with further condensation/cross-linking of the pentabo-
rate B-OH groups (2.0 × H2O, 150–275 ◦C). This two-stage water loss is qualitatively very
similar to that observed for [PPh4][B5O6(OH)4]·1.5H2O [19].

It was anticipated that, upon further heating (275–800 ◦C), 1 and 2 would leave, after
oxidation of the cations during the exothermic second stages, with glassy residues com-
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prised of 2.5 or 3.0 equivalents of B2O3, respectively. However, the residual masses from 1
and 2 were higher than calculated, indicating that they both contained additional, non-B2O3
material. It has been noted that phosphonium salts, with simple non-polar substituents,
generally decompose cleanly with little residue [37], and our previous studies on the ther-
mal decomposition of phosphonium polyborates are consistent with this [18,19]. However,
some phosphonium salts are also known to decompose with residual material [37]. The
additional residual material from 1 and 2 possibly arises through the incorporation of
phosphorus and/or an organic char slowing down the oxidation process.

Porosity data (BET analysis [38]) of organic pentaborates salts and their thermally
derived anhydrous, pyrolysed and residual glasses have been reported and the results
indicated that they were non-porous [20–22]. Compounds 1 and 2 both possess unusual
solid-state pentaborate structures (see sc-XRD studies, Section 2.4), with 1 layered and
2 having its cations stacked in channels. We were, therefore, interested in obtaining
porosity data on the thermally derived intermediate materials from these phosphonium
pentaborates to see if these structural modifications are influential. Thus, samples of
‘anhydrous’ and ‘pyrolysed’ materials were obtained from 1 and 2 by heating ca. 0.5 g
samples in a furnace in air for 24 h at 300 ◦C and 625 ◦C, respectively. These materials
had surface areas of 0.2–2.75 m2/g and were essentially non-porous, with similar values to
those obtained for materials derived thermally from [PPh4][B5O6(OH)4]·1.5H2O [39] and
organic pentaborates [20–22], again suggesting that the intumesced solids have ‘foamlike’
gas-encapsulated macroporous structures [40].

2.3. Spectroscopic Studies

IR and NMR (1H, 13C, 11B and 31P) data for 1 and 2 are reported in the experimental
section. These spectroscopic data are in agreement with the expected data for the anions
and cations found in 1 and 2.

The IR spectra, obtained as KBr discs, show the expected broad H-bonded O-H
stretches (ca. 3300 cm−1) and strong B-O stretches/bends (1450–620 cm−1) [41] associated
with the pentaborate(1-) anions. Specifically, a diagnostic strong band (Btrig-O (sym.) at ca.
925 cm−1 [34]) for the anion was observed at 918 and 924 cm−1 for 1 and 2, respectively,
helping to confirm their identities.

Compounds 1 and 2 are insoluble in organic solvents but ‘dissolve’ in H2O with
decomposition of the pentaborate(1-) anion by the borate equilbria processess that are
also involved in their formation [25–27]. The cations in 1 and 2 are not affected by this,
and their presence was confirmed as substituted phosphonium cations by 1H, 13C and
31P spectroscopic analysis. Thus, 31P spectra of 1 and 2 both show only one signal at the
expected chemical shift for their phosphonium cations [42]. The 11B spectra of 1 and 2 (in
D2O) show three signals, corresponding to the tetrahedral boron centre of [B5O6(OH)4]−

(ca. +1 ppm), [B3O3(OH)4]− (ca. +13 ppm) and (B(OH)3/[[B(OH)4]− (ca. +18 ppm) in the
form of ‘signature spectra’, as was previously observed [43]. These signals arise from the
equilbrium concentrations of the borate anions present from the ‘disolution’ of the original
pentaborate(1-) anion.

2.4. X-ray Crystallography

There are two independent isopropyltriphenylphosphonium(1+) cations, two inde-
pendent tetrahydroxidohexaoxidopentaborate(1-) anions, and seven waters of crystal-
lization within the unit cell of 1. The asymmetric unit cell of 2 contains two indepen-
dent tetrahydroxidohexaoxidopentaborate(1-) anions and two independent methyltriph-
enylphosphonium(1+) cations. Additionally, 2 also contains two independent B(OH)3
molecules and a single disordered H2O of crystallization. These crystallographic studies
are in agreement with the formulation of 1 and 2 as ionic phosphonium(1+)/pentaborate(1-)
salts, as indicated by their spectroscopic and thermal analysis. The co-crystallization of
B(OH)3 is not uncommon in recrystallized samples of pentaborate(1-) salts containing bulky
cations [18,33–36]. Drawings of the structures of 1 and 2 showing atomic numbering are
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shown in Figures 2 and 3, respectively. Selected crystallographic information is available in
the experimental section and full details can be found in the Supplementary Information.
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Figure 2. Drawing of the structure of [iPrPPh3][B5O6(OH)4]·3.5H2O (1), showing selected crystallo-
graphic atomic numbering schemes. The seven waters of crystallization have been omitted for clarity.
The O atoms of these H2O molecules are numbered O61–O67. Only the lowest numbered carbon in
each aryl ring is labelled; the other five carbons are numbered sequentially. H atoms take the same
label number as the heavy atoms to which they are attached.
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Figure 3. Drawing of the structure of [MePPh3][B5O6(OH)4]·B(OH)3·0.5H2O (2) showing the crystal-
lographic atomic numbering scheme. The waters of crystallization have been omitted for clarity and
are disordered over four sites. The O atoms of these waters are labelled O41–O43. Only the lowest
numbered carbon in each phenyl ring is labelled; the other five carbons are numbered sequentially
around the ring. H atoms take the same label number as the heavy atoms to which they are attached.

The tetrahydroxidohexaoxidopentaborate(1-) anion is crystallographically well-
known [10] and has the gross structure of two fused, slightly puckered (‘planar’) borox-
ole (B3O3) rings sharing a spiro 4-coordinate boron centre; all other boron atoms are
3-coordinate, and are bound solely to oxygen atoms within the rings, or to exo hydroxido
groups (see Figure 1). B-O bonds lengths and OBO and BOB angles within these com-
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pounds are within normal limits [10,20,24]. The B-O distances involving 4-coordinate boron
centres range from 1.455(3) to 1.487(3) Å (av. 1.473(3) Å) and 1.434(4) to 1.481(4) Å (av.
1.462(4) Å), whilst B-O distances involving 3-coordinate boron centres are shorter and range
from 1.344(2) to 1.401(3) Å (av. 1.369(3) Å) and 1.334(4) to 1.395(4) Å (av. 1.359(4) Å) in 1
and 2, respectively. The OBO angles involving 4-coordinate (sp3 hybridized, tetrahedral)
boron centres range from 106.24(17) to 111.19(16)o (av. 109.5(2)o) and 107.5(2) to 110.9(2)o

(av. 109.5(2)o), whilst OBO angles involving 3-coordinate (sp2 hybridized, trigonal planar)
borons are larger and range from 116.21(19) to 122.2(2)o (av. 120.0(2)o) and 114.3(3) to
123.7(3) (av. 120.0(3)o) for 1 and 2, respectively. The BOB angles within the boroxole rings
range from 118.40(17) to 123.39(18)o (av. 121.46(18)o) and 116.7(2) to 124.2(2)o (av. 121.4(3)o)
for 1 and 2 respectively, indicative of these oxygens being sp2 hybridised [44]. The B-O
distances and OBO angles within the B(OH)3 molecules of 2 are normal for B(OH)3 and are
also within the ranges found for the trigonal borons of the pentaborate(1-) rings in 1 and 2.

The [iPrPPh3]+ and [MePPh3]+ cations in 1 and 2 are also well-known crystallograph-
ically [45,46] with P-C distances ranging from 1.795(2) to 1.882(2) Å (av. 1.803(2) Å) and
1.757(4) to 1.785(3) (av. 1.776(5)A), respectively. Likewise, the CPC angles about the (sp3)
phosphorus centres range from 107.84(9) to 111.31(10)o (av. 109.47(10)o) and 106.82(17) to
110.8(2)o (av.109.47(19)o). These values are within previously observed ranges for these
cations [45,46].

The closely related hydrated tetraphenylphosphonium pentaborate salt, [PPh4][B5O6(OH)4]
·1.5H2O, has an interesting supramolecular giant structure composed of interpenetrating
networks of complex H-bonded anion–anion interactions and cation–cation interactions
involving multiple embraces of their aromatic rings [19]. Aromatic embraces are known
to be strong stabilizing interactions [47,48] and are likely to be responsible (together with
H-bonding interactions) for the crystallized self-assembly [28–31] of this compound. We
examined the structures of 1 and 2 to see if similar aromatic interactions occur in these
compounds, and details, together with their H-bonding interactions, are described below.

Compound 1 is a co-crystallised phosphonium pentaborate salt with 3.5 H2O per
cation/anion. These water molecules H-bond with the pentaborate(1-) anions and form
a unique H2O/pentaborate H-bonded anionic network. Unusually for pentaborate salts,
this anionic network is arranged in layers (Figure 4). Each pentaborate(1-) has four H-
bond donor sites and the pentaborate anions containing B1 forms donor H-bonds to
two β-sites (see Figure 1 for acceptor site labels [24]) of two neighbouring pentaborate
anions (O10H10· · ·O7′ and O8H8· · ·O20′′) and two H2O molecules (O7H7· · ·O62 and
O9H9· · ·O63). The repeating O10-H-10· · ·O7′ interaction is part of an infinite chain that
links the B1 containing pentaborates(1-) anions. This interaction is C(8) using Etter terminol-
ogy [49]. Likewise, the pentaborates containing B11 are similarly linked into infinite chains
by C(8) interactions involving O18-H18· · ·O19′. The other three H-bond acceptor sites
for the pentaborate containing B11 are water molecules: O17H17· · ·O61, O19H19· · ·O67,
and O20H20· · ·O66. These two pentaborate chains are linked through a complex series
of H-bonds involving four H2O molecules (containing O61, O62, O63 and O67) and a
C5

5(10) chain of three H2O molecules (containing O66, O65, O64), linking with O8H8-O20′

interborate interaction into layers (Figure 4).
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5(10) chain, involving three H2O molecules (containing O64,
O65, and O66) and pentaborate(1-) oxygens (O8 and O20), can also be seen. (b) The pentaborate(1-)
anion/H2O molecules in 1 can be viewed along the b axis, illustrating their layered structure.

The [iPrPPh3]+ cations in 1 are also arranged in layers, and these layers alternate
with the anionic/H2O layers. Within these cationic layers, there are several cation–cation
interactions involving their aromatic rings [47,48]. The two independent cations are both
arranged as centrosymmetric pairs, with aromatic (phenyl) ring embrace interactions be-
tween each pair. Thus, the cation containing P1 forms an offset face-to-face (off ) interaction
between a phenyl ring (containing C1–C6) and the C1′–C6′ ring in its pair, with a centroid–
centroid distance of 3.748(2) Å and a centroid-to-plane distance of 3.634(2) Å with a shift
of 0.917(4) Å. These distances are indicative of a strong interaction and are considerably
shorter than that found in [PPh4][B5O6(OH)4]·3/2H2O (ca. 4.3 Å) [19]. These phenyl rings
are also involved in vertex-to-face (vf ) interactions between C4H4 and its paired C7′–C12′

phenyl ring, with the H4-to-plane distance at 2.538(1) Å (Figure 5). Dance and Scudder refer
to this type of interaction in tetraphenylphosphonium salts as a parallel quadruple phenyl
embrace (PQPE) and calculate this interaction energy as −41 kJ.mol−1 [48]. Similarly, the
cation containing P31 in 1 is also involved in a PQPE interaction with paired off interactions
involving the C37–C42/C37′–C42′ phenyl rings and paired vf interactions from C40H40 to
the phenyl ring containing C43′–C48′. For these rings, the centroid–centroid distance is
3.712(2) Å; the centroid-to-plane distance is 3.528(2) Å with a shift of 1.155(4) Å, and the
H40-to-plane distance is 2.636(1) Å. The P1· · ·P1 and P31· · ·P31 distances are 8.004(1) Å
and 8.170(1) Å, with P1· · ·P31 of 11.129(1) Å. The [iPrPPh3]+ cations in 1 are oriented
within the cationic layers with the iPr groups towards the pentaborate(1-)/H2O layers.
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Compound 2 is a further example of a co-crystallized phosphonium pentaborate
salt with one B(OH)3 and 0.5 (disordered) H2O per cation/anion. The supramolecular
structure of 2 also displays anion–anion H-bond interactions and cation–cation aromatic
embraces, but the details of these stabilizing interactions differ from those observed in 1
and [PPh4][B5O6(OH)4]·1.5H2O and are described below.

All hydroxyl groups of the two independent B(OH)3 and the two independent pentabo-
rate(1-) anions are used as H-bond donor centres. The anion containing B1 forms two donor
H-bonds to two α-sites (O9H9· · ·O11′ and O10H10· · ·O6′) of two adjacent pentaborates
(one containing B11 and one containing B1) and both these interactions are R2

2(8) [49] with
the ring involving the O10H10 donor centrosymmetric (reciprocal). The anion containing
B1 also forms two donor H-bonds to two adjacent B(OH)3 molecules: O8H8· · ·O32, and
O7′H7′· · ·O31. The anion containing B11 forms three donor H-bonds to three adjacent
anions at two α-sites (O17H17· · ·O4′ and O18H18· · ·O13′, reciprocal) and one β-site,
(O19H19· · ·O7′). This O10H19· · ·O7′ interaction is part of a two larger R4

4(12) ring in-
teractions with both these rings including both B(OH)3 molecules (Figure 6). The fourth
pentaborate donor interaction is to the disordered H2O (O20H20· · ·O44), and overall the an-
ion can be represented as α,α,β,ω [21]. The hydroxido groups of the two B(OH)3 molecules
are arranged asymmetrically to maximise their acceptor/donor H-bond interactions. The
B(OH)3 containing B31 forms a R2

2(8) ‘pincer’ ring with the B(OH)3 containing B21, and
likewise this B(OH)3 forms a ‘pincer’ R2

2(8) interaction with the pentaborate containing
B11 (Figure 6a). These interactions allow for the two co-crystallised B(OH)3 molecules to
function as ‘spacer’ units to expand the lattice and replace what would otherwise be a
simpler pentaborate/pentaborate R2

2(8) interaction [18,33–36].
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Figure 6. (a) View along the c axis in [MePPh3][B5O6(OH)4].B(OH)3·0.5H2O (2) showing H-bond
interactions involving the two B(OH)3 moieties and their three R2

2(8) and the two R4
4(12) ring motifs.

(b) View along the a axis in 2, illustrating the stacking pattern of the anionic network. The [MePPh3]+

cations (for clarity, only some are shown) occupy the channels as shown forming stacks (chains) with
cations in the stacks only containing P atoms, as labelled. From this perspective, the B(OH)3 units are
side-on and are in the ‘vertical’ section of the borate channels.

A view along the a axis of 2 (along the plane shown in Figure 6a) is shown in Figure 6b.
This view reveals a stacked anionic lattice (rectangular and honeycomb-like) with channels
that are occupied by the cations; interestingly, each cationic stack is occupied by either
cations containing solely P1 or P21 and adjacent cationic stacks in the arrangement, as
shown in Figure 6b. Cations are arranged as centrosymmetric pairs within the stacks
with P1· · ·P1 and P21· · ·P21 distances of 6.253(2) Å and 6.255(2) Å, respectively. The
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repeating P· · ·P distances in both stacks are 10.1076(10) Å, but the interpair dimer inter-
actions differ. These interactions involve aromatic embraces and are vf (C19H19· · ·C6′)
and an edge-to face (ef ) (C6H6· · ·C11′, C7H7A· · ·C10′) for P1-containing cations and vf
(C39H39· · ·C23′/C24′ and C24H24· · ·C31′/C32′) for P21-containing cations. The closest
contacts between centrosymmetric pairs arise from Me· · ·Ph (C1H1B· · ·C10′/C11′) and
Ph· · ·Ph (C3H3· · ·C12′) interactions for the P1-containing stack whilst the P21-containing
stack has an off phenyl ring interaction (between C34-C39 and C34′-C39′) with a centroid–
centroid distance of 4.889(3) Å, a centroid-to-plane distance of 3.326(6) Å and a plane-to-
plane shift of 3.583(7) Å. The C38-to-plane distance is 3.323(8) Å.

3. Materials and Experimental Methods
3.1. General

Reagents were all obtained commercially. FTIR spectra were obtained as KBr pellets on
a Perkin-Elmer 100FTIR spectrometer (Perkin-Elmer, Seer Green, UK). 1H, 11B and 13C and
31P NMR spectra were obtained on a Bruker Avance-500 spectrometer (Bruker, Coventry,
UK) on samples dissolved in D2O at 500, 160, 125 and 202 MHz, respectively. Chemical
shifts are in ppm, with positive values to high frequency (downfield) of TMS (1H, 13C),
BF3·OEt2 (11B) or H3PO4 (31P). TGA and DSC were performed on an SDT Q600 instrument
(TA Instruments, New Castle, DE, USA) using Al2O3 crucibles with a temperature ramp-
rate of 10 ◦C per minute (25 ◦C to 800 ◦C in air). BET measurements were performed on a
Gemini 2375 analyser (Norcross, GA, USA) with N2 gas as the adsorbent. Samples were
analysed between partial pressures (P/Po) of 0.05 and 0.30. X-ray crystallography was
performed at the EPSRC national crystallography service centre at Southampton University.
CHN analyses were obtained from OEA Laboratories (Callingham, Cornwall, UK).

3.2. X-ray Crystallography

Crystallographic data for 1 and 2 are given in the experimental section and in the
Supplementary Data. Data collection for 1 and 2 was performed on a Nonius KappaCCD area
detector (φ scans and ω scans to fill asymmetric unit sphere) diffractometer at 120(2)K. Unit
cell parameters were determined using DirAx [50], with data collection using Collect [51].
Denzo [52] was used for data reduction and cell refinement and SORTAV [53,54] was used
for absorption correction. SHELXS97 [55] was used to solve the structure and was refined
using SHELXL 2018/3 97 [56]. Olex2 [57] was used for graphics in the Supplementary
Information.

3.3. Preparation of [iPrPPh3][B5O6(OH)4]·3.5H2O (1)

[iPrPPh3]I (3.0 g, 6.9 mmol) was dissolved in H2O (50 mL). To this solution, excess
Dowex 550A monosphere (OH− form) was added and the suspension was stirred for 24 h.
The ion-exchange resin was removed by filtration and MeOH (50 mL) was added to the
filtrate. B(OH)3 (2.14 g, 34.6 mmol) was added to the resulting solution, which was then
heated for 1 h. The solvent was removed by rotary evaporation to yield a solid, which was
dried at 110 ◦C for 24 h to give a white crude product (2.94 g, 73%). NMR. (δ1H/ppm):
1.30 (6H, dd, 3J(HH) 6.9, 2J (PH) 18.6 Hz), 3.73 (1H, dq, 3J(HH) 6.9 Hz), 7.50 (6H, m), 7.63
(9H, m); (δ(13C/ppm): 15.42 (2 × CH3), 20.09 (CH, d, 1J(CP) 48.9 Hz), 117.21 (3 × C, d,
1J(CP) 83.9 Hz), 130.04 (6 × CH, d, 2J(CP) 12.1 Hz), 133.62 (6 × CH, d, 3J(CP) 9.2 Hz), 134.78
(3 × CH, d, 4J(CP) 2.1 Hz); (δ 11B/ppm): 1.1, 12.9, 18.5; (δ 31P/ppm): 30.15. IR (KBr/cm−1);
3292 (vs), 3149 (vs), 1425 (vs), 1404 (vs), 1311 (vs), 1148 (m), 1106 (s), 1095 (s), 1061 (s),
1015 (s), 924 (s), 897 (s), 811 (m), 709 (s). Elemental analysis, C21H33B5O13.5P req. C 43.0%,
H 5.7%, found C, 42.9%, H, 4.9%. TGA: 1st stage-loss of 5.5H2O (<275 ◦C): 17% expt.,
17% calc., 2nd stage-oxidation (275–800 ◦C) to glassy residue: 36% expt., 30% calc. for
2.5 × B2O3. BET: multi-point surface area (m2/g) 0.7979 (1); 2.7599 (anhydrous); 0.2723
(pyrolysed). Crystals suitable for sc-XRD studies were obtained by crystallization from
H2O. sc-XRD: C21H33B5O13.5P, Mr = 586.49, triclinic, P−1, a = 9.1810(3) Å, b = 13.4812(5)
Å, c = 23.8357(8) Å, α = 75.3130(10)◦, β = 83.095(2)◦, γ = 86.919(2)◦ V = 2832.24(17) Å3,
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Z = 4, T = 120(2) K, λ = 0.71073 Å, D(calc.) 1.375 Mg/m, absorption coefficient 0.162 mm−1,
F(000) 1228, 50,870 reflections measured, 99.7% complete to θ = 27.48◦, 12,947 unique
[Rint = 0.0578], which were used in all calculations. The final R1 = 0.0563 (I > 2σ(I)) and
wR2 = 0.1571 (all data).

3.4. Synthesis of [MePPh3][B5O6(OH)4].B(OH)3.0.5H2O (2)

[MePPh3]I (2.50 g, 6.2 mmol) was dissolved in H2O (50 mL). To this solution, excess
Dowex 550A monosphere (OH− form) was added and the suspension was stirred for 24 h.
The ion-exchange resin was removed by filtration and MeOH (50 mL) was added to the
filtrate. B(OH)3 (1.91 g, 30.9 mmol) was added to the resulting solution, which was then
heated for 1 h. The solvent was removed by rotary evaporation to yield an orange solid
as the crude product, which was dried at 110 ◦C for 24 h (2.84 g, 98%). NMR. (δ1H/ppm):
2.69 (3H, d, 2J(HP) 13.8 Hz), 7.50 (12H, m), 7.68 (3H, m); (δ13C/ppm): 7.96 (CH3, d, 1J(CP)
58.5 Hz), 119.06 (C, d, 1J(CP) 89.2 Hz); (δ 11B/ppm) ppm: 1.2, 13.1, 18.6; (δ31P/ppm): 21.05.
IR (KBr/cm−1): 3307 (s), 1417 (vs), 1296 (vs), 1118 (s), 1019 (m), 918 (s), 775 (m), 748 (m),
720 (m), 688 (m). Elemental analysis, C19H26B6O13.5P req. C 40.3%, H 4.6%, found C, 42.8%,
H, 4.6%. TGA: 1st stage-loss of 4H2O (<275 ◦C): 12% expt., 13% calc., 2nd-stage oxidation
(275–800 ◦C) to glassy residue: 42% expt., 37% calc. for 3 × B2O3. BET: multi-point surface
area (m2/g) 0.5098 (2); 0.4134 (anhydrous); 0.2226 (pyrolysed). Crystals suitable for sc-XRD
were obtained by crystallization from H2O. sc-XRD: C38H52B12O27P2, Mr = 1132.46, triclinic,
P−1, a = 10.1076(10) Å, b = 13.0403(10) Å, c = 20.6260(15) Å, α = 84.364(5)◦, β = 82.811(4)◦,
γ = 76.492(4)◦, V = 2615.9(4) Å3, Z = 2, T = 120(2) K, λ = 0.71073 Å, D(calc.) 1.438 Mg
/m, absorption coefficient 0.172 mm−1, F(000) 1172, 35,616 reflections measured, 98.8%
complete to θ = 27.48◦, 12,083 unique [Rint = 0.0649], which were used in all calculations.
The final R1 = 0.0742 (I > 2σ(I)) and wR2 = 0.1676 (all data).

4. Conclusions

Two substituted aryl phosphonium pentaborate salts were synthesized by templated
crystallization from aqueous solution primed with B(OH)3 and appropriate aryl phospho-
nium cation and characterized by sc-XRD. Their structures are unusual for pentaborates
in that [iPrPPh3][B5O6(OH)4]·3.5H2O has alternating layers of cations and anions whilst
[MePPh3][B5O6(OH)4]·B(OH)3·0.5H2O has a rectangular honeycomb-like structure with
cations stacked within channels. Despite their unusual structures, the materials derived
by thermal oxidation of the cations are non-porous. The solid-state structures of both
compounds are stabilized by multiple H-bonding and phenyl embrace interactions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28196867/s1, Crystallographic data for 1 and 2 are avail-
able as Supplementary Materials. CCDC 2291682 (1) and 2291683 (2) also contain the supplemen-
tary crystallographic data for this paper. These CCDC data can be obtained free of charge via
http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from CCDC, 12 Union Road, Cambridge,
CB2 1EZ. Fax: +44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk).
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Abstract: A series of phosphorus and selenium peri-substituted acenaphthene species with the
phosphino group oxidized by O, S, and Se has been isolated and fully characterized, including by
single-crystal X-ray diffraction. The P(V) and Se(II) systems showed fluxional behavior in solution due
to the presence of two major rotamers, as evidenced with solution NMR spectroscopy. Using Variable-
Temperature NMR (VT NMR) and supported by DFT (Density Functional Theory) calculations and
solid-state NMR, the major rotamers in the solid and in solution were identified. All compounds
showed a loss of the through-space JPSe coupling observed in the unoxidized P(III) and Se(II) systems
due to the sequestration of the lone pair of the phosphine, which has been previously identified as
the major contributor to the coupling pathway.

Keywords: peri-substitution; selenium; phosphorus; NMR; single-crystal X-ray structures; rotational
conformation; DFT calculations

1. Dedication

This paper is dedicated to Professor J. Derek Woollins on the occasion of his well-
earned retirement and for his outstanding contributions to main group chemistry.

2. Introduction

The selective, stepwise lithiation reaction of 5,6-dibromoacenaphthene allows syn-
thetic access to heteroleptic bis(phosphino)acenaphthenes and has been used to synthesize
bis(phosphine) A (Figure 1) [1]. Due to the inherent asymmetry of the heteroleptic phos-
phine groups, in the 31P{1H} NMR spectrum, A shows two doublets of an AB spin system
at δP −11.3 and −12.8 ppm, with a remarkably large 4TSJPP of 180.0 Hz. This is attributed
to the through-space coupling resulting from the overlap of the phosphorus lone pairs
due to the constraints imposed by the rigid acenaphthene skeleton. Oxidation of the P(III)
centers to P(V) with sulfur, atmospheric oxygen, or hydrogen peroxide results in a loss or
significant decrease in the magnitude of the through-space JPP coupling as the lone pairs of
the phosphines are sequestered [1,2]. In only a handful of cases, where A acts as a bidentate
ligand with MCl2 (M = Zn, Cd, Hg), the magnitude of JPP increases as the coupling is
mediated by the large, diffuse s-character orbitals of the group 12 metals (e.g., A·HgCl2 JPP
309 Hz, Figure 1) [2].

Heteroleptic substitution is not limited to phosphorus substituents but can also involve
other p-block and d-block heteroatoms (for some examples, see references [3–11]). Not
only do heteroatoms present a challenging synthetic opportunity for peri-substitution, but
they yield interesting NMR spectra when both nuclei are NMR active, as these nuclei
can also experience through-space spin–spin coupling. When heavier nuclei are used,
the orbitals are larger and more diffuse. As a result, through-space coupling can occur
at longer peri-distances [12]. An excellent example of this is the series of phosphine–tin
peri-substituted acenaphthene reported by Athukorala Arachchige et al. where 31P···119Sn
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Molecules 2023, 28, 7297

J coupling can be observed [13]. The 119Sn isotope has I = 1
2 and a natural abundance of

8.6%, making it possible to observe J coupling with 31P (I = 1
2 , 100%). In B (Figure 1), there

is a direct P–Sn bond (2.815(3) Å) with 1JPSn 754 Hz, yet, in C, where there is no direct P–Sn
bond but there is a sub-van der Waals P···Sn interaction (3.251(1) Å), a significant JPSn of
373 Hz is still observed, demonstrating a clear 3c–4e type overlap of the phosphorus lone
pair with the Sn–CPh σ* orbital. Other P/Sn acenaphthenes have also been reported with
diphenylphosphino groups instead of diisopropylphosphino groups [14].
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Woollins et al. previously published a series of naphthalene-based phosphine sele-
noethers [15]. In D, there is an efficient transfer of spin information between P and Se,
as indicated by the 4TSJPSe of 391 Hz (note, TS superscript indicates through-space cou-
pling). When the P(III) center is oxidized with chalcogens to P(V) (compounds E), the
magnitude of JPSe diminishes to <24 Hz (Figure 1) [15]. An in-depth computational study
has shown that the magnitude of JPP and JPSe in the related compound F has contribu-
tions from both through-space and through-bond pathways [16]. We recently reported
a series of acenaphthene analogues (1) with various aryl groups bound to selenium [17].
As the electron-donating ability of the aryl group attached to selenium increases, so does
the magnitude of JPSe from 452 Hz, when R = phenyl, up to 545 Hz, when R = Mes*
(2,4,6-tri-tert-butylphenyl).

3. Results and Discussion
3.1. Synthesis

Utilizing compound 1Ph as our workhorse, we herein report the synthesis and charac-
terization of the P(V) chalcogen oxidized species 1-O, 1-S, and 1-Se and the P(V)/Se(IV)
species 1-O2 (Scheme 1).
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Scheme 1. The synthetic pathway for compounds 1-O, 1-S, 1-Se, and 1-O2.

Compound 1Ph showed a singlet in the 31P{1H} NMR spectrum at δP −6.5 ppm with
77Se satellites giving JPSe 452.2 Hz. This was complemented by a doublet at δSe 425.3 ppm,
observed in the 77Se{1H} NMR spectrum. Heating a solution of 1Ph under reflux in toluene
with one equivalent of gray selenium for 15 h, followed by purification, afforded 1-Se as a
yellow microcrystalline powder (54% yield). 1-S was prepared in a similar manner but only
required heating under reflux for 6 h for complete consumption of 1Ph. After purification,
1-S was afforded as beige microcrystalline powder (86% yield).

The first attempt to produce 1-O using hydrogen peroxide resulted in the formation of
a mixture of 1-O and 1-O2, as determined by solution 77Se{1H} NMR spectroscopy. Direct
synthesis of 1-O2 was achieved by using an excess of hydrogen peroxide. After purification,
1-O2 was obtained as a white solid (45% yield). To control the oxidation of 1Ph to selectively
oxidize the phosphine, we attempted air oxidation by leaving a vigorously stirring solution
of 1Ph exposed to air; however, even after 24 h, no reaction had occurred, as judged by
31P{1H} NMR spectroscopy. Instead, 1Ph was stirred with one equivalent of H2O2·urea
complex. The conversion was slow, but, as monitored by 31P{1H} NMR spectroscopy,
complete consumption of 1Ph was observed after 72 h. After recrystallization, 1-O was
isolated in a 39% yield. The mechanism of the phosphine oxidation was not studied in the
scope of this work, as P(III) to P(V) oxidations by peroxides, cyclooctasufur (S8), and gray
selenium are well established from early thermochemical and mechanistic studies [18–20].
All compounds reported herein were found to be air stable, in the solid state, with no signs
of degradation after twelve months.

3.2. Crystallography

Crystals of 1-Se, 1-S, and 1-O were grown from a solution of CH2Cl2:hexane (1:3 v/v),
and crystals of 1-O2 were grown from evaporation of a solution in CH2Cl2. The structures
of 1-O, 1-S, and 1-Se are very similar with only minor differences due to the increased size
of the chalcogen bound to phosphorus. The crystal structures are shown in Figure 2, and
selected crystallographic data are presented in Table 1.

The most notable differences between the structures of the precursor (1Ph) [17] and the
oxidized P(V) species (1-O, 1-S, and 1-Se) are in the peri-region. In 1Ph, the P···Se distance
is 3.055(1) Å; this increases to 3.322(2) Å in 1-O, 3.4863(5) Å in 1-S, and 3.5012(7) Å in 1-Se.
Similarly, there are large increases in the splay angles (12.6◦ in 1Ph to 32.0◦ in 1-Se), the
P–C···C–Se dihedral angles, and the out-of-plane displacements of the P and Se atoms from
the mean C12 acenaphthene plane (see Table 1). These changes are expected due to the new
steric demands placed on the molecule caused by the addition of another atom into the
peri-gap when the iPr2P group is oxidized to iPr2P = E (where E = O, S, Se). When compared
to the crystal structures of the naphthalene analogues (E, Figure 1), there are no significant
differences [15]. The only dissimilarity observed between the acenaphthene and naphthalene
analogues is that the absence of the ethylene bridge in the naphthalene structures results in
a slightly decreased P···Se distance and slightly smaller splay angles. For example, in the
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naphthalene compound E (where E = Se), the P···Se distance is 3.278(2) Å (vs. 3.5012(7) Å for
1-Se), and the splay angle drops from 32.0◦ to 24.8◦.

Table 1. Selected bond lengths (ångströms (Å)) and angles (degrees, ◦) for 1-O, 1-S, 1-Se, and 1-O2.

Compound 1-O 1-S 1-Se 1-O2 [b]

peri-region bond distances
P1···Se1 3.322(2) 3.4863(5) 3.5012(7) 3.578(1) [3.610(1)]

P1-E 1.491(6) 1.9657(5) 2.1219(7) 1.487(4) [1.492(4)]
Se1···E 2.825(6) 3.2272(5) 3.2829(6) 2.646(3) [2.625(3)]
Se1-O1 − − − 1.669(3) [1.671(4)]

peri-region bond angles
C9-P1-E 110.7(4) 112.39(5) 112.40(8) 112.7(2) [113.1(2)]
P1-E-Se1 95.7(3) 80.36(2) 77.47(2) 117.1(2) [118.5(2)]

E-Se1-C19 165.4(3) 164.53(5) 166.29(8) 84.6(2) [86.4(2)]
O2-Se1-O1 − − − 169.3(1) [169.2(2)]
C1-Se1-C19 99.3(3) 97.01(6) 96.8(1) 97.7(2) [95.4(2)]

Splay [a] 18.5 19.9 20.2 28.1 [29.1]

dihedral angles
C9-C10-C5-C4 174.8(8) 173.7(1) 173.2(2) 178.3(5) [177.4(5)]
P1-C9···C1-Se1 22.2(5) 31.87(8) 32.0(1) 1.8(3) [1.7(3)]

out-of-plane displacements
P1 0.508 0.605 0.593 0.065 [0.007]
Se1 −0.393 −0.700 −0.725 0.006 [0.128]

[a] splay angle = sum of the bay region angles—360. [b] values in square parentheses are for the 2nd molecule in
the asymmetric unit.
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The structure of 1-O2 is very different from that of the other three due to the Se(IV)
group (selenoxide) being present. The trends are similar to those observed in the Se(II)
complexes, but taken to a new extreme. There is a greater steric demand on the molecule,
as evidenced by the much larger splay angle of 28◦ (29◦ in the second molecule of the
asymmetric unit) and peri-distance between the P and Se atoms of 3.578(1) Å (3.610(1) Å).
Somewhat unexpectedly, the dihedral angle is much smaller at 1.8(3)◦ (1.7(3)◦); however,
this arises from the rotation around the C9–Se1 bond, such that the Se=O group points
away from the peri-gap, which significantly reduces the steric crowding and the need for
any out-of-plane deformations to relieve the steric strain.

3.3. NMR Spectroscopy of 1-Se

In solution, the precursor 1Ph showed a sharp singlet in the 31P{1H} NMR spectrum at
δP −6.5 ppm with 77Se satellites (7.6% natural abundance), giving 4TSJPSe of 452.2 Hz. This
was complemented by a doublet in the 77Se{1H} NMR spectrum centered at δSe 425.3 ppm
(4TSJSeP 452.8 Hz). Recently, we have shown that the large through-space coupling between
31P and 77Se arises from the overlap of the phosphorus lone pair with the orbitals localized
on the Se–CPh bond [17]. In this study, the lone pair of the phosphorus was sequestered
by oxidation with a chalcogen atom in all complexes, and as expected, this significantly
reduced the magnitude of JPSe in all compounds. Based on the recent findings by Makina
et al. [16], we assume the dominant pathway of coupling information being exchanged is
through space in the unoxidized 1Ph; therefore, we attribute the drop in magnitude to JPSe
to the loss of this pathway.

3.3.1. Fluxionality in Solution

The 31P{1H} NMR spectrum of 1-Se revealed two singlets, at δP 86.3 and 58.4 ppm,
when only one was anticipated (Figure 3, top). The signal at δP 58.4 ppm was accompanied
by a broadened set of 77Se satellites with 1JPSe of ca. 690 Hz. This was indicative of a
P = Se double bond and closely resembled those reported in the literature (cf. Ph3PSe; 1JPSe
730 Hz) [21]. The signal at δP 86.3 ppm showed significant broadening and no resolvable
77Se satellites. The presence of two rotational conformers was confirmed by 77Se{1H} NMR
with the spectrum showing two broad singlets at δSe 426.2 and 419.0 ppm corresponding to
the selenoether, as well as two doublets at δSe −358.5 and −451.0 ppm (1JSeP ca. 696 and
693 Hz, respectively) corresponding to the phosphine selenide (Figure 3, bottom). Initially,
the presence of two sets of peaks suggested the occurrence of a side reaction; however, upon
further investigation using Variable-Temperature NMR, it was concluded they were due to
the very large steric bulk around the peri-region exhibiting fluxional behavior in solution.
Acquisition of a 1H–31P HMBC spectrum (Figure S1) showed a strong correlation between
both 31P signals and the hydrogen atoms in the isopropyl groups, strongly supporting the
idea of fluxional behavior. This was unexpected as the naphthalene equivalent (E) was
reported as showing one sharp singlet in the 31P{1H} NMR spectrum, which does not
suggest fluxional behavior [15].

To obtain further evidence of the fluxional behavior, a one-dimensional exchange
spectroscopy (EXSY) NMR experiment was performed on 1-Se. This showed magnetiza-
tion transfer within the NMR timescale at 253 K. This indicated an exchange between two
magnetic environments in two different isomers and confirmed the presence of fluxional
behavior in solution. Therefore, the two sets of signals observed in the ambient temperature
(293 K) 31P{1H} and 77Se{1H} NMR spectra arose from two different rotational conforma-
tions present in solution. The notion of different rotational conformations in solution in
peri-substituted naphthalenes has been reported by Woollins previously [22]. The species
Nap(POCl2)(PCl2) (Nap = naphthalene-1,8-diyl), with a P(III)/P(V) peri-substitution, was
demonstrated to have two rotamers in solution, with the 31P{1H} NMR spectrum at 233 K
showing two similar signals for the PCl2 group (δP 145.52 and 145.50 ppm) and one signal
for the POCl2 group (δP 42.9 ppm). At 298 K, the signals at δP 145.52 and 145.50 ppm
were not observed. Kilian et al. reported that these results are interpreted as “the hin-
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dered rotation around the P-C(Nap) bonds, resulting the presence of two conformers whose
interconversion is slow on the NMR time scale”.
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Figure 3. The ambient temperature 31P{1H} (top) and 77Se{1H} (bottom) NMR spectra of 1-Se,
acquired at 202.5 and 95.4 MHz, respectively.

Variable-temperature 31P{1H} and 77Se{1H} NMR experiments were carried out using
1-Se; however, to overcome the coalescence point, a high-boiling solvent was needed. For
the elevated-temperature experiments, d5-bromobenzene (boiling point 156 ◦C, 429 K) was
used as the NMR solvent. For low-temperature experiments, d-chloroform (melting point
−64 ◦C, 209 K) was used. At 253 K, fully resolved signals of the two conformations with
observable satellites were observed. The 31P{1H} NMR spectrum at 253 K showed two
singlets at δP 86.2 and 58.0 ppm, with 1JPSe of 682.9 and 681.3 Hz, respectively (Figure 4).
The 77Se{1H} NMR spectrum at 255 K showed two singlets at δSe 422.8 and 415.3 ppm
corresponding to the selenoether and two doublets at δSe, −362.6 and −452.4 ppm, with
1JSeP 681.5 and 683.6 Hz, corresponding to the phosphine selenide (Figure 5). The singlet at
δSe 415.3 ppm also showed a 5TSJSeSe coupling of 182.0 Hz as 77Se satellites (Figure 5). Even
in the slow-motion regime at 253–255 K, no through-space coupling was present between
the phosphorus and the selenoether. This was expected as the phosphorus lone pair was
sequestered in the P = Se bond and, hence, was no longer available to overlap with the
SePh orbitals. The 31P{1H} NMR spectrum acquired at 363 K showed one broad singlet at
δP 68.3 ppm as the energy barrier between the two conformations had been overcome, but
the speed of the exchange was only marginally faster than the NMR timescale. At 363 K,
the 77Se{1H} NMR spectrum showed one singlet at δSe 433.0 ppm, corresponding to the
selenoether. The upfield signal attributed to the P = Se group was not observed, likely due
to the fact that 363 K is close to the coalescence temperature. Due to limitations with the
equipment, we could not acquire any data at temperatures exceeding 368 K.

As the coalescence was observed in the 31P{1H} and the 77Se{1H} NMR spectra, the
coalescence method could be used to estimate the rotational barrier (∆G‡) of 1-Se, assuming
the coalescence followed typical Eyring behavior.

∆G‡ = aTC

[
9.972 + log

(
Tc

∆ν

)]
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Using this equation, the temperature of coalescence (TC = 363 K) and the largest
separation between the signals of the two conformers obtained from the lowest-temperature
31P{1H} VT NMR spectra (∆ν = 5715 Hz); ∆G‡ was estimated as 61 kJ mol−1.
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Figure 5. The 77Se{1H} VT NMR spectra of 1-Se with solvent and temperatures indicated (acquired
at 95.4 MHz).

3.3.2. Solid-State NMR of 1-Se

To corroborate the large coupling values observed and to confirm the number of con-
formations in the solid state, 31P{1H} (Figure S2) and 77Se{1H} SS-MAS NMR spectra of 1-Se
were acquired (Figure 6). In the 31P{1H} SS-MAS NMR spectrum, a singlet at δP 60.2 (with
77Se satellites giving 1JPSe = 699.2 Hz) was observed, with spinning sidebands. In the 77Se{1H}
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SS-MAS NMR spectrum, there were two signals: a singlet at δSe 431.6 ppm and a doublet at
δSe −353.9 ppm, with 1JSeP of 700.8 Hz (Figure 6). The singlet corresponds to the selenoether
and the doublet to the phosphine selenide environment. The large 1JSeP was still present in
the solid state, albeit with a slightly larger magnitude than in the solution state.
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Figure 6. The 77Se{1H} SS-MAS NMR spectrum of 1-Se recorded at 76.3 MHz. The isotropic peaks
are located at δSe 431.6 and −353.9 ppm and denoted with *.

The key finding is that no other signals were present for each 31P and 77Se environment,
indicating that while the bonding environments and connections were the same in both
the solution and the solid state, only one conformer was present in the solid state. If two
conformers were present in the solid state, two isotropic signals (with spinning side bands)
would be expected in both the upfield and downfield regions of the 77Se{1H} MAS spectrum.
It is likely that the dominant isomer corresponded to the conformation elucidated by the
crystal structure (Figure 2). However, it is also possible that some solvates were formed, as
demonstrated recently [23].

3.4. NMR Spectroscopy of 1-S and 1-O

For other chalcogen-oxidized compounds of 1Ph, the change in rotational barrier was
expected to follow the trend 1-Se > 1-S > 1-O, as the larger atomic radius of selenium
provides a greater barrier to the rotation of the molecule (single-bond covalent radii Se
1.16 Å; S 1.03 Å; O 0.63 Å) [24].

The lighter congeners, 1-S and 1-O were prepared; as with 1-Se, the solution state
31P{1H} NMR spectrum of 1-S acquired at ambient conditions was notably broad with
two signals at δP 82.8 and 65.1 ppm, neither of which showed any 77Se satellites (Figure 7,
left). The solution-state 77Se{1H} NMR spectrum mirrored the observations of the 31P{1H}
spectrum with two broad singlets present at δSe 422.9 and 418.2 ppm (Figure 7, right). To
determine the coalescence temperature and thus determine the rotational energy barrier,
VT NMR experiments were performed on 1-S (Figure 7). The 31P{1H} NMR spectra showed
coalescence was reached at 368 K, although the signal at δP 71.9 ppm was still observed as
a reasonably broad singlet, while completely resolved signals of the two rotamers in the
slow-motion regime were observed at 253 K, showing two singlets at δP 82.6 and 64.7 ppm.
Comparatively, the 77Se{1H} NMR spectra showed fast free rotation was achieved at 368 K
with a sharp singlet observed at δSe 433.2 ppm and verified the full resolution of signals in
the slow-motion regime at 255 K (δSe 418.9 and 413.2 ppm).

Similar observations were made for 1-O. The 31P{1H} NMR spectrum at ambient
conditions revealed two broad singlets at δP 55.4 and 54.3 ppm, with the 77Se{1H} NMR
spectrum showing two singlets at δSe 436.6 and 400.9 ppm (Figures S3 and S4). Additionally,
VT NMR studies were carried out, with the coalescence observed at 323 K in the 31P{1H}
NMR spectrum with complete sharpening of signals observed at 373 K. Two fully resolved
singlets were observed in both the 31P{1H} and 77Se{1H} spectra at 255 K (δP 56.1 and
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55.2 ppm; δSe 430.4 and 397.0 ppm). Using ∆ν = 3617 Hz from the 255 K spectra for 1-S
and ∆ν = 184 Hz from the 255 K spectra for 1-O, ∆G‡ was estimated to be ca. 62 kJ mol−1

for 1-S and 63 kJ mol−1 for 1-O (at 323 K), which, somehow contrary to expectations, was
marginally higher than for 1-Se (61 kJ mol−1). However, one needs to realise that the
coalescence method is only an approximation, and that the ∆G‡ values were obtained for
different temperatures. Full Erying analysis was not possible as the spectrometer could not
exceed 373 K, meaning complete sharpening of the peaks was never observed. As the van
der Waals radii of Se is larger than that of S, which is larger than that of O (1.93, 1.85, 1.37 Å,
respectively) [25], one may expect the rotational barriers to follow this order; therefore, it is
likely that other steric and electronic effects were dominant here.

Molecules 2023, 28, x FOR PEER REVIEW 9 of 18 
 

 

bands) would be expected in both the upfield and downfield regions of the 77Se{1H} MAS 

spectrum. It is likely that the dominant isomer corresponded to the conformation eluci-

dated by the crystal structure (Figure 2). However, it is also possible that some solvates 

were formed, as demonstrated recently [23]. 

3.4. NMR Spectroscopy of 1-S and 1-O 

For other chalcogen-oxidized compounds of 1Ph, the change in rotational barrier was 

expected to follow the trend 1-Se > 1-S > 1-O, as the larger atomic radius of selenium 

provides a greater barrier to the rotation of the molecule (single-bond covalent radii Se 

1.16 Å; S 1.03 Å; O 0.63 Å) [24]. 

The lighter congeners, 1-S and 1-O were prepared; as with 1-Se, the solution state 
31P{1H} NMR spectrum of 1-S acquired at ambient conditions was notably broad with two 

signals at δP 82.8 and 65.1 ppm, neither of which showed any 77Se satellites (Figure 7, left). 

The solution-state 77Se{1H} NMR spectrum mirrored the observations of the 31P{1H} spec-

trum with two broad singlets present at δSe 422.9 and 418.2 ppm (Figure 7, right). To de-

termine the coalescence temperature and thus determine the rotational energy barrier, VT 

NMR experiments were performed on 1-S (Figure 7). The 31P{1H} NMR spectra showed 

coalescence was reached at 368 K, although the signal at δP 71.9 ppm was still observed as 

a reasonably broad singlet, while completely resolved signals of the two rotamers in the 

slow-motion regime were observed at 253 K, showing two singlets at δP 82.6 and 64.7 ppm. 

Comparatively, the 77Se{1H} NMR spectra showed fast free rotation was achieved at 368 K 

with a sharp singlet observed at δSe 433.2 ppm and verified the full resolution of signals 

in the slow-motion regime at 255 K (δSe 418.9 and 413.2 ppm). 

 

Figure 7. The 31P{1H} VT NMR spectra (left) and 77Se{1H} VT NMR spectra (right) of 1-S with solvent 

and temperatures indicated (acquired at 202.5 and 95.4 MHz, respectively). 

Similar observations were made for 1-O. The 31P{1H} NMR spectrum at ambient 

conditions revealed two broad singlets at δP 55.4 and 54.3 ppm, with the 77Se{1H} NMR 

spectrum showing two singlets at δSe 436.6 and 400.9 ppm (Figures S3 and S4). Addition-

ally, VT NMR studies were carried out, with the coalescence observed at 323 K in the 
31P{1H} NMR spectrum with complete sharpening of signals observed at 373 K. Two fully 

Figure 7. The 31P{1H} VT NMR spectra (left) and 77Se{1H} VT NMR spectra (right) of 1-S with
solvent and temperatures indicated (acquired at 202.5 and 95.4 MHz, respectively).

3.5. NMR Spectroscopy of 1-O2

The solution-state 31P{1H} NMR spectrum of 1-O2 showed one sharp downfield-
shifted singlet at δP 56.4 ppm with the 77Se{1H} NMR spectrum also showing a sharp
downfield-shifted singlet at δSe 896.4 ppm (cf. 1Ph δP −6.5 ppm; δSe 425.3 ppm) (Figure S5).
The large downfield shift of both peaks was consistent with the oxidation of both the iPr2P
and SePh moieties to the P(V) and Se(IV) species, iPr2P(O) and Se(O)Ph. No other signals
were present in the NMR spectra, unlike for 1-O, 1-S, and 1-Se, indicating that only one
rotational conformation was present in solution, presumably due to the increased steric
bulk in the peri-region causing extremely hindered rotation of the iPr2P(O) and Se(O)Ph
groups. Due to the phosphorus lone pair being sequestered, as well as one of the selenium
lone pairs, no JPSe couplings were observed in either spectra.

3.6. Computational Studies

To complement these findings, we performed calculations at the B3LYP-D3/6-311+G(d,p)
/CPCM(C6H5Br)//B3LYP-D3/6-31+G(d,p) level of density functional theory (DFT). Starting
from the conformation observed in the solid, selected rotamers were constructed by rotat-
ing the SePh and iPr2P(Se) moieties about the C(acenaphthene)–E bonds (E = P, Se). The
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resulting optimized structures are shown in Figure 8, and computed relative energies are
collected in Table 2.
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Figure 8. B3YP-D3 optimized rotamers of 1-Se viewed along the central C–C bond of the acenaph-
thene moiety; 1-Se(A) is the conformation observed in the solid state. Color code: gray, purple, and
bronze for C, P, and Se, respectively. Hydrogen atoms are omitted for clarity.

Table 2. Computed a relative energies ∆E, enthalpies ∆H, and free energies ∆Ga for selected rotamers
in kJ mol−1 relative to 1-Se(A), as well as computed a and experimental b (in italics) δ(31P) and δ(77Se)
chemical shifts of 1-Se(A) and 1-Se(D).

Molecule ∆E ∆H298 ∆G298 δ(P) δ(Se = P) δ(SePh)

1-Se(A) 0 0 0 61.7
58.0 b

−389.9
−362.6 b

385.1
415.3 b

1-Se(B) 19.0 19.7 23.5
1-Se(C) 32.8 33.8 34.3

1-Se(D) −2.6 −2.4 −2.4 89.1
86.2 b

−555.7
−452.4 b

433.8
422.8 b

a Energies at B3LYP-D3/6-311+G(d,p)/CPCM(C6H5Br)//B3LYP-D3/6-31+G(d,p) level, thermodynamic correc-
tions from B3LYP/6-31+G(d,p); chemical shifts at GIAO-B3LYP/ILGO-II‘/CPM(CHCl3)//B3LYP-D3/6-31+G(d,p)
level b 235 K in CDCl3 (this work).

In the conformer found in the solid (structure 1-Se(A) in Figure 8), the two Se atoms
displayed sub-van der Waals contact (Se···Se distance 3.29 Å and 3.28 Å from B3LYP-D3
and XRD, respectively), and the Se–Ph group was oriented along the Se···Se axis and
anti with respect to the Se atom on the phosphine. Rotating either the SePh group or the
iPr2P(Se) group such that the Se atoms were still in contact but the SePh group was roughly
perpendicular to the Se···Se axis afforded two minima (1-Se(B) and 1-Se(C), respectively,
in Figure 8) which were significantly higher in energy than conformer 1-Se(A) (by ca.
19–34 kJ mol−1, see Table 2). Further rotating the iPr2P(Se) moiety such that the Se atom on
the phosphine was pointing away from the other Se atom in the SePh substituent afforded
a new minimum (1-Se(D) in Figure 8) which was slightly more stable than conformer
1-Se(A) (by ca. −2 to −3 kJ mol−1, see Table 2). One of the isopropyl groups was also
rotated to minimize steric clash between a methyl group and the Se(Ph) atom in rotamer
1-Se(D). These results are fully compatible with the observation of a mixture of two slowly
interconverting isomers. Based on the comparison of computed and observed 31P and
77Se chemical shifts (see Table 2), we assigned the more deshielded 31P resonance, and the
more “extreme” 77Se shifts (i.e., the most deshielded and the most shielded one), to rotamer
1-Se(D). From the observed relative intensities of these two sets of signals (Figures 4 and 5),
it appears that it was indeed rotamer 1-Se(A) that was more abundant, i.e., more stable.
This assignment also agrees with the comparison of the 77Se resonances observed in the
solid (Figure 6), arguable arising from 1-Se(A), and those of the more abundant form in
solution. In addition, only for 1-Se(A), a notable indirect JSeSe spin–spin coupling constant
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was computed (145 Hz, with 182 Hz observed), whereas that in 1-Se(D) was negligibly
small. The reason why the computed relative stabilities of 1-Se(A) and 1-Se(D) were
reversed is not clear at the moment. Indeed, switching the solvent model to CHCl3, or
the functional to M06-2X, which has performed very well for energetics in other related
systems [5], did not change the relative sequence of both.

The reason for the apparent stability of rotamer 1-Se(D) seems to be more the relief of
Se···Se repulsion rather than Se···P bonding interactions; the optimized Se···P distance in
1-Se(D) was 3.72 Å. This is close to the sum of the van der Waals radii of 4.09 Å; consequently,
only a very small Wiberg bond index of 0.01 was obtained between these two atoms.

4. Materials and Methods
4.1. General Considerations

All synthetic manipulations were performed under an atmosphere of dry nitrogen
using standard Schlenk techniques or under an argon atmosphere in a Saffron glove box.
However, all compounds reported herein were found to be air stable, so repeated reactions
were performed under air with no detrimental effects. All glass apparatus were stored
in a drying oven (ca. 120 ◦C) prior to use. Dry solvents were collected from an MBraun
Solvent Purification System and stored over appropriate molecular sieves. Water used
in experiments was subject to nitrogen sparging and stored under nitrogen prior to use.
Chemicals were taken from the laboratory inventory and used without further purification.
Infrared Spectra were acquired using a Nicolet 308 FT-IR (Thermo Fisher Scientific, Oxford,
UK) with Specac ATR attachment, recorded between 4000 and 500 cm−1.

All solution-state NMR spectra were recorded using either a Bruker Avance III
(500 MHz) or Bruker Avance III-HD (500 MHz) spectrometer operating at a magnetic
field strength of 11.7 Tesla at 20 ◦C, unless otherwise specified. Assignments of 1H and
13C spectra were made in conjunction with appropriate 2D spectra. 13C NMR spectra were
recorded using the DEPTQ pulse sequence with broadband proton decoupling. The fol-
lowing external standards were used: 1H and 13C NMR, tetramethylsilane; 31P NMR, 85%
H3PO4 in D2O; 77Se NMR, dimethyldiselende (Me2Se2) and diphenyldiselenide (Ph2Se2) as
a secondary reference at 463.0 ppm. Residual solvent peaks were also used for secondary
calibration (CDCl3 δH 7.260 ppm; δC 77.160 ppm; C6D5Br δH 7.300, 7.019, 6.946 ppm; δC
130.900, 129.339, 126.162, 122.181 ppm). Chemical shifts (δ) are given in parts per million
(ppm) relative to the residual solvent peaks where possible. Coupling constants (J) are
quoted in Hertz (Hz). The NMR numbering scheme for all compounds is shown in Figure 9.
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Solid-state 31P{1H} and 77Se{1H} NMR (SS-MAS NMR) measurements were performed
using a Bruker Avance III 400 MHz spectrometer operating at a magnetic field strength of
9.4 T. Experiments were carried out using a conventional 4 mm MAS probe with a MAS
rate of 14 KHz for 31P{1H} and 10 kHz for 77Se{1H}. The 77Se{1H} cross-polarization MAS
experiments (using ramped contact pulse durations of 5 ms and TPPM 1H decoupling) were
carried out with signal averaging for 2048 transients with a recycle interval of 3 s. Chemical
shifts are reported in ppm, relative to Me2Se at 0 ppm, using the isotropic resonance of solid
H2SeO3 at 1288.1 ppm as a secondary reference. The position of the isotropic resonance
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within the spinning sideband patterns was unambiguously determined by recording a
second spectrum at a different MAS rate.

Melting and decomposition points were determined by heating solid samples in
sealed glass capillaries using a Stuart SMP30 Melting Point Apparatus. High-Resolution
Mass Spectrometry of 1-S and 1-Se was performed by the EPSRC UK National Mass
Spectrometry Facility (NMSF) at Swansea University using a Thermofisher LTQ Orbitrap
XL (Atmospheric-Pressure Chemical Ionization). Mass Spectrometry on 1-O and 1-O2
was performed at the University of St Andrews using a Micromass LCT (Electrospray
Ionization) from solutions of the analyte in methanol or acetonitrile. Elemental Analysis
was performed by the EA Service at London Metropolitan University.

4.2. Synthetic Procedures and Analytical Data
4.2.1. Synthesis of 1-O

A solution of 1Ph (500 mg, 1.18 mmol) in dichloromethane (25 mL) was prepared. To
this, a solution of hydrogen peroxide urea adduct (111 mg, 1.18 mmol) in water (100 mL)
was added in one batch. The solution was stirred vigorously for three days. The organic
layer was separated and dried over magnesium sulfate. The volatiles were removed in
vacuo to afford the crude product. Recrystallization from dichloromethane:n-hexane (1:4
v/v) at −20 ◦C afforded analytically pure crystals of 1-O (200 mg, 40%) (melting with
decomp. 170–173 ◦C). These crystals were suitable for single-crystal X-ray diffraction.

1H NMR: (500.1 MHz, C6D5Br, 368 K) δH 7.84 (1H, d, 3JHP 7.3 Hz, H-2), 7.20 (1H, d,
3JHH 7.2 Hz, H-7), 7.19–7.13 (2H, m, H-17), 7.00–6.90 (4H, m, H-3, 18, 19), 3.15–3.03 (4H, m,
H-11,12), 1.33 (6H, dd, 3JHP 15.2, 3JHH 6.9 Hz, H-14/15), 1.00 (6H, 3JHP 15.5, 3JHH 6.9 Hz,
H14/15). 13C DEPTQ NMR: (125.8 MHz, C6D5Br, 368 K), δC 151.1 (d, 4JCP 2.4 Hz, qC-6),
147.4 (s, qC-4), 140.6 (d 3JCP 8.2 Hz, qC-5), 140.3 (s, C-2), 138.2 (s, qC-16), 135.9 (d, 2JCP
23.0 Hz, qC-10), 131.2 (s, C-18), 130.4 (s, qC-1/8), 128.8 (s, C-17), 126.1 (s, C-19), 125.3 (s,
qC-9), 120.7 (s, C-3), 118.5 (d, 3JCP 11.6 Hz, C-7), 30.0 (s, C-11/12), 29.7 (s, C-11/12), 29.5 (d,
1JCP 67.0 Hz, C-13), 17.3 (d, 2JCP 3.4 Hz, C-14/15), 16.9–16.8 (m, C-14/15). 31P{1H} NMR:
(202.4 MHz, CDCl3, 253 K) δP 56.1 (s), 55.2 (s). 31P{1H} NMR: 202.4 MHz, CDCl3, 295 K) δP
55.4 (br s), 54.3 (s). 31P{1H} NMR: (202.4 MHz, C6D5Br, 373 K) δP 53.0 (s). 77Se{1H} NMR:
(95.4 MHz, CDCl3, 253 K) δSe 430.4 (s), 397.0 (s). 77Se{1H} NMR: (95.4 MHz, CDCl3, 295 K)
δSe 436.6 (s), 400.9 (s). 77Se{1H} NMR: (95.4 MHz, C6D5Br, 363 K) no signals observed. IR:
νmax ATR/cm−1 3067w (νCH), 2963w (νCH), 1576m (νC=C), 1138s (νP=O), 851m, 733s, 691s.
HRMS: (ES+): m/z (%) Cacld. for C24H27POSeNa: 465.0857, found: 465.0842 (100) [M+Na].

4.2.2. Synthesis of 1-O2

A solution of 1Ph (500 mg, 1.18 mmol) in dichloromethane (20 mL) was prepared. To
this, 30% aqueous hydrogen peroxide (0.25 mL, 2.47 mmol) was added dropwise over five
minutes with vigorous stirring. The solution was stirred at ambient conditions for a further
six hours. The organic layer was separated and dried over magnesium sulfate. The volatiles
were removed in vacuo to afford 1-O2 as a pale orange solid (240 mg, 45%) (melting with
decomp. 208–214 ◦C). The aqueous layer was quenched with aqueous sodium metabisulfite
before disposal. Crystals of 1-O2 suitable for single-crystal X-ray diffraction were grown
from a dichloromethane/n-hexane vapor diffusion set up at ambient conditions.

1H NMR (500.1 MHz, CDCl3) δH 8.45 (1H, dd, 3JHH 7.5 Hz, H-8), 8.05–7.98 (2H, m,
H-18), 7.57 (1H, dd, 3JHP 13.7, 3JHH 7.3, H-2), 7.37 (1H, d, 3JHH 7.6 Hz, H-7), 7.32 (1H, d,
3JHH 7.3 Hz, H-3), 7.23 (3H, m, H-17,19), 3.34–3.21 (4H, m, H-11,12), 2.54–2.36 (2H, m,
H-13,13′), 1.28–1.14 (9H, m, H-14/14′/15/15′, 3 × CH3), 0.88 (3H, dd, 3JHP 15.3, 3JHH
7.1 Hz, H-14/14′/15/15′, 1 × CH3). 13C DEPTQ (125.8 MHz, CDCl3) δC 152.8 (s, qC-4),
151.0 (s, qC-6), 148.3 (s, 1JCSe 127.9 Hz, C-16), 140.3 (d, 3JCP 8.8 Hz, C-5), 139.8 (d, 3JCP
3.3 Hz, qC-9), 134.1 (d, 2JCP 11.7 Hz, C-1), 132.3 (s, C-8), 132.2 (d, 2JCP 4.6 Hz, qC-10), 129.5
(s, C-19), 128.5 (s, C-17), 127.7 (s, C-18), 121.5 (s, C-7), 119.2 (d, 1JCP 84.8 Hz, qC-1), 118.6 (d,
3JCP 13.0 Hz, C-3), 30.6 (s, C-11/12), 29.5 (s, C-11/12), 28.8 (d, 1JCP 64.1 Hz, C-13/13′), 26.5
(1JCP 68.3 Hz, C-13/13′), 17.1 (s, C-14/15, 1 × CH3), 16.1 (d, 2JCP 2.1 Hz, C-14/15, 1 × CH3),
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15.9 (d, 2JCP 3.5 Hz, C-14/15, 1 × CH3), 15.6 (d, 2JCP 1.8 Hz, C-14/15, 1 × CH3). 31P{1H}
NMR (202.5 MHz, CDCl3) δP 56.4 (s). 77Se{1H} NMR (95.4 MHz, CDCl3) δSe 869.4 (s). IR:
νmax ATR/cm−1 3047w (νCH), 2962w (νCH), 1597m (νC=C), 1437m (νC=C), 1149s (νP=O),
818vs (νSe=O), 752s, 690s. HRMS: (ES+): m/z (%) Cacld. for C24H28PO2Se: 459.0987, found:
459.0973 (100) [M+H].

4.2.3. Synthesis of 1-S

A suspension of 1Ph (1.50 g, 3.52 mmol) and sulfur (177 mg, 3.65 mmol) in toluene
(30 mL) was heated under reflux for six hours. The solution was cooled to ambient
conditions and all volatiles removed in vacuo to afford the crude product. Recrystallization
from dichloromethane:n-hexane (1:3 v/v) at −20 ◦C afforded white analytically pure
crystals of 1-S (1.38 g, 86%) (melting with decomp. 232–237 ◦C). These crystals were suitable
for single-crystal X-ray diffraction. Elemental Analysis: Cacld. (%) for C24H27PSSe: C
63.01, H 5.95, found: C 62.89, H 6.03. 1H NMR (500.1 MHz, C6D5Br, 363 K) δH 7.98 (1H,
d, 3JHH 7.2 Hz, H-8), 7.15 (1H, d, 3JHH 7.3 Hz, H-3), 7.03–6.98 (2H, m, H-18), 6.93 (1H,
d, 3JHH 7.2 Hz, H-3), 6.96–6.87 (3H, m, H-17,19), 3.47 (2H, br s, H-13,13′), 3.09–3.01 (4H,
m, H-11,12), 1.34 (6H, dd, 3JHP 17.1, 3JHH 6.9 Hz, H-14,14′), 1.04 (6H, dd, 3JHP 17.7, 3JHH
6.9 Hz, H-15/15′). 13C DEPTQ NMR (125.8 MHz, C6D5Br, 368 K) δC 151.4 (d, 4JCP 2.5 Hz,
qC-4), 148.2 (s, qC-6), 142.2 (s, C-8), 141.0 (d, 3JCP 8.6 Hz, qC-5), 135.8 (s, qC-10), 130.0 (s,
C-18), 128.8 (s, C-17), 125.9 (s, C-19), 124.1 (d, 1JCP 64.2 Hz, C-1), 120.8 (s, C-7), 118.3 (d, 3JCP
12.3 Hz, C-3), 30.1 (d, 1JCP 50.2 Hz, C-13,13′), 29.8 (s, C-11/12), 29.8 (s, C-11/12), 17.8 (s,
C-14,14′), 17.5 (s, C-15/15′). 31P{1H} NMR (202.4 MHz, CDCl3, 253 K) δP 82.6 (s), 64.7 (s).
31P{1H} NMR (202.4 MHz, CDCl3, 295 K) δP 82.8 (s), 65.1 (s). 31P{1H} NMR (202.4 MHz,
C6D5Br, 363 K) δP 71.9 (s). 77Se{1H} NMR (95.4 MHz, CDCl3, 253 K) δSe 418.9 (s), 413.2 (s).
77Se{1H} NMR (95.4 MHz, CDCl3, 293 K) δSe 422.9 (br s), 418.2 (br s). 77Se{1H} NMR
(95.4 MHz, C6D5Br, 368 K) δSe 433.2 (s). IR: νmax ATR/cm−1 3055w (νCH), 2958w (νCH),
1578m (νC=C), 1477m (νC=C), 1022m, 744s, 687vs (νP=S). HRMS (APCI+): m/z (%) Cacld.
for C24H28PSSe: 459.0815, found: 459.0814 (100) [M+H].

4.2.4. Synthesis of 1-Se

A suspension of 1Ph (1.50 g, 3.52 mmol) and selenium (276 mg, 3.50 mmol) in toluene
(30 mL) was heated under reflux for fifteen hours. The solution was cooled to ambient
conditions and all volatiles removed in vacuo to afford the crude product. Recrystallization
from dichloromethane:n-hexane (1:3 v/v) at −20 ◦C afforded yellow analytically pure
crystals of 1-Se (1.10 g, 62%) (melting with decomp. 237–242 ◦C). These crystals were
suitable for single-crystal X-ray diffraction. Elemental Analysis: Cacld. (%) for C24H27PSe2:
C 57.15, H 5.40, found: C 56.93, H 5.36. 1H NMR (500.1 MHz, C6D5Br, 363 K) δH 8.02 (1H,
d, 3JHH 7.2 Hz, H-8), 7.12 (1H, d, 3JHH 7.4 Hz, H-3), 7.00–6.92 (3H, m, H-7,18), 6.92–6.85
(3H, m, H-17,19), 3.55 (2H, br s, H-13,13′), 3.16–2.90 (4H, m, H-11,12), 1.33 (6H, dd, 3JHP
17.5, 3JHH 6.8 Hz, H-14,14′), 1.04 (6H, dd, 3JHP 18.3, 3JHH 6.9 Hz, H-15,15′). 13C DEPTQ
NMR (126.8 MHz, C6D5Br, 363 K) δC 151.6 (d, 4JCP 2.6 Hz, qC-4), 148.3* (s, qC-6), 142.4
(s, C-8), 141.0 (d, 3JCP 8.2 Hz, qC-5), 135.8 (s, qC-10), 129.8 (s, C-18), 128.8 (s, C-17), 125.9
(s, C-18*), 123.4 (s, qC-9), 121.9* (s, qC-1), 120.9 (s, C-7), 118.3 (d, 3JCP 12.4 Hz, C-3), 29.8
(s, C-11/12), 29.6 (s, C-11/12), 29.3 (d, 1JCP 42.5 Hz, C-13,13′), 18.8* (s, C-14,14′), 18.7* (s,
C-15,15′). 31P{1H} NMR (202.5 MHz, CDCl3, 253 K), δP 86.2 (s, 1JPSe 682.9 Hz), 58.0 (s, 1JPSe
681.3 Hz). 31P{1H} NMR (202.5 MHz, CDCl3, 295 K) δP 86.3 (br s), 58.4 (br s). 31P{1H} NMR
(202.5 MHz, C6D5Br, 363 K), δP 68.3 (br s). 31P{1H} SS-MAS NMR (162.0 MHz) 60.2 (s,
1JPSe 699.2 Hz). 77Se{1H} NMR (95.4 MHz, CDCl3, 255 K) δSe 422.8 (s), 415.3 (s, 5TSJSeSe
182.0 Hz), −362.6 (d, 1JSeP 681.5 Hz), −452.4 (d, 1JSeP 683.6 Hz). 77Se{1H} NMR (95.4 MHz,
CDCl3, 293 K) δSe 426.2 (br s), 419.0 (br s), −358.5 (d, 1JSeP 696.4 Hz), −451.0 (d, 1JSeP
693.4 Hz). 77Se{1H} NMR (95.4 MHz, C6D5Br, 363 K) δSe 433.0 (s). 77Se{1H} SS-MAS NMR
(76.3 MHz) 431.6 (s), −353.9 (d, 1JPSe 700.8 Hz). IR: νmax ATR/cm−1 3047w (νCH), 2962w
(νCH), 1601m (νC=C), 1473m (νC=C), 1018m, 744s, 636s. HRMS (APCI+): m/z (%) Cacld.

57



Molecules 2023, 28, 7297

for C24H28PSe2: 507.0263, found: 507.0264 (100) [M+H]. Note: 13C signals denotated with *
were observed in the 2D 1H–13C HMBC only.

4.3. Crystallographic Details

The crystallographic data for 1-O were collected using a Rigaku XtaLAB P200 diffrac-
tometer using multi-layer mirror monochromated Mo Kα radiation at −180 ◦C (±1). The
crystallographic data for 1-S were collected using a Rigaku XtaLAB P100 diffractometer
using multi-layer mirror monochromated Cu Kα radiation at −100 ◦C (±1). The crystal-
lographic data for 1-O2 and 1-Se were collected using a Rigaku SCX mini diffractometer
using graphite monochromated Mo Kα radiation at −100 ◦C (±1) (Mo Kα = λ = 0.71073 Å;
Cu Kα = λ = 1.54184 Å).

Intensity data were collected usingω steps accumulating area detector frames span-
ning at least a hemisphere of reciprocal space. All data were corrected for Lorentz, po-
larization, and long-term intensity fluctuations. Absorption effects were corrected on the
basis of multiple equivalent reflections. The structures were solved by direct methods [26].
Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were refined using
the riding model.

The crystal structures were refined by full-matrix least squares against F2 (SHELXL) [27,28]
using the CrystalStructure GUI [29]. Searches of the Cambridge Structural Database (CSD)
were performed using the webCSD [30]. Images and manipulations of crystal structures and
computed rotamers were obtained using OLEX-2 [31].

4.4. Computational Details

Geometries were fully optimized at the B3LYP level [32,33] (using a fine integration
grid, i.e., 75 radial shells with 302 angular points per shell) with Curtis and Binning’s
962(d) basis [34] on Se and 6-31+G(d,p) elsewhere. The solid-state structure was used as
starting point for the optimizations of conformer 1-Se(A). The nature of the stationary
points was verified by computation of the harmonic frequencies at the same level of theory,
which were also used to compute thermodynamic corrections to obtain enthalpies and free
energies (standard pressure and temperature). The structures were then re-optimized at
the dispersion-corrected B3LYP-D3 [35] level using the same basis set and Becke–Johnson
damping [36,37]. Single-point energies were refined for the B3LYP-D3 structures at the
B3LYP-D3 level using 962+(d,f) basis on Se, i.e., including the recommended [38] diffuse s
and p set and the f-function, and 6-311+G(d,p) elsewhere; an implicit solvent model was
used in these single-point calculations, namely the Conductor-Like Polarizable Continuum
Model (CPCM) [39,40], using the default settings in Gaussian09 and the parameters of
bromobenzene. Wiberg bond indices (WBIs) were computed at that level from natural bond
orbital (NBO) analysis. The WBI is a measure for the covalent character of a bond and adopts
values close to 1 and 2 for true single and double bonds, respectively [41]. This and similar
levels have performed well in previous studies of related acenaphthene chalcogen and
pnictogen compounds [2–7,13,15,17]. Magnetic shieldings and spin–spin coupling constants
(SSCCs) were computed at the GIAO-B3LYP level using IGLO DZ basis on H atoms and
IGLO-basis II everywhere else (denoted ILGO-II), which was designed for computation
of magnetic properties [42] and the CPCM model with the parameters of chloroform. The
relative 77Se shifts were referenced relative to Me2Se (computed σ = 1652.1 ppm at the
same level). Because the experimental standard for 31P NMR, concentrated phosphoric
acid, is difficult to model computationally, chemical shifts were first referenced to Ph3PSe
(computed σ = 235.1 ppm) and converted to the usual δ scale using the experimental
chemical shift of that compound in CDCl3, 43.2 ppm [43]. In the computations of SSCCs,
the basis set was uncontracted for evaluating the Fermi contact contribution (keyword
NMR = (Spin–Spin, Mixed) in Gaussian). All computations were performed using the
Gaussian09 suite of programs [44].
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5. Conclusions

A series of phosphorus and selenium peri-substituted acenaphthenes with the phos-
phorus atom oxidized by oxygen, sulfur, and selenium was synthesized and characterized
by single-crystal X-ray diffraction and multinuclear NMR spectroscopy. For the Se(II)
species, there were two major rotational conformers in solution, as identified by Variable-
Temperature NMR experiments and supported with DFT calculations. Only one of these
conformations was present in the solid state, as verified by X-ray crystallography and
solid-state NMR spectroscopy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28217297/s1, Figures S1–S5: Additional NMR spectra;
Figures S6–S9: IR spectra of compounds; Table S1: Crystal and structure refinement data; computa-
tional detail: Cartesian coordinates in Å, B3LYP/6-31+G(d,p) optimized for rotamers of 1-Se.
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Hydrogen Bonds Stabilize Chloroselenite Anions: Crystal
Structure of a New Salt and Donor-Acceptor Bonding to SeO2
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Abstract: The single-crystal X-ray diffraction structure characterizing a new 4-methylbenzamidinium
salt of chloroselenite [C8H11N2][ClSeO2] is reported. This is only the second crystal structure report
on a ClSeO2

− salt. The structure contains an extended planar hydrogen bond net, including a double
interaction with both O atoms of the anion (an R2

2(8) ring in Etter notation). The anion has the
shortest Se–Cl distances on record for any chloroselenite ion, 2.3202(9) Å. However, the two Se–O
distances are distinct at 1.629(2) and 1.645(2) Å, attributed to weak anion–anion bridging involving
the oxygen with the longer bond. DFT computations at the RB3PW91-D3/aug-CC-pVTZ level of
theory reproduce the short Se–Cl distance in a gas-phase optimized ion pair, but free optimization of
ClSeO2

− leads to an elongation of this bond. A good match to a known value for [Me4N][ClSeO2] is
found, which fits to the Raman spectroscopic evidence for this long-known salt and to data measured
on solutions of the anion in CH3CN. The assignment of the experimental Raman spectrum was
corrected by means of the DFT-computed vibrational spectrum, confirming the strong mixing of the
symmetry coordinate of the Se–Cl stretch with both ν2 and ν4 modes.

Keywords: halochalcogenite(IV) ion; crystallography; H-bonding; chalcogen bonding; π-holes;
DFT-computed vibrational spectra

1. Introduction

The chloroselenite ion, ClSeO2
−, is found in several salts crystallized from the addition

of chloride ions to selenium(IV)oxide in non-aqueous solutions [1]. Conceptually, chlorose-
lenite ions are donor–acceptor adducts between the halogen and the chalcogen dioxide
(Scheme 1) and they were first identified by direct addition reactions in aprotic solvents.
The Cambridge Structural Database (release 2023.2.0) [2] currently lists just one crystal
structure [Me4N][ClSeO2], assigned the CSD Refcode BIRHOZ, but to our knowledge,
no atom coordinates are available for this structure in publications or databases. This
structure is most consistent with type A in Scheme 1, described as having ‘monomeric
pyramidal anions’ with d(Se–Cl) = 2.453(1); d(Se–O) = 1.632(2) Å [3–6]. The Se–Cl bond
length, almost 14% longer than the sums of the covalent radii, is consistent with a weak
donor–acceptor bond (for further details on this structure, see the Supplementary Materi-
als). A 2,2′-bipyridium salt [C10H9N2][ClSeO2] is indexed in Chemical Abstracts (Registry
number [27380-14-9]), but its crystal structure is apparently only available in an unpub-
lished thesis [7]. The anion has been identified in various solvents via liquid-phase Raman
spectroscopy as well as in isolated Me4N+ and Ph4As+ salts, largely through the systematic
work of the Canadian chemist John Milne (1934–2022) [1]. The 77Se NMR spectrum of
solid [Me4N][ClSeO2] was noteworthy for having anisotropic shielding of >1000 ppm [8].
The dominance of 1:1 adducts between Cl− ions and SeO2 in several aprotic solvents was
originally established using UV-vis absorption spectroscopy [9], but the non-existence of
the parent acid ClSe(O)OH in aqueous solutions of SeO2 in either dilute or concentrated
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HCl has been attested [10,11]. Similarly, there is no evidence for stable salts of simple metal
cations M[ClSeO2] despite reported attempts to obtain these [12].
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Scheme 1. Donor–acceptor bonding in halochalcogenite(IV) ions and schematics of the structure
types A–G known from SC-XRD data; Ch = chalcogen (S, Se, Te); X = halide (F, Cl, Br, I).

The nature and scope of weak chemical bonds has become a major focus of research
in recent years [13]. Chloroselenites are currently of interest in relation to the speciation
and extraction of Se(IV) and Se(VI) for environmental concerns [14]. The electron affini-
ties of SeOn clusters have been evaluated for similar motivations [15] and fundamental
spectroscopy on SeO2 rotational lines remain of interest for astronomic detection [16–18].
Selenium compounds are central to the surge in interest in chalcogen bonding [19–23].
Importantly, SeO2 itself has also been identified as having electrostatic ‘π-holes’ [24], which
may be of direct relevance to the formation of the halogen adducts [XChO2]− (X = halogen;
Ch = chalcogen). New attention to the higher oxochloroselenates, after a long hiatus, is
bearing fruit with the report of an inclusion compound of Cl2 in a tetramethylamino salt of
[Se2O2Cl7]3− [25], which harkens back to a much older structure [26]. The thermochemical
properties of the fluoroselenite ion have been assessed in a large prospective study [27].
Less is known about the heavier halide adducts of SeO2, and halotellurites remain rare.
However, there is active research on all the halosulfites due to the recognition of the impor-
tance of SO2 as a Lewis acid relative to is capability as a solvent medium and environmental
hazard, with important structural [28–30] and computational studies [31]. The application
of modern speciation, structural, and theoretical techniques makes the study of weakly
bonded adducts, such as those encountered amongst the halochalcogenites [XChO2]−,
more feasible than ever before.

Despite their simple constitution, there is a dearth of confirmed structural evidence on
[XChO2]− salts, all of which so far are from single-crystal X-ray diffraction (SC-XRD) data.
Since the literature is very scattered, the current state of knowledge is briefly reviewed.
FSO2

− salts are the best represented, with nine known structures, consistent with the
accepted wisdom that this is the most stable member of its class (the order of X–Ch bond
strength is believed to be F > Cl < Br < I, but this may be Ch-dependent) [32,33]. A
phosphonium ylid salt of FSO2

− was the first reported structure (CSD refcode: LIHWAA)
but it suffers from serious F/O positional disorder [34]. Another, aprotic, imidazolium salt
(CSD refcode: TOSXEE), also displays a disordered anion [35]. This theme continues for
the metal salts K[FSO2], Rb[FSO2] [36] and the α- and β- polymorphs of Cs[SO2F] [30]. The
recognition of O/F positional disorder led to a determined but only partially successful
attempt to overcome the phenomenon with the preparation and structures of [(Me2N)3S]+,
[(Me2N)3SO]+ and [(Me4N)4N]+ salts (CSD refcodes: ADEJOI, ADEJUO and ADEKAN,
respectively) [29]. The structure type that best describes all the FSO2

− salts is B in Scheme 1,
due to the positional exchange of the very similar-sized O and F, and further positional
disorder that often lends a pseudo-tetrahedral appearance to the anion in these structures
(the value of x can range from 0 to 0.5).

Two chlorosulfite, ClSO2
−, ion structures are in the CSD. The oldest structure (refcodes:

POMBEY [37]) contains an isolated ion of type A with an S–Cl bond that is 23% longer than
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the sums of the covalent radi. Much more recently, structure XEGCAQ [38] was reported,
wherein one oxygen coordinates to Li+, lending it structure type F. Fascinatingly, there
are also two structures in the database, KIGZEF [39] and LAQYOR [40], which contain
infinite chains in which the chloride ions bridge the SO2 molecules more or less equally,
i.e., structure type C. Similar, though far more symmetrical, chain structures of type C are
displayed by [Et4N][BrSO2], LAYTUC [28] and by [Me4N][BrSeO2], BIRHUF [3–5].

The remainder are ISO2
− salts, and these are the most structurally diverse of all. The

[Ph3PBz]+ salt BZTPPI [41] and WUKQUR [42] are both of type A (with S–I lengths 38%
and 24% longer than sums of the covalent radii), although WUKQUR has a positional
disorder that reduces the accuracy of the derived parameters. Structures MPICSO [43] and
MPTPIS [44] are of type E in which SO2 forms an adduct to a metal-coordinated iodide ion.
The iodide adduct in WUQMED is another with oxygen coordinated to a metal, type F,
whereas WUQLUS is a variant on this theme with both oxygen atoms of the SO2 attached
to separate metals, type G [42]. Finally, in DOTXOA, there is a discrete I2SO2

2− ion of
structure type D [45].

In summary, there are still relatively few known structures for this class, many of
which are problematic, and there is a very wide structural diversity, particularly with
regards to the X–Ch bond lengths. This situation is consistent with what may be anticipated
from weak donor–acceptor bonding. Thus, when we happened on a good quality structure
containing a chloroselenite ion, quite by accident, we immediately recognized its impor-
tance. Our structure is the first of its kind where paradigmatic hydrogen bonding to the
ClSeO2

− ion has been established, as well as having the shortest Cl–Se bond for chlorose-
lenites. Herein, we provide a full report on this interesting structure and analyze the anion
geometry and bonding through extensive B3PW91/aug-cc-pVTZ density functional theory
(DFT) computations.

2. Results
2.1. Formation of the Salt from a Hydrolysis Reaction

In our work on heterocyclic thiazyls and selenazyls, we have explored the synthesis of
1,2,4,6-thiatriazinyl radicals via the reduction of 1-chloro-1,2,4,6-thiatriazines [46,47] and are
now extending this work to the selenium analogues. Attempts to recrystallize extremely in-
soluble selenatriazine 1 for purification used boiling acetonitrile (Scheme 2). 1 is analogous
to 1,1-dichloro-3,5-diphenyl-4H-1,2,4,6-selenatriazine, which displays H-bonding in its crys-
tal structure (CSD refcode: DUVDUT), likely the origin of the insolubility [48]. Colorless
crystals of 2 were the only identifiable product of the reaction mixture, which has been un-
ambiguously characterized by SC-XRD. This interesting reaction, producing at once the rare
chloroselenite ion and the 4-methylbenzamidinium cation, may be contrasted with our ear-
lier observation that hydrolysis of 1-chloro-3-phenyl-5-trifluoromethyl-1λ4,2,4,6-thiatriazine
3 [46] in the presence of air forms the covalent (imino(phenyl)methyl)sulfamyl(VI) chloride
4. Thus, in the formation of 2, selenium demonstrates its well-known resistance to adopting
the highest group oxidation state, a characteristic that is usually attributed to the Scandide
contraction [49]. The two products provide an appealing contrast, yet both are remarkable
for retaining a Ch–Cl bond and are evidently stabilized by similar H-bonding networks
(see below). The full structural and computational characterization of salt 2 follows. For a
depiction of the interesting molecular structure of 4, including its H-bonds, see Appendix B.

2.2. Crystallographic Characterization

From the SC-XRD data, a structure model for 2 with restrained full refinement of
the hydrogen atom positions and displacements was developed by applying Hirsfeld
atom refinement (HAR). This method employs custom aspherical atomic scattering factors,
computed on the fly by density functional theory (DFT) methods, under the control of
the NoSpherA2 package [50] within Olex2 release 1.5 [51]. This approach is particularly
useful when H-bonding is present, as it avoids having to normalize E–H bond lengths as
otherwise required with XRD structures [52]. Full details of the refinement strategy are
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provided in the Experimental section. The ion pair structure in 2 is shown in Figure 1,
the extended H-bond network and inter-anion contacts are shown later. The derived
interatomic parameters have been placed in Table 1, while the H-bond and short contact
data are presented in Table 2.
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Figure 1. (a) Displacement ellipsoids plots (50% probability) for the molecular structures of 2 as found
in the crystal lattice. The second component of the CH3 rotational disorder model is omitted. H-bonds
are shown with red dotted lines. (b) Tubes plot, showing the DFT-computed dipole moment (blue vec-
tor; IUPAC convention) of an isolated ion pair in 2 from an RB3PW91-D3/aug-CC-pVTZ calculation.

The ion pair structure obtained for 2 (Figure 1a) consists of ClSeO2
− ions that are

doubly hydrogen-bonded to the toluamidinium H atoms H1b and H2b. There is, to date,
only one set of comparison data in the literature, the aforementioned BIRHOZ structure of
[Me4N][ClSeO2] from an apparently very accurate 143 K crystal structure [3]. The Se–Cl
bond length of 2.453(1) Å in BIRHOZ is significantly longer than that found in 2, but the
apparently equal Se–O distances of 1.632(2) Å agree well with the average of Se1–O1 and
Se1–O2 (1.637(1) Å). The accuracy of this report has been confirmed through a personal
communication of the structure details (see the Supplementary Materials), so that the
divergence between the two geometries will be considered in detail [6]. Krebs et al. further
describe this structure in a review article, mentioning that an X-X deformation density anal-
ysis has been undertaken on the same salt at 120 K, but these data also remain unpublished:
“deformation density maps clearly reveal the presence of lone-pair (E) density (maximum
of 0.40 ± 0.04 e−/Å−1 at a distance of ca. 0.75 Å from Se) consistent with model predictions
for a pseudo-tetrahedral SO2ClE arrangement with additional π density in the Se–O bonds
and with a rather polar Se–Cl bond” [4]. From the HAR/NoSpherA2, we were able to
extract a deformation density map (Figure 2) that corroborates this verbal description.
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Table 1. Interatomic distances (Å) and angles (◦) in the crystal structure of 2 and for ClSO2
− by DFT 1.

Atoms dExperiment dComputed Atoms ∠Experiment ∠Computed

Se1–Cl1 2.3202(9) 2.491 O1–Se1–Cl1 100.86(9) 102.75
Se1–O1 1.645(2) 1.630 O2–Se1–Cl1 101.55(9) 102.75
Se1–O2 1.629(2) 1.630 O2–Se1–O1 104.90(11) 110.58
N1–C1 1.323(4) N2–C1–N1 119.1(3)
N2–C1 1.317(4) C2–C1–N1 120.8(3)
C1–C2 1.472(4) C2–C1–N2 120.1(3)
C2–C3 1.404(4) C3–C2–C1 120.5(3)
C2–C7 1.395(4) C7–C2–C3 118.1(3)
C3–C4 1.382(5) C4–C3–C2 120.4(3)
C4–C5 1.395(5) C5–C4–C3 121.3(3)
C5–C6 1.392(5) C6–C5–C4 118.1(3)
C5–C8 1.497(5) C8–C5–C4 120.7(3)
C6–C7 1.384(5) C8–C5–C6 121.2(3)

C7–C2–C1 121.4(3)
C7–C6–C5 120.9(3)

1 Full atomic positional and derived data for SC-XRD experiments in the Supplementary Materials. DFT geometry
optimized in the gas phase at the RB3PW91-D3/aug-CC-pVTZ level of theory.

Table 2. Hydrogen bonds and inter-anion contacts in the crystal structure of 2.

D(–H) :A d(D–H)/Å d(H···A)/Å d−∑rvdW d(D···A)/Å Angle/◦

Hydrogen-bonds
N1–H1a O2 1 1.045(17) 1.90(3) −0.82 2.852(3) 150(3)
N1–H1b O1 1.051(18) 1.843(19) −0.877 2.880(4) 168(3)
N2–H2a O1 2 1.030(17) 1.83(3) −0.89 2.792(3) 153(4)
N2–H2b O2 1.039(18) 1.95(2) −0.77 2.948(3) 160(3)

Inter-anion Contacts
O1 Se1 3 (angle is Se1–O1···Se1 3) −0.289 3.131(2) 108.8(1)
Cl1 Se1 3 (angle is Se1 3–Cl1 3···Se1) −0.252 3.3980(9) 85.96(3)

Symmetry codes: 1 1 + x,1.5-y,1/2 + z; 2 x,1.5-y,-1/2 + z; 3 1 + x,y,z.
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2.3. Hydrogen Bonding in the Solid Lattice of 2

There is an extensive H-bond network (Figure 3, Table 2) in 2 and all the H-bond
parameters fit for standard electrostatic-covalent H-bonding according to the criteria of
Jeffrey (summarized in Table A1 in Appendix B). The H-bonds form layered nets, wherein
every second ion pair is reversed in a head-to-tail fashion that, as viewed in Figure 3, form a
‘Vee’ or roof shape, the horizontal of which aligns with the bifurcator of ∠ac. For extended
views of these nets, see Figure S3 in the Supplementary Materials. There are both short
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H-bonds between the amidinium and chloroselenite ions [d(D···A) 2.852(3) and 2.948(3) Å]
and even shorter links to the next amidinium ions on both sides in the net [d(D···A) 2.852(3)
and 2.880(4) Å]. The H-bond acceptor sites at O correspond to negative charge maxima on
the computed electrostatic potential surface (Figure S4), which is otherwise unexceptional.
Bonds of this length can be worth as much as 50 kJ/mol each (Table A1) so could add up
to as much as 200 kJ/mol per formula unit. This is significant stabilization. The primary
H-bonds (in Etter notation) are the discrete D1

1(2) links b and d of the cation to the facing
anion, which thereby form an R2

2(8) > b < d ring, a standard motif for amidinium ions [53].
There are also D1

1(2) links a and c to two adjacent anions that are of comparable strength to
the ring bonds. Many other infinite chain paths and much larger rings can also be identified
in the network. Figure 3 also evidences classic π-π stacking, wherein ring carbon atom C3
is closely aligned with the centroid of the phenyl ring below, at a distance of 3.56 Å, with
repeats of this interaction throughout the lattice.
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Figure 3. Hydrogen bond network in the crystal lattice of 2. The Etter notation for the lower-level
nets are indicated in the blue lettering: D1

1(2) a; D1
1(2) b; D1

1(2) c; D1
1(2) d; C2

2(6) > a < b; C2
2(8) > a < c;

C1
2(6) > a < d; C1

2(6) > b < c; R2
2(8) > b < d; C2

2(6) > c < d. The relative H-bond strengths are color-coded,
with yellow being stronger than orange.

2.4. Intra-Ionic Short Contacts in the Lattice of 2

We now consider how well the ClSeO2
− ions in 2 are isolated from each other. Metric

parameters for contacts shorter than the sums of the Van der Waals’ radii are included in
Table 2. Figure 4a emphasizes the major interactions between ClSeO2

− ions by including
only the ring-forming ion pairs for clarity, whereas Figure 4b shows the overall packing
and deliberately includes all atoms to show the intermolecular environment. As is clear
from the literature on general oxochlorochalcogenates(IV) [3], there are no truly isolated
halochalcogenite ions in crystal lattices, although large organic cations such as PPh4

+ or
AsPh4

+ sometimes come close, as in [AsPh4][OSeCl3] (CSD refcode: BIRGUE10 [54]), which
at the very least tend to displace inter-anion contact with more benign donor–acceptor
interactions with aromatic ring electron density. With smaller organic cations, inter-anion
interactions are commonly observed, both in the forms of discrete dimers and infinite chain
polymers. The strongest interactions occur with small monometallic cations, such as in
alkali and alkaline earth metal salts, such as the type C direct anion chain structure in
K[FSeO2] [55]. However, many halochalcogenite anions of heavier halogens and chalcogens
cannot exist with these small, focused charge, cations.
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Table 3. Experimental (Raman) and computed vibrational spectra for ClSO2
− ions (cm−1).

Band Assignment Symmetry Experiment 1

CH3CN Solution
Experiment 1

[Me4N][ClSeO2]
DFT

Optimized 2
DFT

X-ray Geom. 3

ν1 νsym(SO2) A′ 890 (p) 903 (s) 896 (vs,p) 886 (vs,p)
ν2 ν(S–Cl) A′ 273 (p) 4 267 (s) 4 267 (w,p) 321 (m,p)
ν3 δsciss(SO2) A′ 380 (p) 396 (w) 367 (w,p) 382 (w,p)
ν4 δsym(ClSO2

−) A′ 200 (p) 4 193 (vs) 4 178 (m,p) 242 (m,p)
ν5 νasym(SO2) A′′ 840 (dp) 841 (w) 912 (m,dp) 887 (s,dp)
ν6 δasym(FSO2

−) A′′ not obsv. not obsv. 165 (w,dp) 189 (w,dp)
1 As reported in Ref. [1]. 2 Frequency calculation of the Raman spectrum with full RB3PW91-D3/aug-CC-
pVTZ geometry optimization of the anion geometry. 3 RB3PW91-D3/aug-CC-pVTZ-computed anion at the
X-ray geometry in the crystal lattice of 2, symmetrized to Cs. 4 Reversals of the 1978 assignments, based on the
vibrational symmetries obtained by DFT; the colored bands draw attention to this switch. Notably, the ν2 and ν4
bands are strongly coupled, and hence both will reflect variations in S–Cl bond strength.
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ν3 δsciss(SO2) A′ 380 (p) 396 (w) 367 (w,p) 382 (w,p) 
ν4 δsym(ClSO2−) A′ 200 (p) 4 193 (vs) 4 178 (m,p) 242 (m,p) 
ν5 νasym(SO2) A″ 840 (dp) 841 (w) 912 (m,dp) 887 (s,dp) 
ν6 δasym(FSO2−) A″ not obsv. not obsv. 165 (w,dp) 189 (w,dp) 

1 As reported in ref. [1]. 2 Frequency calculation of the Raman spectrum with full RB3PW91-D3/aug-
CC-pVTZ geometry optimization of the anion geometry. 3 RB3PW91-D3/aug-CC-pVTZ-computed 
anion at the X-ray geometry in the crystal lattice of 2, symmetrized to Cs. 4 Reversals of the 1978 
assignments, based on the vibrational symmetries obtained by DFT; the colored bands draw atten-
tion to this switch. Notably, the ν2 and ν4 bands are strongly coupled, and hence both will reflect 
variations in S–Cl bond strength. 

Specific inter-anion contacts are found in the lattice of 2 (Figure 4a). The anions are 
doubly bridged by Se1–O1···Se1′ and Se1–Cl1···Se1′ contacts, forming discrete chains par-
allel to the crystallographic a axis in which the anions are stabilized in three directions by 
the H-bonds and the large chlorine atoms are surrounded by stacks of tolyl ring methyl 
groups (Figure 4b). Importantly, the direction of approach of Cl1 to Se13 on the next anion 
is close to linear with the opposing O13, i.e., the direction consistent with chalcogen bond-
ing from a σ-hole at Se [23]. A consideration of the metrical data in Table 3, specifically the 
d−∑rvdW values, indicates that these inter-anion contacts are relatively weak compared 
with the anion-cation H-bonding contacts. They are thus comparable (7–8.5% < ∑rvdW) to 
the bridging Cl···Se contacts in the chain structure of [Me4N][ClSeO2] (see Supplementary 
Information). This is further borne out by the comparison with the chain-forming Se–
Cl···Se’ contacts in 8-hydroxyquinolinium trichloro-oxyselenate, [C9H8NO][OSeCl3], 
which displays d−∑rvdW = −0.77 Å (CSD refcode HQNLSE [56]). Other known structures of 
oxychlorselenium(IV) anion salts, which all show degrees of inter-anion contacts, are as 
follows: [PPh4]2[O2Se2Cl6] (CSD refcode: BIRHAL10 [57]); [NEt4]2[O2Se2Cl6] (CSD refcode: 

Figure 4. (a) The major inter-anion interactions in the crystal lattice of 2. The chain of ClSeO2
− ions

is aligned with the crystallographic a axis. Symmetry code: 3 1 + x,y,z. See Table 3 for metric data.
(b) Stacked packing diagram viewed down the a-axis direction.

Specific inter-anion contacts are found in the lattice of 2 (Figure 4a). The anions are
doubly bridged by Se1–O1···Se1′ and Se1–Cl1···Se1′ contacts, forming discrete chains par-
allel to the crystallographic a axis in which the anions are stabilized in three directions by
the H-bonds and the large chlorine atoms are surrounded by stacks of tolyl ring methyl
groups (Figure 4b). Importantly, the direction of approach of Cl1 to Se13 on the next anion is
close to linear with the opposing O13, i.e., the direction consistent with chalcogen bonding
from a σ-hole at Se [23]. A consideration of the metrical data in Table 3, specifically the
d−∑rvdW values, indicates that these inter-anion contacts are relatively weak compared
with the anion-cation H-bonding contacts. They are thus comparable (7–8.5% < ∑rvdW)
to the bridging Cl···Se contacts in the chain structure of [Me4N][ClSeO2] (see Supple-
mentary Materials). This is further borne out by the comparison with the chain-forming
Se–Cl···Se’ contacts in 8-hydroxyquinolinium trichloro-oxyselenate, [C9H8NO][OSeCl3],
which displays d−∑rvdW = −0.77 Å (CSD refcode HQNLSE [56]). Other known structures
of oxychlorselenium(IV) anion salts, which all show degrees of inter-anion contacts, are as
follows: [PPh4]2[O2Se2Cl6] (CSD refcode: BIRHAL10 [57]); [NEt4]2[O2Se2Cl6] (CSD refcode:
BORCAM [54]); [C10H10N2][OSeCl4] (CSD refcode: DPRYSE [58]); [NMe4]3[O2Se2Cl7][Cl2]
(CSD refcode: EWILOO [25]); [NnPr4]2[O2Se2Cl6] (CSD refcode: JUCDIU [59] (CSD refcode:
RAFYOM [60]).
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2.5. DFT Computational Investigation of Structure

Surprisingly, no prior computational study of ClSeO2
− ions could be found in the

literature, so it was considered essential to undertake a reliable DFT investigation. Based
on precedents in the literature, the B3PW91 functional was selected for its proven efficacy
in selenium chemistry [61], but we also chose to enhance it with Grimme’s original D3
dispersion correction to improve its capability for also modelling the full H-bonded salt.
For a basis set, aug-CC-pVTZ was selected because of its prior accuracy for selenium
compounds [62]. The chosen RB3PW91-D3/aug-CC-pVTZ method was first validated by
computing the structure of SeO2(g), which provides excellent agreement on geometry and
molecular vibrations (see Appendix A).

In a first calculation, the ion pair at the crystal coordinates was computed, which
confirms the primary directionality of the H-bonded geometry. A large dipole moment of
15.5 Debye orients almost parallel to the toluamidinium molecular plane and bifurcating the
SeO2 moiety (Figure 1b). Although far from a complete network, this primary H-bonding
(i.e., the R2

2(8) net) does seem to be significantly structure directing (Table 2). Next, the full
gas-phase geometry optimization of the ion pair was attempted, which did converge, albeit
with a rather more curved overall structure (∠C2···Se1–Cl1 = 68.0◦) than that found in the
lattice geometry (∠C2···Se1–Cl1 = 117.0◦).

Thereafter, the free ClSeO2
− ion was geometrically optimized, with full frequency

calculations for comparison to the vibrational spectra in early literature reports, when IR,
and especially Raman, spectroscopy were used as the chief characterization tools [1,33].
The geometry optimizes to effective Cs point symmetry, as expected, resulting in Se–O
lengths of 1.630 Å, close to the average 1.637(1) Å of the two experimental values. Most
surprisingly, however, the Se–Cl length increases to 2.491 Å, more than 7% longer than the
experimental value of 2.3202(9) Å. This is far larger than the expected elongation from
just using DFT at this level of theory. Moreover, these values are within the typical DFT
accuracy (just 1.5% longer) reported for the BIRHOZ structure on [Me4N][ClSeO2] [3].

Further support that the shorter Se–Cl length is a real effect from the H-bonding
of the toluamidinium to the oxygen atoms of the ClSO2

− ion in 2 is provided by the
above-mentioned gas-phase optimization of the cation-anion pair, where the Se–Cl length
remains in the range 2.32 to 2.33 Å through all the optimization steps. Presumably, this is a
primarily electrostatic effect, whereby withdrawing ED from the SeO2 moiety enhances the
presumed dative bond of the Cl− nucleophile in its interaction with Se (see next section).
We note that in oxytetrachloroselenate(IV) structures, H-bonding is known to induce longer
Se–Cl bonds, e.g., in the structure [C4H10NO][OSeCl4] (CSD refcode: RAFYOM [60]) where
the Se–Cl elongates to 2.776(2) Å from H-bonding to the morpholinium nitrogen (15%
longer than the average of the three other equatorial bonds), or [C10H10N2][OSeCl4] (CSD
refcode: DPRYSE [58]) where the Se–Cl that is H-bonded to the bipyridinium NH elongates
to 2.990(4) Å (24% longer than the equatorial average). Thus, H-bonding to the halogens
causes longer Se–Cl bonds, whereas to the oxygen it causes shorter Se–Cl bonds. The
observed behavior may also be related to variations in valence sharing.

Seeking further experimental confirmation, we noted that the BIRHOZ structure [3]
on [Me4N][ClSeO2] was one of the very salts originally investigated by Milne using Raman
spectroscopy [1]. At that time, the vibrational data were only assigned using symmetry
criteria, including experimental depolarization ratios, and by analogy to ClSO2

− [32].
The results of the RB3PW91-D3/aug-CC-pVTZ-computed spectra, conducted on (i) the
optimized gas phase geometry and (ii) on the isolated anion at the X-ray geometry found
in 2, with assignments, and a comparison to the experimental Raman spectroscopy data
are compiled in Table 3, and a comparison of one computed and experimental spectrum is
shown in Figure 5.
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First, the fit of the numerical data between the experimental and the computed anion 
values is remarkably good given the combination of experimental uncertainty and com-
paring gas-phase structures with solids and solutions (there is also very good agreement 
between the latter two). Importantly, the normal coordinate analysis in the DFT calcula-
tions contradict the assignment of ν2 to the 200/193 cm−1 experimental bands, leading to a 
switch in the ν2 and ν4 assignments. A similar discrepancy has already been noted for the 
vibrational spectra of FSO2−, which is far and away the most thoroughly studied halochal-
cogenite anion to date [29]. These workers reported that a normal coordinate analysis with 
potential energy distribution indicates that the symmetry coordinate of the S–F stretch in 
FSO2− contributes only 20% to ν2, and instead has 40% ν3 and 39% ν4 character. For ClSeO2−, 
we find that ν3 is not much involved, but there is this formal reversal of ν2 and ν4, as well 
as strong coupling that distributes a large amount of S–Cl stretch character to both modes. 
Viewed through this lens, it is apparent that these two bands are, respectively, 54 and 64 
cm−1 higher in frequency when computed at the X-ray geometry of 2 than at the DFT-
optimized geometry (Table 3 and Figure 6). This, and the good overall fit of the data, is a 
strong corroboration that the Se–Cl length in [Me4N][ClSeO2] corresponds to that reported 
for the BIRHOZ structure [3], and very probably is close to that adopted in CH3CN solu-
tions. 

Figure 5. Overlay of (a) the RB3PW91-D3/aug-CC-pVTZ DFT Raman spectrum computed on a gas
phase isolated ClSeO2

− anion with (b) the experimental spectrum reported on a crystalline powder
sample of [Me4N][ClSeO2]; note that the bottom scale is interrupted at the red arrow, so the band
positions must be interpolated. Bands below 100 cm−1 are lattice modes. Adapted with permission
from LaHaie, P.; Milne, J. Inorg. Chem. 1979, 18, 632–637 [1]. Copyright (1979) American Chemical
Society. Red text is used to distinguish from the original annotations of the underlying graphics.

First, the fit of the numerical data between the experimental and the computed anion
values is remarkably good given the combination of experimental uncertainty and com-
paring gas-phase structures with solids and solutions (there is also very good agreement
between the latter two). Importantly, the normal coordinate analysis in the DFT calcula-
tions contradict the assignment of ν2 to the 200/193 cm−1 experimental bands, leading
to a switch in the ν2 and ν4 assignments. A similar discrepancy has already been noted
for the vibrational spectra of FSO2

−, which is far and away the most thoroughly studied
halochalcogenite anion to date [29]. These workers reported that a normal coordinate
analysis with potential energy distribution indicates that the symmetry coordinate of the
S–F stretch in FSO2

− contributes only 20% to ν2, and instead has 40% ν3 and 39% ν4 char-
acter. For ClSeO2

−, we find that ν3 is not much involved, but there is this formal reversal
of ν2 and ν4, as well as strong coupling that distributes a large amount of S–Cl stretch
character to both modes. Viewed through this lens, it is apparent that these two bands are,
respectively, 54 and 64 cm−1 higher in frequency when computed at the X-ray geometry of
2 than at the DFT-optimized geometry (Table 3 and Figure 6). This, and the good overall fit
of the data, is a strong corroboration that the Se–Cl length in [Me4N][ClSeO2] corresponds
to that reported for the BIRHOZ structure [3], and very probably is close to that adopted in
CH3CN solutions.
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the Se L.P, (28) the Cl L.P. interacting with the empty π*(SeO2) orbital; (35) the corresponding out-
of-phase interaction. Surfaces constructed at the 0.04 AU level. (c) Computed geometries (see text). 
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very closely to the description provided by the classical Lewis octet structure with nomi-
nal S–O bond orders of 1.5 [63]. SeO2(g) must certainly be described similarly, although 
under ambient conditions, it forms a solid polymerized via OSeO→Se dative bonding [49]. 
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indices of 1.45 for the Se–O bonds, and 0.31 between the two O atoms. The electrostatic π-
holes detected in SeO2 (Figure 6a) are oriented above and below the central Se atom and 
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are indeed computed to bind to the Se atom close to this perpendicular with interaction 
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Figure 6. (a) Computed electrostatic potential surface at the 0.001 AU level of SeO2; the position of
the most positive electrostatic potential associated with the π-hole above (and below) Se is indicated
by the black hemisphere with VS,max = 148 kJ/mol; adapted with permission from Murray, J. S. et al.,
J. Mol. Model. 2012, 18, 541–548 [24]. Copyright (2011) Springer Nature. (b) NBO isosurfaces from
RB3PW91-D3/aug-CC-pVTZ DFT calculations on gas-phase optimized structure of ClSeO2

− for
(27) the Se L.P, (28) the Cl L.P. interacting with the empty π*(SeO2) orbital; (35) the corresponding
out-of-phase interaction. Surfaces constructed at the 0.04 AU level. (c) Computed geometries
(see text).

2.6. Donor–Acceptor Bonding in Hypervalent ClSeO2
− Using the NBO Formalism

After almost a century of debate, a combination of experimental and computational
evidence has settled that the bonding in molecular SO2 is not hypervalent and corresponds
very closely to the description provided by the classical Lewis octet structure with nominal
S–O bond orders of 1.5 [63]. SeO2(g) must certainly be described similarly, although under
ambient conditions, it forms a solid polymerized via OSeO→Se dative bonding [49]. Indeed,
our RB3PW91-D3/aug-CC-pVTZ DFT-computed structure for it has Wiberg bond indices
of 1.45 for the Se–O bonds, and 0.31 between the two O atoms. The electrostatic π-holes
detected in SeO2 (Figure 6a) are oriented above and below the central Se atom and are
perpendicular to the molecule plane [24]. Classical nucleophiles such as HCN or NH3
are indeed computed to bind to the Se atom close to this perpendicular with interaction
distances of 70–89% of the ∑rvdW [24].

Whether or not these π-holes are operative in ClSeO2
−, it is clear from both the

experimental and computed geometries that a chloride ion donates electron density to form
a kind of dative or charge-transfer bonding, which is stronger than a mere intermolecular
interaction, and that is definitely hypervalent [64]. We have applied a natural bond order
(NBO) analysis using the NBO 3.1 component within Gaussian W16 on the geometry
optimized in the gas phase for ClSeO2

− (Figure 6b,c). This clearly shows the Se L.P. orbital
(#27) very close to co-planar with the SeO2 atoms (and hence very similar to that of the
educt—see Appendix A). The bond-forming NBO is the Cl L.P.→π*(SeO2) orbital (#28),
whilst the lowest-energy Rydberg NBO is its out-of-phase companion (#35). The Wiberg
bond indices for the optimized geometry are reduced to 1.26 for the Se–O bonds and 0.19
between the O atoms, whilst the bond that forms between Cl and Se has an index of 0.44.
This provides an excellent model for weak hyper-valent bonding in the chloroselenite ion
and is reminiscent of the bonding models developed for the very well-known trihalide
anions [65]. Since Cl→Se bonding has the net effect of occupying the SeO2 π* molecular
orbital, the π-bond order is expected to be reduced, which rationalizes the lower Wiberg
indices for these bonds. And the low bond order for the X–ChO2 bond is consistent with
the very long X–Ch bond distances in most crystal structures of halochalcogenites and
the observation of a wide range of bonding modes, ranging from well-defined XChO2

−
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molecular ions to ‘solvated halide’ geometries with almost equal X···Ch(O2)···X determined
in some SC-XRD structures (see the Introduction).

Returning now to the chloroselenite structure obtained in our salt 2 with the amidinium
ion, it becomes understandable how H-bonding to the two anion oxygen atoms in 2 can
have such a strong influence on the Se–Cl bond length, causing it to be more than 5% shorter
than observed in the structure of [Me4N][ClSeO2] (BIRHOZ [3]). In the H-bonded adduct,
computed in the gas phase, the NPA charge on Se increases from +1.66 in the optimized ion
structure to +1.71, while the charge on Cl decreases from −0.62 to only −0.46. There is thus
a clear rationale in the NBO analysis for the shorter Se–Cl bond observed in the structure
of 2, supporting the notion that H-bonding significantly stabilizes the chloroselenite in this
amidinium salt.

3. Experimental

General synthetic methods for thiazyl and selenazyl chemistry are as previously
described [46,66]. The isolation of 4 has been described previously [46].

3.1. Chemical Synthesis

Initially, 0.26 g of selenium(IV)-4-NH-dichloroselenatriazine, C10H8Cl5N3Se, was
exposed to 10 mL of CH2Cl2 and 10 mL of CH3CN and heated in an attempted purification
by recrystallization. Upon removing all volatiles, 30 mL of CH3CN was added and the
mixture was heated to reflux, ensuring all solids were dissolved, and then filtered hot under
nitrogen. After cooling, the filtrate was placed in a −10 ◦C freezer overnight, producing
small amounts of solids which were removed by a second filtration. Subsequent cooling of
the filtrate in a −30 ◦C freezer overnight produced well-formed colorless crystals, which
were quickly isolated, dried under high vacuum, and submitted for crystallographic study.

3.2. Single-Crystal X-ray Crystallography

Suitable crystals were selected under a microscope, mounted on fine glass capillaries in
Paratone™ oil, and cooled using the diffractometer cooling wand. Crystal and refinement
data are summarized in Table 2. Data for 2 were collected on a Bruker Platform/SMART
1000 CCD diffractometer at the University of Alberta. Image collection, peak identification,
cell and space group determination were controlled using SAINT. Multi-scan absorption
correction was undertaken using SADABS. Initial structure solution was performed with
SHELXS [67]. In view of the extensive H-bonding observed in this structure, refinement
was completed in the independent atom model (IAM) using olex2.refine [68] within the
Olex2 release 1.5 suite of programs [51]. After a detailed analysis and structure verification
in the IAM, Hirsfeld atom refinement was continued using aspherical scattering factors
with the aid of NoSpherA2 [50]. A detailed description of our workflow for HAR with
aspherical form factors has been published [69].

In the case of 2, HAR/NoSpherA2 quickly proved to be very successful. The electron
density (ED) of each atom was computed using ORCA 5.0 [70] at the R2SCAN/def2-TZVP
level of theory, whereafter the custom scattering factors for all atoms were computed
using NoSpherA2, and refinement was completed with olex2.refine. When the H-atoms
were refined anisotropically, it immediately became apparent that the tolyl methyl group
is rotationally disordered, an effect that is normally ignored in IAM where the riding
atom approach for H on C usually masks such subtleties. A two-part disorder model was
adopted, and HAR resumed (which inter alia requires that two full sets of DFT calculations
are required, one for each disorder component). This too proved successful. However,
although the overall data quality is quite good (Rint = 3.28%), the data were obtained on
an older sealed-tube diffractometer where the resolution was capped at 0.80 Å. This is
probably the origin of the two ghost peaks for the Se atom (Fourier ripples), hindering the
overall refinement quality. Hence, in the final refinement cycles the aromatic C-H, distances
were restrained to 1.085 Å and N-H distances to 1.040 Å, which are the current best values
from neutron refinement in this temperature range [71]. Similar 2- and 3-atom distance
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restraints were applied to the disordered H atoms in the CH3 group, and the occupancies
were frozen in a 50:50 ratio. This structure is not intended for validating the performance
of the HAR/NoSpherA2 method (which we have previously done thoroughly [69,72–74]);
instead, it aims for an accurate description of the extensive H-bonding network, and
obtaining a deformation density map to show the non-bonded ED.

Crystal Data for C8H11ClN2O2Se (M = 281.601 g/mol): monoclinic, space group P21/c
(no. 14), a = 3.9773(3) Å, b = 28.477(2) Å, c = 9.5781(9) Å, β = 91.242(1)◦, V = 1084.56(16) Å3,
Z = 4, T = 193.15 K, µ(Mo Kα) = 3.685 mm−1, Dcalc = 1.725 g/cm3, 8245 reflections measured
(4.48◦ ≤ 2θ≤ 52.84◦), 2194 unique (Rint = 0.0328, Rsigma = 0.0282) which were used in all cal-
culations. The final R1 was 0.0339 (I ≥ 2σ(I)) and wR2 was 0.0827 (all data). CCDC 2301348.

3.3. Computational Methods

Initial geometries for the DFT calculations were obtained from the X-ray coordinates
(ignoring the second component of the toluene methyl group disorder). All calculations
were performed with Gaussian W16 under GUI control from GaussView 6.0 and were run
on an AMD Ryzen Threadripper 16-core 3.75 GHz PC under Windows 10 [75]. Minimum
energy geometries were verified using harmonic vibrational analysis. The use of Grimme’s
D3 correction for dispersion, an attractive effect that is not readily accounted for by the bare
B3PW31 functional, was applied in all cases. The suitability of the RB3PW91-D3/aug-CC-
pVTZ level of theory was thoroughly investigated by computing the known structural and
vibrational properties of SeO2 (gas-phase structure), for which, see Appendix A. Atomic
charges were computed using normal bond order analysis, and bond orders using the
Wiberg definition, all with internal functions. Results computed with Gaussian W16 were
visualized and, where required, plotted using GaussView.

4. Conclusions

The evidence from this paper is that significant Cl–Se bond shortening is induced in
ClSeO2

− ions by the characteristic H-bonding from benzamidinium cations. This discovery
could have major benefits for isolating stable salts of other halochalcogenite(IV) salts.
For example, selectivity of the H-bonding for O is considered likely, which may help
prevent O/F positional disorder in FChO2

− salts. These cations may also lead to success
in obtaining crystalline adducts for the many X/Ch combinations for which there are no
SC-XRD data. This work also emphasizes a point, made previously by others, that work in
this area should use multiple, mutually integrated, techniques. For example, vibrational
spectroscopy, when fully interpreted by adequate levels of computation, should be feasible
on the proposed benzamidinium salts, enhancing the reliability of salt characterization
and enabling direct comparisons, especially with Raman spectroscopy, to the structures
adopted by these ions in solutions. Additionally, 77Se NMR may become invaluable for
characterizing the formation of haloselenite ions in solution.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28227489/s1, Supplementary report, with structural de-
tails on BIRHOZ, further information on 2 and a full crystal structure report for 2. References [6,50,51,67,68]
are cited in the Supplementary Materials.
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Appendix A

Computational method calibration: SeO2 at the RB3PW91-D3/aug-CC-pVTZ level
of theory computes d(Se–O) = 1.6026 Å; ∠(OSeO) 114.1◦(cf. 1.6076(6); 113.83(8)◦ from
microwave spectroscopy [76]). Vibrational spectrum: ν2

′′ 362 cm−1; ν3
′′ 989 cm−1 (cf. 364;

968 cm−1 in the gas phase above solid SeO2, >350 ◦C by infra-red spectroscopy [77]). This
gives high confidence in the method so that agreement with experimental data for ClSeO2

−

will reflect accurately the structural data for this weakly bound ion.
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Figure A1. (a) Structure of SeO2 (in the gas phase; it is a polymeric solid at RT). (b) Computed IR
spectrum at the RB3PW91-D3/aug-CC-pVTZ level of theory.

The MO sequence (1a1)2(1b2)2(2a1)2(2b2)2(3a1)2(1b1)2(1a2)2(3b2)2(4a1)2(2b1)0 computed
at our level is in remarkable agreement with Walsh’s original theoretical predictions
for AB2 molecules at a bond angle of 114◦ [78], being (1a1)2(1b2)2(2a1)2(1b1)2(3a1)2(2b2)
2(1a2)2(3b2)2(4a1)2(2b1)0, so that only 1b1 and 2b2 levels are exchanged (the π1 MO is
lower-lying in the generic Walsh interaction diagram, probably reflecting stronger π-overlap
in the model system compared to that of the 4th period Se). Moreover, there is good agree-
ment in the relative energy levels for the two highest filled and lowest virtual levels, such
that the HOMO is the in-plane sulfur L.P. orbital by both approaches. Importantly for anion
coordination, as in [ClSO2]−, the lowest unoccupied MO of SeO2 is unambiguously the 2b1
π3* orbital dominated by the empty Se 4pz AO.

Appendix B

The molecular and crystal structure of 4 has been reported previously in the supple-
mentary data of Ref. [46] and is available from the CSD via refcode EZOWUM (or via its
acquisition code: CCDC 851053). Allowing for the differing covalent radii of S and Se (1.02;
1.16 Å), the bond lengths at the chalcogen seem quite comparable to those in the ClSeO2

−

ion in 2, another indication of the relatively strong Se–Cl bond in that structure. However,
the angles at S in sulfamyl chloride 4 are closer to tetrahedral values, as expected for a
four-coordinate structure. Almost all the bonds and angles around the S atom in 4 fit well
with the averages from 20 neutral comparator structures of other sulfamyl chlorides from a
CSD search. The exception is d(S1–N1) which at 1.695(3) Å is 7% longer than the average of
1.59(3) Å. However, the average when restricted to just those ten comparators in which the
attachment atom is not double bonded (to C or especially P) is closer, at 1.629(3) Å.

The H-bonds found in the lattice of 4 (Figure A2) are of only three types, but they are
found to be slightly shorter even than those in 2, and hence are expected to total about
150 kJ/mol in stabilization energy. The Etter notation for the lower-level nets are shown
in the figure using blue lettering. Evidently, H-bonding is well able to stabilize this very
reactive sulfamyl chloride.
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Figure A2. Hydrogen bond network in the crystal lattice of 4 (structure taken from CSD refcode
EZOWUM). The Etter notation for the lower-level nets are indicated in the blue lettering: C1
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1(6) b; C1
1(6) c; C2

2(8) > a < c; R2
2(10) > a > c. The relative H-bond strengths are color-coded with

yellow stronger than red.

Table A1 is a very useful compilation of H-bond properties, which enables a mean-
ingful interpretation of the data found in the structures of 2 and 4, as well as many other
structures. These data have been compiled by the author from various literature sources
and modified to be suitable for acceptors from both the second and the third periods of the
main group elements.

Table A1. Ranking of Hydrogen Bond Strengths and Properties Adapted from Jeffrey *.

Parameter Strong Moderate Weak

Interaction type: strongly covalent mostly electrostatic electrostatic/dispersion
d(H···A), Å # 1.2–1.5 1.5–2.2 >2.2
d(D···A), Å # 2.2–2.5 2.5–3.2 >3.2

lengthening of D–H 0.08–0.25 0.02–0.08 <0.02
D–H versus H···A D–H ≈ H···A D–H < H···A D–H << H···A

Directionality: Strong moderate weak
∠D–H···A, ◦ 170–180 >130 >90

Bond energy, kJ mol−1 60–160 16–60 <16
IR shift ∆νDH , cm−1 25% 10–25% <10%

1H downfield shift, ppm 14–22 <14

* Jeffrey, G. A. An introduction to hydrogen bonding. Oxford University Press: New York, 1997, Volume 12,
pp. 330 [79]. # For a given donor type, the hydrogen-bond distance typically increases by over 0.5 Å from 2nd to
3rd period, 0.15 Å from 4th to 5th period, and 0.25 Å from 5th to 6th period acceptors [80].
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Abstract: [PtCl2{Te(CH2)6}2] (1) was synthesized from the cyclic telluroether Te(CH2)6 and cis-
[PtCl2(NCPh)2] in dichloromethane at room temperature under the exclusion of light. The crystal
structure determination showed that in the solid state, 1 crystallizes as yellow plate-like crystals of the
cis-isomer 1cis and the orange-red interwoven needles of 1trans. The crystals could be separated under
the microscope. NMR experiments showed that upon dissolution of the crystals of 1cis in CDCl3, it
isomerizes and forms a dynamic equilibrium with the trans-isomer 1trans that becomes the predom-
inant species. Small amounts of cis-trans-[Pt3Cl6{Te(CH2)6}4] (2) and cis-trans-[Pt4Cl8{Te(CH2)6}4]
(3) were also formed and structurally characterized. Both compounds show rare bridging telluroether
ligands and two different platinum coordination environments, one exhibiting a cis-Cl/cis-Te(CH2)6

arrangement and the other a trans-Cl/trans-Te(CH2)6 arrangement. Complex 2 has an open structure
with two terminal and two bridging telluroether ligands, whereas complex 3 has a cyclic structure
with four Te(CH2)6 bridging ligands. The bonding and formation of the complexes have been dis-
cussed through the use of DFT calculations combined with QTAIM analysis. The recrystallization of
the mixture of the 1:1 reaction from d6-DMSO afforded [PtCl2{S(O)(CD3)2}{Te(CH2)6}] (4) that could
also be characterized both structurally and spectroscopically.

Keywords: density functional calculations; NMR spectroscopy; platinum; tellurium; X-ray diffraction

1. Introduction

The advent of the versatile chemistry of crown-ethers and their complexes in the
1980s [1,2] has generated interest in the related macrocycles of heavier chalcogen elements
(for some recent reviews, see refs. [3–18]). The information on the syntheses, structures, and
coordination chemistry of thioethers is particularly extensive, but the related seleno- and
telluroethers have also shown growing research activity in recent decades. The study of
macrocyclic chalcogen heterocycles helps to gain insight into the chalcogen bonding and its
applications in supramolecular chemistry and crystal engineering [19–25]. The chalcogen
bonding interactions are most significant in the case of tellurium.

The information on cyclic saturated telluroethers is sparse compared to related thioethers
and selenoethers. While the preparation of cyclic Te(CH2)4 [26], Te(CH2)5 [27], and 1,5,9-
Te3(CH2)9 [28] has been known for a long time, it is only recently that the crystal structures
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and bonding in some [Te(CH2)m]n (n = 1–4, m = 3–7) [29] have been discussed. The coordi-
nation chemistry of the cyclic telluroethers is also little studied with only [MCl2{Te(CH2)4}2]
(M = Pd, Pt) [30], [PtCl2{Te(CH2)4O}2] [31], [MCl2{Te2O4(CH2)12}] (M = Pd. Pt) [32], [Rh2(η5-
C5H5)2(CO)(µ-η1: η1- CF3C2CF3){Te(CH2)4}] [33], and [Ag{TeS2(CH2)8}]n[BF4]n [34] being
either structurally or spectroscopically characterized.

The current contribution is the continuation of our systematic investigation of the
synthesis of the series of telluroether heterocycles [Te(CH2)m]n (n = 1–4; m = 3–7) [29] and
the coordination complexes of telluroethers (see refs. [35–39] for some recent publications).
Monotelluroethers Te(CH2)m are liquid in ambient conditions, but species with higher Te
contents are solid. The molecular structures and the packing of seven macrocyclic aliphatic
telluroethers have been explored [29]. Te(CH2)6 was one of the monotelluroethers that
was synthesized and characterized through NMR spectroscopy, but since it is a liquid at
room temperature with a low melting point, its crystal structure determination could not
be carried out. It was thought that the reaction with [PtCl2(NCPh)2] should enable it to
coordinate with the platinum center, and the resulting complex would be crystalline. Its
crystal structure determination would establish the molecular structure of Te(CH2)6. The
monodentate also ligand avoids the formation of coordination polymers. It turned out that
the reaction produced not only the expected cis- and trans-[PtCl2{Te(CH2)6}2] (1cis and 1trans,
respectively), but small amounts of cis-trans-[Pt3Cl6{Te(CH2)6}4]·11/4CH2Cl2) (2·11/4CH2Cl2)
and, depending on the molar ratio of the reagents, also cis-trans-[Pt4Cl8{Te(CH2)6}4]·4CDCl3
(3·4CDCl3). The attempts to produce the polynuclear complexes in better yields involved
the use of d6-dimethyl sulfoxide as the crystallization solvent, in which case crystals of the
mononuclear [PtCl2{S(O)(CD3)2}{Te(CH2)6}] (4) were obtained. The crystal structures of
1cis and2-4, the isomerization of 1cis to 1trans, and the bonding features and formation of
2 and 3 are discussed in this paper.

2. Results and Discussion
2.1. General

The reaction of two equivalents of Te(CH2)6 with one equivalent of cis-[PtCl2(NCPh)2]
in dichloromethane produces cis- and trans-[PtCl2{Te(CH2)6}2] (1cis and 1trans) (see Scheme 1).
The 1H, 125Te{1H}, and 195Pt{1H} NMR spectra recorded in CDCl3 indicate that the trans-
isomer is the main isomer in CDCl3, as discussed in Section 2.2. Small amounts of insoluble,
likely polymeric products were also formed.
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The syntheses of platinum and palladium complexes using related telluracyclopentane
Te(CH2)4 have been reported to give [MX2{Te(CH2)4}2] (M = Pt, Pd; X = Cl, Br, I) [30]. The
[PtCl2{Te(CH2)4}2] was deduced to be the cis isomer in the solid state on the basis of
IR spectroscopy, but the complex was reported to exist as a mixture of cis- and trans-
isomers in solution in the respective concentration ratio of, ca. 1:2. The palladium complex
[PdCl2{Te(CH2)4}2] exists only as a trans isomer [30].

The crystallization of the product of the reaction of Te(CH2)6 and cis-[PtCl2(NCPh)2]
from dichloromethane/pentane gave a mixture of yellow plates and orange-red needles.
The yellow plate-shaped crystals were suitable for the determination of the crystal structure,
which showed them to be cis-[PtCl2{Te(CH2)6}2] (1cis) (see Section 2.3). The orange-red
needles were intergrown and proved to be unsuitable for X-ray structure analysis. However,
the NMR and mass spectroscopic information indicated them to be trans-[PtCl2{Te(CH2)6}2]
(1trans).

Small amounts of both yellow and orange-red crystals were manually separated under
the microscope. They were dissolved in CDCl3 for the recording of the NMR spectra
(see Section 2.2). An additional small crop of red plate-shaped crystals was identified
under the microscope and could be manually isolated based on their different crystal
habits. The crystal structure was determined as cis-trans-[Pt3Cl6{Te(CH2)6}4]·11/4CH2Cl2
(2·11/4CH2Cl2) (see Section 2.3). Because of the very small amount of 2, no bulk analysis
could be carried out.

The synthesis was repeated by using equimolar amounts of cis-[PtCl2(NCPh)2] and
Te(CH2)6. Thin-layer chromatography indicated mostly the formation of cis- and trans-
[PtCl2{Te(CH2)6}2] (1cis and 1trans) together with the presence of the starting materi-
als. After recording the NMR spectra in CDCl3, red well-shaped crystals grew in the
NMR tube. The crystal structure determination showed these crystals to be cis-trans-
[Pt4Cl8{Te(CH2)6}4]·4CDCl3 (3·4CDCl3) (see Section 2.3).

During the attempts to crystallize 3 in larger amounts, the recrystallization in dimethyl
sulfoxide was attempted. It yielded almost colorless crystals of [PtCl2{S(O)(CD3)2}{Te(CH2)6}]
(4) (see Section 2.3).

2.2. NMR Spectroscopy

The crystals of cis-[PtCl2{Te(CH2)6}2] were dissolved in deuterochloroform for record-
ing the 125Te{1H} NMR and 195Pt{1H} NMR spectra (see Figure 1). All spectra can be
interpreted in terms of a mixture of 1cis and 1trans. The NMR spectroscopic information of
1cis and 1trans is compared with those of related species in Table 1.
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Table 1. NMR spectroscopic information of some telluroether complexes of platinum a.

Compound δ(125Te), ppm 1JPtTe, Hz δ(195Pt), ppm Ref.

cis trans cis trans cis trans

[PtCl2{Te(CH2)6}2] 352 399 979 506 −4240 −3682 This work
[PtCl2{Te(CH2)4}2] 457 459 665 321 −4251 −3715 [30]

[PtCl2(TeMe2)2] 224 234 824 489 −4351 −3765 [40]
[PtCl2{Te(CH2SiMe3)2}2] 266 292 804 469 −4236 −3707 [41]

[PtCl2{S(O)(CD3)2}{Te(CH2)6}] 490 1052 −3830 This work
a The cis-designation refers to the relative positions of the two chloride ligands.

Based on the trends in the 125Te and 195Pt chemical shifts that have been reported
previously [30,40,41], the tellurium resonance at 352 ppm has been assigned to the cis
isomer 1cis and that at 399 ppm to the trans isomer 1trans. It can also be seen in Table 1
that the magnitudes of the 1JTePt coupling constants in the cis-isomers are almost double
compared to those of the corresponding trans-isomers. These relative values, as well as the
trends in both the 125Te and 195Pt chemical shifts, reflect the stronger trans-influence of the
tellurium donors compared to that of the chlorido ligand and support the assignments.

The cis -> trans isomerization of [PtCl2{Te(CH2)6}2] was monitored using 1H NMR
spectroscopy (see Figure S1 in Supplementary Materials). The crop of crystals of 1cis from
which the crystal structure determination was carried out (Section 2.3) was dissolved in
CDCl3, and the spectra were recorded at room temperature for 30 s after the dissolution and
again after 1.2 h. In solution, the trans-isomer 1trans quickly became the dominant species.
Already in the first spectrum (Figure S1a) recorded almost immediately after the dissolution
of the crystals, the trans-isomer can be observed, and in the second spectrum (Figure S1b),
it is clearly the predominant species. The assignment of the 1H chemical shifts was verified
by recording the 1H NMR spectrum of the redissolved orange needles. Immediately after
the dissolution, the resonances marked as trans in Figure S1 were the major signals in the
spectrum and remained so throughout prolonged monitoring of the solution.

After 1.2 h, the cis:trans ratio was estimated from the integrated intensities of the
resonances to be 1:1.8, which is very close to the ratio of 1:2 that Kemmitt et al. [30]
estimated for the related [PtCl2{Te(CH2)4}2] in dichloromethane. The intensity distribution
in the 125Te{1H} and 195Pt{1H} NMR spectra (see Figure 1) bears semiquantitative agreement
with the inferences from the 1H spectrum in Figure S1b.

The 125Te{1H} NMR spectrum of the solidified and redissolved reaction mixture prior
to separation of the products is shown in Figure S3 of Supplementary Materials. In addition
to the resonances of 1cis and 1trans, two weak signals at 489 ppm and 598 ppm were
observed. The qualitative comparison of their relative signal intensities and the chemical
shifts might indicate the presence of the trinuclear complex cis-trans-[Pt3Cl6{Te(CH2)6}4]
(2), but this assignment remains tentative at best. The former resonance could be due to the
terminal Te(CH2)6 ligand, and the latter due to the bridging ligand (see Section 2.3).

2.3. Crystal and Molecular Structures

Upon slow recrystallization from CH2Cl2/pentane (1:1) solution, intense yellow plate-
shaped crystals and orange needles were obtained in addition to small crops of other
products. The yellow plate-shaped crystals were suitable for the determination of the
crystal structure and were shown to be cis-[PtCl2{Te(CH2)6}2] (1cis). The details of the
data collection and structure determination are presented in Table S1 in Supplementary
Materials. The molecular structure and the numbering of the atoms in 1cis together with
some selected bond parameters are shown in Figure 2.
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atoms. The thermal ellipsoids have been drawn at the 50% probability level. Hydrogen atoms have
been omitted for clarity. Selected bond lengths (Å) and angles (◦): Pt1-Te1 2.5145(7), Pt1-Te2 2.5266(6),
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172.18(6), Te1-Pt1-Te2 94.01(2).

The platinum atom exhibits a slightly distorted square planar coordination geometry
with all bond parameters showing their expected values (c.f., Pt-Te 2.4971(14)–2.541(14)
Å; Pt-Cl 2.311(6)–2.356(6) Å [31,41–43]). Some trans-[PtCl2(TeR2)2] show longer Pt-Te
bond lengths but slightly shorter Pt-Cl bond distances (Pt-Te 2.5589(12)–2.5945(3) Å; Pt-Cl
2.275(5)–2.320(5) Å [31,41,43–45]). This is due to the relative strengths of the trans-influence
of the telluroether and chlorido ligands.

In addition to 1cis and 1trans, a few red, plate-shaped crystals of the trinuclear cis-
trans-[Pt3Cl6{Te(CH2)6}4]·11/4CH2Cl2 (2·11/4CH2Cl2) could be manually separated from the
reaction mixture after the crystallization from CH2Cl2/pentane. The crystals of tetranuclear
cis-trans-[Pt4Cl8{Te(CH2)6}4]·4CDCl3 (3·4CDCl3) could be obtained upon recrystallization
from CDCl3 in the NMR tube after the recording of the NMR spectra of the equimolar reac-
tion of the reagents. The molecular structures of 2·11/4CH2Cl2 and 3·4CDCl3 are shown in
Figure 3 (for details of the structure determination and the list of selected bond parameters,
see Tables S1 and S2 in Supplementary Materials).
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Figure 3. (a) Molecular structure of cis-trans-[Pt3Cl6{Te(CH2)6}4]·11/4CH2Cl2 (2·11/4CH2Cl2) and (b) cis-
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shown in the figure. The hydrogen atoms have also been omitted from both complexes for clarity.
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The asymmetric unit of 2·11/4CH2Cl2 contains two independent complexes (denoted
A and B) with virtually the same conformations and bond parameters. There are also
21/2 solvent molecules in the asymmetric unit. Some Te(CH2)6 ligands exhibit orientational
disorder. Since the structures of both discrete complexes in the asymmetric unit are closely
similar, only complex A is shown in Figure 3a. In the case of 3·4CDCl3, the asymmetric
unit contains only half of the tetranuclear complex, with the other half being completed
through symmetry. The geometry of 3 is closely related to that of 2, as shown in Figure 3b.

Both complexes 2 and 3 show the simultaneous occurrence of very slightly distorted
square-planar cis- and trans-PtCl2Te2 coordination environments. In the cis-moieties, the
Pt-Te bonds range from 2.5045(7) to 2.5226(6) Å and the Pt-Cl bonds range from 2.309(3)
to 2.331(5) Å. In the trans-PtTe2Cl2 moieties, the Pt-Te and Pt-Cl range from 2.5546(6) to
2.5774(15) Å and from 2.302(2) to 2.326(6) Å, respectively. The relative magnitudes of these
metrical values demonstrate the stronger trans-influence of tellurium compared to chlorine.

The molecular structure of [PtCl2{S(O)(CD3)2}{Te(CH2)6}] (4) is shown in Figure 4
together with the labeling of atoms and selected bond parameters.
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Figure 4. The molecular structure of [PtCl2{S(O)(CD3)2}{Te(CH2)6}] (4) indicating the numbering
of the atoms. The thermal ellipsoids have been drawn at the 50% probability level. Hydrogen and
deuterium atoms have been omitted for clarity. Selected bond lengths (Å) and angles (◦): Pt1-Te1
2.5436(3), Pt1-S1 2.2049(7), Pt1-Cl1 2.3564(7), Pt1-Cl2 2.3203(7), S1-O1 1.479(2), Te1-C1 2.146(3), Te1-
C6 2.176(3), Te1-Pt1-Cl1 176.33(2), Te1-Pt1-Cl2 92.32(2), Te1-Pt1-S1 87.68(2), Cl1-Pt1-Cl2 89.78(2),
Cl1-Pt1-S1 90.27(3), Cl2-Pt1-S1 179.11(3).

The Pt-Te bond length of 2.5436(3) Å in 4 is in agreement with that of 1cis and is
consistent with the weak trans-influence of the chlorido ligand. The two Pt-Cl bond
lengths are 2.3564(7) Å (trans to Te) and 2.3203(7) Å (trans to S) and reflect also the relative
trans-influences of tellurium and sulfur. The Pt-S bond length is 2.2049(7) Å. The closest
complex related to [PtCl2{S(O)(CD3)2}{Te(CH2)6}] (4) is [PtCl2{S(O)(CH3)2}{S(CH3)2}] [46]
that shows a Pt-S(O)(CH3)2 distance of 2.211(4) Å. The Pt-Cl bond lengths are 2.299(3) and
2.320(4) Å, and the Pt-S(CH3)2 distance is 2.294(3) Å. In the Cambridge database, there
are nine crystal structure determinations for [PtCl2{S(O){CH3}2}2] containing the trans-
Cl-Pt-S(O)CH3 arrangement [47]. The Pt-S bonds span a range of 2.2302(18)–2.2537(12)
Å (average 2.242(10) Å), and the Pt-Cl bonds vary in the range of 2.3068(8)–2.3251(5) Å
(average 2.317(5) Å).

In the solid state, all complexes 1cis, 2, and 3 show short Te· · ·Cl and Pt· · ·Pt con-
tacts. These secondary bonding interactions comprise chalcogen bonds (Te· · ·Cl) and
metallophilic interactions (Pt· · ·Pt) that, in the case of 1cis, link the mononuclear cis-
[PtCl2{Te(CH2)6}2] complexes into dimers exhibiting respective contacts of 3.659(3)–3.676(2) Å
and 3.5747(5) Å. While the chalcogen bonds and metallophilic interactions in 2 and 3 are
structurally similar to those in 1cis (see Table S2), in the case of the latter polynuclear
complexes, they are intra-molecular (see Figure 5). Similar linking of the square-planar
MX2E2 (M = Pt, Pd; E = Se, Te) coordination spheres into dimers has also been observed
in other chalcogenoether complexes provided that the steric bulk of the organic group
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bonded to the chalcogen atom does not prevent the dimer formation. Typical examples
are cis-[PdCl2{SeMe(C4H3S)}2] [48], trans-[PtI2(TeMePh)2] [49], cis-[PdCl2{(Te(C6H4)OMe-
1,4)2CH2}] [50], and cis-[PdBr2{(TePh)2(CH2)3}] [51]. The QTAIM analysis of these weak
secondary bonding interactions is discussed in Section 2.4.4.
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Interestingly, [PtCl2{S(O)(CD3)2}{Te(CH2)6}] (4) does not show Pt· · ·Pt close contacts
(the closest distance is 4.5696(3) Å). The Te· · ·Cl contacts of 3.7214(8)–3.8645(8) Å, on the
other hand, link the complexes into quasi-single-strand polymers (see Figure 6).

Molecules 2023, 28, x FOR PEER REVIEW 7 of 16 
 

 

in other chalcogenoether complexes provided that the steric bulk of the organic group 
bonded to the chalcogen atom does not prevent the dimer formation. Typical examples 
are cis-[PdCl2{SeMe(C4H3S)}2] [48], trans-[PtI2(TeMePh)2] [49], cis-[PdCl2{(Te(C6H4)OMe-
1,4)2CH2}] [50], and cis-[PdBr2{(TePh)2(CH2)3}] [51]. The QTAIM analysis of these weak sec-
ondary bonding interactions is discussed in Section 2.4.4. 

 
Figure 5. Chalcogen bonds and metallophilic interactions in 1cis, 2, and 3. 

Interestingly, [PtCl2{S(O)(CD3)2}{Te(CH2)6}] (4) does not show Pt∙∙ Pt close contacts 
(the closest distance is 4.5696(3) Å). The Te∙∙∙Cl contacts of 3.7214(8)–3.8645(8) Å, on the 
other hand, link the complexes into quasi-single-strand polymers (see Figure 6). 

 
Figure 6. The Te∙∙∙Cl chalcogen bonds in 4. 

2.4. Density Functional Theory (DFT) Computations 
2.4.1. General  

We carried out PBE0-D3/def2-TZVP calculations to study the bonding, secondary 
bonding interactions, as well as energetics of the cis-trans isomerization of 
[PtCl2{Te(CH2)6}2] and the formation of tri- and tetranuclear complexes.  

2.4.2. Optimized Geometries 
The PBE0-D3/def2-TZVP optimized geometries of [PtCl2{Te(CH2)6}2] (1cis and 1trans), 

cis-trans-[Pt3Cl6{Te(CH2)6}4] (2), and cis-trans-[Pt4Cl8{Te(CH2)6}4] (3) agree well with the ex-
perimental information despite the fact that the experimental information is from the crys-
talline state and the computational data are calculated in vacuum. The PBE0-D3/def2-
TZVP-optimized coordinates are shown in Table S3 and the computed geometries are 
shown in Table S4 in Supplementary Materials. The total energies in vacuum are pre-
sented in Table S5 and those in dichloromethane in Table S6.  

  

Figure 6. The Te· · ·Cl chalcogen bonds in 4.

2.4. Density Functional Theory (DFT) Computations
2.4.1. General

We carried out PBE0-D3/def2-TZVP calculations to study the bonding, secondary
bonding interactions, as well as energetics of the cis-trans isomerization of [PtCl2{Te(CH2)6}2]
and the formation of tri- and tetranuclear complexes.

2.4.2. Optimized Geometries

The PBE0-D3/def2-TZVP optimized geometries of [PtCl2{Te(CH2)6}2] (1cis and 1trans),
cis-trans-[Pt3Cl6{Te(CH2)6}4] (2), and cis-trans-[Pt4Cl8{Te(CH2)6}4] (3) agree well with the
experimental information despite the fact that the experimental information is from the
crystalline state and the computational data are calculated in vacuum. The PBE0-D3/def2-
TZVP-optimized coordinates are shown in Table S3 and the computed geometries are
shown in Table S4 in Supplementary Materials. The total energies in vacuum are presented
in Table S5 and those in dichloromethane in Table S6.
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2.4.3. Cis-trans Isomerization

In vacuum at the PBE0-D3/def2-TZVP level of theory, trans-[PtCl2{Te(CH2)6}2] (1trans) is
33 kJ mol−1 more stable than the cis-isomer 1cis (see Table S5). By contrast, in dichloromethane,
the cis-isomer is 2 kJ mol−1 more stable than the trans-isomer (see Table S6). An earlier
MP4(SDQ)//MP2 comparison of the Gibbs energies in vacuum and dichloromethane
involving cis- and trans-[PtCl(SnCl3)(PH3)2] (∆G298(cis-trans) = −32 and 9 kJ mol−1, respec-
tively) [52] exhibited the same trend. The computed equilibrium constant for the cis ->
trans isomerization of [PtCl2{Te(CH2)6}2] in dichloromethane utilizing the Gibbs energy
change is 0.4. This is consistent with the variable-temperature 1H NMR spectroscopic
study of the cis -> trans isomerization of [PdCl2(PMePh2)2] that has been concluded to
show a value of 0.30 [53] in 1,2-dichloroethane. In chloroform, trans-[PtCl2{Te(CH2)6}2] is
interestingly 6 kJ mol−1 (equilibrium constant 11.2) more stable than the cis-form. Since all
NMR spectra were recorded in deuterochloroform, this finding explains the observed cis
-> trans isomerization of [PtCl2{Te(CH2)6}2] by NMR spectroscopy (see Section 2.2). The
route for the cis -> trans isomerization is generally considered to involve the formation
of a five-coordinate intermediate. This intermediate can undergo Berry pseudorotation
resulting in the isomerization. Other mechanisms have also been suggested (for early
discussion of the possible isomerization mechanisms, see ref. [54]).

2.4.4. Chalcogen Bonding and Metallophilic Interactions

The QTAIM analysis of the secondary bonding Te···Cl and Pt···Pt interactions are
shown in Table 2. The Pt-Te bond lengths and experimental close contacts in the crystals
have been included for comparison. The use of QTAIM in the characterization of metal–
metal bonding has recently been reviewed [55]. In addition to the classical descriptors of
electron density (ρ) and the Laplacian (∇2ρ) at the bond critical point that are expected
to be large and negative, respectively, for covalent bonds, the relative magnitudes of
the kinetic Gb and the potential Vb energy densities have been used to classify bonds.
The relative magnitudes have been examined either via the electronic energy density
(Hb = Gb + Vb) [56,57] or the |Vb|/Gb ratio [58]. The Laplacian for the bonds between
heavy atoms tends to give positive values regardless of the bond type [59]. Therefore, the
energy densities have been good additional descriptors for defining metal bonding. The
negative Hb values have been taken as a sign of covalent bonding and the positive values
as indicators of closed-shell interactions [60]. The |Vb|/Gb ratio further distinguishes the
regions of shared-shell interactions with |Vb|/Gb > 2, intermediate regions corresponding
to 1 < |Vb|/Gb < 2, and closed-shell interactions with |Vb|/Gb < 1 [55]. The intermediate
region includes metal–metal and donor–acceptor interactions [59].

In the case of complexes 1cis, 2, and 3, the calculated∇2ρ for Pt···Pt, Pt–Te, and Te···Cl
are all positive, as can be expected for interactions between the heavy atoms. For the
Pt-Te bonds, the values of Hb are negative and |Vb|/Gb ratios are in the intermediate
region between 1.64 and 1.75, consistent with the donor–acceptor bonds. The electron
densities at bond critical points (ρ) and the delocalization indices (DIs) that are close to the
single bond values [61] corroborate this classification of the coordinative bonds. Because
of the trans-influence, the Pt-Te bonds are slightly longer than single bonds and cause the
delocalization indices of the Pt-Te(trans) bonds to be smaller than those of the Pt-Te(cis)
bonds. By comparison, Hb of the Pt···Pt interactions are still negative but |Vb|/Gb ratios
that fall between 1.06 and 1.15 (see Table 2) are much closer to the limit of closed-shell
interactions. The low level of electron sharing in the Pt···Pt interactions is reflected by
the ρ values 0.122, 0.172, and 0.202 e Å−3 and the DI values 0.18, 0.26, and 0.30 for 1cis,
2, and 3, respectively. By comparison, the QTAIM analysis in a recent study on platinum
complexes of phenylpyridine, triazolyl-phenylpyridine, and imidazolyl-phenylpyridine
that form head-to-tail dimers via the Pt···Pt interactions in the solid state show the ρ values
of 0.132–0.150 e Å–3 that are between those of 1cis and 2 [62]. The |Vb|/Gb ratios of Pt···Pt
interactions of 1.08–1.10 are also very similar to those found in this contribution. In both
cases, the metallophilic Pt···Pt interactions show weak covalence.
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Table 2. QTAIM analysis results (electron density at bond critical point, ρ; delocalization index, DI;
Laplacian of electron density, ∇2ρ; kinetic energy density, Gb; and potential energy density, Vb) of
the Pt· · ·Pt and Te· · ·Cl secondary bonding interactions in cis-[PtCl2{Te(CH2)6}2] (1cis), cis-trans-
[Pt3Cl6{Te(CH2)6}4] (2), and cis-trans-[Pt4Cl8{Te(CH2)6}4] (3).

Parameter Expl. PBE0-D3/def2-
TZVP

QTAIM

ρ (e Å–3) DI ∇2ρ (e Å–5)
Gb (kJ mol−1

bohr–3) a
Vb (kJ mol−1

bohr–3) a
Eint (kJ mol−1

bohr–3) a, b

1cis
Pt-Te(cis) 2.5145(7)–2.5266(6) 2.537–2.548 0.619/0.628 0.98/1.03 1.15/1.18 130/133 −228/−234 −114/−117
Pt· · ·Pt 3.5747(5) 3.403 0.122 0.18 1.0 29 −31 −16
Te· · ·Cl 3.659(3)–3.676(2) 3.516–3.531 0.074–0.068 0.10 0.74–0.67 14 −13–(−14) −7
2
Pt-Te(cis) 2.5140(15)–2.5219(16) 2.515–2.515 0.630–0.634 0.94 1.83–1.85 152–153 −254–(−256) −127–(−128)
Pt-Te(trans) 2.5560(15)–2.5774(15) 2.572–2.581 0.578–0.588 0.81–0.92 1.13–1.77 118–132 −206–(−217) −103–(−109)
Pt· · ·Pt 3.1170(11)–3.1499(13) 3.167 0.172 0.26 1.42 44 −50 −25
Te· · ·Cl 3.481(7)–3.964(6) 3.508–3.628 0.074–0.061 0.10–0.07 0.71–0.59 13–17 −11–(−14) −6–(−7)
3
Pt-Te(cis) 2.5043(6)–2.5226(6) 2.510 0.638 0.95 1.88 155 −259 −130
Pt-Te(trans) 2.5547(6)–2.5577(6) 2.561 0.595 0.84 1.55 132 −222 −111
Pt· · ·Pt 3.0764(6) 3.075 0.202 0.30 1.71 54 −62 −31
Te· · ·Cl 3.527(2)–3.556(2) 3.613 0.061 0.06 0.61 14 −11 −6

a 1 bohr = 0.52918 Å. b Eint is defined as Vb/2 [63].

The weak Te···Cl contacts are classified as closed-shell interactions by the positive
Hb values of 0–3, as shown in Table 2. This is also reflected by the small values of ρ

(0.061–0.074 e Å−3) and DI (0.06–0.10). They can be compared to the intermolecular Te···Te
chalcogen bonds in solid macrocyclic telluroethers and are of the same order of magni-
tude [29]. The relative strengths of the Pt···Pt and Te···Cl interactions can be qualitatively
estimated using Eint calculated from Vb [63], although some caution should be exercised
when drawing conclusions, as the reliability of the relationship has been questioned [64].
Comparison of the Eint values shows that in all complexes 1cis, 2, and 3, the metallophilic
Pt···Pt interactions (Eint = −16–(−31) kJ mol–1 bohr–3) are stronger than single Te···Cl
interactions (Eint = −6–(−7) kJ mol–1 bohr–3). The stronger attraction between the Pt cen-
ters compared to that between Te and Cl could explain the observation that in all three
complexes, the square-planar coordination plane is slightly concave with Pt···Pt showing
the closest distance between these distorted planes (see Figure S4). However, there are
four Te···Cl interactions in each complex structure compared to one Pt···Pt interaction,
suggesting that the total stabilization of the complexes due to Te···Cl interactions is on par
with the Pt···Pt interaction.

2.4.5. Formation of cis-trans-[Pt3Cl6{Te(CH2)6}4] and cis-trans-[Pt4Cl8{Te(CH2)6}4]

The reaction of cis-[PtCl2(NCPh)2] and Te(CH2)6 afforded small amounts of cis-trans-
[Pt3Cl6{Te(CH2)6}4] (2) and cis-trans-[Pt4Cl8{Te(CH2)6}4] (3) that could be identified and
structurally characterized through X-ray diffraction. The total PBE0-D3/def2-TZVP ener-
gies of all species in dichloromethane (see Table S6) can be used to calculate Gibbs energy
changes in the formation of complexes 1cis, 2, and 3 from cis-[PtCl2(NCPh)2] and Te(CH2)6
that are shown in Table S7. One possible route for the formation of the polynuclear com-
plexes is shown in Scheme 2 together with the Gibbs energy changes in the individual
reaction steps. The relative Gibbs energies of the reaction products and intermediates with
respect to cis-[PtCl2(NCPh)2] are also shown in Scheme 2.

Whereas the energetics in Scheme 2 is favorable for the formation of 2 and 3 (see
also Table S6), it seems that only small amounts of these complexes are formed during the
syntheses. Though the solid starting material is cis-[PtCl2(NCPh)2], trans-[PtCl2(NCPh)2]
is 7 kJ mol−1 more stable and therefore, in dichloromethane solution, virtually all cis-
[PtCl2(NCPh)2] is converted into the trans-isomer. Because, in dichloromethane, cis-
[PtCl2{Te(CH2)6}2] is 2 kJ mol−1 more stable than the trans-isomer (Table S6), the isomeric
composition in equilibrium is, ca., 70% cis-[PtCl2{Te(CH2)6}2] and 30% trans-[PtCl2{Te(CH2)6}2].
The trans-isomer is therefore the limiting reactant in the formation of 2 and 3. In fact, the
formation of 3 was only observed in the 1:1 reaction of cis-[PtCl2(NCPh)2] and Te(CH2)6.
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Scheme 2. The PBE0-D3/def2-TZVP energetics for the possible route of the formation of
cis- and trans[PtCl2{Te(CH2)6}] (1cis and 1trans), cis-trans-[Pt3Cl6{Te(CH2)6}4] (2), and cis-trans-
[Pt4Cl8{Te(CH2)6}4] (3) in dichloromethane. The relative Gibbs energies of the reaction products
and intermediates with respect to the starting complex cis-[PtCl2)(NCPh)2] are shown above each
complex, and the Gibbs energy changes in individual transformation steps in connection are shown
with the reaction arrows.

While we have not observed the formation of cis-trans-[Pt2Cl4{Te(CH2)6}3] in this
reaction, we have previously reported the formation of small amounts of the structurally
related cis-trans-[Pt2Cl4{Te(CH2SiMe3)2}3] [40].

3. Materials and Methods
3.1. General Procedures

All manipulations involving air- and moisture-sensitive materials were conducted
under a nitrogen atmosphere using Schlenk techniques. Dichloromethane and chloroform
were distilled over CaH2 and hexane over Na/benzophenone under a nitrogen atmosphere
prior to use. Ethanol was degassed by bubbling nitrogen through the solvent for at least
15 min. Semiconductor-grade tellurium was freshly ground. All other reagents were used
as purchased without further purification. The preparation of Te(CH2)6 has been reported
earlier [29].

3.2. Spectroscopy
3.2.1. NMR Spectroscopy

1H, 13C{1H}, 125Te{1H}, and 195Pt{1H} NMR spectra of 1cis and 1trans were recorded
in CDCl3, and those of 4 in d6-DMSO were recorded on a Bruker Avance III 400 spec-
trometer operating at 400.13, 100.61, 126.24, and 86.02 MHz, respectively. The respective
pulse widths were 13.0, 9.70, 6.0, and 10.0 µs, and the corresponding relaxation delay
was 2.0 s for each nucleus. The deuterated solvent was used as the 2H lock. All reso-
nances were indirectly referenced by using the deuterium signal of the solvent for the
lock to the frequency that relates to the resonance frequency of the TMS protons at ex-
actly 400.130000 MHz. Chemical shifts for the 125Te resonances are given relative to
dimethyl telluride through indirect referencing (the tellurium resonance ν0(Te) was cal-
culated by using the ratio Ξ = ν0,H(Te)/ν0(TMS) = 31.549769% [61]). Chemical shifts for
195Pt are given relative to Na2[PtCl6] (1.2 M in D2O) also through indirect referencing
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(Ξ = ν0,H(Pt)/v0(TMS) = 21.96784%) [65]. The 1H and 13C are reported relative to tetram-
ethyl silane TMS [66].

3.2.2. Mass Spectrometry

Electron ionization mass spectra were recorded on Finnigan MAT SSQ 710 and Finni-
gan MAZ95XL spectrometers. The energy of the electrons was 70 eV.

3.3. X-ray Diffraction

The crystals of 1–4 were coated with Paratone oil and mounted in a nylon CryoLoop,
and the intensity data were collected on a Bruker Nonius Kappa CCD diffractometer at
133 K using graphite monochromated Mo Kα radiation (λ = 0.71073 A; 55 kV, 25 mA) [67,68].
Crystal data and the details of structure determinations are given in Table S1. The data
were corrected for Lorenz and polarization effects, after which semi-empirical absorption
correction was applied to net intensities using SADABS [69]. The structures were solved
through direct methods using SHELXT [70] and refined using SHELXL-2018 [71]. After the
full-matrix least-squares refinement of the non-hydrogen atoms with anisotropic thermal
parameters, the hydrogen atoms were placed in calculated positions in the CH2 groups
(C-H = 0.99 A). In the final refinement, the hydrogen atoms were riding with the carbon
atoms they were bonded to. The isotropic thermal parameters of the hydrogen atoms were
fixed at 1.5 times that of the corresponding carbon atoms. The scattering factors for the
neutral atoms were those incorporated with the program.

Some Te(CH2)6 ligands and solvent molecules in 2·11/4CH2Cl2 and 3·4CDCl3 were
disordered. The disorder was resolved through appropriate restraining of the anisotropic
displacement parameters and some bond lengths. Some parts of the disorder model were
introduced by utilizing the program DSR [72].

3.4. Computational Details

All calculations were performed using the Gaussian 16 program [73] by employing
the PBE0 hybrid functional [74–76] together with the def2-TZVP basis sets [77,78]. The
combination of the PBE0 functional and the def2-TZVP basis set has been shown to be
suitable for computational characterization of compounds of heavy p-block elements
(see the discussion in ref. [79]). Implicit C-PCM solvent model was applied to treat the
solvation effects [80,81], and dispersion forces were treated by using the D3BJ version
of Grimme’s empirical correction with Becke–Johnson damping parameterized for the
PBE0 functional [82–84]. Full structure optimization was carried out for each species
considered in this work and the frequencies were calculated for the optimum geometries to
ascertain the nature of the stationary points. The quantum theory of atoms in molecules
(QTAIM) was used to study inter-molecular interactions in the [PtCl2{Te(CH2)6}] (1cis,
1trans), as well as intra-molecular interactions in the cis-trans-[Pt3Cl6{Te(CH2)6}4] (2) and
cis-trans-[Pt4Cl8{Te(CH2)6}4] (3) structures [85]. AIMAll software was used for the QTAIM
calculations [86].

3.5. Reaction of Te(CH2)6 with cis-[PtCl2(NCPh)2]

Te(CH2)6 (46.2 mg, 0.218 mmol) was dissolved in 50 mL CH2Cl2 and crystalline cis-
[PtCl2(NCPh)2] (50.0 mg, 0.106 mmol) was added. The mixture was stirred under exclusion
of light for 20 h. The solvent was removed under reduced pressure and the crude product
was extensively dried at 40 ◦C and 1 mbar to remove any benzonitrile, yielding 71.7 mg
(theoretical: 74.4 mg) of an odorless yellow solid with few orange crystals in it. TLC
analysis (silica, chloroform) showed two spots at Rf = 0.89 and 0.25 corresponding to
trans-[PtCl2{Te(CH2)6}2] (1trans) and cis-[PtCl2{Te(CH2)6}2] (1cis) beside a very faint spot at
Rf = 0.58 and few minor spots at Rf < 0.25. The substances corresponding to the latter were
mostly removed through column chromatography (silica, chloroform), yielding 54.5 mg of
substance. The product was dissolved in CH2Cl2/pentane and, upon slow evaporation,
both 1trans and 1cis crystallized, with the former giving orange to red, heavily intergrown
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needles and the latter giving intensely yellow plates suitable for XRD analysis. Most
of the substance crystallized in the cis form. Small quantities of both isomers could be
separated manually. The mixture obtained after the column chromatography still contained
a minor side product that could be observed by means of NMR spectroscopy. Therefore,
while it is not possible to give exact yields of 1trans and 1cis, the combined overall yield
of about 70% can be estimated based on NMR spectroscopy. Few crystals of cis-trans-
[Pt3Cl6{Te(CH2)6}4]·11/4CH2Cl2 (2·11/4CH2Cl2) could also be isolated from the crystalline
product mixture due to their different crystal habit. The compound was identified using
X-ray diffraction.

cis-[PtCl2{Te(CH2)6}2] (1cis): yellow plates, Rf = 0.25, m.p.: beginning brown coloration
at ~140 ◦C, melting at ~180 ◦C accompanied by quick decomposition, MS: 690 u/e (M+),
EA: calcd. C 35.61% H 2.13% N 5.93% Cl 15.02% found C 35.88% H 2.13%, N 6.14% Cl
15.34%. NMR (CDCl3): δTe = 352 ppm, 1JTePt = 979 Hz; δPt = −4240 ppm.

trans-[PtCl2{Te(CH2)6}2] (1trans): orange to red interwoven needles, Rf = 0.89, m.p.:
decomposition at ~150 ◦C under black coloration, MS: 690 u/e (M+). NMR (CDCl3):
δTe = 399 ppm, 1JTePt = 506 Hz; δPt = −3682 ppm.

The reaction was also repeated by using 33.9 mg (0.160 mmol) of Te(CH2)6 and 75.5 mg
(0.160 mmol) of cis-[PtCl2(NCPh)2] in 20 mL of dichloromethane. The reaction progressed
in an analogous manner to a 2:1 reaction with 1cis and 1trans as main products. In addition,
the presence of starting materials was observed in the reaction mixture. A few well-shaped
red crystals were formed in the NMR tube. They were identified through single-crystal X-
ray diffraction as cis-trans-[Pt4Cl8{Te(CH2)6}4]·4CDCl3 (3·4CDCl3) (3). In order to increase
the solubility of the solid material, the recrystallization from dimethyl sulfoxide was
attempted. After the NMR measurement in d6-dimethyl sulfoxide, pale yellow, almost
colorless crystals were formed that, upon the crystal structure determination, proved to
be [PtCl2{S(O)(CD3)2}{Te(CH2)6}] (4). NMR (d6-DMSO): δTe = 490 ppm, 1JTePt = 1052 Hz;
δPt = −3830 ppm.

4. Conclusions

The coordination of Te(CH2)6 to the Pt(II) center was examined through the reaction
of Te(CH2)6 with [PtCl2(NCPh)2] (2:1) in dichloromethane. The initial objective was to
obtain information about the molecular structure of the Te(CH2)6 as a ligand in the complex,
because the free compound is a thermally unstable and light-sensitive liquid with a low
melting point. The main products in the reaction were cis- and trans-[PtCl2{Te(CH2)6}2].
In dichloromethane, the isomers exist as a mixture, but upon crystallization, the cis iso-
mer seems to be the dominant species in the solid state. It is likely that in non-polar
solvents, the more polar cis-isomer is less soluble than the trans-isomer. The molecu-
lar structures of cis-[PtCl2{Te(CH2)6}] and the trinuclear and tetranuclear by-products
cis-trans-[Pt3Cl6{Te(CH2)6}4] and cis-trans-[Pt4Cl8{Te(CH2)6}4] were determined using X-
ray diffraction. These polynuclear complexes show the simultaneous presence of both
cis-Cl and trans-Cl isomers. The secondary bonding interactions involving the Te· · ·Cl
chalcogen bonds and Pt· · ·Pt metallophilic interactions were explored through the use of
PBE0-D3/def2-TZVP calculations and discussed using the QTAIM analysis. It turned out
that in all complexes, the discrete Pt· · ·Pt interaction is stronger than any single Te· · ·Cl
contact. The total strength of the four Te· · ·Cl interactions in each solid lattice is, however,
comparable to that of the single Pt· · ·Pt interaction.

Cis-trans-[Pt3Cl6{Te(CH2)6}4] is formed in the 1:2 reaction of cis-[PtCl2(NCPh)2] with
Te(CH2)6, and cis-trans-[Pt4Cl8{Te(CH2)6}4] is obtained from the 1:1 reaction. While the
overall energetics is favorable to the formation of both complexes, only a few crystals of
2·11/4CH2Cl2 were obtained upon crystallization from dichloromethane/pentane. 3·4CDCl3
crystallized on the walls of the NMR tube after the recording of the spectra in both
cases. Since the equilibrium composition in dichloromethane contains, ca., 70% of cis-
[PtCl2{Te(CH2)6}2] and 30% of trans-[PtCl2{Te(CH2)6}2], the latter is the limiting reactant to
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the formation of tri- and tetranuclear complexes. A significantly larger excess of the cis-
[PtCl2(NCPh)2] reagent might improve their yields, but that is the subject for a future study.

In an attempt to improve the yields of cis-trans-[Pt3Cl6{Te(CH2)6}4] and cis-trans-
[Pt4Cl8{Te(CH2)6}4], crystallization experiments were performed using dimethyl sulfoxide.
This led to the formation of [PtCl2{S(O)(CD3)2}{Te(CH2)}] that could be characterized using
X-ray diffraction and NMR spectroscopy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28227551/s1, Figure S1. 1H NMR spectra of the mixture
of cis- and trans-[PtCl2{Te(CH2)6}2] (a) 30 s and (b) 1.2 h after the dissolution of the mixture of cis-
[PtCl2{Te(CH2)6}2]. Figure S2. Fluxionality of the Te(CH2)6 ligand in cis- and trans-[PtCl2{Te(CH2)6}2].
Figure S3. (a) The 125Te{1H} and (b) the 195Pt{1H} NMR spectra of the reaction mixture of cis-
[PtCl2(NCPh)2] and Te(CH2)6 after solidification but prior to manual separation of the crystals.
Figure S4. The Pt· · ·Pt interactions lead the square-planar coordination planes to become concave in
1cis, 2, and 3. Table S1. Crystal data and refinement details for the X-ray structure determinations
of cis-[PtCl2{Te(CH2)6}2] (1cis), cis-trans-[Pt3Cl6{Te(CH2)6}4]·11/4CH2Cl2 (2·11/4CH2Cl2), cis-trans-
[Pt4Cl8{Te(CH2)6}4]·4CDCl3 (3·4CDCl3), and [PtCl2{S(O)(CD3)2}{Te(CH2)6}] (4). Table S2. Selected
bond lengths (Å) and angles (◦) of cis-trans-[Pt3Cl6{Te(CH2)6}4]·11/4CH2Cl2 (2·11/4CH2Cl2) and cis-
trans-[Pt4Cl8{Te(CH2)6}4]·4CDCl3 (3·4CDCl3). Table S3. Atomic coordinates (Å) of the PBE0-D3/def2-
TZVP optimized species discussed in this contribution. Table S4. PBE0-D3/def2-TZVP optimized
geometries of the [PtnCl2n{Te(CH2)6}m] (n = 1–4; m = 2–4). Table S5. Total energies of optimized
species at PBE0-D3/def2-TZVP level of theory in vacuum (Hartree). Table S6. Total energies of
optimized species at PBE0-D3/def2-TZVP level of theory in dichloromethane (Hartree). Table S7.
Gibbs PBE0-D3/def2-TZVP formation energies of 1cis, 1trans, 2, and 3 from cis-[PtCl2(NCPh)2] and
Te(CH2)6 in dichloromethane (kJ mol–1). CCDC Deposition Numbers 2298160–2298162 and 2301073
contain the supplementary crystallographic data for this paper. These data are provided free of charge
by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access
Structure service www.ccdc.cam.ac.uk/structures.
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Abstract: This work reports the one-pot synthesis of sterically demanding aniline derivatives from
aryllithium species utilising trimethylsilyl azide to introduce amine functionalities and conversions
to new examples of a common N,N′-chelating ligand system. The reaction of TripLi (Trip = 2,4,6-iPr3-
C6H2) with trimethylsilyl azide afforded the silyltriazene TripN2N(SiMe3)2 in situ, which readily
reacts with methanol under dinitrogen elimination to the aniline TripNH2 in good yield. The reaction
pathways and by-products of the system have been studied. The extension of this reaction to a much
more sterically demanding terphenyl system suggested that TerLi (Ter = 2,6-Trip2-C6H3) slowly
reacted with trimethylsilyl azide to form a silyl(terphenyl)triazenide lithium complex in situ, predom-
inantly underwent nitrogen loss to TerN(SiMe3)Li in parallel, which afforded TerN(SiMe3)H after
workup, and can be deprotected under acidic conditions to form the aniline TerNH2. TripNH2 was
furthermore converted to the sterically demanding β-diketimines RTripnacnacH (=HC{RCN(Trip)}2H),
with R = Me, Et and iPr, in one-pot procedures from the corresponding 1,3-diketones. The bulkiest
proligand was employed to synthesise the magnesium hydride complex [{(iPrTripnacnac)MgH}2],
which shows a distorted dimeric structure caused by the substituents of the sterically demanding
ligand moieties.

Keywords: aniline synthesis; azides; β-diketiminates; magnesium hydride; metal-halogen exchange;
organolithium reagents; sterically demanding N-ligands; terphenyl ligands; triazenes

1. Introduction

Sterically demanding N-ligands [1–6] have been driving advances in numerous areas
of chemical research. In main group chemistry, for example, the introduction of sterically
demanding N-ligands and related species has led to the discovery of compound classes
with low coordination numbers in a variety of oxidation states, which stabilised molecular
entities in unusual bonding modes that were found to show unique properties and novel
reactivities [7–9]. In addition to effects on compound properties and reactivity instilled
by the ligand class attached to central elements, steric effects have a strong influence on
compound properties, including on coordination numbers and allowing or preventing
certain reaction pathways. The interplay of steric demand, including considerations of
repulsion from sheer size and ligand shape [10,11], and attractive effects between ligands,
substituents, and central elements from London dispersion forces [12–14], paints a more
complex picture of the effects bulky ligands have on various compound classes. As such,
surprising effects on the chemistry of unusual compound classes stabilised by sterically
demanding ligands have often been discovered by exploratory investigation of the sterics
and electronics of their ligands. For example, in magnesium β-diketiminate chemistry,
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which is of relevance here, relatively small changes in ligand sterics have led to signifi-
cantly different product outcomes for magnesium hydride [15,16] and low oxidation state
magnesium [17–19] chemistry.

The introduction of new sterically demanding ligands bearing different substituents
to the chemistry of the elements led to novel classes of compounds [7] that, for the bulkiest
systems, show coordination numbers down to one. In selected cases, these have displayed
unique structures, bonding modes, and reactivities, for example in Al [20], Ge [21], P [22],
Sb [23] and Bi [24] species, but the steric bulk can also pose significant new challenges for
the syntheses of these new (pro)ligand entities. Due to the increased steric demand in these
ligands, common synthetic techniques may prove less applicable to the task, or suitable,
convenient starting materials are not readily commercially available. Thus, facile synthetic
techniques are required to expand our toolset to access new ligands. Here, we explore
the conversion of bulky aryl halides to reactive organolithium compounds, their further
transformation to aniline derivatives, the synthesis to a common proligand class, and an
example metal complex.

2. Results and Discussion

The aim of the first part of the study was to find a convenient one-pot procedure that
would allow the synthesis of substituted anilines [25–28] from aryl lithium compounds
with techniques and methods suitable for, and familiar to, the synthetic inorganic and
organometallic communities. Many methods for electrophilic amination reactions have
been developed [29–34], including some to selectively prepare primary amines, but many
also show some drawbacks or limitations, and an important consideration for the work
described herein was that it could be applied to highly sterically demanding systems. Other
synthetic routes to sterically demanding anilines have been successfully developed, but
these require either multi-step protocols and/or high pressure set-ups [35–38] or modify
the substituents via palladium-catalysed cross-coupling reactions [39]. For this study we
decided on using the 2,4,6-triisopropylphenyl substituent, Trip, due to the commercial
availability of starting materials, rarer use of the respective aniline compared with the
ubiquitous Dip (2,6-diisopropylphenyl) congener, and the use of isopropyl substituents as
suitable groups for 1H NMR spectroscopic investigations.

2.1. Lithiation of TripBr

In order to devise a convenient aniline synthesis via an organometallic route, the
first consideration was to revisit the generation of TripLi 1 from commercially available
TripBr 2. Some crystallographically characterised TripLi species [40,41] are known, and are
prepared using metal-halogen exchange [42,43], with n-butyllithium as the lithiating agent.
The metal-halogen exchange reaction is an equilibrium system [44] that forms a stabilised
mixture, and the thermodynamics and kinetics are influenced by solvent effects [45–47],
and the steric and electronic nature of the substituents [48,49]. Furthermore, side reactions
such as C–C coupling [50] and ether cleavage [51] can lead to consumption of lithium
reagent and substrate, potentially hampering efficient conversion to the desired product. In
addition, we envisaged that further conversions of in situ generated aryllithium species for
the synthesis of sterically demanding systems might require harsher conditions for onward
reactivity. As such, we were interested in a quite robust lithiation protocol that can tolerate
non-cryogenic conditions, e.g., room temperature, at least for onward reactivity, and would
also work for electron-rich aryl substituents. To briefly test and ensure sufficient in situ
lithiation for further conversions, TripBr 2 was treated with 1.05 equivalents of nBuLi under
varying conditions and the mixture was hydrolysed and the product ratio was analysed
by 1H NMR spectroscopy, see Scheme 1 and Table 1. The relative percentages of the main
products TripBr 2, i.e., unreacted starting material, TripH 3 as a proxy for hydrolysed
TripLi 1, and the coupled product TripnBu 4 were added to 100% and represent the main
products. Traces of TripOH 5, likely from the reaction of TripLi 1 with trace amounts of
air, for example, formed during the quenching process, were also present in some samples.
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Inspecting the lithiation results summarised in Table 1, diethyl ether (entry 1) as a donor
led to insufficient conversion. Using only one or a half equivalent of the more powerful
donor solvent THF per Li centre (entries 2 and 3) afforded poor conversion of TripBr 2.
More THF per Li as a donor (2–5 equivalents, entries 4–7) provided good conversion of
2 to 1, by implication, but also saw increasing quantities of TripnBu 4 formed from direct
C–C coupling [50]. The latter issue could be suppressed by cooling the reaction solution
to −20 ◦C (entry 8), which decreased the coupling to TripnBu 4 and was beneficial for the
lithiation of TripBr 2, possibly due to forming more reactive lower aggregates for entropic
reasons [52] and/or less ether cleavage [51]. To test how competitive ether cleavage is
under the conditions, the experiment for entry 7 (Table 1) was repeated, but the nBuLi was
added to the solvent mixture and left for 30 min at room temperature before TripBr 2 was
added and reacted for 30 min before hydrolysis and analysis (entry 9). This experiment
provided significant unreacted 2 likely because some nBuLi degraded via ether cleavage
under these conditions. This highlights that ether cleavage is a significant issue even for
relatively low THF concentrations and suggests that these issues are remedied at the lower
temperature used in the conditions of entry 8. Going forward, the conditions for entry 8
were used in subsequent sections.

Scheme 1. Lithiation of TripBr 2.

Table 1. Lithiation study of TripBr 2.

Entry Donor, Equiv. per Li a Temperature, T TripBr 2 TripH 3
(c.f. TripLi 1) TripnBu 4

1 Et2O, 17:1 r.t. 41.5 58.5 ~0
2 THF, 0.5:1 r.t. 92.2 7.8 ~0
3 THF, 1:1 r.t. 68.0 32.0 ~0
4 THF, 2:1 r.t. 23.2 74.8 2.0
5 THF, 3:1 r.t. 12.9 83.3 3.8
6 THF, 4:1 r.t. 9.8 84.7 5.4
7 THF, 5:1 r.t. 6.6 85.7 7.7
8 THF, 5:1 −20 ◦C trace >97 trace
9 THF, 5:1 (+nBuLi first) b r.t. 36.1 61.8 2.1

a 1.05 equivalents of nBuLi solution were added dropwise to TripBr in n-hexane plus donor solvent as given
to afford a 0.395 M reaction solution, stirred for 30 min, then hydrolysed with water and the organic residues
were analysed by 1H NMR spectroscopy (CDCl3), reporting the percentages of the products 2, 3 and 4 from their
relative ratios. The experiments were conducted with the same reagent concentrations as single experiments only
to allow for a brief study to find favourable conditions. Estimated error +/− 1–2%. In addition, trace amount
of TripOH, presumably from traces of oxygen were present in some samples. b nBuLi was first reacted with the
solvent mixture for 30 min before TripBr was added and the experiment continued.

An alternative to using nBuLi is the direct reaction of TripBr 2 with lithium metal in
diethyl ether for one hour under reflux to TripLi 1, see Scheme 2, which is straightforward
and afforded a good overall yield after in situ conversion to the desired aniline product,
vide infra.

Scheme 2. Lithiation of TripBr 2.
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2.2. Reaction of TripLi 1 with TMSN3

Reactions of organometallic compounds and organic azides [29,53–56] can form tri-
azenes [57], including sterically demanding triazenides [58,59]. In the past, the group of N.
Wiberg has studied reactions of s-block organometallics with silylazides and the synthesis
and properties of silyltriazenes [60–67]. Subsequently, reactions of specialised organic
azides with Grignard or organolithium reagents have been utilised as NH2

+ synthons
to successfully afford amines or anilines that show various advantages and limitations.
Trimethylsilylmethyl azide [68–70] and azidomethyl phenyl sulfide [71–73] have been
shown to be effective in reactions with Grignard reagents, which can be challenging to
form for electron-rich substrates [74], but these azide systems struggle when reacted with
organolithium reagents. Diphenylphosphoryl azide affords satisfactory to good yields with
either of these classes of organometallic reagents but is more expensive and requires harsh
hydrolysis conditions [75]. Vinyl or allyl azides have shown high efficiency [76,77], but are
not commercially available and are likely more hazardous to handle [53]. To introduce an
alternative that uses a commercially available and relatively stable azide, we proposed that
the reaction between an organolithium species, and by implication other electropositive
organometallics, and a silylazide would lead to a silyl(organo)triazenide lithium complex,
which could be easily worked up to a primary amine in a one-pot procedure. Nucleophilic
attack of an organometallic substituent on the (outer) azide nitrogen atom also seemed like
a procedure that could be facile even for highly sterically demanding systems, as suggested
by the syntheses of bulky triazenides [58,59] and terphenyl azide compounds [78–80].
Although syntheses for TripNH2 6 are known [81–85], most involve the synthesis and
reduction of TripNO2, which has some drawbacks such as expensive and/or hazardous
reagents, multi-step protocols, and relies on the accessibility of the nitro derivative.

Initially, the reaction of TripLi 1, prepared according to either Scheme 1 or Scheme 2,
with one equivalent of trimethylsilyl azide (azidotrimethylsilane, Me3SiN3) at room temper-
ature proceeded rapidly. We found that simple quenching with (wet) methanol provided
rapid gas formation, and crude TripNH2 6 was obtained after workup—an observation that
was in line with our expectation of a pathway via an intermediate silyl(organo)triazenide
lithium complex, complex 7 in Scheme 3 (grey arrow). The yield of TripNH2 6, however,
did not significantly exceed 40%, and large quantities of TripH 3 were obtained alongside 6,
independent of reaction times. Furthermore, an insoluble precipitate formed during the
reaction. Adding further Me3SiN3, however, increased the yield of TripNH2 6, and the
consistently formed insoluble by-product precipitated from the reaction mixture early on.
The latter was identified as LiN3 via its properties, NMR, and IR spectroscopic studies,
and suggests that further silylation of 7 with Me3SiN3 occurs, i.e., the azide is acting as
a pseudohalide, resulting in the formation of disilyl(organo)triazene TripN2N(SiMe3)2 8.
Evidence for the formation of 8 comes from an NMR spectroscopic study that shows an
intermediate with two chemically identical SiMe3 groups by integration and a 15N NMR
resonance [86,87] detected via a 2D 1H-15N HMBC NMR experiment of a silyl-bound nitro-
gen atom at δ 187 ppm in deuterated benzene. Derivatives of 8, such as PhN2N(SiMe3)2,
have been obtained by Wiberg previously, and some of these products decomposed with
dinitrogen elimination [64]. Treating 8 with methanol gave rapid gas evolution and afforded
TripNH2 6. Reactions performed on a larger scale also afforded small and varying quantities
of TripN(SiMe3)2 9, which could be structurally characterised (Figure 1), alongside the main
product TripNH2 6. Compound 9 is typically present in low percentages as a by-product
from these reactions, and it is likely that during the synthesis, some TripN2N(SiMe3)2
8 decomposes and loses dinitrogen to form TripN(SiMe3)2 9 (Scheme 3). In contrast to 8, a
15N NMR resonance of δ 43 ppm (in CDCl3, via a 2D 1H/15N HMBC NMR experiment)
was found for TripN(SiMe3)2 9. As expected, the nitrogen centre in 9 is planar (sum of
angles: ca. 360◦) in its molecular structure (Figure 1), c.f. the structure of N(SiMe3)3 [88],
and the metrical features are as expected.
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Scheme 3. Reactions of TripLi 1 with Me3SiN3.

Figure 1. Molecular structure of TripN(SiMe3)2 9, 30% thermal ellipsoids. Hydrogen atoms omitted.
Selected bond lengths (Å) and angles (◦): Si1–N1 1.7497(19), Si2–N1 1.7554(19), N1–C1 1.450(3);
Si1–N1–Si2 123.82(10), C1–N1–Si1 120.42(14), C1–N1–Si2 115.75(14).

A simple aqueous workup of the reaction mixtures afforded crude TripNH2 6 in
good, isolated yields. The crude product can be dried under vacuum, removing some
volatile by-products, which would include small molecules from ether cleavage and could
include smaller amines (e.g., nBuNH2, b.p. ca. 78 ◦C) from side reactions. This leaves
predominantly TripNH2 6 as the main product, but also the possible high-boiling by-
products TripBr 2 from insufficient lithiation, TripH 3 from protonolysis, TripnBu 4 from
C–C coupling, TripOH 5 from oxidation and TripN(SiMe3)2 9 from loss of dinitrogen of
the intermediate 8. Gratifyingly, none of the Trip-containing by-products readily reacted
with acids and the crude product could be treated with aqueous HCl and petroleum
ether or hexane as a two-phase system to afford solid TripNH3

+Cl− 10 (as a hydrate) for
purification that could be further washed with petroleum ether or hexane. Treatment with
bases regenerated purer TripNH2 6. Isolated yields of TripNH2 6 after this purification from
TripBr were 86% (typically ca. 75–86%) via the nBuLi route, and 81% via the Li metal route.
In addition, the compound can also be purified by column chromatography on alumina
with petroleum ether/dichloromethane.

2.3. Extension to a Sterically Demanding Terphenyl System

To study if the above method can be conveniently transferred to another, more ster-
ically demanding ligand system, we investigated the terphenyl substituent 2,6-bis(2,4,6-
triisopropylphenyl)phenyl, Ter, in this reaction [78,80,89]. Initially, TerLi(OEt2) 11(OEt2)
was prepared from TerI 12 and nBuLi [89] to study its reaction with Me3SiN3 on a small
scale by NMR spectroscopy. These experiments showed that the reaction is very slow and
that significant quantities of TerH 13 are formed alongside some N-containing main prod-
uct, later identified as a TerN(SiMe3)Li 14 derivative. A significant change in the reaction
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kinetics is not surprising when the steric demand of the system is changed dramatically. It
is proposed that the hydrogen on TerH 13 originated from Me3SiN3 during the reaction
and a brief study was undertaken to test the influence of donor solvent addition. When
TerLi(OEt2) 11(OEt2) was reacted with Me3SiN3 in deuterated benzene, after four days at
room temperature a ratio of TerH 13 to TerN(SiMe3)Li 14 of approximately 2:1 was obtained.
A reaction with additional five equivalents of the donor solvent diethyl ether under the
same conditions was slower (18 days) and the main product ratio changed to approximately
2:3 (13:14). Changing the donor solvent to THF (5 equivalents) provided an approximate
ratio of 1:4 after 7 days at room temperature and 8 h at 60 ◦C, showing that TerN(SiMe3)Li
14 can be afforded as the dominant product (also see Table S1). Other observations that
were made showed that, in contrast to the reaction with TripLi 1, only one equivalent of
Me3SiN3 was required in this bulkier system, and that before 14 forms, the main intermedi-
ate, presumed to be TerN2N(SiMe3)Li 15, the Ter-equivalent of compound 7 (Scheme 3), was
produced, see Scheme 4. Due to the very slow formation of TerN2N(SiMe3)Li 15 from the
starting materials, nitrogen loss from 15, yielding TerN(SiMe3)Li 14, becomes competitive
in parallel. Workup with (wet) methanol afforded TerN(SiMe3)H 16 from TerN(SiMe3)Li
14, whereas reaction mixtures with incomplete conversion and larger quantities of the
intermediate TerN2N(SiMe3)Li 15 afforded TerNH2 17 after workup, see Scheme 4 for a
summary of these pathways. Some evidence for this was obtained by 2D 1H-15N HMBC
NMR experiments in deuterated benzene where the 15N NMR signal of the Me3Si-bound
nitrogen centre could be measured and compared. These were found at δ 317 ppm for
the intermediate TerN2N(SiMe3)Li 15, δ 115 ppm for TerN(SiMe3)Li 14 and δ 67 ppm for
TerN(SiMe3)H 16 [76,77]. Furthermore, the reaction of TerN(SiMe3)Li 14 to TerN(SiMe3)H
16 was found to be reversible; treatment of 14 with an excess of methanol in an NMR tube
afforded 16, and this mixture could then treated be with an excess of solid MeLi to afford
14 again. So far, we found no evidence for further reaction of TerN2N(SiMe3)Li 15, with
Me3SiN3 to TerN2N(SiMe3)2 and LiN3 (Scheme 4), as was analogously observed for the
Trip system (Scheme 3). The molecular structures of TerN(SiMe3)H 16, shown in Figure 2,
and the solvate TerN(SiMe3)H·C6H6 16·C6H6, were determined and highlight the steric
demand around the N atom with a C–N–Si angle of ca. 130◦. The molecular structure
infers that in solution, the silyl methyl groups of 16 can reside above the flanking Trip-aryls
which is likely the reason for the upfield-shifted resonance for the protons of the SiMe3
group (δ −0.34 ppm).

Scheme 4. Reactions of TerLi 11 with Me3SiN3 at room temperature.
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Figure 2. Molecular structure of TerN(SiMe3)H 16, 30% thermal ellipsoids. Only the NH hydrogen
atom is shown. Selected bond lengths (Å) and angles (◦) for 16: Si1–N1 1.7439(10), N1–C1 1.4080(14);
C1–N1–Si1 129.12(7); metrical data for TerN(SiMe3)H·C6H6, 16·C6H6: Si1–N1 1.7423(12), N1–C1
1.4061(17); C1–N1–Si1 133.11(10).

On a preparative scale, TerI 12 was converted with nBuLi in an n-hexane and diethyl
ether mixture to crude TerLi(OEt2) 11(OEt2) and then reacted in situ with Me3SiN3 in
toluene and 10 equivalents of THF at 60 ◦C for 20 h, followed by workup with (wet)
methanol at 0 ◦C to afford TerN(SiMe3)H 16 in 60% isolated yield after recrystallisation
from diethyl ether. TerN(SiMe3)H 16 has been found to desilylate to TerNH2 17 when
treated with aqueous HCl, or slowly in wet chloroform or with silica gel.

2.4. Synthesis of RTripnacnacH Compounds

With the aniline TripNH2 6 in hand, we studied its conversion to β-diketimine
proligands [2] to progress towards β-diketiminate complexes. The three β-diketimines
RTripnacnacH, =HC{RCN(Trip)}2H, with R = Me (18), Et (19), and iPr (20), were prepared by
one-pot condensation reactions between TripNH2 6 and appropriate 1,3-diketones under
acidic conditions, followed by aqueous workup steps under basic conditions, see Scheme 5.
Previously, the tBuTripnacnacH ligand [83] was prepared via a multi-step route, and a selec-
tion of other sterically demanding MeArnacnacH proligands, where Ar represents a robust
substituent larger than Dip, have been reported in recent years [90–97].

Scheme 5. Synthesis of RTripnacnacH compounds 18–20.

The synthesis of MeTripnacnacH 18, generally followed an established protocol [98] and
afforded an isolated yield of 76%. β-Diketimines with an ethyl backbone, EtTripnacnacH 19
(66% yield), are not common, and we have modified an established procedure [98] used for
related ligands. The route to the isopropyl backbone-substituted iPrTripnacnacH 20 (67%
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yield) uses a protocol we have recently introduced preparing the related iPrDipnacnacH [99],
employing the powerful acidic dehydrating agent polyphosphoric acid trimethylsilylester,
PPSE [100,101].

The three proligands 18–20 were structurally characterised, see Figure 3, and show
the expected overall structure for this ligand class. The molecular structures of 18 and 19
each crystallised with a full molecule in the asymmetric unit and show some preference for
alternating long and short N–C/C–C bonds in the ligand backbone, and, accordingly, some
localisation of the NH hydrogen atom.

Figure 3. Molecular structures of MeTripnacnacH·C7H8 18·C7H8 (a), EtTripnacnacH 19 (b) and
iPrTripnacnacH 20 (c), 30% thermal ellipsoids. The toluene molecule in 18·C7H8 is omitted. Only
NH nitrogen atoms are shown including only one NH position for 20. Selected bond lengths (Å)
and angles (◦): 18·C7H8: N1–C2 1.341(3), C2–C3 1.383(3), C3–C4 1.424(3), N5–C4 1.315(3); C2–N1–
C6 123.8(2), C4–N5–C23 121.0(2), N1–C2–C3 121.3(2), C2–C3–C4 125.4(2), N5–C4–C3 121.0(2); 19:
N1–C2 1.346(3), C2–C3 1.372(3), C4–C3 1.428(3), N5–C4 1.305(3); C2–N1–C6 124.87(18), C4–N5–
C25 121.83(17), N1–C2–C3 121.5(2), C2–C3–C4 126.8(2), N5–C4–C3 120.06(19); 20: N1–C2–1.338(3),
C2–C3–1.392(3); N1–C2–C3 121.0(2), C2–N1–C4 122.7(2), C2–C3–C2′ 127.2(3).
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2.5. Synthesis and Characterization of [{(iPrTripnacnac)MgH}2] 21

To study the impact of the introduction of the Trip substituent to a β-diketiminate
system, we used the bulkiest proligand reported herein, iPrTripnacnacH 20, to prepare a
magnesium hydride complex [16,93,102] for comparison to other related molecules of the
type RArnacnacH [{(RArnacnac)MgH}2], where RArnacnac = {HC{RCN(Ar)} and R is typi-
cally an alkyl group and Ar is a sterically demanding aryl substituent. Using an established
protocol [103], iPrTripnacnacH 20 was treated with MgnBu2 in toluene to form the expected
intermediate complex [(iPrTripnacnac)MgnBu]. After removal of all volatiles, the oily residue
was taken up in n-hexane and reacted for two days at 60 ◦C with phenyl silane which
precipitated clean [{(iPrTripnacnac)MgH}2] 21 in 41% isolated yield (Scheme 6). Complex
21 could be recrystallised from hot benzene to form large colourless crystals that were
structurally characterised, see Figure 4. The complex crystallised as a dimeric system, as is
found for most other related complexes of the type [{(nacnac)MgH}2], with a comparable
steric bulk [15,93,103,104], although a few examples of the type [(nacnac)MgH] are known
with a monomeric solid state structure with a terminal hydride species and three-coordinate
Mg centre [18,91]. The least-square-planes of the two essentially planar β-diketiminate
magnesium chelate rings are rotated by approximately 47.6◦ relative to each other which
must be due to the to the alternating “interlocking” contact of the isopropyl groups of the
two ligand units which is visualised in the space-filling model in Figure 5, showing the hy-
drocarbyl units of both β-diketiminates in different colours. For comparison, β-diketiminate
magnesium chelate rings are approximately co-planar in [{(MeDipnacnac)MgH}2] [103], ap-
proximately orthogonal to each other in [{(tBuDipnacnac)MgH}2] [104] but show a similar
rotation in [{(MeDIPePnacnac)MgH}2] (DIPeP = 2,6-di(3-pentyl)phenyl) with ca. 42◦ [93]
between metal-ligand planes to accommodate the various bulky substituents on the ligands.
An analysis of the buried volume [11] for the Mg centre in 21 (Vburied = 53.5%) provided a
similar value compared to those for known structurally characterised [{(RDipnacnac)MgH}2]
complexes (Vburied = 51.1–56.3%), but hints at a more even distribution of the bulk around
the metal centre when compared to those of [{(RDipnacnac)MgH}2] as judged from inspec-
tion the distribution in the four quadrants (see Table S2 in the Supporting Information).

Scheme 6. Synthesis of [{(iPrTripnacnac)MgH}2] 21.

In solution, [{(iPrTripnacnac)MgH}2] 21 shows 1H NMR resonances for a symmetric
compound with a sharp singlet at δ 3.96 ppm for the magnesium hydride resonance in
the expected region. The room temperature 1H NMR spectrum shows one broad and two
sharp septets, and one broad and three sharp doublets for the isopropyl hydrogen atoms.
The broad septet and one broad doublet resonance are associated with one ortho isopropyl
group including one methyl group that likely experiences the steric influence from the
dimeric interlocked “geometry.” The broad plus one sharp doublet merge above 60 ◦C and
at 80 ◦C, three resolved septets and three doublets are observed.
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Figure 4. Molecular structures of [{(iPrTripnacnac)MgH}2] 21, 30% thermal ellipsoids. Only MgH
hydrogen atom are shown. Selected bond lengths (Å) and angles (◦): Mg1–N1 2.0796(12), Mg1–N5
2.0829(12), Mg1–H 2.029(13), Mg1′–H 2.029(13), Mg1–HA 1.979(14), Mg1···Mg1 2.9502(9), N1–C2
1.3341(18), C2–C3 1.3981(19), C3–C4 1.3987(19), N5–C4 1.3338(18); N1–Mg1–N5 94.40(5), C2–N1–C6
116.64, C4–N5–C27 116.73(11), N1–C2–C3 124.64(13), N5–C4–C3 124.40(13), C2–C3–C4 132.32(14).

Figure 5. Space-filling model (two views) showing some central atoms (Mg green, N blue, H grey)
and the hydrocarbyl groups from the two ligand units in two colours (lavender-purple, rusty orange)
showing the “interlocking” isopropyl substituents.

3. Conclusions

Sterically demanding aryllithium compounds can be converted with trimethylsilyl
azide to triazene-class intermediates in a one-pot reaction, installing a nitrogen atom at
the aryl group and forming aniline derivatives. For two different systems, one with a
bulky Trip (Scheme 3) substituent, and one with an extremely bulky terphenyl substituent
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(Scheme 4) slightly different (long-lived) intermediates were observed, but the general
reactivity is comparable but also influenced by the reaction kinetics resulting from the
steric demand of the substituents. An aryllithium can react with trimethylsilyl azide to
form silyl(aryl)triazenide lithium, which, for R = Trip, reacted with further trimethylsilyl
azide and converted to TripN2N(SiMe3)2 8. Upon workup with methanol and resulting in
dinitrogen formation, this afforded the aniline TripNH2 6 in good yield. For the bulkier
terphenyl system, the in situ generated silyl(aryl)triazenide lithium species did not react
with further trimethylsilyl azide. Instead, this lithiated species formed only slowly enough
that it (slowly) lost dinitrogen in parallel and predominantly formed TerN(SiMe3)H 16
in a one-pot synthesis after treatment with methanol. This silylated aniline derivative
is a promising sterically demanding amide proligand in its own right but can also be
readily desilylated with acids to afford TerNH2 17. This work shows the main types of
intermediates for two systems with highly different steric demands, and gives practical
considerations around their synthesis, optimisation, and workup, with the view that the
protocol can be easily extended to other substituents and organometallic species for the
synthesis of anilines, primary amines, and silylated derivatives. This includes optimised
conditions for metal-halogen exchange with n-butyllithium that supress side reactions
but allow conversions at relatively high temperatures. Furthermore, TripNH2 6 has been
further converted in acid-promoted one-pot condensation reactions to the sterically de-
manding proligands MeTripnacnacH 18, EtTripnacnacH 19, and iPrTripnacnacH 20, the latter of
which was converted to the magnesium hydride complex [{(iPrTripnacnac)MgH}2] 21. The
significant effects of the steric influence and dispersion forces of the 16 isopropyl groups in
21 will likely impact compound properties and future reactivity.

4. Materials and Methods
4.1. Experimental Details

All manipulations were carried out using standard Schlenk and glove box techniques
under an atmosphere of high purity argon or dinitrogen. Tetrahydrofuran, diethyl ether,
toluene and n-hexane were either dried and distilled under inert gas over LiAlH4 or
taken from an MBraun solvent purification system and degassed prior to use. 1H, 7Li,
13C{1H} and 1H-15N HMBC NMR spectra were recorded on a Bruker AVII 400, Bruker
AVIII 500, Bruker AVIII-HD 500 or Bruker AVIII-HD 700 spectrometer (Bruker, Billerica,
MA, USA) in deuterated benzene or chloroform and were referenced to the residual 1H
or 13C{1H} resonances of the solvent used, external LiCl in D2O, or external liquid NH3,
respectively. Abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet,
sext = sextet, sept = septet, br = broad, m = multiplet, e.g., brs, broad singlet; ad denotes
an apparent doublet. The IR spectrum was recorded on a neat solid using a Shimadzu
IRAfinity 1S IR spectrometer. Melting points were determined in air and are uncorrected. 1-
bromo-2,4,6-triisopropylbenzene (TripBr 2) was degassed and stored over molecular sieves
under inert atmosphere. Trimethylsilyl azide (azidotrimethylsilane) and phenylsilane
were degassed and stored under inert atmosphere. TerI 12 and TerLi(OEt2) 11(OEt2) were
prepared according to the literature [89]. All other compounds were used as received from
chemical suppliers.

CAUTION! Azides are potentially explosive and highly toxic substances, and all
manipulations must be carried out by trained workers. Trimethylsilyl azide is considered
relatively stable but must not be mixed with acids or water and certain other substances.
The aqueous layer during the workup steps below will, or can, contain lithium azide,
should be treated accordingly (e.g., collect as a dilute alkaline aqueous solution), and
should not be mixed with other waste. A reaction between ionic azides and halogenated
reagents and solvents, such as dichloromethane, must be avoided to prevent the formation
of explosive azides. The hazards and risks of procedures are dependent on scale. Use
suitable gloves when working with azides. Even though no issues were encountered during
the work, the use of a blast shield is strongly suggested [53,105,106].
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4.2. Syntheses and Formation of Trip Compounds (1–6, 9, 10)
4.2.1. General Procedure for the Optimisation of the Lithium-Bromide Exchange

A Schlenk flask was charged with TripBr 2 (1-bromo-2,4,6-triisopropylbenzene; 0.50 mL,
1.97 mmol), n-hexane and the amount of THF or diethyl ether to afford the desired solvent
ratio as shown in Table 1. The amount of solvent used for each reaction was determined
by calculating the total amount of donor solvent and n-hexane (accounting for hexanes
from nBuLi solution) needed to make a 0.395 M solution of TripBr 2 with the desired donor
solvent to Li centre ratio. For an example involving 5 eq. of THF per Li see Section 4.2.2.
The reaction mixture was brought to the required temperature and nBuLi (1.30 mL, 1.6 M

solution in hexanes, 1.05 eq.) was added dropwise. The reaction mixture was stirred
for 30 min and quenched with H2O (ca. 5 mL). All volatiles were removed in vacuo,
dichloromethane (ca. 10 mL) and water (ca. 10 mL) were added, and the organic layer was
separated. All volatiles were removed in vacuo affording a crude oil that was analysed
with 1H NMR spectroscopy in CDCl3. Since TripBr 2, TripH 3 and TripnBu 4 (plus an
occasional minor quantity of TripOH 5 from O2 capture) are the only Trip-containing
products observed, the conversion was calculated directly from the ratio of their aromatic
protons, and their sum was assumed as 100% for a qualitative analysis of the lithiation
(Table 1).

4.2.2. Synthesis of TripNH2 6

Method 1: A Schlenk flask was charged with TripBr 2 (4.00 mL, 15.79 mmol), n-hexane
(22.2 mL) and THF (7 mL, ca. 5 THF per Li). The reaction mixture was cooled to −20 ◦C
using a cold bath and nBuLi (10.8 mL, 1.6 M solution in hexanes, 1.09 eq.) was added
dropwise over approximately two minutes. The reaction mixture was stirred for 30 min
at −20 ◦C and was then placed into a room temperature water bath. After a period of
1–2 min, Me3SiN3 (4.80 mL, 36.5 mmol, 2.31 eq.) was added dropwise and the reaction
mixture was stirred for a further 30 min. A white precipitate of LiN3 was formed during
that period. The reaction mixture was placed in an ice-water bath (0 ◦C), the stopper of the
flask was removed under a gentle flow of inert gas, and subsequently, methanol (10 mL)
was added slowly added over a period of 5 min under vigorous gas evolution. Stirring
of the mixture was continued until all gas evolution ceased, after which all volatiles were
removed in vacuo and the crude product was redissolved in methanol (10 mL) to ensure
complete conversion to aniline 6. After standing for 10 min, all volatiles were removed in
vacuo, and DCM (ca. 30 mL) and water (ca. 30 mL) were added, and organic layer was
separated. [Note: Be aware that the aqueous layer contains dissolved LiN3. Ensure that
Me3SiN3 has reacted and is largely consumed in the procedure; if unsure, use an alkaline
solution for carefully quenching of the reaction mixture to ensure no significant quantities
of HN3, are produced.] Removal of all volatiles in vacuo afforded crude TripNH2 6 as a
yellow-orange oil which may be sufficiently pure for some applications.

Purification: Various methods of purification could be used (e.g., column chromatogra-
phy using alumina (90), eluent: petroleum ether (40–60 ◦C) followed by dichloromethane),
however, a batch scale purification method via conversion to an anilinium chloride,
TripNH3

+Cl− 10 was found to work best. Conc. aq. HCl (ca. 37%, 12 mL) and petroleum
ether (40–60 ◦C fraction, 10 mL) were added, which produced an off-white precipitate of
TripNH3

+Cl− 10 as a hydrate. The resulting suspension was stirred for 10 min, after which
the solid (powder) was isolated by filtration and washed with petroleum ether (10 mL).
[Note: A small and varying quantity of TripN(SiMe3)2 9 was obtained in crystalline form
by evaporation of the petroleum ether filtrate.] The TripNH3

+Cl− 10 hydrate solid was
redissolved in dichloromethane (40 mL) and (saturated) aqueous Na2CO3 (50 mL) was
added, and the resulting mixture was stirred for 30 min. The organic layer was separated,
the solvent removed in vacuo, and the product was dried under vacuum and afforded
TripNH2 6 of sufficient purity. Yield: 2.98 g (86%).

Method 2: A Schlenk flask was charged with lithium granules (280 mg, 0.5% sodium,
4–10 mesh, 40.3 mmol, 2.55 eq.), CBr4 for activation (ca. 2–3 mg), diethyl ether (ca. 30 mL)
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and equipped with a reflux condenser and a nitrogen inlet. A solution of TripBr 2 (4.00 mL,
15.8 mmol) in diethyl ether (ca. 8 mL) was added in portions over 30 min to a stirring sus-
pension of lithium granules which initiated an exothermic reaction. After the addition has
been completed, the resulting mixture was refluxed for 60 min, cooled to room temperature,
allowed to settle, and filtered. To the filtrate, Me3SiN3 (4.80 mL, 36.5 mmol, 2.31 eq.) was
added dropwise at room temperature and the reaction mixture was stirred for a further
30 min. Workup with methanol and purification were carried out as described above in
Method 1. Yield: 2.82 g (81%). 1H NMR (499.9 MHz, CDCl3, 298 K) δ = 1.29 (d, JHH = 7.0 Hz,
6H, Ar-p-CH(CH3)2), 1.33 (d, JHH = 6.9 Hz, 12H, Ar-o-CH(CH3)2), 2.88 (sept, JHH = 6.9 Hz,
1H, Ar-p-CH(CH3)2), 2.99 (sept, JHH = 6.8 Hz, 2H, Ar-o-CH(CH3)2), 3.66 (brs, 2H, NH2),
6.96 (s, 2H, Ar-H).

4.2.3. Data for LiN3

The compound is formed during the synthesis of TripNH2 6 and could be isolated
directly from the reaction mixture by filtration. The solid also showed a positive flame
test for Br suggesting minor LiBr contamination from the reaction mixture. 7Li NMR
(155.5 MHz, D2O, 294 K) δ = −0.10 (s, LiN3). IR (ATR), v~/cm−1: 2127 (s).

4.2.4. Data for TripN2N(SiMe3)2 8

Solid TripLi 1 was obtained by performing a lithiation of TripBr as descried for the
synthesis of 6 above, via Method 2, and storing the concentrated diethyl ether solution at
−40 ◦C. After isolation and briefly drying under vacuum, the obtained crystalline material
showed approximately 45% TripLi by weight (with the rest assumed to be 1H NMR-silent
LiBr as judged by integration against an internal standard). TripLi (ca. 3.3 mg, 15.7 µmol)
was dissolved in C6D6 (0.5 mL) in a J. Young’s NMR tube and Me3SiN3 (4.6 µL, 35 µmol,
ca. 2.23 eq.) was added at 20 ◦C. Analysis by 1H NMR spectroscopy showed immediate
consumption of TripLi 1 and formation of 8. 1H NMR (700.1 MHz, C6D6, 295 K) δ = 0.34
(s, 18H, Si(CH3)3), 1.26 (d, JHH = 6.9 Hz, 6H, Ar-p-CH(CH3)2), 1.28 (d, JHH = 7.0 Hz, 12H,
Ar-o-CH(CH3)2), 2.83 (sept, JHH = 7.0 Hz, 1H, Ar-p-CH(CH3)2), 3.21 (sept, JHH = 6.9 Hz,
2H, Ar-o-CH(CH3)2), 7.15 (s, 2H, Ar-H). 13C{1H} NMR (176.0 MHz, C6D6, 295 K) δ = 2.0
(Si(CH3)3), 24.2 (Ar-o-CH(CH3)2), 24.5 (Ar-p-CH(CH3)2), 28.3 (Ar-o-CH(CH3)2), 34.8 (Ar-
p-CH(CH3)2), 121.4 (Ar-C), 140.9 (Ar-C), 145.7 (Ar-C), 146.6 (Ar-C). 1H-15N HMBS NMR
(700.1/70.9 MHz, C6D6, 295 K) δ ≈ 187 (TripN2N(SiMe3)2).

4.2.5. Data for TripN(SiMe3)2 9

The compound was occasionally isolated during the purification of TripNH2 6 as
described above, especially when the reaction was carried out on a multigram scale
(>30 mmol). It remains unclear what factors favour its formation, as preliminary ex-
periments with altered stoichiometry or prolonged reaction time have shown no clear
pattern, although heat appears to favour dinitrogen elimination. The compound sublimes
at ca. 50 ◦C (ca. 0.05 mbar) affording colourless crystals that were suitable for X-ray
crystallographic analysis. 1H NMR (700.1 MHz, CDCl3, 295 K) δ = 0.06 (s, 18H, Si(CH3)3),
1.17 (d, JHH = 6.9 Hz, 12H, Ar-o-CH(CH3)2), 1.21 (d, JHH = 6.9 Hz, 6H, Ar-p-CH(CH3)2),
2.82 (sept, JHH = 6.9 Hz, 1H, Ar-p-CH(CH3)2), 3.41 (sept, JHH = 6.9 Hz, 2H, Ar-o-CH(CH3)2),
6.84 (s, 2H, Ar-H). 13C{1H} NMR (176.0 MHz, CDCl3, 295 K) δ = 2.7 (Si(CH3)3), 24.3 (Ar-
p-CH(CH3)2), 25.3 (Ar-o-CH(CH3)2), 27.6 (Ar-o-CH(CH3)2), 33.8 (Ar-p-CH(CH3)2), 121.4
(Ar-C), 140.5 (Ar-C), 144.1 (Ar-C), 146.2 (Ar-C). 1H NMR (700.1 MHz, C6D6, 295 K) δ = 0.16
(s, 18H, Si(CH3)3), 1.22 (d, JHH = 6.9 Hz, 6H, Ar-p-CH(CH3)2), 1.29 (d, JHH = 6.9 Hz, 12H,
Ar-o-CH(CH3)2), 2.79 (sept, JHH = 6.9 Hz, 1H, Ar-p-CH(CH3)2), 3.58 (sept, JHH = 6.9 Hz, 2H,
Ar-o-CH(CH3)2), 7.05 (s, 2H, Ar-H). 1H-15N HMBS NMR (700.1/70.9 MHz, C6D6, 295 K)
δ ≈ 43 (TripN(SiMe3)2).
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4.2.6. Data for TripNH3
+Cl−·1.75 H2O, 10·1.75 H2O

The compound was formed during the purification of TripNH2 6 as described above,
and the water content was estimated by integration of the 1H NMR spectrum. 1H NMR
(499.9 MHz, CDCl3, 298 K) δ = 1.24 (d, JHH = 6.9 Hz, 6H, Ar-p-CH(CH3)2), 1.30 (d,
JHH = 6.5 Hz, 12H, Ar-o-CH(CH3)2), 1.68 (brs, ca. 3.5H, H2O), 2.89 (sept, JHH = 6.9 Hz,
1H, Ar-p-CH(CH3)2), 3.70 (sept, JHH = 5.9 Hz, 2H, Ar-o-CH(CH3)2), 7.06 (s, 2H, Ar-H), 10.30
(brs, 3H, NH3). 13C{1H} NMR (125.7 MHz, CDCl3, 298 K) δ = 24.1 (Ar-p-CH(CH3)2), 24.4
(Ar-o-CH(CH3)2), 28.6 (Ar-o-CH(CH3)2), 34.3 (Ar-p-CH(CH3)2), 122.4 (Ar-C), 123.5 (Ar-C),
142.7 (Ar-C), 149.5 (Ar-C).

4.3. Syntheses and Formation of Ter Compounds (14–17)
4.3.1. TerN(SiMe3)Li 14

TerLi(OEt2) 11(OEt2) (9.5 mg, 16.9 µmol) was dissolved in C6D6 (0.5 mL) in a J. Young’s
NMR tube, after which THF (7.0 µL, 5.1 eq.) and Me3SiN3 (2.4 µL, 18 µmol, 1.07 eq.)
were added. The sample was heated for 24 h at 60 ◦C, after which analysis by 1H NMR
spectroscopy showed complete consumption of TerLi·Et2O 11(OEt2) and formation of
TerN(SiMe3)Li 14. Further context is described in the main text. 1H NMR (700.1 MHz,
C6D6, 295 K) δ = −0.18 (s, 9H, Si(CH3)3), 1.24 (d, JHH = 6.8 Hz, 12H, Trip-o-CH(CH3)2), 1.28
(d, JHH = 7.0 Hz, 12H, Trip-p-CH(CH3)2), 1.40 (d, JHH = 6.9 Hz, 12H, Trip-o-CH(CH3)2), 2.84
(sept, 2H, Trip-p-CH(CH3)2), 3.47 (m, 4H, Trip-o-CH(CH3)2), 6.87 (t, JHH = 7.3 Hz, 1H, p-
C6H3), 7.23 (d, JHH = 7.3 Hz, 2H, m-C6H3), 7.24 (s, 4H, m-Trip). 7Li NMR (155.5 MHz, C6D6)
δ = −0.81 (N(SiMe3)Li). 13C{1H} NMR (176.0 MHz, C6D6, 295 K) δ = 3.3 (Si(CH3)3), 23.8
(Trip-o-CH(CH3)2), 24.4 (Trip-p-CH(CH3)2), 26.4 (Trip-o-CH(CH3)2), 30.5 (Trip-o-CH(CH3)2),
34.7 (Trip-p-CH(CH3)2), 112.9 (Ar-C), 121.7 (Ar-C), 131.4 (Ar-C), 132.9 (Ar-C), 140.9 (Ar-C),
147.6 (Ar-C), 148.4 (Ar-C), 159.0 (Ar-C). 1H-15N HMBS NMR (700.1/70.9 MHz, C6D6, 295 K)
δ ≈ 115 (TerN(SiMe3)Li).

4.3.2. Partial NMR Data for TerN2N(SiMe3)Li 15

Compound TerN2N(SiMe3)Li 15 is formed as an intermediate during the reaction
between TerLi(OEt2) 11(OEt2) and Me3SiN3 in C6D6 with or without additional donor
solvents. It was observed using 1H NMR spectroscopy by tracking the apparent triplet
at 6.98 ppm (p-C6H3), doublet at 7.12 ppm (m-C6H3) and a singlet at 0.03 ppm (Si(CH3)3).
1H-15N HMBS NMR (700.1/70.9 MHz, C6D6, 295 K) δ ≈ 317 (TerN2N(SiMe3)Li).

4.3.3. Partial NMR Data for TerH

TerH is formed as a by-product during the reaction between TerLi(OEt2) 11(OEt2) and
Me3SiN3 in C6D6 with or without the addition of donor solvents. It was observed using 1H
NMR spectroscopy by tracking the singlet at 7.21 ppm (m-Trip).

4.3.4. Synthesis of TerN(SiMe3)H 16

A Schlenk flask was charged with TerI 12 (1.00 g, 1.64 mmol), n-hexane (ca. 25 mL)
and Et2O (ca. 10 mL). The reaction mixture was cooled to −50 ◦C using a cold bath and
nBuLi (1.03 mL, 1.6 M solution in hexanes, ca. 1 eq.) was added dropwise. The reaction
mixture was allowed to slowly warm to room temperature and stirred for an additional 2 h.
All volatiles were removed in vacuo affording a white powder which was extensively dried
for 1h, after which toluene (ca. 20 mL), THF (1.34 mL, 10 eq.) and Me3SiN3 (0.30 mL, 2.28
mmol, 1.4 eq.) were added. The resulting mixture was heated for 20 h to 60 ◦C, after which
it was placed in an ice bath and methanol (10 mL) was added slowly over a period of 5 min,
after which all volatiles were removed in vacuo. Dichloromethane (ca. 20 mL) and water
(ca. 20 mL) were added, and organic layer was separated. Removal of volatiles in vacuo
afforded crude product as a white solid, which was purified by recrystallisation from cold
(room temperature to −40 ◦C) diethyl ether and afforded as two crops. Crystals suitable for
X-ray crystallographic analysis were obtained upon storage of concentrated diethyl ether
solution at 6 ◦C. Yield = 0.56 g (60%). 1H NMR (700.1 MHz, C6D6, 295 K) δ = −0.34 (s, 9H,
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Si(CH3)3), 1.16 (d, JHH = 6.8 Hz, 12H, Trip-o-CH(CH3)2), 1.29 (d, JHH = 7.0 Hz, 12H, Trip-
p-CH(CH3)2), 1.38 (d, JHH = 6.9 Hz, 12H, Trip-o-CH(CH3)2), 2.87 (sept, JHH = 6.9 Hz, 2H,
Trip-p-CH(CH3)2), 3.06 (sept, JHH = 6.8 Hz, 4H, Trip-o-CH(CH3)2), 3.24 (s, 1H, N(SiMe3)H),
6.92 (t, JHH = 7.5 Hz, 1H, p-C6H3), 7.19 (d, JHH = 7.5 Hz, 2H, m-C6H3), 7.23 (s, 4H, m-Trip).
13C{1H} NMR (176.0 MHz, C6D6, 295 K) δ = 0.4 (Si(CH3)3), 23.8 (Trip-o-CH(CH3)2), 24.4
(Trip-p-CH(CH3)2), 26.2 (Trip-o-CH(CH3)2), 30.9 (Trip-o-CH(CH3)2), 34.9 (Trip-p-CH(CH3)2),
119.3 (Ar-C), 121.6 (Ar-C), 131.3 (Ar-C), 131.4 (Ar-C), 135.7 (Ar-C), 144.9 (Ar-C), 148.0 (Ar-C),
149.0 (Ar-C). 1H-15N HMBS NMR (700.1/70.9 MHz, C6D6, 295 K) δ ≈ 67 (TerN(SiMe3)H).

4.3.5. Deprotection of TerN(SiMe3)H 16: Synthesis of TerNH2 17

NMR scale experiments have shown that TerN(SiMe3)H 16 could be deprotected with
silica or by prolonged standing in wet CDCl3 to obtain the corresponding aniline TerNH2
17, a known compound [78]. On a large scale it is more convenient to deprotect 16 using
aqueous HCl. TerN(SiMe3)H 16 (120 mg, 0.20 mmol) was dissolved in diethyl ether (12 mL),
and conc. aq. HCl (37%, 0.5 mL) was added dropwise, and the resulting solution was
stirred at room temperature for 1 h, after which aqueous (saturated) Na2CO3 solution
(20 mL) was added, and the resulting mixture was stirred for 30 min. The organic layer
was separated, and the aqueous layer was extracted with dichloromethane (ca. 15 mL). The
organic fractions were combined, and the solvent was removed in vacuo, affording solid
TerNH2 17 which was isolated and dried under vacuum. (Note: an additional extraction
step with dichloromethane may be required if insoluble material is present, e.g., NaHCO3).
Yield = 90 mg (86%). 1H NMR (500.1 MHz, CDCl3, 295 K) δ = 1.10 (d, JHH = 6.9 Hz, 12H,
Trip-o-CH(CH3)2), 1.12 (d, JHH = 6.8 Hz, 12H, Trip-o-CH(CH3)2), 1.30 (d, JHH = 6.9 Hz, 12H,
Trip-p-CH(CH3)2), 2.75 (sept, JHH = 6.8 Hz, 4H, Trip-o-CH(CH3)2), 2.94 (sept, JHH = 6.9 Hz,
2H, Trip-p-CH(CH3)2), 3.14 (brs, 2H, NH2), 6.81 (t, JHH = 7.4 Hz, 1H, p-C6H3), 6.96 (d,
JHH = 7.4 Hz, 2H, m-C6H3), 7.08 (s, 4H, m-Trip).

4.4. Syntheses of RTripnacnacH Compounds 18–20

4.4.1. MeTripnacnacH 18

A round bottom flask was charged with pentane-2,4-dione (1.07 mL, 10.42 mmol,
1.0 equiv), para-toluenesulfonic acid monohydrate, pTsOH·H2O (2.18 g, 11.46 mmol, 1.10 eq.),
TripNH2 6 (4.81 g, 21.9 mmol, 2.10 eq.) and toluene (90 mL), and equipped with a Dean-
Stark trap and a reflux condenser. The flask was placed in an oil bath and the reaction
mixture was heated under reflux for 24 h to remove the water. Subsequently, most of the
solvent (ca. 85 mL) was distilled off via the Dean-Stark trap leaving a dark brown oily
residue. The oil was taken up in saturated aqueous Na2CO3 solution (ca. 100 mL) and
dichloromethane (ca. 100 mL) and stirred until two clear phases formed. The organic
layer was separated, and all volatiles were reduced in vacuo giving a dark viscous oil.
Addition of methanol (20 mL) results in almost immediate precipitation of MeTripnacnacH
18 as an off-white solid which is subsequently isolated by filtration and washed with
cold methanol (ca. 20 mL). Concentrating the supernatant solution to ca. 10 mL and
storing at −40 ◦C afforded additional colourless crystals of 6 that were suitable for X-ray
crystallographic analysis. Yield = 4.00 g (76%). M.p. 158–161 ◦C. 1H NMR (500.1 MHz,
CDCl3, 295 K) δ = 1.12 (d, JHH = 6.9 Hz, 12H, Ar-o-CH(CH3)2), 1.21 (d, JHH = 6.9 Hz, 12H,
Ar-o-CH(CH3)2), 1.25 (d, JHH = 6.9 Hz, 12H, Ar-p-CH(CH3)2), 1.73 (s, 6H, NCCH3), 2.87
(sept, JHH = 6.9 Hz, 2H, Ar-p-CH(CH3)2), 3.09 (sept, JHH = 6.9 Hz, 4H, Ar-o-CH(CH3)2),
4.85 (s, 1H, NC(CH3)CH), 6.95 (s, 4H, Ar-H), 12.15 (s, 1H, NH). 1H NMR (400.1 MHz,
C6D6, 294 K) δ = 1.21 (d, JHH = 6.9 Hz, 12H, Ar-o-CH(CH3)2), 1.29 (d, JHH = 7.0 Hz, 12H,
Ar-o-CH(CH3)2), 1.30 (d, JHH = 6.9 Hz, 12H, Ar-p-CH(CH3)2), 1.71 (s, 6H, NCCH3), 2.88
(sept, JHH = 6.9 Hz, 2H, Ar-p-CH(CH3)2), 3.35 (sept, JHH = 6.9 Hz, 4H, Ar-o-CH(CH3)2), 4.90
(s, 1H, NC(CH3)CH), 7.17 (s, 4H, Ar-H), 12.61 (s, 1H, NH). 13C{1H} NMR (100.6 MHz, C6D6,
295 K): δ = 20.8 (NCCH3), 23.7 (Ar-o-CH(CH3)2), 24.6 (Ar-o-CH(CH3)2 or Ar-p-CH(CH3)2),
24.6 (Ar-o-CH(CH3)2 or Ar-p-CH(CH3)2), 28.8 (Ar-o-CH(CH3)2), 34.8 (Ar-p-CH(CH3)2), 94.1
(NC(CH3)CH), 121.4 (Ar-C), 139.2 (Ar-C), 142.7 (Ar-C), 145.9 (Ar-C), 161.7 (NCCH3).
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4.4.2. EtTripnacnacH 19

A round bottom flask was charged with heptane-3,5-dione (1.45 mL, 1.37 g, 10.42 mmol),
para-toluenesulfonic acid monohydrate, pTsOH·H2O (2.24 g, 11.46 mmol, 1.10 eq.), TripNH2
6 (4.94 g, 21.93 mmol, 2.10 eq.) and xylene (mixture of isomers, 90 mL), and equipped with
a Dean-Stark trap, a reflux condenser, and a nitrogen inlet with oil bubbler. The flask was
placed in an oil bath and nitrogen gas was blown through the apparatus for a few minutes
to displace most of the air. The reaction mixture was refluxed under a very slow nitrogen
flow for 48 h to remove the water. Subsequently, the majority of the solvent (ca. 80 mL) was
distilled off via the Dean-Stark trap leaving a dark brown oily residue. The oil was taken
up in a saturated aqueous Na2CO3 solution (ca. 100 mL) and dichloromethane (ca. 100 mL)
and stirred until two clear phases formed. The organic layer was separated, and all volatiles
were reduced in vacuo giving a dark viscous oil that was dried under vacuum. Addition of
methanol (30 mL) with prolonged sonication resulted in the precipitation of EtTripnacnacH
19 as an off-white solid which was subsequently isolated by filtration and washed with
cold methanol (ca. 20 mL). Colourless crystals suitable for X-ray crystallographic analysis
were obtained by redissolving 19 in boiling methanol and subsequent cooling to room
temperature. Yield = 3.77 g (66%). M.p. 142–145 ◦C. 1H NMR (500.1 MHz, CDCl3, 295 K)
δ = 1.08 (t, JHH = 7.6 Hz, 6H, NCCH2CH3), 1.10 (d, JHH = 6.8 Hz, 12H, Ar-o-CH(CH3)2), 1.19
(d, JHH = 6.9 Hz, 12H, Ar-o-CH(CH3)2), 1.25 (d, JHH = 6.9 Hz, 12H, Ar-p-CH(CH3)2), 2.05 (q,
JHH = 7.6 Hz, 4H, NCCH2CH3), 2.87 (sept, JHH = 6.9 Hz, 2H, Ar-p-CH(CH3)2), 3.07 (sept,
JHH = 6.9 Hz, 4H, Ar-o-CH(CH3)2), 4.91 (s, 1H, NC(CH2CH3)CH), 6.94 (s, 4H, Ar-H), 12.14
(s, 1H, NH). 1H NMR (499.9 MHz, C6D6, 298 K) 0.98 (t, JHH = 7.6 Hz, 6H, NCCH2CH3),
1.22 (d, JHH = 6.8 Hz, 12H, Ar-o-CH(CH3)2), 1.30 (d, JHH = 6.9 Hz, 12H, Ar-p-CH(CH3)2),
1.30 (d, JHH = 6.9 Hz, 12H, Ar-o-CH(CH3)2), 2.13 (q, JHH = 7.6 Hz, 4H, NCCH2CH3), 2.88
(sept, JHH = 6.9 Hz, 2H, Ar-p-CH(CH3)2), 3.38 (sept, JHH = 6.9 Hz, 4H, Ar-o-CH(CH3)2), 5.09
(s, 1H, NC(CH2CH3)CH), 7.18 (s, 4H, Ar-H), 12.64 (s, 1H, NH). 13C{1H} NMR (125.7 MHz,
C6D6, 298 K): δ = 12.1 (NCCH2CH3), 23.6 (Ar-o-CH(CH3)2), 24.6 (Ar-p-CH(CH3)2), 25.0
(Ar-o-CH(CH3)2), 26.8 (NCCH2CH3), 28.7 (Ar-o-CH(CH3)2), 34.8 (Ar-p-CH(CH3)2), 89.1
(NC(CH2CH3)CH), 121.4 (Ar-C), 138.8 (Ar-C), 142.8 (Ar-C), 145.8 (Ar-C), 166.9 (NCCH3).

4.4.3. iPrTripnacnacH 20

A Schlenk flask with reflux condenser and nitrogen inlet was charged with P4O10
(10.1 g, 35.6 mmol) and hexamethyldisiloxane (25.0 mL, 117.6 mmol), and the mixture was
dissolved in dry dichloromethane (25 mL). The reaction mixture was heated to reflux for
2 h under a gentle flow of nitrogen before cooling to 20 ◦C. All volatiles were removed
in vacuo, affording a colourless, viscous syrup of PPSE. 2,6-dimethylheptane-3,5-dione
(1.80 mL, 1.64 g, 10.5 mmol) and TripNH2 6 (4.70 g, 21.42 mmol, 2.04 eq.) were added to
the flask under a gentle flow of nitrogen. The reaction mixture was then slowly heated to
170 ◦C and stirred for 48 h at this temperature. The reaction mixture was then cooled to ca.
95 ◦C and an aqueous NaOH solution (8.0 g in 100 mL) was carefully (exothermic reaction!)
and slowly added via the top of the reflux condenser with vigorous stirring. After cooling,
the formed solid residue was extracted with dichloromethane (ca. 80 mL), the organic
layer was separated off, and all volatiles were removed in vacuo. Addition of methanol
(25 mL) resulted in almost immediate precipitation of iPrTripnacnacH 20 as an off-white solid
which was subsequently isolated by filtration and washed with cold methanol (ca. 20 mL).
Colourless crystals suitable for X-ray crystallographic analysis were obtained by storing an
n-hexane solution of 20 at 6 ◦C for two months. Yield = 3.90 g (67%). M.p. 204–207 ◦C. 1H
NMR (500.1 MHz, CDCl3, 295 K) δ = 1.08 (ad, 24H, Ar-o-CH(CH3)2 and NC(CH(CH3)2),
1.22 (d, JHH = 6.9 Hz, 12H, Ar-o-CH(CH3)2), 1.25 (d, JHH = 6.9 Hz, 12H, Ar-p-CH(CH3)2),
2.43 (sept, JHH = 6.8 Hz, 2H, NC(CH(CH3)2)), 2.87 (sept, JHH = 6.9 Hz, 2H, Ar-p-CH(CH3)2),
3.07 (sept, JHH = 6.8 Hz, 4H, Ar-o-CH(CH3)2), 4.89 (s, 1H, NC(CH(CH3)2)CH), 6.93 (s, 4H,
Ar-H), 11.76 (s, 1H, NH). 1H NMR (499.9 MHz, C6D6, 298 K) δ = 1.05 (d, JHH = 6.8 Hz, 12H,
NC(CH(CH3)2)), 1.23 (d, JHH = 6.8 Hz, 12H, Ar-o-CH(CH3)2), 1.29 (d, JHH = 6.9 Hz, 12H,
Ar-p-CH(CH3)2), 1.34 (d, JHH = 6.9 Hz, 12H, Ar-o-CH(CH3)2), 2.60 (sept, JHH = 6.8 Hz, 2H,
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NC(CH(CH3)2)), 2.86 (sept, JHH = 7.0 Hz, 2H, Ar-p-CH(CH3)2), 3.39 (sept, JHH = 6.9 Hz,
4H, Ar-o-CH(CH3)2), 5.12 (s, 1H, NC(CH(CH3)2)CH), 7.18 (s, 4H, Ar-H), 12.36 (s, 1H, NH).
13C{1H} NMR (125.7 MHz, C6D6, 298 K): δ = 22.2 (NC(CH(CH3)2)), 23.6 (Ar-o-CH(CH3)2),
24.6 (Ar-p-CH(CH3)2), 25.7 (Ar-o-CH(CH3)2), 28.4 (Ar-o-CH(CH3)2), 30.4 (NC(CH(CH3)2)),
34.7 (Ar-p-CH(CH3)2), 84.0 (NC(CH(CH3)2)CH), 121.5 (Ar-C), 138.4 (Ar-C), 142.9 (Ar-C),
145.6 (Ar-C), 171.8 (NC(CH(CH3)2)).

4.5. Synthesis of [{(iPrTripnacnac)MgH}2] 21

A J Youngs flask was charged with iPrTripnacnacH 20 (1.00 g, 1.79 mmol) and toluene
(ca. 20 mL). The resulting solution was cooled using an ice bath and MgnBu2 (2.33 mL,
1.0 M solution in heptane, 1.30 eq.) was added. The solution was then briefly heated to
50 ◦C for ca. 30 min and then stirred at room temperature for 16 h. The resulting reaction
mixture was reduced in vacuo, redissolved in n-hexane (ca. 20 mL), a very small quantity
of an insoluble precipitate was filtered off, and phenylsilane (0.29 mL, 2.35 mmol, 1.32 eq.)
was added. The resulting mixture was heated to 60 ◦C for 48 h producing a fine white
precipitate of 21, that was isolated by hot filtration, washed with n-hexane (ca. 10 mL) and
dried under vacuum. Colourless crystals of 21 suitable for X-ray crystallographic analysis
were obtained by cooling a saturated solution in benzene from 60 ◦C to room temperature.
Yield = 0.43 g (41%). 1H NMR (499.9 MHz, C6D6, 298 K) δ = 0.94 (d, JHH = 6.7 Hz, 24H,
NCCH(CH3)2), 1.00 (brs, 24H, Ar-o-CH(CH3)2), 1.34 (d, JHH = 7.1 Hz, 24H, Ar-o-CH(CH3)2),
1.34 (d, JHH = 7.0 Hz, 24H, Ar-p-CH(CH3)2), 2.53 (sept, JHH = 6.8 Hz, 4H, NCCH(CH3)2),
2.89 (sept, JHH = 7.1 Hz, 4H, Ar-p-CH(CH3)2), 3.19 (brsept, 8H, Ar-o-CH(CH3)2), 3.96 (s,
2H, Mg-H), 4.88 (s, 2H, NC(CH(CH3)2)CH), 7.08 (s, 8H, Ar-H). 1H NMR (499.9 MHz, C6D6,
353 K) δ = 0.99 (ad, 48H, Ar-o-CH(CH3)2 and NCCH(CH3)2), 1.30 (d, JHH = 6.8 Hz, 24H,
Ar-o-CH(CH3)2), 1.33 (d, JHH = 6.9 Hz, 24H, Ar-p-CH(CH3)2), 2.54 (sept, JHH = 6.6 Hz, 4H,
NCCH(CH3)2), 2.88 (sept, JHH = 7.0 Hz, 4H, Ar-p-CH(CH3)2), 3.17 (sept, JHH = 6.9 Hz, 8H,
Ar-o-CH(CH3)2), 3.93 (s, 2H, Mg-H), 4.91 (s, 2H, NC(CH(CH3)2)CH), 7.05 (s, 8H, Ar-H).
13C{1H} NMR (125.7 MHz, C6D6, 353 K): δ = 23.3 (NC(CH(CH3)2) or Ar-o-CH(CH3)2),
24.2 (Ar-o-CH(CH3)2 or Ar-p-CH(CH3)2), 24.4 (Ar-o-CH(CH3)2 or Ar-p-CH(CH3)2), 26.3
(NC(CH(CH3)2) or Ar-o-CH(CH3)2), 28.1 (Ar-o-CH(CH3)2), 32.0 (NC(CH(CH3)2)), 34.5
(Ar-p-CH(CH3)2), 85.5 (NC(CH(CH3)2)CH), 121.9 (Ar-C), 142.5 (Ar-C), 143.2 (Ar-C), 144.8
(Ar-C), 179.9 (NC(CH(CH3)2)).

4.6. X-Ray Crystallographic Details

X-ray diffraction data for compounds 16, 16·C6H6, 18·C7H8, 20, 21 were collected using
a Rigaku FR-X Ultrahigh Brilliance Microfocus RA generator/confocal optics with XtaLAB
P200 diffractometer [Mo Kα radiation (λ = 0.71073 Å)]. Diffraction data for compounds 9
and 19 were collected using a Rigaku MM-007HF High Brilliance RA generator/confocal
optics with XtaLAB P100 or P200 diffractometers [Cu Kα radiation (λ = 1.54187 Å)]. Data
for all compounds analysed were collected and processed (including correction for Lorentz,
polarization, and absorption) using CrysAlisPro. [107] Structures were solved by dual
space (SHELXT) [108] or direct (SIR2011) [109] methods. All structures were refined by
full-matrix least-squares against F2 (SHELXL-2019/3) [110]. Non-hydrogen atoms were
refined anisotropically, and hydrogen atoms were refined using a riding model except
for those on nitrogen atoms in 16, 16·C6H6, 18·C7H8, and 19, which were located from
the difference Fourier map and refined isotropically subject to a distance restraint. The
hydride hydrogen atoms in 21 were also located from the difference Fourier map and
refined isotropically without distance restraints. All calculations were performed using
the Olex2 [111] interface. Selected crystallographic data are presented below. CCDC
2301678–2301684 contains the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/structures.

Crystal data for TripN(SiMe3)2 9: CCDC 2301680, C21H41NSi, M = 363.73, colourless
prism, 0.06 × 0.05 × 0.04 mm3, orthorhombic, space group Aea2 (No. 41), a = 37.6202(5),
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b = 12.11603(15), c = 15.74019(18) Å, V = 7174.49(16) Å3, Z = 12, Dc = 1.010 g cm−3,
F000 = 2424, µ = 1.343 mm−1, T = 173 K, 2θmax = 151.4◦, 66,014 reflections collected,
7404 unique (Rint = 0.0494). Final GoF = 1.020, R1 = 0.0339, wR2 = 0.0863, R indices based
on 7141 reflections with I > 2σ(I) (refinement on F2), 359 parameters, 22 restraints. The
molecule crystallised with 1.5 molecules in the asymmetric unit. The 4-isopropyl group in
the half molecule is disordered and was refined with two positions for each atom using
geometry restraints.

Crystal data for TerN(SiMe3)H 16: CCDC 2301681, C39H59NSi, M = 569.96, colourless
prism, 0.16 × 0.11 × 0.04 mm3, monoclinic, space group P21/c (No. 14), a = 19.3572(3),
b = 9.47187(15), c = 19.6361(3) Å, b = 95.6547(14)◦, V = 3582.73(10) Å3, Z = 4, Dc = 1.057 g
cm−3, F000 = 1256, µ = 0.091 mm−1, T = 173 K, 2θmax = 58.8◦, 75,801 reflections collected,
8820 unique (Rint = 0.0310). Final GoF = 1.035, R1 = 0.0413, wR2 = 0.1035, R indices based
on 7244 reflections with I > 2σ(I) (refinement on F2), 410 parameters, 4 restraints. The
molecule crystallised with a full molecule in the asymmetric unit. One 4-isopropyl group is
disordered and was refined with two positions for the atoms of the outer methyl groups
using geometry restraints.

Crystal data for TerN(SiMe3)H·C6H6 16·C6H6: CCDC 2301683, C45H65NSi, M = 648.07,
colourless plate, 0.07 × 0.06 × 0.02 mm3, monoclinic, space group P21/n (No. 14),
a = 9.1204(2), b = 19.8896(4), c = 22.6572(5) Å, b = 92.2103(19)◦, V = 4106.97(15) Å3, Z = 4,
Dc = 1.048 g cm−3, F000 = 1424, µ = 0.086 mm−1, T = 125 K, 2θmax = 58.3◦, 178,448 reflections
collected, 10365 unique (Rint = 0.0671). Final GoF = 1.017, R1 = 0.0490, wR2 = 0.1076, R
indices based on 7382 reflections with I > 2σ(I) (refinement on F2), 454 parameters, 7 re-
straints. The molecule crystallised with a full molecule and one benzene molecule in the
asymmetric unit. One 2-isopropyl group is disordered and was refined with two positions
for the atoms of one methyl group and the methine-H using geometry restraints.

Crystal data for MeTripnacnacH·C7H8 18·C7H8: CCDC 2301684, C42H62N2, M = 594.93,
colourless prism, 0.12 × 0.04 × 0.03 mm3, orthorhombic, space group Pbca (No. 61),
a = 17.3978(6), b = 17.1598(6), c = 24.9732(8) Å, V = 7455.6(4) Å3, Z = 8, Dc = 1.060 g cm−3,
F000 = 2624, µ = 0.060 mm−1, T = 120 K, 2θmax = 58.6◦, 160,281 reflections collected,
9438 unique (Rint = 0.1475). Final GoF = 1.022, R1 = 0.0952, wR2 = 0.1760, R indices based on
5281 reflections with I > 2σ(I) (refinement on F2), 416 parameters, 1 restraint. The compound
crystallised with one full molecule plus one toluene molecule in the asymmetric unit.

Crystal data for EtTripnacnacH 19: CCDC 2301678, C37H58N2, M = 530.85, colourless
plate, 0.12 × 0.11 × 0.01 mm3, monoclinic, space group P21/c (No. 14), a = 9.2583(6),
b = 25.5248(15), c = 15.1348(8) Å, b = 99.624(6)◦, V = 3526.3(4) Å3, Z = 4, Dc = 1.000 g cm−3,
F000 = 1176, µ = 0.421 mm−1, T = 173 K, 2θmax = 141.3◦, 30,594 reflections collected,
6182 unique (Rint = 0.0831). Final GoF = 1.060, R1 = 0.0547, wR2 = 0.1336, R indices based
on 3814 reflections with I > 2σ(I) (refinement on F2), 390 parameters, 9 restraints. The
compound crystallised with a full molecule in the asymmetric unit. One backbone ethyl
group is disordered and was modelled and refined with two positions for each atom.

Crystal data for iPrTripnacnacH 20: CCDC 2301679, C39H62N2, M = 558.90, colourless
prism, 0.12 × 0.06 × 0.04 mm3, orthorhombic, space group Ibca (No. 73), a = 16.1089(8),
b = 16.8884(10), c = 26.3413(18) Å, V = 7166.2(7) Å3, Z = 8, Dc = 1.036 g cm−3, F000 = 2480,
µ = 0.059 mm−1, λ = 0.71073 Å, T = 125 K, 2θmax = 58.3◦, 38,250 reflections collected,
4425 unique (Rint = 0.0410). Final GoF = 1.032, R1 = 0.0850, wR2 = 0.1897, R indices based
on 2675 reflections with I > 2σ(I) (refinement on F2), 224 parameters, 34 restraints. The
compound crystallised with half a molecule in the asymmetric unit. The 4-isopropyl group
is disordered and was modelled with two positions for each atom using geometry restraints.

Crystal data for [{(iPrTripnacnac)MgH}2] 21: CCDC 2301682, C39H62N2Mg, M = 1166.42,
colourless block, 0.09 × 0.09 × 0.03 mm3, orthorhombic, space group Pbcn (No. 60),
a = 16.0213(5), b = 17.4646(5), c = 25.6440(7) Å, V = 7175.3(4) Å3, Z = 4, Dc = 1.080 g cm−3,
F000 = 2576, µ = 0.077 mm−1, T = 125 K, 2θmax = 58.2◦, 77,501 reflections collected,
8645 unique (Rint = 0.0521). Final GoF = 1.031, R1 = 0.0484, wR2 = 0.1125, R indices based

112



Molecules 2023, 28, 7569

on 6107 reflections with I > 2σ(I) (refinement on F2), 399 parameters, 0 restraints. This
compound crystallised with half a molecule in the asymmetric unit.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28227569/s1; Table S1: In-situ NMR scale study of
reaction between TerLi(OEt2) 11(OEt2) and Me3SiN3; IR spectrum (Figure S1), NMR spectroscopy
(Figure S2–S38), Buried volume information, Table S2: Buried volume for [{(RArnacnac)MgH}2]
complexes for the four quadrants and in total and Figures S39–S40.
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Poly(imidazolyliden-yl)borato Complexes of Tungsten:
Mapping Steric vs. Electronic Features of Facially
Coordinating Ligands
Callum M. Inglis, Richard A. Manzano , Ryan M. Kirk , Manab Sharma, Madeleine D. Stewart,
Lachlan J. Watson and Anthony F. Hill *

Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
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Abstract: A convenient synthesis of [HB(HImMe)3](PF6)2 (ImMe = N-methylimidazolyl) is decribed.
This salt serves in situ as a precursor to the tris(imidazolylidenyl)borate Li[HB(ImMe)3] pro-ligand
upon deprotonation with nBuLi. Reaction with [W(≡CC6H4Me-4)(CO)2(pic)2(Br)] (pic = 4-picoline)
affords the carbyne complex [W(≡CC6H4Me-4)(CO)2{HB(ImMe)3}]. Interrogation of experimental
and computational data for this compound allow a ranking of familiar tripodal and facially coordi-
nating ligands according to steric (percentage buried volume) and electronic (νCO) properties. The
reaction of [W(≡CC6H4Me-4)(CO)2{HB(ImMe)3}] with [AuCl(SMe2)] affords the heterobimetallic
semi-bridging carbyne complex [WAu(µ-CC6H4Me-4)(CO)2(Cl){HB(ImMe)3}].

Keywords: organometallic compounds; tungsten; carbyne; carbene

1. Introduction

The poly(pyrazolyl)borate class of chelates developed by Trofimenko, colloquially
known as ‘scorpionates’ [1–3], have found broad application in diverse of areas of coordi-
nation and bioinorganic and organometallic chemistry. Key features that have contributed
to their widespread deployment include (i) ease of synthesis; (ii) functionalization at both
the bridgehead boron and pyrazolyl rings to provide a range of steric and electronic prop-
erties; (iii) kinetic stability of the chelated cage once coordinated to a metal centre; (iv) their
so-called ‘octahedral enforcer’ nature, whereby the topology of the cage especially favours
octahedral coordination geometries; and (v) the extension of the principle to the replace-
ment of the pyrazol-1-yl arms with a range of other heterocycles that bridge boron and
the metal to which they coordinate. Amongst these, the hydrotris(3,5-dimethylpyrazol-1-
yl)borate ligand (HB(pzMe2)3, Scheme 1) has proven to be especially useful in presenting
a moderate degree of steric protection to the remaining three ligands in an octahedral
metal complex.

N-heterocyclic carbenes (NHC) have emerged over the last three decades, from being
rather niche ligands of fundamental interest, to highly effective supporting co-ligands
for the development of robust materials and, in particular, catalysts [4–6]. Fehlham-
mer first demonstrated the confluence of poly(azolyl)borate and NHC chemistries with
reports of the first tris(N-alkylimidazolylidenyl)borates (HB(ImR1)3, R1 = Me, Et, iPr;
Scheme 2) [7–10], and whilst the trimethyl derivative HB(ImMe)3

– most closely resembles
the topology of the Tp* scorpionate, its chemistry has been scarcely developed beyond
the original Fehlhammer work. Rather, the ligand class has been functionally elaborated
to include (i) sterically imposing N-subtituents (R1 = tBu, Cy, adamantly, mesityl and
2,6-diisopropylphenyl) [11–14], (ii) macrocyclic variants [15–21], (iii) extension to bidentate
examples [5,22–34], (iv) replacement of the bridgehead borohydride with phenyl or fluoro
groups [35–37] and (v) substitution of the imidazolylidene bridges by triazolylidenes or
benzoimidazolylidenes [35–38].
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Amongst the multitude of catalytic processes catalysed by NHC-supported mediators,
the advent of Grubbs’s second generation alkene metathesis catalyst and related ana-
logues [39–42] has led to a plethora of complexes that feature both NHC and conventional
alkylidene ligands. These serve to demonstrate the vastly different nature and reactivity of
the metal–carbon ‘multiple’ bonds, whereby productive metathesis involves the alkylidene
ligand exclusively, while the NHC ligand remains innocent. That said, an early report
by Lappert described the metathesis of electron-rich alkenes by an NHC complex devoid
of alkylidene ligands [43]. In contrast, alkylidyne complexes with metal–carbon triple
bonds that are supported by NHC ligands are somewhat scarcer [44–57] with most exam-
ples having emerged from the groups of Esteruelas and Buchmeiser. The intersection of
poly(imidazolylidenyl)borates with the chemistry of metal–carbon multiple bonds would
appear limited to a single macrocyclic complex [Fe(=CPh2)({Me2B(C3N2H2)2C6H10}2)] [21].
Given the important role that poly(pyrazolyl)borate ligands have played in the devel-
opment of alkylidyne chemistry [58], herein we report the first carbyne complex ligated
by a poly(imidazolylidenyl)borate, [W(≡CC6H4Me-4)(CO)2{HB(ImMe)3}] (HB(ImMe)3 =
hydrotris(3-methylimidazoylyliden-1-yl)borate) which provides an opportunity to bench-
mark the donor properties of the HB(ImMe)3 ligand against more familiar tripodal triden-
tate ligands. The complex also serves as a precursor to the first heterometallic complex of a
poly(imidazolylidenyl)borate viz. [WAu(µ-CC6H4Me-4)Cl(CO)2{HB(ImMe)3}].

119



Molecules 2023, 28, 7761

2. Results
2.1. Pro-Ligand Synthesis

Fehlhammer’s original synthetic approach (Scheme 2) [7] involved threefold alkyla-
tion of potassium hydrotris(imidazol-1-yl)borate with Meerwein’s salt [Me3O]BF4, this
latter reagent being the most expensive component. Apart from blazing the original trail,
Fehlhammer’s approach allows for the installation of various carbene alkyl N-substituents
at a late stage on a common late synthetic intermediate.

We have developed an alternative synthesis that borrows from protocols developed for
more sterically encumbered examples described by Smith [11–14]. Whilst demonstrating
no new principles here, our approach does offer both convenience and economy, employing
cheap commercially available reagents (Scheme 3).
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The reaction of [Me3N.BH3] with bromine affords [Me3N.BHBr2] [59], which may
be generated in situ without isolation. Subsequent treatment with N-methylimidazole
affords the salt [HB(ImMeH)3]Br2 ([1]Br2). This salt, whilst forming in high yields, is
difficult to manipulate as it is exceedingly deliquescent and upon filtration under ambient
air rapidly forms a sticky syrup. This behaviour is potentially problematic since the
subsequent step calls for deprotonation via strong, moisture-sensitive bases, e.g., nBuLi
or KN(SiMe3)2. Metathesis with aqueous Na[PF6], however, results in ready recovery of
the hexafluorophosphate salt [HB(ImMeH)3](PF6)2 ([1](PF6)2), which is not hygroscopic
and crystallizes free of water as confirmed via a crystallographic analysis (Figure 1).

Molecules 2023, 28, x FOR PEER REVIEW 3 of 30 
 

 

precursor to the first heterometallic complex of a poly(imidazolylidenyl)borate viz. 
[WAu(μ-CC6H4Me-4)Cl(CO)2{HB(ImMe)3}]. 

2. Results 
2.1. Pro-Ligand Synthesis 

Fehlhammer’s original synthetic approach (Scheme 2) [7] involved threefold alkyla-
tion of potassium hydrotris(imidazol-1-yl)borate with Meerwein’s salt [Me3O]BF4, this lat-
ter reagent being the most expensive component. Apart from blazing the original trail, 
Fehlhammer’s approach allows for the installation of various carbene alkyl N-substituents 
at a late stage on a common late synthetic intermediate. 

We have developed an alternative synthesis that borrows from protocols developed 
for more sterically encumbered examples described by Smith [11–14]. Whilst demonstrat-
ing no new principles here, our approach does offer both convenience and economy, em-
ploying cheap commercially available reagents (Scheme 3). 

The reaction of [Me3N.BH3] with bromine affords [Me3N.BHBr2] [59], which may be 
generated in situ without isolation. Subsequent treatment with N-methylimidazole af-
fords the salt [HB(ImMeH)3]Br2 ([1]Br2). This salt, whilst forming in high yields, is difficult 
to manipulate as it is exceedingly deliquescent and upon filtration under ambient air rap-
idly forms a sticky syrup. This behaviour is potentially problematic since the subsequent 
step calls for deprotonation via strong, moisture-sensitive bases, e.g., nBuLi or KN(SiMe3)2. 
Metathesis with aqueous Na[PF6], however, results in ready recovery of the hexafluoro-
phosphate salt [HB(ImMeH)3](PF6)2 ([1](PF6)2), which is not hygroscopic and crystallizes 
free of water as confirmed via a crystallographic analysis (Figure 1). 
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Figure 1. Structure of the hydrotris(N-methylimidazolyl)boronium salt [HB(ImMeH)3](PF6)2

([1](PF6)2 (two crystallographically independent molecules shown, 50% displacement ellipsoids,
major occupancies of positionally disordered PF6 anions shown).

2.2. Ligand Installation

For installation of the pro-ligand on a suitable alkylidyne precursor, the 4-toluidyne
complex trans,cis,cis-[W(≡CC6H4Me-4)(CO)2(pic)2Br] (pic = 4-picoline) (2a) was chosen to
exploit the lability of the bromide and 4-picoline ligands. Whilst this complex has not been
previously reported on, its synthesis (Scheme 4) is unremarkable and mirrors that of the
known xylyl or mesityl analogues [60–62]. Synthetic procedures are presented alongside
those for the molybdenum analogue (2b) in the Experimental section in addition to a
crystallographic analysis.
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Scheme 4. Synthesis of mono- and bi-metallic toluidyne complexes ligated by the HB(ImMe)3 ligand
(R = C6H4Me-4, pic = 4-picoline = NC6H4Me-4).

The pro-ligand salt [1] (PF6)2 was dissolved in tetrahydrofuran and cooled
(dry ice/propanone) before addition of 3 equivalents of nBuLi, followed by slow warming
to room temperature to provide a yellow solution of Li[HB(ImMe)3] (Li [3]) which was
re-cooled and treated with 2a. Re-warming to room temperature resulted in a colour change
to dark brown as the infrared absorptions for the starting material (2a: νCO = 1986, 1898)
were replaced with those of the new product (4: νCO = 1958, 1873 cm−1). After stirring
for 3 h, the product was isolated via column chromatography to yield a bright orange
microcrystalline powder.

Spectroscopic data were consistent with the formulation of the desired product
[W(≡CC6H4Me-4)(CO)2{HB(ImMe)3}] (4). Amongst these, the most conspicuous datum
is that for the carbyne resonance in the 13C{1H} NMR spectrum (CD2Cl2: δC = 280.7,
1JWC = 171.4 Hz). Consistent with the inferred Cs symmetry of the molecule, the carbonyls
gave rise to a single resonance (δC = 223.3, 1JWC = 132.0 Hz) while the tungsten-bound
carbon nuclei of the NHC donors gave rise to two resonances at a ratio of 2:1 with markedly
different chemical shifts and 1JWC couplings (δC/1JWC = 192.0/95.2), 181.3/44.7). With the
exception of the complexes [Pt{H2B(ImR1)2}2] (R1 = Me, Et) for which 1JPtC values were not
reported [8], and [Rh(CO)(L){X2B(ImR)2] (L = CO, PPh3, PCy3; X = H, F; R = Ph, Cy) [31],
poly(imidazolylidenyl)borates have not previously been coordinated to metal nuclei with
usefully spin-active (I = 1

2 ) isotopes.
As 4 is the first tungsten complex of such a ligand, it provides an opportunity to

demonstrate the special feature of HB(ImR1)3 chelates cf. poly(pyrazolyl)borates; scalar
couplings observed in the 13C{1H} NMR spectra may serve as reporters to interrogate
metal–carbon bonding. Thus, whilst the chemical shift and associated coupling for the
carbon nuclei trans to the carbonyl ligands are unremarkable (e.g., cf. the conventional
NHC complex [W{=C(NDiPP)2C2H2}(CO)5]: δC = 187.9, 1JWC = 105.7 Hz, DiPP = C6H3

iPr2-
2,6) [63], the resonance for the carbon trans to the carbyne is shifted some 11 ppm to higher
field and displays a dramatically reduced coupling to tungsten-183 (44.7 Hz). These may be
taken as indicating a weaker W–C interaction which in turn reflects the pronounced trans
influence of the alkylidyne ligand, a feature well-documented in the structural chemistry
of alkylidyne complexes ligated via poly(pyrazolyl)borate ligands [58]. As to the impact of
the HB(ImMe)3 ligand on the remaining co-ligands, comparison with the known complex
[W(≡CC6H4Me-4)(CO)2(Tp*)](5) [64] (Tp* = hydrotris(dimethylpyrazoyl)borate, prepared
here from K[Tp*] and 2a, see Experimental) is useful. The carbyne and carbonyl resonances
for the Tp* derivative appeared at almost identical frequencies to those of the HB(ImMe)3
complex [δC(1JWC/Hz) = 279.2 (186.6), 224.0 (166.2)]; however, in both cases, the magnitudes
of 1JWC values were significantly larger for 5 than for 4. Insofar as these may be taken as
being indicative of the strength of the metal–carbon interaction, it would appear that the
NHC donors weaken both the carbyne and carbonyl binding. This is, however, difficult to
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reconcile with the νCO-associated infrared data which comprise A1 and B1 modes observed
at 1958 and 1873 cm−1 in dichloromethane (ATR: 1949, 1867 cm−1). These are amongst the
lowest observed for neutral complexes of the form [W(≡CC6H4Me-4)(CO)2(L)] where L
is one of a range of nominally tripodal facially capping ligands [58,64–67]. These values
are even lower than for the π-donor ligand HB(mt)3 (1967, 1875 cm−1; mt = 2-mercapto-
N-methyl-imidazol-1-yl) [67] and Kläui’s (η5-C5H5)Co(PO3Me2)3 ligand [68]. It would
therefore appear that the HB(ImMe)3 ligand makes the tungsten centre especially electron
rich and this may be verified using cyclic voltammetry (Figure 2). For both 4 and 5,
sweeping the voltage to ca +2 V reveals two oxidation processes, neither of which appear
reversible. Limiting the sweep to ca 1.0 V indicates that the reversibility of first oxidation
event increases with increasing sweep rate. For 5, ∆Ep increases slightly with increased
scan rate from 0.180 (0.1 Vs−1) to 0.250 V (0.3 Vs−1) suggesting the oxidation is essentially
reversible with E 1

2
= 0.34 V (Ep,c = 0.43 at 0.1 Vs−1). For 4 the dependence of ∆Ep on

sweep rate is more significant, increasing from 0.170 V at 0.1 Vs−1 (Ep,c = 0.33 V) to 0.630 V
at 5 Vs−1(Ep,c = 0.64 V) is observed. Thus, fast sweep rates are required to observe a
reasonable degree of reversibility, with, however, an almost identical half-wave potential
(E 1

2
0.345 V) to that of 5. Chemical oxidation of tris(pyrazolyl)borate carbyne complexes

of tungsten is typically accompanied by decarbonylation [65,69–71], which most likely
accounts for the poor reversibility at slow sweep rates or higher voltages.
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[76]. These methods are not directly applicable to HnB(ImR1)4-n complexes due to their neg-
ative charge and chelation. While it would be reasonable to presume that, as with conven-
tional neutral NHC ligands, these will be potent net donors, it would be useful to be able 
to benchmark both the electronic and steric features of poly(imidazolylidenyl)borate lig-
ands against those of more familiar facially capping nominally tridentate (κ3, η5 or η6) lig-
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Figure 2. Cyclic voltammetry of [W(≡CC6H4Me-4)(CO)2(L)] (L = HB(pzMe2)3 5, HB(ImMe)3 4)
(Silver wire pseudo-reference electrode, anaerobic 1 mM in CH2Cl2, 0.1 M [NBu4][PF6] support-
ing electrolyte; ferrocene reference E1/2 = 0.460 V cf. Ag/Ag+ = 0). (a) Reversibility CV at var-
ied scan rates of 5 (0 V → +1.0 V → –0.6 V). (b) Full window CV of 5 (0 V → +1.8 V → –2.5 V,
υ = 0.1 Vs−1). (c) Reversibility CV at varied scan rates of 4 (0 V→ +0.9 V→ –0.6 V). (d) Full window
CV of 4 (0.6 V→ +2.0 V→ –2.5 V, υ = 0.1 Vs−1).

2.3. Quantification of Steric and Electronic Features

A popular and time-honoured method for assessing the donor properties of ligands
involves their impact on infrared frequencies of carbonyl co-ligands. This is traditionally
assayed, in the case of phosphines, using the Tolman electronic parameter νT, viz. the fre-
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quency of the A1 mode of CO vibrations in a host of complexes of the form [Ni(L)(CO)3] [72].
Although similar scales may be developed for NHC ligands coordinated to the ‘Ni(CO)3’
fragment [73–75], the toxicity of nickel carbonyl has led to the advent of alternative scales
based on the RhCl(CO)2 fragment (average of A1 and B1 modes) as the preferred platform,
alongside metrics derived from NMR data for the NHC bound to selenium (=Se, δSe),
phenylphosphinidine (=PPh, δP) or PdBr2{C(NiPr)2C6H4} (δC) fragments [76]. These meth-
ods are not directly applicable to HnB(ImR1)4-n complexes due to their negative charge and
chelation. While it would be reasonable to presume that, as with conventional neutral NHC
ligands, these will be potent net donors, it would be useful to be able to benchmark both
the electronic and steric features of poly(imidazolylidenyl)borate ligands against those of
more familiar facially capping nominally tridentate (κ3, η5 or η6) ligands, of which there are
many. Smith has already suggested such a ranking for a small number of facial/tripodal
ligands based on the νNO stretching frequencies of complexes of the form [Ni(NO)(L)] [37].
Such ligands may be grouped according to their charge (neutral, mono- or di-anionic)
which in turn impacts the charge of the derived complexes (cationic, neutral or anionic,
respectively). In the case of complexes of the form [W(≡CC6H4Me-4)(CO)2(L)]x+, a number
of these have been compared in terms of the experimentally determined infrared data
for the cis-dicarbonyl oscillator [67,77–89]. In addition to the frequencies of the observed
symmetric and antisymmetric modes (A1 νs(CO), B1 νas(CO)), the two numbers may be
condensed into a singular Cotton–Kraihanzel force constant [90]. This is reasonable in the
case of [W(≡CR)(CO)2(L)]x+ because the two carbonyl ligands are chemically equivalent,
i.e., both individual CO oscillators are identical. This is perhaps less appropriate in the
‘RhCl(CO)2’ system, where in any event the simple arithmetic mean is usually employed.

Our previous collation was based on experimentally determined νCO values with the
caveat that some were acquired from solid-state mesurements (Nujol mulls, KBr discs,
ATR, etc.) while others were obtained from a variety of solvents. Infrared data for metal
carbonyls are prone to significant perturbation in the solid state due to different crystal
modifications or crystallographically independent molecules within the same crystal which
in each case place the CO ligand(s) in different environments. The solvent-dependent
nature of IR data for metal carbonyls, due to which both the frequency and broaden-
ing are significantly impacted by the choice of solvent, has long been recognized [91].
Thus, gas phase data, when measurement is viable, typically produce higher frequencies
than are found in aliphatic hydrocarbons, and while such solvents provide the sharpest
and therefore best-resolved peaks, comparatively few carbonyl complexes are sufficiently
soluble. Dichloromethane has therefore become the solvent of choice offering the most
accommodating solubility characteristics and reasonably narrow peaks.

To obviate these imponderables, we have collated infrared data for a range of com-
plexes [W(≡CC6H4Me-4)(CO)2(L)]x+ derived from computational interrogation (Table 1).
Our intention is not to provide the most precise current state-of-the-art investigation of the
intimate bonding and thermodynamic properties of such complexes but rather to derive
a readily accessible and computationally economic comparative scale. A useful corollary
of this approach is that the optimised geometries used for frequency calculations may be
employed to directly calculate the percentage buried volume (%Vbur) [92,93] of each ligand
L. The %Vbur approach to quantifying the steric impact of a ligand is especially suitable for
ligands with irregular topologies, and for phosphines, such analysis reassuringly returns a
correlation approximately linear with Tolman’s cone angle (θT = 3.95x%Vbur + 31.5) [94].
Accordingly, a scatter plot of the Cotton–Kraihanzel force constant kCO vs. %Vbur (Figure 3)
may be presented for ligands L that is reminiscent of the familiar νT vs. θT plot used to map
phosphine electronic and steric space [72]. For this purpose, with this combination of den-
sity functional, basis set and anharmonic scaling factor the value of the Cotton–Kraihanzel
force constant reduces to the following equation:

kCO [Ncm−1] = 1.7426 × 10−6 Ncm × (νs
2 + νas

2)
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Table 1. Experimental a and calculated b infra-red and steric c properties of
[W(≡CC6H4Me)(CO)2(L)]x+.

L x ν(CO)/cm–1 kCK/Ncm–1 d ν(CO)/cm–1 kCK/Ncm−1 ν(WC)/cm−1 %Volbur
c Ref

Experimental a Calculated b λ1(λ2) i

1 κ3-HB(ImMe)3 0 1958, 1873 14.80 1969, 1907 15.15 (14.76) 1334 52.4 -

2 κ3-HB(pzMe2)3
g 0 1971, 1889 c 15.07 1980, 1912 15.27 (14.86) 1350 50.7 [64]

3 η5-C2B9H9Me2 1– 1956, 1874 14.82 1970, 1900 15.10 (14.71) 1354 49.6 [79]

4 κ3-CpCo(PO3Me2)3 0 1961, 1859 14.74 1980, 1906 15.23 (14.83) 1353 44.0 [68]

5 κ3-HB(mt)3 0 1967, 1875 14.91 1983, 1916 15.33 (14.93) 1352 48.7 [67]

6 η5-C2B9H11 1– 1965, 1880 14.93 1974, 1906 15.18 (14.77) 1356 44.3 [79]

7 κ3-Me3[9]aneN3
e 1+ 1975, 1879 f 15.00 2003, 1940 15.68 (15.27) 1347 52.5 [80]

8 κ3-HC(py)3
e 1+ 1988, 1894 b,f 15.22 2007, 1949 15.78 (15.37) 1346 46.2 [81]

9 κ3-[9]aneS3 e,h 1+ 2007, 1925 f 15.59 2029, 1980 16.20 (15.78) 1346 46.0 [81]

10 η5-C5H5 0 1982, 1902 15.24 1997, 1941 15.64 (15.23) 1348 35.2 [82]

11 κ3-HB(pz)3
k 0 1986, 1903 15.28 1998, 1934 15.49 (15.11) 1347 43.3 [84]

12 η5-C5Me5 0 1981, 1910 c,j 15.29 1989, 1933 15.51 (15.12) 1349 42.4 [86]

13 κ3-HC(pz)3 1+ 1995, 1912 15.42 2016, 1959 15.93 (15.52) 1347 41.7 [87]

14 η6-C2B10H10Me2 1– 1990, 1930 15.52 1981, 1932 15.44 (15.04) 1352 53.5 [89]

15 κ3-P(py)3
e 1+ 2007, 1925 f 15.62 2008, 1951 15.80 (15.39) 1349 47.9 [81]

16 κ3-MeC(CH2Ph2)3
e,g 1+ 1999, 1934 b,f 15.62 2095, 2037 17.01 (15.46) n.r. 59.8 [81]

17 κ3-HC(pzMe2)3 1+ – – 2002, 1941 15.68 (15.27) 1349 49.1 –

18 κ3-MeC(CH2Pme2)3 1+ – – 2021, 1974 16.09 (15.67) 1342 51.5 –

19 η6-C6H6 1+ – – 2051, 2017 16.68 (16.25) 1356 39.3 –

20 η6-C6Me6 1+ – – 2030, 1989 16.28 (15.85) 1351 45.9 –

21 η6-C6Et6 1+ – – 2019, 1975 16.08 (15.66) 1351 53.3

22 η5-C9H7 (indenyl) 0 – h 2002, 1949 15.74 (15.32) 1348 37.3 [61]

23 η5-C13H9 (fluorenyl) 0 – – 1999, 1941 15.65 (15.24) 1356 40.4 –

24 η5-C5Ph5
g 0 – – 2077, 2015 16.88 (15.34) 1532 48.3 –

25 η5-C5Cl5 0 – – 2012, 1962 15.92 (15.51) 1354 40.8 –

26 η5-C5H3(SiMe3)2-1,3 0 – – 1987, 1931 15.48 (15.08) 1307 54.5 –

27 η5-C5Me4N 0 – – 1992, 1937 15.56 (15.16) 1350 39.2 –

28 η5-C5Me4P 0 – – 1990, 1937 15.55 (15.15) 1348 41.7 –

29 η5-C5Me4As 0 – – 1989, 1936 15.53 (15.13) 1348 37.5 –

30 η5-C5H5BH 0 – – 2006, 1953 15.80 (15.39) 1351 40.8 –

31 κ3-MeB(CH2PPh2)3
g 0 – – 2072, 2003 16.74 (15.22) 1519 59.8 –

32 κ3-MeB(CH2Pme2)3 0 – – 1988, 1933 15.50 (15.10) 1339 51.2 –

33 κ3-MeB(CH2Sme)3 0 – – 1996, 1935 15.58 (15.17) 1348 49.7 –

34 κ3-HB(mtSe)3 0 – – 1981, 1915 15.31 (14.91) 1357 49.7 –

35 κ3-HB(ImEt)3 0 – – 1968, 1906 15.13 (14.74) 1322 54.4 –

36 κ3-HB(ImiPr)3 0 – – 1970, 1907 15.16 (14.76) 1340 53.1

37 κ3-HB(ImtBu)3 0 – – 1950, 1881 14.80 (14.41) 1334 59.5 –

38 κ3-HB(ImPh)3 0 – – 1981, 1919 15.34 (14.94) 1329 54.3 –

39 κ3-HB(ImCF3)3 0 – – 1999, 1947 15.70 (15.29) 1337 57.1

a Unless otherwise indicated, data were determined from dichloromethane solutions. b DFT:ωB97X-D/6-
31G*/LANL2Dζ(W)/Gas-phase, anharmonic scaling factor 0.9420. c Percentage buried volume calculated [92] for
a 3.5 Å sphere centred on tungsten with H-atoms included. dCotton–Kraihanzel force constant [90].e Experimental
data for benzylidyne. f KBr pellet. gValues in italics were determined at the reduced PM3tm level of theory. h

[Mo(≡CC6H3Me2-2,6)(CO)2(η5-C9H7)] has νCO = 1998, 1925 cm−1 [61]. iλ1 = 0.9420, λ2 = 0.9297. jMeasured in
n-hexane. kThe complex [W(≡CC6H4Me-4)(CO)2{B(pz)4}] has identical νCO values to those for [W(≡CC6H4Me-
4)(CO)2{HB(pz)3}], i.e., replacing the remote B–H substituent with pz has negligible electronic impact. n.r. = not
identified with confidence or heavily coupled with other oscillators.
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Figure 3. Electronic (kCO) vs. steric (%Vbur) map for a range of facially coordinating ligands derived
computationally (DFT:ωB97X-D/LANL2Dζ(W)). A small number (shown in green) were calculated
at the semi-empirical PM3tm level of theory due to their large atom count, for which the ordinate
positions should be treated with appropriate reservation.

TheωB97X-D [95,96] functional was employed with the 6-31G* basis set [97] in combi-
nation with the LANL2Dζ effective core potential for tungsten [98–100], and while much
more sophisticated levels of theory are certainly available, this selection represents a bal-
ance between utility and computational economy for these medium-sized molecules. For
larger ligands ‘L’, where steric bulk has or might be an intentional design feature, %Vbur
values obtained at the simpler semi-empirical PM3tm level of theory are used, as we are
here only concerned with molecular topologies (Figure 4). Taking complexes of the ligands
HB(pzMe2)3, HB(ImMe)3 and MeC(CH2PMe2)3 as test cases, the variation in %Vbur cal-
culated betweenωB97X-D/6-31G*/LANL2Dζ and PM3tm methods was <3%, i.e., within
the magnitude of molecular libration. Vibrational frequencies, whilst calculated to ensure
local minima had been located, were imprecise at the PM3tm level and considered of little
use. Accordingly, the ordinate location of such ligands in Figure 3 (shown in green) should
be viewed with considerable caution. These were derived with little rigour by simply
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scaling the PM3tm kCO values by 0.9089, this being the ratio of kCO values calculated at
the PM3tm and DFT levels of theory for 4 and 5. That said, the peripheral inclusion of
sterically obtrusive substituents in ligands often results in rather limited transmission of
inductive electronic effects to the metal centre itself, as seen, for example, in experimental
data for L = η5-C5H5 (kCO = 15.24 Nm−1) and η5-C5Me5 (kCO = 15.29 Nm−1). Similarly,
experimental data are not available for toluidyne complexes of all ligands L, in which cases
experimental data for the corresponding phenyl or xylyl carbynes are instead provided
alongside those calculated for the toluidyne.

Table 2. Calculated (TT-DFT) a electronic absorptions of interest, natural atomic charges (Z) and
Löwdin bond orders (LBO) for selected complexes [W(≡CC6H4Me)(CO)2(L)]x++.

L x λmax/nm λmax/nm Z(W) Z(C) LBO r(W≡C)/Å
dxy→π*W≡C πW≡C→π*W≡C (W≡C)

1 κ3-HB(ImMe)3 (4) 0 433 332 +0.748 −0.316 2.37 1.833

2 κ3-HB(pzMe2)3 (5) 0 406 316 +1.013 −0.268 2.40 1.811

3 η5-C2B9H9Me2 1− 435 359 +0.831 −0.214 2.35 1.810

4 κ3-CpCo(PO3Me2)3 0 431 374 +1.177 −0.299 2.40 1.802

5 κ3-HB(mt)3 0 444 335 +0.685 −0.256 2.42 1.800

6 η5-C2B9H11 1− 428 358 +0.845 −0.230 2.36 1.810

7 κ3-Me3[9]aneN3
b 1+ 400 377 +0.858 −0.188 2.39 1.812

8 κ3-HC(py)3
x 1+ 403 b 377 b +0.909 −0.213 2.40 1.813

9 κ3-[9]aneS3 1+ 377 330 +0.405 −0.131 2.35 1.818

10 η5-C5H5 0 420 319 +0.851 −0.270 2.40 1.815

11 κ3-HB(pz)3 0 412 313 +0.979 −0.253 2.42 1.810

12 η5-C5Me5 0 430 326 +0.870 −0.284 2.41 1.814

13 κ3-HC(pz)3
b 1+ 405 337 +0.886 −0.190 2.41 1.811

14 η6-C2B10H10Me2 1− 417 372 +0.732 −0.171 2.34 1.811

15 κ3-P(py)3
b 1+ 384 332 +0.911 −0.214 2.40 1.809

17 κ3-HC(pzMe2)3 1+ 386 319 +0.920 −0.208 2.40 1.810

18 κ3-MeC(cH2PMe2)3 1+ 390 335 +0.146 −0.130 2.33 1.830

19 η6-C6H6 1+ 356 381 +0.697 −0.105 2.32 1.820

20 η6-C6Me6 1+ 386 333 +0.754 −0.134 2.35 1.813

21 η6-C6Et6 1+ 379 336 +0.759 −0.130 2.33 1.814

22 η5-C9H7 (indenyl) 0 415 354 +0.889 −0.269 2.45 1.802

23 η5-C13H9 (fluorenyl) 0 436 357 +0.909 −0.237 2.45 1.798

25 η5-C5Cl5 0 422 323 +0.851 −0.214 2.41 1.805

26 η5-C5H3(SiMe3)2-1,3 0 418 318 +0.849 −0.257 2.40 1.812

27 η5-C4Me4N 0 415 326 +0.939 −0.273 2.40 1.811

28 η5-C4Me4P 0 391 365 +0.755 −0.247 2.37 1.816

29 η5-C4Me4As 0 390 366 +0.740 −0.255 2.37 1.816

30 η5-C5H4BH 0 383 323 +0.769 −0.164 2.37 1.811

32 κ3-MeB(cH2PMe2)3 0 412 329 +0.274 −0.213 2.37 1.825

33 κ3-MeB(cH2SMe)3 0 422 323 +0.587 −0.224 2.40 1.809

34 κ3-HB(mtSe)3 0 443 338 +0.631 −0.263 2.42 1.800

35 κ3-HB(ImEt)3 0 424 329 +0.763 −0.324 2.35 1.835

36 κ3-HB(ImiPr)3 0 437 335 +0.749 −0.318 2.38 1.830

37 κ3-HB(ImtBu)3 0 423 322 +0.864 −0.294 2.33 1.820

38 κ3-HB(ImPh)3 0 449 335 +0.960 −0.300 2.37 1.828

39 κ3-HB(ImCF3)3 0 426 329 +0.689 −0.238 2.37 1.824

a TD-DFT:ωB97X-D/6-31G*/LANL2Dζ(W)/gas-phase. b π*W≡C does not correspond to the LUMO due to
low-lying ligand(L)-centred virtual orbitals.
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single scaling factors are not universally appropriate for the entire vibrational spectros-
copy range (400–4000 cm−1) [106], and the fundamental modes from which they are de-
rived generally fall below the range of interest to organometallic chemists (1800–2200 
cm−1). For the present discussion, it therefore seems appropriate to consider an alternative 
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measurements. Gas phase data were calculated, since there seemed little benefit in intro-
ducing further artificial approximations such as conductor-like polarizable continuum, 
molecular electron density (SMD) or conductor-like screening models (COSMO) [107–111] 
when the aim was to construct an approximate but internally consistent steric–electronic 
map rather than to seek out absolute values. 

The data points may be loosely grouped according to the charge on the complex, with 
the general observation that as this increased from anionic through neutral to cationic, so 
too did the kCO value. It should, however, be noted that these groupings are not well sep-
arated. Rather, some cationic complexes are coordinated by strong net σ-donors, e.g., 
N,N′,N″-trimethyltriazacyclononane (Me3[9]aneN3, Entry 7) and tris(dimethylpyra-
zolyl)methane (HC(pzMe2)3, Entry 17), such that comparatively low values are observed 

Figure 4. Corey–Pauling–Koltun representations of facial ligand from Tables 1 and 2 in the complexes
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(b) cyclopentadienyls and carbaboranes; (c) miscellaneous facial ligands.

A bonus of the requisite frequency calculations is that the vibrational mode for the
W≡C bond may be readily identified, though in contrast to similar essentially ‘pure’
vibrations for terminal oxo (M≡O) and toluidyne (M≡N) ligands, this is by necessity
coupled to the vibration of the C–C bond connecting it to the aryl substituent. This mode
appears within a remarkably narrow frequency range (1345–1356 cm−1), with the exception
of 4 (1334 cm−1), perhaps also reflecting the electron-releasing nature of the HB(ImMe)3
ligand. The intensity of this mode, however, varies substantially, such that in some cases it
is unlikely to be unambiguously identified in experimental IR spectra. This invariance in
the value of νWC is also reflected in the derived Löwden bond orders (Table 2) for this bond,
which fall within the very narrow range of 2.32–2.41. This is despite considerable variation
in the calculated natural charge on tungsten (+0.405 to +1.177), while that for carbon is
comparatively invariant (–0.105 to –0.299); i.e., electroneutrality would appear to balance
charge distribution within the ‘LW’ unit so as to not significantly transmit this influence to
the carbyne ligand.

Table 1 presents νCO frequencies corrected by an anharmonic scaling factor (λ1) of
0.9740 as implemented in the SPARTAN20® software for the ωB97X-D/6-31G* combi-
nation [101,102], which, however, still overestimates these frequencies relative to those
observed experimentally. Calculated vibrational frequencies generally exceed experimen-
tally determined values due to incomplete incorporation of electron correlation, neglect of
mechanical anharmonicity and the use of finite basis sets [103–105].

This overestimation is assumed to be relatively uniform, allowing for the development
of generic scaling factors (λ) derived via least-squares analysis of calculated vs. exper-
imental frequencies for various test sets of molecules. Such test sets typically involve
small molecules comprising first and second row elements but rarely metals. Moreover,
single scaling factors are not universally appropriate for the entire vibrational spectroscopy
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range (400–4000 cm−1) [106], and the fundamental modes from which they are derived
generally fall below the range of interest to organometallic chemists (1800–2200 cm−1). For
the present discussion, it therefore seems appropriate to consider an alternative scaling
factor (λ2 = 0.9297), which we have derived from consideration of 18 experimental and fun-
damental modes from Table 2, with the caveat that only data measured in dichloromethane
solutions were used, discarding those from solid-state or alkane solution measurements.
Gas phase data were calculated, since there seemed little benefit in introducing further
artificial approximations such as conductor-like polarizable continuum, molecular electron
density (SMD) or conductor-like screening models (COSMO) [107–111] when the aim was
to construct an approximate but internally consistent steric–electronic map rather than to
seek out absolute values.

The data points may be loosely grouped according to the charge on the complex, with
the general observation that as this increased from anionic through neutral to cationic, so too
did the kCO value. It should, however, be noted that these groupings are not well separated.
Rather, some cationic complexes are coordinated by strong net σ-donors, e.g., N,N′,N′′-
trimethyltriazacyclononane (Me3[9]aneN3, Entry 7) and tris(dimethylpyrazolyl)methane
(HC(pzMe2)3, Entry 17), such that comparatively low values are observed for νCO and kCO.
Likewise, the icosohedral dicarbollide complexes [W(≡CC6H4Me-4)(CO)2(η5-C2B9H9R2)]–

(R = H, Me), whilst anionic, have frequencies not dissimilar to those of neutral 4 (Entry
1) and 5 (Entry 2), while the anionic docosohedral example [W(≡CC6H4Me-4)(CO)2(η6-
C2B10H10Me2)]– has a considerably higher kCO value 15.04 Ncm−1. There is no correlation
obvious to us between the net charge on the complex and derived WC bond orders or
W≡C bond lengths for the carbyne ligand.

2.4. Sub-Series of Ligands

Tables 1 and 2 along with Figures 3 and 4 contain a number of as yet hypothetical
derivatives that have yet to be prepared but which would appear to be entirely plausible
based on the demonstrated viability of the ligands L in other systems. Some comments on
sub-classes now follow.

2.4.1. Hydrotris(N-R1-imidazolylidenyl)borates

Central to this communication are the tris(imidazolylidene)borates HB(ImR1)3. From
Figure 3, it is clear that the ligand HB(ImMe)3 occupies a position in a somewhat sparsely
populated area of the electronic–steric map, being both strongly basic and also imparting
considerable steric prophylaxis upon the carbonyl and carbyne co-ligands akin to that
provided by the popular HB(pzMe2)3 ligand. The experimental and calculated values for
kCO are comparable to those for Stone’s dicarbollide complexes (L = η5-C2B9H9R2 R = H,
Me) [79,88] which, however, carry a net negative charge, and so it must be assumed much
of the negative charge resides within the carbaborane cage.

As expected, the %Vbur value for 4 is close to that of 5. Smith has developed synthetic
routes to the pro-ligand salts that carry N-substituents of varying bulk (tBu, Cy, C6H2Me3-
2,4,6) [4] and accordingly entries 1 (R1 = Me, 4), 35 (R1 = Et), 36 (R1 = iPr), 37 (R1 = tBu) and
38 (R1 = Ph) survey the sequential inclusion of increasing steric bulk at the position β to
the metal. All attempts to geometrically minimize, or indeed even reasonably construct,
the derivative with R1 = mesityl met with spectacular failure, perhaps indicating a step
too far, though this ligand has been successfully installed on four-coordinate nickel [37].
The phenyl derivative 38, however, is able to accommodate unsubstituted aryl groups by
allowing them to interdigitate between the carbonyl and carbyne ligands such that the
aryl planes are near colinear with the W. . .B vector. A very approximate value for the
%Vbur of 56.6% is provided by the hypothetical and implausible (distorted) octahedral
complex [WMe3{HB(ImMes)3] (PM3tm level of theory). While it is not dissimilar to the
value (59.8%) estimated for L = neutral MeC(CH2PPh2)3 (16) and anionic MeB(CH2PPh2)3
(31), inclusion of this excessive steric bulk would seem problematic. It should, how-
ever, be noted that a rich organometallic chemistry has emerged for the dihydrobis(N-
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mesitylimidazolylidenyl)borate ligand coordinated to tantalum [33,34], for which the biden-
tate variant presents a considerably reduced steric impact, e.g., Vbur = 39.8% in pseudo-
octahedral [TaMe4{H2B(ImMes)2}]. The trifluoromethylimidazolylidenyl derivate (Entry
39) was also considered and found to be a rather modest net donor (νCO = 15.2 Ncm−1)
while presenting a comparatively occlusive encapsulating pocket (Vbur = 57.1%). The only
currently available synthesis of N-trifluoromethylimidazole [111] is, however, not particu-
larly amenable to the scales needed for an exploration of the HB(ImCF3)3 ligand. Figure 5
depicts the steric maps that arise from %Vbur calculations and shows the progression in
steric encumbrance as the N-substituents are replaced along the alkyl series R1 = Me, Et,
iPr, tBu alongside those for R = Ph and CF3.
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What is immediately apparent from Figure 4 is that replacement of the ‘parent’ N-
methylimidazole, which is both commercially available and cheap, with ethyl, iso-propyl
or phenyl imidazoles actually results in very modest variation in the steric impact around
the coordination sphere of the metal because the groups can direct their bulk away from
the carbonyl and carbyne ligands. It is only with the tBu (and to a lesser extent the
CF3) derivative that this bulk is unavoidably directed towards the metals centre. This is
clear when the 3.5 Å value typically and arbitrarily employed in %Vbur calculations is
replaced by 4.0, 5.0 and 6.0 Å (Figure 6), respectively. Thus, inclusion of phenyl, primary
or secondary alkyl groups appears to have rather a modest steric influence directly on
the metal coordination sphere but may contribute in a secondary manner to compound
longevity by reducing the collisional cross section (Arrhenius pre-exponential factor) for
proceeding reactions. It seems that only with tertiary alkyl (e.g., tBu) or ortho-substituted
aryl substituents (e.g., mesityl) that a significant impact on the steric profile is likely to
manifest in the reactivity.
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An intriguing question does, however, arise when the steric bulk is exaggerated, in that
whilst this might be expected to increase the donor strength of the NHC:→W interaction,
the inter-ligand repulsion is such that there is a notable increase in the W–C bond lengths
of both the NHC donors cis (mean value) and trans to the carbyne (Table 3).

Table 3. Steric Impact of N-substituents in the Complexes [W(≡CC6H4Me)(CO)2{HB(ImR)3}].

R Mean W–C Mean W–Ccis W–Ctrans TR a

Å Å Å

Me 2.262 2.226 2.335 1.049

CF3 2.276 2.232 2.365 1.060

Et 2.268 2.233 2.339 1.047
iPr 2.268 2.232 2.341 1.049

Ph 2.277 2.237 2.357 1.054
tBu 2.349 2.312 2.424 1.048

a (W–Ctrans)/(Mean W–Ccis).

Thus, the simple σ-basicity vs. π-acidity of the free NHC is only part of the story if the
metal–donor bond length increases (weakens?) significantly. This does not appear to be the
case in the present system, in that while the tBu derivative has especially long NHC–W bond
lengths, it is nevertheless the most potent net donor (kCO = 14.41 Ncm−1) of all the ligands
considered. In the case of the complexes [Ni(NO)(L)] where L represents a sub-set of ligands
considered in Tables 1 and 2 (η5-C5Me5, Tp*, Hb(mttBu)3 and PhB(CH2PPh2)3 [112–116])
alongside those for selected tris(imidazolylidenyl)borates RB(ImR1)3 (R = H, Ph; R1 = Me,
tBu, Mesilyl, CH2Cy [37]), Smith employed nitrosyl stretching frequency as a measure of the
relative donor ability of ‘L’. Similar σ-donor/π-acceptor arguments apply as they do to CO
with the caveat that depending on the electronic nature of the metal centre, the nitrosyl may
bend; i.e., lower values for νNO may indicate an electron rich metal centre or bending, which
becomes more prevalent for late-transition metal centres with high d-occupancies [117]. In
the case of four-coordinate nitrosyls of nickel, the situation is complicated by subtleties in
the electronic nature of the nickel that remain moot [47,49]. While Smith was consistent in
reporting data from the same essentially non-coordinating solvent toluene (or sometimes
THF), data from other sources were acquired from a variety of media (not always stated)
including the solid state (KBr, Nujol, Ar(s), etc.). The selenoimidazolylborate is a case
in point for which the reported solid-state IR spectrum comprised two νNO bands [114].
Since the crystal structure revealed a single crystallographically independent molecule, one
might assume the second vibrational mode was due to an alternative crystal modification
in the bulk sample. Given the two bands differ by 11 cm−1 and the entire Tolman νT scale
only spans 45 cm−1, the importance of using solution derived data, preferably from a
common solvent, is demonstrated.
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2.4.2. Cyclopentadienyl Derivatives

In terms of percentage buried volume, the cyclopentadienyl ligand is somewhat
unassuming (Vbur = 35.2%), and this is most commonly ‘bulked out’ via permethylation
(12: L = C5Me5 Vbur = 42.4%), inclusion of trimethylsilyl substituents (26: L = C5H3(SiMe3)2
Vbur = 54.5%) or benzannulation with either one (22: L = indenyl Vbur = 37.3%) or two
(23: L = fluorenyl Vbur = 40.4%) benzo rings. This imbues variable electron-releasing nature
in the series C5H3(SiMe3)2 > C5Me5 > C5H5 ≈ fluorenyl > indenyl. A subtlety emerges from
the geometry minimization of the indenyl derivative, which reveals a structural basis for Ba-
solo’s ‘indenyl effect’ [61,118,119]. Incipient ring slippage (η5→η3) might be inferred, given
that the angle between the tungsten, the cyclopentadienyl ring centroid and the unique car-
bon atom is slightly acute (84.8◦), such that the unique carbon (2.319 Å) and adjacent pseudo
η3-carbons (2.355, 2.352 Å) are noticeably closer to tungsten than are the benzo-fused car-
bons (mean: 2.534 Å). The C6H4 unit makes an angle of ca 5.9◦ with the three non-ring-fused
carbons of the cyclopentadienyl ring. This slippage places the benzenoid ring trans to the
carbyne ligand, as might be expected based on the characteristic trans influence of carbyne
ligands. Experimentally acquired structural data are not currently available for indenyl,
fluorenyl or bis(trimethylsilyl)cyclopentadienyl ligated carbynes through which to further
explore this question, though enhanced reactivity in associative ligand addition reactions
has been noted for the indenyl carbyne [Mo(≡CC6H3Me2-2,6)(CO)2(η5-C9H7)] [61].

Although no examples exist of carbyne complexes bearing by the perchlorocyclopentadienyl
ligand (25: L = η5-C5Cl5), the tricarbido bimetallic complex [ReMn(µ2-C3)(CO)2(NO)(PPh3)(η5-
C5H5)(η5-C5Cl5)]+ described by Gladysz [120,121] might be viewed as possessing a degree of
manganese carbyne character. Perchlorination results in a modest increase in the steric bulk of
the ligand (40.8 cf. 42.4% for η-C5Me5) but a quite substantial decrease in donor ability (kCO
= 15.51 Ncm−1). Perphenylation, in contrast, has only a modest effect on the net basicity of
the ligand (kCO = 15.34 Ncm−1), while the buried volume increases significantly (Vbur = 48.3%)
due to the requisite orientation of the aryl groups to near orthogonal to the cyclopentadienyl
plane. The tetraphenylcyclopentadienyl carbyne complex [W(≡CPh)(PPh2C6H4CH=CHPh)(η5-
C5HPh4)] [122] and a single rather exotic pentaphenylcyclopentadienyl complex [W(≡CPh)
(NCMe)(η2-C60)(η5-C5Ph5)] [123] have been described.

2.4.3. Arene Derivatives

While hexahapto arene co-ligated carbyne complexes such as 18, 20 and 21 ap-
pear unknown, a manifold of intriguing molybdenum carbyne complexes bearing the
C6H4(C6H4PiPr2-2)2-1,4 trans-coordinating diphosphine have been shown by Agapie to
enter into variable degrees of arene-molybdenum interaction during transformations that
demonstrate the interplay of carbyne and carbido ligands [124–127]. It therefore seems
reasonable to anticipate that compounds akin to Entries 18, 20 and 21 will emerge. It is
apparent that conclusions similar to those for cyclopentadienyl substituents will result,
except that the overall complex bears a positive charge, providing a point of connection
with group 7 carbynes [M(≡CR)(CO)2(η5-C5H5)]+ (M = Mn, Re) [128–132]. The hexaethyl-
benzene derivative 21 would appear to present a sterically quite encapsulating environment
(Vbur = 53.3%) cf. the hexamethyl analogue (Vbur = 45.9%) due to the 3-up/3-down mutual
disposition of the ethyl substituents. This feature has been employed to favour unusual re-
giochemistry in selective alkane binding by the ‘W(CO)2(η6-C6Et6)’ fragment [133]. Finally,
we note that the inorganic benzene B3N3Me3 has, as expected, a steric profile similar (Vbur
= 46.2%) to that of C6Me6 (Vbur = 45.9%), and the non-planar ring is a comparable net donor
to the tungsten centre (kCO = 15.84 Ncm−1 vs. 15.85 Ncm−1 for 20). This is also implicit
from infrared data for [Cr(CO)3(η6-B3N3Me6)] (Cyclohexane: νCO = 1963, 1867 cm−1) vs.
[Cr(CO)3(η6-C6Me6)] (νCO = 1962, 1888 cm−1) provided in a publication in which Werner
indicated that [W(CO)3(η6-B3N3Me6)] also appeared viable [134,135].
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2.4.4. Pnictolyl Ligands

Schrock has explored the utility of high oxidation state carbene and carbyne com-
plexes ligated by σ- and η5-pyrollyl ligands [136], though low oxidation variants have yet to
emerge. Carbynes ligated by the heavier pnictolyl ligands η5-AC4R4 (A = P, As), however,
remain unknown, though both ligands have been shown to serve as ersatz cyclopentadi-
enyls [137–140]. With the ready availability of synthetic routes to anionic pnictolyl reagents,
it may be presumed that complexes of the form [M(≡CR)(CO)2(η5-AC4R’4)] (A = P, As, Sb)
will emerge in the future, given that, like carbynes, arsolyl ligands have been shown to
support intermetallic bonding [141–143].

2.4.5. Toluidyne Orientation

Perusal of the structures, experimentally or computationally derived, reveals a broad
range of orientations of the toluidine ring with respect to the nominal coordination axes.
This is of secondary importance in that for all examples, the 1H NMR spectra involve a
simple AA’BB’ pattern indicating free rotation on the 1H NMR (and 13C) NMR timescale(s).
Arbitrarily adopting the cationic carbyne formalism ([CF]+, [NO]+ and CO being isoelec-
tronic molecules), coordinated to a d6-ML5 fragment, the two carbyne acceptor orbitals
vary in energy by only 0.2 eV, as do the two metal retrodative orbitals (HOMO-1, HOMO-2)
of, e.g., the ‘W(CO)2(Tp)’ fragment (Figure 7). The HOMO itself is invariably associ-
ated with metal–carbonyl π-bonding and is orthogonal (δ-symmetry) to the W–Carbyne
vector. Accordingly, any conformational preference should be presumed to reflect inter-
ligand steric factors and/or intermolecular packing effects. For the majority of structurally
characterized carbyne complexes of the M(CO)2(Tp*) fragment; for example, the carbyne
substituent typically nestles between two dimethylpyrazolyl groups. NB: The molecular
orbitals of the actual carbyne complex are, as they must be, independent of the arbitrary
electron allocation to hypothetical constituent fragments; i.e., similar interpretation based
on [CC6H4Me]3– and d2-ML5

3+ or neutral CC6H4Me-4 and d5-ML5 deconstructions lead to
the same conclusion.
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2.5. A Heterobimetallic Hydrotris(imidazolylidenyl)borate Complex

To date, the tris(imidazolylidenyl)borate class of ligands has only been employed in
monometallic systems; however, terminal carbyne ligands have an extensively documented
propensity to support metal–metal bond formation, as championed by Stone [144]. In
particular, the addition of gold(I) reagents to monometallic carbyne complexes [145–155]
is of interest due to the tendency of the carbyne to adopt a semi-bridging rather than
the more common symmetrical bridging geometry. This is considered to arise when the
carbyne bridges electronically disparate metals, and therefore, the late high d-occupancy
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metal (d10 gold(I) or platinum(0)) is considered to act as a σ-donor (Z-type metal–ligand
bonding [156]) to the carbyne carbon. Accordingly, the reaction of 4 with [AuCl(SMe2)]
was investigated and found to readily provide the bimetallic complex [WAu(µ-CC6H4Me-
4)Cl(CO)2{HB(ImMe)3}] (6, Scheme 4). The complex is somewhat unstable in solution,
slowly depositing elemental gold during unsuccessful attempts to slowly obtain crystallo-
graphically serviceable crystals. The formulation, however, rests reliably on spectroscopic
data which may be compared with precedents for other carbyne and tungsten substituents.
The reaction is accompanied by a shift in the νCO absorptions to a higher frequency (CH2Cl2:
1971, 1879 cm−1) than those of the precursor in the same solvent (1958, 1873 cm−1). The
carbyne carbon resonance in the 13C{1H} NMR spectrum appears at δC = 277.7, and while
this is only marginally shifted from that of the precursor (280.7 ppm), there is a dramatic
decrease in the value of 1JWC (85 Hz cf. 171.3 Hz for 4), which is consistent with the increase
coordination number (reduced s-character) of both tungsten and carbon. The resonances
due to the imidazolylidene donors appear at 187.7 [1JCW = 90 Hz], 173.7 [1JCW = 71 Hz] in
a similar region to the precursor but with more similar values for 1JWC (90, 71 Hz) once the
trans influence of the carbyne is alleviated upon gold adduct formation.

While the 1H and 13C{1H} NMR spectra each confirm a locally Cs symmetric environ-
ment around the tungsten, at least on these timescales, they do not distinguish between
the AuCl unit lying syn or anti to the imidazolylidene units; however, based on precedent
from the sterically similar HB(pzMe2)3 ligand, it seems likely that the AuCl unit nestles
between two imidazolylidene rings. This geometry was adequately modelled (Figure 8) at
theωB97X-D/6-31G/LANL2Dζ/gas-phase level of DFT, from which it would appear that
the W–C bond clearly retains its considerable multiple-bond character (W–C = 1.913 Å). The
W–C–C (148.9◦) and Au–C–C (121.5◦) angles indicate semi rather than symmetrical bridg-
ing such that the C–C and W–Au vectors form an obtuse angle of 101.4◦. Despite numerous
(>80) examples of structurally authenticated W–Au bonds, only two have bonds that are
not supported by bridging ligands, viz. the compounds [WAu(CO)3(PPh3)(η5-C5H4R)]
(R = H 2.698 Å [157] and CH2CH2NHMe2

+Cl– 2.712 Å [158]). The optimized Au–W bond
length for 6 (2.812 Å) is therefore comparable to these, though towards the longer end
of the range. The infrared νCO absorptions are noted at 1955 and 1899 cm−1 (λ2), while
TD-DFT analysis suggests that the colour of the complex may be attributed to absorptions
calculated at 420 nm (W–C ≈ z-axis: HOMO-LUMO; dxy-W=Cπ*), 357 (HOMO-LUMO+1;
dxy-WAuσ*) and 344 nm (HOMO-1-LUMO; W=Cπ-W=Cπ*), the first two of which involve
considerable charge transfer.
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Figure 8. (a) Optimized geometries of [W(≡CC6H4Me-4)(CO)2{HB(ImMe)3}] (4) and the hetero-
bimetallic complex [WAu(µ-CC6H4Me-4)Cl(CO)2{HB(ImMe)3}] (6) indicating changes in Löwdin
bond order (blue) and natural atomic charge (red) upon ‘AuCl’ adduct formation (ωB97X-D/6-
31G*/LANL2Dζ, hydrogen atoms omitted, tolyl and imidazolyl groups simplified). (b) Frontier
molecular orbitals of interest for 6 at Isovalue = 0.032

√
(e/au2).
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3. Experimental
3.1. General Considerations

Experimental work was performed using standard Schlenk techniques with pure
dry nitrogen or argon, or in an argon atmosphere glovebox, unless otherwise specified.
All solvents used in the syntheses were dried and degassed. Unless otherwise indicated,
reagents were used as received from commercial suppliers.

Infrared data were obtained using a Shimadzu FTIR-8400 for solutions and a Perkin
Elmer FTIR Spectrum 2 for solid-state ATR measurements. NMR spectra were measured
using Bruker Avance 400, Bruker Avance 600 or Bruker Avance 800 spectrometers at the
temperatures indicated. Chemical shifts (δ) are reported in ppm with coupling constants
in Hz, all referenced to the appropriate solvent resonance. Multiplicities indicated do
not include the satellites for the 183W isotopomers, the couplings for which are listed
separately. Positive ion high-resolution electrospray ionisation mass spectroscopy (ESI)
data were provided by the ANU Research School of Chemistry Joint Mass Spectrometry
team; an acetonitrile matrix was used for all samples. Single-crystal X-ray diffraction (XRD)
crystallographic data were acquired with a SuperNova CCD diffractometer using Mo-Kα
radiation (λ = 0.71073 Å), employing CrysAlis PRO software [159] (https://www.agilent.
com/ accessed on 20 November 2023), refined with Olex2 [160], and structural models were
depicted using Mercury [161]. Elemental microanalytical data were not acquired [162].

Computational studies were performed using the SPARTAN20 suite of programs [40]. Cyclic
voltammetry (CV) was performed using a PalmSens 4 Potentiostat/Galvanostat/Impedance Anal-
yser and carried out in a single-compartment 3-electrode glass cell, with a 3 mm glassy carbon
working electrode, platinum wire counter electrode and silver wire pseudo-reference electrode.
Analyte solutions were prepared at 1 mM in dichloromethane with 0.1 M [NBu4][PF6] supporting
electrolyte. Solutions were sparged with N2 bubbled through dichloromethane prior to measure-
ments, then maintained under an atmosphere of N2 during voltammetry. All measurements were
referenced to ferrocene, which was added to the solution following each measurement.

Infrared and NMR spectra for all new compounds are provided in the accompanying
Supplementary Materials.

3.2. Synthesis of [W(≡CC6H4Me-4)(CO)2(pic)2(Br)] (2a)

Note: the following synthesis is a modified version of the synthesis of cis,cis,trans-
[W(≡CC6H3Me2-2,6)(CO)2(pic)2Br] [15]. A solution of 4-bromotoluene (6.568 g, 38.40 mmol)
in diethyl ether (60 mL) was cooled to 0 ◦C before lithium (0.618 g, 89.0 mmol, hammered and
cut wire) was added. This was stirred vigorously at 0 ◦C for 30 min before being allowed to
slowly warm to room temperature and being stirred for a further 3 h. The lithium reagent was
added dropwise to a suspension of [W(CO)6] (8.445 g, 24.00 mmol) in diethyl ether (60 mL)
until IR spectroscopy indicated no [W(CO)6] remained. The red solution was cooled to –78 ◦C
before trifluoroacetic anhydride (3.40 mL, 24.3 mmol) was added dropwise over a period of 10
min, resulting in a yellow precipitate. After stirring for 30 min at –78 ◦C, 4-picoline (6.0 mL,
62 mmol) was added. The suspension was allowed to slowly warm to room temperature and
stirred overnight. The yellow precipitate was isolated via cannula filtration and extracted
with dichloromethane (60 mL) and the combined extracts were filtered through diatomaceous
earth, followed by washing with further dichloromethane until the extracts were colourless
(total volume 200 mL). The solvent volume was reduced to ca 40 mL under reduced pressure
before slow dilution with hexane (300 mL) to precipitate a yellow-orange solid that was freed
of supernatant via cannula filtration. Hexane (80 mL) was added, and the suspension was
ultrasonically triturated for 10 min to remove residual [W(CO)6]. The yellow-orange solid
was collected on a sinter, washed with further hexane (20 mL) and dried under high vacuum
(13.094 g, 21.446 mmol, 89% isolated yield).

IR (CH2Cl2, cm−1): 1986 vs. νCO, 1897 vs. νCO. IR (ATR, cm−1): 1970 vs. νCO, 1881 vs.
νCO.1H NMR (600 MHz, CD2Cl2, 298 K) δH = 8.91 [d, 4 H, 3JHH = 7, H2,6(pic)], 7.25 [d, 2 H,
3JHH = 8, H2,6(C6H4)], 7.13 [d, 4 H, 3JHH = 7, H3,5(pic)], 7.09 [d, 2 H, 3JHH = 9, H3,5(C6H4)],
2.38 [s, 6 H, pic-CH3], 2.29 [s, 3 H, tolyl-CH3]. 13C{1H} NMR (151 MHz, CD2Cl2, 298 K)
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δC = 263.9 [1JWC = 203 Hz, W≡C], 221.4 [1JWC = 169 Hz, CO], 153.3 [C2,6(pic)], 151.0
[C4(pic)], 146.9 [C1(C6H4)], 138.5 [C4(C6H4)], 129.4 [C2,6(C6H4)], 129.1 [C3,5(C6H4)], 126.3
[C3,5(pic)], 21.8 [tolyl-CH3], 21.3 [pic-CH3]. MS (ESI, +ve ion, m/z): Found: 609.0375. Calcd
for C22H22N2O2

79Br184W [M + H]+: 609.0374. Crystals suitable for structural determination
were grown from liquid diffusion of diethyl ether into a saturated dichloromethane solution
of the sample at -20 ◦C. Crystal Data for C22H21BrN2O2W.(OEt2)0.5 (Mw= 646.23 gmol−1):
monoclinic, space group C2/c (no. 15), a = 23.3477(7) Å, b = 12.5106(2) Å, c = 17.9409(5)
Å, β = 110.628(3) ◦, V = 4904.4(2) Å3, Z = 8, T = 150.0(1) K, µ(Mo Kα) = 6.364 mm−1,
Dcalc = 1.750 Mgm−3, 37431 reflections measured (7.422◦ ≤ 2Θ ≤ 64.280◦), 8075 unique
which were used in all calculations. The final R1 was 0.0311 (I > 2σ(I)) and wR2 was 0.0671
(all data) with 291 refined parameters with one restraint, CCDC 2305468. The molecular
geometry in the solid state is depicted in Figure 9.
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[Mo(CO)6] remained, as indicated by in situ IR spectroscopy. The red solution was cooled 
to –78 °C before trifluoroacetic anhydride (3.40 mL, 24.3 mmol) was added dropwise over 
a period of 10 min. After being stirred for 45 min at –78 °C, 4-picoline (6.0 mL, 62 mmol) 
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Figure 9. Molecular structure of cis,cis,trans-[W(≡CC6H4Me-4)(CO)2(pic)2(Br)] in a crystal (50%
displacement ellipsoids, hydrogen atoms omitted for clarity).

3.3. Synthesis of [Mo(≡CC6H4Me-4)(CO)2(pic)2(Br)] (2b)

A solution of 4-bromotoluene (6.842 g, 40.00 mmol) in diethylether (50 mL) was
cooled to 0 ◦C before lithium (1.3 g, 190 mmol, hammered and cut wire) was added. This
was stirred vigorously at 0 ◦C for 30 min before being allowed to slowly warm to room
temperature and being stirred for a further 3.5 h. The lithium reagent was added dropwise
to a suspension of [Mo(CO)6] (6.338 g, 24.01 mmol) in diethyl ether (60 mL) until negligible
[Mo(CO)6] remained, as indicated by in situ IR spectroscopy. The red solution was cooled
to –78 ◦C before trifluoroacetic anhydride (3.40 mL, 24.3 mmol) was added dropwise over
a period of 10 min. After being stirred for 45 min at –78 ◦C, 4-picoline (6.0 mL, 62 mmol)
was added. The suspension was allowed to slowly warm to room temperature and stirred
overnight. The yellow precipitate was isolated via cannula filtration and extracted with
dichloromethane (50 mL) and the extracts filtered through diatomaceous earth, followed
by washing with further dichloromethane (6 × 5 mL). The volume was reduced to 50 mL
under reduced pressure before slow dilution with hexane (120 mL) to precipitate a yellow
solid that was freed of supernatant via cannula filtration and dried under high vacuum
(8.473 g, 16.25 mmol, 68% isolated yield).

IR (CH2Cl2, cm−1): 2000 vs. νCO, 1918 vs. νCO. IR (ATR, cm−1): 1986 vs. νCO, 1913
vs. νCO. 1H NMR (600 MHz, CD2Cl2, 298 K) δH = 8.87 [d, 4 H, 3JHH = 6, H2,6(pic)], 7.36
[d, 2 H, 3JHH = 8, H2,6(C6H4)], 7.08-7.14 [m, 6 H, H3,5(pic) and H3,5(C6H4) over-lapped],
2.37 [s, 6 H, pic-CH3], 2.32 [s, 3 H, tolyl-CH3]. 13C{1H} NMR (151 MHz, CH2Cl2, 298 K)
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δC = 276.8 [Mo≡C], 224.4 [CO], 152.9 [C2,6(pic)], 150.6 [C4(pic)], 143.5 [C1(C6H4)], 139.5
[C4(C6H4)], 129.3 [C3,5(C6H4)], 129.2 [C2,6(C6H4)], 125.9 [C3,5(pic)], 21.8 [tolyl-CH3], 21.26
[pic-CH3)]. MS (ESI, +ve ion, m/z): Found: 443.0659. Calcd for C22H22N2O2

98Mo [M – Br]+:
443.0662.

3.4. Synthesis of [Tris(1-methylimidazolium)borate] Bis(hexafluorophosphate) ([1](PF6)2)

A 1 L three-necked flask was fitted with a stirrer bar, water-cooled reflux condenser,
pressure-equalizing dropping funnel and a gas outlet leading to a NaOH scrubber. The
entire apparatus was flushed with nitrogen for 30 min before trimethylamine-borane
complex (7.32 g, 100 mmol) was added, followed by 150 mL degassed chlorobenzene.
To the dropping was added 50 mL chlorobenzene and bromine (7.8 mL, 85 mmol Br2).
The bromine solution was added to the flask at a rate of about one drop/second whilst
the reaction was flushed with a gentle stream of nitrogen. This reaction is initially very
exothermic and the rate of bromine addition should be adjusted accordingly; caution should
also be exercised, since hydrogen gas is also liberated at this stage. After approximately half
of the bromine had been added, the exothermicity was less pronounced and rate of addition
of the remainder could be increased safely. The mixture was then stirred for 3 h at ambient
temperature, during which time the orange colour of bromine slowly faded to a pale
yellow. Hydrogen bromide was liberated during this time as nitrogen was continuously
swept over the reaction. N-methylimidazole (28 mL, 330 mmol) was added to the mixture,
and the apparatus was carefully transferred to a heating mantle, where it was brought
to reflux for 4-6 h. Upon heating, a white crystalline solid precipitated from the reaction
mixture; extended heating is to be discouraged, as this leads to the formation of tarry
yellow materials and poor yields of product. The chlorobenzene layer was decanted from
the solids while warm, and the flask was then rinsed with 3 × 100 mL portions of toluene;
the washings were subsequently discarded. The white solid was dissolved into 100 mL
methanol and added slowly to a vigorously stirred solution of NaPF6 (35 g, 210 mmol;
NaBF4 may also be used) in 100 mL methanol, from which the product precipitated as a
fluffy white solid. The white solids were collected via filtration, washed with 3 × 50 mL
portions each of methanol and Et2O and dried under suction. Purity was sufficient for
synthetic purposes, though an analytically pure sample was obtained via re-crystallisation
from acetone/Et2O (vapour diffusion). Isolated yield 11.50 g (21 mmol, 21%) as the PF6 salt
or 12.90 g (30 mmol, 30%) as the BF4 salt.

IR (THF, cm−1): 2454 w νBH. IR (ATR, cm−1): 2455 vs. νBH, 827 vs. νPF. 1H
NMR (400 MHz, CD3CN, 25 ◦C): δH = 8.17 (s, 3 H, N2CH), 7.38 (t, 3JHH = 1.7 Hz, 3 H,
NCHCH), 7.17 (t, 3JHH = 1.7 Hz, 3 H, NCHCH), 3.87, (s.br, 1 H, BH), 2.18 (s, 9 H, NCH3).
13C{1H} NMR (101 MHz, CD3CN, 25 ◦C): δC= 139.9 (N2C), 125.6 (NCC), 124.2 (NCC), 36.4
(NCH3). 11B{1H} NMR (128 MHz, CD3CN, 25 ◦C): δB = −3.50 (BH). 11B NMR (128 MHz,
CD3CN, 25 ◦C): δB = −3.42 (d, 1JBH = 121.7 Hz, BH). 19F NMR (376 MHz, CD3CN,
25 ◦C): δF = −72.9 (d, 1JPF = 708 Hz, PF6). 31P{1H} NMR (162 MHz, CD3CN, 25 ◦C): δP
= −144.6 (sept, 1JPF = 700 Hz, PF6). MS (ESI, +ve ion, m/z): Found: 257.1685. Calcd for
C12H18N6

11B. [M–H]+: 257.1686. Crystal Data for C12H19BF12N6P2 (Mw = 548.08 gmol−1):
monoclinic, space group P21/n (no. 14), a = 20.7403(2) Å, b = 10.10590(10) Å, c = 20.7879(2)
Å, β = 97.4530(10)◦, V = 4320.32(7) Å3, Z = 8, T = 150.2(1) K, µ(CuKα) = 2.945 mm−1,
Dcalc = 1.685 Mgm−3, 54277 reflections measured (5.664◦ ≤ 2Θ ≤ 156.216◦), 9112 unique
(Rint = 0.0625, Rsigma = 0.0400), which were used in all calculations. The final R1 was 0.0603
(I > 2σ(I)) and wR2 was 0.1725 (all data) for 711 refined parameters with 296 restraints.
CCDC 2305467.

3.5. Synthesis of [W(≡CC6H4Me-4)(CO)2{HB(ImMe)3}] (4)

Tris(1-methylimidazolium)borate bis(hexafluorophosphate) ([1](PF6)2: 0.400 g, 0.730 mmol)
was dissolved in tetrahydrofuran (30 mL) and cooled (dry ice/propanone). A solution of n-
butyllithium (1.40 mL, 1.6 M, 2.20 mmol, hexanes) was added dropwise at –78 ◦C. While being
stirred for 90 min at this temperature, the solution became pale yellow, at which point solid
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[W(≡CC6H4Me-4)(CO)2(γ-pic)2(Br)] (2a: 0.45 g, 0.70 mmol) was added. After it was stirred
at this temperature for 15 min, the mixture was allowed to warm to room temperature and
stirred for a further 3 h and then freed of volatiles under reduced pressure. The residual black
tar was dissolved in a minimum of dichloromethane (~5mL) and subjected to flash column
chromatography (silica gel, N2, CH2Cl2). The orange band that eluted first was collected, and
the solvent was removed under reduced pressure to give (4) a bright orange powder. Yield:
0.11 g (0.18 mmol, 20%).

IR (CH2Cl2, cm−1): 2453 w νBH, 1958 vs. νCO, 1873 vs. νCO. IR (ATR, cm−1): 2442
w νBH, 1949 vs. νCO, 1867 vs. νCO. 1H NMR (800 MHz, CD2Cl2, 25 ◦C): δH = 7.36 [d,
3JHH = 7.4 Hz, 2 H, H2,6(C6H4)], 7.11 [d, 3JHH = 1.4 Hz, 2 H, NCHCH], 7.08 (d, 3JHH = 1.5 Hz,
1 H, NCCH], 7.07 [d, 3JHH = 7.0 Hz, 2 H, H3,5(C6H4)], 6.84 [d, 3JHH = 1.4 Hz, 2 H, NCCH],
6.76 [d, 3JHH = 1.3 Hz, 1 H, NCCH], 3.80 [s, 3 H, NCH3), 3.79 [s, 6 H, NCH3], 2.26 [s, 3 H,
CCH3]. 13C{1H} NMR (201 MHz, CD2Cl2, 25 ◦C): δC = 280.7 [1JCW = 171.3 Hz, W≡C], 223.3
[1JCW = 132.1 Hz, CO], 192.5 [1JCW = 95.0 Hz, NCN)], 181.7 [1JCW = 44.7 Hz, NCN], 151.5
[2JCW = 39.1 Hz, C4(C6H4)], 136.9 [C2,6(C6H4)], 129.0 [C3,5(C6H4)], 128.8 [C4(C6H4)], 124.3
[C5(C3N2H2)], 123.7 [C5(C3N2H2), 120.7 [C4(C3N2H2)], 120.3 [C4(C3N2H2)], 38.8 [NCH3],
38.1 [NCH3], 21.8 [CCH3]. 11B{1H} NMR (128 MHz, CDCl3, 25 ◦C): δB = −1.41 (BH). 11B
NMR (128 MHz, CDCl3, 25 ◦C): δB = −1.35 (d, 1JBH = 97.9 Hz, BH). MS (ESI, +ve ion,
m/z): Found: 599.1572. Calcd for C22H24

11BN6O2
184W. [M + H]+: 599.1563. CV (CH2Cl2):

E 1
2

= 0.00 V vs. [Fe(C5H5)2]/ [Fe(C5H5)2]+. See Figure 8 for computationally optimized
molecular structure.

3.6. Synthesis of [W(≡CC6H4Me-4)(CO)2(Tp*)] (5)

The complex has been previously described via the reaction of the thermolabile in-
termediate [W(≡CC6H4Me-4)Br(CO)4] (from [W{=C(OMe)C6H4Me-4}(CO)5] and BBr3)
and K[Tp*] (80%) [17]. The present synthesis follows a similar approach to the synthesis of
[W(≡CC6H3Me2-2,6)(CO)2(Tp)] [17]. Sodium hydrotris(3,5-dimethyl-1-pyrazolyl) borate
(0.183 g, 0.544 mmol) was dissolved in dichloromethane (15 mL) and added to a solu-
tion of [W(≡CC6H4Me-4)(CO)2(γ-pic)2(Br)] (2a: 0.307 g, 0.506 mmol) in dichloromethane
(20 mL) with stirring overnight. The solution slowly darkened from pale orange to dark
red, and this transition was visible after 3 h. Solvent and picoline were removed under
reduced pressure, and the residue was redissolved in a minimum of dichloromethane
(~2mL) and purified via flash column chromatography using a 1:2 DCM to petroleum
spirits 60–80 eluent (silica gel, N2). The orange fraction which eluted first was collected,
and solvent was removed under reduced pressure to give (5) a bright orange powder. Yield:
217 mg (0.339 mmol, 67%). IR (CH2Cl2, cm−1): 2554w νBH, 1971 vs. νCO, 1879 vs. νCO. IR
(ATR, cm−1): 2550 w νBH, 1954 vs. νCO, 1861 vs. νCO. 1H NMR (800 MHz, CDCl3, 25 ◦C):
δH = 7.36 [d, 3JHH = 7.4 Hz, 2 H, H2,6(C6H4)], 7.10 [d, 3JHH = 7.9 Hz, 2 H, H3,5(C6H4)], 5.89
[s, 2 H, H4(pz)], 5.79 [s, 1 H, H4(pz)], 2.52 [s, 6 H, pzCH3], 2.47 [s, 3 H, pzCH3], 2.38 [s, 6 H,
pzCH3], 2.35 [s, 3 H, pzCH3], 2.31 [s, 3 H, C6H4CH3). 13C{1H} NMR (201 MHz, CDCl3,
25 ◦C): δC = 279.2 [1JCW = 186.3 Hz, W≡C], 224.0 [1JCW = 166.5 Hz, CO], 152.4 [C5(pz)], 152.1
[C5(pz)], 148.0 [2JCW = 42.5 Hz, C1(C6H4)], 145.7 [C3(pz)], 144.5 [C3(pz)], 137.8 [C2,6(C6H4)],
129.3 [C3,5(C6H4)], 128.8 [C4(C6H4)], 106.7 [C4(pz)], 106.5 [C4(pz)], 21.8 [C6H4CH3], 16.7
[pzCH3], 15.4 [pzCH3], 12.8 [pzCH3], 12.8 [pzCH3)]. 11B{1H} NMR (128 MHz, CDCl3,
25 ◦C): δB = −9.17 (BH). 11B NMR (128 MHz, CDCl3, 25 ◦C): δB = −9.15 (br, BH). MS (ESI,
+ve ion, m/z): Found: 641.2039. Calcd for C25H30

11BN6O2
184W 641.2033. [M + H]+. CV

(CH2Cl2): E 1
2

= 0.18 V vs. [Fe(C5H5)2]/ [Fe(C5H5)2]+.

3.7. Synthesis of [WAu(µ2-CC6H4Me-4)Cl(CO)2{HB(ImMe)3}] (6)

To a solution of [W(≡CC6H4Me-4)(CO)2{HB(ImMe)3}] (4: 20 mg, 0.033 mmol) in
dichloromethane (5 mL) was added [AuCl(SMe2)] (10 mg, 0.034 mmol) with stirring, where-
upon the solution turned from bright orange to dark red. After 30 min, a further equivalent
of [AuCl(SMe2)] (10 mg, 0.034 mmol) was added to the reaction, which was stirred for
a further 15 min (longer reaction times resulted in gold mirror formation). After this
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time, the resulting solution was subjected to flash column chromatography (diatomaceous
earth, CH2Cl2, N2) to collect the bright orange fraction, from which solvent was removed
under reduced pressure. The resulting dark orange powder was suspended in n-hexane
(10 mL) and then collected via vacuum filtration, washed with n-hexane (3 × 5 mL) and
dried in vacuo for 45 min, to give a brown-gold powder of (6). Yield: 14 mg (8.7 µmol,
54%). IR (CH2Cl2, cm−1): 2455 w νBH, 1986 vs. νCO, 1911 vs. νCO. IR (ATR, cm−1):
2454 w νBH, 1983 vs. νCO, 1879 vs. νCO.1H NMR (600 MHz, CD2Cl2, 25 ◦C): δH = 7.87
[d, 3JHH = 8.1 Hz, 2 H, H2,6(C6H4)]), 7.24 [d, 3JHH = 7.8 Hz, 2 H, H3,5(C6H4)], 7.20 [d,
3JHH = 1.6 Hz, 2 H, NCCH], 7.14 [d, 3JHH = 1.6 Hz, 1 H, NCCH], 6.91 [d, 3JHH = 1.6 Hz, 2 H,
NCCH], 6.90 [d, 3JHH = 1.6 Hz, 1 H, NCCH), 3.95 [s, 3 H, NCH3], 3.72 [s, 6 H, NCH3), 2.36[s,
3 H, CCH3]. 13C{1H} NMR (151 MHz, CD2Cl2, 25 ◦C): δC = 277.7 [1JCW = 85 Hz, W≡C],
216.0 [1JCW = 119 Hz, CO], 187.7 [1JCW = 90 Hz, NCN], 173.7 [1JCW = 71 Hz, NCN], 149.6
[C2,6(C6H4)], 140.4 [2JCW = 97 Hz, C1(C6H4)], 130.3 [C3,5(C6H4)], 129.5 [C4(C6H4)], 124.8
[C3(C3N2H2)], 124.5 [C3(C3N2H2)], 122.0 [C4(C3N2H2)], 121.5 [C4(C3N2H2)], 39.4 [NCH3],
38.0 [NCH3], 21.81 [C6H4CH3]. 11B{1H} NMR (128 MHz, CD2Cl2, 25 ◦C): δB = −1.60 (BH).
11B NMR (128 MHz, CD2Cl2, 25 ◦C): δB = −1.47 [d, 1JBH = 101.2 Hz, BH]. MS (ESI, +ve
ion, m/z): Found: 853.0721. Calcd for C22H23Au11B35ClN6O2

184W 853.0731. [M + Na]+. See
Figure 8 for computationally optimized molecular geometry.

4. Conclusions

The first examples of mononuclear and binuclear carbyne complexes ligated by
poly(imidazolylidenyl)borates have been isolated. Spectroscopic data for these add to
the growing evidence that poly(imidazolylidenyl)borates are particularly strong net donor
ligands. These data are contextualised by comparison with those having a wide range of
more familiar κ3, η5 and η6 facially capping ligands, with recourse to two parameters kCO
and %Volbur. Reminiscent of the steric/electronic map presented by Tolman to describe
the coordinative features of phosphines, a similar map based on kCO and %Volbur suggests
that HB(ImR)3 ligands occupy a sparsely populated region of ligand space, associated with
potent net basicity and significant (but variable) steric encumbrance.

The first of these parameters, kCO (a Cotton–Kraihanzel force constant), is given by

kCO [Ncm−1] = 1.7426 × 10−6 Ncm × (νs
2 + νas

2)

where νs and νas are the uncorrected frequencies (in cm−1) calculated at the ωB97X-
D/6-31G*/LANL2Dζ level of theory for the complexes [W(≡CC6H4Me-4)(CO)2(L)] in the
gas phase.

The second of these, %Volbur, is obtained using the SambVca protocol [35] applied to
either the computationally optimised geometries or, where available, the experimentally
determined atomic coordinates with hydrogen atoms included based on a sphere of 3.5Å
radius centred on tungsten. Because this approach may be applied to hypothetical as well as
real molecules, the method may enjoy predictive value with limited computational expense.
For comparison of calculated and experimentally determined infrared data in the region
of νCO-associated vibrations (1850–2100 cm−1), an anharmonic scaling factor of 0.9297 is
recommended for the combination of theωB97X-D functional and 6-31G* basis set.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28237761/s1, IR, 1H, 13C{1H} and 11B NMR spectra for
new compounds.
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Abstract: Environmentally acceptable and renewably sourced flame retardants are in demand. Recent
studies have shown that the incorporation of the biopolymer lignin into a polymer can improve
its ability to form a char layer upon heating to a high temperature. Char layer formation is a
central component of flame-retardant activity. The covalent modification of lignin is an established
technique that is being applied to the development of potential flame retardants. In this study,
four novel modified lignins were prepared, and their char-forming abilities were assessed using
thermogravimetric analysis. The lignin was obtained from date palm wood using a butanosolv
pretreatment. The removal of the majority of the ester groups from this heavily acylated lignin was
achieved via alkaline hydrolysis. The subsequent modification of the lignin involved the incorporation
of an azide functional group and copper-catalysed azide–alkyne cycloaddition reactions. These
reactions enabled novel organophosphorus heterocycles to be linked to the lignin. Our preliminary
results suggest that the modified lignins had improved char-forming activity compared to the controls.
31P and HSQC NMR and small-molecule X-ray crystallography were used to analyse the prepared
compounds and lignins.

Keywords: organophosphorus; heterocycles; lignin; biomass pretreatment; deacylation; click reaction;
flame retardants; X-ray crystallography; NMR analysis

1. Introduction

Historically, flame-retardant compounds have been toxic and persistent in the environ-
ment, with polyhalogenated/polybrominated flame retardants being a well-documented
issue [1]. These compounds are now largely banned or heavily restricted; therefore, re-
placements are required. Organophosphorus flame retardants (OPFRs) [2–5] are being
developed as less toxic and less harmful alternatives, although this class of compounds is
not concern-free [6,7]. The main effect of OPFRs likely occurs in the condensed phase via
the degradation of the phosphorus motif and polymerisation of resulting free phosphoric
acid-containing units to form a char layer. This layer insulates the flammable substrate from
the required oxygen, disrupting the fire triangle. The incorporation of a nitrogen-containing
functional group to form a P-N bond can provide additional gas-phase flame-retardant
character. The nitrogen-containing gases, formed upon decomposition at elevated tem-
peratures, dilute the oxygen content in the vicinity of the fire and therefore inhibit flame
growth [8,9]. Many OPFRs are physically blended as small molecules into polymers to
produce flame-retardant materials (for example, the extensive use of DOPO [10]). More
recently, rather than just blending, the chemical attachment of a OPFR to the polymer has
been demonstrated, either by covalent [11] or reversible dynamic bonds [12].
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Lignin is a renewable biopolymer isolated from biomass alongside cellulose and
hemicellulose. A wide range of different pretreatments are used to obtain lignin, including
organosolv methods [13,14]. We, and others, have focused on the use of butanol as a
sustainably sourced organic solvent that delivers high-quality lignin via a butanosolv
pretreatment [15–21]. Recently, we have extended the butanosolv methodology to enable
the use of more unusual biomasses, including cocoa pod husks, a by-product from chocolate
manufacturing (Figure 1A) [22].

Importantly, in the context of this work, the simple addition of unmodified lignin
to a polymer is known to enhance the flame-retardant properties of the polymer. This
is proposed to result from the degradation of the lignin, leading to improved char layer
formation [23]. Studies have shown that modification by covalently linking OPFRs to the
lignin can lead to materials with flame-retardant properties (Figure 1A and others) [22,24,25].
Butanosolv lignin is highly suited to selective covalent modification as it is soluble in most
organic solvents enabling the use of standard reaction sequences. For example, butanosolv
(and other) lignins have been used as substrates for grafting on small molecules using
click chemistry [22,26,27]. Increasingly, researchers are interested in enhancing the inherent
flame-retardant properties of lignin through its covalent modification with OPFRs.
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Figure 1. Combining potential organophosphorus flame-retardants (OPFRs) and lignin. (A) Previous
work in which the known OPFR O-DOPO 1 (Scheme 1) was attached to a cocoa pod husk lignin using
the alkyne analogue 2 [22]. (B) This work in which a novel application of the known DOPO analogue
3 is provided and a novel potential OPFR 6 with a lignin prepared from date palm waste is described.
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Scheme 1. OPFR and model compound synthesis. Conditions: (a) N-chlorosuccinimide, DCM, 0 ◦C
to rt, 16 h; (b) propargylamine, NEt3, DCM, 0 ◦C to rt, 16 h; (c) 8, sodium ascorbate, CuSO4·5H2O,
MeOH, rt, 16 h; (d) POCl3, NEt3, THF, 0 ◦C to rt, 2 h; (e) propargyl alcohol, NEt3, THF, 0 ◦C to rt,
16 h; (f) propargylamine, NEt3, THF, 0 ◦C to rt, 16 h; (g) benzyl azide, sodium ascorbate, CuSO4·5H2O,
MeOH, rt, 16 h.

The work presented here is dedicated to our excellent colleague at the University of St
Andrews, Professor Derek Woollins. Derek’s interests continue to be wide-ranging and include
the synthesis of phosphorus-, selenium-, or tellerium-containing heterocycles [28–30]. Here,
we present the synthesis of novel P-heterocycles and the structural analysis of three of
these through the use of small-molecule X-ray crystallography. In addition, as a direct
result of a collaboration with Derek, we gained access to a relatively understudied biomass
source, date palm wood (Figure 1B). We show that an interesting lignin can be obtained
by subjecting date palm wood to butanosolv pretreatment, complementing previous work
on this lignin type [31]. Through the use of 31P NMR spectroscopy methods, a technique
frequently used by Professor Woollins [32,33], this lignin was characterised before and
after modification with the novel P-heterocycles. Our preliminary assessment of the flame-
retardant potential of the novel lignin–OPFR conjugates will guide future work in this
developing research area. We would like to thank Professor Woollins for his scientific
inspiration and leadership skills.

149



Molecules 2023, 28, 7885

2. Results and Discussion
2.1. Phosphorus-Containing Heterocycle Synthesis

The flame-retardant properties of the DOPO motif 1 (Scheme 1) are well known [34–36],
and we have previously reported that after the attachment of O-propargyl DOPO 2 to lignin,
the resulting product demonstrates potential flame-retardant properties (Figure 1A) [22].
Based on previous reports [8], the use of N-propargyl DOPO analogue 3 may enable
additional gas-phase cooperative flame-retardant activity in this system.

The synthesis and/or use of 3 has been reported in the context of electrode addi-
tives [37] and bioactive compound synthesis [38]; however, a slightly modified approach
to 3 was used here to convert DOPO 1 to 3 via 4 (Scheme 1). A small-molecule X-ray
crystallographic analysis of 3 was carried out (Figure 2).
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Figure 2. Thermal ellipsoid plots (50% probability ellipsoids) of the structures of: (a) 3, selected bond
lengths (Å), angles (◦), and torsions (◦): P1-O1 1.478(3), P1-O2 1.600(3), P1-N1 1.616(3), P1-C8 1.780(4),
C21-C22 1.456(6), C22-C23 1.182(6), O2-P1-C8 101.90(17), O1-P1-N1 111.46(17), C21-C22-C23 176.4(5),
P1-N1-C21-C22 -122.6(4). (b) 5, selected bond lengths (Å), angles (◦), and torsions (◦): P1-O1 1.457(4),
P1-O2 1.585(4), P1-O3 1.575(4), P1-O4 1.569(4), C21-C22 1.501(15), C22-C23 1.156(15), P2-O21 1.453(4),
P2-O22 1.590(4), P2-O23 1.580(4), P2-O24 1.567(3), C51-C52 1.429(15), C52-C53 1.200(17), O2-P1-O3
104.75(19). O1-P1-O4 116.7(2), O22-P2-O23 104.46(19), O21-P2-O24 116.5(2), C21-C22-C23 176.5(9),
C51-C52-C53 177.9(8), P1-O4-C21-C22 73.7(5), P2-O24-C51-C52 75.8(5). (c) 6, selected bond lengths
(Å), angles (◦), and torsions (◦): P1-O1 1.4666(8), P1-O2 1.5975(8), P1-O3 1.5898(8), P1-N2 1.6109(10),
C21-C22 1.4637(18), C22-C23 1.1834(19), O2-P1-O3 102.49(4). O1-P1-N2 113.25(5), C21-C22-C23
178.95(15), P1-N2-C21-C22 -110.21(10).

It has been proposed that dibenzo[d,f][1,3,2]-dioxaphosphepine 6-oxide (BPPO)-derived
phosphorus heterocycles should also demonstrate flame-retardant properties [39,40]. Novel
compounds O- and N-propargyl BPPO 5 and 6, respectively, were therefore prepared via 7
(Scheme 1). The preliminary testing of the use of O-propargyl BPPO 5 in copper-catalysed
alkyne–azide click reactions (CuAAC) identified several issues on both models and lignin
(see SI for more detail, Figure S1); therefore, the main focus of this study became the
modification of lignin by N-propargyl DOPO 3 and N-propargyl BPPO 6.

2.2. X-ray Crystallography

Crystals of 3, 5, and 6 suitable for X-ray analysis were grown from ethanol,
dichloromethane, or isopropanol solutions of the respective compounds. The compounds
crystallised in the monoclinic P21/c, orthorhombic Pca21, and triclinic P1 space groups,
respectively, and contain either one (3 and 6) or two (5) molecules in the asymmetric units
(Figure 2). The two aryl groups in 3 are nearly co-planar with a slight twist of 9.77(14)◦, with
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the six membered oxophosphinine ring forming a slightly distorted hexagon (O2-P1-C8
101.90(17)◦). In contrast, the two aryl groups in both 5 and 6 show moderate twists of
46.2(2)◦, 44.1(2)◦, and 42.61(4)◦, respectively, and have slightly puckered dioxophosphepine
rings (endo-cyclic O-P-O 104.75(19)◦, 104.46(19)◦, and 102.49(4)◦).

Compounds 3 and 6 form hydrogen bonded chains down [1 0 0] and [0 1 0], respec-
tively, through C(7)

[
R2

2(8)R2
4(14)

]
motifs composed of both moderate strength NH···O

(H···O 1.88(2) and 2.017(14) Å, N···O 2.846(4) and 2.9101(13) Å) and non-classical CspH···O
(H···O 2.278(3) and 2.2846(8) Å, C···O 3.208(6) and 3.2049(16) Å) hydrogen bonds (Figure 3
for 3). When viewed down [1 0 0], the hydrogen bonded chains of 3 form a herringbone ar-
rangement. A combination of weaker CH···O (H···O 2.557(3) and 2.707(3) Å, C···O 3.409(5)
and 3.617(6) Å) and π-stacking (C···centroid 3.708(4) Å) interactions leads to the formation
of sheets in the (1 0 0) plane. The chains of 6 do not adopt a herringbone arrangement and
form sheets in the (0 1 0) plane through weak CH···O interactions (H···O 2.5870(8) Å and
2.8830(8) Å, C···O 3.5218(14) and 3.6209(14) Å).
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Figure 3. View of part of the X-ray crystal structure of 3 showing the packing of molecules into chains
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[
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2(8)R2
4(14)

]
motif. Hydrogen bonds are shown via

the light blue dashed lines.

In the structure of 5, each molecule forms C(7)
[
R3

3(14)
]

chains down [1 0 0] through
non-classical CspH···O (H···O 2.577(4) and 2.544(4) Å, C···O 3.446(13) and 3.437(12) Å) and
weaker CH···O (H···O 2.376(4) and 2.378(4) Å, C···O 3.362(10) and 3.353(10) Å) hydrogen
bonds, supported by CH···π interactions (H···centroid 3.001(3) Å, C···centroid 3.821(9)
Å) (Figure 4). These chains form sheets in the (1 0 0) plane through weak CH···O (H···O
2.588(4)–2.678(4) Å, C···O 3.216(8)–3.489(7) Å), CH···π (H···centroid 2.888(3) Å, C···centroid
3.712(8) Å), and π···π (centroid···centroid 3.723(2) Å) interactions.
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2.3. Model Compound Synthesis

Due to the complex heterogeneous structure of lignin [41], the assignment of structural
features via NMR analysis is aided by the preparation and NMR analysis of simplified
model compounds [42]. We have previously prepared models of the butoxylated β-O-4 link-
age modified with various functional groups at the γ-position, including 8, which contains
an azide functionality that can be utilised in copper-catalysed azide–alkyne cycloaddition
(CuAAC) click reactions (Scheme 1) [43]. Novel model compounds 9, 10, and 11 were
prepared from 8 and characterised for comparison with the modified lignins (Scheme 1).

2.4. Lignin Substrate Preparation

Using a procedure previously described in the literature (optimised for unusual
biomasses [22]), a sample of date palm wood (DPW) was processed using a butanol
pretreatment to prepare a date palm wood lignin (DPW Lignin) in good yield (Figure S2).
This butanosolv lignin was initially characterised by 2D HSQC NMR and quantitative 31P
NMR after phosphitylation using a procedure previously described in the literature [44,45]
(Figures 5A–C and S3A and Tables S1 and S2). Whilst the aliphatic OH content of this
lignin was reasonably high (6.8 mmol/g, Figure 5A,B), it was observed that many of the
potentially modifiable β-O-4 sites were acylated (Figure 5C).

These acyl groups were expected based on previous reports that have shown that
date palm lignins contain a range of ester pendant groups at the γ-position of the β-O-4
units, including abundant benzoate and p-hydroxybenzoate esters, as well as minor com-
ponents such as vanillic and syringic esters [31]. Inspired by well-established methods
of hydrolysing ester units in lignin [31,46,47], aqueous sodium hydroxide solution was
used with a sample of DPW lignin to produce a deacylated lignin (DeAcyl Lignin). Fol-
lowing this reaction, there was a nearly 40% increase in aliphatic OH content (from 6.8 to
9.4 mmol/g, Figure 5B), with the acylated β-O-4 linkage content (labelled p-BH in Figure 5)
having decreased. Detailed HSQC and HMBC NMR analyses of the aqueous component af-
ter hydrolysis allowed for identification of the free benzoic, p-hydroxybenzoic, and syringic
acids that were cleaved from the lignin (Figure S4). The identification of the free acids
facilitated the assignment of the corresponding ester moieties in the aromatic region of the
HSQC NMR spectra of the lignin (Figure S3). Whilst each of these ester moieties have been
identified in palm lignins before, the expected relative abundance differed compared to
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previous reports [22]. No p-coumarate or ferulate esters were detected in the HSQC NMR
analysis, possibly suggesting that these esters were more facile to hydrolyse and may have
been removed earlier in the processing of the biomass, as observed with acetyl groups in a
previous work [22].
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after aqueous hydroxide treatment with integrals corresponding to relevant structural features; (B) 
calculated hydroxyl content of DPW Lignin and DeAcyl Lignin; HSQC NMR (700 MHz, DMSO-
d6) analysis of the linkage region of (C) DPW lignin and (D) DeAcyl lignin, with the region corre-
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Figure 5. (A) Quantitative 31P NMR analysis after the phosphitylation [44,45] of the starting date
palm wood lignin (DPW Lignin, top) and the deacylated lignin (DeAcyl Lignin, bottom) obtained
after aqueous hydroxide treatment with integrals corresponding to relevant structural features;
(B) calculated hydroxyl content of DPW Lignin and DeAcyl Lignin; HSQC NMR (700 MHz, DMSO-
d6) analysis of the linkage region of (C) DPW lignin and (D) DeAcyl lignin, with the region corre-
sponding to the CH2OAcyl in the γ-position of acylated β-O-4 units highlighted in the red circle
(see structure of Acylated β-O-4 unit in Figure 5 right hand side). Colour-coded structures that
correspond to regions in the HSQC NMR spectra are shown. The corresponding aromatic regions are
shown in Figure S3.

2.5. Lignin Modification

Having obtained the required date palm lignins in sufficient quantities, subsequent
modification to incorporate azide functional groups was carried out (Scheme 2) based on
previously established methods [43]. This culminated in the synthesis of DPW Lignin N3
and DeAcyl Lignin N3, which were characterised by HSQC NMR and IR at each stage to
confirm successful modification (see SI for further details; Figures S5 and S6).

The modified lignins containing an azide functional handle at the γ-position were
then reacted with OPFRs 3 or 6 under CuAAC click conditions to prepare grafted lignins.
These modified lignin samples were precipitated and then further purified via column
chromatography on silica gel to give final lignins DPW-3 (118 wt% yield), DPW-6 (137 wt%),
DeAcyl-3 (130 wt%), and DeAcyl-6 (137 wt%). Some challenges were encountered at this
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stage due to the polar nature of both the OPFRs and the final modified lignin (see below
and SI for a more detailed discussion).
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2.6. OPFR-Grafted Lignin Characterisation

The 31P NMR and HSQC NMR analyses of model compound 9 (structure in Scheme 1)
were compared with the NMR spectra of the OPFR grafted lignins obtained from reaction
with 3 to determine if the click reaction had been successful. The broad signal in the 31P
NMR spectrum corresponding to the final DPW lignin (DPW-3) obtained upon the CuAAC
reaction of DPW lignin N3 with 3 showed good alignment with the signals for model
compound 9 (diastereomeric mixture, Figure 6A). However, a sharp signal corresponding to
free 3 that was contaminating DPW-3 was also observed. In addition, overlay of the HSQC
NMR analysis of 9 with the final deacylated lignin (DeAcyl-3) obtained upon the CuAAC
reaction of DeAcyl lignin N3 with 3 also supported a successful reaction (Figure 6B). For
example, a signal at 1H 4.30-3.85/13C 37.2-34.1 corresponded to the methylene hydrogens
adjacent to the newly formed triazole ring (Figure 6B). This shows perfect overlay with
the analogous signal in 9. However, the presence of unreacted OPFR 3 was also observed
in the HSQC NMR spectra (Figure S7). Analogous results were obtained for the other
possible combinations of the lignin azides with the OPFRs (for DeAcyl lignin N3 and 6,
see Figure 6C, and for all other combinations, see Figure S7). Whilst it was gratifying
that the CuAAC reaction was successful for all combinations tested, it was disappointing
that, despite purifying the final lignins via column chromatography, it was not possible
to remove all of the starting small-molecule OPFRs. This observation was in contrast to a
previous report on how one can successfully purify OPFR-grafted lignins when using OPFR
2 (Figure 1A and Scheme 1) and cocoa pod husk lignin [22]. Presumably, the incorporation
of the NHR motif into the OPFR structures (in 3 and 6 compared to 2) meant that the OPFRs
co-eluted with the lignin during purification. Attempts to solve this problem will be the
subject of future work.
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2.7. Thermogravimetric Analysis of OPFR-Grafted Lignins 
Despite the presence of small molecular impurities in the final samples of the OPFR-

grafted lignins, it was decided to complete this study by carrying out a thermogravimetric 
analysis (TGA) of the four final lignins (DPW-3, DPW-6, DeAcyl-3, and DeAcyl-6). It was 
proposed that a control TGA experiment would also be carried out, in which a physical mix-
ture (blend) of non-modified DPW Lignin and the model compound 12 (Scheme 1) would be 
used. Small molecule 12 represents a compound in which the triazole ring formed in a CuAAc 
reaction is present, hence enabling the impact of the triazole ring to also be controlled for. This 
mixture is referred to as the Control Mixture below. It was decided that a 5:1 w/w ratio of 

Figure 6. (A) 31P NMR spectra of OPFR 3 (top), grafted DWP Lignin (DPW-3, middle), and model
compound 9 (bottom) emphasising the successful modification of the DWP lignin N3 on reaction
with 3 under CuAAC conditions. The final lignin sample was contaminated with unreacted 3
(Figure S7); (B) HSQC NMR (700 MHz, DMSO-d6) analysis of the linkage region of DeAcyl Lignin
grafted with 3 (overlaid with the analysis of 9, black); (C) HSQC NMR (700 MHz, DMSO-d6) analysis
of the linkage region of DeAcyl Lignin grafted with 6 (overlaid with the analysis of 11, black). See
Scheme 1 for the structures of 9 and 11.

2.7. Thermogravimetric Analysis of OPFR-Grafted Lignins

Despite the presence of small molecular impurities in the final samples of the OPFR-
grafted lignins, it was decided to complete this study by carrying out a thermogravimetric
analysis (TGA) of the four final lignins (DPW-3, DPW-6, DeAcyl-3, and DeAcyl-6). It was
proposed that a control TGA experiment would also be carried out, in which a physical
mixture (blend) of non-modified DPW Lignin and the model compound 12 (Scheme 1)
would be used. Small molecule 12 represents a compound in which the triazole ring
formed in a CuAAc reaction is present, hence enabling the impact of the triazole ring to
also be controlled for. This mixture is referred to as the Control Mixture below. It was
decided that a 5:1 w/w ratio of DPW Lignin/12 should be used as it was felt that this
corresponded to a higher level of small molecule contaminant 12 compared to the amounts
of small-molecule OPFRs likely present in the final lignin samples. Any difference in the
TGA results (Figure 7) of the final lignins from this Control Mixture must be due to the
presence of the grafted OPFRs.
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A key factor in assessing the potential of a material for use in flame-retardant applica-
tions is char formation. This is determined by comparing the mass of sample remaining (as
char) after heating the sample to temperatures nearing 1000 ◦C against suitable controls.
Here, three control samples were used: (i) the starting date palm wood lignin (DPW lignin),
(ii) the starting deacylated DPW lignin (DeAcyl lignin), and (iii) the Control Mixture dis-
cussed above. These controls were compared to the four test lignins: DPW-3, DPW-6,
DeAcyl-3, and DeAcyl-6. In brief, the two starting lignins (DPW and DeAcyl lignins) did
lead to some char formation, as expected, but this was lower than the amount of char
formed by the test lignins. Interestingly, the two best performing lignins were DeAcyl-3
and DeAcyl-6, which are believed to contain a greater amount of OPFRs covalently bonded
to the lignin compared to DPW-3 and DPW-6. In addition, both DeAcyl-3 and DeAcyl-6
formed an increased amount of char compared to the Control Mixture, suggesting that the
covalent attachment of the OPFRs to the lignin may provide an advantage over just simply
physically mixing OPFRs with lignin. While further work is clearly required to assess the
full potential of these materials, one possible explanation for the observed differences is
that by holding the OPFR motif closer to the lignin through the use of a covalent bond,
the initial degradation reaction is more likely to lead to the intertwining of the lignin- and
OPFR-derived chars. This may provide additional structure to the forming char, ultimately
improving its formation and therefore the overall char-forming ability of the bulk material.

3. Materials and Methods

For a detailed discussion of the lignin experimental procedures, lignin model compounds
synthesis, and general experimental considerations, see the Supplementary Materials.

3.1. 6-(prop-2-yn-1-ylamino)dibenzo[c,e][1,2]oxaphosphinine 6-oxide 3
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DOPO 1 (2.02 g, 9.33 mmol, 1.00 eq.) was dissolved in DCM (25 mL) and cooled
to 0 ◦C under a N2 atmosphere. N-chlorosuccinimide (1.37 g, 10.3 mmol, 1.10 eq.) was
added slowly portionwise over 10 min, and the resulting mixture was warmed to rt and
stirred under N2 for 16 h. The resulting suspension was filtered, and the solvent was
removed under reduced pressure to afford intermediate 4, which was used immediately
in the next step. Crude 4 was dissolved in fresh DCM (25 mL) and cooled to 0 ◦C under
N2, and propargylamine (1.56 mL, 11.2 mmol, 1.20 eq.) and NEt3 (0.72 mL, 11.2 mmol,
1.20 eq.) were added slowly dropwise over 10 min then warmed to rt and stirred for
16 h under N2. The resulting suspension was filtered, and the filtrate diluted with aq.
sat. NaHCO3 (20 mL) and extracted with DCM (3 × 15 mL). The combined organic
extracts were washed with brine (20 mL) and dried over anhydrous MgSO4, and the
solvent was removed under reduced pressure. The crude product was purified via column
chromatography on silica gel eluting with EtOAc/hexane (0–95%) to afford 6-(prop-2-yn-
1-ylamino)dibenzo[c,e][1,2]oxaphosphinine 6-oxide 3 (1.82 g, 72%) as a yellow solid. 1H
NMR (500 MHz, DMSO-d6) δ 3.18 (1H, t, J = 2.5 Hz, H16), 3.67–3.74 (2H, m, H14), 6.24
(1H, dt, J = 13.3, 6.8 Hz, H13), 7.27 (1H, dd, J = 8.1, 1.3 Hz, H4), 7.29–7.34 (1H, m, H2),
7.42–7.48 (1H, m, H3), 7.56–7.62 (1H, m, H10), 7.74–7.80 (1H, m, H11), 7.82–7.88 (1H, m,
H9), 8.16–8.23 (2H, m, H1/12). 13C NMR (126 MHz, DMSO-d6) δ 29.59 (C14), 73.55 (C16),
82.30 (d, J = 5.4 Hz, C15), 120.23 (d, J = 5.9 Hz, C4), 121.97 (d, J = 11.5 Hz, C6), 124.12 (d,
J = 10.7 Hz, C12), 124.42 (C2), 125.42 (d, J = 162.6 Hz, C8), 125.48 (C8), 128.41 (d, J = 14.1 Hz,
C10), 129.66 (d, J = 10.0 Hz, C9), 130.48 (C3), 132.91 (d, J = 2.3 Hz, C11), 135.96 (d, J = 6.8 Hz,
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C7), 149.36 (d, J = 7.0 Hz, C5). 31P NMR (202 MHz, DMSO-d6) δ 14.39. IR (ATR) 3229, 3167,
2893, 1597, 1477, 1444, 1213, 1168, 922, 752. mp 147–148 ◦C. HRMS (ESI) calculated for
C15H12O2NPNa [M + Na]+ 292.0503; found 292.0495.

3.2. 6-(prop-2-yn-1-yloxy)dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide 5
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under N2 for 3 h. The resulting suspension was filtered, and the solvent was removed under
reduced pressure to afford intermediate 7, which was used immediately in the next step.
Crude 7 was dissolved in fresh dry THF (25 mL) and cooled to 0 ◦C under N2. Propargyl al-
cohol (0.69 mL, 11.9 mmol, 1.10 eq.) and NEt3 (1.64 mL, 11.77 mmol, 1.1 eq.) were dissolved
in dry THF (5 mL), and the amine solution was added slowly dropwise over 10 min, then
warmed to rt, and subsequently stirred for 16 h. The resulting suspension was filtered, and
the solvent was removed from the filtrate under reduced pressure, and the crude product
was purified via column chromatography on silica gel eluting with EtOAc/hexane (0–75%)
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103–105 ◦C. HRMS (ESI) calculated for C15H11O4PNa [M + Na]+ 309.0293; found 309.0279.
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2,2′-biphenol (2.00 g, 10.7 mmol, 1.00 eq.) was dissolved in dry THF (40 mL) and
cooled to 0 ◦C under N2. POCl3 (1.00 mL, 10.7 mmol, 1.00 eq.) was added, followed
by the dropwise addition of NEt3 (3.00 mL, 21.5 mmol, 2.00 eq.), and then warmed to
rt and stirred under N2 for 3 h. The resulting suspension was filtered, and the solvent
was removed from the filtrate under reduced pressure to afford intermediate 7, which
was used immediately in the next step. Crude 7 was dissolved in fresh dry THF (25 mL)
and cooled to 0 ◦C under N2. Propargylamine (0.76 mL, 11.9 mmol, 1.10 eq.) and NEt3
(1.67 mL, 12.0 mmol, 1.10 eq.) were dissolved in dry THF (5 mL), and the amine so-
lution was added slowly dropwise over 10 min, then warmed to rt, and subsequently
stirred for 16 h. The resulting suspension was filtered, and the solvent was removed
from the filtrate under reduced pressure, and the crude product was purified via column
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chromatography on silica gel eluting with EtOAc/hexane (0–80%) to afford 6-(prop-2-yn-1-
ylamino)dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide 6 (2.16 g, 69%) as an orange solid.
1H NMR (500 MHz, DMSO-d6) δ 3.28 (1H, t, J = 2.5 Hz, H10), 3.69 (2H, ddd, J = 14.5, 6.9,
2.5 Hz, H8), 6.47 (1H, dt, J = 13.9, 6.9 Hz, H7), 7.32–7.36 (2H, m, H6), 7.41–7.46 (2H, m,
H4), 7.54 (2H, dddd, J = 8.1, 7.4, 1.7, 0.8 Hz, H5), 7.68 (2H, dd, J = 7.7, 1.7 Hz, H3). 13C
NMR (126 MHz, DMSO-d6) δ 30.21 (C8), 73.77 (C10), 82.11 (d, J = 4.4 Hz, C19), 121.77
(d, J = 3.7 Hz, C6), 126.38 (C4), 128.04 (C2), 129.91 (C3), 130.22 (C5), 147.45 (d, J = 9.3 Hz,
C1). 31P NMR (202 MHz, DMSO-d6) δ 13.89. IR (ATR) 3248, 3225, 2918, 1477, 1437, 1246,
1184, 999, 918, 758. mp 182–183 ◦C (decomp.). HRMS (ESI) calculated for C15H12O3NPNa
[M + Na]+ 308.0452; found 308.0439.

3.4. 6-(((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amino)dibenzo[d,f][1,3,2]dioxaphosphepine
6-oxide 12
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C6), 126.38 (C4), 128.04 (C2), 129.91 (C3), 130.22 (C5), 147.45 (d, J = 9.3 Hz, C1). 31P NMR 
(202 MHz, DMSO-d6) δ 13.89. IR (ATR) 3248, 3225, 2918, 1477, 1437, 1246, 1184, 999, 918, 
758. mp 182–183 °C (decomp.). HRMS (ESI) calculated for C15H12O3NPNa [M + Na]+ 
308.0452; found 308.0439. 

3.4. 6-(((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amino)dibenzo[d,f][1,3,2]dioxaphosphepine 6-
oxide 12 

 
6 (53.8 mg, 0.19 mmol, 1.05 eq.), benzyl azide (23.8 mg, 0.18 mmol, 1.00 eq.), sodium 

ascorbate (7.70 mg, 0.04 mmol, 0.20 eq.), and copper sulfate pentahydrate (9.40 mg, 0.04 
6 (53.8 mg, 0.19 mmol, 1.05 eq.), benzyl azide (23.8 mg, 0.18 mmol, 1.00 eq.),

sodium ascorbate (7.70 mg, 0.04 mmol, 0.20 eq.), and copper sulfate pentahydrate (9.40 mg,
0.04 mmol, 0.20 eq.) were dissolved in MeOH (3 mL) and stirred at rt for 12 h. The reac-
tion was diluted with water (10 mL); extraction was carried out with DCM (3 × 5 mL),
and the combined organic extracts were washed with aq. sat. NaHCO3 (10 mL) and
brine (10 mL) before being dried over anhydrous MgSO4, and the solvent was removed
under reduced pressure. The crude product was purified via column chromatography
on silica gel eluting with EtOAc/hexane (0–90%) to afford6-(((1-benzyl-1H-1,2,3-triazol-4-
yl)methyl)amino)dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide 12 (46.8 mg, 63%) as a white
solid. 1H NMR (500 MHz, DMSO-d6) δ 4.11 (2H, dd, J = 13.5, 6.9 Hz, H8), 5.61 (2H, s, H11),
6.46 (1H, dt, J = 13.9, 6.9 Hz, H7), 7.13–7.18 (2H, m, H6), 7.31–7.47 (9H, m, H4/5/13/14/15),
7.64 (2H, dd, J = 7.5, 1.9 Hz, H3), 8.01 (1H, s, H10). 13C NMR (126 MHz, DMSO-d6) δ 36.47
(C8), 52.76 (C11), 121.64 (d, J = 3.6 Hz, C6), 122.94 (C10), 126.26 (C4), 128.02 (C13), 128.04
(C2), 128.16 (C15), 128.78 (C14), 129.87 (C3), 130.11 (C5), 136.21 (C12), 146.46 (d, J = 4.9 Hz,
C9), 147.55 (d, J = 9.3 Hz, C1). 31P NMR (202 MHz, DMSO-d6) δ 13.99. IR (ATR) 2931, 2870,
1593, 1500, 1437, 1251, 1093, 1024, 935, 785, 754. mp 177–178 ◦C HRMS (ESI) calculated for
C22H19O3N4PNa [M + Na]+ 441.1092; found 441.1078.

3.5. X-ray Crystallography

X-ray diffraction data for 5 were collected at 173 K using a Rigaku SCXmini CCD
diffractometer with a SHINE monochromator [Mo Kα radiation (λ = 0.71073 Å)]. Intensity
data were collected usingω steps accumulating area detector images spanning at least a
hemisphere of reciprocal space. X-ray diffraction data for 6 were collected at 125 K using a
Rigaku FR-X Ultrahigh Brilliance Microfocus RA generator/confocal optics with a XtaLAB
P200 diffractometer [Mo Kα radiation (λ = 0.71073 Å)], and data for 3 were collected
at 173 K using a Rigaku MM-007HF High Brilliance RA generator/confocal optics with
XtaLAB P100 diffractometer [Cu Kα radiation (λ = 1.54187 Å)]. Data for 5 were collected
using CrystalClear [48], and for 6 and 3, data were collected using CrysAlisPro [49]; all
data were processed (including correction for Lorentz, polarisation, and absorption) using
CrysAlisPro. Structures were solved using dual-space methods (SHELXT) [50] and refined
using full-matrix least squares against F2 (SHELXL-2019/3) [51]. Non-hydrogen atoms
were refined anisotropically, and hydrogen atoms were refined using a riding model, except
for the hydrogen atoms on N2 (in both 3 and 6), which were located from the difference
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Fourier map and refined isotropically subject to a distance restraint. All calculations were
performed using the Olex2 [52] interface. The structure of 5 is in the polar space group Pca21
and has an ambiguous flack x parameter (0.13(7)). With the lack of chiral directing groups,
the crystal is considered to likely be a racemate. Selected crystallographic data are presented
in Tables S3 and S4. CCDC 2300932–2300934 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via the following link: www.ccdc.cam.ac.uk/structures.

4. Conclusions

The development of novel flame-retardant materials is important. Here, the potential
impact that novel organophosphorus-containing heterocycles bonded to lignin could have
in the context of the development of novel flame-retardant materials was assessed. The
study began with the synthesis of the phosphorus-containing heterocycles that were anal-
ysed using small-molecule X-ray crystallography. The preparation of two different lignins
from date palm was then achieved, and both 31P and 1H-13C HSQC NMR methods were
used to determine the lignin’s structure. The results of our thermogravimetric analysis
revealed that by covalently linking the novel heterocycles to lignin, an increased amount of
char was formed compared to lignin alone or a physically mixed control.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28237885/s1, Figure S1: Analysis of DPW-5;
Figure S2: Pretreatment mass balance; Figure S3: Aromatic regions of HSQC NMR of DPW Lignin
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* Correspondence: raa@st-and.ac.uk; Tel.: +44-1334-463865

Abstract: While thiocarbonyl-stabilised phosphonium ylides generally react upon flash vacuum py-
rolysis by the extrusion of Ph3PS to give alkynes in an analogous way to their carbonyl-stabilised ana-
logues, two examples with a hydrogen atom on the ylidic carbon are found to undergo a quite different
process. The net transfer of a phenyl group from P to S gives (Z)-configured 1-diphenylphosphino-
2-(phenylsulfenyl)alkenes in a novel isomerisation process via intermediate λ5-1,2-thiaphosphetes.
These prove to be versatile hemilabile ligands with a total of seven complexes prepared involving five
different transition metals. Four of these are characterised by X-ray diffraction with two involving the
bidentate ligand forming a five-membered ring metallacycle and two with the ligand coordinating to
the metal only through phosphorus.

Keywords: flash vacuum pyrolysis; phosphonium ylide; phosphine; hemilabile ligand; transition
metal complex; X-ray structure

1. Introduction

The thermal extrusion of Ph3PO from carbonyl-stabilised triphenylphosphonium
ylides 1 is a well-established synthetic route to functionalised alkynes 2 (Scheme 1) [1–3].
The process proceeds particularly well using flash vacuum pyrolysis (FVP), and we have
found that the phosphorus to carbonyl coupling constant 2JP–CO provides a diagnostic
parameter for the likely success of the reaction, with ylides for which 2JP–CO < 11 Hz
usually providing the alkynes in high yield [4]. By way of contrast, the thermal behaviour
of the corresponding thiocarbonyl-stabilised ylides 3 has only been examined in a few
cases and Bestmann and Schaper found that heating the ylides 3 above their melting point
resulted in a bimolecular process with the loss of Ph3P and Ph3PS to give tetrasubstituted
thiophenes 4 [5]. Some time ago, we described a preliminary study in which FVP of the
ylides 5 was found to proceed as expected by analogy with the carbonyl analogues 1 with
the loss of Ph3PS to give alkynes 2 for R1 6= H, but when R1 was hydrogen, a quite different
process was observed: rearrangement with the transfer of a phenyl group from P to S
giving the potentially useful bidentate proligands 6 [6]. In this paper, we describe in more
detail the synthesis and structure of these novel phosphinovinyl sulfides as well as their
coordination chemistry.
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including the treatment of non-stabilised ylides with dithioesters or dithiocarbonates [7], 
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direct reaction of carbonyl-stabilised ylides 1 with Lawesson’s reagent introduced by Cap-
uano and coworkers [10], and in this way, we prepared the five examples 7–11 (Figure 1) 
from their carbonyl analogues. 
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Compounds 7–9 are already known [8] andgave analytical and spectroscopic data in 
agreement with the reported values. The new compounds 10 and 11 were fully character-
ised and showed distinctive NMR signals confirming the presence of P=CH–C=S [10 δP 
+5.0; δH 5.22 (d, 2J 34 Hz, P=CH); δC 81.3 (d, 1J 118 Hz, P=CH), 214.4 (d, 2J 4 Hz, C=S). 11 δP 
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thermal rearrangement. The structure of 10 was also confirmed by X-ray diffraction (CSD 
RefCode: AJOMUI) and this was described in our earlier communication [6]. We might 
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Although it is not very volatile, it is extremely persistent and inadvertent contact with 
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When the thiocarbonyl ylides 7, 8 and 9 were subjected to FVP, there was complete 
reaction at a furnace temperature of 650 °C to give Ph3PS (δP +43) at the furnace exit and 
the expected alkynes 2, 2,2-dimethylpent-3-yne, 1-phenylpropyne and 1-phenyloctyne, in 
the cold trap. Thus, these compounds behave in a similar way to their carbonyl analogues 
but react more readily than the latter, which require a temperature of 750 °C for complete 
reaction [11]. The higher reactivity of thiocarbonyl- as compared to carbonyl-stabilised 
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2. Results and Discussion

Synthetic access to thiocarbonyl-stabilised ylides 5 is available using various methods
including the treatment of non-stabilised ylides with dithioesters or dithiocarbonates [7],
or activation of the corresponding carbonyl-stabilised ylides with triflic anhydride [8] or
POCl3 [9] followed by treatment with sodium sulfide. For the current study, we used
the direct reaction of carbonyl-stabilised ylides 1 with Lawesson’s reagent introduced by
Capuano and coworkers [10], and in this way, we prepared the five examples 7–11 (Figure 1)
from their carbonyl analogues.
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Compounds 7–9 are already known [8] andgave analytical and spectroscopic data in
agreement with the reported values. The new compounds 10 and 11 were fully charac-
terised and showed distinctive NMR signals confirming the presence of P=CH–C=S [10 δP
+5.0; δH 5.22 (d, 2J 34 Hz, P=CH); δC 81.3 (d, 1J 118 Hz, P=CH), 214.4 (d, 2J 4 Hz, C=S). 11 δP
+8.1; δH 5.18 (d, 2J 32 Hz, P=CH); δC 84.1 (d, 1J 113 Hz, P=CH), 200.5 (d, 2J 4 Hz, C=S)]. In
fact, the phosphorus coupling extended throughout the structures with all carbon signals
except the CH3 of t-butyl observed as doublets in the 13C NMR spectra. This is discussed
further below in the context of a comparison of the coupling pattern before and after the
thermal rearrangement. The structure of 10 was also confirmed by X-ray diffraction (CSD
RefCode: AJOMUI) and this was described in our earlier communication [6]. We might
also note at this point that compound 10 has a particularly pungent and unpleasant smell.
Although it is not very volatile, it is extremely persistent and inadvertent contact with
equipment or work surfaces contaminated with 10, even after several months, results in
the release of its characteristic smell. We speculate that this may be due to slow hydrolysis
of the P=C bond to give Ph3PO and release thiopinacolone, t-BuC(=S)Me.

When the thiocarbonyl ylides 7, 8 and 9 were subjected to FVP, there was complete
reaction at a furnace temperature of 650 ◦C to give Ph3PS (δP +43) at the furnace exit and
the expected alkynes 2, 2,2-dimethylpent-3-yne, 1-phenylpropyne and 1-phenyloctyne, in
the cold trap. Thus, these compounds behave in a similar way to their carbonyl analogues
but react more readily than the latter, which require a temperature of 750 ◦C for complete
reaction [11]. The higher reactivity of thiocarbonyl- as compared to carbonyl-stabilised
ylides is a feature that we have already noted and quantified in a series of kinetic studies
on the pyrolysis of carbamoyl and thiocarbamoyl ylides [12–14].

When the two ylides 10 and 11 were subjected to FVP, the reaction was also complete
at 650 ◦C, but the process involved turned out to be completely different. In each case, only
a single main product was obtained, which was isomeric with the starting material. In the
case of 10, the product 12 was obtained in good yield and in a pure form as a crystalline
solid after preparative TLC. This showed a 31P NMR signal at −19.8 ppm, in the region
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expected for an alkyldiphenylphosphine, and the single P–CH= hydrogen gave a 1H NMR
singlet at 6.94 ppm (Scheme 2).
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pyrolysis technique. In addition, it has been shown that under FVP conditions, (Z)-alkenes 
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650 °C with the degree of conversion of (Z)- to (E)-stilbene, for example, being determined 
as 12%, in good agreement with our results [15]. The presence of aromatic impurities even 
after distillation prevented full assignment of the 13C NMR spectra for 13 and 14, but the 
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agreement with those for 12 while also showing significant differences between the two 
isomers. The detailed form of the signals for P–CH and P–C=C–Me in the two isomers was 

Scheme 2. FVP of 10 to give 12.

The 13C NMR spectrum, and particularly the pattern of P–C coupling, was particularly
informative and showed major changes from the values in 10 (Figure 2).

Molecules 2024, 29, x FOR PEER REVIEW 3 of 13 
 

 

crystalline solid after preparative TLC. This showed a 31P NMR signal at −19.8 ppm, in the 
region expected for an alkyldiphenylphosphine, and the single P–CH= hydrogen gave a 
1H NMR singlet at 6.94 ppm (Scheme 2). 

 
Scheme 2. FVP of 10 to give 12. 

The 13C NMR spectrum, and particularly the pattern of P–C coupling, was particu-
larly informative and showed major changes from the values in 10 (Figure 2). 

 
Figure 2. Magnitude of P–H (red) and P–C (black) coupling constants (Hz). 

The values of JP–C for the thiocarbonyl ylides 10 and 11 are consistent with those well 
established for the corresponding carbonyl ylides [11] and carbamoyl/thiocarbamoyl 
ylides [12–14]. However, in the rearranged product 12, the values around P-Ph are more 
similar to those in Ph3P, and the much higher coupling to P–C=C as compared to P–C=C 
as well as the absence of coupling to P–CH are surprising features. As already mentioned 
in our preliminary communication [6], the structure of 12 was confirmed by X-ray diffrac-
tion (CSD RefCode: AJOMOC). 

When we examined the corresponding pyrolysis of the thioacetyl ylide 11, the corre-
sponding reaction occurred at the same temperature, but the product was now a liquid 
formed in lower yield and containing some impurities including Ph3P, Ph3PO and Ph3PS. 
More interestingly, while it was predominantly (6.5:1) the (Z)-isomer 13 (δP −22.7), signals 
attributed to the (E)-isomer 14 (δP −25.4) were also apparent (Scheme 3). 

 
Scheme 3. FVP of 11 to give 13 and 14. 

Attempts to purify this by repeated Kugelrohr distillation under reduced pressure 
led instead to isomerisation to give a 1:1 mixture of 13 and 14. At first sight, it might seem 
surprising that the product is obtained mainly as the less thermodynamically stable iso-
mer from pyrolysis at 650 °C but then isomerises to the more stable isomer upon simple 
distillation at 90 °C, but this only serves to emphasise the mild nature of the flash vacuum 
pyrolysis technique. In addition, it has been shown that under FVP conditions, (Z)-alkenes 
do not normally isomerise to the (E)-isomer to any great extent at temperatures as low as 
650 °C with the degree of conversion of (Z)- to (E)-stilbene, for example, being determined 
as 12%, in good agreement with our results [15]. The presence of aromatic impurities even 
after distillation prevented full assignment of the 13C NMR spectra for 13 and 14, but the 
key signals and the values of the phosphorus coupling constants (Figure 2) were in good 
agreement with those for 12 while also showing significant differences between the two 
isomers. The detailed form of the signals for P–CH and P–C=C–Me in the two isomers was 

Figure 2. Magnitude of P–H (red) and P–C (black) coupling constants (Hz).

The values of JP–C for the thiocarbonyl ylides 10 and 11 are consistent with those
well established for the corresponding carbonyl ylides [11] and carbamoyl/thiocarbamoyl
ylides [12–14]. However, in the rearranged product 12, the values around P-Ph are more
similar to those in Ph3P, and the much higher coupling to P–C=C as compared to P–C=C as
well as the absence of coupling to P–CH are surprising features. As already mentioned in
our preliminary communication [6], the structure of 12 was confirmed by X-ray diffraction
(CSD RefCode: AJOMOC).

When we examined the corresponding pyrolysis of the thioacetyl ylide 11, the corre-
sponding reaction occurred at the same temperature, but the product was now a liquid
formed in lower yield and containing some impurities including Ph3P, Ph3PO and Ph3PS.
More interestingly, while it was predominantly (6.5:1) the (Z)-isomer 13 (δP −22.7), signals
attributed to the (E)-isomer 14 (δP −25.4) were also apparent (Scheme 3).
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Scheme 3. FVP of 11 to give 13 and 14.

Attempts to purify this by repeated Kugelrohr distillation under reduced pressure
led instead to isomerisation to give a 1:1 mixture of 13 and 14. At first sight, it might
seem surprising that the product is obtained mainly as the less thermodynamically stable
isomer from pyrolysis at 650 ◦C but then isomerises to the more stable isomer upon simple
distillation at 90 ◦C, but this only serves to emphasise the mild nature of the flash vacuum
pyrolysis technique. In addition, it has been shown that under FVP conditions, (Z)-alkenes
do not normally isomerise to the (E)-isomer to any great extent at temperatures as low as
650 ◦C with the degree of conversion of (Z)- to (E)-stilbene, for example, being determined
as 12%, in good agreement with our results [15]. The presence of aromatic impurities
even after distillation prevented full assignment of the 13C NMR spectra for 13 and 14,
but the key signals and the values of the phosphorus coupling constants (Figure 2) were
in good agreement with those for 12 while also showing significant differences between
the two isomers. The detailed form of the signals for P–CH and P–C=C–Me in the two
isomers was at first sight surprising. However, this could be explained by coincidental
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equivalence of some H–H and P–H coupling constants, and the observed patterns (see
Supplementary Materials, Figure S14) could be satisfactorily simulated using the values
shown in Figure 3.
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Figure 3. Coupling constants in 1H NMR spectra of 13 and 14.

Although the 1,2-arrangement of phosphine and sulfide functions on an alkene double
bond, particularly in the (Z)-configuration, gives potentially valuable “hemilabile” proli-
gands, few such compounds seem to be known (Figure 4). Chlorinated compounds such as
15 [16], 16 [17] and 17 [18] have been prepared as mixtures of (E)- and (Z)-isomers by the
addition of phosphorus compounds to alkynes. The simpler disubstituted alkenes 18 [19],
19 [20] and 20 [21] have also been prepared but these are the (E)-isomers as shown. More
recently, the (Z)-configured vinylphosphonates 21 containing sulfide, selenide and telluride
functions [22] as well as the tellurovinylphosphine oxides 22 [23] have also been reported.
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Figure 4. Some previously reported P–C=C–S proligands.

In terms of the mechanism of this new thermal rearrangement, we envisage attack
of the nucleophilic sulfur at phosphorus to give a transient λ5-1,2-thiaphosphete, which
is of course the same intermediate involved in the extrusion of Ph3PS to give alkynes as
observed for 7–9. This behaviour is also consistent with that of the isolable thiaphosphete
23, which fragments with the loss of an alkyne to give the benzoxaphosphole P-sulfide [24].
However, perhaps due to the relief of steric congestion, the thiaphosphetes derived from 10
and 11 instead undergo what is effectively a reductive elimination at phosphorus to give
the (Z)-phosphinovinyl sulfides 12 and 13 (Scheme 4).
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Scheme 4. Mechanism proposed for the thermal rearrangement of 10 and 11.

Somewhat similar processes are the transfer of Ph from Se to O in acylselenonium
ylides such as 24 to give 25 observed by Rakitin [25] (Scheme 5), the transformation of
26 into 27 postulated by Zbiral in the interaction of ylides Ph3P=CHR with benzyne [26]
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and the rearrangement of the ylide-containing N-heterocyclic carbene 28 via 29 to give
3-phosphinoindole 30 [27].
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Scheme 5. Some mechanistic precedents.

With the two new hemilabile proligands in hand, we now set about exploring their
coordination chemistry. In our preliminary communication [6], the formation of the square
planar platinum complex 31 from 12 was described along with its X-ray structure determi-
nation (CSD RefCode: AJONAP). We were also successful in obtaining complexes of 12
with a wide range of other standard transition metal reagents (Scheme 6).
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Scheme 6. Formation of transition metal complexes from 12.

Reaction of the starting materials in CH2Cl2 followed by partial evaporation and
precipitation with diethyl ether gave the new complexes 32–36 in moderate to good yield
as crystalline solids, giving the expected microanalytical data and 1H and 31P NMR spectra.
From the analytical data, it was clear that the complexes had formed with the expected
stoichiometry according to the metal source employed, with 12 acting as a bidentate ligand
in the square planar platinum(II) and palladium(II) complexes 31 and 32 and the cationic
ruthenium(II) complex 36, but as a monodentate ligand through the more strongly donating
phosphorus atom in palladium(II) complex 33, gold(I) complex 34 and iridium(III) complex
35. In addition to the compound 31 already confirmed by X-ray diffraction [6], we were
able to obtain X-ray structures for gold complex 34 and iridium complex 35 (see below).
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Although the methyl proligand 13 was available in lower quantity and purity, we were
able to prepare its palladium dichloride complex 37 analogous to 32 and also determined
its X-ray structure (Scheme 7).
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Scheme 7. Formation of palladium complex 37 and structure of a related iron complex.

The structures of the complexes 34, 35 and 37 together with the numbering systems
used are shown below (Figure 5) with that of 31 [6] also included for comparison.
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Figure 5. X-ray structures of complexes 34, 35, 37 and 31 showing probability ellipsoids at 50% level
and numbering systems used.

For comparison, we also show (Figure 6) the previously reported structures of 10 [6]
and 12 [6], and the iron(II) complex 38 [28], which, although made in a quite different way,
contains the phosphinovinylthiolate corresponding to 12 as an anionic bidentate ligand.
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The key structural parameters for complexes 34, 35 and 37 and, for comparison, those
for 10, 12, 31 and 38 are presented in Table 1. In all seven structures, the P–C–C–S fragment
is quite accurately planar with a torsion angle of <10◦ in every case.

Table 1. Geometric parameters for 10 [6], 12 [6], 31 [6], 34, 35, 37 and, for comparison, 38 [28].

Bond lengths (Å)
Compound P–CH CH=C =C–S P–M M–S

10 1.739(2) 1.373(3) 1.708(2) — —
12 1.818(4) 1.316(6) 1.788(4) — —
31 1.773(14) 1.34(2) 1.825(14) 2.216(6) 2.259(5)
34 1.795(12) 1.332(17) 1.782(13) 2.229(3) —
35 1.824(5) 1.318(7) 1.787(5) 2.3076(12) —
37 1.798(8) 1.322(11) 1.796(8) 2.227(2) 2.252(2)
38 1.770(6) 1.346(8) 1.764(5) 2.256(1) 2.307(2)

Angles (◦)
Compound P–C=C C=C–S =C–P–M P–M–S M–S–C=

10 124.05(16) 122.46(16) — — —
12 125.5(3) 115.1(3) — — —
31 121.4(11) 118.0(10) 106.6(6) 88.59(19) 105.3(5)
34 128.7(10) 118.9(9) 121.2(4) — —
35 131.7(4) 119.8(4) 109.27(15) — —
37 119.6(6) 119.1(6) 107.2(3) 87.07(8) 106.8(3)
38 118.3(2) 120.7(2) 108.4(1) 85.1(0) 106.3(1)

If we first compare 10 and 12, the major change in geometry associated with the
transformation of P=C–C=S into P–C=C–S is clear. However, comparing the structural
parameters of 12 with those of its complexes 31, 34 and 35 as well as the related thiolate
complex 38 shows a remarkable degree of consistency. As expected, the complexes 34
and 35 where the metal binds only to phosphorus have bond lengths around the =C–SPh
that are relatively unaffected, while the bidentate binding to platinum in 31 results in the
significant lengthening of C–S and shortening of C–P. While the smaller size of AuCl means
the ligand 12 can retain the orientation of the PPh2 group, coordination to the much larger
Cp*IrCl2 requires the PPh2 group to rotate, placing the phenyl groups facing towards SPh.
The similarity between the geometry of the neutral ligand 12 in complexes such as 31 and
the anionic enethiolate in 38 is also notable, with only the =C–S length being significantly
shorter in the latter. The angles within the five-membered ring in complexes 31, 37 and 38
are also remarkably consistent.
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3. Experimental Section
3.1. General Experimental Details

NMR spectra were recorded on solutions in CDCl3 unless otherwise stated using
Bruker instruments, and chemical shifts are given in ppm to high frequency from Me4Si for
1H and 13C and H3PO4 for 31P with coupling constants J in Hz. The 13C NMR spectra are
referenced to the solvent signal at 77.0 (CDCl3). IR spectra were recorded on a Perkin Elmer
1420 instrument. Elemental analysis was conducted using a Carlo Erba CHNS analyser.
Mass spectra were obtained using a Micromass instrument and the ionisation method
used is noted in each case. Preparative TLC was carried out using 1.0 mm layers of Merck
alumina 60 G containing 0.5% Woelm fluorescent green indicator on glass plates. Melting
points were recorded on a Gallenkamp 50W melting point apparatus or a Reichert hot-stage
microscope.

Flash vacuum pyrolysis (FVP) was carried out in a conventional flow system by
subliming the starting material through a horizontal quartz tube (30 × 2.5 cm) externally
heated by a tube furnace to 650 ◦C and maintained at a pressure of 2–5 × 10−2 Torr by a
rotary vacuum pump. Products were collected in a liquid N2 cooled U-shaped trap and
purified as noted.

General organic and inorganic reagents and solvents were obtained from standard sup-
pliers and used as received. Dry THF was prepared by storage over sodium wire. Start-
ing transition metal complexes [AuCl(tetrahydrothiophene)] [29], [PdCl2(cyclooctadiene)] [30],
[PtCl2(cyclooctadiene)] [31], [{RuCl(µ-Cl)(η6-p-MeC6H4

iPr)}2] [32], [{IrCl(µ-Cl)(η5-C5Me5)}2] [33]
and [{Pd(m-Cl)(η3-C3H5)}2] [34] were prepared by the reported methods.

3.2. Preparation of Thiocarbonyl Ylides
3.2.1. Preparation of Thiopivaloylmethylenetriphenylphosphorane 10

A solution of pivaloylmethylenetriphenylphosphorane (5.0 g, 13.9 mmol) and Lawes-
son’s reagent (2.81 g, 6.9 mmol) in toluene (300 mL) was heated under reflux under nitrogen
for 3 h. The mixture was allowed to cool to RT and the solution was poured off leaving an
insoluble oily residue and evaporated. Recrystallisation of the resulting solid from ethyl
acetate gave the product (2.86 g, 55%) as pale-yellow crystals, mp 200–202 ◦C; (Found: C,
76.5; H, 6.4. C24H25PS requires C, 76.6; H, 6.7%); νmax/cm−1 1572, 1260, 1205, 1160, 1105,
978, 880, 792, 751, 722, 713, 691 and 620; 1H NMR (300 MHz) δH 1.40 (9H, s), 5.22 (1H, d, J
34, CH=P), 7.40–7.48 (6H, m), 7.48–7.52 (3H, m) and 7.67–7.80 (6H, m); 13C NMR (75 MHz)
δC 31.3 (3C), 43.2 (d, J 14, CMe3), 81.3 (d, J 118, P=C), 125.3 (d, J 92, C-1 of Ph), 128.5 (d, J
12, C-3 of Ph), 131.6 (d, J 2, C-4 of Ph), 132.8 (d, J 10, C-2 of Ph) and 214.4 (d, J 4, C=S); 31P
NMR (121 MHz) δP +5.0; MS (EI) m/z 376 (M+, 16%), 343 (9), 319 (100), 294 (7), 262 (12) and
183 (23).

3.2.2. Preparation of Thioacetylmethylenetriphenylphosphorane 11

A solution of acetylmethylenetriphenylphosphorane (8.0 g, 25 mmol) and Lawesson’s
reagent (5.1 g,12.6 mmol) in toluene (300 mL) was heated under reflux under nitrogen for
3 h. The mixture was allowed to cool to RT and the solution was poured off leaving an
insoluble oily residue and evaporated. Recrystallisation of the resulting solid from ethyl
acetate gave the product (4.62 g, 55%) as pale-yellow crystals, mp 172–174 ◦C; (Found: C,
75.2; H, 5.3. C21H19PS requires C, 75.4; H, 5.7%); νmax/cm−1 1585, 1270, 1175, 1106, 993,
872, 763, 747, 723, 686 and 660; 1H NMR (300 MHz) δH 2.63 (3H, s), 5.18 (1H, d, J 32, CH=P),
7.45–7.55 (6H, m), 7.55–7.65 (3H, m) and 7.70–7.80 (6H, m); 13C NMR (75 MHz) δC 36.8 (d, J
18, Me), 84.1 (d, J 113, P=C), 124.6 (d, J 92, C-1 of Ph), 128.9 (d, J 12, C-3 of Ph), 132.3 (d, J 3,
C-4 of Ph), 133.3 (d, J 10, C-2 of Ph) and 200.5 (d, J 4, C=S); 31P NMR (121 MHz) δP +8.1; MS
(EI) m/z 334 (M+, 85%), 319 (16), 301 (40), 262 (14), 225 (30), 183 (38) and 43 (100).
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3.3. Thermal Rearrangement of Thiocarbonyl Ylides
3.3.1. Preparation of (Z)-1-Diphenylphosphino-3,3-dimethyl-2-phenylthiobut-1-ene 12

FVP of the ylide 10 (0.50 g, 1.33 mmol) was performed at 650 ◦C and 3.8 × 10−2 Torr
and was complete within 1 h. Preparative TLC (silica, diethyl ether) of the crude material
gave the product 12 (0.41 g, 82%) as pale-yellow plates, mp 121–123 ◦C; (Found: C, 76.3; H,
6.7; S, 8.2. C24H25PS requires C, 76.6; H, 6.7; S, 8.5%); νmax/cm−1 1582, 1551, 1303, 1181,
1118, 1027, 960, 740, 720 and 694; 1H NMR (300 MHz) δH 1.21 (9H, s), 6.94 (1H, s), 7.05–7.25
(5H, m) and 7.25–7.40 (10H, m); 13C NMR (75 MHz) δC 29.8 (3CH3), 41.5 (d, J 3, CMe3),
125.2 (C-4 of SPh), 127.5 (C-3 of SPh), 128.24 (C-4 of PPh), 128.25 (d, J 11, C-3 of PPh), 128.6
(C-2 of SPh), 132.6 (d, J 19, C-2 of PPh), 137.2 (C-1 of SPh), 137.8 (d, J 6, P–CH=), 139.4 (d, J
12, C-1 of PPh) and 158.8 (d, J 23, S–C=); 31P NMR (121 MHz) δP −19.8; MS (CI) m/z 377
(M+H+, 100%), 319 (9) and 279 (10).

3.3.2. Preparation of (Z)-1-Diphenylphosphino-2-phenylthiopropene 13

FVP of the ylide 11 (0.50 g, 78.8 µmol) was performed at 650 ◦C and 3.8 × 10−2 Torr
and was complete within 1 h. NMR analysis of the crude product (0.245 g, 49%) showed a
6.5:1 ratio of (Z)- and (E)-13. Repeated Kugelrohr distillation of this (bp 90 ◦C/0.1 Torr) in an
attempt to remove trace impurities of Ph3P, Ph3PO and Ph3PS resulted in isomerisation to
afford a 1:1 ratio of (Z) and (E)-13. By comparing the NMR data before and after distillation,
the following assignments could be made (owing to peak overlap, definite assignment of
the remaining aromatic 13C NMR signals was not possible):

(Z)-13: 1H NMR (300 MHz) δH 2.02 (3H, t, J 1.5), 6.33 (1H, qd, J 1.5, 0.8) and 7.25–7.75
(15H, m); 13C NMR (75 MHz) δC 148.8 (d, J 27, =C–S), 139.0 (d, J 9.5, PPh C-1), 132.2 (d, J 11,
P–CH) and 25.7 (d, J 4.5, CH3); 31P NMR (121 MHz) δP −22.7.

(E)-13: 1H NMR (300 MHz) δH 2.23 (3H, d, J 0.9), 5.94 (1H, dq, J 2.0, 0.9) and 7.25–7.75
(15H, m); 13C NMR (75 MHz) δC 149.8 (d, J 30, =C–S), 138.9 (d, J 9.8, PPh C-1), 122.0 (d, J 12,
P–CH) and 20.9 (d, J 23, CH3); 31P NMR (121 MHz) δP −25.4.

For the isomer mixture (Found: C, 75.2; H, 5.7. C21H19PS requires C, 75.4; H, 5.7%);
νmax/cm−1 1584, 1478, 1435, 1184, 1109, 1026, 999, 743, 719 and 694; HRMS (EI) m/z calcd
for C21H19PS (M+) 334.0945. Found 334.0960.

3.4. Formation of Transition Metal Complexes
3.4.1. (Z)-1-Diphenylphosphino-3,3-dimethyl-2-phenylthiobut-1-ene Platinum Dichloride
Complex 31

A solution of [PtCl2(cod)] (66 mg, 0.18 mmol) in CH2Cl2 (5 mL) was stirred while a solu-
tion of (Z)-1-diphenylphosphino-3,3-dimethyl-2-phenylthiobut-1-ene 12 (66 mg, 0.18 mmol)
in CH2Cl2 (5 mL) was added dropwise over 30 min. After 1 h, the mixture was reduced
to 1 mL by evaporation, and the addition of diethyl ether (15 mL) led to precipitation of
the product as an off-white solid (89 mg, 79%), which was isolated by filtration. (Found:
C, 44.8; H, 3.6; S, 4.8. C24H25Cl2PPtS requires C, 44.9; H, 3.9; S, 5.0%); νmax/cm−1 1665,
1437, 295; 1H NMR (300 MHz, CD2Cl2) δH 8.0–7.5 (15H, m), 6.70 (1H, dd, 3JPt-H 67, 2JP-H
10) and 1.20 (9H, s); 31P NMR (121 MHz, CD2Cl2) δP +29.4 (d, 1JP-Pt 3524); MS (ESI−) m/z
641 (M–H).

3.4.2. (Z)-1-Diphenylphosphino-3,3-dimethyl-2-phenylthiobut-1-ene Palladium Dichloride
Complex 32

A solution of [PdCl2(cod)] (38 mg, 0.13 mmol) in CH2Cl2 (5 mL) was stirred while
a solution of (Z)-1-diphenylphosphino-3,3-dimethyl-2-phenylthiobut-1-ene 12 (50 mg,
0.13 mmol) in CH2Cl2 (5 mL) was added dropwise over 30 min. After 2 h, the mixture
was reduced to 1 mL by evaporation, and the addition of diethyl ether (15 mL) led to
precipitation of the product as a yellow solid (63 mg, 79%), which was isolated by filtration.
(Found: C, 49.7; H, 4.4. C24H25Cl2PPdS•0.5 CH2Cl2 requires C, 49.4; H, 4.4%); νmax/cm−1

1575, 1436, 289; 1H NMR (300 MHz, CD2Cl2) δH 8.0–7.5 (15H, m), 6.70 (1H, d, 2JP-H 8) and
1.20 (9H, s); 31P NMR (121 MHz, CD2Cl2) δP +50.4; MS (ESI+) m/z 553 (M).
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3.4.3. (Z)-1-Diphenylphosphino-3,3-dimethyl-2-phenylthiobut-1-ene η3-allyl Palladium
Chloride Complex 33

A solution of [Pd(η3-allyl)Cl] (32 mg, 0.22 mmol) in CH2Cl2 (5 mL) was stirred
while a solution of (Z)-1-diphenylphosphino-3,3-dimethyl-2-phenylthiobut-1-ene 12 (66 mg,
0.18 mmol) in CH2Cl2 (5 mL) was added dropwise over 30 min. After 2 h, the mixture
was reduced to 0.5 mL by evaporation, and the addition of diethyl ether (10 mL) led to
precipitation of the product as a yellow solid (54 mg, 55%), which was isolated by filtration.
(Found: C, 56.7; H, 4.6. C27H30ClPPdS•0.4 CH2Cl2 requires C, 56.4; H, 5.3%); νmax/cm−1

1599, 1435, 296; 1H NMR (300 MHz, CD2Cl2) δH 8.0–7.5 (15H, m), 6.70 (1H, d, 2JP-H 8) and
1.20 (9H, s); 31P NMR (121 MHz, CD2Cl2) δP +40.9; MS (ESI+) m/z 523 (M–Cl).

3.4.4. (Z)-1-diphenylphosphino-3,3-dimethyl-2-phenylthiobut-1-ene Gold Chloride
Complex 34

A solution of [Au(tht)Cl] (18 mg, 0.06 mmol) and (Z)-1-diphenylphosphino-3,3-dimethyl-
2-phenylthiobut-1-ene 12 (21 mg, 0.06 mmol) in CH2Cl2 (2 mL) was stirred for 18 h. The
mixture was reduced to 0.5 mL by evaporation, and the addition of diethyl ether (10 mL)
led to precipitation of the product as a white solid (21 mg, 62%), which was isolated by
filtration. (Found: C, 47.2; H, 4.1. C24H25AuClPS requires C, 47.3; H, 4.1%); νmax/cm−1

1577, 1436, 253; 1H NMR (300 MHz, CD2Cl2) δH 7.5–7.0 (15H, m), 6.70 (1H, d, 2JP-H 12) and
1.20 (9H, s); 31P NMR (121 MHz, CDCl3) δP +18.2; MS (ESI+) m/z 631 (M+Na).

3.4.5. (Z)-1-Diphenylphosphino-3,3-dimethyl-2-phenylthiobut-1-ene
Pentamethylcyclopentadienyl Iridium Dichloride Complex 35

A solution of [{IrCl(µ-Cl)(η5-C5Me5)}2] (75 mg, 0.1 mmol) in CH2Cl2 (5 mL) was
stirred while a solution of (Z)-1-diphenylphosphino-3,3-dimethyl-2-phenylthiobut-1-ene
12 (71 mg, 0.19 mmol) in CH2Cl2 (5 mL) was added dropwise over 30 min. After 2 h, the
mixture was reduced to 0.5 mL by evaporation, and the addition of diethyl ether (20 mL)
led to precipitation of the product as a yellow solid (84 mg, 57%), which was isolated by
filtration. (Found: C, 48.1; H, 4.65. C34H40Cl2IrPS•1.25 CH2Cl2 requires C, 48.1; H, 4.9%);
νmax/cm−1 1648, 1437, 290; 1H NMR (300 MHz, CD2Cl2) δH 8.0–7.5 (15H, m), 6.70 (1H, d,
2JP-H 8), 1.20 (9H, s) and 1.00 (15H, s); 31P NMR (121 MHz, CD2Cl2) δP −8.7; MS (ESI+) m/z
739 (M).

3.4.6. (Z)-1-Diphenylphosphino-3,3-dimethyl-2-phenylthiobut-1-ene p-Cymene Ruthenium
Dichloride Complex 36

A solution of [{RuCl(µ-Cl)(η6-p-MeC6H4
iPr)}2] (26 mg, 0.04 mmol) in CH2Cl2 (5 mL)

was stirred while a solution of (Z)-1-diphenylphosphino-3,3-dimethyl-2-phenylthiobut-
1-ene 12 (32 mg, 0.08 mmol) in CH2Cl2 (5 mL) was added dropwise over 30 min. After
18 h, the mixture was reduced to 0.5 mL by evaporation, and the addition of diethyl ether
(10 mL) led to precipitation of the product as an orange solid (39 mg, 67%), which was
isolated by filtration. (Found: C, 56.9; H, 4.0. C34H39Cl2PRuS•0.5 CH2Cl2 requires C, 57.1;
H, 5.6%); νmax/cm−1 1637, 1436, 291; 1H NMR (300 MHz) δH 8.0–7.5 (19H, m), 6.70 (1H, d,
2JP-H 8), 2.50 (1H, m), 1.80 (3H, s), 1.20 (9H, s) and 0.70 (6H, m); 31P NMR (121 MHz) δP
+14.6; MS (ESI+) m/z 647 (M–Cl).

3.4.7. (Z)-1-Diphenylphosphino-2-phenylthiopropene Palladium Dichloride Complex 37

A solution of [PdCl2(cod)] (33 mg, 0.1 mmol) in CH2Cl2 (5 mL) was stirred while a
solution of (Z)-1-diphenylphosphino-2-phenylthiopropene 13 (64 mg, 0.2 mmol) in CH2Cl2
(5 mL) was added dropwise over 30 min. After 2 h, the mixture was reduced to 0.5 mL by
evaporation, and the addition of diethyl ether (10 mL) led to precipitation of the product
as a yellow solid (43 mg, 73%), which was isolated by filtration. (Found: C, 49.5; H, 3.2.
C21H19ClPPdS requires C, 49.3; H, 3.7%); νmax/cm−1 1576, 1435, 296; 1H NMR (300 MHz,
CD2Cl2) δH 8.0–7.5 (15H, m), 6.30 (1H, d, 2JP-H 8) and 2.00 (3H, s); 31P NMR (121 MHz,
CD2Cl2) δP +52.4; MS (ESI+) m/z 532 (M+Na).
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3.5. X-ray Structure Determination of Complexes

Data were collected on a Bruker SMART diffractometer using graphite monochro-
mated Mo Kα radiation λ = 0.71075 Å. The data were deposited at the Cambridge Crystal-
lographic Data Centre and can be obtained free of charge via http://www.ccdc.cam.ac.uk/
getstructures (accessed on 13 December 2023). The structure was solved by direct methods
and refined by full-matrix least-squares against F2 (SHELXL, Version 2018/3 [35]).

3.5.1. (Z)-1-Diphenylphosphino-3,3-dimethyl-2-phenylthiobut-1-ene Gold Chloride
Complex 34

Crystal data for C24H25AuClPS, M = 608.91, colourless prism, crystal dimensions 0.13
× 0.03 × 0.03 mm, monoclinic, space group P21/c (No. 14), a = 18.290(6), b = 7.007(2),
c = 17.660(6) Å, β = 96.966(6)◦, V = 2246.7(13) Å3, Z = 4, Dc = 1.800 g cm−3, T = 125 K,
R1 = 0.0622, Rw2 = 0.1417 for 2869 reflections with I > 2σ(I) and 253 variables. CCDC
2298238.

3.5.2. (Z)-1-Diphenylphosphino-3,3-dimethyl-2-phenylthiobut-1-ene
Pentamethylcyclopentadienyl Iridium Dichloride Complex 35

Crystal data for C34H40Cl2IrPS, M = 774.85, yellow prism, crystal dimensions 0.30
× 0.20 × 0.20 mm, triclinic, space group P-1 (No. 2), a = 10.2041(15), b = 10.2862(15),
c = 16.724(3) Å, α = 80.903(2), β = 82.655(2), γ = 65.666(2)◦, V = 1575.5(4) Å3, Z = 2,
Dc = 1.633 g cm–3, T = 125 K, R1 = 0.0263, Rw2 = 0.0717 for 4283 reflections with I > 2σ(I)
and 354 variables. CCDC 2298239.

3.5.3. (Z)-1-Diphenylphosphino-2-phenylthiopropene Palladium Dichloride Complex 37

Crystal data for C21H19Cl2PPdS, M = 511.69, orange prism, crystal dimensions 0.30 ×
0.15 × 0.10 mm, triclinic, space group P-1 (No. 2), a = 8.677(3), b = 11.063(4), c = 11.665(4)
Å, α = 76.460(6), β = 87.468(6), γ = 71.174(5)◦,V = 1029.8(6) Å3, Z = 2, Dc = 1.650 g cm–3,
T = 125 K, R1 = 0.0519, Rw2 = 0.1335 for 2660 reflections with I > 2σ(I) and 235 variables.
CCDC 2298237.

4. Conclusions

While thiocarbonyl ylides with other groups on the ylidic carbon undergo thermal
extrusion of Ph3PS upon FVP at 650 ◦C, two examples, 10 and 11, with hydrogen on
the ylidic carbon instead undergo a novel isomerisation under the same conditions to
afford useful (Z)-configured 1-diphenylphosphino-2-phenylsulfenylalkenes. The t-butyl
compound 12 is obtained in good yield as the pure (Z)-isomer and behaves well as a ligand,
forming a range of transition metal complexes with both bidentate binding via P and S and
monodentate binding via only P. The methyl compound is obtained in lower yield mainly
as the (Z)-isomer 13 but with a significant proportion of (E)-14, which increases upon
distillation. A more limited study of its coordination chemistry resulted in the isolation of a
bidentate bonded palladium complex. It is clear that while seven new complexes involving
the two ligands have been isolated and characterised, including in four cases by X-ray
diffraction, much more work needs to be carried out to fully exploit the potential of these
simple yet versatile proligands, which are now readily available thanks to this unusual
thermal rearrangement.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/molecules29010221/s1, Figures S1–S16: 1H, 13C and 31P NMR spectra of compounds 10, 11, 12
and 13.
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colleague who was still amusing to be around and spoke his mind in a straightforward way- even when
working in senior management.

Abstract: Phospholane-phosphites are known to show highly unusual selectivity towards branched
aldehydes in the hydroformylation of terminal alkenes. This paper describes the synthesis of hitherto
unknown unsaturated phospholene borane precursors and their conversion to the corresponding
phospholene-phosphites. The relative stereochemistry of one of these ligands and its Pd complex
was assigned with the aid of X-ray crystal structure determinations. These ligands were able to
approach the level of selectivity observed for phospholane-phosphites in the rhodium-catalysed
hydroformylation of propene. High-pressure infra-red (HPIR) spectroscopic monitoring of the
catalyst formation revealed that whilst the catalysts showed good thermal stability with respect to
fragmentation, the C=C bond in the phospholene moiety was slowly hydrogenated in the presence
of rhodium and syngas. The ability of this spectroscopic tool to detect even subtle changes in
structure, remotely from the carbonyl ligands, underlines the usefulness of HPIR spectroscopy in
hydroformylation catalyst development.

Keywords: hydroformylation; phosphacycles; homogeneous catalysis; rhodium; in situ spectroscopy;
regioselectivity

1. Introduction

Phosphacycles are widely applied ligands in several areas of homogenous catalysis [1–11],
and hence new examples of phosphacycles are important in both main group chemistry
and catalysis disciplines. Rhodium complexes of enantiomerically pure 2,5-disubstituted
phospholanes, such as Me-DUPHOS (Figure 1), are produced at the kilogram scale and
are applied industrially, whilst other related bis-phospholanes have many applications as
catalysts in asymmetric synthesis [2,8,9]. The 2,5-diarylphospholano motif is present in the
widely used ligand Ph-BPE (Ph-BPE = phenyl, bis-phospholano-ethane, Figure 1) [10,11]
and additionally in phospholane-phosphite ligands, such as Bobphos (Figure 1) [11]. The
latter confer very unusual branched regioselectivity up to 6:1 in the hydroformylation of a
range of unbiased terminal ‘alkyl-alkenes’, a type of substrate that normally forms linear
aldehydes [12–15]. Phospholane-phosphites of this type have also recently been found
to be preferred ligands for certain enantioselective arylation reactions using arylboron
reagents [16,17].
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Figure 1. Structures of some phospholanes used in homogeneous catalysis.

These catalysts were originally developed for producing high-value, branched, enan-
tiomerically pure aldehydes for pharmaceutical and fine chemical synthesis, but more
recently we have been working on a programme exploring the possibility of develop-
ing a large-scale selective route to iso-butanal from propene. We reported that several
milestones were reached, namely, (i) the use of unusual process conditions to improve
the iso-butanal regioselectivity observed in the initial screening from around 60% up to
around 80%, maintaining a selectivity of at least 65% even at high temperatures, at which
industrially acceptable rates were observed [14]; (ii) the redesign of the ligand to obtain
structures such as 1 (Figure 1) to confer stability at high temperatures for elongated periods
of time [18]. These solutions to significant hurdles delivered stable and selective catalysts
that operated with no decomposition in experiments lasting over several days, producing
kilogram amounts of products [18]. One issue, however, is that for such a high-volume
speciality chemical like isobutanal, with a market of many thousands of tonnes, the ligand
structure is quite complex, needing eight synthetic steps; simpler ligand structures that can
produce catalysts with similar performance are of significant interest.

Considering the synthetic route to Bobphos (Scheme 1) and the proposed origin of
selectivity [19], it seemed plausible that an unsaturated phospholene-phosphite could be
obtained with two fewer synthetic steps. It was unclear what the effect of the more rigid
unsaturated ring and the different relative stereochemistry of the two phenyl groups
would be, but we hoped that the molecule might be sufficiently similar to 1 to still favour
branched aldehyde formation. Here, we describe the synthesis of this type of ligand and
its precursors, before reporting on a study of the stability of their Rh catalysts. In situ
high-pressure infra-red (HPIR) spectroscopy was discovered to be a sufficiently sensitive
tool to detect the hydrogenation of the C=C bond in the phospholene under conditions
relevant to hydroformylation catalysis.
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Scheme 1. Synthesis of (Rax,R,R)-Bobphos.

2. Results and Discussion

To the best of our knowledge, phospholene ligands are very scarcely applied in transi-
tion metal catalysis or as ligands in general [20,21]. Phosphorous chemists have prepared a
variety of these molecules over the years [20–27], primarily using a McCormack cycloaddi-
tion between dienes and phosphenium cations. Their main utility has been as precursors to
other phosphacycles [22–26]. A secondary phospholene borane precursor to produce 2,5-
diarylsubstituted phospholenes was consequently unknown, but was readily prepared in
this study by simply omitting the C=C hydrogenation and cis-trans isomerisation steps that
were previously used to prepare secondary phospholane borane, 5 [10,22]. The synthesis is
shown in Scheme 2 and started from amino-phosphine oxide 2 obtained in one step from
diphenylbutadiene, as shown in Scheme 1. The cis–trans isomerization and hydrogenation
steps for the synthesis of 1 were omitted, making phospholenic acid 8 available in just two
steps in place of four steps needed to make phospholanic acid 4.
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Scheme 2. Synthesis of secondary phospholene borane 9 and the precursor to phospholene-phosphite
ligands. (See Scheme 1 for synthesis of 2).

Phospholenic acid 8 was already described in the literature [24]. Reduction of acid 8
followed by protection with borane-dimethylsulfide afforded the corresponding secondary
phospholene 9. The preparation of the phospholene-containing fragment was achieved by
deprotonation of secondary phospholene 9 with n-BuLi and attack of the resulting anion
on the less substituted carbon of the commercially available 2-(trifluoromethyl)oxirane to
obtain adduct 10 (Scheme 2). The NMR data suggested the presence of a single, racemic
diastereomer and a single regioisomer in solution for compounds 9 and 10 [27]. The relative
stereochemistry in phospholene borane 9 was investigated using 1D gs-NOESY. An NOE
between hydrogens, three bonds apart in a five-membered ring, cannot be reliably used
to assign the relative stereochemistry without a known standard to compare to. This is
not only due to the likelihood of zero-quantum coherence effect (ZQC), but also due to
a high chance of seeing an NOE signal even in the case of anti geometry. Whilst such an
NOE would be expected to be weaker for an anti relationship between P-H and C-H, in
the case of only one isomer, it would not be possible to assign the relative stereochemistry
without knowing the NOE for the other isomer. Fortunately, in this case, the previously
synthesised phospholane borane 5 has C-H bonds with both syn and anti relationships
with the P-H bond; a 1D gs-NOESY spectrum of phospholane borane 5 (Supplementary
Materials) showed the presence of both NOE effects and H syn to P-H and H anti to P-H
relationships. There was a strong NOE signal for one of the CH α to P and a weak antiphase
(ZQC) signal for the other CH, as expected (see Supplementary Materials). We found that
1D gs-NOESY of phospholene borane 9 only showed an antiphase (ZQC) artefact signal
when irradiating H-P, due to scalar coupling between those spins (J = 8.2 Hz). Furthermore,
a significant NOE of the H-P with one of the aromatic hydrogens (see Supplementary
Materials) was observed, suggesting anti stereochemistry, as depicted in Scheme 2.

The final step in the synthesis was the coupling between 10 and a chloro-phosphite.
In addition to the main target 13a, a bulkier phosphite fragment, 13b, and a less electron-
donating phosphite fragment, 13c, were targeted for synthesis. The requisite diol, 11b,
for the bulkier ligand was not commercially available and was prepared using a classical
oxidative coupling in the presence of MnO2 (Scheme 3).
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Compound 11b was reported previously in the literature [28]. Our sample of diol 11b,
prepared as in Scheme 3, resembled a pure compound with the expected NMR spectrum,
but the NMR data did not fully match the literature [28], as our NMR spectrum contained
significantly fewer peaks. Esguerra et al. attributed the unexpectedly high number of
observed signals in their data to the presence of two conformational isomers. For whatever
reason, the sample of 11b we prepared did not show extra signals, possibly assignable
to the unexplained lack of an extra conformational isomer or to a major impurity in the
compound reported in reference [28] To completely confirm that our NMR data indicated
the proposed structure of compound 11b, we determined the structure of diol 11b using
X-ray crystallography. The crystal structure is shown in Scheme 3, confirming the structure
of the diol prepared in Scheme 3. One feature that merits discussion concerns the twists
between the rings. We found that biphenol 11b possessed a smaller twist of 79.1(4)◦ than the
one observed for diol 11a, of 89.84(8)◦ [29]. In comparison, unsubstituted [1,1′-biphenyl]-
2,2′-diol displayed a much smaller torsion angle of 48.71(5)◦, probably due to the lack of
substituents and the presence of intramolecular hydrogen bonding [30].

Phosphite coupling to prepare the ligands 13a–13c was achieved by synthesising the
corresponding chlorophosphites from tropos diols 11a–11c, and these were reacted directly
with precursor 10 in the presence of 1,4-diazabicyclo-[2,2,2]-octane (DABCO, Scheme 4).
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Scheme 4. Phosphite coupling and deprotection gives the final phospholene-phosphite ligands.

In order to confirm the relative configuration of ligand 13a, an X-ray crystal structure
was obtained (Figure 2). In the structure, it can be observed that the lone pair on phospho-
rous is anti relative to the meso-cis phenyl groups. This relative stereochemistry for alkyl
or P-H relative to phenyl was similar to the stereochemical assignment made for 9. It is
quite possible that, rather than the deprotonation–alkylation step occurring with retention
of configuration at phosphorus, the deprotonated form of 9 might be configurationally
unstable, with the most thermodynamically stable and/or most reactive stereoisomer of
the anion leading to the observed stereochemistry in precursor 10. Retaining the same
stereochemistry in 10 and 13a is as expected. Ligand 13a (in racemic form) was, as expected,
a mixture of the (Sc, meso-cis) and (Rc, meso-cis) isomers.
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Figure 2. X-ray crystal structure of 13a (thermal ellipsoid plot, 50% probability ellipsoids). Carbon
atoms shown grey, oxygen red, fluorine green, phosphorus orange). Hydrogen atoms omitted
for clarity.

It is worth mentioning that ligand 13a contains a tropos diol, which, in solution,
displays a rapid interconversion through the planar conformation. However, in the solid
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state, the diol settles in a preferred atropos conformation that depends on the chirality of
the stereocentre with the CF3 substituent. The two isomers (enantiomers) observed were,
therefore, (Sc, pseudo-Rax, meso-cisring) and (Rc, pseudo-Sax, meso-cisring), both with the P lone
pair anti to the phenyl rings.

Crystals of a rhodium complex derived from ligands 13a–c were not available; so,
one example of a Pd complex was prepared, which had the additional desirable feature
of being comparable to the analogous Pd(L)Cl2 complex of Bobphos that was structurally
characterised [19]. Complex 14 was prepared by reacting ligand 13a with [PdCl2(PhCN)2].
and single crystals suitable for analysis were grown from chloroform. The X-ray crystal
structure of [PdCl2(13a)]·3CHCl3 (14) (Scheme 5, Table 1) revealed a slightly distorted
square planar geometry about palladium. The bidentate ligand 13a occupied two coordi-
nation sites, with a P-Pd-P crystallographic bite angle of 96.22(2)◦, enlarged by about 6◦

over the preferred 90◦ for this type of complex. This crystallographic bite angle was over
10◦ larger than the one in [PdCl2{(Sax,S,S)-Bobphos}]·2CHCl3 [19], which was largely due
to the introduction of an extra carbon in the linker of 13a. The Pd-Cl bonds were slightly
shorter than in [PdCl2(Sax,S,S)-Bobphos)], and contrary to the Pd/Bobphos complex, the
Pd-Cl bond trans to the phosphite, 2.3385(5) Å, was slightly longer than the Pd-Cl bond
trans to the phosphine, 2.3271(5) Å.
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Table 1. Comparison of selected bond lengths (Å), angles (º) and torsions (º) for [PdCl2(13a)]·3CHCl3
(14) and [PdCl2(Sax,S,S)-Bobphos·2CHCl3 (NEKXEJ).

13a 14 NEKXEJ

Pd-P(1) 2.2023 (5) 2.183 (2)

Pd-P(31) 2.2426 (2) 2.225 (2)

Pd-Cl(2)trans phosphite 2.3385 (5) 2.342 (3)

Pd-Cl(1)trans phosphine 2.3271 (5) 2.348 (2)

P(1)-Pd-P(31) 96.22 (2) 86.13 (9)

Cl(1)-Pd-Cl(2) 92.50 (1) 93.8 (1)

O(2)-P1-O(13) 106.47 (7) 106.5 (4)

C(2)-C(1)-C(12)-C(13) 51.0 (2) 65 (1)

C(6)-C(1)-C(12)-C(17) 45.0 (2) 62 (1)

Phenol-phenol twist 53.05 (4) 50.07 (6) 66.8 (4)

The twist observed between the phenol groups of 53.05(4)◦ in the free ligand 13a was
most similar to that in the unsubstituted biphenol, with the phospholene ring restricting the
rotation between the phenol moieties, and remained quite far from perpendicular in the Pd
complex at 50.07(6)◦ This was a narrower twist than that observed in the analogous complex
derived from an atropos biphenol, [PdCl2(Sax,S,S)-Bobphos·2CHCl3], which was 66.8(4)◦.

Hydroformylation catalysis continues to attract academic research interest and pro-
mote new discoveries in the industry [31–34]. Whilst the reaction is of interest across
several sectors, the largest scale hydroformylation reaction practised is the Rh-catalysed
hydroformylation of propene. Whilst linear selective reactions produce n-butanal, needed
on a large scale, the formation of iso-butanal is of more recent interest, both as a conceptual
challenge to reverse the innate preference of these reactions and since iso-butanal now has
a very significant and increasing market [33–35]. This reaction has been the focus of a
long-standing project in our laboratories, and branched selective hydroformylations (and
hydroformylation with unusually low n/iso ratios) have been studied quite widely [36].
Until recently, class-leading results were generally to tilt the n/iso ratio; so, the iso-product
was slightly in excess. Some reactions more similar to iso-selective reactions have been
reported recently [14,18,35–37]. The performances of these new, more readily synthesised
phospholene-phosphite ligands, 13a–13c, were studied in the hydroformylation of propene
and were compared to class-leading phospholane-phosphite 1 (Table 2). We previously re-
ported the use of n-dodecane, a cheap non-volatile solvent, indicating it as a good solvent
that can be used as an alternative to more expensive but preferred fluorinated solvents;
dodecane was the solvent used in this study [18]. The catalysts originated from these
ligands were preactivated by mixing [Rh(acac)(CO)2] and the corresponding ligand in
dodecane and syngas at 90 ◦C before the vessel was brought to reaction temperature and
then filled with the propene/syngas mixture, as we described in previous papers. Complete
conversion was 1450 TON for reactions filled at 90 ◦C; so, the turnover measurements were
performed at <50% conversion after 1 h, and the values obtained can be considered to be
the average TOF for the first stage of the reaction. The time taken for this activation step
was separately studied by in situ HPIR spectroscopy (Supplementary Materials) to ensure
that the bands associated with the catalyst had grown to full intensity within the chosen
activation times used in the catalysis experiments (30–45 min). The activation times for
the phospholene-phosphite ligands 11a–11c were found to be similar to those for ligand
1. We were pleased to find that Rh/13a generated a branched selective catalyst, affording
iso-butanal with a selectivity of 67.5% at 75 ◦C (Table 2, entry 2). The iso-selectivity of
the new complex was lower than that of the complex obtained with Rh/1 at the same
temperature, (74.6%, Table 2, entry 3), but not by a huge margin. The stereochemical change
to a meso-cis arrangement of the two phenyl groups seemed only to have a marginal impact
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on regioselectivity; this was far from obvious, given the various subtleties we observed
during our work with phospholanes [14].

Table 2. Hydroformylation of propene catalysed by Rhodium complexes of new phospholane-
phosphite ligands.
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5 [c] 1 90 397 70.9
6 13a 105 751 64.5
7 1 105 782 67.2
8 13b 75 78 67.0
9 13b 90 184 64.8

10 13b 105 502 62.3
11 13c 75 181 65.3
12 13c 90 462 63.3
13 13c 105 993 61.0

[a] Catalyst preformed from [Rh(acac)(CO)2] (5.12 × 10−3 mmol) and ligand (10.24 × 10−3 mmol) by stirring
at 20 bar of CO/H2, at 90 ◦C for 40 min (13a), 45min (13b), 30min (13c), and 30 min (1) in the desired solvent
(20 mL) and then increasing or decreasing the reaction T prior to running the reaction using a gas feed of
propene/CO/H2 at a 1:4.5:4.5 ratio. Rh concentration = 2.52 × 10−4 mol dm−3. Product determined by GC using
1-methylnaphthalene as an internal standard. The TON values can be treated as average TOF values for the first
part of the reaction; see the text for a discussion. [b] Reaction time, 16 h. Average TOF over 16 h = 13. [c] Ligand 1
(major isomer) from reference [17].

Improved turnover frequencies (TOFs) were obtained at 90 and 105 ◦C, and the loss of
selectivity with temperature compared with that for Rh/1 was also lower, allowing Rh/13a
to have a similar iso-butanal selectivity to Rh/1 at 105 ◦C (64.5% vs. 67.2%, Table 2, entries
6 and 7). The bulkier phosphite-phospholene 13b did not improve the branched selectivity
in the reaction, and there was a drop in activity (Table 2, entries 8–10). The introduction
of a Cl atom in the backbone of the diol moiety in the phosphite (ligand 13c), in order to
make the phosphorus atom of the phosphite less basic, afforded the expected increase in
the reaction rate (Table 2, entries 11–13). However, this did come at the cost of a drop in
selectivity in the reaction.

Initially, an HPIR study was carried out to characterise the catalyst resting state and, as
previously discussed, to investigate the time taken for the activation step (For discussion on
the HPIR set-up, see ref. [38]). The presence of two main bands in the spectrum at 2019 and
1977 cm−1 and the asymmetric nature of the bands were consistent with an equatorial–axial
(ea) coordination mode (Figure 3) [18,39]. We were very pleased to find that the stability,
with respect to the decomposition of a range of unselective, unidentifiable species, was
good: after 5 days at 90 ◦C, the IR bands for [RhH(CO)2(13a)] were characteristic of an eq–ax
isomer of a complex of type [RhH(CO)2(L)] (Figure 3). However, a small shift was observed
for both bands, from 2019 to 2017 and from 1977 to 1975 cm−1, after 24 h (Figure 3).
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Given the lack of data on phospholene ligands in homogeneous catalysis, one aspect
of interest to us at the outset of this study was if the alkene function in the phospholene
was stable in hydroformylation conditions and whether in situ HPIR spectroscopy was a
sensitive-enough tool to observe relatively remote changes in the catalyst relative to the
carbonyl ligands on rhodium. It is possible the alkene could undergo hydroformylation,
polymerisation, isomerisation or hydrogenation. Polymerisation was relatively unlikely
from a reactivity perspective and would be revealed by changes in physical properties.
Hydroformylation should lead to new carbonyl bands in the IR and formyl protons when
investigated by NMR. Detection of the catalyst resting state by NMR spectroscopy was
therefore performed.

We previously found all of the [RhH(CO)2(L)] complexes from bidentate ligands
related to Bobphos (and to diphosphites) to be stable for several hours, enabling NMR
characterisation under 1 atm of syngas; so, the desired complex, [RhH(CO)2(13a)] was
generated in a pressure vessel and then sampled for NMR interrogation. For a broader
discussion on the expected fluxionality for a Rh complex of an asymmetrically substituted
bidentate ligand, see References [18,40]. However, the key parameter is the magnitude
of 2JP-H, since 2JP-H for H-trans-P is known to be much larger (100–250 Hz) than for a cis
coupling (10–20 Hz) (Figure 4). In addition, phosphites have significantly larger coupling
constants than phosphines (by a factor of nearly 2; hence, a complex with phosphite trans to
H would have 2JP-H of around 200 Hz). Intermediate values (e.g., 2JP-Hcis of around 50 Hz),
can sometimes be observed when there is a rapidly interconverting mixture of complexes
with phosphite trans to H and complexes with phosphine trans to H, but this was not
significant here. Thus, it was possible to measure two 2JP-H coupling constants from the
hydride region of the 1H NMR spectrum, which were ~115 Hz and either 10 or 12 Hz
(1JRh-H was also 10 or 12 Hz and was not distinguishable from the very similar 2JP-H cis).
Comparing the 31P NMR and 31P{1H} NMR spectra clearly showed that the phosphite only
possessed a small 2JP-H coupling constant (measured as 11 Hz, i.e., 10 or 12 Hz), whereas
the phospholene region had a large coupling constant. These data are clearly supportive
of the structure shown in Figure 4, with the phospholene in the axial position, displaying
the H-trans-P coupling. The small size of the 2JP-H cis coupling constant in the phosphite
region indicated that a rapidly interconverting mixture of isomers was either not observed
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or contained a very high ratio of isomers favouring the structure in Figure 4. After 2 h in
the pressure vessel, the alkene protons in the phospholene ring were visible in the complex
(see Supplementary Materials, HSQC).
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Figure 4. (Left) Diagnostic coupling ranges for phosphorus ligands bound in axial and equatorial
sites in trigonal bipyramidal rhodium hydride complexes. (Right) Proposed structure and coupling
constants observed for [RhH(CO)2(13a)].

Carrying out the reaction of ligand, Rh source and syngas, while stirring for elongated
reaction times (7 days) to ensure that whatever change that was implied by the shifting
bands in the HPIR spectrum occurred, led to a different compound in comparison with
that obtained in the 2 h reaction. There was no extensive fragmentation of the catalyst, but
rather a different rhodium–hydride–dicarbonyl complex formed. This complex showed
quite different peak shape and shift in the hydride region of the 1H-NMR spectrum relative
to both [RhH(CO)2(13a)] and [RhH(CO)2(1)] (see comparative spectra in Supplementary
Materials). The HSQC spectra showed that in the region where the alkene protons of
[RhH(CO)2(13a)] were visible, there was now no resonance. There was no sign of any other
alkene protons or multiple overlapping peaks for each signal, nor any change in physical
properties, and there was no signal in the aldehyde region of the 1H-NMR spectrum. This
seemed to rule out polymerisation, hydroformylation, or isomerisation, whilst the fact that
the species was not [RhH(CO)2(1)] ruled out hydrogenation and epimerisation at one of
the C-HPh centres. The most likely structure by far was then a simple hydrogenation of the
C=C bond, with no other significant changes. One aspect of the NMR spectrum that was
not fully explained was that there were twice as many peaks in the spectrum of the catalyst
derived from the hydrogenated ligand. More specifically, these were consistent with two
very similar isomers formed in a 50/50 ratio, both of which had similar spectral features as
those of the single isomer of [RhH(CO)2(13a)]. Both sets of peaks contained a large 2JP-H
coupling constant for the phospholene ligand, indicating an e–a isomer with phospholene
in the apical site. There are two likely explanations for this. One is that [RhH(CO)2(13a)]
and [RhH(CO)2(1)] had a phosphite unit derived from a tropos biphenol that froze to one
atropisomer in the complex. This was observed in various forms using tropos compounds
that either were coordinated to metals or had further chiral centres within their structure.
It is possible that the 7 days of heating and ligand hydrogenation led to the hydrogenated
ligand product interconverting to both atropisomers, which were both detectable by NMR.
Alternatively, it is also possible that the relative stereochemistry of the P-alkyl bond, which
was always syn to the Ph group for 10, 13a and 14, interconverted by pyramidalization
at phosphorous [27,41–44]. This is a known reaction for a phosphacycle but is normally
accomplished at higher temperatures; here, however, the reaction time was very long. The
former explanation seems, by far, most likely; in any case, the data are most consistent
with a ligand hydrogenation reaction to produce a meso-cis phospholane-based ligand. The
small shift of the IR bands to lower wavenumbers is consistent with a slight increase in the
donor strength of the phosphorous ligand, which is consistent with the basicity of saturated
heterocycles versus that of unsaturated heterocycles.
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3. Conclusions

The observations in this study should be meaningful to various groups of chemists,
ranging from those interested in the synthesis and reactivity of phosphocycles to those who
study and develop selective hydroformylation catalysts. A new nucleophilic precursor,
secondary phospholene borane, was synthesised. This could prove a useful synthon for fur-
ther studies on phospholene ligands. There is a preference, most likely thermodynamic, in
borane precursors (secondary phospholene and its anion) towards one stereoisomer for the
final tertiary phospholenes, as confirmed by both NMR and X-ray crystallographic studies.

Whilst outside of the scope of this project, the phospholene C=C bond might provide
useful for the further remote functionalisation of a phosphacycle ligand for various pur-
poses and would certainly be of interest in the future. The stereochemical preferences and
synthetic routes show that the start of such a project should be relatively straightforward.
Phospholene-phosphite ligands have many similarities to the corresponding phospholanes
and can readily act as bidentate ligands for Pd and Rh. Activation of H2 along with coordi-
nation of CO occurred readily to form complexes of the [RhH(CO)2(13)] type, where the
phospholene portion is in the apical site and trans to hydride. These complexes were tested
in a reaction of industrial interest: the formation of iso-butanal with a low n/iso ratio (i.e.,
with some branched selectivity). They appeared very nearly as good as [RhH(CO)2(1)] in
terms of selectivity, reaction rate, or stability with respect to fragmentation/total decom-
position. The synthesis of phospholene here described is two-step shorter than that of the
analogous phospholanes, including the elimination of one step using a relatively expensive
Pd/C catalyst. This is a technical improvement with likely reduced ligand cost, although
we note that a catalyst that would clearly justify its incorporation into an established and
efficient industrial-scale reaction would desirably be even simpler to access. It was pleasing
that a relatively subtle and remote change within a ligand could be detected by in situ
HPIR spectroscopic monitoring. The phospholene ligand was cleanly hydrogenated within
a few days of operation at 90 ◦C and 20 bar syngas. This was longer than the operation
time of some laboratory-scale batch catalysis reactions, but is relevant to processes that
run for a long time. It is probably desirable that phospholene be hydrogenated rather than
hydroformylated, since aldehydes are very reactive functional groups, allowing various
other reactions to be triggered. In the low-pressure Rh-catalysed hydroformylation of
alkyl-alkenes such as cyclopentenes, C=C hydrogenation is rare. Alkene hydrogenation
under hydroformylation conditions is only regularly observed with reactive compounds
such as unsaturated esters or alkynes. In this case, it seems likely that the C=C bond in the
phospholane was able to insert into a Rh-hydride, but due to the coordination of another
phosphorous moiety (probably the phosphite), this Rh alkyl was not mobile enough to un-
dergo another migratory insertion reaction with Rh-CO. Instead, hydrogenolysis occurred
to produce the saturated ring. In any case, the observation of this possible side reaction
could be useful if further studies of phospholenes as ligands in homogeneous catalysis
are carried out in the future. Whilst there has now been significant progress towards
iso-selective hydroformylation reactions, in the case of the simplest but most important
example, converting propene to iso-butanal, more streamlined ligands would be desirable,
as would also be higher iso-selectivity.

4. Materials and Methods
4.1. Safety Note

Hydroformylations make use of hydrogen and carbon monoxide gases. Both are
flammable, and CO is toxic. Reactions should only be carried out by trained personnel
in pressure vessels designed for high-pressure reactions. The dispensing of CO should
be carried out using a controllable cylinder head with a secondary method for stopping
the flow of CO. Carbon monoxide detectors should be warned, and adequate signage and
control of the laboratory to prevent access from non-trained personnel should be ensured.
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4.2. General Information

All reactions were performed under an inert atmosphere of nitrogen or argon using
standard Schlenk techniques, unless otherwise stated. All glassware used was flame-dried.
Dry and degassed solvents were obtained from a solvent still or a solvent purification
system (SPS). Commercially purchased anhydrous solvents were degassed before use by
the freeze–pump–thaw method or by purging with inert gas. Triethylamine and CDCl3
were dried and degassed before use. All chemicals, unless specified, were purchased
commercially and used as received. CO/H2 and propylene/CO/H2 (10/45/45%) were
obtained pre-mixed from BOC. NMR spectra were recorded on a Bruker Avance 300, 400
or 500 MHz instrument. Proton chemical shifts are referenced to internal residual solvent
protons. Carbon chemical shifts are referenced to the carbon signal of the deuterated
solvent. Signal multiplicities are provided as s (singlet), d (doublet), t (triplet), q (quartet),
m (multiplet) or a combination of the above. Where appropriate, coupling constants (J)
are quoted in Hz and are reported to the nearest 0.1 Hz. All spectra were recorded at
r.t. (unless otherwise stated), and the solvent for a particular spectrum is indicated in
parentheses. NMR spectra of compounds containing phosphorus were recorded under
an inert atmosphere in dry and degassed solvent. Gas chromatography was performed
on an Agilent Technologies 7820A machine. Mass spectrometry was performed on a
Micromass GCT spectrometer, a Micromass LCT spectrometer and on Waters ZQ4000,
Thermofisher LTQ Orbitrap XL or Finnigan MAT 900 XLT instruments. Flash column
chromatography was performed using Merck Geduran Si 60 (40–63 µm) silica gel. Thin-
layer chromatographic (TLC) analyses were carried out using POLYGRAM SIL G/UV254
or POLYGRAM ALOX N/UV254 plastic plates. TLC plates were visualised using a UV
visualizer or stained using potassium permanganate dip followed by gentle heating. The
synthesis and characterisation of compounds not described below, experimental protocols
and spectra can be found in the Supplementary Materials. Crude unprocessed NMR data
are available in a data archive [45]. High pressure infrared spectroscopy was performed in a
Parr high pressure IR CSTR vessel constructed from Hastelloy C, fitted with CaF2 windows
and rated to 275 bar. The adjustable pathlength was set to 4 mm. The high-pressure
IR spectra were recorded using an Avatar 360 FT-IR. Further discussion of the HPIR set
up is available in the Supplementary Materials, and in reference [38]. The presence of
‘unmodified catalysts is ruled out as discussed, in agreement with previous data [38,46].

4.3. X-ray Crystallography

X-ray diffraction data for compound 11b were collected at 125 K using Rigaku MM-
007HF high-brilliance RA generator/confocal optics with a XtaLAB P200 diffractometer [Cu
Kα radiation (λ = 1.54187 Å)] using Crystal Clear [47]. Intensity data were collected using
ω steps, accumulating area detector images spanning at least a hemisphere of reciprocal
space. X-ray diffraction data for compounds 13a and 14 were collected at 125 K using
Rigaku FR-X ultrahigh-brilliance Microfocus RA generator/confocal optics with a XtaLAB
P200 diffractometer [Mo Kα radiation (λ = 0.71073 Å)] using CrysAlisPro [48]. Data for
all compounds analysed were processed (including correction for Lorentz, polarization
and absorption) using CrysAlisPro. The structures were solved by dual-space methods
(SHELXT [49]) and refined by full-matrix least squares against F2 (SHELXL-2019/3) [50].
Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were refined using
a riding model, except for the hydrogen atom on O2 in the structure of 11b, which was
located from the difference Fourier map and refined isotropically subject to a distance
restraint. The calculations were performed using either the CrystalStructure [51] or the
Olex2 [52] interfaces. Selected crystallographic data are presented in Table 3. CCDC
2310520-2310522 contains the supplementary crystallographic data for this paper. These
data can be obtained free of charge from the Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/structures.
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Table 3. Selected crystallographic data.

11b 13a 14

formula C48H50O2 C41H45O5F3P2 C44H48O5F3P2Cl11Pd
fw 658.92 736.71 1272.11

crystal description colourless plate colourless block yellow prism
crystal size [mm3] 0.1 × 0.1 × 0.02 0.12 × 0.11 × 0.04 0.1 × 0.09 × 0.05

space group P3221 P21/c P21/n
a [Å] 9.9188 (3) 18.5498 (3) 14.94065 (19)
b [Å] 10.34298 (16) 19.3961 (2)
c [Å] 32.7080 (13) 20.2110 (3) 18.4869 (2)
β [◦] 103.8332 (16) 95.1095 (11)

vol [Å]3 2786.78 (16) 3765.21 (11) 5336.02 (11)
Z 3 4 4

ρ (calc) [g/cm3] 1.178 1.300 1.583
µ [mm−1] 0.534 0.174 1.011

F(000) 1062.0 1552.0 2568.0
reflections collected 12302 74481 115446

independent
reflections (Rint)

3712 (0.1250) 9058 (0.0333) 13030 (0.0352)

parameters, restraints 235/1 468/27 753/166
GoF on F2 1.225 1.028 1.031

R1 [I > 2σ(I)]s 0.0586 0.0386 0.0291
wR2 (all data) 0.2517 0.0997 0.0682

largest diff.
peak/hole [e/Å3] 0.44/−0.30 0.30/−0.33 0.55/−0.40

4.4. General Procedure for the Rhodium-Catalysed Hydroformylation of Propene

The hydroformylation reactions of propene were performed in a Parr 4590 Micro
Reactor fitted with a gas entrainment stirrer; comprising holes which allowed for better
gas dispersion throughout the reaction mixture. The vessel had a volume capacity of 0.1 L,
an overhead stirrer with gas entrainment head (set to 1200 r.p.m.), temperature controls, a
pressure gauge and the ability to be connected to a gas cylinder. The ligand (10.24 µmol
(Rh/L 1:2)) was added to a Schlenk tube, which was then purged with nitrogen (or argon).
The internal standard 1-methylnaphthalene (0.1 mL) was then added. The mixture was
dissolved in a stock solution of [Rh(acac)(CO)2] in toluene (2 mg/mL, 0.65 mL, 5.12 µmol
of [Rh(acac)(CO)2]), followed by the addition of the designated solvent (19.35 mL). The
solution was transferred via a syringe to the pressure vessel (which had been purged with
CO/H2) through the injection port. CO/H2 (1:1) (20 bar) was added, and the heating
jacket was set to the desired temperature while stirring. Once the desired temperature was
reached, the reaction was stirred for the required time to fully activate the catalyst. Then,
pressure was slowly released, and repressurisation was achieved with propene/CO/H2.
The reaction was then run for the time specified in the tables. After this time, stirring was
stopped, and the reaction was cooled by placing the vessel in a basin of cold water. The
pressure was released, and the crude sample was analysed immediately by GC (in toluene).
The GC method was run on a HP-5 Agilent column with a length of 30 m, a diameter of
0.250 mm and a film of 0.25 µm. The oven was initially held at 25 ◦C for 6 min, and then
the temperature was increased to 60 ◦C at a rate of 10 ◦C per minute. The ramp was then
increased to 20 ◦C per minute until the temperature reached 300 ◦C. The following products
with the indicated retention times could be identified: iso-butyraldehyde (1.02 min); n-
butyraldehyde (1.15 min); and 1-methylnaphthalene (13.50 min). The GC was calibrated for
propene hydroformylation using (1-methylnaphthalene) as an internal standard. Both the
linear (n-butyraldehyde) and the branched (iso-butyraldehyde) products were calibrated
against the internal standard and against each other. Caution: The hydroformylation
protocol should be carried out in an adequate vessel for the pressures encountered, and
the use of a CO detector is recommended when handling syngas (a poisonous and highly
flammable gas).
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4.4.1. Synthesis of (Meso)-2,5-cis-diphenylphospholene borane Adduct 9: Borane-Protected
(meso)-2,5-diphenyl-2,5-dihydro-1H-phosphole, 9

The compound (meso)-1-hydroxy-2,5-diphenyl-2,5-dihydrophosphole 1-oxide (8) (2.0 g,
7.4 mmol) was suspended in dry and degassed toluene (16 mL) under an inert atmosphere.
Phenyl silane (1.83 mL, 14.8 mmol, 2 eq.) was added slowly to the reaction mixture
using a syringe. The mixture was then heated to 110 ◦C and stirred for 17 h. After that
time, the reaction mixture was cooled to around 5 ◦C using an ice bath, and the borane–
dimethylsulfide complex (0.783 mL, 8.14 mmol, 1.1 eq.) was added over 1 min. The
reaction mixture was then allowed to warm to room temperature and stirred for 4 h. The
resulting solution was then filtered through a plug of silica and eluted with toluene (40 mL),
and the solvent was removed under reduced pressure to leave a ‘sticky’ colourless solid.
The solid was stirred in toluene/heptane 1:4 (10 mL) for 30 min, filtered, washed with
toluene/heptane 1:4 (1 × 2 mL) and dried under vacuum to afford the desired product 9
as a white solid (0.654 g, 2.59 mmol, 35%). The organic fractions from the trituration and
the washes were concentrated in vacuo. Purification by flash chromatography on silica
gel (9:1 hexane/EtOAc) yielded more of the desired product 9 (0.757 g, 3.00 mmol, 40.6%)
as a white solid. Combined isolated yield: 1.411 g, 5.59 mmol, 75.6%. 1H NMR (CDCl3,
500 MHz) δ 7.37–7.26 (10H, m, ArH), 6.25 (2H, d, 3JP-H = 17.9 Hz, CH=CH), 4.33–4.31 (2H,
m, P-CH), 4.29 (1H, dm, 1JP-H = 367.9 Hz, P-H), 0.84 (3H, q, J = 87.5 Hz, BH3). 31P{1H}
NMR (CDCl3, 202 MHz) δ 57.1 (br d, J = 42.8 Hz). 31P NMR (CDCl3, 202 MHz) δ 57.1
(br dm, 1JP-H = 367.9 Hz). 13C NMR (CDCl3, 126 MHz) δ 138.54 (d, J = 7.2 Hz 2 × ArC),
133.63 (d, J = 2.5 Hz, CH=CH), 129.38 (d, J = 2.0 Hz, 4 × ArCH), 127.74 (d, J = 2.4 Hz,
2 × ArCH), 127.35 (d, J = 4.2 Hz, 4 × ArCH), 48.66 (d, 1JC-P = 27.7 Hz, 2 × P-CH). HRMS
(ES+) C16H18BPNa [MNa]+ m/z: 275.1128 found, 275.1131 required.

4.4.2. Borane-protected 3-((meso)-2,5-diphenyl-2,5-dihydro-1H-phosphol-1-yl)-1,1,1-
trifluoropropan-2-ol, 10

To a stirred solution of (meso)-2,5-cis-diphenylphospholene borane adduct 9 (0.770 g,
3.06 mmol) in THF (13 mL) at −78 ◦C, under an atmosphere of nitrogen, a 1.58 M solution
of n-BuLi in hexanes (1.94 mL, 3.06 mmol) was added dropwise via a syringe. The reaction
was then allowed to slowly warm to −30 ◦C, and after stirring for 3 h, a solution of 2-
(trifluoromethyl)oxirane (0.29 mL, 3.36 mmol) in THF (4 mL) was added dropwise via
a syringe. Once the addition was complete, the reaction was allowed to warm to room
temperature and stirred for 2 h. The reaction was quenched by the slow addition of
saturated NaHCO3 (aq) (5 mL) and water (5 mL) and diluted with diethyl ether (10 mL),
and the organic layer was separated. The aqueous layer was extracted with diethyl ether
(3× 10 mL). The organic fractions were combined, dried (MgSO4), filtered and concentrated
in vacuo to yield a white solid. Purification by flash chromatography on silica gel (3:1
hexane/Et2O) yielded the desired product 10 (0.802 g, 2.20 mmol, 72%) as a white solid. 1H
NMR (CDCl3, 500 MHz) δ 7.44–7.24 (10H, m, ArH), 6.32–6.24 (2H, m, CH=CH), 4.63–4.60
(2H, m, P-CH), 3.03–2.96 (1H, m, CH-O), 2.74 (1H, br s, OH), 1.59–0.70 (5H, m, P-CH2, BH3).
31P{1H} NMR (CDCl3, 202 MHz) δ 46.9 (br d, J = 54.7 Hz). 19F NMR (CDCl3, 470 MHz) δ
−80.85 (s). 13C NMR (CDCl3, 126 MHz) δ 134.46 (d, J = 7.6 Hz ArC), 134.33 (d, J = 7.4 Hz
ArC), 132.87 (d, J = 3.2 Hz, CH=CH), 132.34 (d, J = 3.3 Hz, CH=CH), 129.51 (d, J = 2.0 Hz,
2 × ArCH), 129.37 (d, J = 2.0 Hz, 2 × ArCH), 128.27 (d, J = 2.5 Hz, ArCH), 128.16 (d,
J = 2.5 Hz, ArCH), 127.82 (d, J = 3.6 Hz, 2 × ArCH), 127.73 (d, J = 3.5 Hz, 2 × ArCH),
123.47 (qd, 1JC-F = 281.2 Hz, J = 16.3 Hz, CF3), 65.74 (q, 2JC-F = 32.7 Hz, OCH), 50.10 (d,
1JC-P = 28.1 Hz, P-CH), 50.06 (d, 1JC-P = 27.1 Hz, P-CH), 20.42 (d, 1JC-P = 28.8 Hz, P-CH2).
HRMS (ES+) C19H21OBF3NaP [MNa]+ m/z: 387.1256 found, 387.1267 required.
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4.4.3. 4,8-di-tert-butyl-6-((3-((meso)-2,5-diphenyl-2,5-dihydro-1H-phosphol-1-yl)-1,1,1-
trifluoropropan-2-yl)oxy)-2,10-dimethoxydibenzo[d,f][1,3,2]dioxaphosphepine, 13a

3,3′-di-tert-butyl-5,5′-dimethoxy-[1,1′-biphenyl]-2,2′-diol [53] (0.271 g, 0.755 mmol)
was placed in a Schlenk tube and dissolved in 3 mL of THF. The resulting solution was
cooled to −78 ◦C, and PCl3 (0.086 mL, 0.982 mmol) was added slowly. NEt3 (0.315 mL,
2.265 mmol) was also added to the reaction mixture, which was then stirred and allowed to
reach room temperature over 1 h and then stirred for another hour. The suspension was
filtered using a frit under an inert atmosphere, and the filtrate was evaporated using a
Schlenk line and dried under vacuum to remove any residual PCl3. The crude 31P{1H} NMR
(202.4 MHz, C6D6) spectrum showed a single peak at δ 172.0 ppm, corresponding to the
chlorophosphite. The product was used in the next step without further purification. To a
Schlenk flask containing a solution of the chlorophosphite from the previous step in toluene
(6 mL) a solution of (rac,meso)-phospholene 10 (0.250 g, 0.687 mmol) in toluene (6 mL)
was added, followed by a solution of 1,4-diazabicyclo-[2,2,2]-octane (DABCO) (0.462 g,
4.12 mmol, 6 eq.) in toluene (5.5 mL). The reaction mixture was then stirred at room temper-
ature overnight (20 h). The resulting suspension was filtered through silica gel (previously
dried overnight in an oven) under an inert atmosphere, using dry toluene to compact and
wash SiO2 after filtration. Purification of (tropos,meso)-13a was achieved by recrystallisation.
Heptane (2 mL) was added to a flask containing the reaction mixture; then, the flask was
gently warmed with a heat gun, causing the solid to dissolve. The resulting solution was left
standing at room temperature, which led to the formation of crystals (0.453 g, 0.615 mmol,
89.5%). 1H NMR (C6D6, 500 MHz) δ 7.17–7.02 (12H, m, ArH), 6.71 (1H, d, J = 3.0 Hz, ArH),
6.61 (1H, d, J = 3.0 Hz, ArH), 5.85–5.82 (2H, m, CH=CH), 4.39–4.28 (2H, m, P-CH), 3.34
(3H, s, OCH3), 3.29 (3H, s, OCH3), 3.19–3.08 (1H, m, CH-O), 1.82–1.79 (1H, m, P-CH2),
1.47 (9H, s, 3 × CH3), 1.44 (9H, s, 3 × CH3), 1.18–1.12 (1H, m, P-CH2). 31P{1H} NMR
(C6D6, 202 MHz) δ 143.1 (ap dd, JP-P = 53.6 Hz, JP-F = 3.2 Hz), 5.0 (ap dd, JP-P = 53.6 Hz,
JP-F = 3.2 Hz). 19F NMR (C6D6, 470 MHz) δ −77.73 (ap t, JP-F = 4.2 Hz). 13C NMR (C6D6,
126 MHz) δ 156.82 (ArC), 156.00 (ArC), 143.25 (ArC), 143.11 (d, J = 11.3 Hz ArC), 142.77
(ArC), 141.21 (ArC), 138.14 (d, J = 3.8 Hz ArC), 137.98 (d, J = 3.5 Hz ArC), 135.31 (d,
J = 4.8 Hz ArC), 133.99 (ArC), 135.55 (d, J = 3.2 Hz, CH=CH), 134.04 (d, J = 3.0 Hz, CH=CH),
129.42 (2 × ArCH), 128.91 (2 × ArCH), 128.69 (d, J = 1.7 Hz, 2 × ArCH), 128.16 (d,
J = 1.8 Hz, 2 × ArCH), 127.09 (ArCH), 126.97 (ArCH), 124.46 (qm, 1JC-F = 281.6 Hz, CF3),
115.01 (ArCH), 114.82 (ArCH), 113.65 (ArCH), 112.87 (ArCH), 71.0–69.86 (m, OCH), 55.14
(OCH3), 54.08 (OCH3), 51.95 (dd, 1JC-P = 22.2, J = 3 Hz, P-CH), 51.68 (d, 1JC-P = 22.3 Hz,
P-CH), 35.67 (C(CH3)3), 35.61 (C(CH3)3), 31.49 (C(CH3)3), 31.24 (d, JC-P = 3.7 Hz, C(CH3)3),
21.64 (d, 1JC-P = 30.6 Hz, P-CH2). HRMS (ES+) C41H46O5F3P2 [MH]+ m/z: 737.2767 found,
737.2753 required. Recrystallisation from heptane afforded X-ray-quality crystals to deter-
mine the relative configuration of the ligand (in racemic form)

The synthesis and characterisation of other ligands and intermediates discussed in this
paper can be found in the Supplementary Materials, along with all relevant NMR spectra.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29040845/s1.
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Abstract: Two mixed peri-substituted phosphine-chlorostibines, Acenap(PiPr2)(SbPhCl) and Ace-
nap(PiPr2)(SbCl2) (Acenap = acenaphthene-5,6-diyl) reacted cleanly with Grignard reagents or nBuLi
to give the corresponding tertiary phosphine-stibines Acenap(PiPr2)(SbRR’) (R, R’ = Me, iPr, nBu,
Ph). In addition, the Pt(II) complex of the tertiary phosphine-stibine Acenap(PiPr2)(SbPh2) as well
as the Mo(0) complex of Acenap(PiPr2)(SbMePh) were synthesised and characterised. Two of the
phosphine-stibines and the two metal complexes were characterised by single-crystal X-ray diffrac-
tion. The peri-substituted species act as bidentate ligands through both P and Sb atoms, forming
rather short Sb-metal bonds. The tertiary phosphine-stibines display through-space J(CP) couplings
between the phosphorus atom and carbon atoms bonded directly to the Sb atom of up to 40 Hz. The
sequestration of the P and Sb lone pairs results in much smaller corresponding J(CP) being observed
in the metal complexes. QTAIM (Quantum Theory of Atoms in Molecules) and EDA-NOCV (Energy
Decomposition Analysis employing Naturalised Orbitals for Chemical Valence) computational tech-
niques were used to provide additional insight into a weak n(P)→σ*(Sb-C) intramolecular bonding
interaction (pnictogen bond) in the phosphine-stibines.

Keywords: peri-substitution; phosphorus; antimony; NMR; single-crystal X-ray structures; synthesis;
QTAIM; EDA-NOCV; pnictogen bond

1. Introduction

Tertiary amines and phosphines play a key role as tuneable ligands, with uses in
transition metal catalysis and other applications. The heavier tertiary pnictines (ER3,
E = As, Sb, Bi, R = alkyl, aryl) also serve as L-type ligands in a number of complexes,
although they generally display lower donor strength than corresponding N and P-based
ligands [1,2].

Several unusual properties stemming from the close-proximity of two pnictine groups
in peri-substituted scaffolds have been noted. The first of these was in the 1960’s, when
the remarkably high basicity of proton sponge 1,8-bis(dimethylamino)naphthalene (A,
Figure 1) was reported by Alder [3]. Tertiary bis(phosphines) such as the phosphorus
analogues of the proton sponge B (Figure 1) were reported shortly thereafter [4,5], as were
several of their metal complexes [6–8].

Syntheses of peri-substituted tertiary bis(arsines), such as C (Figure 1), and their
complexes were also reported as early as the 1960’s [9]. However, no crystal structures
of such ligands or complexes have appeared in the literature. Prototypical naphthalene
bis(stibines) with dimethylstibino (D1) and diphenylstibino groups (D2) were synthesised
by Reid, together with their Mo(0) and Pt(II) complexes [10]. The aryl species D2 (both

Molecules 2024, 29, 1841. https://doi.org/10.3390/molecules29081841 https://www.mdpi.com/journal/molecules194
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naphthalene and acenaphthene variants) and D3 (naphthalene variant) were recently
structurally characterised by Schulz, together with the two bis(bismuthines) E [11,12].
However, no structural data for any of the bis(stibine) or bis(bismuthine) metal complexes
have been published to date.
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Figure 1. Literature Group 15 peri-substituted species mentioned in the introduction.

The related Sb−Sb bonded species F [12], as well as the doubly backboned species
G [13–15] and H [11], have received significant attention recently, and a few transition
metal complexes with these as ligands have also been reported [13].

Species I (Figure 1) with two differing Group 15 peri-atoms display intriguing dative
bonding and NMR properties [16,17]. Surprisingly, only two bis(tertiary) phosphine-stibine
and phosphine-bismuthine peri-substituted species have been reported to date: ISb [18]
and IBi [19]. Both of these display repulsive interactions between the two pnictogen-
centred groups, although their geometries indicate a weak pnictogen bond (nP→σ*(Pn-C))
is present, as indicated in Figure 1 by a dashed line. This is in contrast to the related
E(III)−E(III) halophosphines, such as J [18,20] and K [18,21], which display strong dative
pnictogen-pnictogen bonds.
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Apart from the phosphine-stibine ISb [18], the most closely related work to this paper
are the geminally substituted bis- and tris(acenaphthene) species L and M [22,23]. Only
one metal complex of these has been structurally characterised, the Rh(I) species N [23].

As a continuation of our synthetic, structural and bonding studies of peri-substituted
species, we investigated the utility of the halostibines J and K (Figure 1), reported by us
earlier [18], as synthons towards primary stibine functionalities. Prompted by the paucity
of the literature data, we have also probed the coordination chemistry of the produced
tertiary phosphine-stibines.

2. Results and Discussion
2.1. Synthesis and Spectroscopic Properties of the Tertiary Stibines 4, 5, 7, and 8

The three major precursors for the syntheses reported in this paper were bis(aryl)
stibine 2, chloro(aryl) stibine 3 and dichlorostibine 6 (Scheme 1). Syntheses and structural
information for these compounds, starting from 1, have been reported by us [18].
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highlighted in frames are newly synthesised here. Note: nbd = norbornadiene, cod = 1,5-cyclooctadiene.

The reactive Sb−Cl motifs in chlorostibine 3 and dichlorostibine 6 were used to form
new Sb−C bonds via reactions with carbon nucleophiles. The chlorostibine 3 was reacted
with one equivalent of alkyl-Grignard reagents, MeMgBr and iPrMgCl, to afford alkyl-aryl
stibines 4 (86%) and 5 (81%), respectively.
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The reaction of dichlorostibine 6 with two equivalents of MeMgBr afforded dimethyl-
stibine 7 as an off-white solid (yield ca. 90%; exact yield determination was not possible
as 1H NMR indicated solvation by Et2O). Reacting nBuLi with 6 also resulted in Sb−C
bond formation; reaction with two equivalents of nBuLi afforded crude di-n-butylstibine
8 in quantitative yield (obtained as an oil). The crystallisation of 8 from common organic
solvents was not successful. However, a small amount of crystalline 8 was obtained through
the long standing of the oil at room temperature (see below).

All the Sb−C bond-forming reactions were remarkably clean, as judged by 31P{1H}
and 1H NMR spectroscopy. The newly prepared compounds were further characterised
by 13C DEPT-Q NMR, HRMS (peaks corresponding to (M + H)+ with correct isotopic
patterns were observed in all cases) and (for 7 and 8) also by Raman spectroscopy. The
purity of 5 was confirmed by CHN microanalysis. The novel tertiary stibines appear to
be hydrolytically stable (in some cases, an aqueous wash was involved in the work-up);
however they are oxidised in the presence of air. Both 7 and 8 decomposed in chloroform
solutions within several days, indicating instability in halogenated solvents.

The reaction of 6 with one equivalent of nBuLi gave an oil after the workup. This oil
was shown by 31P{1H} NMR to be a complex mixture, with a major peak at δP 18.5 ppm, cor-
responding to the doubly substituted species 8, indicating that selective single substitution
using an organolithium as a nucleophile may be difficult to achieve.

The 31P{1H} NMR spectra of the phosphine-stibines 4, 5, 7 and 8 display singlets within
a narrow range of δP (−18.5 to −20.8 ppm). Notable through-space couplings (indicated by
the TS superscript in the J notation, TSJ) are observed in the 13C{1H} NMR spectra between
the phosphorus atom and carbons attached to the antimony atom. In 4, the ipso-C of the
Sb-Ph moiety shows a 5TSJCP of 16.2 Hz. An even larger 5TSJCP of 34.1 Hz is observed for
the Sb-CH3 of 4. Interestingly, the acenaphthene ipso-carbon atom shows no detectable
coupling to the phosphorus atom, despite having a shorter bond path (formally 3JCP).

A similar situation is observed in 5 (5TSJCP = 17.3 Hz (ipso-Ph) and 5TSJCP = 36.8 Hz
(Sb-CH), although in this case small magnitude splitting with the ipso-acenaphthene carbon
(C1 in the numbering scheme shown in Figure 2) is observable (3JCP = 2.4 Hz). Similar
magnitudes of JCP involving carbon atoms bonded directly to Sb atoms are also observed
for 7 (5TSJCP = 34.9 Hz (CH3); 3JCP = 5.1 Hz (C1, Acenap)) and 8 (5TSJCP = 30.6 Hz (CH2);
3JCP = 5.0 Hz (C1, Acenap)). Observation of the through-space couplings in 4, 5, 7 and 8 is
consistent with the significant overlap of P and Sb lone pairs as confirmed by single crystal
X-ray diffraction (vide infra) and is in agreement with observations made in our previous
study of P-Sb acenaphthenes [18].

2.2. Synthesis and Spectroscopic Properties of Tertiary Stibine Metal Complexes 2.PtCl2 and
4.Mo(CO)4

Peri-substituted species 2 and 4, bearing tertiary phosphine and tertiary stibine groups,
were reacted with platinum(II) and molybdenum(0) motifs to explore their coordination
chemistry. It was of interest to see if the phosphine-stibine species would act as bidentate
ligands, with the metal coordinating through both phosphorus and antimony atoms.

[PtCl2(cod)] was reacted with 2 in dichloromethane, giving 2.PtCl2 as a yellow powder
in a good yield (76%). Similarly, the reaction of [Mo(CO)4(nbd)] with 4 in dichloromethane
gave 4.Mo(CO)4 as a brown powder in a near-quantitative yield (Scheme 1). Both com-
plexes were stable to air in the solid and solution in the chlorinated solvents used to acquire
their NMR spectra (CD2Cl2 and CDCl3, respectively).
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The 31P{1H} NMR spectrum of 2.PtCl2 consists of a singlet with a set of 195Pt satellites
(δP 7.8 ppm, 1JPPt = 3357 Hz), with the complementary doublet observed in the 195Pt{1H}
NMR spectrum (δPt −4541 ppm). The coordination of platinum centres resulted in a high-
frequency shift (c.f. free ligand 2, δP −21.9 ppm) [18] as well as loss of the through-space
JCP coupling (c.f. 5TSJCP 40.3 Hz for ipso-Ph carbon in 2).
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Coordination of the Mo(CO)4 fragment to 4 resulted in an even more pronounced
high-frequency shift for 4.Mo(CO)4 (δP 43.4; c.f. δP −19.6 ppm in free ligand 4). Similar to
2.PtCl2, the JCP couplings between the phosphorus atom and the carbon atoms adjacent to
the antimony atom are much smaller magnitudein 4.Mo(CO)4 than 4. This is notable as
the through-bond coupling paths are shorter in the complex (formally 3JCP, 2.3 and 2.9 Hz),
compared to those in the free ligand 4 (5TSJCP, 16.2 and 34.1 Hz).

2.3. Structural Discussion

Two of the phosphine-stibines (5 and 8), as well as the two complexes 2.PtCl2 and
4.Mo(CO)4, were subjected to the single crystal diffraction study. The structures are shown
in Figures 2 and 3 and Table 1.
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Table 1. Selected bond distances, displacements, angles and torsion angles for the phosphine-stibines
and their metal complexes.

Compound 5 8 2.PtCl2·CH2Cl2 4.Mo(CO)4

peri-region distances (Å)
P9···Sb1 3.172(3) 3.218(2) 3.357(4) 3.3762(16)
P9–M1 - - 2.248(4) 2.5432(16)
Sb1–M1 - - 2.4570(10) 2.7007(6)

peri-region bond angles (◦)
P9···Sb1–C
(quasi-linear) 168.48(19) [a] 167.14(16) [b] - -

P9–M1–Sb1 - - 90.93(9) 80.10(4)
Splay [c] 15.1(12) 16.3(9) 16(2) 17.2(8)

Out-of-plane displacements (Å)
P9 0.256(6) 0.202(5) 0.509(13) 0.571(6)
Sb1 0.064(6) 0.213(5) 0.788(13) 0.406(6)
M1 - - 0.428(17) 1.007(7)

peri-region torsion angle (◦)
P9–C9···C1–Sb1 6.7(3) 11.2(3) 30.7(7) 24.0(3)

[a] for Sb-iPr carbon C19; [b] for carbon C13; [c] Splay angle = sum of the bay region angles—360.
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Crystals of 5 were grown from ethanol. The structure of 5 displays a moderately
strained geometry, with a P9···Sb1 distance of 3.172(3) Å (129% of ∑rcovalent, 76% of
∑rvdW) [24,25] and a splay angle of 15.1(12)◦. These parameters indicate that, while the two
functional groups in the peri-positions are forced into close proximity, the P···Sb interaction
is primarily repulsive. However, a more detailed look at the peri-region geometry indicates
the presence of a weak intramolecular pnictogen bond (n(P)→σ*(Sb–CiPr)), which manifests
through a quasi-linear arrangement of the P9···Sb1−C19 motif (168.5◦, see Figure 3).

Crystals of 8 were obtained by prolonged standing of the crude oily product. The
molecule of 8 in the structure displays a similar geometry to 5, with a slightly larger P···Sb
distance of 3.218(2) Å. In contrast to 5, the “homoleptic” substitution pattern of the Sb atom
in 8 allows direct comparison of the Sb-C bond lengths for the two n-butyl groups. This
reveals that the Sb1−C13 bond length is significantly elongated compared to the Sb1−C17
bond length (2.197(6) vs. 2.100(7) Å). This indicates the donation of electron density (n(P9))
into the (antibonding) σ*(Sb1−C13) orbital, consistent with the formation of a (quasi-linear)
pnictogen bond n(P9)→σ*(Sb1–C3), P9···Sb1−C13 angle 167.1◦, see Figure 3.

Crystals of 2.PtCl2 were grown from dichloromethane/hexane with a solvated molecule
of dichloromethane. The platinum atom adopts a distorted square planar geometry, with
the P and Sb atoms of ligand 2 bound in a cis fashion. Coordination of the PtCl2 fragment re-
sults in elongation of the P···Sb distance to 3.357(12) Å (c.f. 3.191(1) Å in 2) and significantly
increased out-of-plane distortions within the acenaphthene ligand (see Table 1) [18]. While
the P−Pt distance (2.248(4) Å) is as expected, the Sb−Pt distance in 2.PtCl2 (2.4570(10) Å)
is one of the shortest Sb–Pt bonds known, most likely due to the geometric constraints
of the ligand. Of the 143 Sb–Pt bonds recorded in the Cambridge Structural Database to
date, only 6 are shorter than the bond in compound 2.PtCl2. Those 6 examples are all Sb(V)
species with highly electrophilic Sb centres [23,26–28], hence 2.PtCl2 is the shortest Pt−Sb
bond for a stibine (R3Sb) ligand.

Crystals of 4.Mo(CO)4 were grown from hexane. The molybdenum adopts a (distorted)
octahedral geometry as expected, with ligand 4 attached in cis fashion. As above, the P-Mo
distance is as expected; however, the Sb–Mo bond length of 2.7007(6) Å, is one of the shortest
Sb–Mo bonds known. Of the 518 independent Sb–Mo bonds (in 97 compounds) recorded in
the Cambridge Structural Database, only 8 are shorter than the bond in compound 4.Mo(CO)4.
The three compounds showing the shortest distances (the shortest being 2.64386(19) Å) are
all stibine (or halostibine) complexes, possessing a tridentate scaffold combining stibine and
phosphine functionalities, with similar constraints as those seen in 4 [29].

2.4. Computational Analysis

DFT calculations were employed to further investigate the nP→σ*(Sb–C) interaction
in 5 and 8. Geometry optimisations were performed on these compounds (PBE0/SARC-
ZORA-TZVP for Sb, PBE0/ZORA-def2-TZVP for all other atoms), and the resulting struc-
tures were in good agreement with the X-ray geometries. In particular, the Sb−C bond
lengths in 8 were well reproduced, with the Sb−C bond opposite the P atom being elongated
(Sb1−C13 2.197(6) Å experimental, 2.208 Å calculated; Sb1−C17 2.100(7) Å experimental,
2.175 Å calculated).

A Quantum Theory of Atoms in Molecules (QTAIM) [30,31] analysis was applied to 5
and 8. Bond critical points (BCPs) were located between the Sb1 and P9 atoms for both 5
and 8, indicative of a bonding interaction. Selected QTAIM parameters evaluated at BCPs
for these molecules are summarized in Table 2. The Sb1···P9 BCPs all display a relatively
low electron density (ρBCP) and a small and positive Laplacian (∇2ρBCP), which are typical
of interactions between heavier elements [32,33].
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Table 2. Selected properties of the electron density at bond critical points according to QTAIM
analysis. ρ(r) and ∇2ρ(r) are given in standard atomic units.

Compound Bond ρ(r) ∇2ρ(r) Ei (kcal mol−1) BD |V(r)|/G(r) ε

5

P9···Sb1 0.0272 0.0349 −4.6 −0.108 1.25 0.0446
C1–Sb1 0.1053 0.0620 −34.9 −0.455 1.76 0.0901
C9–P9 0.1600 −0.0631 −87.1 −0.916 2.12 0.1394

Sb1–C13 0.1110 0.0652 −38.0 −0.472 1.76 0.0275
Sb1–C19 0.1020 0.0278 −30.9 −0.450 1.87 0.0330

8

P9···Sb1 0.0246 0.0332 −4.0 −0.088 1.21 0.0536
C1–Sb1 0.1038 0.0623 −34.2 −0.450 1.75 0.0933
C9–P9 0.1603 −0.0637 −87.3 −0.917 2.12 0.1128

Sb1–C13 0.1018 0.0401 −31.7 −0.447 1.82 0.0412
Sb1–C17 0.1074 0.0347 −34.1 −0.466 1.85 0.0212

The bond degree parameter [32] (BD = HBCP/ρBCP; HBCP = energy density at BCP) [32,34]
and the ratio of |VBCP|/GBCP [32] (VBCP = electronic potential energy at the BCP and GBCP =
electronic kinetic energy at the BCP) are two valuable metrics in QTAIM for analysing bonds
between heavier elements. The BD indicates the amount of covalency in a bond, with larger
negative values denoting a greater covalent interaction [32,34]. The P9···Sb1 interactions in 5
and 8 both show small, negative values, suggesting a weakly covalent interaction (Table 2).
|BD| is smaller for 8 than 5, suggesting less covalency in the P9···Sb1 interaction for 8. This
can be rationalised by the Sb(nBu)2 moiety being more electron-rich than Sb(Ph)iPr, and thus
a poorer electron acceptor. The interaction energy (Ei = 1

2VBCP) [35], which can be used as a
rough estimate of bond strength, similarly indicates a weaker P9···Sb1 interaction in 8.

The |VBCP|/GBCP ratio differentiates between different bond types: purely closed-
shell interactions such as van der Waals or ionic bonds exhibit |VBCP|/GBCP < 1, while
fully covalent interactions show |VBCP|/GBCP > 2. Bonds with intermediate ratios
(1 < |VBCP|/GBCP < 2) are termed transit closed-shell interactions, such bonds possess
partial covalent character [32]. Both 5 and 8 display 1 < |VBCP|/GBCP < 2, with a larger
value for 5 than 8. This once again suggests a more covalent P9···Sb1 in 5 than 8. Cru-
cially, the BD and |VBCP|/GBCP suggest that the P9···Sb1 interaction in both 5 and 8 is not
purely closed shell (i.e., Van der Waals), and that there is some degree of electron sharing
between the P and Sb atoms, consistent with a nP→σ*(Sb–C) interaction. Also of note is
the difference in QTAIM parameters for Sb1−C13 and Sb1−C17 in 8. Sb−C13 shows a
slightly reduced BD, |VBCP|/GBCP and Ei compared with Sb−C17 (Table 2), consistent
with a weakening of the Sb1–C13 bond due to donation into the Sb–C σ* orbital.

This P9···Sb1 interaction was further probed by an Energy Decomposition Analysis
employing Naturalised Orbitals for Chemical Valence (EDA-NOCV) [36–39]. This allows
the donor-acceptor interaction between P9 and Sb1 to be visualised and also allows for
quantification of the interaction energy. For this analysis, the molecules were divided
into two closed-shell fragments: an Acenap(PiPr2)− anion and an SbR2

+ cation. The total
interaction energy between these fragments (∆Eint) was computed and divided into terms
for ∆Esteric, ∆Eorb and ∆Edisp (Table 3). ∆Eorb and ∆Edisp are the orbital and dispersion
interaction energies, respectively. ∆Esteric is the combined electrostatic attraction and Pauli-
repulsion energy terms [40]. In both 5 and 8, ∆Esteric is negative, indicating a significant
electrostatic attraction. This is a result of formally assigning the fragments as cationic
and anionic. 8 is observed to have a slightly smaller ∆Eint, ∆Esteric, ∆Eorb and ∆Edisp
than 5, which can again be contributed to more electron rich groups on Sb weakening the
donor-acceptor interaction.
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Table 3. Energy decomposition analysis for compounds 5 and 8. All values are in kcal mol−1. ∆Eint =
∆Esteric + ∆Eorb + ∆Edisp.

Compound ∆Eint ∆Esteric ∆Eorb ∆Edisp

5 −226.67 −40.55 −173.78 −12.34
8 −221.92 −39.61 −171.04 −11.27

The ∆Eorb term can be broken down into pairs of natural orbitals for chemical valence
(NOCVs), which represent the orbital interactions between the Acenap(PiPr2)− and SbR2

+

fragments. For each pair of NOCVs, a deformation density plot (∆ρk), which represents
the flow of electrons between the molecular fragments, and its corresponding energy
contribution to ∆Eorb, can be determined [36]. The first deformation density plots (∆ρ1) for
5 and 8, which have the largest energetic contribution to ∆Eorb, are dominated by electron
flow from the (anionic) carbon of Acenap(PiPr2)− to the Sb atom. However, ∆ρ2 and ∆ρ3
for 5 and 8 both appear to show electron donation from the P lone pair to a Sb−C σ* orbital
(Figure 4). The energy contributions of these interactions are ∆ρ2 = −15.8 kcal mol−1,
∆ρ3 = −12.1 kcal mol−1 for 5; ∆ρ2 = −14.4 kcal mol−1, ∆ρ3 = −11.0 kcal mol−1 for 8. These
values are likely a significant overestimate of the nP→σ*(Sb–C) interaction energy, as the
deformation density plots also show significant contributions from the π-systems of 5 and
8. However, these plots do strongly support the existence of donor-acceptor interactions
between P9 and Sb1 in both compounds. Note that blue isosurface (an indicator of accepting
electron density) is primarily observed on the Sb–C bond opposite the P-atom and not the
other Sb–Ph (5) or Sb–nBu (8) bond (Figure 4).
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3. Experimental Section
3.1. General Considerations

Unless otherwise stated, all experimental procedures were carried out under an atmo-
sphere of dry nitrogen using standard Schlenk techniques or under an argon atmosphere
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in a Saffron glove box. Dry solvents were used unless otherwise stated and were either col-
lected from an MBraun SPS-800 Solvent Purification System, or dried and stored according
to literature procedures [41]. The peri-substituted acenapthene precursors 1 [42], 2, 3 and
6 [18] were synthesised according to literature procedures. “In vacuo” refers to a pressure
of ca. 2 × 10−2 mbar.

3.2. NMR Spectroscopy

All novel compounds were characterised where possible by 1H, 13C DEPTQ and
31P{1H} NMR spectroscopy, including measurements of 1H{31P}, H-H DQF COSY, H-C
HSQC, H-C HMBC and H-P HMBC. 13C{1H} NMR spectra were recorded using the DEPTQ-
135 pulse sequence with broadband proton decoupling. Measurements were performed
at 20 ◦C using a Bruker Avance 300, Bruker Avance II 400 or Bruker Avance III 500 (MHz)
spectrometer. For both 1H and 13C NMR, chemical shifts are relative to Me4Si, which was
used as an external standard. The residual solvent peaks were used for calibration (CHCl3,
δH 7.26, δC 77.16 ppm; CD2Cl2, δH 5.32, δC 53.84 ppm). For 31P NMR, 85% H3PO4 in D2O
(δP 0 ppm) was used as an external standard. 195Pt NMR was acquired for 2.PtCl2, and 1.2
M Na2[PtCl6] in D2O (δPt 0 ppm) was used as the external standard. The NMR numbering
scheme is shown in Figure 5.

Molecules 2024, 29, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 5. NMR numbering scheme. 

3.3. Other Analyses 
Elemental analyses (C, H and N) were performed at London Metropolitan Univer-

sity. High resolution mass spectrometry was performed by the EPSRC UK National Mass 
Spectrometry Facility (NMSF) at Swansea University using either a Waters Xevo G2-S 
(ASAP) or a Thermofisher LTQ Orbitrap XL (APCI) mass spectrometer. Electrospray ion-
isation (ES) spectra were acquired at the University of St Andrews Mass Spectrometry 
Facility using a Thermo Exactive Orbitrap Mass Spectrometer. Both IR and Raman spectra 
were collected on a Perkin Elmer 2000 NIR FT spectrometer. KBr tablets were used in IR 
measurements; powders in sealed glass capillaries were used for Raman spectra acquisi-
tions. Melting (or decomposition) points were determined by heating solid samples in 
glass capillaries using a Stuart SMP30 melting point apparatus. 

3.4. [iPr2P-Ace-SbPh2]PtCl2, 2.PtCl2 
To a suspension of dichloro(1,5-cyclooctadiene)platinum(II) (72 mg, 170 µmol) in di-

chloromethane (4 mL), a solution of 2 (100 mg, 170 µmol) in dichloromethane (10 mL) was 
added dropwise. The solution was left to stir at room temperature overnight. The volatiles 
were removed in vacuo to give 2.PtCl2 as a pale-yellow powder (104 mg, 76%). Crystals 
suitable for X-ray diffraction were grown from the vapour diffusion of hexane into a sat-
urated solution of the compound in dichloromethane. M.p. 108 °C with decomposition. 

1H NMR: δH (500.1 MHz, CD2Cl2) 8.09 (1H, dd, 3JHP 11.0, 3JHH 7.6 Hz, H-8), 7.71 (1H, 
d, 3JHH 7.0 Hz, H-2), 7.67–7.63 (4H, m, o-Ph CH), 7.57 (1H, d, 3JHH 7.5 Hz, H-7), 7.54–7.51 
(2H, m, p-Ph CH), 7.49–7.44 (5H, m, H-3, m-Ph CH), 3.55–3.45 (6H, m, H-11, 12, 2× iPr CH), 
1.36 (6H, dd, 3JHP 18.2, 3JHH 7.0 Hz, 2× iPr CH3), 1.17 (6H, dd, 3JHP 16.1, 3JHH 7.0 Hz, 2× iPr 
CH3). 

13C DEPTQ NMR: δC (125.8 MHz, CD2Cl2) 152.9 (s, qC-6), 152.7 (s, qC-4), 140.3 (d, 3JCP 
7.2 Hz, qC-5), 139.8 (d, 2JCP 6.8 Hz, qC-10), 139.1 (s, C-2), 135.7 (d, 2JCP 4.3 Hz, C-8), 135.5 (s, 
o-Ph CH), 131.1 (s, m-Ph CH), 129.4 (s, p-Ph CH), 126.6 (s, i-Ph qC), 120.4 (s, C-3), 119.4 (d, 
3JCP 9.4 Hz, C-7), 114.0 (d, 1JCP 48.4 Hz, qC-9), 111.2 (d, 3JCP 7.8 Hz, qC-1), 30.5 (s, C-11/12), 
30.0 (s, C-11/12), 29.9 (d, 1JCP 34.7 Hz, 2× iPr CH), 19.4 (s, 2× iPr CH3), 19.3 (s, 2 × iPr CH3). 

31P{1H} NMR: δP (202.5 MHz, CD2Cl2) 7.8 (s with 195Pt satellites, 1JPPt 3357.0 Hz). 
195Pt{1H} NMR: δPt (107.0 MHz, CD2Cl2) ‒ 4541 (d, 1JPtP 3357.0 Hz). 
IR (KBr disc, cm−1) νmax 3047m (νAr–H), 2925s (νC–H), 1601s, 1479m, 1434vs, 1334m, 

1254m, 1033m, 998w, 848m, 734vs, 693s, 451m, 270m, 241s. 
Raman (glass capillary, cm−1) νmax 3052s (νAr–H), 2926s (νC–H), 1604m, 1578m, 1444m, 

1337m, 1000vs, 661s, 581m, 319s, 180vs. 
MS (ES+): m/z (%) 775.06 (100) [M − Cl]. 

3.5. iPr2P-Ace-Sb(Ph)Me, 4 
To a stirred suspension of 3 (0.50 g, 0.99 mmol) in tetrahydrofuran (20 mL), cooled to 

−78 °C, methylmagnesium bromide (0.50 mL, 3.0 M solution in diethyl ether, 1.5 mmol) 
was added dropwise. The reaction mixture was allowed to warm to room temperature 
and stirred for 1 h, then cooled to 0 °C, and degassed water (0.5 mL) was added cautiously. 
Volatiles were removed in vacuo, and the resulting oil was redissolved in hexane (40 mL). 

Figure 5. NMR numbering scheme.

3.3. Other Analyses

Elemental analyses (C, H and N) were performed at London Metropolitan University.
High resolution mass spectrometry was performed by the EPSRC UK National Mass Spec-
trometry Facility (NMSF) at Swansea University using either a Waters Xevo G2-S (ASAP)
or a Thermofisher LTQ Orbitrap XL (APCI) mass spectrometer. Electrospray ionisation (ES)
spectra were acquired at the University of St Andrews Mass Spectrometry Facility using a
Thermo Exactive Orbitrap Mass Spectrometer. Both IR and Raman spectra were collected
on a Perkin Elmer 2000 NIR FT spectrometer. KBr tablets were used in IR measurements;
powders in sealed glass capillaries were used for Raman spectra acquisitions. Melting (or
decomposition) points were determined by heating solid samples in glass capillaries using
a Stuart SMP30 melting point apparatus.

3.4. [iPr2P-Ace-SbPh2]PtCl2, 2.PtCl2

To a suspension of dichloro(1,5-cyclooctadiene)platinum(II) (72 mg, 170 µmol) in
dichloromethane (4 mL), a solution of 2 (100 mg, 170 µmol) in dichloromethane (10 mL)
was added dropwise. The solution was left to stir at room temperature overnight. The
volatiles were removed in vacuo to give 2.PtCl2 as a pale-yellow powder (104 mg, 76%).
Crystals suitable for X-ray diffraction were grown from the vapour diffusion of hexane into
a saturated solution of the compound in dichloromethane. M.p. 108 ◦C with decomposition.

1H NMR: δH (500.1 MHz, CD2Cl2) 8.09 (1H, dd, 3JHP 11.0, 3JHH 7.6 Hz, H-8), 7.71 (1H,
d, 3JHH 7.0 Hz, H-2), 7.67–7.63 (4H, m, o-Ph CH), 7.57 (1H, d, 3JHH 7.5 Hz, H-7), 7.54–7.51
(2H, m, p-Ph CH), 7.49–7.44 (5H, m, H-3, m-Ph CH), 3.55–3.45 (6H, m, H-11, 12, 2× iPr CH),
1.36 (6H, dd, 3JHP 18.2, 3JHH 7.0 Hz, 2× iPr CH3), 1.17 (6H, dd, 3JHP 16.1, 3JHH 7.0 Hz, 2×
iPr CH3).
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13C DEPTQ NMR: δC (125.8 MHz, CD2Cl2) 152.9 (s, qC-6), 152.7 (s, qC-4), 140.3 (d,
3JCP 7.2 Hz, qC-5), 139.8 (d, 2JCP 6.8 Hz, qC-10), 139.1 (s, C-2), 135.7 (d, 2JCP 4.3 Hz, C-8),
135.5 (s, o-Ph CH), 131.1 (s, m-Ph CH), 129.4 (s, p-Ph CH), 126.6 (s, i-Ph qC), 120.4 (s, C-3),
119.4 (d, 3JCP 9.4 Hz, C-7), 114.0 (d, 1JCP 48.4 Hz, qC-9), 111.2 (d, 3JCP 7.8 Hz, qC-1), 30.5 (s,
C-11/12), 30.0 (s, C-11/12), 29.9 (d, 1JCP 34.7 Hz, 2× iPr CH), 19.4 (s, 2× iPr CH3), 19.3 (s,
2 × iPr CH3).

31P{1H} NMR: δP (202.5 MHz, CD2Cl2) 7.8 (s with 195Pt satellites, 1JPPt 3357.0 Hz).
195Pt{1H} NMR: δPt (107.0 MHz, CD2Cl2) −4541 (d, 1JPtP 3357.0 Hz).
IR (KBr disc, cm−1) νmax 3047m (νAr–H), 2925s (νC–H), 1601s, 1479m, 1434vs, 1334m,

1254m, 1033m, 998w, 848m, 734vs, 693s, 451m, 270m, 241s.
Raman (glass capillary, cm−1) νmax 3052s (νAr–H), 2926s (νC–H), 1604m, 1578m, 1444m,

1337m, 1000vs, 661s, 581m, 319s, 180vs.
MS (ES+): m/z (%) 775.06 (100) [M − Cl].

3.5. iPr2P-Ace-Sb(Ph)Me, 4

To a stirred suspension of 3 (0.50 g, 0.99 mmol) in tetrahydrofuran (20 mL), cooled to
−78 ◦C, methylmagnesium bromide (0.50 mL, 3.0 M solution in diethyl ether, 1.5 mmol)
was added dropwise. The reaction mixture was allowed to warm to room temperature
and stirred for 1 h, then cooled to 0 ◦C, and degassed water (0.5 mL) was added cautiously.
Volatiles were removed in vacuo, and the resulting oil was redissolved in hexane (40 mL).
The resulting suspension was filtered to remove insoluble impurities, and volatiles were
removed in vacuo to afford 4 as a pale-yellow oil (0.41 g, 0.85 mmol, 86%).

1H NMR δH (400 MHz, CDCl3) 7.67–7.59 (4H, m, ArH-2, ArH-8, m-Ph CH), 7.32
(1H, d, 3JHH = 7.1 Hz, ArH-7), 7.29–7.25 (3H, m, o/p-Ph CH), 7.16 (1H, d, 3JHH = 7.1 Hz,
ArH-3), 3.38 (4H, s, H-11, H-12, 2 × CH2), 2.25 (1H, septd, 3JHH = 6.9 Hz, 2JHP = 5.1 Hz, iPr
CH), 2.09 (1H, septd, 3JHH = 7.0 Hz, 2JHP = 3.2 Hz, iPr CH), 1.22 (3H, dd, 3JHP = 15.0 Hz,
3JHH = 6.9 Hz, iPr CH3), 1.18 (3H, d, 6JHP = 1.8 Hz, Me(Sb)), 1.04 (3H, dd, 3JHP = 14.7 Hz,
3JHH = 6.9 Hz, iPr CH3), 0.97 (3H, dd, 3JHP = 12.5 Hz, 3JHH = 7.0 Hz, iPr CH3), 0.66 (3H, dd,
3JHP = 11.8 Hz, 3JHH = 7.0 Hz, iPr CH3).

13C{1H} NMR δC (75 MHz, CDCl3) 149.1 (s, qC-6), 147.2 (d, 4JCP = 1.6 Hz, qC-4), 146.0
(d, 1JCP = 40.5 Hz, qC-9), 142.1 (s, qC-1), 140.0 (d, 3JCP = 7.8 Hz, qC-5), 138.2 (s, C-2), 136.6
(s, m-Ph CH), 134.0 (s, qC-10), 133.9 (d, 2JCP = 2.4 Hz, C-8), 130.1 (d, 5JCP = 16.2 Hz, i-Ph
qC), 128.4 (s, o-Ph CH), 127.6 (s, p-Ph CH), 120.0 (s, C-3), 119.0 (s, C-7), 30.3 (s, C-11/C-12),
30.0 (s, C-11/C-12), 26.1 (d, 1JCP = 12.5 Hz, iPr CH), 25.9 (d, 1JCP = 13.7 Hz, iPr CH), 20.6 (d,
2JCP = 17.7 Hz, iPr CH3), 20.1 (d, 2JCP = 13.3 Hz, iPr CH3), 20.0 (d, 2JCP = 7.3 Hz, iPr CH3),
19.2 (d, 2JCP = 7.2 Hz, iPr CH3), 4.74 (d, 5JCP = 34.1 Hz, Me(Sb)).

31P NMR δP (109 MHz, CDCl3) −19.7 (m).
31P{1H} NMR δP (109 MHz, CDCl3) −19.6 (s).
MS (APCI+) m/z 390.05 (85%, M − Ph −Me), 405.07 (100, M − Ph), 467.09 (73, M −

Me), 483.12 (11, M + H), 499.11 (4, M + O + H).
HRMS (APCI+) C25H31PSb (M + H)+; calculated: 483.1196; found: 483.1195.

3.6. [iPr2P-Ace-Sb(Ph)Me]Mo(CO)4, 4.Mo(CO)4

A solution of compound 4 (240 mg, 0.497 mmol) in dichloromethane (40 mL) was
added to a stirred suspension of cis-tetracarbonyl(norbornadiene)molybdenum(0) (0.164
g, 0.546 mmol) in dichloromethane (10 mL), and the resulting suspension was stirred at
room temperature for 3 days. Insoluble material was removed by filtration through celite,
and volatiles were removed in vacuo to afford 4.Mo(CO)4 as a pale brown solid (329 mg,
0.476 mmol, 96%). Crystals suitable for single crystal X-ray diffraction were grown from
hexane at −25 ◦C.

1H NMR δH (400 MHz, CDCl3) 7.79 (1H, d, 3JHH = 6.9 Hz, ArH-2), 7.70 (1H, ≈ t,
3JHP = 7.8 Hz, 3JHH = 7.8 Hz, ArH-8), 7.56–7.50 (2H, m, m-Ph CH), 7.39–7.33 (4H, m, ArH-7,
o/p-Ph CH), 7.30 (1H, d, 3JHH = 6.9 Hz, ArH-3), 3.40 (4H, s, H-11/H-12), 2.50–2.38 (1H,
m, iPr CH), 2.35–2.25 (1H, m, iPr CH), 1.58 (s, 3H, Me(Sb)), 1.23 (3H, dd, 3JPH = 15.4 Hz,

204



Molecules 2024, 29, 1841

3JHH = 6.9 Hz, iPr CH3), 1.10 (3H, dd, 3JPH = 15.8 Hz, 3JHH = 7.1 Hz, iPr CH3), 1.04 (3H, dd,
3JPH = 15.6 Hz, 3JHH = 7.1 Hz, iPr CH3), 0.99 (3H, dd, 3JPH = 15.0 Hz, 3JHH = 6.9 Hz, iPr
CH3).

13C{1H} NMR δC (101 MHz, CDCl3) 218.4 (d, 2JCP = 8.1 Hz, CO), 216.4 (d,
2JCP = 20.3 Hz, CO), 211.1 (d, 2JCP = 9.3 Hz, CO), 210.8 (d, 2JCP = 9.1 Hz, CO), 150.6
(s, qC-6), 150.4 (d, 4JCP = 1.4 Hz, qC-4), 140.9 (d, 3JCP = 6.5 Hz, qC-5), 139.5 (d, 2JCP = 10.3
Hz, qC-10), 138.3 (s, C-2), 135.6 (d, 3JCP = 2.3 Hz, i-Ph qC), 133.9 (s, m-Ph CH), 133.3 (s, C-8),
129.4 (s, p-Ph CH), 129.0 (s, o-Ph CH), 124.6 (d, 1JCP = 20.4, qC-9), 123.4 (d, 3JCP = 2.4 Hz, qC-
1), 119.8 (s, C-3), 118.9 (d, 3JCP = 5.7 Hz, C-7), 30.2 (s, C-11/C-12), 29.5 (s, C-11/C-12), 28.7 (d,
1JCP = 15.9 Hz, iPr CH), 28.1 (d, 1JCP = 14.9 Hz, iPr CH), 19.1 (d, 2JCP = 4.3 Hz, iPr CH3),
19.0 (d, 2JCP = 4.1 Hz, iPr CH3), 18.24 (d, 2JCP = 5.9 Hz, iPr CH3), 18.15 (d, 2JCP = 4.4 Hz, iPr
CH3), 4.4 (d, 3JCP = 2.9 Hz, Me(Sb)).

31P NMR δP (109 MHz, CDCl3) 43.3 (m).
31P{1H} NMR δP (109 MHz, CDCl3) 43.4 (s).
IR (KBr disk, cm−1) νmax 3007 (νAr–H, w), 2963 (νC–H, m), 2014 (νC≡O, vs), 1899 (νC≡O,

vs), 1603 (m), 1261 (m), 1084 (s), 1023 (s), 802 (m), 733 (m), 694 (m), 613 (m), 585 (m), 453 (m).
MS (APCI+) m/z 271.16 (100%, M−Mo(CO)4 − Sb(Me)Ph + H), 287.16 (M−Mo(CO)4

− Sb(Me)Ph + O + H), 637.02 (1, M − 2CO + H)
HRMS (APCI+) C27H31MoO2PSb (M − 2CO + H)+; calculated: 637.0149; found:

637.0148.

3.7. iPr2P-Ace-Sb(Ph)iPr, 5

To a stirred suspension of 3 (1.00 g, 1.98 mmol) in tetrahydrofuran (20 mL), cooled
to −78 ◦C, a solution of isopropylmagnesium chloride (1.5 mL, 1.70 M solution in THF,
2.55 mmol) was added dropwise. The reaction mixture was allowed to warm to room
temperature with stirring overnight, then cooled to 0 ◦C, and degassed water (0.5 mL) was
added cautiously. Volatiles were removed in vacuo to give an oil. Hexane (50 mL) was
added, and the resultant suspension was filtered to remove the insoluble salts. Volatiles
were removed in vacuo to afford 5 as a yellow oil, which crystallised to a yellow solid on
standing at room temperature for several days (0.824 g, 1.61 mmol, 81%). Crystals suitable
for single crystal X-ray diffraction were grown from ethanol at −25 ◦C. M. p. 73–76 ◦C.

Elemental Analysis: C27H34PSb; calculated (%) C 63.43, H 6.70; found (%) C 63.31,
H 6.73.

1H NMR δH (500 MHz; CDCl3) 7.85 (1H, d, 3JHH = 7.0 Hz, ArH-2), 7.61 (1H,
dd, 3JHH = 7.1 Hz, 3JHP = 3.6 Hz, ArH-8), 7.58–7.54 (2H, m, m-Ph CH), 7.30 (1H, d,
3JHH = 7.1 Hz, ArH-3), 7.26 (1H, d, 3JHH = 7.1 Hz, ArH-7), 7.23–7.19 (3H, m, o/p-Ph CH), 3.39
(4H, s, H-11, H-12), 2.32 (1H, sept, 3JHH = 7.2 Hz, iPr(Sb) CH), 2.22 (1H, septd, 3JHH = 7.1 Hz,
2JHP = 3.4 Hz, iPr(P) CH), 2.04–1.93 (1H, m, iPr(P) CH), 1.36 (3H, d, 3JHH = 7.2 Hz, iPr(Sb)
CH3), 1.25–1.19 (6H, m, iPr(Sb) CH3, iPr(P) CH3), 0.99 (3H, dd, 3JHP = 11.9 Hz, 3JHH = 7.0
Hz, iPr(P) CH3), 0.95 (3H, dd, 3JHP = 14.6 Hz, 3JHH = 6.9 Hz, iPr(P) CH3), 0.42 (3H, dd,
3JHP = 12.4 Hz, 3JHH = 7.0 Hz, iPr(P) CH3).

13C{1H} NMR δC (101 MHz; CDCl3) 148.9 (s, qC-6), 147.3 (d, 4JCP = 1.7 Hz, qC-4), 144.2
(d, 1JCP = 28.2 Hz, qC-9), 142.2 (d, 2JCP = 27.2 Hz, qC-10), 140.1 (d, 3JCP = 7.8 Hz, qC-5),
138.1 (s, C-2), 136.7 (s, m-Ph CH), 134.0 (d, 2JCP = 2.4 Hz, C-8), 133.9 (d, 3JCP = 5.6 Hz, qC-1),
130.7 (d, 5JCP = 17.3 Hz, i-Ph qC), 128.2 (s, o-Ph CH), 127.4 (s, p-Ph CH), 120.1 (s, C-7), 119.0
(s, C-3), 30.2 (s, C-11/C-12), 30.0 (s, C-11/C-12), 26.4 (d, 1JCP = 14.8 Hz, iPr(P) CH), 26.2 (d,
1JCP = 14.0 Hz, iPr(P) CH), 25.1 (d, 5JCP = 36.8 Hz, iPr(Sb) CH), 22.6 (s, iPr(Sb) CH3), 21.7 (s,
iPr(Sb) CH3), 20.7 (d, 2JCP = 16.8 Hz, iPr(P) CH3), 20.1 (d, 2JCP = 8.1 Hz, iPr CH3), 19.9 (d,
2JCP = 16.6 Hz, iPr(P) CH3), 19.2 (d, 2JCP = 9.3 Hz, iPr(P) CH3).

31P NMR δP (109 MHz; CDCl3) −20.8 (m).
31P{1H} NMR δP (109 MHz; CDCl3) −20.8 (s).
Raman: (glass capillary, cm−1) νmax 3038s (νAr–H), 2921vs (νC–H), 1601s, 1562s, 1442s,

1325vs, 1001vs, 657m, 582s, 490s.
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MS (APCI+) m/z 390.05 (100%, M − iPr − Ph), 433.10 (60, M − Ph), 467.09 (50, M −
iPr), 511.15 (16, M + H), 527.15 (4, M + O + H).

HRMS (APCI+): C27H35PSb (M + H)+; calculated: 511.1509; found: 511.1510.

3.8. iPr2P-Ace-SbMe2, 7

A solution of 6 (0.49 g, 1.06 mmol) in diethyl ether (40 mL) was cooled to −78 ◦C.
A solution of methylmagnesium bromide in tetrahydrofuran (0.7 mL, 3.0 M solution,
2.10 mmol, diluted with diethyl ether, 4 mL) was added dropwise with stirring over one
hour. The resulting suspension was stirred at -78 ◦C for a further 90 min before warming to
ambient temperature overnight. The suspension was filtered, and volatiles were removed
from the filtrate in vacuo, affording 7 as an off-white solid (0.42 g, 94%). The yield is
approximate, as 1H NMR spectra indicate the presence of solvated diethylether. M.p.
239 ◦C with decomposition.

1H NMR: δH (400.1 MHz, CDCl3) 7.77 (1H, d, 3JHH 7.0 Hz, H-2), 7.66 (1H, dd, 3JHH
7.1, 3JHP 3.6 Hz, H-8), 7.32 (1H, d, 3JHH 7.1 Hz, H-7), 7.26 (1H, d, 3JHH 7.0 Hz, H-3), 3.38
(4H, s, H-11, 12), 2.19 (2H, br sept, 3JHH 7.0 Hz, iPr CH), 1.17 (6H, dd, 3JHP 14.6, 3JHH 6.9
Hz, iPr CH3), 0.96 (6H, d, 6tsJHP 1.2 Hz, Sb-CH3), 0.94 (6H, dd, 3JHP 12.3, 3JHH 7.0 Hz, iPr
CH3).

13C DEPTQ NMR: δC (100.6 MHz, CDCl3) 149.0 (s, qC-6), 147.0 (s, qC-4), 141.5 (d,
2JCP 4.3 Hz, qC-10), 139.8 (d, 3JCP 1.7 Hz, qC-5), 136.0 (s, C-2), 133.8 (d, 2JCP 2.5 Hz, C-8),
133.3 (d, 3JCP 5.1 Hz, qC-1), 130.3 (d, 1JCP 20.0 Hz, qC-9), 119.9 (s, C-3), 118.9 (s, C-7), 30.2 (s,
C-11/12), 29.9 (s, C-11/12), 26.0 (d, 1JCP 13.5 Hz, iPr CH), 20.4 (d, 2JCP 16.7 Hz, iPr CH3),
19.9 (d, 2JCP 9.0 Hz, iPr CH3), 3.4 (d, 5tsJCP 34.9 Hz, Sb-CH3).

31P{1H} NMR: δP (162.0 MHz, CDCl3) −18.5 (s).
Raman: (glass capillary, cm−1) νmax 2933vs (νC-H), 2124w, 1601m, 1562m, 1447m,

1325vs, 577s, 509s, 482vs.
HRMS (ASAP+): m/z Calcd. for C20H29PSb 421.1045, found 421.1042 [M + H]; Calcd.

for C19H25PSb 405.0732, found 405.0724 [M −Me].

3.9. iPr2P-Ace-Sb(nBu)2, 8

A solution of 6 (1.00 g, 2.16 mmol) in diethyl ether (40 mL) was cooled to −78 ◦C.
To this, a solution of n-butyllithium in hexane (1.7 mL, 2.5 M solution, 4.25 mmol) was
added dropwise with stirring over one hour. The resulting suspension was stirred at
this temperature for a further hour before warming to ambient temperature overnight.
The suspension was filtered, and the volatiles were removed from the filtrate in vacuo,
affording 8 as a yellow oil (yield quantitative). A few crystals suitable for single-crystal X-
ray diffraction formed spontaneously from the oil after long standing at room temperature.
M. p. 53 ◦C.

1H NMR: δH (400.1 MHz, CDCl3) 7.73 (1H, d, 3JHH 7.0 Hz, H-2), 7.67 (1H, dd, 3JHH 7.1,
3JHP 3.6 Hz, C-8), 7.31 (1H, d, 3JHH 7.1 Hz, H-7), 7.25 (1H, d, 3JHH 7.0 Hz, H-3), 3.38 (4H,
s, H-11, 12), 2.22 (2H, dsept, 3JHH 6.9, 2JHP 3.9 Hz, iPr CH), 1.71−1.48 (8H, m, SbCH2 and
SbCH2CH2), 1.44−1.36 (4H, m, Sb CH2CH2CH2), 1.23 (6H, dd, 3JHP 14.4, 3JHH 6.9 Hz, 2× iPr
CH3), 0.95 (6H, dd, 3JHP 12.4, 3JHH 7.2 Hz, 2× iPr CH3), 0.90 (6H, t, 3JHH 7.2 Hz, 2× n-Bu
CH3).

13C DEPTQ NMR: δC (100.6 MHz, CDCl3) 148.9 (s, qC-6), 146.8 (d, 4JCP 1.7 Hz, qC-4),
142.1 (d, 2JCP 26.9 Hz, qC-10), 139.9 (d, 3JCP 7.8 Hz, qC-5), 136.5 (s, C-2), 133.8 (d, 2JCP
2.4 Hz, C-8), 131.9 (d, 3JCP 5.0 Hz, qC-1), 130.9 (d, 1JCP 18.0 Hz, qC-9), 119.9 (s, C-3), 118.9
(s, C-7), 30.2 (s, SbCH2CH2), 29.9 (s, C-11, 12), 27.0 (s, SbCH2CH2CH2), 26.4 (d, 1JCP 14.3
Hz, iPr CH), 20.7 (d, 5tsJCP 30.6 Hz, SbCH2), 20.5 (d, 2JCP 16.9 Hz, iPr CH3), 20.2 (d, 2JCP 9.5
Hz, iPr CH3), 14.0 (s, n-Bu CH3).

31P{1H} NMR: δP (162.0 MHz, CDCl3) −18.5 (s)
Raman: (glass capillary, cm−1) νmax 2919vs (νC−H), 2868vs, 1556m, 1435m, 1325s,

1157w, 583m.
HRMS (ASAP+): m/z Calcd. for C26H41PSb [M + H]: 505.1984, found 505.1986.
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3.10. X-ray Diffraction

X-ray diffraction data for compound 2.PtCl2 were collected at 125 K using the St
Andrews Automated Robotic Diffractometer (STANDARD) [43], consisting of a Rigaku
sealed-tube X-ray generator equipped with a SHINE monochromator [Mo Kα radiation
(λ = 0.71075 Å)], and a Saturn 724 CCD area detector, coupled with a Microglide goniome-
ter head and an ACTOR SM robotic sample changer. Diffraction data for compounds
4.Mo(CO)4, 5 and 8 were collected at 173 K using a Rigaku FR-X Ultrahigh Brilliance
Microfocus RA generator/confocal optics [Mo Kα radiation (λ = 0.71075 Å)] with an Xta-
LAB P200 diffractometer. Intensity data for all compounds were collected usingω steps,
accumulating area detector images spanning at least a hemisphere of reciprocal space.
Data for all compounds analysed were collected using CrystalClear [44] and processed
(including correction for Lorentz, polarization and absorption) using either CrystalClear or
CrysAlisPro [45]. Structures were solved by direct (SHELXS [46]), Pattterson (PATTY [47])
or charge-flipping (Superflip [48]) methods and refined by full-matrix least-squares against
F2 (SHELXL-2019/3 [49]). Non-hydrogen atoms were refined anisotropically, and hy-
drogen atoms were refined using a riding model. In 5, both isopropyl groups bound to
phosphorus were disordered over two positions. Atoms were split and refined with partial
occupancies, and restraints to bond distances were required. Crystals of 8 were affected by
pseudo-merohedral twinning, showing a twin law of [−0.9999 0.0198 0.0009 −0.0032 0.9992
−0.0203 −0.0007 −0.1315 −0.9981] and a refined twin fraction of 0.489. All calculations
were performed using the CrystalStructure interface [50]. Selected crystallographic data
are presented in Table 4.

Table 4. Selected crystallographic data.

2.PtCl2 4.Mo(CO)4 5 8

formula C31H34Cl4PPtSb C29H30MoO4PSb C27H34PSb C6H40PSb
fw 896.24 691.22 511.29 505.33
crystal description Colourless block Colourless prism Yellow chip Colourless chip
crystal size [mm3] 0.09 × 0.06 × 0.03 0.17 × 0.15 × 0.04 0.10 × 0.08 × 0.06 0.12 × 0.10 × 0.03
temperature [K] 125 173 173 173
space group Pna21 P1 P21/n C2/c
a [Å] 14.797(2) 10.1706(3) 9.751(3) 27.3960(13)
b [Å] 18.166(3) 12.6048(5) 13.591(2) 8.6563(4)
c [Å] 11.8407(19) 12.8276(7) 19.091(5) 22.5385(14)
α [◦] 76.520(14)
β [◦] 67.547(11) 102.261(8) 109.617(6)
γ [◦] 67.048(12)
vol [Å]3 3182.8(9) 1392.63(19) 2472.3(11) 5034.7(5)
Z 4 2 4 8
ρ (calc) [g/cm3] 1.870 1.648 1.374 1.333
µ [mm−1] 5.626 1.507 1.189 1.167
F(000) 1728 688 1048 2096
reflections collected 24,780 24,150 29,608 28,282
independent reflections (Rint) 6286 (0.0886) 4970 (0.1133) 4528 (0.0604) 22,368 (0.0755)
parameters, restraints 347, 1 330, 0 297, 45 260, 0
GoF on F2 1.106 1.081 1.109 0.720
R1 [I > 2σ(I)] 0.0505 0.0570 0.0620 0.0523
wR2 (all data) 0.0978 0.1494 0.1308 0.1151
largest diff. peak/hole [e/Å3] 0.88, −1.30 2.41, −0.72 0.67, −0.58 2.03, −1.39
Flack parameter 0.012(6) - - -

3.11. Computational Methodology
3.11.1. Geometry Optimisations and QTAIM Analysis

Geometry optimisations were performed for models 5 and 8 using coordinates de-
rived from their X-ray crystal structures. These models were geometry optimised without
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restraints using the ORCA 5.0.4 software package [51] utilising the PBE0 density func-
tional [52] and all-electron ZORA corrected [53] def2-TZVP basis sets [54–57] for all atoms
(except Sb), SARC-ZORA-TZVP [58] basis sets for the Sb atoms, along with SARC/J aux-
iliary basis sets decontracted def2/J up to Kr [59] and SARC auxiliary basis sets beyond
Kr. [58,60–62]. Gradient corrections were performed with Grimme’s 3rd generation disper-
sion correction [63,64]. TightSCF and TightOpt convergence criteria were employed, and
the location of true minima in these optimisations was confirmed by frequency analysis,
which demonstrated that no imaginary vibrations were present.

Extended wavefunction (.wfx) files were generated from these optimisations using
Orca 5.0.4 [51]. AIM analysis was performed using MultiWFN 3.8 [65].

3.11.2. EDA-NOCV Analysis

EDA-NOCV calculations were carried out on models of 5 and 8 using coordinates
derived from the geometry-optimised structures. The compounds were divided into an
Acenap(PiPr2)− and SbR2

+ fragments (5 = +Sb(iPr)Ph; 8 = +Sb(nBu)2). Calculations were
carried out using the ORCA 5.0.4 software package [51] utilising the PBE0 density func-
tional [52,66] and all-electron ZORA corrected [53] def2-TZVP basis sets [54–57] for all
atoms (except Sb), SARC-ZORA-TZVP basis sets [58] for the Sb atoms, along with SARC/J
auxiliary basis sets decontracted def2/J up to Kr [59] and SARC auxiliary basis sets beyond
Kr [58,60–62]. Gradient corrections were performed with Grimme’s 3rd generation disper-
sion correction [63,64]. VeryTightSCF convergence settings and an integration accuracy
value of 6.0 were employed. Deformation density plots were calculated from .cube files of
the relevant NOCVs using the MultiWFN 3.8 software package [65] and visualised using
Avogadro v1.2.0 [67].

4. Conclusions

The synthetic utility of peri-substituted phosphine-chlorostibines 3 and 6 in reactions
with carbon nucleophiles has been demonstrated. Reactions with Grignard reagents or
nBuLi proceeded rather cleanly and gave alkyl/aryl and alkyl tertiary stibines 4, 5, 7 and 8
with very good yields.

The coordination chemistry of the selected tertiary phosphine-stibines has also been
probed. Two complexes, 2.PtCl2 and 4.Mo(CO)4, have been synthesised. Single-crystal
X-ray diffraction confirmed that both the phosphine and the stibine groups are attached to
the platinum(II) and Mo(0) centres.

In the phosphine-phosphine peri-substituted species, such as iPr2P-Ace-PPh2, large
magnitude 4TSJPP (180 Hz for the above species) were observed due to the forced overlap of
the two lone pairs on the phosphorus atoms [68]. As antimony has no spin 1

2 isotopes, the
direct observation of P−Sb couplings (formally 4TSJPSb) was not possible in the phosphine-
stibines reported here. However, long-range 5TSJCP couplings of up to 36.8 Hz were
observed for carbon atoms attached to Sb atoms in all the phosphine stibines. This indicates
the presence of a strong through-space coupling pathway through the phosphorus and
antimony atoms (both possessing a lone pair), and the through-bond pathway contribution
(5J) is expected to be negligible [69].

The QTAIM analysis supports the existence of a P···Sb interaction in 5 and 8, which
is not purely closed-shell (i.e., Van der Waals), and the visualisation of the deformation
densities in an EDA-NOCV analysis supports the view that electron density from the P
atom flows towards an apparent Sb–C σ*orbital.
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Abstract: Phosphorus- and arsenic-containing cobalt clusters are an interesting class of compounds
that continue to provide new structures with captivating bonding patterns. Although the first
members of this family were reported 45 years ago, the number of such species is still limited
within the broad family of transition metal complexes bearing pnictogen atoms. Herein, we present
the reaction of Co2(CO)8 as a cobalt source with a number of phosphorus- and arsenic-containing
compounds under variable reaction conditions. These reactions result in various known and novel
cobalt phosphorus and cobalt arsenic clusters in which different nuclearity ratios between P/As and
Co exist. All those clusters were characterized by X-ray structural analysis and partly by IR, 31P{1H}
NMR, EI-MS and elemental analysis. This comprehensive study is the first detailed study in this field
that reveals the richness of compounds that could be obtained only by modifying the ratio of used
reactants and the involved reaction conditions.

Keywords: phosphorus; arsenic; cobalt clusters; carbonyl; interstitial

1. Introduction

Transition metal complexes that incorporate group 15 elements have attracted increas-
ing interest in the past three decades mainly due to their unprecedented structures [1] and
flexible coordination behaviors, which render them versatile building blocks in supramolec-
ular chemistry [1–4]. Within this field, cobalt clusters containing phosphorus and arsenic
atoms have emerged as active materials for catalysis [5–7], magnetism [8], and as potential
precursors for CoP nanoparticles [9]. In 1969, the Dahl group reported the first examples in
this field, which included the tetrahedral arsenic-cobalt carbonyl clusters As3{Co(CO)3} and
As2{Co(CO)3}2 obtained from the reaction of Co2(CO)8 with [AsCH3]5 and AsCl3, respec-
tively [10,11]. Later on, the complex [µ4-AsCo3(CO)9]3 [12] was also isolated, which demon-
strated the interchangeable roles of As and Co(CO)3 units. Meanwhile, Markó et al. isolated
the analogous phosphorus derivative Co2(CO)6P2 from the reaction of Na[Co(CO)4] with
PX3 (X = Cl, Br) [13]. Additionally, the tetrahedral compounds P3Co(CO)3 and PCo3(CO)9
were isolated by the Orosz group from the reaction of Co2(CO)8 with white phosphorus
(P4) and PI3, respectively [14]. The groups of Seyferth and Nixon isolated the tetrahedral
phosphorus cobalt clusters [(RCP)Co2(CO)6)] (R = CH3, tBu, Ph, SiMe3) from the reaction of
Co2(CO)8 with RCCl2PCl2 [15] and tBuCP [16]. More recently, a number of more complex
anionic P- [8,17] and As-containing cobalt clusters [18,19] with higher Co nuclearities were
synthesized from the reaction of Na[Co(CO)4] with variable P- and As-starting materials.
Our group contributed to this field by developing new strategies for the synthesis of cobalt
clusters incorporating pnictogen atoms. In one approach, the formation of large Pn species
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was attainable from the reaction of P4 with the triple-decker complex [(Cp′ ′ ′Co)2(η4:η4-
C7H8)] (Cp′ ′ ′ = 1,2,4-C5H2(tBu)3), which dissociates in solution to give 14 VE (valence
electron) Cp′ ′ ′Co moieties [20]. In that respect, a controlled synthesis of P4, P8, P12, P16
and even P24-containing cobalt complexes proved achievable. This approach was more
recently extended to the reaction with As4 allowing the synthesis of As4, As10 and As12
cobalt clusters [21]. In another approach, the sandwich complex [Cp′ ′ ′Co(η4-P4)] was found
to dimerize in solution forming P8-containing cobalt complexes [22]. In addition to the
aforementioned compounds, only a few other clusters of this type are known and are thus
still relatively limited within the broad family of transition metal compounds containing
phosphorus atoms [1,23]. Therefore, further investigations to enrich the library of this
family of compounds with new candidates, as well as to understand reaction conditions
that allow us to obtain them selectively, are still of current interest. Herein, we present the
reaction of Co(CO)8 with the phosphorus and arsenic sources: “[Cr(CO)4+n(PH3)2−n] (n = 0,
1), [Fe(CO)4(PH3)], P(SiMe3)3, P4, As4, [W(CO)5(AsH3)] and As(SiMe3)3”. These reactions
afforded a variety of known as well as novel cobalt carbonyl clusters incorporating P and
As atoms. Interestingly, most of the known compounds are obtained in much better yields
via our novel synthetic strategies presented herein, thus allowing the completion of their
characterizations, including X-ray structure analysis.

2. Results and Discussion
2.1. Synthesis and X-ray Structures of Compound 1 and the Cobalt Clusters [{M(CO)n}{Co(CO)3}3E]
(n = 5, M = Cr, E = P (2), M = W, E = As (3); n = 4, M = Fe, E = P (4))

[W(CO)5(AsH3)] (1) is synthesized in good yields from the reaction of [W(CO)6] with
As(SiMe3)3 under UV irradiation with subsequent methanolysis of the reaction mixture.
This compound was already reported by Fischer et al. [24], who used, however, AsH3 as an
arsenic source. Herein, we completed the analytical data by 13C{1H} NMR as well as single
crystal structure analysis (for further information see ESI). The reaction of [Cr(CO)5(PH3)],
[W(CO)5(AsH3)] (1) or [Fe(CO)4(PH3)] with one equivalent of [Co2(CO)8] in toluene at
room temperature allowed for the synthesis of cobalt clusters with the general formula
[{M(CO)n}{Co(CO)3}3E] (n = 5, M = Cr, E = P (2), M = W, E = As (3); n = 4, M = Fe, E = P (4))
(Scheme 1, Equations (1) and (2)). Vahrenkamp et al. synthesized 2 using similar starting
materials but in benzene instead of toluene [25]. They obtained compound 2 in 22% yield
while the yield could be improved to 44% under our reaction conditions. Additionally, 2
was only characterized by IR spectroscopy and elemental analysis. Herein, we completed
its analytical data (solution and solid-state IR; 1H, 13C{1H} and 31P{1H} NMR; EI-MS; EA)
and characterized it by X-ray structural analysis. In the same study of Vahrenkamp, the
P-analog of cluster 3 was synthesized from [W(CO)5(PH3)] and [Co2(CO)8]. Vizi-Orosz
reported cluster 4 by the reaction of [Fe2(CO)9] with [Co3P(CO)9] but in very low yields
(ca. 1%) [14] and characterized it only by EA. In our case, it was possible to prepare 4 in a
different way (Equation (2)), resulting in improved yields (24%) and obtaining complete
analytic data. In the 31P{1H} NMR spectrum of 2, a singlet at 697.9 ppm (ω1/2 = 113 Hz) was
detected while a broad signal at 677.5 ppm (ω1/2 = 175 Hz) was observed in that of 4. The
13C{1H} NMR spectra of 2 and 3 show typical broad signals at 197.5 ppm (ω1/2 = 43 Hz) (2)
and 197.0 ppm (ω1/2 = 35 Hz) (3) for the carbonyl carbon atoms, which belong to the Co3E
tetrahedra (E = P (2), As (3)). Additionally, a doublet at 214.7 ppm with a C–P coupling
constant (13.7 Hz) (2) and a singlet at 195.4 ppm (3) were observed. In the 13C{1H} NMR
spectrum of 4, a doublet at 212.0 ppm was detected with a C–P coupling constant of 18.8 Hz
belonging to the cis carbonyl ligands. The signal for the trans carbonyl ligand could not be
observed, while a broad signal at 197.0 ppm (ω1/2 = 46 Hz) for the carbonyl carbon atoms
at the Co3P tetrahedron was detected. The broad signals in the multinuclear NMR spectra
of compounds 2–4 originate from the coupling with the 59Co nucleus with a spin of 7/2
and 100% abundance. The EI mass spectra of 3–5 exhibit the molecular ion peak as well
as peaks showing the successive loss of all carbonyl ligands. Furthermore, the loss of a
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chromium atom as well as a cobalt atom (2), two cobalt atoms (3) and one iron atom (4)
were detected (for further information see Materials and Methods section and ESI).
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Scheme 1. Synthesis of the tetrahedral Co clusters (a) 2–3 (Equation (1)) and (b) 4 (Equation (2)) from
the reaction of Co2(CO)8 with [Cr(CO)5(PH3)], [W(CO)5(AsH3)] and [Fe(CO)4(PH3)], respectively, in
toluene at room temperature.

Compound 1 is obtained through sublimation as colorless crystals. It crystallizes
in the monoclinic space group P21/c. The central tungsten atom possesses an octahe-
dral coordination sphere with five CO ligands and one As atom. Crystals of compounds
2–4 were obtained from concentrated n-hexane solutions stored at −25 ◦C. They crystal-
lize in the monoclinic space groups Cc (2) and P21/n (4) and the triclinic space group Pı̄
(3). Their molecular structures reveal spiked tetrahedral molecules in which the central
structural motifs “Co3P (2, 4) or a Co3As (3)” are slightly distorted tetrahedranes that coor-
dinate to the corresponding transition metal carbonyl fragment ([Cr(CO)5] (2), [W(CO)5]
(3), [Fe(CO)4] (4)) via the lone pairs of the pnictogen atoms (Figure 1). The Co–Co dis-
tances in 2–4 (2.536(1)–2.569(1) Å) are in the range of Co–Co single bonds reported, e.g.,
for [CpCo(µ-PPh)]2 (2.56 Å) [26]. Accordingly, the tetrahedral cores of 2–4 each possess
48 cluster valence electrons (CVE) and can be described as closo compounds according to
the Wade–Mingos rules.
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tion of [Co2(CO)8] with [W(CO)4(PH3)2] [27]. Another way to synthesize 5 in a slightly bet-
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Figure 1. Molecular structure of compound 1 and the tetrahedral Co clusters 2–4 in the solid state
(anisotropic displacement parameters (ADPs) are given at the 50% probability level). CO ligands are
depicted in the wireframe model for clarity.

2.2. Synthesis and X-ray Structures of the Cobalt Clusters [Co8(CO)16(µ-CO)4P] (5) and
[{Co4(CO)11}{Co(CO)3}3P] (6)

By using [Cr(CO)4(PH3)2] as a phosphorus source in the reaction with four equivalents
of [Co2(CO)8] in toluene at room temperature, a new cobalt carbonyl cluster with an
interstitial phosphorus atom [Co8(CO)16(µ-CO)4P] (5) is obtained in 6% yield (Scheme 2,
Equation (3)). In addition to compound 5 and [Co4(CO)12], another cobalt phosphorus
cluster [Co8(CO)18(µ-CO)(P)2] (A) is formed, previously obtained by our group from the
reaction of [Co2(CO)8] with [W(CO)4(PH3)2] [27]. Another way to synthesize 5 in a slightly
better yield (9%) is the reaction of P4 with an excess of [Co2(CO)8] (1:32 stoichiometry,
n-hexane, Equation (4)). However, when the stoichiometry of P4 and [Co2(CO)8] is changed
to 1:24 under slightly different reaction conditions, the cluster [{Co4(CO)11}{Co(CO)3}3P]
(6) is formed instead of 5 (Scheme 2, Equation (5)).
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Scheme 2. Synthesis of compound 5 from the reaction of Co2(CO)8 with Cr(CO)4(PH3)2] in toluene
at room temperature (Equation (3)) and with P4 in hexane at −40 ◦C (Equation (4)). Synthesis of
compound 6 from a similar reaction using 24 eq. of Co2(CO)8 in toluene at −100 ◦C (Equation (5)).
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Single crystals of 5 were obtained from a dichloromethane solution or an n-hexane
solution stored at −25 ◦C. It crystallizes in the monoclinic space group P21/n. The central
structural feature of 5 can be described as a quadratic antiprism formed by eight Co atoms
and an interstitial P atom at the center with a total of 117 CVEs (Figure 2). Each Co atom
in 5 is bound to four other Co atoms and to the central P atom with angles between the
various Co—Co and Co–P bonds being close to 60 and 90◦. Additionally, each Co atom
is coordinated by two terminal and one bridging CO ligand. Accordingly, four bridging
and sixteen terminal CO ligands exist in 5. The overall average Co–CO bond distances
for bridging and terminal CO ligands are 1.961(8) and 1.810(8) Å, respectively. Similarly,
two classes of Co–Co bonds can be distinguished: (a) shorter Co–Co bonds between Co
atoms connected via bridging CO ligands range between 2.592(2) and 2.613(2) Å, and (b)
longer Co–Co bonds between neighboring Co atoms with no bridging CO ligands ranging
between 2.651(1) and 2.787(2) Å. The Co–P lengths are between 2.216(2) and 2.245(2) Å.
DFT calculations at the r2SCAN-3c level reproduce the experimental geometry determined
by X-ray diffractions well in both doublet and quartet sextet spin states. The spin states do
not have a considerable influence on the geometry, which suggests that the spin density
is located in a nonbonding Co orbital. Indeed, the spin density in the doublet spin state
is evenly distributed on four cobalt atoms, with only small contributions from the other
atoms (Figure S12). Energetically, the doublet spin state is 46 kJ·mol−1 more stable than the
quartet spin state. This is not unexpected since the strong field ligands, for instance, CO,
prefer the low spin configurations on the metal centers.
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Figure 2. Molecular structure of the cluster compounds 5 and 6 in the solid state (atoms are given at
50% probability level). CO ligands are depicted in the wireframe model.

Compound 6 was obtained as black blocks from a concentrated toluene solution at
−25 ◦C and crystallized in the triclinic space group Pı̄. Cluster 6 is composed of two
slightly distorted tetrahedra, [P{Co(CO)3}3] and [Co4(CO)11], which are linked together
via the coordination of the lone pair of the phosphorus atom in the former to a cobalt
atom in the latter (Figure 2). Interestingly, the [P{Co(CO)3}3] tetrahedron contains only
terminal CO ligands (three per cobalt atom) while the [Co4(CO)11] fragment contains eight
terminal and three bridging CO ligands. The [P{Co(CO)3}3] tetrahedron in 6 shows a struc-
tural motif similar to that of compound [{W(CO)5}{Co(CO)3}3P] reported by Vahrenkamp
et al. [25], and the structure of compound 6 as a whole is comparable to that of the clus-
ters [{Co3(CO)9}(µ4-P){Co3(µ-CO)3(CO)5}(µ3-CR)] (R = CH3, tBu, iPr) recently reported
by our group from the reaction of the phopsphaalkynes RCP (R = CH3, tBu, iPr) with
Co2(CO)8 [28]. The Co–Co (2.548(6)–2.560(6) Å) bond distances in the [P{Co(CO)3}3] moiety

216



Molecules 2024, 29, 2025

are longer than those reported for [{W(CO)5}{Co(CO)3}3P] and comparable to those found
in clusters 2–4. The Co–Co (2.444(6)–2.529(6) Å) bond lengths in the [Co4(CO)11] fragment
are, as expected, shorter due to the presence of bridging CO ligands. The Co–P bond
lengths (2.171(9)–2.183(9) Å) in the [P{Co(CO)3}3] fragment are slightly shorter than those
found in 2 (2.177(3)–2.191(3) Å) and longer than those found in 4 (2.162(2)–2.169(2) Å). The
Co atoms in 6 are bound through metal–metal bonds and fulfill the 18-valence electron rule.
Thus, the {Co(CO)3}3P part in 6 can be regarded as a closo cluster with 48 CVE with the
lone pair at P engaging in dative bonding to the [Co4(CO)11] tetrahedron, which is best
described as a nido cluster (tetrahedron derived from trigonal bipyramid) with 60 CVE
(4 × 9 (Co) + 11 × 2 (CO) + 2 (P{Co(CO)3}3)).

2.3. Synthesis and X-ray Structures of the Cobalt Clusters [Co9(CO)24(µ4-P)3] (7) and
[Co9(CO)21(µ5-P)3] (8)

Subsequently, we focused on the reaction of [Co2(CO)8] with P4 using various ratios and
reaction conditions. Reactions using eight equivalents of [Co2(CO)8] in toluene (Scheme 3,
Equation (6)) and six equivalents of [Co2(CO)8] in hexane (Scheme 3, Equation (7)) at room
temperature resulted in the compounds [Co9(CO)24(µ4-P)3] (7) and [Co9(CO)21(µ5-P)3] (8),
respectively. Both compounds consist of three [Co3P(CO)9] fragments that have lost three
(7) or six (8) CO ligands with subsequent formation of new Co–Co and Co–P bonds. Markó
et al. [29] isolated a compound with a molecular formula similar to 7 and proposed a cyclic
structure as in 7 based on a similar reaction protocol used to obtain the analogous cyclic
As-Co trimer. Herein, the formation of compound 7 is evidenced by X-ray crystallography.
As for compound 8, however, the rather poor crystal quality only allowed for the collection
of an incomplete data set proving the structure of 8, but not for structural analysis in detail.
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Scheme 3. Synthesis of the cyclic clusters 7 and 8 from the reaction of P4 with eight eq. of Co2(CO)8

in toluene at room temperature (Equation (6)) and six eq. of Co2(CO)8 in hexane at room temperature
(Equation (7)), respectively.

Compounds 7 and 8 are isolated as dark violet (7) and black block-shaped (8) crystals
from n-hexane solutions stored at −25 ◦C and 8 ◦C, respectively. Cluster 7 crystallizes in
the monoclinic space group P21/n while 8 crystallizes in the orthorhombic space group
P212121. Compound 7 consists of three [PCo3(CO)8] tetrahedranes that are connected
together via dative Co–P bonds, thus forming a cyclic trimer with a six-membered P3Co3
central ring (Figure 3). Compound 8 consists of three [PCo3(CO)7] units connected to one
another by two Co–P bonds and one Co–Co bond. Theoretically, cluster 8 could have
been formed from 7 by CO elimination, which could, however, not have been proven

217



Molecules 2024, 29, 2025

experimentally due to the insufficient solubility of 7 in common organic solvents. The
Co–Co (2.530(8)–2.584(8) Å) bond lengths in 7 are generally comparable to those of 2–4
and the Co–P (2.153(1)–2.200(1) Å) bond lengths are comparable to those of 2. All CO
ligands in 7 and 8 are terminal ones with Co–CO lengths ranging between 1.775(7) and
1.898(1) Å, e.g., for 7. Overall, compound 7 amounts to 144 CVEs from three [PCo3(CO)8]
closo tetrahedra each possessing 48 CVEs. In compound 8, the overall CVEs amount to 138
(9 × 9 (Co) + 21 × 2 (CO) + 3 × 5 (P)).
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2.4. Synthesis and X-ray Structures of the Cobalt Clusters [Co10(CO)24(µ3-P)2(µ6-P2)(µ-CO)2]
(9) and [Co15(µ6-P)6(µ12-Co)(CO)30] (10)

When a solution of five equivalents of [Co2(CO)8] in toluene is layered with a solution
of one equivalent P4 in n-hexane, black crystals of [Co10(CO)24(µ3-P)2(µ5-P)2(µ-CO)2] (9)
are obtained in excellent yields of 75% (Scheme 4, Equation (8)). When the components
are instead employed in stirring reactions, using two equivalents of [Co2(CO)8] with one
equivalent of P4 in toluene at room temperature, cluster 9 is also obtained but in very low
yields (1%). Besides 9, another cluster [Co15(µ6-P)6(µ12-Co)(CO)30] (10) can be isolated
from the same reaction mixture after a long crystallization time in very low yields of 1%
(Scheme 4, Equation (9)). Interestingly, compound 9 can be further refluxed in toluene to
give the cluster [Co8(CO)18(µ-CO)(P)2] (A) [27] in good yields (22%) as a thermally stable
cluster via a new synthetic pathway (Scheme 4, Equation (10)).

Compound 9 is isolated as black plates and crystalizes in the monoclinic space group
P21/c. Also, black rods of 9·C6H14 can be obtained from a concentrated n-hexane solution
crystallizing in the tetragonal space group I41/a. The cluster core in 9 is constructed of ten
Co and four P atoms with 24 terminal and two bridging CO ligands being coordinated to
the Co atoms (Figure 4). It can also be described as two Co5P fragments that are connected
together by a P2 moiety located at its inversion center with a P–P bond length of 2.265(1) Å,
which is slightly longer but still at the upper limit of a single P–P bond (2.212(2) Å) [30].
Each Co atom in 9 fulfills the 18-valence electron rule with a total of 162 CVEs (10 × 9 (Co)
+ 26 × 2 (CO) + 4 × 5 (P)).

Crystals of 10•2C7H8 crystallize in the monoclinic space group C2/c. This cluster is
composed of 16 Co and 6 P atoms (Figure 4). Besides the central cobalt atom, which is
located in the middle of the cluster (Co4), every Co atom is coordinated by one, two or three
terminal CO ligands from a total of thirty CO ligands present in 10. Each P atom in 10 is
surrounded by six cobalt atoms, revealing the coordination number six. A simplification of
the structural details of 10 is depicted in Figure 5. The core of this compound is composed
of three distorted Co4P2 octahedra with Co4 being the center of their intersection (one of
them for example is composed of these atoms: Co4, Co5′, Co8′, P2′, P1′; Co7′, Figure 5
left). This central octahedral structural motif is similar to the central structural motif in
the reported clusters A and [Co10(CO)18(µ-CO)6P2] (B) [27]. When considering the Co–Co
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bonds between the atoms Co3 and Co5, Co3′ and Co5′ and Co8 and Co8′, another central
structural motif becomes apparent. This motif forms a hexagonal antiprism, consisting
of six cobalt and six phosphorus atoms with an interstitial cobalt atom (Figure 5 middle).
Finally, the addition of the rest of the Co atoms completes the molecular structure of 10
(Figure 5 right). Within 10, various Co3P tetrahedra are found (e.g., Co7, Co8, Co9, P1) with
Co–Co bond lengths ranging between 2.5029(8) and 2.6735(8) Å and, therefore, lie in the
range of those discussed for clusters 2–9. For each Co atom in 10, the 18-valence electron
rule is fulfilled with a total of 234 CVEs for the core (16 × 9 (Co) + 30 × 2 (CO) + 6 × 5 (P)).
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2.5. New Synthetic Protocol for the Synthesis of the Cobalt Clusters [Co9(CO)24(µ4-As)3] (11) and
[{Co4(CO)11}{Co(CO)3}3As] (12)

Finally, [Co2(CO)8] was reacted with the arsenic sources yellow arsenic As4 (Scheme 5,
Equation (11)) and As(SiMe3)3 (Scheme 5, Equation (12)), respectively. The first reaction
afforded the cluster [Co9(CO)24(µ4-As)3] (11) good yields (39%). Markó et al. [29] and the
groups of Mackay and Nicholson [12] reported the synthesis of 11 in 8% and 17% yields,
respectively. The former described it as a “cyclic trimer” of the trigonal pyramidal cluster
[AsCo3(CO)9]. This compound was obtained together with AsCo3(CO)9 and As2Co2(CO)6
from the reaction of Na[Co(CO)4] with AsCl3. Using our new strategy, 11 was obtained
in better yields, and its full analytical characterization was performed. From the reaction
with As(SiMe3)3, besides product 11, it was possible to isolate the cobalt arsenic cluster
[{Co4(CO)11}{Co(CO)3}3As] (12) in low yields (1%), which had already been reported by
Huttner et al. from the reaction of [Co2(CO)8] with [Cr(CO)5(AsPhH2)] [31]. Interestingly,
we were able to obtain compounds 11 and 12 as single crystals but in polymorphs differing
from those of the initially reported ones.
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Compounds 6, 7, 8, 11 and 12 are soluble in toluene and THF while compounds 5,
9 and 10 are nearly insoluble in common organic solvents. In the EI mass spectra of 6,
7, 8, 11 and 12, the molecular ion peak as well as the peaks showing the successive loss
of all carbonyl ligands are detected (for further information see Section 3 and ESI). Thus,
the fragments at m/z = 443.6 for 6 and 487.6 for 12 can be observed, which shows the
remaining cluster cores “Co7P” or “Co7As”. For compounds 7, 8 and 11, peaks contributing
to the cluster cores “Co9P3” at m/z = 623.4 or “Co9As3” at m/z = 755.2 are detected. The
31P{1H} NMR spectra of 6, 7, and 8 show broad signals at 666.4 (ω1/2 = 114 Hz), 667.3
(ω1/2 = 362 Hz) or 658.2 ppm (ω1/2 = 205 Hz). In the 31P{1H} MAS NMR spectrum of 9,
a broad signal at 684 ppm (ω1/2 = 2800 Hz) can be detected. Due to the insolubility of
some compounds and the high sensitivity of most of the clusters, it was not possible to
characterize all of them completely. As the cluster cores of compounds 2–12 are mainly
surrounded by CO ligands that can only be readily released according to the mass spectra,
clusters 2–12 could be used as potential single source precursors for the synthesis of CoxPy
and/or CoxAsy nanoparticles with variable ratios of the elements.

3. Materials and Methods
3.1. General Information

All manipulations were carried out under a dry argon or dinitrogen atmosphere using
glovebox or standard Schlenk techniques. The solvents were dried using standard proce-
dures and were freshly distilled prior to use. The starting materials [Cr(CO)5(PH3)] [32],
[Fe(CO)4(PH3)] [33], [Cr(CO)4(PH3)2] [34], As4 [35] and As(SiMe3)3 [36] were synthesized
according to literature procedures. [Cr(CO)6], [W(CO)6] and [Co2(CO)8] were purchased
from Merck (Darmstadt, Germany) and used without further purification. The NMR spec-
tra were recorded on a Bruker Advance 400 (Billerica, MA, USA, 1H, 400.132 MHz; 31P,
161.975 MHz, 13C, 100.613 MHz) referenced to external SiMe4 (1H) or H3PO4 (31P), respec-
tively. 31P{1H} MAS NMR spectra were recorded with a Bruker Advance 300 spectrometer
equipped with a double resonance 2.5 mm MAS probe. The spectra were acquired at MAS
rotation frequencies of 30 and 34 kHz, a 90◦ pulse length of 2.3 µs, and with relaxation
delays between 120 and 450 s. Mass spectra were recorded on a Finnnigan MAT SSQ
710 A (EI) spectrometer (Scientific Instrument Services, Palmer, MA, USA). IR spectra were
measured with a Varian FTS-800 spectrometer (Palo Alto, CA, USA). Elemental analyses
(CHN) were determined on a Vario EL III instrument (Elementar Analysensysteme GmbH,
Langenselbold, Germany).

3.2. Synthesis and Characterization of Clusters 2–12
3.2.1. Synthesis and Characterization of Clusters 2 and 3

To a stirred solution of [Cr(CO)5(PH3)] (69.0 mg, 0.3 mmol) or [W(CO)5(AsH3)] (1)
(121 mg, 0.3 mmol) in toluene, a solution of [Co2(CO)8] (103 mg, 0.3 mmol) in toluene was
added. The crude mixture was then stirred for 24 h at room temperature. The solvent was
removed under reduced pressure, and the dark residue was extracted with 10 mL n-hexane
and stored at −25 ◦C. After one day, dark red crystals of 2 and violet black crystals of 3,
respectively, were obtained. Yield of 2: (1.11 g, 57%). Yield of 3: 86.2 mg (44%) (2); 59.6
mg (24%) (3). IR (KBr):
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days at room temperature. The solvent was then completely removed under reduced pres-
sure, and the crude product was dissolved in hexane and filtrated. This filtrate contained 
[Co4(CO)12]. The residue in the frit was extracted with dichloromethane and found to con-
tain the product [Co8(CO)18(µ-CO)4P] (5). The remaining dark red residue was collected 
and dissolved in dichloromethane overnight. After filtration and reducing the solution 
under reduced pressure up to 30 mL, crystals of 5 were obtained upon storing at –25 °C 
after two weeks. Yield: 63.7 mg (6%). 

Method 2: A stirred solution of P4 (3 mg, 0.025 mmol) and [Co2(CO)8] (274 mg, 0.8 
mmol) in 30 mL cold hexane at –40 °C was warmed up to room temperature under stirring. 
After further stirring for two days, the reaction mixture was filtrated and stored at room 
temperature. Crystals of 5 were obtained within two weeks. Yield: 19.0 mg (9%). 

3.2.4. Synthesis and Characterization of Cluster 6 
P4 (4 mg, 0.03 mmol) and [Co2(CO)8] (274 mg, 0.8 mmol) were dissolved in 40 mL 

toluene, cooled to –100 °C and stirred for 30 min. The reaction mixture was then warmed 
up to room temperature and further stirred for six days. The reaction mixture was filtrated 
and stored at –25 °C for three months from which black blocks of 6 were obtained. Yield: 
~1%. IR (KBr): ῦ cm−1 = νCO: 2053 (vs), 2037 (vs), 1896 (m), 1848 (s). 31P{1H} NMR (161.975 
MHz, C6D6): δ [ppm] = 666.4 (br s, ω1/2 = 114 Hz). EI-MS (70 eV): m/z (%) = 1003.4 (3) [M+], 
947.5 (27) [M+–2 CO], 919.4 (35) [M+–3 CO], 891.4 (21) [M+–4 CO], 863.3 (17) [M+–5 CO], 
835.3 (65) [M+–6 CO], 807.4 (79) [M+–7 CO], 779.4 (54) [M+–8 CO], 751.4 (57) [M+–9 CO], 
723.9 (49) [M+–10 CO], 695.5 (43) [M+–11 CO], 667.4 (59) [M+–12 CO], 639.5 (59) [M+–13 CO], 
611.5 (57) [M+–14 CO], 583.6 (55) [M+–15 CO], 555.4 (65) [M+–16 CO], 527.5 (58) [M+–17 CO], 
499.6 (1) [M+–18 CO], 471.6 (1) [M+–19 CO], 443.6 (3) [M+–20 CO]. 

3.2.5. Synthesis and Characterization of Cluster 7 
A solution of P4 (47 mg, 0.38 mmol) and [Co2(CO)8] (1026 mg, 3.0 mmol) in 40 mL 

toluene was stirred for ten days at room temperature. After removing the solvent under 
reduced pressure, the residue was dissolved in hexane and filtrated. Black blocks of 7 were 
obtained after storage at 8 °C. Yield: 36.0 mg (6%). IR (KBr): ῦ/cm−1 = νCO: 2034 (s br). 31P{1H} 
NMR (161.975 MHz, C6D6): δ = 658.2 (br s, ω1/2 = 205 Hz). EI-MS (70 eV): m/z (%) = 1211.2 
(6) [M+], 1183.2 (23) [M+–CO], 1127.3 (11) [M+–3 CO], 1099.2 (3) [M+–4 CO], 1071.3 (16) [M+–
5 CO], 1043.3 (36) [M+–6 CO], 1015.3 (42) [M+–7 CO], 987.3 (29) [M+–8 CO], 959.3 (24) [M+–
9 CO], 931.4 (23) [M+–10 CO], 903.3 (24) [M+–11 CO], 875.3 (25) [M+–12 CO], 847.4 (25) [M+–
13 CO], 819.4 (26) [M+–14 CO], 791.4 (23) [M+–15 CO], 763.3 (32) [M+–16 CO], 735.4 (27) [M+–
17 CO], 707.4 (23) [M+–18 CO], 679.4 (28) [M+–19 CO], 651.4 (28) [M+–20 CO], 623.4 (100) 
[M+–21 CO]. Elemental analysis, calcd. for Co9P3C21O21 (1211.21 g/mol): C, 20.82. Found C, 
21.06. 

3.2.6. Synthesis and Characterization of Cluster 8 
A solution of P4 (12 mg, 0.1 mmol) and [Co2(CO)8] (205 mg, 0.6 mmol) in 40 mL cold 

hexane at –40 °C was warmed up to room temperature under stirring. After further stir-
ring for two days the reaction mixture was filtrated and stored at –25 °C from which dark 
violet crystals of 8 were obtained. Yield: 67.0 mg (13%). IR (KBr): ῦ/cm−1 = νCO: 2050 (s br), 
2038 (s sh). 31P{1H} NMR (161.975 MHz, C6D6): δ = 667.3 (br s, ω1/2 = 362 Hz). EI-MS (70 eV): 
m/z (%) = 1267.7 (8) [M+–CO], 1239.6 (3) [M+–2 CO], 1211.8 (19) [M+–3 CO], 1183.8 (15) [M+–
4 CO], 1155.8 (2) [M+–5 CO], 1127.8 (16) [M+–6 CO], 1071.1 (18) [M+ –8 CO], 1043.2 (63) [M+–
9 CO], 1015.2 (77) [M+–10 CO], 987.2 (44) [M+–11 CO], 959.2 (40) [M+–12 CO], 931.2 (41) [M+–
13 CO], 903.2 (39) [M+–14 CO], 875.2 (42) [M+–15 CO], 847.2 (38) [M+–16 CO], 819.2 (40) [M+–
17 CO], 791.2 (40) [M+–18 CO], 763.3 (41) [M+–19 CO], 679.3 (2) [M+–22 CO], 651.3 (3) [M+–
23 CO], 623.3 (4) [M+–24 CO]. 

/cm−1 = νCO: 2113 (s), 2085 (vs sh), 2053 (vs), 2031 (s), 2000
(w), 1990 (m), 1963 (s sh), 1944 (vs) (2); IR (toluene):
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days at room temperature. The solvent was then completely removed under reduced pres-
sure, and the crude product was dissolved in hexane and filtrated. This filtrate contained 
[Co4(CO)12]. The residue in the frit was extracted with dichloromethane and found to con-
tain the product [Co8(CO)18(µ-CO)4P] (5). The remaining dark red residue was collected 
and dissolved in dichloromethane overnight. After filtration and reducing the solution 
under reduced pressure up to 30 mL, crystals of 5 were obtained upon storing at –25 °C 
after two weeks. Yield: 63.7 mg (6%). 

Method 2: A stirred solution of P4 (3 mg, 0.025 mmol) and [Co2(CO)8] (274 mg, 0.8 
mmol) in 30 mL cold hexane at –40 °C was warmed up to room temperature under stirring. 
After further stirring for two days, the reaction mixture was filtrated and stored at room 
temperature. Crystals of 5 were obtained within two weeks. Yield: 19.0 mg (9%). 

3.2.4. Synthesis and Characterization of Cluster 6 
P4 (4 mg, 0.03 mmol) and [Co2(CO)8] (274 mg, 0.8 mmol) were dissolved in 40 mL 

toluene, cooled to –100 °C and stirred for 30 min. The reaction mixture was then warmed 
up to room temperature and further stirred for six days. The reaction mixture was filtrated 
and stored at –25 °C for three months from which black blocks of 6 were obtained. Yield: 
~1%. IR (KBr): ῦ cm−1 = νCO: 2053 (vs), 2037 (vs), 1896 (m), 1848 (s). 31P{1H} NMR (161.975 
MHz, C6D6): δ [ppm] = 666.4 (br s, ω1/2 = 114 Hz). EI-MS (70 eV): m/z (%) = 1003.4 (3) [M+], 
947.5 (27) [M+–2 CO], 919.4 (35) [M+–3 CO], 891.4 (21) [M+–4 CO], 863.3 (17) [M+–5 CO], 
835.3 (65) [M+–6 CO], 807.4 (79) [M+–7 CO], 779.4 (54) [M+–8 CO], 751.4 (57) [M+–9 CO], 
723.9 (49) [M+–10 CO], 695.5 (43) [M+–11 CO], 667.4 (59) [M+–12 CO], 639.5 (59) [M+–13 CO], 
611.5 (57) [M+–14 CO], 583.6 (55) [M+–15 CO], 555.4 (65) [M+–16 CO], 527.5 (58) [M+–17 CO], 
499.6 (1) [M+–18 CO], 471.6 (1) [M+–19 CO], 443.6 (3) [M+–20 CO]. 

3.2.5. Synthesis and Characterization of Cluster 7 
A solution of P4 (47 mg, 0.38 mmol) and [Co2(CO)8] (1026 mg, 3.0 mmol) in 40 mL 

toluene was stirred for ten days at room temperature. After removing the solvent under 
reduced pressure, the residue was dissolved in hexane and filtrated. Black blocks of 7 were 
obtained after storage at 8 °C. Yield: 36.0 mg (6%). IR (KBr): ῦ/cm−1 = νCO: 2034 (s br). 31P{1H} 
NMR (161.975 MHz, C6D6): δ = 658.2 (br s, ω1/2 = 205 Hz). EI-MS (70 eV): m/z (%) = 1211.2 
(6) [M+], 1183.2 (23) [M+–CO], 1127.3 (11) [M+–3 CO], 1099.2 (3) [M+–4 CO], 1071.3 (16) [M+–
5 CO], 1043.3 (36) [M+–6 CO], 1015.3 (42) [M+–7 CO], 987.3 (29) [M+–8 CO], 959.3 (24) [M+–
9 CO], 931.4 (23) [M+–10 CO], 903.3 (24) [M+–11 CO], 875.3 (25) [M+–12 CO], 847.4 (25) [M+–
13 CO], 819.4 (26) [M+–14 CO], 791.4 (23) [M+–15 CO], 763.3 (32) [M+–16 CO], 735.4 (27) [M+–
17 CO], 707.4 (23) [M+–18 CO], 679.4 (28) [M+–19 CO], 651.4 (28) [M+–20 CO], 623.4 (100) 
[M+–21 CO]. Elemental analysis, calcd. for Co9P3C21O21 (1211.21 g/mol): C, 20.82. Found C, 
21.06. 

3.2.6. Synthesis and Characterization of Cluster 8 
A solution of P4 (12 mg, 0.1 mmol) and [Co2(CO)8] (205 mg, 0.6 mmol) in 40 mL cold 

hexane at –40 °C was warmed up to room temperature under stirring. After further stir-
ring for two days the reaction mixture was filtrated and stored at –25 °C from which dark 
violet crystals of 8 were obtained. Yield: 67.0 mg (13%). IR (KBr): ῦ/cm−1 = νCO: 2050 (s br), 
2038 (s sh). 31P{1H} NMR (161.975 MHz, C6D6): δ = 667.3 (br s, ω1/2 = 362 Hz). EI-MS (70 eV): 
m/z (%) = 1267.7 (8) [M+–CO], 1239.6 (3) [M+–2 CO], 1211.8 (19) [M+–3 CO], 1183.8 (15) [M+–
4 CO], 1155.8 (2) [M+–5 CO], 1127.8 (16) [M+–6 CO], 1071.1 (18) [M+ –8 CO], 1043.2 (63) [M+–
9 CO], 1015.2 (77) [M+–10 CO], 987.2 (44) [M+–11 CO], 959.2 (40) [M+–12 CO], 931.2 (41) [M+–
13 CO], 903.2 (39) [M+–14 CO], 875.2 (42) [M+–15 CO], 847.2 (38) [M+–16 CO], 819.2 (40) [M+–
17 CO], 791.2 (40) [M+–18 CO], 763.3 (41) [M+–19 CO], 679.3 (2) [M+–22 CO], 651.3 (3) [M+–
23 CO], 623.3 (4) [M+–24 CO]. 

/cm−1 = νCO: 2111 (w), 2062 (vs),
2043 (vw), 2034 (w), 1977 (sh), 1956 (m) (2); IR (KBr):
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days at room temperature. The solvent was then completely removed under reduced pres-
sure, and the crude product was dissolved in hexane and filtrated. This filtrate contained 
[Co4(CO)12]. The residue in the frit was extracted with dichloromethane and found to con-
tain the product [Co8(CO)18(µ-CO)4P] (5). The remaining dark red residue was collected 
and dissolved in dichloromethane overnight. After filtration and reducing the solution 
under reduced pressure up to 30 mL, crystals of 5 were obtained upon storing at –25 °C 
after two weeks. Yield: 63.7 mg (6%). 

Method 2: A stirred solution of P4 (3 mg, 0.025 mmol) and [Co2(CO)8] (274 mg, 0.8 
mmol) in 30 mL cold hexane at –40 °C was warmed up to room temperature under stirring. 
After further stirring for two days, the reaction mixture was filtrated and stored at room 
temperature. Crystals of 5 were obtained within two weeks. Yield: 19.0 mg (9%). 

3.2.4. Synthesis and Characterization of Cluster 6 
P4 (4 mg, 0.03 mmol) and [Co2(CO)8] (274 mg, 0.8 mmol) were dissolved in 40 mL 

toluene, cooled to –100 °C and stirred for 30 min. The reaction mixture was then warmed 
up to room temperature and further stirred for six days. The reaction mixture was filtrated 
and stored at –25 °C for three months from which black blocks of 6 were obtained. Yield: 
~1%. IR (KBr): ῦ cm−1 = νCO: 2053 (vs), 2037 (vs), 1896 (m), 1848 (s). 31P{1H} NMR (161.975 
MHz, C6D6): δ [ppm] = 666.4 (br s, ω1/2 = 114 Hz). EI-MS (70 eV): m/z (%) = 1003.4 (3) [M+], 
947.5 (27) [M+–2 CO], 919.4 (35) [M+–3 CO], 891.4 (21) [M+–4 CO], 863.3 (17) [M+–5 CO], 
835.3 (65) [M+–6 CO], 807.4 (79) [M+–7 CO], 779.4 (54) [M+–8 CO], 751.4 (57) [M+–9 CO], 
723.9 (49) [M+–10 CO], 695.5 (43) [M+–11 CO], 667.4 (59) [M+–12 CO], 639.5 (59) [M+–13 CO], 
611.5 (57) [M+–14 CO], 583.6 (55) [M+–15 CO], 555.4 (65) [M+–16 CO], 527.5 (58) [M+–17 CO], 
499.6 (1) [M+–18 CO], 471.6 (1) [M+–19 CO], 443.6 (3) [M+–20 CO]. 

3.2.5. Synthesis and Characterization of Cluster 7 
A solution of P4 (47 mg, 0.38 mmol) and [Co2(CO)8] (1026 mg, 3.0 mmol) in 40 mL 

toluene was stirred for ten days at room temperature. After removing the solvent under 
reduced pressure, the residue was dissolved in hexane and filtrated. Black blocks of 7 were 
obtained after storage at 8 °C. Yield: 36.0 mg (6%). IR (KBr): ῦ/cm−1 = νCO: 2034 (s br). 31P{1H} 
NMR (161.975 MHz, C6D6): δ = 658.2 (br s, ω1/2 = 205 Hz). EI-MS (70 eV): m/z (%) = 1211.2 
(6) [M+], 1183.2 (23) [M+–CO], 1127.3 (11) [M+–3 CO], 1099.2 (3) [M+–4 CO], 1071.3 (16) [M+–
5 CO], 1043.3 (36) [M+–6 CO], 1015.3 (42) [M+–7 CO], 987.3 (29) [M+–8 CO], 959.3 (24) [M+–
9 CO], 931.4 (23) [M+–10 CO], 903.3 (24) [M+–11 CO], 875.3 (25) [M+–12 CO], 847.4 (25) [M+–
13 CO], 819.4 (26) [M+–14 CO], 791.4 (23) [M+–15 CO], 763.3 (32) [M+–16 CO], 735.4 (27) [M+–
17 CO], 707.4 (23) [M+–18 CO], 679.4 (28) [M+–19 CO], 651.4 (28) [M+–20 CO], 623.4 (100) 
[M+–21 CO]. Elemental analysis, calcd. for Co9P3C21O21 (1211.21 g/mol): C, 20.82. Found C, 
21.06. 

3.2.6. Synthesis and Characterization of Cluster 8 
A solution of P4 (12 mg, 0.1 mmol) and [Co2(CO)8] (205 mg, 0.6 mmol) in 40 mL cold 

hexane at –40 °C was warmed up to room temperature under stirring. After further stir-
ring for two days the reaction mixture was filtrated and stored at –25 °C from which dark 
violet crystals of 8 were obtained. Yield: 67.0 mg (13%). IR (KBr): ῦ/cm−1 = νCO: 2050 (s br), 
2038 (s sh). 31P{1H} NMR (161.975 MHz, C6D6): δ = 667.3 (br s, ω1/2 = 362 Hz). EI-MS (70 eV): 
m/z (%) = 1267.7 (8) [M+–CO], 1239.6 (3) [M+–2 CO], 1211.8 (19) [M+–3 CO], 1183.8 (15) [M+–
4 CO], 1155.8 (2) [M+–5 CO], 1127.8 (16) [M+–6 CO], 1071.1 (18) [M+ –8 CO], 1043.2 (63) [M+–
9 CO], 1015.2 (77) [M+–10 CO], 987.2 (44) [M+–11 CO], 959.2 (40) [M+–12 CO], 931.2 (41) [M+–
13 CO], 903.2 (39) [M+–14 CO], 875.2 (42) [M+–15 CO], 847.2 (38) [M+–16 CO], 819.2 (40) [M+–
17 CO], 791.2 (40) [M+–18 CO], 763.3 (41) [M+–19 CO], 679.3 (2) [M+–22 CO], 651.3 (3) [M+–
23 CO], 623.3 (4) [M+–24 CO]. 

/cm−1 = νCO: 2110 (w), 2079 (m),
2057 (vs), 2038 (m), 2032 (m), 2018 (w), 1992 (w), 1937 (vs) (3). 31P{1H} NMR (161.975
MHz, C6D6): δ[ppm] = 697.9 (br s, ω1/2 = 113 Hz). 13C{1H} NMR (100.613 MHz, C6D6):
δ = 197.5 (br s, ω1/2 = 43 Hz, (Co(CO)3)3), 214.7 (d, 2JCP = 13.7 Hz, Cr(CO)4) (2); 197.0 (br s,
ω1/2 = 35 Hz, (Co(CO)3)3), 195.4 (s, W(CO)4) (3). EI-MS (70 eV): m/z (%) = 651.7 (25) [M+],
623.6 (21) [M+–CO], 567.6 (6) [M+–3 CO], 539.7 (17) [M+–4 CO], 511.6 (42) [M+–5 CO], 483.7
(95) [M+–6 CO], 455.7 (68) [M+–7 CO], 427.7 (52) [M+–8 CO], 399.7 (58) [M+–9 CO], 371.7 (59)
[M+–10 CO], 343.7 (59) [M+–11 CO], 315.7 (59) [M+–12 CO], 287.7 (53) [M+–13 CO], 259.7
(100) [M+–14 CO], 207.7 (53) [M+–14 CO–Cr], 148.8 (38) [M+–14 CO–Cr–Co] (2); 827.8 (24)
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[M+], 799.9 (34) [M+–CO], 743.8 (4) [M+–3 CO], 715.8 (13) [M+–4 CO], 687.8 (69) [M+–5 CO],
659.9 (100) [M+–6 CO], 603.8 (57) [M+–8 CO], 575.9 (80) [M+–9 CO], 547.8 (49) [M+–10 CO],
519.8 (55) [M+–11 CO], 491.8 (63) [M+–12 CO], 463.8 (63) [M+–13 CO], 435.9 (99) [M+–14
CO], 376.8 (76) [M+–14 CO–Co], 317.9 (28) [M+–14 CO–2 Co] (3). Elemental analysis, calcd.
for Co3PCr(CO)14 (651.64 g/mol): C, 25.79. Found C, 25.72 (2). Elemental analysis, calcd.
for Co3AsW(CO)14 (827.60 g/mol): C, 20.32. Found C, 20.22 (3).

3.2.2. Synthesis and Characterization of Cluster 4

A solution of [Fe(CO)4(PH3)] (60.6 mg, 0.3 mmol) in toluene was added to a solution of
[Co2(CO)8] (103 mg, 0.3 mmol) in toluene and stirred for 18 h. After removing the solvent
under reduced pressure, the black residue was dissolved in 10 mL hexane and filtrated.
Brown blocks of 4 were obtained within a few hours by storing the hexane solution at
−25 ◦C. Yield: 45.2 mg (24%). IR (KBr):
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days at room temperature. The solvent was then completely removed under reduced pres-
sure, and the crude product was dissolved in hexane and filtrated. This filtrate contained 
[Co4(CO)12]. The residue in the frit was extracted with dichloromethane and found to con-
tain the product [Co8(CO)18(µ-CO)4P] (5). The remaining dark red residue was collected 
and dissolved in dichloromethane overnight. After filtration and reducing the solution 
under reduced pressure up to 30 mL, crystals of 5 were obtained upon storing at –25 °C 
after two weeks. Yield: 63.7 mg (6%). 

Method 2: A stirred solution of P4 (3 mg, 0.025 mmol) and [Co2(CO)8] (274 mg, 0.8 
mmol) in 30 mL cold hexane at –40 °C was warmed up to room temperature under stirring. 
After further stirring for two days, the reaction mixture was filtrated and stored at room 
temperature. Crystals of 5 were obtained within two weeks. Yield: 19.0 mg (9%). 

3.2.4. Synthesis and Characterization of Cluster 6 
P4 (4 mg, 0.03 mmol) and [Co2(CO)8] (274 mg, 0.8 mmol) were dissolved in 40 mL 

toluene, cooled to –100 °C and stirred for 30 min. The reaction mixture was then warmed 
up to room temperature and further stirred for six days. The reaction mixture was filtrated 
and stored at –25 °C for three months from which black blocks of 6 were obtained. Yield: 
~1%. IR (KBr): ῦ cm−1 = νCO: 2053 (vs), 2037 (vs), 1896 (m), 1848 (s). 31P{1H} NMR (161.975 
MHz, C6D6): δ [ppm] = 666.4 (br s, ω1/2 = 114 Hz). EI-MS (70 eV): m/z (%) = 1003.4 (3) [M+], 
947.5 (27) [M+–2 CO], 919.4 (35) [M+–3 CO], 891.4 (21) [M+–4 CO], 863.3 (17) [M+–5 CO], 
835.3 (65) [M+–6 CO], 807.4 (79) [M+–7 CO], 779.4 (54) [M+–8 CO], 751.4 (57) [M+–9 CO], 
723.9 (49) [M+–10 CO], 695.5 (43) [M+–11 CO], 667.4 (59) [M+–12 CO], 639.5 (59) [M+–13 CO], 
611.5 (57) [M+–14 CO], 583.6 (55) [M+–15 CO], 555.4 (65) [M+–16 CO], 527.5 (58) [M+–17 CO], 
499.6 (1) [M+–18 CO], 471.6 (1) [M+–19 CO], 443.6 (3) [M+–20 CO]. 

3.2.5. Synthesis and Characterization of Cluster 7 
A solution of P4 (47 mg, 0.38 mmol) and [Co2(CO)8] (1026 mg, 3.0 mmol) in 40 mL 

toluene was stirred for ten days at room temperature. After removing the solvent under 
reduced pressure, the residue was dissolved in hexane and filtrated. Black blocks of 7 were 
obtained after storage at 8 °C. Yield: 36.0 mg (6%). IR (KBr): ῦ/cm−1 = νCO: 2034 (s br). 31P{1H} 
NMR (161.975 MHz, C6D6): δ = 658.2 (br s, ω1/2 = 205 Hz). EI-MS (70 eV): m/z (%) = 1211.2 
(6) [M+], 1183.2 (23) [M+–CO], 1127.3 (11) [M+–3 CO], 1099.2 (3) [M+–4 CO], 1071.3 (16) [M+–
5 CO], 1043.3 (36) [M+–6 CO], 1015.3 (42) [M+–7 CO], 987.3 (29) [M+–8 CO], 959.3 (24) [M+–
9 CO], 931.4 (23) [M+–10 CO], 903.3 (24) [M+–11 CO], 875.3 (25) [M+–12 CO], 847.4 (25) [M+–
13 CO], 819.4 (26) [M+–14 CO], 791.4 (23) [M+–15 CO], 763.3 (32) [M+–16 CO], 735.4 (27) [M+–
17 CO], 707.4 (23) [M+–18 CO], 679.4 (28) [M+–19 CO], 651.4 (28) [M+–20 CO], 623.4 (100) 
[M+–21 CO]. Elemental analysis, calcd. for Co9P3C21O21 (1211.21 g/mol): C, 20.82. Found C, 
21.06. 

3.2.6. Synthesis and Characterization of Cluster 8 
A solution of P4 (12 mg, 0.1 mmol) and [Co2(CO)8] (205 mg, 0.6 mmol) in 40 mL cold 

hexane at –40 °C was warmed up to room temperature under stirring. After further stir-
ring for two days the reaction mixture was filtrated and stored at –25 °C from which dark 
violet crystals of 8 were obtained. Yield: 67.0 mg (13%). IR (KBr): ῦ/cm−1 = νCO: 2050 (s br), 
2038 (s sh). 31P{1H} NMR (161.975 MHz, C6D6): δ = 667.3 (br s, ω1/2 = 362 Hz). EI-MS (70 eV): 
m/z (%) = 1267.7 (8) [M+–CO], 1239.6 (3) [M+–2 CO], 1211.8 (19) [M+–3 CO], 1183.8 (15) [M+–
4 CO], 1155.8 (2) [M+–5 CO], 1127.8 (16) [M+–6 CO], 1071.1 (18) [M+ –8 CO], 1043.2 (63) [M+–
9 CO], 1015.2 (77) [M+–10 CO], 987.2 (44) [M+–11 CO], 959.2 (40) [M+–12 CO], 931.2 (41) [M+–
13 CO], 903.2 (39) [M+–14 CO], 875.2 (42) [M+–15 CO], 847.2 (38) [M+–16 CO], 819.2 (40) [M+–
17 CO], 791.2 (40) [M+–18 CO], 763.3 (41) [M+–19 CO], 679.3 (2) [M+–22 CO], 651.3 (3) [M+–
23 CO], 623.3 (4) [M+–24 CO]. 

/cm−1 = νCO: 2115 (m), 2080 (s sh), 2055 (vs), 2033
(s), 2020 (m), 1984 (m), 1952 (m), 1941 (s); IR (hexane):
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days at room temperature. The solvent was then completely removed under reduced pres-
sure, and the crude product was dissolved in hexane and filtrated. This filtrate contained 
[Co4(CO)12]. The residue in the frit was extracted with dichloromethane and found to con-
tain the product [Co8(CO)18(µ-CO)4P] (5). The remaining dark red residue was collected 
and dissolved in dichloromethane overnight. After filtration and reducing the solution 
under reduced pressure up to 30 mL, crystals of 5 were obtained upon storing at –25 °C 
after two weeks. Yield: 63.7 mg (6%). 

Method 2: A stirred solution of P4 (3 mg, 0.025 mmol) and [Co2(CO)8] (274 mg, 0.8 
mmol) in 30 mL cold hexane at –40 °C was warmed up to room temperature under stirring. 
After further stirring for two days, the reaction mixture was filtrated and stored at room 
temperature. Crystals of 5 were obtained within two weeks. Yield: 19.0 mg (9%). 

3.2.4. Synthesis and Characterization of Cluster 6 
P4 (4 mg, 0.03 mmol) and [Co2(CO)8] (274 mg, 0.8 mmol) were dissolved in 40 mL 

toluene, cooled to –100 °C and stirred for 30 min. The reaction mixture was then warmed 
up to room temperature and further stirred for six days. The reaction mixture was filtrated 
and stored at –25 °C for three months from which black blocks of 6 were obtained. Yield: 
~1%. IR (KBr): ῦ cm−1 = νCO: 2053 (vs), 2037 (vs), 1896 (m), 1848 (s). 31P{1H} NMR (161.975 
MHz, C6D6): δ [ppm] = 666.4 (br s, ω1/2 = 114 Hz). EI-MS (70 eV): m/z (%) = 1003.4 (3) [M+], 
947.5 (27) [M+–2 CO], 919.4 (35) [M+–3 CO], 891.4 (21) [M+–4 CO], 863.3 (17) [M+–5 CO], 
835.3 (65) [M+–6 CO], 807.4 (79) [M+–7 CO], 779.4 (54) [M+–8 CO], 751.4 (57) [M+–9 CO], 
723.9 (49) [M+–10 CO], 695.5 (43) [M+–11 CO], 667.4 (59) [M+–12 CO], 639.5 (59) [M+–13 CO], 
611.5 (57) [M+–14 CO], 583.6 (55) [M+–15 CO], 555.4 (65) [M+–16 CO], 527.5 (58) [M+–17 CO], 
499.6 (1) [M+–18 CO], 471.6 (1) [M+–19 CO], 443.6 (3) [M+–20 CO]. 

3.2.5. Synthesis and Characterization of Cluster 7 
A solution of P4 (47 mg, 0.38 mmol) and [Co2(CO)8] (1026 mg, 3.0 mmol) in 40 mL 

toluene was stirred for ten days at room temperature. After removing the solvent under 
reduced pressure, the residue was dissolved in hexane and filtrated. Black blocks of 7 were 
obtained after storage at 8 °C. Yield: 36.0 mg (6%). IR (KBr): ῦ/cm−1 = νCO: 2034 (s br). 31P{1H} 
NMR (161.975 MHz, C6D6): δ = 658.2 (br s, ω1/2 = 205 Hz). EI-MS (70 eV): m/z (%) = 1211.2 
(6) [M+], 1183.2 (23) [M+–CO], 1127.3 (11) [M+–3 CO], 1099.2 (3) [M+–4 CO], 1071.3 (16) [M+–
5 CO], 1043.3 (36) [M+–6 CO], 1015.3 (42) [M+–7 CO], 987.3 (29) [M+–8 CO], 959.3 (24) [M+–
9 CO], 931.4 (23) [M+–10 CO], 903.3 (24) [M+–11 CO], 875.3 (25) [M+–12 CO], 847.4 (25) [M+–
13 CO], 819.4 (26) [M+–14 CO], 791.4 (23) [M+–15 CO], 763.3 (32) [M+–16 CO], 735.4 (27) [M+–
17 CO], 707.4 (23) [M+–18 CO], 679.4 (28) [M+–19 CO], 651.4 (28) [M+–20 CO], 623.4 (100) 
[M+–21 CO]. Elemental analysis, calcd. for Co9P3C21O21 (1211.21 g/mol): C, 20.82. Found C, 
21.06. 

3.2.6. Synthesis and Characterization of Cluster 8 
A solution of P4 (12 mg, 0.1 mmol) and [Co2(CO)8] (205 mg, 0.6 mmol) in 40 mL cold 

hexane at –40 °C was warmed up to room temperature under stirring. After further stir-
ring for two days the reaction mixture was filtrated and stored at –25 °C from which dark 
violet crystals of 8 were obtained. Yield: 67.0 mg (13%). IR (KBr): ῦ/cm−1 = νCO: 2050 (s br), 
2038 (s sh). 31P{1H} NMR (161.975 MHz, C6D6): δ = 667.3 (br s, ω1/2 = 362 Hz). EI-MS (70 eV): 
m/z (%) = 1267.7 (8) [M+–CO], 1239.6 (3) [M+–2 CO], 1211.8 (19) [M+–3 CO], 1183.8 (15) [M+–
4 CO], 1155.8 (2) [M+–5 CO], 1127.8 (16) [M+–6 CO], 1071.1 (18) [M+ –8 CO], 1043.2 (63) [M+–
9 CO], 1015.2 (77) [M+–10 CO], 987.2 (44) [M+–11 CO], 959.2 (40) [M+–12 CO], 931.2 (41) [M+–
13 CO], 903.2 (39) [M+–14 CO], 875.2 (42) [M+–15 CO], 847.2 (38) [M+–16 CO], 819.2 (40) [M+–
17 CO], 791.2 (40) [M+–18 CO], 763.3 (41) [M+–19 CO], 679.3 (2) [M+–22 CO], 651.3 (3) [M+–
23 CO], 623.3 (4) [M+–24 CO]. 

/cm−1 = νCO: 2112 (w), 2089 (w br),
2069 (vs), 2058 (s), 2039 (w), 1986 (m br), 1960 (w), 1932 (w br). 31P{1H} NMR (161.975 MHz,
C6D6): δ [ppm] = 677.5 (br s, ω1/2 = 175 Hz). 13C{1H} NMR (100.613 MHz, C6D6): δ = 197.0
(br s, ω1/2 = 46 Hz, (Co(CO)3)3), 212.0 (d, 2JCP = 18.8 Hz, Fe(CO)3). EI-MS (70 eV): m/z (%)
= 627.7 (22) [M+], 599.8 (20) [M+–CO], 571.8 (39) [M+–2 CO], 543.8 (19) [M+–3 CO], 515.7 (9)
[M+–4 CO], 487.8 (21) [M+–5 CO], 459.8 (100) [M+–6 CO], 431.8 (75) [M+–7 CO], 403.8 (50)
[M+–8 CO], 375.8 (55) [M+–9 CO], 347.8 (50) [M+–10 CO], 319.8 (44) [M+–11 CO], 291.8 (42)
[M+–12 CO], 263.9 (92) [M+–13 CO], 207.9 (36) [M+–13 CO–Fe]. Elemental analysis, calcd.
for Co3PFe(CO)13 (627.64 g/mol): C, 24.87. Found C, 24.96.

3.2.3. Synthesis and Characterization of Cluster 5

Method 1: A solution of [Cr(CO)4(PH3)2] (232 mg, 1 mmol) in 50 mL toluene was
added to a solution of [Co2(CO)8] (1368 mg, 4 mmol) in 50 mL toluene and stirred for
seven days at room temperature. The solvent was then completely removed under re-
duced pressure, and the crude product was dissolved in hexane and filtrated. This filtrate
contained [Co4(CO)12]. The residue in the frit was extracted with dichloromethane and
found to contain the product [Co8(CO)18(µ-CO)4P] (5). The remaining dark red residue
was collected and dissolved in dichloromethane overnight. After filtration and reducing
the solution under reduced pressure up to 30 mL, crystals of 5 were obtained upon storing
at −25 ◦C after two weeks. Yield: 63.7 mg (6%).

Method 2: A stirred solution of P4 (3 mg, 0.025 mmol) and [Co2(CO)8] (274 mg,
0.8 mmol) in 30 mL cold hexane at −40 ◦C was warmed up to room temperature under
stirring. After further stirring for two days, the reaction mixture was filtrated and stored at
room temperature. Crystals of 5 were obtained within two weeks. Yield: 19.0 mg (9%).

3.2.4. Synthesis and Characterization of Cluster 6

P4 (4 mg, 0.03 mmol) and [Co2(CO)8] (274 mg, 0.8 mmol) were dissolved in 40 mL
toluene, cooled to −100 ◦C and stirred for 30 min. The reaction mixture was then warmed
up to room temperature and further stirred for six days. The reaction mixture was filtrated
and stored at −25 ◦C for three months from which black blocks of 6 were obtained. Yield:
~1%. IR (KBr):

Molecules 2024, 29, x FOR PEER REVIEW 12 of 16 

days at room temperature. The solvent was then completely removed under reduced pres-
sure, and the crude product was dissolved in hexane and filtrated. This filtrate contained 
[Co4(CO)12]. The residue in the frit was extracted with dichloromethane and found to con-
tain the product [Co8(CO)18(µ-CO)4P] (5). The remaining dark red residue was collected 
and dissolved in dichloromethane overnight. After filtration and reducing the solution 
under reduced pressure up to 30 mL, crystals of 5 were obtained upon storing at –25 °C 
after two weeks. Yield: 63.7 mg (6%). 

Method 2: A stirred solution of P4 (3 mg, 0.025 mmol) and [Co2(CO)8] (274 mg, 0.8 
mmol) in 30 mL cold hexane at –40 °C was warmed up to room temperature under stirring. 
After further stirring for two days, the reaction mixture was filtrated and stored at room 
temperature. Crystals of 5 were obtained within two weeks. Yield: 19.0 mg (9%). 

3.2.4. Synthesis and Characterization of Cluster 6 
P4 (4 mg, 0.03 mmol) and [Co2(CO)8] (274 mg, 0.8 mmol) were dissolved in 40 mL 

toluene, cooled to –100 °C and stirred for 30 min. The reaction mixture was then warmed 
up to room temperature and further stirred for six days. The reaction mixture was filtrated 
and stored at –25 °C for three months from which black blocks of 6 were obtained. Yield: 
~1%. IR (KBr): ῦ cm−1 = νCO: 2053 (vs), 2037 (vs), 1896 (m), 1848 (s). 31P{1H} NMR (161.975 
MHz, C6D6): δ [ppm] = 666.4 (br s, ω1/2 = 114 Hz). EI-MS (70 eV): m/z (%) = 1003.4 (3) [M+], 
947.5 (27) [M+–2 CO], 919.4 (35) [M+–3 CO], 891.4 (21) [M+–4 CO], 863.3 (17) [M+–5 CO], 
835.3 (65) [M+–6 CO], 807.4 (79) [M+–7 CO], 779.4 (54) [M+–8 CO], 751.4 (57) [M+–9 CO], 
723.9 (49) [M+–10 CO], 695.5 (43) [M+–11 CO], 667.4 (59) [M+–12 CO], 639.5 (59) [M+–13 CO], 
611.5 (57) [M+–14 CO], 583.6 (55) [M+–15 CO], 555.4 (65) [M+–16 CO], 527.5 (58) [M+–17 CO], 
499.6 (1) [M+–18 CO], 471.6 (1) [M+–19 CO], 443.6 (3) [M+–20 CO]. 

3.2.5. Synthesis and Characterization of Cluster 7 
A solution of P4 (47 mg, 0.38 mmol) and [Co2(CO)8] (1026 mg, 3.0 mmol) in 40 mL 

toluene was stirred for ten days at room temperature. After removing the solvent under 
reduced pressure, the residue was dissolved in hexane and filtrated. Black blocks of 7 were 
obtained after storage at 8 °C. Yield: 36.0 mg (6%). IR (KBr): ῦ/cm−1 = νCO: 2034 (s br). 31P{1H} 
NMR (161.975 MHz, C6D6): δ = 658.2 (br s, ω1/2 = 205 Hz). EI-MS (70 eV): m/z (%) = 1211.2 
(6) [M+], 1183.2 (23) [M+–CO], 1127.3 (11) [M+–3 CO], 1099.2 (3) [M+–4 CO], 1071.3 (16) [M+–
5 CO], 1043.3 (36) [M+–6 CO], 1015.3 (42) [M+–7 CO], 987.3 (29) [M+–8 CO], 959.3 (24) [M+–
9 CO], 931.4 (23) [M+–10 CO], 903.3 (24) [M+–11 CO], 875.3 (25) [M+–12 CO], 847.4 (25) [M+–
13 CO], 819.4 (26) [M+–14 CO], 791.4 (23) [M+–15 CO], 763.3 (32) [M+–16 CO], 735.4 (27) [M+–
17 CO], 707.4 (23) [M+–18 CO], 679.4 (28) [M+–19 CO], 651.4 (28) [M+–20 CO], 623.4 (100) 
[M+–21 CO]. Elemental analysis, calcd. for Co9P3C21O21 (1211.21 g/mol): C, 20.82. Found C, 
21.06. 

3.2.6. Synthesis and Characterization of Cluster 8 
A solution of P4 (12 mg, 0.1 mmol) and [Co2(CO)8] (205 mg, 0.6 mmol) in 40 mL cold 

hexane at –40 °C was warmed up to room temperature under stirring. After further stir-
ring for two days the reaction mixture was filtrated and stored at –25 °C from which dark 
violet crystals of 8 were obtained. Yield: 67.0 mg (13%). IR (KBr): ῦ/cm−1 = νCO: 2050 (s br), 
2038 (s sh). 31P{1H} NMR (161.975 MHz, C6D6): δ = 667.3 (br s, ω1/2 = 362 Hz). EI-MS (70 eV): 
m/z (%) = 1267.7 (8) [M+–CO], 1239.6 (3) [M+–2 CO], 1211.8 (19) [M+–3 CO], 1183.8 (15) [M+–
4 CO], 1155.8 (2) [M+–5 CO], 1127.8 (16) [M+–6 CO], 1071.1 (18) [M+ –8 CO], 1043.2 (63) [M+–
9 CO], 1015.2 (77) [M+–10 CO], 987.2 (44) [M+–11 CO], 959.2 (40) [M+–12 CO], 931.2 (41) [M+–
13 CO], 903.2 (39) [M+–14 CO], 875.2 (42) [M+–15 CO], 847.2 (38) [M+–16 CO], 819.2 (40) [M+–
17 CO], 791.2 (40) [M+–18 CO], 763.3 (41) [M+–19 CO], 679.3 (2) [M+–22 CO], 651.3 (3) [M+–
23 CO], 623.3 (4) [M+–24 CO]. 

/cm−1 = νCO: 2053 (vs), 2037 (vs), 1896 (m), 1848 (s). 31P{1H} NMR
(161.975 MHz, C6D6): δ [ppm] = 666.4 (br s, ω1/2 = 114 Hz). EI-MS (70 eV): m/z (%) =
1003.4 (3) [M+], 947.5 (27) [M+–2 CO], 919.4 (35) [M+–3 CO], 891.4 (21) [M+–4 CO], 863.3 (17)
[M+–5 CO], 835.3 (65) [M+–6 CO], 807.4 (79) [M+–7 CO], 779.4 (54) [M+–8 CO], 751.4 (57)
[M+–9 CO], 723.9 (49) [M+–10 CO], 695.5 (43) [M+–11 CO], 667.4 (59) [M+–12 CO], 639.5 (59)
[M+–13 CO], 611.5 (57) [M+–14 CO], 583.6 (55) [M+–15 CO], 555.4 (65) [M+–16 CO], 527.5
(58) [M+–17 CO], 499.6 (1) [M+–18 CO], 471.6 (1) [M+–19 CO], 443.6 (3) [M+–20 CO].

3.2.5. Synthesis and Characterization of Cluster 7

A solution of P4 (47 mg, 0.38 mmol) and [Co2(CO)8] (1026 mg, 3.0 mmol) in 40 mL
toluene was stirred for ten days at room temperature. After removing the solvent under
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reduced pressure, the residue was dissolved in hexane and filtrated. Black blocks of 7 were
obtained after storage at 8 ◦C. Yield: 36.0 mg (6%). IR (KBr):
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days at room temperature. The solvent was then completely removed under reduced pres-
sure, and the crude product was dissolved in hexane and filtrated. This filtrate contained 
[Co4(CO)12]. The residue in the frit was extracted with dichloromethane and found to con-
tain the product [Co8(CO)18(µ-CO)4P] (5). The remaining dark red residue was collected 
and dissolved in dichloromethane overnight. After filtration and reducing the solution 
under reduced pressure up to 30 mL, crystals of 5 were obtained upon storing at –25 °C 
after two weeks. Yield: 63.7 mg (6%). 

Method 2: A stirred solution of P4 (3 mg, 0.025 mmol) and [Co2(CO)8] (274 mg, 0.8 
mmol) in 30 mL cold hexane at –40 °C was warmed up to room temperature under stirring. 
After further stirring for two days, the reaction mixture was filtrated and stored at room 
temperature. Crystals of 5 were obtained within two weeks. Yield: 19.0 mg (9%). 

3.2.4. Synthesis and Characterization of Cluster 6 
P4 (4 mg, 0.03 mmol) and [Co2(CO)8] (274 mg, 0.8 mmol) were dissolved in 40 mL 

toluene, cooled to –100 °C and stirred for 30 min. The reaction mixture was then warmed 
up to room temperature and further stirred for six days. The reaction mixture was filtrated 
and stored at –25 °C for three months from which black blocks of 6 were obtained. Yield: 
~1%. IR (KBr): ῦ cm−1 = νCO: 2053 (vs), 2037 (vs), 1896 (m), 1848 (s). 31P{1H} NMR (161.975 
MHz, C6D6): δ [ppm] = 666.4 (br s, ω1/2 = 114 Hz). EI-MS (70 eV): m/z (%) = 1003.4 (3) [M+], 
947.5 (27) [M+–2 CO], 919.4 (35) [M+–3 CO], 891.4 (21) [M+–4 CO], 863.3 (17) [M+–5 CO], 
835.3 (65) [M+–6 CO], 807.4 (79) [M+–7 CO], 779.4 (54) [M+–8 CO], 751.4 (57) [M+–9 CO], 
723.9 (49) [M+–10 CO], 695.5 (43) [M+–11 CO], 667.4 (59) [M+–12 CO], 639.5 (59) [M+–13 CO], 
611.5 (57) [M+–14 CO], 583.6 (55) [M+–15 CO], 555.4 (65) [M+–16 CO], 527.5 (58) [M+–17 CO], 
499.6 (1) [M+–18 CO], 471.6 (1) [M+–19 CO], 443.6 (3) [M+–20 CO]. 

3.2.5. Synthesis and Characterization of Cluster 7 
A solution of P4 (47 mg, 0.38 mmol) and [Co2(CO)8] (1026 mg, 3.0 mmol) in 40 mL 

toluene was stirred for ten days at room temperature. After removing the solvent under 
reduced pressure, the residue was dissolved in hexane and filtrated. Black blocks of 7 were 
obtained after storage at 8 °C. Yield: 36.0 mg (6%). IR (KBr): ῦ/cm−1 = νCO: 2034 (s br). 31P{1H} 
NMR (161.975 MHz, C6D6): δ = 658.2 (br s, ω1/2 = 205 Hz). EI-MS (70 eV): m/z (%) = 1211.2 
(6) [M+], 1183.2 (23) [M+–CO], 1127.3 (11) [M+–3 CO], 1099.2 (3) [M+–4 CO], 1071.3 (16) [M+–
5 CO], 1043.3 (36) [M+–6 CO], 1015.3 (42) [M+–7 CO], 987.3 (29) [M+–8 CO], 959.3 (24) [M+–
9 CO], 931.4 (23) [M+–10 CO], 903.3 (24) [M+–11 CO], 875.3 (25) [M+–12 CO], 847.4 (25) [M+–
13 CO], 819.4 (26) [M+–14 CO], 791.4 (23) [M+–15 CO], 763.3 (32) [M+–16 CO], 735.4 (27) [M+–
17 CO], 707.4 (23) [M+–18 CO], 679.4 (28) [M+–19 CO], 651.4 (28) [M+–20 CO], 623.4 (100) 
[M+–21 CO]. Elemental analysis, calcd. for Co9P3C21O21 (1211.21 g/mol): C, 20.82. Found C, 
21.06. 

3.2.6. Synthesis and Characterization of Cluster 8 
A solution of P4 (12 mg, 0.1 mmol) and [Co2(CO)8] (205 mg, 0.6 mmol) in 40 mL cold 

hexane at –40 °C was warmed up to room temperature under stirring. After further stir-
ring for two days the reaction mixture was filtrated and stored at –25 °C from which dark 
violet crystals of 8 were obtained. Yield: 67.0 mg (13%). IR (KBr): ῦ/cm−1 = νCO: 2050 (s br), 
2038 (s sh). 31P{1H} NMR (161.975 MHz, C6D6): δ = 667.3 (br s, ω1/2 = 362 Hz). EI-MS (70 eV): 
m/z (%) = 1267.7 (8) [M+–CO], 1239.6 (3) [M+–2 CO], 1211.8 (19) [M+–3 CO], 1183.8 (15) [M+–
4 CO], 1155.8 (2) [M+–5 CO], 1127.8 (16) [M+–6 CO], 1071.1 (18) [M+ –8 CO], 1043.2 (63) [M+–
9 CO], 1015.2 (77) [M+–10 CO], 987.2 (44) [M+–11 CO], 959.2 (40) [M+–12 CO], 931.2 (41) [M+–
13 CO], 903.2 (39) [M+–14 CO], 875.2 (42) [M+–15 CO], 847.2 (38) [M+–16 CO], 819.2 (40) [M+–
17 CO], 791.2 (40) [M+–18 CO], 763.3 (41) [M+–19 CO], 679.3 (2) [M+–22 CO], 651.3 (3) [M+–
23 CO], 623.3 (4) [M+–24 CO]. 

/cm−1 = νCO: 2034 (s br).
31P{1H} NMR (161.975 MHz, C6D6): δ = 658.2 (br s, ω1/2 = 205 Hz). EI-MS (70 eV): m/z (%)
= 1211.2 (6) [M+], 1183.2 (23) [M+–CO], 1127.3 (11) [M+–3 CO], 1099.2 (3) [M+–4 CO], 1071.3
(16) [M+–5 CO], 1043.3 (36) [M+–6 CO], 1015.3 (42) [M+–7 CO], 987.3 (29) [M+–8 CO], 959.3
(24) [M+–9 CO], 931.4 (23) [M+–10 CO], 903.3 (24) [M+–11 CO], 875.3 (25) [M+–12 CO], 847.4
(25) [M+–13 CO], 819.4 (26) [M+–14 CO], 791.4 (23) [M+–15 CO], 763.3 (32) [M+–16 CO],
735.4 (27) [M+–17 CO], 707.4 (23) [M+–18 CO], 679.4 (28) [M+–19 CO], 651.4 (28) [M+–20
CO], 623.4 (100) [M+–21 CO]. Elemental analysis, calcd. for Co9P3C21O21 (1211.21 g/mol):
C, 20.82. Found C, 21.06.

3.2.6. Synthesis and Characterization of Cluster 8

A solution of P4 (12 mg, 0.1 mmol) and [Co2(CO)8] (205 mg, 0.6 mmol) in 40 mL
cold hexane at −40 ◦C was warmed up to room temperature under stirring. After further
stirring for two days the reaction mixture was filtrated and stored at −25 ◦C from which
dark violet crystals of 8 were obtained. Yield: 67.0 mg (13%). IR (KBr):
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days at room temperature. The solvent was then completely removed under reduced pres-
sure, and the crude product was dissolved in hexane and filtrated. This filtrate contained 
[Co4(CO)12]. The residue in the frit was extracted with dichloromethane and found to con-
tain the product [Co8(CO)18(µ-CO)4P] (5). The remaining dark red residue was collected 
and dissolved in dichloromethane overnight. After filtration and reducing the solution 
under reduced pressure up to 30 mL, crystals of 5 were obtained upon storing at –25 °C 
after two weeks. Yield: 63.7 mg (6%). 

Method 2: A stirred solution of P4 (3 mg, 0.025 mmol) and [Co2(CO)8] (274 mg, 0.8 
mmol) in 30 mL cold hexane at –40 °C was warmed up to room temperature under stirring. 
After further stirring for two days, the reaction mixture was filtrated and stored at room 
temperature. Crystals of 5 were obtained within two weeks. Yield: 19.0 mg (9%). 

3.2.4. Synthesis and Characterization of Cluster 6 
P4 (4 mg, 0.03 mmol) and [Co2(CO)8] (274 mg, 0.8 mmol) were dissolved in 40 mL 

toluene, cooled to –100 °C and stirred for 30 min. The reaction mixture was then warmed 
up to room temperature and further stirred for six days. The reaction mixture was filtrated 
and stored at –25 °C for three months from which black blocks of 6 were obtained. Yield: 
~1%. IR (KBr): ῦ cm−1 = νCO: 2053 (vs), 2037 (vs), 1896 (m), 1848 (s). 31P{1H} NMR (161.975 
MHz, C6D6): δ [ppm] = 666.4 (br s, ω1/2 = 114 Hz). EI-MS (70 eV): m/z (%) = 1003.4 (3) [M+], 
947.5 (27) [M+–2 CO], 919.4 (35) [M+–3 CO], 891.4 (21) [M+–4 CO], 863.3 (17) [M+–5 CO], 
835.3 (65) [M+–6 CO], 807.4 (79) [M+–7 CO], 779.4 (54) [M+–8 CO], 751.4 (57) [M+–9 CO], 
723.9 (49) [M+–10 CO], 695.5 (43) [M+–11 CO], 667.4 (59) [M+–12 CO], 639.5 (59) [M+–13 CO], 
611.5 (57) [M+–14 CO], 583.6 (55) [M+–15 CO], 555.4 (65) [M+–16 CO], 527.5 (58) [M+–17 CO], 
499.6 (1) [M+–18 CO], 471.6 (1) [M+–19 CO], 443.6 (3) [M+–20 CO]. 

3.2.5. Synthesis and Characterization of Cluster 7 
A solution of P4 (47 mg, 0.38 mmol) and [Co2(CO)8] (1026 mg, 3.0 mmol) in 40 mL 

toluene was stirred for ten days at room temperature. After removing the solvent under 
reduced pressure, the residue was dissolved in hexane and filtrated. Black blocks of 7 were 
obtained after storage at 8 °C. Yield: 36.0 mg (6%). IR (KBr): ῦ/cm−1 = νCO: 2034 (s br). 31P{1H} 
NMR (161.975 MHz, C6D6): δ = 658.2 (br s, ω1/2 = 205 Hz). EI-MS (70 eV): m/z (%) = 1211.2 
(6) [M+], 1183.2 (23) [M+–CO], 1127.3 (11) [M+–3 CO], 1099.2 (3) [M+–4 CO], 1071.3 (16) [M+–
5 CO], 1043.3 (36) [M+–6 CO], 1015.3 (42) [M+–7 CO], 987.3 (29) [M+–8 CO], 959.3 (24) [M+–
9 CO], 931.4 (23) [M+–10 CO], 903.3 (24) [M+–11 CO], 875.3 (25) [M+–12 CO], 847.4 (25) [M+–
13 CO], 819.4 (26) [M+–14 CO], 791.4 (23) [M+–15 CO], 763.3 (32) [M+–16 CO], 735.4 (27) [M+–
17 CO], 707.4 (23) [M+–18 CO], 679.4 (28) [M+–19 CO], 651.4 (28) [M+–20 CO], 623.4 (100) 
[M+–21 CO]. Elemental analysis, calcd. for Co9P3C21O21 (1211.21 g/mol): C, 20.82. Found C, 
21.06. 

3.2.6. Synthesis and Characterization of Cluster 8 
A solution of P4 (12 mg, 0.1 mmol) and [Co2(CO)8] (205 mg, 0.6 mmol) in 40 mL cold 

hexane at –40 °C was warmed up to room temperature under stirring. After further stir-
ring for two days the reaction mixture was filtrated and stored at –25 °C from which dark 
violet crystals of 8 were obtained. Yield: 67.0 mg (13%). IR (KBr): ῦ/cm−1 = νCO: 2050 (s br), 
2038 (s sh). 31P{1H} NMR (161.975 MHz, C6D6): δ = 667.3 (br s, ω1/2 = 362 Hz). EI-MS (70 eV): 
m/z (%) = 1267.7 (8) [M+–CO], 1239.6 (3) [M+–2 CO], 1211.8 (19) [M+–3 CO], 1183.8 (15) [M+–
4 CO], 1155.8 (2) [M+–5 CO], 1127.8 (16) [M+–6 CO], 1071.1 (18) [M+ –8 CO], 1043.2 (63) [M+–
9 CO], 1015.2 (77) [M+–10 CO], 987.2 (44) [M+–11 CO], 959.2 (40) [M+–12 CO], 931.2 (41) [M+–
13 CO], 903.2 (39) [M+–14 CO], 875.2 (42) [M+–15 CO], 847.2 (38) [M+–16 CO], 819.2 (40) [M+–
17 CO], 791.2 (40) [M+–18 CO], 763.3 (41) [M+–19 CO], 679.3 (2) [M+–22 CO], 651.3 (3) [M+–
23 CO], 623.3 (4) [M+–24 CO]. 

/cm−1 = νCO:
2050 (s br), 2038 (s sh). 31P{1H} NMR (161.975 MHz, C6D6): δ = 667.3 (br s, ω1/2 = 362 Hz).
EI-MS (70 eV): m/z (%) = 1267.7 (8) [M+–CO], 1239.6 (3) [M+–2 CO], 1211.8 (19) [M+–3 CO],
1183.8 (15) [M+–4 CO], 1155.8 (2) [M+–5 CO], 1127.8 (16) [M+–6 CO], 1071.1 (18) [M+ –8 CO],
1043.2 (63) [M+–9 CO], 1015.2 (77) [M+–10 CO], 987.2 (44) [M+–11 CO], 959.2 (40) [M+–12
CO], 931.2 (41) [M+–13 CO], 903.2 (39) [M+–14 CO], 875.2 (42) [M+–15 CO], 847.2 (38) [M+–16
CO], 819.2 (40) [M+–17 CO], 791.2 (40) [M+–18 CO], 763.3 (41) [M+–19 CO], 679.3 (2) [M+–22
CO], 651.3 (3) [M+–23 CO], 623.3 (4) [M+–24 CO].

3.2.7. Synthesis and Characterization of Cluster 9

A solution of [Co2(CO)8] (274 mg, 0.8 mmol) in 25 mL toluene was slowly layered with
a solution of P4 (20 mg, 0.16 mmol) in 25 mL hexane. Within five days, a few black crystals
of 10 were obtained. The complete crystallization needed a further five weeks. Yield:
175 mg (75%). IR (KBr):
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days at room temperature. The solvent was then completely removed under reduced pres-
sure, and the crude product was dissolved in hexane and filtrated. This filtrate contained 
[Co4(CO)12]. The residue in the frit was extracted with dichloromethane and found to con-
tain the product [Co8(CO)18(µ-CO)4P] (5). The remaining dark red residue was collected 
and dissolved in dichloromethane overnight. After filtration and reducing the solution 
under reduced pressure up to 30 mL, crystals of 5 were obtained upon storing at –25 °C 
after two weeks. Yield: 63.7 mg (6%). 

Method 2: A stirred solution of P4 (3 mg, 0.025 mmol) and [Co2(CO)8] (274 mg, 0.8 
mmol) in 30 mL cold hexane at –40 °C was warmed up to room temperature under stirring. 
After further stirring for two days, the reaction mixture was filtrated and stored at room 
temperature. Crystals of 5 were obtained within two weeks. Yield: 19.0 mg (9%). 

3.2.4. Synthesis and Characterization of Cluster 6 
P4 (4 mg, 0.03 mmol) and [Co2(CO)8] (274 mg, 0.8 mmol) were dissolved in 40 mL 

toluene, cooled to –100 °C and stirred for 30 min. The reaction mixture was then warmed 
up to room temperature and further stirred for six days. The reaction mixture was filtrated 
and stored at –25 °C for three months from which black blocks of 6 were obtained. Yield: 
~1%. IR (KBr): ῦ cm−1 = νCO: 2053 (vs), 2037 (vs), 1896 (m), 1848 (s). 31P{1H} NMR (161.975 
MHz, C6D6): δ [ppm] = 666.4 (br s, ω1/2 = 114 Hz). EI-MS (70 eV): m/z (%) = 1003.4 (3) [M+], 
947.5 (27) [M+–2 CO], 919.4 (35) [M+–3 CO], 891.4 (21) [M+–4 CO], 863.3 (17) [M+–5 CO], 
835.3 (65) [M+–6 CO], 807.4 (79) [M+–7 CO], 779.4 (54) [M+–8 CO], 751.4 (57) [M+–9 CO], 
723.9 (49) [M+–10 CO], 695.5 (43) [M+–11 CO], 667.4 (59) [M+–12 CO], 639.5 (59) [M+–13 CO], 
611.5 (57) [M+–14 CO], 583.6 (55) [M+–15 CO], 555.4 (65) [M+–16 CO], 527.5 (58) [M+–17 CO], 
499.6 (1) [M+–18 CO], 471.6 (1) [M+–19 CO], 443.6 (3) [M+–20 CO]. 

3.2.5. Synthesis and Characterization of Cluster 7 
A solution of P4 (47 mg, 0.38 mmol) and [Co2(CO)8] (1026 mg, 3.0 mmol) in 40 mL 

toluene was stirred for ten days at room temperature. After removing the solvent under 
reduced pressure, the residue was dissolved in hexane and filtrated. Black blocks of 7 were 
obtained after storage at 8 °C. Yield: 36.0 mg (6%). IR (KBr): ῦ/cm−1 = νCO: 2034 (s br). 31P{1H} 
NMR (161.975 MHz, C6D6): δ = 658.2 (br s, ω1/2 = 205 Hz). EI-MS (70 eV): m/z (%) = 1211.2 
(6) [M+], 1183.2 (23) [M+–CO], 1127.3 (11) [M+–3 CO], 1099.2 (3) [M+–4 CO], 1071.3 (16) [M+–
5 CO], 1043.3 (36) [M+–6 CO], 1015.3 (42) [M+–7 CO], 987.3 (29) [M+–8 CO], 959.3 (24) [M+–
9 CO], 931.4 (23) [M+–10 CO], 903.3 (24) [M+–11 CO], 875.3 (25) [M+–12 CO], 847.4 (25) [M+–
13 CO], 819.4 (26) [M+–14 CO], 791.4 (23) [M+–15 CO], 763.3 (32) [M+–16 CO], 735.4 (27) [M+–
17 CO], 707.4 (23) [M+–18 CO], 679.4 (28) [M+–19 CO], 651.4 (28) [M+–20 CO], 623.4 (100) 
[M+–21 CO]. Elemental analysis, calcd. for Co9P3C21O21 (1211.21 g/mol): C, 20.82. Found C, 
21.06. 

3.2.6. Synthesis and Characterization of Cluster 8 
A solution of P4 (12 mg, 0.1 mmol) and [Co2(CO)8] (205 mg, 0.6 mmol) in 40 mL cold 

hexane at –40 °C was warmed up to room temperature under stirring. After further stir-
ring for two days the reaction mixture was filtrated and stored at –25 °C from which dark 
violet crystals of 8 were obtained. Yield: 67.0 mg (13%). IR (KBr): ῦ/cm−1 = νCO: 2050 (s br), 
2038 (s sh). 31P{1H} NMR (161.975 MHz, C6D6): δ = 667.3 (br s, ω1/2 = 362 Hz). EI-MS (70 eV): 
m/z (%) = 1267.7 (8) [M+–CO], 1239.6 (3) [M+–2 CO], 1211.8 (19) [M+–3 CO], 1183.8 (15) [M+–
4 CO], 1155.8 (2) [M+–5 CO], 1127.8 (16) [M+–6 CO], 1071.1 (18) [M+ –8 CO], 1043.2 (63) [M+–
9 CO], 1015.2 (77) [M+–10 CO], 987.2 (44) [M+–11 CO], 959.2 (40) [M+–12 CO], 931.2 (41) [M+–
13 CO], 903.2 (39) [M+–14 CO], 875.2 (42) [M+–15 CO], 847.2 (38) [M+–16 CO], 819.2 (40) [M+–
17 CO], 791.2 (40) [M+–18 CO], 763.3 (41) [M+–19 CO], 679.3 (2) [M+–22 CO], 651.3 (3) [M+–
23 CO], 623.3 (4) [M+–24 CO]. 

/cm−1 = νCO: 2110 (vw), 2064 (s sh), 2054 (s sh), 2043 (vs br), 2032
(s sh), 2025 (s sh), 2001 (m sh), 1958 (w sh). 31P{1H} NMR (161.975 MHz, C6D6): δ = 684.0
(br s, ω1/2 = 2768 Hz). Elemental analysis, calcd. for Co10P4C26O26 (1441.44 g/mol): C,
21.66. Found C, 21.64.

3.2.8. Synthesis and Characterization of Cluster 10

A solution of P4 (25 mg, 0.2 mmol) in 20 mL toluene was added to a solution of
[Co2(CO)8] (137 mg, 0.4 mmol) in 20 mL toluene and stirred for two days at room temper-
ature. On days three and four, a little vacuum was applied over the reaction mixture to
remove the evolved CO from the reaction atmosphere, and the solution mixture was stirred
for two more days. The reaction mixture was then filtrated and stored at −25 ◦C. After six
months, a few crystals of 9 and 10 were obtained. Yield: ~1%. IR (KBr):
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days at room temperature. The solvent was then completely removed under reduced pres-
sure, and the crude product was dissolved in hexane and filtrated. This filtrate contained 
[Co4(CO)12]. The residue in the frit was extracted with dichloromethane and found to con-
tain the product [Co8(CO)18(µ-CO)4P] (5). The remaining dark red residue was collected 
and dissolved in dichloromethane overnight. After filtration and reducing the solution 
under reduced pressure up to 30 mL, crystals of 5 were obtained upon storing at –25 °C 
after two weeks. Yield: 63.7 mg (6%). 

Method 2: A stirred solution of P4 (3 mg, 0.025 mmol) and [Co2(CO)8] (274 mg, 0.8 
mmol) in 30 mL cold hexane at –40 °C was warmed up to room temperature under stirring. 
After further stirring for two days, the reaction mixture was filtrated and stored at room 
temperature. Crystals of 5 were obtained within two weeks. Yield: 19.0 mg (9%). 

3.2.4. Synthesis and Characterization of Cluster 6 
P4 (4 mg, 0.03 mmol) and [Co2(CO)8] (274 mg, 0.8 mmol) were dissolved in 40 mL 

toluene, cooled to –100 °C and stirred for 30 min. The reaction mixture was then warmed 
up to room temperature and further stirred for six days. The reaction mixture was filtrated 
and stored at –25 °C for three months from which black blocks of 6 were obtained. Yield: 
~1%. IR (KBr): ῦ cm−1 = νCO: 2053 (vs), 2037 (vs), 1896 (m), 1848 (s). 31P{1H} NMR (161.975 
MHz, C6D6): δ [ppm] = 666.4 (br s, ω1/2 = 114 Hz). EI-MS (70 eV): m/z (%) = 1003.4 (3) [M+], 
947.5 (27) [M+–2 CO], 919.4 (35) [M+–3 CO], 891.4 (21) [M+–4 CO], 863.3 (17) [M+–5 CO], 
835.3 (65) [M+–6 CO], 807.4 (79) [M+–7 CO], 779.4 (54) [M+–8 CO], 751.4 (57) [M+–9 CO], 
723.9 (49) [M+–10 CO], 695.5 (43) [M+–11 CO], 667.4 (59) [M+–12 CO], 639.5 (59) [M+–13 CO], 
611.5 (57) [M+–14 CO], 583.6 (55) [M+–15 CO], 555.4 (65) [M+–16 CO], 527.5 (58) [M+–17 CO], 
499.6 (1) [M+–18 CO], 471.6 (1) [M+–19 CO], 443.6 (3) [M+–20 CO]. 

3.2.5. Synthesis and Characterization of Cluster 7 
A solution of P4 (47 mg, 0.38 mmol) and [Co2(CO)8] (1026 mg, 3.0 mmol) in 40 mL 

toluene was stirred for ten days at room temperature. After removing the solvent under 
reduced pressure, the residue was dissolved in hexane and filtrated. Black blocks of 7 were 
obtained after storage at 8 °C. Yield: 36.0 mg (6%). IR (KBr): ῦ/cm−1 = νCO: 2034 (s br). 31P{1H} 
NMR (161.975 MHz, C6D6): δ = 658.2 (br s, ω1/2 = 205 Hz). EI-MS (70 eV): m/z (%) = 1211.2 
(6) [M+], 1183.2 (23) [M+–CO], 1127.3 (11) [M+–3 CO], 1099.2 (3) [M+–4 CO], 1071.3 (16) [M+–
5 CO], 1043.3 (36) [M+–6 CO], 1015.3 (42) [M+–7 CO], 987.3 (29) [M+–8 CO], 959.3 (24) [M+–
9 CO], 931.4 (23) [M+–10 CO], 903.3 (24) [M+–11 CO], 875.3 (25) [M+–12 CO], 847.4 (25) [M+–
13 CO], 819.4 (26) [M+–14 CO], 791.4 (23) [M+–15 CO], 763.3 (32) [M+–16 CO], 735.4 (27) [M+–
17 CO], 707.4 (23) [M+–18 CO], 679.4 (28) [M+–19 CO], 651.4 (28) [M+–20 CO], 623.4 (100) 
[M+–21 CO]. Elemental analysis, calcd. for Co9P3C21O21 (1211.21 g/mol): C, 20.82. Found C, 
21.06. 

3.2.6. Synthesis and Characterization of Cluster 8 
A solution of P4 (12 mg, 0.1 mmol) and [Co2(CO)8] (205 mg, 0.6 mmol) in 40 mL cold 

hexane at –40 °C was warmed up to room temperature under stirring. After further stir-
ring for two days the reaction mixture was filtrated and stored at –25 °C from which dark 
violet crystals of 8 were obtained. Yield: 67.0 mg (13%). IR (KBr): ῦ/cm−1 = νCO: 2050 (s br), 
2038 (s sh). 31P{1H} NMR (161.975 MHz, C6D6): δ = 667.3 (br s, ω1/2 = 362 Hz). EI-MS (70 eV): 
m/z (%) = 1267.7 (8) [M+–CO], 1239.6 (3) [M+–2 CO], 1211.8 (19) [M+–3 CO], 1183.8 (15) [M+–
4 CO], 1155.8 (2) [M+–5 CO], 1127.8 (16) [M+–6 CO], 1071.1 (18) [M+ –8 CO], 1043.2 (63) [M+–
9 CO], 1015.2 (77) [M+–10 CO], 987.2 (44) [M+–11 CO], 959.2 (40) [M+–12 CO], 931.2 (41) [M+–
13 CO], 903.2 (39) [M+–14 CO], 875.2 (42) [M+–15 CO], 847.2 (38) [M+–16 CO], 819.2 (40) [M+–
17 CO], 791.2 (40) [M+–18 CO], 763.3 (41) [M+–19 CO], 679.3 (2) [M+–22 CO], 651.3 (3) [M+–
23 CO], 623.3 (4) [M+–24 CO]. 

/cm−1 = νCO:
2080 (m sh), 2060 (vs), 2039 (s sh), 1994 (m).

3.2.9. Synthesis and Characterization of Cluster 11

Method 1: A freshly prepared solution of As4 (17 mg, 55 µmol, 3.67 mmol L−1) in
toluene was added to a solution of [Co2(CO)8] (274 mg, 0.8 mmol) in 30 mL toluene under
light exclusion and stirred for four days at room temperature. The reaction mixture was
filtrated and concentrated to 25 mL under reduced pressure. The mixture was then stored at
−25 ◦C from which black blocks of 11 were obtained within three weeks. Yield 24 mg (39%).

Method 2: As(SiMe3)3 (0.03 mL, 0.1 mmol) was added to a solution of [Co2(CO)8]
(137 mg, 0.4 mmol) in hexane and stirred for two days at room temperature. The dark
red solution was filtrated and stored at −25 ◦C. After one month, black rods of 11 were
obtained. Yield: ~1%. IR (KBr):
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days at room temperature. The solvent was then completely removed under reduced pres-
sure, and the crude product was dissolved in hexane and filtrated. This filtrate contained 
[Co4(CO)12]. The residue in the frit was extracted with dichloromethane and found to con-
tain the product [Co8(CO)18(µ-CO)4P] (5). The remaining dark red residue was collected 
and dissolved in dichloromethane overnight. After filtration and reducing the solution 
under reduced pressure up to 30 mL, crystals of 5 were obtained upon storing at –25 °C 
after two weeks. Yield: 63.7 mg (6%). 

Method 2: A stirred solution of P4 (3 mg, 0.025 mmol) and [Co2(CO)8] (274 mg, 0.8 
mmol) in 30 mL cold hexane at –40 °C was warmed up to room temperature under stirring. 
After further stirring for two days, the reaction mixture was filtrated and stored at room 
temperature. Crystals of 5 were obtained within two weeks. Yield: 19.0 mg (9%). 

3.2.4. Synthesis and Characterization of Cluster 6 
P4 (4 mg, 0.03 mmol) and [Co2(CO)8] (274 mg, 0.8 mmol) were dissolved in 40 mL 

toluene, cooled to –100 °C and stirred for 30 min. The reaction mixture was then warmed 
up to room temperature and further stirred for six days. The reaction mixture was filtrated 
and stored at –25 °C for three months from which black blocks of 6 were obtained. Yield: 
~1%. IR (KBr): ῦ cm−1 = νCO: 2053 (vs), 2037 (vs), 1896 (m), 1848 (s). 31P{1H} NMR (161.975 
MHz, C6D6): δ [ppm] = 666.4 (br s, ω1/2 = 114 Hz). EI-MS (70 eV): m/z (%) = 1003.4 (3) [M+], 
947.5 (27) [M+–2 CO], 919.4 (35) [M+–3 CO], 891.4 (21) [M+–4 CO], 863.3 (17) [M+–5 CO], 
835.3 (65) [M+–6 CO], 807.4 (79) [M+–7 CO], 779.4 (54) [M+–8 CO], 751.4 (57) [M+–9 CO], 
723.9 (49) [M+–10 CO], 695.5 (43) [M+–11 CO], 667.4 (59) [M+–12 CO], 639.5 (59) [M+–13 CO], 
611.5 (57) [M+–14 CO], 583.6 (55) [M+–15 CO], 555.4 (65) [M+–16 CO], 527.5 (58) [M+–17 CO], 
499.6 (1) [M+–18 CO], 471.6 (1) [M+–19 CO], 443.6 (3) [M+–20 CO]. 

3.2.5. Synthesis and Characterization of Cluster 7 
A solution of P4 (47 mg, 0.38 mmol) and [Co2(CO)8] (1026 mg, 3.0 mmol) in 40 mL 

toluene was stirred for ten days at room temperature. After removing the solvent under 
reduced pressure, the residue was dissolved in hexane and filtrated. Black blocks of 7 were 
obtained after storage at 8 °C. Yield: 36.0 mg (6%). IR (KBr): ῦ/cm−1 = νCO: 2034 (s br). 31P{1H} 
NMR (161.975 MHz, C6D6): δ = 658.2 (br s, ω1/2 = 205 Hz). EI-MS (70 eV): m/z (%) = 1211.2 
(6) [M+], 1183.2 (23) [M+–CO], 1127.3 (11) [M+–3 CO], 1099.2 (3) [M+–4 CO], 1071.3 (16) [M+–
5 CO], 1043.3 (36) [M+–6 CO], 1015.3 (42) [M+–7 CO], 987.3 (29) [M+–8 CO], 959.3 (24) [M+–
9 CO], 931.4 (23) [M+–10 CO], 903.3 (24) [M+–11 CO], 875.3 (25) [M+–12 CO], 847.4 (25) [M+–
13 CO], 819.4 (26) [M+–14 CO], 791.4 (23) [M+–15 CO], 763.3 (32) [M+–16 CO], 735.4 (27) [M+–
17 CO], 707.4 (23) [M+–18 CO], 679.4 (28) [M+–19 CO], 651.4 (28) [M+–20 CO], 623.4 (100) 
[M+–21 CO]. Elemental analysis, calcd. for Co9P3C21O21 (1211.21 g/mol): C, 20.82. Found C, 
21.06. 

3.2.6. Synthesis and Characterization of Cluster 8 
A solution of P4 (12 mg, 0.1 mmol) and [Co2(CO)8] (205 mg, 0.6 mmol) in 40 mL cold 

hexane at –40 °C was warmed up to room temperature under stirring. After further stir-
ring for two days the reaction mixture was filtrated and stored at –25 °C from which dark 
violet crystals of 8 were obtained. Yield: 67.0 mg (13%). IR (KBr): ῦ/cm−1 = νCO: 2050 (s br), 
2038 (s sh). 31P{1H} NMR (161.975 MHz, C6D6): δ = 667.3 (br s, ω1/2 = 362 Hz). EI-MS (70 eV): 
m/z (%) = 1267.7 (8) [M+–CO], 1239.6 (3) [M+–2 CO], 1211.8 (19) [M+–3 CO], 1183.8 (15) [M+–
4 CO], 1155.8 (2) [M+–5 CO], 1127.8 (16) [M+–6 CO], 1071.1 (18) [M+ –8 CO], 1043.2 (63) [M+–
9 CO], 1015.2 (77) [M+–10 CO], 987.2 (44) [M+–11 CO], 959.2 (40) [M+–12 CO], 931.2 (41) [M+–
13 CO], 903.2 (39) [M+–14 CO], 875.2 (42) [M+–15 CO], 847.2 (38) [M+–16 CO], 819.2 (40) [M+–
17 CO], 791.2 (40) [M+–18 CO], 763.3 (41) [M+–19 CO], 679.3 (2) [M+–22 CO], 651.3 (3) [M+–
23 CO], 623.3 (4) [M+–24 CO]. 

/cm−1 = νCO: 2089 (s), 2070 (vs), 2026 (vs), 2055 (s sh),
2008 (s). EI-MS (70 eV): m/z (%) = 1427.1 (7) [M+], 1399.2 (35) [M+–CO], 1343.2 (11) [M+–3
CO], 1315.3 (17) [M+–4 CO], 1287.4 (3) [M+–5 CO], 1259.4 (12) [M+–6 CO], 1231.4 (47) [M+–7
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CO], 1203.4 (100) [M+–8 CO], 1175.4 (80) [M+–9 CO], 1147.5 (57) [M+–10 CO], 1119.4 (74)
[M+–11 CO], 1063.4 (76) [M+–13 CO], 1035.0 (23) [M+–14 CO], 1007.0 (23) [M+–15 CO], 979.0
(24) [M+–16 CO], 951.1 (28) [M+–17 CO], 923.0 (21) [M+–18 CO], 895.1 (21) [M+–19 CO],
867.1 (21) [M+–20 CO], 839.2 (21) [M+–21 CO], 811.1 (22) [M+–22 CO], 783.2 (21) [M+–23
CO], 755.2 (80) [M+–24 CO]. Elemental analysis, calcd. for Co9As3C24O214 (1427.04 g/mol):
C, 20.19. Found C, 20.30.

3.2.10. Synthesis and Characterization of Cluster 12

A solution of As(SiMe3)3 (0.03 mL, 0.1 mmol) and [Co2(CO)8] (137 mg, 0.4 mmol) in
20 mL hexane was stirred for two days at room temperature. The solution was filtered and
stored at −25 ◦C from which black rods of 12 were isolated besides crystals of 11, which
could be manually separated from each other in a glove box. Yield: ~1%. EI-MS (70 eV):
m/z (%) = 1047.4 (14) [M+], 991.3 (61) [M+–2 CO], 963.4 (20) [M+–3 CO], 935.3 (19) [M+–4
CO], 907.4 (20) [M+–5 CO], 879.4 (60) [M+–6 CO], 851.4 (72) [M+–7 CO], 823.4 (86) [M+–8
CO], 795.5 (56) [M+–9 CO], 767.5 (60) [M+–10 CO], 739.6 (70) [M+–11 CO], 711.5 (72) [M+–12
CO], 683.6 (64) [M+–13 CO], 655.5 (4) [M+–14 CO], 627.6 (4) [M+–15 CO], 599.6 (5) [M+–16
CO], 543.8 (16) [M+–18 CO], 515.8 (8) [M+–19 CO], 487.6 (14) [M+–20 CO].

3.2.11. Synthesis and Characterization of Cluster A

The cluster 9 (100 mg, 0.07 mmol) was dissolved in 20 mL toluene and refluxed for
three hours. The suspension was filtrated and stored at −25 ◦C. After one month, black
crystals of A were isolated. Yield: 20 mg (21.7%). IR (KBr):
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days at room temperature. The solvent was then completely removed under reduced pres-
sure, and the crude product was dissolved in hexane and filtrated. This filtrate contained 
[Co4(CO)12]. The residue in the frit was extracted with dichloromethane and found to con-
tain the product [Co8(CO)18(µ-CO)4P] (5). The remaining dark red residue was collected 
and dissolved in dichloromethane overnight. After filtration and reducing the solution 
under reduced pressure up to 30 mL, crystals of 5 were obtained upon storing at –25 °C 
after two weeks. Yield: 63.7 mg (6%). 

Method 2: A stirred solution of P4 (3 mg, 0.025 mmol) and [Co2(CO)8] (274 mg, 0.8 
mmol) in 30 mL cold hexane at –40 °C was warmed up to room temperature under stirring. 
After further stirring for two days, the reaction mixture was filtrated and stored at room 
temperature. Crystals of 5 were obtained within two weeks. Yield: 19.0 mg (9%). 

3.2.4. Synthesis and Characterization of Cluster 6 
P4 (4 mg, 0.03 mmol) and [Co2(CO)8] (274 mg, 0.8 mmol) were dissolved in 40 mL 

toluene, cooled to –100 °C and stirred for 30 min. The reaction mixture was then warmed 
up to room temperature and further stirred for six days. The reaction mixture was filtrated 
and stored at –25 °C for three months from which black blocks of 6 were obtained. Yield: 
~1%. IR (KBr): ῦ cm−1 = νCO: 2053 (vs), 2037 (vs), 1896 (m), 1848 (s). 31P{1H} NMR (161.975 
MHz, C6D6): δ [ppm] = 666.4 (br s, ω1/2 = 114 Hz). EI-MS (70 eV): m/z (%) = 1003.4 (3) [M+], 
947.5 (27) [M+–2 CO], 919.4 (35) [M+–3 CO], 891.4 (21) [M+–4 CO], 863.3 (17) [M+–5 CO], 
835.3 (65) [M+–6 CO], 807.4 (79) [M+–7 CO], 779.4 (54) [M+–8 CO], 751.4 (57) [M+–9 CO], 
723.9 (49) [M+–10 CO], 695.5 (43) [M+–11 CO], 667.4 (59) [M+–12 CO], 639.5 (59) [M+–13 CO], 
611.5 (57) [M+–14 CO], 583.6 (55) [M+–15 CO], 555.4 (65) [M+–16 CO], 527.5 (58) [M+–17 CO], 
499.6 (1) [M+–18 CO], 471.6 (1) [M+–19 CO], 443.6 (3) [M+–20 CO]. 

3.2.5. Synthesis and Characterization of Cluster 7 
A solution of P4 (47 mg, 0.38 mmol) and [Co2(CO)8] (1026 mg, 3.0 mmol) in 40 mL 

toluene was stirred for ten days at room temperature. After removing the solvent under 
reduced pressure, the residue was dissolved in hexane and filtrated. Black blocks of 7 were 
obtained after storage at 8 °C. Yield: 36.0 mg (6%). IR (KBr): ῦ/cm−1 = νCO: 2034 (s br). 31P{1H} 
NMR (161.975 MHz, C6D6): δ = 658.2 (br s, ω1/2 = 205 Hz). EI-MS (70 eV): m/z (%) = 1211.2 
(6) [M+], 1183.2 (23) [M+–CO], 1127.3 (11) [M+–3 CO], 1099.2 (3) [M+–4 CO], 1071.3 (16) [M+–
5 CO], 1043.3 (36) [M+–6 CO], 1015.3 (42) [M+–7 CO], 987.3 (29) [M+–8 CO], 959.3 (24) [M+–
9 CO], 931.4 (23) [M+–10 CO], 903.3 (24) [M+–11 CO], 875.3 (25) [M+–12 CO], 847.4 (25) [M+–
13 CO], 819.4 (26) [M+–14 CO], 791.4 (23) [M+–15 CO], 763.3 (32) [M+–16 CO], 735.4 (27) [M+–
17 CO], 707.4 (23) [M+–18 CO], 679.4 (28) [M+–19 CO], 651.4 (28) [M+–20 CO], 623.4 (100) 
[M+–21 CO]. Elemental analysis, calcd. for Co9P3C21O21 (1211.21 g/mol): C, 20.82. Found C, 
21.06. 

3.2.6. Synthesis and Characterization of Cluster 8 
A solution of P4 (12 mg, 0.1 mmol) and [Co2(CO)8] (205 mg, 0.6 mmol) in 40 mL cold 

hexane at –40 °C was warmed up to room temperature under stirring. After further stir-
ring for two days the reaction mixture was filtrated and stored at –25 °C from which dark 
violet crystals of 8 were obtained. Yield: 67.0 mg (13%). IR (KBr): ῦ/cm−1 = νCO: 2050 (s br), 
2038 (s sh). 31P{1H} NMR (161.975 MHz, C6D6): δ = 667.3 (br s, ω1/2 = 362 Hz). EI-MS (70 eV): 
m/z (%) = 1267.7 (8) [M+–CO], 1239.6 (3) [M+–2 CO], 1211.8 (19) [M+–3 CO], 1183.8 (15) [M+–
4 CO], 1155.8 (2) [M+–5 CO], 1127.8 (16) [M+–6 CO], 1071.1 (18) [M+ –8 CO], 1043.2 (63) [M+–
9 CO], 1015.2 (77) [M+–10 CO], 987.2 (44) [M+–11 CO], 959.2 (40) [M+–12 CO], 931.2 (41) [M+–
13 CO], 903.2 (39) [M+–14 CO], 875.2 (42) [M+–15 CO], 847.2 (38) [M+–16 CO], 819.2 (40) [M+–
17 CO], 791.2 (40) [M+–18 CO], 763.3 (41) [M+–19 CO], 679.3 (2) [M+–22 CO], 651.3 (3) [M+–
23 CO], 623.3 (4) [M+–24 CO]. 

/cm−1 = νCO: 2108 (m),
2088 (vs), 2052 (vs), 2033 (vs), 2023 (vs), 2000 (vs), 1991 (s), 1979 (vs), 1966 (vs), 1826 (m),
1800 (s). 31P{1H} NMR (161.975 MHz, C6D6): δ [ppm] = 474.6 (br s, ω1/2 = 738 Hz). EI-MS
(70 eV): m/z (%) = 1065.3 (26) [M+], 1037.2 (27) [M+–CO], 1009.2 (9) [M+–2 CO], 981.2 (5)
[M+–3 CO], 953.2 (25) [M+–4 CO], 925.2 (63) [M+–5 CO], 897.4 (57) [M+–6 CO], 869.4 (50)
[M+–7 CO], 841.4 (40) [M+–8 CO], 813.4 (57) [M+–9 CO], 785.4 (36) [M+–10 CO], 757.4 (40)
[M+–11 CO], 729.5 (38) [M+–12 CO], 701.5 (45) [M+–13 CO], 673.5 (40) [M+–14 CO], 645.5
(46) [M+–15 CO], 617.6 (48) [M+–16 CO], 589.6 (33) [M+–17 CO], 561.5 (23) [M+–18 CO],
533.6 (100) [M+–19 CO]. Elemental analysis, calcd. for Co8P2C19O19 (1065.32 g/mol): C,
21.42. Found C, 21.30.

4. Conclusions

In the present study, we have demonstrated the high potential of [Co2(CO)8] to form
cobalt clusters embedding P and As atoms in their core upon its reaction with various
P and As sources, such as white phosphorus and yellow arsenic. Accordingly, a large
number of novel, as well as reported, clusters were formed depending on the reaction
conditions involved. Those include stoichiometry of the reactants, temperature, reaction
time, method of crystallization, and solvent. The formed clusters are surrounded by
carbonyl ligands. However, EI mass spectra reveal the successive loss of those CO ligands
and the possibility of isolating the substituent-free metal-P or metal-As cluster cores. Our
current efforts in this field focus on enlarging the family of these valuable candidates further
and investigating their potential as single-source precursors for the synthesis of CoxPy or
CoxAsy nanoparticles with varied metal-to-main group element ratios.
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Abstract: The discovery that cyclic (ArO)2PF can support Rh-catalysts for hydroformylation with sig-
nificant advantages in tuning regioselectivity transformed the study of metal complexes of monofluo-
rophos ligands from one of primarily academic interest to one with potentially important applications
in catalysis. In this review, the syntheses of monofluorophosphites, (RO)2PF, and monofluorophos-
phines, R2PF, are discussed and the factors that control the kinetic stability of these ligands to
hydrolysis and disproportionation are set out. A survey of the coordination chemistry of these two
classes of monofluorophos ligands with d-block metals is presented, emphasising the bonding of the
fluorophos to d-block metals, predominantly in low oxidation states. The application of monoflu-
orophos ligands in homogeneous catalysis (especially hydroformylation and hydrocyanation) is
discussed, and it is argued that there is great potential for monofluorophos complexes in future
catalytic applications.

Keywords: fluorophosphites; fluorophosphines; coordination chemistry; homogeneous catalysis

1. Introduction

Phosphorus ligands containing P–C, P–N, and P–O bonds are ubiquitous in homo-
geneous catalysis. By contrast, fluorophos ligands (those containing a P–F bond) have
attracted relatively little attention in catalysis, despite the extensive fluorophos coordination
chemistry of late transition metals that has been developed and the industrial interest in
the application of monofluorophosphite L1 (Figure 1) in Rh-catalysed hydroformylation
dating back to 1998 [1]. In other contexts, L1 (commercial name: Ethanox 398) has been
employed as an antioxidant [2] and as a flame retardant [3].

The extreme electronegativity of fluorine means that it can withdraw electron density
from any atom it is bonded to, contributing to its reputation as the Tyrannosaurus Rex of
chemistry [4]. It should be noted that the electron-withdrawing power of F is a σ-inductive
effect and, in some cases, this is offset by an electron-donating π-resonance effect (see
later) [5]. This property, combined with the diminutive size of P–F (only P–H is smaller),
makes the steric and electronic properties of an F substituent of particular academic interest.
The high electronegativity of F would be expected to enhance the π-acceptor capacity of
ligands containing P–F bonds compared to analogous ligands containing P–O bonds. Since
one of the reasons cited for the success of phosphites such as L2–4 (Figure 1) as ligands
in Rh-catalysed hydroformylation is their strong π-acceptor capacity, it is understandable
why monofluorophosphite L1 performs well in hydroformylation [6–11].

The simplest fluorophos ligand, PF3, has a special place in coordination and organometal-
lic chemistry as a ligand that has π-acceptor properties on par with, or surpassing, those
of CO [12]. The volatility of some PF3 complexes has made them attractive for applica-
tions in chemical vapour deposition [13–15] and recently, a PF3 complex, identified as
[Co2(µ-CO)2(CO)2(PF3)4], was reported to be a catalyst precursor for 1-hexene hydroformy-
lation [16]. However, progress in the application of PF3 as an ancillary ligand is hampered
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by it being an odourless gas with toxicity similar to phosgene [17], and it is not amenable
to chemical modification.
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Rh-catalysed hydroformylation.

There are no such disadvantages for the collage of P–F ligands, depicted in Figure 2,
which have C-, O-, or N-substituents. These substituted fluorophos ligands have the
advantages of being systematically modifiable via R substituents and they are generally
straightforward to synthesise.
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Figure 2. A selection of P–F containing monophos ligands (R = alkyl or aryl group) including P-
heterocycles showing the diversity of ligands that are potentially available. The structures in the red
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The focus of this review is acyclic and cyclic monofluorophos ligands of the type
(RO)2P–F and R2P–F, since these are amongst the simplest achiral PIII compounds that con-
tain a P–F bond. Both of these classes of P-ligand have attracted considerable academic and
industrial interest since the 1960s, including in the area of homogeneous catalysis. To the
best of our knowledge, there has not previously been a review of monofluorophos ligands,
although difluorophos ligands have been reviewed [18]. The topics covered in this re-
view include (1) the synthetic routes to monofluorophosphites and monofluorophosphines;
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(2) the factors controlling the stability of monofluorophos ligands that limit their appli-
cations; (3) the transition metal coordination chemistry of monofluorophos ligands that
may be pertinent to an understanding of their role in homogeneous catalysis; (4) the ho-
mogeneous catalysis that has been reported with metal–monofluorophos complexes. This
review is not comprehensive and there is a bias to more recent developments that build
upon the early foundational work reported by the groups of Schmutzler and Nixon. The
main conclusion that is drawn from this review is that the tunability of the steric and
electronic effects in monofluorophosphites and monofluorophosphines augurs well for
future applications of these and related classes of P–F ligands in homogeneous catalysis.

2. Monofluorophosphites
2.1. Synthesis and Hydrolytic Stability of Monofluorophosphites

Cyclic and acyclic monofluorophosphites are most readily prepared from the corre-
sponding chlorophosphite, PCl(OR)2, and a source of fluoride, such as CsF or SbF3. The
precursor chlorophosphites are prepared from PCl3 and the appropriate phenol/alcohol,
or a siloxy derivative (as exemplified in Scheme 1) [19]. Monofluorophosphites have also
been made from PCl2F, but this precursor is not readily accessible [20,21].
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At first sight, the prospects for using any halophos ligand of the type Z2P–Hal
(Z = alkyl, aryl, OR, OAr, NR2; Hal = F, Cl, Br, I) in catalysis may appear bleak because
of the reactivity of P-Hal bonds. For example, chlorophos compounds (Z2P–Cl) are nor-
mally viewed as useful intermediates rather than ligands because they react readily with
a wide range of C-, O-, or N-nucleophiles [22]; this reactivity makes chlorophos ligands
incompatible with many reactive functional groups. Moreover, chlorophos compounds
commonly fume in air because of their high susceptibility to hydrolysis, during which HCl
is produced (Equation (1), X = Cl).
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The favourable thermodynamics of P–Cl hydrolysis are largely driven by the P=O
bond formation in the P-containing product (Equation (1), X = Cl). However, the ther-
modynamics of P–OAr hydrolysis (Equation (1), X = OAr) are at least as favourable as
those of P-Cl hydrolysis and yet ligands containing P-OAr groups are widely used in
coordination chemistry and catalysis. It can therefore be surmised that the high reactivity
of chlorophosphites is primarily due to their high kinetic lability. Indeed, chlorophosphites
that are remarkably stable to moisture have also been developed and some have been
applied in catalysis [23,24].
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It has been shown that phosphite P–O bonds can be stabilised to hydrolysis by integrat-
ing them into cyclic structures and/or incorporating bulky hydrophobic groups into the
ligand framework, as in aryl phosphite ligands L2–4 (Figure 1). Indeed, diphosphite L3 and
its derivatives have been successfully applied in large scale industrial hydroformylation
processes [7]. It is of no surprise, therefore, that the Eastman monofluorophos ligand L1
is a phosphadioxacycle which contains bulky t-butyl substituents that shroud the P–F
moiety [1].

While L1 is reportedly stable to hydrolysis [25], the hydrolytic stability of the related
cyclic monofluorophosphites L5–8 (Figure 3) in aqueous methanol depends on ring size:
the half-lives increase in the order L5 < L7 ~ L8 < L6 [19].
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2.2. Coordination Chemistry of Monofluorophosphites

Metal complexes of monofluorophosphites have been produced by the two routes
shown in Scheme 2: (a) by substitution of a labile, neutral ligand (A) by a monofluo-
rophosphite; (b) by methanolysis of a coordinated PF3 or by addition of an equivalent of
HF to a coordinated P(OR)3.
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2.2.1. Group 6 Metal Complexes of Monofluorophosphites

The range of Group 6 metal(0) complexes of monofluorophosphites that have been
prepared is summarised in Scheme 3 [20,26,27]. UV photolysis of each of the metal
hexacarbonyls in the presence of (MeO)2PF (L9) gave the homoleptic complexes 1–3 [27].
[Cr(CO)6] reacts with L5 to give the trisubstituted 4 while the molybdenum analogue 5
is formed when L5 reacts with [(cycloheptatriene)Mo(CO)3] [26].

The cis-disubstituted Mo complexes 6–9 were prepared by substitution of the nor-
bornadiene ligand in [Mo(nbd)(CO)4] with the cyclic monofluorophosphites L5–L8 and
the products were fully characterised, including by X-ray crystallography. The IR data
for 6–9 are consistent with the π-acceptor capacities of L5–L8 lying between those of
PF3 and P(OPh)3. The νCO values for the highest frequency band increases in the order
P(OPh)3 < L8 ~ L7 < L6 < L5 < PF3, which is consistent with the π-acceptor capacity of
the cyclic phosphites increasing as the ring size decreases [19].
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2.2.2. Group 8 Metal Complexes of Monofluorophosphites

The synthesis of the iron(0)–monofluorophosphite complexes 10–12 is summarised in
Scheme 4. Complex 10 is formed by addition of ligand L7 to [Fe2(CO)9] (Scheme 4, route
(a)) [20]. Complex 11 is produced by two routes: (1) addition of ligand L10 to [Fe2(CO)9]
(Scheme 4, route (a)); (2) treatment of the Fe–PFCl2 precursor complex 13 with the sodium
alkoxide nucleophile shown in Scheme 4 route (b) [28].

Complex 12 has been identified by IR spectroscopy as a product of the methanolysis
of the PF3 complex 14 in a detailed study of the alcoholysis of [Fe(PF3)x(CO)5-x] (x = 1–4)
species [29].

Molecules 2024, 29, x FOR PEER REVIEW 5 of 28 
 

 

 
Scheme 3. Group 6 metal complexes of monofluorophosphites. 

2.2.2. Group 8 Metal Complexes of Monofluorophosphites 
The synthesis of the iron(0)–monofluorophosphite complexes 10–12 is summarised 

in Scheme 4. Complex 10 is formed by addition of ligand L7 to [Fe2(CO)9] (Scheme 4, route 
(a)) [20]. Complex 11 is produced by two routes: (1) addition of ligand L10 to [Fe2(CO)9] 
(Scheme 4, route (a)); (2) treatment of the Fe–PFCl2 precursor complex 13 with the sodium 
alkoxide nucleophile shown in Scheme 4 route (b) [28]. 

Complex 12 has been identified by IR spectroscopy as a product of the methanolysis 
of the PF3 complex 14 in a detailed study of the alcoholysis of [Fe(PF3)x(CO)5-x] (x = 1–4) 
species [29]. 

Scheme 3. Group 6 metal complexes of monofluorophosphites.

The equilibrium proportions of equatorial (e) and apical (a) isomers of [Fe(CO)4L]
can be determined by IR spectroscopy; sterically demanding and good π-acceptor ligands
prefer to bind at the equatorial sites [29]. As shown in Scheme 4 (d), for complex 14, the
predominant isomer has the PF3 equatorial, although the e:a ratio is close to the statistical
60:40 ratio, reflecting the similarity of PF3 and CO as ligands. For complex 12, only the
apical isomer was detected, consistent with L9 being small and a poorer π-acceptor than
PF3. For complex 11, a higher proportion of equatorial isomer was present than even in
the PF3 complex 14, as expected for the bulky L10. The νCO values for the complexes 14
and 11 are very similar, showing that PF3 and L10 have similar π-acceptor properties. This
demonstrates that the steric and electronic effects of monofluorophosphite ligands can be
controlled via the phosphorus alkoxy substituents.
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The ruthenium(II) phosphite complexes trans-[(dppe)2Ru(H){P(OR)3}]+ react with
HBF4 to give the homologous series of monofluorophosphite complexes 15–17 (Scheme 5);
the HBF4 is providing the source of HF in these reactions. The coordinated monofluorophos-
phite ligands L9, L11, and L12 are readily displaced by a H2 to give the η2-H2 complex 18
(Scheme 5) [30].
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2.2.3. Group 9 Metal Complexes of Monofluorophosphites

The tetrahedral cobalt complexes 19 and 20 containing the coordinated L9 have been
separated by preparative GLC from the mixtures obtained by methanolysis of the corre-
sponding PF3 complexes (Scheme 6) [31]. The IR spectra of the complexes showed that the
νCO and νNO stretching bands are both shifted to significantly lower wavenumber in the
monofluorophosphite complexes 19 and 20 with respect to their PF3 precursors, consistent
with L9 being a poorer π-acceptor ligand than PF3.
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The rhodium(I) chemistry with the cyclic monofluorophosphites L5–L8 is summarised
in Scheme 7 [19]. Treatment of [Rh2Cl2(CO)4] with L5–L8 gave the three products 21–23 in
the proportions shown in Scheme 7. These products were characterised by multinuclear
NMR spectroscopy and comparison of the spectra with the products exclusively formed
from [Rh2Cl2(diene)2] (diene = 1,5-hexadiene or 1,5-cyclooctadiene) and [Rh(cod)2][BF4].
There is a consistent trend of increasing proportion of binuclear complex 21 formed with
decreasing ring size; indeed, with L5, binuclear 21d is exclusively formed. It is significant
that PF3 is the only other monophos ligand that selectively forms the binuclear product
21e [32,33]. The interpretation of these observations is that L5 and PF3 are sufficiently good
π-acceptors to displace the CO from the Rh.

The trend of increasing PF3-like behaviour with decreasing size of phosphacycle in
relation to the reactions of L8–L5 with [Rh2Cl2(CO)4] parallels the trend observed in the
spectroscopic properties of cis-[Mo(CO)4(L)2] (see above) [19].

2.2.4. Group 10 Metal Complexes of Monofluorophosphites

The homoleptic nickel(0) and platinum(0) complexes 24–27 containing monofluo-
rophosphites L5 or L13 were prepared (Scheme 8) [34,35] and their 31P and 19F NMR spectra
were analysed extensively because they are rare examples of [AX]4 spin systems [35,36].
It was noted that the 2JP,P values for the Ni(0) complexes 24 and 25 (ca. 20 Hz) are signifi-
cantly smaller than for the analogous Pt(0) complexes 26 and 27 (ca. 100 Hz), although no
rationale was given for this large difference [35]. The nickel(0) complexes 24 and 25 were
originally prepared from [Ni(CO)4] [26,34] but it was shown that complexes 24–27 can be
conveniently prepared from the corresponding [M(cod)2] (Scheme 8) [35].

The trans-palladium(II) and cis-platinum(II) complexes 28 and 29, containing the cyclic
monofluorophosphite L5, were prepared by cleavage of the corresponding binuclear com-
plex (Scheme 9) [37]. The phosphacycle L14, which can be viewed as a saturated analogue
of L5, forms the cis-platinum(II) complex 30; comparison of the 31P NMR parameters for
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29 and 30 shows that they are similar, e.g., JPt,P = 5600 and 5490 Hz, respectively. The
platinum(0) complex 31 contains monofluorophosphite L15, a saturated analogue of L6
(Scheme 9) [37].
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Scheme 8. Nickel(0) and platinum(0) chemistry of monofluorophosphites.

The tetrahedral platinum(0) complexes 32a–d are readily formed by the addition of
4 equiv. of L5–L8 to [Pt(nbe)3] (nbe = norbornene). Complex 32b crystallised from solution
even when a sub-stoichiometric amount of L6 was added (Scheme 10). However, the
addition of 2 equiv. of L5, L7 or L8 to [Pt(nbe)3] in THF gave mixtures of [Pt(L)4] (32a,c,d)
[Pt(L)2(nbe)] (33a,c,d), and [Pt(L)(nbe)2] (34a,c,d), identified from their characteristic 31P
and 195Pt NMR signals (Scheme 10) [19]. The ratios of complexes observed at equilibrium
(Scheme 10) were rationalised to be the result of the competing steric and electronic factors
for the nbe and monofluorophosphite ligands; for example, while [Pt(L)4] is more sterically
crowded than [Pt(L)2(nbe)], the greater π-acceptor properties of monofluorophosphites
makes them better than norbornene at stabilising Pt(0) [19].

2.3. Catalysis with Complexes of Monofluorophosphites
2.3.1. Hydroformylation Catalysis with Rhodium Complexes of Monofluorophosphites

The most notable example of the application of monofluorophos ligands in homoge-
neous catalysis is the use of cyclic monofluorophosphites such as L1 in the Rh-catalysed
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hydroformylation reactions, reported by Eastman and shown in Scheme 11 [1,25]. Initially,
the application of monofluorophosphite ligands in catalysis was approached with scep-
ticism, as it was suspected that monofluorophosphites may be thermally unstable, and
be prone to hydrolysis, especially at elevated temperatures, generating hydrogen fluoride
(HF), which is a known catalyst poison [25,38,39]. However, it was demonstrated that
L1 is stable to degradation at temperatures up to 350 ◦C and stable to hydrolysis even
in refluxing aqueous isopropanol, with no free fluoride ions detected [40]. While acidic
conditions promote the degradation of monofluorophosphites, it has been shown that
the catalyst system can be stabilised by the addition of an epoxide or a complex such as
[Co(acac)3] [41,42].
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The striking stability of L1 is attributed to the 8-membered phosphacycle which
entropically stabilises the ligand to P–O cleavage and to the tBu substituents which sterically
shield the P atom and provide a hydrophobic environment in the vicinity of the P–F bond.
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formaldehyde (reaction (iv)).

Ligand L1 exists as two geometric isomers, labelled cis-L1 and trans-L1 in Figure 4,
associated with the relative stereochemistry of the F substituent on P and the Me substituent
on the CH of the ligand backbone. The isomers of L1 have been separated, and it was
shown by 31P NMR spectroscopy that, when [Rh(CO)2(acac)] was treated with 2 equiv. of
cis-L1, a mono-ligated RhL1 species was produced whereas with 2 equiv. of trans-L1 a bis-
ligated RhL2 species was the product. Furthermore, trans-L1 readily displaced cis-L1 from
its Rh(acac) complex, showing that trans-L1 has a greater affinity for the Rh(I) centre than
cis-L1 [43,44]. These differences in coordination chemistry are likely due to the 8-membered
heterocycle having to adopt a more strained ring conformation in cis-L1 than in trans-L1
in order to accommodate the bulky metal moiety being bound at a pseudo-equatorial site.
The observed coordination chemistry differences of the isomers of L1 may be the source
of the differences in hydroformylation activity and selectivity that are observed with the
various mixtures of isomers of L1 [43,44].

The alkene substrates employed in Rh/L1 catalysed hydroformylations include termi-
nal alkenes (1-propene and 1-octene), and internal alkenes (isomeric nonenes) [1,38]. As a
consequence of their unsymmetrical nature, alkenes other than ethene give linear (l) and
branched (b) aldehydes. For propene, two isomeric aldehydes (one linear and one branched)
are formed (reaction i in Scheme 11), while for longer chain alkenes, alkene isomerisation
is a competing reaction which can lead to several branched aldehyde products, e.g., for
1-hexene, there are two branched isomers (see reaction ii where R = nPr in Scheme 11).
The l:b ratio of products is affected by a wide array of factors, including temperature,
syngas pressure, ligand–metal (L:Rh) ratio, and the nature of the ligands [7–9,25,45]. With
monofluorophosphite ligands, it has been shown that the impact of the L:Rh ratio on the
alkene hydroformylation activity is strongly dependent on the structure of the ligand.
Increasing the L:Rh ratio (L = P-donor ligand) normally decreases catalytic activity, and
this is indeed observed with monofluorophosphite L1. However, with the bulkier cyclic
monofluorophosphite L16, increasing the L:Rh ratio increased catalytic activity. The cyclic
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structure of L16 appears to be critical for this unusual concentration effect on rate, since
the conventional decrease in activity with increase in L:Rh is observed with L17, an acyclic
analogue of L16 [46].
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Figure 4. Some of the Eastman fluorophophites used as ligands in hydroformylation.

A thorough study of the alkene hydroformylation catalytic properties of Rh com-
plexes of monofluorophosphite L18 has been reported, which includes in-flow and batch
hydroformylation of propene, 1-octene, and 2-octene [47]. High activities, with TOF up to
75,000 mol(RCHO) mol(Rh)−1 h−1, have been observed and outstanding control of the alde-
hyde l:b ratio can be achieved by modulating the temperature, PCO, PH2, time of reaction,
the pre-activation of the catalyst, and Rh:L18 ratio; for example, for 1-octene, the l:b ratio
can be ‘tuned’ from 0.27 to 15 (corresponding to selectivity ranging from 78% branched to
94% linear). The higher the concentration of L18, the more the linear aldehyde is favoured,
and this has been rationalised by postulating two mechanisms are operating in parallel:
one based on RhL2(CO) species, favouring linear aldehyde formation, and the other based
on the less bulky RhL(CO)2 moiety, favouring branched aldehyde formation [47].

The hydroformylation of ethylene to produce propionaldehyde (Scheme 11, reaction iii)
is a potentially useful transformation but acetylene, typically present in ethylene feedstocks
in small quantities, acts as a reversible poison towards Rh-based catalysts [25]. The activity
of ethylene hydroformylation using a Rh–PPh3 catalyst suffered greatly when subjected
to ethylene containing 1000 ppm of acetylene. By contrast, the Rh–L1 catalyst system was
shown to be remarkably acetylene-tolerant under the same conditions; the activity of the
Rh–L1 catalyst eventually deteriorated upon increasing the concentration of acetylene to
10,000 ppm [48].

The hydroformylation of formaldehyde (in the form of paraformaldehyde) is poten-
tially a valuable route to produce glycolaldehyde (Scheme 11, reaction iv) which can then
be hydrogenated to ethylene glycol. It has been shown that a Rh–L1 catalyst is more active
and selective than a Rh-PPh3 catalyst under the same conditions [49].
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2.3.2. Other Catalytic Reactions with Monofluorophosphite Ligands

The bulky, optically active monofluorophosphite BIFOP-F (L19), derived from fenchol,
has been employed in the intramolecular Pd-catalysed cross-coupling reaction shown in
Scheme 12 [50]. A library of 12 related fenchol-derived BIFOP-X ligands were screened for
catalysis and complex 35, derived from L19, was the most enantioselective (64% ee) and
gave good yields (88%).

An attempt to use the same ligand L19 in a Cu-catalysed 1,4-addition of R2Zn or
RMgBr (R = Me, Et) to enones was unsuccessful; it was suggested that L19 was unstable
under the reaction conditions used [51].
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3. Monofluorophosphines
3.1. Synthesis and Stability of Monofluorophosphines

Two general routes to R2PF where R = alkyl or aryl are shown in Scheme 13. The
R2PCl route has the advantage of the ready availability of chlorophosphines from PCl3 but
the Cl2PF route can provide access to R2PF for which the corresponding R2PCl is unknown,
as demonstrated for (PhC≡C)2PF [52].
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Simple R2PF (which are PIII species) are generally unstable with respect to the dispro-
portionation to the PV in R2PF3 and PII in R2P–PR2, as shown in Scheme 14 [53,54]. The
pathway shown in Scheme 14, involving the intermediates A and B, has been proposed for
the disproportionation; examples of PIII–PV species A have been isolated and characterised
spectroscopically [55,56]. This chemistry would militate against the application of monoflu-
orophosphines as ligands in homogeneous catalysis unless, under the catalytic reaction
conditions, the equilibrium in Scheme 14 lies in favour of the R2PF, or the equilibrium is
rapidly reversible, such that it can be entrained via metal complexation.
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The following generalisations on the stability of R2PF to disproportionation (Scheme 14)
have been established from extensive studies:

(1) Many common R2PF (e.g., R = Ph, Me, nBu) readily disproportionate [54,57,58];
(2) Bulky substituents and electron-withdrawing substituents stabilise R2PF with respect

to disproportionation [59,60];
(3) Cyclic monofluorophosphines with constrained C–P–C bonds are more stable with

respect to disproportionation than acyclic analogues [61].

The stabilising effects of the P-substituents noted in generalisation (2) accounts for
the dominance of tBu2PF (L20) and (CF3)2PF (L21) in the early literature concerning the
coordination chemistry of monofluorophosphines (Figure 5). A simple rationale for the
R2PF-stabilising effect of bulky and electron-withdrawing substituents is that these sub-
stituents raise the energy of the disproportionation diphosphane product, R2P–PR2 because
(a) bulky R groups maximise 1,2-steric repulsions in the relatively crowded diphosphane—
tBu2P–PtBu2 has been calculated to have a weak P-P bond [62]; (b) electron-withdrawing
groups destabilise the P–P bond due to electrostatic repulsion between the resulting δ+
charges on each of the P atoms—it has been reported that (CF3)2P–P(CF3)2 has an elon-
gated P-P bond [63]. A mechanism for disproportionation involving sterically crowded
intermediates A and B, which would also be disfavoured by electron-withdrawing sub-
stituents [54–56], has been proposed (Scheme 14).
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The monofluorophosphines CgPF (L22), containing a phospha-adamantane cage, and
the PhobPF species L23 and L24, containing a phospha-bicycle (Figure 5), are remarkably
stable to disproportionation [61]. The CgP and PhobP moieties are rigid and bulky, and so
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the stability of L22–L24 may be, at least in part, explained using similar steric congestion
arguments to those used above for the stability of L20 [64–67]. In addition, it has been
argued that the constrained C–P–C angles in L22–L24 also contribute to their observed
stability to disproportionation (generalisation (3) above) using the following reasoning [61].
The two geometric isomers of R2PF3 have diapical–equatorial (aae) or apical–diequatorial
(aee) F groups, with the high apicophilicity of F leading to the aae isomer being preferred
for R2PF3 [68]. Therefore, the favoured isomer has the two R substituents occupying
two equatorial sites with a 120◦ angle between them, as depicted in Scheme 14. X-ray
crystallography has shown that the C–P–C angles are close to 90◦ in multiple compounds
containing either the CgP or PhobP moieties [64–67]. Consequently, the observed stability
to disproportionation of L22–L24 can be partly attributed to the high degree of C–P–C ring
strain in R2PF3 that would be incurred by the 2 C substituents occupying equatorial sites;
if, instead, the eea isomer were adopted, there would be an unfavourable cost in the P–F
bond energies associated with two of the F substituents occupying equatorial sites [68].

3.2. Coordination Chemistry of Monofluorophosphines

In general, monofluorophosphine (R2PF) complexes are made just like many other
P-ligand complexes: by the substitution of a labile ligand on a precursor complex. In
metal complexes of monofluorophosphines, the coordinated R2PF is not susceptible to
disproportionation. Consequently, ligated Ph2PF (which is unstable as the free ligand) has
been generated within a Cr, Mo, or W coordination sphere by fluoride substitution of a
labile X group on a precursor R2PX complex [69–71].

3.2.1. Group 6 Metal Complexes of Monofluorophosphines

The Group 6 complexes 36–44 of monofluorophosphines L20 and L21 are shown in
Scheme 15 [72–74]. The [ML(CO)5] complexes 36–40 were made by photolysis of a mixture
of [M(CO)6] and ligand in THF (for L20) or CH2Cl2 (for L21) [72,73]. The cis-disubstituted
complexes 41 and 42 were formed by stirring [Mo(norbornadiene)(CO)4] with the ligand
at ambient temperatures for several hours [72,74]. The [MoL3(CO)3] complexes 43 and 44
were both prepared from [Mo(cycloheptatriene)(CO)3], but the products were assigned
different geometries (fac in 43 and mer in 44, respectively) based on the unambiguous IR
and 19F NMR spectra for the C2v and C3v isomers. Extensive NMR (31P and 19F) and IR
spectroscopic studies have been carried out on all complexes 36–44. It was shown that
the trend in the position of the highest energy νCO band in the IR spectra of 36 and its
analogues are consistent with the expected π-acidities being in the order: tBu3P (2067 cm−1)
< tBu2PF (2076 cm−1) < tBuPF2 (2088 cm−1) < PF3 (2104 cm−1) [74].

A notable conclusion drawn on the basis of the IR spectra of cis-[MoL2(CO)4] and
mer-[MoL3(CO)3] is that (CF3)2PF and CF3PF2 are stronger π-acceptors than PF3, notwith-
standing the greater electronegativity of F than that of CF3 (χ of 4.0 and 3.3, respectively,
on the Pauling Scale). It has been suggested [74] that an explanation for this apparent
anomaly lies in the π component present in the P–F bond that involves a HOMO (lone pair)
orbital on F and the LUMO (σ *) on P which has π symmetry. This is the same orbital on P
that is involved in the π backbonding from the metal. Thus, in a M–P–F fragment, the M
competes with F for the π acceptor orbital on P (Figure 6(i)); this competition is not present
in a M–P–CF3 fragment which would explain the greater π acceptor capacity of (CF3)2PF
than PF3 [74]. This explanation in terms of π interactions between the LUMO (σ *) on P
and a HOMO with π symmetry on a P-substituent is reminiscent of the arguments used by
Woollins et al. to explain why PtBu(pyrrolyl)2 is a stronger σ donor than P(pyrrolyl)3 (see
Figure 6(ii)) [75].
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3.2.2. Group 7 Metal Complexes of Monofluorophosphines

The only reported Group 7 metal complexes containing a monofluorophosphine ligand
are the isomeric hydridomanganese(I) complexes 45 and 46, formed as a 3:1 mixture by the
reaction of [HMn(CO)5] with L21 (Scheme 16) [76].The 2J(HP) values for 46 (72 Hz) and
47 (4 Hz) are consistent with the assignment of their respective trans and cis geometries.
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3.2.3. Group 8 Metal Complexes of Monofluorophosphines

The tetracarbonyliron complex 47 can be generated in situ by photolysis of a mixture
of L21 and [Fe(CO)5] and the IR spectrum suggests that 47 is predominantly the equatorial
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isomer (Scheme 17). This is consistent with L21 being bulkier than PF3 and of comparable
π acceptor capacity to it [29].
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The anthracene-derived monofluorophosphine L25 and the naphthalene-derived
monofluorophosphine L26 were prepared from Cl2PF (Scheme 13) [52]. Ligand L25 was
purified by distillation and showed no tendency to undergo disproportionation presumably
because it is stabilised by its bulky substituents. Reaction of L25 with [Fe2(CO)9] gave com-
plex 48, whose IR spectrum was consistent with C2v symmetry and was therefore assigned
to the equatorial isomer. Ligand L26 was not obtained in pure form but the impure material
was reacted with [Fe2(CO)9] to produce the iron complex 49, the IR spectrum of which was
consistent with C3v symmetry and was therefore assigned to the apical isomer [52]. The
different geometries assigned to 48 and 49 may be rationalised by L25 being larger and
more electron poor (making it a better π-acceptor) than L26.

The unusual monofluorophosphine 50 has been prepared by treatment of its anionic
precursor with N-fluoropyridinium tetrafluoroborate which acts as an electrophilic source
of F+ (see Scheme 18) [77]. The P–F bond in 50 was shown to be covalent in the solid state
by single-crystal X-ray diffraction (dP–F = 1.658(4) Å), and in solution by 31P and 19F NMR
spectroscopy, which showed that 1JPF = 918 Hz). The data for 50 are comparable to values
for conventional R2PF compounds: dP–F = 1.619(7) Å for tBu2PF [78]; 1JPF = 905 Hz for
Ph2PF [57]. In principle, 50 could act as an monofluorophos ligand, but this has not been
reported to date.
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The osmium cluster complexes 51 and 52 were readily formed by the addition of an
excess of the bulky monofluorophosphine L20 to the corresponding labile MeCN complex
precursors (Scheme 19) [79].
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3.2.4. Group 9 Metal Complexes of Monofluorophosphines

The paramagnetic cobalt complexes 53a and 53b were prepared by stirring a suspen-
sion of CoX2 in CH2Cl2 with L20. The highly coloured 53a (blue) and 53b (blue-green) had
electronic spectra, IR spectra, and magnetic moments (µ ≈ 4.5 BM) consistent with the
tetrahedral geometry depicted in Scheme 20 [80].
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Reaction of 1 equiv. of L21 with [Co(CO)3(NO)] at ambient temperatures over 7 days
yielded a mixture of monosubstituted and disubstituted complexes 54 and 55, which were
separated by fractional distillation [81]. The trisubstituted complex 56 was obtained by
heating a mixture of [Co(CO)3(NO)] and an excess of L21 to 120 ◦C (Scheme 20). The
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position of the νNO band in the IR spectra of 54 (1832 cm−1), 55 (1842 cm−1), and 56
(1854 cm−1) are consistent with L21 being a better π-acceptor than CO.

Mononuclear rhodium complexes 57–61 are formed rapidly upon reaction between
[Rh2Cl2(CO)4] and the appropriate monofluorophosphine in CH2Cl2 (Scheme 21). The vCO
values given in Scheme 21 show that the cage monofluorophosphine L22 is the strongest
π-acceptor followed by the dimethoxynaphthalene ligand L26 and then the sym and asym
isomers of the bicyclic fluorophobanes L23 and L24 straddle the bulky L20 [52,61].
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The fluoro analogue of Wilkinson’s Catalyst, [RhF(PPh3)3], undergoes the rearrange-
ment shown in Scheme 22 to generate complex 62, which contains a ‘trapped’ Ph2P–F
ligated to Rh [82]. This remarkable isomerisation occurs under mild conditions and is
reversible. Several examples are known where late transition metal fluoro complexes with
PR3 ancillary ligands undergo related P–C/M–F rearrangements to generate coordinated
R2P–F ligands as products or transient intermediates [82].
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Scheme 22. Rearrangement leading to in situ formation of Ph2PF complex.

3.2.5. Group 10 Metal Complexes of Monofluorophosphines

Treatment of nickel tetracarbonyl with an excess of L21 at 25 ◦C gives predominantly
monocarbonyl 63 with traces of dicarbonyl 64, which can be separated by fractional dis-
tillation. The fully substituted complex 65 is produced under more forcing conditions
(95 ◦C, 24 h), but the product is contaminated with traces of 63 (Scheme 22) [83]. The
volatile, air-stable nickel(0) complex 65 can be more readily prepared by mixing L21 with
nickelocene [84] or by reaction of L21 with metallic nickel, generated by thermolysis of
nickel oxalate at 60 ◦C (Scheme 23) [85]. The reaction between [Ni(cod)2] and the phospha-
cage flurophosphine L22 was reported to give complex 66 (Scheme 23), identified in solution
on the basis of the stoichiometry used and the characteristic AA’XX’ pattern observed in
the 31P NMR spectrum [61].
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Scheme 23. Routes to nickel(0)–monofluorophosphine complexes.

Diamagnetic nickel(II) complexes 67a–c are formed when suspensions of NiX2 in
acetone or toluene are treated with L20 (Scheme 24) [80]. The trans geometry of 57a was
established from the large 2JPP of 425 Hz and the crystal structure of 57b confirms its trans
geometry in the solid state [86].
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Scheme 24. Nickel(II)–monofluorophosphine complexes.

Chiral monofluorophosphine L27 disproportionates (Scheme 14) over a period of
16 h, but the rate of the disproportionation for dilute solutions of L27 in benzene was
slow enough to measure its optical purity [87]. Reaction of a racemic mixture of L27
with the optically pure dipalladium complex shown in Scheme 25 gave a diastereomeric
mixture of complexes 68 and 69. Pure complex 68 was obtained selectively by repeated
crystallisation from diethyl ether and the absolute configuration at P was determined by
X-ray crystallography. Enantiomerically pure S-L27 was then displaced from complex 68
by addition of a chelating diphosphine. It was shown by polarimetry that S-L27 racemised
in benzene over a period of 6 h [87].
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The platinum(0) complex 70 was prepared by heating K2[PtCl4] (or PtCl2) with a
large excess of L21 followed by prolonged shaking at ambient temperature (Scheme 26);
the PV by-product (CF3)2PFCl2 was identified, consistent with L21 acting as the reducing
agent [88]. Complex 70 was inert to the addition of MeI, HCl, C2H4, or CS2, even upon pro-
longed heating, in contrast to the triphenylphosphine analogue [Pt(PPh3)4]. This behaviour
likely reflects the greater π-acceptor properties of L21 stabilising Pt(0) and reducing its
nucleophilicity, coupled with the greater steric bulk of PPh3 promoting the formation of
reactive, coordinatively unsaturated PtL3 species [88].
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Scheme 26. Platinum(0) complexes of monofluorophosphine.

The insoluble platinum(0) complex 71 was prepared by the replacement of PMePh2
by L21 in the reaction shown in Scheme 26, a reaction presumably driven by the greater
π-acceptor properties of L21 than PMePh2 [89].

The substituted diarylfluorophosphines L28, L29, and L30 form the platinum(II) com-
plexes 72, 73, and 74 by the routes shown in Scheme 27. The cis geometry of 72 and 73 was
confirmed by their X-ray crystal structures [52,90], and the trans-configuration of 74 was
confirmed by the large value of 2JP,P = 567 Hz [91].

3.3. Catalysis with Complexes of Monofluorophosphines
3.3.1. Hydroformylation Catalysis with Rhodium Complexes of Monofluorophosphines

The first step in the homologation of 1-heptene to 1-octene is the hydroformylation
shown in Scheme 28 [92]. Rhodium complexes of monofluorophos ligands L20, L22, L23,
and L24 all showed catalytic activity comparable to the commercialised Rh—PPh3 catalyst.
The l:b ratio of 3.9 obtained for the Rh–L22 catalyst compares favourably with the l:b ratio of
2.2 for the Rh-PPh3 catalyst under the same conditions. The 31P NMR spectrum of the exit
solutions for the Rh–L22 catalysis showed the presence of Rh–monofluorophos complexes,
indicating that the coordinated L22 had survived the reaction conditions [61].
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3.3.2. Hydrocyanation Catalysis with Nickel Complexes of Monofluorophosphines

Catalysts derived from nickel complexes of L20, L22, L23, and L24 with a Lewis
acid (ZnCl2 or Ph2BOBPh2) co-catalyst were tested for the Ni-catalysed isomerisation-
hydrocyanation of 3-pentenenitrile (3-PN) to give adiponitrile (ADN) via 4-pentenenitrile
(4-PN), as shown in Scheme 29. Nickel complexes of L24 showed essentially no activity
(only traces of ADN detected). Compared with the commercialised catalyst based on Ni–
P(OTol)3, the Ni–L20 and Ni–L23 catalysts were modestly active and selective but Ni–L22
system showed good activity and selectivity [61,93,94]. The fluorine substituent in CgP–F
(L22) was critical to the success of the hydrocyanation catalyst (Scheme 29), since attempts
to use CgP–Br or CgP–Ph as ligands gave only traces of ADN.
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4. Conclusions and Prospective Applications of Monofluorophos Ligands in
Coordination Chemistry and Catalysis

The combination of the extreme electronegativity and smallness of F has made ligands
containing a P–F bond of academic interest for many years. The strength of the P–F bond
at 490 kJ mol−1 dwarfs other P–X single bonds (cf. P–C, 264 kJ mol−1; P–O, 335 kJ mol−1)
and is the source of the thermodynamically stability of P–F compounds. PF3 is often
characterised as the ultimate π-acceptor, outstripping even CO in its capacity to stabilise
electron-rich, low oxidation state metal complexes. What has attracted particular attention
to substituted monofluorophos ligands is their capacity to be ‘tunable’ analogues of PF3
and indeed to make ligands such as (CF3)2PF which are more powerful π-acceptors.

The focus of this review has been on the coordination chemistry of monofluorophos-
phites, (RO)2PF, and monofluorophosphines, R2PF, and the successful applications of
monofluorophos–metal complexes in homogeneous catalysis. At the outset, the prospects
for applications of monofluorophos ligands in homogeneous catalysis appeared to be in-
auspicious because of two fundamental instabilities: (1) notwithstanding the great P–F
bond strength, monofluorophos compounds are generally susceptible to hydrolysis, a
reaction driven by the formation of the even stronger bonds, H–F (565 kJ mol−1) and P=O
(544 kJ mol−1); (2) the propensity of F to stabilise high oxidation states explains the obser-
vation that many PIII–F compounds readily decompose by disproportionation into PV–F
compounds and PII species containing P–P bonds.

The 1998 report by Puckette and coworkers at Eastmann of the application of the
cyclic monofluorophosphite L1 in Rh-catalysed hydroformylation under commercially
viable conditions and the impressive advantages of this catalyst (including its tunable
regioselectivity) emphatically established that monofluorophos ligands have great potential
as ligands for catalysis. It was shown that L1 has structural features that make it resistant to
both hydrolysis and disproportionation. These features were borrowed from diphosphites
such as L3 which are: the PO2 heterocycle and the bulky hydrophobic t-butyl groups that
protect the P–F group and kinetically stabilise the monofluorophosphite.

Early studies (in the 1970s and 1980s) demonstrated that monofluorophosphines
L21 and L22 were stable to disproportionation and this was rationalised in terms of the
great steric bulk and strong electron-withdrawing properties of the substituents. It was
later shown that constraining the C–P–C angle in bicyclic or tricyclic monofluorophos
ligands such as L22 also led to greater stability with respect to disproportionation. Ligands
such as L22 have been shown to be effective not only in hydroformylation but also in
hydrocyanation under commercially viable conditions.

In view of the observed powerful stabilising effects of P-substituents on monoflu-
orophos ligands, and the demonstrated capacity of monofluorophos ligands to support
homogeneous catalysis, it is surprising to us that, to date, the area of monofluorophos
chemistry remains so underdeveloped and it is our contention that there are a plethora of
opportunities in the areas of ligand design, fundamental coordination chemistry studies,
and catalyst discovery based on ligands containing a P–F bond.

It is clear from this review that, firstly, a P–F group confers unusual donor properties
on the PIII ligand, but there are striking ‘holes’ in our knowledge due to the paucity
of information on monofluorophos coordination chemistry of many d-block metals; for
instance, to the best of our knowledge, there are no examples of monofluorophos complexes
of Re or Au. Secondly, the few catalytic studies on monofluorophos–metal complexes that
have been reported have led to impressive discoveries. Some suggestions for potentially
fruitful lines of enquiry that build on the results presented in this review are outlined below.

The monofluorophosphites, denoted {O,O}PF, and monofluorophosphines, denoted
{C,C}PF, that are the subject of this review represent only a minor portion of the monofluo-
rophos landscape that is available (Figure 2). There are many related {N,N}PF as well as
mixed {C,O}PF, {C,N}PF, and {N,O}PF ligands waiting to be developed. Indeed, a series of
acyclic and cyclic {N,O}PF ligands, (see Figure 7) of general structure L31 (R = alkyl) [95]
and L32 (R = aryl or alkyl) [96], have been reported. Ligand L32 generates Rh catalysts
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for alkene hydroformylation with l:b ratios ranging from 0.41 to 12.8 depending on ligand
concentration and the nature of R [96].
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that have been reported have led to impressive discoveries. Some suggestions for poten-
tially fruitful lines of enquiry that build on the results presented in this review are outlined 
below. 

The monofluorophosphites, denoted {O,O}PF, and monofluorophosphines, denoted 
{C,C}PF, that are the subject of this review represent only a minor portion of the mono-
fluorophos landscape that is available (Figure 2). There are many related {N,N}PF as well 
as mixed {C,O}PF, {C,N}PF, and {N,O}PF ligands waiting to be developed. Indeed, a series 
of acyclic and cyclic {N,O}PF ligands, (see Figure 7) of general structure L31 (R = alkyl) 
[95] and L32 (R = aryl or alkyl) [96], have been reported. Ligand L32 generates Rh catalysts 
for alkene hydroformylation with l:b ratios ranging from 0.41 to 12.8 depending on ligand 
concentration and the nature of R [96]. 
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Figure 7. Monofluorophos ligands worthy of future study for catalysis.

Chelating bis(monofluorophos) ligands would be an exciting avenue to explore and an
example of a bis{N,N}PF ligand was recently described: the “Pacman” fluorophos ligand
L33 (see Figure 7) [97].

Hydroformylation and hydrocyanation catalysis have been successfully demonstrated
with monofluorophos ligands. These observations are consistent with the monofluorophos
ligands behaving like other P-donors that are relatively electron-poor, such as phosphites.
Monofluorophos–metal catalysts should be capable of catalysing other reactions that are
catalysed by metal-phosphites and related ligands such as alkene isomerisation, hydro-
genation, and C-C coupling reactions.

It was discovered that the optically active monofluorophosphite L19 was an effective
ligand for the enantioselective Pd-catalysed intramolecular C–C coupling reaction. It
would certainly be of interest to develop other optically active monofluorophos ligands
(including bidentates) and investigate their efficacy in asymmetric catalysis. All of the
{X,Y}PF heterocycles shown in Figure 2 have a stereogenic P-centre, and it should be
possible to resolve these molecules and investigate the application of their complexes in
asymmetric catalysis.

The overarching conclusion is that there is great scope to design new fluorophos
ligands containing a PF group and expand the range of steric and electronic effects such
ligands can have. There are good reasons to believe that new catalysts will emerge.
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