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Preface

The pathogenic nematode Angiostrongylus cantonensis is a leading global causative agent
of eosinophilic meningitis in humans and other species. Clinically, this disease is known as
neuroangiostrongyliasis but is colloquially recognized as rat lungworm disease. This disease has
resulted in morbidity and mortality in humans and other accidental hosts, and the geographic range
of this pathogen continues to increase through global expansion. The first five studies in this reprint
provide updates on recent global research efforts and distribution, including studies from India,
Brazil, Ecuador, reports of coinfections in Spain, and the genetic-based determination of global spread
patterns of A. cantonensis. The other six studies evaluate potential mechanisms for prevention, such as
creating barriers to decrease the mollusk infestation of crops; disease diagnostics applying both DNA
and antibody-based methods; and current approaches to the pharmacological management of this
disease using a multi-drug approach in humans, as well as investigating the effects on A. cantonensis
of a commercially available antiparasitic currently used for controlling heartworm, fleas, and ticks in
dogs.

This reprint is derived from a previous special rat lungworm issue of the journal Pathogens.
We showecase the valuable research work providing the most current and fascinating information
available regarding the geographic distribution, prevention, diagnosis, and treatment of A. cantonensis
infections. This collective body of the literature greatly advances our critical knowledge of A.

cantonensis and this disease.

Susan Jarvi
Guest Editor
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Abstract: Human angiostrongylosis is an emerging zoonosis caused by the larvae of three species
of metastrongyloid nematodes of the genus Angiostrongylus, with Angiostrongylus cantonensis (Chen,
1935) being dominant across the world. Its obligatory heteroxenous life cycle includes rats as definitive
hosts, mollusks as intermediate hosts, and amphibians and reptiles as paratenic hosts. In humans,
the infection manifests as Angiostrongylus eosinophilic meningitis (AEM) or ocular form. Since
there is no comprehensive study on the disease in the Indian subcontinent, our study aims at the
growing incidence of angiostrongylosis in humans, alongside its clinical course and possible causes.
A systematic literature search revealed 28 reports of 45 human cases from 1966 to 2022; eosinophilic
meningitis accounted for 33 cases (75.5%), 12 cases were reported as ocular, 1 case was combined, and
1 case was unspecified. The presumed source of infection was reported in 5 cases only. Importantly,
22 AEM patients reported a history of eating raw monitor lizard (Varanus spp.) tissues in the past.
As apex predators, monitor lizards accumulate high numbers of L3 responsible for acute illness
in humans. For ocular cases, the source was not identified. Most cases were diagnosed based on
nematode findings and clinical pathology (primarily eosinophilia in the cerebrospinal fluid). Only
two cases were confirmed to be A. cantonensis, one by immunoblot and the other by g-PCR. Cases of
angiostrongylosis have been reported in Delhi, Karnataka, Kerala, Maharashtra, Madhya Pradesh,
Puducherry, Telangana, and West Bengal. With a population of more than 1.4 billion, India is one of
the least studied areas for A. cantonensis. It is likely that many cases remain undetected /unreported.
Since most cases have been reported from the state of Kerala, further research may focus on this
region. Gastropods, amphibians, and reptiles are commonly consumed in India; however, typical
preparation methods involve cooking, which kills the nematode larvae. In addition to studying rodent
and mollusk hosts, monitor lizards can be used as effective sentinels. Sequence data are urgently
needed to answer the question of the identity of Angiostrongylus-like metastrongylid nematodes
isolated from all types of hosts. DNA-based diagnostic methods such as g-PCR and LAMP should
be included in clinical diagnosis of suspected cases and in studies of genetic diversity and species
identity of nematodes tentatively identified as A. cantonensis.

Keywords: cantonensis;  human Indian  subcontinent;

Angiostrongylus angiostrongyliasis;

eosinophilic meningitis

1. Introduction

Angiostrongylus eosinophilic meningitis caused by Angiostrongylus cantonensis is a
zoonotic disease that is currently spreading in the tropics and subtropics, with sporadic
cases also occurring in temperate climatic zones [1,2]. The disease is caused by a metas-
trongyloid nematode, the rat lungworm, Angiostrongylus cantonensis. In humans, larval
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migration of this nematode typically results in eosinophilic meningitis and other central
nervous system disorders. The increasing incidence and frequency of angiostrongylo-
sis outbreaks has led to the disease being classified as an emerging infectious disease in
Southeast Asian countries and in some invaded areas such as Australia and islands in the
Pacific region.

Angiostrongylus cantonensis was first discovered in China (Chen, 1935), and it is pri-
marily in Southeast Asia that is holding a tradition of its research in the Old World [2,3],
reflecting the growing incidence of the disease [4]. Recently, infections of humans by the
closely related Angiostrongylus malaysiensis (Bhaibulaya & Cross, 1971) have been reported
in Southeast Asia [5], and the precise differentiation of the two nematode species deserves
further attention, as does the possible neurotropism (the ability of larvae to specifically
invade the brain and central nervous system) of other members of the genus.

The Indian subcontinent has never been systematically studied and reviewed for the
presence of A. cantonensis. There, angiostrongylosis is known based on several human cases
and limited field surveys [6]. Our aim of this review is to provide a thorough analysis of the
available literature on human angiostrongylosis in the Indian subcontinent and contribute
to the understanding of angiostrongylosis in the subcontinent. Data for this study were
obtained by searching for the word combination “Angiostrongylus cantonensis” AND “An-
giostrongylus” AND “cantonensis” AND “ocular angiostrongyliasis” AND (“India” OR (“Sri”
AND “Lanka”) OR “Pakistan” OR “Nepal” OR “Bhutan” OR “ “ Bangladesh” OR “Mal-
dives”) in the Web of Knowledge, Scopus, PubMed, and Google Scholar databases. This
initial search revealed 23 relevant reports on angiostrongylosis in the selected geographic
area. Then, references in all the studies obtained by the initial search were screened, and
those with relevant information were added to the search results. Using this search method,
28 reports were included in our study, yielding 45 cases of angiostrongylosis in humans
between 1966 and 2022. In the context of this study, we define the Indian subcontinent as
Pakistan, India, Maldives, Nepal, Sri Lanka, Bangladesh, and Bhutan.

2. Biology and Life Cycle of Angiostrongylus cantonensis

A unique feature of the life cycle of A. cantonensis is its low host specificity at the
intermediate host and paratenic host levels [1,7]. Natural definitive hosts include rats of the
tribe Rattini (as defined by Lecompte et al.) [8]), with three species, Rattus rattus (Linnaeus,
1758), Rattus norvegicus (Berkenhout, 1769), and Rattus exulans (Peale, 1848), being the
most reported definitive hosts [9,10]. Rats become infected by ingesting third-stage larvae
(L3) in intermediate or paratenic hosts [2,11]. The ingested L3 penetrates the intestinal
wall in the small intestine and enters the bloodstream. They then passively traverse the
bloodstream and eventually reach the brain. Strong affinity toward the central nervous
system (neurotropism) is the fundamental feature of the life cycle. In the central nervous
system, L3 go through two molts and reaches the fifth-stage larvae L5 as immature adults
in the subarachnoid space about two weeks after infection. Immature adults in typical
definitive hosts continue to migrate to the terminal branches of the pulmonary arteries.
There they become sexually mature, mate, and females lay eggs. The eggs hatch into
first-stage larvae (L1) in the lung parenchyma, which ascend through the trachea and
pharynx, then are swallowed into the digestive tract, and finally, the L1 leave the definitive
hosts in feces. Snails or slugs many (= intermediate hosts) take up infected L1 from rat
feces and these larvae develop into L3 [10,12,13]; typical developmental stages are depicted
in Figure 1.
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Figure 1. Developmental stages of Angiostrongylus cantonensis in intermediate and definitive hosts;
Illustrative pictures depict the laboratory strain of Angiostrongylus cantonensis from Fatu Hiva, derived
from snails from the Marquesas Islands, French Polynesia [14]. (A) Mixture of male and female adults
removed from pulmonary arteries of a laboratory rat; females are larger (up to 30-35 mm), with typical
barber-pole appearance, caused by the interweaving of the intestine and uterus; males (arrowheads)
are smaller (max 15-25 mm), whitish, with well-developed bursa copulatrix; scale bar = 5 mm.
(B) First-stage larva as shed in rat feces, scale bar = 50 pum. (C) Third-stage larva from a gastropod
intermediate host, scale bar = 50 pm.

In addition to typical definitive hosts, gut-brain migration occurs in several aberrant
hosts, including humans [2,15], domestic [16,17] and wild mammals [18], and birds [19].
However, L3 do not progress in these hosts and frequently cause eosinophilic meningitis
accompanied by severe clinical symptoms, with dogs being the most common aberrant host
other than humans. Multiple cases of canine angiostrongylosis in Australia show clinical
manifestations of neurological deficits, cranial nerve dysfunction, fecal incontinence, hyperes-
thesia, seizures, ascending tail paresis, depression, diarrhea, and even death. There are also
long-term neurological conditions, including tail paresis and hindlimb ataxia [20,21].
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To date, the range of identified intermediate hosts of A. cantonensis is quite extensive
and includes aquatic and terrestrial gastropods from at least 46 families [22]. Intermediate
hosts become infected either by ingesting rat feces or by L1 actively penetrating their body
wall or respiratory pores [23]. In intermediate hosts, L1 molt to L2 and then to L3, which
persists in the tissues of infected mollusks. However, the L3 can leave the intermediate
hosts spontaneously, either during its life or, usually, massively after its death. Outside
of the host, L3 can survive in water for up to one month [24], with the ability to infect
other intermediate hosts, further prolonging the survival of the larvae [25]. In addition
to definitive hosts and intermediate hosts, L3 is also the stage that infects paratenic hosts
and dead-end hosts and is the key stage of the cycle from an epidemiological perspective.
The range of paratenic hosts includes both invertebrates (crustaceans, centipedes) and
vertebrates (fish, amphibians, reptiles) [7], with many others likely still unknown.

3. Epidemiology and Clinical Manifestations of Human Angiostrongylosis in the
Indian Subcontinent

Humans are a typical dead-end aberrant host. Angiostrongylosis caused by
A. cantonensis was reported in the Indian subcontinent in both clinical forms as eosinophilic
meningitis and/or ocular angiostrongylosis [26]. Generally, humans become infected by
ingestion of L3 from tissues of intermediate or paratenic host, contaminated water, or
vegetables [24]. The larvae penetrate the intestinal wall and, as they migrate, can cause
inflammatory reactions in the organs they pass through [2]. Angiostrongylus eosinophilic
meningitis (AEM) is the typical syndrome that occurs in humans and other aberrant ver-
tebrate hosts [27]. When L3 reach the CNS, the larvae elicit clinical symptoms due to
the direct destruction of nervous tissue, the consequent increase in intracranial pressure,
and the host inflammatory response (which might get even higher in the event of larval
death) [28,29]. The most common signs are severe headache, vomiting, fever, nausea,
neck stiffness, paresthesia, hyperesthesia, and visual dystopia [30]. In children, fever,
nausea, vomiting, somnolence, and constipation are more common than in adults [2]. AEM
may eventually develop into encephalitis (especially in children), followed by coma and
death [30].

Ocular angiostrongylosis appears to be more common in Asia than in the rest of
A. cantonensis distributional range. A recent review [31] shows that most cases occur
in a triangle with India to the west, Okinawa to the northeast, and New Guinea to the
southeast. Outside this area, only three records are known, namely in South Africa [32],
Jamaica [33], and Hawaii [34], all of them published after 2000. In most instances, ocular
lesions are caused by a single nematode invading one eye along the optic nerve [26]. The
worm is detected mainly in the anterior chamber or vitreous fluid without damaging the
retina [31]; however, the subretinal space is also a common site of infection [35]. Patients
often report blurred or floated vision [31]. Other series of ocular symptoms, including
fundus changes, eye redness and pain, and progressive vision loss, eventually leading to
blindness from patients, are also described by Dio et al. [26]. Optic neuritis may develop
as a rare complication [31]. Treatment can be delivered in a variety of ways (e.g., surgery,
laser, corticosteroids); it usually does not significantly improve visual outcome and focuses
on preventing further damage caused by the parasite [35]. Co-occurrence of ocular form
and AEM was recorded in 12 of 42 patients, summarized by Feng et al. [31]; only a single
such case has been recorded in the Indian subcontinent [36]. In cases of ocular diseases, the
nematodes recovered from human eyes were not molecularly characterized, leaving their
identification uncertain.

Ocular angiostrongylosis represents an unusually high percentage of human
A. cantonensis infections in the Indian subcontinent (Table 1), with 13 of 44 (29.5%) published
cases from the subcontinent having ocular symptoms. This is even more evident in Sri
Lanka, where 5 out of 7 (71.4%) of the ocular cases occur. In comparison, reports from
Thailand and China estimate the prevalence of ocular cases to be around 1% [26,35,37]. The
difference in the prevalence of ocular angiostrongylosis may suggest that an enormous



Pathogens 2023, 12, 851

number of AEM cases remain undiagnosed or unpublished or that Angiostrongylus migra-
tion within aberrant hosts in the Indian subcontinent differs from those in other parts of
the world. The distribution of reports suggests that there may be many undiagnosed or
unpublished cases (Figure 2). All published cases are from large metropolitan areas (e.g.,
Mumbeai, Kottayam, Chennai, New Delhi, Colombo) with large hospitals that can diagnose
and report the disease to a scientific community. In addition to the geographic pattern,
records are also accumulating temporally (e.g., both reports from Madhya Pradesh are from
2019; [38,39], suggesting that the diagnosis of a case attracts attention and sparks eagerness
to find more cases. In addition, rat and snail investigations are usually conducted after
human cases have been discovered [40,41]. Regarding the age distribution of the patients,
the ocular and AEM rate in children seems to be like that in adults [38,42—-48], the small
number of pediatric cases does not provide clear evidence. Notably, many case reports
associate the infection with the consumption of monitor lizards; however, there are no
data on the prevalence of A. cantonensis infection in saurian reptiles in the subcontinent
(see below).

N 300 km

© d-maps.com

200 mi

Figure 2. Schematic distribution of Angiostrongylus cantonensis reports on the Indian subcontinent.

The red areas indicate countries or states with published records of angiostrongylosis, the black dots
show cases—large dots multiple cases, and small dots single cases. Exact location of one Nepalese
case is unknown, therefore, it is not indicated. The borders between Indian states are not shown, the
map background was downloaded from https://d-maps.com, accessed on 8 November 2022.

Accurate and prompt diagnosis of eosinophilic meningitis caused by Angiostrongylus
cantonensis is critical for appropriate treatment and prevention of sequelae. In general,
systemic clinical examination, laboratory tests, and imaging studies can suggest meningitis
caused by A. cantonensis in endemic areas, however, cannot provide final confirmation of an
etiological agent. Elevated count of eosinophils in cerebrospinal fluid (CSF) is an important
diagnostic feature and often the first step in the diagnostic process [2,28,49,50].

AEM can be diagnosed by immunodiagnostic methods using purified antigens or mon-
oclonal antibodies in CSF or serum. Numerous techniques, including ELISA, immunoblot
assays, gold immunochromatography, and rapid dot immunogold filtration assays, have
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been used for decades. However, these techniques may have limitations as the antibody
may be undetectable in the early stages of infection [3,30,51,52]. Molecular diagnostic
methods have been employed as a robust diagnostic tool based on PCR, real-time PCR,
LAMP, and recombinase polymerase assay (RPA), which has the potential to improve AEM
diagnosis by enabling highly sensitive detection of A. cantonensis DNA in a patient’s CSE,
serum, or other materials [51-61].

In the Indian subcontinent, 45 previously reported AEM cases were diagnosed based
on factors such as a history of eating raw monitor lizard meat, clinical examination, labo-
ratory findings (elevated eosinophils in blood or CSF), ophthalmologic examination and
imaging techniques [48,62-67], supported by morphological identification of nematodes in
cases when they were retrieved. Imnmunoblotting and qPCR were used to confirm AEM in
two cases only [46,63], Table 1.

Table 1. Overview of reports of human angiostrongylosis on the Indian subcontinent, showing
clinical form and diagnostic methods involved; definitive and intermediate hosts’ data are included
for those studies where they were associated with the investigation of human cases.

Monitor Lizard

Country: State EM Cases OC Cases Diagnostics Method . References
Consumption
India: Delhi 1 Slit lamp examination [43]
India: Delhi 1 Clinical examination, u_ltrasm.md B scan, and fundus [42]
fluorescein angiography
. History of raw monitor lizard meat consumption, clinical
India: Karnataka 1 presentation, and EE in CSF * [64]
India: Karnataka 1 Serum an.d' CSF antlbodles. to A. canton?nsw t’:l-kDa . 163]
antigen positive and magnetic resonance imaging (MRI)
India: Karnataka 1 MRI findings, CSF examination, larvae in CSF wet mount + [44]
. History of raw monitor lizard meat consumption, clinical
India: Kerala > presentation, and EE in CSF * [66]
. History of raw monitor lizard meat consumption, clinical
India: Kerala 10 presentation, EE in CSE,, larvae in CSF wet mount, MRI * 48]
India: Kerala 3 EE in CSF and peripheral blood [62]
India: Kerala 1+ ' Opht}.lalmolo.glcgl examination, EE in CSF, and 136]
microscopic examination of the worm retrieved from eye
India: Kerala 1 EE in CSF, real-time PCR for A. cantonensis [46]
India: .
Maharashtra 1 Not mentioned [6]
India: 2 History of r 1 nsumption and EE in CSF [68]
Maharashtra story of raw slug consumption a
India: . . -
Maharashtra 2 EE in CSF and, peripheral blood [47]
India: 1 Histological examination of brain tissue after autops [65]
Maharashtra & y
India: 1 Slit lamp examination and anterior segment optical [38]
Madhya Pradesh coherence topography (AS-OCT)
India: 1 Slit lamp examination and microscopic examination of 139]
Madhya Pradesh the worm retrieved from eye
. History of raw monitor lizard meat consumption, clinical
India: Puducherry ! presentation, EE in CSF analysis * (671
Computerized tomography (CT) scans, parietal
India: Telangana 1 craniotomy examination of the worm retrieved from [69]
cerebral abscess
India: 1 Micr: ic examination of the worm retrieved from [6]
West Bengal croscopic e ion of the wo! etrieved from eye
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Table 1. Cont.

Monitor Lizard

Country: State EM Cases OC Cases Diagnostics Method . References
Consumption
Sri Lanka 1 Ophtha.lmo'loglcal examination .and microscopic [70,71]
examination of the worm retrieved from eye
Sri Lanka 1 Ophtha.lmo.loglcal examination .and microscopic (72]
examination of the worm retrieved from eye
Sri Lanka 1 . Fundo.scopm c.)pht.halmologlcal examination and (73]
microscopic examination of the worm retrieved from eye
Sri Lanka 1 EE in CSF and peripheral blood [74]
Sri Lanka 1 Ophthalmological examination [75]
. History of raw monitor lizard meat consumption, clinical
Sri Lanka 1 presentation, EE in CSF + [45]
Sri Lanka 1 . Fundqscopm Qphfhalmologlcal examination and 76]
microscopic examination of the worm retrieved from eye
Nepal: Slit lamp examination, microscopic examination of the
1 ; (771
Kathmandu worm retrieved from eye
Nepal 1 Ophthalmological examination and microscopic 78]

examination of the worm retrieved from eye

Clinical form abbreviations and symbol definition: OC—ocular angiostrongylosis; EE—eosinophil examination;
EM—eosinophilic meningitis; *—co-occurrence of OC and EM was reported by Baheti et al. [36]. +—Cases with
preceding monitor lizard meat consumption. **—Reported contact with monitor lizard but not its consumption.
Note: There is no single direct record of the presence of Angiostrongylus sp. in monitor lizard published from the
subcontinent. Thus, all human cases associated with monitor meat consumption (Table 1) are only assumptions
made from patients” anamneses.

4. Global Distribution and Prevalence of Angiostrongylus cantonensis in the
Indian Subcontinent

A. cantonensis first became known in China in the 1930s and was observed there fre-
quently on different hosts [10,12,79,80]. After the 1950s, numerous studies demonstrated
the presence of A. cantonensis on various islands in the Pacific [10,12,81,82] and Oceanic
regions [13], islands of the Indian Ocean [83]. In the late 1970s, the parasite was dis-
covered in northeastern Africa [84]. In the New World, A. cantonensis has been found
in some Caribbean islands, namely Cuba, the Dominican Republic, Jamaica, and Puerto
Rico [85,86], and in continental Americas [87]. In recent years, it has become apparent
that A. cantonensis is spreading at an alarming rate. Recent discoveries have been from
South America and Brazil [88], the Canary Islands (Spain) [89], Mallorca (Balearic Islands,
Spain) [90], Uganda [91], and North America [92,93]. The life cycle of A. cantonensis is
typically associated with invasive definitive hosts and intermediate hosts, making it a text-
book example of a multiple biological invasion. The African giant snail Lissachatina fulica
(Bowdich, 1822) may have transmitted the parasite to the Pacific basin, where it spread
rapidly within pre-existing rat populations [12]. It has been speculated that human activities
such as global transport early in World War Il may have contributed to the rapid spread of
A. cantonensis [10,82].

In the Indian subcontinent, the presence of A. cantonensis was first detected in Sri
Lanka during a survey by Alicata (1965). However, the first reported human case in Sri
Lanka most likely dates from 1925 [70,71], i.e., before the parasite was formally described.
If the determination is correct, the 1925 study is the first record of nematodes of the genus
Angiostrongylus in a human host [94]. Later, A. cantonensis was also recorded in India [6]. In
1982, the first intermediate host survey took place in the Indian state of Maharashtra and
confirmed the presence of A. cantonensis throughout India [40]. To date, the parasite has
been detected in Sri Lanka, nine Indian states, and Nepal (see Table 1 and Figure 2). Most
records (45 of 32 publications) are human clinical cases, supplemented by a few studies on
definitive hosts [6,10,40,41,68,95] and intermediate hosts [40,68,96,97]. Paratenic hosts and
incidental hosts other than humans have never been studied in the subcontinent.
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5. Angiostrongylus cantonensis in the Definitive Rodent Host

Angiostrongylus cantonensis is thought to be largely associated with three invasive
species of Rattini: R. rattus, R. norvegicus, and R. exulans, with local involvement of a few
other rodent hosts [58]. The frequency with which infection spreads to other rodent species
is largely unknown. An infection of Sigmodon hispidus (Say & Ord, 1825), a rodent host in
the rather distant family Cricetidae, has been reported in North America [98].

Current knowledge about the distribution of species of the Rattini in the Indian
subcontinent is very inconsistent. Most data relate to a few highly adaptable synanthropic
species, while most taxa are endemic rodents with a virtually unknown natural history.
According to the comprehensive concept of Rattini (as defined by Lecompte et al.) [8],
32 species of 10 genera (Bandicota, Berylmys, Chiropodomys, Dacnomys, Leopoldamys, Micromys,
Nesokia, Niviventer, Rattus, Vandeleuria) of rats inhabit the Indian subcontinent [99-102]. The
highest rat diversity occurs in the northeast of the subcontinent (e.g., 15 species in West
Bengal, Figure 3), where areas overlap with several species from Southeast Asia (including
the A. cantonensis). This is followed by Sri Lanka, the Western Ghats, and the Andaman
and Nicobar Islands (8-9 species each); the diversity there is due to a high degree of local
endemism [99]. Although many A. cantonensis records are known from the Western Ghats
and Sri Lanka (Figure 2, Table 1), the involvement of endemic species in the life cycle of
this parasite has never been studied.

N 300 km

© d-maps.com

fhan ) 200 mi

Mercator

Figure 3. Diversity of rat species (Rattini) on the Indian subcontinent. The grayscale corresponds to
the number of rat species described from each country or state, as indicated in the figure. Borders
between countries white; coast, borders between Indian states, and outline of the subcontinent black.
The map background was downloaded from https://d-maps.com, accessed on 8 November 2022.

Six species of rats inhabiting the Indian subcontinent were confirmed as A. cantonensis
definitive hosts. Three species (Bandicota indica, R. rattus, R. norvegicus) are reported as
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hosts in studies directly from the subcontinent (Table 2) [6,10,40,41,83,95,96,103], while
three others (Berylmys bowersi, Niviventer fulvescens, Rattus exulans) are known hosts in
different parts of their distribution range [104]. From an ecological perspective, four of
these species (B. indica (Bechstein, 1800), R. rattus, R. norvegicus, R. exulans) are synanthropic
pests that frequently encounter humans [102]. The other species B. bowersi (Anderson,
1879), and N. fulvescens (Gray, 1847) [104], avoid human settlements. From the proven
definitive hosts, R. rattus probably represents a major source of A. cantonensis infections
and should be investigated; R. exulans is of minor importance due to its limited range in
the subcontinent; R. norvegicus is typically found in large urban areas and seems unlikely
to spread infection in rural areas [99]. On the other hand, data are lacking for several
other synanthropic species. A total of 437 Bandicota bengalensis (Gray & Hardwicke, 1833)
were examined by Alicata, Renapurkar et al. [40,83], and Limaye et al. [95], with no single
A. cantonensis record. According to Agrawal (2000), this species displaces R. norvegicus
in large urban areas, especially in Kolkata. If there is a difference in host competence
between B. bengalensis and R. norvegicus, this could be the theoretical reason why only
one human case is known from Kolkata, compared to Mumbai or Delhi (Table 1). Rattus
tanezumi (Temminck, 1845) has only recently been separated from R. rattus [105,106], so in
the case of R. rattus records, it cannot be clearly determined which species was examined.
From a geographic perspective, A. cantonensis in rats was never surveyed in most of the
subcontinent. The most conspicuous areas for further study are in the northeast of the
subcontinent and associated islands (e.g., Andaman and Nicobar Islands, R. rattus was
introduced in the Maldives [107]. (Figure 3). In general, the gaps in knowledge about the
definitive hosts of A. cantonensis in the Indian subcontinent are compelling, considering
that A. cantonensis is easily diagnosed and mainly associated with rats.

Table 2. List of records of A. cantonensis from hosts other than humans, as published from the
Indian Subcontinent.

Bandicota indica  Rattus norvegicus  Laevicaulis alte Macrochlamys
Country State (Rodentia: (Rodentia: (Gastropoda: indica (Gastropoda:  Reference
Muridae) Muridae) Veronicellidae) Ariophantidae)
India Kerala + [41]
India Maharashtra + + + [95,96]
India Tamil nandu + [10,83]
Sri Lanka Ceylon + + [10,83]

“+"”—Definitive and intermediate hosts were investigated in the Indian subcontinent by region.

5.1. Angiostrongylus cantonensis in Intermediate Hosts

Like most other metastrongylids, the life cycle of A. cantonensis invariably involves mol-
lusks as obligate intermediate hosts. However, the nematode can develop in a wide range of
gastropods, with extreme variation in prevalence among different populations [10,22,108].
Environmental factors, rat density, and the ecology of specific snail or slug species are likely
responsible for the observed differences [22,58,82]. Importantly, A. cantonensis exploits both
aquatic and terrestrial mollusks, which is one of the reasons for the differences in the local
epidemiology of human infections [109,110]. As for gastropods in the Indian subconti-
nent, Tripathy and Mukhopadhyay (2015) provided a list of the freshwater mollusks of
India [111], and Sen et al. summarized the diversity of terrestrial snails in India [112]. Their
conclusion that there are 1129 species of terrestrial snails in India alone shows how difficult
it is to grasp an enormous diversity of these invertebrates in the Indomalayan region. In
addition, there are several smaller studies that list gastropods from different geographic
or ecological parts of the subcontinent, such as mangrove mollusks from India [113] or
terrestrial snails from Sri Lanka [114]. Many others also attempt to characterize diversity
without providing indicative lists [115,116]. Given the low host specificity so far known in
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A. cantonensis, it is easy to imagine that virtually any of these species could play the role of
an A. cantonensis intermediate host.

In most studies, invasive snail species are considered more important than native
fauna due to their ecology and high population density. The spread of Lissachatina fulica,
one of the most detrimental invasive mollusk species, is commonly referred to as the
gateway for the global spread of A. cantonensis [117,118]. Bradybaena similaris (A. Férussac,
1822), Cornu aspersum (O. E. Miiller, 1774), Parmarion martensi (Simroth, 1893), Pila spp.,
Pomacea canaliculata (Lamarck, 1822), and P. maculata are associated with A. cantonensis
in Southeast Asian countries, Australia, and the Caribbean islands [58,119-125]. Barrat
et al. [58] provide a detailed overview of the prevalence and intensity of infection in species
where they are known.

L. fulica and P canaliculata are described as invasive in the Indian
subcontinent [126-128], along with Laevicaulis alte (Férussac, 1822), Physa acuta (Draparnaud,
1805), and several other species [128-133]. L. fulica is common in almost all states, locally at
densities, with negative impacts on agriculture [134]. P. canaliculata has invaded various
water bodies in the Indian subcontinent [126], L. alte is widely reported in India and is
known to have negative impacts on native snail species in the area [135]. Although there
is no comprehensive study summarizing mollusk invasion across the subcontinent, the
online data (www.iNaturalist.org, accessed on 8§ November 2022) show a wide occurrence
of the major invasive snails and slugs in India.

To date, few studies have addressed A. cantonensis in mollusks in the Indian subconti-
nent. Limaye et al. reported A. cantonensis infection in Macrochlamys indica (Godwin-Austen,
1883) [95]; the other few studies in the subcontinent [40,68,96,97] focused on a single species,
the invasive slug L. alte [68].

5.2. Snail Consumption

Limited information is available on the scale of edible snail consumption in the Indian
subcontinent. Snail consumption is well-known in some parts of India, such as the north-
eastern region, West Bengal, and other places such as Bihar, Karnataka, Kerala, Madhya
Pradesh, and Tamil Nadu [136-139]. In these regions, snail meat is well known among
urbanites and rural tribal communities for its therapeutic and culinary uses [140]. Although
the Indian Council of Agricultural Research (ICAR) has supported the introduction of snail
farming, there are few snail farms in the country. Instead, snails are collected from the
wild rather than being cultivated [141]. Supplementary Table S1 provides an overview of
mollusk consumption. Freshwater snails, Pila globosa (Swainson, 1822), Bellamya bengalensis
(Lamarck, 1822), Viviparus viviparus (Linnaeus, 1758), and several species of terrestrial snails
are among the snails reported to be most consumed in many parts of India [140,142-144].
Sharma et al. reported a case of angiostrongylosis in humans after consumption of raw
slugs L. alte [68] but this species has not been mentioned in studies on the consumption of
edible mollusks.

Consumption of raw or insufficiently cooked snails is a common source of human
infection in Southeast Asian countries such as China, Taiwan, Thailand, and Hong Kong,
including reports of associated clusters of infection [109,145]. However, nematode larvae
are sensitive to high temperatures, and even short boiling kills L3 of A. cantonensis in
infected mollusks [146]. Snails used in reviewed traditional Indian dishes are always
prepared by boiling or frying for 5-10 min with various flavors and spices. Technically,
following these procedures prevents the presence of live infectious larvae in cooked dishes.
Importantly, many recipes recommend soaking the snails in water for 24 h before use.
Together with the initial cleaning, this is a critical moment that deserves attention from an
epidemiological point of view. The L3 actively escape from snails [147] and can contaminate
cooking surfaces and utensils in high numbers [24]. Reportedly, the water from the soaked
snails is used as eye drops to treat conjunctivitis as a traditional remedy [148], which may
pose an additional risk of angiostrongylosis since larvae may enter the digestive system
through the nasolacrimal duct.
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6. Angiostrongylus cantonensis in Paratenic Reptilian and Amphibian Hosts in the
Context of Local Consumption in India

6.1. Monitor Lizards (Varanidae)

Both amphibians and reptiles have been identified as natural paratenic hosts of
A. cantonensis [7,149]. In this context, monitor lizards (Varanidae) are most mentioned;
several case reports from the Indian subcontinent include a history of monitor lizard con-
sumption preceding AEM symptoms [44,45,48,63,64,66,67]. Although the taxonomy of
monitor lizards has not been clearly established [150], four ecologically distinct species
inhabit the subcontinent: Varanus bengalensis (Daudin, 1802), V. flavescens (Hardwicke &
Gray, 1827), V. griseus (Daudin, 1803), and V. salvator (Laurenti, 1768). As potential A. canto-
nensis paratenic hosts, V. griseus and V. flavescens can be excluded based on their ecology
or rarity [151]. In the reports associating A. cantonensis infection with monitor lizard meat
consumption, species identification was not discussed, and all cases were automatically
assigned to the Bengal monitor lizard—V. bengalensis. It is the most abundant species
throughout the subcontinent [152], a terrestrial animal inhabiting a wide range of habitats
from tropical to temperate [153], and a documented paratenic host of A. cantonensis in
Thailand [149]; the species has been shown to feed on mollusks. The water monitor,
V. salvator, could be a second potentially important paratenic host. It is a semiaquatic or
amphibious species that lives near bodies of water [154] and has been shown to cross the
sea between islands. However, it can also live on land and adapt to a variety of food
sources, such as human waste when it seasonally visits tourist sites [151]. Because of its
ability to disperse to islands, it is also the only monitor species in the Andaman and Nicobar
Islands [152]. Cannibalism is known in both monitor species [151], but its role in the life
cycle of A. cantonensis remains to be investigated. Despite the above, the assumption that
consumption of raw monitor meat is a major cause of angiostrongylosis in humans does not
seem to be based so much on facts. V. bengalensis was found to be a paratenic host harboring
L3 of A. cantonensis in Thailand [149], and a subsequent study found 100% prevalence at
five of four Thai sites [155]. However, these are the only two studies that directly detected
A. cantonensis in monitor lizards. All subsequent records associate the cases only with the
consumption of monitor lizards mentioned by the patients. In the Indian subcontinent, the
presence of A. cantonensis in amphibians or reptiles has never been directly demonstrated in
any study, but it is likely (see, e.g., Anettova et al.) [156]. Of six records in which patients ad-
mit to previous consumption of mnitor lizards [44,45,48,63,64,66,67], only one is described
in detail, likely ruling out other possible sources of infection [45]. If all these associations
were true, it would mean that 47.6% of human cases were caused by the consumption of
reptiles—an unusually high number compared to more sporadic cases from SE Asia, e.g.,
Yang et al. [157]

6.2. Snakes

Little attention was paid to the role of snakes in the life cycle of A. cantonensis [158]. In
India, the consumption of snake meat is not considered a delicacy. However, numerous
articles describe snake meat, gallbladder, and skin used in traditional therapies by tribal
communities [159-166]. There have been no published cases of neurological or ocular
disease caused by A. cantonensis linked with the consumption of snake products. Depending
on the region and tribe, their products are used in different ways; the most used snake
species are listed in Supplementary Table S2.

6.3. Amphibians

The role of amphibians in the life cycle of Angiostrongylus cantonensis deserves more
attention. Limited studies have experimentally demonstrated frogs as paratenic hosts [167],
and A. cantonensis infection has also been detected in free-living frogs [158,168,169]. Reports
of angiostrongylosis in humans due to the consumption of frog meat have come from China,
Japan, Taiwan, and the United States [7,158,168]. Unlike monitor lizards, frogs are ignored
as a source of A. cantonensis infection in the Indian subcontinent. In India, amphibians play

11



Pathogens 2023, 12, 851

an important role in cultural traditions, and tribal communities throughout the country
rely on amphibians for a variety of uses, including food and traditional medicine [170,171].
However, frog meat is not commonly consumed in India [172]. Due to the trade ban
on the export of frog meat and the restriction on the collection of frogs in India [173],
they are not widely consumed in the market, yet frog meat continues to be consumed in
tribal communities across the country [161,174-176]. The most popular way to consume
frogs for medicinal purposes is to boil the meat and eat it dry fried or in soup [176]. The
Hoplobatrachus tigerinus (Daudin, 1802), Nasikabatrachus sahyadrensis (Biju & Bossuyt, 2003),
and Euphlyctis cyanophlyctis (Schneider, 1799) frogs are the most consumed frog species in
India [175-177]. Supplementary Table S3 provides examples of frog meat consumption
in India.

To our knowledge, frogs have not been investigated as potential hosts for A. canto-
nensis in India, and no cases have been reported associated with the consumption of frog
meat, which contrasts with numerous human cases of angiostrongylosis associated with the
consumption of raw monitor lizard meat. Unlike frogs, monitor lizards are large animals
that are not consumed every day. It is possible that patients affected by angiostrongy-
losis are likely to remember eating them, associate these two events, and report this to
their physician.

Importantly, most studies on the consumption of amphibians and reptiles in the Indian
subcontinent report situations in which the meat of these animals is prepared in various
ways, including frying, roasting, and boiling. This should be given more attention in
the future because nematode larvae cannot survive in cooked animal meat; rather, the
infectious L3 from A. cantonensis can contaminate kitchenware and cooking utensils and
cause infections in humans.

7. Conclusions

Despite numerous cases of angiostrongylosis in humans, A. cantonensis research in the
Indian subcontinent has lagged behind neighboring Southeast Asia and China. Published
studies on the possible life cycle invariably refer to infections in humans. In terms of
definitive hosts, A. cantonensis has been studied locally only in synanthropic rodents,
making the potential sylvatic cycle an unexplored area for future research.

Geographically, A. cantonensis is well known in southern India and Sri Lanka, with
most records coming from large metropolitan areas with large hospitals and dense human
populations. Rat species richness appears to play a minor role, as hotspots of diversity do
not overlap with the frequency of human cases. The very narrow focus of the published lit-
erature and the uneven geographic distribution suggests that A. cantonensis infections may
be significantly underdiagnosed. The clinical symptoms divide human angiostrongylosis
into two syndromes—eosinophilic meningitis and ocular angiostrongylosis. The separation
of the two syndromes raises the question of whether they are caused by the same nematode
species. Nematode identification was invariably based on nematode morphology, with no
DNA sequences available from A. cantonensis throughout the subcontinent. Available molec-
ular data [178-186] distinguish three related species, namely A. cantonensis, A. malaysiensis,
and A. mackerrasae [183]. The possible presence of A. malaysiensis or some yet undescribed
Angiostrongylus species and the hypothetical infection of humans by other metastrongy-
loid nematodes further complicates the question of the identity of A. cantonensis in the
Indian subcontinent. Molecular studies that enable proper identification and description
of genetic variability of Angiostrongylus in the Indian subcontinent are urgently needed,
as is awareness and capacity building in the field of A. cantonensis diagnostics among
medical professionals.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens12060851/s1, Table S1: List of Indian states where
eating snail meat is common; Table S2: Overview of snakes are used for zootherapy in tribal commu-
nities; Table S3: Overview of where frog meat is common. References [174,187-211] are cited in the
Supplementary Materials.
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Abstract: Metastrongyloidea includes nematodes that parasitize mammals, mainly infecting their
respiratory and cardiovascular systems, and are responsible for emerging zoonosis in the world. Ter-
restrial mollusks are their main intermediate hosts, with few exceptions. Here we present the results
of a malacological survey to know the distribution of Angiostrongylus cantonensis in Macapa, Amapa,
in the Brazilian Amazon region, after the report of a case of eosinophilic meningitis in 2018. Mollusks
were collected in 45 neighborhoods between March 2019 and February 2020. They were identified,
parasitologically analyzed, and their nematodes parasites were identified based on the morphology
and MT-CO1 sequencing. Infections of An. cantonensis were observed in Achatina fulica, Sarasinula
linguaeformis and Subulina octona. These are the first records of the natural infection of the last two
species by An. cantonensis in the Brazilian Amazon region. The angiostrongylid Aelurostrongylus
abstrusus, which parasitizes cats, was also detected parasitizing A. fulica and Diplosolenodes occidentalis.
This is also the first record of the slug D. occidentalis infected by Ae. abstrusus. The highest infection
rates were recorded in neighborhoods where the environment conditions favor the proliferation of
both mollusks and rodents. The results demonstrate the ample distribution of An. cantonensis in
Macapa and the need for surveillance and mollusk vector control in Brazil and other countries.

Keywords: Achatina fulica; slugs; snails; zoonotic helminths; eosinophilic meningitis; Aelurostrongylus
abstrusus

1. Introduction

The superfamily Metastrongyloidea includes nematode species that parasitize primar-
ily mammals, by infecting their respiratory and cardiovascular systems, although a few
species are neurotropic [1]. Most metastrongyloid species, specifically from the family An-
giostrongylidae, use terrestrial gastropods as intermediate hosts, although some are known
to parasitize freshwater gastropods [2,3]. In addition to wild animals, some angiostrongylid
species parasitize humans, and domestic and synanthropic animals. The most important
of these angiostrongylid in public health terms is Angiostrongylus cantonensis (Chen, 1935),
which causes cerebral angiostrongyliasis, which is also known as Eosinophilic Meningitis
(EM). A second species of the same genus present in Brazil, Angiostrongylus costaricensis
Morera and Céspedes, 1971, causes Abdominal Angiostrongyliasis (AA) [4-7].
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While EM is naturally endemic to Southeast Asia and some Pacific islands, it is
currently found in many regions around the world, such as the Americas, including
Brazil [8-13]. Up to now, approximately 40 cases of EM have been recorded in Brazil, with
the most recent case coming from the northern state of Amapa (AP) in 2020, in which the
giant African land snail, Achatina fulica Bowdich, 1822, was identified as the transmission
agent [12,14,15].

The life cycle of An. cantonensis involves rats as definitive hosts and various species
of gastropods as intermediate hosts. Humans are accidentally infected in most cases
through the ingestion of mollusks or infected paratenic hosts, as well as the consump-
tion of foodstuffs contaminated with infectious third stage larvae (L3) of the nematode,
which are found in the mucus of the mollusks [16-18]. In Brazil, Rattus rattus (Linnaeus,
1758) and Rattus norvegicus (Berkenhout, 1796) have been found with natural infection of
An. cantonensis [3,19-21].

Mollusks are infected through the ingestion of first stage larvae (L;) released in the
feces of rodents or by the active penetration of the tegument of the mollusk by the larvae.
Two molts occur in the mollusk tissue (L, and L3). A number of different species of mollusk
are known to be infected naturally by An. cantonensis, which contributes to the persistence of
the natural cycle of this parasite, and its dispersal in the environment: Sarasinula marginata
(Semper, 1885), Bradybaena similaris (Férussac, 1821), Subulina octona (Bruguiére, 1789),
Pomacea lineata (Spix in Wagner, 1827) and other Pomacea species. [2,8,11,13,18,22].

Another genus of concern in Angiostrongylidae, is Aelurostrongylus abstrusus (Railliet,
1898), which parasitizes the respiratory tract of both domestic and wild felids [23-25] that
are infected through the ingestion of parasitized mollusks or paratenic hosts [26,27]. The
first stage larvae go up into the trachea, where they are swallowed and excreted in the
feces [25,26]. The larvae penetrate through the mollusk tissue before developing to the third
larval stage. In Brazil, A. fulica is the mollusk most frequently associated with Ae. abstrusus,
although infection of the native slug Latipes erinaceus (Colosi, 1921) has been recorded in
Rio de Janeiro [3,25].

Given this scenario of public health concern and the recent report of a case of EM in
Macapa [14], the present study aimed to expand the investigation of the occurrence and
distribution of An. cantonensis and other angiostrongylid nematodes in terrestrial mollusks
in this municipality. Therefore, the main goal was to know the distribution of the nematodes
that affect the health of both humans and animals and their intermediate hosts in Macapa,
thus contributing to guiding surveillance and control of snail-borne parasitic diseases.

2. Materials and Methods
2.1. Study Design

The terrestrial mollusks were collected from 45 neighborhoods of Macapd over a
14-month period between March 2019 and February 2020. The collecting points included
vacant lots, and public and residential gardens, in which large amounts of debris or
decomposing organic material were present, given that these are favorable environments
for the occurrence of terrestrial mollusks and rodents. The specimens were collected
manually during active searches of each site, which lasted 10-30 min. Each point was
georeferenced with a handheld Garmin 64s GPS, for plotting in ArcGIS 10.4.1.

In the laboratory, the mollusks were kept alive until the parasitological analysis. Speci-
mens from each point were fixed for taxonomic identification based on the diagnosis of
their morphology (shell and anatomy of reproductive system), supported by the relevant lit-
erature [28-35]. These specimens were deposited in the Mollusk Collection of the Oswaldo
Cruz Institute (CMIOC /Fiocruz) in Rio de Janeiro.

2.2. Parasitological Analysis

A total of 306 mollusk specimens were analyzed individually for the presence of
nematode parasites through the artificial digestion of their tissue [36,37] for releasing of
the nematode larvae. These larvae were initially identified based on their morphology
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under a stereomicroscope (100x) and optical microscope (40x), according to Ash [38],
Thiengo et al. [39], and Rodrigues et al. [25]. The larvae with diagnostic characteristics of
the Metastrongyloidea were separated for the sequencing of the mitochondrial cytochrome
¢ oxidase subunit I gene (COI). The larvae of Ae. abstrusus were identified only by their
morphology, based on the presence of a rounded, button-like structure in the terminal
portion of the tail.

2.3. Molecular Analysis

For each sample identified as Angiostrongylus based on the morphological criteria,
10 larvae were transferred to micro-centrifuge tubes and frozen at —18 °C in 30 uL PBS
(Phosphate-Buffered Saline). The genomic DNA was then isolated by thermal shock using
liquid nitrogen, according to the Standard Operating Procedure (SOP) used for this tech-
nique in the Brazilian National Reference Laboratory for Schistosomiasis and Malacology
(LRNEM-IOC), where the MT-CO1 was amplified [40]. The Polymerase Chain Reaction
(PCR) was run in a final volume of 50 pL containing 23.90 pL of ultra-pure water, 11 uL
of 10% trehalose, 5.5 pL. of 10x PCR reaction buffer, 4.4 uL of 2.5 mM dNTPs, 2.75 uL
of 50 mM MgCl,, 1.1 uL of each primer (forward and reverse) (0.2 uM of Nem_F3 and
Nem_R3, modified from Prosser et al. [40], and 0.25 uL of recombinant Taq DNA poly-
merase (Thermo Fisher Scientific, Waltham, MA, USA). A total of 5 uL of the DNA sample
was added to the mixture, to produce a final reaction volume of 55 uL. The PCR products
were purified using the Illustra GFEX PCR DNA and Gel Band Purification kit (GE Health-
care, Little Chalfont, UK), following the manufacturer’s protocol. The purified products
were sequenced bidirectionally using the BigDye Terminator v3.1 Cycle Sequencing kit
(Applied Biosystems, Waltham, MA, USA), according to the maker’s instructions. The
samples were sequenced in an ABI 3730 DNA analyzer (Applied Biosystems) installed at
the DNA Sequencing Platform of the Oswaldo Cruz Institute (PDTIS/FIOCRUZ) in the
RPT01A-DNA Sequencing subunit.

The chromatograms of the amplified sequences were assembled into contigs, analyzed
and edited in Geneious Prime 2023.02.1 (http:/ /www.geneious.com, accessed on 30 Decem-
ber 2023). This sequence was used to search GenBank (www.ncbi.nlm.nih.gov/genbank,
accessed on 30 December 2023) for similar MT-CO1 sequences, using the BLAST (Basic
Local Alignment Search Tool) in the BLASTn algorithm [41]. Sequences of An. cantonensis
obtained from GenBank were used for the phylogenetic analyses, with four taxa of the genus
Angiostrongylus being used as the outgroup, and one taxon of the genus Aelurostrongylus.

The MT-CO1 sequences were aligned using the Muscle tool, which was implemented in
Geneious R9 [42] and the resulting matrix was edited to eliminate poorly aligned extremities
and converted to the Nex format in Mesquite for the construction of the phylogenetic
tree, version 3.51 [43]. The Markov chains were configured in the command block to be
sampled at every 100 generations (sampleFreq = 100) in a total run of 10 million generations
(ngen = 10,000,000). The posterior probabilities were calculated from the residuals, and a
consensus sequence was generated based on the 50% majority rule.

Analyses of Bayesian Inference (BI) were run in MrBayes version 3.2.7 [44], using
the GTR+I+G evolutionary model. The Bayesian analysis was run in the CIPRES Science
Gateway V. 3.3 (https:/ /www.phylo.org/, accessed on 30 December 2023) [45].

3. Results

In all five species of terrestrial mollusks were collected: A. fulica (n = 159), Bulimulus
tenuissimus (d’Orbigny, 1835) (n = 35), Subulina octona (n = 19), and the slugs Diplosolenodes
occidentalis (Guilding, 1825) (n = 29) and Sarasinula linguaeformis (Semper, 1885) (n = 64).
The parasitological examination of 306 of the specimens collected revealed that 163 were
parasitized by nematodes. Of these, 59 specimens presented angiostrongylid larvae from
29 of the 45 neighborhoods of Macapa (Figure 1 and Table 1). Except for B. tenuissimus, at
least one specimen of each mollusk species was infected by angiostrongylid.
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Figure 1. Study area in the municipality of Macap4, in northern Brazil, indicating the points from
which mollusks were collected. Blue star: sites where the mollusks were positive for An. cantonensis;
orange square: sites where mollusks were positive for Ae. abstrusus; green circle: site where the
mollusks were not positive for Metastrongyloidea larvae; pink triangle: sites where both species were
found, An. cantonensis and Ae. abstrusus.

Table 1. The neighborhoods of the municipality of Macapa in which mollusk specimens infected by
angiostrongylid nematode larvae were collected during the present study. The values indicate the
number of individuals infected by each type of nematode in each neighborhood. AA = Aelurostrongy-
lus abstrusus, AC = Angiostrongylus cantonensis.

. . Subulina Diplosolenodes Sarasinula
Achatina fulica octona o’écidentalis linguaeformis
Neighborhoods AA AC AC AA AC
Amazonas 2
Beirol 1 4 2
Boné Azul 2
Embrapa 1
Fazendinha 4
Ipé 1
Jardim Felicidade I 1 1 1
Jardim Felicidade 1T 4
Jesus de Nazaré 1 1
Julido Ramos 1
Marabaixo III 3 1 2
Muca 1
Murici 4
Nova Esperanga 2
Pacoval 1
Palmeiras 2
Pedrinhas 3
Renascer | 3
Santa Inés 1
Sao José 5
Universidade 2
Vale Verde 1
Zerao 1
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The localities of Beirol and Marabaixo III showed greater epidemiological importance
(seven and six snails parasitized by Metastrongyloidea, respectively), unlike the other three
neighborhoods (Buritizal, Jardim Equatorial, Jardim Marco Zero, Novo Buritizal, Parque
dos Buritis, and Sao Lazaro). Mollusks infected with An. cantonensis and Ae. abstrusus
were collected at 15 and 11 localities, respectively (Table 1). Both nematode species were
recorded in three neighborhoods (Beirol, Jardim Felicidade, and Jesus de Nazaré).

Infections of An. cantonensis were observed in A. fulica (23 specimens: 14.11% of the
total of this species analyzed parasitologically), S. linguaeformis (five specimens: 7.81%), and
S. octona (three specimens:15.78%); Ae. abstrusus was detected in only two species: A. fulica
(27 specimens: 16.98%) and D. occidentalis (one: 3.44%) (Figures 2 and 3). The invasive
exotic species A. fulica was the only mollusk parasitized by both nematodes (Table 1).

Figure 2. Photos of live specimens of the species found parasitized with Metastrongyloidea larvae in
Macapa, Macapad, Brazilian Amazon Region: (A)y—Achatina fulica, (By—Subulina octona, (C)—Diplosolenodes
occidentalis, (D)—Sarasinula linguaeformis.

Of the 163 infected mollusks, 36.19% were parasitized with An. cantonensis and Ae.
abstrusus larvae, and the hosts were predominantly A. fulica (51.96% of the total snails
collected in the area). Considering the 306 specimens obtained in Macapa, by species
collected, the indices of infection by Metastrongyloidea (An. cantonensis, Ae. abstrusus and
larvae not identified due to the low parasitic load) and other nematodes can be observed
in Table 2. The terrestrial snail B. tenuissimus was represented by 35 specimens (11.43% of
mollusks obtained in the area), with snails infected by only non-harmful nematodes (ten
snails: 28.57% of the specimens of this species obtained in the area).
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Figure 3. Results of the parasitological analysis of gastropods collected in the municipality of Macapa,
in northern Brazil. AC: gastropods infected with An. cantonensis, AA: gastropods infected with
Ae. abstrusus, F-L: free-living nematodes. Grey line indicated the total of infected specimens.

Table 2. Mollusk species infected by nematode larvae collected in Macapa. The values indicate
the number of individuals infected (1) by each species of nematode and the percentage of infection
considering the total number of parasitized mollusks.

Metastrongyloidea, Angiostrongylidae

Species Collected (n) Parasitized () Angiostrongylus Aelurostrongylus Not Nem(:g)l;:m (n)
cantonensis Only (n)  abstrusus Only (n) Identificated

A. fulica 159 108 23 (14.11%) 27 (16.56%) 10 (6.13%) 48 (29.45%)
B. tenuissimus 35 10 - - 10 (6.13%)
D. occidentalis 29 21 - 1 (0.61%) 20 (12.27%)
S. linguaeformis 64 21 5 (3.06%) - 4 (2.45%) 12 (7.36%)

S. octona 19 3 3 (1.84%) - -

Total 306 163

The sequencing of the CO1 gene generated two good sequences (forward and reverse),
resulting in 700 base pairs for each An. cantonensis sample. The present study generated
18 new sequences of An. cantonensis obtained from 14 specimens of A. fulica, three S. lin-
guaeformis, and one S. octona. All the new sequences have been deposited in GenBank.
In the phylogenetic analysis (Figure 4) we included 17 of these sequences (see Table 3)
and three sequences from Amapa, previously published by Barbosa et al. [14] (GenBank
accession numbers MN994436, MN994437, and MN994438). Some of the sequences were
abnormally short and were not considered to be adequate for analysis. All the sequences
recovered in the present study were of the same haplotype and were 99.5-100% similar to
the An. cantonensis sequences deposited in GenBank.

The sequences obtained in the present study formed a distinct clade (BPP = 75%),
which clustered with the An. cantonensis sequences from Australia, Brazil, Spain, and
Taiwan. All the An. cantonensis sequences form a monophyletic group, albeit with low
support, i.e., BPP = 53% (Figure 4). Monophyletic groups were observed among the
different species of the same genus, such as An. cantonensis (BPP = 50%) and Angiostrongylus
mackerrasae (Bhaibulaya, 1968) (BPP = 100%). The An. cantonensis sequence obtained in the
present study from S. octona was excluded due to its abnormally short length.
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Figure 4. Phylogenetic reconstruction based on the partial sequences of the mitochondrial cytochrome
c oxidase subunit 1 (CO1) gene using the Bayesian Inference (BI) approach. The 50% majority
consensus tree obtained using the GTR + I + G model is shown. The numbers at the branch nodes
are the Bayesian posterior probabilities of the 48 sequences, which include the 20 obtained from the
present study, which are shown in pink, with their respective hosts in blue. Aelurostrongylus abstrusus
was included as the outgroup.
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Table 3. The nematode CO1 sequences included in the phylogenetic analysis of the present study,

with their respective taxonomic classification, country, host, accession number, and reference.

GenBank Acession

Species Geographic Location Hosts Number References
China Rattus norvegicus GQ398121 Lv et al. [46]
China Rattus norvegicus NC013065 Lv et al. [46]
Tailand Mus musculus KT947978 Yong et al. [47]
USA Rattus exulans MK570630 Cervena et al. [48]
French Polynesia Rattus exulans MK570632 Cervena et al. [48]
Australia Rattus fuscipes MN814826 Valentyne et al. [49]
Australia Rattus rattus MN814827 Valentyne et al. [49]
Australia Rattus rattus MN814828 Valentyne et al. [49]
Brazil Achatina fulica MN994436 Barbosa et al. [14]
Brazil Achatina fulica MN994438 Barbosa et al. [14]
Brazil Achatina fulica MN994437 Barbosa et al. [14]
Brazil Achatina fulica PP188369 Present study
Brazil Achatina fulica PP191988 Present study
Brazil Achatina fulica PP191989 Present study
Brazil S. linguaeformis PP191993 Present study
Brazil Achatina fulica PP191994 Present study
Brazil Achatina fulica PP191995 Present study
Brazil Achatina fulica PP191996 Present study
Brazil Achatina fulica PP191997 Present study
Brazil Achatina fulica PP191998 Present study
Angiostrongylus Brazil Achatina fulica PP191999 Present study
cantonensis Brazil S. linguaeformis PP192000 Present study
Brazil Achatina fulica PP192002 Present study
Brazil S. linguaeformis PP192003 Present study
Brazil Achatina fulica PP192004 Present study
Brazil Achatina fulica PP192005 Present study
Brazil Achatina fulica PP217797 Present study
Brazil Achatina fulica PP217798 Present study
Taiwan - AP017672 Unpublish
USA Didelphis virginiana MF000735 Dalton et al. [50]
USA Didelphis virginiana MF000736 Dalton et al. [50]
Brazil Achatina fulica MH511539 Ramos-de-Souza et al. [51]
Brazil Achatina fulica MHb511541 Ramos-de-Souza et al. [51]
Brazil Cyclodontina fasciata MH511542 Ramos-de-Souza et al. [51]
Brazil Bulimulus tenuissimus MHb547424 Ramos-de-Souza et al. [51]
Spain Rattus rattus MK570629 Cervena et al. [48]
Australia Rattus rattus MK570631 Cervena et al. [48]
Tailand - KT186242 Yong et al. [52]
Cambodja Pomacea sp. KY779735 Lv etal. [53]
Cambodja Pomacea sp. KY779736 Lv etal. [53]
Vietnam Pomacea sp. KY779737 Lv etal. [53]
Vietnam Pomacea sp. KY779738 Lvetal. [53]
Australia Rattus fuscipes MN814821 Valentyne et al. [49]
Angiostrongylus Australia Rattus fuscipes MN814822 Valentyne et al. [49]
mackerrasae Australia Rattus fuscipes MN793157 Valentyne et al. [49]
Australia Rattus fuscipes NC046586 Valentyne et al. [49]
Angiostrongylus Malaysia Rattus rattus diardii KT947979 Yong et al. [47]
malaysiensis Malaysia Rattus rattus diardii NC_030332 Yong et al. [47]
Angiostrongylus Brazil Nasua nasua OK663616 Almeida et al. [4]
minasensis Brazil Nasua nasua OK663635 Almeida et al. [4]
) Costa Rica Nasua narica KX378965 Santoro et al. [54]
Ang zostfongy.lus Costa Rica - AP017675 Unpublish
costaricensis Costa Rica - KR827449 Yong et al. [55]
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4. Discussion

Our results confirm and expand on the participation of the terrestrial mollusks in the
maintenance of the life cycle of important metatrongyloids in Brazil, including An. cantonen-
sis and Ae. abstrusus. Although Barbosa et al. [14] reported these nematodes in Macapa, the
malacological investigation indicated only A. fulica acting in the transmission in the Santa
Rita neighborhood, where the case of EM was reported in the municipality in 2018. Barbosa
et al. [14] recorded A. fulica infected with Ae. abstrusus in the Santa Rita neighborhood
of Macapa.

Both An. cantonensis and Ae. abstrusus have also been recorded in other regions of
Brazil [3,21], as well as in other countries [2]. Carvalho et al. [22] reported the infection
of a number of different mollusk species by An. cantonensis in areas adjacent to ports in
different Brazilian states. Bechara et al. [56] also reported the occurrence of A. fulica and
infected definitive hosts in anthropogenic areas of the municipality of Rio de Janeiro, in
southeastern Brazil. Infestations of A. fulica are typically found on vacant lots, where refuse
and decomposing organic material tends to accumulate [21,57,58], as observed at many of
the sites in Macapa.

The An. cantonensis larvae obtained from the mollusks collected in Macapa and
analyzed using CO1 sequences were 99.5~100% similar to the catalogued An. cantonensis
sequences recovered in the BLAST search. In the phylogenetic tree obtained here, the
An. cantonensis samples were closest to the other sequences obtained from Brazil, such as
those identified in the state of Sergipe [51]. But they also clustered with sequences from
Australia, Spain, and Taiwan, which indicates a closer relationship with An. cantonensis from
these regions. A similar relationship between Brazilian An. cantonensis and populations
from Asian countries was found by Monte et al. [59], who observed that the Brazilian
sequences were close to those from Japan, China, and Thailand. These findings may reflect
the proximity of ports at which ships carrying definitive (rodents) or intermediate hosts
(mollusks) infected with An. cantonensis have docked [26,59-61]. The present study is
the first to analyze samples of An. cantonensis from the Brazilian state of Amapa. Given
the rapid dispersal of the snail A. fulica in Brazil and the fact that An. cantonensis has
been found infecting these snails in 14 Brazilian states up to now [3,12,14,21,51,61,62],
phylogenetic studies of this parasite may contribute to the understanding of the dynamics
of its introduction to and dispersal in the country. An. cantonensis was also reported from
other Brazilian states, i.e., Rio de Janeiro, Espirito Santo, Goias, Mato Grosso, Sao Paulo,
Sergipe, Minas Gerais [27,39], and Amazonas [63].

Rodrigues et al. [25] recently also found a strong association between this nematode
and A. fulica, based on the parasitological analysis of mollusks collected from urban areas
in 46 of the 92 municipalities of the state of Rio de Janeiro. These authors also recorded
Ae. abstrusus in the veronicellid slug Latipes erinaceus. Penagos-Tabares et al. [23,24] also
reported the infection of Achatina fulica by Ae. abstrusus in Colombia.

The present study also identified new associations between these nematodes and
terrestrial mollusks in Macap4, specifically, the natural infection of the veronicellid slugs
S. linguaeformis and D. occidentalis by An. cantonensis and Ae. abstrusus, respectively.
Robinson et al. [64] reported that D. occidentalis occurs in the Lesser Antilles, Central
America, and northern South America. The present study reports the first record of the
species in Brazil as well as of its infection by An. cantonensis. By contrast, An. cantonensis
has already been recorded infecting S. linguaeformis in the Brazilian states of Sao Paulo,
Bahia, Espirito Santo, Pernambuco, and Para [12,22].

A previous malacological research study revealed 21 species of exotic and native terres-
trial molluscs to the city of Macapa. In the present study, an epidemiological investigation
revealed the association of nematodes with some of these species of terrestrial mollusks [65].
Achatina fulica was the most common and widespread gastropod species in the study area.
It was also the mollusk most infected by the nematodes, as well as the only species infected
by both An. cantonensis and Ae. abstrusus. These findings further reinforce the importance,
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not only for the dispersal of An. cantonensis, but also the maintenance of its life cycle, in a
number of different countries around the world [2,3,17,22].

While B. tenuissimus was not found to be infected naturally by metastrongyloid larvae
in Macapa, Ramos-de-Souza et al. [51] recorded the association of An. cantonensis and this
species in the Brazilian state of Sergipe. This mollusk is amply distributed in Brazil, where
it has been recorded in eight states: Para, Maranhao, Pernambuco, Bahia, Mato Grosso,
Espirito Santo, Rio de Janeiro, and Sao Paulo [30]. In an experimental study designed to
evaluate the potential of B. tenuissimus as an intermediate host, Martins et al. [66] found
that its susceptibility to infection by An. cantonensis was 17.25%.

The highest nematode infection rates were recorded in the Beirol, Marabaixo III,
and Pedrinhas neighborhoods, where the social and environmental conditions favor the
proliferation of both mollusks and rodents. In northern Brazil, infected Achatina fulica
had also been collected in the municipality of Barcelos, in the state of Amazonas, as well
as in the city of Belém, in Para state, together with infected specimens of R. rattus and
R. norvegicus [67].

Exotic species often have a disproportionate impact on the environment, given their
ecological plasticity, lack of natural predators, and their potential for the transfer of parasites
to the native fauna, a process known as “spillover” [2]. The results of the present study
indicate that the giant African land snail Achatina fulica is a typical example of this problem,
given its ample dispersal throughout all the states in Brazil, as well as the Federal District,
where it is abundant in many urban areas, especially where refuse and debris accumulate,
which favors the presence of rodents and the completion of the life cycle of An. cantonensis
and other zoonotic nematodes [3,12].

Webster et al. [68] highlighted the One Health concept, which associates the health of
human populations with that of both animals and the environment, with a focus on the
transmission of zoonotic diseases. Zinsstag et al. [69] also reinforced the importance of the
One Health concept, which they associate with the term One Medicine, which emphasizes
the need for the integration and convergence of the health of all the species and the
ecosystems they inhabit. Woldehanna and Zimicki [70] also pointed out the importance of
identifying the relationship between human behavior and the probable infection routes, to
ensure the development of effective preventive measures. In particular, the social dynamic
determines the level of possible interactions with animals, as well as the intensity of these
interactions and, in turn, the potential for exposure to pathogens.

5. Conclusions

The present study demonstrated the ample distribution of An. cantonensis in the
municipality of Macapa and the maintenance of its life cycle through the presence of
different species of terrestrial mollusk, besides A. fulica. It also provides the first record of
the occurrence of the slug Diplosolenodes occidentalis infected by Ae. abstrusus in Brazil, as
well as the first records of the natural infection of Subulina octona and Sarasinula linguaeformis
by An. cantonensis in the Brazilian Amazon region.

The finding of different species of mollusks infected with parasitic nematodes high-
lights the importance of such studies for public and veterinary health. We also emphasize
the need for the implementation of measures to improve the health of the local population,
in particular through health education, and the surveillance and control of the mollusk
intermediate hosts. These measures are fundamental to the prevention of the transmission
of neglected zoonotic diseases, in particular EM, in urban areas where infected mollusks
are relatively abundant.
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Abstract: When the zoonotic parasite of rodents that can cause human neuroangiostrongyliasis,
i.e., Angiostrongylus cantonensis, is found in its natural definitive hosts, it is usually reported in iso-
lation, as if the rat lungworm were the only component of its parasite community. In this study, we
report the coinfections found in rats naturally infected by A. cantonensis in urban populations of Rattus
norvegicus and Rattus rattus in Valencia, Spain. In addition to the rat lungworms, which were found
in 14 of the 125 rats studied (a prevalence of 11.20%), 18 other parasite species (intestinal and tissular
protists, microsporidia and helminths) were found, some of them with high burdens. Fourteen of
these nineteen species found are potential zoonotic parasites, namely Blastocystis, Giardia duodenalis,
Cryptosporidium spp., Enterocytozoon bieneusi, Encephalitozoon hellem, Toxoplasma gondii, Brachylaima spp.,
Hydatigera taeniaeformis s.1. larvae, Hymenolepis nana, Hymenolepis diminuta, Angiostrongylus cantonensis,
Calodium hepaticum, Gongylonema neoplasticum and Moniliformis moniliformis. The total predominance of
coinfected rats as well as their high parasite loads seem to indicate a trend towards parasite tolerance.

Keywords: Angiostrongylus cantonensis; Rattus norvegicus; Rattus rattus; parasite fauna; coinfections

1. Introduction

Angiostrongylus cantonensis (Chen, 1935) (Rhabditida: Angiostrongylidae) is a zoonotic
parasite of rodents, including mainly the Norway rat, Rattus norvegicus, and the black
rat, Rattus rattus, as their natural definitive hosts, which become infected through the
ingestion of its intermediate hosts, snails and slugs, or its paratenic hosts, such as fresh-
water prawns, frogs and land crabs, among others [1]. The parasite is known as the rat
lungworm, as the adults live in the pulmonary arteries of rats. When humans accidentally
become infected—via the same route of transmission as rats—the parasite can cause neu-
roangiostrongyliasis due to the presence of the worms in the central nervous system [1].
Therefore, its control must be established under the One Health concept, as the control of
zoonoses is an integral part of this approach.

Angiostrongylus cantonensis has been reported mainly in tropical and subtropical areas,
limited by low temperatures. Until recently, the parasite seemed to be far away from Europe.
However, it was found in rats and snails in Tenerife (Canary Islands, Spain) in 2010 [2]. Yet,
although Tenerife is Europe in a political sense, it is Africa, geographically speaking. Several
years later, in 2019, the parasite was found in hedgehogs in Mallorca (Balearic Islands, Spain)
which, geographically, is Europe [3]. Therefore, it was only a matter of time before it was

Pathogens 2024, 13, 28. https:/ /doi.org/10.3390/pathogens13010028 36

https://www.mdpi.com/journal /pathogens



Pathogens 2024, 13, 28

found in continental Europe, which our research group did in 2022 in urban/peri-urban
populations of R. norvegicus and R. rattus in the city of Valencia (Spain) [4,5].

When A. cantonensis is found in its natural definitive hosts, to our knowledge, it is system-
atically reported in isolation, as if the rat lungworm were the only component of the within-rat
parasite community, thus ignoring possible relationships with other parasite populations (infrapop-
ulations) present in the infected rats. In this context, we report the first data on the concomitant
parasite populations, i.e., protists, microsporidia and helminth coinfections, found in rats naturally
infected by A. cantonensis in an urban rat population in the city of Valencia (Spain).

2. Materials and Methods
2.1. Study Area and Animals

Our research group signed an agreement with the Valencia City Council allowing us to
investigate the presence of zoonotic parasites in rats trapped by the pest control company
Laboratorios Lokimica, as part of the municipal pest control campaign in the city.

The presence of A. cantonensis was investigated in 125 rats, 97 R. norvegicus (43 males,
49 females and 5 indeterminate; 63 adults, 32 juveniles and 2 indeterminate) and 28 R. rattus
(9 males and 19 females; 20 adults and 8 juveniles) trapped between April 2021 and March
2023. We studied rats captured at three trapping sites located in 17 of the 19 districts into
which Valencia is divided, namely, in the sewer system (55 individuals), in city parks and
gardens (43) and in orchards located in a peri-urban area of Valencia (27). Most of the rats,
74, were trapped in spring, 20 in autumn and 31 in winter. The trapped rats were kept at
—20 °C until their parasitological examination.

Rat species were identified based on the external morphometry according to J. Gosalbez [6].
Likewise, rats were considered juveniles or adults according to their body weight and external
morphometry [6].

2.2. Parasitological and Molecular Techniques

Once thawed, the rats were dissected to extract the adult helminths from the different
organs. The helminths found were studied by conventional helminthological techniques
based on morphology. Cestodes and acantocephalans were stained with alcoholic hy-
drochloric carmine and trematodes with Grenacher’s boracic carmine, for 24 h. Subse-
quently, these helminths were partially destained with acidified alcohol, dehydrated in
an alcohol series, cleared with xylene and mounted in Canada balsam between slide and
coverslip. Nematodes were, in turn, studied by direct examination between slide and
coverslip with lactophenol as clearing fluid.

The nematodes found in the pulmonary arteries were also identified by molecular
techniques [4,5]. The study of protozoans in the large intestine content was made by means
of the Midi Parasep® SF (Apacor Ltd., Wokingham, UK) concentration technique followed
by a multiplex PCR (AllplexTM Gastrointestinal Panel-Parasite Assay) for the detection
of protist parasites such as Giardia duodenalis, Entamoeba histolytica, Cryptosporidium spp.,
Blastocystis, Dientamoeba fragilis and Cyclospora cayetanensis [7]. After DNA extraction, the
microsporidia Enterocytozoon bieneusi, Encephalitozoon intestinalis, E. cuniculi and E. hellem
were molecularly investigated by direct PCR [8]. Toxoplasma gondii was searched for in the
rat brains by quantitative PCR (qPCR) [9] and the presence of Leishmania infantum in the
spleens, ears and skin of the rats was also explored by qPCR [10].

2.3. Statistical Analysis

The comparison of the prevalences between intrinsic (age and sex) and extrinsic (site
and season of capture) factors was made through the x? test. Statistical significance was
established at p < 0.05. Results obtained in both rat species, R. norvegicus and R. rattus, were
analyzed and compared.

Statistical analysis was carried out using the IBM SPSS 26.0 for Windows (International
Business Machines Corporation (IBM), Armonk, NY, USA) and StatView 5.0 (Statistical
Analysis System (SAS) Institute Inc., Cary, NC, USA) software packages.
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3. Results
3.1. Angiostrongylus cantonensis Infected Rats

The rat lungworm was identified in 14 of the 125 captured rats (11.20%), namely in
10 R. norvegicus (10.31%) and in 4 R. rattus (14.29%). It was found in the pulmonary arteries
of 13 of the studied rats (10 R. norvegicus and 3 R. rattus). One black rat also harbored
juvenile parasites in the brain and another one harbored the parasites exclusively in the
brain. A total of 192 individuals of A. cantonensis were collected in the rats, with a mean
intensity of 13.71 in the infected rats.

As for the sex of the rats, all R. norvegicus infected by A. cantonensis in the present study
and two R. rattus (12/14 (85.71%)) were male. Only the two juvenile black rats were female
(2/14, 14.29%)). The presence of A. cantonensis in R. norvegicus is sex-biased, with a higher
prevalence of infection in males (10/43 (23.26%)) than in females (0/49); this difference is
statistically significant (x> = 12.785, p = 0.003). This finding is supported by the fact that in
R. rattus, in spite of the low number of black rats parasitized (4/28), and although males
(2/9 (22.22%)) are more highly parasitized than females (2/19 (10.53%)), the difference
between females of both rat species is also statistically significant (x> = 5.314, p = 0.0212).

Concerning the age of the rats, 11 rats infected by the nematode were adults (11/83
(13.25%)) and only 3 were juveniles (3/40 (7.5%)). No statistically significant differences
were found concerning the age of both rat species together. However, considering each
rat species separately, juvenile black rats have a higher prevalence (2/8 (25.00%)) than
juveniles of the Norwegian rats (1/32 (3.13%)); this difference is statistically significant
(X* = 4.414, p = 0.0356).

Angiostrongylus cantonensis was found in rats trapped in 7 of the 17 surveyed districts
of Valencia (41.18%), as well as in the three trapping sites, i.e., in 6 rats of the 55 trapped in
sewers (10.91%), in 2 of the 43 caught in parks (4.65%) and in 6 of the 27 captured in the
orchards (22.22%) (Figure 1). Although the prevalences found are different according to the
trapping sites, the results are not statistically significant when analyzed together due to
the small sample sizes. However, there is a statistically significant difference between the
prevalence found in parks compared to that found in orchards (x? = 5.509, p = 0.0245).

N

Mediterranean sea

2 km

Figure 1. Map of the districts of Valencia; green dots showing the studied ones. Angiostrongylus
cantonensis-infected rats were found in districts with red dots.
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Of the 74 rats, 10 trapped in spring were infected by A. cantonensis (13.51%), while 2
were found parasitized in autumn (10%) and 2 in winter (6.45%).

3.2. Parasite Fauna/Coinfections

The parasite community in the studied organs of the 14 rats consisted of 19 differ-
ent parasite species. Table 1 shows, in addition to A. canfonensis, the 18 other parasite
species found according to rat species. Specifically, the parasite community of the rats
studied consisted of six protists, one trematode, three cestodes, eight nematodes and
one acanthocephalan. Fourteen of these nineteen species found are potentially zoonotic
parasites, namely Blastocystis, Giardia duodenalis, Cryptosporidium spp., Enterocytozoon bi-
eneusi, Encephalitozoon hellem, Toxoplasma gondii, Brachylaima spp., Hydatigera taeniaeformis
s.l. larvae, Hymenolepis nana, Hymenolepis diminuta, A. cantonensis, Calodium hepaticum,
Gongylonema neoplasticum and Moniliformis moniliformis. No rats were found infected by
Leishmania infantum.

Table 1. Parasite species found in 10 Rattus norvegicus and 4 Rattus rattus in urban and peri-urban
areas of Valencia, Spain, captured between 2021 and 2023.

Protists/Microsporidia

Species Microhabitat Cycle n (Host) P (%)
Bl instrer;?ilrlle i ® erz Rr) g?) 11?:
Giardia duodenalis instleg?ilrlle M 7 Rn?Z RY) ?()) 1;’:
Cryptosporidium spp. instrer;?il;e M a Il{n) 10 Rn
Enterocytozoon bieneusi instrer;iil;e M a Rn%l RY) ;g 1;1;
Encephalitozoon hellem instg;iil;e M a }Qr) 25 Rr
Toxoplasma gondii brain D G Rn,61 R) 3(; 1;:1
Helminth species
Brachylaima spp. instleriilie H a Ilin) 10 Rn
Hydatigeml ;Zf]r;izeformis s.l. liver H u R}fl R 4;(; 1;1;1
Hymenolepis nana instleréiil;e H/M 3 ?{n) 30 Rn
Hymenolepis diminuta instlc:lsetlil;e H 3 Rnill Rr) z(S) 1;1:
Angiostrongylus cantonensis aIE:rlirclelsO/IEl:ein H (10 Rl:; Rr) 1?)8 1;7:
Calodium hepaticum ° liver M (10 R111,11 RY) lgg 115;1
Mastophorus muris stomach H a Rn,21 RY) ;g 1;:1
Eucoleus gastricus stomach M 3 13€n) 30 Rn
Trichosomoides crassicauda urinary bladder M 3 ?in) 30 Rn
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Table 1. Cont.

Protists/Microsporidia

Species Microhabitat Cycle n (Host) P (%)
Nippostrongylus brasiliensis SIIE Elésir(lltaers\t/iars/ M s Rn,91 Rr) 2(5) i’:
Heterakis spumosa inlt?eI;%iQne M 3 Rnill Rr) 5;(5) 11221:
Gongylonema neoplasticum GS;E?;agCI;S/ H @ lzin) 20 Rn
Moniliformis moniliformis instIeI;?ili\e H @ in) 20 Rn

2 In pulmonary arteries in 10 Rn and 3 Rr; in pulmonary arteries and brain in 1 Rn and only in brain in
1 Rr. b Range for C. hepaticum is not reported due to the difficulty in the reconstruction of dead parasites.
Abbreviations: Rn, Rattus norvegicus; Rr, Rattus rattus; H, heteroxenous; M, monoxenous; n, number of parasitized
hosts; P, prevalence. Potentially zoonotic species shaded in grey.

Table 2 summarizes the parasitic coinfections, i.e., the concomitant species found in
the A. cantonensis-infected rats and their respective loads in the ten Norway rats as well as
in the four black rats.

Table 2. Concomitant parasite species in naturally infected Rattus norvegicus (Rr) and R. rattus (Rr)
by Angiostrongylus cantonensis: numbers represent helminth loads, and the total number of parasite
species in individual rats is written in bold.

Protists/ Rnls RnlIlS RnIII® RnlIV?° Rn Rn Rn Rn Rn Rn*
Microsporidia Species /Rr*18 /Ry IIP /Ry III © /Rr*IV?° ve vI®° VII P VIII $ IXS Xs
Blastocystis +/+ +/— =/ + + + +
G. duodenalis +/+ +/+ +/— 4 + + +
Cryptosporidium spp. +

T. gondii +/— —/+ + + + +

E. hellem —/+

E. bieneusi —/+ +

Helminth species

Brachylaima spp. 4/— 4
H. t. s.l. larvae 1/— —/1 1/—
H. nana 1 65
H. diminuta 2/— 6/2 2/— 2 43
A. cantonensis 2/30 4/9 7/3 13/2 7 3 33 4 19 57
C. hepaticum +/— +/— +/+ +/— + * + + +
M. muris 10/2 2
E. gastricus 5/— 9 21
T. crassicauda 4/— 4 14
N. brasiliensis 80/— 65/2 31/— 6 2 25 HH HH
H. spumosa 9/— 2/7 1
G. neoplasticum 1/— 3
M. moniliformis 2/—
Total n° species 8 6 6 10 7 8 7 8 12 3

s, Sewers; o, orchards; p, parks. *—juvenile. Abbreviations: G. duodenalis, Giardia duodenalis; T. gondii, Toxo-
plasma gondii; E. hellem, Encephalitozoon hellem; E. bieneusi, Enterocytozoon bieneusi; H. t. s.1. larvae, Hydatigera
taeniaeformis s.1. larvae; H. nana, Hymenolepis nana; H. diminuta, Hymenolepis diminuta; A. cantonensis, An-
giostrongylus cantonensis; C. hepaticum, Calodium hepaticum; M. muris, Mastophorus muris; E. gastricus, Eucoleus
gastricus; T. crassicauda, Trichosomoides crassicauda; N. brasiliensis, Nippostrongylus brasiliensis; H. spumosa,
Heterakis spumosa; G. neoplasticum, Gongylonema neoplasticum; M. moniliformis, Moniliformis moniliformis;
HH, hundreds. + Numbers are not reported in C. hepaticum due to the difficulty in the reconstruction of dead
parasites. Potentially zoonotic species shaded in grey.
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Considering the coinfections in at least more than half of the 10 A. cantonensis-infected
R. norvegicus, coinfection with C. hepaticum was the most frequent one, as all 10 rats
infected by the rat lungworm were also infected by the hepatic nematode. Coinfection with
N. brasiliensis—both species share the lungs as a microhabitat in their life cycles—was also
frequent (in 8 out of 10 rats). No other helminth coinfection occurred in more than five rats,
only concomitance with the protists, Giardia (in seven rats) and Blastocystis (in six rats).

More R. rattus infected with A. cantonensis would be needed to analyze coinfections in
the case of the black rat.

4. Discussion
4.1. Angiostrongylus cantonensis Infected Rats

Published prevalences of A. cantonensis in rats can vary from 3 to 100% depending on
the endemic area [11]. In our study, we found an overall prevalence of A. cantonenesis of
11.20% in Valencia, which—although not very high—was obtained in highly populated
zones of the city, implying a potential (probably minimal) risk of acquiring the infection in
those areas, mainly parks and gardens, in which infected snails could coexist with humans
and, in particular, with children in playgrounds.

Regarding the sex of the rats, A. cantonensis was more prevalent in males of R. norvegi-
cus than in females in the studied rat population. However, depending on the study, there
was no difference found in the prevalence of the rat lungworm between males and females
of the Norway rat, or A. cantonensis was found to be even more prevalent in females than
in males [12,13]. Therefore, sex-biased parasitism seems to be a complex phenomenon
influenced not only by hormones but also by other additional variables [12].

Concerning the influence of the trapping season, due to the small sample sizes, the
results obtained are not statistically significant.

The fact that the highest A. cantonenesis prevalence was found in orchards is remarkable
considering the high rate of consumption of raw vegetables in the Mediterranean diet,
which poses a risk of acquiring the parasite larva through the ingestion of not-sufficiently
washed salads [14].

Previously, we obtained a prevalence of the rat lungworm of 8.51% when 94 rats were
studied [5]. The only data on the prevalence of the nematode near Spain was obtained in
Tenerife, where a prevalence of 19.19% was obtained after studying 297 rats, most of them
from rural areas [15]. Therefore, although the greater the number of rats studied, the higher
the prevalence, there are no statistically significant differences between these figures.

4.2. Parasite Fauna/Coinfections

The studied rats presented a rich and varied within-host parasite community, the most
remarkable finding being that 19 infrapopulations were found in only 14 rats, 14 of these
parasite species being potentially zoonotic parasites posing a possible risk of transmission
to the human population with which the rats coexist.

The A. cantonensis-infected rats captured in the sewers presented the greatest parasite
species richness, as only the stomach nematode Mastophorus muris and the microsporidian
E. bieneusi were not found (Table 2).

All components of the parasite community were found in rats trapped in spring
(10/14). Only two rats captured in autumn and two in winter were found to be infected by
A. cantonensis, so the absence of certain parasites in these individuals cannot be discussed.

Except for the microsporidian Encephalitozoon hellem, all other parasite species, 18,
were found in the 10 R. norvegicus infected by A. cantonensis, and 12 different species were
found in only 4 individuals of R. rattus (Table 1).

Only the 10 A. cantonenesis-infected R. norvegicus analyzed in this study presented a
richer parasite community than the 100 Norway rat individuals we previously studied
in Barcelona [7,10,16], without even considering the microsporidians and T. gondii, which
were not investigated in the Barcelona rats.
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Concerning coinfections, there was no case of monoparasitism among the studied
rats. Adult A. cantonensis-infected R. norvegicus harbored from 6 to 12 different species
in the same individual. The case of one adult R. norvegicus that harbored representatives
of protists, trematodes, cestodes, nematodes as well as acanthocephalans in the intestine,
with most of the helminths having high parasite loads (Table 2, Rn IX), is remarkable. Also
noteworthy is the case of one juvenile Norway rat harboring 57 individuals of A. cantonensis
(26 males and 31 females) in the pulmonary arteries as well as bearing a high burden of
C. hepaticum infecting the liver (Table 2, Rn X). Both rats were trapped in the sewer system.

When analyzing the parasite community/coinfections found and the transmission
routes, in the case of the monoxenous protists and microsporidia, rats became infected by
the fecal/oral transmission route directly throughout the ingestion of cysts/oocysts/spores
contaminating the environment, in particular the sewer system, and orchards, which are
not normally irrigated with safe or potable water.

The presence of T. gondii in the rats may also be related to contamination by oocysts
from cat feces or by cannibalism, a common occurrence in cases of limited food supply. The
absence of the usual amount of food on the streets, due to the lockdown and the closure of
restaurants during the pandemic, could have led to an increase in cannibalism that favored
the T. gondii life cycle.

Considering the helminth parasites, 7 worms presented an indirect or heteroxenous
life cycle and 5 had a monoxenous or direct cycle (Table 1). In the case of H. nana, the
parasite is able to complete its life cycle either with the intervention of an arthropod
intermediate host harboring the larval stage (cysticercoid) (heteroxenous life cycle) or
without the intervention of any intermediate host but directly inside the intestine of the
definitive host (monoxenous life cycle). Only one R. norvegicus presented a high H. nana
load (R.n. IX in Table 2), which suggests the monoxenous-type cycle.

Among the monoxenous helminths, eggs shed in feces (or urine in the case of Tri-
chosomoides crassicauda) are infective for the rats once the eggs embryonate in the soil. To
become infected by C. hepaticum, a nematode that lives in the liver parenchyma, rats must
also ingest the eggs that contaminate the environment. However, in this case, as the eggs
are trapped in the liver, the rat must die in order to release the eggs, which mature in the
soil. It is noteworthy that all the 10 R. norvegicus were infected by C. hepaticum (Table 2).
This could indicate an increase in rat mortality during the pandemic period that ultimately
favored cannibalism, leading to the release of eggs into the environment, enhancing the life
cycle of C. hepaticum, as in the case of T. gondii.

In the case of Nippostrongylus brasiliensis (a murine model of Necator americanus), the
larvae penetrate the skin of rats, or may also be ingested from the soil, and after molting and
maturing in the lungs, reach the small intestine. The eggs are released in feces and hatch
in the soil, releasing the L1 larvae, which become infective after molting. The nematode
was found in almost all Norway rats at high burden levels (Table 2). Exceptionally, two of
them (VIII and IX) harbored hundreds and hundreds of N. brasiliensis. It is hard to believe
that this life cycle does not include processes of autoinfection and that the extraordinary
number of adults in the intestine is due to repeated infections.

For heteroxenous life cycles, rats must ingest the eggs of Hydatigera taeniaeformis shed
in cat (definitive host) feces. Rats act as intermediate hosts harboring the metacestode
(strobylocercus) in the liver parenchyma. Cats are the only predator that rats have in cities,
completing the biological cycle. Several rats harbored both H. taeniaeformis and T. gondii,
parasites that share a common infection route, i.e., cat feces.

To become infected by Brachylaima spp. and A. cantonensis, rats must ingest infected
snails (also slugs or paratenic hosts in the case of the rat lungworms). Two Norway rats
were coinfected by both helminths, leading to the hypothesis that these two parasites could
have shared a snail as an intermediate host.

For the rest of the heteroxenous helminths, intermediate hosts involve arthropods,
mainly beetles for H. diminuta and cockroaches for M. muris, G. neoplasticum and M. monili-
formis, with arthropods being an important element of the rat diet.
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In terms of the host microhabitats for which the worms might compete, A. cantonenesis
(adults, eggs and L1 larvae) and N. brasiliensis larvae (L3 and L4) share the same micro-
habitat, i.e., the lungs. In this regard, 8 of the 10 R. norvegicus and 1 R. rattus harbored
both species (Table 2), so they do not appear to be competitors, at least in the studied rats.
Likewise, six rats harbored A. cantonensis and T. gondii, parasites that share the brain as a
microhabitat at a particular time of their life cycles.

The liver was also coinfected by the tapeworm larvae of H. taeniaeformis and C. hep-
aticum in three R. norvegicus, while the small intestine presented the greatest species richness,
namely up to five different ones (Table 1). Nippostrongylus brasiliensis always occupies the
first part of the small intestine, the duodenum, while the remaining helminths (Hymenolepis
spp., Brachylaima spp. and M. moniliformis) are usually located in the jejunum and ileum.

Hosts which are ubiquitous, like rats, are more likely to become coinfected, as are
hosts that occupy different ecological niches in which several parasites are present [17].
Consequently, rats that flourish in a wide range of environmental conditions, like sewers,
parks, gardens and orchards in this particular case, are exposed to a greater diversity of
parasites. Once infected, hosts use two strategies to cope with their parasites: resistance or
tolerance [18]. Hosts can, by different mechanisms, reduce parasite burdens (resistance)
or they can minimize the damage caused by the parasite load (tolerance). Angiostrongylus
cantonensis was experimentally shown to cause a 10-20% mortality in R. norvegicus [19].
Also, an experimental study on parasite tolerance showed that mortality is related to the
number of larvae of the rat lungworm used to infect rats [20]. However, it is difficult to
know how to extrapolate these findings based on laboratory rats—not infected by any other
parasite—to understand the consequences of coinfection in nature. In addition, coinfections
can have negative effects on the host, accelerating its mortality or, otherwise, coinfections
can have positive effects on the host, reducing its mortality [21].

5. Conclusions

Although we are aware of the limited number of rats studied, and considering that
no histopathological studies were carried out to assess possible tissue damage, the total
predominance of coinfected rats as well as their high parasite loads seem to indicate a trend
towards parasite tolerance, at least in the studied rats infected by A. cantonensis. In this
context, it seems clear that if at some point coinfections led to an increase in the mortality
rate of the urban rat populations in Valencia, those populations that survived, considering
their high reproductive capacity, may have given rise to tolerant populations that justify
these high prevalences, parasite loads, and coinfections found in this study. In any case,
further studies covering larger rat populations over the years as well as histopathological
studies will help to determine whether tolerance is, in fact, the strategy that rat populations
have developed against their parasites.
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Abstract: The nematode Angiostrongylus cantonensis has been reported worldwide. However, some basic
questions remain unanswered about A. cantonensis in Ecuador: (1) Was the invasion of A. cantonensis in
Ecuador unique, or did it occur in different waves? (2) Was this invasion as recent as historical records
suggest? (3) Did this invasion come from other regions of South America or elsewhere? To address
these issues, we assessed the genetic diversity of MT-CO1 gene sequences from isolates obtained in
11 of Ecuador’s 24 provinces. Our Bayesian inference phylogenetic tree recovered A. cantonensis as a
well-supported monophyletic group. All 11 sequences from Ecuador were identical and identified
as AC17a. The haplotype AC17a, found in Ecuador and the USA, formed a cluster with AC17b
(USA), AC13 (Thailand), and AC12a-b (Cambodia). Notably, all the samples obtained in Ecuadorian
provinces’ different geographic and climatic regions had no genetic difference. Despite the lack of
genetic information on A. cantonensis in Latin America, except in Brazil, our finding differs from
previous studies by its absence of gene diversity in Ecuador. We concluded that the invasion of
A. cantonensis in Ecuador may have occurred: (1) as a one-time event, (2) recently, and (3) from Asia
via the USA. Further research should include samples from countries neighboring Ecuador to delve
deeper into this.

Keywords: Invasive species; eosinophilic meningoencephalitis; cytochrome c oxidase subunit I

1. Introduction

The rat lungworm Angiostrongylus cantonensis (Chen, 1935) was first described in the
bronchi of the rodents Rattus rattus (Linnaeus, 1758) and Rattus norvegicus (Berkenhout,
1769) in Guangzhou (formerly Canton), China [1]. This nematode is the etiological agent
of neuroangiostrongyliasis, which is the leading cause of eosinophilic meningitis (EM) or
eosinophilic meningoencephalitis (EME) in humans, an infectious disease of the central
nervous system [2]. This disease is characterized primarily by increased eosinophils in
peripheral blood and cerebrospinal fluid, among other symptoms such as fever and severe
headache [3/4].

The first documented human case of neuroangiostrongyliasis was in Taiwan in 1944.
However, it took nearly two decades to establish a clear link between the parasite and the
disease (i.e., A. cantonensis as a causative agent of EME) [5]. Since the first report, several
outbreaks have been reported globally as the parasite has spread from traditional endemic
regions of Southern China and Southeast Asia to the Pacific islands, Japan, Australia,
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Africa, the Canary Islands, the Balearic Islands, and the Americas, including the USA,
Caribbean islands, and Brazil [2,4,6,7]. In Europe, A. cantonensis infections have been
reported in different countries, although apparently, only one case was autochthonous [8].
By 2008, more than 2800 cases of human angiostrongyliasis had already been recorded
in 30 countries [9]. The spread of parasites in different regions threatens people living in
endemic areas and a growing number of travelers visiting these regions [10].

In 2008, A. cantonensis was reported for the first time in Ecuador parasitizing the
giant African land snail Achatina (Lissachatina) fulica Bowdich, 1822 and the rats R. rattus
and R. norvegicus [11,12]. Since then, outbreaks and isolated cases have been reported to
the Ministry of Public Health of Ecuador (MSP) [13], with most clinical-epidemiological
suspicion and one necropsy-confirmed case [14]. The parasite is now considered endemic
throughout most of the country [11,15]. The invasive pest A. fulica is one of the main
intermediate hosts for A. cantonensis [16]. This mollusk lives in urban and rural areas
and plays a vital role in the spread of the parasite [17]. Humans may become infected
by ingesting food contaminated with third-stage larvae or eating infected raw snails [2].
Thus, A. fulica is an essential transmitter of eosinophilic meningoencephalitis and ocular
angiostrongyliasis [18].

Different molecular biology methods have been employed to detect A. cantonensis [19-24].
Furthermore, they have been applied to explore systematic and population genetic aspects
of Angiostrongylus taxa since populations have significant variability [25-32]. The use of
mitochondrial genes, such as cytochrome c oxidase subunit I (MT-COL1), as molecular
markers for specific parasite identification has been efficient [33-36]. The MT-CO1 gene has
been used in studies on phylogeny, phylogeography, and haplotype identification [37-40].
However, some basic questions remain unanswered about A. cantonensis in Ecuador:
(1) Was the invasion of A. cantonensis in Ecuador a single event, or did it occur in dif-
ferent waves? (2) Was this invasion as recent as historical records suggest? (3) Did this
invasion come from other regions of South America or elsewhere?

To tackle these questions, we assessed the genetic diversity of MT-CO1 gene sequences
from isolates obtained in 11 of Ecuador’s 24 provinces. Thus, we verified how many
lineages could be found in different regions of Ecuador and whether there was enough
time for the lineages to diversify. We also established these isolates” phylogenetic and
phylogeographic relationships, comparing them with other sequences from South America
and the rest of the world. Consequently, we could retrace the possible origin of the lineages
found in Ecuador.

2. Materials and Methods
2.1. Parasites and Experimental Infection

Third-stage larvae (L3) were obtained from A. fulica, collected in 11 provinces of Ecuador
(Figure 1) using the catch-per-unit-effort method for 30 min in each locality [16]. The L3
were used to experimentally infect 12-week-old adult female Wistar strain R. norvegicus rats
(200 £ 2 g body mass). The Instituto de Investigacion en Salud Publica (INSPI) vivarium
supplied the rats with their corresponding health and genetic quality certificates. The cycle
was maintained in the National Reference Center for Parasitology. An average of 150 L
(counted in a Neubauer chamber) were orally administered to each rat using a pipette.
Infected rats were separated into cages (two specimens per cage) and identified according
to the locality (province) where the infected gastropods were collected. Rats were kept
under controlled temperature (21-24 °C) and humidity (60%), alternating 12-h light/dark
cycle, and received food and water at pH 7.0. All procedures followed the guidelines for
the maintenance and use of laboratory animals, following the specific legislation covering
animals used for scientific purposes Directive 2010/63/EU as amended by European Union
(EU) Regulation 2019/1010 [41].
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Figure 1. Map of Ecuador showing the study area highlighting the sampled provinces (https://
provinciasecuador.com/mapa-politico-del-ecuador/ (accessed on 30 April 2023) with modifications).

Thirty-five days after administration of the larvae, the rats were euthanized using
CO;. The thoracic cavity (heart, pulmonary arteries, and lungs) was examined for parasitic
nematodes (juvenile or adult) according to protocols previously established at INSPI [11].
Specific taxonomic characteristics such as caudal bursa and the spicule length were used to
identify the nematodes [42,43]. Approximately 3040 adult A. cantonensis specimens from
two infected rats representing each province were stored in a sterile labeled 50 mL Falcon
tube with 70% ethanol in an ultra freezer at —80 °C.

2.2. Molecular Phylogenetic and Phylogeographic Analyses

We used DNA sequences obtained from adult parasites, as previously reported [39,44,45],
to conduct phylogenetic and phylogeographic studies. Genomic DNA samples were isolated
from adult parasites recovered from the rats representing each province. Before DNA
isolation, the nematodes were partitioned into tiny pieces with a scalpel and suspended in
saline (0.9% NaCl). We used the QlAamp DNA Mini Kit (QUIAGEN, Hilden, Germany)
for DNA isolation according to the manufacturer’s protocol. Each isolated DNA sample
was identified according to its origin and stored at —80 °C until further amplification
by PCR technique. Genomic DNA concentration was measured directly in a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific, Walthan, MA, USA).
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DNA isolated from approximately 30 adult parasites was subjected to PCR to amplify
the mitochondrially encoded cytochrome c oxidase I (MT-CO1) gene [37]. PCR reactions
were performed in a 25 puL total volume containing 12.5 uL of GoTaq Colorless Master
Mix (Promega, Madison, WI, USA: 2x DNA polymerase, 400 uM dATP, 400 uM dGTP,
400 pM dCTP, 400 uM dTTP, and 3 mM MgCl2, pH 8.5); 1.5 uL of 10 uM each MT-CO1
gene primer (Thermo Fisher Scientific, Walthan, MA, USA); 5.5 uL of distilled water; and
4 uL of genomic DNA. We also used a positive control consisting of an adult parasite DNA
obtained from a wild-type rat (R. rattus) and a negative control with ultrapure water. The
primers used were:

col-F (' TAAAGAAAGAAAGAACATAATGAAAATG3')

col-R B'TTTTTTTTTTGGCATTCCTGAGGAGGTY)

Modifications have been made to the original thermal cycling protocol by Vitta et al. [37]
to standardize the technique in the INSPI laboratory and obtain the desired amplicons of
approximately 450 base pairs (bp) as follows: 94 °C for 5 min; followed by 30 cycles of
94 °C for 1 min, 48 °C for 30 s, and 72 °C for 60 s; with a final extension at 72 °C for 5 min.
PCR was performed in a C1000 Touch thermal cycler (Bio-Rad, Hercules, CA, USA).

We verified PCR products after 1.2% agarose (Promega, Madison, WI, USA) gel
electrophoresis in 0.04 M Tris-acetate running buffer, 1 Mm ethylenediamine tetraacetic
acid, pH 8.0 (Thermo Fisher Scientific, Walthan, MA, USA). We added 10 uL of Syber® 1x
(10,000x) dye (Thermo Fisher Scientific, Walthan, MA, USA) to the agarose gel. We added
Blue/Orange Loading Dye, 6 x (Promega, Madison, WI, USA), to each sample. TrackIt
100 bp DNA Ladder (0.1 pg/uL), with 100 to 1000 bp range (Thermo Fisher Scientific,
Walthan, MA, USA), was used as molecular weight marker. Electrophoresis was performed
at 80 V for 55 min using a PowerPac HC power supply (Bio-Rad, Hercules, CA, USA). PCR
products were visualized using the ChemiDoc XRS imaging system (Bio-Rad, Hercules,
CA, USA).

Amplicons purification; cycle-sequencing of both strands via the Sanger method, using
the abovementioned PCR primers; and product precipitation, formamide resuspension, and
analysis using the 3130 DNA Analyzer (Applied Biosystems, Foster City, CA, USA) were
performed at the biochemistry department of the Universidad de las Américas (Ecuador).

The resulting chromatograms were edited with the software platform Geneious R7.0
(Biomatters, Aukland, New Zealand) [44]. Sense and anti-sense sequences of each amplified
and sequenced sample were assembled into contigs. The resulting consensus sequences
corresponding to 11 Ecuadorian provinces were deposited in the GenBank (Table 1).

Table 1. Identification and GenBank accession numbers of sequences obtained in this study, followed
by their respective sampling localities.

Identification GenBank Accession Number Province
LSA-01 MW391020 Esmeraldas
LSA-02 MW390970 Santa Elena
LSA-03 MW390971 El Oro
LSA-04 MW390972 Guayas
LSA-05 MW390967 Zamora
LSA-06 MW390974 Pastaza
LSA-07 MW390969 Orellana
LSA-08 MW390973 Manabi
LSA-09 MW390968 Napo
LSA-10 MW390966 Los Rios
LSA-11 MW390965 Sucumbios

To construct our MT-CO1 dataset, we used A. cantonensis sequences found in Gen-
Bank that overlapped ours (Table S1). As outgroups, we added one sequence of An-
giostrongylus mackerrasae Bhaibulaya, 1968 (MN793157) and three sequences of Angiostrongy-
lus malaysiensis Bhaibulaya and Cross, 1971 (KT947979, KU532150, KU532153), all from
GenBank (Table S1). Sequences in the dataset were aligned by multiple alignments using
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MUSCLE [45], under default parameters, within the Geneious package. Final manual
trimming of non-overlapping regions of the alignment was carried out using the Mesquite
3.70 software package [46].

Two different matrices were used in this study. In the first matrix, used for phylogenetic
inferences, we excluded all duplicated sequences, keeping only one copy of each haplotype
of A. cantonensis and the outgroup. In the second matrix, used for phylogeographic analyses,
we included all A. cantonensis sequences and excluded the outgroup. To find the optimal
partition clustering arrangements and corresponding log(ml) values in both matrices, we
conducted Bayesian clustering of linked molecular data analyses using BAPS 6.0 [47,48].

Bayesian inference (BI) phylogenetic analyses were conducted using MrBayes 3.2.6 [49]
on XSEDE within the CIPRES Science Gateway [50]. We used independent GTR+I+G mod-
els for each codon position, with unlinking of base frequencies and parameters. Sampling
was performed by MCMC, for 10,000,000 generations, with four simultaneous chains, in
two runs. Node supports were given by Bayesian posterior probabilities (BPP) of trees
sampled every 100 generations after removal of the first 25% ‘burn-in” generations. We
assessed sampling adequacy using the program Tracer 1.7.1 [51] to calculate the effective
sample sizes (ESSs) of parameters. We considered robust values above 200 effectively
independent samples.

An intraspecific phylogeographic network was inferred using the program PopART,
version 1.7 [52], with the median-joining network method [53]. Using DnaSP 6.12.03 [54],
we organized the sequences into groups according to their geographic localities (countries).
We also calculated, using DnaSP, the genetic diversity by the numbers of haplotypes (H),
polymorphic sites (S), haplotype diversity (Hd), and nucleotide diversity (7). We finally
used DnaSP for neutrality tests Tajima’s D [55] and Fu’s Fs [56].

3. Results

Along with our 11 MT-CO1 gene sequences of A. cantonensis from Ecuador, we added
105 sequences of A. cantonensis from GenBank and four sequences of outgroups. The
full dataset had 120 sequences of Angiostrongylus ranging from 255 to 1617 bp in length
(Table S1). The haplotypes were named AC1-17, following the names for haplotypes
previously adopted [38,40,57], adding letters to variants. All 11 sequences from Ecuador
were identical and identified as AC17a. The Ecuador sequences were identical to five
sequences from New Orleans, Louisiana, USA (USA-LA), retrieved from GenBank.

3.1. Molecular Phylogenetic Analyses

After multiple sequence alignment, trimming, and removal of all duplicates in the
first matrix for phylogenetic inferences, the matrix resulted in 29 taxa and 255 sites. Of
these, 201 were constant characters, and 41 were variable parsimony-informative characters.
Angiostrongylus cantonensis was represented by 25 sequences, while the outgroup by four.
According to the population structure recovered using BAPS, Angiostrongylus specimens
were distributed in five clusters in the 29 sequences matrix.

After 25% burn-in removal, the Bl mean estimated marginal likelihood was —751.4969,
and the median was —751.1709. The ESS values were well above 200 for all parameters. The
BI phylogenetic tree (Figure 2) recovered A. cantonensis as a well-supported monophyletic
group (BPP = 1.00). Within A. cantonensis, the sequence AC17a, from Ecuador and USA-
LA, was in a polytomy with AC17b (USA-LA); AC5a (Brazil, Japan, French Polynesia,
and Hawaii, USA); AC5b (Japan); AC13 (Thailand); and a moderately supported clade
(BPP = 0.70), formed by sequences AC8a (Brazil) and AC8b (Australia, Balearics, Canaries,
Taiwan, and USA-LA). This polytomy was moderately supported (BPP = 0.78) and formed
another polytomy with sequences AC12a and AC12b from Cambodia. This more inclusive
polytomy was strongly supported (BPP = 0.98) and coincided with Cluster 3.
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Figure 2. Bayesian inference (BI) phylogenetic relationships of A. cantonensis specimens and out-
groups unique MT-CO1 gene sequences (255 bp). GenBank accession numbers of A. cantonensis
sequences are provided in Supplementary Material Table S1. The values at the nodes are BPPs (>0.50).
The scale bar is the number of substitutions per site. Sequence labels are colored based on the clusters
recovered in the BAPS cluster analysis (bottom right). Sequences are labeled AC1-17, following names
for haplotypes previously adopted [38,40,57], adding letters to variants, followed by the localities
(countries) where they are found. Clusters 1-5 were recovered in the BAPS cluster analysis for the
29 sequences matrix.

3.2. Phylogeographic Analyses

The second matrix, for phylogeographic analyses, included only sequences of A. canto-
nensis. This dataset included 11 sequences from Ecuador and 105 sequences from GenBanlk,
excluding the outgroup, totaling 116 taxa and 255 sites after multiple sequence alignment
and trimming. The total number of sites, excluding sites with gaps or missing data, was
254. The number of haplotypes was H = 25, the number of polymorphic sites S = 36, the
haplotype diversity Hd = 0.895, the nucleotide diversity 7 = 0.02546, Fu’s Fs = —2.380, and
Tajima’s D = —0.42728 (p > 0.10).

According to the population structure recovered using BAPS, A. cantonensis specimens
were distributed in seven clusters in the 116 sequences matrix. We indicated the clusters in
the intraspecific phylogeographic network (Figure 3). The haplotype AC17a, from Ecuador
and USA-LA, formed a cluster with AC17b (USA-LA), AC13 (Thailand), and AC12a-b
(Cambodia). This haplogroup was labeled Cluster 5 in the network.
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Figure 3. Median-joining haplotype network of A. cantonensis (25 haplotypes) based on 116 partial
MT-CO1 gene sequences (255 bp). The size of the circles represents the frequency of haplotypes.
The colors of the circles represent the localities (countries) of occurrence of each haplotype. Black
circles are median vectors. Sequences are labeled AC1-17, following names for haplotypes previously
adopted [38,40,57], adding letters to variants. Clusters 1-7 were recovered in the BAPS cluster analysis
for the 116 sequences matrix.

4. Discussion

Introducing non-native mollusks, such as A. fulica, is essential in transmitting A.
cantonensis [58]. Since the mid-20th century, A. fulica has been introduced into the tropics
and subtropics and is considered the most harmful snail pest in these regions [17]. In Brazil,
these mollusks were possibly introduced more than once on different occasions [59]. The
first account is from the mid-1970s in the state of Minas Gerais [60]. The second, better
documented, and probably the chief introduction was in the late 1980s in the state of Parana
from specimens brought from Indonesia for commercial purposes (snail farming) that were
unsuccessful [61]. The giant African snail is now widespread in all 26 Brazilian states and
the Federal District [62,63].

According to data from an Ecuadorian government organization, these snails were
brought into the country in the mid-1990s. As in Brazil, this was for commercial purposes.
Snail farms were built in some valleys of the Ecuadorian highlands, which offered an ideal
temperature between 17 °C and 25 °C [64]. However, their breeding did not provide the
expected economic returns. Inevitably, most of the farms were abandoned, and the snails
were released into the environment. The result was a widespread infestation of urban and
rural areas in almost all of Ecuador’s provinces [12]. Achatina fulica was probably the vector
that introduced A. cantonensis to the country, as in Brazil [65] and China [66].

As for the definitive hosts, it is presumed that R. rattus arrived in Ecuador between
the 16th and 17th centuries with the ships of the Spanish conquistadors [67]. Rattus
norvegicus probably originated in China and spread to Europe, reaching North America
through shipping during the second half of the 18th century. Both species are now widely
distributed in urban areas worldwide [68].
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The existence of intermediate and definitive hosts in almost all of Ecuador has con-
tributed to the endemic nature of angiostrongyliasis distribution, making the control of this
disease even more complex [11]. In 2008, the snail A. fulica (intermediate host) and the rat
R. rattus (definitive host) were found naturally infected by A. cantonensis in Ecuador [11,12].
Both intermediate (A. fulica) and definitive (R. rattus) hosts are non-native species to
Ecuador and are considered among the 100 most important invasive species in the world,
according to the World Conservation Union [69]. Invasive species in an ecosystem can
affect biotic alter interactions, impacting the economy, the environment, or public and
animal health [70,71]. Moreover, elder Ecuadorians’ habit of eating raw snails increases the
risk of A. cantonensis infection [12].

Earlier studies using the MT-COL1 to distinguish A. cantonensis isolates have shown
different geographical isolates in determinate regions [38—40,57]. Tokiwa et al. [40] reported
seven different haplotypes (AC1 to AC7): five were found in Japan (AC1, AC2, AC3, AC5,
and AC7), two in mainland China (AC2 and AC6) and only one in Taiwan (AC1). In Brazil,
analyses from 15 geographic isolates determined the presence of three different MT-CO1
haplotypes (AC5, AC8, and AC9). Most sample sequences were AC5 or AC8, whereas AC9
was a new haplotype [38]. Rodpai et al. [57] identified different A. cantonensis haplotypes
in Cambodia, Myanmar, Thailand, and Hawaii, USA. Two of them (AC2 and AC5) had
been previously reported. The AC2 haplotype, previously reported in China and Japan,
was found in Myanmar. The AC5 haplotype, previously reported in Brazil and Japan,
was found in Hawaii. Four new haplotypes (AC10-AC13) were also reported in Southeast
Asia [57].

Such studies have shown that A. cantonensis in Asia has greater genetic diversity [39,40,57],
indicating that this parasite has been circulating in these regions for a long time. Conversely,
the sequence diversity of A. cantonensis is lower in many areas outside Asia [72]. Otherwise,
there is little or no genetic information on the parasite in other regions of the planet, such
as the Americas, except in Brazil [38].

In the present study, all sequences of the isolates from Ecuador were identical, the
haplotype AC17a. In our phylogenetic analyses, this haplotype was nested into a polytomy
with other sequences from around the world. Remarkably, all samples were obtained from
provinces of Ecuador in different geographic and climatic regions, yet they did not show
any genetic divergence between them.

The findings reported here represent a novelty in studying the genetic diversity of A.
cantonensis isolates. Although there is a need for more information on the genetic diversity
of this parasite in other Latin American countries, except for Brazil, our results are different
from previous studies due to the complete absence of genetic diversity of A. cantonensis
in Ecuador. Even admitting that the low number of nucleotide base pairs obtained could
make the sequence homogeneous in the isolates from Ecuador, this same region of the
MT-CO1 gene showed variations in the other haplotypes compared.

The fact that only one haplotype was found in 11 different Ecuadorian provinces
is revealing. It strongly advocates a single introduction event. Furthermore, this result
suggests that A. cantonensis has been recently introduced in the country, as there was no time
for new haplotypes to differentiate from the original. This may justify the non-existence of
genetic diversity among different circulating isolates.

Interestingly, the sequences from Ecuador shared a recent common ancestor with two
Brazilian haplotypes (AC5 and AC8) [73]. However, it is unlikely that this could indicate
a historical connection between the strains from both countries. The AC5 haplotypes
found in Brazil from Pirituba (state of Sao Paulo), Queimados, and Niteréi (state of Rio de
Janeiro) correspond to a haplotype found in Japan, Hawaii, and French Polynesia [57,72,74],
suggesting that the arrival of the parasite in Rio de Janeiro or Sao Paulo may have occurred
from the Asian continent [38]. This hypothesis is also considered for the AC8a haplotype,
closely related to AC8b, found in Australia, the Balearics, the Canaries, Taiwan, and the
United States of America (USA). This shows the possible spread of A. cantonensis, with the
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giant African land snail, as a vector, from the arrival localities in Brazil to the Southeast,
Northeast, and North Brazilian regions [38].

The sequences obtained here also grouped with AC13 and AC17 haplotypes from
Thailand and the USA, respectively. The haplotypes AC10, AC11, and AC13, from Thailand,
and AC12, from Cambodia, were described by Rodpai et al. [57] in phylogenetic studies
using different DNA regions of A. cantonensis and A. malaysiensis. The haplotypes AC17,
from the USA, were reported in a survey to identify A. cantonensis and determine the
association between ecological characteristics and factors related to definitive hosts (R.
rattus, R. norvegicus, Sigmodon hispidus, and Oryzomys palustris) associated with transmission
risk of angiostrongyliasis in New Orleans [75]. The haplotypes AC12, AC13, and AC17
formed a cluster in the haplotype cluster analysis, suggesting that A. cantonensis may have
arrived in Ecuador from Asia via the USA.

5. Conclusions

Our results suggest that the invasion of A. cantonensis in Ecuador occurred as a single
event since only one haplotype was present in all 11 provinces studied, encompassing
different ecoregions of Ecuador. Moreover, this invasion may have occurred recently, as
we found no variation from the initial haplotype. It is unlikely that A. cantonensis reached
Ecuador from Brazil. It is conceivable that the lineage found in Ecuador came from Asia via
the USA. Future studies should sample countries neighboring Ecuador to infer migratory
routes into this country in more detail.
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Abstract: Eosinophilic meningitis due to rat lungworm, Angiostrongylus cantonensis, is a global public
health concern. Human cases and outbreaks have occurred in the new endemic areas, including
South America and Spain. The growing genetic data of A. cantonensis provides a unique opportunity
to explore the global spread pattern of the parasite. Eight more mitochondrial (mt) genomes were
sequenced by the present study. The phylogeny of A. cantonensis by Bayesian inference showed six
clades (I-VI) determined by network analysis. A total of 554 mt genomes or fragments, which repre-
sented 1472 specimens of rat lungworms globally, were used in the present study. We characterized
the gene types by mapping a variety of mt gene fragments to the known complete mt genomes. Six
more clades (12, 112, 112, V2, VII and VIII) were determined by network analysis in the phylogenies
of cox1 and cytb genes. The global distribution of gene types was visualized. It was found that the
haplotype diversity of A. cantonensis in Southeast and East Asia was significantly higher than that in
other regions. The majority (78/81) of samples beyond Southeast and East Asia belongs to Clade
II. The new world showed a higher diversity of Clade II in contrast with the Pacific. We speculate
that rat lungworm was introduced from Southeast Asia rather than the Pacific. Therefore, systematic
research should be conducted on rat lungworm at a global level in order to reveal the scenarios
of spread.

Keywords: Angiostrongylus cantonensis; Angiostrongylus mackerrasae; Angiostrongylus malaysiensis;
rat lungworm; mitochondrial gene; distribution; phylogeny

1. Introduction

Angiostrongylus cantonensis is the major cause of human neural angiostrongyliasis [1].
Infection with this nematode often results in eosinophilic meningitis (EM) and other dis-
orders of the central nervous system [2]. Humans are vulnerable to infection because of
the varied contact opportunities with mollusk intermediate hosts and paratenic hosts. EM
occurs following ingestion of undercooked or raw snails, slugs, freshwater shrimp or crabs,
lizards, and even contaminated vegetable salad with mollusk slime [3].

A. cantonensis was first discovered from the pulmonary arteries and heart of rats in
southern China in 1933 [4]. Human EM due to A. cantonensis was first reported in 1945 [5],
followed by EM outbreaks in Pohnpei, of the Caroline Islands of the Pacific between
1947 and 1948 [6]. However, the health concern was not noted in the early 1960s when
an outbreak occurred in Tahiti [7]. The subsequent surveys indicated that EM due to
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A. cantoensis was endemic in Southeast Asia and the Pacific [8]. Cases reported in recent
years indicate that A. cantoensis constitutes an emerging zoonosis worldwide [9-11].

The expansion of the endemic range of A. cantonensis has been, to an extent, attributed
to biological invasion. The common definitive host, the black rat Rattus rattus and the
Norway rat R. norvegicus, are listed as the world’s top invasive species [12]. The grow-
ing shipping industry, particularly for cargo, drove the global spread of the two Rattus
species and thus A. cantonensis. The intermediate host snail, Achatina fulica, was thought to
play a key role in the spread of A. cantonensis in World War II, particularly in the Pacific
islands [13]. Indeed, the land snail occupied the islands quickly in the 1940s and 1950s [14];
however, some human cases attributed to the consumption of A. fulica were reported
earlier [15]. The snail has also recently begun to be considered an important factor in the
occurrence of A. cantonensis in South America [16]. Another global invasive snail species is
Pomacea canaliculata, which has been widely distributed in Southeast and East Asia since the
1980s [17]. The freshwater snail has driven the emergence of human neural angiostrongylia-
sis in the region [18]. The continuous invasion and re-introduction of definitive and
intermediate hosts make the global spread of A. cantonensis more complex.

Rat lungworm commonly refers to A. cantonensis. However, rat lungworm also in-
cludes A. mackerrasae and A. malaysiensis, which were not distinguished from A. cantonensis
until the late 1960s [19,20]. Although they have a nearly consistent life cycle, their geo-
graphical range and preference for a definitive host are different. In contrast with the global
distribution of A. cantonensis, A. mackerrasae is confined to the east coast of Australia [21]
and A. malaysiensis is mainly distributed in Thailand, Malaysia and Indonesia [19,22]. The
most common definitive host of A. mackerrasae is the bush rat R. fuscipes and swamp rat
Rattus lutreolus [21], while A. malaysiensis prefers the Malaysian field rat R. tiomanicus and
the ricefield rat R. argentiventer [23]. Nevertheless, the two species have also been discov-
ered from the global invasive R. norvegicus. Therefore, it is possible that the two species of
Angiostrongylus may be distributed beyond the original regions. In addition, the diagnosis
of most infections in human and animal was based on larval morphology and immunology,
the infections due to A. mackerrasae and A. malaysiensis were probably misdiagnosed. For
example, a recent report has shown through molecular evidence that A. malaysiensis can
infect humans [24].

The genetic data of rat lungworms are increasingly prevalent around the world, pro-
viding an opportunity to reveal the global spread pattern of A. cantoensis and check the
possibility of a range expansion for A. mackerrasae and A. malaysiensis. However, the molec-
ular markers are diverse, with a focus on mitochondrial (mt) genes, including cytochrome c
oxidase 1 gene (cox1) [25,26], cytochrome b gene (cytb) [27], NADH dehydrogenase 1 gene
(nad1) [28], ribosomal subunit RNA gene [29], and even complete mt genomes [30]. In the
present study, we will characterize the available complete mt genomes and map the known
gene fragments to the mt genomes so that we can categorize the samples from multiple
published works. Finally, the global distribution patterns of the gene types will be revealed
and the global spread pattern of A. cantoensis will be inferred.

2. Materials and Methods
2.1. Mitochondrial Genomes

The present study will provide eight full mt genomes of A. cantonensis. The adult
worms of A. cantonensis were collected from the pulmonary arteries of wild rats during
the first national survey in China [31], or from Sprague-Dawley rats that were infected by
third stage larvae from snails or slugs. Nine female worms from seven collecting sites were
used for sequencing mt genomes (Table 1). One of the full sequences had been published
(GQ398121). The other eight were characterized by the same methods and used for the
present study [32]. In addition, the mt genomes of A. cantonensis, A. malaysiensis and
A. mackerrasae that are deposited in GenBank were also included in the present analysis.
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Table 1. The mitochondrial genomes of Angiostrongylus used in phylogenetic analysis.

Species Access Number Location Altitude Longitude References
AP017672 Taipei, China 25.0329 121.5655 [30]
CL_Acan Changle, China 25.9313 119.6288 this study
DF1_Acan Dongfang, China 19.0535 108.6521 this study
DF2_Acan Dongfang, China 19.0535 108.6521 this study
GQ398121 Lianjiang, China 26.2052 119.5212 [32]
KT947978 Thailand [26]
MK570629 Tenerife, Spain 28.2916 —16.6291 [30]
A ‘ MKS570630 Hawaii, USA 19.6310 —156.0072 [30]
- cantonensis MK570631 Mosman, Australia —33.8293 151.2442 [30]
MK570632 Fatu Hiva, French Polynesia —17.6427 —149.4347 [30]
NA_Acan Nanao, China 23.4533 117.0971 this study
RL_Acan Ruili, China 23.9477 97.7854 this study
SC_Acan Shangchuan, China 21.6613 112.8016 this study
SY_Acan Sanya, China 18.3333 109.4333 this study
ZX_Acan Zixing, China 26.0365 113.2463 this study
A. mackerrasae MN793157 Brisbane, Australia —27.4620 153.0203 [33]
A malavsiensis KT186242 Thailand [34]
' 4 KT947979 Kuala Lumpur, Malaysia 3.1201 101.6545 [26]
A. vasorum JX268542 Australia [35]
A. costaricensis GQ398122 Brazil [32]

2.2. Mitochondrial Gene Sequences

Since our analysis strategy is to map the mt genes to the known complete mt genomes
and then determine the types of each sequence, all mt gene sequences of A. cantonensis,
A. malaysiensis and A. mackerrasae were collected from GenBank and used for the present
study. Meanwhile, the collection information of specimens, e.g., location, year, species,
gene name, sample size were also collected. For the sequences which had been published
in papers but not yet submitted to GenBank, we collected the sequences directly from the
papers including Supplementary Materials.

2.3. Phylogenetic Analysis

The complete mt genomes of A. cantonensis, A. malaysiensis and A. mackerrasae were
used to construct phylogeny with the A. vasorum (JX268542) and A. costaricensis (GQ398122)
as outgroups. A phylogenetic tree was constructed under Bayesian inference, performed in
MrBayes version 3.2.7 [31]. Prior to Bayesian inference, the best fit nucleotide substitution
model (GTR+G) for the dataset was determined using a hierarchical likelihood ratio test
in jModeltest version 2 [32]. The posterior probabilities were calculated using Markov
chain Monte Carlo (MCMC) simulations. At the end of this run, the average standard
deviation of split frequencies was below 0.01, and the potential scale reduction factor was
reasonably close to 1.0 for all parameters. A consensus tree was visualized and edited
by Mesquite version 3.70 [36] or FigTree version 1.4.4 (http:/ /tree.bio.ed.ac.uk/software/
Figtree/; accessed on 28 May 2023).

The group of complete mt genomes was also submitted to network analysis by TCS
version 1.21 [36]. Subgroups were determined with a connection limit of 1% or 132 steps
and considered as the clades in the phylogenetic tree mentioned above.

The mt gene sequences downloaded from GenBank and papers were first catego-
rized by the gene name. The sequences of the same gene were mapped to the complete
mt genomes by alignment in clustal X. The sequences might be divided into subgroups
when the overlapped length was less than 50%. After being trimmed as necessary, the
grouped sequences were submitted to DnaSP version 5 [37] and the haplotypes were deter-
mined. The phylogenetic trees based on the haplotypes were inferred following the guide
described above.
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Some studies characterized the sequence of different mt genes of the same specimen,
e.g., cox1 and cytb. Only one gene for a single specimen was taken into analysis. The gene
cox1 was of priority because it was used broadly, followed by cytb and small ribosomal
RNA gene. Large ribosomal RNA gene and nadl were excluded because cox1 and small
ribosomal RNA gene from the same specimens were included.

The gene fragments deduced from the 18 whole mt sequences of A. cantonensis,
A. malaysiensis and A. malaysiensis were included as index markers in the individual gene
phylogenetic trees. Each haplotype was assigned to a specific clade as delineated by whole
mt genomes according to the index markers. New clades could be defined if the haplotypes
in the clades were separated by network analysis with a connection limit of 1%, the same
threshold as in analysis of full mt genomes. If a new clade was clustered with a specific
known clade inferred according to the full mt genomes, the new clade would have the
same name with a suffix of 2. Otherwise, a new name would be given to the new clade.

2.4. Mapping the Distribution Pattern

The coordinates of specimen collecting sites were either directly collected from the
published papers or determined by Google Earth by inputting the location names which
were extracted from the papers and GenBank. Each gene sequence from known locations
was assigned to a specific clade determined in phylogenetic analysis.

The geographic distributions of gene types were mapped and visualized in a geo-
graphical information system (ArcGIS version 10.1). We merged some collecting sites for
better display when the distance among them was less than 0.8 degrees at the global level
and less than 0.5 degrees at the subregion level.

3. Results

A total of 18 mt genomes of rat lungworms were used in the analysis, including
10 from GenBank and 8 from the present study (Table 1, File S1). The genetic distance
among three species of rat lungworm was around 0.12, while the genetic distance among
various strains of A. cantonensis ranged from 0.001 to 0.056 (Table 2). The phylogenetic and
network analyses showed that 15 mt genomes of A. cantonensis collapsed into six clades,
encoded as clade I to clade VI (Figure 1). One genome (KT186242), previously identified
as A. cantonensis, had closer genetic relation to A. malaysiensis (KT947979) according to the
present study. Another genome (MN793157) belonged to A. mackerrasae.

The individual gene phylogenetic trees of cox1, nadl and small ribosomal RNA genes
from 18 complete mt genomes were re-constructed by Bayesian inference (File S2). When
incorporated into the individual gene phylogenetic trees, the gene fragments deduced from
the whole mt sequences all remained in their original clades, as expected.

A total of 554 mt genomes or fragments, which represented 1472 specimens of rat
lungworms globally (Table 3), were used in the present study. The specimens were collected
from 224 sites. According to our analysis one mt genome (KT186242), 13 cox1 sequences and
64 cytb sequences were A. malaysiensis and had previously been identified as A. cantonensis.

There are 327 cox1 sequences, including 160 fragments from GenBank, 18 mt genomes
and 149 sequences from our previous study. One sequence (LC515249) was excluded due to
the lack of overlap with any other sequence. The rest of the 326 sequences were divided into
two subgroups according to the criteria of an overlap of less than 50%. The first subgroups
included 308 sequences, which belonged to 112 haplotypes. All six of the clades (I ~ VI)
based on the complete mt genomes were observed in the phylogenetic tree based on the
first subgroups of cox1 genes. Meanwhile, another four clades were identified and named
as Clade I-2, Clade II-2, Clade III-2 and Clade V-2 based on their relations to the six known
clades (Figure 2). The second subgroup included 18 sequences, belonging to 11 haplotypes.
All the sequences fell into Clade II (Figure 3).
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Figure 1. The phylogeny of rat lungworm inferred from mitochondrial genomes, with A. vasorum
(JX268542) and A. costaricensis (GQ398122) as outgroups.

Table 3. Mitochondrial gene sequences used in the present study.

Types A. cantonensis A. mackerrasae  A. malaysiensis Total
mt genome 8 (16 %) 1(1) 1(1) 10 (18)
cox1 144 (426 ) 5(5) 11 (23) 160 (454)
cytb 177 (655 %) 0(0) 76 (76) 253 (731)
nadl 0 (130) 0(0) 0(0) 0 (130)
SSU 13 (13) 0(0) 53 (53) 66 (66)
LSU 12 (12) 0(0) 53 (53) 65 (65)
Total 354 (1252) 6 (6) 194 (206) 554 (1472)

Note: the figures inside and outside brackets represent the number of sequences from GenBank and the number of
samples, respectively. SSU: small ribosomal RNAS gene; LSU: large ribosomal RNAS gene. * including 8 genomes
from the present study and one genome (KT186242) of A. malaysiensis mistaken for A. cantonensis. * including
13 sequences of A. malaysiensis mistaken for A. cantonensis ® including 64 sequences of A. malaysiensis mistaken for
A. cantonensis.

Ten cytb sequences from the same specimens of cox1 were excluded in the analysis.
The rest of the 195 cytb sequences, including 177 from GenBank and 18 from complete
mt genomes, collapsed into 67 haplotypes. Eight clades were found in the phylogenetic
analysis (Figure 4), including six that were determined according to complete mt genomes
and two distinctive clades named Clade VII and VIII. The average genetic distance of
sequences in Clade VIII to the other clades of A. cantonensis was over 5% (Table S1). The
difference could be as high as 7%.
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Figure 2. The phylogeny of rat lungworm inferred via the first group of cox1 haplotypes. The cox1
fragments of eighteen available full mitochondrial genomes are included as index of clades. The code
and branch color is consistent with Figure 1. Four new clades, i.e., Clade I-2, Clade II-2, Clade III-2,
and Clade V-2, are identified based on the network analysis.
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Figure 3. The phylogeny of rat lungworm inferred via the second group of cox1 haplotypes. The gene
sequences used in this phylogeny showed <50% overlap with the sequences used in Figure 2.

0.99

Clade Il

|C|ade|

Clade Il

0.98

Clade IV
0.79

JX268542 Avas
GQ398122 Acos

KX 147464
KX 147455
KX 147401
0.63[* kx147438
KT186242 ACThai
Amal

KT947979

1.00] F kxi47424

— KX147423
KX147409

MG773319
0.64 L1 M Toviss

KP7ast0 0
Jt KP732102
KP732099
1.00 KP732097
[ MN793157 Amac
SC Acan
MG773206
WorTs30s
1.00 |y kx147436 | Clade v
MG773323
MG773322
0.91 MG773283
KP721457
MG773301
MG773285
MG773308
MG773282
§G398121 Acan Ly
can
0.78  Ra’Aen
iS008
1.00 MG773303 Clade IV
. 1.00 MG773304
— . MG773312

0.83 MG773313
KP721455
MG773310
SY Acan
MG773290
ZX Acan | Clade VI
KX147388

4
MK858283 Clade |

o
[t
~

MK570632 Acan FH
MK570830 Acan HAW

0.99 MG773307
MG773311
MK570629 Acan TEN Clade I
APO17672 Acan TW
MK570631 Acan SYD
KC995267

DF2 Acan
MG773289 IC\ade I

DF1 Acan
KC995246
| Clade Vil

MG773300
MG773298
MG773288
WSr7328a |
MG773292
098 MG773291
MG773299
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Twelve sequences of small and large ribosomal RNA genes were from the same
specimens. Taking into consideration the smaller ribosomal subunit gene (ON747257),
13 small ribosomal RNA genes were used in the analysis. The sequences formed five
haplotypes. According to network analysis, three haplotypes belonged to Clade II (Figure 5),

while another two haplotypes fell into Clade I and III, respectively.
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The gene types (clades) based on phylogenetic and network analyses were mapped
in the world (Figure 6, Table S2). A much higher diversity of clades was observed in
Southeast and East Asia. In contrast, almost all 81 specimens of A. cantonensis beyond
the region belonged to Clade II, except for two (Clade IV) from Hawaii and one (Clade
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Figure 5. The phylogeny of rat lungworm inferred via the mitochondrial small ribosomal RNA gene.
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V) from Rio de Janeiro. In Asia, the Annamite range might be considered the genetic
barrier for A. cantonensis (Figure 7). The gene types of Clade III, IV, V, V-2, VI and VIII were
mainly distributed east of the Annamite range. On the contrary, Clade I, III-2 and VII were
commonly found to the west of the Annamite range. A. malaysiensis was commonly found
in in the west of Annamite range. However, it was also discovered in Taiwan according to
the present analysis. A. mackerrasae was only observed in Australia.

[ clade_| M Clade_V
[ clade_i2 [ Clade_V2
I Ciade_ii [ Clade_VI .
B Clade_li2 [ Clade_ViI
[ clade_ii [l Ciade_vil
[ clade_ii2 [ Amal

[ Clade_Iv [0 Amac

Figure 6. The global distribution of gene types of rat lungworm. The sites with a distance less than
0.8 degrees were combined and displayed at the geometric center. Amal: A. malaysiensis, Amac:
A. mackerrasae.
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Figure 7. The distribution of gene types of rat lungworm in Southeast and East Asia. The sites
with a distance of less than 0.5 degrees were combined and displayed at the geometric center.
Amal: A. malaysiensis, Amac: A. mackerrasae.
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The cox1 sequence types in Clade II were further categorized into ten subgroups
(Figure 8). According to the geographic distribution of the subgroups, the haplotype
diversity beyond Southeast and East Asia was 0.944, which was higher than that of 0.4641
in Asia (Figure 9). Clade II was not commonly observed in Asia according to available
data. For example, Clade II was not discovered in the mainland of China and the northern
part of the Greater Mekong subregion, though intensive sampling was undertaken and
the high genetic diversity of A. cantonensis was observed in the region. Another feature
of clade distribution in Asia was that none of the seven clades, except for Clade II-G, was
simultaneously observed in two or more sites.
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Figure 8. The phylogenetic relation of Clade II (cox1) subgroups.
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Figure 9. The global distribution of Clade II (cox1) with sample size. Grey dot indicate the distribution
of other clades.

Clade II-G is the most common type, accounting for 48.57% of Clade II and found in
seven sites in the world, five of which were located in the Pacific islands. Meanwhile the
clade was also extended to the southeast shore area of Brazil. In contrast with the Pacific,
the new world shows a higher diversity of clades, including the predominant clades II-D
and II-E. Although the clade II-D1 and clade II-D3 were observed on Taiwan island and
eastern Australia, 90% of the samples of Clade II-D were from the new world and Spain,
while Australia shared two clades with Southeast Asia and South America.

4. Discussion

A total of 18 complete mt genomes of rat lungworms are currently available. Only one
mt genome is A. mackerrasae and A. malaysiensis, respectively. The genetic distance among
the species is over 0.11, while that among the different geographical strains within species
is less than 0.06. Therefore, the species of rat lungworm could be definitively distinguished
based on genetic distance. The genetic distance of the mt genome (KT186242), previously
identified as A. cantonensis, was over 0.11 to any known strain of A. cantonensis. In contrast,
the genome is almost identical to the mt genome (KT947979) diagnosed as A. malaysiensis.
Therefore, KT186242 should be A. malaysiensis.

There were two hypotheses about the origin of A. cantonensis. Earlier opinion indicated
that the parasite originated from Africa, which was supported by the fact that the discovery
of A. cantonensis coincided with the spread of the African land snail A. fulica to Southeast
Asia [38]. However, the theory of Asian origin later became popular. It was thought that
the parasite was originally endemic to Southeast Asia and spread by the shipping rats,
R. rattus and R. norvegicus, due to extensive traveling [13]. Our results show a much higher
genetic diversity of A. cantonensis in Southeast and East Asia, supporting the latter theory.

Although intensive sampling occurred in China, Japan and the Great Mekong subre-
gion, the common gene types (e.g., Clade II-D and Clade II-E shown in Figure 9) in America
were rarely found in the region mentioned above. It was therefore believed that the gene
types must be from anywhere else in Southeast Asia. Of note, Clade II was genetically
close to Clade I. The latter was found only in Thailand and Myanmar, where A. malaysiensis
co-occurred. The phenomenon of significant correlation between genetic and geographi-
cal distances is commonly observed in population genetics [39]. Therefore, Clade I was
possibly from either Myanmar or the lower reach of the Mekong River. Similarly, Clade V
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showed longer genetic distance from any other clade within A. cantonensis, though the clade
co-occurred with clade IV in China and Japan. We did not obtain any genetic evidence
from the Philippines, but the country holds the potential to harbor the Clade V as a local
gene type. A total of 124 cox1 samples from 24 collecting sites were available in Japan,
and they consisted of 4 clades. However, the haplotype diversity of the samples was very
low compared with Southeast Asia and the south of China [28,40]. Only seven haplotypes
were identified, including three unique haplotypes within a single sample. Therefore,
A. cantonensis in Japan might have been introduced from Southeast Asia and/or the south
of China.

Our results show that there might be a genetic barrier between the Greater Mekong
subregion and the south of China. The geographical isolation due to the Annamite range
located in Vietnam may play a key role in the genetic divergence of A. cantonensis. Previous
studies have indicated different evolutionary trajectories on western and eastern sides of
the Annamite Mountain range [41]. The case of liver fluke also supports this opinion. Two
species of liver fluke, i.e., Clonorchis sinensis and Opisthorchis viverrini, are widely distributed
in the region. The former is distributed northeast of the Annamite range, while the latter is
endemic in the southwest [42,43].

Clade II is the overwhelming gene type beyond Southeast and East Asia except for a
small number of samples of Clade IV and Clade V in Hawaii and Rio de Janeiro, respectively.
The conclusive global spread route of rat lungworm could not be established based on
the present available genetic data. However, our findings imply that the gene types on
the Pacific islands, where EM outbreaks occurred between the 1940s and 1960s, show
identical and low diversity, which implies that its re-introduction after the Pacific War
is less plausible [13]. Australia is the only country where A. cantonensis was reported
earlier [21]. Our findings show there was no relation between Australia and the Pacific
based on the available evidence, while the majority of samples are genetically close to those
from Thailand. The new world, recently identified as endemic areas, probably showed a
distinct haplotype structure from the Pacific and hence might have been directly introduced
to the rat lungworm from Southeast Asia.

Compared with the global distribution of A. cantonensis, A. mackerrasae and A. malaysien-
sis are endemic locally. According to our results A. mackerrasae was only found on the
eastern shore of Australia. Although A. mackerrasae was also discovered from R. norvegicus,
it shows a higher susceptibility to local Australian rodents, e.g., R. fuscipes, R. lutreolus and
Melomys cervinipes [21]. Therefore, A. mackerrasae was not endemic beyond the original
region. A. malaysiensis showed a wider range of definitive hosts than A. mackerrasae. Al-
though A. malaysiensis seems more susceptible to R. tiomanicus and R. argentiventer, the
parasite shared 80% of definitive hosts with A. cantonensis, including the most invasive R.
norvegicus and R. rattus (unpublished data). Our present study indicates that A. malaysiensis
had gone beyond the original region and established local transmission in eastern Taiwan,
since the worms had been isolated from the intermediate host A. fulica [44,45].

In order to reveal the complex spread pattern of A. cantonensis, we suggest the follow-
ing research priorities. First, more mt genomes of rat lungworm should be characterized.
Our present study identified new clades with complete mt genome sequences not yet
available. Second, we need to fill the gap of genetic information in the Philippines and In-
donesia, and even Myanmar. Since these countries are neighboring to the Greater Mekong
subregion and East Asia, the mt genetic information of rat lungworms will be invaluable in
constructing the phylogeny. Unfortunately, the large-scale survey has not been conducted
and the mt genetic information has been lacking to date, though rat lungworms have been
reported in the Philippines and Indonesia since the 1950s. Third, systemic sampling around
the world is proposed to update either rare specimens or a small number of collecting sites
beyond the Greater Mekong subregion and East Asia. In addition, the types of host animals,
i.e., mollusks and rodents, were different in previous studies. It should be noted that the
host preferences of species or strains of rat lungworm may cause a bias, and hence lead to
false conclusions.
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5. Conclusions

We showed an integrated global distribution of gene types by mapping various
fragments to the known complete mt genomes. The new endemic areas including the new
world and Spain showed different compositions of gene types to Southeast and East Asia
and even the Pacific. Therefore, we need to conduct systematic research on rat lungworm
at a global level in order to reveal the scenarios of spread.

Supplementary Materials: The following supporting information can be downloaded at: https:
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samples.
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Abstract: Angiostrongyliasis (Rat Lungworm disease) is an emerging parasitic disease caused by
the ingestion of gastropods infected with the neurotropic nematode Angiostrongylus cantonensis. The
reduction of crop infestation with infected slug carriers may vary widely by protection method. We
explored the application of barriers with valve mechanisms, whereby selective directional forces
caused a greater number of slugs to exit than enter the protected plot, leading to decreased slug
population densities at a steady state. Using field data, we constructed predictive models to estimate
slug population densities at a steady state in protected plots with (1) no valve effect, (2) a valve
effect, (3) no valve effect with a single breach of the barrier, (4) a valve effect with a single breach of
the barrier, (5) a valve effect with a constant breach of the barrier, and (6) a repelling effect. For all
scenarios, plots protected using a barrier with a valve effect had consistently lower slug densities
at a steady state. Our findings support the use of barriers with valve mechanisms under different
conditions, and potentially in combination with other interventions to reduce the contamination of
crops by slug carriers of A. cantonensis. Improving barriers extends beyond disease mitigation to
economic and cultural impacts on the local farmer and consumer communities.

Keywords: Angiostrongyliasis; Angiostrongylus cantonensis; Parmarion martensi; rat lungworm disease;
valve effect; barrier; deterministic model; crops

1. Introduction

Angiostrongyliasis (rat lungworm disease) is an emerging parasitic disease caused by
the neurotropic nematode Angiostrongylus cantonensis, which uses gastropods (i.e., snails
and slugs) as intermediate hosts and rats as definitive hosts to complete its life cycle.
This disease was discovered in southern China in the 1930s and has since spread widely
throughout Southeast Asia, Japan, Australia, South America, Southeastern United States,
and several island chains, including the Caribbean and Hawaii. The wide distribution of
this disease can be attributed, in part, to the proximity of carrier snails and slugs to human
habitations and farms, in addition to the rapid and ubiquitous dispersal of rat hosts.

Humans can become accidental hosts when they ingest produce containing uncooked
or partially cooked slugs that are infected with juvenile stages of A. cantonensis. In humans,
larvae die upon reaching the central nervous system, causing a significant inflammatory
response that can result in neurologic symptoms and eosinophilic meningitis [1]. Treat-
ment options for this disease are limited, with some evidence for the effectiveness of
anthelminthics and corticosteroids [2—4].

Over the past two decades, Hawaii state has experienced an increased incidence of rat
lungworm disease. This pathogen has been detected on five of the six most inhabited islands
(Oahu, Maui, Hawaii, Kauai, and Lanai), with infection prevalence of gastropods estimated
for Kauai, Hawaii, Maui Nui (including Maui, Lanai, and Molokai), and Oahu at 34%,
33%, 18%, and 10%, respectively [5]. This epidemic has been spurred by the documented
invasion in 2004 of Parmarion martensi [6], a semi-slug that inhabits peridomicile settings,
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which has since become the primary gastropod carrier of A. cantonensis in Hawaii state [7,8].
Although P. martensi had been established as the primary carrier species of A. cantonensis
in Hawaii, a 2014 survey identified a total of 16 carrier gastropod species, some with
an infection prevalence approaching 30% [8]. Furthermore, among-island differences in
host and pathogen subcommunities likely contribute to observed differences in the carrier
species at local scales. For example, in Maui, a recent survey for samples collected from
2016 to 2017 brought the new total of carrier species in Hawaii state to 21, with a higher
infection prevalence estimated for Deroceras reticulatum (50%) than P. martensi (31%) [9].
Therefore, various slug species may contribute to the spread of this disease within Hawaii
state, requiring monitoring and control measures of all potential carrier species for a given
island. Mitigation strategies include public education efforts on best practices for preparing
produce [10], active monitoring of sentinel species (e.g., hind-leg paralysis in juvenile dogs),
and the application of barriers or poisoned bait to reduce the number of snails and slugs
infesting crops.

Historically, barriers with valve effects have been used to both amplify and reduce the
population densities of organisms. A valve influences the direction of animal movement
and can increase or decrease the density of animals on either side of the barrier. This
directionality is essential to maintain spatial differences in density at a steady state [11].
Barriers to slugs may apply this valve design, whereby slugs can more easily leave than
enter a protected area (Table 1). The time to reach a steady state may be affected directly by
the size and shape of the internal area and rate of animal movements, and indirectly by
population dynamics (e.g., births and deaths) and seasonality (e.g., high or low season) of
the external population [12].

Table 1. The effects of valves on the internal population density of organisms. Arrows represent the
direction of movement of animals, red lines represent electric barriers, and shaded regions represent
the protected plot inside of the slug barrier.

Valve No Valve
o ? @
Direction Entry < Exit Entry = Exit
Effect on Internal Density Decrease None
Distinguishing Factors Gravity, Electricity Electricity

An apparatus with a novel valve design was previously created and tested in a
laboratory and field study to combat rat lungworm disease slug carriers [13]. In a laboratory
setting, P. martensi was observed to readily climb vertical surfaces of a multitude of barrier
materials. However, the addition of electrified wires placed on the outside of the vertical
fence surrounding a crop created a valve effect; entering slugs were shocked, and either
retreated or fell back outside, and slugs inside the protected area that exited over the top
of the fence were shocked and fell across the barrier to the outside [13]. This combination
of electricity and gravity created a selective directional force such that the overall number
of slugs exiting the protected plot was greater than those entering. In the field study,
after approximately three weeks, the internal population density of the dominant local
species, D. reticulatum, was reduced by 90% in the protected plot at a steady state [13].
During the field study, researchers noted an unexpected breach of the barrier, whereby
vegetation cuttings served as a convenient bridge over the wall; the resulting spike in
the internal slug density returned to a steady state in approximately one week [13]. This
observation indicated that P. martensi dispersion occurred on a much shorter timescale than
reproduction and death, suggesting that birth and death rates may be excluded from future
predictive models of valve effects, following the assumptions of movement ecology [14,15].
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To explore how barriers with valve effects may reduce slug population densities in
protected areas, we constructed a predictive model based on previous invasion models that
mechanistically described organismal movement patterns in response to barriers [16]. We
used findings from a previous field experiment to estimate the effect of a barrier apparatus
with a valve mechanism on slug population densities [13], as well as laboratory experi-
ments from the literature for slug speeds from which to estimate the velocity used in these
models [12] (see Appendix A). We investigated the valve mechanism behind previously ob-
served differences between the densities of internal and external slug populations at steady
state. We also used these models to address practical questions posed by farmers facing
habitat-specific challenges causing regular or irreparable barrier breaches. This model can
be used to explore different scenarios, as well as predict how new unforeseen environmental
conditions factor into controlling slug populations and reducing human disease.

2. Materials and Methods

To explore the real-world applications of slug barriers with valve mechanisms, we
compared the internal and external slug population densities at a steady state under
different conditions. We included six possible scenarios for slug control and their effects on
the resulting populations at a steady state: (1) no valve effect, (2) a valve effect, (3) no valve
effect and single breach of the barrier, (4) a valve effect and single breach of the barrier,
(5) a valve effect and various levels of a constant breach of the barrier, and (6) a repelling
effect. We built a deterministic model for each scenario using parameter estimates from
previous fields and laboratory findings [13] using R programming language [17].

These scenarios are presented in order of complexity, with comparisons made to
previous scenarios. Scenarios 1 and 2 investigate the internal population density at a steady
state of plots without and with an added valve effect favoring exit over entry, respectively.
Scenarios 3 and 4 investigate the resulting internal population density after a temporary
breach of barriers without and with an added valve effect. Scenario 5 investigates the effect
of a barrier with a valve effect when there is a constant breach of the barrier, allowing
slugs to travel between populations on either side of the barrier. Scenario 6 investigates a
repelling effect (i.e., barrier materials that reduce slug crossing, such as a zone of salt, diesel
oil, copper, or an electric barrier laid horizontally). All scenarios assume the direction of
slugs to be random.

In scenarios 1,2,3, and 4, we used the following mathematical equation to determine
y(t), the internal slug population as a function of time. We referred to D as the external
population density, which was assumed to be constant to allow for relative comparisons of
barrier effects with valve mechanisms [13]. The terms P and Q represented the proportion
of slugs crossing the barrier (entering and exiting) once they reached it, respectively. This
equation contained the constant K, which adjusted the baseline slug population in the
protected plot. We defined C as the circumference of the barrier, V as the vector of slug
speed and direction, A as the area of the protected plot, and ¢ as time.

y(t)=D <g) + Ke_(%)t(Scenarios 1,2,3,4,6)

The P/Q term represented the ratio of the number of slugs entering to exiting the
protected plot once they reached the barrier. In future models, this ratio may be modified to
affect the strength and direction of the valve effect. In scenario 1 (no valve effect), P/Q =1,
as the ratio of slugs entering and exiting via the barrier was equal (Figure 1a). In scenario 2
(valve effect), P < Q, as a smaller ratio of slugs entered via the barrier, than exited (Figure 1a).
We modified K to explore a single breach scenario without (scenario 3) and with (scenario 4)
a valve effect. We explored a single breach at the start of the experiment that made the
internal population density twice that of the external population immediately after the
breach was repaired, where K = D without a valve effect and K = 2D — (DP/Q) with a valve
effect (Figure 1b). In future models, the term K may be modified further to fit any baseline
population post-breach.
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Figure 1. Internal population densities in protected plots in (a) scenarios 1 (without a valve effect)
(black) and 2 (with a valve effect) (blue). Internal population densities in (b) scenarios 3 (without a
valve effect) (black) and 4 (with a valve effect) (blue) after a single barrier breach, where the internal
density was initially raised to 200% of external density. Internal population densities (c) without
a valve effect (solid black), with a valve effect (solid blue), and in scenario 5 with four levels (5%,
25%, 50%, and 95% the size of the barrier circumference) of barrier breaches allow a constant flux of
slugs between the internal and external populations (dotted). Internal population density (d) without
a valve effect (black), with a valve effect (blue), and in scenario 6 with barrier materials creating a
repelling effect (green) that slows the rate at which the internal population reaches its steady state.
For all scenarios, the external population density was set to 10 slugs/m? (red).

In scenario 5, we used the following mathematical equation to determine y(t), the
internal slug population at a steady state with a constant breach (e.g., an open tunnel or
many small tunnels present in porous soil) throughout the experiment, and a valve effect
in place (Figure 1c). This scenario was based on a question raised by farmers on the island
of Hawaii, where the ground has porous gravel that creates pathways where slugs might
tunnel under the barrier. The new term T represented the proportion of slugs crossing
(entering and exiting) the tunnel (s) once they reached the perimeter (barrier circumference)
of the tunnel; here, T is the same for entry and exit (no valve effect for the tunnel). The term
U was the entrance and exit circumference of the tunnels (assumed to be the same). We
defined C and T as the circumference of the barrier and barrier breach, respectively, V as
the velocity of the slugs [18], A as the area of the protected plot, and f as time.

(CP+UT)

y(t) = m + Ke_(%)(CQ+UT)t(Scenario 5)
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In scenario 6, we modified P and Q to explore a repelling effect that changes the
proportion of slugs that cross the barrier once encountered. To investigate this effect
independent of a valve effect, we set P/Q = 1 and modified their values.

For all scenarios with valve effects, parameters P = 0.1 and Q = 0.9; these estimates
were based on previous findings in which the ratio of slug densities in the experimental
treatment to control plots at a steady state was 9:1, respectively [13]. The experimental data
used to estimate the valve effect were taken from two field experiments conducted from
May 2020 to February 2021 at a local organic farm in Kula, Hawaii [13]. Infested produce
was reported by the farm owner, and surveys confirmed the presence of D. reticulatum
at this site. Two field experiments were conducted over a period of 10 and 25 weeks,
respectively. The first compared slug densities in a plot protected by a barrier with a valve
mechanism (electricity) against two control plots protected by barriers without a valve
mechanism (no electricity); the second control plot was included to confirm that there was
no deterring effect of metal barrier materials on density. The second experiment compared
slug densities in a protected and unprotected plot. Plots were approximately 6 m? and
treated with pellets at the start of each experiment. A barrier breach occurred in the first
experiment that was repaired, which resulted in a temporary spike in the treatment plot
density followed by a return to previous levels. In all models, slug velocity was set to
V =0.18 m/h; this estimate was generated by calculating the velocity (see Appendix A)
using the median of an observed range of movement rates for D. reticulatum in a laboratory
setting [12]. Placeholder values were used for all other parameter estimates at ¢; the same
values for these parameters were used in all models to test the relative effects of different
scenarios on observed population densities.

3. Results

The lowest internal population density at steady state (as variable time ¢ approached
infinity) resulted from a valve effect (scenarios 2 and 4), with and without a single bar-
rier breach, respectively (Figure 1a,b). In both scenarios, the internal population density
approached a density of approximately 10% of the external population density. The sec-
ond lowest internal population density resulted from a valve effect and constant breach
(Figure 1c) of the barrier (scenario 5). In this scenario, the internal population density
approached approximately 40% of the external population density at a steady state. The
highest internal population density resulted from barriers without a valve effect (scenarios
1, 3, and 6), without and with a single barrier breach (Figure 1a,b), and with a repelling effect
(Figure 1d), respectively. In these scenarios, the internal population density approached the
same density of the external population at a steady state (i.e., the barrier had essentially no
effect of reducing the internal population density of slugs); in other words, with no valve
effect, it is only a matter of time before the internal and external population densities are
the same at steady state.

In addition to predicting outcomes at a steady state, this model also elucidates key
parameters that may determine the rate at which a steady state is reached. This model
predicts that a steady state will be reached more rapidly at sites where slugs move at
greater velocities, as barrier circumference increases, plot areas are made smaller, a greater
proportion of slugs exit the protected plot (i.e., a strong valve effect), and travel via tunnels
under the barrier increases (i.e., related to larger tunnel circumferences and proportions of
slugs crossing).

4. Discussion

This study demonstrates how different barrier designs can lead to potentially very
different outcomes for rat lungworm disease mitigation via control of slug carrier popula-
tions. We explore the underlying mechanisms affecting population densities of slug carrier
species in different scenarios: in response to barriers with and without a valve effect, when
barriers are breached and repair is both feasible and infeasible, and barriers with a repelling
versus a valve effect.
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A key finding of this study is that barriers with valve effects are essential to reduce
and maintain lower densities of slugs at a steady state in protected areas. In the absence of
a valve effect, the internal population density eventually approached the same value as the
external population density; this outcome is predicted to occur regardless of whether the
starting density of the internal population is lower (e.g., the internal plot is initially cleared
of slugs) or higher (e.g., slugs invaded the internal plot) relative to the external population.
With a valve effect, a repaired single breach was predicted to create an initial spike in the
internal population density that eventually returned to the same internal density at a steady
state as that in the absence of a breach. Left unrepaired, a constant breach reached a steady
state density that was higher than when there was no breach (and a valve effect), but lower
than when there was no valve effect (and a breach). Thus, an apparatus with a valve effect
is predicted to sustainably reduce slug population densities, even when the efficiency of
the barrier is reduced by breach events.

While repelling effects may delay the invasion of slugs into a protected area by
reducing the rate of crossing a barrier, they do not produce the same outcomes as barriers
with valve effects. Rather, barriers that employ only repelling effects do completely prevent
the passage of slugs across that barrier [19] and are predicted to simply reduce the rate
at which the densities of the protected plot and external populations approach the same
value at a steady state (Figure 1d). In theory, barriers without valve effects that severely
delay encroachment on a protected crop (e.g., on time scales comparable to a crop’s plant-
to-harvest cycle) could have practical applications for maintaining lower slug densities
prior to harvest. However, installing such barriers that employ only repelling effects would
not maintain reduced slug densities at a steady state, resulting in higher densities within
protected areas for additional crops planted later in the same growing season. Past barrier
designs have commonly focused on the repelling effects of barrier materials, such as copper,
to deter slugs [20]. While there has been some evidence that copper can exclude slugs if
used in conjunction with a repellent [21,22], the anecdotal evidence for its usefulness for
reducing slug densities is mixed [23]. The inconclusive findings of previous investigations
of copper could be an artifact of sampling timing due to potentially high variation in density
estimates obtained prior to reaching a steady state. However, despite limited evidence
for deterrent materials, repelling and valve effects need not be mutually exclusive; plots
protected by barriers containing a valve effect with a repelling effect may approach lower
steady-state levels inversely proportional to the strength of the valve effect. However,
without a valve effect, the internal and external densities are predicted to eventually
approach the same value [23], providing support for the use of valve mechanisms for the
long-term reduction of slug carriers in protected areas.

Parameters affecting the rate at which steady state is reached are of key interest to
predict how rapid target outcomes (e.g., observed reductions in slug densities) may be
achieved. We predicted a more rapid approach towards a steady state in systems with
slug species that move at greater velocities, large ratios of barrier circumferences to plot
areas, and a higher exit rate of slugs from the protected plot. In cases where there is a
constant breach of the barrier, increased movements of slugs via tunnels would result in a
more rapid approach to steady-state densities. These parameters highlight the importance
of considering spatial, temporal, and species-specific factors when designing protective
barriers. For example, in scenarios with porous soil and high opportunities for tunneling,
slower-growing crops, and dominant slug species that move at faster rates (e.g., P. martensi),
barriers relying on repelling effects only may be quickly overwhelmed, whereas barriers
with valve mechanisms may offer a more effective solution for maintaining lower densities
of slugs.

Additionally, factors challenging the model assumptions of homogenous spatial dis-
tributions and random movements of slugs within a site may affect the rate at which
target outcomes at a steady state are achieved. Potentially critical factors contributing to
site-specific, patchy spatial distributions of slugs [24] include density-dependent dispersion
and nonlinear movement patterns [12], behavioral interactions [25], and seasonal variation
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in movement rates. Conditions that reduce encounter rates with the barrier (e.g., reduced
slug velocities, repelling conspecific interactions near the barrier, and relatively lower
external population densities due to patchiness) are predicted to increase the amount of
time to reach a steady state. If a steady state, in which the population density of the
protected plot is reduced by 90% relative to the external population, is a target outcome
that is time-sensitive, these factors should be considered and tested prior to deploying this
apparatus at scale in a given location. In future models, the velocity term may be refined to
investigate the potential effects of the above factors on barrier interactions and the resulting
rate at which target outcomes are reached. Future field experiments may confirm model
predictions using larger plots to investigate the effects of this barrier apparatus at scale.

The simplified deterministic models used in this study did not include birth and death
rates or general trends in slug movement direction (i.e., the models assume a random
movement of slugs). The parameters for slug reproduction and death were excluded
because of the relatively short time scale of slug dispersion compared to its life cycle; this
process is supported for other systems in the spatial dynamic population literature, where
species distribution occurs on shorter time scales relative to other population dynamics [26].
One generation of P. martensi is approximately five to six months [27], whereas, based
on previously published field data, the time to reach a steady state is approximately
5 weeks [13]. The parameter estimate for the valve effect in this model was based on
experimental field data [13], which accounted for potential competing effects beyond
that of the valve effect (e.g., slug preference for higher quality habitat within protected
plots). Such opposing effects would contribute to a more conservative estimate of the valve
effect modeled in this study. In future models, densities may be modeled over multiple
generations or include a modified velocity term (Appendix A) to account for slug habitat
preference (e.g., whereby slugs are less likely to exit than enter the protected plot via
the barrier).

In future experiments, the model predictions presented in this study could be tested
using field experiments that measure changes in slug densities over time in response to
breach events, repelling effects, and valve effects. Field and laboratory studies to test the
effect of a valve mechanism against other slug species would also improve our ability
to accurately predict species-specific outcomes. Additionally, alternative types of valves
may improve upon the barrier design explored in this study [13] and could be tested
using both field and laboratory experiments. The field experiment demonstrating a 90%
reduction in slug densities used relatively small 6 m? plots, which are much smaller than
large-scale agricultural projects. While the densities of protected plots are predicted to
approach a 90% reduction at steady state regardless of plot size, very large-scale plots
may contain more nonuniform patches of slug densities and variable strengths of valve
effects along the barrier. Additionally, site-specific factors may interact with plot size and
barrier circumferences at these larger scales. Some key site-specific factors include weather
conditions, slug nutritional state, attractants inside of the plot (e.g., crop type), conspecific
interactions (e.g., slug—slug interactions and trails), and slug species. Stochastic models
may be useful to account for greater variability in model predictions due to these factors.
When the timing of a target outcome is important, in silico experiments would also be
useful to determine optimal plot sizes for a given set of site-specific conditions. When
possible, the predicted outcomes for different plot sizes should be confirmed prior to the
deployment of this barrier apparatus in an agricultural setting.

Practical and effective measures of crop protection against rat lungworm disease
gastropod carriers are an essential component to successfully manage the epidemic in
Hawaii state, where A. cantonensis is broadly distributed and has the potential to expand
its range to higher elevations due to warmer average temperatures caused by climate
change [8], and annual case counts of this disease are rising [1]. More efficient barriers
contributing to the long-term reduction of gastropod carrier densities may not only reduce
rat lungworm disease risk, but also has potential applications for a wide array of other
diseases transmitted by gastropods to humans (e.g., clonorchiasis, fascioliasis, fasciolopsia-
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sis, opisthorchiasis, paragonimiasis, and schistosomiasis) [28]. Anecdotal observations in
field and laboratory settings suggest that this apparatus is effective against snails as well,
offering a potentially wide application of these barriers in reducing the densities of various
terrestrial gastropods. The addition of valve mechanisms to slug barriers may also help to
offset the existing multimillion-dollar costs of terrestrial gastropod-related crop damage in
agricultural industries [29]. The apparatus explored in this study [13], which may primarily
be employed by farmers, has been designed to be economically attainable at small scales.
The cost of materials for the apparatus used in the field component of this project [13] is
approximately USD 1944.00 to protect a one-square-hectare plot, including batteries and
refugia to monitor changes in the internal slug density of the plot. The cost of materials
would likely be reduced if purchased in larger quantities for larger farms, but it also offers
a potentially feasible solution for smaller farms. These materials may be reused for future
seasons, apart from the batteries. Such solutions not only provide farmers with a means
to protect existing crops, but also to potentially grow more delicate crop species that are
less resistant to slug herbivory (e.g., napa cabbage). Additionally, for organic farms, this
apparatus provides a chemical-free solution to reduce pests’ damage to produce.

In conclusion, our findings support the use of valve mechanisms in barriers to rat
lungworm disease slug carriers. This key design component is predicted to yield a long-
term reduction in the population densities of slug carriers in protected areas. The use of
effective protective barriers is essential, not only to mitigate disease risk, but to promote
the economic and cultural welfare of farmers and local communities.
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Appendix A

A more detailed explanation of the mathematical expression will be given here. We
will not cover how the solution (integration) for variable Y is derived from the differential
equation, which can be found in standard references for ordinary differential equations
(ODE). Furthermore, we will not “double-check” to show that this solution for Y does,
in fact, fit the ODE. Instead, this appendix will describe in more detail the parameters of
the math expression in terms of the physical slug and garden setting. Notably, while the
basic equation tracks the number of slugs (abundance), we would like an expression for
slug densities (number per unit area). As we describe parameters and how they fit into
the equations, it is very useful to keep track and be cognizant of the units to provide an
intuitive sense. For example, exponential powers should be in terms of pure numbers
(except for the scalar of time) if the independent variable x were to represent time.

The approach to examine the mathematics of the model is to first set up an intuitive
tally balancing the change (difference over time, differential) in the number of slugs in
the garden. Over an interval of time, this change will be the number entering minus the
number leaving. Assume that movement dominates the changing numbers (such as birth,
deaths, and predation). Then, we examine the parameters of the equation (the physical
aspects of slug movement in our setting) to express the change in slug density rather
than numbers. We isolate terms that are time-dependent and those that are not. Based
on the type of differential equation, we can solve for the value of density itself. This
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solution will incorporate the initial parameters and introduce one new parameter, the initial
baseline density.

Based on our previously published laboratory and field experiments (13) with this
slug/snail barrier, we start with a general equation #1, which balances the inward and
outward movements of the number of slugs (abundance). From this first expression, we will
determine a solution as shown in equation #2, as well as look at two separate circumstances
added onto equation #1: a breach that is fixed after a fixed number of slugs enter and exit
through, as shown in equation #3, and a breach which cannot be fixed but allows slugs to
enter and exit at a constant rate as shown in equation #4.

Equation #1 (Differential Equation for Slug Abundance)

The change in the number of slugs per unit of time is equal to the number entering
(across the barrier) minus the number exiting. There are no alternate pathways (breaches).

dN
ar -k
Where: N is the total number (or abundance) of slugs in the garden (number).
Where:
K1 = (C)(V)(pOut)(ProEnt)

Where:

C is the circumference of the garden (cm).

V is the slug velocity vector of both speed and direction to reach the barrier (cm
per time).

pOut is outside slug density (number per cm?).

ProEnt is the proportion of slugs that enter across the barrier once they have reached it
from the outside.

Where:

Ky = (C)(V)(pIn)(ProEx)

Where:

C and V are defined as above.

pln is the inside slug density, dependent on time (number per cm?).

ProEx is the proportion of slugs that exit across the barrier once they have reached it
from the inside.

Notes:

1. The outside slug density is assumed to be constant, whereas the inside density
depends on time (the time from when the barrier is activated with some initial baseline
population). This initial baseline population will not appear in the differential equation
and will only appear later (after integration) when one solves N itself. Mathematically,
it will be a constant of integration that can be set to match the starting baseline internal
slug population;

2. It was reported in the laboratory experiments of the original publication (13) that
for a vertical barrier, as slugs approached from the top (exiting the garden barrier), they
could retreat (crawl back up) while others “crossed” the barrier, either falling over it or
crawled across it (very rare). When slugs approached from the bottom (entering), none
climbed across the barrier; they either crawled back down or fell back due to the electric
shock. Equation #1 allows for two different proportions for entry and exit, and “crossing”
the barrier can occur by falling or crawling over it. With the barrier set up outside the
garden, the falling movements favor exiting over the entry;

3. Here is a detailed explanation for the slug velocity V; see Figure Al The velocity
vector has two components: speed (Sp, which is the magnitude) and direction (8). The total
circumference can be divided into smaller lengths (approaching infinitely small segments
as we apply calculus to tally the total number of slugs reaching the entire circumference).
Corresponding to each segment, there is an area of flux, defined as the area in which all
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slugs have the potential to reach the barrier in time t. The distance of the upper border
of the flux area is set to the distance calculated by a slug moving at speed Sp for a time .
This flux area excludes slugs that are too far away. In this flux area, let all the slugs have an
average speed, Sp.

To get a notion of the importance of direction (9) to reach the barrier, at this distance,
only slugs traveling in the direction perpendicular to the circumference segment will reach
the barrier. At the extreme limit of the distance, only 1/360 will be going in the right
direction to reach the barrier. For the slugs at the barrier, half of them will have the correct
direction (180/360) to reach it, while the other half will move away.

Vector = of magnitude Speed (Sp) and Direction ©

| l and L components to boundary
Inside d circ
_—
l 1
2
Outside 3 — Bocier
4
’
: ~— 1Sp I
! 0.255p
7 : © in degrees or radians .35
8
' Sp = radius)
9 (=) " (Sp
10 » 3 A -=="0.255p
Level Prop.
Arc vs. 360° or 2nR 1| 005 | 0.48
2| 015 | 045
31 025 | 042
4| 035 | 039
5| 045 | 035 L Avg?
6| 055 | 031 '
3| o\ /6 | 7| 065 | 0.27
8| 075 | 0.23
9| 085 | 0.18
180° - 20 . 2 nr —2r arcsin 0.25
Property cut by Arc = ——— inradians ———— 2 10/ 095 | 010 | _J
360 2nr 0.999 | 0.0045

Figure A1. Calculation of the proportion of slugs approaching a barrier based on their initial distance
from the barrier and velocity (i.e., speed and direction).

Figure Al shows a typical flux area along the circumference where slugs enter the
garden approaching it from the outside. A similar diagram can be drawn in reverse, where
slugs exit the garden by approaching it from the inside. The flux area is broken up into
10 levels, each with midpoint perpendicular distances corresponding to Sp from closest to
farthest: 0.05 Sp, 0.15 Sp, 0.25 Sp, ..., 0.95 Sp. For example, looking at level 3, only slugs
with enough perpendicular direction will reach the border at 0.25 Sp; based on trigonometry,
the limit will be set by the angle 6, whose sine is 0.25. All slugs traveling more “vertically”
than 6 off the horizontal axis will reach the border; therefore, the proportion of slugs moving
in the right direction will equal the following: (180 — 20)/360 = 42%. The figure shows
another column with the proportion of slugs moving in the right direction for each stratum.
Across all strata of the flux area, the average of the slugs moving in the right direction is
32%. Alternatively, mathematically one could get an exact proportion by integrating across
infinitely small layers with their corresponding proportions bounded by these angles (it is
good to convert the angles in radians to avoid switching positive and negative values of
sine as one crosses quadrants).

If slug motion is random in all directions, for any given average speed of slugs, only
about 32% of the slugs are moving in the right direction to reach the barrier. Where Sp is
the average speed of the slug, and its unit is cm/time unit. The unit of time is a scalar to be
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chosen for the entire equation (i.e., seconds, minutes, hours, days, weeks, etc.). We assume
the random direction () of the slug’s movement for entering and exiting the garden. For
the same value Sp, refinement to the model can be made so that if there is an attractant in
the garden, there will be a non-random, higher percentage of slugs moving in the direction
to reach the barrier from the outside and the opposite effect for the slugs already inside
the garden;

4. The number of slugs in the garden N is the fixed area of the garden (A) multiplied by
the inside slug density (pIn). The differential equation #1 can be rewritten to convert N into
density and to isolate the time-dependent variable, which is the inside slug density pIn.

Where: vl K

pin 1 2
i A a P

Where: A is the area of the garden (cm?).
From the form of the above differential equation of the time-dependent density, the
solution for this differential would be:

Kz’ = Kz/ph’l

pln = (K1/A)/(Ky' /A) + C3 x e~ &,/

The new constant of integration C3 is introduced and can be used to “set” the initial

baseline pIn levels (when t = 0). Its units are the same as the density and number per cm?.

Equation #2

To better appreciate the parameters of the mathematical model and to track the unit, let
us substitute the parameters for the dummy variables Ky, Ky, and K;’, as demonstrated here:

(C)(Sp)(0.32)(ProEnt)(pOut)

pln = - + C3e

( (C)(Sp)(0.32)(ProEx)
A

_ (ProEnt)(pOut) =(©)(Sp)(0.32) (ProEx)t
- ProEx +C3e A

—(C)(Sp)(0.32)(ProEx)t
A

At the steady state when t gets very large, the second term approaches zero, and
pIn/pOut = ProEnt/ProEx. For example, when it is 10 times easier to exit than to enter, the
internal slug density will be one-tenth of the outside density. This difference between the
proportion that enters versus exits is what we term the “valve” effect. It is similar to the
valve effect of funnel fish traps, except that the funnel is set to concentrate fish inside the
trap rather than outside. Alternatively, at a steady state, the internal and external densities
will be equal if the chances of entering and exiting are the same. This is true even for
very effective barriers without a valve effect, for example, the same electric-barrier system
(blocking 90% of slugs) but laid horizontally without the valve effect of shock + gravity, or
even barriers with repelling effects, such as copper.

Next, the equation shows the factors which affect how quickly the steady state will be
reached. Looking at the components of the factors of the negative exponent, we see that an
increased garden circumference, greater speed of slug movement, a high proportion of slugs
exiting, and a decreased garden area will approach a steady state faster. Furthermore, the
exponent is a pure number with the time scale matching the time units of the slug speed.

Finally, the value of C3 is determined algebraically based on whatever we choose as
the baseline population density in the garden (when ¢ = 0).

As an example of the above principles, suppose we do not attempt any baseline
“one-time” clean out of the slugs in the garden. This population will then approach
a steady-state level depending on the valve effect (regardless of the intrinsic repelling
effect of the material). How quickly this occurs depends on the speed of the slugs, the
circumference, and the area of the garden.

Equation #3: Effects of a One-Time Breach
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Building upon equations #1 and# 2 (using baseline pIn = 0, and ProEx/ProEnt = 9:1
valve effect, same slug average speed and garden C and A), the differential equation of slug
abundance during a one-time breach will be the following which addresses the entry and
exit via the one-time breach:

AN /dt = (K1 + Bent) — (Ko + Bey)

Where:

Bent is the number of slugs entering the garden via the breach over time (number per
time unit)
Bey is the number of slugs exiting the garden via the breach over time (number per
time unit)

The conversion of the equation to track slug densities is similar to what was done
for equation #1 but introduces the effects of the breach. Immediately after the breach is
fixed, we determine the final endpoint for the internal density, pIn. Moving forward after
the breach is fixed, this endpoint becomes the new starting point that follows the rules of
equation #2, but now with a new non-zero starting point. This principle of using equation
#2 but with a new starting point is very useful since it does not really depend on what the
breach is. For example, it might not be a pass-through through which slugs enter and exit,
but simply a one-time breach of slugs, say slug-infested compost dumped into the garden.
Thus, the method of handling slug densities after the breach has ended is nothing more
than redefining a baseline slug density and proceeding with equation #2. Additionally, as
we showed previously, this initial starting need not be zero and will approach the steady
state through the dynamics of the model depending on various parameters. This starting
point moving forward after the breach will determine the value C3.

For readers who laboriously tallied parameters during the breach to reach the endpoint
density, your work will not go unrewarded. The next situation is a permanent, unrepaired
breach, which is nothing more than a description of the model during the breach before it
was repaired.

Equation #4: Effects of a Constant Breach

Finally, we address the concern of an “irreparable” tunneling network of rocky, porous
ground through which slugs move. Mathematical models should be specific to the nature
of the breach. However, if breaches can be quickly repaired (i.e., in our field experiment,
the breaches were detected and repaired within 3 days), we have the luxury of moving
forward with a no-breach model, with the residual breach effect incorporated by a new
baseline starting point.

To highlight the principles of a continuous breach without oversimplification, we
assume a similar setting with similar parameters as that described in equations #1 and #2:
garden circumference, garden area, slug speed, the random direction of movement, valve
effect (9:1), baseline pln (zero). We add in the tunneling through the ground as our constant
breach. To keep things simple, passing through the tunnel will follow the rules of passing
through the barrier. The tunnel entrance(s) must be approached according to the rules of
slug density, flux, and velocity. Of the slugs that reach the tunnel circumferences, there is a
proportion that will pass through in either direction (entering or exiting). Assuming there
is no valve effect on the tunnel, of those slugs that approach the tunnel entrance(s), the
proportion of those entering is the same as those exiting. Furthermore, the tunnel option is
treated as an alternative to the barrier: slugs will either choose to pass through the barrier
or tunnel, not both.

86



Pathogens 2023, 12, 847

Inside Outside

——————— Barrier

Tunnel Movement

Figure A2. Diagram of the tunnel (constant breach) in which slugs can move between the inside and
outside of a plot protected by a barrier.

The assumptions for the barrier are that the internal population density is 0 at baseline,
the valve effect is 9:1, and there are no repaired breaches. The assumptions for the tunnel
are that internal population density is 0 at baseline, there is no valve effect, and the
tunnel effect is proportional to the circumference of the tunnel opening as opposed to its
volume. The cumulative effect of multiple tunnels can be represented in a single term
where circumferences of multiple tunnels are added together.

The differential equation is the net change in the slug abundance: the number entering
minus the number exiting. Slugs can pass (enter and exit) through the tunnel or through
the barrier. It is similar to equation #1: AN /dt = K1 — K, but now the entry rate K; and exit
rate K; are through the barrier or the tunnel.

dN/dt = (K1g + Ki1) — (K2 + Ko1)

Where:

K;p is the rate of slugs entering via barrier (number per unit of time).

K7 is the rate of slugs entering via tunnel (number per unit of time).

Kjp is the rate of slugs exiting via barrier (number per unit of time).

Kyt is the rate of slugs exiting via tunnel (number per unit of time).

The following equation is similar to equation #2, where we converted it to internal
density and isolated the parameter of pIn because it is time-dependent:

dpln _ (K + Ki7) (K2B/ +K2T’)(PI”)

ar A A

The solution for density at a steady state will be:

((K13+K1T))
pln = A4
( (KZB’+K2T’) >
A
(Ko + Kor)
Kyp + Ko = T opln

For variables K5, and Kj1, please refer to the previous definition of K.
Filling out the parameters for the values of K, we have:

Kir = (CT)(Flux)(pOut)(ProT)
= (CT)(V)(pOut)(ProT)
= (CT)(Sp)(0.32)(pOut)(ProT)
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Where:
CT is the tunnel circumference (equal on both tunnel ends).
ProT is the proportion of slugs crossing via the tunnel.
Similarly,

Kor = (CT)(Sp)(0.32) (pIn) (ProT)

Converting to the internal slug density,

dpl 1
Ztn = Z(Total rate enter — Total rate exit)

With the isolation of variable pln,

dpln
dt

=G — G(pln)
Where: C; and C; are placeholder variables:

C = %(pOut)(Sp)(O.32)((C)(ProEnt) + (CT)(ProT))

C2 = 7 (Sp)(032)((C)(ProEx) + (CT) (ProT))

Notice that the units of C; and C; differ by density unit. The unit of C; is number/ (cm?
X unit time). The unit of C, is 1/unit time.
Solving for pln,

pln = = + C3e !
(@)

At a steady state, the second term of the right side of the above equation approaches 0,
leading to the following equation:

pIn _ (%)(SP)(O-:Q)(ZQ
pOut (1) (sp)(032)(Z)

Where: Z; and Z; are placeholder variables such that:

Zy = (C)(ProEnt) + (CT)(ProT)
Zy = (C)(ProEx) + (CT)(ProT)

Z1/Z, is the ratio of the inside density to the outside density at a steady state. This

ratio has the form:
a-+c

b+c

When c is large (i.e., a very large tunnel effect) with respect to a and b, the internal
population density approaches the external population density at a steady state (in other
words, as if there is no barrier).

When c is small (i.e., a very small tunnel effect) with respect to a and b, the internal
population density approaches the population density with a valve effect at a steady state
(in other words, as if there is no tunnel).

To explore how quickly a steady state is reached with a tunnel effect, investigate the
exponent term above. Equilibrium is predicted to be approached faster with increasing
speed, barrier circumference, tunnel circumference, the proportion of slugs exiting via the
barrier, the proportion of slugs exiting via the tunnel, and decreasing garden area.
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Abstract: Angiostrongylus cantonensis is the major etiological nematode parasite causing eosinophilic
meningitis and/or eosinophilic meningoencephalitis in humans. The rapid global spread of
Angiostrongylus cantonensis and the emerging occurrence of the infection have exposed the short-
comings of traditional /conventional diagnostics. This has spurred efforts to develop faster, simpler
and more scalable platforms that can be decentralized for point-of-need laboratory testing. By far, the
point-of-care immunoassays such as the lateral flow assay (LFA) are the best-placed. In this work, a
LFA in the form of an immunochromatographic test device (designated AcAgQuickP¥), based on the
detection of a circulating Angiostrongylus cantonensis-derived antigen, was established using anti-31
kDa Angiostrongylus cantonensis antibody as the capture reagent and anti-Angiostrongylus cantonensis
polyclonal antibody as the indicator reagent. The AcAgQuickPX was evaluated for its diagnostic
potential with a total of 20 cerebrospinal fluids (CSF) and 105 serum samples from patients with an-
giostrongyliasis and other clinically related parasitic diseases, as well as serum samples from normal
healthy subjects. Three of the ten CSF samples from serologically confirmed angiostrongyliasis cases
and two of the five suspected cases with negative anti-Angiostrongylus cantonensis antibodies showed
a positive AcAgQuickP* reaction. Likewise, the AcAgQuickPX was able to detect Angiostrongylus can-
tonensis specific antigens in four serum samples of the 27 serologically confirmed angiostrongyliasis
cases. No positive reaction by AcAgQuio:kDX was observed in any of the CSF (1 = 5) and serum (n =
43) samples with other parasitic infections, or the normal healthy controls (1 = 35). The AcAgQuicka
enabled the rapid detection of active/acute Angiostrongylus cantonensis infection. It is easy to use, can
be transported at room temperature and does not require refrigeration for long-term stability over a
wide range of climate. It can supplement existing diagnostic tests for neuroangiostrongyliasis under

clinical or field environments, particularly in remote and resource-poor areas.

Keywords: Angiostrongylus cantonensis; lateral flow assay; immunochromatographic test; antigen
detection; 31-kDa antigen; active angiostrongyliasis

1. Introduction

Angiostrongylus cantonensis, also known as rat lungworm, is an angiostrongylid nema-
tode parasite that typically resides in the pulmonary arteries and right ventricle of rodents.
It is the commonest etiological parasite causing eosinophilic meningitis and/or eosinophilic
meningoencephalitis in humans [1,2]. This neurotropic parasite is of increasing public
health importance as its geographic distribution now covers a wide part of the world, and
new locality records continue to be reported [2-6].

Angiostrongylus cantonensis has a relatively simple heteroxenous life cycle, typically
involving a definitive rodent host and a mollusk intermediate host, but it may also use
various paratenic hosts [2,7]. Humans are an accidental host, acquiring the infection via the
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ingestion of raw or poorly cooked snail meat and a variety of paratenic hosts which harbor
the third-stage larvae, or green vegetables contaminated with the infective larvae [1-3,6,8].
The most frequently reported symptoms are headache, neck stiffness, paresthesia, fever,
visual disturbances, vomiting and nausea [1-5,9]. The migration of the larvae to the brain
tissue causes serious central nervous system (CNS) damage, which can result in coma and
death of the patient [10,11].

The definitive diagnosis for human neural angiostrongyliasis is based on the detection
of immature worms in the cerebrospinal fluid (CSF) or from the eye of infected patients,
but such findings are of rare occurrence [9]. The disease is presumptively diagnosed
based on presenting symptoms, medical histories, eosinophilic pleocytosis in the CSF, and
immunological and /or molecular markers [2—4,12].

Antibody-based immunodiagnostic tests wusing purified antigens for
neuroangiostrongyliasis have been available for decades. Most of the work has centered on
the Angiostrongylus cantonensis 31-kDa glycoprotein antigen [13,14], 29-kDa antigen [15],
and 32-kDa protein [16]. The 31-kDa glycoprotein antigen of Angiostrongylus cantonensis has
mostly been used in traditional immunoblotting as a diagnostic marker for differential diag-
nosis in human angiostrongyliasis, with very high sensitivity and specificity [17-19]. On the
other hand, the detection of circulating Angiostrongylus cantonensis antigens is an alternative
immunodiagnostic test to identify the active/acute/early stages of neuroangiostrongyliasis,
and it is very much required for the patient management/treatment.

Furthermore, a molecular approach that targets gene sequences of Angiostrongylus
cantonensis can also assist in an early etiologic diagnosis. Various DNA-based diagnostic
techniques that rely on polymerase chain reaction (PCR) to amplify and detect specific
Angiostrongylus cantonensis DNA molecules have been successfully applied to detect An-
giostrongylus cantonensis DNA in cerebrospinal fluid (CSF)/clinical specimens [20-22].

Because parasitological / definitive diagnosis is rarely achieved, immunological and/or
molecular diagnostic methods for the detection of Angiostrongylus cantonensis antibod-
ies/antigens and/or nucleic acids have become widely accepted as the most appropriate
diagnostic approach to support clinical diagnosis [2,12,23]. Nevertheless, the utilization of
such tests is time-consuming, needs highly sophisticated, high-cost laboratory equipment
and continuous electricity supply and is not suitable under clinical or field conditions in
endemic regions [22].

The rapid global spread of Angiostrongylus cantonensis and the emerging occurrence
of the infection have exposed the shortcomings of traditional/conventional diagnostics.
This has spurred efforts to develop faster, simpler and more scalable platforms that can be
decentralized for performing the on-site detection of Angiostrongylus cantonensis infection
in order to allow prompt treatment decisions. At present, point-of-care immunoassays,
such as the flow-through/lateral flow assay, are the best placed.

The LFA has recently attracted considerable interest because of its long shelf life
and the fact that refrigeration is not required for storage. It is very well adapted for
application in harsh field environments, and in remote regions. As such, an LFA in the
form of an immunochromatographic test device (AcAgQuickP*) based on the detection of
a circulating Angiostrongylus cantonensis-derived antigen was established, using an anti-31
kDa Angiostrongylus cantonensis antibody line on the membrane strip as the capture reagent
and anti-Angiostrongylus cantonensis polyclonal antibody conjugated to colloidal gold as the
indicator reagent. The AcAgQuickP* was initially evaluated for its diagnostic potential in
this study.

2. Materials and Methods
2.1. Clinical Samples

A set of 20 individual CSF samples submitted to the Parasitology Laboratory, Depart-
ment of Parasitology, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand, for routine
antibody testing (ELISA and/or immunoblot) of tissue-invading parasites, i.e., Gnathos-
toma spinigerum, Angiostrongylus cantonensis and Taenia solium metacestodes, were used for
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the present assessment. These CSF specimens were from clinically diagnosed cases with
positive immunoblot tests for the presence of a 31-kDa band specific for Angiostrongylus
cantonensis (n = 10; designated as CSF1-10) and clinically suspected cases with negative
immunoblot tests for Angiostrongylus cantonensis infection (n = 5; CSF11-15), as well as CSF
samples (representing other clinically related parasitic infections) with positive immunoblot
tests showing a 24-kDa band specific for Gnathostoma spinigerum (n = 2; CSF16-17) and
with ELISA-positive cases of Taenia solium neurocysticercosis (1 = 3; CSF18-20). The CSF
specimens were kept at —70 °C after the initial routine immunological investigations.

In addition, a total of 105 reference sera stock from the Parasitology Department of the
Faculty of Medicine Siriraj Hospital, were also used for evaluation testing. Twenty-seven
samples were from clinically diagnosed patients with detectable Angiostrongylus cantonensis-
specific antibody in immunoblotting. The remaining 43 serum samples were from patients
with other parasitic diseases, i.e., gnathostomiasis (n = 13), toxocariasis (1 = 2), trichinellosis
(n = 2), hookworm infection (n = 4), filariasis (n = 5), cysticercosis (n = 9), paragonimiasis
(n = 2), opisthorchiasis (n = 3) and malaria (1 = 3). These infections had been diagnosed
using parasitological or serological methods. Additionally, 35 serum samples from normal
healthy subjects (whose stool samples were without any intestinal parasitic infection) were
included for testing.

All the 105 patient sera and 20 cerebrospinal fluids were collected from the leftover
clinical samples stored separately at —70 °C. The same sets of archived CSF (n = 20) and
serum (n = 97) samples had been tested with AcDIGFA”8 to detect the 31-kDa specific
antigen of Angiostrongylus cantonensis [24]. Additionally, 8 serum specimens used in this
study were from cases with positive anti-Angiostrongylus cantonensis antibodies detected
using an immunoblot test. They were retrieved and re-tested using AcAgQuickPX to
confirm the presence of a 31-kDa Angiostrongylus cantonensis antigen. The use of stored
leftover clinical CSF or serum samples for this study was approved by the Director of Siriraj
Hospital, Faculty of Medicine Siriraj Hospital, Mahidol University.

2.2. Production and Purification of Polyclonal Antibodies

Procedures to produce rabbit immune sera against crude somatic extracts and pu-
rified 31-kDa glycoprotein of Angiostrongylus cantonensis were the methods previously
described [24-27]. The rabbit antisera used in this study were those previously produced
and stored in small aliquots at —70 °C. Anti-Angiostrongylus cantonensis and anti-31 kDa An-
giostrongylus cantonensis immune sera collected 2 weeks after the last immunizing dose were
used to establish the present AcAgQuickP* device. From the previous immunoblot analysis,
the crude Angiostrongylus cantonensis extracts were recognized using anti-Angiostrongylus
cantonensis polyclonal antibody as multiple protein bands, including the 31-kDa antigenic
band, whereas the anti-31 kDa antibody recognized a broad band with an approximate
molecular mass of 31 kDa. The antisera were retrieved and purified using the Melon IgG
Spin Purification Kit (Thermo Scientific, Waltham, MA, USA) according to the manufac-
turer’s instructions. After purification, the viability of the purified rabbit antibodies was
confirmed to ensure the test performance. The purified anti-31 kDa Angiostrongylus canto-
nensis IgG was used as an antigen-capture antibody, while the purified anti-Angiostrongylus
cantonensis IgG was used for colloidal gold-labelling as a detection agent.

2.3. Preparation of the Lateral Flow Test Device

The colloidal gold-labelled polyclonal antibody against Angiostrongylus cantonensis
was prepared and the immunochromatographic test device (designated AcAgQuickP)
was then assembled as per the standard method by Serve Science Co., Ltd., Bangkok,
Thailand. The lateral flow strip consisted of 4 components, i.e., the sample application pad,
conjugate pad, antibody-immobilized nitrocellulose membrane and absorbent pad. In the
detection zone/membrane, the purified anti-31 kDa Angiostrongylus cantonensis polyclonal
antibody (1 mg/mL) was micro-sprayed (in a 1 mm wide line) at a flow rate of 0.1 uL
per mm at the test line (T), and the goat anti-rabbit immunoglobublin-G (0.4 mg/mL)
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was sprayed at 0.1 uL per mm at the control line (C). The anti-Angiostrongylus cantonensis
polyclonal antibody-coated colloidal gold probe was added to the conjugate pad as a
detector reagent. The antibody-immobilized membrane and conjugate pad were dried
overnight at 37 °C. The sample application pad, conjugate pad and absorbent pad were
assembled with the antibody-immobilized nitrocellulose membrane on a laminated card
by superposition/overlapping of the different pads, and was cut into strips (0.5 cm in
width). Each test strip was housed in a protective plastic cassette, with a hole for sample
application and a slot/window to display test results for interpretation, and then stored
in a desiccated sealed aluminum foil-package at room temperature until used. The com-
plete set of the AcAgQuickPX kit consisted of an immunochromatographic cassette and
chromatographic/chasing buffer.

2.4. Procedure of Lateral Flow Test Device

The test procedure was performed at room temperature. In the testing process, 25 uL
of the test CSF/serum was applied slowly into the sample hole. After being completely
absorbed, one drop (approximately 50 pL) of chromatographic/chasing buffer was added
and allowed to be absorbed through the membrane to wash the excess colloidal gold-
conjugated antibody/IgG. The result was interpreted within 15 min. The appearance
of a red-colored band at the test (T) line and a red-colored band at the control (C) line
indicated a positive result, whereas the absence of a red-colored band at the test (T) line
and appearance of a red-colored band at the control (C) line indicated a negative result.
The test was invalid when no red-colored bands appeared at either the T and C lines,
or only one red-colored band appeared at the T line. All the parasite-infected patient
CSF/serum samples and healthy control sera were tested twice with the AcAgQuickP*
device to confirm the reproducibility of the results.

3. Results

In this work, of the 10 CSF samples from patients showing clinical criteria of eosinophilic
meningitis and positive results for a 31-kDa Angiostrongylus cantonensis-specific immunoblot
band, three (CSF2, 3 and 7) had a positive AcAgQuickP* reaction, showing positive red
bands (with different color intensities) at the test (T) region within 15 min. Likewise, two
(CSF12 and CSF15) of the five CSF samples from cases with clinical features of infection,
but which were negative for Angiostrongylus cantonensis-specific antibodies, also displayed
a positive AcAgQuickP* test (Figure 1). Within the set of 27 patient sera with serologically
confirmed Angiostrongylus cantonensis infection, four (Ac-7, Ac-15, Ac-22 and Ac-25) showed
a positive reaction via AcAgQuickP*, with visible pink bands at the T region (Figure 2).
No positive AcAgQuickP reaction was observed in the other 23 sera with angiostrongylia-
sis. In cross-reactivity testing, all the 5 CSF samples and the 78 sera from gnathostomiasis
(CSF = 2; serum = 13), toxocariasis (serum = 2), filariasis (serum = 5), trichinellosis (serum
=2), hookworm infection (serum = 4), cysticercosis (CSF = 3; serum = 9), paragonimiasis
(serum = 2), opisthorchiasis (serum = 3), and malaria (serum = 3), as well as the 35 normal
control sera from parasite-free individuals, were all negative for AcAgQuickP*.
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Figure 1. The AcAgQuickPX detection results of 20 CSF samples from clinically diagnosed cases with
positive immunoblot (antibody) test for angiostrongyliasis (CSF1-10), clinically suspected cases with
negative immunoblot test (CSF11-15), and CSF samples with positive immunoblot (antibody test)
for gnathostomiasis (CSF16-17), and with ELISA-positive cases of Taenia solium neurocysticercosis
(CSF18-20). The appearance of a red band at the T line and a red band at the C line indicates a
positive sample for the detection of the specific 31-kDa Angiostrongylus cantonensis antigen (CSF2, 3, 7,
12 and 15), whereas the absence of a red band at the T line and appearance of a red band at the C line
indicates a negative sample (CSF1, 4, 5, 6, 8-11 and 13-14 and 16-20).
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Figure 2. The AcAgQuickPX test results of 27 serum samples from clinically diagnosed cases of
angiostrongyliasis with positive immunoblot (antibody) test (Ac1-27), and the representative images
of AcAgQuickPX test evaluated using human sera with other heterologous parasitic infections (1 = 43).
Gs, gnathostomiasis; Tc, Taenia solium neurocysticercosis; Tox, toxocariasis; Tt, trichinellosis; Hw,
hookworm infection; Fil, filariasis; Ph, paragonimiasis; Ov, opisthorchiasis; Mal, malaria; and N,
normal healthy control (1 = 35). The appearance of a red band at the T line and a red band at the C line
indicates a positive result for detection of the specific 31-kDa antigen of Angiostrongylus cantonensis
(Ac7, Acl15, Ac22 and Ac25). The absence of a red band at the T line and appearance of a red band at
the C line indicates a negative test result (Ac1-6, Ac8-14, Ac16-21, Ac23-24, Ac26-27, Gs1-4, Tc, Tox,
Tt, Hw, Fil, Ph, Ov, Mal and N).
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4. Discussion

In clinical practice, the delayed diagnosis of Angiostrongylus eosinophilic meningitis
due to its atypical symptoms is an important problem in many hospitals because it can
cause fatal outcomes. Despite the recent introduction of a powerful and sensitive molecular
diagnostic tool (metagenomic next-generation sequencing) for the specific identification
of Angiostrongylus cantonensis DNA sequences in clinical specimens [28,29], the diagnosis
of active/acute neuroangiostrongyliasis remains a challenge in resource-limited settings
because of high operating costs and the requirement for laboratory infrastructure [29]. Other
rapid and cost-effective assays for the point-of-need diagnosis are still required to meet the
demand of appropriate tests for use in resource-poor settings or remote endemic regions.

In the early stages of infection, diagnosis based on antibody-based methods may
lack sensitivity, especially during acute illness because seroconversion may take several
weeks [30]. Alternatively, the detection of antigens has the advantage of detecting the
presence of active Angiostrongylus cantonensis infection and the level of the infective burden.
To date, only a few diagnostic tests have been reported for detecting specific Angiostrongylus
cantonensis antigen in clinical samples. A rapid lateral flow immunoassay (LFIA), based
on two monoclonal antibodies (12D5C12, 21B7B11) for detecting the specific antigens
of Angiostrongylus cantonensis, revealed very high specificity (100%) and high sensitivity
(91.1%) [31]. More recently, a rapid, non-enzymatic, dot immunogold filtration assay
(AcDIGFA%8) based on flow-through immunoassay, using purified antibodies against
specific 31-kDa Angiostrongylus cantonensis antigen to detect a corresponding (specific)
Angiostrongylus cantonensis antigen in the cerebrospinal fluid and serum samples from
angiostrongyliasis patients, showed a diagnostic specificity of 100% [24].

The specific 31-kDa glycoprotein antigen of Angiostrongylus cantonensis has been sug-
gested to be a potential immunological marker of early infection since this 31-kDa antigen
is a component of the Angiostrongylus cantonensis excretory /secretory products [32]. This
antigen has shown considerable promise as an immunodiagnostic target in an assay proto-
col based on the flow through/vertical flow principle [24]. However, the additional gold
detector reagent for the test assay still needs refrigeration; as such, it is not completely
applicable in the harsh field environment. As the relatively high concentration of the circu-
lating 31-kDa antigen of Angiostrongylus cantonensis facilitates the development of other test
platforms, this specific antigen was selected for application in a more field-friendly lateral
flow assay. In addition, the gold-based, lateral flow immunochromatography approach
to detect a specific 31-kDa glycoprotein of Angiostrongylus cantonensis (AcAgQuickPX test)
presented here was easily adapted from the previous method of AcDIGFA“8, used to detect
the specific 31-kDa Angiostrongylus cantonensis antigen [24].

In this study, the evaluation of the diagnostic potential of the AcAgQuick™*, using a
set of clinical samples from the reference stock, revealed 5 out of the 15 angiostrongyliasis
CSF samples and 4 out of the 27 angiostrongyliasis serum samples to be positive, whereas
none of the patient’s samples with other heterologous parasitic infections (n = 48) and
normal controls (1 = 35) gave positive reactions. The overall diagnostic sensitivity and
specificity of AcAgQuickPX in detecting the 31-kDa antigens of Angiostrongylus cantonensis
were 21.43% and 100%, respectively. The low sensitivity /positivity of the AcAgQuiCkDX
test in this study could possibly relate to delays in the diagnosis of the suspected active
angiostrongyliasis cases, as the sensitivity of the antigen test depends on the phase of the
disease, and on the presence of circulating Angiostrongylus cantonensis specific antigens in
the CSF and blood. In the chronic cases, the antibody levels are expected to be elevated due
to the persistence of antigen stimulation. The formation of antigen—antibody complexes,
by the circulating antigens and antibodies, may inhibit the detection of antigens in these
clinical samples [33]. Additionally, in those patients with a low intensity of infection, the
positive antigen levels may be very close to the cut-off value.

The same set of archived serum samples (1 = 19) in the present study was tested
earlier using AcQuickP* (specific antibody detection) with 100% sensitivity and 98.72%
specificity [34]. In this study, only two out of the nineteen samples showed positive antigen

ka
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results based on the examination/detection of the specific Angiostrongylus cantonensis anti-
gen on the consecutive angiostrongyliasis serum samples using AcAgQuickPX. On the other
hand, two of the five CSF samples from clinically suspected cases (criteria of eosinophilic
meningitis) with a negative immunoblot antibody test for Angiostrongylus cantonensis in-
fection had positive antigen results using the present AcAgQuickP* test. To overcome the
limitations related to the early or late seroconversion phase of available clinical samples, the
simultaneous use of both the rapid tests, AcQuickP* (antibody detection) and AcAgQuickPX
(antigen detection), should be applied for accurate detection of neuroangiostrongyliasis.

In comparison to our present antigen-based immunochromatographic test, AcAgQuickPx,
the earlier Angiostrongylus cantonensis-derived antigen detecting AcDIGFA“8 test, with
the identical pair of Angiostrongylus cantonensis-specific antibodies, revealed a slightly
better sensitivity for the consecutive CSF sample tested (CSF1-15; Ac1-Ac19). One of six
positive CSF samples tested with AcDIGFA%8 (CSF5) was negative with AcAgQuickPX,
whereas the two positive patient sera with AcDIGFA%8 gave concordant positive results
with AcAgQuickP*. This is likely that flow-through is an immunoconcentration assay and
thus allows the detection of less abundant antigens in the samples.

Theoretically, in the antigen detection tests, monoclonal antibodies seem to be the
better diagnostic reagents as they recognize a single epitope with high specificity. The
AcAgQuickPX in the present study showed 100% diagnostic specificity when tested with
CSF/serum samples from patients with other clinically related parasitic infections. This was
comparable with the earlier-developed AcDIGFA”8, which also demonstrated a specificity
of 100% [24]. Nevertheless, additional clinical samples from cases with heterologous para-
sitic infections, including other infectious diseases and cancers that may cause eosinophil
abnormality in CSF and peripheral blood, need to be performed for a more rigorous
evaluation of the specificity.

Furthermore, only patients from a single geographical region (Thailand) were in-
cluded in this study, limiting the certainty that these data could apply to other endemic
countries/regions with different geographical strains of Angiostrongylus cantonensis [35].
Whether the AcAgQuickP* will also perform equally well in other Angiostrongylus cantonensis
endemic regions remains to be evaluated. In addition, the question of the AcAgQuickP* test
yielding qualitative or semi-quantitative results needs to be addressed. The future goals
for improving our AcAgQuickDX will be focused on identifying new signal amplification
strategies as well as the quantitative system.

5. Conclusions

Overall, our AcAgQuickDX test based on the detection of a circulating 31-kDa
Angiostrongylus cantonensis-derived antigen is a fast, portable and easy-to-use test de-
vice that meets the needs of laboratory testing in a variety of healthcare settings. The test
allows the rapid immunological diagnosis of Angiostrongylus cantonensis infection to enable
immediate clinical management decisions to be made at or near the site of patient care (at
the point of care settings). It can also be a good alternative for use in the initial screening
of neuroagiostrongyliasis in large-scale investigations in the field, where sophisticated
equipment is lacking.

6. Limitations of the Work

There was a limitation to the current study because the immunological testing was
carried out retrospectively, using stored frozen CSF and sera. It is possible that the use of
fresh clinical samples may increase the test sensitivity.
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Abstract: Neuroangiostrongyliasis (NAS) is an emerging tropical disease in humans and some
animals which is caused by infection with the parasitic nematode Angiostrongylus cantonensis. It is the
leading cause of eosinophilic meningitis worldwide. Diagnoses in humans and susceptible animals
are generally presumptive and easily confused with other central nervous system disorders. The
31 kDa antigen is currently the only NAS immunodiagnostic assay that has achieved 100% sensitivity.
However, little is known about the humoral immune response against the 31 kDa antigen in NAS
infections, which would be critical for widespread adoption of this assay. We used the Hawai’i 31 kDa
isolate in an indirect ELISA assay to confirm the presence of immunoglobulin IgG, IgM, IgA, and
IgE isotypes in six-week post-infection plasma from lab-reared rats infected with 50 live, third-stage,
A. cantonensis larvae isolated from a wild Parmarion martensi semi-slug. Our results confirmed the
presence of all four isotypes against the Hawaii 31 kDa isolate, with sensitivity ranging from 22-100%.
The IgG isotype showed 100% sensitivity in detecting A. cantonensis infection, which validates the use
of IgG indirect ELISA with 31 kDa antigen as an effective immunodiagnostic assay for rats six weeks
post-infection. Given each isotype may be present at different times during NAS infections, our data
provides preliminary information on the humoral immune response to A. cantonensis infection in
lab-reared rats and serves as a baseline for future studies.

Keywords: Angiostrongylus cantonensis; angiostrongyliasis; rat lungworm; serological detection;
ELISA; 31 kDa

1. Introduction

The nematode Angiostrongylus cantonensis (rat lungworm) is a food and water-borne
zoonotic parasite causing neuroangiostrongyliasis (NAS), an emerging tropical infectious
disease and the leading cause of eosinophilic meningitis worldwide [1,2]. In the life cycle
of A. cantonensis, rats are the obligate definitive host, with adult worms reproducing in the
pulmonary arteries, and gastropods are the obligate intermediate host [3]. Humans and
other mammals, such as horses and dogs, can be accidental hosts, in which A. cantonensis
does not reproduce but does invade the central nervous system (CNS), causing painful and
devastating symptoms [3-6]. Symptoms of NAS are frequently mistaken for other central
nervous system disorders, leading to frequent misdiagnoses in humans and animals [7,8].

A reliable laboratory diagnostic assay that can be used in conjunction with patient
history and clinical symptoms has been a longstanding goal for NAS. The gold standard for
diagnosis of A. cantonensis infection is the microscopic identification of whole larvae in the
cerebrospinal fluid (CSF) [9]. With advances in technology, the Centers for Disease Control
and Prevention (CDC) currently tests human CSF for A. cantonensis DNA using a real-time
polymerase chain reaction (PCR) assay [10], and a few laboratories offer real-time PCR
testing for animals. The most recent real-time PCR assay for NAS [11] meets important
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laboratory diagnostic criteria, such as having high sensitivity, and will likely be the assay
of choice in the near future.

Nevertheless, while no laboratory diagnostic is perfect in all circumstances, numerous
problems plague both the identification of whole larvae in CSF and real-time PCR, which
complicate testing and delay or prevent patient diagnosis. For example, collection of CSF
can be difficult to obtain, as some patients, doctors, or veterinarians are hesitant to perform a
lumbar puncture. Both microscopic identification and real-time PCR have a high failure rate
due to the scarcity of their targets and often require repeated lumbar punctures for positive
identification [9]. As a result, most diagnoses are presumptively based on compatible
history, characteristic physical findings, and evidence of high eosinophil counts [7,12]; thus,
ongoing research is searching for a less invasive and more robust laboratory diagnostic. As
an immunodiagnostic test, the measurement of antibody titers has the potential for high
sensitivity while also overcoming some barriers given that blood collection is less invasive,
antibodies can reach levels easily detected, and the advantage that previous exposure to
the pathogen can be retrospectively detected.

For decades, a variety of antibody detection methods have been investigated for NAS,
with most research focused on the enzyme-linked immunosorbent assay (ELISA). For ex-
ample, Cross [13] developed an ELISA assay using A. cantonensis crude antigen isolated
from fourth-stage larvae recovered from rat brains. When tested against other helminths, the
ELISA values for A. cantonensis were higher, yet cross-reactivity was still significant. Subse-
quent research has been directed toward finding discrete antigens with greater specificity
through various methods of purification of A. cantonensis proteins [14-16]. A number of these
studies found that serum antibodies from human patients with NAS specifically recognized
29 kDa and 31 kDa proteins present in crude antigen of adult worms, with further research
showing greater specificity for the 31 kDa protein [6,12]. After purifying the 31 kDa antigen
using electrophoresis in a 12% SDS-polyacrylamide gel, Eamsobhana et al. [17] were able
to achieve 100% sensitivity and specificity when testing serum from human patients with
active A. cantonensis infections. Some research suggests that native antigens isolated from
geographically local A. cantonensis may enhance the detection of exposure to the parasite
or prior NAS infections, particularly in non-endemic areas [10,18]. Despite having been
validated over a decade ago, there is a lack of basic immunological information about the
humoral immune response to the 31 kDa antigen that is pertinent for a robust laboratory
diagnostic. Knowing how antibody isotype titers change over time, in different tissues,
following various infection loads, or in different hosts would likely be helpful to distinguish
either early diagnosis or between active and prior infections.

Investigations into the NAS humoral immune response are most easily conducted
using a laboratory-reared animal model to eliminate or reduce cross-reactivity from prior
infections, as well as to gain the ability to control the dose and timing of infection. While
the definitive host (the rat) may have different humoral immune responses to NAS than
accidental hosts (humans or other mammals), the rat is a valuable and widely used model
for investigating humoral immune response and assay validation. Likewise, while the IgG
antibody is the most widely used isotype for ELISA assays in both NAS and non-NAS
infections, other isotypes may be informative as a laboratory diagnostic, particularly early
in a NAS infection when IgG levels are lower [19-22]. IgM is the first to appear following
initial exposure to an antigen and might be particularly informative for early NAS diagnosis.
IgA plays a role in mucous membranes and could be activated early in an infection when
A. cantonensis is in the gastrointestinal tract. As a critical part of the immune defense against
parasitic worms, IgE may also be informative. In fact, immunoglobins G, M, A, and E are
all detectable in the sera and CSF of humans with acute, natural NAS infections [16,23]. In
this study, we optimized methods developed for human sera [24] to confirm the presence
of IgG, IgM, IgE, and IgA isotypes in six-week post infection (PI) rat plasma against the
Hawaii 31 kDa isolate using an indirect ELISA assay.
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2. Materials and Methods
2.1. Rat Plasma

The plasma for this study was collected from rats used to validate the use of propidium
iodide stain as an in vitro death assay [25]. There were several advantages of using this
plasma source. First, laboratory strains of rats were used in the study instead of wild rats,
minimizing the likelihood of cross-reactivity or acquired immunity resulting from prior
infections. Additionally, appropriate experimental groups were selected for the ELISA
study, enabling the inclusion of both positive and negative controls, a suitable number of
replicates within experimental groups, and sufficient plasma for testing. While plasma
collection was limited to the six-week PI necropsy, this time point is a good starting point
for ELISA validation and testing in rats, as IgG titers are expected to be high. This is
because A. cantonensis completes its life cycle by this time, and IgG against crude antigen is
typically present between 10-30 days and peaks by 50-60 days PI [19-22].

Briefly, 40 7-month-old Wistar IGC outbred laboratory strains of Rattus norvegicus
were obtained from Charles River Labs (Raleigh, NC, USA) and maintained as described at
the USDA-APHIS Wildlife Services National Wildlife Research Center (NWRC) Hawai'i
Field Station, Hilo, HI, USA. Rats were gavaged under sedation as follows: Uninfected
control rats were fed 1 mL of dH,O only, without larvae, while other rats were gavaged
with 1 mL of dHO containing 50 A. cantonensis L3, either live or dead, stained with
propidium iodide or unstained. Thus, experimental groups consisted of: (1) live-stained
larvae (3 male/2 female rats); (2) live-unstained larvae (2 male/2 female rats; one female
was found dead in the cage, 40 days PI and before euthanasia and cardiac bleed); (3) killed-
stained larvae (5 male/5 female rats); (4) killed-unstained larvae (5 male/5 female rats); and
(5) uninfected controls (5 male/5 female rats) for a total of 39 rats. All A. cantonensis larvae
were obtained from a single semi-slug (Parmarion martensi) collected from the University of
Hawai’i at Hilo campus.

Rats were humanely euthanized six weeks PI, and necropsies were conducted as de-
scribed [25]. Briefly, following euthanasia, whole blood samples (up to 2 mL) were collected
via cardiac puncture of the right ventricle using a tuberculin syringe and transferred to
heparinized collection vials for plasma isolation, transferred to sterile screw-capped tubes,
and stored at —80 °C until testing with ELISA. In addition, selected organs were dissected:
heart and lung were examined for adult A. cantonensis, the brain for the presence of larvae,
and the lungs were examined for evidence of granulation (see Supplementary Materials
Data Table S1).

2.2. Hawai’i 31 kDa Isolation

The Hawai’i 31 kDa isolate prepared by Jarvi et al. [26] with methods based on Eam-
sobhana et al. [17,27] was used for ELISA testing in this study. Briefly, adult female worms
were harvested from the heart and lung tissue of infected rats collected from East Hawai'i
Island between January through February 2017, washed with 1X PBS buffer, and stored
at —80 °C in 1X protease inhibitor (Biochem Cocktail set V EDTA-Free, Thermo Scientific,
Waltham, MA, USA) in 0.01 M PBS (Life Technologies, Grand Island, NY, USA). Frozen
worms were homogenized manually in 1X protease inhibitor diluted in 1X PBS with a glass
homogenizer, then sonicated (QSonica) on ice between 3 to 10 times in 3 s intervals with a
20 s rest period between each cycle to prevent overheating. The homogenized sample was
stored at 4 °C overnight, centrifuged, and collected as soluble antigen (supernatant). The re-
covered antigen was quantified using a Coomassie Plus (Bradford) Assay Kit (ThermoFisher
Scientific, Waltham, MA USA), then separated on a series of 12% SDS-polyacrylamide gels
using electroelution to isolate the 31 kDa targeted antigen. Sections of gel containing the
31 kDa proteins were identified using a Hi-Mark™ Pre-stained Protein Standard ladder,
and these gel sections were excised manually. The gel slice was minced and then eluted
with a Model 422 Electro-Eluter (Bio-Rad Laboratories, Hercules, CA, USA). Electroeluated
protein was desalted and concentrated by ultrafiltration using Amicon Ultra-2 Centrifu-
gal Filter Devices (MilliPore Sigma, Burlington, MA, USA) and quantitated using High
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Sensitivity Protein 250 chips in an Agilent 2100 Bioanalyzer System (Agilent Technologies,
Santa Clara, CA, USA) as having a protein concentration of 1.69 ug/pL. Quantified proteins
were pooled and stored in 1.5 mL low protein binding microcentrifuge tubes (Eppendorf,
Hauppauge, NY, USA) at —80 °C.

2.3. Indirect ELISA

ELISA was based on the methods described in Jarvi et al. [26], with some modifica-
tions. Antigen, plasma, and conjugate concentrations were determined using checkerboard
titration. Plasma from rats fed live-unstained larvae was used as positive controls, and
plasma from uninfected rats was used as negative controls; infection status was confirmed
for all experimental groups through necropsy. Primary antibodies were derived via titra-
tion of positive and negative plasma controls with a range of 1:50 to 1:1600, resulting in
final concentrations of 1:100 for IgG and IgM and 1:50 for IgA and IgE. Concentrations
of secondary antibody (all conjugated with horseradish peroxidase) were derived from
titration from an original range of 1:450 to 1:100,000, with final concentrations of 1:5000 for
IgG-Fc Fragment (Bethyl Labs, A110-136P, Lot 30) and IgM (Bethyl Labs, A110-100P, Lot:
46) and 1:1250 for IgA (Bethyl Labs, A110-102P, Lot: 40) and IgE (Invitrogen, No. SA5-10256,
Lot XE3581801). Antigen concentrations of 0.25 pg/well for IgG and IgM and 0.5 pug/well
for IgA and IgE and were derived from a titration of 1.0 to 0.0313 ug/well, quantitated
from 31 kDa antigen with a concentration of 1.69 ug/uL (see above).

Each plate included at least two positive controls, two negative controls, and a single
carbonate buffer control or blank (without antigen). All samples and controls were run in
triplicate. Flat bottom 96-well Immulon 4HBX microtiter plates (ThermoScientific) were
initially coated with 31 kDa antigen derived from A. cantonensis and diluted with 0.05 M
BupH carbonate-bicarbonate buffer (ThermoScientific, #28382) at pH 9.4 and refrigerated
overnight at 4 °C. All washing steps were conducted on a 405 Select TS microplate washer
(BioTek, Winooski, VI, USA). After coating, plates were washed four times with 300 pL
PBS-0.05% Tween 20 (PBS-T) (pH 7.4) with a 2 min pause after every other wash. Plates
were then blocked (125 pL/well) with 5% BLOTTO (nonfat dry milk powder) in PBS-
Tween (PBS-T) for 2 h at room temperature with gentle rocking. The blocking solution was
removed with no washing, then plasma samples diluted with 2.5% BLOTTO in PBS-T were
added to appropriate wells (100 uL/well) and incubated for 2 h at 37 °C with gentle shaking.
After incubation with primary antibody, plates were washed six times with 300 uL PBS-T,
with a 2 min pause after every other wash. Horseradish peroxidase (HRP)-conjugated goat
anti-rat secondary antibody diluted in 2.5% BLOTTO in PBS-T was added (100 puL/well),
and plates were incubated for 1 h at 37 °C with gentle shaking. Plates were then washed
six times with PBS-T, pausing every other wash. TMB-solubilized substrate solution (TMB
One®; Promega, Madison, W1, USA) for HRP was added (100 pL/well). Absorbance was
monitored on an pQuant microplate reader (BioTek) at 650 nm and is reported as optical
density (OD). Upon the positive controls reaching a maximum OD of <0.6, the reaction
was stopped with 1 N HCI (100 uL/well), allowed to equilibrate for 5 min with gentle
rocking, then OD read at 450 nm.

2.4. Indirect ELISA Data Analysis
The cutoff value to distinguish positive vs. negative infection status was determined
for each immunoglobulin class by taking the mean +3 standard deviations (X + 3SD) of

the OD values of the negative control plasma samples [17]. Thus, a sample was considered
positive if the OD value exceeded the cutoff value. Sensitivity, defined as the percent-
age of individuals with a given condition whom the assay identifies as positive for that
condition [28], was calculated as follows,

Sensitivity = ————
(th + an)
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where Ny, and Ng, denote the number of true positive results and the number of false-
negative results, respectively. In this paper, we define true positives as plasma samples
collected from rats confirmed as having A. cantonensis infection through necropsy. False
negatives are defined as plasma samples confirmed as having A. cantonensis infection
through necropsy but whose OD value fell below the positive cutoff. True negatives are
defined as plasma from uninfected rats. Spearman’s tests were used to measure correlations
of absorbance (OD levels) with rat sex and weight, the staining of larvae fed to rats, and
the number of adult worms found during necropsy, for each antibody isotype. All analyses
were performed using Minitab Statistical Software v21.3.

3. Results

For each isotype, optical density (OD) results showed that neither propidium iodide
staining nor rat sex status produced significant differences within the groups of rats gavaged
with either live or killed larvae (Table 1 and Figures 1 and 2); thus, the results are discussed
as simply live vs. killed.
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Figure 1. A comparison of optical density (Y-axis) by experimental groups (X-axis) using IgG and
IgM conjugate, respectively. IgG and IgM are comparable due to their common assay concentrations;
primary antibody concentration (1:1000), secondary antibody concentration (1:5000), and antigen
concentration (0.25 pg/well). Individual rat ID numbers are as indicated. Dashed lines indicate
positive cutoff. A = Male rats fed stained live L3, A = Male rats fed unstained live L3, ® = Female rats
fed stained live L3, O = Female rats fed unstained live L3.
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Figure 2. A comparison of optical density (Y-axis) by experimental groups (X-axis) using IgA and
IgE conjugate, respectively. IgA and IgE are comparable due to their common assay concentrations;
primary antibody concentration (1:50), secondary antibody concentration (1:1250), and antigen
concentration (0.5 ug/well). Individual rat ID numbers are as indicated. Dashed lines indicate
positive cutoff. A = Male rats fed stained live L3, A = Male rats fed unstained live L3, ® = Female rats
fed stained live L3, O = Female rats fed unstained live L3.

Table 1. Pairwise Spearman Correlation (7).

Mean OD: IgG Mean OD: IgM Mean OD: IgA Mean OD: IgE

Stain —0.066 0.045 0.206 0.193
Sex (all rats) 0.048 —0.107 —0.407 —0.265
Proportional
weight diff. —0.317 —0.017 0.033 0
Total worms in —0.038 —05 —0.517 ~0.167
rat lungs

Plasma from rats gavaged with live larvae (9 rats) generally showed markedly higher
OD values than those from rats gavaged with killed larvae (20 rats) or the uninfected control
group (10 rats). However, using the mean of the control group +3 standard deviations as a
cutoff value for determining positive vs. negative infection status provided different results
for each antibody. Positive OD cutoff values for IgG, IgM, IgA, and IgE were 0.238, 0.505,
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0.156, and 0.309, respectively (dashed lines in Figures 1 and 2). This positive cutoff value
resulted in a sensitivity for each isotype of 100%, 56%, 44%, and 22%, respectively. The
mean OD values for rats fed killed larvae all fell below the positive cutoff in each isotype,
indicating their negative infection status.

Each isotype showed a wide range of OD readings in the plasma of rats fed live larvae;
however, no significant correlation (Spearman’s test) was detected between ELISA OD
levels and the rat’s proportional weight difference, or the number of adult worms found in
the rat’s lungs upon autopsy regardless of antibody isotype (Table 1).

4. Discussion

The results of this study confirm the presence of IgG, IgM, IgE, and IgA isotypes
against the Hawai’i 31 kDa isolate in at least some six-week PI rat plasma, with wide
variation in the sensitivity of each isotype. The 22-100% range in sensitivity observed in
this study differs from human studies conducted with crude antigen, which found each
isotype had a roughly 70-98% sensitivity during acute infection [16]. Additional research
is needed to determine the cause of this discrepancy. Similarities in the humoral immune
response exist across different antigens, hosts, parasite burdens, diagnostic methods, and
even infections with different Angiostrongylus species. For example, studies using a variety
of diagnostic methods, parasite burdens, and stages of A. cantonensis for crude antigen
preparation have shown that during primary infection, total antibodies and the IgG isotype
against crude A. cantonensis antigens can be detected in rat sera as early as 10-30 days PI
and peak at 50-60 days PI [19-22]. Our study found 100% sensitivity of IgG against the
Hawai’i 31 kDa isolate at 42 days PI, which correlates with this detection window. Similarly,
serum antibodies in canine A. vasorum infections are also detectable at 27 days PI and peak
at 55-57 days PI and remain detectable at 83-84 days PI [29]. The consistency of antibody
detection across different A. cantonensis antigens, different Angiostrongylus species, and
in different hosts, indicates that IgG against the Hawai’i 31 kDa isolate may be a good
biomarker for NAS infections of accidental hosts as early as 10 days PI through at least
60 days PI, possibly longer. Additional research is needed to determine the sensitivity of
the IgG-Hawai’i 31 kDa ELISA assay throughout this potential testing window.

Given that early treatment may result in better patient outcomes, possibly avoiding
chronic sequelae, a laboratory diagnostic that can detect NAS acute infections within the
symptom onset window could result in better patient outcomes [9]. Presentation of NAS
symptoms may occur before the potential IgG testing window described above, with
humans exhibiting symptoms between 7 and 21 days PI [9] and canines showing symptoms
at approximately 11 days PI [30]. While NAS infections have been confirmed in equines,
the time of symptom onset is unknown [30]. Although Takai et al. [20] found both IgG
and IgM antibodies in rats at 10 days PI, this early detection has not been confirmed, with
Kanbara et al. failing to detect an IgG antibody response in rats until 20-30 days PI [21].
Given the IgM isotype is the first to appear in a primary infection, and our results showed
relatively high OD readings in 56% of rats gavaged with live larvae, the IgM isotype against
the Hawai’i 31 kDa isolate could be an informative laboratory diagnostic during NAS
symptom onset period. Unfortunately, it seems the change in IgA or IgE titers over time in
NAS infections has not been investigated. While our study was able to detect IgA and IgE
in some rats gavaged with live larvae (44% and 22%, respectively), additional research is
needed to determine if the IgA or IgE isotypes against the Hawai’i 31 kDa isolate could be
informative for NAS infections.

Our results showed distinctive bimodal clustering in IgG and IgM OD values (Figure 1)
for rats with active infections, but the reasons for this are unclear. Although two studies
have found that the total antibody concentration, IgG and IgM, in rat serum varies according
to larval load at time of infection [20,21], the positive plasma used in this study came from
rats that were all gavaged with 50 live larvae. Our results differ from ELISA results of
active human NAS infections, which show a relatively uniform distribution pattern in OD
values [16]. Moreover, no correlation was found between titers and the number of adult A.
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References

cantonensis found in rat pulmonary arteries. Additional research is needed to determine
what causes the variation in isotype OD values in the Hawai’i 31 kDa ELISA assay.

In our study, there was no detectable antibody response in rats fed killed larvae.
However, this might be a consequence of the methanol used to kill the larvae, which
may have denatured the 31 kDa proteins on the surface of the larvae. Thus, additional
research is needed to determine under what conditions dead larvae can generate a humoral
immune response.

This study is the first step toward a more in-depth understanding of the humoral
immune response against the A. cantonensis 31 kDa antigen. As seen with A. vasorum [29],
it might be possible that blood antibody titers using ELISA offers a wider window than
other high-sensitivity laboratory diagnostic methods such as real-time PCR of blood, and
thus warrant further investigation.
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Abstract: Angiostrongylus cantonensis is the main causative agent for eosinophilic meningoencephalitis
in humans. Larvae are rarely found in the cerebral spinal fluid (CSF). Consequently, serology and
DNA detection represent important diagnostic tools. However, interpretation of the results obtained
from these tools requires that more extensive accuracy studies be conducted. The aim of the present
study is to update guidelines for diagnosis and case definitions of neuroangiostrongyliasis (NA) as
provided by a working group of a recently established International Network on Angiostrongyliasis.
A literature review, a discussion regarding criteria and diagnostic categories, recommendations
issued by health authorities in China and an expert panel in Hawaii (USA), and the experience of
Thailand were considered. Classification of NA cases and corresponding criteria are proposed as
follows: minor (exposure history, positive serology, and blood eosinophilia); major (headache or
other neurological signs or symptoms, CSF eosinophilia); and confirmatory (parasite detection in
tissues, ocular chambers, or CSF, or DNA detection by PCR and sequencing). In addition, diagnostic
categories or suspected, probable, and confirmatory are proposed. Updated guidelines should
improve clinical study design, epidemiological surveillance, and the proper characterization of
biological samples. Moreover, the latter will further facilitate accuracy studies of diagnostic tools for
NA to provide better detection and treatment.

Keywords: angiostrongyliasis; neuroangiostrongyliasis; rat lungworm disease; eosinophilic meningitis

1. Introduction

Angiostrongylus cantonensis is an intra-arterial nematode which, in accidental human
hosts, can cause eosinophilic meningitis [1]. Eosinophilic inflammatory responses in the cen-
tral nervous system (CNS) are mainly elicited by helminths. However, these inflammatory
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responses can also occur in association with cancer, intra-thecal drugs, and intra-vesicular
devices [2]. The non-infectious causes for eosinophilic meningoencephalitis are dominant
in many regions, e.g., Central Europe.

A. cantonensis are parasites that live inside the pulmonary arteries of rodents, and
mollusks serve as intermediate hosts. Several other invertebrates, such as shrimp, frogs, and
lizards, can serve as paratenic hosts. Larvae of A. cantonensis develop in the fibromuscular
tissues of mollusks, and subsequently infect humans when raw or undercooked food is
ingested [1,3]. Larvae-contaminated water may also be a source of human infection [4,5].
In accidental hosts, including humans, larvae migrate and are retained in the CNS. This
retention prevents complete maturation of adult worms inside the pulmonary arteries [1,3].

Larvae are rarely detected in examinations of cerebrospinal fluid (CSF), thereby pre-
venting confirmation of a diagnosis by direct identification of parasites [6]. Therefore,
immunological and DNA detection methods are important tools for evaluating patients
with suspected neuroangiostrongyliasis (NA) [7-9]. While antibody and DNA-detection
methods have been standardized, evaluations of these methods as reliable detection tools
have been less than adequate due to the small number of well-characterized biological
reference samples that are currently available from different geographical areas. More
recently, a highly sensitive and specific quantitative PCR method has been developed to
confirm diagnosis of NA [10].

A. cantonensis is native to southeastern Asia and the Pacific Islands [11], yet its presence
has expanded to multiple continents. This perceived expansion may also have resulted
from an increased awareness and availability of diagnostic capability. It is also a food-borne
disease that has been linked to travelers. A rough estimate of the cumulative number of
reported cases worldwide is 2800 [3]. Despite the potential for severe CNS disease, NA is
not a highly prevalent infection worldwide. To date, the Hawaiian Islands and southeastern
Asia, especially Thailand, have been the most affected endemic areas. However, reduced
rates of occurrences have been observed in recent years [12,13].

Disease caused by A. cantonensis includes isolated meningeal lesions and meningitis
associated with brain tissue inflammation (meningoencephalitis) [14]. More rarely, ocular
angiostrongyliasis can develop [15]. For severe cases of encephalitis, lethality may reach
80% [16]. The objective of the present work is to update and explore a possible consensus
regarding diagnostic criteria and case definitions for NA. It is anticipated that such effort
will improve patient management worldwide, will promote comparable clinical and epi-
demiological studies, and will define conditions for establishing an international biobank of
well characterized samples. The latter would represent a valuable resource for evaluations
of diagnostic tests to achieve detection and control of NA.

2. Materials and Methods

Several meetings of the International Symposium on Angiostrongyliasis (ISA), also
named the International Symposium on Rat lungworm Disease, have been held in various
countries over many years, namely, Thailand, China, Hawaii (USA), and Australia. The
Canary Islands will host the next ISA in September 2023. When a group of researchers
and clinician attendees of the ISA met in an online discussion in October 2021, the need
for more extensive studies, including multicenter accuracy studies, of diagnostic tests for
NA was highlighted. Basic requirements for such studies are: (i) clear and well-defined
diagnostic criteria; and (ii) establishment of a collaborative international biobank with
well-characterized biological samples. On 23 November 2021, the International Network
on Angiostrongyliasis was established. Subsequently, several online meetings were hosted
throughout 2022 to discuss many issues, including diagnostic criteria. Health authorities
in China and an expert panel in Hawaii (USA) have independently established recom-
mendations for diagnosing and treating NA [17,18]. Diagnostic and patient management
experience from Thailand, currently the most endemic country, are also available. In partic-
ular, the results from a systematic review published by Khamsai and collaborators (2020)
were examined [13]. Based on these considerations, the following revised guidelines were
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developed. They are not to be definitive but represent a starting point for continuous
improvement.

3. Results

The present updated guidelines were developed based on the following principles: (i)
to provide clear definition and expression (“taxonomy”) of symptoms, signs, or laboratory
results; (ii) to select the most relevant symptoms most closely related to NA (sensitivity)
and classify them as minor, major, or confirmatory criteria (meanwhile, excessive value
for general, less specific symptoms and signs is avoided); and (iii) to define categories of
diagnosis according to the degree of certainty for etiological diagnosis, from lower (sus-
pected) to highest (probable and confirmed) degrees, conforming to standard organization
of diagnostic and treatment guidelines [19-23].

Elements of exposure history are summarized in Table 1. Criteria are classified as
minor, major, or confirmatory (Table 2 and Figure 1). Diagnosis categories (suspected,
probable, and confirmed) and recommended actions are also presented in Table 3 and
Figure 1. Antibody detection (serology), blood eosinophilia, and history of exposure are
considered minor criteria, since their isolated presence does not constitute strong evidence
for NA. In addition, these criteria may be absent in patients. While serological studies
are useful for epidemiological exposure studies [5,24], cross-reactivity and persistence of
antibodies after cure are recognized as universal limitations of serology for the detection of
current infections.

Table 1. Angiostrongylus cantonensis and elements from exposure history with increased risk of
transmission, according to Wang et al. [3], Khamsai et al. [25], Ansdell et al. [18], and Howe et al. [4].

Type of Exposure Vectors/ Transmission Areas

Mollusks: snails, slugs
Salads
Juices
Fruits
Ingestion of raw, undercooked and/or Planarians
inadequately washed foods Freshwater shrimp
Crabs
Frogs
Lizards
Water contaminated with larvae

Touching, handling Mollusks, snails, or slugs

Residence or recent travel Endemic areas

Table 2. Diagnostic criteria for neuroangiostrongyliasis and criteria classification according to the
strength of evidence for the etiological diagnosis.

Criteria Category Criteria

a. Exposure history
Minor b. Serology (antibody detection)
c. Blood eosinophilia

a. CSF ! eosinophilia
Major b. Headache, other neurological signs or symptoms, and other
obvious etiologies ruled out.

a. Larvae in tissues, CSF, or
Confirmatory eye
b. DNA detection 2

1 CSF: cerebrospinal fluid. 2 Antigen detection in CSF (no test currently available) may be an additional criterion
for confirmed diagnosis in the future (see Sears et al., for novel highly sensitive PCR [10]).
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Figure 1. Diagnostic criteria classification, case definitions, and recommendations for follow up
and treatment of patients with neuroangiostrongyliasis, as proposed by a working group from the
International Network on Angiostrongyliasis.

Table 3. Classification of diagnostic categories for neuroangiostrongyliasis and recommended actions:
follow up and treatment.

Diagnosis Categories Criteria Recommended Actions

Suspected

e  Headache, OR other neurological

signs/symptoms, OR Close clinical and laboratory
e CSF eosinophilia ! AND follow up
. Any minor criteria 2
Probable
M Headache, OR other neurological 3 Treatment: corticosteroids and
signs/symptoms AND albendazole (15 mg/kg, bid,
. CSF eosinophilia ! AND 14 days)
. At least two minor criteria >
Confirmed

P 3 Treatment: corticosteroids and
* Ig}?;‘éfg elg téslzues, CSF, or eye albendazole (15 mg/kg, bid,
° DNA detection * 14 days)
If serology is positive ! and CSF eosinophilia ? is higher than 40%, consider NA as highly probable/suspected.
3 For details and treatment alternatives, see Sawanyawisuth, K. and Sawanyawisuth [14] and Jacob et al. [26].
4 Antigen detection in CSF (no test currently available) may be an additional criterion for confirmed diagnosis in
the future (see Sears et al., for novel highly sensitive PCR [10]).

Major criteria, headache, or other neurological signs or symptoms associated with CSF
eosinophilia are proposed as defining criteria for eosinophilic meningitis or meningoen-
cephalitis. Importantly, these major criteria are labeled as such to be highly suggestive for
NA, since A. cantonensis is their main causative agent. Clinical manifestations” strength of
evidence for NA depends on the absence of other obvious causes for eosinophilic meningitis
or meningoencephalitis [18].

Finding parasitic structures in cerebrospinal fluid or brain tissues is extremely rare yet
represents undisputed criteria for confirming a diagnosis. Ocular examination, including
anterior and posterior chambers, may also disclose larvae or even adult worms since the
eye is an area of localization second to meningeal vessels for A. cantonensis [15]. Worms
may rarely be found inside pulmonary arteries in fatal cases [27-29].
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4. Discussion

In 2006, the Chinese Ministry of Health published recommendations on diagnostic
criteria for angiostrongyliasis and proposed three case definitions: (i) suspected; (ii) clinical,
and (iii) parasitologically diagnosed [17]. Eating history (C1), clinical manifestations (C2),
blood eosinophilia (C3), CSF eosinophilia (C4), seropositivity (C5), and presence of parasites
in CSF or other sites (C6) were the suggested criteria. Suspected NA is considered whenever
a combination of two criteria of C1 to C5 is observed. A clinical diagnosis is considered
when C1, C2, C3, and C4 are present. NA is confirmed with demonstration of parasites
(Ceo).

In 2018, a State Task Force in Hawaii (USA) prepared guidelines for diagnosis and
treatment of NA. An update was subsequently published in 2020 [18]. The latter guidelines
consider two diagnostic categories: presumptive and definitive, or confirmed by identifica-
tion of parasites or DNA detection with PCR. A presumptive diagnosis is established by:
(i) characteristic symptoms and signs, (ii) exposure history, and (iii) CSF eosinophilia.

Headache is the most common clinical manifestation and can occur in the absence
of other neurological signs or symptoms. Neck stiffness and fever are also present in
15% and 40% of cases, respectively, and occur more often in children [26,30]. Among less
common manifestations, dysesthesias (paresthesias and hyperesthesias) and migratory
myalgia may be valuable to indicate neuroangiostrongyliasis, which are to be properly
investigated in prospective clinical studies [3,6]. Other early symptoms can be prodromal
symptoms; that is, those due to the physiological and neurological damages due to the larval
migration from the gastrointestinal tract into the CNS [31,32]. It is likely that the severity of
prodromal symptoms is directly associated with the number of parasites involved in the
infection. Larvae attempting to penetrate the gastrointestinal walls may cause symptoms
such as nausea, vomiting, abdominal pain, or diarrhea. Larval migration through the liver,
kidneys, and lungs may cause malaise, low-grade fever, coughs, jaundice-like symptomes,
and hematuria. Larvae stranded beneath the skin may produce rashes or pruritis-like
symptoms. Prodromal symptoms are nonspecific; thus, unless there is a great degree of
suspicion of infection, it is unlikely to alert the medical practitioner [32,33].

CSF eosinophilia is another main indicator for NA and occurs in approximately
50% of patients [26]. To date, the definition of “CSF eosinophilia” remains controversial.
Some authors consider any number of eosinophils as abnormal, while other authors have
selected 10% or an absolute number of 10 eosinophils as a threshold [18,26]. The degree of
eosinophilia present may be a stronger indicator for NA, and patients with >40% are more
likely to have NA [34]. In some cases, only a follow-up lumbar puncture can reveal CSF
eosinophilia [3]. However, lack of appropriate staining and differential counting of CSF
cells can prevent demonstration of an eosinophilic inflammatory response in meningeal
tissues and fluids. Physicians are urged to check with their laboratory to determine if a
proper examination was performed.

Different transmission areas may present predominant intentional or nonintentional
exposure behavior. For example, in Thailand, intentional food habits favor transmission;
while in Hawaii, ingestion of contaminated food or water is usually non-intentional. More
severe cases in Hawaii may be due to higher intake of larvae because of the high burden
of infection of terrestrial gastropods. A definite exposure history may be absent [18].
The precise date of exposure is important to consider since the incubation period (IP) for
NA is usually between 1 and 3 weeks, although a 1-year IP has been reported [3,16,32].
In addition to the well-known role of several foods as a source for infection, there are
indications that larvae can be ingested in drinking water (Table 1) [4]. Thus, knowledge
of active transmission areas may help increase and sustain awareness regarding NA, help
identify cases for early treatment, and promote the prevention of more severe disease. In
endemic areas, knowledge and attention to non-specific clinical manifestations (e.g., fever,
nausea, vomiting, agitation, lethargy) can facilitate early diagnosis and treatment. There
is need for continued research to decrease the time to diagnosis. Perhaps antigen capture
assays for blood, stool, or urine will be helpful. Post-exposure treatment with pyrantel
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has been shown to be promising, although its clinical relevance is yet to be demonstrated,
especially considering the very short time frame from exposure to the effective prevention
of larvae migration through intestinal mucosa [35].

While several serological tests have been developed, limitations involving cross-
reactivity [36,37], late seroconversion [38], and less than adequate accuracy evaluations
have prevented these results from being confirmatory. Correspondingly, in the present
classification proposed, positive serological examination is recognized as a minor criterion.
Seroconversion will be helpful to confirm the diagnosis when CSF cannot be collected and
an accurate diagnostic test is available.

The proposed guidelines advocate for early treatment of “probable” cases (without
other obvious causes), as well as confirmed NA cases (Table 2). A possible exception for
early treatment recommendation is prompt recovery (less than 24 h) from headache and
other neurological deficits without any clinical manifestations suggestive of encephalitic
compromise. Prospective studies are needed to confirm and optimize diagnostic workflow
and case definitions. Corticosteroids are a cornerstone of NA management since they can
potentially reduce both the intensity and duration of headaches, the main cause of distress
in patients [39-41]. Non-steroid anti-inflammatory drugs should not be administered
along with corticosteroids because of increased risk for upper gastrointestinal bleeding [39].
Measures to reduce intracranial pressure, such as therapeutic repeated CSF removal, have
been shown to be effective, and are a choice symptomatic treatment for alleviating severe
headaches in patients affected by NA [39]. Benzimidazole anthelmintic drugs, especially
albendazole, are also recommended despite multiple controversies regarding their safety
and efficacy [42]. For detailed discussion and recommendations for angiostrongyliasis
treatment, see specific reports and reviews [14,25,41].

5. Conclusions

In conclusion, it is anticipated that the present global revision and updated recom-
mendations for diagnosis and treatment of NA will facilitate much needed clinical studies,
with the use of standardized diagnostic criteria leading to better comparative studies of
patients from different geographic areas. The present revisions and updates, intended
to support further discussions and developments, may also help provide well-defined
diagnostic categories for public health surveillance and a strategy for better characterizing
biological samples for accuracy studies of diagnostic tools. The latter is especially relevant
for evaluations of newly developed methods for early and specific detection and treatment
of NA.
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Abstract: Angiostrongylus cantonensis is a nematode with an indirect lifecycle, using molluscs as
intermediate hosts. Rats are the definitive host. By administering a suitable anthelmintic, at an
appropriate interval, the risk of clinical neuroangiostrongyliasis occurring in paratenic hosts (e.g.,
dogs, man) can be eliminated. We wanted to determine if infective larvae (L3) of A. cantonensis can be
safely killed during their migration through the central nervous system (CNS) by oral administration
of an anthelmintic combination containing moxidectin (480 ug/kg, Simparica Trio™; M-S-P), thereby
preventing patent infections in rats. Eighteen rats were used: ten received oral M-S-P every four
weeks; eight rats were used as controls. Rats were initially given M-S-P as a chew to eat, but an
acquired food aversion meant that subsequent doses were given by orogastric lavage. All 18 rats
were challenged once or twice with approximately 30 L3 A. cantonensis larvae via orogastric lavage.
Infection status was determined by faecal analysis using the Baermann technique and necropsy
examination of the heart, pulmonary arteries and lungs. Eight out of ten rats dosed with M-S-P
had zero lungworms at necropsy; a single female worm was detected in each of the remaining two
rats. No treated rats had L1 larvae in faeces. In contrast, all eight controls were infected with patent
infections, with a median of 14.5 worms per rat detected at necropsy. The difference in infection rates
was significant (two tailed Fishers Exact; p = 0.0011). Moxidectin given orally once every month
killed migrating larvae before they reached the pulmonary arteries in 80% of treated rats, while in
20%, only a single female worm was present. Considering the short half-life of moxidectin in the rat,
it is likely that the effectiveness of moxidectin is due to larvicidal action on migrating L3, L4 and
L5 larvae in the brain parenchyma or subarachnoid space, either 7 days (L3/L4 in cerebrum and
spinal cord) or 14 days (L4/L5 in cerebrum and subarachnoid space) after inoculation. This study is a
prelude for future research to determine if monthly moxidectin administration orally as M-S-P could
prevent symptomatic neuroangiostrongyliasis in dogs.

Keywords: Angiostrongylus cantonensis; rat lungworm; moxidectin; Simparica
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1. Introduction
This article is an open access article

The rat lungworm Angiostrongylus cantonensis is a nematode with a complex indirect
life cycle. This involves an unusual obligatory migration stage, in which L3 larvae migrate
Attribution (CC BY) license (https://  through the central nervous system (CNS), where they grow, moult and further mature.
creativecommons.org/licenses /by / The parasite uses molluscs, such as snails and slugs, as intermediate hosts, while rats are
40/). the definitive host [1]. Rats and paratenic hosts become infected by ingesting L3 larvae
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present in tissues of the intermediate and paratenic (transport) hosts. A. cantonensis usually
does not produce overt clinical signs in rats, unless the definitive host ingests a heavy dose
of infective larvae over a short time. If this happens, verminous pneumonia develops,
clinically manifested by dyspnoea and reduced exercise tolerance [1-4]. Rarely, transient
neurological signs occur; although, usually despite extensive neural migration by larvae,
neurological signs in rats are absent or unappreciated.

Adult lungworms live in the pulmonary arteries of several rat species. The life cycle
is complex, involving snails as intermediate hosts, and a variety of different species as
paratenic hosts. Male and female lungworm mate in the pulmonary arteries. Females lay
eggs which embolise to the pulmonary parenchyma. After hatching, first stage L1 larvae
move up the mucociliary escalator, are swallowed, and appear in faecal pellets of the rats,
which are attractive to snails. Snails become infected by ingestion of infective first stage
larvae, which develop and mature into L3 larvae. The life cycle is completed when rats
ingest snails. L3 larvae penetrate the intestine of the rat, travel in the portal circulation
to the liver, and then rapidly reach the systematic circulation. The most unusual aspect
of the lifecycle involves an obligatory migration of L3 larvae in the rat central nervous
system (CNS). Larvae migrate widely through the CNS, including the spinal cord, brain
and optic nerves, growing, moulting and growing further until they are ready to leave the
CNS via the arachnoid villi to make their way back to the right ventricle and pulmonary
arteries [1-4].

In contradistinction to the situation in rats, the migration of infective L3 larvae can
cause serious disease in accidental hosts such as dogs, wildlife (birds, possums, bats) and
humans [1-5]. Rat lungworm disease (neuroangiostrongyliasis) is most often manifested
as eosinophilic meningoencephalitis [3,4], and peripheral eosinophilia is often reported in
canine and human dead-end hosts [2]. The actual migration of larvae through the CNS and
the inflammatory response thereby incited can together give rise to hindlimb weakness,
paralysis and even death, if the animal does not receive treatment. This is due to severe
damage to the CNS, especially the spinal cord and cauda equina, and in some cases the
brain [4-6].

To minimise the prevalence of clinical rat lungworm disease, it is necessary to interrupt
critical portions of the life cycle of A. cantonensis, thereby limiting the number of infections,
and their extent, in dogs, wildlife and man [6-9]. Although it is certainly helpful to reduce
the number of rats and snails in the environment, the strategy most likely to be successful
at preventing canine infections is the administration of prophylactic anthelmintics. The key
consideration for anthelmintic choice is the half-life of the drug and its dosing frequency.

The macrocyclic lactone moxidectin has a long half-life in most species, including dogs.
When given at monthly intervals, it has been shown to be highly effective in preventing
infection of dogs with Angiostrongylus vasorum [10,11], a closely related parasite of dogs
which has a similar lifecycle, but without the novel larval migration though the CNS. It
is therefore to be expected that moxidectin, if given at the same dosage interval, is also
likely to prevent infective larvae of A. cantonensis reaching and damaging the CNS of
dogs [12,13]. This is because L3 larvae migrating through canine tissues on their way to
the CNS will be killed in transit if moxidectin concentrations are sufficiently high in the
blood and extracellular fluid, which is likely for up to a month after dosing with systemic
moxidectin, as a result of its long half-life [14,15].

The aim of this study was to evaluate the efficacy of an orally administered combina-
tion of sarolaner/moxidectin/pyrantel embonate (Simparica Trio™ [M-S-P]; Zoetis; [16])
given every four weeks against subsequent challenge with A. cantonensis L3 larvae in rats.
When we designed this experiment, the pharmacokinetics of moxidectin in the rat had not
yet been determined, and we erroneously thought that the half-life in the rat would be
comparable to that in the dog (see later).
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2. Materials and Methods
2.1. Animals

Eighteen juvenile male rats (Rattus norvegicus; Wistar strain) were used for this study.
All rats were approx. 4-5 months-of-age at the start of the study; Group 1 rats were
19 weeks, Group 2 rats were 14 weeks, while Group 3 and 4 rats were 11 weeks old at the
start of the experiment. The median weight of the rats at the start of the experiment was
505 g. Rats were housed in pairs in cages with an appropriate substrate (wood shavings),
enrichment items (e.g., cardboard rolls), and were fed commercial rat cubes and provided
with fresh tap water ad libitum.

The first dose of M-S-P was given to the rats in tablet form. Our assumption was that
a product developed to be palatable chew for dogs, would also be palatable for rats, and a
pilot dose given to rats (not part of this study cohort) was consumed. Food was withheld
from each treatment rat overnight to ensure the subjects were hungry. Each rat was isolated
in their own cage the following day with no bedding and just the half tablet, with rats
monitored over the course of the day. This proved satisfactory on the first occasion that
the product was provided. However, when given the second and third doses of M-S-P,
rats were reluctant to eat the ‘chew’ voluntarily, probably because they had developed a
taste aversion. To circumvent this, the half tablet was dissolved in 3 mL of distilled water
to form a suspension and was administered to each rat via orogastric lavage under light
isoflurane anaesthesia. Rats were monitored shortly after the procedure for any evidence
of aspiration, regurgitation or vomiting.

All 18 rats were each challenged, on one or two occasions, with approx. 30 A. canto-
nensis L3 larvae. Infective L3 larvae were first freshly harvested from macerated tissues
of chronically infected snails 2-3 h prior to administration. Larvae were administered to
rats via oral gavage using a plastic pipette under light isoflurane anaesthesia. One of the
investigators (RL) counted out 30 larvae as they were sucked up into a pipette tip; the
approximate final volume was made up with distilled water to a volume of 500 pL. These
larvae were then instilled into the distal oesophagus, although it was not possible to control
for the loss of some larvae (via subsequent regurgitation and vomiting) during the gavage
process. We expected that 50-75% of administered larvae would reach the stomach due to
losses of larvae during this procedure.

The control group consisted of eight rats, four of which were given 30 L3 at 2 weeks
(Group 1), and four of which were given the same dose at 7 weeks (Group 2). The treatment
group consisted of ten rats, divided into two groups of five, that had been given M-S-
P orally at zero weeks, four weeks and eight weeks by voluntary intake (t = 0), and
subsequently using gastric lavage (t = 4 and 8 weeks) (Table 1). The monthly administration
of M-5-P was chosen to mimic the situation whereby pet dogs are given this product on
an ongoing monthly basis, while potentially being exposed to rat lungworm larvae at
random occasions.

One treatment group (Group 3) was challenged with infectious L3 larvae only once (at
week 2; two weeks after M-5-P), while the other treatment group (Group 4) was challenged
twice (at week 2 and week 7; two and three weeks after M-5-P, respectively).

121



Pathogens 2023, 12, 305

Table 1. Timetable that outlines the schedule of when rats were challenged with A. cantonensis L
larvae and when the Simparica Trio™ (M-S-P) dose was administered.

Week Group 1 Group 2 Group 3 Group 4
(Control; n =4) (Control; n =4) (ST; n=5) (ST; n=5)
0 M-S-P M-S-P
1
2 30 L3 larvae PO 30 L3 larvae PO 30 L3 larvae PO «Q
3
4 M-S-P M-S-P )
5 -
6
7 30 L3 larvae PO 30 L3 larvae PO &
8 M-S-P M-S-P o’
9
10
11
12
13
14 Necropsy Necropsy Necropsy Necropsy

Orange font highlights infective dose of L3 larvae; Blue highlights dosing with moxidectin in Simparica Trio; the
blue arrows indicate the infective larvae that are targeted by the moxidectin in M-S-P given 14 or 7 days later.

2.2. Dosage Calculation

Rats received sarolaner/moxidectin/pyrantel (half of the Simparica Trio™ tablet,
10.1-20 kg size; Zoetis, Sydney, New South Wales, Australia). This tablet contains 24 mg
sarolaner, 480 ug of moxidectin and 100 mg pyrantel [16]. Therefore, each rat voluntarily
consumed or was gavaged with approximately 240 ug of moxidectin. For a rat weighing
500 g, this equates to a dose of 480 pg/kg. The dose calculation assumes that the tablet is
homogenous in its formulation, which is unproven.

2.3. Examination for Patent Infection and Presence of A. cantonensis L1 in Rat Faeces

The Baermann technique was used to extract A. cantonensis L1 in rat faeces [17,18].
A wet preparation slide with a coverslip was made and viewed using conventional light
microscopy using the 10X objective lens. Larvae in faeces were highly motile when
detected.

2.4. Necropsy Examination of Rats to Detect Adults A. cantonensis in the Right Ventricle and
Pulmonary Artery of Rats

All rats were humanely euthanised at week 14 by inspiration of 100% carbon dioxide.
Each rat was weighed using electronic scales immediately after euthanasia. The heart and
lungs were removed from the chest cavity by a combination of blunt and sharp dissection to
locate all adult nematodes in the right ventricle and/or pulmonary arteries. The numbers
of male and female worms were determined by examination under a dissecting microscope.
The worms were small, ranging from approximately 15-25 mm in length with the females
having a slightly larger diameter and longer length, as well as the ‘barber’s pole” appear-
ance, caused by the alimentary tract (containing digested blood) and reproductive tract
being wrapped around each other [2,4,9].

2.5. Statistical Analysis

The weights of treated and control rats were compared using the Mann-Whitney U
test. A two-tailed Fisher’s Exact test was used to compare the number of adult A. cantonensis
worms present in treated versus control rats. The two M-5-P treatment groups (of 5 rats)
were combined (10 rats in total) and compared to the 8 control rats.

3. Results

There were no mortalities or treatment-related adverse reactions over the course of
the study. All rats continued to grow and increase in body mass during the experiment.
None of the rats appeared dyspneic (at rest) at any time during the experiment.
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Both control groups, Group 1 and Group 2, were successfully infected with A. can-
tonensis L3 larvae (Table 2). A total of seven out of eight control rats had adult worms
(11-23) present on necropsy at Week 14 and all seven were positive for A. cantonensis L1
larvae on Baermann examination of faecal pellets. One of the eight control rats (from
Group 1) had no A. cantonensis L1 larvae in its faeces and only a single A. cantonensis adult
male worm present in a pulmonary artery. Considering that approx. 30 L3 were given
to each rat, the resulting worm burden (median 14.5 worms; IQR 11.5 to 16.5 worms) per
rat was consistent with about half of the larvae reaching maturity. Noticeable lesions in
the pulmonary parenchyma were present in all the control rats except for the rat with the
single worm infection (Figure 1). The gross pulmonary lesions were mostly localised in the
caudodorsal portions of the lungs.

Table 2. Pooled results of the worm burden found in the control and treatment groups. Rats were
dosed with approx. 30 L3 larvae.

Group 1 Group 2 Group 3 Group 4
Parasite (Control; n =4) (Control; n =4) (M-S-P; n =5) (M-S-P; n =5)
Status One Challenge at One Challenge at One Challenge Two Challenges at 2
2 Weeks 7 Weeks at 2 Weeks and 7 Weeks
Infected 4/4 4/4 0/5 2/5
A.c.Male 4,5,10,1 17,8,10,6 0,0,0,0,0 0,0,0,0,0
A.c.Female 8,6,6,0 6,9,6,7 0,0,0,0,0 1,0,0,0,1
A.c.Total 12,11,16,1 23,17,16,13 0,0,0,0,0 1,0,0,0,1
3/4 rats positive 0/5 positive
L; larvae in (1 rat with a single " " (2/5 rats each had a
fresh faeces male worm was 4/4 positive 0/5 positive single female worm
negative) and were negative)
Lung
lesions 3/4 4/4 0/5 0/5
Body weight 690,674,662,595 580,673,595,591 646,586,595,616,538 584,565,633,616,589
(g (median 668) (median 593) (median 595) (median 589)

A.c. Angiostrongylus cantonensis.

"‘"...h‘n

£

Figure 1. Heart and lungs dissected from Wistar rats at the end of the experiment ex vivo. In (A), a
rat treated with moxidectin in M-S-P has normal heart and lungs, while a control rat with a moderate
burden of mature A. cantonensis is shown in (B) on the right.
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All four Group 3 rats that were treated with M-S-P on weeks 0, 4 and 8 weeks remained
negative despite a single challenge with A. cantonensis L3 larvae at week 2 (Table 1). Group
4 rats were treated on weeks 0, 4 and 8 and challenged with A. cantonensis L3 larvae at week
2 (2 weeks after M-5-P) and again at week 7 (3 weeks after M-S-P; Table 1). All four rats
were negative for A. cantonensis L1 larvae in their faeces, but at necropsy, two out of five
rats each had a single female A. cantonensis recovered from the pulmonary arteries.

Thus, 8/10 rats dosed with M-S-P had zero lungworms at necropsy; in the remaining
two rats, which might not have received a full dose of M-5-P for technical reasons, a single
female worm was detected. In contrast, 8/8 control rats were infected with A. cantonensis,
with a median of 14.5 worms per rat detected at necropsy and patent infections with motile
L1 abundant in faecal pellets. The difference in infection rates was highly significant (two
tailed Fishers Exact; p = 0.0011; [19]).

We can also express the results in terms of percentage burden reduction. In control
rats, 109 worms were present in 8 rats; whereas in rats given M-5-P monthly, only 2 worms
were present in 10 rats; so, the burden reduction was 13.625 worms per rat to 0.2 worms
per rat, which is a 98.5% reduction. Monthly M-S-P administration prevents the shedding
of L1 larvae in all rats, regardless of whether there was one or two challenges with infective
larvae. Likewise, monthly M-5-P prevented the development any of discernible gross lung
pathology at necropsy examination.

There was no significant difference between the weights of the treated and control rats
at the end of the experiment (Mann-Whitney U test; U = 22; p = 0.12; [20]).

4. Discussion

M-S-P is a fixed dose combination of three anthelmintic drugs designed to be ad-
ministered monthly in dogs to prevent heartworm disease, tick paralysis, flea, lice and
mite infestations, and intestinal nematode infections [16]. Its spectrum covers all impor-
tant and common helminth infections except tapeworms (cestodes). The experiments
described here represent a model (pilot experiments) for a conceptually similar study that
we hope to undertake in dogs to determine if it is possible to prevent them from getting
neuroangiostrongyliasis when given M-5-P as a monthly preventative.

In this study, rats were used as a surrogate for dogs because it is much easier to
obtain animal ethics approval for rat experiments in our jurisdiction and such trials are
substantially less expensive. Our aim was to use the moxidectin component of M-S-P to
interrupt the life cycle by killing migrating L3 larvae in the CNS, thereby preventing them
maturing into adult nematodes and reproducing within the definitive host [3,9]. Because
M-S-P is given either 1 week or 2 weeks after larval challenge, the L3 larvae have all left the
gut and entered the CNS. Furthermore, because the L3 are no longer in the gut, the pyrantel
in the M-P-S does not contribute any effect on larvae, as pyrantel does not achieve effective
concentrations in the CNS, which is where the L3 larvae are at this point in time. Finally,
sarolaner is an isoxazoline ectoparasiticide thought to have no effect on nematode larvae,
but is rather a selective inhibitor of arthropod y-aminobutyric acid- and I-glutamate-gated
chloride channels in fleas and ticks.

What we would actually like to show in dogs is that moxidectin concentrations in
plasma are sufficiently high to kill L3 before they enter the CNS, but this is harder to
prove in rats, as the migration of modest larval burdens do not usually cause observable
neurologic signs. In rats, the L3 larvae can be found circulating in blood within a few hours
of inoculation, and within 24 h, L3 larvae have entered the spinal cord and brain where
they grow, moult twice, approximately on days 7 and 14 post-infection, then reach the
subarachnoid space from where they eventually leave the CNS as L5 larvae, on the way to
the right ventricle and pulmonary arteries [3,4,21].

The pharmacokinetics of moxidectin given orally to Wistar rats had not been deter-
mined at the start of the research project, which commenced in mid-February 2021 during
the COVID pandemic. It was presumed that moxidectin would have a half-life in rats
comparable to what has been reported in the dog, such that monthly administration would
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have substantial and cumulative activity, such that when rats would be challenged with an
oral dose of infective larvae, blood concentrations of moxidectin might be sufficient to kill
the larvae before they migrate to the CNS. Based on this notion, the experimental protocol
set out in Table 1 was constructed.

However, with the benefit of the data from Buchter and colleagues published in July
2021, serum levels of moxidectin are essentially nil by 48 h after oral administration of
500-750 pg/kg [22]. The half-life of moxidectin given orally to dogs is very long viz. 621 h
(13.9 to 25.9 days), while in Wistar rats the half-life is only 10.4 h; this means that therapeutic
blood levels of moxidectin are unlikely to be maintained for more than 2-3 days in our rats,
whereas in dogs the coverage extends to approximately a full calendar month [14,15,22].
In other words, if M-S-P is given at t = 0, 4 weeks and 8 weeks, then blood concentrations
would have fallen to zero by the time the inoculum of 30 L3 larvae were given at week 2 or
week 7.

Therefore, the action of moxidectin in M-S-P is attributable to its larvicidal action on
migrating L3, L4 and L5 larvae in the CNS when it is given at 4 weeks and 8 weeks, with
the M-S-P reaching short-lived therapeutic levels 2 weeks or 1 week, respectively, after
larval challenge (Figure 2). Thus, our results confirm those of Schmahl et al. [18] who
showed that moxidectin given transdermally at 4-32 mg/kg (with imidacloprid as the
topical Advocate™; Elanco) at 15 days post-infection was highly effective at killing the
‘CNS-dwelling larvae’” of A. cantonensis [3,4,18,21]. It is, in some respects, remarkable that
the death and disintegration in the order of 11-23 larvae (expected to be approx. 3 mm
long [21]; Figure 2) did not produce more discernible neurological signs that might be
appreciated even by a short daily examination.

In our study, M-S-P was administered either 7 or 14 days after challenge with infective
larvae. Larvae are in the CNS at this stage and remain susceptible to moxidectin, as this
macrocyclic lactone readily crosses the blood brain barrier (BBB) [23,24]. Furthermore,
inflammation from the migrating larvae may have caused the BBB to become leaky and
pro-inflammatory cytokines are known to inhibit the p-glycoprotein pump, allowing more
of the lipophilic drug to enter the extracellular fluid around the parasite [23,24]. This means
that in the first rat treatment group (Group 3), it was the M-S-P containing moxidectin given
2 weeks after larval challenge which killed larvae migrating through the CNS, when the
moxidectin blood and CNS concentrations were sufficiently high. The same was true in the
first challenge of the second treatment group of rats (Group 4), but in the second challenge,
the M-5-P containing moxidectin given 1 week after larval challenge was the dose that
was effective. It was fortuitous that the dose of moxidectin we selected based on the older
literature and allometric scaling was similar to doses informed by recent pharmacokinetic
studies. The chosen dose of approx. 480 pg/kg was close to the most efficacious dose
(500 ng/kg) used for treating Strongyloides ratti infections in rats [22].

As stated, this study was conducted in the spirit of being a pilot experiment, as there
had been limited previous research into the chemoprophylaxis of A. cantonensis infection
in rats or dogs. The product M-S-P was selected as it represents the drug combination of
greatest potential to prevent the important parasitic diseases of companion dogs in eastern
Australia, including rat lungworm disease. The “palatable chew’ formulation of M-S-P,
however, contributed to dosage inaccuracy, in that we do not know whether the active was
uniformly distributed in the tablet, nor were we sure that rats swallowed all of the drug
when it was given by gavage under light gaseous anaesthesia. This may have contributed to
the two rats with a single worm infection despite monthly M-5-P administration. Although
rats would eat the tablet once, they would not eat them subsequently, probably because of
the development of a food aversion to one or more of the active ingredients. It was thus
necessary to create a drug suspension administered by gastric lavage under anaesthesia
for subsequent administrations. The half a tablet dose was not fully administered, as a
small amount of residual solution was always left in the dead space of the pipette. It would
have been much easier if the rats could have consumed the complete dose on their own.
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Presumably, this would not be a problem if the experiments were repeated in dogs, the
species for which the palatable chew was developed.
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Figure 2. Growth of A. cantonensis in experimental white Wistar rats; 3 M = 3rd moult; 4 M = 4th
moult. The blue arrows indicate the size of the migrating larvae at 7 days and 14 days when they
would be exposed to moxidectin following the administration of Simparica Trio™ by ingestion
following gastric lavage. Inset: photo of a wild rat after removal of the calvarium to demonstrate
young adult worms (L5) in the subarachnoid space overlying the cerebrum. Photograph courtesy of
Lydia Tong and Derek Spielman, Taronga Zoo; original diagram adapted from Manoon Bhaibulaya’s
classic paper in 1973 [25], with modifications.

A further complication of the oral gavage technique also applies to administering
the infective L3 larvae. The exact number of L3 larvae administered orally to each rat
was variable from rat to rat, which would in part explain some of the variation in worm
numbers observed in control rats at necropsy. When performing oral gavage, a portion
of the solution will always remain inside the dead space of the pipette. Thus, a few L3
larvae probably remained in the pipette after each administration. For this reason, a new
pipette was used for each gavage. In relation to the single control rat that had a much lower
worm burden than the rest of the controls, it is suspected that the oral gavage of the L3
larvae was not technically perfect in this individual. This control rat did develop a single
worm infection, but the worm burden was smaller than the other controls, suggesting most
larvae were not swallowed, or were swallowed and then regurgitated. Indeed, a risk of
oral gavage under gaseous anaesthesia is that gastric reflux and aspiration pneumonia can
occur with poor technique and especially with insufficiently deep anaesthesia [25].

Moxidectin is an anthelmintic used to prevent other nematode species such as the heart-
worm Dirofilaria immitis [12] and in the UK and Europe, Angiostrongylus vasorum [11,13,26].
This latter parasite causes ‘French heartworm’, a complicated disease resulting from the
presence of many adult worms in the pulmonary arteries of infected dogs. This canine
disease can be prevented by the monthly administration of moxidectin, which kills both
migrating larvae and adult worms in the pulmonary arteries. The efficacy of this drug is
in part due to its very long half-life in the dog, which results in cumulative kinetics with
effective blood concentrations of moxidectin present for the entire month when the product
is given every four weeks. Moxidectin targets nematodes by opening chloride channels in
their cell membranes, causing lethal paralysis [27]. Based on the results presented here and
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in the work of Schmahl and colleagues [10], the moxidectin in M-S-P provided blood and
CNS concentrations sufficient to prevent rat lungworm developing to patency following an
oral challenge with L3 larvae. Interestingly, Schmahl et al. [10] observed that the doses of
moxidectin they used had no effect on adult lungworms in the pulmonary artery of rats,
but given the recent work showing the short half-life of moxidectin in the rat [12], it seems
most likely that mature worms require more than 1-2 days of effective moxidectin blood
concentrations to succumb.

Moxidectin is generally considered superior to other macrocyclic lactone anthelmintics
such as ivermectin, selamectin and milbemycin, with moxidectin showing a faster onset
of activity and a greater efficacy, for example against L3 larvae of Strongyloides spp. [22].
Moxidectin also has a substantially longer half-life and a greater area under the curve when
given orally to dogs compared to when it is given to rats [14-16,22]. Moxidectin remains in
the blood for sufficiently long in the dog that the drug accumulates when given monthly,
resulting in progressively higher serum and tissue concentrations. Such prolonged high
levels likely explain its efficacy against mature A. vasorum worms in the pulmonary arteries
of dogs [14,15].

In the dog, the prolonged kinetics of moxidectin would likely prevent neuroan-
giostrongyliasis by killing infective L3 larvae before they would reach the CNS, a mech-
anism not observed in these experimental rats because of the much shorter half-life of
moxidectin in this species. However, this needs to be confirmed experimentally. Moxidectin
in various formulations is already being used prophylactically with this intention in highly
endemic areas, such as in Hawaii, Sydney, Brisbane and along the east coast of Australia. A
further issue relates to whether the long-acting depot formulations of moxidectin (Proheart
SR12™; Zoetis) would produce sufficiently high concentration in serum to kill infective
third stage larvae of A. cantonensis, and for how long [14].

Completion of this study has helped to further expand the knowledge of anthelmintics
used in rats. Monthly moxidectin would prevent pet rats from developing a patent A. can-
tonensis infection should they eat an infected slug or snail.

5. Conclusions

This study demonstrates unequivocally that administering Simparica Trio™ contain-
ing moxidectin can interrupt the lifecycle of A. cantonensis in rats by causing lethal paralysis
of infective larvae migrating through the spinal cord, peripheral nerves, brain and sub-
arachnoid space. This research conducted on rats can be used to help guide preventive care
in domestic animals such as dogs, as well as wildlife and zoo animals in high prevalence
areas with endemic A. cantonensis.
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Abstract: While there have been legitimate concerns in the past regarding the use of anthelmintics for
the management of neuroangiostrongyliasis (rat lungworm disease), recent studies demonstrate that
they can be considered safe and efficacious, particularly albendazole, which is regarded as the choice
anthelmintic for its management. However, physician hesitancy to prescribe, as well as problems
of availability persist, at least in Hawaii, which is considered the epicenter of this disease in the US.
As a result, many patients suffer a diminished quality of life or even death. Here, we discuss recent
studies that provide insights into new treatments and preventative interventions, which can be more
rigorously used for the management of neuroangiostrongyliasis. In summary, results from recent
studies suggest that albendazole and avermectins are beneficial for post-exposure management,
pyrantel pamoate is beneficial as a post-exposure prophylactic, and levamisole is deserving of further
study for the treatment of neuroangiostrongyliasis.

Keywords: rat lungworm; neuroangiostrongyliasis; treatment; anthelmintics; albendazole; pyrantel
pamoate

1. Introduction

The use of anthelmintics for the management of neuroangiostrongyliasis (rat lung-
worm disease) has been historically controversial due to the theoretical concern that killing
Angiostrongyliasis cantonensis (rat lungworm) larvae that have migrated into the central ner-
vous system (CNS) could trigger a severe inflammatory response, resulting in exacerbation
of symptoms and further complications [1-3]. Such concerns have made many clinicians
hesitant to consider such therapeutic interventions, despite the lack of actual evidence to
validate this theory.

A further argument against the use of anthelmintics questions their necessity. His-
torically, the first human neuroangiostrongyliasis cases were reported from Asian coun-
tries and were associated with headaches and other mild symptoms, were typically self-
resolving [4-6], or were successfully treated with only corticosteroids [4,7,8]. This led many
clinicians in the West, particularly in the US, to expect a similar prognosis. In fact, this
disease has been historically considered flu-like and self-resolving [4-6,9], and has given
rise to the misperceptions among US clinicians that anthelminthic drugs were unnecessary
or to wait until all other treatment options have been exhausted [10-12].

We believe that these arguments against the use of anthelmintics should be further
examined. Primarily, it has become clear that cases in the US are often quite severe—to
the extent of being fatal [10-13]. While the reasons for a geographical variation in disease
severity remain unclear, the expectation that neuroangiostrongyliasis cases will self-resolve
is no longer a tenable reason for delaying treatment. Secondly, it is worth noting that
numerous other cerebral parasitic infections that can also cause eosinophilic meningitis are
routinely treated with anthelmintics. For instance, a high dose of albendazole is used for the
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management of baylisascariasis, toxocariasis, gnathostomiasis, and cysticercosis (cestode),
and similarly, a high dose of praziquantel is used for the management of paragonimiasis
and schistosomiasis [14].

Finally, our understanding of anthelmintics used for neuroangiostrongyliasis has
improved in recent years. Several in vitro, in vivo, and clinical studies have confirmed the
efficacy of albendazole and pyrantel pamoate as treatments for neuroangiostrongyliasis,
with avermectins and levamisole emerging as promising candidates [15-17]. These insights
have provided us with a much-improved understanding of these drugs’ safety and efficacy,
allowing us to correct misconceptions and better manage this disease. Although the drugs
mentioned above are classified as anthelmintics, each has unique therapeutic features and
limitations, which we review below and summarize in Table 1.

1.1. Albendazole

Albendazole is a benzimidazole anthelmintic and, to date, is the most suitable an-
thelmintic for the management of neuroangiostrongyliasis due to its broad spectrum of
nematocidal activity and ability to cross the blood-brain barrier (BBB) [18]. A system-
atic literature survey by Jacob et al. (2022a) [19] on the clinical outcomes associated
with benzimidazole treatment found no evidence of albendazole resulting in cerebral in-
flammation or exacerbation of symptoms among patients with confirmed diagnoses of
neuroangiostrongyliasis. This survey included an estimated 1034 patients and 2561 animals
and provides highly supportive evidence for the safe and effective use of albendazole—
corticosteroid co-therapy. The estimated dose of albendazole reported in these studies
was approximately 15 mg/kg/day or 400 mg twice daily (with an average body weight of
60 kg) [19]. While bone marrow suppression and associated symptoms have been reported
with long-term use of albendazole, overall, albendazole is generally considered to be a
very safe anthelmintic [20]. Furthermore, no such side effects have been reported among
neuroangiostrongyliasis patients [19].

Recent changes in clinical guidelines are also shifting in favor of using albendazole in
the treatment of neuroangiostrongyliasis. Two hospitals in Australia (Sydney Children’s
Hospital and Children’s Health Queensland Hospital) recommend using albendazole for
the early management of neuroangiostrongyliasis in pediatrics [21,22]. Similarly, in the
USA, Hilo Medical Center Hospital and the Hawaii Governor’s Rat Lungworm Task-
force also endorse the use of albendazole for the management of neuroangiostrongyliasis
in adults [23,24].

Other Issues with Albendazole

In addition to the therapeutic concerns discussed above, other pharmacoeconomic
and availability issues continue to hinder the broader adoption of albendazole in treating
neuroangiostrongyliasis. For example, albendazole is one of the most expensive drugs on
the US market, with a price estimated between USD 200-250/unit dose [25]. Since the use of
albendazole for neuroangiostrongyliasis is still controversial and has not been approved by
the US FDA, most insurance companies will not cover the cost of albendazole. According
to the guidelines mentioned above [23,24], treatment for neuroangiostrongyliasis requires
albendazole to be administered two times a day (BID) for 2-3 weeks, which means that
the patient will have to personally pay an amount between USD 6000-9000 (i.e., 24-36-unit
doses) just to cover the cost of albendazole.

Additionally, even in the scenario where the clinician is willing to prescribe alben-
dazole and the patient’s insurance company is willing to cover its cost, due to its high
price and relatively infrequent demand, most pharmacies do not stock sufficient quantities
for adequate treatment. Many patients have experienced delayed access to albendazole
due to the above reasons, resulting in life-long neurological sequelae and an associated
decline in their quality of life (personal communications). Out of desperation, some of
these patients have tried to self-medicate using veterinary formulations of albendazole,
which are readily available and cost only a small fraction of the human formulations (USD

131



Pathogens 2023, 12, 23

20-50). Given problems with self-diagnosis and calculating proper dosage, the use of
veterinary anthelmintics in humans is highly problematic. Alternatively, some patients
acquire personal stocks of albendazole by ordering it from countries such as India and
Thailand, where the price of this drug is considerably lower.

We suggest that this availability issue could be resolved by having corporate pharma-
cies establish centralized stocking systems for albendazole in endemic areas, thus ensuring
that sufficient quantities are routinely available.

1.2. Pyrantel Pamoate

Pyrantel pamoate’s potential efficacy against A. cantonensis has warranted discussion in
previous studies [15,17,26], and the in vivo efficacy of this drug has recently been evaluated
in an experimental rat model [27]. The findings suggest pyrantel pamoate to be an effective
post-exposure prophylactic against neuroangiostrongyliasis by reducing the worm burden
as well as delaying the establishment of infection, thus providing time for the administration
of albendazole [27]. However, it should be emphasized that pyrantel pamoate is a luminal
drug with activity limited to the gastrointestinal tract (GIT) and is only efficacious while
the parasite is within the GIT. Once the parasite has entered systemic circulation, the drug
is clinically ineffective [28,29]. Upon release of the results of the in vitro study in 2021 [17],
Hilo Medical Center Hospital, Hilo, Hawaii, USA, immediately adopted the use of pyrantel
pamoate as a post-exposure prophylactic in their clinical treatment guidelines [24]. This
guideline recommends administering pyrantel pamoate as instructed by the manufacturer
(the same dosage as for pinworm management), which is typically 11 mg/kg, depending
on the manufacturer [30].

Pyrantel pamoate is available over the counter (OTC) from most pharmacies with
an estimated cost ranging between USD 10-20 per dose. Since the prophylactic activity
of pyrantel pamoate against A. cantonensis is a recent discovery [27], clinical data are not
yet available.

1.3. Ivermectin

According to the literature, ivermectin [31,32] and levamisole [33,34] are the most widely
used anthelmintics after benzimidazoles for the management of neuroangiostrongyliasis, and
both drugs appear efficacious.

Ivermectin does not directly kill the nematode; its paralyzing effect delays the pro-
gression of the infection and, to some extent, eradicates the parasite via immune responses
and hepatic clearance. However, avermectins do not cross the BBB [35], and therefore,
once A. cantonensis has entered the CNS, the drug is expected to be clinically ineffective.
Thus, ivermectin is only efficacious during the early stages of infection when the par-
asite is within the GIT or systemic circulation. In theory, introducing ivermectin to an
albendazole—corticosteroid co-therapy might produce a synergistic effect by paralyzing
the nematode, slowing the progression of infection, and simultaneously increasing the
exposure time to the nematocidal effects of albendazole [17]. Such synergistic effects of
multiple anthelmintics have proven efficacious against Bancroftian filariasis, another par-
asitic nematode [36]. Future studies should investigate and compare the efficacy of the
ivermectin—-albendazole—corticosteroid cocktail with albendazole—corticosteroid co-therapy.

1.4. Levamisole

Experimental animal studies have shown levamisole to significantly reduce worm/larval
burden, with the earliest administration (1-5 days post-infection) showing the most effi-
cacy [37—41]. However, due to side effects such as agranulocytosis and its use as a cocaine
adulterant, levamisole has been withdrawn from many global markets and is no longer
available in many countries, including the US [42,43]. As shown in Table 1, since levamisole
appears beneficial for the management of neuroangiostrongyliasis in humans [5,33], further
research seems worthwhile.
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2. Conclusions

While there have been legitimate concerns in the past regarding the use of anthelmintics,
recent studies demonstrate that they can be considered safe and efficacious for the manage-
ment of neuroangiostrongyliasis. Additionally, these recent studies also provide insights
into more effective management of neuroangiostrongyliasis. Furthermore, attention needs
to be directed toward their pharmacoeconomic and availability aspects, which vary widely
among these anthelmintics. In summary, results from past and current studies suggest
that albendazole and avermectins are beneficial for post-exposure management, pyrantel
pamoate is beneficial as a post-exposure prophylactic, and levamisole appears deserving of
further research for the treatment of neuroangiostrongyliasis.
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