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1. Introduction to the Special Issue

Landslide hazards pose a great threat to people’s lives and the safety of their property
all over the world, especially in mountainous areas. Rainfall is one of the main trigger
factors of landslides, and the induced mechanism is complicated and affected by multiple
environmental factors such as rainfall intensity, rainfall duration, landform and soil layer
structure, and has a high degree of regional specificity and sudden occurrence [1,2]. Rainfall
has a significant impact on the mechanical properties of slope soil and underground rock
mass, which usually leads to soil softening and pore water pressure increase, and then leads
to landslide instability, forming a large number of destructive debris flow or collapse [3,4].
The occurrence process of landslides induced by rainfall includes soil and water loss and
erosion on the surface, and also involves water infiltration into the underground, causing
deep soil saturation, thus triggering a landslide. The migration and convergence patterns
of water flow under different rainfall characteristics have a key influence on the triggering
mechanism of a landslide [5]. Extreme rainfall events caused by climate change have
become more frequent in recent years, exacerbating the risk of landslides. Therefore,
landslide prediction and risk management have received more and more attention from
the scientific community [6–8]. This Special Issue is devoted to cutting-edge research on
the causes, mechanisms, modeling and disaster management methods of rain-induced
landslides, with a view to providing new insights and effective mitigation strategies.

In the Special Issue, the research covers the analysis and monitoring of landslide for-
mation, the development and verification of landslide prediction models, the influencing
factors and failure prediction of slope stability, the cause and prediction of debris flow
and so on. The 14 articles in the Special Issue are roughly divided into three categories.
(1) Rainfall-induced landslides: Based on a variety of methods, such as model tests, numer-
ical simulation, artificial intelligence algorithms and theoretical deduction, these papers
(nine in total) deeply analyzed how rainfall causes a landslide and its prediction meth-
ods, including the development and application of rainfall-induced landslide monitoring
systems, the establishment of risk prediction models and the analysis of rainfall-induced
landslide mechanisms. (2) Slope stability analysis: Based on field investigations, laboratory
tests, numerical simulation and other methods, these papers (three in total) put forward the
control factors affecting slope stability and the method of instability prediction. (3) Mutual
control factors and prediction methods of debris flow stability: Based on actual debris flow
disaster cases, these papers (two in total) used indoor experiments and numerical algo-
rithms to study the factors affecting the stability of debris flow areas and their prediction
schemes, revealed the spatial distribution characteristics and causes of the mutual control
factors of debris flow, and established a risk prediction method for debris flow disasters
based on automatic calculation algorithms.
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In some papers, the correlative mechanism and prediction method of rainfall-induced
landslides are studied by using physical models. Paswan et al. [Contribution 1] developed a
rain-induced landslide monitoring system to solve the problem of limited landslide predic-
tion in northern India during the rainy season which can record the real-time displacement
and volumetric water content of the slope. Meanwhile, to further test the applicability of
the monitoring system, a physical slope model was made based on actual scenarios, and a
physical test of the rain-induced slope was carried out. The results show that the developed
system can effectively monitor the gradient and abrupt change process of rainfall-induced
landslides. Taking the Woda landslide in the upper reaches of the Jinsha River as the
engineering background, Li et al. [Contribution 2] designed a model test to study the
development of paleo-landslides with cracks under the action of rainfall infiltration and
revealed the activation mechanism of rainfall and cracks on paleo-landslides. The depth
of slope infiltration directly affects the depth of landslide failure. Therefore, Xiao et al.
[Contribution 3], taking the Xiashu loess slope as the engineering background, conducted
field rainfall model tests and obtained the main discrimination index of slope rainfall infil-
tration depth, which laid the foundation for the establishment of a slope rainfall infiltration
prediction model.

In addition, some other papers have used numerical simulation to analyze the failure
mode and mechanical response characteristics of a slope under the action of rainfall. Huang
et al. [Contribution 4] took an overturning bank slope of Lancang River in China as
the engineering background and adopted a numerical simulation method to analyze the
seepage field characteristics and mechanical response characteristics (displacement, stress-
strain, plastic deformation, etc.) of the bank slope under the action of rainfall from two
and three dimensions, respectively, for the hydrodynamic failure modes of the bank slope
under different rainfall conditions. The evolution model of overturning slope deformation
under the action of rainfall was revealed. Based on the DuMux, which is a simulator of
fluid flow in porous media, and the concept of the local factor of safety (LFS), Moradi
et al. [Contribution 5] conducted a comparative study on the application effects of three
simplified models (without considering the dynamic interaction between groundwater
flow and soil mechanics) and the complete two-phase flow fully coupled fluid mechanics
model for the evaluation of the stability of variable saturated landslide-prone slopes under
two rainfall intensity conditions. The results show that the LFS results obtained by the
three simplified models and the fully coupled model are consistent. KC et al. [Contribution
6] took the landslide and debris flows in Kalli village, which is in the Acham District of
Nepal, located in the Lesser Himalayas Mountains, as the engineering research background;
they carried out numerical simulation based on a multiphase flow model and adopted
GRASS GIS 8.3 to analyze the evolution characteristics of debris flow during landslide
movement. Yu et al. [Contribution 7] took the fanling landslide in Shandong, China, as the
engineering background; they conducted a numerical study on the response characteristics
of the seepage field of the landslide under different rainfall conditions and found that
short-term fluctuating rainstorms were more likely to cause landslides than long-term
stable rainfall.

At the same time, some papers systematically analyze the landslide disasters induced
by rainfall through theoretical research, establishing a disaster analysis model and putting
forward a landslide failure time prediction method. Tseng et al. [Contribution 8] took the
landslide in Pingtung County, Taiwan Province, as the research object. By establishing
the evaluation indexes, namely, the rainfall trigger index (IRT) and an index of slope
environmental strength potential (ISESP), of landslide damage to land use after four heavy
rainfall events, they could effectively estimate the damage of rainfall-induced landslides
to land use. Tao et al. [Contribution 9] used four kinds of filters to test the velocity time
series, compared and analyzed the prediction effect of landslide failure time, and finally
proposed a hierarchical prediction method combining a short-term smoothing filter (SSF)
and a long-term smoothing filter (LSF). They then verified its practicability. Both debris
flow disasters and landslides have the characteristics of sudden occurrence and are closely
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related to topography, precipitation and geological conditions. However, the main cause of
debris flow is the increase in surface runoff caused by sudden rainfall or snowmelt, and the
hydraulic action makes the soil and rock mixed materials flow rapidly in the gully, which is
very likely to pose a threat to people’s lives and the safety of their property along the entire
foot of the slope [9]. Wang et al. [Contribution 10] collected soil samples in the Beichuan
mud flow gully region, chosen as the engineering background, and analyzed the spatial
distribution pattern and causes of the mutual control factors of stability in the dangerous
area of debris flow, which mainly include soil particle size, permeability coefficient, shear
strength, porosity, etc., so as to provide a scientific basis for the prediction of debris flow
disasters in this area.

Furthermore, some papers have studied the induced behavior prediction of landslides
and debris flow under the action of rainfall by using artificial intelligence algorithms. Choo
et al. [Contribution 11] adopted the CTRL-T automatic calculation algorithm to obtain
the optimal allowable distance between the weather station and the debris flow disaster
area suitable for the topography of Korea in order to solve the problem of researchers’
subjectivity in the selection of weather stations in previous studies of debris flow in South
Korea, which affected the reliability of the results. A nomogram for sediment disaster
risk prediction and early warning was further established and applied to past projects.
The results showed that the risk of sediment flow could be predicted 4–5 h in advance.
Based on a field test, Xiao et al. [Contribution 3] further optimized a BP neural network
by using the particle swarm optimization algorithm; they established a PSO-BP neural
network prediction model and compared it with the other two models. The results show
that the new model has a higher prediction accuracy in predicting the infiltration depth
of the Xiashu loess slope under different rainfall conditions. Yang et al. [Contribution 12]
used the decision tree model (GBDT) after gradient elevation of the Google Earth Engine
(GEE) cloud platform to conduct a dynamic assessment of landslide risk and a landslide
sensitivity analysis of the Three Gorges Reservoir area of China. The research results show
that the model maintained a high accuracy in the dynamic assessment of landslide hazards.
Subsequently, it can provide theoretical and technical support for real-time landslide hazard
assessments and disaster reduction strategies in similar areas around the world.

Finally, in addition to rainfall-induced landslides, some scholars have focused their
research on the causes of slope instability and the resolution of uncertainty in slope stability
evaluation. Gui et al. [Contribution 13] took a large landslide-prone area in the Central
Mountain Range of Taiwan as the research object and adopted multi-temporal satellite
and aerial images, field investigations, geophysical tests and other technical means to
propose the main trigger factors that induced sudden and local slope instability failure,
namely, rainwater intrusion, the rising of river bed elevation and the erosion of large slope
foot banks. Li et al. [Contribution 14] regarded the spatial distribution of slope soil shear
strength parameters as random and utilized their mean value, variance and correlation
scale as characteristics to establish the correlation between relevant parameters and the
factor of safety (FS), providing an economical and effective tool for dealing with uncertainty
in slope stability analysis.

2. A Summary of the Special Issue

This Special Issue focuses on the multidimensional effects of rainfall-induced land-
slides, numerical simulation methods and disaster assessment systems. A rainfall-induced
landslide is an important type of geological disaster; its triggering mechanism is compli-
cated, and it is affected by many factors such as rainfall intensity, geological structure,
terrain slope and so on. The research in this Special Issue covers the physical mechanism of
landslide occurrence, the relationship between rainfall intensity and landslide incidence,
the construction and optimization of landslide models, and risk assessment models of
landslide hazards. Through the combination of physical model tests, artificial intelligence
algorithms, numerical simulation, theoretical analysis and other methods, this collection of
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studies provides a scientific basis for establishing a comprehensive and effective landslide
disaster management and emergency response system.

The research results in this Special Issue provide a new perspective and method for
understanding and coping with rainfall-induced landslides. Future research can further
integrate multidisciplinary monitoring and modeling techniques to achieve accurate land-
slide prediction and risk control through dynamic acquisition and analysis of real-time
data. At the same time, strengthening regional and international cooperation will be a key
step in dealing with landslide disasters under climate change.
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Numerical Analysis of Seepage Field Response Characteristics
of Weathered Granite Landslides under Fluctuating Rainfall
Conditions

Peng Yu 1,2,3, Wenqing Shi 1, Zhonghua Cao 1, Xichong Cao 1, Ran Wang 2, Wenyu Wu 4, Pengyu Luan 1,*

and Qigang Wang 5,*

1 Key Laboratory of Geological Safety of Coastal Urban Underground Space, Ministry of Natural Resources,
Qingdao Geo-Engineering Surveying Institute, Qingdao 266101, China; 13210276328@163.com (P.Y.)

2 Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing 100055, China
3 Key Laboratory of Geological Disaster Risk Prevention and Control of Shandong Provincial Emergency

Management Department (Under Preparation), Jinan 250014, China
4 Department of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
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Abstract: The threat and destructiveness of landslide disasters caused by extreme rainfall are in-
creasing. Rainfall intensity is a key factor in the mechanism of rainfall-induced landslides. However,
under natural conditions, rainfall intensity is highly variable. This study focuses on the Fanling
landslide and investigates the effects of varying rainfall intensity amplitudes, rainfall durations, and
total rainfall amounts on landslide behavior. Three experimental groups were established, and ten
rainfall conditions were simulated numerically to analyze the seepage field response of the landslide
under fluctuating rainfall conditions. The results indicate that (1) there are positive correlations
between the final pore pressure and both the amplitude and duration of rainfall intensity; (2) the
pore water pressure response in the upper slope changes significantly, initiating deformation; and
(3) the total rainfall amount is the most direct factor affecting the pore pressure response and landslide
deformation. Compared to long-term stable rainfall, short-term fluctuating rainstorms are more likely
to trigger landslides. These findings enhance our understanding of landslide mechanisms under
fluctuating rainfall, providing valuable insights for disaster prevention and mitigation.

Keywords: fluctuating rainfall; rainfall-induced landslides; seepage field response; numerical simulation

1. Introduction

With the frequent human activities and the increasing scale of construction projects,
urbanization has accelerated globally, especially in China [1]. This rapid urbanization has
led to an increase in extreme weather events and has posed greater challenges and costs
in managing these events due to the higher population density in cities [2–4]. Among
these extreme weather events, irregular heavy rainfall has become increasingly threatening
and destructive [5,6]. In 2023, China experienced a total of 37 heavy rainfall processes,
with a cumulative surface rainfall of 240 mm. According to the statistical yearbook of the
Ministry of Emergency Management [7], there were 3666 geological disasters in China in
2023, with landslides being the most prevalent (Figure 1). For instance, in July 2023, a
rainstorm in Chongqing led to a series of geological disasters resulting in 25 deaths and
disappearances. In August, a sudden landslide in Liangshan Prefecture, Sichuan Province,
caused by short-term heavy rainfall resulted in 52 casualties.

Water 2024, 16, 1996. https://doi.org/10.3390/w16141996 https://www.mdpi.com/journal/water6
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Figure 1. Number of geological hazards in China (2020–2023) [7].

Many engineering studies have shown that slope soil under rainfall infiltration is prone
to instability and failure due to water seepage [8]. Rainwater infiltration during rainfall
increases the saturation of slope soil and pore water pressure, reducing the shear resistance
of the soil due to increased pore pressure and decreased matric suction in unsaturated
soil areas. Key indicators for measuring rainfall include rainfall intensity [9], rainfall
duration [10], and rainfall type [11]. Researchers have studied how these rainfall factors
affect landslide occurrences. Concepts such as the cumulative rainfall duration [12] and
intensity [13], critical cumulative rainfall [14], continuous probability rainfall threshold [15],
and rainfall attenuation coefficient [16] have been proposed to explore the relationship
between rainfall and landslides and to develop warning curves. Liu et al. [17] proposed a
regional LEW slope units model combining rainfall threshold modeling and a susceptibility
evaluation to predict the probability of landslides caused by rainfall in Chongqing. Soumik
and Biswajit [18] determined the relationship between rainfall and landslide occurrence
based on previous methods and the intensity duration (I-D). They determined the optimal
fitting distribution of rainfall data in the Gawar Himalayas. Sun et al. [19] proposed a
probability threshold statistical method based on support vector machines using machine
learning, which can consider whether to trigger complex boundaries of mountain landslides.
Rashad et al. [20] proposed a suitable hydraulic model for uncertainty propagation analysis
to address the nonlinear and high-dimensional rainfall-induced landslide RILS problem.
Hugh et al. [21] studied the impact of spatial rainfall patterns on shallow landslides.
Ma et al. [22] set different rainfall patterns and improved the accuracy of predicting the
landslide failure probability from the perspective of the spatial variability of soil.

Although rainfall intensity is a crucial factor in landslide research, it is highly volatile
under natural conditions. There is no systematic consensus on how changes in rainfall
intensity, amplitude, and rate affect the evolution and stability of landslides. Previous
studies by the author’s team on fully weathered granite landslides have examined the
impact of rainfall intensity on slope stability and proposed a landslide warning curve [23].
This article extends that research by focusing on the impact of rainfall intensity fluctuations
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on the seepage field, an area not comprehensively covered in prior research. The findings
will deepen our understanding of the mechanisms behind landslides induced by fluctuating
rainfall and guide disaster prevention and mitigation efforts.

2. Summary of the Research Area

2.1. Landslide Characteristics

The Fanling landslide is in Laoshan District, Qingdao, Shandong Province, China
(Figure 2). As of 2023, the permanent population is 513,700 and the gross domestic product
is 115.089 billion yuan. The Fanling landslide is an ancient landslide, formed from loose
accumulated layers during the Quaternary and modern periods. The front edge of the
landslide is about 3–4 m away from the sea surface of the Yellow Sea. The sliding surface
is located in fully weathered granite and is in a pushover-type broken line sliding failure
mode. There have been two recorded landslide events in this area, occurring on 11 August
2007, and 23 July 2020, both of which were triggered by extreme rainfall.

 
Figure 2. Overview of the Fanling landslide.
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2.2. Analysis of Fluctuating Rainfall Characteristics

The research area has a temperate continental monsoon climate with marine influences.
The interaction between subtropical airflow moving westward and northward and cold
air moving eastward and southward frequently results in rainfall. When these airflows
intersect strongly, they often induce extreme rainfall. According to years of monitoring
data, heavy rainfall in the study area mainly occurs from early July to late August (Figure 3).
The area experiences three primary heavy precipitation patterns, shear lines, cold eddies,
and typhoon precipitation, which are relatively evenly distributed [24].

 
Figure 3. Monthly average rainfall in the research area (2020~2023).

On 11 August 2007, Laoshan District experienced a heavy rainstorm once in 50 years,
leading to the Fanling landslide (Figure 4a,c), and according to rainfall data, 6 consecutive
days of rainfall in the week led up to the landslide disaster in 2007. Starting from August
8th, the precipitation gradually increased daily until the landslide occurred on the evening
of the 11th. The average rainfall intensity from 6th to 11th was 0.69 mm/h, 2.25 mm/h,
0.39 mm/h, 0.81 mm/h, 2.14 mm/h, and 2.53 mm/h, respectively. The accumulated
precipitation during these 6 days reached 209 mm. Heavy rainfall began at noon on
10 August 2007, when the landslide occurred. The rainfall intensity was not constant but
had strong fluctuations, and the hourly rainfall intensity also varied. There were four
high peaks in rainfall intensity, with peak rainfall intensities of 4.15 mm/h, 4.48 mm/h,
4.75 mm/h, and 4.53 mm/h, respectively, indicating a multi-peak fluctuating heavy rainfall.
The maximum amplitude ratio of rainfall intensity per hour was 983%, and the cumulative
precipitation induced by disasters reached 107.5 mm, a typical extreme rainfall-induced
landslide (Figure 4b).

On 23 July 2020, also affected by heavy rainfall, the Fanling landslide experienced
another slide (Figure 4d,f). Before the landslide disaster on 22 July, the daily rain reached
175.96 mm, with a cumulative precipitation of nearly 350 mm and an average rainfall
intensity of 7.33 mm/h. At 0:00 on the 23rd, the peak rainfall intensity of the landslide
reached 25.21 mm/h, which was an unimodal heavy rainfall with one rainfall peak. The
maximum amplitude of rainfall intensity per hour was 186%, and the cumulative pre-

9



Water 2024, 16, 1996

cipitation induced by the disaster reached 170.3 mm, ultimately leading to the landslide
(Figure 4e).

 

Figure 4. Comparison of two landslides in 2007 and 2020. (a,c,d,f) Remote sensing images of Fanling
in October 2006, March 2008, April 2020, and September 2021. (b) Average rainfall during the first
landslide. (e) Average rainfall during the second landslide.

3. Numerical Modeling

3.1. Theoretical Model
3.1.1. Soil Constitutive Model

The traditional Mohr–Coulomb criterion often exhibits sharp corners on its yield
surface, leading to challenges such as slow convergence in numerical calculations. To
address this, the classical Mohr–Coulomb model is extended in this study using a continu-
ous smooth flow potential function to describe the failure and deformation of slope soil
(Figure 5) [25].

The equation for the hyperbolic flow potential function is as follows:

G =

√
(εc0tanϕ)2 + (Rmcq)2 –ptanϕ (1)

In the formula, ϕ indicates the shear dilation angle on the meridian plane under high
confining pressure; c0 represents the initial cohesive force; ε represents the shape parameter
on the meridian plane, used to define the flow potential function, with a default value of
0.1; e represents the rate of deviation on the π plane; q represents generalized shear stress;
and p represents the ball stress.

The calculation process of Rmc is as follows:

Rmc(θ, e) =
4
(
1 − e2) cos2 θ +

(
2e − 1)2

2(1 − e2)cosθ + (2e − 1)
√

4(1 − e2)cos2θ + 5e2 − 4e
× Rmc

(π

3
, ϕ

)
(2)

Rmc

(π

3
, ϕ

)
=

3 − sinϕ

6cosϕ
(3)

In the formula, e = (3 − sinϕ)/6cosϕ, and the required range of e is (0.5, 1.0).
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Figure 5. The shape of the Mohr–Coulomb yield surface on the meridian and π planes.

3.1.2. Rainfall Seepage Theory of Unsaturated Soil

During rainfall-induced landslides, the sliding interface typically transitions from
saturated to unsaturated conditions as groundwater flow accompanies the saturation
process. Water flows through soil pores under the influence of gravity and hydraulic head.
The sliding body in the study area consists of weathered rock with high permeability; thus,
the study focuses on unsaturated soil rainfall seepage.

The fluid–structure coupling equation needs to follow the following basic assumptions:
1© Only the influences of soil and water are considered, neglecting gas impacts. 2© Soil

particles and water are treated as incompressible and do not undergo compression defor-
mation. 3© Temperature changes are disregarded during the analysis. 4© Solids undergo
linear, nonlinear, elastic, and small plastic deformations. The governing equation for its
seepage field is as follows:{∫

δuw
1
J

d
dt (Jρwnw)dV +

∫
δuw

∂
∂x [ρwnwn · νw]dV = 0

IN − PN = 0
(4)

In the formula, V represents the volume of the model; J is the hydraulic gradi-
ent; uw is the pore water pressure; νw is the fluid velocity; n is the porosity of the soil;
nw is the soil water storage rate; ρw is the fluid density; and IN and PN are, respectively,
represented as internal and external force matrices, which form a simplified discrete stress
equilibrium equation.
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3.2. Model Settings

Based on field data and previous research by Yu [23], the landslide model is simplified
into two parts: a sliding body and sliding bed. The numerical model includes 12,494 grid
units and 5 monitoring points, as depicted in Figure 6, with the modeling process outlined
in Figure 7.

Figure 6. Numerical model diagram and parameters.

 

Figure 7. Process of numerical model establishment.

Based on local rainfall data, three experimental groups were set up, E1 (rainfall
duration unchanged, changing rainfall intensity amplitude), E2 (rainfall intensity amplitude
unchanged, changing rainfall duration), and E3 (total rainfall unchanged, changing rainfall
intensity amplitude), to simulate 10 different rainfall fluctuation conditions, as detailed
in Table 1. The parameter settings refer to the data of landslides in 2007 and 2020, with
the rainfall time controlled within 24 h and rainfall intensity controlled between 10 mm/h
and 60 mm/h. It should be noted that N2, N6, and N12 are operating conditions under
the same conditions. To facilitate comparison between the experimental groups, they are
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represented separately. To balance the model and make it more realistic, a lead time of 1 h
was set to achieve the expected initial rainfall intensity.

Table 1. Rainfall fluctuation conditions.

Group Condition
Rainfall Intensity (mm/h)

Rainfall Duration (h) (+1)
Initial End Amplitude

E1

N1 10 30 200% 24
N2 10 40 300% 24
N3 10 50 400% 24
N4 10 60 500% 24

E2

N5 10 40 300% 32
N6 10 40 300% 24
N7 10 40 300% 16
N8 10 40 300% 8

E3

N9 25 25 0% 24
N10 20 30 50% 24
N11 15 35 133% 24
N12 10 40 300% 24

4. Results

4.1. Analysis of the Seepage Field

Numerical simulations were conducted to analyze changes in saturation (SAT) and
pore water pressure (POR). Figure 8 depicts the initial state without rainfall, showing the
aeration zone (black area) and the infiltration surface at the bottom boundary where the
pore water pressure equals zero.

 

Figure 8. Cloud map of the initial slope state without rainfall. (a) Saturation; (b) pore water pressure.

4.1.1. Different Rainfall Intensity Amplitudes

Figures 9 and 10 present the results of numerical simulations varying the rainfall
intensity amplitude while keeping the rainfall duration constant. Increasing the amplitude
of rainfall intensity causes significant shifts in the slope’s saturated area and alters the
position of the infiltration surface. The pore water pressure gradually decreases towards
the surface and peaks at the bottom foundation section as rainfall infiltrates the soil. In
the N1 scenario with a 200% amplitude, groundwater infiltration nears the surface in the
upper section, leaving substantial unsaturated areas in the middle and lower parts. In N2
(300% amplitude), the infiltration surface rises higher, reducing the unsaturated zone. This
trend continues in N3 (400% amplitude) and N4 (500% amplitude), where the infiltration
surface elevation increases and the unsaturated area diminishes further. Upon conversion,
increasing the amplitude from 200% to 500% raises the extreme pore water pressure to
18.72 kPa, 22.07 kPa, 25.51 kPa, and 29.48 kPa, respectively.
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Figure 9. SAT cloud maps of the E1 group. (a) Amplitude = 200%; (b) amplitude = 300%; (c)
amplitude = 400%; (d) amplitude = 500%.

Figure 10. POR cloud maps and response maps of the E1 group. (a) Amplitude = 200%; (b) amplitude
= 300%; (c) amplitude = 400%; (d) amplitude = 500%.

As the amplitude of rainfall intensity increases, total rainfall and soil infiltration rise
continuously, leading to higher pore water pressures and increased soil saturation across
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various locations, even at the same amplitude. The changes in the values at points 4 and 5
have significant responses, while monitoring point 3 has a significant response when the
rainfall intensity amplitude is strong. The rate of increase in pore water pressure at the
exact point location varies significantly under varying rainfall conditions and is positively
correlated with changes in the rainfall intensity amplitude. After 18 h of rainfall under
N1 working conditions, the values at points 4 and 5 began to show a slight increase. It
means that the infiltration surface has already risen above this point. Under N2 conditions,
a similar phenomenon occurs around 16 h of rainfall. Under N3 working conditions, this
phenomenon occurs at points 3, 4, and 5 after about 14 h of rainfall. This phenomenon
happens at points 3, 4, and 5 at around 12 h of rainfall under the N4 working condition,
indicating that as the amplitude increases, the rate of infiltration surface elevation also
increases. Its saturation time is linearly related to the degree of the rainfall intensity
amplitude. These findings underscore the critical influence of rainfall intensity variations
on pore water pressure dynamics and slope stability, emphasizing the need for precise
meteorological data in landslide risk assessment and early warning systems.

4.1.2. Different Rainfall Durations

Numerical simulations were conducted with a fixed rainfall intensity amplitude and
varying rainfall durations, as depicted in Figures 11 and 12. Under a consistent amplitude
of rainfall intensity, an increasing rainfall duration leads to notable shifts in the slope’s
saturated area and the position of the infiltration surface. In the N5 scenario with a duration
of 32 h, the groundwater infiltration surface reaches near the slope’s surface, resulting
in a minimal unsaturated area in the middle and bottom sections. Conversely, N6 (24 h
duration) shows a lower infiltration surface compared to N5, accompanied by an increase in
unsaturated areas. In N7 (16 h duration), the infiltration surface further recedes compared
to N5 and N6, reducing the unsaturated area. By N8 (8 h duration), the infiltration surface
significantly diminishes compared to previous conditions, expanding the unsaturated zone
towards the upper slope and forming a complete aeration zone. Upon conversion, reducing
the duration from 32 h to 8 h decreases the extreme pore water pressure to 24.82 kPa,
22.07 kPa, 19.77 kPa, and 16.72 kPa, respectively.

 
Figure 11. SAT cloud maps of the E2 group. (a) Duration = 32 h; (b) duration = 24 h; (c) duration = 16 h;
(d) duration = 8 h.

As the rainfall duration increases, the infiltration line within the slope rises, indicating
increasing soil saturation over time. Pore water pressure values vary across different points,
showing rapid increases in the upper part where the weathered layer is thin, causing
the infiltration surface to rise swiftly. Significant variations in the pore water pressure
amplitude and velocity at specific points correlate positively with the rainfall duration.
Under N5 conditions, significant increases at points 4 and 5 occur after 16 h of rainfall,
while N6 shows this phenomenon around 14 h. In N7, point 5 experiences significant
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changes after approximately 13 h of rainfall, while N8 shows no significant changes. Points
1, 2, and 3 exhibit a steady increase in pore pressure, indicating that the infiltration surface
surpasses these points. These observations suggest that shorter rainfall durations accelerate
changes in the rainfall intensity amplitude, resulting in earlier significant pore pressure
changes at the monitoring points. However, the final pore pressure response correlates
positively with the rainfall duration, despite the unchanged rainfall intensity amplitude.

Figure 12. POR cloud and response maps of the E2 group. (a) Duration = 32 h; (b) duration = 24 h;
(c) duration = 16 h; (d) duration = 8 h.

4.1.3. Different Rainfall Intensity Amplitudes (Constant Rainfall)

Numerical simulations were conducted under conditions of fixed total rainfall to ana-
lyze the effects of varying rainfall intensity amplitudes, as illustrated in Figures 13 and 14.
With total rainfall held constant, changes in the rainfall intensity amplitude did not sig-
nificantly alter the position of the groundwater infiltration surface or the saturation area.
However, higher amplitudes did result in slight increases in soil pore pressure. In the
N9 scenario, where the rainfall intensity amplitude was 0%, the infiltration surface ap-
proached the surface near the thinner upper sliding mass, with noticeable unsaturated
areas in the middle and bottom sections. Similarly, in N10 (50% amplitude), there was
minimal change in the infiltration surface position compared to N9, but the maximum pore
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pressure increased. Under N11 (133% amplitude), the infiltration surface rose compared
to N9 and N10, further reducing the unsaturated area. N12 (300% amplitude) showed the
highest infiltration surface elevation with the smallest unsaturated area. Upon conversion,
increasing the amplitude from 0% to 300% raised the extreme pore water pressure increases
to 18.93 kPa, 20.14 kPa, 21.04 kPa, and 22.07 kPa, respectively.

 

Figure 13. SAT cloud maps of the E3 group. (a) Amplitude = 0%; (b) amplitude = 50%; (c) amplitude
= 133%; (d) amplitude = 300%.

 

Figure 14. POR cloud and response maps of the E3 group. (a) Amplitude = 0%; (b) amplitude = 50%;
(c) amplitude = 133%; (d) amplitude = 300%.
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The pore water pressure amplitude and velocity varied slightly across different rainfall
conditions at specific monitoring points, correlating positively with changes in the rainfall
intensity amplitude. Under N9 conditions, significant pore pressure increases occurred
at points 5 and 4 after 12 h of rainfall. Similar trends were observed in N10 after approx-
imately 13 h, N11 around 14 h, and N12 at about 15 h, indicating that a higher rainfall
intensity amplitude delayed the pore pressure response but ultimately increased the final
pore pressure amount. These findings underscore how variations in the rainfall intensity
amplitude, under constant total rainfall, affect pore water pressure dynamics and highlight
implications for slope stability assessments under varying meteorological conditions.

4.2. Comprehensive Analysis and Comparison of Working Conditions

To elucidate the relationship between the seepage field response and landslide devel-
opment, final pore water pressure values (Figure 15) and displacement response values
(Figure 16) were extracted for a comprehensive analysis across each monitoring point.

 

Figure 15. The final response of pore pressure under different working conditions: (a) E1; (b) E2; and
(c) E3.

 

Figure 16. The final response of displacement under different working conditions: (a) E1; (b) E2; and
(c) E3.

In the experimental groups of E1 and E2, where the total rainfall amount varied,
the pore water pressure response rate remained consistent with increasing rainfall inten-
sity amplitude and duration. The final pore water pressure positively correlated with
both factors. However, point 5 in the upper part showed a reversed pore pressure trend,
potentially due to surface runoff formation from the excessive rainfall intensity and ac-
cumulated precipitation. This excessive rainfall also induced substantial displacement
at the slope’s top, leading to slope instability and increased displacement rates. Larger
amplitudes and durations of rainfall intensified these effects. In the E3 experimental group
with constant total rainfall, increasing the rainfall intensity amplitude slightly reduced the
rate of pore pressure change while slightly increasing the final amount. Similarly, the rate
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of displacement change decreased with increasing amplitude, but the final displacement
quantities rose.

For weathered granite landslides triggered by natural rainfall, rainwater infiltrates the
rock–soil body, saturating it and accelerating shear creep. As the plastic zone develops, a
failure surface forms, transitioning the slope from creep to slide stages. The initial pore
water pressure increases in the upper part due to infiltration, leaving significant unsaturated
areas in the middle and bottom sections. Thinner completely weathered rock layers in the
upper part expedite the groundwater level rise, explaining why upper sections deform first.

The total rainfall amount is the primary factor influencing the pore pressure response
and landslide deformation. In E1 and E2, the increased rainfall amplitude and duration
amplified the total rainfall, thereby escalating the pore pressure response and deformation.
Rainfall intensity also significantly impacted the pore pressure and slope deformation,
intensifying infiltration and slope scour. These changes reduced the rock–soil body shear
strength, rendering the slope more susceptible to unstable deformation. Short-term fluctu-
ating rainstorms posed higher landslide risks compared to long-term stable rainfall.

4.3. Model Reliability Verification

Physical model testing serves as a critical validation method for numerical simula-
tions, particularly with large-scale models that closely mirror natural landslide conditions.
In this study, the reliability of the numerical model was verified using pore water pres-
sure and deformation data from the Fanling landslide physical model established by
Liu [26] (Figure 17). To ensure consistency with physical model conditions, parameters
for the N9 condition in the E3 experimental group were adjusted accordingly (see Table 2
for comparison).

Figure 17. Physical model testing.

Table 2. Model parameters.

Method
Rainfall Intensity (mm/h)

Rainfall Duration
(h)

Rainfall (mm)

R S R S R S

Physical model test 20 3.6 24 2.2 480 7.92
Numerical simulation 20 20 24 24 480 480

Pore water pressure and displacement data from the physical model and numerical
simulation were extracted and compared (Figure 18). Although differences were observed,
the overall response trends were consistent between the physical and numerical models,
confirming the numerical model’s accuracy and reliability.
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Figure 18. Physical model experiment–numerical simulation comparison. (a) Pore water pressure;
(b) displacement.

5. Conclusions

This article presents a numerical model of a weathered granite landslide under fluctu-
ating rainfall conditions, conducting 10 sets of simulations across varying rainfall intensities
and durations to investigate the response characteristics of landslide seepage fields. The
findings are summarized below.

(1) Pore Water Pressure Distribution: During rainfall, the pore water pressure decreases
gradually towards the slope’s surface, peaking at the bottom foundation section. Variations
in rainfall intensity and duration notably influence the infiltration surface position, with
the upper part responding first.

(2) Impact of Rainfall Characteristics: Increased rainfall intensity and duration amplify
final pore pressures. Higher intensity accelerates pore pressure changes and groundwater
infiltration rates, shortening the time to reach peak values. Variations in rainfall intensity,
under constant total rainfall, do not significantly alter the position of the groundwater
infiltration surface or saturation area of the slope. However, a higher intensity delays the
pore pressure response while increasing the final amount.

(3) Rainfall Effects on Landslide Dynamics: The total rainfall amount directly affects
pore pressure responses and landslide deformation. Rainfall intensity also significantly in-
fluences pore pressure and slope deformation. Short-term, intense rainstorms pose a higher
landslide risk compared to long-term stable rainfall. A comprehensive analysis of meteoro-
logical data is crucial for landslide early warning systems, enabling proactive emergency
measures ahead of extreme rainstorms, rather than relying solely on monitoring anomalies.
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Abstract: Rainfall-induced landslides are a major hazard in the Three Gorges Reservoir area (TGRA)
of China, encompassing 19 districts and counties with extensive coverage and significant spatial
variation in terrain. This study introduces the Gradient Boosting Decision Tree (GBDT) model,
implemented on the Google Earth Engine (GEE) cloud platform, to dynamically assess landslide
risks within the TGRA. Utilizing the GBDT model for landslide susceptibility analysis, the results
show high accuracy with a prediction precision of 86.2% and a recall rate of 95.7%. Furthermore,
leveraging GEE’s powerful computational capabilities and real-time updated rainfall data, we dynam-
ically mapped landslide hazards across the TGRA. The integration of the GBDT with GEE enabled
near-real-time processing of remote sensing and meteorological radar data from the significant
“8–31” 2014 rainstorm event, achieving dynamic and accurate hazard assessments. This study
provides a scalable solution applicable globally to similar regions, making a significant contribu-
tion to the field of geohazard analysis by improving real-time landslide hazard assessment and
mitigation strategies.

Keywords: Three Gorges Reservoir area; rainfall-induced landslide; Google Earth Engine; GBDT;
dynamic hazard assessment

1. Introduction

Landslides are common and dangerous in the Three Gorges Reservoir area (TGRA)
due to its complex geographic, geologic, and hydrologic conditions. Rainfall is one of the
main inducing factors of landslides in the TGRA [1,2]. The effects of rainfall are mainly
manifested in the massive infiltration of rainwater, which leads to the saturation of the
slope’s soil and rock layer and even the accumulation of water at the slope’s lower water
barrier, increasing the weight of the slide body and reducing the shear strength of the soil
and rock layer, resulting in landslides [3,4]. Rain-induced landslides are characterized by
regional and clustered occurrences and can cause significant catastrophic damage in a short
period of time [5–7]. Therefore, it is of great practical importance to use a reliable method to
dynamically evaluate the regional risk of rainfall-induced landslides, improving the level
of landslide hazard early warning and providing decision support for regional disaster
prevention and mitigation.

Landslide hazard assessment is based on the results of landslide susceptibility map-
ping to forecast the likelihood of landslide deformation in a given area under the dynamic
influence of inducing factors (such as rainfall, earthquakes, and human construction activi-
ties) [8–10]. Therefore, landslide hazard assessment can provide regional landslide early
warning. The degree of difficulty of landslide occurrence at different spatial locations in the
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region is referred to as landslide susceptibility [11]. Since the first attempt to assess landslide
susceptibility in the mid-1970s, various mathematical–physical models have been intro-
duced in related research [12–15]. The purpose of landslide susceptibility mapping is to use
geology, engineering, statistics, remote sensing, GIS, data mining, and other technologies
to establish the relationship between the spatial location of landslides and the factors that
influence them in order to achieve spatial identification of landslide-prone areas. With the
rise of machine learning, data-driven methods have been introduced for studying landslide
susceptibility mapping, including informativeness, the weight of evidence, logistic regres-
sion, support vector machines, and convolutional neural networks [12,16–19]. Ensemble
learning, which constructs and combines multiple weak machine learners to achieve strong
learning capabilities, has become a hot topic in machine learning in recent years because it
provides stable models and high prediction accuracy. The bagging method, represented by
Random Forest, and the boosting method, represented by AdaBoost, are the two main types
of ensemble learning methods. The Gradient Boosting Decision Tree (GBDT) has achieved
good predictive performance in landslide susceptibility mapping as an improved method
of AdaBoost [20]. In geohazard analysis and other structured data applications, the GBDT
demonstrates superior performance compared to other machine learning models, such as
artificial neural networks (ANNs) or deep learning techniques. The GBDT leverages its
strong interpretability, reduced overfitting through ensemble learning, and efficient feature
utilization, making it particularly effective for predicting landslide susceptibility. As a
result, incorporating the GBDT algorithm into the entire TGRA’s landslide susceptibility
mapping has promising application potential. In the study of rainfall-induced landslide
hazards, critical precipitation grading is an effective tool for performing quantitative analy-
sis of landslides. Current methods for establishing critical precipitation gradings are mainly
physical, empirical, mathematical, and statistical models. Physical models have limited
applicability in a large study area [21]. When calculating the critical precipitation threshold,
empirical, mathematical, and statistical models mainly use the combination of single or
multiple precipitation parameters to determine the correlation between precipitation and
landslides, such as the accumulated rainfall (E) and rainfall duration (D), accumulated
rainfall and rainfall intensity (I), rainfall duration and rainfall intensity, the total rainfall
amount and rainfall intensity, etc. [22–26]. The choice of empirical, mathematical, and
statistical models must be made in conjunction with the study area’s actual geological
environment and precipitation events.

Remote sensing and GIS applications are changing due to the explosion of geographic
big data and recent advances in cloud computing and big data processing services. The
Google Earth Engine (GEE) cloud platform is widely used for regional and even global
remote sensing applications and geospatial data analysis [27]. Landslide susceptibility
mapping and dynamic hazard assessment on a regional scale require large amounts of
data and high computational power. GEE provides a new approach to geospatial data
processing that addresses the challenges of data acquisition and processing faced by remote
sensing researchers [28]. It provides a large number of remote sensing datasets as well as
hundreds of pre-built functions that are simple to understand and use for users from various
background. GEE allows researchers, scientists, and developers to quickly extract valuable
information from large remote sensing datasets [29,30]. NASA researchers initiated regional
landslide hazard studies previously, but they still encountered challenges such as data
preprocessing difficulties and the simplicity of susceptibility evaluation models [31,32]. To
date, GEE has been applied to both landslide susceptibility mapping research and landslide
hazard assessment on a region scale [33,34].

Given the considerations detailed previously, this study aims to develop a dynamic,
near-real-time method for assessing the risk of rainfall-induced landslides across a broad
area using the Google Earth Engine (GEE) cloud platform. Our objectives are as follows:
(1) Employ remote sensing big data from the GEE cloud platform to map landslide suscepti-
bility throughout the Three Gorges Reservoir area (TGRA). (2) Utilize accumulated rainfall
data and susceptibility maps from GEE’s meteorological datasets to facilitate dynamic
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hazard assessments of rainfall-induced landslides in the TGRA. (3) Examine the efficacy of
this dynamic hazard assessment approach by analyzing remote sensing interpretation data
of landslides in the TGRA before and after the significant rainfall event on 31 August 2014.

To innovate and extend the current knowledge base, this study introduces a novel
application of GEE’s comprehensive big data capabilities for real-time monitoring and
analysis. This approach allows for a more timely and precise identification of potential
landslide risks, contributing significantly to disaster risk management and mitigation in
large, vulnerable regions.

2. Study Area and Dataset

2.1. Study Area

The Three Gorges Reservoir area (TGRA) (28◦56′~31◦44′ N, 106◦16′~111◦28′ E) is lo-
cated in the junction of the Sichuan Basin and the middle and lower reaches of the Yangtze
River Plain in China (see Figure 1), spanning the canyons in the medium mountains of
Hubei Province and the eastern valleys of Sichuan Province [35]. The TGRA covers the areas
inundated or affected by the Three Gorges Project, encompassing 26 counties and districts
in Hubei and Chongqing, with a total area of 58,377 km2 and a shoreline length of about
650 km along the Yangtze River’s main channel. With Fengjie as the boundary, the Three
Gorges Reservoir area can be roughly divided into two major geomorphological units, the
low and medium mountains of the Three Gorges, and the low hills of the Sichuan Basin. The
TGRA is characterized by its highly complex geological and structural features. The strati-
graphic composition primarily comprises sedimentary rocks from the Paleozoic, Mesozoic,
and Cenozoic eras, with sandstone, shale, and limestone being predominant. Extensive
tilting and folding are common, resulting in complex geological structures. Additionally,
the area is interspersed with several active fault zones, such as the Badong and Zigui faults,
which elevate the risk of geological hazards. The region’s rugged terrain is dominated by
high mountains and deep valleys, with steep slopes and significant topographical relief,
alongside swiftly flowing rivers in the valleys. These geomorphological conditions play
a crucial role in influencing the occurrence of geological disasters. Furthermore, the in-
creasing number of human engineering activities have disrupted the natural balance of
the original ecological environment, promoting the emergence and formation of geological
hazards. The Three Gorges Reservoir area is a subtropical monsoon zone with a mild
and humid climate, high air humidity, abundant rainfall, and high average temperature.
About 70% of the annual precipitation in the region occurs from May to September, most
of which is heavy rain and rainstorms that frequently raise groundwater levels, causing
abnormal pore water pressure or hydrodynamic pressure and prompting the resurgence of
landslides [36,37]. Over the past few decades, heavy rain events have repeatedly triggered
major geological disasters in the TGRA. The TGRA is the main ecologically fragile area on
the upper reaches of the Yangtze River and one of the most special ecological functional
areas in China and even the world [38–41].
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Figure 1. Location of Three Gorges Reservoir area and distribution of documented rainfall-
induced landslides.

2.2. Datasets

Traditional data collection via the archives and online data collection via the
Google Earth Engine (GEE) cloud platform are the primary data sources for this study.
The documented rainfall-induced landslide data were obtained from the China Institute
of Geo-Environment Monitoring and included a total of 5008 landslide points, whose
spatial location and size are shown in Figure 1. Landslides predominantly consist of
soil and rock, with a minor proportion of mixed rock–soil slides. The size distribution
of these landslides is categorized as follows: mega-landslides, with volumes exceeding
10 million cubic meters, totaling 148; large landslides, with volumes ranging from
1 million to 10 million cubic meters, totaling 1292; medium landslides, encompassing
volumes from 100,000 to 1 million cubic meters, accounting for 2443; and small land-
slides, less than 100,000 cubic meters, comprising 1125 instances. The current stability
assessment reveals that 2037 landslides are relatively stable, 2048 exhibit moderate
stability, and 503 are classified as unstable. The overall trend in landslide stability is
deteriorating. These landslides primarily pose threats to human populations, residen-
tial structures, infrastructure such as roads, agricultural lands, and navigational routes.
Landslides have threatened a total of 789,078 people, resulting in a direct economic loss
of CNY 429,585,800 up to 2013 in the TGRA. The 1:200,000-scale base geological map
and engineering geological map were obtained from the archives of China University
of Geosciences (Wuhan). They were used to extract the engineering rock groups and
geological formations. The following are the data obtained through the GEE cloud
platform: high-precision digital elevation models for calculating elevation, slope, and
aspect; multispectral remote sensing images from Landsat 8 OLI for calculating the
type of land cover, the intensity of water influence, and the normalized difference
vegetation index; precipitation radar satellite data from 23 August to 3 September 2014;
the soil moisture index obtained from the inversion of a microwave remote sensing
satellite; the dataset of annual average precipitation in the TGRA. The high-resolution
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remote sensing imagery used in this study includes unmanned aerial vehicle (UAV)
flights conducted by the Geological Disaster Management Department of Chongqing
Municipal Government and Google Earth time-series images captured before and after
the disaster events. These images were primarily employed for the visual interpreta-
tion of landslides following intense rainfall events. The interpretation adhered to the
Chinese national standard for landslide hazard investigation to ensure scientific rigor
and accuracy in landslide identification [42]. Detailed statistical characteristics and the
criteria are presented in Table 1.

Table 1. Description and statistical characteristics of the datasets.

Dataset Description Source Period Covered Resolution

Landslides
Quantity, scale, location, and

occurrence time of
recorded landslides

China Institute of
Geo-Environment Monitoring

8 July 1980–4
September 2012 Event-based

Rainfall Spatial distribution of rainfall
in millimeters

Global Precipitation
Measurement (GPM) obtained

from GEE
2000–2020 1 km

DEM Digital elevation model for
calculating topographic factors

Shuttle Radar Topography
Mission (SRTM) obtained

from GEE
2010 30 m

Multispectral imagery

Used for calculating the type
of land cover, the intensity of

water influence, and the
normalized difference

vegetation index

Landsat 8 Operational Land
Imager (OLI) obtained

from GEE
2014 30 m (9 bands)

High-spatial-
resolution imagery

Used for interpreting
landslides caused by heavy

rainfall events

UAV aerial images obtained
from the Geological Disaster

Management Department and
Google Earth time-series

images obtained from GEE

2014 1~2 m (3 bands)

2.3. Influencing Factors of Landslides

The selected influencing factors in this study for rainfall-induced landslides refer to
the influencing factors used in the consultation meeting on the development of geological
disasters in the TGRA in 2020. This combination was determined by experts in the relevant
fields who are familiar with the evolution of geological disasters in the TGRA and is a
reasonable scheme. This combination of factors includes topographic factors, geological
factors, land cover type, water system influence, the normalized difference vegetation
index, the average annual precipitation, and soil moisture.

2.3.1. Topographic Factors

Topographic factors include elevation, slope, and aspect.
Elevation: The elevation of the terrain has a significant influence on the development

of landslides. It mainly affects the surface type of the landslide, human activities, and the
vegetation cover of the surface. Elevation changes result in changes in temperature, rainfall,
vegetation types, and human activities, which indirectly affect the landslide development
environment. Elevation can be obtained directly from the DEM (see Figure 1).

Slope: Slope is used to describe the degree of change in surface elevation. The angle of
inclination directly affects the stability of the slope. Slope has a great influence on the stress
distribution of the rock and soil mass, the runoff of surface water on the slope, the recharge
and discharge of groundwater on the slope, the thickness of the weathered layer on the
slope, vegetation cover, land use, and so on. It affects the stress distribution of the slope
mass. In general, the larger the slope, the less stable the slope; the smaller the slope, the
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lower the potential energy of the slope and the less susceptible it is to landslides. In this
paper, the slope factor is extracted by using the DEM (see Figure 2).

Figure 2. Slope distribution in the TGRA. The slope from small to large was divided into <8◦, 8◦–12◦,
12◦–16◦, 16◦–20◦, 20◦–30◦, 30◦–40◦, and >40◦, a total of 7 levels.

Aspect: There is a close relationship between solar radiation and the aspect. Different
aspects result in varying intensities of solar radiation and weathering, which affect factors
such as vegetation cover, water evaporation, and soil moisture. These lead to changes in
pore pressure distribution as well as the physical and mechanical properties of groundwater
in rocks and soil mass, thus indirectly affecting the stability of the slope. The aspect factors
are extracted from the DEM data in this paper (see Figure 3).

Figure 3. Aspect distribution in the TGRA. The slope was divided into nine directions: flat, north,
northeast, east, southeast, south, southwest, west, and northwest, with each of the other eight direc-
tions taking 45◦, except the flat one.
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2.3.2. Geological Factors

Engineering rock groups: Statistics show that mineral hardness has a strong relation-
ship with the spatial distribution of landslides in the study area. In areas with relatively
strong rocks, it is hard for the slope to be deformed and destructed, so landslides are
difficult to form. In areas with soft rocks, the slope is more easily deformed and destructed,
making landslides more likely. Based on the 1:200,000 geological base map, the strata
exposed in the TGRA were classified into different lithology groups according to their
geotechnical properties. Strata with identical or similar petrophysical and mechanical
properties were classified into the same engineering rock group. Landslides are greatly
affected by unstable strata, which occur in stratified layers with soft surfaces or weak layers
(belts). They are mainly clastic rocks (sandstone with a soft and hard interlayer, mudstone,
and weak mudstone) belonging to Jurassic Penglaizhen Formation, Suining Formation,
Shaximiao Formation, Xintiangou Formation, and Triassic Badong Formation. The factor of
engineering rock groups after informatization is shown in Figure 4.

Figure 4. Engineering rock groups’ distribution in TGRA.

Influence intensity of geological structures. The formation and development of land-
slides are closely related to tectonic movements, and geological structures are the funda-
mentals that control the formation and development of landslides. The magnitude, main
slide direction, and spatial distribution of landslides are all controlled by the geological
structure. It also regulates the formation and combination of soft and weak structural
surfaces, the degree of rock weathering, topographic and geomorphological features, and
the recharge of groundwater in landslide areas. Therefore, the geological structure is one of
the crucial factors influencing landslide stability. In this study, a multilevel buffer zone was
established to determine the intensity of tectonic influence depending on the distance from
the geological structure to the landslides (see Figure 5).
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Figure 5. Influence intensity distribution of geological structures in the TGRA. Based on the distance
from the geological structure to the landslides, there are four categories: strong influence, moderate
influence, small influence, and tiny influence.

2.3.3. Land Cover Type

Human demand for land has increased tremendously due to the need for production
and construction. And land has been changed significantly. Slopes must be cleared and
land developed for infrastructure construction, which reduces slope stability and makes
landslides more likely. Slope stability in terms of surface runoff and slope structure are
affected by factors such as vegetation type and degree of cover, which vary from land to
land. The land cover types in this paper were formed through supervised classification
using multispectral data from the Landsat 8 resource satellite OLI and were divided into
four categories: construction land, agricultural land, vegetation cover, and water body (see
Figure 6).

Figure 6. Land cover map of TGRA.

29



Water 2024, 16, 1638

2.3.4. Influence Intensity of River Systems

Rock and soil mass near the river are prone to softening due to the inundation of the
river. At the same time, the underlying rock layer in the river is eroded by the water flow,
resulting in the suspension of the landslide mass. As a result, water flow has a negative
impact on the stability of the geotechnical slope mass. Landslides are more likely to occur
in areas near water. The intensity of the water influence involves both the distance from
the landslides to water and the river grade. This article used remote sensing images taken
from GEE to identify and extract information about the surface of the water system (see
Figure 7).

Figure 7. Influence intensity distribution of river system in TGRA.

2.3.5. Normalized Difference Vegetation Index (NDVI)

Vegetation plays a vital role in geological disasters because its root system increases
the shear strength of the slope, reduces the impact of rain on the slope, and makes it more
stable. At the same time, the leaves can help resist the erosion of rainwater, reduce the
impact of rainwater on the slope, reduce surface runoff, and increase soil infiltration. The
NDVI is defined as (RNIR − RRED)/(RNIR + RRED). It is obtained through the inversion of
remote sensing images from GEE, and it indicates the vegetation coverage and growth
status (see Figure 8).
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Figure 8. Normalized difference vegetation index distribution in the TGRA. The NDVI value ranges
from −1 to 1. Higher values indicate higher vegetation cover for agricultural land, grassland, and
forests, while lower values indicate lower vegetation cover for construction land, water bodies, or
bare land.

2.3.6. Average Annual Precipitation

Rainfall is one of the factors that causes slope instability and landslides. The risk
of landslides is higher during the rainy season. Rainfall infiltration increases the dead
weight of the slope, weakens the shear strength, and unbalances the previously stable
slope. Moreover, rainwater cannot percolate quickly enough during heavy rain events,
so it converges in the valleys to form floods, which severely erode the slopes and lead to
landslides. The average annual precipitation data came from NASA’s Global Precipitation
Measurement (GPM) through GEE (see Figure 9).

Figure 9. The average annual precipitation of the TGRA. The average annual precipitation ranges
from 978.22 to 1245.27, with more rain in the middle and less at the two ends.
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2.3.7. Soil Moisture Index

The soil’s water content affects the shear strength of soil. The percentage of sand and
the porosity affects the formation of landslides, especially as the clay at the interface acts
as a lubricant during the interaction of rainwater. As a result, landslides link intimately
with soil moisture. Landslides are most common in areas with high soil moisture. The soil
moisture index was determined on the GEE cloud platform. The spatial resolution of the
soil moisture data is 0.25◦, allowing for the determination of soil moisture distribution on
the surface and in the subsurface, as well as data of abnormal soil moisture (see Figure 10).

Figure 10. Soil moisture index distribution of the TGRA.

3. Methodology

Figure 11 illustrates the comprehensive process of landslide risk assessment using the
Google Earth Engine cloud computing platform. The process begins with the collection of
landslide and remote sensing data, including data from Landsat OLI and Google Earth for
geographic and land cover information, as well as precipitation data from sources such as
GPM, TRMM, and CHIRPS. These data inputs feed into an analysis of various landslide
factors, categorized into geology, hydrology, geomorphology, and meteorology, which are
essential in understanding the conditions contributing to landslide susceptibility.

The collected data are then processed and compiled into a set of features that are
used to train the Gradient Boosting Decision Tree (GBDT) model. This model predicts
the susceptibility of different areas to landslides, classifying them into categories ranging
from very low to very high susceptibility. The output from the GBDT model is integrated
with current or historical rainfall data to predict and classify the landslide risk levels.
This integration aids in producing a dynamic and spatially aware map of landslide risk,
crucial for effective disaster management and mitigation planning. The diagram effectively
conveys a systematic approach to leveraging advanced data collection and modeling
techniques to assess and predict landslide risks using the capabilities of cloud computing
for real-time analysis and decision support.
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Figure 11. Flowchart of study.

3.1. Basic Landslide Interpretation Method

It is necessary to learn the formation law of landslides before interpreting rainfall-
induced landslides to avoid blindness in interpretation and to facilitate interpretation. From
a morphological standpoint, when a landslide occurs, micro-geomorphic features of a circle
chair shape with a steep surrounding and gentle middle tend to appear on the slope. A
fully developed landslide usually has elements such as landslide mass, landslide perimeter,
landslide cliff, landslide terrace, landslide tongue, landslide spindle, landslide drumlins,
landslide cracks, sliding surface, sliding zone, and sliding bed. In reality, landslides
have different shapes and often do not have all of the above elements, but landslide cliff,
landslide mass, landslide perimeter, sliding zone, and landslide bed are present in all
landslides [43–45]. As for remote sensing observations, the only basic elements that can be
interpreted are the surface landslide cliff and landslide perimeter. Starting from the basic
image characteristics of landslides, this paper establishes the remote sensing interpretation
markers of rainfall-induced landslides in the TGRA: (1) Landslides are mainly flat or have
irregular shapes such as a dustpan, tongue, and pear. Larger-scale landslides can have
micro-topographic shapes such as landslide cliffs, landslide terraces, landslide drumlins,
closed depressions, landslide tongues, and landslide cracks. (2) Landslides often manifest
as sudden destruction of the continuous landforms. They are composed of two types of
geomorphic units: steep slopes and gentle slopes. Due to the compression of the soil,
uneven landforms can sometimes be seen below the slope. The gentle slopes often have
relatively deep gullies developed, and the terrain is relatively fragmented. (3) Landslides
are more often formed in the gentle slopes of the canyons and the shady slopes of the
watershed. They can also form at the intersection of the main and branch ditches, where
the erosion base level changes sharply, and at the head of the ditch.
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3.2. Gradient Boosting Decision Tree Model

The Gradient Boosting Decision Tree (GBDT) model is one of the more successful
algorithms in the boosting family and can be used for classification and regression [17].
It creates a decision tree from an initial value. The leaves of the tree show the predicted
value and the residual, and the next decision tree is learned based on this residual. Each
iteration improves on the previous result, reduces the residual of the previous model, and
builds a new combinatorial model in the direction of the gradient of residual reduction.
In the iteration of the GBDT, we assume that the strong classifier that we obtained in the
previous step is Ft − 1(x), and the loss function at this point is L(y, Ft − 1(x)). Then, the
next step is to find a weak classifier ht(x). On the one hand, this classifier is part of the
CART regression tree model; on the other hand, it can minimize the loss function:

L(y, Ft(x)) = L(y, Ft − 1(x) + ht(x ) (1)

where Ft(x) is the model prediction at iteration t for input x. ht(x) is the weak learner (e.g.,
a decision tree) added at iteration t. L(y, Ft(x)) is the loss function.

For the t-th iteration of sample i, the negative gradient of the loss function can be
expressed as follows:

rti = −
[

∂L(yi, F(xi)))

∂F(xi)

]
F(x)=Ft−1(x)

(2)

A regression tree can be fitted using (xi, rti) (i = 1, 2, . . . m), where the leaf nodes of
the regression tree are Rtj, j = 1, 2, . . . , J. J is the number of leaf nodes.

For each sample of a leaf node, the best-fitting leaf node ctj can be expressed as follows:

ctj = argmin︸ ︷︷ ︸
c

∑ xi∈Rij L(yi, Ft−1(xi) + c) (3)

Therefore, the decision tree function for this iteration can be obtained as follows:

ht(x) = ∑J
j=1 ctj I

(
x ∈ Rtj

)
(4)

For a binary classification problem, the binary loss function of the GBDT can be
described as follows:

L(y, F(x)) = log(1 + exp(−yF(x))), y ∈ {−1, 1} (5)

The negative gradient error can be described as follows:

rti = −
[

∂L(y, F(xi)))

∂F(xi)

]
F(x)=Ft−1(x)

= yi/(1 + exp(yiF(xi))) (6)

where rti is the negative gradient of the loss function for sample i at iteration t, which serves
as the pseudo-response for the next learner to fit.

The optimal residual fit of each leaf node (Leaf Node) of the final decision tree can be
expressed as follows:

ctj = argmin︸ ︷︷ ︸
c

∑ xi∈Rij log(1 + exp(−yi(Ft−1(xi) + c))) (7)

where ctj is the value for leaf j of the new tree, which minimizes the loss when added to the
existing model.

Using the Newton–Raphson formula, the above formula can be further approximated
in the following form:

ctj = ∑ xi∈Rtj rti/∑ xi∈Rtj |rti|(1 − |rti|) (8)
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The final obtained F(x) is related to log-odds and can be used to perform proba-
bility calculations:

P(x) =
e2F(x)

1 + e2F(x)
=

1
1 + e−2F(x)

(9)

where P(x) is the probability of landslide occurrence of sample x.

3.3. Rainfall Intensity–Duration Indicator

Rainfall is an important factor in the formation of landslides. When landslide accu-
mulation is unsaturated, the infiltration of rainfall increases the weight of the landslide
body. The influence of rainfall on the landslide body is determined by both the slope body’s
infiltration capacity and rainfall intensity [46]. The infiltration capacity of a landslide body
is related to the material composition and structure of the slope. When the rainfall intensity
is low, all of the rainfall will infiltrate into the slope body; when the rainfall intensity is
high, part of the rainfall infiltrates into the slope body, and the other part becomes surface
runoff [47]. Rainfall intensity is mainly indicated by two factors: the amount of rainfall
and rainfall duration. The Rainfall Intensity–Duration Index (I-D) takes the effects of these
two factors into account. If the cumulative amount of rainfall at a given time exceeds a
certain threshold, it is assumed that the rainfall at this specific time and location may cause
a landslide. If the susceptibility to landslides at that location is high, then a landslide is very
likely to occur at that time [48]. We use the cumulative 7-day rainfall as the measurement
index and combine the rainfall threshold with the landslide susceptibility to obtain the
hazard assessment results.

3.4. Dynamic Hazard Assessment System of Landslide Based on GEE (DHAS)

We created a DHAS system to make better use of the relevant data from the GEE
cloud platform. The system uses JavaScript as the development language to conduct a
dynamic hazard assessment of rainfall-induced landslides based on the GEE cloud platform.
We extracted various factors related to landslide hazards in the TGRA on the GEE cloud
platform, primarily the factor layers of elevation, slope, slope direction, rainfall, and
NDVI [49,50]. We uploaded the stratigraphic lithology, geological structure, land cover
type, and documented landslide data from our local system to the GEE cloud platform.
The mighty computing power of the GEE cloud platform facilitates the dynamic landslide
hazard assessment calculation. The results are displayed in real-time on the DASH system
using big data visualization technology. This system enables dynamic monitoring and
predictions in near-real time of rainfall-induced landslide hazards in the TGRA [28,51].

4. Results

4.1. Susceptibility Mapping of Rainfall-Induced Landslides

Landslide susceptibility mapping (LSM) is the prerequisite for hazard assessment.
The basic idea behind landslide susceptibility mapping is to use the relationship between
landslide occurrence and the factors influencing it to build a mathematical model and then
to use it to calculate the probability of landslide occurrence in areas with the same geological
environment, allowing for landslide spatial prediction. Quantitative landslide susceptibility
mapping methods include physical-based methods and data-driven methods. This study
uses the popular ensemble learning method, the GBDT, for landslide susceptibility mapping,
which is a data-driven method. It is robust and can handle data of various types (continuous
data or discrete data) flexibly. It has high prediction accuracy with only a few fitting
parameters. The following are the main steps in implementing LSM:

(1). Selection of mapping unit. The mapping unit determines the amount of input data
that we use in the model and the spatial resolution of the resulting graph. According to
the needs of mapping at different scales, there are four commonly used LSM units: grid
units, geographic units, slope units, and sub-watershed units. In this study, we chose
the grid unit for mapping due to the large extent of the study area and discrete landslide
locations. The spatial resolution of the grid was set to 30 m × 30 m, consistent with the
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spatial resolution of GEE online remote sensing data. Survey data such as engineering rock
groups and average annual precipitation were resampled to 30 m. There was a total of
7,480,817 mapping units for the study area.

(2). Creation of sample dataset. In this study, we initiated our research by constructing
an imbalanced dataset where positive samples (labeled 1) comprised all 5008 rainfall-
induced landslides in the TGRA, along with the values of 10 influencing factors at their
respective spatial locations. To provide a contrast, 15,024 random points were generated in
areas devoid of landslides, with the values of the same 10 influencing factors constituting
the negative samples (labeled 0). This led to the creation of a 20,032 × 11 (one label,
ten features) two-dimensional sample dataset by merging these positive and negative
samples. To maximize the utilization of information from non-landslide areas and to
ensure a robust analysis, the dataset was deliberately imbalanced with fewer landslide
than non-landslide samples. Further data processing involved extracting values from
various landslide factor layers to the landslide samples using the ‘Extract Multi Values to
Points’ function in ArcGIS. The data compiled into a two-dimensional decision table were
then subjected to several preprocessing steps: handling missing values, normalizing the
data to ensure a uniform scale, analyzing multicollinearity to identify and correct highly
correlated variables, and reducing data dimensionality. These preprocessing measures
were essential to enhance the data’s representativeness and the robustness of the predictive
model, ensuring accurate landslide risk assessment.

(3). Building the prediction model. The sample data were randomly divided into a
training set (80%) and a test set (20%). The training set was used to create the optimal
model, and the test set was used to test how well the model could be generalized. We chose
the log-likelihood function “deviance” as the loss function. The initial learning rate was
0.1, and the optimal hyperparameters of the model were determined step by step using the
grid search method.

To provide a more comprehensive understanding of the performance metrics used to
evaluate the GBDT model in our study, here are the formulas for accuracy, precision, recall,
and F1 score:

Accuracy =
TP + TN

TP + FP + TN + FN
(10)

Accuracy measures the proportion of true results (both true positives and true nega-
tives) among the total number of cases examined. Here, TP (true positives) is the number
of correct predictions when an instance is positive, TN (true negatives) is the number
of correct predictions when an instance is negative, FP (false positives) is the number of
incorrect predictions when an instance is positive, and FN (false negatives) is the number
of incorrect predictions when an instance is negative.

Recall =
TP

TP + FN
(11)

Recall is the ratio of correctly predicted positive observations to all observations in the
actual class. It is a measure of the model’s ability to find all of the relevant cases within
a dataset.

Precision =
TP

TP + FP
(12)

Precision is the ratio of correctly predicted positive observations to the total predicted
positives. It is a measure of the accuracy of the positive predictions.

F1 =
2 × Precision × Recall

Precision + Recall
(13)

The F1 score is the weighted average of precision and recall. This score takes both
false positives and false negatives into account. It is particularly useful when the classes
are very imbalanced. The F1 score is a way of combining the precision and recall of the
model, and it is defined as the harmonic mean of the model’s precision and recall.
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According to the prediction results on the test set, the accuracy, recall, precision, and
F1 scores of the GBDT model were 0.951, 0.862, 0.957, and 0.907, respectively. This model
had good accuracy and could be used to perform LSM.

(4). Application of the model. The influencing factor values of all grid units in
the study area were derived based on their spatial position to produce the dataset to be
predicted. The best model that passed the test was used on the dataset and generated the
landslide probability on each grid unit. The landslide prediction index (LPI) map was then
created based on the latitude and longitude of each grid unit. Using the natural breakpoint
method, the LPI was classified into five categories: very low, low, moderate, high, and very
high, representing the degree of landslide susceptibility. The corresponding LPI ranges
were 0–0.148, 0.148–0.327, 0.327–0.576, 0.576–0.797, and 0.797–1 (see Figure 12).

Figure 12. Susceptibility mapping of rainfall-induced landslides in the TGRA.

From the landslide susceptibility map (see Figure 12) and the distribution character-
istics of the water system, we can conclude that the highly susceptible areas in terms of
geological disasters in the TGRA are concentrated along the mainstream of the Yangtze
River and its major tributaries, namely Xiangxi, Qinggan, Daning, Meixi, and Tangxi. Geo-
logical disasters are concentrated in the Zigui Basin and northeastern Chongqing. Based
on the engineering rock group layers and landslide susceptibility mapping, we found
that clastic rock areas, including the Jurassic strata and the Triassic Badong strata, are all
located in the moderate or high landslide susceptible areas. For the overall distribution,
susceptibility to landslides in the TGRA was primarily determined based on engineering
rock groups, topography, and rivers. At the local level, landslides were influenced by
geomorphic type and land cover.

4.2. Dynamic Hazard Assessment of Rainfall-Induced Landslides

In this paper, regional landslide susceptibility levels and cumulative rainfall levels are
used to assess the risk of landslide disasters. Landslide susceptibility mapping provided the
spatial probability of landslides, and the temporal probability of landslides was obtained
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from the temporal rainfall accumulation. Combining the spatial and temporal probabilities,
we could simulate the dynamic distribution on the time series of landslide hazards in the
region using near-real-time spatial rainfall data provided by the GEE cloud platform.

4.2.1. Temporal Rainfall Accumulation Grading

In this paper, the method for determining the gradings of temporal rainfall accumula-
tion used the Rainfall–Duration (I-D) Indicator. This method is an empirical mathematical–
statistical model that builds on the relationship between rainfall accumulation and land-
slides in the real world, using the rainfall accumulation data from seven days before the
occurrence of landslides as the measurement standard. There were a total of 5008 rainfall-
induced landslides cataloged, with 2639 landslides with exact occurrence dates after 1980
occurring between 8 July 1980 and 4 September 2012 (see Figure 13). NOAA’s National
Centers for Environmental Information (NCEI) Global Summary of the Day provided
the daily rainfall data from precipitation monitoring stations in the TGRA. Daily rainfall
data from central monitoring stations were available from 1 January 1951 to the present.
Each landslide was associated with the nearest precipitation monitoring station based on
its spatial position, and precipitation accumulation data for the seven days before each
landslide were obtained using the ArcGIS Python script. From the statistical relationship
between historical landslides and rainfall accumulation (Figure 14), we can see that the
accumulated 7-day rainfall that induced landslides could be divided into five levels, namely
no occurrence of landslides, random occurrence, local occurrence, group occurrence, and
massive occurrence. The accumulated precipitation levels were <100 mm, 100–140 mm,
140–170 mm, 170–200 mm, and >200 mm, respectively.

Figure 13. Temporal distribution of rainfall-induced landslides in TGRA.
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Figure 14. Statistical relationship between historical landslides and 7-day accumulative precipitation
in TGRA.

4.2.2. Dynamic Hazard Assessment of Rainfall-Induced Landslides

Combining the grading of temporal rainfall accumulation with the landslide suscep-
tibility classification yielded a semiquantitative classification table for landslide hazard
assessment. The hazard of landslides can be classified into five categories, namely very
high, high, moderate, low, and very low, corresponding to different susceptibilities of
landslides and the threshold of temporal rainfall accumulation. These five levels are red,
orange, light green, blue, and purple, as shown in Table 2. Based on this table, we can
intuitively assess the hazard level of rainfall-induced landslides in any time series at any
spatial position in the study area using the precipitation radar satellite data, which are
updated in near-real time, to prevent and mitigate disasters in real time.

Table 2. Classification sheet of landslide risk based on gradings of temporal rainfall accumulation.
Red, orange, light green, light blue, and dark blue respectively denote the five levels of landslide
hazard: very high, high, moderate, low, and very low.

Temporal Rainfall Accumulation Gradings
Susceptibility Classes

Very High High Moderate Low Very Low

Large occurrence (>200 mm)
Group occurrence (170~200 mm)
Local occurrence (140~170 mm)
Accidental occurrence (100~140 mm)
No occurrence (<100 mm)

After completing the modeling of the hazard assessment of rainfall-induced landslides,
this paper selected a typical rainfall event in the TGRA. Based on the temporal and spatial
distribution of rainfall in the study area, we successfully conducted a dynamic assessment
of the risk of rainfall-induced landslides in this case and analyzed the temporal and spatial
variation law of the rainfall-induced landslide hazards in the TGRA.

The majority of the TGRA experienced intense continuous rainfall from 29 August
to 3 September 2014. The Global Precipitation Measurement (GPM) obtained from the
GEE cloud platform recorded the daily meteorological distribution in the study area (see
Figure 15a,c,e,g,i,k), providing data for the dynamic hazard assessment of landslides. Based
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on the above landslide hazard assessment model, the DHAS system developed in this paper
was used to produce daily updated landslide hazard assessment maps from 29 August to
3 September 2014 (see Figure 15b,d,f,h,j,l).

The landslide hazard assessment map shows that accumulated precipitation was up
to 23 mm in the seven days preceding 29 August. The landslide risk in the entire TGRA
was mostly low or very low. The local area had a moderate risk because the landslides had
a relatively high susceptibility in this area and were thus easily influenced by rainfall. On
30 August, the accumulated precipitation exceeded 100 mm in Kaixian, Fengjie, Wushan,
Badong, Zigui, and other places. The maximum local precipitation in some areas reached
138 mm. The low-risk areas gradually faded away, and the moderate-risk areas occupied
the central and east of the reservoir area. Very-high-risk areas appeared sporadically in
some areas. Fengjie County, Kaizhou County, northern Yunyang County, and southern
Wuxi County in northeastern Chongqing received the most rainfall on 31 August. The
daily maximum rainfall was 104 mm, with accumulated precipitation exceeding 200 mm.
The low- and very-low-risk areas vanished. The risk of landslides was high in most areas,
and some areas reached a very high risk level. Rainfall in northeast Chongqing, Zigui, and
Badong decreased significantly from 1 to 3 September, with daily rainfall less than 20 mm.
Some areas in southwest China gradually returned to being low-risk areas again, and the
overall risk decreased. However, from the time-series map of hazard zones, the risk in
Wushan, Fengjie, Yunyang, Wuxi, and other areas in northeast Chongqing had increased
day by day since 30 August 2014, and remained at the very high landslide hazard level
from 1 to 3 September, although rainfall decreased significantly during those days. This
was mainly because the delay in the influence of rainfall on landslides was considered
when calculating the landslide risk. The previous rainfall greatly influenced landslide risk,
and the landslide risk was still high after the rainstorm, which was also the reason for the
accumulated precipitation in the first seven days before the draft. Detailed hazard classes’
sub-area statistics are shown in Table 3.

Table 3. Landslide hazard assessment result zoning statistics from 29 August 2014 to 3 September 2014.

Date
Classes of Landslide Hazard

Very Low Low Moderate High Very High

29 August 2014 6.31% 65.09% 28.71% 1.38% 0.00%

30 August 2014 1.25% 41.28% 55.65% 3.31% 0.00%

31 August 2014 0.08% 3.41% 57.79% 39.52% 0.69%

1 September 2014 0.00% 1.76% 34.06% 57.57% 8.10%

2 September 2014 0.00% 7.66% 38.00% 47.17% 8.66%

3 September 2014 0.00% 7.54% 37.45% 47.77% 8.73%

Figure 15. Cont.
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Figure 15. Cont.
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Figure 15. The distribution of daily precipitation and its corresponding landslide hazard distribu-
tion in the TGRA. (a,c,e,g,i,k) denote the spatial distribution of precipitation for each day of the
rainfall duration; (b,d,f,h,j,l) denote the spatial distribution of landslide hazards for each day of the
rainfall duration.

5. Discussion

The dynamic hazard assessment of rainfall-induced landslides is essential for the
government to formulate disaster prevention and mitigation policies. The accuracy of the
assessment results is directly related to the safety of the life and property of people in the
hazard area, which should withstand the factual arguments. To verify the generalizability
of the above assessment method and the validity of the assessment results, this paper used
the remote sensing interpretation method of rainfall-induced landslides to identify the
TGRA landslides induced by the rainstorm of 31 August 2014. The data came from the
aerial images of UAVs and high-resolution satellite images before and after the rainstorm.
By comparing the temporal remote sensing images of before and after, we found that the
vegetation, houses, roads, and farmlands in the slope area with large-scale landslides after
the heavy rainfall were destroyed. The land texture was remarkably different from the
area where no landslides occurred. The deformation features of the landslide mass were
prominent, and the geotechnical structure was disrupted. Cracks of different types, such as
tensile cracks at the trailing edge, landslide depression, and chair-like cracks, steep ridges,
or noticeable landslide cliffs were observed. In general, satellite images of the landslide
areas were light in color, with exposed rocks and soil that were easy to identify (see Table 4).

This study identified a total of 622 landslides after the rainfall, with 353 in Yunyang
County and 279 in Fengjie County, after excluding human intervention and analyzing
remote sensing images. Analysis of the spatial location of landslides and the accumulated
precipitation (Figure 16a) showed that landslides mainly occurred in areas with accumu-
lated precipitation of more than 200 mm, indicating that the distribution of landslides
correlated well with accumulated precipitation and rainfall intensity. From the distribution
of landslides in the hazard assessment map, the interpreted landslides were all in high- or
very-high-risk areas. Among them, 70.3% and 29.7% of the landslides were in the high-
and very-high-risk areas, respectively, in Yunyang County. A total of 53% and 47% of
the landslides were in the high- and very-high-risk areas in Fengjie County. This result
confirmed the timeliness and accuracy of the hazard assessment.
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Table 4. Remote sensing interpretation of landslides induced by extreme rainfall in “8–31” rainstorm
in 2014.

No. Position Description Slope Remote Sensing Images

1 Xinli Village, Jiangkou
Town, Yunyang County

Location:
E 108◦47′37.74′′
N 31◦14′37.28′′
Development
stratigraphy: J2x
Xintiangou Formation
Type: nascent landslide

24~36◦

2 Xiaoyakou Yuzhuan
Town, Yunyang County

Location:
E 108◦50′35.62′′
N 31◦20′9.81′′
Development
stratigraphy: T3x
Sujiahe Formation
Type: nascent landslide

36~41◦

3 Shashi Town,
Yunyang County

Location:
E 108◦55′46.74′′
N 31◦18′27.40′′
Development
stratigraphy: T2b
Badong Formation
Type: old
landslide revival

31~40◦

4 Luojiapo, Shangdou
Town, Wuxi County

Location:
E 109◦28′27.17′′
N 31◦16′32.79′′
Development
stratigraphy: J1z Pearl
Rush Formation
Type: nascent
soil landslide

29~43◦
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(a) (b)

Figure 16. (a) Spatial distribution of landslides and accumulated rainfall interpreted by remote
sensing in Yunyang and Fengjie. (b) Spatial distribution of nascent landslides and documented
landslides in Yunyang and Fengjie.

We further analyzed the influencing factors of the interpreted rainfall-induced land-
slides and found that landslides were more common on slopes with summit elevations
between 1000 m and 1500 m, topographic slopes of about 25◦, and sunny slopes. Landslides
occurred in an elevation range from 200 m to 1350 m. The number of landslides first
increased and then decreased with increasing elevation. Landslides were concentrated in
the elevation range of 400–700 m. Landslide development strata are mainly Jurassic and
Triassic Middle Badong Formation. The primary lithology consists of sandstone, siltstone,
marl, mudstones, and shales of different layer thicknesses. The strata belong to soft and
hard rock groups. As for the scale of landslides, small and medium landslides dominated,
accounting for 90.7% of all landslides.

Another important finding is that 83% of the landslides interpreted in this exper-
iment were not documented (see Figure 16b) and were nascent landslides induced by
this rainstorm. Some of the old landslides were found to be severely deformed or even
massively slid under the influence of heavy rainfall. These findings indicate that the hazard
assessment could help reveal the development direction of historical landslides as well as
identify new landslides.

The severe rainstorm resulted in numerous fatalities and missing persons, as well as
significant damage to critical infrastructure including roads and bridges. Furthermore,
the event forced thousands of families to evacuate their homes devastated by landslides.
Agricultural fields and crops suffered extensive damage, which in turn caused substantial
disruptions in transportation and halted production activities, leading to considerable socio-
economic losses. The implementation of the dynamic landslide hazard assessment method
proposed in this study during a heavy rainstorm could be crucial. By accurately predicting
high-risk landslide zones and swiftly identifying emerging landslides, this method can
significantly mitigate both human and economic losses in vulnerable areas, thereby greatly
enhancing the safety of the affected populations.

Prompt dynamic hazard assessment of rainfall-induced landslides is an urgent and
practical research topic because landslide evolution is a complex nonlinear process that still
requires new theoretical support, and the assessment results have obvious realistic signifi-
cance. The landslide hazard assessment process requires a large amount of foundational
environmental data and remote sensing images. Researchers have encountered a lot of
difficulties in previous landslide hazard studies in the TGRA due to the large study area. A
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lot of time and effort was wasted on data acquisition and preprocessing. Therefore, based
on the powerful computing power and massive image data of the GEE cloud platform,
the prediction system developed in this study that integrates the GBDT machine learning
model and basic data processing functions provides reliable data and technical support for
landslide hazard assessment on a large regional scale. The dynamic assessment of landslide
hazard requires real-time rainfall data, and GEE provides a variety of global meteorological
satellite databases to offer precipitation data with a temporal resolution of 0.5 h, providing
near-real-time data support for this dynamic landslide hazard assessment system. It should
be noted that the dynamic hazard assessment method used in this study is semiquantitative
and necessitates prior knowledge of empirical mathematical statistics on the occurrence of
historical landslides and temporal rainfall accumulation in the study area, which is difficult
to obtain in areas lacking historical landslide data. In a follow-up study, our goal is to
create a quantitative study on dynamic hazard assessment using non-graded temporal
accumulated precipitation and susceptibility mapping.

6. Conclusions

The powerful ability of machine learning to handle nonlinear relationships has led
to its widespread application in areas such as groundwater prediction [52–54], landslide
prediction [17,19], and land use mapping. This study introduces a novel near-real-time ap-
proach using the Google Earth Engine (GEE) platform combined with the Gradient Boosting
Decision Tree (GBDT) model for dynamic hazard assessment of large-area rainfall-induced
landslides. By applying the GBDT model based on various geological environmental
factors, potential landslide locations were effectively predicted. Leveraging the powerful
computing capabilities of GEE along with its up-to-date remote sensing and rainfall data, a
dynamic evaluation of landslide risks was achieved.

Our results emphasize the effectiveness of combining cloud computing with machine
learning to enhance landslide risk assessment. Specifically, the method successfully pre-
dicted landslide susceptibility with high precision, achieving a prediction accuracy of
86.2% and a recall rate of 95.7%, significantly improving the capability to predict and
mitigate landslide disasters almost in real time during heavy rainfall events. For instance,
the spatial and temporal analysis of the “8–31” 2014 rainstorm event in the Three Gorges
Reservoir area highlighted the practical application of the model, providing closely related
assessments for subsequent landslide events.

However, this study has its limitations. The accuracy of disaster prediction largely
depends on the quality and resolution of the input data, and the model’s performance may
be compromised if applied outside the Three Gorges Reservoir area without appropriate
adjustments and calibration. Moreover, although the model effectively handles the non-
linear relationships between multiple factors and landslide events, its predictive power is
still limited by the inherent uncertainties of meteorological data and the dynamic nature of
land cover and geological conditions.

Looking forward, the scalability and efficiency of the proposed method are expected
to find broader applications in geological disaster prediction and management. Future
research will focus on enhancing the model’s universality across different geographic
settings and exploring the integration of more diverse data types, such as real-time satellite
imagery and IoT sensor data, to improve prediction accuracy. Future studies will also aim
to refine the temporal resolution of hazard assessments to enable quicker responses to
imminent landslide risks.

In conclusion, the integration of GEE and the GBDT for dynamic landslide hazard
assessment represents a significant advancement in the field of geohazard analysis. By har-
nessing advanced computing and machine learning, this approach provides a powerful tool
for disaster risk management and mitigation planning, making a significant contribution to
the safety and resilience of vulnerable areas.
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Abstract: Hazardous debris flows are common in the tectonically active young Himalayas. The
present study is focused on the recurrent, almost seasonal, landslides and debris flows initiated
from Kalli village in Achham District of Nepal, located in the Lesser Himalayas. Such geological
hazards pose a significant threat to the neighboring communities. The field survey reveals vulnerable
engineering geological conditions and adverse environmental factors in the study area. It is found
that a typical complete debris transport process may consist of two stages depending on the rainfall
intensity. In the first stage, debris flows mobilized from a landslide have low mobility and their
runout distance is quite modest; in the second stage, with an increase in water content they are able to
travel a longer distance. Numerical simulations based on a multi-phase flow model are conducted to
analyze the characteristics of the debris flows in motion, including the debris deposition profiles and
runout distances in both stages. Overall, the numerical results are reasonably consistent with relevant
field observations. Future debris flows may likely occur again in this area due to the presence of large
soil blocks separated by tension cracks, rampant in the field; numerical simulations predict that these
potential debris flows may exhibit similar characteristics to past events.

Keywords: debris flow; internal angle of friction; basal friction; deposition pattern; runout distance;
numerical modeling

1. Introduction

The collision of the Eurasian plate and Indian plate beneath the Himalayas along the
fault line and the continuous movement of the Indian plate at almost 17 mm/year [1] have
rendered the youngest mountains of the Himalayas tectonically very active. Because of the
rugged mountain topography, complex and fragile nature geological structure, soft soil
cover, high-intensity rainfall in monsoon season, and frequent earthquakes, the countries
along the Himalaya including Nepal, India, and Pakistan are especially vulnerable to
landslides, debris flows, erosion, and other mass wasting phenomena [2]. Many destructive
landslides and debris flows take place every year in Nepal [3–6]. Case studies of landslides
or debris flows in different parts of Nepal have been reported in recent years [7–10] and
there is a growing interest in better understanding the characteristics of landslides or debris
flows in this region.

A large number of debris flows are commonly observed in the Suntar Formation of
the Far-Western Development Region of Nepal. Kalli debris flows in Achham District
are among the major recurring landslide-mobilized debris flows in this region. However,
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these landslides and debris flows in the Suntar Formation have not yet been extensively
investigated. Interestingly, similar trends of repetitive occurrences of landslides and debris
flows have been reported in some case studies conducted in other parts of Nepal as well
as neighboring countries, which possess similar lithofacies to the Suntar Formation; these
reported debris events include several incidents at Siddhababa along the Siddhartha High-
way and at Jugedi Khola along the Narayanghat Muglin Road, as well as some events in the
Dagshai Formation and in the Murre Formation of India and Pakistan, respectively [11–16].
However, these studies are mainly focused on the field conditions, influencing factors and
potential triggering agents; there has been very little attempt at quantitative analysis or
numerical modeling of debris flows in the region. In the present study, we aim to explore
both field surveys and numerical simulations to study a typical landslide-mobilized debris
flow, which recurs frequently during the rainfall seasons near Kalli village in this region.

There has been a plethora of numerical models developed to examine the mechanisms
of debris flows and quantify their physical processes. The main challenge in various model
development lies in adopting proper rheology to represent the distinctive behavior of
various mass flows. Most of the early models developed were single-phase models, which
generally adopted Newtonian, Bingham, or dilatant fluid rheology for what is considered
predominantly fluid flow behavior [17–19]. Granular frictional flow models were proposed
for coarse-grained dry mass flows [20–23], and visco-plastic models for dense granular
flows have also been developed [24]. A mixture approach has also become popular to
describe the overall behavior of debris material as a whole, with various relevant models
being developed [25–28]. Pudasaini [29] proposed a two-phase modeling framework to
consider the solid phase and fluid phase simultaneously in the motion of the debris material
and incorporate many essential physical aspects of mass flows; it was recently expanded
into a multi-phase model with the introduction of an additional fine solid phase and this
allows more complex material behavior to be considered in the modeling of the flow
process. Since the debris flow mechanism is very intricate, determining the values of input
parameters for such complex flows and phases is typically very challenging. There are very
scarce resources devoted to the ranges of input parameters for such multi-phase models.
The present study attempts to determine the input parameters through back analysis of
past debris flow events.

The overall scope of the present study revolves around the recurring, almost seasonal,
geological hazards that constantly plague the communities in this region; it is aimed to
identify the key factors and explore quantitative numerical models to simulate the flow
processes. A multi-phase mass flow model is employed for back analysis of past debris
flows that occurred in the study area. Various flow characteristics including deposition
pattern, runout distance, and impacted area are examined numerically. Numerical sim-
ulations based on the calibrated modeling parameters are also explored to assess their
possible triggers and impact for potential future debris flows. These relevant parameters
obtained from the back analysis of the present study can also serve as important references
for further investigations as well as in the assessment of present events of debris flow
hazards in this region.

2. Study Area

The study area is located in the middle mountains of the young Himalayas in the
border area of the Surkhet and Achham districts of Nepal (Figure 1); it is in the proximity
of the Karnali river. The coordinates of the initiation point of the major landslide that later
mobilized the debris flows are 28.93◦ N, 81.34◦ E, in Kalli village of Achham District.
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Figure 1. Study area around Kalli village of Achham District on the map of Nepal.

The study area usually receives scanty rainfall during the winter. From November
to April there is very little rainfall, and then, from the middle of April to the middle
of October the area typically receives intense summer rainfall. The maximum rainfall
generally occurs in July. The summer rainfall storms are very intense, often flooding the
ephemeral channels. There is no rainfall gauge station in the study area, therefore the
rainfall in the area was estimated from several nearby rainfall gauge stations (Asara Ghat,
Bangga Camp, Mangalshen, and Pusma Camp) located within 25 km of the landslide area.
Figure 2a shows the Thiessen polygon of this region around the four stations. The rainfall
in the study area was then estimated based on its distance away from each station and the
area of each polygon [30]. These rainfall data from the years 1982 to 2018 were obtained
from the Nepal Department of Hydrology and Meteorology. The cumulative rainfall during
a year is presented in Figure 2b. It is worth noting that to examine one of the largest debris
flow events that occurred in Kalli village in 1983, the rainfall was also similarly estimated
for the location of this village; evidently it was very high and could be the major triggering
factor for the debris flows in that year.

Figure 2. (a) Thiessen polygon for the rainfall analysis. The arc indicates the distance of 25 km away
from the Kalli landslide area (marked with star) and shows that all the rainfall gauge stations are
within this 25 km range. (b) Average cumulative rainfall recorded at nearby weather stations and
estimated for the study area.
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The Kalli landslide/debris flow watershed area exhibits several distinct geomorphic
features. Among these, steep elevated mountains and deep river valleys with diverse
landforms are particularly prominent. The highest elevation in the watershed is 2040 m
and the lowest elevation, approximately 420 m is at the Karnali river. The perennial Karnali
river together with its tributaries and adjoining ephemeral streams flow through the study
area. Mass wasting events like landslides and debris flows are common in such topography.

Geologically, the study area is dominated by the Lesser Himalayan rocks in the Far-
Western Development Region of Nepal [31]. The most prominent rock formations in the
study area are the Suntar Formation and the Swat Formation [32], belonging to the Surkhet
Group. The Swat Formation is mainly comprised of gray to dark gray, soft, carbonaceous
shales with beds and lenses of fine-grained limestone, and the Suntar Formation consists
of medium-grained, green-gray sandstones with purple shales [31,33]. The purple shale
slope of the Suntar Formation is commonly exposed and visually evident in the study
area (Figure 3).

Figure 3. The interbedded purple shale and gray sandstone slope common in the study area.

3. Mass Movements in the Area

3.1. Landslide and Debris Flows Events

Landslides and debris flows in the area are encountered almost every year during
the heavy rainfall season. The landslides are predominantly made of solid material trav-
eling at a moderately low velocity. A debris flow typically contains a significant fraction
of water, whose presence facilitates the liquefaction of fine grains and renders the flow
highly mobile [34,35]. The largest landslide and debris flows on record took place on the
12 September 1983. This event was so extreme that some of the debris material flowed over
3 km to reach Karnali river along the Dogade stream. It was initiated from fresh landslides,
and then, grew significantly with the debris deposited nearby from earlier landslide events.
The landslide and debris flow occurred during heavy rains. The rainfall recorded on that
day at the Pusma Camp rainfall gauge station, located 9.67 km from the study area, was
230 mm; this strongly suggests that the landslide and debris flow were triggered by the
heavy rainfall.

Recently, in July 2021 another landslide occurred at the same location. Figure 4 shows
the mass depletion near the landslide crown area between 2020 and 2021. The crown area of
the landslide has agricultural land with a thick soil deposit. The general characteristics and
occurrence pattern of these recurring landslides and debris flows appeared very similar to
the past events. Figure 5 shows the path of the Kalli landslide and debris runout along the
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Dogade stream. It is possible to consider the primary process of debris flow development in
two stages. In the first stage, the main debris flow generally initiates from a landslide whose
crown is in Kalli village; subsequently the debris materials from the landslide travel further
and are deposited in the Dogade stream. In smaller landslides, when there is not sufficient
debris material or water to flow over a long distance, most of the debris is deposited in the
Dogade stream, close to the landslide toe. Figure 6 shows the view at a distance of 600 m
from the landslide crown; the trace of the Kalli landslide is evident and deposition marks
of debris were left near the Dogade upstream.

Figure 4. Photos of the landslide crown area taken (a) on 15 June 2020 and (b) on 22 June 2021.
The area enclosed by the rectangle shows the displaced mass consumed by the landslide in 2021; the
circle indicates a visitor (used as a scale).

Figure 5. Kalli landslide, occurring at Kalli village, and the debris runout along the Dogade stream
to the Karnali river. The blue arrow indicates the landslide mobilized from the crown area at Kalli
village. The red line indicates potential debris flow path along the Dogade stream. The upstream
portion of the Dogade stream from the Kalli landslide area cannot be noticed clearly as the channel is
constricted; but the portion between the Kalli landslide and the Karnali river is evident due to the
widened channel resulting from the debris flow. A very wide debris fan along with the Karnali river
constriction at the confluence point of the Dogade stream and the Karnali river due to debris deposit
can be clearly observed.
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Figure 6. The deposition marks remained at the sides after the debris from the first stage. The location
is 600 m from the landslide crown.

Of more concern is the case of very heavy rainfall when there are large landslides along
with sufficient water in the Dogade stream, the fresh debris from the landslides together
with the debris deposited in the Dogade stream from earlier landslides can continue to flow
to the Karnali river, which is almost 3 km away from the landslide toe (Figure 5). This stage
of long runout distance along the Dogade stream is regarded as the second stage of the
debris flow evolution. Figure 7 shows typical deposition patterns at the two locations, one
closer to the landslide toe (Figure 7a) and the other far away and almost near the end of the
Dogade stream (Figure 7b). The debris deposition pattern shows that finer particles are
deposited very close to the landslide toe and the coarser particles are deposited far away
from the landslide area. It is common that large boulders are found to deposit at the bank
of the Karnali river, which is around 3 km from the landslide crown area [36].

Figure 7. (a) Deposition of finer particles at 500 m from the landslide toe; the red circle on the left
encloses a cell phone. (b) Deposition of coarser particles at 2500 m from the landslide toe; the circle
on the right shows a visitor.

The total volume of the main debris flow that has already traveled to the Karnali
river is more than hundreds of thousands of cubic meters. A few households have been
displaced in Kalli village along with the loss of some agricultural land due to landslides;
a large piece of agricultural land about 32,000 m2 has been converted into a debris fan in
Kolimara village. It is possible that future losses may occur as a result of such recurring
flow events, hence the study of landslide/debris flow in this area is crucial from a future
development perspective. There have been widely reported cases where landslides and
debris flows have damaged infrastructure around the rivers in Nepal [37].
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3.2. Rock and Soil Properties

To investigate the properties of the underlying rock in the landslide area, the freshly
exposed part of the sandstone was drilled for sample collection. The deeper The intact
shale samples could not be retrieved for strength test. Uniaxial compressive strength
testing was carried out on three samples of sandstone according to the Bureau of Indian
Standards [38]. The average compressive strength was 52.1 MPa, the modulus of elasticity
38.5 GPa, the modulus of rigidity 16.2 GPa and Poisson’s ratio 0.19. These results indicate
that the sandstone in the Kalli landslide is fairly strong.

Petrographic analysis was carried out on the collected sandstone samples to determine
the mineralogical and chemical composition. The results suggest that the sandstone can be
characterized as subarkose, as the fractions of quartz, feldspar, and matrix are 60%, 15%,
and 5%, respectively. The remaining fraction is occupied by various cementing materials
that can be qualified as calcareous, argillaceous, and ferruginous, which were found to be
around 15%, 3%, and 2%, respectively.

Sieve analysis and consistency tests were carried out on the soil samples collected
at the landslide crown area. Based on the results of the sieve analysis [39], the coefficient
of uniformity Cu was determined to be 28.57, while the coefficient of curvature Cc was
found to be 0.45. In the consistency tests [40], the liquid limit (LL) was obtained as 32%
and plastic limit (PL) 26%. The soil is a poorly graded sand with silt and gravel (SP-SM)
according to the Unified Soil Classification System. Based on the empirical relationship
proposed by Alyamani and Sen [41], the hydraulic conductivity of the soil can be estimated
as approximately 6.0× 10−6 m/s. Table 1 summarizes the key material properties measured
during the laboratory testing.

Table 1. Rock and soil properties measured in the laboratory testing.

Property Value

Rock

Uniaxial compressive strength 52.1 MPa
Modulus of elasticity 38.5 GPa
Modulus of rigidity 16.2 GPa
Poisson’s ratio 0.19

Soil

Coefficient of uniformity 28.57
Coefficient of curvature 0.45
Liquid limit 32
Plastic limit 26
Plasticity index 6
Hydraulic conductivity 6.0 × 10−6 m/s

The estimated hydraulic conductivity of the soil is significantly higher than generally
observed hydraulic conductivities of sandstone and shale. Therefore, enough water may
infiltrate from the crown area of the landslide to the underlying sandstone and shale,
and thus, saturate the slope. It is worth noting that the presence of surface cracks will
also facilitate the infiltration of water into the soil, aggravating the water saturation in
the ground. The hydraulic conductivity of shale is in general significantly lower than
sandstone. The difference in relevant physical and mechanical properties of sandstone and
shale such as strength and weather resistance is very high. Hence, one major cause for
repetitive landslide occurrence in Kalli village may be attributed to the interbedding of
shale and sandstone, as these two rocks have likely undergone different weathering due to
the difference in their physical and mechanical properties and the interbedding of these
two has considerably weakened the overall in situ strength.
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3.3. Present and Potential Future Landslides and Debris Flows

Recurring, almost seasonal, landslides and debris flows occur frequently in this area.
Most of the landslides were detected in the northern part of the Karnali river, i.e., on the
right side of the river where the slopes are comprised of sandstone and shale, or interbed-
ding of sandstone and shale. On the southern side of the river there are steep dolomite
slopes, but landslides are not common in these slopes.

The present field study strongly suggests that this site is potentially very vulnerable to
future landslides or debris flows. The entire region is characterized by steep slopes, on top
of which often lie paddy cultivated fields. These fields accumulate significant amounts of
water, leading to saturation of the slopes. Other causes such as intense rainfall in the rainy
season and heavily weathered shale are still persistent. It is worth noting that there are
rampant tension cracks on the landslide crown area; many separated blocks are formed
which may soon slide down initiating a landslide and debris flow. Figure 8 shows the
purple shale slope and the tension cracks at the landslide crown area. The combined length
of the cracks is approximately 300 m. If all these separated blocks fail, it is estimated that
approximately 200,000 m3 of debris material could be generated. This potentially poses a
considerable threat to the residents and agricultural land in this area.

Figure 8. (a) The rampant tension cracks at the landslide. (b) Another view of the tension cracks that
form separate mass blocks. The red circle in both images indicates the size of a visitor.

4. Numerical Simulations

4.1. Modeling Background Parameters of the Two-Stage Debris Flow Development

It is of great interest to assess the processes of landslide and debris flow development
in a quantitative manner via theoretical or numerical simulations based on the evidence
or data collected from the field survey examined so far. In particular, the debris depo-
sition pattern as well as the debris volume have great implications in the impact on the
surrounding environment or society, and consequently are the primary focus of numerical
simulations in the present study. Numerical simulations are conducted with an open-source
computational package, r.avaflow 2.1 [42]. It is supported by GIS software for simulations
of complex multi-phase mass flows over any arbitrary topographies. It is freely available
as a raster module of the GRASS GIS 8.3 software, employing the programming languages
Python and C along with the statistical software R.

The computational framework is based on the multi-phase mass flow model proposed
by Pudasaini and Mergili [43], which considers multiple phases in motion and incorporates
many essential physical aspects of mass flows. It expands the theoretical formulations of
a two-phase model [29] with the introduction of an additional phase of fine solid. This
model considers the moving mass flow as composed of three phases, i.e., solid, fine solid,
and fluid. The first phase, the fluid phase represents a mixture of water and very fine
particles such as silt, clay, and even colloids. It is modeled with shear-rate-dependent
Herschel–Bulkley rheology. The second phase, termed as fine solid, contains fine gravel
and sand. The rheology of this mixture is characterized by the rate-dependent visco-plastic
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behavior, as Jop et al. [24] show that dense granular flows share similarities with classical
visco-plastic fluids. For this phase, shear and pressure-dependent Coulomb visco-plasticity
is adopted, where both viscous stress and yield stress play a significant role. The third phase,
the solid phase, is composed of coarser particles such as boulders, cobbles, and gravels.
These coarse particles are considered as frictional materials with no viscous contribution.
Hence, Mohr–Coulomb plasticity is used to model the constitutive behavior of this phase.
It is noted that this three-phase model has been shown to be capable of unifying several
widely used models [20,26,29,44] by setting specific phase fractions. Further details of the
theoretical formulations can be found in Pudasaini [29] and Pudasaini and Mergili [43].
The relevant Digital Elevation Model (DEM) data are necessary for simulating a flow event
on real topography. The DEM data of the study area are available online from the Alaska
Satellite Facility [45]. They have a 12.5 m resolution based on the original data detected
by the ALOS PALSAR satellite. The background images are obtained from Google Maps
and Google Earth and subsequently geo-referenced with GIS before they are ready for
the simulations.

It is necessary to calibrate the input parameters for the numerical simulations based
on the collected field evidence and relevant ranges of typical material properties. They
can be further modified through back analysis to match the observed trends in the debris
flows reported so far; subsequently, they can be used for prediction of future debris flows.
It is of particular interest to focus on the main process of sediment transport in the form of
landslides or debris flows before the debris eventually reaches the stream, and the stream
water flow carries the material to travel further.

Table 2 summarizes the fractions of each phase in each stage and relevant parameters
for each phase. It is worth noting that the complex interactions among these phases
are considered through generalized interfacial forces, including the drag forces on the
particulate phases and the virtual mass force due to the relative acceleration between
different phases. The internal friction angle represents the internal frictional resistance,
while the basal friction angle characterizes the frictional resistance of the bed material on
which the mass flow moves.

Table 2. Key parameters used in the numerical modeling.

Parameter Value

Solid

Density 2650 kg/m3

Internal friction angle 30◦
Basal friction angle 25◦ (stage 1)

6◦ (stage 2)
Drag coefficient 0.02

Fine solid

Density 2000 kg/m3

Internal friction angle 15◦ (stage 1)
Basal friction angle 5◦ (stage 1)

3◦ (stage 2)
Kinematic viscosity 100 m2/s

Fluid

Density 1000 kg/m3

Kinematic viscosity 0.001 m2/s
Fluid friction coefficient 0.01

As discussed in the preceding section, in the first stage of the landslide/debris flow
development around Kalli village, a landslide typically occurs. The debris mass in this
stage can only flow on very steep slopes and its runout distance is short. There is relatively
a very low water content in the debris mass, the solid particles behave like purely frictional
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solids. Hence, the motion of the debris in this stage is modeled by adopting a very low
water content for the debris material, which travels over a short distance; the fraction of the
fluid phase is set to be 15%. This is hereafter referred to as the stage 1 simulation in the
present study.

In the second stage, the debris mass deposited from the first stage is mixed with more
water (around 50%) in the rainy season and more fresh landslides may occur under heavy
rainfall. In this stage, water mixed with fine solids (clay, silt, and fine sand) produces a
high-density viscous intermediate fluid that surrounds and lubricates the other coarse
materials such as coarse sand, gravels, cobbles, and boulders. The viscous intermediate
fluid has the capacity to hold the large particles of coarse sand, and those large particles in
turn support cobbles and boulders [46], such that the entire blended mixture flows even
on relatively flat slopes. In such conditions, the resistance to the flowing mass from the
surroundings is very low, i.e., the basal friction can decrease drastically due to the presence
of the lubricating fluid made of water, clay, silt, and fine sand [43]. The development in
this stage is modeled by employing a moderate water content, which renders a partially
viscous type debris flow whose runout distance is long. It is hereafter referred to as the
stage 2 simulation.

4.2. Stage 1 Numerical Simulations
4.2.1. Modeling Debris Flow Development during the First Stage

Recurring landslides and debris flows take place almost every year in the study area,
as discussed in the preceding section. In the present study, we are especially interested in
one of the major landslide/debris flows recorded in this area, i.e., the event that occurred
in September 1983; we intend to calibrate the involved parameters to match the estimated
debris volume. In this stage, the debris flow was directly initiated from slope failure, such
as toppling or landslide. Hence, the debris mass did not have a high water content in this
stage. The debris materials were released from the upper scarp of the landslide and later
deposited along a distance of 600 m at the end of the stage. Figure 9 shows approximately
the deposition area where the debris material settled, as estimated based on the debris
deposition marks or traces observed in the field, as well as the information provided by the
local residents.

Figure 9. Deposition area (marked in red) of debris material near Pipaltada village (Figure 5),
accumulated during the first stage, as observed in the field. Deposition along the longitudinal
direction, AB, and the transversal direction, CD, is examined in the subsequent simulation.

The information collected from the field is also used to estimate the volume of debris
material considered in the numerical simulations. In this model, the volume of solids is

58



Water 2024, 16, 1594

considered to be 48,600 m3, the volume of fine solids 20,250 m3, and the volume of water
12,150 m3. The internal angle of friction and basal friction for the solid phase are assumed
to be 30◦ and 25◦, respectively; for the fine solid phase they are assumed to be 15◦ and 5◦,
respectively, and for the fluid, both parameters are assigned 0. The kinematic viscosity of
the fine solids and fluids are considered to be 10−2 m2/s and 10−3 m2/s, respectively.

4.2.2. Simulation Results

Figure 10 shows the detailed deposition results generated by the numerical simulation;
they match very well with the field observation of the area of the deposited mass (Figure 9).
The symbols P1, P2, and P3 in Figure 10 represent the solid, fine solid, and fluid phase,
respectively; H and Q represent the flow height (depth) and the discharge, respectively.
The area enclosed by the red dotted line is the release area (Figure 10). The deposition height
is demonstrated by contours. The outermost contour represents the lowest deposition
height and the innermost contour represents the highest deposition height. Each phase is
represented by a different color, as indicated in Figure 10.

Figure 10. Deposition profile obtained from numerical simulation.

As shown in Figure 10, the fine solids mixed with water are deposited at the front, the
solids at the middle, and a much lower amount of fine solids at the tail of the travel path.
To analyze the deposition profile obtained from the numerical simulation in detail, two
deposition profiles are selected along the longitudinal direction, AB, and the transversal
direction, CD, of the deposition area, as shown in Figure 9; AB is located at the middle
of the flow in the debris flow direction and CD at 50 m away from the left-most point,
i.e., point A. The deposition depth (thickness) along these two distances is plotted in
Figure 11. Evidently, the massive soil debris material deposits near the toe, i.e., point A of
the steep slope AB. The maximum depth of deposition is about 7.6 m, roughly the half way
towards CD. The depositional depth gradually declines further away from the center of
CD. This depositional depth after the landslide can be observed by the depositional marks
in the field.
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Figure 11. Deposition profile obtained from numerical simulation (a) along AB (the origin is estab-
lished at point A); and (b) along CD (the origin is established at point C).

It is also of interest to examine the details of the debris flow around the area and at
specific locations along its path. Figure 12 shows the overall the maximum flow height
around the area. The debris is highly concentrated at the center and dominated by the
solids fraction at the initiation. A point is selected and marked as O1 near the end of the
deposition in Figure 12; it is located at the section 450 m from the landslide crown. Figure 13
shows the flow height of each phase and the discharge rate at this section. The debris
material reaches this section at 26 s from the initial release time, and then, the maximum
flow height and discharge occurs at 31 s. During this 5 s interval, the discharge rate has
increased sharply, and then, decreased gradually after the peak discharge. The time from
zero discharge to peak discharge is almost one-fifth of the time between peak discharge
and zero again when the flow passes this section entirely. This shows that during debris
flows most of the flowing mass is at the front.

Figure 12. Distribution of maximum flow height during the first stage.
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Figure 13. Debris flow height and discharge passing the specific location (O1) during the first stage.

4.3. Stage 2 Numerical Simulations
4.3.1. Modeling Debris Flow Development during the Second Stage

The initiation of the second-stage debris flow is caused by the combination of fresh
landslides and the debris deposited from the first-stage debris flows, as addressed in
the preceding section. With the surge in water volume in the debris mass during the
intense rainfall, the motion of the debris mass typically exhibits the well-known fire-hose
effect [47,48], along with the fresh debris mobilized from the fresh landslide. In Septem-
ber 1983, a large amount of material was transported to the Karnali river as part of a debris
flow; however, it was not the only event in that year and many debris flows followed.
Debris flows are generally initiated during intense rainfall. A large amount of fine soil
from agricultural land was depleted by the landslides. The presence of fine solids with
water made the flowing mass more viscous. The viscous mass produced by mixing fine
solids and fluid lubricates the base and significantly reduces the basal friction. The internal
angle of friction also decreases with the increase in water and clay content [49]. Hence, in
the second-stage simulation, the relevant material constants are adjusted to incorporate
the effect of water and fine solids and address the potentially different phase behavior.
As summarized in Table 1, the basal angles for solids and fine solids are taken to be 6◦ and
3◦, respectively. The internal angles of friction for solids and fine solids are taken to be 25◦
and 13◦, respectively.

Although the precise volume of debris in the field is impossible to determine accurately
since much of it flows along the Karnali river, based on the field analysis and information
provided by the local residents, the total volume of debris is estimated to be roughly
around 300,000 m3. In the numerical simulations, the volumes of solid, fine solid, and fluid
considered are 107,651 m3, 46,126 m3, and 153,765 m3, respectively. Considering the fact
that some portion of debris was freshly produced from the landslide and the rest was the
deposited debris from the first stage, in the simulations the initial debris mass is set up to
be released from the scarp of the landslide to the deposition area of the first stage.

4.3.2. Simulation Results

Figure 14 presents the final deposition of the debris material; the debris runout distance
is considerably longer than in the first stage. Some portion of debris is deposited along
the bank of the Karnali river, while a major portion flows into the Karnali river. The
deposition pattern shows that some fine solids are deposited at the back and coarser solids
are deposited at the front. The deposition height along the Karnali riverbank is around
4 m. It can be seen that the fine solids are deposited closer to the debris initiation area
and the coarser solids are deposited far away from the debris flow initiation area. Such a
distribution trend was observed in the field, as shown in Figure 7.
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Figure 14. Final deposition of debris material at the end of the second stage.

It is worth exploring in detail the evolution of the debris flow along its path; three
locations, O1 which is close to the starting point, O2 at the intermediate distance, and O3
that is close to the final deposition fan, are selected in Figure 14. They are located at 1100 m,
2200 m, and 3300 m, respectively, from the crown of the landslides. The hydrograph that
shows the flow height and the discharge rate at each location is presented in Figure 15.
Figure 15a shows a significant amount of solids and fine solids passing through location
O1; however, at O2 (Figure 15b) and O3 (Figure 15c) there is no significant amount of fine
solid. A high volume of solids passes through O3, which eventually either flows into the
Karnali river or deposits along the Karnali riverbank. Combined with the results of the
base change, shown in Figure 14, it can be concluded that water travels to the deepest
part, i.e., the middle of the river; however, a large amount of solids (coarse debris) settle
down before they reach the middle of the Karnali river. This can be clearly confirmed in
the field that the continuous deposition on the right bank has shifted the river towards the
left, constricting the flow path of the Karnali river.

The deposition profile along the debris flow in the Dogade stream and along the
Karnali riverbank is presented in Figure 16. In this stage, with a sufficient amount of
water that mixes with fine particles such as clay, silt and fine sand, the debris behaves
like a moderately high density solid–fluid mixture which can hold together large particles
such as boulders and cobbles during the flow. It also lubricates the coarser particles and
decreases the basal friction; therefore, the whole debris mass can flow relatively easily at a
high velocity and travel over a long runout distance of over 3000 m, as shown in Figure 14.
In such a case, the runout distance of solids (coarser particles) is longer than fine solid.
Indeed, the deposition along the Dogade stream is not very significant as the debris tends to
flow along the stream. As shown in Figure 16a, the elevation change in the Dogade stream is
hardly appreciable when plotted, with the elevation height ranging from 400∼900 m; hence,
the deposition depth, i.e, the change between the elevations, is also plotted separately on
the axis on the right side in Figure 16a. It shows that the deposition is less than 2 m along
the Dogade stream, except at the end of the stream where the deposition depth grows
considerably to about 4 m at the fan near Kolimara village; the results are supported by
the field observation of the accumulation of a large amount of debris material in this area.
The simulation also shows large deposition along the Karnali riverbank (Figure 16b) after a
considerable amount of debris material continues its runout and reaches the Karnali river.
This is also consistent with the field observation.
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Figure 15. Hydrographs at (a) O1, (b) O2, and (c) O3 along the flow path.
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Figure 16. Deposition profile (a) in the Dogade stream, and (b) along the Karnali riverbank obtained
from numerical simulation.
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5. Discussion

The Himalayas in Nepal are extremely vulnerable to gravity-driven mass movement
due to the presence of weak rocks in the high slopes that often receive intense summer
rain. Mass wasting events such as landslides and debris flows are very common in these
mountains. There are some other locations in Nepal similar to Kalli village, examined in the
present study, where recurring landslides and debris flows are experienced almost every
year. Rainfall is often a main triggering factor for these events; the poor underlying geology,
which consists of interbedded shale and sandstone, could be the major cause of landslides. It
is worth noting that extremely hazardous repetitive landslides also occur frequently in other
parts of the region, including Nepal and neighboring countries. For example, at Siddhababa
along the Siddhartha Highway and at Jugedi Khola along the Narayanghat Mugling Road,
the geological formations have similar interbedded litho-units of sandstone and shale as
those found in the Suntar Formation around Kalli village in the present study [13–15].
The Dagshai Formation and Murre Formation of India and Pakistan feature similar litho-
units as the Suntar Formation and also experience extensive recurrent landslides [11,12,16].
However, effective mitigation of such geological hazards would demand more than mere
identification of causes and triggers; theoretical and numerical investigations [50] may
considerably benefit the understanding of the physical and mechanical processes involved
in the landslides and debris flows in the studied mountainous range. In the present study,
a less mobile debris flow is considered in the first stage with a greater internal angle of
friction and basal friction used in the numerical simulations. The numerical results are
found to match reasonably well with the actual field observation of the deposition. With the
increase in water content, the internal angle of friction is assumed to decrease slightly and
basal friction decreases significantly, this assumption yields results that are consistent with
the observation of a long runout distance in the field.

It is of great interest to use the numerical approach examined in the present study
to explore the possibilities of future debris hazards. As discussed in Section 3, at present
the study area is highly susceptible to future debris flows; many large blocks are formed
by the tension cracks on the crown of past landslides (Figure 8) and it is highly likely
these massive blocks will slide down to form debris flows sooner or later. Additional
numerical simulations are carried out by considering the estimated 200,000 m3 of solid
debris material ready to move downward to initiate the debris flow; since it is impossible
to predict whether all this mass would fail at once or progressively, this choice represents
a worst-case scenario, and thus, is assessed in the present study to predict the potential
deposition area and runout distance.

Two stages of debris development are considered in the prediction. The first considers
low-water-content debris that initiates at the current crown area (Figure 8); the volumes
of solid, fine solid, and fluid are considered to be 146,023 m3, 60,984 m3, and 36,492 m3,
respectively. Figure 17 shows the deposition profile at the end of the debris flow. The area
of deposition is mainly confined to a rather limited area, indicating little or modest threat
to the nearby residents, as the debris is deposited in the stream without entering the
farmland and village. However, still reasonable care should be taken around the landslide-
prone areas in Kalli village and it is suggested that those areas should be avoided for
animal grazing in the rainy season, as catastrophic landslides can occur at any time in the
rainy season.

The second simulation examines a high-water-content debris flow that initiates in a
wide area close to the Dogade upstream; the volumes of solid, fine solid, and fluid are
considered to be 143,514 m3, 61,506 m3, and 205,020 m3, respectively. Figure 18 shows the
final deposition of the debris. A small portion of the debris can travel over almost the entire
Dogade stream and reach the fields of Kolimara village. Much of the debris can also flow to
the Karnali river, with considerable deposition along the banks of Karnali river. Overall, the
results show the tremendous destructive potential of current geological hazards in this area.
Of course, in reality, it can be debated whether all the blocks separated by tension cracks
may fail at the same time in a worst-case scenario; it is more likely to flow progressively
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part by part each year. The influence or destruction of future events may be not as drastic
as the scenario examined in the present study.

Figure 17. The deposition based on the simulation of a low-water-content debris flow.

Figure 18. The final deposition of probable future debris flow based on a moderate-water-content model.

6. Conclusions

The present study focuses on a field study of recurring landslides and debris flows in
the Kalli village in Achham District in Nepal. It shows that rainfall is the primary triggering
factor for such gravity-driven mass wasting events. The poor underlying geological condi-
tions that feature interbedding of shale and sandstone are a major cause. It is observed that
debris flows may occur in two different stages. In the first stage, when the rainfall is not
extremely high, smaller landslides occur and the runout distance of the debris generated is
quite modest, approximately only a few hundred meters away from the landslide crown
due to insufficient fluid in the debris mass. The second stage may occur during extreme
rainfall when the debris mass contains a very high water content. A combination of the
debris from the fresh landslides and the debris from the earlier landslides may flow to the
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Karnali river that is located around over three kilometers from the original landslide crown
area. The field study shows that debris deposition follows a unique pattern, where the
larger particles tend to travel farther from the initiation area while the finer particles are
deposited closer to the initiation area.

Numerical simulations based on a multi-phase computational framework are con-
ducted to quantitatively analyze the characteristics of the debris flows in motion. The depo-
sition profile and runout distance in both stages are simulated. In the first stage, the debris
is largely accumulated at the toe of the hill and spread laterally along the slope. In the
second stage, the debris flow travels over a very long distance to reach the Karnali river;
large deposition is concentrated at the fan area and along the Karnali riverbank. Overall,
the major trends from the numerical simulations are reasonably consistent with the field
observations. At present in the field there are still large blocks separated by tension cracks
that are rampant in the landslide crown area; which pose a considerable hazard for future
landslides and debris flows. Additional numerical simulations are performed to predict
the fate of an estimated volume of 200,000 m3 of potential debris material present in the
field. The numerical results show that the characteristics of such future events would be
very similar to past incidents. Depending on the availability of water content, affected by
the rainfall conditions, a potentially very destructive debris flow scenario is likely, as it may
travel over the entire Dogade stream and reach Kolimara village and the Karnali river.
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Abstract: The Xiashu loess exhibits expansion when in contact with water and contraction when
water is lost, making it highly susceptible to the influence of rainfall. Therefore, it is essential to
investigate the infiltration behavior of rainwater in Xiashu loess slopes under various conditions. The
depth of infiltration in slopes directly affects the depth of landslide failure and serves as an important
indicator for studying slope infiltration characteristics; only a handful of academics have delved into
its study. This article is based on on-site rainfall experiments on Xiashu loess slopes, using three
main factors, rainfall intensity, rainfall duration, and slope angle, as discrimination indicators for the
infiltration depth of Xiashu loess slopes. The particle swarm optimization algorithm is employed
to optimize the BP neural network and establish a PSO-BP neural network prediction model. The
experimental data are accurately predicted and compared with the multivariate nonlinear regression
model and traditional BP neural network models. The results demonstrate that the PSO-BP neural
network model exhibits a better fit and higher prediction accuracy than the other two models. This
model provides a novel approach for rapidly determining the infiltration depth of Xiashu loess slopes
under different rainfall conditions. The results of this study lay the foundation for the prediction of
the landslide damage depth and infiltration of Xiashu loess slopes.

Keywords: Xiashu loess; infiltration depth; particle swarm optimization; BP neural network;
multivariate nonlinear regression

1. Introduction

Studies indicate that since the 21st century, landslides have emerged as a major
geological challenge for China [1]. Rainwater infiltration leads to erosion of the slope’s
surface and the softening of its internal rock and soil, diminishing its stability and triggering
landslides, with the Xiashu loess landslide being a common example. The Xiashu loess is
mainly distributed in the area of Nanjing and Zhenjiang, Jiangsu Province [2], which poses
a great threat to the safety issues of people’s lives and properties in the region. The Xiashu
loess has characteristics such as swelling when encountering water and shrinking when
losing water [3], which is significantly affected by rainfall and is prone to landslides in the
rainy season. Therefore, it is crucial to study the infiltration characteristics of the Xiashu
loess slopes under rainfall conditions.

Lately, an increasing number of academics have delved into the issues associated with
the Xiashu loess. Hu et al. [4,5] studied the failure modes of the Xiashu loess under differ-
ent moisture contents through experiments and investigated the infiltration pattern and
damage mechanism of Xiashu loess slopes under different rainfall conditions; Liu et al. [6]
researched the changes in mechanical properties of the Xiashu loess after undergoing
different wet and dry cycles through unsaturated direct shear tests; Chen et al. [7] revealed
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the seismic response mechanism of Xiashu loess slopes through large-scale shaking table
tests on the Xiashu loess; Sun et al. [8] experimentally analyzed a large number of Xiashu
loess samples and found that the slope stability of the Xiashu loess is mainly affected by the
soil water content. It can be seen that research on landslides in the Xiashu loess has focused
on analyzing the causes of landslides as well as on early warning, and less research has
been conducted on the depth of infiltration of Xiashu loess slopes under rainfall conditions.

For other soil slopes, some scholars have explored the infiltration depth of slopes
under different rainfall conditions through simulated rainfall experiments [9,10] but have
not conducted predictive research. At present, in the prediction of slopes, most scholars
focus on the prediction of slope deformation and stability [11–15], and there are few studies
on the prediction of landslide damage depth [16]. Landslide damage depth is affected
by a variety of factors [17], its uncertainty is higher, and it is more difficult to predict
directly. Some scholars believe that shallow landslides parallel to the surface of soil slopes
often occur (failure at wet fronts) [18,19]; thus, the range of landslide damage depths
can be indirectly determined from rainfall infiltration depths and the prediction of slope
infiltration depths is better implementable.

Various methods are employed for prediction, including support vector machine,
neural networks, extreme learning machine, multiple regression, etc. Each method has its
own set of advantages and disadvantages, and they have collectively yielded improved
prediction results [20–23]. The above method can realize the rapid estimation of landslide
characteristics by building a prediction model, which is different from the traditional
numerical simulation analysis method because of its high efficiency and excellent prediction
accuracy [24]. Among these, neural networks are utilized to establish relationships between
variables by simulating biological neural networks. They possess a strong capability
to accommodate nonlinearity and exhibit autonomous learning, making them widely
employed in slope prediction research. However, it also has limitations, such as the issue
of too rapid a convergence and the susceptibility to becoming trapped in local minima [25].
In order to make up for the deficiencies in neural networks, many scholars have used
different algorithms to optimize neural networks, and these algorithms include the Genetic
Algorithm [26,27], Bird Swarm Algorithm [28], particle swarm algorithm [29–31], Sparrow
Algorithm, etc., which are all able to overcome the limitations of local optimums and assign
optimized weights and thresholds to the neural network to improve the prediction accuracy
of the neural network. In this paper, based on the experimental situation, we consider
optimizing the BP neural network with the particle swarm algorithm (PSO) to make up
for the shortcomings of the neural network, so that the optimized neural network has a
better prediction effect [32,33]. This study forecasts the infiltration depth of Xiashu loess
slopes using a BP neural network enhanced by the particle swarm algorithm (PSO), aiming
to clarify the relationship between rainfall duration, rainfall intensity, slope angle, and
the depth of slope infiltration. Concurrently, a comparison is made between the PSO-BP
neural network model, the multivariate nonlinear regression prediction model, and the
unoptimized BP neural network to evaluate the pros and cons of these models and to
formulate the prediction model effectively. A rapid method for determining the infiltration
depth of Xiashu loess slopes is proposed to provide the basis for the subsequent prediction
of landslide damage depth and infiltration studies of Xiashu loess slopes.

2. Methodology

2.1. Principles of Multivariate Nonlinear Regression Model

Regression analysis is a quantitative depiction of uncertain relationships between
things that exist in the objective world with the help of mathematical models. In the anal-
ysis of a nonlinear link between a dependent variable Y and one or several independent
variables (X1~Xn), employing a nonlinear regression model is feasible, along with the use
of statistical analysis techniques and functions for the analytical interpretation and formal
depiction of the relationship. The multiple regression equation allows the relationship be-
tween input and output values to be established in order to quickly and efficiently estimate
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the output values from the input values. Based on the output values, this information
is useful for risk assessment. In nonlinear regression models, least-squares stands as the
predominant technique for estimating parameters, and the models developed through
this approach are considered a posteriori models in the realm of statistical mathematical
modeling. This technique is applicable for forecasting the depth of rainfall infiltration
on slopes, employing a linear function to mimic a nonlinear function, and repeating this
method to achieve the best parameter solution.

Presently, two primary varieties of nonlinear mathematical models exist, linking
several independent variables with a single dependent variable. In Type I nonlinear
mathematical models, the initial step is to examine the functional link between an inde-
pendent variable and its dependent counterpart independently, followed by overlaying
this connection between the dependent and independent variables. Should the overlaid
functional link fail to meet specific criteria, it becomes essential to delve deeper into the
interplay among the independent variables. Nonlinear mathematical models of Type I are
straightforward, highly suitable, and broadly applicable. In contrast, Type II nonlinear
mathematical models have been less applied by scholars due to their excessive complexity.
Thus, the considered nonlinear mathematical models are currently dominated by Type I.
The mathematical expression for the nonlinear mathematical model of Type I is given in
the following equation:

y = k0 + ∑n
i=1 ki fi(xi) + ∑n

i=1 kjxixj, (1)

where y is the dependent variable; ki is the regression coefficient; xi and xj are independent
variables, i = 0,· · · , n; j = 0,· · · , n; and fi(xi) is the functional relationship between a
particular independent variable and the dependent variable.

2.2. Principles of BP Neural Network

Developed in the 1980s, BP neural networks have found extensive application among
researchers in control, optimization, and nonlinear prediction, owing to their straightfor-
ward design and user-friendliness. Neural networks reflect the structure and function of
the human brain’s nerves, abstracting the properties of the real brain and simplifying it
into an information processing system. Typically, a BP neural network is composed of
three distinct layers: input, hidden, and output layers. The learning principle is as follows:
During forward propagation, a set of weights and thresholds is randomly generated. This
set of randomly generated numbers, along with the excitation function, jointly act on the
input parameters. The input parameters are passed from the input layer to the output
layer through the implicit layer. The output value is compared to the expected value. If
the error between the two exceeds the accepted range, the error is back-propagated from
the output layer. The initial randomly generated weights and thresholds are then adjusted
and corrected to continue the learning process through continuous iterative learning. This
process continues until the final output value and the expected value have an error within
an acceptable range. At this point, the training ends. Research has demonstrated that a
tri-layered BP neural network meets the criteria for general function mapping, and various
multivariate functions can be estimated with any desired precision using a limited set of
hidden-layer BP neural networks. The structure of the BP neural network is shown in
Figure 1.

2.3. Particle Swarm Optimization

Eberhart and Kennedy jointly introduced the particle swarm optimization (PSO)
algorithm in 1995, drawing inspiration from the collective food-seeking patterns of animal
birds. This algorithm mimics bird foraging for group iteration and seeks the most suitable
area within the particle group to identify the optimal particles for the desired solution
space. Each particle in the algorithm represents a solution. The initial state of all particles in
the population is continuously iterated. At each iteration, the particles update themselves
to keep track of the optimal value, in order to find the optimal solution.
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Figure 1. BP neural network structure.

The particle swarm algorithm begins by initializing a group of random particles.
Assuming there are m particles in the swarm, each particle has an n-dimensional vector that
represents a solution in the n-dimensional optimization space. Xj represents the positional
vector for particle j, and Vj denotes the velocity vector for particle j.

Xj = Xj1, Xj2, · · · Xjn, (2)

Vj = Vj1, Vj2, · · ·Vjn, (3)

In the iterative phase, vectors representing particle positions are integrated into the
fitness function Ek to obtain their fitness values. The optimal fitness values of the particles
are compared to search for the particle swarm’s successive single best position Pj and global
best position Gj.

Pj = Pj1, Pj2, · · · , Pjn, (4)

Gj = Gj1, Gj2, · · · , Gjn, (5)

The individual optimal solution achieved by each particle during the search process is
represented by Pj, while the global optimal solution achieved by the particles during the
search process, the optimal solution of the particle swarm algorithm, is represented by Gj.
The particle swarm algorithm updates and optimizes based on four values: Xj, Vj, Pj, and
Gj. These values are used to determine the position and velocity vectors after each iteration,
with the algorithm’s evolution equation being

Vj(k + 1) = w · Vj(k) + c1 · r1 ·
[
Pj(k)− Xj(k)

]
+ c2 · r2 ·

[
Gj(k)−Xj(k)

]
, (6)

Xj(k + 1) = Xj(k) + Vj(k + 1), (7)

where w is the inertia weight; c1 and c2 are learning factors, usually taking a value between
0 and 2; and r1 and r2 represent a pair of random numbers in the range of [0, 1], typically
distributed evenly. To prevent a blind search process, it is important to limit the speed of
the particle swarm during the search process. Typically, the speed Vj should be limited to a
range of [vmin, vmax].
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The effectiveness of particle swarm algorithms is significantly influenced by inertia
weights w. Higher inertia weights are conducive to the overall optimization of searches,
whereas lower inertia weights support the optimization of local searches. In this paper, by
adaptively adjusting the inertia weights in the algorithm, w decreases as the number of
iterations continues to increase, with the following equation:

w = wmax − (wmax − wmin)
k

kmax
, (8)

where k is the current number of iteration steps; kmax is the maximum number of iteration
steps; and wmax and wmin represent the maximum and minimum values of the inertia
weight w.

The particle swarm algorithm optimizes the neural network by continuously updating
its weights and thresholds and assigning the optimized values to the neural network.

2.4. PSO-BP Neural Network Model Prediction Process

As previously noted, the BP neural network’s predictive capabilities suffer from
sluggish convergence rates, susceptibility to local extremes, and heightened sensitivity to
weight and threshold values, yet the PSO algorithm compensates for these shortcomings in
the BP neural network. Therefore, the PSO algorithm can be combined with a BP neural
network to achieve higher accuracy and convergence speeds. The PSO-BP neural network
model prediction process is as follows:

(1) Import the forecasted data; introduce random disturbances to the dataset; segregate
the training, validation, and test datasets; and normalize the data:

X =
(X − Xmin)

(Xmax − Xmin)
, (9)

where Xmax and Xmin represent the maximum and minimum values of each group of
samples, respectively.

(2) Establish a BP neural network, and set the number of nodes and training parameters.
The number of hidden layers is generally determined by empirical formulae to give an
approximate range:

hj ≤
√

hi × (hk + 3), (10)

where hj is the number of nodes in the hidden layer; hi is the number of nodes in the input
layer; and hk is the number of nodes in the output layer.

(3) Set the PSO parameters (learning factors, population size, number of population
renewals, etc.) and randomly initialize the particle position and velocity.

(4) If the particle’s current adaptation value Xj is better than the historical optimal
adaptation value Pj, then Pj = Xj; if the particle’s historical optimal adaptation value is
better than the global optimal adaptation value Gj, then Gj = Pj. Based on Equations (6)
and (7), the particles are updated to determine if the end condition is reached, and if not,
iteration continues until the optimal weights and thresholds are obtained.

(5) Assign the optimal connection weights and thresholds to the BP neural network
and continue training the BP neural network to complete the prediction and output the
prediction results.

Based on the above process, Figure 2 depicts the flowchart of the PSO-BP neural
network experiment.
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Figure 2. Experimental diagram of neural network structure.

3. Case Study

3.1. Sample Plot Overview

The study area is situated in Jurong City, Jiangsu Province, China, specifically in Xiashu
Town Zhu Li Village, West Xu group, southwest of the slope, in the northwestern part of
Zhenjiang City. The topography of the study area is dominated by plains and hills, with
the east being low and the west being high. The area falls under the subtropical monsoon
climate, with rainfall mainly concentrated in the spring and summer. The groundwater
conditions are complex, with relatively shallow depths. During the rainy season, the
Nanjing–Zhenjiang area experiences a high frequency of landslides, posing a serious threat
to the safety of residents, factory workers, and tourists in the affected areas. This issue is
closely linked to the widespread distribution of the Xiashu loess in the Zhenjiang area of
Jiangsu Province.

Tea trees have been planted on the slopes of the test site, with the northeast side of
the slope being close to a natural water pond located 5–6 m away. The main threats in the
area are crops in farmland. The surface lithology of the slope body consists mainly of a
1.5 m thick layer of powdery clay from the Xiashu Formation, which is the focus of the
experiment. The slope body has an overall height difference of about 8~10 m, with a gentle
front edge and a steeper back edge. The first step involves a 5–6 m slope with an angle
of 35–40◦, while the rear may be the back wall of a previous localized landslide, with an
angle of approximately 50◦; a height difference of 3–4 m; and an exposed, dry, and loose
back edge wall. Gullies and soil fissures have developed on the slope, with initial fissures
distributed in an F-shape and measuring 1–2 cm wide. The preliminary investigation
indicated that the slope morphology and angle of the test section were representative of
most slopes in the area, leading to the selection of this slope as the test site.

Damage to the Xiashu loess slope occurs when the slope angle, rainfall intensity, and
rainfall duration reach certain values during testing (Figure 3e).

3.2. Field Rainfall Test Program Setup

The slope test site measures 4 × 5 m and is constructed using steel frames. The
equipment required for the test includes steel frames to build the test platform, artificial
rainfall devices, and a monitoring system. The purpose of this integrated test device is to
monitor the change in water content of the slope soil over time under continuous rainfall,
in order to elucidate the effect of rainfall on the depth of infiltration of slopes. Water content
monitoring points are distributed at various depths on the top, middle, and foot of the
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Xiashu loess slope to compare and analyze infiltration at different locations. Additionally, a
probe slot is located on the right side of the slope in the test section for convenient sampling
and observation of the wetting front. Figure 4 shows the layout of the test setup.

Figure 3. Study area: (a) map of China; (b) elevation map of Jiangsu Province; (c) field test site;
(d) slope cracks; (e) landslides occurring during the test.

Figure 4. The layout of the test setup: (a) sketch of the test setup; (b) ield test setup diagram.

The experimental rainfall setting takes into account the rainfall and evaporation in the
region. Through the collection of meteorological data in recent years in the Ningzhen area,
it can be seen that the area is dominated by short-term heavy rainfall, the duration of rainfall
in most cases is not more than 12 h, and the maximum intensity of rainfall that occurs is
63.2 mm/h. Therefore, the field rainfall test program setup in this paper consists of three
types of rainfall intensities, 30 mm/h, 60 mm/h, and 90 mm/h, and four types of rainfall
duration, 1 h, 2 h, 4.5 h, and 8 h. Additionally, there are three types of experimental slope
angles: 35◦, 40◦, and 45◦. Due to the limited test conditions, it was not possible to analyze
the depth of infiltration for slopes with slower slope angles. To obtain more extensive
and reliable prediction results, numerical simulation was considered to compensate for
slopes with 20◦, 25◦, and 30◦ slope angles. This allowed the established prediction model
to predict the depth of infiltration for most of the slopes in the Nanjing–Zhenjiang area.
The numerical simulation results and the test results were compared and verified under
the same conditions. It was found that the two infiltration results were basically the same,
despite possible differences between them.
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3.3. Partial Analysis of Results

During the test, it was observed that the depth of infiltration varied at different
locations on the slope. The infiltration depth was found to be largest at the foot of the slope,
followed by the middle of the slope, and smallest at the top of the slope. To simplify the
analysis of the slope as a whole, the average depth of infiltration at the top, middle, and
foot of the slope was used as the predicted data. The distribution of slope wetting fronts
under a rainfall intensity of 60 mm/h and rainfall duration of 1 h, 2 h, 4.5 h, and 8 h is
presented in Figure 5.

 
Figure 5. Distribution of wetting fronts with different rainfall durations.

To examine the impact of rainfall intensity and duration on the infiltration of Xiashu
loess slopes, an artificial rainfall simulation device was used to apply varying levels of
rainfall. Figure 6 displays a 3D surface plot of the infiltration depth ranging from 32 mm to
77 mm. The plot is based on a 35◦ slope angle, a rainfall intensity ranging from 30 mm/h
to 90 mm/h, and a rainfall duration ranging from 1 h to 8 h. It is evident that the depth
of infiltration generally increases with the increase in both rainfall intensity and duration.
The impact of rainfall with varying intensity and duration on the depth of infiltration is
significant. However, as can be seen from the figure, the increase in rainfall duration is more
significant for the increase in slope infiltration depth than the increase in rainfall intensity.

3.4. Impact Factors and Data Sources

Researchers have continuously analyzed the factors affecting the depth of slope infil-
tration, including soil particle structure, infiltration rate, rainfall, and slope morphology.
However, analyzing intrinsic factors such as soil structure and infiltration rate is compli-
cated, and obtaining real-time parameters inside the soil is difficult. On the other hand,
analyzing slope morphology and rainfall is relatively straightforward and manageable.
This paper analyzes the effect of rainfall intensity, rainfall duration, and slope angle on the
depth of slope infiltration based on field tests. This study found that rainfall duration and
intensity have a positive correlation with slope infiltration depth, while slope angle has a
negative correlation. These factors have a significant impact on slope infiltration depth.

The data presented were obtained through artificial simulated rainfall tests and nu-
merical simulations on a typical Xiashu loess slope in Jurong City. The analysis focused
on the depth of slope infiltration under different rainfall conditions by applying rainfall
of varying intensities and durations to the Xiashu loess slope in the test section. After
the slope-cutting treatment, we analyzed infiltration on slopes with varying angles. The
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soil’s water content at various depths within the slope was used to determine the depth
of infiltration.

Figure 6. Infiltration depth diagrams for different rainfall intensities and durations.

This article obtained 72 sets of sample data, which were divided into training, valida-
tion, and prediction sets in a certain proportion. Table 1 displays some of the test data.

Table 1. Partial test data.

Serial Number Slope Angle/◦ Rainfall
Intensity/mm·h−1

Rainfall
Duration/h

Infiltration
Depth/cm

1 35 30 2 44
2 30 60 4.5 62
3 40 30 4.5 47
4 40 90 1 33
5 25 30 8 70
6 30 60 1 38
7 35 90 2 50
8 20 60 4.5 69
9 25 30 2 54
10 30 60 2 52

4. Modeling and Validation

4.1. Multiple Nonlinear Regression Modeling and Solution Validation

Based on the previous section, it is evident that changes in rainfall intensity, duration,
and slope angle significantly affect the infiltration results. These results can serve as
an indicator for predicting the depth of slope infiltration using the multiple nonlinear
regression model.

To analyze the nonlinear effect of each factor on the depth of slope infiltration, we used
experimental data to establish a regression model in SPSS 22 software. The model included
the three aforementioned factors as independent variables and the depth of infiltration as
the dependent variable. This paper adopts the type I nonlinear mathematical model due to
the complexity of the type II model, making it difficult to accurately determine its form.
The model considers the interaction between the independent variables and linearizes
the nonlinear term through substitution, converting the nonlinear problem into a linear
problem for analysis and solution. Because the multivariate nonlinear regression model
does not have a unique solution, this paper first analyzes a single factor and then considers
the impact of all factors. After several trial calculations, the ENTER analysis method of
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regression analysis is used for linear regression to exclude terms with collinearity and
obtain the mathematical expression of the regression model. The fitting results are as
follows:

y = 49.99 − 0.96 ∗ X1 + 0.088 ∗ X2 + 9.19 ∗ X3 + 0.005 ∗ X2
1

−0.539 ∗ X2
3 − 0.028 ∗ X1 ∗ X3 + 0.021 ∗ X2 ∗ X3,

(11)

where X1 is the slope angle; X2 is the rainfall intensity; X3 is the rainfall duration; and y is
the depth of infiltration.

The regression equation shows that rainfall duration has the greatest impact on infil-
tration depth, followed by slope angle and then rainfall intensity. Based on the regression
equation, the slope infiltration depth can be estimated by rainfall duration, rainfall intensity,
and slope angle, and the results of this study can also be applied to the assessment of
landslide damage depth.

The equation analysis results of the regression model are shown in Table 2. ANOVA
and significance tests give D − W = 2.669, indicating that the data satisfy the independence
requirement. The significance test for the nonlinear mathematical model F resulted in
F = 250.308, which is much larger than F0.05(8,63) =2.79, with a p-value of 0.000, indicating
that the model is statistically significant at the 0.05 test level. Therefore, it can be determined
that the multivariate nonlinear regression equations are valid. At the same time, R2 = 0.936,
which is closer to 1. It indicates that the strong linear relationship between y and x in the
equation accurately reflects the actual change pattern, and the fitting effectiveness of the
nonlinear regression equation is superior.

Table 2. Equation analysis of regression models.

Project Sum of Squares Free Degree
Mean

Square
F Value p

Model 15,760.152 8 1970.019 250.308 0.000
Error 1008.650 63 16.010 - -
Total 16,768.802 71 - - -

The depth of slope infiltration was analyzed using the established multivariate nonlin-
ear regression equation, which was validated through testing 10 additional sets of field data
selected at random. The regression equation was used to calculate the slope infiltration
depth by substituting the input parameters into Equation (11). The relative error was
analyzed by comparing the calculated values with the test data, as presented in Table 3.
Table 3 shows that the nonlinear regression model has a minimum relative error of 1.68%, a
maximum relative error of 9.82%, and an average relative error of 6.13%. Therefore, this
model is suitable for prediction.

Table 3. Nonlinear regression model test results.

Serial Number
Infiltration Depth Obtained

from the Experiment/cm

Model Calculation
of Infiltration

Depth/cm
Error

1 50 54.11 8.22%
2 58 61.45 5.95%
3 34 36.35 6.92%
4 49 44.19 −9.82%
5 56 59.07 5.48%
6 71 68.58 −3.41%
7 36 39.14 8.73%
8 51 47.60 −6.67%
9 67 64.02 −4.44%
10 77 75.71 −1.68%
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4.2. PSO-BP Neural Network Modeling and Solution Validation

The information from 72 data sets was used to create a predictive model. Totals of
50 sets were used for training, 11 for validation, and 11 for testing. This means that 70% of
the total data were used for training and 30% for testing and validation.

The PSO-BP neural network modeling process begins by importing the predicted data
into Matlab R2018b. The data are then randomly disrupted and divided into training and
test sets, followed by normalization. The neural network structure consists of three layers:
three input nodes, one output node, and a hidden layer with three nodes. The number of
hidden-layer nodes was determined through Matlab program training experiments using
Equation (10). This structure was found to be optimal. The parameters of the particle
swarm were set as follows: the population size was 10, the number of population iterations
was set to 50, the learning factor was C1 = C2 = 4.494, and the particle flight speed range
was [−1, 1]. The population iterates until optimal weights and thresholds are achieved,
which are then assigned to the BP neural network for training. Training continues until
preset conditions are met.

The neural network is trained using the Sigmoid function as the transfer function,
and the lattice training function uses the BP algorithm training function Trainlm of L-M.
The maximum number of lattice training times is 1000, the learning rate is 0.01, and the
target error is 1 × 10−6. The number of nodes in the hidden layer and the target error is
constantly varied and trained in different combinations. To demonstrate the impact of the
particle swarm optimization algorithm, we compared the training results of the PSO-BP
neural network with those of the BP neural network. Figures 7 and 8 display the training
results of the BP neural network and PSO-BP neural network, respectively. The figures
show that the R2 of the prediction model trained by the BP neural network is 0.943, while
the R2 of the prediction model trained by the PSO-BP neural network is 0.997. Compared
to the multiple nonlinear regression model, both models are closer to 1 and have a better
fitting effect.

Figure 7. Graphs of BP neural network training, validation, and testing results.

The depth of infiltration of the Xiashu loess slope was calculated through iterative
optimization and compared with the BP neural network using the PSO-BP neural network
algorithm. Figures 9 and 10 display the time and value of the optimal variance occurrence
calculated by the BP neural network algorithm and the PSO-BP neural network algorithm
for iterative optimization search. The BP neural network achieved its optimal mean square
error of 0.0044243 after the 37th iteration, while the PSO-BP neural network achieved its
optimal mean square error of 0.0003304 after the 19th iteration.
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Figure 8. Graphs of PSO-BP neural network training, validation, and testing results.

Figure 9. BP neural network iterative optimization training process diagram.

Figure 10. PSO-BP neural network iterative optimization training process diagram.

The accuracy of the model is measured using relative error and average relative error.
To compare the predicted depth of infiltration with the actual depth of infiltration, other
experimental data are randomly substituted into the PSO-BP neural network prediction
model. The results of the relative error comparison are shown in Table 4. The figure
illustrates that the PSO-BP neural network model has a minimum relative error of 0.10%,
a maximum relative error of 1.68%, and an average relative error of 0.78%. The results
indicate that the BP neural network model optimized by the particle swarm algorithm has
achieved the expected goal with good prediction accuracy.
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Table 4. PSO-BP neural network model test results.

Serial Number
Infiltration Depth Obtained

from the Experiment/cm

Model Calculation
of Infiltration

Depth/cm
Error

1 72 73.12 1.56%
2 30 30.50 1.68%
3 54 54.32 0.59%
4 71 71.29 0.41%
5 56 55.69 −0.55%
6 83 83.09 0.10%
7 51 51.19 0.38%
8 38 37.77 −0.60%
9 49 49.17 0.36%
10 42 42.64 1.52%

After obtaining prediction results from the multivariate nonlinear regression model
and the PSO-BP neural network model, the experimental data were trained for prediction
using the unoptimized BP neural network model. The prediction accuracies of the three
models were then comprehensively compared. Table 5 displays the coefficients of determi-
nation (R2) and mean absolute percentage error (MAPE) for the three models. The formula
for calculating the two is as follows:

R2 = 1 − ∑n
i=1

(
yi − ŷi)

2

∑n
i=1(yi − y)2 , (12)

MAPE =
1
n

n

∑
i=1

[ |ŷi − yi|
ŷi

]
× 100%, (13)

where n is the predicted sample size, yi is the i-th measured value, ŷi is the i-th predicted
value, and y is the sample mean.

Table 5. Comparison of three models.

Model
Multiple Nonlinear

Regression
BP Neural Network

PSO-BP Neural
Network

R2 0.936 0.943 0.997
MAPE 6.13% 5.29% 0.78%

Table 5 shows that all three models predicted the infiltration depth of the Xiashu
loess slope well. However, the PSO-BP neural network model had the highest predic-
tion accuracy compared to the other two models. The prediction accuracies of the three
models were ranked as follows: PSO-BP neural network model > BP neural network
model > multivariate nonlinear regression model.

To verify the applicability of the developed PSO-BP neural network model, it was
applied to other slopes for infiltration prediction. The infiltration of other slopes in the
area after experiencing natural rainfall was monitored during the test. The angle of the
monitored slopes was about 33◦, and the rainfall intensity and duration of natural rainfall
were obtained by monitoring with a test instrument. The predicted values were compared
with the real monitoring values using the established model, and the comparison results
are shown in Figure 11. This confirms the validity of the model.

The PSO-BP neural network model predicts these three sets of data with an average
relative error of 1.04%, which is higher than the other two models. This suggests that the
model is applicable to other slopes in the region with good applicability.
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Figure 11. Comparison of predictive effects of different models.

5. Discussion

To mitigate the risks of landslides in the Xiashu loess during rainfall, it is essential
to promptly evaluate the depth of infiltration of the Xiashu loess slopes. This assessment
can roughly determine the extent of landslide damage and provide a new approach for the
early warning and hazard assessment of landslides.

During the test, it was observed that the Xiashu loess slope suffered damage after 8 h
of rainfall with a slope angle of 40◦ and a rainfall intensity of 90 mm/h. The diagram in
Figure 12 shows the Xiashu loess landslide. The depth of the landslide is approximately
0.55 m, while the depth of infiltration is around 0.7 m. The depth of the landslide damage is
about 0.8 times the depth of infiltration. Slopes undergo localized damage at the foot of the
slope in the form of a circular arc, which is related to the fact that the depth of infiltration at
the foot of the slope is greater than the depth of infiltration at the top of the slope and in
the middle of the slope.

 
Figure 12. Analysis of landslide results.

The Xiashu loess exhibits high water sensitivity, with its shear strength significantly
impacted by water content. The angle of internal friction and cohesion decreases rapidly
as the water content of the soil increases. During the rainfall process, the wetting front in
the slope constantly moves forward, causing the thickness of the softened soil inside the
slope to increase. This, in turn, leads to a dramatic decrease in the shear strength of the
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soil within the depth range of the wetting front, significantly increasing the probability of
landslides occurring in the infiltration depth range of the soil. When the shear strength
decreases to a certain threshold, it is not enough to support the force that causes the slope
to slide. This leads to damage under the Xiashu loess slope, which is why most landslides
occur at a certain depth of infiltration.

In a numerical simulation study of slope stability, it was found that the depth of
infiltration has a significant effect on the slope stability coefficient. Particularly at the
start of rainfall, an increase in infiltration depth results in a sharp decrease in the slope
stability coefficient. The relationship between the depth of infiltration and the slope stability
coefficient can be established, and the slope stability coefficient can be predicted based on
the depth of infiltration.

As only one landslide occurred during the field test, it was not possible to establish a
clear relationship between the depth of landslide damage and the depth of slope infiltration.
Further tests can be conducted in future studies to explore this connection. The PSO-BP
neural network-based slope infiltration depth prediction model presented in this paper
offers a novel approach for determining the infiltration depth of Xiashu loess slopes. This
lays the foundation for predicting the depth of Xiashu loess landslides and provides a new
index for evaluating the stability of Xiashu loess slopes.

6. Conclusions

(1) This paper presents a prediction model for the infiltration depth of the Xiashu
loess slope. The prediction data were obtained through field tests, using rainfall intensity,
rainfall duration, and slope angle as input parameters, and infiltration depth as the output
parameter. The particle swarm algorithm (PSO) was used to optimize the BP neural
network, resulting in a model with improved convergence speed and generalization ability.

(2) The infiltration depth regression model for the Xiashu loess slope was expressed
mathematically using the Class I nonlinear mathematical model. The model considered
the interaction between independent variables, and the test results were predicted using
the regression expression. The predicted results had an error range controlled within 10%,
indicating that the nonlinear regression model was reasonable. This model provides a fast
calculation method for determining the infiltration depth of the Xiashu loess slope.

(3) After comparing the slope infiltration depth prediction model established by
the PSO-BP neural network with the multivariate nonlinear regression model and the
traditional BP neural network model, it was found that all three methods have a good
fitting effect and prediction ability. However, the PSO-BP neural network prediction model
has a higher prediction accuracy than the other two models. The three models’ prediction
accuracy is ranked as follows: PSO-BP neural network model > BP neural network model >
multivariate nonlinear regression model. This ranking fully demonstrates the effectiveness
of the PSO-BP neural network model in predicting the depth of infiltration of the Xiashu
loess slope.

Due to the limitations of the test, the established prediction model only considered
three factors: rainfall duration, rainfall intensity, and slope angle. To improve the model’s
completeness, the effects of other factors should be further considered in subsequent tests.
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Abstract: In Taiwan, mountainous areas account for approximately two-thirds of the total area. The
steep terrain and concentrated rainfall during typhoons cause landslides, which pose a considerable
threat to mountain settlements. Therefore, models for analyzing rainfall-induced landslide hazards
are urgently required to ensure adequate land use in mountainous areas. In this study, focusing on
Pingtung County in southern Taiwan, we developed a landslide hazard index (IRL) to land use. Using
FORMOSA-2 and SPOT-5 satellite images, data were collected before and after four typhoons (one in
2009 and three in 2013). The ArcGIS random tree classifier was used for interpreting satellite images
to explore surface changes and disasters, which were used to analyze slope disturbances. The product
of the maximum 3-h rolling rainfall intensity and effective accumulated rainfall was used as a rainfall
trigger index (IRT). Considering environmental and slope disturbance factors, an index of slope
environmental strength potential (ISESP) was developed through logistic regression (LR). Landslide
hazard to land use was estimated using IRT and ISESP. The average coefficient of agreement (Kappa)
was approximately 0.71 (medium to high accuracy); the overall accuracy of slope environmental
strength potential analysis was approximately 80.4%. At a constant ISESP, IRT increased with the
increasing hazard potential of rainfall-induced landslides. Furthermore, IRT and ISESP were positively
correlated with landslide occurrence. When large ISESP values occur (e.g., fragile environment and
high land development intensity), small IRT values may induce landslides.

Keywords: land use; mountainous area; rainfall; landslide hazard; random tree classifier; logistic
regression; geographic information system; Taiwan

1. Introduction

Taiwan is an island located in the North Pacific subtropical monsoon region, which
is vulnerable to typhoons. More than two-thirds of Taiwan’s total area is mountainous
with steep slopes. Recently, climate anomalies have resulted in frequent extreme rainfall
events. The number of typhoons that hit Taiwan has increased every year, and large-scale
landslides and debris flows have become likely. As stated in the 2012 White Paper on
Disaster Management [1], remote mountainous settlements in Chiayi County, Kaohsiung
City, Tainan City, Pingtung County in southern Taiwan account for approximately 24% of
the total area in Taiwan. Recent large-scale sediment disasters due to typhoon-induced
concentrated rainfall occurred mostly in the remote mountainous areas of southern Taiwan.
Such disasters pose a major threat to the environmental security of the settlements in
remote mountainous areas. For example, Typhoon Morakot on August of 2009, with a
maximum precipitation of over 2884 mm in 5 days, induced over 22,705 landslides, covering
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a total area of 274 km2 in mountainous area throughout southern Taiwan [2]. Typhoon
Morakot resulted in 619 deaths, 76 missing persons, and the temporary evacuation of
24,950 residents, flooding, and approximate USD five billion in economic losses [3]. Since
Typhoon Morakot struck, the slopes of the remote mountainous areas of southern Taiwan
have become highly unstable. Therefore, studies on the land use risk of the aforementioned
settlements during rainfall disasters are essential.

Jan and Lee [4] used the product of effective accumulated rainfall (EAR) and rainfall
intensity as a rainfall trigger index (IRT) for determining debris flow; they discovered
relevant geological factors (average stream bed slope, catchment area, landslide rate, and
lithology) for establishing comprehensive geological indicators. A rainfall prediction
model for debris flow was constructed using the rainfall warning and comprehensive
physiographic indices. For rainfall warning, the following occurrence possibilities were set:
10%, 50%, and 90%. Chen et al. [5] demonstrated that extreme rainfall events cause frequent
landslide erosion; they reported that a maximum 24-h rainfall amount of >600 mm resulted
in the average landslide erosion rate of 64–79%. Jan et al. [6] mentioned that the effects of
typhoon rainfall depend not only on the rainfall amount but also on its intensity. Tseng
et al. [7] reported that the number and area of rainfall-induced landslides were positively
correlated with the degree of land disturbance. Chen et al. [8] investigated areas with high
and low susceptibility to landslides; they identified cumulative rainfall to be the primary
factor for landslide occurrence in areas with high susceptibility; in contrast, in areas with
low susceptibility, the rainfall intensity was found to be the key factor. Due to climate
extremes, areas with high susceptibility exhibited a higher magnitude and frequency of
landslides than those with low susceptibility.

Lee et al. [9] explored the mechanisms underlying landslide disasters due to the
intensity of Typhoon Soudelor-induced rainfall on the mountainous areas of northern
Taiwan; they revealed that most sediment disasters occurred 1 or 2 h after peak rainfall.
Moreover, the maximum rainfall occurring 3, 6, and 12 h after this event was higher than
that in the 200-year return period. To estimate a rainfall alert value for landslide occurrence,
Caracciolo et al. [10] analyzed historical data on the rainfall that led to a landslide as well
as data on rainfall occurring 5, 15, and 30 days before a landslide in southern Sicily, Italy.
Chen and Wu [11] focused on a state-owned forest land in Taiwan and analyzed various
internal (e.g., elevation, slope, terrain roughness, distance from the fault, and distance
from the river) and external (total accumulated rainfall after event) factors through logistic
regression (LR) to build an internal potential level without external factors; subsequently,
they evaluated the changes in the potential value and rainfall to estimate a reference
value for the prediction of landslides induced by rainfall. Shahabi et al. [12] combined
remote sensing and a geographic information system (GIS) to statistically delineate areas
susceptible to landslides; for this, they considered the following factors: slope, aspect,
elevation, lithology, normalized difference vegetation index, vegetation, rainfall, distance
from the fault, distance from the river, and distance from the road. Tseng et al. [7] focused
on the periods before and after a typhoon that recently caused a road slope landslide in the
study area; through image interpretation, they identified surface changes before and after
the landslide disaster and developed a model for assessing landslide susceptibility. Then,
the GIS platform was used to construct landslide susceptibility maps. Among the statistical
methods used for evaluating landslide susceptibility, LR analysis has been proven to be
one of the most reliable approaches [13–20].

In the past, studies seldom focused on the landslide hazard to land use, therefore
models for analyzing rainfall-induced landslide hazards to ensure adequate land use in
mountainous areas are necessary. The data processing and flowchart of research work of the
present study is shown in Figure 1. Coupled with the use of the ArcGIS platform, random
tree classifier (RTC) was employed to classify and interpret satellite images to obtain
land use information and disasters. Furthermore, considering the regional environmental
characteristics and land disturbance, we analyzed the potential of slope environmental
intensity, factors associated with slope disasters, and the rainfall characteristics of the study
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area and investigated the correlation between rainfall trigger and slope environmental
strength potential to develop IRL. Our research findings can provide considerable references
for the strategies of land use in mountainous settlements. However, only the influence
from the natural environment was considered; the socio-economic, governmental policy
aspects that should be overall considered in decision making for land use were excluded in
this study. This could lead to the potential research direction in the next step.

 
Figure 1. Flowchart of the research work.

2. Methods and Materials

2.1. Study Area

This study was conducted in Sandimen Township and certain mountainous areas of
Wutai Township in Pingtung County in southern Taiwan (Figure 2). Pingtung County is
located in the south of the Tropic of Cancer. Except for elevated mountainous areas, the
county has a tropical monsoon climate and the temperature does not vary substantially
throughout the year. The annual average temperature and rainfall is approximately 25.5 ◦C
and 2325 mm, respectively. It is humid and rainy in summer. However, because of the
barrier between the Dawu Mountain Range and the Central Mountain Range, the cold
northeast monsoon is blocked from entering the county; this blockage, combined with a
low latitude and sufficient sunshine, reduces the intensity of winter in Pingtung, where
the average high and low temperatures are 24–27 ◦C and 16–19 ◦C, respectively [21,22]. In
Sandimen and Wutai Townships, most of the strata are Chaozhou and Bilushan Formations;
low contents of alluvial and grounding deposits are observed. Lithologically, the study area
is mainly interbedded with hard shale, slate, and sandy shale. In addition, low contents of
gravel, sand, clay, and slate interbedded with metamorphic sandstone and metamorphic
igneous rock lens, mud, sand, and gravel, lenticular sandstone bodies are noted [23].
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Sandimen Township is located at an altitude of 100–2159 m and at the intersection of
mountains and plains and features, mostly hilly terrain. Wutai Township is located in
the northeast area of Pingtung County (in the Central Mountain Range). This township
has steep terrain and is located at an average altitude of >1000 m. The largest tributary
flowing through the study area is the Ailiao River, which is the largest tributary of the
Gaoping River. Its farthest source stream is Eluowu River, which flows south to Babanaban
River and then turns southwest to Laibuan River (where it is called the Ailiao North
Stream); subsequently, it turns south to join Hayou Creek and Qiaoguo Laci Creek (among
others) and finally turns south to converge into Ailiao South Stream in Dalai Village; this
is called Ailiao Creek in Sandimen Township. The main rivers in Wutai Township are
Erchong and Ailiao Beixi, whereas the main rivers in Wutai Township are Ailiao Beixi and
Qiaoguolaci [21].

 
Figure 2. Study area.

In Sandimen Township, the Sandi and Dalai villages have the highest (n = 1683) and
lowest (n = 402) populations, respectively. In Wutai Township, Wutai and Jilu Villages have
the highest (n = 1325) and lowest (n = 210) populations, respectively [24]. The residents
of Sandimen Township are mainly Paiwan individuals (Taiwan Aborigines); some Rukai
individuals also reside in this township such as in Qingye Village, which has recently been
included in the Maolin National Scenic Area. The main economy in Sandimen Township
is agriculture, and the main agricultural products are sweet potato, millet, taro, mango,
pineapple, red quinoa, and coffee [25]. The residents of Wutai Township are mainly Rukai
individuals [26]. The main agricultural products of the township are love jade, red quinoa,
millet, coffee, taro, and sweet potato [27].

2.2. Image Interpretation and Classification
2.2.1. Preprocessing of Satellite Images

FORMOSA 2 (FS-2) or SPOT-5 satellite images of the areas affected by typhoons
or rainstorms were acquired. Data on the 2009 Typhoon Morakot, 0517 rainfall in 2013,
2013 Typhoon Soulik, and 2013 Typhoon Kongrey were obtained to explore the land
development types and landslide areas in the study area. We used six satellite images with
image resolutions of 8 m × 8 m and 10 m × 10 m (Table 1).
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Table 1. Basic satellite imagery data.

Image Shooting
Date

Before/after Event
Image
Resolution

Type Location
X
TWD97

Y
TWD97

22 July 2009
Before Typhoon Morakot 8 m × 8 m

FS-2

Upper left
Bottom right

211584
230432

2530416
2511176

9 May 2009

15 August 2009
After Typhoon Morakot 8 m × 8 m

11 January 2010

15 January 2013
Before 0517 Rainfall 8 m × 8 m

Upper left
Bottom right

211584
230424

2530408
2511184

19 January 2013

3 June 2013 After 0517 Rainfall
Before Typhoon Soulik 8 m × 8 m

29 June 2013

27 August 2013 After Typhoon Soulik
Before Typhoon Kongrey 8 m × 8 m

11 September 2013

9 September 2013 After Typhoon Kongrey 10 m × 10 m SPOT-5 Upper left
Bottom right

211570
230440

2530430
2511160

The FS-2 and SPOT-5 satellite images are multispectral and contain four spectral
bands [28]. FS-2 spectral bands are red, green, blue, and near-infrared (NIR), whereas
SPOT-5 spectral bands are red, green, NIR, and short-wave infrared. The telemetry image
processing software ERDAS IMAGINE (2013) [29] was used to fuse and locate the images.

2.2.2. Selection of Satellite Imagery Classifications

In this study, FS-2 or SPOT-5 satellite images of four typhoons or rainstorms were se-
lected as the base map. Using GIS ArcGIS, each classification factor was manually digitized
and circled. We compared the Tiff files of the satellite images (resolution, 2 m × 2 m) of
the study area to increase the accuracy of the sampling area delineation; furthermore, we
selected the following eight classifications suitable for the scope of this study: river, road,
building, farmland, forest, meadow, streamway, and bare land (Figure 3).

 

Figure 3. Current land use in the study area.
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2.3. Rainfall Projection
2.3.1. Effective Accumulative Rainfall (EAR)

We referred to the rainfall analysis methods described by Seo and Funasaki [30] and
Tseng et al. [7]. Concentrated rainfall is considered to be continuous if no rainfall occurs
24 h before and after the rainfall event. The rainfall field with continuous rainfall inducing
a landslide is regarded as the main rainfall field. The beginning of rainfall was defined as
the time point when the first rainfall reached ≥4 mm in the main rainfall field. Cumulative
rainfall inducing a landslide was calculated. Cumulative rainfall was divided into previous
indirect rainfall (Pb) and previous direct rainfall (Pr). Previous indirect rainfall refers to the
amount of rainfall in the main rainfall field within 7 days [30] and can be calculated using
Equation (1).

∑7
n=1 knPn = Pb (1)

where Pn is the amount of rainfall (mm) in n days before the main rainfall field; k is the
decreasing coefficient. In the present study, k was 0.9 [31]. EAR can be calculated as follows:

EAR = Pr + Pb (2)

where Pr is the amount of cumulative rainfall from the first rainfall in the main rainfall field
from the time of the landslide disaster (a time point when the first rainfall reaches ≥4 mm)
to the occurrence of the landslide.

2.3.2. Rolling Rainfall Intensity

Rain-induced landslides may be triggered by continuous rainfall for several hours.
Therefore, rolling rainfall intensity can be expressed using Equation (3):

ImR = ∑m
i = t − m + 1 Ii = It − m + 1 + It − m + 2 + · · ·+ Im (3)

where I is the rainfall intensity, m is the unit time of rain rolling, and m = 3 h [7]. ImR is the
IR in m h, and It is the rainfall intensity in t h.

2.4. Random Tree Classifier (RTC)

We used the RTC in the ArcGIS supervised image classification module to classify
images. The RTC does not lead to overfitting and can process segmented images and
auxiliary grid datasets [32]. The classifier can be used to construct several decision trees,
and selects a random subset of variables for each tree and uses the most frequent tree output
for the overall classification. Therefore, random trees correct for the tendency of decision
trees to overfit the training data. Random trees are a collection of individual decision trees;
each tree is generated from different subsets of sample and training data. Decisions are
made in the order of the importance of each pixel being classified. An image is drawn for
a certain pixel that appears as a tree branch. After the entire dataset is processed, each
branch forms a whole tree; this is the concept of random trees. In the operation of random
trees, each tree has decision-making power; this process reduces overfitting. In the random
tree method, analogically, many trees continue to grow; the changes in the trees of a forest
are projected into randomly selected subspaces through training data, and each node’s
decision is optimized through a random process [32].

2.5. Logistic Regression (LR)

In regression analysis, dependent variables serve as categorical variables, whereas in-
dependent variables serve as continuous or dummy variables. Dummy variables represent
categorical data; the corresponding numerical values are the basis for classification and
have no comparative significance. The primary feature of LR is that dependent variables
are categorical variables, whereas independent variables can be continuous or categorical
variables [33].
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LR is used for analyzing dichotomous dependent variables. One or more independent
variables may be included in the model. Response variables can be categorical or continuous
variables. Previously, landslide susceptibility was analyzed by mostly considering the
distribution patterns of binary variables [34]. Through a statistical induction method, a
set of regression patterns may be identified to differentiate between landslide and non-
landslide. The value range of the logistic distribution function is 0–1, and the distribution
of the value range follows an S-shaped curve [35].

As shown in Equation (4), linear regression assumes a linear function and includes
dependent and independent variables (and random residual values) [33].

Y = β0 + β1 × x1 + β2 × x2 + β3 × x3 + e (4)

where Y is a dependent variable; x1, x2, and x3 are independent variables; and e represents
a residual value. β0 + β1x1 + β2x2 + β3x3 is a linear function between expectation E(Y) and
the three independent variables.

LR is used to construct practical and reasonable allocation models for predicting the
correlations between a dependent variable (y) and a set of independent variables (x). The
relationship usually refers to the relationship between a set of independent variables (xs),
which is used to predict the probability of the dependent variable being equal to 1 such as
the probability of landslide occurrence. The ratio of the probability of event occurrence to
that of event non-occurrence is called the event odds. A linear function can be obtained
using its natural logarithm, which is the logit model, as shown in Equation (5) [33].

ln
(

P
1 − P

)
= α +

k

∑
i=1

βixi (5)

where P is an independent variable; x1, x2,. . ., xk are the probabilities of event occurrence.
In this study, y indicates the probability of landslides, and the aforementioned x parameters
represent various independent variables. A logistic curve can be constructed using the logit
function; its mathematical formula is shown in Equation (6).

P =
1

1 + e
−(α+

k
∑

i=1
βi xi)

(6)

In general, the probability threshold is set at 0.5. A predicted probability (p) of ≥0.5
indicates the likelihood of a landslide event; in contrast, if p < 0.5, a landslide event is not
expected to occur.

3. Results

3.1. Interpretation of Images and Assessment of Accuracy

Considering the aforementioned eight classifications, the RTC module was used with
the results of texture analysis to interpret the images. The research scope was interpreted
using a total of six satellite images obtained before and after the 2009 Typhoon Morakot,
0517 rainfall in 2013, 2013 Typhoon Soulik, and 2013 Typhoon Kongrey. Figure 4 depicts
the results of image interpretation. To confirm the accuracy of the interpretation results,
we randomly selected a total of 25 points (interpretation grids; checkpoints) for each
classification and compared them with high-resolution aerial photos and on-site survey
data. The most common accuracy evaluation method is the error matrix [36], which is used
to calculate the coefficient of agreement (Kappa index) and overall accuracy. The value of
the Kappa index proposed by Cohen [37] ranges from 0 to 1. Kappa values of <0.4, 0.4–0.8,
and >0.8 indicate low, medium, and high accuracies, respectively. Table 2 summarizes the
OAs before and after the rainfall events in the study area. In this study, the average Kappa
value of each satellite image was approximately 0.71, and the average overall accuracy was
approximately 74% (medium to high accuracy).
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Before Typhoon Morakot After Typhoon Morakot 

Before 0517 rainfall 
After 0517 rainfall and before Typhoon 

Soulik 

  
After Typhoon Soulik and before Typhoon 

Kongrey (resolution, 8 m) 
After Typhoon Soulik and before Typhoon 

Kongrey (resolution, 10 m) 

 

 

After Typhoon Kongrey  

Figure 4. Images obtained before and after various rainfall events.
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Table 2. Coefficients of agreement and overall accuracies of the satellite image interpretation results.

Year Rainfall Event Resolution Kappa OA (%)

2009
Before Typhoon Morakot 8 m 0.66 70.0

After Typhoon Morakot 8 m 0.70 73.0

2013

Before 0517 rainfall 8 m 0.69 72.5

After 0517 rainfall and before Typhoon Soulik 8 m 0.70 73.3

After Typhoon Soulik and Before Typhoon Kongrey 8 m 0.78 79.5

After Typhoon Soulik and Before Typhoon Kongrey 10 m 0.77 79.5

After Typhoon Kongrey 10 m 0.74 76.5

3.2. Identification of Landslides through Image Interpretation

After image classification, to identify rainfall-induced landslides in the study area, we
subtracted bare land grids before and after rainfall events by using the image subtraction
method. The river, streamway, and bare land classifications with a slope percentage of <5%
were deducted. High-resolution aerial photos of the study area were compared, and manual
inspection was performed to identify landslides; then, the locations of the rainfall-induced
landslides in the study area were obtained (Figure 5). Among the types of slope failure,
debris slides were the easiest and most reliable type to be identified in the satellite images
since vegetation was effectively stripped off from the slopes. Therefore, debris slides are the
major landslides mapped in our study. The 2009 Typhoon Morakot resulted in the highest
rainfall and the largest landslide area (1313.12 ha). The areas of landslides induced by the
other events were as follows: 0517 rainfall in 2013, 813.92 ha; Typhoon Kongrey, 789.44 ha;
and Typhoon Soulik, 635.04 ha.

    
After Typhoon Morakot After 0517 rainfall After Typhoon Soulik After Typhoon Kongrey 

Figure 5. Distribution map of landslides occurring after various rainfall events.

3.3. Development of a Model for Assessing Rainfall-Induced Landslide Susceptibility
3.3.1. Selection of Factors Associated with Landslide

Landslides can be attributed to factors such as artificial slope land use, environment,
and rainfall triggers. Human activities may negatively affect water and soil conservation
on slope lands, which compromises the safety of slope land. Therefore, referring to studies
of Chen et al. [38] and Tseng et al. [7], we divided the aforementioned factors into the
following three categories: environmental, slope disturbance, and rainfall trigger factors.
The environmental factors assessed in this study included elevation, slope, aspect, slope
roughness, terrain roughness, distance from the river, and geology. The slope disturbance
factors included road density, building density, farmland planting rate, forest density,
grassland density, and bare density. The rainfall trigger factor was the product of EAR and
the maximum 3-h rolling rainfall intensity (I3R,max).

The digital elevation model (DEM) was used to analyze the environmental factors
using ArcGIS Spatial Analyst. A basic grid of 40 m × 40 m was constructed for the factors
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related to landslide occurrence, followed by the development of a GIS database of the study
area. The hazard factors are described below.

Environmental Factors

• Elevation (El)

The elevation of a place refers to its height from the sea level. In Taiwan, the elevation
datum comprises the mean sea level of Keelung Port, and the elevation of the terrain is
called the elevation difference. When other factors are constant, higher degrees of elevation
are associated with a higher sliding force. We used a 20 m × 20 m DEM for analysis. The
elevation of the study area is 78–2437 m, which was divided into a total of seven grades
and coded. Table 3 presents the elevation classification codes, ranging from an elevation of
<350 m coded as 1 to an elevation of >2100 m coded as 7.

Table 3. Elevation codes.

Grade Range of Elevation (m) Code

Above 2101 7

1751–2100 6

1401–1750 5

1051–1400 4

701–1050 3

351–700 2

Below 350 1

• Slope (Sl)

Here, slope indicates the inclination of a slope. Higher degrees of inclination indicate
steeper slopes and vice versa. High inclination as well as poor soil and water conservation
may facilitate the development of landslides. In this study, the slope value of each grid
was obtained through DEM and ArcGIS slope analysis. According to the Classification
Standards for Land Utilization Limits of Hillside Lands outlined in the Regulations of Soil
and Water Conservation [39], we graded and coded slopes (Table 4). A first-grade slope
was coded as 1, whereas a seventh-grade slope was coded as 7.

Table 4. Slope codes.

Slope Grade Grade Range of Slope (%) Code

7 Above 100 7

6 50–100 6

5 40–55 5

4 30–40 4

3 15–30 3

2 5–15 2

1 Below 5 1

• Slope Roughness (Slr)

Slope roughness reflects the changes in a slope (standard deviation). Higher degrees
of slope roughness indicate higher extents of changes, which may facilitate the occurrence
of landslides. Cluster analysis was performed to classify the slope roughness of the study
area. A slope roughness of <18.15 was coded as 1, whereas that of >63.34 was coded as 7
(Table 5).
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Table 5. Slope roughness codes.

Grade Range of Slope Roughness (◦) Code

Above 63.34 7

56.80–63.33 6

49.47–56.79 5

41.02–49.46 4

31.21–41.01 3

18.16–31.20 2

Below 18.15 1

• Aspect (As)

Each slope has a different aspect. Aspect refers to the inclination direction of a slope
and affects wind flow and rainfall distribution. In this study, using DEM and ArcGIS
aspect analysis, the aspect data of each grid were obtained. The inclination angle may be
as follows: north, northeast, east, southeast, south, southwest, west, northwest, and flat
ground (clockwise). In this study, a flat ground was coded as 1, whereas the southwestern
part of a windward side was coded as 6 (Table 6).

Table 6. Aspect codes.

Aspect Inclination Angle (◦) Code

Flat ground — 1

Northeast 22.5–67.5◦ 2

East 67.5–112.5◦ 3

Southeast 112.5–157.5◦ 4

South 157.5–202.5◦ 5

Southwest 202.5–247.5◦ 6

West 247.5–292.5◦ 5

Northwest 292.5–337.5◦ 4

North 337.5–0◦
0–22.5◦ 3

• Surface Roughness (Tr)

Surface roughness reflects the changes in a surface (standard deviation). Higher
degrees of surface roughness indicate higher extents of changes, which may facilitate
landslide occurrence. In the present study, cluster analysis was performed to classify
the surface roughness of the study area. A surface roughness of <417.62 was coded as 1,
whereas that of >2298.55 was coded as 7 (Table 7).

Table 7. Surface roughness codes.

Grade Range of Surface Roughness (m) Code

Above 2298.55 7

2114.26–2298.54 6

1849.33–2114.25 5

1457.87–1849.32 4

957.51–1457.86 3

417.63–957.50 2

Below 417.62 1
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• Distance from the River (Dr)

The distance of an area from a water body may affect the occurrence of landslides. A
shorter distance is associated with higher levels of groundwater, which softens soil, thereby
facilitating landslide occurrence. We used a river map to calculate the distance of each grid
from a river; for this, the ArcGIS buffer analysis function was used. The analysis results
were coded as shown in Table 8.

Table 8. Codes corresponding to the distance of an area from a water body.

Grade Range of Distance from the River (m) Code

Below 350 7

351–700 6

701–1050 5

1051–1400 4

1401–1750 3

1751–2100 2

Above 2101 1

• Geology (Gs)

We used the geological map of the Central Geological Survey of the Ministry of
Economic Affairs (2021) to obtain information on the geological conditions corresponding
to each grid in the study area. On the basis of geological age and lithological data, it was
divided into four strengths: very weak, medium, medium strong, and strong [40]. The
highest strength was coded as 1, whereas the lowest strength was coded as 4 [38].

Slope Disturbance Factors

Using RTC with texture analysis for image interpretation and classification, we as-
sessed the slope disturbance of the research area. The following six factors were included
in further analysis: road density, building density, farmland planting rate, forest density,
grassland density, and bare density. To quantify the slope disturbance in each basic grid,
slope disturbance was defined as the area percentage ratio of each disturbance factor in
each basic grid. The degree of land development of hillsides and its index were evaluated
in reference to earlier studies [7,38]. Because we regarded environmental and slope distur-
bance factors as independent factors influencing landslides, a slope disturbance index was
developed and is shown in Equation (7).

IDC = ∑ GDC × R (7)

DC refers to the disturbance condition. GDC is a DC grade, which is the score corresponding
to slope land use disturbance in each grid. R is the ratio of the area occupied by each
slope and the utilization factor corresponding to the grid. Table 9 presents the grades
corresponding to the DCs of the aforementioned six slope disturbance factors. For grading,
we referred to a study conducted by Chen et al. [38].

Table 9. Scores of various slope disturbance factors.

Slope
Disturbance
Factor

Forest Density
Grassland
Density

Farmland
Planting Rate

Road Density
Building
Density

Bare Density

Score 1 2 3 4 5 6
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Rainfall Trigger Factors

We obtained relevant data from the following 12 rainfall measurement stations within
and near the study area: Weiliaoshan, Majia, Hongyeshan, Shangdewun, Dajin, Jinfeng,
Ligang, Meinong, and Gusia [22] as well as Zhiben-5, Ali, and Sandimen [41]. Through
inverse distance weighting (ArcGIS), the EAR and I3R,max values were calculated for each
station (Tables 10 and 11) for four rainfall events occurring in 2009 and 2013.

Table 10. EAR of each station after various rainfall events.

Management Unit Station Code Station Name
EAR (mm)

Morakot 0517 Rainfall Soulik Kongrey

CWB

C0R100 Weiliaoshan 1437.03 85.46 248.38 417.93

C0R140 Majia 882.32 – – –

C0S680 Hongyeshan 337.62 46.40 154.62 38.69

C1R120 Shangdewun 1745.22 121.64 – 378.98

C1V340 Dajin – 168.74 129.19 –

C1S820 Jinfeng 298.88 19.97 201.45 93.82

C0R590 Ligang 466.82 – – 233.36

C0V310 Meinong 312.16 138.47 – 648.74

C1R110 Gusia 492.67 269.31 87.05 263.33

WRA

01S210 Zhiben-5 91.57 16.49 130.31 54.73

01Q910 Ali 1205 698.56 141.25 585.02

01Q930 Sandimen 552.93 146.85 42.03 245.55

Table 11. I3R,max of each station after various rainfall events.

Management Unit Station Code Station Name
I3R,max (mm/3 h)

Morakot 0517 Rainfall Soulik Kongrey

CWB

C0R100 Weiliaoshan 274 68.5 78 183.5

C0R140 Majia 194 – – –

C0S680 Hongyeshan 75 27.5 52.5 21

C1R120 Shangdewun 206 83 – 153.5

C1V340 Dajin – 84 81 –

C1S820 Jinfeng 199.5 12 108 25

C0R590 Ligang 154.5 – – 97

C0V310 Meinong 114.5 61 – 176.5

C1R110 Gusia 192 54 46.5 82

WRA

01S210 Zhiben-5 78 15 81 14

01Q910 Ali 286 117 65 131

01Q930 Sandimen 171 60 33 107

3.3.2. Analysis of Slope Environmental Strength Potential

We performed correlation analyses of environmental and slope disturbance factors.
After highly correlated factors were eliminated, LR was performed to analyze the slope envi-
ronmental strength; thus, a slope environmental strength regression model was constructed.
Then, we established the index of slope environmental strength potential (ISESP). A basic
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grid of 40 m × 40 m was constructed using ArcGIS; subsequently, the slope environmental
strength potential value in each grid of the study area was calculated.

Correlation Analyses of Slope Environmental Strength Potential Factors

The slope environmental strength potential factors initially selected in this study
included environmental factors such as elevation, slope, aspect, slope roughness, surface
roughness, distance from the river, and geology and slope disturbance factors. To ensure
that the factors were independent and exerted no mutual effects, we performed correlation
analyses of the selected factors before LR analysis to identify the degree of correlations
between the factors. Elevation, slope, slope roughness, surface roughness, and slope
disturbance index served as continuous variables, whereas aspect, distance from the river,
and geology served as categorical variables. In LR, categorical variables only represent the
data distribution of factor codes and not the effects of the code size on dependent variables.
Hence, we focused only on continuous variables. Statistical analysis was performed
using SPSS [42]. For the four rainfall events, the correlations between the factors were
investigated through Pearson correlation analysis. If the absolute value of the correlation
coefficient is closer to 0, the degree of correlation is weaker; in contrast, if it is closer to 1,
the degree of correlation is stronger. Table 12 presents the correlations between the slope
environmental strength potential factors. Elevation exhibited high-level correlations with
surface roughness. Slope exhibited medium-to-high-level correlation with slope roughness.
The remaining factors exhibited low-level correlations. Hence, surface roughness was not
included in the LR model.

Table 12. Correlations between the slope environmental strength potential factors.

Elevation
(El)

Slope
(Sl)

Slope Roughness
(Slr)

Surface Roughness
(Tr)

IDC

Elevation
(El)

Correlation 1

Significance
(Two-tailed)

N 170,651

Slope
(Sl)

Correlation 0.299 ** 1

Significance
(Two-tailed) 0.000

N 170,651 170,651

Slope Roughness
(Slr)

Correlation 0.473 ** 0.731 ** 1

Significance
(Two-tailed) 0.000 0.000

N 170,651 170,651 170,651

Surface Roughness
(Tr)

Correlation 1.000 ** 0.299 ** 0.473 ** 1

Significance
(Two-tailed) 0.000 0.000 0.000

N 170,651 170,651 170,651 170,651

IDC

Correlation −0.369 ** −0.282 ** −0.363 ** −0.369 ** 1

Significance
(Two-tailed) 0.000 0.000 0.000 0.000

N 170,651 170,651 170,651 170,651 170,651

Note: ** Correlation is significant at 0.01 level (two-tailed).

Results of the Analysis of Slope Environmental Strength Potential

To reduce errors due to the evaluation model and subjective errors due to selection bias
(human errors), we randomly sampled the same number of landslide and non-landslide
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samples. After sampling, the data were randomly divided into training (70%) and test
(30%) datasets. An environmental strength assessment model was constructed through
LR [42].

The dependent variable was landslide or non-landslide, and the independent variables
were environmental factors such as slope, aspect, elevation, distance from the river, slope
roughness, geology, and slope disturbance factors. Through LR, a regression formula was
developed for analyzing the slope environmental strength potential. The formula is shown
in Equation (8).

L = α + β1 × El + β2 × Sl + β3 × Slr + β4 × IDC +
4

∑
i=1

βAs,iDAs,i +
6

∑
i=1

βDr,iDDr,i +
3

∑
i=1

βGs,iDGs,i (8)

where El denotes the elevation, Sl is the slope, Slr is the slope roughness, IDC is the slope
disturbance index, As is the aspect grade, Dr is the distance from the river, Gs is the
geological grade, β is the regression coefficient of continuous variables, and α is a constant.
D represents a dummy variable, which is a value coded for the category corresponding to a
factor. Substituting each regression coefficient and constant value into Equation (8) and
substituting it into Equation (9), we can calculate the probability value of each grid, which
represents the value of ISESP.

P =
1

1 + e−L (9)

LR was performed to evaluate the training classification results of various rainfall
events. The accuracies of classifications performed using the training and test data after
2009 Typhoon Morakot were 68.3% and 68.1%, respectively. Training data were used to
deduce the accuracies of classifications for the entire study area. The estimated accuracy
was 65.2% (Table 13). Table 14 presents the errors in the evaluation of various rainfall
events. The accuracies of classifications performed using training data after the 0517
rainfall, Typhoon Soulik, and Typhoon Kongrey were 83.8%, 86.2%, and 86.4%, respectively;
the corresponding values for the test datasets were 84.3%, 86.4%, and 87.5%. The average
accuracy of the overall classification was approximately 80.4%.

Table 13. Errors in the evaluation of Typhoon Morakot.

Training Testing Overall

Predicted
Accuracy
(%)

Predicted
Accuracy
(%)

Predicted
Accuracy
(%)Non-

landslide
Landslide

Non-
landslide

Landslide
Non-
landslide

Landslide

Actual

Non-
landslide 4021 1692 70.4 1787 712 71.5 105,419 57,025 64.9

Landslide 1946 3831 66.3 858 1572 64.7 2391 5816 70.9

Overall accuracy 68.3 68.1 65.2

Table 14. Accuracies of the classifications performed using training and test data after the
four rainfall events.

Rainfall Event

Accuracy
Training (%) Testing (%) Overall (%)

Typhoon Morakot 68.3 68.1 65.2

0517 Rainfall 83.8 84.3 83.5

Typhoon Soulik 86.2 86.4 87.3

Typhoon Kongrey 86.4 87.5 85.7

Average accuracy 81.2 81.6 80.4
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3.3.3. Establishment of a Landslide Hazard Index

Higher values of slope environmental strength potential are associated with larger
amounts of rainfall and thus higher probabilities of landslides. By referring to the study of
Jan and Lee [4], we adjusted this, and IRT can be calculated as shown in Equation (10).

IRT = EAR × I3R,max (10)

We established a landslide hazard index (IRL) using IRT and ISESP. The formula is
shown in Equation (11).

IRL = IRT × ISESP (11)

Higher values of IRL indicate a higher probability of landslides. At a constant IRL,
IRT is inversely proportional to ISESP. Thus, if ISESP is relatively stable, a large amount
of rainfall would induce landslides. In contrast, if ISESP is low, only a small amount of
rainfall would induce landslides. We used the following comprehensive indicators of
rainfall-induced landslides [4]: IRL1, IRL10, IRL25, IRL50, and IRL90. The index development
method is described below.

1. IRL1: From the IRL values corresponding to the grid data of all rainfall-induced land-
slides in the study area, the value with a cumulative probability of 1% is selected
(Weber’s method) and is indicated as IRL1. Grids with IRL values less than that of IRL1
have landslide probabilities of <1%.

2. IRL10: From the IRL values corresponding to the grid data of all rainfall-induced
landslides in the study area, the value with a cumulative probability of 10% is selected
(Weber’s method) and is indicated as IRL10. Grids with IRL values between the values
of IRL1 and IRL10 have landslide probabilities of 1%–10%.

3. IRL90: Landslide and non-landslide grids with values less than that of IRL10 are ex-
cluded. From the IRL values corresponding to the remaining grids, the value with a
cumulative probability of 90% (Weber’s method) is selected and indicated as IRL90.
Grids with IRL values exceeding that of IRL90 have landslide probabilities of >90%.

4. IRL10–IRL90: To determine a landslide probability corresponding to a comprehensive
index between IRL10 and IRL90, the relationship between the aforementioned index
and landslide probability can be expressed as shown in Equation (12).

IRLi − IRL10

IRL90 − IRL10
=

P − 0.1
0.9 − 0.1

(12)

Equation (12) can be rewritten as Equation (13).

IRLi = IRL10 + ΔIRL

(
P − 0.1

0.8

)
(13)

where ΔIRL = IRL90 − IRL10. Thus, the landslide probability corresponding to the landslide
comprehensive index IRLi can be obtained.

4. Discussion

4.1. Correlation between Slope Environmental Strength Potential and Rainfall-Induced Landslide

We first explored the distribution of landslide and non-landslide grids with the same
IRL value for each event and performed stratified random sampling according to the ratio
of the numbers of landslide and non-landslide grids with the same IRL value. To calculate
the IRL values corresponding to IRL1, IRL10, IRL25, IRL50, and IRL90, after merging the data
points of each rainfall event, we sorted the landslide grids; then, using Equation (12), the
IRL values corresponding to different cumulative probabilities were calculated. Table 15
presents the IRL indices and the corresponding values.
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Table 15. Various IRL values.

Various IRL IRL Value

IRL1 1417.30

IRL10 6563.47

IRL25 28,307.89

IRL50 64,548.59

IRL90 122,533.70

Using the IRL indices presented in Table 15, the correlation between IRT and slope
environmental strength potential was calculated after merging the data points of each
rainfall event (Figure 6). The product of IRT and ISESP was the closest to the grids with
different cumulative probabilities. The trend line corresponding to each IRL value was
drawn using the power method. As shown in Figure 5, the IRT of 2009 Typhoon Morakot
was the highest among the four rainfall events; thus, most of its landslide grids were
distributed above IRL50. For the 0517 rainfall in 2013, the grids were mostly below IRL90.
The IRT of 2013 Typhoon Soulik was the lowest among the four rainfall events; most of its
landslide grids were distributed below IRL25, while the IRT of 2013 Typhoon Kongrey was
higher than those of the Typhoon Soulik and 0517 rainfall events; for Typhoon Kongrey, the
grids were distributed between IRL1 and IRL90.

 

1x106 

1x105 

1x104 

1x103 

Figure 6. Slope environmental strength potential index versus rainfall trigger index.

4.2. Evaluation of Landslide Hazards to Land Use

After the classification of IRL indices with different cumulative probabilities, the
number of landslide and non-landslide grids with different ISESP grades and the landslide
ratio (landslide/non-landslide) were estimated. Considering that higher values of IRT are
associated with higher values of ISESP (and higher degrees of hazard), we investigated the
most reasonable average distribution of the landslide ratio in an inductive manner. Then,
the degree of hazard was calculated for each distribution situation and substituted into the
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grids of each event. Thus, the hazard degree of rainfall-induced landslide in each grid of
each event was obtained. Table 16 presents the landslide ratios (before and after induction)
of various ISESP grades of different IRL indices. The same color in the table represents the
same category of landslide ratio intervals (n = 8). Figure 6 illustrates the results presented
in Table 16. The landslide ratio intervals were normalized using the average landslide ratio
of the same interval, as shown in Equation (14).

Znorm =

(
X − Xmin

Xmax − Xmin

)
(14)

where Znorm represents the value after normalization, X represents the value to be normal-
ized, Xmin represents the minimum value in the data, and Xmax represents the maximum
value in the data. In this study, the normalized value was regarded as the degree of rainfall-
induced landslide hazard. The estimated degree of hazard was substituted into the grid of
each rainfall event to obtain the degree of hazard corresponding to each rainfall event grid
in the study area. The normalized value is a value between 0 and 1. Landslide probabilities
of (IRL) of <1% still represent the possibility of landslide. Therefore, the minimum value
of IRL1 indicates its risk probability. Table 17 presents the hazard value of each landslide
ratio interval. The color reference in Table 17 is the same as that in Table 16. The hazard
value of each grid of each rainfall event was substituted into each grid, and hazard maps
were constructed. Higher degrees of hazard indicate higher probabilities of landslide and
vice versa.

The hazard value of each interval was substituted into each grid of each rainfall event,
and the hazard maps of the study area after each rainfall event were constructed (Figure 7).
Hazard degree was classified into eight grades, and the classification was based on the
method in Table 17. The IRT of 2009 Typhoon Morakot was the highest among all rainfall
events, and the number of landslide grids was 8207; thus, the degree of landslide hazard in
the study area after this typhoon was the highest. The IRT of 2013 Typhoon Kongrey was
higher than that of 0517 rainfall in 2013; thus, the degree of landslide hazard after Typhoon
Kongrey was higher than that after 0517 rainfall in 2013. The IRT of 2013 Typhoon Soulik
was the lowest, and the number of landslide grids was also the lowest (n = 3969); thus, the
degree of landslide hazard after this typhoon was the lowest.

  
2009 Typhon Morakot 0517 rainfall in 2013 

  
2013 Typhoon Soulik 2013 Typhoon Kongrey 

Figure 7. Potential maps of landslide hazards to land use after various rainfall events.
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Table 17. Hazard value of each interval.

Hazard Interval Average Landslide Ratio Hazard Value

Interval VIII 0.001 0.00001

Interval VII 0.004 0.00083

Interval VI 0.022 0.00673

Interval V 0.125 0.04142

Interval IV 0.39 0.1296

Interval III 0.93 0.30981

Interval II 2.27 0.7564

Interval I 3 1

5. Conclusions

In the present study, we developed an index to evaluate landslide hazards to land
use after four prominent rainfall events in Sandimen and Wutai Townships in Pingtung
County. Using RTC and texture analysis, we interpreted and classified the satellite images
of the study area captured before and after four rainfall events. The average Kappa value
was approximately 0.71, which indicated medium to high accuracy. A comparison of the
satellite images captured before and after the rainfall events in terms of exposure revealed
that the area of landslide due to 2009 Typhoon Morakot was the largest (1313.12 ha); the
areas of landslides due to the other rainfall events were as follows: 0517 rainfall in 2013,
813.92 ha; Typhoon Kongrey, 789.44 ha; and Typhoon Soulik, 635.04 ha. Environmental
factors (e.g., elevation, slope, aspect, slope roughness, distance from the river, and geology)
and slope disturbance factors (e.g., road density, building density, farmland planting rate,
forest density, grassland density, and bare density) were assessed in this study to analyze
the slope environmental strength potential ISESP. The average overall classification accuracy
was approximately 80.4%. IRT was calculated by multiplying EAR with I3R,max. A new
comprehensive index of rainfall-induced landslide IRL (IRL = IRT × ISESP) was established
to determine the hazard of rainfall-induced landslides to land use. Using the correlation
between ISESP and IRT, we determined the degrees of rainfall-induced landslide hazards
to land use. At a constant ISESP, higher values of IRT indicate higher degrees of landslide
hazard to land use; similarly, at a constant IRT, higher values of ISESP indicate higher degrees
of landslide hazard to land use. Landslide occurrence is positively correlated with IRT and
ISESP. In cases of large ISESP values (e.g., fragile environment and high land development
intensity), small IRT values may cause landslides.
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Abstract: With the increase in both rainfall and intensity due to climate change, the risk of debris
flows is also increasing. In Korea, the increasing damage caused by debris flows has become a social
issue, and research on debris-flow response is becoming increasingly important. Understanding the
rainfall that induces debris flows is crucial for debris-flow response, and methods such as the I-D
method have been used to evaluate and predict the risk of debris flows. However, previous studies
on debris flow-induced rainfall analysis have been limited by the subjective decision of the researcher
to select the impact meteorological stations, which greatly affects reliability. In this paper, in order to
establish an objective standard, various maximum allowable distances between debris-flow disaster
areas and meteorological stations were adjusted to 1, 3, 5, 7, 9, 11, 13, and 15 km using the CTRL-T
automatic calculation algorithm, and the optimal maximum allowable distance suitable for Korean
terrain was derived through parameter sensitivity analysis. Based on this, we developed a nomogram
for sediment disaster risk prediction and warning in Gangwon-do, and applied it to past disaster
cases, and found that, although the prediction time for each stage varies depending on the maximum
allowable distance, on average, it is possible to predict the risk of sediment flows 4 to 5 h in advance.
It is believed that the results of this study can be used to reduce sediment flow damage in advance.

Keywords: debris flow; rainfall threshold; automatic calculation algorithm; rainfall intensity–
duration relationship

1. Introduction

Increasing rainfall intensity due to climate change has raised the hazard of a debris-
flow disaster in the vicinity of mountainous areas in Korea, resulting in higher risks to
human lives and properties [1]. In particular, 43 people died from torrential rains caused by
debris-flow disaster damage in Woomyeonsan in Seoul and Majeoksan in Chuncheon City
in July 2011. In 2020, five deaths occurred in Gokseong-gun, Jeollanam-do. The damage
caused loss of life and property, further emphasizing the social issue at hand. To address
debris-flow disasters, establishing standards for early forecasting and alert issuance is
essential. Preceding rainfall conditions, which influence soil stress and pore water pressure,
are crucial factors that should be considered the direct cause of a debris-flow disaster [2–5].

Many studies have been conducted on debris-flow disaster research recently. Ref. [6]
developed a low-cost tilt-based rainfall-induced landslide monitoring system using the
economical and precise MEMS sensor to record displacement and volumetric water content.
Ref. [7] introduced a methodology for establishing rainfall thresholds critical for debris
flow early warnings in regions lacking extensive data, utilizing a hydraulic initiation
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model. This research confirmed the approach’s reliability through analysis in the Guojuan
Gorge, further suggesting an early warning model based on precise rainfall thresholds.
Such advancements are pivotal for improving disaster response and mitigation efforts
in mountainous territories with similar geographical characteristics. Ref. [8] studied the
specific rainfall intensity and cumulative precipitation levels required for the initiation
of soil flow in the region through an in-depth analysis of three major storms in Beijing
and proposed integrating real-time rainfall intensity for accurate soil flow prediction and
early warning systems. Ref. [9] employed rainfall data spanning 2012 to 2015 to elucidate
rainfall patterns and identify critical thresholds that instigate periglacial debris flows
in the Parlung Zangbo Basin, located in the southeastern Tibetan Plateau. The study
underscored the significant influence of varied sediment conditions and rainfall dynamics
on the initiation of debris flows, advocating for the necessity of conducting site-specific
assessments to enhance the precision and reliability of debris flow monitoring and early
warning mechanisms. Ref. [10] details a data-driven methodology combining artificial
neural networks (ANNs) and particle swarm optimization (PSO) for establishing rainfall
thresholds crucial for debris flow initiation. This approach, when applied to the Beijing
and Wenchuan earthquake regions, refines early warning models by accurately identifying
intricate, non-linear thresholds for rainfall intensity and duration. This strategy surpasses
traditional linear regression techniques in enhancing debris flow hazard prediction and
management efficacy. Ref. [11] developed and tested an algorithm for the objective and
reproducible reconstruction of rainfall events that have resulted in landslides. Ref. [12] used
a new release of the algorithm that allows calculating reproducible rainfall thresholds from
multiple ED rainfall conditions that have resulted in landslides. and tested the algorithm
in Sicily, southern Italy.

In a previous study on the threshold rainfall that triggers debris flows, ref. [13] identi-
fied 683 rainfall-induced landslides in Lombardy over the period 1927–2008 and calculated
thresholds using mean annual precipitation (MAP)-normalized intensity–duration thresh-
olds. The results showed that debris flows frequently occurred within 1 to 3 h of the
maximum recorded rainfall intensity in summer and within 5 h in spring or fall. Ref. [14]
proposed an equation to determine the rainfall duration–intensity threshold for predicting
debris flows using data from the Sichuan region of China, and indicated that I = 2.09D−0.12.
Ref. [15] indicated that although debris flows and warning thresholds have been derived
from existing 30-year studies, they vary across the United States and thresholds should
be derived for each region, using soil wetting functions, precipitation characteristics, etc.
Ref. [16] defined four groups of rainfall thresholds for landslide occurrence using regression
values at each quantile level of quantile regression based on landslides that occurred in
China from 1998 to 2017, including the original rainfall event–duration (E-D) threshold
and the normalized (normalizing cumulative rainfall to annual mean rainfall) and merged
(EMAP-D) rainfall and Climate Prediction Center Morphing Technique (CMORPH) rainfall
products, respectively. The E-D thresholds defined in the paper were generally lower than
other thresholds in previous studies on a global scale and on a regional or national scale
in China, suggesting that this was due not only to the larger number of landslide cases
used, but also to the combined effects of China’s special geological environment, climatic
conditions, and human activities. Ref. [17] analyzed 85 debris flows from 1910 to 2019 in the
protofino promotor and used 69 clusters of rainfall events that triggered 94 slope failures
for which landslide and rainfall information were known with sufficient geographic and
temporal accuracy to set empirical ID thresholds adopting a frequentist approach, and
used the Mann–Kendall test and Hurst exponent to detect potential trends. The analysis
of the long-term rainfall time series showed a statistically significant increasing trend in
short-term precipitation events and rainfall amounts, suggesting the possibility of future
scenarios where thresholds are exceeded more frequently and landslide risk increases.
Ref. [18] analyzed the occurrence of debris flows in Taiwan and presented short-term (less
than 12 h) high-intensity rainfall, high-intensity and cumulative rainfall, and long-term
(more than 36 h) high-accumulative rainfall as rainfall characteristics that trigger landslides.
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The study proposed a combination of warning models for landslides from cumulative
rainfall–duration plots with rainfall intensity classification and average rainfall–duration
plots with cumulative rainfall classification, and suggested that the thresholds are being
lowered due to climate change.

The concept of marginal rainfall using prior rainfall and rainfall intensity was pro-
posed [19]. Subsequently, an equation for the rainfall intensity-duration curve has been
derived from empirical debris-flow data, leading to the development of various method-
ologies aimed at the probabilistic forecasting of debris flows [20–22]. Recently, ref. [23]
introduced a methodology for automatically selecting rainfall observatories that affect
debris-flow disasters using rainfall and topographic data and calculating the preceding
rainfall for debris-flow disasters. Meanwhile, ref. [24] applied the relevant algorithm to
Slovenia to establish an early warning system for debris-flow disasters. Then, ref. [25]
suggested improving the algorithm’s results using neural networks. Ref. [26] used GLDAS
(Global Land Data Assimilation System) to analyze the effects of air temperature and
precipitation on the characteristics of soil moisture in the eastern region of China from
1961 to 2011, and found that the temperature and precipitation in different seasons have
different degrees of influence on the characteristics of soil moisture in each layer. Ref. [27]
introduced and applied the innovative RSI-Net, which aims to improve the distinguishabil-
ity of correlations among adjacent land covers and address the issue of boundary blurring
in high-resolution remote sensing imagery. Ref. [28] proposed an improved bat algorithm
for dam deformation prediction based on a hybrid-kernel extreme learning machine.

Ref. [29] develops slope-specific thresholds for dimensionless discharge and Shields
stress to forecast debris flow initiation following wildfires. This work further presents a
process-oriented approach for deriving rainfall intensity-duration thresholds, showcasing
their consistency with empirical data. This synergy between process-based hydrologic
models and empirical observations significantly advances the accuracy of debris flow warn-
ing systems. Ref. [30] presented the capability of a deep learning algorithm to determine
the distribution of landslide rainfall thresholds in a potential large-scale landslide area and
to assess the distribution of recurrence intervals using probability density functions, as
well as to assist decision makers in early responses to landslides and reduce the risk of
large-scale landslides. Ref. [31] analyzed Kalimpong town in the Darjeeling Himalayas,
which is among the regions most affected by landslides, using the SIGMA model, and
calculated threshold rainfall. Among domestic research cases, refs. [3,32] applied the Rain-
fall Triggering Index (RTI), which is the product of the preceding rainfall duration and
intensity, to Korea, and proposed a debris-flow risk criteria using a probability density
function. Ref. [33] proposed the risk criterion using quantile regression analysis based on
the duration and the intensity of rainfall before the occurrence of a debris-flow disaster. To
establish a Korean early warning system for a debris-flow disaster, a program-based au-
tomation algorithm is required, and an evaluation of the applicability of such an automation
algorithm is deemed necessary.

Based on the above studies, it was found that existing empirical equations are mainly
used in studies to analyze the damage of debris flows or to calculate the critical rainfall
amount that causes debris flows. In this paper, we selected Gangwon-do province, where
many landslides have occurred, as the target area, and collected debris flow occurrence
information, as well as rainfall and topography information. Using this information, we
conducted an analysis using statistical techniques, and finally defined various maximum
allowable distances from debris-flow damage points and meteorological zones to establish
objective criteria. Through the parameter sensitivity analysis of the algorithm proposed
by [12], we derived the optimal maximum allowable distance suitable for Korean terrain.

2. Theoretical Background

2.1. Automated Rainfall Estimation Program for Debris Flow Disasters

Rainfall standards that cause debris-flow disasters are mainly presented using the
intensity–duration (I-D) method, which analyzes the relationship between rainfall intensity
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and duration, and various domestic and overseas studies have been conducted in this
regard. In using the I-D method, selecting meteorological stations and the maximum
allowed delay time between the end of the rainfall season and the occurrence of the
debris-flow disaster are important input parameters that researchers may define differently.
Ref. [22] proposed an automatic rainfall threshold calculation tool to predict debris flows
applicable in southern Sicily, Italy, to address this issue objectively. In this study, the tool
proposed by [12] was adapted and developed with the R language to suit the Korean terrain.
Figure 1 shows the flowchart of this study, while Figure 2 shows the algorithm components
of the rainfall threshold. In the input section, information on the occurrence of debris-flow
disasters (debris-flow.csv), rain gauge stations (table_of_raingauge.csv), and rainfall time
series (TimeSeries_Sensor.csv) are provided. The computation section comprises utils, a
useful utility for programming and developing R packages; caTools for encoders, decoders,
and classifiers; ggmap for spatial data visualization; and MASS for statistical functions.
Finally, the output section provides reconstructed rainfall events affecting debris-flow
disasters and the analysis results of reconstructed rainfall conditions and thresholds.

Figure 1. Flow chart of study.

Figure 2. Components of algorithm for the rainfall threshold.
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2.2. Algorithm for Calculating Debris Flow-Induced Rainfall Thresholds

The computation of the debris flow-induced rainfall threshold is based on the con-
tinuous time rainfall data, geographical coordinates of debris-flow disaster locations, and
the occurrence time of the debris-flow disaster. The algorithm reconstructs rainfall events
and determines the events influencing debris-flow disasters. In this process, the maximum
allowed distance between the representative rain gauge and the debris-flow disaster loca-
tion and the maximum allowed delay time between the end of the rainfall event and the
occurrence of the debris-flow disaster are defined. In this study, the maximum allowed
distance was defined as 15 km, and the maximum allowed delay time was defined as 48 h.

Separate blocks perform threshold calculation in the automatic threshold calculation
program, and each block performs a specific operation (Figure 3). In the first block, the
individual rainfall ideology is reconstructed based on a continuous rainfall time series, and
the duration (D, h) and cumulated rainfall (E, mm) for each rainfall event are calculated. The
separation of continuous rainfall time series is based on climate and seasonal environments.
This study defined the suitable period for Korea, the warm season (March–August). In the
second block, the rain gauge closest to the area where the debris flow occurred is selected.
At this time, the maximum allowed distance between the debris-flow disaster occurrence
point and the rain gauge is selected within a circular area with the defined allowed distance
radius, and the inverse distance weighting (IDW) method is used to determine the multiple
rainfall conditions (MRCs). The stations near the debris flow occurrence site are weighted
by the distance of the rainfall station from the rainfall duration (DL) and cumulative rainfall
(EL) to select the stations most associated with debris flows [15].

w = f (d, EL, DL) = d−2E2
LD−1

L (1)

where w is a weighting factor for the impact on debris flow occurrence, EL is the cumulative
rainfall, and DL is the duration. When reconstructing the rainfall event, missing data along
with no rainfall (0.2 mm) are removed to construct the rainfall event.

Lastly, in the third block, the different exceedance probabilities (EPs) are used to
calculate the relationship between the cumulated rainfall (E) and duration (D). At this time,
the threshold is defined using a frequency approach (Equation (2)) and calculated as a
power function.

E = (α ± Δα)•D(γ±Δγ) (2)

where α is the scaling parameter (the intercept) and γ is the shape parameter (that defines
the slope of the power law curve). Δα and Δγ represent the relative uncertainty of the
two parameters. See Ref. [34] for a detailed description of the above equation.

Figure 3. Data analysis process by block intervals [35].
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3. Calculation and Verification of Rainfall Thresholds

3.1. Collection of Information on the Occurrence of Debris-Flow Disasters

The area of Gangwon Province, characterized by its mountainous terrain which ac-
counts for more than 80% of Korea’s frequent debris flow incidents, was selected as the
focal region for this investigation. The geographical distribution of these debris flows
is illustrated in the subsequent figure (Figure 4). Furthermore, an exhaustive literature
review was conducted to amass a historical dataset of debris flow occurrences, with en-
tries lacking precise locational and temporal data being systematically eliminated. As a
result, the specific locations and times of occurrence for 18 debris flow events between
27 July 2011 and 5 August 2020 were compiled (Table 1). Additionally, rainfall data
were sourced from the Korea Meteorological Administration (https://www.weather.go.kr).
While the conventional methodology relied on the nearest rain gauge to establish a link
between debris flows and rainfall, this study introduces an advanced methodology that
automatically incorporates all viable gauges within a defined radius. This method applies
weighting factors that account for both the spatial distance between the debris flow site
and the gauge and hydrological attributes such as the volume of rainfall and the event’s
duration, recognizing that a debris flow may be precipitated by multiple rainfall events.
Moreover, the applicability of the proposed methodology was validated through its ap-
plication to the 2019 debris-flow disaster in Gangwon-do, which tragically resulted in
human casualties.

Figure 4. Analysis area and historical damage [35].

Table 1. Status of debris flow occurrence time and location.

No.
Date

(Year Month Day Hour
Minute)

Longitude Latitude Administrative Division
Start Date and End Date of the

Rainfall

Cumulated
Rainfall

(mm)

1 5 August 2020, 06:00 128.4609 38.4484 Geojin-eup, Goseong-gun 3 August 2020–5 August 2020 348
2 5 August 2020, 06:00 128.4627 38.4510 Geojin-eup, Goseong-gun 3 August 2020–5 August 2020 348
3 5 August 2020, 06:00 128.4042 38.5438 Hyeonnae-myeon, Goseong-gu 3 August 2020–5 August 2020 348
4 3 August 2020, 09:00 127.7334 37.8923 Chuncheon-si 3 August 2020–3 August 2020 179
5 2 August 2020, 02:00 128.1731 37.3508 Gangnim-myeon, Hoengseong-gun 3 August 2020–3 August 2020 136
6 2 August 2020, 06:00 128.5316 37.1413 Yeongwol-gun 2 August 2020–2 August 2020 204
7 3 October 2019, 00:56 129.3241 37.2703 Wondeok-eup, Samcheok-si 2 October 2019–3 October 2019 390
8 2 October 2019, 20:00 129.3209 37.1614 Wondeok-eup, Samcheok-si 2 October 2019–3 October 2019 390
9 2 October 2019, 23:00 128.3314 37.2569 Wondeok-eup, Samcheok-si 2 October 2019–3 October 2019 390
10 2 October 2019, 23:00 128.3264 37.2525 Wondeok-eup, Samcheok-si 2 October 2019–3 October 2019 390
11 12 August 2019, 21:20 127.8270 38.1604 Hwacheon-eup, Hwacheon-gun 11 August 2019–12 August 2019 48
12 20 August 2017, 02:30 127.9584 37.8150 Hwachon-myeon, Hongcheon-gun 19 August 2017–20 August 2017 33
13 20 August 2017, 02:30 127.9650 37.7980 Hwachon-myeon, Hongcheon-gun 19 August 2017–20 August 2017 33
14 14 July 2013, 07:30 128.2136 38.0402 Inje-eup, Inje-gun 14 July 2013–14 July 2013 142
15 14 July 2013, 08:20 128.4138 38.0919 Seo-myeon, Chuncheon-si 14 July 2013–14 July 2013 125
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Table 1. Cont.

No.
Date

(Year Month Day Hour
Minute)

Longitude Latitude Administrative Division
Start Date and End Date of the

Rainfall

Cumulated
Rainfall

(mm)

16 14 July 2013, 08:50 127.7564 37.8454 Dongsan-myeon, Chuncheon-si 14 July 2013–14 July 2013 125
17 14 July 2013, 09:30 127.7822 37.8247 Dongnae-myeon, Chuncheon-si 14 July 2013–14 July 2013 125
18 27 July 2011, 00:08 127.7920 37.9356 Sinbuk-eup, Chuncheon-si 27 July 2011–27 July 2011 262

3.2. Meteorological Stations and Collection of Rainfall Information

As shown in Figure 4, we collected weather and rainfall data from 46 Automatic
Weather System (AWS) locations in Gangwon Province provided by the Korea Meteorologi-
cal Administration. The data included hourly rainfall data from 00:00 on 1 January 2010 to
23:00 on 31 December 2020. Only 22 of the 46 rain gauges corresponded to the rainfall that
caused the debris-flow disaster and were used to build the data. The final data, including
the ID, name, and location of the 46 weather stations, are shown in Table 2.

Table 2. Location of meteorological stations and points.

No. ID Name Lon. Lat.

1 310 GungChon 129.2647 37.32471

2 320 Hyangnobong 128.3138 38.33104

3 321 Wontong 128.1963 38.1147

4 322 Sangseo 127.6857 38.23158

5 517 Ganseong 128.4745 38.38536

6 518 Haean 128.1211 38.26958

7 519 Sanae 127.5194 38.07545

8 522 Hwachon 127.9838 37.78712

9 523 Jumunjin 128.8214 37.89848

10 524 Gangmun 128.9248 37.78579

11 527 Sindong 128.6413 37.21108

12 529 Wondeok 129.2859 37.14156

13 536 Hoengseong 127.9724 37.4876

14 537 Imgye 128.8459 37.48323

15 554 Misiryeong 128.4371 38.21439

16 555 Hwacheon 127.7029 38.09638

17 556 Yanggu 127.9853 38.09799

18 557 Girin 128.3186 37.95263

19 558 Palbong 127.7007 37.68614

20 559 Nae-myeon 128.3973 37.77805

21 560 Jinbu 128.5645 37.64793

22 561 Cheongil 128.1528 37.58219

23 562 Yeongwol-Jucheon 128.2694 37.27534

24 563 Bukpyeong 128.6828 37.46356

25 579 Hajang 128.9133 37.36684

26 580 Okgye 129.0289 37.61345
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Table 2. Cont.

No. ID Name Lon. Lat.

27 581 Sangdong 128.7744 37.11663

28 582 Sillim 128.0799 37.23146

29 583 Anheung 128.1551 37.46463

30 585 Sinnam 128.0742 37.95996

31 587 Bangsan 127.9533 38.22642

32 588 Namsan 127.6429 37.79066

33 593 Yangyang-Yeongdeok 128.5407 38.00731

34 597 Daehwa 128.4411 37.54548

35 661 Hyeonnae 128.4025 38.54385

36 670 Yangyang 128.6297 38.08725

37 671 Cheongho 128.5936 38.19091

38 674 Sabuk 128.8214 37.21963

39 678 Gangneung-Seongsan 128.778 37.7244

40 679 Gangneung-Wangsan 128.7726 37.61058

41 681 Wondong 127.8117 38.24379

42 684 Chunchon-Sinbuk 127.7763 37.9546

43 696 Singi 129.0861 37.34661

44 875 Seorak 128.4606 38.12107

45 876 Samcheok 129.1621 37.45003

46 878 Dogye 129.0961 37.22379

3.3. Setting the Influence Distance of Meteorological Stations

The radius was adjusted to 1, 3, 5, 7, 9, 11, 13, and 15 km from the individual debris-
flow disaster point to analyze the parameter sensitivity of the automatic rainfall threshold
calculation algorithm. Here, the reason why the maximum threshold is assumed to be
15 km is that Korea has a small land area and a close distance between weather stations.
Stations within the affected radius from the location of the individual debris-flow disaster
were selected, and the cumulative rainfall for each duration of the disaster was calculated
for 24 h before the occurrence of the debris-flow disaster (Figure 5).

Figure 5. Status map of the influence distance setting for meteorological stations.

4. Analysis Results

Using the debris flow-induced rainfall threshold calculation program, 16,423 rainfall
events were reconstructed during the study’s target period (2010–2020). In addition, it
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was derived that 14 of the 18 debris-flow disaster events entered, considering the location
of the debris-flow disaster and the distance from the rain gauge, were caused by rainfall.
thirty-six rainfall events were identified as being closely associated with the occurrence of
fourteen debris-flow disaster events. For these, the logarithmic distribution of cumulative
event rainfall (EL) and rainfall event duration (DL) is shown in Figure 6a. Meanwhile,
the empirical cumulative distribution function (ECDF) and duration relationship curve
(Figure 6b) and ECDF and cumulative rainfall (E) relationship curve (Figure 6c) were
derived. As a result of the derivation, it was found that about 40% of debris-flow disasters
occurred within 24 h and 80% occurred in the cumulative rainfall section of less than
200 mm. It can be seen that debris-flow disasters take place due to torrential rains that
occur in a short period of time. In the final nomogram, a logarithmic scale was not utilized
to examine the sensitivity of station distance to debris flow occurrences. Instead, the focus
was on determining the amount of lead time that can be secured prior to a debris flow
event, based on the time of day.

Figure 6. (a) Distribution of the DL (rainfall event duration) and EL (cumulated event rainfall) pairs,
in log-log coordinates (purple dots); (b) ECDF (the empirical cumulative distribution function) of D
(duration); (c) ECDF of E (cumulated rainfall) [35].

Utilizing the compiled datasets of rainfall and debris-flow incidents, thresholds for
cumulative rainfall (E) and event duration (D) across the designated study area were
established. Subsequently, correlation analyses yielded graphs and equations linking
cumulative precipitation to duration for exceedance probabilities (EPs) of 70% (represented
in blue), 50% (in gray), and 10% (in yellow), as illustrated in Figure 7. Nevertheless,
the absence of meteorological stations precluded the generation of graphs for maximum
permissible distances of 1, 3, 5, and 7 km. Conversely, at extended distances of 9, 11, 13, and
15 km, significant correlations were identified. The analysis indicated an increase in the
optimal maximum allowable distance for cumulative rainfall duration at 11 km compared
to 9 km, with a subsequent decrease in correlation strength at distances of 13 and 15 km.
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Figure 7. Plot with the ED (cumulative event rainfall–duration) conditions that triggered debris-flow
corresponding to 70%, 50%, and 10% thresholds (maximum allowed distance: 9 km (a), 11 km (b),
13 km (c), and 15 km (d)).

Table 3 details the parameters α and γ, along with the outcomes of the analysis on
the relationship between cumulative rainfall and duration, contingent upon the maximum
permissible distance from the influencing meteorological station. Table 4 summarizes the
results of calculating cumulative rainfall and rainfall intensity according to the duration of
each maximum allowed distance.

Table 3. Parameters α and γ, at various exceedance probabilities.

No.
Maximum Allowed

Distance (km)
Exceedance

Probability (%)
α Δα γ Δγ

1
9

70 48.5 23.8 0.22 0.13
2 50 38.1 19.6 0.22 0.13
3 10 32.9 16.6 0.22 0.13

4
11

70 48.5 23.8 0.24 0.15
5 50 38.1 19.6 0.24 0.15
6 10 28.0 15.5 0.24 0.15

7
13

70 48.5 23.8 0.21 0.13
8 50 38.1 19.6 0.21 0.13
9 10 29.1 15.9 0.21 0.13

10
15

70 48.5 23.8 0.15 0.12
11 50 38.1 19.6 0.15 0.12
12 10 36.8 17.5 0.15 0.12

Table 4. Rainfall analysis results Based on exceedance probability by maximum allowed distance.

Maximum Allowed
Distance (km)

Exceedance
Probability (%)

Rainfall Duration
(h)

Cumulative Rainfall
(mm)

Rainfall
Intensity
(mm/h)

9

70
6 74.6 12.4
12 88.1 7.3
24 104.0 4.3

50
6 56.5 9.4
12 65.8 5.5
24 76.7 3.2

10
6 48.8 8.1
12 56.8 4.7
24 66.2 2.8
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Table 4. Cont.

Maximum Allowed
Distance (km)

Exceedance
Probability (%)

Rainfall Duration
(h)

Cumulative Rainfall
(mm)

Rainfall
Intensity
(mm/h)

11

70
6 74.6 12.4
12 88.1 7.3
24 104.0 4.3

50
6 58.6 9.8
12 69.2 5.8
24 81.7 3.4

10
6 43.0 7.2
12 80.5 4.2
24 60.0 2.5

13

70
6 70.7 11.8
12 81.7 6.8
24 94.5 3.9

50
6 55.5 9.3
12 64.2 5.4
24 74.3 3.1

10
6 42.4 7.1
12 49.0 4.1
24 56.7 2.4

15

70
6 63.5 10.6
12 70.4 5.9
24 78.1 3.3

50
6 49.8 8.3
12 55.3 4.6
24 61.4 2.6

10
6 48.1 8.0
12 53.4 4.5
24 59.3 2.5

Using the results of Table 4 and debris-flow disaster occurrence information and rain-
fall information in Gangwon-do, a soil disaster risk nomogram according to the maximum
allowable distance (9, 11, 13, and 15 km) by excess probability (70%, 50%, and 10% range)
was developed. In this paper, the warning stage was classified according to the excess
probability, and the 10–50% section was classified as alert, the 50–70% section as warn-
ing, and emergency when it was 70% or more. Based on the case of Samcheok Sinnam
Village, an area affected by the debris-flow disaster in October 2019, the applicability of
the time-specific risk matrix was reviewed. Figure 8a illustrates the hyetograph for a case
where a debris flow occurred. In Figure 8b, the formula based on exceedance probability
is presented, with the vertical dashed line indicating the moment when the debris flow
occurred. Figure 8c shows the warning levels according to cumulative rainfall. When
applying the nomogram with a maximum allowed distance of 9 km, it was observed that
it reached the most dangerous “severe” level about 4 h before the debris-flow disaster
occurred (3 October 2019, 01:00), as shown in Figure 8.

Figure 8. Application to Samcheok Sinnam Village damage case and risk rating status [35].
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Upon applying the nomogram to each maximum allowable distance, the analysis
revealed that Figure 9a entered the severe level approximately 4 h prior to the debris flow
disaster, based on a maximum allowable distance of 9 km. Figure 9b entered the severe level
about 4 h before, with a maximum allowed distance of 11 km. Figure 9c, with a maximum
allowed distance of 13 km, entered the severe level about 5 h before, and Figure 9d, with a
maximum allowed distance of 15 km, was found to enter the severe level about 5 h before.
In this context, the arrow indicates the transition from a warning to an emergency phase,
while the black circle denotes the moment when the debris flow occurred.

Figure 9. Results by maximum allowable distance ((a) maximum allowable distance 9 km: entered
emergency stage about 4.3 h before the debris-flow disaster event occurred; (b) maximum allowable
distance 11 km: entered emergency stage about 4.6 h before; (c) maximum allowable distance 13 km:
entered emergency stage about 4.9 h before; and (d) maximum allowable distance 15 km: entered
emergency stage about 5.2 h before).

In [32], radar rainfall was used to estimate the rainfall of localized debris flows in
mountainous areas, and a radar rainfall calibration model was developed using machine
learning techniques. The basin average rainfall of the calibrated radar rainfall was calcu-
lated and applied to the same area as the subject of this study. The result of [32] showed a
forecasting time of 3 h, as shown in Figure 10, but in this study, an average forecasting time
of 4 to 5 h can be obtained.

Figure 10. Evaluation and verification of applicability to debris-flow forecasting using mean areal
rainfall [32] (Rc: Critical Accumulated Rainfall).
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When comparing the results of this study with other studies, it was found that appro-
priate values were obtained, and although there are limitations in the terrain characteristics
of Gangwon-do, it was concluded that the influence range of each rain gauge could be
applied up to 15 km.

5. Summary and Conclusions

Due to climate change, there has been an increase in rainfall intensity over time, leading
to an escalation in debris-flow occurrence and damages, making it a significant social
issue. Rainfall is a direct factor that causes debris-flow disasters. Therefore, analyzing the
relationship between rainfall and debris-flow disasters is essential as a proactive measure
in developing debris-flow disaster forecasting and response systems. In this study, the
tool proposed by [21] was adapted to calculate the amount of debris flow-induced rainfall
suitable for the Korean terrain through a parameter sensitivity analysis of the automatic
threshold estimation algorithm of rainfall for debris-flow disasters. The main research
content and conclusions are as follows:

(1) Rainfall criteria that cause sediment disasters are mainly presented using the I-D
method for analyzing the relationship between rainfall intensity and duration. How-
ever, the methodologies for selecting the representative rain gauge and the definition
of rainfall that causes debris-flow disasters may vary. Thus, it is necessary to use an
automatic program that can derive objective results for them. Overseas, the devel-
opment and applicability evaluation of automatic rainfall calculation programs for
debris-flow disasters has been conducted in Italy and India. This study conducted
basic research to develop programs suitable for Korea and evaluate their applicability.

(2) In previous studies, there were limitations in using subjective methodologies for
selecting impact meteorological stations and preceding rainfall, which had a high
impact on the reliability of the criteria for debris flow-induced rainfall. This study
adjusted the maximum allowed distance to 1, 3, 5, 7, 9, 11, 13, and 15 km using
an automatic calculation algorithm for debris flow-induced rainfall thresholds, and
a sensitivity analysis was performed automatically. As a result of applying the
automatic calculation algorithm and the maximum allowed distance scenario to the
Gangwon-do region, quantitatively checking the change in the cumulative rainfall
by duration according to EPs was possible. Based on this information, a nomogram
was developed for the prediction and warning of the risk of sediment disasters in the
Gangwon-do region.

(3) The results of applying this study to Sinnam Village, Samcheok City, which was
affected by a debris-flow disaster in 2019, showed that the risk of debris-flow disasters
increases with the occurrence of rainfall, and that the risk forecast for the severe stage
can be predicted as early as 4.3, 4.6, 4.9, and 5.2 h in advance of the very severe stage,
depending on the maximum allowable distance from the rain gauge (9, 11, 13, and
15 km, respectively).

In this study, an algorithm-based approach was utilized to determine rainfall thresh-
olds for the major debris flow occurrence areas in Korea. By deriving quantitative rainfall
thresholds based on the relationship with the maximum allowable distance of rain gauges
from debris-flow disaster site information, we presented a practical methodology that com-
plements the theoretical limitations of existing studies. The results proposed in this study
were analyzed assuming a maximum allowable distance of 15 km, but the applicability
of the results by expanding the range requires further analysis and further research in
conjunction with predicted rainfall information. In addition, since this study utilized only
debris-flow disaster information limited to the Gangwon region, it is necessary to verify
and improve the algorithm by expanding the region, and further verification through com-
parison with physics-based debris flow models is required. If the algorithm and its accuracy
are improved through further research, it is believed that the algorithm used in this study
can be applied to the system to reduce damage before a debris-flow disaster occurs.
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Abstract: Studies on the stability inter-controlled factors of fine-grained sediments in debris flow
gullies play an important role in predicting the scale and danger of debris flows. However, up
to the present, few studies have been carried out on the spatial distribution pattern and causes of
stability inter-controlled factors of fine-grained sediments in debris flow gullies, leading to difficulty
in finding the dangerous section of debris flow gullies to be monitored and controlled to reduce
disaster losses. Therefore, the objective of this paper is to analyze the spatial distribution pattern
and causes of stability inter-controlled factors (grain size, permeability coefficient, shear strength,
and porosity), taking the Beichuan Debris Flow Gully, China, as a case. After collecting soil samples
in the field, we carried out experiments to measure the stability inter-controlled factors and, from
these, the results show that (1) fine-grained sediments in this case are mainly silty loams, which are
stable under non-heavy rains; (2) the grain size of silty loams is mainly concentrated between 10
and 20 μm, with a spatial distribution pattern of fine in the middle and coarse at both ends; (3) the
permeability coefficient of silty loams is concentrated between 1.15 and 2.17 m/d, with a spatial
distribution pattern of high in the middle and low at both ends; (4) the average cohesion of silty
loams is mainly concentrated between 20 and 30 kPa, with a spatial distribution pattern of low in
the middle and high at both ends; and (5) the internal friction angle of silty loams is concentrated
between 18.98 and 21.8◦, with a spatial distribution pattern of high in the middle and low at both
ends. The main reasons for these spatial distribution patterns are analyzed from three aspects of
shear strength, water flow velocity, and terrain, which can provide a scientific basis for the prediction
of debris flow disasters in such areas.

Keywords: debris flow gully; fine-grained sediments; soil stability; inter-controlled factors; Beichuan;
particle size

1. Introduction

In recent years, due to the comprehensive impacts of tectonic activities and climate
change, the frequency and scale of debris flow disasters have increased, causing serious
impacts on people’s lives and property, and have attracted a lot of attention from countries
and scholars to carry out research.
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The effects of slope on water flow, the influence of material composition and grain
size distribution on the initiation conditions of debris flows [1–5], and the disaster mech-
anisms were studied from the aspects of material source characteristics [6–8], rainfall
conditions [9–12], terrain and geomorphic conditions [13], tectonic activities [14], etc. Based
on these, debris flow initiation models were established, such as mathematical model-
ing [15] and hydrodynamic models [16–18].

Debris-flow-influencing factors and their relationships with the outflow, disaster
chains, and principles of lateral erosion were studied, such as relationships between max-
imum runout amount and risk-assessment-influencing factors [19–22]. Based on these,
models for danger sensing and prediction for debris flows were established, such as critical
rainfall patterns [23], gully formation types [24], and hazard assessment and prevention
models [25–29].

Based on three disaster modes (channel blocked, channel undercut, and landslide
recharged), plans for disaster prevention and control were proposed, such as sediment
mitigation measures [30], and hazard source analysis and prevention were based on hazard
assessment and formation mechanism analysis [31–36].

As we know, during the initiation, transportation, and aggregation of debris flow,
fine-grained sediments (quaternary sediments with a grain size of less than 2 mm) in
debris flow gullies play a starring role, increasing the density, amplifying the danger of
debris flows, and thus increasing the difficulty of debris flow prevention and control.
Therefore, strengthening the research on stability inter-controlled factors of fine-grained
sediments in debris flow gullies plays an important role in predicting the scale and danger
of debris flows.

The stability inter-controlled factors of fine-grained sediments mainly include grain
size, permeability coefficient, shear strength, and porosity. Grain size refers to the particle
diameter of sediments; the permeability coefficient is the unit flow rate under a unit
hydraulic gradient; shear strength refers to the ultimate strength of soil to resist shear
failure, which includes cohesion and effective internal friction angle; and porosity is the
percentage of soil pores per unit volume.

There are some studies on fine-grained sediments in debris flow gullies: (1) erosion
characteristics [37], hydrodynamic conditions [38], and grain size distribution characteris-
tics of sediments were studied [39], and (2) the relationship between permeability coefficient
and its influencing factors [40], as well as that between cohesion and its influencing factors,
was analyzed [41]. Based on these, hyperspectral detection models for cohesion [42] and
permeability coefficient were also established [43], and (3) the permeability characteristics
and transport principles of channel sediments were summarized, and a start-up model for
loose sediments was established [44].

However, up to the present, there is no research on the spatial distribution pattern
and causes of the stability inter-controlled factors of fine-grained sediments in debris flow
gullies, resulting in difficulty in locating dangerous river sections for prevention. Therefore,
the objective of this paper is to analyze the spatial distribution pattern and causes of the
stability inter-controlled factors. According to this, we can find unstable river sections for
debris flow disaster prevention.

2. Study Area

As shown in Figure 1, the study area is located in Laobeichuan County, Sichuan
Province, China, with geographic coordinates of 104◦14′–104◦33.5′ E, 31◦47.9′–31◦53.5′ N,
covering an area of 341 km2. It belongs to a subtropical humid monsoon climate zone, with
an annual average temperature of 15.6 ◦C and an annual average rainfall of 1399.1 mm.
Of this, 70% of the annual rainfall is concentrated from June to September [11,34]. The
strata of the study area mainly include the Dengying strata from the Upper Sinian, the
Qingping strata from the Lower Cambrian, the Maoxian Group from the Upper and Middle
Silurian, and the Quaternary sediments. In these, the main rock types include dark gray
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siltstone, siliceous rock, phosphorous mudstone, phosphorous limestone, phyllite, slate,
schist, limestone, sand shale, and sandy soils [13].

  

Figure 1. Map of the study area (left), the blue arrow indicates the direction of water flow) with
location in Sichuan Province (right).

The main lithology in the study area indicates that most of the metamorphic rocks,
marls, and Quaternary sediments have poor stability and could easily form debris flows.
Especially, the Wenchuan earthquake with MS8.0 magnitude on 12 May 2008 caused severe
strata fragmentation, resulting in a large number of loose sediment events like landslides,
landslips, etc. Under the triggering of heavy rainfall, multiple serious debris flow disasters
occurred on 20 August 2019, 11 July 2018, 28 July 2016, etc. They not only destroyed
farmlands, roads, and bridges but also broke power and communication facilities, causing
significant economic losses and posing a serious threat to the residential settlements [28].

3. Data and Equipment

As shown in Table 1, the Gaofen-2 (GF-2) remote sensing image covering the study
area is first acquired with the highest spatial resolution of 0.8 m. Using this, the locations of
fine-grained sediments in the debris flow gully are extracted (SP01–SP15 sampling points in
Figure 1). Then, the DEM data are acquired to analyze elevation of the study area. Finally,
after the debris flow disaster on 20 August 2019, 200 soil samples were obtained from
15 sampling points using a ring cutter between 19 and 25 March 2021 and the number of
samples at each sampling points is shown in Table 2. Each sample has a volume of 600 mL
and a weight of about 1 kg. With a diameter of 7 cm and a depth of 5.2 cm, the volume of
the ring knife is 200 mL. Using this, the sampling procedure for a soil sample is as follows:
1© clean the ring knife using a soft cloth; 2© put it into the sediment vertically. When it is

full of soil, pull it out and cut off the over-flowing soil with a knife. Thus, a soil sample
with a volume of 200 mL is collected; 3© put the soil sample into a plastic bag and seal it
immediately. After collecting three soil samples in the same plastic bag according to the
above steps, seal the plastic bag and consider it as a sample with a volume of 600 mL and
put it into a cotton bag; 4© record the sample number and its geographical location using
a global positioning system (GPS) and write the sample number on the cloth sample bag
with a marker [43].

Table 1. Data and equipment table.

Materials Equipment Manufacturer/Provider

Remote sensing images Gaofen-2 (GF-2) Land satellite remote sensing application
center, Beijing, China

Digital elevation
model (DEM)

Advanced Spaceborne Thermal
Emission and Reflection

Radiometer (ASTER)

Ministry of International Trade and
Industry, Tokyo, Japan

Soil Ring knife (200 mL) Longnian Hardware Tools Store,
Suqian, China

Particle size Mhcrotra-S3500 Microtrac MR B, Montgomeryville,
PA, USA
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Table 1. Cont.

Materials Equipment Manufacturer/Provider

Permeability coefficient TST-55 permeameter Zhejiang Dadi Instrument Co., Ltd.,
Shaoxing, Zhejiang, China

Density MDJ-300A solid densitometer Shanghai Lichen Instrument Technology
Co., Ltd., Shanghai, China

Porosity TST-55 permeameter Zhejiang Dadi Instrument Co., Ltd.,
Shaoxing, Zhejiang, China

Shear strength ZJ strain-controlled direct
shear instrument

Nanjing soil instrument factory Company
Limited (Co., Ltd.), Nanjing,

Jiangsu, China

Table 2. Number of samples at each sampling points.

Sampling Points Number Sampling Points Number

SP01 20 SP09 20
SP02 15 SP10 10
SP03 15 SP11 10
SP04 15 SP12 10
SP05 20 SP13 10
SP06 15 SP14 10
SP07 10 SP15 10
SP08 10

Total 200

Based on these steps, experiments are carried out to measure density, grain size,
permeability coefficient, and shear strength of samples.

4. Methodology

The flow chart for studying stability inter-controlled factors of fine-grained sediments
is shown in Figure 2. On the basis of obtaining remote sensing, DEM, and geological
background data of the study area, experiments are carried out to measure the stability
inter-controlled factors, such as grain size, permeability coefficient, shear strength, and
porosity. Based on these, the spatial distribution patterns of stability inter-controlled factors
of fine-grained sediments are summarized, and the risk of debris flow disasters is analyzed
to provide a scientific basis for the prevention and control of geological disasters in the
study area.

4.1. Grain Size Measurement

Grain size refers to the particle diameter, which has some impacts on the porosity and
permeability coefficient of fine-grained sediments, thereby controlling the sediment stability.
We use the Microtrac S3500 laser analyzer to measure the grain size of the sediments whose
main steps and results can be found in [43]. The results indicate that the grain size of
fine-grained sediments in the study area is mainly concentrated between 10 and 20 μm,
belonging to the silty loams [45]. The average grain size of each sampling point is shown
in Figure 3, showing a spatial distribution pattern of fine in the middle and coarse at
both ends.

4.2. Permeability Coefficient Measurement

The permeability coefficient, also known as the hydraulic conductivity coefficient,
is the unit flow rate under a unit hydraulic gradient. It mainly reflects the size, number,
and connectivity of soil pores [46], and is the main parameter controlling the stability of
fine-grained sediments. The permeability coefficient of fine-grained sediments in the study
area is measured using a TST-55 permeability meter, whose process and results are shown
in [40]. The permeability coefficients of most fine-grained sediments in the study area are
concentrated between 1.15 and 2.17 m/d, which can be classified as medium permeability
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and stable in the case of non-heavy rains. The average permeability coefficient of each
sampling point is shown in Figure 4, showing a spatial distribution pattern of high in the
middle and low at both ends.

 
Figure 2. Flow chart for studying the spatial distribution pattern of stability inter-controlled factors
of fine-grained sediments in debris flow gullies.

  

Figure 3. Average grain size distribution pattern of fine-grained sediments (left) and its box–whisker
plot (right).
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Figure 4. Distribution pattern of the average permeability coefficient of fine-grained sediments (left)
and its box–whisker plot (right).

4.3. Shear Strength Measurement

Including cohesion and effective internal friction angle, shear strength refers to the
ultimate strength of soil to resist shear failure, which is an important parameter to measure
stability of fine-grained sediments. Cohesion is the mutual attraction between adjacent
parts within the same substance; the effective internal friction angle indicates the magnitude
of internal friction between soil particles, including the surface friction forces and the biting
forces generated by the embedding and interlocking between soil particles. To measure
the cohesion and effective internal friction angle of fine-grained sediments in the study
area, a ZJ strain-controlled direct shear instrument is used, whose steps and results are
shown in [43]. As shown in Figure 5, the average cohesion is mainly concentrated between
20 and 30 kPa with a spatial distribution pattern of low in the middle and high at both
ends. On the other hand, as shown in Figure 6, the internal friction angle is concentrated
between 18.98 and 21.8◦ with a spatial distribution pattern of high in the middle and low at
both ends.

  

Figure 5. Spatial distribution pattern of averaged cohesion of fine-grained sediments (left) and its
box–whisker plot (right).

4.4. Porosity Measurement

Porosity is the percentage of soil pores per unit volume, which is the space for water
movement and storage, and the key factor influencing soil permeability and thus deter-
mining surface runoff rate. The steps and results of measuring porosity using a TST-55
permeameter can be found in [43]. The porosity of fine-grained sediments in the study area
is mainly concentrated between 52 and 68%, belonging to the medium to high porosity.
The average porosity of each sampling point is shown in Figure 7. The average porosity is
relatively high at SP09.
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Figure 6. Spatial distribution pattern of averaged internal friction angle of fine-grained sediments
(left) and its box–whisker plot (right).

  

Figure 7. Spatial distribution pattern of averaged porosity of fine-grained sediments (left) and its
box–whisker plot (right).

5. Results

Based on the variation characteristics of grain size, permeability coefficient, cohesion,
and internal friction angle of fine-grained sediments along the Jianjiang River (Figures 3–7),
the sampling points are divided into three sections: upstream (SP01–SP05), midstream
(SP06–SP12), and downstream (SP13–SP15). Their characteristics are summarized as follows.

In the upstream (SP01–SP05), (1) the fine-grained sediments are mainly composed
of silty loams, with an average grain size of 22.94 μm, and a downward trend from
SP01 to SP05; (2) the average permeability coefficient is 1.42 m/d, belonging to medium
permeability and showing an upward trend from SP01 to SP05; (3) the average cohesion is
24.3 kPa, showing a decreasing trend from SP01 to SP05 (Figure 5), and the average internal
friction angle is 19.87◦, showing an upward trend from SP01 to SP05 (Figure 6); (4) the
cumulative distribution pattern of grain size (Figure 8) shows inflection points at 10, 20,
and 30 μm, indicating poor sorting characteristics. On-site photos (SP01–SP05, Figure 8)
also confirm the above conclusion: soils at SP01 are in a plate condensed state with the
characteristics of high cohesion and strong erosion resistance. However, the following
photos of SP02–SP05 show that the sediments are loosely accumulated, indicating low
cohesion and high permeability. Therefore, for SP01 to SP05, we draw a conclusion that the
soil’s ability to resist water flow erosion becomes strong to weak, resulting in the risk of
debris flow disasters becoming weak to strong.

129



Water 2024, 16, 634

 
Grain size cumulative distribution curve of SP01–SP05 

 
Photo of SP01 (No. 567)  

  
Photo of SP02 (No. 563)  

 
Photo of SP03 (No. 560) 

 
Photo of SP04 (No. 557) 

 
Photo of SP05 (No. 553) 

 
Zoomed-in image of SP01 (No. 567) 

Figure 8. Cumulative grain size distribution curve and field photos of fine-grained sediments in
upstream river (SP01–SP05).
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In the midstream (SP06–SP12), the fine-grained sediments are mainly composed of
silty loams. (1) The average grain size of the sediments in this section is 17.83 μm. Except for
the coarse grain size at SP11, grain sizes at other points are almost the same and distributed
horizontally (Figure 3). The cumulative distribution curve indicates the distribution of
grain size in this section concentrates between 10 and 40 μm with good sorting; (2) the
average permeability coefficient of the sediments in this section is 1.83 m/d, belonging to
medium permeability (Figure 4); (3) the average cohesion of the sediments in this section
is 21.4 kPa with an averaged internal friction angle of 20.68◦. Except for the high internal
friction angle at SP06, internal friction angles at other points are horizontally distributed
(Figure 6). On-site photos (SP06–SP12, Figure 9) also confirm the above conclusion: the silty
loams in this section are in a loose accumulation state with fine grain size, high moisture
content, good sorting, and relatively poor erosion resistance, leading to increased instability
of the sediments and the high risk of debris flow disasters.

 

Grain size cumulative distribution curve of SP06–SP12 
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Figure 9. Cont.
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Photo of SP10 (No. 536) 
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Figure 9. Cumulative grain size distribution curve and field photos of fine-grained sediments in
midstream river (SP06-SP12).

In the downstream (SP13–SP15), the fine-grained sediments are mainly composed of
silty loams, with an average grain size of 33.23 μm. (1) Compared to the sediments in the
upstream and midstream, their grain size is coarser and gradually increases from SP13 to
SP15 (Figure 3). The cumulative distribution curve of grain size in the downstream shows
that, except for a sharp increase at 22 μm, the grain size of the sediments is concentrated
from 10 to 52 μm, indicating the general sorting characteristics (Figure 10); (2) the average
permeability coefficient of the sediments is 1.51 m/d, belonging to medium permeability,
showing a gradually decreasing trend from SP13 to SP15 (Figure 4); (3) the average cohesion
of the sediments is 24.53 kPa, showing an upward trend from SP13 to SP15 (Figure 5), and
the average internal friction angle is 19.83◦ and, except for the high internal friction angle at
SP15, it shows a decreasing trend (Figure 6). The on-site photos (SP13–SP15, Figure 10) also
confirm the above conclusion: the silty loams in this section are in a loose accumulation
state with low water content, coarse sand particles filled with clays, average sorting, and
relatively strong erosion resistance, which increases the sediment stability and thus reduces
the risk of debris flow disasters.
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Grain size cumulative distribution curve of SP13–SP15  
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Figure 10. Cumulative grain size distribution curve and field photos of fine-grained sediments in
downstream river (SP13–SP15).

6. Discussion

Reasons for the results are discussed as follows.
In the upstream (SP01–SP05), compared to midstream (SP06–SP12), this section has

the characteristics of low permeability coefficient, low effective internal friction angle,
and high cohesion. Reasons for this phenomenon are mainly because it is located in the
upstream river and easily eroded due to the water flow, tributary effect, elevation difference
between this section and its surroundings, etc. The relatively fine-grained sediments are
carried to the middle and downstream of the river, thus depositing relatively coarse-grained
sediments. Clay minerals can easily fill in the large pores between coarse particles, resulting
in relatively poor sorting of the sediments in this section with low permeability coefficient,
low effective internal friction angle, and high cohesion. From these, we can see that the
risk of debris flow disasters becomes weak to strong from SP01 to SP05 and the outbreak of
debris flow is the result of the comprehensive effects of sediment seepage field and stress
field: 1© the permeability coefficient is the main parameter of the sediment seepage field.
The seepage field is not only a storage environment but also a component of sediments.
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Sediments with high permeability coefficients are prone to let water infiltrate to the bottom,
increasing their own gravity and forming pore water pressure to break the sediment stability,
thereby increasing the probability of debris flow disasters. The permeability coefficient
shows an upward trend from SP01 to SP05 and the risk of debris flow disasters becomes
weak to strong from SP01 to SP05. 2© Shear strength is the main parameter of sediment
stress field. When the shear stress meets the maximum shear strength of the sediments, they
collapse and then slide with the water flow, resulting in debris flow disasters. Sediments
with high shear strength have strong cohesion, high stability, and are less prone to erosion,
thus providing fewer material sources for debris flow disasters. On the contrary, sediments
with low shear strength can provide more material sources, resulting in a larger scale and
more dangerous debris flow disaster. Cohesion shows a decreasing trend from SP01 to
SP05, and the risk of debris flow disasters becomes weak to strong.

In the midstream (SP06–SP12), compared to upstream and downstream, sediments in
this section have the characteristics of high permeability coefficient, high effective internal
friction angle, and low cohesion. The main reason for this phenomenon is that the terrain of
this section is relatively low and the river channels are winding with high curvature: the low
river terrain in the high surrounding mountain terrain results in the accumulation of water
during the rainy season, leading to a large water supply and causing severe soil erosion.
Based on this, the high-density debris flow forms from west to east. At the same time, this
section is also blocked by its high curvature, especially the highest curvature from SP07 to
SP09, resulting in a severe decrease in water flow velocity, which weakens the river’s sand-
carrying capacity and makes it easily form good sorting sediments. Therefore, compared
to the sediments in the upstream and downstream, the silty loams in this section have
the characteristics of finer grain size and better sorting with high permeability coefficient,
high effective internal friction angle, and low cohesion, and thus leading to high instability
of sediments. So, the risk of debris flow disasters in this section is relatively high and
thus needs more attention to monitor and control it, especially from SP07 to SP09 with the
highest curvature.

In the downstream (SP13–SP15), compared to the sediments in the midstream, the
sediments in this section show the characteristics of coarse grain size, low permeability
coefficient, low effective internal friction angle, and high cohesion. The main reason for
this phenomenon is mainly that there is a significant elevation difference between this
section and its surroundings, resulting in high water flow speed with strong sediment-
transporting capacity. Fine-grained sediments are transported far, while the coarse-grained
sediments are left here, which are prone to adsorb clay particles, and thus resulting in low
permeability coefficient, low effective internal friction angle, and high cohesion. According
to poor conditions of low permeability coefficient and high cohesion, the risk of debris flow
disasters happening in this section is relatively low.

As to the spatial distribution pattern of the stability inter-controlled factors of fine-
grained sediments in the whole debris flow gully, we can discuss it as follows.

The average grain size of fine-grained sediments in the study area is relatively coarse
with poor sorting in the upstream and downstream river, while it is relatively fine with
good sorting in the midstream. The reason for this phenomenon is that the finer the grain
size of sediments is, the farther they can be transported. Therefore, in general, rivers always
show a characteristic of coarse to fine grain size from upstream to downstream. However,
in this study area, due to the impact of high curvature in the middle stream, the water
flow velocity slows down, which decreases the sand-carrying capacity, thus forming a
sedimentary environment to make the sediments deposit with the characteristics of fine
grain, good sorting, and high permeability coefficient.

The average permeability coefficient is relatively low in the upstream and downstream
river and high in the middle. This is mainly related to the sediment properties: the grain
size of the upstream and downstream sediments is heterogeneous and fine-grained particles
are easily adsorbed among coarse-grained ones, resulting in pore blockage and thereby
reducing their permeability coefficients. Meanwhile, the grain size of the sediments in the
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midstream river is relatively uniform, with good sorting and independent space between
particles, thus leading to relatively large porosity and good permeability coefficient.

At 22.99 kPa, the average cohesion of the whole gully has a medium to low level with
poor stability [47], which is relatively high in the upstream and downstream and low in the
midstream. Therefore, it is prone to erosion and transportation, resulting in the formation
of debris flows and thus needing to be monitored and controlled with more attention in the
midstream river.

Based on sedimentology, the main reasons for the spatial distribution of the stability
inter-controlled factors of fine-grained sediments in debris flow gullies are discussed
as follows.

The first reason is shear strength. Sediments with high shear strength have strong
cohesion, are not easily eroded, and thus have a high stability and a short transporting
distance in rivers, making them form coarse-grained sediments with poor sorting. On the
contrary, sediments with low shear strength have lower stability and longer transporting
distances in rivers, making them easily form fine-grained sediments with good sorting.

The second reason is water flow velocity. The water flow velocity determines the
erosion and transporting capacity of a river. Under the same conditions, the faster the
velocity of the water flow is, the higher the erosion ability and the stronger the carrying
capacity of the rivers. The grain size of sediments is relatively coarse, with poor sorting
and low permeability coefficient. On the contrary, the slower the water flow velocity is,
the weaker the transporting capacity of the river becomes, and the easier it is to form a
sedimentary environment. The grain size of sediments becomes finer and the permeability
coefficient becomes higher. This also explains why the sediments from SP07–SP09 show
finer grain size with higher permeability coefficient: due to the high curvature of the river
in this section, the water flow velocity slows down. Sediments transported from upstream
are prone to deposit, leading to the formation of fine-grained sediments with good sorting
and high permeability coefficient.

The third reason is terrain. As we know, terrain controls potential energy and wa-
ter flow velocity, thereby controlling the degree and scope of sediment erosion and thus
controlling the danger of debris flow disasters. Under the same rainfall, the steeper the
terrain is, the faster the water flow on the surrounding slopes becomes, thus resulting in
stronger erosion ability, which generates more sources of sediments with longer transport-
ing distances. On the contrary, the gentler the terrain is, the fewer material sources are
generated and the shorter the sediments’ transport. Therefore, terrain also controls the
spatial distribution pattern of the sediments.

7. Conclusions

In this study, the spatial distribution patterns of stability inter-controlled factors of fine-
grained sediments in debris flow gullies are first summarized. Then, a relationship between
stability inter-controlled factors of fine-grained sediments and outbreak probability of
debris flow disasters is discussed.

(1) The spatial distribution pattern of stability inter-controlled factors of fine-grained
sediments in debris flow gullies is summarized.

We have summarized the spatial distribution characteristics of stability inter-controlled
factors (grain size, permeability coefficient, and shear strength) of fine-grained sediment
in the upstream, midstream, and downstream river: 1© the average grain size of fine-
grained sediments in the study area is 24.39 μm, belonging to silty loams. In space, it
is characterized by relatively coarse grain size and poor sorting in the upstream and
downstream river, and the grain size of sediments in the midstream river is relatively
fine with good sorting; 2© the average permeability coefficient of silty loams in the study
area is 1.63 m/d, which can be classified as medium permeability. In space, it is relatively
low in the upstream and downstream river and relatively high in the midstream river;
3© the average effective internal friction angle of silty loams in the study area is 20.24◦,

being a medium to low effective internal friction angle. In space, it is relatively low in the
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upstream and downstream river and high in the midstream river. On the other hand, the
average cohesion of silty loams in the study area is 22.99 kPa, belonging to the low cohesion
level. In space, it is relatively high in the upstream and downstream river and low in the
midstream river.

(2) A relationship between stability inter-controlled factors of fine-grained sediments and
outbreak probability of debris flow disasters has been discussed.

The outbreak of debris flow is the result of the comprehensive effects of sediment
seepage field and stress field. Sediments with high stability (low permeability coefficient
and high shear strength) are less prone to erosion, thus providing fewer material sources
and forming a less dangerous debris flow disaster. On the contrary, sediments with low
stability (high permeability coefficient and low shear strength) can provide more material
sources to form a larger-scale and more dangerous debris flow disaster.
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Abstract: Under rapid global climate change, the risk of ancient landslide reactivation induced by
rainfall infiltration is increasing significantly. The contribution of cracks to the reactivation of ancient
landslides, as an evolutionary product, is a topic that deserves attention; however, current research
on this issue remains insufficient. In this study, taking the Woda landslide in the upper Jinsha River
as a case study, we investigated the reactivation mechanisms of ancient landslides with and without
cracks under rainfall based on model tests. The study showed that cracks influence the reactivation
range and depth of ancient landslide. In cases where no cracks develop on ancient landslides, rainfall
can only cause shallow sliding with failure concentrated at its front edge. Conversely, when cracks
develop on ancient landslides, rainwater can quickly infiltrate into the sliding zone along the cracks
and induce overall reactivation of the ancient landslide. Furthermore, the reactivation mechanism of
ancient landslides without cracks is that the failure of ancient landslide foot results in progressive
failure at the front of the ancient landslide. When cracks have developed at ancient landslides,
the reactivation mechanism of which involves mid-rear ancient landslide creeping, tensile cracks
develop on the mid-rear ancient landslide, with localized sliding at the front edge, tensile cracks
extending, local sliding range extending, accelerated creeping, and progressive failure of the mid-rear
ancient landslide. These findings shed light on how cracks influence rainfall-induced mechanisms of
ancient landslide reactivation and hold great significance for advancing our understanding regarding
these mechanisms.

Keywords: ancient landslide; reactivation mechanism; rainfall; crack; model test

1. Introduction

The technical term “paleo-landslide” typically refers to landslides that have been
formed for a relatively long time, the classification of which has been subject to varying
perspectives [1–5]. In engineering geological practice, considerable attention is given to
the present stability status of ancient landslides. With the increasing intensity of human
activities and the frequent occurrence of extreme conditions such as strong earthquakes
and heavy rainfall, the risk of ancient landslide reactivation has sharply risen, severely
constraining human engineering programming and construction and causing significant
losses to the lives and properties of local people [6–9]. For example, in 2014, under the
combined actions of excavation at the foot of the landslide, Thompson River erosion, and
heavy rainfall near the ancient landslide group in the Thompson River valley, Canada’s
national railway (CN and CP) reactivated, severely affecting the operational safety of the
railway [10]. In 2016, extreme rainfall caused multiple ancient landslides to reactivate in the
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upstream area of the Tanarello River, Italy, resulting in the destruction of buildings and high-
ways [9]. In July 2018, continuous heavy rainfall induced the reactivation of the Jiangdingya
ancient landslide in Zhouqu County, Gansu Province, China, blocking the Bailong River,
submerging upstream hydropower stations, and damaging the S313 highway [8].

The problem of ancient landslide reactivation has been extensively studied by many
scholars, both domestically and internationally. The main influencing factors include active
faults and earthquakes, mechanical properties of weak interlayers within the accumu-
lation body, changes in reservoir water levels, heavy rainfall, river erosion, and human
engineering activity, etc. [11–16]. Among them, the relationship between ancient land-
slide reactivation and rainfall has attracted widespread attention. Most scholars have
a significant opinion that there is a rainfall threshold for ancient landslide deformation
instability, and usually infer the possibility of ancient landslide instability according to
rainfall intensity [17–19]. Furthermore, they also point out that the rainfall thresholds in
different regions and different types of landslides show significant differences [17–19]. For
example, Gil and Długosz (2006) collected and analyzed meteorological data and ancient
landslide data in the Flysch Carpathians area. The results indicated that there are significant
differences in the rainfall thresholds for different types of ancient landslide reactivation,
with lower rainfall thresholds for muddy ancient landslides compared to sandy ancient
landslides [17]. In addition, some scholars have pointed out that various changes in the
ancient landslide accumulation body caused by rainfall infiltration are also important fac-
tors in ancient landslide reactivation, such as increases in bulk density of ancient landslide
rock–soil mass, the softening of the landslides’ mechanical properties, and the increase in
pore water pressure and groundwater levels [20–28]. For example, Borja and White (2010),
based on theoretical and numerical analyses, revealed the trend of landslide accumulation
deformation and failure under hydrological driving. They pointed out that rainfall leads
to an increase in the saturation degree of the slope rock–soil mass, reducing its cohesive
strength and weakening the frictional resistance of the sliding zone [22].

Although the connection between ancient landslide reactivation and rainfall has been
extensively explained, little attention has been paid to the influence of the interaction
between rainfall and cracks on ancient landslide reactivation. The cracks play a significant
indicative role in the reactivation deformation trend and instability range of the next stage of
ancient landslides. Existing studies have shown that, under rainfall conditions, the deforma-
tion and instability of ancient landslides have typical stress–permeability–damage coupling
characteristics [29–31]. When no cracks have developed on an ancient landslide, the influ-
ence of rainfall on the ancient landslide is limited in depth and range [32–34]. However,
when cracks have developed on the ancient landslide, rainfall has a significant controlling
effect on the ancient landslide’s reactivation [33,35,36]. Macroscopic deformations such as
cracks are products of the evolutionary process of ancient landslide reactivation, and serve
as important preferential pathways for rainwater infiltration. The coupling effect of rainfall
and cracks makes significant contributions to the further deformation and instability of
ancient landslides.

Currently, effective methods for evaluating landslide stability and studying the mech-
anisms of landslide instability include engineering geological analysis, physical modeling,
and numerical simulation. The model tests of landslide are based on the similarity theory
and consider the influence of internal and external factors on landslide stability, which can
allow us to monitor the parameter variation of the model [37–39]. The model test has the
characteristics of high efficiency, accuracy, and cost-effectiveness, and is widely used in the
study of landslides’ instability mechanisms, deformation, and movement processes [40–45].

In this study, the Woda landslide, located in the upper Jinsha River in the eastern
edge of the Qinghai–Tibet Plateau, is taken as a case study. Through landslide model
tests, the deformation and failure patterns of the model slope, with and without cracks,
under rainfall are studied, and the influence of cracks on the reactivation mechanism of
an ancient landslide is revealed. The research results contribute to our understanding of
the contribution of cracks to the reactivation mechanism of ancient landslides induced by
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rainfall, as well as to predicting the deformation and failure patterns of ancient landslides.
The results also provide theoretical references for local geological disaster prevention and
mitigation efforts.

2. Landslide Prototype

The Woda landslide is located at Woda Village, Yanbi Township, Jiangda County,
Qamdo City, Tibet, China. It is situated on the right bank of the upper Jinsha River on the
southeastern edge of the Qinghai–Tibet Plateau (Figure 1). The overall landform of the
Woda landslide resembles a chair shape, with mountain ridges forming the boundaries on
both sides (Figures 1 and 2). The main sliding direction is 30◦, with a longitudinal length of
about 2100 m and a transverse width of about 1660 m. The total area of the Woda landslide
is estimated to be around 2.64 × 106 m2, and the maximum height difference between
the sliding outlet and the front edge of the Jinsha River is up to 247 m (Figure 3). The
accumulation area of the Woda landslide has an area of about 1.32 × 106 m2. The Woda
landslide has two sliding zones, with burial depths of 15 m and 25.5 m, respectively [46].
Based on this information, it is estimated that the volume of the Woda landslide deposit is
approximately 28.81 × 106 m3, making it an extremely large, high-level landslide [46,47].
According to field investigations, the underlying bedrock of the Woda landslide is mainly
composed of shale and carbonaceous shale, with strike angles ranging from 280◦ to 310◦
and dip angles of 25◦ to 30◦. The main components of the accumulation are gravelly soil
and residual slope material. The gravel content ranges from 30% to 45%, with particle sizes
ranging from 20 cm to 50 cm, showing angular shapes and poor roundness. In the sliding
outlet of the front edge of the Woda landslide, a sliding zone soil composed of gravelly clay
was found. It had a thickness of about 50~75 cm, appeared grayish-green, and exhibited
a soft-plastic to flowing-plastic state. The gravel content was approximately 13% to 25%,
with particle sizes ranging from 2 mm to 20 mm, showing distinct angular shapes and
relatively poor roundness.

Our field investigation found that the accumulation area of the Woda landslide is
currently in a stage of overall reactivation, and its deformation can be divided into two
distinct zones: Zone I, with intense deformation, and Zone II, with weak deformation.
Zone I exhibits several localized sliding areas, down scarps, and tensile cracks (Figure 2).
The localized sliding areas are located at the front edge of the Woda landslide and the rear
part of the accumulation area. The tensile cracks and downs scarps are concentrated in the
front part of the accumulation area, indicating the direction of reactivation deformation of
the Woda landslide. The down scarps have a vertical displacement ranging from 30 cm to
120 cm and lengths ranging from 30 m to 230 m. The tensile cracks have lengths ranging
from 20 m to 130 m, widths ranging from 10 cm to 30 cm, and depths ranging from 50 cm
to 300 cm. Most of the down scarps and tension cracks are arranged in a circular arc,
and the strike is roughly perpendicular to the main sliding direction of the landslide
or at a large oblique angle. Zone II shows less pronounced deformation characteristics,
with the development of four down scarps and one localized sliding area. Considering
the deformation characteristics of the Woda landslide accumulation and the topographic
features, the probability of overall sliding occurrence is much higher in Zone I than in Zone
II. Because the sliding surface of the localized sliding area at the front edge of Zone I is
located near the deep sliding zone, the upper accumulation area has a steep free surface.
Based on this, it can be inferred that Zone I may experience destabilization and failure
along the deep sliding zone, with an estimated volume of instability of approximately
17.83 × 106 m3.
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Figure 1. Geological setting of the Woda landslide (Modified according to Wu et al., 2023 [47]).
(a) Tectonic and lithology map, (b) The Woda landslide location, (c) The Woda landslide panorama,
(d) Local slide zone, (e) Tensile crack, (f) Leading edge shear outlet. 1—Schist, slate, shale in the Upper
Triassic Lanashan Formation; 2—Crystal-line limestone, sandstone in the Upper Triassic Tumugou
Formation; 3—Crystalline limestone in the Upper Triassic Qugasi Formation; 4—Monzonitic granites
in the Upper Triassic; 5—diorite in the Upper Triassic; 6—dolerites in the Upper Triassic; 7—ultrabasic
rocks in the Upper Triassic; 8—The sericite–quartz schist and the two-mica schist of the Gangtuoite
Group in the Lower Permian-Triassic; 9—Basalt Blocks in the Permian; 10—Carbonate blocks in the
Silurian; 11—Diorite dike; 12—Strata boundary; 13—Thrust fault; 14—Occurrence; 15—Hornfelsic
zone; 16—The Woda landslide.

Wu et al. (2023) conducted a study indicating that the reactivation deformation rate
of the Woda landslide is primarily controlled by the influence of seasonal rainfall [47].
Under the combined effects of rainfall infiltration and gravity, the slope deforms towards
the downslope direction, resulting in the formation of down scarps and tensile cracks.
These down scarps and tensile cracks serve as preferred infiltration pathways for rainfall,
providing favorable conditions for the subsequent stage of deformation instability of the
Woda landslide.
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Figure 2. Engineering geological planar graph of the Woda landslide. I: intense deformation area,
II: weak deformation area.

 

Figure 3. Engineering geological profile (a–a’) of the Woda landslide.
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3. Materials and Methods

3.1. Model Test Equipment

The model test was conducted in the Landslide Physical Model Laboratory of the
Institute of Geomechanics, Chinese Academy of Geological Sciences. The main equipment
of the landslide model test included a model box, rainfall simulation system, internal
monitoring system, and slope surface monitoring system (Table 1 and Figure 4). With
this comprehensive experimental setup, it was possible to monitor the real-time macro
deformation and failure process of the physical model’s slope surface, as well as pore water
pressure and soil pressure inside the model slope under continuous rainfall conditions.
The monitoring instruments and their key technical parameters used in this model test are
shown in Table 1.

 

Figure 4. Equipment and instrument layout for the Woda landslide model test: (a) Model test area of
the Woda landslide; (b) Three-dimensional view of the experimental model design effect; (c) Side
view of the experimental model design effect; (d) Top view of the experimental model design effect.

3.2. Similar Materials

According to the similarity theory, the intense deformation Zone I of the Woda land-
slide was scaled down proportionally. The similarity ratio of 1:550 was determined based
on the dimensions of the prototype and a physical model of the Woda landslide. A physical
model was constructed based on the structural characteristics and potential unstable range
of the Zone I in the Woda landslide. The model slope was divided into three parts: sliding
body, sliding zone, and bedrock (Figure 4b,c). The dimensions of the model slope were
approximately 165 cm in length, 60 cm in width, and 70 cm in height. The sliding zone had
a thickness of about 2 cm, and the maximum thickness of the sliding body was 15 cm.

The similarity of the physical model to the Woda landslide was determined using
dimensional analysis and similarity theory (Table 2). The main parameters of the similar
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materials in the physical model included the geometric similarity ratio (l), density (ρ), mois-
ture content (w), Poisson’s ratio (μ), internal friction angle (ϕ), cohesion (c), displacement
(δ), and permeability coefficient (k). Based on dimensional analysis and the homogeneity
theorem, the above parameters can be expressed as follows:

f (l, ρ, w, μ, ϕ, c, δ, k) = 0

Table 1. Technical parameters of the model experimental instruments for the Woda landslide.

System Unit Instruments Model Number Key Technical Parameters

Model box Model box — 1 Size: 150 cm × 60 cm × 100 cm
(length × width × height)

Rainfall
simulation

system

Atomizing nozzle TW3010 5 Diameter: 0.3 mm; rainfall intensity:
0.063–0.251 mm/min.

Atomizing nozzle TW5010 5 Diameter: 0.5 mm; rainfall intensity:
0.163–0.433 mm/min.

Water tank — 1 Volume: 25 L

Compressor XK06-020 1
Rated voltage: 220 V; pressure:

0.5–3 MPa; volumetric flow rate of
0.032 m3/min; output power: 0.55 kW

Internal
monitoring

system of the
model

Soil pressure gauge CYY2 6
Diameter: 6 mm; output voltage:
0–5 V; range: 0–4 kPa; accuracy:

0.01 kPa; dynamic frequency: 50 kHz

Pore water pressure gauge CYY9 6
Diameter: 6 mm; output voltage:
0–5 V; range: 0~2 kPa; accuracy:

0.01 kPa; dynamic frequency: 50 kHz

Model surface
monitoring

system

3D laser scanner Faro S70 1

Scanning range: 0–360◦; maximum
scanning speed: 97 Hz; power

consumption: 25 W; ranging error:
<1 mm

Camera SONY-ILCE-6000 3

Sensor: Exmor APS-HD-CMOS; APS
frame: 23.5 × 15.6 mm; maximum

resolution: 6000 × 4000; optical zoom:
1–16 times

Wire displacement meter MPS-S 3 Range: 50–2000 mm; accuracy: 1 mm;
tensile force: <600 g

Table 2. Similarity coefficient table for the model test of the Woda landslide.

Physical Quantity Similarity Constant Code Similarity Coefficient

Geometric dimensions, l Cl 1:550
Density, ρ Cρ 1:1

Moisture content, w Cw 1:1
Poisson’s ratio, μ Cμ 1:1

Internal friction angle, ϕ Cϕ 1:1
Cohesion, c Cc 1:1

Displacement, δ Cδ 1:550
Permeability coefficient, k Ck 1:5501/2

The bedrock of the physical model was simplified as impermeable or low-permeability
bedrock, and was constructed by stacking bricks. A layer of cement mortar was applied
onto the bedrock’s top surface to achieve impermeability or low permeability. The selection
and proportions of similar materials in the model were determined through comparative
tests between multiple sets of similar material ratios and the prototype materials of the
Woda landslide (sliding body and sliding zone) (Table 3). Among them, the sliding zone
material consisted of gravel (2~5 mm), sand, bentonite, and water, with a ratio of 1:2:3:1.
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The sliding body material consisted of gravel (5~10 mm), sand, heavy mineral powder
(weighting material), silt, bentonite (binding material), and water, with a ratio of 1:2:8:9:3:3.
Figure 5 shows the particle size distribution curves of the prototype and model materials
of the Woda landslide, and Table 4 lists the physical and mechanical parameters of the
prototype’s and physical model’s materials. In addition, to reduce the shear interaction
between the side walls of the model box and the physical model of the landslide, Vaseline
was uniformly applied to the contact area between the model box and the soil layer. The
sensors were also positioned at a certain distance from the side walls of the model box
(Figure 4d).

Table 3. Composition and proportion relationships between similar materials for the Woda landslide
model test.

Material Type
Material Size

(mm)

Material Proportion
Illustrate

Sliding Zone Sliding Body

Gravel 2~5 1/6 -
Sand 1~0.5 2/6 -

Bentonite <0.002 3/6 3/26 Binding material
Water - 1/6 3/26
Gravel 5–10 - 1/26
Sand 0.2–2 - 2/26

Barite powder 0.05–0.2 - 8/26 Weighting material
Silt soil 0.05–0.2 - 9/26

 

Figure 5. Particle size distribution curves of prototype and model materials: (a) Sliding body;
(b) Sliding zone.

Table 4. Physical and mechanical parameters of the Woda landslide prototype materials and
model materials.

Material Type
Density ρ

(g/cm3)
Moisture Content w

(%)
Cohesion c

(kPa)

Internal Friction
Angle ϕ

(◦)

Permeability
Coefficient k

(m/s)

Volumetric
Weight γ
(kN/m3)

Sliding
body

Prototype 2.25 12 71.14 21.35 4.44 × 10−5 22.05
Model 2.24 12 63.34 22.62 1.92 × 10−6 22.34

Sliding
zone

Prototype 2.20 19 12.06 21.16 3.57 × 10−6 21.56
Model 2.21 19 10.14 20.06 1.51 × 10−7 21.93

3.3. Test Conditions

Due to long-term geological evolution processes, the accumulation of an ancient
landslide forms a gentle slope, and the internal body of the slope becomes compacted.
The rock–soil mass has good cementing property and low permeability, making it more
stable [30,36]. The shear outlet at the front edge of the Woda landslide is exposed, and the
slope of the accumulation body is about 23◦~25◦, which has good deformation potential.

146



Water 2024, 16, 583

Under the infiltration of rainfall, tensile cracks gradually appear on the slope’s surface.
Under the action of gravity, rainwater infiltrates into the deep part of the slope along the
cracks. This process promotes the development of cracks, which have wide upper parts
and a narrow lower parts, resembling a “V” shape. Field investigations indicated that the
tensile cracks in the intense-deformation Zone I of the Woda landslide did not penetrate
the accumulation body.

In order to elucidate the evolution of the rainfall-induced deformation and destruc-
tion process of the Woda landslide, and to reveal the destabilization mechanism of the
Woda landslide under the coupling effect of cracks and rainfall, two physical models of
the landslide were created in this study (Table 5): (1) a physical model without cracks
(Figure 6a), and (2) a physical model with a “V”-shaped crack at the rear edge, with 3 cm in
top width, 7 cm in depth, and 60 cm in length (Figure 6b). Previous studies have indicated
that rainfall intensity has a significant impact on the stability of ancient landslides [12,14,48].
To realistically reflect the influence of rainfall on the reactivation and deformation of the
Woda landslide, meteorological data were collected, revealing that the monthly maximum
rainfall in the study area is about 167 mm (Figure 6c), and the maximum daily rainfall is
about 49.8 mm (Figure 6d). Combining with the similarity theory, the rainfall intensity
in the model test was determined to be 7.02 mm/h, corresponding to a rainfall intensity
of 50 mm/d in the real environment. The model test was conducted under continuous
rainfall during the test period (Figure 6e). Because rainfall has a certain negative influence
on data collected by 3D laser scanners and cameras, we stopped the rainfall and collected
data for some important time nodes, such as local sliding and crack expansion, during the
model tests.

Table 5. Experimental conditions of landslide model tests.

Scenario Test Conditions
Rainfall
Intensity
(mm/h)

Crack Location
Crack Geometry

Parameter

Scenario 1 Rainfall
7.02

- -

Scenario 2
Coupling effect
of rainfall and

crack

Model trailing
edge

V-shaped, 3 cm in
width, 7 cm in height,

60 cm in length

 

Figure 6. Physical model setup and rainfall schedule for the Woda landslide: (a) Model 1; (b) Model
2. (c) Monthly rainfall in the study area (2018); (d) Daily rainfall in the study area (July 2020);
(e) Continuous rainfall process.
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3.4. Instrument Layout

During the model test, three cameras and one 3D laser scanner were utilized to obtain
the surface deformation characteristics of the physical model. The application of 3D
laser scanning technology enables rapid acquisition of high-precision and high-resolution
topographic data in the field, which is of great significance for landslide deformation
monitoring. It has been widely used in the deformation monitoring of landslides and other
geological disasters, as well as in landslide model tests [49–52]. Small cylindrical nails
with diameters of 1 cm were strategically positioned on the model surface as monitoring
points, with an interval spacing of 10 cm. Prior to rainfall, the model was scanned to obtain
its undeformed shape, which served as a reference for measuring the deformation of the
model during the model test.

Additionally, three monitoring sections were established at the front, middle, and
rear parts of the physical model to acquire response characteristics related to surface
displacement, internal soil pressure, and pore water pressure. Each section was equipped
with a displacement sensor installed on the model surface. Furthermore, three soil pressure
sensors and pore water pressure sensors were placed on each side of the central axis at
approximately 10 cm intervals. These sensors were installed near the interface between the
sliding zone and the sliding body (as depicted in Figure 4c,d).

4. Results

4.1. Deformation Processes of Landslides

In the model test process of scenario 1, several phenomena were observed. Initially,
settlement deformation was predominantly exhibited during the onset of rainfall. After
approximately 178 min of continuous rainfall, a shallow surface collapse occurred at the
foot of the slope (Figure 7c). Between 178 and 362 min, an arc-shaped expansion of the
collapsed area took place at the foot of the slope, accompanied by non-uniform settlement
in the middle section, where greater settlement was observed on the right side compared to
the left side (Figures 7d and 8d). From 362 to 838 min, localized instability and subsequent
backward expansion were experienced on the right side of the model’s front edge, with a
fan-shaped failure pattern evident within this region (Figure 7e). The maximum thickness
of this instability zone reached approximately 5.49 cm (Figure 8e), while non-uniform
settlement continued expanding on the right side of the slope. At around 1108 minutes
into rainfall, complete collapse occurred along with failure of the entire front edge in the
model (Figure 7f), reaching a maximum instability thickness close to 10.95 cm (Figure 8f).
By minute 1300 of rainfall, no further signs of deformation were observed in the model,
and thus, the model test was concluded.

In the model test process of scenario 2, several phenomena were observed. During
the initial stage of rainfall, settlement deformation with a magnitude of approximately
2 mm primarily occurred in the model (Figures 9 and 10). From 112 to 220 min, localized
sliding took place in the middle part of the model’s front edge, resulting in a tongue-shaped
morphology measuring approximately 35 cm in length and approximately 20 cm in width.
Seven tensile cracks developed in the middle-rear part of the slope (Figure 9c), while four
tensile cracks appeared at the rear edge of the slope. The main tensile crack, L1, had a length
of approximately 42 cm and a width of approximately 1 cm. On both sides of the L1 tensile
crack, three tensile cracks, L1-1 to L1-3, were distributed, measuring 4 to 20 cm in length and
approximately 0.3 cm in width (Figure 9c1). At 10 cm from the preset crack, three tensile
cracks, L2, L3, and L4, were formed in the middle part of the slope. The L2 and L3 tensile
cracks were approximately 48 to 55 cm in length and 0.5 to 1 cm in width, while the L4
tensile crack was approximately 23 cm in length and 0.3 cm in width (Figure 9c2). During
the period of 220 to 397 min, localized sliding at the front edge of the model intensified, and
new two tensile cracks, L5 and L6, formed in the middle part of the slope. Tensile cracks
L2 to L4, in the middle part of the slope, were basically connected laterally (Figure 9d).
From 397 to 492 min, a larger-scale sliding occurred on the right side of the model, and
the tensile cracks in the middle and rear parts of the slope further expanded (Figure 9e).
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During the period of 492 to 556 min, the entire front edge of the model experienced sliding,
and the rear part of the slope lost support. Tensile crack L3 connected with L4; the slope
located before them experienced a slide of approximately 0.5~1.5 cm, with a maximum
instability thickness of approximately 10.4 cm (Figure 10e). From 556 to 653 min of rainfall,
progressive failure occurred in the mid-rear area of the model. Failure of the model’s
middle sliding body occurred, which was located at front of the L3 and L4 tensile cracks
(Figure 9f), leading to the sliding of the block in front of the L2 crack at the rear of the model
(Figure 9g), with a maximum instability thickness of approximately 15.2 cm (Figure 10f).
By 660 min of rainfall, no new signs of deformation were observed in the model, and the
model test was concluded.

 

Figure 7. Deformation and failure characteristics of the model slope in different stages under working
scenario 1: (a) Side view of the model slope, (b) Front view of the model slope, (c) Deformation
and failure characteristics of the slope during the 0–178 min stage, (d) Deformation and failure
characteristics of the slope during the 178~362 min stage, (e) Deformation and failure characteristics
of the slope during the 362–838 min stage, (f) Deformation and failure characteristics of the slope
during the 838~1108 min stage, (g) Deformation and failure characteristics of the slope during the
838~1108 min stage (side view).
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Figure 8. Orthophoto evolution of the landslide model test under working scenario 1: (a) Three-
dimensional model slope before the model test; (b) Three-dimensional model slope after the model
test; (c–f) Cloud maps in the Z-deformation amount of the slope at different times.
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Figure 9. Deformation and failure characteristics of the model slope in different stages under working
scenario 2: (a) Side view of the model slope; (b) Front view of the model slope; (c,c1,c2) Deformation
characteristics of the slope body during the 112~220 min stage; (d) Deformation characteristics of the
slope body during the 220~397 min stage; (e) Deformation characteristics of the slope body during
the 397~492 min stage; (f) Deformation characteristics of the slope body during the 492~556 min
stage; (g) Deformation characteristics of the slope body during the 556~653 min stage.
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Figure 10. Evolution orthophotos of the model slope under working scenario 2. Evolution orthopho-
tos of the model slope under working scenario 2: (a) Three-dimensional model slope before the model
test; (b) Three-dimensional model slope after the model test; (c–f) Cloud maps of the Z-deformation
of the model slope at different times.

4.2. Variation in Pore Water Pressure

In the model test process of scenario 1, a significant change in the pore water pressure at
the mid-front of the model was observed. During the 0~100 min period of rainfall, the pore
water pressure near the sliding zone in the slope was relatively low. At 105 min of rainfall,
pore water pressure was first observed at monitoring point P4. The pore water pressure of
P4 exhibited a transient sharp increase followed by a slow increase. At 248 min, the pore
water pressure of P4 remained stable after a temporary reduction. From 130 to 435 min,
there was a slow increase in pore water pressure at monitoring point P2. At 362~435 min,
the pore water pressure of P4 rapidly raised after a temporary reduction. From 435 to
448 min, when the rainfall stopped, the pore water pressure of P2 and P4 continued to
decrease. After 450 min, there was a sharp rise in pore water pressure at monitoring
points P1 and P4. At time nodes 572 and 850 min, both P1 and P4 exhibited decreasing
trends in pore water pressure, with decreases of 0.04 kPa, 0.07 kPa, 0.03 kPa, and 0.12 kPa,
respectively. During the 950~975 min period, when the rainfall ceased, the pore water
pressure decreased at all monitoring points at the mid-front of the model. Around 1108 min

152



Water 2024, 16, 583

of rainfall, there was a significant decrease in the pore water pressure at monitoring points
P1, P2, P4, and P5, with reductions of 0.34 kPa, 0.02 kPa, 0.14 kPa, and 0.02 kPa, respectively.
Throughout the entire model test, no pore water pressure was detected at monitoring points
P3 or P6, which were located at the sliding zone on the rear edge of the slope (Figure 11).

Figure 11. Process of pore water pressure changes under working scenario 1.

In the model test process of scenario 2, significant changes in the pore water pressure
at all monitoring points of the model were observed. During the first 40 min of rainfall,
there were no changes in pore water pressure. From 42 to 75 min, there was a sharp
increase in the pore water pressure at five monitoring points, i.e., P5, P2, P4, P6, and P1,
in order. From 104 to 158 min, except for monitoring point P3, the pore water pressure
exhibited a transient decrease followed by another increase. At approximately 158 min,
there was a sharp increase in the pore water pressure at monitoring point P3. From 175 to
187 min, when the rainfall stopped, the pore water pressure continued to decrease at all
monitoring points. Around 220 min of rainfall, the pore water pressure decreased at all
monitoring points, with the greatest reductions observed at monitoring points P1 and P3 on
the right side of the slope. From 225 to 504 min, the pore water pressure slowly increased
at all monitoring points, and at 490 min, the pore water pressure decreased again at all
monitoring points. During the 504~520 min period of rainfall, there was a sudden increase
followed by a sharp decrease in the pore water pressure at all monitoring points. From
510 to 525 min, when the rainfall ceased, the pore water pressure continued to decrease
at all monitoring points. From 530 to 575 min, the pore water pressure at all monitoring
points rose sharply and remained stable. There was a sudden drop in pore water pressure
at monitoring point P4 at 560 min, while the remaining monitoring points showed a slowly
decreasing trend. From 580 to 660 min, the pore water pressure initially increased slightly
and then sharply decreased at all monitoring points. Pore water pressure reductions of
0.53 kPa, 1.09 kPa, 0.66 kPa, and 0.31 kPa were observed at monitoring points P1, P2, P4,
and P5, respectively. The reductions in pore water pressure at monitoring points P3 and
P6 were relatively small (Figure 12).
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Figure 12. Process of pore water pressure changes under working scenario 2.

4.3. Variation in Soil Pressure

In the model test process of scenario 1, a significant change in soil pressure at the
mid-front of the model was observed. During the 60 min before rainfall, the soil pressure
at monitoring points S2 and S5 in the middle of the model gradually decreased and then
sharply increased. The maximum soil pressures were 2.94 kPa and 1.98 kPa, respectively.
Subsequently, during the model test, the soil pressures of S2 and S5 gradually decreased.
From the 138th minute until the end of the model test, the soil pressure at monitoring
point S6 slowly increased and exhibited oscillatory fluctuations, and the soil pressure
at S3 remained stable throughout the process. From 38 to 150 min of rainfall, the soil
pressures at S2 and S4 sharply increased and then slowly decreased. The maximum soil
pressures reached were 2.46 kPa and 3.52 kPa, respectively. From 200 to 500 min, the soil
pressures of S1 and S4 gradually increased, reaching peak values at the 342nd minute
before slowly decreasing. From 500 to 830 min, the soil pressure at S1 remained constant,
gradually increasing after the 742nd minute. The soil pressure of S4 gradually increased,
experienced a sudden decrease at 595 min, increased again, reached its peak value after the
742nd minute, and remained stable thereafter. From 830 to 1108 min, the soil pressure at
S1 continued to increase, reaching its peak value at the 950th minute and remaining stable.
It then decreased in a stepped manner after the 1013th minute, and experienced a sharp
decrease at the 1108th minute. The soil pressure at S4 briefly decreased, slowly increased,
and rapidly decreased after the 1108th minute (Figure 13).

154



Water 2024, 16, 583

Figure 13. Monitoring curve of soil pressure under working scenario 1.

In the model test process of scenario 2, significant changes in soil pressure at all
monitoring points were observed. At 0 to 104 min of rainfall, the soil pressure in the front
part of the slope fluctuated intensively, while the rear crack area of the slope remained
relatively stable. The soil pressure at monitoring point S3 remained unchanged, and the
soil pressure at monitoring point S6 gradually increased and then stabilized until the end
of the test. From 150 to 168 min, there was an increase, followed by a sudden drop in soil
pressure at monitoring points S1 and S4. From 190 to 228 min, there was a brief increase
followed by a decrease in soil pressure at monitoring points S1 and S4. From 228 to 400 min,
the variation in soil pressure at all monitoring points was small during continuous rainfall.
From 400 to 500 min, there was a slight decrease in the soil pressure at monitoring points
S2 and S3 in the middle of the slope, while the soil pressure at S1 slowly increased. From
525 to 580 min, the soil pressure at monitoring points S1, S2, S4, S5, and other monitoring
points slowly increased, followed by a gradual decrease in the soil pressure at monitoring
point S4. From 580 to 650 min, there was a sudden increase followed by a sharp decrease in
soil pressure at monitoring point S4 in the front left part of the slope, while the soil pressure
at monitoring points S1, S2, S5, and others slowly increased and then gradually decreased
(Figure 14).
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Figure 14. Monitoring curve of soil pressure under working scenario 2.

5. Discussion

5.1. The Mechanism of Ancient Landslide Reactivation

Under the action of rainfall, the reactivation mechanism of ancient landslides is closely
related to cracks. When cracks develop on the slope’s surface, surface water can rapidly
infiltrate into the sliding zone along the preferential channels formed by the cracks [53]. This
not only weakens the strength of the sliding zone soil, but also increases the groundwater
and pore water pressure, thereby inducing ancient landslide reactivation [54,55]. The
results of these model tests show that there are significant differences in the internal
response characteristics of slopes with and without cracks. This leads to differences in the
reactivation mechanisms of landslides under different conditions.

When a slope has no cracks, under the influence of gravity, rainwater rapidly accumu-
lates at the foot of the slope. The saturation zone appears first at the foot of the slope, and it
takes a relatively long time for rainfall to penetrate to the position of the sliding zone in
the slope (at least 100 min). The pore water pressure at the front edge of the slope (P1 and
P4) is greater than that at the middle and rear parts of the slope (P2 and P5, P3, and P6)
(Figure 11). The results show that the influence of rainfall infiltration on the pore water
pressure in the sliding zone of a slope occurs at the foot of the slope, the middle of the slope,
and the back edge of the slope, in order. When a predetermined crack exists at the rear
edge of the slope, the rainfall rapidly infiltrates into the deep part of the slope along the
crack (about 50 min) and travels towards the middle and front edge under the influence of
gravity, resulting in maximum pore water pressure at the middle part of the slope (P2 and
P5), followed by the pore water pressure at the front edge of the slope (P1 and P4) and the
minimum pore water pressure at the rear edge of the slope (P3 and P6) (Figure 12). The
results show that the effect of rainfall infiltration on the pore water pressure in the sliding
zones of cracked slopes is significantly different from that in slopes without cracks. In
addition, the soil pressure at P3 on the right side of the rear edge of the landslide remained
unchanged, and the soil pressure at P6 on the left side increased slowly, indicating that
the rainfall quickly penetrated into the middle and lower parts of the slope after reaching
the right side of the rear edge, while the water infiltration on the left side slowly led to
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an increase in the body weight of the slope, which was consistent with the local slide first
occurring on the right side of the slope.

Under rainfall conditions, the internal soil pressure response characteristics of slopes
with and without cracks are significantly different. When a slope has no cracks, the
maximum soil pressure is observed at the front edge (S1 and S4), followed by the rear edge
(S3 and S6), and the minimum is found in the middle part (S2 and S5) (Figure 13). The soil
pressure in the middle part (S2 and S5) continues to decrease, indicating that the influence
from the rear edge gradually weakens in the middle part. This means that the rainfall’s
impact on the landslide is mainly concentrated in the middle and front parts. When the
soil pressure in the middle part tends to stabilize, it indicates that there are no further signs
of deformation in the rear edge of the slope. In addition, the soil pressure on the right
side of the slope is less than that on the left side, which is consistent with the local sliding
on the right side of the slope first. However, when predetermined cracks exist at the rear
edge of the slope, the rainfall quickly affects the deep part of the slope along the crack and
infiltrates into the middle and front parts of the slope. The soil pressure in the middle part
fluctuates within a small range during the experimental process (Figure 14), indicating that
the rear edge of the landslide continues to deform and pushes against the middle and front
parts. As a result, the front part of the slope collapses and further triggers deformation
and failure in the middle and rear parts, ultimately leading to overall instability of the
landslide. The comparison between monitoring data and slope deformation and failure
process shows that, before local sliding occurs, the soil pressure inside the slope increases
abruptly for a short time and then decreases sharply after local sliding of the slope.

Based on the aforementioned analysis, solely considering rainfall conditions, signif-
icant disparities in reactivation mechanisms of slopes with and without cracks can be
observed. When the slope had no cracks, the reactivation mechanism of the ancient land-
slide under rainfall primarily manifested as foot erosion and localized progressive failure
at the front edge, with a limited impact range and depth (Figure 15a). However, when
cracks existed on the slope, the mechanical behavior of the reactivation mechanism became
complex. It exhibited mid-rear sliding body creeping, tensile cracks developed on the
mid-rear sliding body, localized sliding at the front edge, extension of the tensile cracks in
the mid-rear sliding body, extension of the local sliding range at the front edge, accelerated
creeping in the mid-rear sliding body, and progressive failure of the mid-rear sliding body
(Figure 15b). The presence of dominant seepage as crack channels promotes the evolution
process of ancient landslide reactivation under the same rainfall conditions, causing an
increased range of deformation and failure of ancient landslides.

 

Figure 15. Reactivation mode of an ancient landslide with and without cracks: (a) Scenario 1,
(b) Scenario 2.
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5.2. The Evolution Process of Ancient Landslide

The model tests demonstrate that, under rainfall conditions, both slopes with and
without cracks exhibit progressive retrogressive failure in terms of deformation and failure
patterns. However, there are notable distinctions in the extent of failure. When there are no
cracks in the slope, only the front edge of the slope body experiences local sliding before
the landslide, followed by the extension of deformation and failure towards the rear. The
concentrated deformation and failure range is located at the front edge of the slope, and
the front edge of the slope does not slide along the predetermined sliding zone, but forms a
new sliding zone at a certain depth inside the sliding body. When a crack is present at the
rear part of the slope, the middle and rear parts of the slope firstly develop some tensile
cracks, followed by local sliding at the front edge. Under continuous rainfall, the range of
local sliding at the front edge further expands and the deformation in the middle and rear
parts intensifies, resulting in overall reactivation along the predetermined sliding zone.

Based on the analysis of the experimental results, this study roughly divides the
evolution process of ancient landslide reactivation into the following three stages.

Stage 1: Non-uniform settlement and crack formation stage (Figure 16a,b,e,f): After
undergoing long-term geological transformation, the material composition and structural
characteristics of ancient landslides exhibit high density, high cementation, low permeabil-
ity, and heterogeneity [56]. During the initial stage of rainfall, water only affects the shallow
surface of the slope. The heterogeneity on the plane leads to non-uniform settlement of
the landslide, resulting in tensile stress near the boundary of the non-uniform settlement
in the shallow layer of the slope. This provides favorable conditions for the generation
of micro-cracks on the slope surface. Subsequently, rainwater infiltrates into the internal
part of the slope along the micro-cracks, and the micro-cracks extend longitudinally and
transversely, interconnecting with each other and eventually forming cracks.

 

Figure 16. Evolution process of ancient landslide reactivation: (a) Initial model of ancient landslide;
(b) Rainfall infiltration and crack formation on the slope surface; (c) Overall deformation and local
sliding; (d) Progressive instability and failure; (e) Early stage of rainfall infiltration; (f) Process of flow
channel formation; (g) Local sliding; (h) Progressive instability.

Stage 2: Crack extension and local sliding stage (Figure 16c,g): The crack in the shallow
layer of the slope becomes the main preferential pathway for rainwater infiltration into
the deep part of the slope in the later stage. Under the influence of gravity, rainwater
gradually infiltrates into the deep part of the slope and towards the direction of the free
face. This causes the cracks on the slope to gradually extend towards the deep part and the
direction of the free face, gradually evolving into local weak structural planes. The sliding
body undergoes creep deformation along these local weak structural planes towards the
direction of the free face (Figure 16g). Influenced by the topography, relatively flat areas
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such as the accumulation platform and the foot of the slope are prone to forming locally
water-rich, saturated zones. As a result, the pore water pressure rises within the slope,
reducing the shear resistance of the structural planes, eventually leading to localized sliding
of the sliding body.

Stage 3: Progressive failure and overall instability stage (Figure 16d,h): After localized
sliding occurs at the front and middle parts of the slope, a free face with a steeper slope is
formed. The weak structural planes or sliding zones are exposed to the free face, devel-
oping a series of tensile cracks around the boundary of the localized sliding (Figure 16c).
Rainwater quickly infiltrates along these tensile cracks to the slip bands, resulting in the
degradation of the mechanical properties of the sliding zone and a significant reduction in
shear resistance. The rear part of the slope undergoes accelerated creep deformation, and
the cracks in the middle and rear parts extend, eventually leading to instability and failure.
This evolutionary process is nearly identical to the process of excavation-induced instability
of landslides, but the effects of water are slow. Rainfall-induced landslide deformation has
characteristics such as multi-stage and multi-phase occurrence [37].

5.3. Limitations and Inspirations of Model Test

By analyzing the deformation and failure processes and the characteristics of model
slopes with and without cracks under rainfall conditions, the reactivation mechanisms of
ancient landslides under the influence of rainfall or the coupling effect between rainfall and
cracks were revealed. However, this model test has certain limitations and is not sufficient
for the evaluation of the hazard or stability of a landslide. The cracks in this model test
were only considered in terms of depth and position, without considering factors such as
the number of cracks, their extension lengths, or their directions. Therefore, they cannot
truly reflect the current state of the landslide.

Currently, both our model test and numerical simulation are effective methods to
evaluate landslide stability. Numerical simulation has been widely used due to its effi-
ciency, convenience, accuracy, flexibility, and low cost [57,58]. In landslide engineering,
the accuracy of stability evaluation results obtained through model tests and numerical
simulations depends mainly on whether the evaluation models truly reflect the landslide
prototype. Most researchers generalize the landslide prototype and ignore certain factors,
such as slope body cracks, and establish generalized models based on the major factors for
evaluation [57,59,60]. Although some results have been achieved through this approach, it
also ignores the factors that influence the evaluation results, such as groundwater, cracks,
etc. Based on the analysis of the results of this experimental study, for the evaluation of
stability in ancient landslides, it is necessary to further consider the geometric characteris-
tics of landslide cracks and their influences on stability, such as depth, width, length, and
orientation.

6. Conclusions

In this study, the Woda landslide was taken as a case study, and the deformation and
instability processes of different model slopes with and without cracks were investigated
under rainfall conditions based on model tests. The influence of cracks on ancient landslide
reactivation was analyzed, and the reactivation mechanism of ancient landslides under
the coupling effect of rainfall and cracks was revealed. The following main conclusions
are drawn:

1. The influence of rainfall on the deformation process, instability, and range of an
ancient landslide is closely related to cracks. When there are no cracks in an ancient
landslide, the deformation and failure of the ancient landslide are concentrated mainly
in the front part, with the impact mainly limited to the shallow sliding body at the
front part of the ancient landslide. However, when cracks develop on an ancient
landslide, rainwater can rapidly infiltrate into the deep sliding zone along the cracks,
resulting in overall deformation and instability of the ancient landslide.
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2. Under rainfall conditions, significant differences can be observed in the response
characteristics of pore water pressure and soil pressure in the deep parts of ancient
landslides with and without cracks. When cracks develop on ancient landslides,
the time required for rainwater to infiltrate into the deep sliding area is twice as
long as in ancient landslides with cracks. Rainfall first causes changes in the pore
water pressure and soil pressure at the foot of the ancient landslide, followed by
the middle of the ancient landslide, with the least impact at the rear of the ancient
landslide. When cracks develop on an ancient landslide, rainfall first causes changes
in the pore water pressure and soil pressure at the mid-rear of the ancient landslide,
followed by changes in the pore water pressure and soil pressure at the foot of the
ancient landslide.

3. The reactivation mechanisms of ancient landslides under rainfall conditions and the
coupling effect of rainfall and cracks show significant differences. In cases where there
are no cracks present, the overall behavior involves erosion at the toe of the ancient
landslide and progressive localized failure at the front edge, with the impact range
and depth being limited. However, when cracks develop on ancient landslides, the
mechanical behavior of the reactivation mechanism becomes more complex, including
mid-rear ancient landslide creeping, tensile cracks developing at the mid-rear of
the ancient landslide, localized sliding at the front edge, extension of tensile cracks,
extension of the local sliding range, accelerated creeping, and progressive failure at
the mid-rear of the ancient landslide.

4. Cracks play an important role in promoting the deformation and failure of ancient
landslides. The characteristics of crack development in different stages of the reactiva-
tion of ancient landslides vary. It is recommended to consider the influence of crack
development characteristics of ancient landslides, such as crack location, quantity,
depth, length, and orientation, on their stability in the evaluation of landslide stability.
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Abstract: In the field of open-pit geological risk management, landslide failure time prediction is
one of the important topics. Based on the analysis of displacement monitoring data, the inverse
velocity method (INV) has become an effective method to solve this issue. To improve the reliability
of landslide prediction, four filters were used to test the velocity time series, and the effect of landslide
failure time prediction was compared and analyzed. The results show that the sliding process of
landslide can be divided into three stages based on the INV: the initial attenuation stage (regressive
stage), the second attenuation stage (progressive stage), and the linear reduction stage (autoregressive
stage). The accuracy of the INV is closely related to the measured noise of the monitoring equipment
and the natural noise of the environment, which will affect the identification of different deformation
stages. Compared with the raw data and the exponential smoothing filter (ESF) models, the fitting
effect of the short-term smoothing filter (SSF) and long-term smoothing filter (LSF) in the linear
autoregressive stage is better. A stratified prediction method combining SSF and LSF is proposed.
The prediction method is divided into two levels, and the application of this method is given.

Keywords: failure time of landslide; open-pit coal mine; inverse velocity; early warning; field monitoring

1. Introduction

Rockfalls and ground surface deformation, which are notoriously known due to their
strong abruptness, intermittent occurrence, and destructive harm, are among the most
critical issues both during mining and for many years after the cessation of mining [1,2].
In open-pit mining (also known as open-cut or open-cast mining), geomorphic processes
possibly result in slope failures with alterations that entail potential sources of risk to
personnel, apparatus, and infrastructures, in addition to dislocating mining scenarios and
multiplying production expenditures [3–5]. Nevertheless, production work at a high rate
could be hindered by major slope failure or the over-conservative nature of the ultimate
design [6–8]. The mitigation of slope failure is a crucial topic of particular concern in
open-pit mines, where production works must proceed with economic benefit yield, and
simultaneously the safety of the personnel and the integrity of the mining equipment must
be guaranteed [9].

Discerning ongoing processes of rock slope deformation that may lead to instability
covers essential miscellaneous aspects of engineering geology and geomechanics [10–12].
The management of and substantial information on slope failure-associated risks are inte-
gral to having an adequate understanding of the lithostructural predisposition, the driving
forces, and the different mechanisms and environmental conditions in the monitored
area [13–15]. Irrespective of spatial and temporal terms, displacement and its derivatives
(velocity and acceleration) are widely considered to be the most reliable alert indicators that
can provide an early warning of potential movements [16]. Systematic efforts have gone
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into implementation for early-warning precautions of a near-real-time slope monitoring net-
work by utilizing the correlation among these kinematic parameters. The rationale for the
majority failure forecast method (FFM) [17] is based on the observation that slopes undergo
velocity increases asymptotically towards failure (“tertiary” or “accelerating” creep) [18].
Albeit clearly, FFM is on the temporal prediction of landslides and imminent collapse,
which can be defined as time-of-failure (TOF) [19]. This leads to the necessity of integrating
TOF analysis and alert indicators with a real-time assessment tool. Such a precursory tool
was first suggested by Saito [20], incorporating discovering the inversely proportional
relationship between time to slope failure and existing strain rate within the tertiary creep
phase, and later improved by Fukuzono [21], who introduced a phenomenological method
that takes into account the inverse of the velocity against time, the so-call inverse velocity
(INV) method, leading to effective forecast results before the ultimate failure. Voight [22,23]
went on to present successful applications of this method and extended the results to other
types of natural phenomena or failure mechanisms, e.g., volcanic eruptions. Astonishingly,
although the INV method was developed based on laboratory tests more than 30 years
ago, it does not appear to have achieved implementation and verification for real-time
slope failure prediction in the mining industry or mining-related technical literature until
2001 [24]. Since the early 21st century, in order to develop approaches to evaluate the failure
time (tf) of landslides, published examples (from the investigation of some large open-pit
slope failures) of successful implementation are proposed to predict impending failure
based on the results of the conventional application of INV methods [25–28].

Several studies of the INV method have been carried out to define rules and procedures
to estimate the time of landslides in open-pit mines, including Rose and Hungr [24],
Mufundirwa et al. [29], Dick et al. [19], Carlà et al. [30,31], Zhou et al. [32], and Chen
and Jiang [33]. By presenting three large rockfall events of open-pit mines (1, 2, and
18 million m3) in Northeastern Nevada, Rose and Hungr [24] demonstrated the accuracy
and efficacy of this method. The result of the largest event was even forecasted 3 months
before the impending failure. Dick et al. [19] further discussed the application of the INV
method in open-pit mines by using new systematic multi-pixel and machine-learning
models to complement the scarcity of conventional geodetic monitoring programs for near-
real-time deformation measurements. Carlà et al. [9] took an anonymous copper open-pit
mine into account and defined the appropriate strategy for the setup of alarms, which were
deduced from the presented nine cases of slope instability and the relationship between the
reciprocal displacement rate and duration time in the accelerating stage before the slope
failure. To address the reliability of the prediction method and simultaneously provide
guidelines for the proficient usage of this method, Zhou et al. [32] developed the modified
INV method when analyzing the five landslides of Fushun West Pit slope failure. Similarly,
Chen and Jiang [33] supposed that the selection of thresholds is usually over-conservative,
considering the low-risk tolerance, and therefore introduced a dimensionless inverse
velocity method (DINV) to provide a general solution framework that was used to assess
the slope failure risk and avoid false alarms. The main characteristic of the inverse velocity
method is its simplicity of use which has provided a useful tool for the interpretation of
instrument data to anticipate eventual slope failure. These developments notwithstanding,
the practical usefulness of the INV method for early warning in open-pit mines may be fairly
constrained because of the following major drawbacks. In general, the INV method was
formulated from fixed and human-controlled laboratory conditions, which are extremely
unlikely to suffice in engineering slopes and field conditions. Furthermore, limitations
connected to previous point-wise monitoring analysis of the INV method in open-pit mines
are significant, often resulting in undersampled or poorly collected data. Additionally,
the surface mining environment produces manifold noise patterns (e.g., mining extraction
action, transportation equipment destabilization, human activities, measurement errors,
etc.), which are considered to be a defect for early-warning purposes. Finally, the prediction
performance of the INV method under different displacement scales does not appear to have
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been analyzed to date. All these mentioned gaps can decisively hinder the interpretation of
the inverse velocity plot and affect the precision and dependability of tf prediction.

In this context, it is essential to propose the application of a conventional inverse
modeling tool, based on the moving average transfer function, for eliminating as many as
possible disturbing effects related to the prediction of displacements and compensating
for other defects. To manifest the feasibility and punctuality of the FINV (filter inverse
velocity) method for time-of-failure analyses in a mining environment, the back analysis
of a large slope failure that occurred in August 2016 at Fushun, an open-pit coal mine in
northeast China, is examined in detail. On this basis, we examined velocity time series
using four filters and analyzed the validity of landslide damage time predictions.

2. Materials and Methods

2.1. Study Area

The Fushun West open-pit mine is located in the western part of the Fushun coal-
field, at the northern foot of Qiantai Mountain on the southern bank of the Hun River.
The geographical coordinates of the mine range from approximately 41◦38′0′′ N to
42◦14′0′′ N and 123◦39′12′′ E to 124◦28′0′′ E, as shown in Figure 1a. The open pit has a
length of approximately 6.6 km, a width of around 2.2 km, and a total area of about
14.52 km2. The mining depth reaches 400 m. However, the Fushun West open-pit
mine faces serious landslide hazards due to factors including open-pit mining, under-
ground excavation, faults, and weak layers. Specifically, the mine has experienced over
900 collapse events attributable to landslides. More than 50% of these incidents oc-
curred from June to September when rainfall is relatively concentrated. These landslide
events have resulted in a total damaged area of 635,000 m2 and have given rise to a
series of safety and geological environmental issues concerning open-pit mining.

On the evening of 25 July 2016, the Fushun area was struck by a rainfall event with
a return period of 50 years, resulting in nearly 200 mm of precipitation. At 5:00 a.m. the
following day, a partial landslide occurred on the northern slope of the Fushun West
open-pit mine, as shown in Figure 1b. The elevation of the landslide’s rear edge was
approximately +75 m, while the shear location at the front edge was around −25 m. The
landslide spanned a north–south width of approximately 300 m, with a height difference of
110 m, and with an east–west width of approximately 500 m. The total area affected by the
landslide was approximately 150,000 m2. The landslide caused the burial of the bottom
sections 12 and 14 of the mainline, with the sliding tongue extending. This resulted in the
complete interruption of the internal electrical railway lines in the eastern section of the
mine, as well as the disruption of the western slope’s transportation roads, including the
Xingping Road and the car transport highway. These disruptions had a significant impact
on the internal drainage of the eastern open pit and the upper soil removal in the western
area of the mine, severely impeding normal production in the mining area.
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Figure 1. Location of the study area and geomorphology of the open-pit mine: (a) Location map of
the Fushun West open-pit mine; (b) aerial view of landslide form.

2.2. Geological Setting

By studying the exploration data of the initial mining area, along with a large volume
of geological exploration information and conducting geological surveys, the rock masses
of the slopes in the Fushun West open-pit mine have been classified into various lithologies,
including granite gneiss, basalt, coal, oil shale, tuff, green mudstone, and miscellaneous fill
soil. The exposed strata, from the oldest to the youngest, mainly consist of Precambrian
granite gneiss, Paleogene Paleocene Lao Hutai Formation, Lizigou Formation, Eocene
Guchengzi Formation, Jijuntun Formation, and West Open-Pit Formation. Quaternary
artificial deposits also exist in the area. A comprehensive stratigraphic column is shown in
Figure 2, and a profile of the landslide area is presented in Figure 3.
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Figure 2. Lithology of the typical borehole.

 
Figure 3. Section view of the landslide area.

2.3. Data Description

GPS (Global Positioning System, hereafter called “GPS”) is a huge satellite-based
system with global coverage for radio navigation and positioning. GPS technology has
been developed rapidly in the application fields of navigation, positioning, precision
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measurement, etc. In particular, the GPS real-time monitoring system has been widely
used in the field of real-time monitoring of landslide deformation in open-pit mines for its
real-time nature, and has achieved better results.

In order to reduce the threat of landslide disasters in open-pit mines to national
property and people’s lives, the Fushun West open-pit mine introduced a GPS real-time
monitoring system, whose framework is shown in Figure 4. The system realizes the
24 h uninterrupted monitoring of geological disaster bodies and the remote automatic
transmission of landslide displacement monitoring data, providing effective technical
guarantees for the early warning of disaster bodies and the activation of emergency plans.

 

Figure 4. GPS monitoring system framework for the Fushun West open-pit mine.

The system monitoring point deployment and GPS monitoring data are presented in
detail below. A total of 11 monitoring profiles were established in different directions on
the northern end slope of the Fushun West open-pit mine, Namely, E200, E300, E400, E500,
E600, E700, E800, E900, E1000, E1100, and E1200. The engineering geological plan of the
landslide is illustrated in Figure 5. As of June 2015, a total of 12 GPS monitoring points were
deployed along the monitoring profile, as shown in Figure 5b. Its monitoring technology
is mainly based on the main radar sensor transmitting microwaves, using differential
aperture radar remote prism monitoring technology. The radar nominal precision is
0.1 mm, the frequency signal is 1575.42 Hz, and the wavelength is about 30~50 cm. These
monitoring points were named GN1, GN2, GN3, GN, GN5, GN6, GN7, GN8, GN9, GN10,
GN11, and GN12. For this study, data were selected from the period of 14 March 2016 to
31 August 2016.

Let the three-dimensional coordinate information of the landslide monitoring point
at a certain time point acquired by remote prism synthetic aperture radar monitoring be
(x, y, z). The 3D coordinate value corresponding to the initial moment t0 is (x0, y0, z0), the
3D coordinate value corresponding to any moment tn is (xn, yn, zn), and the cumulative
displacement (Δx, Δy, Δz) component of the monitoring point within the moment from t0
to tt is: ⎧⎨

⎩
Δx = xn − x0
Δy = yn − y0
Δz = zn − y0

(1)
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The change in total displacement Δs at the monitoring point is:

Δs =
√

Δx2 + Δy2 + Δz2 (2)

The cumulative displacement of the landslide is divided into cumulative horizontal dis-
placement and cumulative vertical displacement, where cumulative vertical displacement
is the cumulative displacement component in the z-direction and cumulative horizontal
displacement Δh is:

Δh =
√

Δx2 + Δy2 (3)

The direction of landslide sliding is indicated by the displacement azimuth, which is α:

α = arctan(Δx/Δy) (4)

From the above definition, when α is positive, the displacement direction of the moni-
toring point is upward; when α is negative, the displacement direction of the monitoring
point is downward. From the above derivation process, it can be seen that the size as
well as the direction of the deformation of the landslide body is jointly determined by
the magnitude of the x, y, and z directions. The deformation at any monitoring point
on a landslide can be expressed in terms of the displacement components in the three
directions of the monitoring point, or by horizontal displacement, vertical displacement,
and displacement azimuth.

 

Figure 5. Landform and diagram of the open-pit mine landslide: (a) current situation of the open-pit
mine; (b) layout scheme of displacement measurement points in the landslide area.
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2.4. The Basal INV Method

The failure mechanism of slopes is defined as a complete paroxysmal collapse of rock
and soil material. By analyzing a multitude of triaxial compression laboratory tests and in
situ monitoring research, researchers have discovered that the deformation process of most
landslides complies to the progressive characteristics [34–36] and three-stage law [37–40], as
shown in Figure 6a. The whole process, from the initial deformation to the eventual failure,
representatively comprises three stages: decelerating (green proportion), steady-state
deformation (blue proportion), and acceleration deformation (pink proportion). Although
the described methods have occasionally been successfully applied to a variety of cases such
as man-made walls [30,41], rock and soil specimens [42–44], volcanic eruptions [45,46], or
tunnels [45,47], these methods are primarily applied to unstable slopes. Hence, landslides
are regarded as the principal research objects.

 
Figure 6. Conventional three-stage interpretation of creep behavior. (a) Three-stage deformation
process of the progressive landslide (modified after Saito, [20]); (b) kinematic evolution of a landslide
(modified after Intrieri et al. [16]); (c) graphical approach for determining the time of failure in
the tertiary creep stage (Intrieri et al. [16]); and (d) schematic diagram of INV (modified after
Fukuzono, [21]).

Fukuzono [21] further elaborated the classic three-stage creep theorem by propounding
a simpler diagrammatic method (Figure 6b), which could be the most used and simple
approach to provide a reasonable estimate of failure time. This method is valid for the
tertiary stage. It is noteworthy that the method detects an OOA (onset of acceleration)
point, which approximately distinguishes the secondary stage and the tertiary stage. The
curve (Figure 6a) is separated into two segments by a demarcation point in the tertiary
stage during the acceleration evolution process. (I) After an initial acceleration, Figure 6b
displays a dotted line that is approximately parallel to the time axis with the landslide
reaching equilibrium state; (II). Meanwhile, Figure 6b likewise displays a line whose value
is towards ∞ (i.e., v−1 → 0) as the velocity asymptotically increases.
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Several authors successively supplied suggestions and guidelines for proficient us-
age based on a mathematical generalization of Fukuzono’s solution. Representatively,
Voight [22,23] encompassed the prediction of failure behavior and proposed the following
equation (Equation (5)).

d2Ω/d2t2 = A(dΩ/dt)α (5)

where Ω is the displacement, dΩ/dt and represents the “velocity” and “acceleration” of Ω,
respectively. A and α are two empirical constants that denote characteristics of slope failure;
recent investigations revealed that A and α are not independent of each other, varying
with several factors comprising kinematic motion patterns [48], versatile types of materia,
and macro or micro scales [49]. Consequently, Fukuzono proposed the following equation
(Equation (6)) for predicting the failure time by combining the aforementioned equation
(Equation (5)) with time:

Λ ≡ v−1 = [A(α − 1)(t f − t)](α−1)−1
(6)

where tf is the time of failure. This method consists in depicting a tangent line to the curve
at an arbitrary point Λ 1 that tallies to moment t1. The tangent passes across the horizontal
axis at moment tc1 (tc1,0). Afterward, the point P1 is plotted vertically above Λ1, on a line
that passes through Λ1 and parallel to the Y axis. The segments of t1Λ1 and t1tc1 have
an equal displacement from the perspective of geometric shapes. The abovementioned
procedure is repeated for another random point Λ2. Then, the time of failure tf can be
obtained as the abscissa of the intercept of a straight line that passes through P1 and P2
(Figure 6c).

The major drawback of Equation (5) is represented by the necessity of determin-
ing two constants A and α. According to closely controlled laboratory conditions and
studies by several authors [50,51], α commonly spans over three orders of magnitude.
For α = 2, 1 < α < 2, and α > 2, the curve of inverse-velocity has a linear, concave, or convex
shape (Figure 6d), respectively. For this condition, Segalini et al. [52], who considered
26 emblematic pre-failure landslide cases, proposed that A inclines to take on extremely
low or high values as α deviates from 2. While α appears as intermediate fluctuation, this
attribute can be sufficient to sensibly influence prediction results.

To solve this issue, the value of α with the assumption that it is equal to 2 can be
generally applied to evaluating the time of failure. In terms of guaranteeing production
schedules and staff safety, the assumption of α = 2 is often integrated with the mining
industry environment because of its demanding promotion of visual feedback. Thus,
Equation (6) is simplified into the following equation (Equation (7)):

v−1 = A(t f − t) (7)

As a result, the failure time tf is presumably provided for the point of abscissa of the
extrapolated linear inverse velocity trend with the time axis.

2.5. The Moving Average Filtering INV Method Architecture

As formerly stated, the most powerful aspect of the INV method is probably its
simplicity, and it is a useful resource in different instances, bypassing the intrinsic restriction
for knowing the slope size, state of activity, and types of material. In addition, the tool
resource also provides great convenience under many other aspects (e.g., risk assessment
and management), if users can count on agile and suitable methods of appraising the
state of the monitored circumstance and establish the probability of impending disastrous
accidents, a task which is not always achievable because of hardly compensating restrictions
as a consequence of measurement errors and random instrumental noise. Correspondingly,
we verify two of the utmost prevalent and foolproof smoothing algorithms, i.e., finite
impulse response models (also called moving average filter models). Three types of filter
models are described below.
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1. Short-term simple box filter (SSBF). As each new velocity datum sampling occurs,
users can extract the unweighted mean of the antecedent data points through SSBF algo-
rithm processing. This ensures that the alterations of v in the mean are coordinated with
the alterations in the data (v) rather than being shifted in time. An example of a v simple
equally weighted running mean is the mean over the latest k entries of a data set involving
t entries. Let those velocity data points be v1, v2, . . ., vt. The mean over the latest k velocity
data points is represented as SSBFk (vt) and calculated as follows:

vt =
1
m (vt−k+1 + vt−k+2 · · · vt)

= 1
m

t
∑

i=t−k+1
vi

(8)

when the new velocity datum (SSBFk, next, v′t) is collected with the invariable sampling
width m, the scope from t – k + 2 to t + 1 is considered. A new value vt+1 comes into the
sum and the earliest value vt+1 drops out. This simplifies the computations by proceeding
with the antecedent mean SSBFk, antecedent: (vt)

v′t = 1/k(
t+1
∑

i=t−k+2
vi)

= 1/k(vt−k+2 + vt−k+3 + · · · vt + vt+1︸ ︷︷ ︸
t+1
∑

i=t−k+2
vi

+ vt−k+1 − vt−k+1︸ ︷︷ ︸
=0

)

= 1/k(vt−k+1 + vt−k+2 + · · · vt︸ ︷︷ ︸
=v′t

)− vt−k+1
k + vt+1

k

= vt +
1
k (pt+1 − pt−k+1)

(9)

where the moving average cycle (k) of the SSBF model was set to 2 days (k = 2).
2. Long-term simple box filter (LSBF), where the moving average cycle (k) was selected

to be 6 days (k = 6).
3. Exponentially weighted moving average (EWMA). Whereas in the short-term

simple box filter (SSBF) and long-term simple box filter (LSBF), the past signal processing
is weighted equally, the EWMA model is used to assign exponentially decreasing weights
over time. The EWMA for a series can be calculated as follows:

vt =

{
v0 t = 0

ξvt + (1 − ξ)vt−1 t > 1

}
(10)

where coefficient ξ represents the scale of recursion, a constant smoothing factor between 0
and 1. The smaller ξ is, the stronger the real-time performance of the moving average (vt)
is. On the contrary, the larger ξ is, the stronger the ability to absorb instantaneous burst
value is, and the better the stability of the prediction model is. Hence, the smoothing factor
with the assumption that ξ = 0.5 can be generally used to express and balance the recursion
and attenuation properties of the prediction model.

Because the measurement instrument can be easily controlled by the geologist, the
time interval between adjoining measurements can be given over a constant time interval.
The pattern of filtering as in Equation (8) is equivalent to the easy mathematical statement
utilized by Osansan and Stacey [52].

dΩi/dti = (Ωi − Ωi−n)/(ti − ti−n) (11)

In Equation (11), we set 1/Ω equal to 1/Ωi (1/Ωi is the reciprocal of displacement rate
at ti) and t equal to ti (t0 is the most recent instant).

The SSBF and LSBF models are customizable because they can be calculated for
different numbers of time cycles (also called the order of the moving average). The biggest
distinction of the SSBF and LSBF models is over setting the length of time cycles (k).
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Significantly, there is no regularly precise guideline or standard definition to set up the
boundary between short-term and long-term cycles. It is noted that the selection of a
suitable time cycle (k) value is due to the following two major elements: (i) monitoring
data accuracy/quality; and (ii) data sampling frequency. To observe what the trend-cycle
estimate looks like under different orders of moving average, we plot it (Figure 7) along
with a group of monitoring data from an anonymous open-pit mine. It should be noted that
the trend cycle (in red) is smoother than the original data after processing several moving
averages (n < m < p < q) and captures the main movement of the time series without any
of the minor fluctuations.

 
Figure 7. Different orders of moving average applied to displacement rates in an anonymous open-pit
mine of the instability before the failure. n, m, p, and q represent the four order values of successive
increments (i.e., n < m < p < q). (a) Displacement rate at successive incremental order values of n;
(b) Displacement rate at successive incremental order values of m; (c) Displacement rate at successive
incremental order values of p; (d) Displacement rate at successive incremental order values of q.

In Carlà et al. [30], the high-frequency rates of data acquisition, in the area of landslide
monitoring programs, are representative of state-of-the-art radar monitoring technology
(e.g., GPS [53,54], ground-based radar [31,55], total stations [56], and laser scanning [57]),
and commonly require researchers to carry out smoothing over the bulk of measurements.
Contrariwise, the low-frequency rates of data acquisition will produce low acquisition rates
and will hide much of the background noise, resulting in the inability to trace short-term
movements and delaying the identification of eventual trend changes; in such instances,
smoothing should be performed over relatively lower measurements, compared to data
obtained at high acquisition rates. Short-term averages respond quickly to changes in the
price of the underlying security, while long-term averages are slower to react. The order
of the moving average determines the smoothness of the trend-cycle estimate. In general,
a large order means a smoother curve. The role played by the features of data sampling
frequency and quality for the selection of suitable time cycles (k) is notable.

3. Results

3.1. Slope Displacement Velocity, Acceleration, and Cumulative Displacement Analysis

We collated the monitoring data with the period of 28 June 2016 to 31 August 2016, and
plotted the velocity–acceleration–cumulative displacement curve of slope displacement,
as shown in Figure 8. We divided the curve into three phases according to the trend of
the velocity curve, i.e., the initial phase, the second phase, and the third phase. The phase
splitting time points of the three phases of the different monitoring sites are not the same.
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The splitting time point of the first phase and the second phase is in the time interval from
12 July to 24 July, and the splitting time point jumps more, within 12 days, whereas the
splitting time point of the second stage and the third stage is in the time interval from 9
August to 13 August, and the splitting time point jumps less; see the summary in Table 1
for details.

 
Figure 8. Slope displacement velocity, acceleration, and cumulative displacement curve.

Table 1. Results of correlation analysis between vegetation and climate indicators.

Monitoring Point
The Initial Stage The Second Stage The Third Stage

Start End Start End Start End

GN1-E200-200

28 June

15 July 16 July 11 August 12 August

31 August

GN2-E300-184 12 July 13 July 10 August 11 August
GN3-E400-200 22 July 23 July 10 August 11 August
GN4-E400-188 21 July 22 July 10 August 11 August
GN5-E500-280 22 July 23 July 10 August 11 August
GN6-E500-200 24 July 25 July 10 August 11 August
GN7-E600-200 22 July 23 July 10 August 11 August
GN8-E700-200 18 July 19 July 10 August 11 August
GN9-E800-232 22 July 23 July 9 August 10 August

GN10-E900-220 22 July 23 July 12 August 13 August
GN11-E1000-200 16 July 17 July 11 August 12 August
GN12-E1200-200 14 July 15 July 11 August 12 August

As shown by the red curve in Figure 8, in the whole period, the overall velocity curve
showed a downward trend and then an upward trend. In the first stage, the overall velocity
curve showed a downward trend, but the downward trend was relatively gentle; in the
second stage, the overall velocity curve showed a downward concave upward trend. In
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the third stage, the overall speed curve showed a trend of sharp rise and then a slow rise,
and finally reached the highest point on 31 August. The time interval of the sharp rise of
the curve in this stage was roughly distributed from 11 August to 15 August. In terms of
numerical values, the velocity data of the monitoring points in the whole stage reached the
highest point on 31 August, and the minimum velocity was measured by the monitoring
point GN9 on 25 July, with a value of 17.00 cm/d. The maximum velocity, which was
83.50 cm/d, was measured by the monitoring point GN5 on 31 August. The velocity value
span of GN4 was the smallest, ranging from 19.90 to 27.90 cm/d. The velocity value span
of GN5 at the monitoring point was the largest, ranging from 27.00 to 83.50 cm/d.

As shown by the blue curve in Figure 8, in the first two stages, the acceleration curve
fluctuates above and below 0, and the fluctuation range is the smallest in the whole stage.
In the second stage, the acceleration curve is above 0 as a whole and shows an upward
trend of fluctuation. The fluctuation range of the acceleration curve in the third stage is
the largest in the whole stage, and the overall trend of fluctuation is decreasing. In terms
of numerical value, the acceleration data of monitoring points in the whole stage reached
the highest point on 14 August. The minimum absolute value of acceleration, which was
−0.13 cm/d2, was measured by the monitoring point GN11 on 13 July. The maximum
acceleration, which was 4.30 cm/d2, was measured by the monitoring point GN5 on
14 August. The acceleration value span of GN10 is the smallest, ranging from −0.2 to
0.65 cm/d2. The acceleration value of GN5 at the monitoring point has the largest span,
ranging from −0.2 to 4.30 cm/d2.

As shown by the green curve in Figure 8, in the whole period, the cumulative dis-
placement curve presents a linear upward trend. In the first stage, the cumulative dis-
placement curve presents an upward convex trend. In the second stage, the cumulative
displacement curve presents a linear upward trend. In the third stage, the cumulative dis-
placement curve presents a linear downward concave upward trend. In terms of numerical
value, the cumulative displacement data of monitoring points in the whole stage reached
the highest point on 31 August. The minimum cumulative displacement, which was
105.19 cm, was measured by the monitoring point GN12 on 28 June. The maximum cumu-
lative displacement was measured by the monitoring point GN5. On 31 August, the value
was 234.99 cm. The cumulative displacement value span of GN9 is the smallest, ranging
from 147.20 to 159.92 cm. The cumulative displacement value span of GN5 is the largest,
ranging from 209.27 to 234.99 cm.

3.2. Analysis of Slope Displacement Inverse Velocity and Cumulative Displacement

According to the displacement–reverse velocity curve and the accumulated displace-
ment curve drawn at 12 monitoring points, as shown in Figure 9 the trend of the reverse
velocity curve mainly experienced three stages: slow acceleration, upward convex deceler-
ation, and upward concave deceleration in the whole period. In the first stage, the reverse
velocity curve showed an overall upward trend, but the upward trend was gentle. In the
second stage, the inverse velocity curve presents an upward convex deceleration trend. The
inverse velocity curve of the third stage showed an upward concave deceleration trend and
finally reached its lowest point on 31 August. The time interval of the sharp downward
trend of the curve at this stage was roughly distributed from 11 August to 15 August. In
terms of numerical value, the inverse velocity data of monitoring points in the whole stage
fell to the lowest point on 31 August. The minimum inverse velocity, which was 0.012,
was measured by the monitoring point GN5 on 31 August. The maximum inverse velocity
was measured by the monitoring point GN9 on 31 July, with a value of 0.059. The inverse
velocity value span of GN4 is the smallest, ranging from 0.036 to 0.050. The inverse velocity
value of GN8 has the largest span, ranging from 0.021 to 0.049.

175



Water 2024, 16, 430

 
Figure 9. Slope displacement inverse velocity and cumulative displacement curve.

3.3. Source Velocity Data Model Analysis

The 12 monitoring points were transformed by the multiplicative inverse representa-
tion of velocity data under the time series model (as shown in Figure 10).

As shown in Figure 10, from 28 June 2016, the monitoring data acquisition starting
point, the stage of large fluctuation ended on 31 August, and the period from 22 July to
31 August was the initial decay stage under the velocity multiplicative inverse repre-
sentation. The curve trend of the 12 monitoring points is mainly presented as constant
velocity attenuation–convex attenuation–concave attenuation–constant velocity attenua-
tion. In terms of smoothness, this model is worse than other models. At the same time,
since 11 August, the slope has completed the initial attenuation stage of large scale and
also entered the next attenuation stage of relatively stable amplitude. At this stage, the
amplitude of oscillation decreases compared with the initial attenuation stage. It is worth
noting that under the representation mode of the multiplicative inverse meta-model
of source velocity data, the curve shows obvious linear expression characteristics since
15 August. Linear and nonlinear fitting (as shown in Figure 10) was carried out for data
under the multiplicative inverse meta-model of source velocity data. The landslide time
predicted by 12 monitoring points is about 1–5 days earlier than the actual landslide time.
Under the nonlinear fitting condition, the landslide time predicted by the 12 monitoring
points under the model is about 1–3 days earlier than the actual landslide time, and the
landslide time predicted by the GN1 and GN9 monitoring points under the model lags
behind the actual landslide time by 2 days and 1 day, respectively. In terms of fitting effect
and prediction effect, nonlinear fitting has better performance than linear fitting, and the
overall prediction effect shows that the actual landslide time can be predicted in advance.
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Figure 10. Source velocity data model analysis curve.

3.4. SMA Model Analysis

After the source velocity data were transformed by the multiplicative inverse repre-
sentation of SMA model velocity data under the time series model (as shown in Figure 11),
the stage of large oscillation amplitude ended on 31 August, and the period from 22 July to
31 August was the initial attenuation stage of SMA model. From the perspective of curve
shape, the SMA model has an obvious tendency to eliminate the ladder shape of the curve
based on the source velocity data model. Through the linear and nonlinear fitting of the
data under the source velocity data SMA model, it can be obtained that under the linear
fitting condition, the landslide time predicted by 12 monitoring points is about 1–5 days
earlier than the actual landslide time. Under the nonlinear fitting condition, the landslide
time predicted by the 12 monitoring points under the model is about 1–4 days earlier than
the actual landslide time, and the landslide time predicted by the GN1 monitoring point
is 2 days behind the actual landslide time. In terms of fitting effect and prediction effect,
nonlinear fitting is better than linear fitting. The prediction effect of the SMA model is
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1–2 days earlier than that of the multiplicative inverse model, but the overall prediction
effect is worse than that of the multiplicative inverse model. The overall prediction effect is
that the actual landslide time is predicted in advance.

 

Figure 11. SMA model analysis curve.

3.5. LMA Model Analysis

After the source velocity data were transformed by the multiplicative inverse repre-
sentation of the velocity data of the LMA model under the time series model (as shown
in Figure 12), the stage of large oscillation amplitude ended on 31 August, and the period
from 22 July to 31 August was the initial attenuation stage of the LMA model. From the
perspective of curve shape, the LMA model further smoothed the curve shape based on the
source velocity data model. The linear and nonlinear fitting of source velocity data under
the LMA model showed that the fitting accuracy of the LMA model was the highest. Under
the linear and nonlinear fitting conditions, the landslide time predicted by the model of
12 monitoring points is about 1–4 days earlier than the actual landslide time, and the land-
slide time predicted by the GN5 monitoring point is 1 day behind the actual landslide time.
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In terms of fitting effect and prediction effect, nonlinear fitting has a better performance
than linear fitting. The landslide prediction time under the LMA model is 1–2 days shorter
than that of the multiplication inverse model. The overall prediction effect is better than
that of the multiplication inverse model, and the actual landslide time can be predicted
in advance.

 

Figure 12. LMA model analysis curve.

3.6. ESF Model Analysis

After the smooth velocity data were transformed by the multiplication inverse repre-
sentation of the source velocity data under the time series model (as shown in Figure 13),
the stage of large oscillation amplitude ended on 31 August. The period from 22 July to 31
August was the initial attenuation stage of the ESF model. In terms of curve morphology,
the smoothness of ESF is better than that of the multiplicative inverse model but worse
than the SMA model and LMA model. Under the linear fitting condition, the landslide
time predicted by 12 monitoring points under the model is about 1–5 days earlier than the
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actual landslide time; under the nonlinear fitting condition, the landslide time predicted by
12 monitoring points under the model is about 1–3 days earlier than the actual landslide
time. The predicted landslide time of the GN1, GN2, and GN9 monitoring points is 2 days,
2 days, and 1 day behind the actual landslide time, respectively. In terms of fitting effect
and prediction effect, the nonlinear fitting has a better performance than the linear fitting.
The landslide prediction time under the LMA model is 1–2 days longer than that under
the multiplication inverse model. The overall prediction effect is worse than that of the
multiplication inverse model, and the actual landslide time can be predicted in advance.

 

Figure 13. ESF model analysis curve.

4. Discussion

The bubble chart between the actual landslide and the predicted landslide time is
drawn in Figure 14. It can be seen from the figure that all four models can effectively
predict the landslide in advance. Under the condition of linear fitting, the interval between
the prediction time and the landslide time is guaranteed to be within 5 days. Under the
nonlinear fitting condition, the interval between the prediction time and landslide time is
guaranteed to be within 4 days, whereas the monitoring data of GN1, GN9, GN10, GN11,
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and GN12 shorten the interval between the prediction time and landslide time to within
2 days. In terms of fitting accuracy, the multiplicative inverse meta-model (model 1) is
the lowest among the four models, followed by the ESF model (model 4); the SMA model
(model 2) is better, and the LMA (model 3) model is the best. In terms of prediction accuracy,
from the perspective of bubble size and distribution, ESF is the lowest among the four
models, followed by the SMA model; the multiplicative inverse meta-model is better, and
the LMA model is the best.

 
Figure 14. Evaluation of model prediction accuracy.

5. Conclusions

In this paper, based on the inverse velocity (INV) method of displacement monitoring
data analysis, we examined the velocity time series by using four filters and compara-
tively analyzed the effect of landslide damage time prediction to improve the reliability of
landslide prediction. The main conclusions of this study include the following points:

(1) A landslide event comprises a rather complicated process. The results show that the
sliding process of a landslide can be divided into three stages based on the INV: the
initial attenuation stage (regressive stage), the second attenuation stage (progressive
stage), and the linear reduction stage (autoregressive stage).

(2) Compared with the raw data and the exponential smoothing filter (ESF) models, the
fitting effect of short-term smoothing filter (SSF) and long-term smoothing filter (LSF)
in the linear autoregressive stage is better.

(3) In terms of fitting accuracy, among the four models proposed in this study, the fitting
accuracy of the multiplicative inverse model is the lowest, followed by the ESF model;
the SMA model is better, and the LMA model is the best. In terms of prediction
accuracy, ESF is the lowest among the four models, followed by the SMA model; the
multiplicative inverse model is better, and the LMA model is the best.

181



Water 2024, 16, 430

Author Contributions: Conceptualization, methodology, software, formal analysis, writing—original
draft, data curation, visualization, and writing—review and editing, Y.T.; formal analysis, visualiza-
tion, validation, methodology, and writing—review and editing, H.D.; funding acquisition, super-
vision, and writing—review and editing, R.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No.
52090081), and the State Key Laboratory of Hydroscience and Engineering (Grant No. 2021-KY-04).
We would also like to express our sincere gratitude to the editors and reviewers who have put
considerable time and effort into their comments on this paper.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Tarolli, P.; Sofia, G. Human topographic signatures and derived geomorphic processes across landscapes. Geomorphology 2016,
255, 140–161. [CrossRef]

2. López-Vinielles, J.; Ezquerro, P.; Fernández-Merodo, J.A.; Béjar-Pizarro, M.; Monserrat, O.; Barra, A.; Blanco, P.; García-Robles, J.;
Filatov, A.; García-Davalillo, J.C.; et al. Remote analysis of an open-pit slope failure: Las Cruces case study, Spain. Landslides 2020,
17, 2173–2188. [CrossRef]

3. Chen, J.P.; Li, K.; Chang, K.J.; Sofia, G.L.; Tarolli, P. Open-pit mining geomorphic feature characterisation. Int. J. Appl. Earth Obs.
Geoinf. 2015, 42, 76–86. [CrossRef]

4. Paradella, W.R.; Ferretti, A.; Mura, J.C.; Colombo, D.; Gama, F.F.; Tamburini, A.; Santos, A.R.; Novali, F.; Galo, M.; Camargo,
P.O.; et al. Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR
analysis. Eng. Geol. 2015, 193, 61–78. [CrossRef]

5. Tao, Z.G.; Shu, Y.; Yang, X.J.; Peng, Y.Y.; Chen, Q.H.; Zhang, H.J. Physical model test study on shear strength characteristics of
slope sliding surface in Nanfen open-pit mine. Int. J. Min. Sci. Technol. 2020, 30, 421–429. [CrossRef]

6. Hoek, E.; Read, J.; Karzulovic, A.; Chen, Z.Y. Rock slopes in civil and mining engineering. In Proceedings of the ISRM International
Symposium, Melbourne, Australia, 19–24 November 2000.

7. Bye, A.R.; Bell, F.G. Stability assessment and slope design at Sandsloot open pit, South Africa. Int. J. Rock. Mech. Min. 2001, 38,
449–466. [CrossRef]

8. Obregon, C.; Mitri, H. Probabilistic approach for open pit bench slope stability analysis—A mine case study. Int. J. Min. Sci.
Technol. 2019, 29, 629–640. [CrossRef]

9. Carlà, T.; Farina, P.; Intrieri, E.; Botsialas, K.; Casagli, N. On the monitoring and early-warning of brittle slope failures in hard rock
masses: Examples from an open-pit mine. Eng. Geol. 2017, 228, 71–81. [CrossRef]

10. Ma, K.; Sun, X.Y.; Zhang, Z.H.; Hu, J.; Wang, Z.R. Intelligent Location of Microseismic Events Based on a Fully Convolutional
Neural Network (FCNN). Rock. Mech. Rock. Eng. 2022, 55, 4801–4817. [CrossRef]

11. Ma, K.; Yuan, F.Z.; Zhuang, D.Y.; Li, Q.S.; Wang, Z.W. Study on Rules of Fault Stress Variation Based on Microseismic Monitoring
and Numerical Simulation at the Working Face in the Dongjiahe Coal Mine. Shock. Vib. 2019, 2019, 7042934. [CrossRef]

12. Zhang, Z.H.; Ma, K.; Li, H.; He, Z.L. Microscopic Investigation of Rock Direct Tensile Failure Based on Statistical Analysis of
Acoustic Emission Waveforms. Rock. Mech. Rock. Eng. 2022, 55, 2445–2458. [CrossRef]

13. Crozier, M.J. Deciphering the effect of climate change on landslide activity: A review. Geomorphology 2010, 124, 260–267. [CrossRef]
14. Carlà, T.; Nolesini, T.; Solari, L.; Rivolta, C.; Dei Cas, L.; Casagli, N. Rockfall forecasting and risk management along a major

transportation corridor in the Alps through ground-based radar interferometry. Landslides 2019, 16, 1425–1435. [CrossRef]
15. Liu, Z.J.; Qiu, H.J.; Ma, S.Y.; Yang, D.D.; Pei, Y.Q.; Du, C.; Sun, H.S.; Hu, S.; Zhu, Y.R. Surface displacement and topographic

change analysis of the Changhe landslide on 14 September 2019, China. Landslides 2021, 18, 1471–1483. [CrossRef]
16. Intrieri, E.; Carlà, T.; Gigli, G. Forecasting the time of failure of landslides at slope-scale: A literature review. Earth Sci. Rev. 2019,

193, 333–349. [CrossRef]
17. Main, L.G. Applicability of time-to-failure analysis to accelerated strain before earthquakes and volcanic eruptions. Geophys. J. Int.

1999, 139, F1–F6. [CrossRef]
18. Tavenas, F.L.S. Creep and failure of slopes in clays. Can. Geotech. J. 1981, 18, 106–120. [CrossRef]
19. Dick, G.J.; Eberhardt, E.; Cabrejo-Liévano, A.G.; Stead, D.; Rose, N.D. Development of an early-warning time-of-failure analysis

methodology for open-pit mine slopes utilizing ground-based slope stability radar monitoring data. Can. Geotech. J. 2015, 52,
515–529. [CrossRef]

20. Saito, M. Forecasting the time of occurrence of a slope failure. In Proceedings of the 6th International Mechanics and Foundation
Engineering, Montreal, QC, Canada, 8–15 September 1965; pp. 537–541.

21. Fukuzono, T. A method to predict the time of slope failure caused by rainfall using theinverse number of velocity of surface
displacement. Landslides 1985, 22, 8–13. [CrossRef] [PubMed]

22. Voight, B. A method for prediction of volcanic eruptions. Nature 1988, 332, 125–130. [CrossRef]

182



Water 2024, 16, 430

23. Voight, B. Materials science law applies to time forecasts of slope failure. Landslide News 1989, 3, 8–10.
24. Rose, N.D.; Hungr, O. Forecasting potential rock slope failure in open pit mines using the inverse-velocity method. Int. J. Rock.

Mech. Min. Sci. 2007, 44, 308–320. [CrossRef]
25. Federico, A.; Popescu, M.; Elia, G.; Fidelibus, C.; Internò, G.; Murianni, A. Prediction of time to slope failure: A general framework.

Environ. Earth Sci. 2012, 66, 245–256. [CrossRef]
26. Dick, G.J.; Eberhardt, E.; Stead, D.; Rose, N.D. Early detection of impending slope failure in open pit mines using spatial and

temporal analysis of real aperture radar measurements. In Proceedings of the Slope 2013: 2013 International Symposium on
Slope Stability in Open Pit Mining and Civil Engineering, Perth, Australia, 25 September 2013; pp. 949–962.

27. Newcomen, W.; Dick, G. An update to the strain-based approach to pit wall failure prediction, and a justification for slope
monitoring. J. S. Afr. Inst. Min. Metall. 2016, 116, 379–385. [CrossRef]

28. Ma, H.T.; Zhang, Y.H.; Yu, Z.X. Research on the identification of acceleration starting point in inverse velocity method and the
prediction of sliding time. Chin. J. Rock. Mech. Eng. 2021, 40, 355–364. [CrossRef]

29. Mufundirwa, A.; Fujii, Y.; Kodama, J. A new practical method for prediction of geomechanical failure-time. Int. J. Rock. Mech.
Min. 2010, 47, 1079–1090. [CrossRef]

30. Carlà, T.; Intrieri, E.; Di Traglia, F.; Nolesini, T.; Gigli, G.; Casagli, N. Guidelines on the use of inverse velocity method as a tool for
setting alarm thresholds and forecasting landslides and structure collapses. Landslides 2017, 14, 517–534. [CrossRef]

31. Carlà, T.; Farina, P.; Intrieri, E.; Ketizmen, H.; Casagli, N. Integration of ground-based radar and satellite InSAR data for the
analysis of an unexpected slope failure in an open-pit mine. Eng. Geol. 2018, 235, 39–52. [CrossRef]

32. Zhou, X.P.; Liu, L.J.; Xu, C. A modified inverse-velocity method for predicting the failure time of landslides. Eng. Geol. 2020, 268,
105521. [CrossRef]

33. Chen, M.X.; Jiang, Q.H. An early warning system integrating time-of-failure analysis and alert procedure for slope failures. Eng.
Geol. 2020, 272, 105629. [CrossRef]

34. Chandler, R.J. Recent European experience of landslides in over-consolidated clays and soft rocks. In Proceedings of the 4th
International Symposium on Landslide, Toronto, ON, Canada, 16–21 September 1984; pp. 61–81.

35. Petley, D.N.; Higuchi, T.; Petley, D.J.; Bulmer, M.H.; Carey, J. Development of progressive landslide failure in cohesive materials.
Geology 2005, 33, 201–204. [CrossRef]

36. Troncone, A.; Conte, E.; Donato, A. Two and three-dimensional numerical analysis of the progressive failure that occurred in an
excavation-induced landslide. Eng. Geol. 2014, 183, 265–275. [CrossRef]

37. Main, L.G. A damage mechanics model for power-law creep and earthquake aftershock and foreshock sequences. Geophys. J. Int.
2000, 142, 151–161. [CrossRef]

38. Xu, Q. Theoretical studies on prediction of landslides using slope deformation process data (in Chinese with English abstract). J.
Eng. Geol. 2012, 1020, 145–151.

39. Dixon, N.; Smith, A.; Flint, J.A.; Khanna, R.; Clark, B.; Andjelkovic, M. An acoustic emission landslide early warning system for
communities in low-income and middle-income countries. Landslides 2018, 15, 1631–1644. [CrossRef]

40. Wang, X.G.; Yin, Y.P.; Wang, J.D.; Lian, B.Q.; Qiu, H.J.; Gu, T.F. A nonstationary parameter model for the sandstone creep tests.
Landslides 2018, 15, 1377–1389. [CrossRef]

41. Bozzano, F.; Mazzanti, P.; Moretto, S. Discussion to: Guidelines on the use of inverse velocity method as a tool for setting alarm
thresholds and forecasting landslides and structure collapses’ by T. Carlà, E. Intrieri, F. Di Traglia, T. Nolesini, G. Gigli and N.
Casagli. Landslides 2018, 15, 1437–1441. [CrossRef]

42. Hao, S.W.; Liu, C.; Lu, C.S.; Elsworth, D. A relation to predict the failure of materials and potential application to volcanic
eruptions and landslides. Sci. Rep. 2016, 6, 27877. [CrossRef]

43. Du, H.; Song, D.Q.; Chen, Z.; Guo, Z.Z. Experimental study of the influence of structural planes on the mechanical properties of
sandstone specimens under cyclic dynamic disturbance. Energy Sci. Eng. 2020, 8, 4043–4063. [CrossRef]

44. Huang, J.; Liu, X.L.; Zhao, J.; Wang, E.Z.; Wang, S.J. Propagation of stress waves through fully saturated rock joint under
undrained conditions and dynamic response characteristics of filling liquid. Rock. Mech. Rock. Eng. 2020, 53, 3637–3655.
[CrossRef]

45. Kilburn, C.R.J. Forecasting volcanic eruptions: Beyond the failure forecast method. Front. Earth Sci. 2018, 6, 133. [CrossRef]
46. Dempsey, D.E.; Cronin, S.J.; Mei, S.; Kempa-Liehr, A.W. Automatic precursor recognition and real-time forecasting of sudden

explosive volcanic eruptions at Whakaari, New Zealand. Nat. Commun. 2020, 11, 3562. [CrossRef]
47. Xu, C.; Liu, X.L.; Wang, E.Z.; Wang, S.J. Prediction of tunnel boring machine operating parameters using various machine learning

algorithms. Tunn. Undergr. Space Technol. 2021, 109, 103699. [CrossRef]
48. Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [CrossRef]
49. Terzaghi, K. Mechanism of Landslides. In Application of Geology to Engineering Practice; Paige, S., Ed.; Geological Society of

America: Boulder, CO, USA, 1950. [CrossRef]
50. Bozzano, F.; Cipriani, I.; Mazzanti, P.; Prestininzi, A. A field experiment for calibrating landslide time-of-failure prediction

functions. Int. J. Rock Mech. Min. Sci. 2014, 67, 69–77. [CrossRef]
51. Segalini, A.; Valletta, A.; Carri, A. Landslide time-of-failure forecast and alert threshold assessment: A generalized criterion. Eng.

Geol. 2018, 245, 72–80. [CrossRef]

183



Water 2024, 16, 430

52. Osasan, K.S.; Stacey, T.R. Automatic prediction of time to failure of open pit mine slopes based on radar monitoring and inverse
velocity method. Int. J. Min. Sci. Technol. 2014, 24, 275–280. [CrossRef]

53. Benoit, L.; Briole, P.; Martin, O.; Thom, C.; Malet, J.P.; Ulrich, P. Monitoring landslide displacements with the Geocube wireless
network of low-cost GPS. Eng. Geol. 2015, 195, 111–121. [CrossRef]

54. Samodra, G.; Ramadhan, M.F.; Sartohadi, J.; Setiawan, M.A.; Christanto, N.; Sukmawijaya, A. Characterization of displacement
and internal structure of landslides from multitemporal UAV and ERT imaging. Landslides 2020, 17, 2455–2468. [CrossRef]

55. Chae, B.G.; Park, H.J.; Catani, F.; Simoni, A.; Berti, M. Landslide prediction, monitoring and early warning: A concise review of
state-of-the-art. Geosci. J. 2017, 21, 1033–1070. [CrossRef]

56. Pecoraro, G.; Calvello, M.; Piciullo, L. Monitoring strategies for local landslide early warning systems. Landslides 2019, 16, 213–231.
[CrossRef]

57. Abdulwahid, W.M.; Pradhan, B. Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser
scanning data (LiDAR). Landslides 2017, 14, 1057–1076. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

184



Citation: Moradi, S.; Huisman, J.A.;

Vereecken, H.; Class, H. Comparing

Different Coupling and Modeling

Strategies in Hydromechanical

Models for Slope Stability

Assessment. Water 2024, 16, 312.

https://doi.org/

10.3390/w16020312

Academic Editors: Qingzhao Zhang

and Danyi Shen

Received: 29 November 2023

Revised: 11 January 2024

Accepted: 15 January 2024

Published: 17 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Comparing Different Coupling and Modeling Strategies in
Hydromechanical Models for Slope Stability Assessment

Shirin Moradi 1,*, Johan Alexander Huisman 1, Harry Vereecken 1 and Holger Class 2

1 Agrosphere Institute (IBG 3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany;
s.huisman@fz-juelich.de (J.A.H.); h.vereecken@fz-juelich.de (H.V.)

2 Institute for Modeling Hydraulic and Environmental Systems (IWS), University of Stuttgart, 70569 Stuttgart,
Germany; holger.class@iws.uni-stuttgart.de

* Correspondence: s.moradi@fz-juelich.de

Abstract: The dynamic interaction between subsurface flow and soil mechanics is often simplified in
the stability assessment of variably saturated landslide-prone hillslopes. The aim of this study is to
analyze the impact of conventional simplifications in coupling and modeling strategies on stability
assessment of such hillslopes in response to precipitation using the local factor of safety (LFS) concept.
More specifically, it investigates (1) the impact of neglecting poroelasticity, (2) transitioning from full
coupling between hydrological and mechanical models to sequential coupling, and (3) reducing the
two-phase flow system to a one-phase flow system (Richards’ equation). Two rainfall scenarios, with
the same total amount of rainfall but two different relatively high (4 mm h−1) and low (1 mm h−1)
intensities are considered. The simulation results of the simplified approaches are compared to a
comprehensive, fully coupled poroelastic hydromechanical model with a two-phase flow system.
It was found that the most significant difference from the comprehensive model occurs in areas
experiencing the most transient changes due to rainfall infiltration in all three simplified models.
Among these simplifications, the transformation of the two-phase flow system to a one-phase flow
system showed the most pronounced impact on the simulated local factor of safety (LFS), with a
maximum increase of +21.5% observed at the end of the high-intensity rainfall event. Conversely,
using a rigid soil without poroelasticity or employing a sequential coupling approach with no iteration
between hydromechanical parameters has a relatively minor effect on the simulated LFS, resulting
in maximum increases of +2.0% and +1.9%, respectively. In summary, all three simplified models
yield LFS results that are reasonably consistent with the comprehensive poroelastic fully coupled
model with two-phase flow, but simulations are more computationally efficient when utilizing a rigid
porous media and one-phase flow based on Richards’ equation.

Keywords: rainfall induced landslide; slope stability; poroelasticity; local factor of safety; coupled
hydromechanical modeling

1. Introduction

It is well known that many landslides are triggered by rainfall [1–5]. When rainwa-
ter infiltrates the soil, it alters both the overall weight and pore pressure, subsequently
impacting how stress is distributed within hillslopes. This underscores the notion that
rainfall-induced landslides are a prominent example of a hydromechanical process. Such
interconnected hydromechanical phenomena have been understood for a considerable
time, as seen in earlier studies, e.g., [6]. In recent decades, a range of models has been
developed to evaluate the stability of hillslopes by taking such subsurface hydromechanical
processes into account [7–11].

Existing hydromechanical models often rely on a series of simplifications. Below,
we briefly review the most widely used and commonly accepted simplifications. Firstly,
in most slope stability analysis models, the soil is treated as a rigid medium, neglecting
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the dynamic interplay between hydraulic and mechanical factors [12–14]. For instance,
while there has been empirical work on characterizing the impact of variable effective
stress on porosity, e.g., [15,16], only a handful of studies have explored this potential hy-
dromechanical interplay in stability assessments, e.g., [17,18]. In many cases, the focus has
been primarily on the effects of mechanical compaction and consolidation due to increased
self-weight with depth or external loading, with typical parameterizations reflecting di-
minishing porosity and hydraulic conductivity with depth, e.g., [9,19]. However, such
approaches commonly overlook the dynamic variations in these properties.

Secondly, hydromechanical models used in slope stability assessments often employ a
sequential coupling method, which primarily considers a one-way influence of transient
hydrological conditions (e.g., pore water pressure) on the mechanical properties of variably
saturated hillslopes. Specifically, this approach involves solving the mass and momentum
balance equations for subsurface flow first and then utilizing the resulting pressure head
and bulk density distribution as inputs for solving the momentum balance equations for the
mechanical aspect, accounting for the corresponding suction and effective stresses within
the variably saturated porous medium, e.g., [7,20,21].

Thirdly, it is common practice to assume constant pore air pressure and to simplify
the actual two-phase (air and water) flow dynamics [22] into a single-phase (water) flow
model where Richards’ equation [23] is employed to simulate subsurface flow, e.g., [24,25].

All of the aforementioned simplifications are aimed at reducing computational costs
and addressing issues related to numerical robustness, thereby enhancing the efficiency
of slope stability assessment using hydromechanical models, e.g., [20,26]. However, it
is important to note that these simplifications can potentially compromise model accu-
racy. For instance, it is demonstrated that a sequential coupling strategy lacking feedback
from mechanical processes to hydraulic properties can introduce a significant error when
modeling aquifer subsidence, especially when compared to a more sophisticated iterative
coupling approach [26] that considers this interaction to some extent. Additionally, Cho [21]
found that stability analysis results for partially saturated slopes could differ by over 10%
between one-phase and two-phase flow systems.

To address inaccuracies stemming from neglecting the interplay between variable me-
chanical parameters and hydraulic properties, a viable solution is the adoption of a fully
coupled hydromechanical model [27]. In a fully coupled approach, the mass and momen-
tum balance equations for subsurface flow and soil mechanics are simultaneously solved
within each simulation time step. Alternatively, one can opt for a sequentially coupled
hydromechanical model [28], where the unknowns related to flow and soil mechanics are
solved sequentially. This sequential approach can involve varying numbers of iterations
between sub-problems at each time step, e.g., [29], ensuring that the influence of altered
mechanical parameters on soil hydraulic properties is considered in subsequent iterations
of the same time step. In principle, simulations using a sequentially coupled model with
iterations, continued until the mass and momentum balance solutions converge, should
yield results identical to those from an equivalent fully coupled model, e.g., [30,31]. Notably,
recent developments in fully coupled hydromechanical modeling, as seen in Darcis [32],
have expanded its applicability. Beck et al. [30] extended Darcis’ [32] model and introduced
sequential coupling with iterations. This extended model accounts for two-phase flow and
incorporates variations in hydraulic parameters due to the elastic deformation of porous
media caused by transient pore pressure changes. This typically occurs when the advancing
saturation front encounters initially drier soil. The results of Beck et al. [30] emphasize that
significant disparities can arise between non-iterative sequential and fully coupled mod-
els, particularly in highly transient conditions featuring substantial gradients in pore water
pressure and stress. These disparities are more pronounced when computational resources
limit the number of feasible iterations in the sequentially coupled model. In recent years, the
adoption of fully coupled hydromechanical models has grown across various applications,
including land deformation, water table determination [33], hydraulic fracturing [34,35], clay
activities [36], and reservoir characterization [37]. However, such comprehensive modeling
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strategies have not been widely employed for slope stability assessment [38–42]. Further-
more, the errors associated with widely used model simplifications in the assessment of
variably saturated hillslopes have yet to be thoroughly examined.

Within this context, the aim of this study is to compare various coupling and modeling
strategies for assessing the stability of variably saturated hillslopes using hydromechanical
models. Additionally, we seek to assess the associated errors resulting from different
coupling approaches and commonly employed model simplifications. To achieve this,
we made modifications to both the fully coupled hydromechanical model developed by
Darcis [32] and the non-iterated sequential model proposed by Beck et al. [30]. These
modifications enabled us to simulate variations in water content and stress distribution
within variably saturated hillslopes. Furthermore, we simplified the two-phase fully
coupled model in two ways: first, into a two-phase fully coupled model featuring a
rigid soil with constant porosity and no poroelasticity, and second, into a fully coupled
model incorporating a one-phase flow system (Richards’ model) for water flow (refer to
Supplement S1, Equations (S1)–(S19) for details). We then evaluated the impact of these
different coupling and modeling strategies on simulated slope stability for different rainfall-
induced infiltration conditions up to the point of failure. Our assessment was carried out
using the Local Factor of Safety method [7].

2. Materials and Methods

2.1. Coupled Hydromechanical Model

The key elements of the hydromechanical modeling approach have been described [30,43],
and readers are referred to the Supplementary Material Index S1 for more details.

2.2. Evaluation of Stability Status

Once the mass and momentum balance equations have been solved (either simulta-
neously or sequentially), the stability of the variably saturated hillslope can be evaluated.
In this study, the Local Factor of Safety (LFS) approach proposed by Lu et al. [7] has been
used, which can best be implemented for early warning of failure initiation. The LFS [−] is
based on the Mohr–Coulomb criterion (Figure S2) and is the ratio of Coulomb stress at the
potential failure state, τ* [ML−1T−2], and the current state of Coulomb stress, τ [ML−1T−2],
at each point within a hillslope. LFS = 1, therefore, defines the stability threshold, where
failure potentially occurs for values lower than 1.0. The Coulomb stress at the potential
failure state, τ*, can be defined by

τ* = c′ + σ′ tan φ′ (1)

in which c′ [ML−1T−2] is the effective cohesion, σ′[ML−1T−2] is the effective stress, and
φ′ [◦] is the effective internal friction angle of the soil. The LFS of each element within the
hillslope is then calculated as

LFS =
τ*
τ

=
cos φ′ (c ′ + σI

′ tan φ′)
σII

′ (2)

where σI
′[ML−1T−2] and σII

′[ML−1T−2] are obtained based on the maximum and mini-
mum principal stresses, σ1,3 [ML−1T−2], and the suction stress, σs[ML−1T−2], as

σI
′ = σ1 + σ3

2
− σs (3)

σ′II =
σ1 − σ3

2
(4)

One can reasonably infer that alterations in the size of the Mohr circle, delineated by the
principal total stresses and influenced by the bulk weight and element positioning within a
hillslope, remain relatively modest in a variably saturated hillslope undergoing infiltration.
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However, cumulative pore water pressure in an unsaturated hillslope reduces the effective
stress’s absolute value, causing the Mohr circle to shift leftward (refer to Figure S2), nearing
the failure envelope. Consequently, pore pressure primarily determines the Mohr circle’s
position relative to the Mohr–Coulomb failure envelope [7,44]. Initial Local Factor of Safety
(LFS) results align with conventional stability assessment methods [7,45]. However, this
approach offers additional insights into when and where failure might initiate, eliminating
the need to predefine a failure surface. The LFS method has previously been used with a
sequentially coupled hydromechanical model (without iterations) and a one-phase (water)
flow system [7,12,46].

2.3. Implementation of Different Coupling and Modeling Concepts

Four different implementations of coupled hydromechanical models with the LFS
concept are compared (Table 1). The most comprehensive implementation is based on
Darcis’ [32] fully coupled hydromechanical model with two-phase flow. It considers the
influence of pore pressure and elastic volumetric strain on porosity and hydraulic conduc-
tivity. The second implementation simplifies Darcis [32] model by excluding poroelastic
effects. The third model is based on the sequentially coupled model of Beck et al. [30]
with no iterations between the hydrological and mechanical parts. Feedback from the
mechanical model to the hydrological model occurs in the next time step instead of the
same time step. The fourth and final implementation simplifies the fully coupled two-phase
flow model to a fully coupled model with one-phase flow (Richards’ equation).

Table 1. Four different implementations of coupled hydromechanical models in this study.

Model Abbreviation

Fully coupled two-phase flow model with variable porosity 2P-FC-var.Por.
Fully coupled two-phase flow model with constant porosity 2P-FC-const.Por.

sequentially coupled two-phase flow model 2P-SC
One-phase flow model (Richards’ equation) 1P-FC

All four model implementations were realized in DuMux [27,47,48], which is a free,
open-access “multi- [physics, . . .]” simulator of fluid flow in porous media (https://dumux.
org/ (accessed on 1 November 2023)). DuMux is based on the Distributed and Unified
Numerics Environment (DUNE) [49–51] and solves the partial differential equations (PDE)
for fluid flow and soil mechanics using a finite volume method. The model domain is
discretized using the Box method [27].

To compare the four model implementations, the simulations were conducted on
a 2D sloped domain with a 30◦ incline, featuring idealized isotropic and homogeneous
silty soil (Figure 1). The stability of this failure-prone slope has been previously assessed
using the LFS concept [7,12,46]. Hydromechanical soil properties are detailed in Table S1,
and boundary conditions are depicted in Figure 1. For the hydrological model, a no-flow
condition at the bottom and left boundaries of the domain were applied. Initially, the slope
was assumed to be in hydrostatic equilibrium with a 5 m deep groundwater table extending
horizontally from the toe of the slope. The unknown primary variables of the flow equation
in the so-called fully coupled approach are pore water pressure (pw) and air saturation (Sa).
Hence, the right boundary below the groundwater table, characterized by full saturation
(Sa = 0) and a prescribed hydrostatic water pressure (pw), is treated as a Dirichlet boundary.
Above the water table, we set a no-flow boundary. The top surface acts as a Neumann
boundary with an infiltration rate matching the rainfall rate. Here, two constant rainfall
intensities were employed. The first set of simulations used a low-intensity rainfall (LIR)
of 1 mm h−1 (20% of Ks) for 20 h. The second set applied a high-intensity rainfall (HIR)
of 4 mm h−1 (80% of Ks) for 5 h to ensure an equivalent total infiltration amount for both
events. In the mechanical model, the top surface is a free boundary, while the left and
right boundaries have no displacement in the direction normal to the boundary (roller
boundary). The bottom is fixed.
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Figure 1. The geometry, boundary conditions, and discretization of the 2D, homogeneous silty slope
used to compare the four hydromechanical model implementations. Please note that the same color
and line type were used for the hydrological infiltration and mechanical free boundary conditions at
the surface because they are both of the Neumann-type.

A cube mesh was used to discretize the modeling domain (Figure 1) with an increas-
ing grid size and depth to reduce the computational costs while being able to catch the
hydromechanical dynamics that are expected to be most pronounced near the slope sur-
face [12]. The following analysis is focused on a relatively small part of the modeling
domain indicated as the control area in Figure 1 and the associated cross section A. This
control area was used to reduce the effect of the boundary conditions on the seepage condi-
tion of the slope, e.g., [52]. As reported by Kristo et al. [53], setting the side boundaries at a
distance of 3 times the height of the slope from the crest and the toe minimizes the impact
of the boundary conditions on the simulation results.

3. Results

3.1. Fully Coupled Two-Phase Flow Model with Variable and Constant Porosity

Figure 2 depicts the evolving LFS distribution within the 2D slope, simulated using
the comprehensive fully coupled two-phase flow model under both low- and high-intensity
rainfall events. This model accounts for poroelastic effects linked to variable pore pressure
and material self weight. Figure 2 shows that the LFS gradually diminishes near the slope
surface as infiltration progresses, with the potentially unstable area, characterized by an
LFS near 1.0, initially emerging near the slope toe and expanding over time. The LFS
method considers only the shear stress of each element independently, without regard
for neighbouring elements, and it does not account for post-failure stress redistribution.
Consequently, an LFS < 1 does not unequivocally denote a state of failure [43], and the
slope stability status after the initial potentially unstable location should be interpreted
cautiously. Therefore, all simulation results are presented until the LFS reaches the potential
failure threshold of LFS = 1.0 at some point on the hillslope.

To investigate the significance of incorporating poroelasticity in slope stability assess-
ment, the dynamics of vertical effective stress for the two rainfall intensities, focusing on
cross section A of the hillslope are presented in Figure 3. This figure displays the simulated
effective stress as a function of depth relative to the effective stress derived from bulk
density and the hydrostatic pore pressure distribution, assuming a constant porosity of
0.46. The resulting changes in simulated porosity are illustrated in Figure 4. The simu-
lations reveal that the effective stress was lower than the specified value above a depth
of approximately 5 m, but it exceeded this value below this depth. A positive change in
effective stress signifies that the compressive pressure due to self-weight exceeded the
specified value. Rainfall infiltration also led to a reduction in effective stress and an increase
in porosity near the surface. However, the overall changes in simulated porosity were
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relatively minor, with a maximum shift of +0.59% observed near the slope surface after the
HIR and +0.58% during the LIR. The average difference at cross section A was only 0.08%
for the upper 7 m and 0.37% for the upper 1 m for both rainfall intensities. Subsequently,
the focus narrows to near-surface pore water pressure and LFS dynamics due to rainfall
infiltration, with simulation results presented solely for the upper 1 m. All differences are
presented as relative values compared to the outcomes of the comprehensive fully coupled
model (i.e., (Xx − XFC)/XFC × 100), with a positive change indicating an increase relative to
the equivalent value in the comprehensive fully coupled model (FC) and a negative change
representing a decrease in the respective value.
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Figure 2. The spatial and temporal variability of LFS for the 2D silty slope simulated with the FC
two-phase flow model for the LIR at (a) t = 0 h, (b) t = 8 h, and (c) t = 20 h, and the HIR at (d) t = 0 h,
(e) t = 2 h, and (f) t= 5 h.
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Figure 3. The simulated change in effective stress at cross section A of the 2D silty slope using the
two-phase FC model for the LIR at (a) t = 0 h, (b) t = 8 h, and (c) t = 20 h and the HIR at (d) t = 0 h,
(e) t = 2 h, and (f) t = 5 h.
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Figure 4. The dynamics of simulated vertical effective stress and porosity at cross section A of the 2D
silty slope using the two-phase FC model for the LIR at (a) t = 0 h, (b) t = 8 h, and (c) t = 20 h and the
HIR at (d) t = 0 h, (e) t = 2 h, and (f) t = 5 h.

To assess the impact of poroelasticity on pore water pressure (pw) and stability, we
compared results from the comprehensive fully coupled two-phase flow model with those
from the same model employing a constant porosity (Figure 5). The most significant
disparities in pw and LFS between the two model implementations were observed at the
soil surface and at the end of the high-intensity rainfall event. Specifically, the maximum
discrepancies reached approximately −10.1% for pw (decrease) and +2.0% for LFS (increase)
compared to the fully coupled model with poroelasticity. In the case of the low-intensity
rainfall, the variations amounted to a maximum of −2.2% for pw and +1.1% for LFS at
the end of the event. When considering the entire cross section for the high-intensity
rainfall event, the average differences were only −0.8% for pw (decrease) and +0.2% for
LFS (increase). Similarly, at the end of the low-intensity rainfall, these values were −0.3%
for pw and +0.1% for LFS.
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Figure 5. Cont.
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Figure 5. The simulated pw and LFS distribution at cross section A of the 2D silty slope using the
two-phase fully coupled (2P-FC) model with variable and constant porosity for the LIR at (a) t = 0 h,
(b) t = 8 h, and (c) t = 20 h and the HIR at (d) t = 0 h, (e) t = 2 h, and (f) t = 5 h. The difference between
the two model implementations for low- and high-intensity rainfall are shown in panels (g–i).

3.2. Fully Coupled vs. Sequentially Coupled Models

To compare simulation outcomes between the fully coupled (FC) and sequentially
coupled (without iterations) two-phase flow models, we examined simulated pore water
pressure (pw) in Figure 6 for the upper 1 m of cross section A during both low- and high-
intensity rainfall events. The results reveal a maximum variation of −16% in pw with
the sequentially coupled (SC) model during the high-intensity rainfall event, occurring
in the middle of the event. In Figure 6, we also illustrate the resulting differences in
simulated LFS. As the initial conditions for all models were identical, encompassing the
same initial pressure distribution and LFS, these aspects are not depicted in subsequent
figures. The sequentially coupled model exhibited a +7.5% deviation compared to the
fully coupled model, with the most significant difference also appearing in the middle
of the high-intensity rainfall event. For the low-intensity rainfall event, the sequentially
coupled model showed a maximum variation of −6.3% in pw and a +4.3% difference in
LFS. Averaging the top 1 m of cross section A during the high-intensity rainfall event, we
observed average differences of −1.5% for simulated pw and +0.3% for LFS. Corresponding
averages during the low-intensity rainfall event were −0.4% for pw and +0.2% for LFS.
These disparities predominantly occurred near the surface, where dynamic changes in pore
water pressure were most pronounced. For depths exceeding 1 m, the effect of increased
soil weight due to infiltration remained below 0.01% for both pw and LFS.
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Figure 6. The simulated pw and LFS distribution at cross section A for the 2D silty slope using fully
and sequentially coupled two-phase flow models (2P-FC and 2P-SC, respectively) with the LIR at
(a) t = 8 h and (b) t = 20 h and the HIR at (c) t = 2 h and (d) t = 5 h. The differences between the two
model implementations for low- and high-intensity rainfall are shown in panels (e,f).

3.3. Fully Coupled Two-Phase vs. One-Phase Flow Model (Richards’ Equation)

Finally, we compare the simulated results between the fully coupled two-phase flow
model (2P-FC) and the fully coupled one-phase flow model (Richards’ equation) (1P-
FC). Figure 7 illustrates the simulated pore water pressure (pw) and LFS for both model
implementations in the upper 1 m of cross section A during the low- and high-intensity
rainfall events, along with their relative differences. Once more, the most significant
deviation between the two models arises at the end of the high-intensity rainfall event.
Here, we observe a +97.2% shift in pw and a −21.5% shift in LFS compared to the fully
coupled model. This maximum difference diminishes to roughly +53.7% in pw and −11.9%
in LFS for the low-intensity rainfall event. Additionally, we notice that the disparities
between the two model implementations primarily occur in a smaller region near the slope
surface during the high-intensity rainfall event. Consequently, the average differences for
the top 1 m of cross section A are relatively consistent (−9.5% for pw and 1.9% for LFS at
the end of the high-intensity rainfall and −8.2% for pw and 1.9% for LFS at the end of the
low-intensity rainfall event, relative to the fully coupled model).
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Figure 7. The simulated pw and LFS distribution at cross section A for the 2D silty slope using
the fully coupled two-phase and Richards’ models (2P-FC and 1P-FC, respectively) with the LIR at
(a) t = 8 h, and (b) t = 20 h and the HIR at (c) t = 2 h, and (d) t = 5 h. The differences between the two
model implementations for low- and high-intensity rainfall are shown in panels (e,f).

4. Discussion

Table 2 summarizes the results of the aforementioned modeling simplifications and
coupling strategies on both the pore water pressure and stability assessment of variably
saturated hillslopes, which is used as a starting point for the following discussion.

Table 2. Comparative analysis of simulated pore water pressure and Local Factor of Safety of the
simplified models relative to the comprehensive fully coupled model (in percentage) under the two
investigated rainfall intensities.

2P-FC-var.Por. vs. . . . Parameter HIR (4 mm h−1) (%) LIR (1 mm h−1) (%)

2P-FC- const-Por.
pw −10.1 −2.2
LFS +2.0 +1.1

2P-SC
pw −16.0 −6.3
LFS +7.5 +4.3

1P-FC
pw +97.2 +53.7
LFS −21.5 −11.9
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4.1. Effect of Poroelasticity

In a poroelastic medium, porosity changes with depth and pore water pressure. Where
pore pressure exceeds the bulk weight, porosity increases; where self weight surpasses
pore pressure, porosity decreases. Thus, areas with positive changes in vertical effective
stress tend to have decreasing porosity, as seen in Figure 3. Conversely, areas with negative
changes in effective stress are expected to exhibit increased porosity.

The results in Figure 4 suggest that the increased effective hydraulic conductivity
(Keff) due to higher porosity in the poroelastic model outweighs the displacement (u) effect,
resulting in elevated pore pressure near the surface. In contrast, simulations with constant
hydraulic conductivity in a poroelastic fully coupled model showed lower pore pressure
(results not shown) and consequently higher LFS at those locations.

The maximum model differences coincide with those of the transient zones, which is
consistent with the findings of Beck et al. [30]. These zones are located near the surface and
experience maximum pore pressure variations during the wetting front infiltration. For
different infiltration rates, the pore water pressure gradient differs across the infiltration
front. In particular, the pore water pressure was higher for the high-intensity rainfall, which
resulted in a stronger increase in porosity. For this reason, the effect of not considering
poroelastic effects is more pronounced in the case of high-intensity rainfall. The higher pore
water pressure resulted in lower LFS in the simulated results of the model that considers
poroelasticity. Overall, the influence of poroelasticity and its effects on pore water pressure
and stability in variably saturated hillslopes appear relatively minor during infiltration.

4.2. Effect of Coupling Strategy

For both rainfall intensities, the slightly higher pw values in the fully coupled model
are due to its consideration of the complete interaction between effective pore pressure
and volumetric strain within each time step. In the sequentially coupled model with no
iteration, the impact of variable pore pressure on stress and strain distribution occurs in the
same time step, but the feedback of volumetric strain to pore pressure is accounted for in
the subsequent time step. As previously discussed, differences are more prominent during
high-intensity rainfall events due to steeper pore water pressure gradients. These results
again align with the findings of Beck et al. [30], emphasizing that the maximum difference
between fully coupled and sequentially coupled models occurs in regions with transient
processes involving rapid pore water pressure changes within a single time step. Despite
the anticipated greater reliability of the fully coupled model due to its comprehensive
interaction between hydrological and mechanical components, the results presented here
indicate relatively minor variations in pore water pressure and consequent instability
assessment between these two coupling strategies (Table 2).

Notably, the differences in simulated pw and LFS between fully and sequentially
coupled models are more significant than those between the fully coupled model with and
without poroelastic changes. This smaller difference in the latter simulations is attributed
to the counteractive effects of displacement (u) and effective hydraulic conductivity (Keff)
on pore pressure in the fully coupled poroelastic model. Specifically, increased effective
porosity due to infiltration reduces pore pressure and elevates Keff. The latter increases
pore pressure, partially offsetting the overall effect of larger pore size, resulting in a reduced
pore pressure decrease or even an increase.

4.3. Effect of the Multiphase Flow Model

The results from comparing the fully coupled two-phase and one-phase flow models
indicate a more significant disparity between these two implementations than the impact
of simplifying poroelasticity or employing different coupling strategies. These differences
in Figure 6 are primarily attributed to the influence of constant pore air pressure (pa)
in the one-phase flow model based on Richards’ equation. In a two-phase flow system
involving water and air, the air must move or exit the domain during rainfall infiltration.
Consequently, the downward progression of water is impeded by elevated pore air pressure,
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resulting in reduced flow and a slower increase in pw. This also explains the enhanced
water accumulation near the surface over time, leading to higher pw near the surface in
the two-phase flow model. To substantiate this, we analyzed the development of pore
air pressure (pa) during both low- and high-intensity rainfall events. Figure 8 illustrates
the rising trend of air pressure with infiltration. As depicted, air pressure increases with
depth and infiltration. This pattern arises from soil compaction and the displacement of
air from shallower layers due to increasing depth and infiltration, respectively. In the
case of low-intensity rainfall, air movement is less restricted and can be released from the
area, resulting in a less pronounced increase in pa with infiltration. The steeper curve for
low-intensity rainfall represents the initially dominant influence of soil compaction, which
is more prominently affected by infiltration during high-intensity rainfall.

LIR [1 mm h 1] HIR [1 mm h 1] 

Figure 8. The simulated pa distribution at cross section A for the 2D silty slope using fully coupled
two-phase models (2P-FC and 1P-FC, respectively) for LIR and HIR at different time steps.

The lower pore water pressure led to increased stability across various times and
locations within the two-phase flow system. This enhanced stability when considering that
two-phase flow is consistent with Cho [21]. During the simulations with high-intensity
rainfall, the affected area is shallower and more localized compared to simulations with
low-intensity rainfall despite the same total precipitation volume. Consequently, the
differences between the two models are more pronounced during high-intensity rainfall,
primarily within a smaller region closer to the slope surface. These results underscore the
potential benefit of considering multiphase flow processes in slope stability assessment,
provided sufficient computational resources are available. However, it is important to note
that this study does not account for soil heterogeneity or the presence of macrospores,
which are both common in natural soils. Particularly, the existence of macropores is
expected to significantly enhance soil aeration, reducing the impact of air entrapment on
the infiltration process.

5. Conclusions and Outlook

In this study, the stability status of a 2D slope was simulated using a fully coupled
hydromechanical model with two-phase (water and air) flow. This model was implemented
in the open-source simulator DuMux, and simulations were made for a low- and a high-
intensity rainfall event. This comprehensive model was used to examine the impact of three
widely used model simplifications in slope stability assessments using the local factor of
safety (LFS) approach: (i) the absence of feedbacks from the mechanical to the hydrological
model component, (ii) the use of a sequential instead of a fully coupled modeling approach,
and iii) the use of a one-phase (i.e., water with Richards’ equation) instead of a two-
phase (i.e., water and air) flow model. The simulation results indicated that the most
significant differences in slope stability occurred near the slope surface, where the steepest
gradients in pore water pressure occurred, aligning with previous hydromechanical model
applications [30].
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Among the three simplifications, replacing a two-phase flow model with a one-phase
flow model had the most substantial impact on simulated pore water pressure and LFS. Yet
simulations were more robust and computationally efficient when utilizing rigid porous
media and one-phase flow based on Richards’ equation. Employing a sequentially cou-
pled model or a fully coupled model with constant porosity caused only minor changes.
However, instability primarily occurred in fully saturated areas with relatively small
pore pressure variations, resulting in minimal differences between the model implemen-
tations regarding failure initiation. The disparity between the simplified models and the
comprehensive fully coupled model was higher when the rainfall intensity was higher.
Nevertheless, exploring different soil types with varying porosities and pore size distri-
butions, like sand or clay with diverse fine and coarse material content, could provide
further insights into infiltration patterns and pore pressure variations. In summary, all
model simplifications yielded acceptable slope stability analyses, resembling outcomes
from the comprehensive fully coupled two-phase flow model. Vulnerable zones prone to
failure were consistent across models, offering valuable insights for slope reinforcement
and early warning. However, slight variations in potential failure times suggest that more
comprehensive methods may be warranted in sensitive sites with sufficient data or without
computational constraints.

The results of this study can be extended by exploring more realistic slopes, accounting
for heterogeneity, macropores, varying aeration conditions, transient zones, and diverse
pore pressure distributions. Additionally, factors like soil types, their variability across
a hillslope, groundwater levels, and slope angle play pivotal roles in determining slope
stability. Boundary conditions, such as variable infiltration rates and bidirectional inflow
and outflow through the boundary, should also be examined in a subsequent study. While
the assumption of linear-elastic soil may suffice for early slope failure warning, future
simulations can be enhanced by considering more realistic elastoplastic hillslopes, incorpo-
rating plastic deformation and post-failure stress redistribution. A three-dimensional slope
with complex geometry, bedrock topography, and validation against real-world slopes
may also offer further insights into the suitability of different model simplifications and
coupling strategies.
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mdpi.com/article/10.3390/w16020312/s1. Index S1: Theory. Figure S1: Illustration of different
coupling strategies and the considered interactions between sub-problems: (a) a fully coupled model,
(b) a sequentially coupled without iterations, and (c) a sequentially coupled model with iterations
within each time step. Figure S2: Illustration of the local factor of safety (LFS) concept using the
Mohr circle (adapted from Lu et al. [6]). Index S2: Hydraulic parameters. Table S1: Hydraulic and
mechanical parameters of the simulated slope (based on Lu et al. [6]).
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Abstract: The foundation of a large river crossing bridge is often located on high and steep slopes
in mountainous area, and the stability of the slope has a significant impact on the safety of the
bridge. Not only the bridge load, but also the hydro-dynamical action in the reservoir area has a
significant impact on the stability of the bank slope where the bridge foundation is located, especially
for the toppling bank slope. This paper takes the stability of the toppling bank slope where the
one major bridge foundation is located at on the Lancang River in China as an example. Through
on-site exploration, drilling data and core conditions, and television images of the borehole, the
geological structure of the on-site bank slope were conducted. Based on the development of the
dumping body obtained from on-site exploration, corresponding indicators have been proposed
from the perspectives of rock inclination, deformation, and rock quality to clarify the degree of
dumping along the depth of the bank slope. The failure mechanism of the overturned bank slope
under the action of a bridge was analyzed from a mechanical perspective. Numerical simulations
were conducted using GeoStudio 2018:SEEP/W and FLAC3D 6.0 software to analyze the failure
modes of bridge loads and hydrodynamic forces under different water levels and rainfall conditions.
The seepage field characteristics, failure modes, and stability characteristics were analyzed from a
two-dimensional perspective, while the displacement characteristics, plastic zone, and stress–strain
characteristics were explored from a three-dimensional perspective, which revealed the evolution
mode of overturned deformation under the action of bridge foundation loads. Finally, the stability of
the wide slope was numerically calculated using the strength reduction method, and the stability
calculation data was combined with the numerical simulation results to determine the optimal
location of the bridge foundation.

Keywords: toppling rock mass; reservoir water level fluctuation; bridge loads; reservoir bank slope;
stability evaluation

1. Introduction

With the rapid development of highway construction in mountainous areas of China,
a large number of bridge foundations set in high and steep slope have emerged. Bridge
foundations on high and steep slopes in mountainous are usually set in the form of a pile
foundation, and the geological environment in which the foundations are located is com-
plex, especially on the slope of the reservoir bank with developed toppling deformation.
The effect of bridge load and reservoir water change aggravates the degree of toppling
deformation, which may cause slope instability and bridge foundation failure. It is neces-
sary to evaluate the stability of toppled rock slope under bridge loads and hydrodynamic
forces. In the process of evaluating the stability of the bank slope under the bridge load, the
influence of the bridge load on the shape and position of the potential sliding surface in the
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bank slope should be considered. Currently, there is relatively little research on this type of
pile foundation and there is no complete theoretical method. It is also not possible to design
and guide with conventional calculation methods. To ensure the reliability and safety of
the pile foundation, the stability analysis and evaluation of the slope under the action of
bridge loads and reservoir water level fluctuations have important practical significance. In
recent years, relevant research has been conducted on bridge foundations on high slopes,
but it mainly focused on high and steep slopes with good rock mass quality. There is a lack
of research on the impact of toppling deformation of rock slope and changes in reservoir
water level on the stability of bridge foundation slopes. Some researchers used engineering
geological methods and block theory to analyze the stability of high and steep slopes in
canyon areas under bridge loads [1–3]. The research focus is on the impact of bridge load
lateral forces on slope stability. Yu et al. obtained the response of a single pile subjected to a
lateral load in sloping ground via a field test [4]. With the development of the finite element
method, more and more scholars begin to use the strength reduction method to analyze
bridge foundation bank slope stability. Deendayal et al. used the finite element numerical
method to study the behavior of a group of piles located on sloping ground, and obtained
the effect of slopes on pile capacity [5]. Sitharam et al. analyzed the highly jointed slopes
on the abutments of a railway bridge [6]. Tian et al. used the strength reduction method to
analyze the stability of the bank by considering the effect of bedding and vertical joints,
and they obtained the results of how a slide surface would form under skewback due to
a huge bridge load [7]. Souri et al. studied the static lateral behavior of the battered pile
group foundation of an I-10 twin span bridge by using the 3D finite element modeling [8].
Abu-Farsakh et al. have researched the static lateral behavior of three pile group configura-
tions by using three-dimensional finite element modeling [9]. Their research on the stress
problem of high- and steep-slope bridge piers mainly focused on pile foundations and
has achieved a series of valuable results. Luo et al. established a three-dimensional finite
element calculation model for double-row foundation piles of bridges on rock slopes, and
obtained the stress distribution law of rock slopes [10]. These studies have deepened our
understanding of the forces acting on high- and steep-slope bridge piers. Some researchers
have studied the seismic performance of bridge-pile-foundation slopes with anti-sliding
piles. Zhou et al. have conducted shaking table tests on bridge foundation reinforced by
anti-slide piles on slope [11]. Zhang et al. have researched the seismic performance of
bridge-pile-foundation slopes with an anti-sliding pile by using the large-scale shaking
table model test [12].

The geological structure of the toppling deformation slope is relatively complex, and
there are many influencing factors. The sliding scale of toppled and deformed slopes varies,
and the deformation depth is usually smaller than the scale of the landslide. However,
in the canyon area of southwestern China, the deformation depth can reach 200–300 m.
The damage caused by toppling deformation is related to factors such as the degree and
type of toppling, and the failure modes and sliding modes of toppling failure vary greatly
under different influencing factors. The collapse deformation and damage can be divided
into three categories: bending collapse, block collapse, and block bending collapse. The
different types of damage threats are shown in Table 1.

At present, a large amount of research on toppling deformation is focused on the
failure mechanism, deformation mode, etc. Some scholars have studied the changes in
water level in the reservoir area caused by the construction of hydropower stations in
western China and their impact on the degree of toppling. Research on the stability of
slopes where bridges are located has focused heavily on the impact of bridge loads on slope
stability and the exploration of slope slip mechanisms. Therefore, there is relatively little
research on the stability of inverted layered rock slopes under bridge loads. In relevant
research, most scholars used simplified two-dimensional numerical analysis to study bridge
foundation slopes, in which it is difficult to reflect the relevant effects on canyon terrain
with significant terrain fluctuations; in three-dimensional numerical analysis, most bridge
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loads are replaced by simplified concentrated forces or ignored, making it difficult to reflect
the impact of bridge foundations on slope stability.

Table 1. The specific description of different types of toppling deformation and failure.

Toppling Damage Type Deformation Process Deformation Characteristic

Bending collapse

Mainly in thin to medium-sized layers of rock formations,
bending as a floating surface under their own weight, but
which do not break. They have self-stability and are often
affected by excavation, earthquakes, water loads, and
other factors.

Large-scale and deep deformation

Block collapse

Mainly in medium-sized to thick rock masses, under the
action of gravity or external forces, with the cut rock
blocks toppling outward along the corners. During the
failure, the rock mass at the foot of the slope undergoes
deformation due to the action of the latter rock layer,
leading to toppling failure of the upper rock mass.

Instantaneous and sudden, but on a
smaller scale

Block bending collapse
Mainly in slopes with alternating layers of soft and hard
rocks, with continuous bending deformation and a failure
scale between bending collapse and block collapse.

Continuity and accumulation

Although many scholars have studied the stability of bridge pile foundations on
slopes, as well as the evaluation of the stability of toppled rock slopes, there is very
little research on building large bridges on toppled rock slopes of large reservoirs. The
prediction of deformation or failure of toppled rock slopes under bridge loads is one of the
key contents of safety research for large bridges. This paper proposed the basic indicators
of toppling deformation bodies to discuss the mechanism of toppling deformation under
the action of bridges and hydrodynamic forces, simulated the characteristics of the seepage
field on a two-dimensional scale, and conducted a stability analysis using the rigid body
limit equilibrium stability calculation method. The slope stress state and plastic zone
distribution characteristics of two sets of bridge type schemes were analyzed at a three-
dimensional scale, and the optimal scheme for a bridge foundation layout was ultimately
determined using the strength reduction method. In summary, this paper took the stability
of a collapsed bank slope of a certain bridge foundation on the Lancang River as an
example, combined engineering geological methods with numerical simulation, simulated
the combined effect of bridge loads and hydrodynamic forces, explored potential failure
modes of the bank slope, discussed slip modes, and comprehensively evaluated the stability
of the bank slope.

The purpose of this paper is to achieve the following:

(1) Provide the method for determining the toppling deformation degree of bank slopes
along depth;

(2) Propose the prediction model of the toppling deformation trend under the combined
action of bridge loads and reservoir hydrodynamics;

(3) Establish the stability evaluation method for the toppling bank slope in a large canyon
reservoir area under bridge loads and hydrodynamic forces.

To analyze the stability of toppled slopes under the combined action of bridge loads
and hydrodynamic forces, many methods currently used for calculating and evaluat-
ing toppled slopes can be selected. At present, many calculation and evaluation meth-
ods of toppling slope stability are used, which can be divided into the following types:
1© Numerical methods: methods include the finite element method (FEM), the discrete

element method (DEM), finite difference method (FDM), the boundary element method
(BEM), discontinuous deformation analysis (DDA), elastic-plastic finite element analy-
sis of strength reduction, the point safety factor method based on finite element theory,
the Lagrange fast difference method (FLAC), etc. Marc-Andre and Doug used a three-
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dimensional discrete element program to study the influence of discontinuous structural
planes on the mechanism of block toppling deformations in rock masses [13]. Pinheiro et al.
used the discrete element method to study the development mechanism and deformation
failure characteristics of a slope in Brazil due to bending and toppling. Compared with
the continuous medium method, they better simulated the failure process of rock masses
along discontinuous surfaces. They also used the discrete element method to perform an
inverse analysis on the parameters of bending and toppling failure of a rock mass [14].
Li et al. proposed a new discrete element method (CDEM) to simulate the irreversible pro-
cess from continuous deformation to discontinuous deformation, analyze the characteristics
of toppling deformation and failure mechanism, and compare the numerical simulation
results with GB-InSAR monitoring data to verify the applicability of the method [15]. Lian
et al. used a discrete lattice spring numerical model to study the deformation development
law of toppling failure of fractured rock slopes [16]. Zhang et al. used the discrete element
method to study the seismic dynamic response mechanism of layered slopes against tilting,
and analyzed the tilting deformation mechanism of layered slopes with different slopes,
joint angles, and joint orientations under natural earthquake and sine wave actions [17].
Hassan et al. compared the reliability of the finite element and discrete element methods
for a stability analysis of rock masses with upper sliding and lower tilting, and the results
showed that the discrete element method has a higher accuracy in a stability analysis of
such toppling deformation of rock masses [18]. 2© Limit equilibrium method: Unbalanced
thrust transfer coefficient method, Sarma method, key block theory, etc. Liu et al. proposed
a stability analysis method for toppled deformed rock slopes based on the limit equilibrium
method for the case where the thickness of the block toppling deformed rock mass is less
than the thickness of the top rock mass [19]. 3© Physical simulation method. In 1971, Ashby
J. was the first to use the inclined table model-based technology to study the mechanism
and process of slope collapse failure. Subsequently, In 1978, HittingerM proposed the
theory of the base friction test for the study of slope block toppling and bending toppling.
Ignacio et al. conducted indoor model experiments to simulate toppling deformation using
tilting table tests. In the experiments, 3D printing technology was used to prepare toppling
deformation rock masses, simulate the development mechanism of toppling deformation,
and extend the experimental results to the effects of earthquakes or water [20]. Zheng
et al. designed three sets of centrifuge model tests with different slope angles to simu-
late the evolution process of inverted layered slope toppling deformation under different
slope angle conditions, taking the dam toppling deformation of the Lancang River Gushui
Hydropower Station as an example [21]. Zheng et al. proposed an adaptive moment
estimation method for the stability analysis of toppling deformation, and compared it with
the results of a centrifuge test analysis of toppling deformation stability, indicating that
this method can effectively find the toppling instability surface and corresponding safety
factor [22]. 4© Uncertainty analysis methods: including the reliability analysis method of
slope stability, stochastic process method, fuzzy analysis method, grey system prediction,
artificial intelligence and artificial neural network method, etc. Ardestani used probability
analysis methods to consider the effects of slope shape, structural surface characteristics,
geotechnical parameters, groundwater, dynamic loads, and support measures on the for-
mation mechanism and stability of anti-dip slopes [23]. 5© Other analysis methods include
engineering geological analogy and graphical methods. In the above research methods,
most of them focus on discussing the deformation conditions under which the rock mass
undergoes toppling, analyzing the mechanism of toppling deformation, or evaluating the
stability of the slope after excavation or unloading of the toppling rock mass. There is
very little research on the secondary failure mechanism under combined action of bridge
loads and reservoir hydrodynamical change. Liu et al. studied the instability mechanism
of the toppled slope under geological loads using the #1 toppling deformed rock mass
of Huangdeng Hydropower Station as the research object; it is believed that during an
earthquake, multiple cracks are formed inside the collapsed rock mass, cutting and shear-
ing the rock mass, resulting in deformation and failure of the collapsed rock mass [24].
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Huang et al. used geological surveying, exploration tunnels, electron spin resonance dating,
and kinematic monitoring to analyze the deep dumping mechanism of a high and steep
anti-tilting slope at the Miaowei Hydropower Station dam site in the Lancang River. They
believe that the deep dumping is caused by the rapid cutting of the valley under high
ground stress [25]. Cai et al. studied the deformation mechanism of the ductile bending
toppling mode in toppling deformation, dividing ductile bending toppling into the start-up
stage, rapid deformation stage, transient stability stage, and long-term creep stage [26].
Zhang et al. proposed a calculating model of limited toppling depth according to the
shallow deformation strength by using geological mechanism analysis and the numerical
simulation method [27]. Xuan et al. discussed the large reservoir bank slope stability
on considering wave action [28]. Based on the research content of the above literature,
the advantages and disadvantages of the numerical simulation methods used have been
summarized. The specific content is shown in Table 2.

Table 2. Advantages and disadvantages of different numerical simulation methods used in the
above literature.

Numerical Methods Advantage Disadvantage

Finite element method (FEM)

Able to considering the non-uniformity and
discontinuity of the slope rock mass, avoiding
the defect of treating the sliding mass as a rigid
body that is too simplified; able to consider the
impact of groundwater, construction
engineering, and the combined effects of
various support structures and geotechnical
materials.

Affected greatly by the selection of physical
parameters; cannot solve the problem of a
large number of joints and discontinuities in
the rock mass, especially for solving
problems such as large deformation and
displacement.

Discrete element method (DEM)

Suitable for stress and deformation analysis of
jointed rock masses, with significant
advantages in solving linear large
displacement and dynamic stability problems.

The selection of time steps affects the
accuracy of calculation results.

Boundary element method
(BEM)

Advantages for solving infinite or semi-infinite
domain problems, suitable for small
deformation homogeneous continuous media.

When encountering domain integrals
corresponding to nonlinear terms, there is a
strong singularity near the singular point,
making the solution difficult.

Discontinuous deformation
analysis (DDA)

Taking the minimum value of the potential
functional has some advantages of both finite
element and discrete element methods.

Analyzing problems often completely
discretizes the research object, which is not
suitable for the analysis of continuous and
semi-continuous problems. At the same time,
due to the wide variety of rock masses and
complex properties, the calculation time step
has a significant impact on the results.

Lagrange fast difference method
(FLAC)

Able to effectively consider the large
deformation and discontinuity of rock and soil,
with fast solving speed, suitable for solving
nonlinear large deformation problems.

There is randomness in the division of
calculation boundaries and grids, and the
calculation results will be influenced by the
grids and boundaries.

2. Research Materials and Methods

2.1. Overview of the Research Area

The Lancang River Grand Bridge is located on the northeast side of Yingping Village,
Yunlong County, Yunnan Province. The piers of the bridge are located both on the east and
west bank slopes of the Miaowei Hydropower Station Reservoir on the Lancang River, with
a water level depth of about 70–100 m. During the period of the on-site survey, the water
surface elevation of the reservoir was 1400–1405 m, and the width of the water surface
was about 240 m. The Lancang River brand Bridge is a 256 + 628 + 256 m double-tower
composite girder cable-stayed bridge, while the main span is 495 m, and the bridge span is
arranged as 3 × 60 m + 75 m + 495 m + 75 m + 75 m + 3 × 60 m = 1005 m. It is proposed to
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use the bored cast-in-place pile group pile foundation with a diameter of 2.5 m (Figure 1).
The corresponding loads used for calculating bank slope stability under different bridge
layout schemes are listed in Table 3.

 
(a) 

 
(b) 

Figure 1. Schematic diagram of bridge location (scheme 1). (a) Schematic diagram of bridge type;
(b) geological section of bridge site area.

Table 3. Calculation of bridge load for bank slope stability (Unit: kN).

Bridge
Programme

Pier/Abutment
Name

Transverse
Bridge

Width/m

Pile Foun-
dation

Length/m

Axial
Force/kN

Axial
Compressive

Bearing Capacity
Per Linear Meter
of a Single Pile
with a Single

Width/kN

Horizontal
Force along
the Bridge

Direc-
tion/kN

Horizontal
Force along
the Bridge
Direction

with Single
Width/kN

scheme 1

main pier 40 80 1,039,325 216 64,207 1605

auxiliary pier 11.2 35 77,468 188 876 78

abutment 12.8 28 69,099 172 0 0
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Table 3. Cont.

Bridge
Programme

Pier/Abutment
Name

Transverse
Bridge

Width/m

Pile Foun-
dation

Length/m

Axial
Force/kN

Axial
Compressive

Bearing Capacity
Per Linear Meter
of a Single Pile
with a Single

Width/kN

Horizontal
Force along
the Bridge

Direc-
tion/kN

Horizontal
Force along
the Bridge
Direction

with Single
Width/kN

scheme 2

main pier 40 90 1,632,135 216 31,039 776

auxiliary pier
(adjacent to the

main pier)
16.5 35 112,088 155 0 0

auxiliary pier
(near abutment

pier)
16.5 35 55,179 115 0 0

abutment 11.8 28 74,695 172 0 0

The geomorphic type of the bridge area is alpine canyon topography (Figure 2). The
elevation of the crossing section in the bridge site area is 1300~1710 m. The terrain is
undulating and there is strong seismic activity in the area.

.

Figure 2. Terrain and landform characteristics on both sides of the bridge.

2.2. Engineering Geological Characteristics of the Research Area
2.2.1. Lithology

According to geological survey, the lithology of the stratum in the bridge site area is
distribution from top to bottom as follows: Quaternary eluvial, deluvial, and colluvial silty
clay, gravelly soil, fault gouge, fault breccia, cataclasite caused by the fault zone structure,
slate with sandstone in the Cretaceous Jingxing Formation, etc. The distribution of strata
on both sides of the bank slopes is relatively continuous, and the lithology is relatively
single. The rock layers are inclined towards the slope, and the fractured zones (rock
debris mixed with crushed stones) and joint fissures within the rock mass are relatively
developed (Figures 3 and 4). The drilling core exposed strata are strongly unloading slate
with sandstone, with a rock occurrence of 80◦ ∠ 19–72◦.
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Figure 3. Deep stratigraphy of Yunlong side bank slope.

 
Figure 4. Stratigraphy of river water level position on Yunlon side bank slope.

2.2.2. Hydrogeological Conditions

Before the impoundment of the Miaowei Hydropower Station, the Lancang River
served as the lowest discharge reference level for surface water and groundwater on the
bank slope of the bridge site. Groundwater varied greatly with the seasons and was
mainly replenished by atmospheric precipitation. Groundwater was ultimately discharged
into the Lancang River. After the impoundment of Miaowei Hydropower Station, the
water level in the reservoir is higher than the groundwater level on both bank slopes. The
groundwater level inside the bank slope is mainly supplied by the reservoir water, followed
by atmospheric precipitation infiltration.

Groundwater types are divided into porous and fractured groundwater based on
burial conditions and storage media. Pore water is present in the Quaternary loose layer,
while fractured groundwater is present in the fractures and structural zones of rock masses.

(1) Pore phreatic water

Distributed in the residual slope, colluvial slope, and alluvial and proluvial layers on
both sides of the riverbed, pore phreatic water varies significantly with the season, with
abundant water content in the rainy season and dry season.

(2) Fissured phreatic water

The groundwater in the bridge site area is replenished by the infiltration of reservoir
water and atmospheric precipitation. The exploration of the bank slope revealed that
the groundwater level inside the bank slope is at the same level as the water level of
the Lancang River Miaowei Hydropower Station reservoir, ranging from approximately
1400 m to 1410 m. Affected by the periodic rise and fall of the reservoir water level, the
groundwater on the bank slope also undergoes periodic fluctuations, with a range of
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0–10 m. The area in front of the bank slope that connects with the reservoir water has a
significant change, but gradually decreases towards the bank slope.

2.3. Numerical Simulation Method

In this paper, the finite differences software FLAC3D 6.0 is used to analyze the stress
and strain of toppling slope under the coupling effect of bridge loads and reservoir water
change, and the strength reduction method is used to determine the anti-sliding stability
coefficient of slope.

According to the site’s geological investigation data, the main strata and geological
structures are shown in Figure 2. The main layers were strongly weathered sandstone
and strongly weathered slate mixed with sandstone, which were characterized by low
strength and susceptible to bending deformation towards the airborne direction due to its
own weight.

The rock mass model is set as an elastic-plastic Mohr–Coulomb model. For the
boundary conditions, during the calculation, a fixed displacement boundary at the bottom
is set to limit deformation at the bottom, the displacement boundary and stress boundary
are set before and after the model, and the initial crustal stress, which is mainly generated
by gravity, is set inside the model. The horizontal stress is taken as 0.5 times the vertical
stress that is converted by gravity. The stress value increases linearly with depth.

According to the design of the bridge and the location of the bridge foundation, there
was a bored cast-in-place pile group foundation with a diameter of 2.5 m. Therefore, the
three-dimensional geometric modeling was established while the bridge loads was applied.
Although the two schemes for bridge layout have different pier positions, the dimensions
of the 3D geological model are the same. The starting point in the x-direction of the Yunlong
side slope model area is 0 m, and the ending point is 735 m, which refers to the model with
a length of 735 m; the starting point in the y-direction is 0 m, and the ending point is 289 m,
which refers to the model with a length of 289 m; The starting point in the z-direction is
0 m, and the ending point is 567 m, which refers to the model with a length of 567 m. In the
calculation, applying loads at the corresponding position of the bridge foundation on both
banks, including the main pile position, the main pile auxiliary pile, the abutment auxiliary
pile, and the abutment. Details of the model are shown in Figure 5.

Figure 5. Geometric model.

3. Research Results

In order to understand the characteristics and determine the toppling deformation
of the bank slope rock mass, a series of on-site investigation methods were adopted to
explore the toppling deformation of the bank slope rock mass, aiming to provide relevant
data and qualitative descriptions for the basic indicators of the toppling body. This article
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provides evidence for the determination of the deformation characteristics and degree of
the collapsed body through on-site surveys, geological conditions revealed through drilling,
and television images inside the hole.

The degree of fragmentation of the rock mass in the front of the bank slope along the
bridge axis is more severe than that in the middle and rear. The rock mass near the river
undergoes stronger unloading and toppling deformation, which can be clearly revealed
by the cores drilled near the east bank and the television images inside the holes. As
shown in Figure 6, the television images inside the holes reveal that the rock mass is
extremely fragmented, with many cracks being open and hollow, and many cracks being
steep inclined.

       

Figure 6. Broken rock mass revealed via TV images in boreholes near shore.

3.1. Distribution Law of the Toppling Deformation Degree

(1) Basic indicators for grading the degree of toppling deformation

(1) Dip angle difference in rock strata
Based on the core revealed by drilling, the dip angles of rock layers at different depths

were statistic, which plays an important role in determining toppling degree along the
depth. The dip angles of rock layers are significantly different with different degrees of
toppling. According to the differences in dip angle, the rock mass on the bank slope of
the bridge site area can be divided into three major types: extremely strong (A), strong
(B), and weak toppling (C). Among them, Class B, namely the strong toppling rock mass,
can be divided into B1 (the upper section) and B2 (the lower section). The dip angle of
Class A is α ≤ 40◦, the dip angle of Class B1 is 40◦ < α ≤ 57◦, the dip angle of Class B2 is
54◦ < α ≤ 68◦, and the dip angle of Class C is 60◦ < α ≤ 78◦.

(2) Maximum tension within the layer
Tensile cracks formed by tensile deformation is related to the maximum tension

within the layer. Among the three types toppling rock masses, Class A has strong tensile
deformation. The maximum tension cracks within the layer in Class A is generally more
than 21 mm, while the maximum tensile cracks in Class B1, B2, and C are 9–24 mm,
6–18 mm, and 2–8 mm, respectively.

(3) Unit tension within the layer
The tensile deformation per unit length of rock mass within the layer (mm/m) is clearly

controlled by the intensity of rock mass toppling deformation. According to the geological
survey results, the soft rock combination, with a thin layer structure and highly developed
bedding plane dislocations, mainly composed of slate, schist, and phyllite, generally
exhibits plastic characteristics, which does not present significant tensile deformation even
when toppling and rotated at a large angle. However, the combination of hard rocks mainly
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composed of quartzite sand slate and metamorphic sandstone can produce obvious tensile
fractures under a small toppling and rotation angle condition.

(4) Unloading deformation of rock mass
The strong unloading rock mass is consistent with the extremely strong unloading

fracture (Class A) and strong unloading fracture (Class B) rock masses, which indicates
that the bottom boundary of the strong unloading deformation rock mass is generally
located near the bottom boundary of Class B toppling rock mass. Similarly, the distribution
range of weak unloading deformation is generally similar to that of Class C weak toppling
rock mass.

(5) Weathering degree of rock mass
The distribution range of strongly weathered rock mass is close to that of extremely

strong unloading fracture (Class A); the strongly toppling rock mass (Class B) is generally in
the weakly weathered upper section; the weakly weathered rock mass (Class C) is generally
located in the lower section of weak weathering. Sometimes, the strongly weathered rock
mass also appears in Class B1 rock mass, the weakly weathered lower rock mass also
appears in Class B2 rock mass.

(2) Characteristics of toppling deformation of bank slope rock mass

According to the changes in the exposed rock mass on the bank slope of the bridge
site area and the dip angle of the rock layers exposed by the drilling core, it is indicated
that there are relatively complex toppling deformation rock masses distributed on the
bank slope. During the geological history of the Lancang River valley being incised, the
rock mass on the bank slope has undergone strong toppling deformation and weathering
unloading, especially in the extremely strong toppling zone (Class A) and strong unloading
zone where the quality of the rock mass is poor, which has a significant impact on the
stability of the bank slope and is the main internal factor affecting the stability of the
bank slope.

The toppling deformation of the rock mass on the bank slope is shown in Figure 7.

  
(a) (b) 

Figure 7. Toppling rock mass of the bank slope. (a) Near the reservoir surface at 1403 m; (b) at the
elevation of 1540 m.

The investigation and analysis of the characteristics and development of the toppling
deformation of the exposed rock mass on the bank slope of the bridge site area reveal that
the toppling deformation of the rock mass is mainly of the toppling bending type. The
toppling rock mass undergoes bending deformation with a great change in the inclination
angle and curvature of the rock layer. There are obvious bending transition segments
or intermittent tensile fractures outside the slope between the deformed rock mass and
the original rock mass, and the toppling rock mass is mainly subjected to bending tensile
fracture failure. According to the on-site geological survey, the rock mass on the bank
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slope of the bridge site area can be divided into three major types: extremely strong (A),
strong (B), and weak toppling (C). The specific description of different degree of toppling
deformation zones (Zones A, B, and C) on the bank slope in the bridge site area is shown
in Table 4. The statistical analysis of the development depth of the toppling rock mass
shows that:

(1) The toppling deformation of both sides of the bridge site is relatively strong.
(2) The extremely strong toppling deformation zone (Zone A) and the strong toppling

deformation zone (Zone B) are both located within the strongly weathered zone, with
a development depth equivalent to the depth of the strongly weathered zone; the
weak toppling deformation zone (Zone C) is basically located within the moderately
weathered zone, with slight deformation.

(3) The extremely strong toppling deformation type A is located in the strong unloading
zone, while the strong toppling deformation type B is located in the weak unload-
ing zone.

Table 4. The specific description of different toppling deformation zones.

Basic Indicator Zone A
Zone B

Zone C
Zone B1 Zone B2

Dip angle difference in
rock strata α ≤ 40◦ 40◦ < α ≤ 57◦ 54◦ < α ≤ 68◦ 60◦ < α ≤ 78◦

Maximum tension
within the layer D > 21 mm 9 mm < D < 24 mm 6 mm < D < 18 mm 2 mm < D < 8 mm

Location of the
weathering zone

Generally in strongly
weathered zone

Generally in the weakly
weathered upper

section

Generally in the weakly
weathered upper

section

Generally in the lower
section of weak

weathering

Location of the
unloading zone

Consistent with the extremely strong unloading, the bottom boundary of
strong unloading zone is generally located near the bottom boundary of

Zone B

Consistent with the
weak unloading zone

3.2. Mechanism of Toppling Deformation under Bridge Loads
3.2.1. Stage Failure Mechanism of Toppling Deformation

With the varying degrees of toppling deformation, the interior of the rock mass exhibits
different fracture forms, mechanical mechanisms, and characteristic deformation phenomena.

(1) Intralayer shear dislocation of weakly toppled deformed rock masses in the early stage

In the early stage of the development of valley cutting and rock mass unloading
toppling deformation, the nearly vertical thin or plate shaped rock mass begins to tilt
towards the free direction in the form of a cantilever beam under the action of self-weight
bending moment, and gradually develops from the shallow and superficial to the deep of
the slope. Due to the highly developed interlayer dislocation zones caused by structural
deformation within the rock mass (such structural planes are products of strong folding
and deformation in the crustal rock mass, with a certain thickness and obvious argillization,
and generally low shear strength), they are prone to inclined shear sliding along them
(Figure 7a). This stage is still in the early stage of toppling deformation, and the tensile
effect of the interlayer rock plate derived from the tilting slip dislocation of the toppling
layer is weak, which does not have the basic stress conditions for producing interlayer
tensile deformation. Therefore, macroscopic tensile fractures usually do not occur.

(2) Intralayer tensile deformation of strongly toppled deformed rock masses

With the further development of toppling deformation, the shear action along in-
terlayer dislocations, phyllites and other weak zones gradually intensifies, leading to a
stronger tensile effect within the layer. The rock plates between the dislocations bear
increasing tensile stress. When the gradually increasing tensile stress reaches or exceeds the
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tensile strength of the rock slab, accompanied by further mutual dislocation between the
rock slabs, the rock slabs within the layer undergo tensile fracture or tensile deformation
along the existing structural plane (Figure 8b).

  
(a) (b) (c) 

Figure 8. Fracture forms and mechanical mechanisms of rock masses with different degrees of
toppling deformation: (a) shear dislocation within weak toppling layers; (b) tensioning deformation
between strong toppling layers; (c) tensioning shear fracture of strong toppling shear layers.

(3) Shear fracture of rock mass with strong toppling deformation

Due to the continuous and strong development of rock mass toppling, the bending
moment acting on the rock slab also increases, and the shear action along weak rock zones
such as interlayer dislocation and phyllite becomes very strong. In addition to continuing
to bear tensile stress, the shear effect of interlayer rock slabs gradually increases. The form
of fracture transforms into significant tensile shear fracture or dip slip shear displacement
along existing gently inclined joints (Figure 8c), and continuous development inevitably
leads to shear.

(4) Breaking and tensile fractures of extremely strong toppled rock masses.

When the development of toppling deformation is extremely strong, the bending
deformation angle of the rock layer was large, the toppling bending moment acting on
the rock plate further accumulates and increases. Once the bending strength of the rock
plate is reached, the rock mass undergoes transverse cutting of the rock plate and tends to
break and fracture outside the slope. The fracture zones formed within the rock mass have
dual control characteristics, which, respectively, constitute the control structures of surface
collapse, sliding, and deep dip slip deformation.

3.2.2. Bank Slope Failure Process under the Action of Bridge Loads

There are closure and opening states of the joints under force action. When the
compressive stress pa perpendicular to the joint surface is less than or equal to 0, the joint
opens. In this state, there is no elastic stiffness on the joint surface, only normal strain.
When the joint surface compressive stress pa > 0, the joint fissure is closed. The sliding
friction failure of the joint meets the following requirements:

fa = τa − patan ϕa−ca (1)

where τa is the component of shear stress on the joint surface, pa is the vertical pressure
acting on the joint surface, ϕa is the internal friction angle of the joint system, and ca
is the cohesive force. The calculation considers the influence of bedrock bedding and
vertical joints.

The bridge load causes the stress concentration of the bedrock at the bottom of the
tower basement. During the strength reduction process, the plastic zone at the tower
basement is connected and developing towards to the toe of the slope, forming a local
damage zone, which is adverse to the stability of the bank slope.
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3.2.3. Aggravated Toppling Deformation under Bridge Loads

For layered rock masses, the deformation caused by external load can be divided into
the following three types:

Longitudinal bending: The rock layer undergoes bending under external forces parallel
to the rock surface.

Transverse bending: The rock layer undergoes bending under external forces perpen-
dicular to the rock surface.

Shear superposition: The rock layer undergoes differential sliding failure along a series
of dense cleavages that are not parallel to the bedding plane.

Based on the structural characteristics of the collapsed deformed rock mass, the de-
formation trend under external loads can be predicted using the deformation calculation
methods of equal thickness beams, trapezoidal beams, short cantilever beams, and compos-
ite plates.

The bending deformation which occurs in both the near-surface and engineering
rock masses exhibits certain plastic and ductile deformation characteristics, accompanied
by brittle fracture. According to the stress conditions, it can be divided into two types:
transverse bending and longitudinal bending. There are three types of curved plate beams,
named simply supported beams, extended beams, and cantilever beam bending. The load
of the bridge acts on the rock layer that has undergone toppling deformation, similarly to
the deformation and failure of the rock mass under transverse bending conditions.

On-site observations and simulation research have shown that the evolution process
of bending deformation and failure of rock masses under lateral forces has obvious stage
characteristics. The results of elastic-plastic finite element simulation are represented
by equivalent (uniaxial) stress [σ] to represent the stress state inside the plate, which is
equivalent to the three-dimensional stress effect and is expressed as Equation (2):

σ =

√
1
2
[(σ1 − σ3)

2 + (σ3 − σ1)
2 + (σ1 − σ2)

2] (2)

When σ is equal to rock yield stress σy, plastic failure has occurred. The self-weight stress
field was considered in the simulation and assumed to be in a state of hydrostatic pressure,
i.e., σ = 0.

The combined force of unloading stress caused by the external load and gravity acting
on the reverse slope is nearly perpendicular to the rock layer surface, similarly to the
transverse bending action (Figure 9). The result is that the rock layer can undergo a large
range of deformation. When the dip angle of the rock layer and resultant force direction
are the same as the inclination angle of gravity, the maximum lateral bending effect is
generated, and the degree of toppling deformation of the rock layer is the strongest.

Figure 9. Deformation of toppled rock mass under bridge load.
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For the inverted slope, the typical characteristics of the development of toppling
deformation are as follows:

(1) Large deformation depth;
(2) The degree of deformation near the outside of the slope is greater than that inside

the slope;
(3) Due to the influence of bending deformation, the distribution density of tension cracks

perpendicular to the bedding plane is relatively high near the outer side of the slope.

Based on geometric, physical, and equilibrium relationships, a nonlinear bending
equation for large deformation of beams can be established as Equation (3).

d
dx

[
EI

d3w
dx3 + EI

(
dw
dx

)2 d3

dx3

]
= p (3)

where w is the deflection of the beam, x is the axial coordinate of the beam, EI is the bending
stiffness of the beam, and P is the lateral force.

For the case of cantilever beams, the end conditions are:

x = 0 w = dw
dx = 0

x = l d2w
dx2 = d3w

dx3 = 0
(4)

Through the bending test results with different beam lengths, it can be seen that the
bending deformation increases with the beam length under the same load, and the tangent
stiffness increases with the deformation.

The deformation of the interbedding of soft and hard rock mass has the slip effect
of the composite beam. Within the scope of elasticity, the displacement of any point on
the cross section of the rock stratum combination conforms to the linear superposition
principle, so it mainly has the following aspects: the longitudinal displacement of any point
on the cross section of the rock stratum combination can be caused by the longitudinal
displacement of the composite beam, the relative displacement caused by the relative
rotation angle between the hard rock center point, and the soft rock center point caused
by the interface slip; the longitudinal displacement caused by the bending deformation
of soft and hard rock layers and the warping displacement caused by shear lag effect
are combined.

3.3. Limit Equilibrium Analysis of Bank Slope Stability Considering Bridge Loads and Changes in
Reservoir Water Level
3.3.1. Failure Mode Analysis

Affected by the strong unloading and toppling deformation of the Lancang River
bank slope, the dip angle from the surface layer of the slope changes from gentle to steep,
with rock strata occurrence ranging from 26 to 136◦ ∠ 19 to 72◦. The layer thickness is
generally 0.1 to 0.44 m, and the surface layer is flat. The potential sliding surfaces should be
located at the junction of strongly and moderately weathered rock masses and at the bottom
boundary of the strong and weak unloading zones. In addition, there is a possibility of
circular sliding failure occurring within the fractured rock mass in the strongly weathered
area at the front of the Yunlong bank slope. There are a total of five potential slip surfaces
(Slip 1~Slip 5) on the Yunlong side bank slope, among which Slip 1 refers to the circular
sliding surface automatically searched at the front of the bank slope, and Slip 2~Slip 5 are
polygonal slip surfaces. Due to the absence of a fully connected out-dip structural plane
at the junction of strongly and moderately weathered rock masses, the potential sliding
surface shape at the junction of strongly and moderately weathered areas will not be a
polygonal line shape, but rather a stepped sliding surface.

The potential failure mode of the Yunlong side bank slope is shown in Figure 10.
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Figure 10. Potential failure mode diagram of Yunlong side bank slope.

3.3.2. Characteristics of Seepage Field on Toppling Bank Slope under Reservoir Water
Level Fluctuation and Rainfall Conditions

Using the SEEP/W program to simulate the seepage field of the bank slope body of
Miaowei Hydropower Station Reservoir under the operation with different water levels
and rainfall conditions. In the SEEP/W model, “saturated and unsaturated” model is
selected for rock and soil mass, and the Van Genuchten model (VG model for short) is
selected for unsaturated and hydraulics parameter estimation.

The water level of the reservoir suddenly dropped from the normal storage level
of 1408 m to the dead water level of 1398 m at a speed of 3 m/d after about 3.3 days.
Distribution characteristics of pore water pressure under the coupling effect of reservoir
water level and rainfall in front of different bank slopes.

The rainfall condition can be divided into rainstorm and continuous rainfall: the
rainfall intensity of the former is 124.85 mm/d (100 years period), and the duration of
rainstorm is 5 d; the rainfall intensity of the latter (used for calculation) is 83.71 mm/d
(once every ten years), and the continuous rainfall duration (used for calculation) is 15 d.

Due to the fact that the super-large bridge is located in the Lancang River basin, the
development of a toppling deformation and the types of the rock and soil types of the
bridge site are similar to the Miaowei Hydropower Station. Therefore, based on the on-site
investigation results, this article selects the test parameters obtained from the rock mass
test at the Miaowei Hydropower Station dam site, and quotes the appropriate hydraulics
parameters of rock and soil mass for the different toppling areas of the bank slope on the
bridge site area. The hydraulics parameters of the rock and soil mass on the bank slope are
listed in Table 5.
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Table 5. Hydraulic parameters of different toppling areas of bank slope.

Lithology Saturated Permeability Coefficient (m/s) Saturated Volume Moisture Content

Quaternary cover layer 6 × 10−5 0.42

Fracture zone 4.2 × 10−6 0.40

Zone A: extremely strong toppling area;
strongly weathered slate with

metamorphic sandstone
2.315 × 10−6 0.35

Zone B: strong toppling area; strong
weathered slate mixed with

metamorphic sandstone
1.157 × 10−6 0.29

Moderately weathered slate mixed with
metamorphic sandstone in the micro

toppling area of Zone C
3.45 × 10−8 0.18

The negative pore water pressure of the rock and soil above the groundwater level in
the bank slope is set at −20 kPa.

After calculation, the distribution of pore water pressure inside the slope under various
working conditions on the Yunlong bank slopes is shown in Figure 11.

  
(a) (b) 

  
(c) (d) 

Figure 11. Cont.
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(e) (f) 

 
(g) (h) 

 
(i) 

Figure 11. Distribution of pore water pressure under different conditions on the bank slope.
(a) 1408 m Water Level; (b) 1408~1398 m water level sudden drop; (c) 1398 m water level; (d) rain-
storm + 1408 m water level; (e) rainfall + 1408 m water level; (f) rainstorm + sudden water level drop;
(g) rainfall + sudden water level drop; (h) rainstorm + 1398 m water level; (i) continuous rainfall +
1398 m water level.

Under rainstorm or continuous rainfall conditions, the pore water pressure below the
groundwater level increases proportionally with the increase in depth, and the pore water
pressure value is large.

According to the seepage calculation results under the above five consecutive days of
rainstorm conditions, the following can be seen: (1) During the rainstorm period, the water
content in the gravelly soil of the overburden layer continues to increase with the rainfall
infiltration. By the end of the fifth day, the rainfall infiltration will form a local, small

218



Water 2023, 15, 4037

range of saturated positive pressure zone at the junction of the Quaternary overburden
layer and the rock stratum in Area A. The overburden layer is basically still in a negative
pressure state, but the water content has increased significantly compared with that before
the rainfall. (2) After the rainfall stops, the water in the upper part of the cover layer
continues to conduct downward and inclined towards the slope. By the 9th and 10th days,
the saturated zone at the junction of the Quaternary cover layer and the rock layers in Zone
A is basically connected, and a saturated positive pressure zone is formed in the local area
at the top of the rock layers in Zone A. (3) The rainstorm for 5 consecutive days will form
a backwater in the groundwater level in the slope body near the water in the front of the
slope, and the water level will rise by 2~2.6 m.

The seepage calculation results under the continuous rainfall condition are slightly
different from those under the rainstorm condition. The seepage characteristics are as
follows: during the continuous rainfall period, with the rainfall infiltration, the water
content in the gravelly soil of the overburden layer continues to increase. By the end of
the seventh day, the rainfall infiltration will form a local, small range of saturated positive
pressure zones at the junction of the Quaternary overburden layer and the rock stratum in
Zone A, and the overburden layer is basically still in a negative pressure state, but the water
content has increased significantly compared to before the rainfall. On the 9th day, the
saturated area at the junction of the Quaternary cover layer and the rock layers in Zone A
is basically connected. From the 13th day onwards, a sheet-like saturated positive pressure
zone was continuously formed in the local area at the top of the rock layer in Zone A,
but the scope and saturation depth were limited. After the end of continuous rainfall, the
groundwater level in the near water section of the front of the slope will form a backwater,
and the water level line will rise up to 2–3.6 m.

By comparing the infiltration of rainstorm for 5 days with that of continuous rainfall for
15 days, in both cases, an overall saturation will not form in the Quaternary overburden on
the slope surface. The saturation area is mainly distributed in the junction area between the
overburden and the rock stratum in Zone A. The saturation area formed in the slope under
the continuous rainfall condition is slightly larger than that under the rainstorm condition.

3.3.3. Calculation Parameters

The parameters of the rock and soil in the topppling deformation area of the bridge site
also refer to the parameters obtained from the rock mass test at the Miaowei Hydropower
Station dam site. The physical and mechanical parameters of different toppling areas are
listed in Table 6.

Table 6. Rock and soil parameters for different toppling areas.

Lithology
Weight (kN/m3) C (kPa) Φ (◦) Deformation

Modulus/E
Gpa

Poisson’s
Ratio/μNaturally Saturation Naturally Saturation Naturally Saturation

Quaternary
cover layer 20.0 20.5 30 28 24 22 0.025 0.35

Fracture zone 21.2 21.6 40 27 30 25 0.2 0.32

Strongly
weathered sandy
slate mixed with

muddy slate

23.0 23.4 150 135 26 24 0.5 0.3

Metamorphic
sandstone in

strongly
weathered areas

23.0 23.4 130 115 25 23.9 0.45 0.32
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Table 6. Cont.

Lithology
Weight (kN/m3) C (kPa) Φ (◦) Deformation

Modulus/E
Gpa

Poisson’s
Ratio/μNaturally Saturation Naturally Saturation Naturally Saturation

Moderately
weathered sandy
slate mixed with

muddy slate

26.2 27.0 570 510 37.0 33.3 0.6 0.29

Metamorphic
sandstone in
moderately

weathered areas

26.2 27.0 500 450 33.4 30.1 0.55 0.3

Structural planes
in strongly

weathered areas
(combined with

general)

/ / 80 70 25 23 / /

Structural planes
in moderately

weathered areas
(well bonded)

/ / 220 200 35 31.5 / /

3.3.4. Analysis of Calculation Results

Using the two-dimensional rigid body limit equilibrium stability calculation method
(broken-line sliding surface transfer coefficient method, and circular sliding surface sim-
plified Bishop method) to calculate the stability of the bank slope at the Lancang River
Extra-Large Bridge area. The methods were used to analyze the toppling slope stability
under bridge loads in different schemes. The calculation model for bank slope stability is
illustrated in Figure 12.

   
(a) (b) (c) 

Figure 12. Calculation model for stability of Yunlong side bank slope. (a) Natural conditions;
(b) scheme 1; (c) scheme 2.

The calculation results and evaluation of the stability of the Yunlong bank slope calcu-
lated via the two-dimensional limit equilibrium analysis method under various working
conditions are detailed in Table 7, and the calculation results of bank slope stability are
shown in Figure 13.
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Table 7. Calculation results for stability of the pile foundation platform.

Condition Name

Natural Working Conditions Rainfall Conditions
Rainfall + Earthquake

Conditions

Stability
Coefficient Fs

Stability
Judgment

Stability
Coefficient Fs

Stability
Judgment

Stability
Coefficient Fs

Stability
Judgment

scheme 1: Slope
covering layer on the

main pier
1.290 <1.35 1.173 <1.20 1.055 <1.10

scheme 1: Slope
foundation covering
the interface on the

main pier

1.783 >1.35 1.595 >1.20 1.462 >1.10

scheme 2: Slope
covering layer on the

main pier
1.292 <1.35 1.174 <1.20 1.055 <1.10

scheme 2: Strong to
moderately weathered
interface on the upper
slope of the main pier

2.147 >1.35 1.914 >1.20 1.749 >1.10

scheme 2: Cover layer
of the upper slope of

the auxiliary pier (near
the main pier)

1.481 >1.35 1.347 >1.20 1.244 >1.10

(a) (b) (c) 

Figure 13. Calculation results of bank slope stability on Yunlong side. (a) Natural condition: sudden
drop in water level + rainfall + earthquake condition; (b) scheme 1: natural working condition;
(c) scheme 2: natural working conditions.

From the two-dimensional limit equilibrium analysis results, with regard to the stabil-
ity character of the Yunlong bank slope, the following can be concluded:

(1) The five potential sliding bodies (Slip 1~Slip 5) on the bank slope, except for Slip 5, are
in a stable state under natural conditions, rainfall conditions, and rainfall + earthquake
conditions, with stability coefficients (Fs) ranging from 1.163 to 1.639; Slip 5 is in a
basically stable state under rainfall and earthquake conditions. This indicates that the
quantitative calculation results of the stability of the current condition bank slope are
consistent with the qualitative evaluation of the stability of the bank slope.

(2) In scheme 1, with the loads of the 628 m span cable-stayed bridge acting on the
toppling slope, the stability coefficients (Fs) of potential sliding bodies Slip 1~Slip 4 on
the bank slope under natural conditions, rainfall conditions, and rainfall + earthquake
conditions are in the range 1.163~1.624, which can meet the design safety factor
requirements for each working condition. The stability coefficients (Fs) of Slip 5 under
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natural conditions, rainfall conditions, and rainfall + earthquake conditions are 1.090,
1.046, and 0.956, respectively, which does not meet the design safety factor. Especially
under rainfall + earthquake conditions, the rock mass in the strong unloading zone
will lose stability and incur damage, posing a threat to the safety of the bridge.

(3) In scheme 2, with the loads of the 750 m span cable-stayed bridge acting on toppling
slope, the stability coefficients (Fs) of the potential sliding bodies Slip 1~Slip 4 on the
bank slope under natural conditions, rainfall conditions, and rainfall + earthquake
conditions are in the range 1.163~1.624, which can meet the design safety factor
requirements for each working condition. The stability coefficients (Fs) of Slip 5 under
natural and rainfall conditions are 1.247 and 1.194, respectively, which cannot meet
the design safety factor. However, the stability coefficient under rainfall + earthquake
conditions is 1.115, which has a certain safety reserve.

(4) Under the fluctuating water level conditions of the Miaowei Hydropower Station
reservoir, different water storage conditions (normal water level, sudden drop of
reservoir water level, and dead water level) have a significant impact on the stability
of the potential sliding mass Slip 2 in the front of the bank slope, while the impact
on the stability of Slip 1 is small. The three potential sliding masses Slip 3~Slip 5
in the middle and rear of the bank slope are located above the groundwater level
and reservoir water level, and are not directly affected by the fluctuation of reservoir
water level. For wading bank slopes, the trend of slope stability is Fsnormal water level >
Fsdead water level > Fssudden drop in water level.

(5) Under the three working conditions of natural, rainfall, and rainfall + earthquake,
the trend of slope stability is Fsnatural > Fsrainfall > Fsrainfall+earthquake. Among the three
working conditions, the seismic horizontal force under earthquake working condition
has the worst effect on slope stability.

(6) The excavation of pile foundation platforms and anchor slopes on the mountain
side will affect the local stability of the slope, especially when excavating within
the Quaternary cover layer. The stability coefficient of the Quaternary slope under
natural conditions, rainfall conditions, and rainfall + earthquake conditions is less
than the design safety coefficient, and the safety reserve is insufficient. Therefore,
attention should be paid to the engineering protection of the Quaternary slope during
the excavation of the upper slope. Although the overall stability of the upper slope
can meet the requirements of the design safety factor, the stress release formed by
slope excavation can cause deterioration of the physical and mechanical properties of
the slope rock mass, which can cause local damage to the slope. Therefore, the overall
engineering protection of the upper slope should be strengthened.

3.4. Three-Dimensional Numerical Analysis of Bank Slope under the Coupling Effect of Bridge
Loads and Hydrodynamic Forces

In order to predict the stability of the bank slope under the synergistic effect of
bridge loads and reservoir water level changes, this paper adopts a three-dimensional
finite difference numerical simulation method to analyze the stress state and plastic zone
distribution characteristics of the slope for two sets of bridge type schemes, and further
determine the optimal scheme.

3.4.1. Three-Dimensional Geometric Modeling Establishment and Bridge Loads
Application Mode

Scheme 1: The starting point in the x-direction of the Yunlong side slope model area
is 0 m, and the ending point is 735 m, which refers to the model with a length of 735 m;
The starting point in the y-direction is 0 m, and the ending point is 289 m, which refers
to the model with a length of 289 m; The starting point in the z-direction is 0 m, and the
ending point is 567 m, which refers to the model with a length of 567 m. In the calculation,
applying loads at the corresponding position of the bridge foundation on both banks,
including the main pile position, the main pile auxiliary pile, the abutment auxiliary pile,
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and the abutment. The selected load is the basic combination load of scheme 1, and the
load application method on the Yunlong side bank slope is shown in Figure 14a.

 
(a) (b) 

Figure 14. Three-dimensional calculation model of Yunlong side bank slope (a) scheme 1; (b) scheme 2.

Scheme 2: The length, width, and height of the 3D model in scheme 2 are consistent
with scheme 1, while the difference between the two models is the loading position of the
bridge foundation loads. The load application method on the Yunlong side bank slope is
shown in Figure 14b.

3.4.2. Simulation of Groundwater Seepage Field under Reservoir Water Level Fluctuation

The calculation of seepage field adopts built-in seepage module of Flac3D, which
simulates the changes in water level by setting the changes in pore water pressure. The
rainfall intensity is 100 mm/d. In the seepage calculation, the permeability coefficient of
Zone A is 0.0001 m/s. After setting the water level at the front edge of the slope to decrease
by 10 m, convert the unit of permeability coefficient into minute permeability coefficient,
calculate 2880 steps (i.e., water level decrease time is 48 h), and complete the simulation
calculation of the seepage field. Among them, the small step of fluid time step set for
calculation is 0.001 min. The results are illustrated in Figure 15.

 
Figure 15. Pore pressure distribution of Yunlong side toppling slope.
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3.4.3. Calculation Conditions and Parameters

Based on the actual situation, the most unfavorable operating conditions (i.e., sudden
drop from 1408 m water level to 1398 m water level) were selected to establish the geological
model, and the following three working conditions were selected for calculation.

(1) working condition 1: Bridge operation + natural working conditions (sudden drop of
water level from 1408 m to 1398 m).

(2) working condition 2: Bridge operation + rainstorm condition (1408 m water level
suddenly drops to 1398 m water level).

(3) working condition 3: Bridge operation + earthquake + rainfall conditions (sudden
drop of water level from 1408 m to 1398 m).

Based on on-site investigation and analysis, considering the rock layer information of
the modeling area, the rock and soil types used for the stability calculation analysis of the
Yunlong bank slopes mainly include: (1) extremely strong toppling and strongly weathered
slate in Zone A; (2) strong toppling and strong weathering of slate in Zone B; (3) slightly
weathered slate; (4) broken zone.

In order to ensure the accuracy and rationality of the three-dimensional finite difference
simulation, the calculation parameters used for numerical simulation in this paper were
referenced from similar slope analysis in the Miaowei Reservoir Area after adjustments
and reductions, based on the geological information of the Bridge site, the rock mass test
parameters of the Miaowei Hydropower Station dam site, and the toppling deformation
situation obtained from the on-site investigation. The calculation parameters are listed in
Table 8.

Table 8. Calculation Parameters of 3D finite difference Method.

Lithology
Severe (KN/m3) C (KPa) Φ (◦) Deformation

Modulus E
GPa

Poisson’s
Ratio μNaturally Saturation Naturally Saturation Naturally Saturation

fracture zone 22.5 23.5 40 27 30 25 0.2 0.32

Zone A
extremely strong

toppling and
strong

weathered slate

26.2 27.0 200 180 33.2 29.8 0.5 0.3

Strong toppling
and weathering

of slate in Zone B
26.2 27.0 400 360 35.4 31.9 0.6 0.29

Slightly
weathered slate 26.8 27.8 650 585 41 36.9 0.8 0.28

3.4.4. Calculation Results for Scheme 1

(1) Total displacement characteristics under different working conditions

The displacement obtained by calculating stability is shown in Figure 15. For working
condition 1, the maximum displacement is concentrated at the location where the main
pile load is applied, and the main displacement is concentrated at the fracture zone at
the elevations of 1570 m, 1550 m, and 1440 m (Figure 16a). For working condition 2, the
main displacement is concentrated at the broken zone at the elevation of 1570 m, 1550 m
and 1440 m (Figure 16b). For working condition 3, the maximum displacement is located
behind the 1570 m elevation fracture zone and at the 1550 m elevation fracture zone where
the main pile load is applied. There is also a significant displacement at the 1440 m elevation
fracture zone at the leading edge (Figure 16c).
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(a) (b) (c) 

Figure 16. Total displacement of different working condition. (a)working condition 1; (b) working
condition 2; (c) working condition 3.

(2) Plastic zone distribution under different working conditions

The maximum plastic area is located at the 1570 m elevation fracture zone, where
a small amount of plastic deformation occurs for working condition 1 (Figure 17a). For
working condition 2, a small amount of plastic zone is generated at the fracture zone at
elevations of 1570 m, 1550 m, and 1440 m (Figure 17b). For working condition 3, plastic
zone is generated in the 1430 m elevation fracture zone, 1550 m elevation fracture zone,
and 1570 m elevation fracture zone (Figure 17c).

  
(a) (b) 

 
(c) 

Figure 17. Plastic zone during Bridge Operation (y = 140 m profile). (a) working condition 1;
(b) working condition 2; (c) working condition 3.

The stability coefficient of Yunlong side bank slope calculated by strength reduction is
1.55 for working condition 1 (1408 m water level suddenly drops to 1398 m water level).
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The displacement and plastic deformation area are mainly concentrated in the fracture zone
at 1410 m elevation to the fracture zone at 1730 m elevation, the rear edge of the obtained
sliding surface is the fracture zone at 1730 m elevation, the front edge is the fracture zone
at 1410 m elevation, the rear edge is staggered along the fracture zone, and the front edge
is cut out in an arc. Compared to the natural surface morphology, a plastic strain zone
appears at the point where the load is applied to the main pile. The stability coefficient for
working condition 2 (1408 m water level suddenly drops to 1398 m water level) is 1.44 and
1.28 for working condition 3.

3.4.5. Analysis of Calculation Results for Scheme 2

The stability coefficient of Yunlong side bank slope calculated by Strength reduction is
1.56 for working condition 1 (1408 m water level suddenly drops to 1398 m water level). The
displacement and plastic deformation area of the instability zone are mainly concentrated
in the fracture zone at 1410 m elevation to the fracture zone at 1730 m elevation, the rear
edge of the obtained sliding surface is the fracture zone at 1730 m elevation, the front edge
is the fracture zone at 1410 m elevation, the rear edge is staggered along the fracture zone,
and the front edge is cut out in an arc. Compared to the natural surface morphology, a
plastic strain zone appears at the point where the load is applied to the main pile. The
stability coefficient is 1.47 and 1.31, respectively, for working condition 2 (1408 m water
level suddenly drops to 1398 m water level) for working condition 3 (1408 m water level
suddenly drops to 1398 m water level).

4. Discussion

4.1. The Stability of Toppling Bank Slope under the Action of Bridge Loads and Reservoir Water
Level Change

The stability of the toppling deformation bank slope under the combined action of the
bridge load and reservoir water level is controlled by the following three factors:

(1) Deformation characteristics of toppled rock slope under bridge loads

Toppling deformation often leads to the unloading of tension cracks, which are a
relatively special type of joint (Figure 18). When tension cracks occurred on the surface of
the slope, shear failure in the rock mass has already begun. Under the pressure and lateral
thrust generated by the bridge foundation load, the mechanical properties of the unloading
crack may undergo significant changes. On the one hand, the unloading crack may cause
significant displacement. On the other hand, the horizontal thrust may cause the unloading
crack to topple or slide and fail. In addition to generating high stress concentration areas at
the foot of the slope and the base, there is also a phenomenon of high stress concentration
near the unloading crack. The maximum principal stress and shear stress on the slope
surface in front of the foundation significantly increase due to the horizontal thrust of the
normal stress on the unloading crack surface. When the unloading crack is at a certain
angle with the slope surface, the stability is the worst. The existence of unloading cracks
mainly changes the longitudinal mechanical behavior characteristics of the slope rock mass.
Due to the fact that unloading cracks are generally in an open state, unloading cracks are
equivalent to a secondary free boundary, with zero stress on the boundary. When subjected
to the load transmitted by the bridge foundation, the stress in the rock mass near the base
and unloading cracks increases significantly. Whether the rock mass can meet the strength
requirements requires strength verification. The load action will cause stress concentration
at the height of the unloading crack tip, and the anti-toppling stability of the rock mass cut
by the unloading crack will decrease, which will have adverse effects on the stability of the
rock mass (Figure 19).
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Figure 18. Toppling cracks developed along layer.

Figure 19. Mechanism of toppling deformation under bridge load.

(2) Influence of reservoir water level fluctuation on the stability of toppling bank slope

The impact of changes in the reservoir water level on the stability of bank slopes is
mainly reflected in the effect of dynamic water pressure inside the slope and the reduction
in the strength of the toppling rock mass at the foot of the slope due to the dry–wet cycle
of the underwater bank slope. The tensile cracks formed in the toppling body during the
deformation process create favorable conditions for the infiltration of reservoir water into
the slope. The groundwater level rapidly increases with the rise in the reservoir water level,
leading to an increase in the pore water pressure and a decrease in the effective stress in the
landslide resistance section, which results in a decrease in stability eventually. Landslides
are prone to sliding and failure along the foundation interface evolved from the tilting
fracture section (Figure 20).
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Figure 20. Displacement vector diagram after reservoir impoundment.

(3) The splitting effect of the reservoir water leads to an increase in the degree of toppling
deformation of the rock mass at the foot of the slope

The high water head during the process of reservoir water level rise has a splitting
effect on the existing tilting tension cracks. Groundwater permeability, as a mechanical
force, directly affects the distribution of stress field in the rock mass on the crack surface. At
the same time, changes in the rock mass stress field cause deformation of the cracks, which
has adverse effects on the stability of the rock mass. The mechanical effects of groundwater
on the fracture surface mainly include the normal seepage static water pressure and the
tangential drag force, namely the seepage dynamic water pressure. The seepage static
water pressure of a crack refers to the static water pressure acting in the normal direction of
the crack surface, which is perpendicular to the crack wall surface. Hydrodynamic pressure
refers to the reaction force of the fluid on the fracture surface that hinders its movement
when it flows within the fracture, and its direction is consistent with the direction of the
fracture water flow. For the toppling rock mass in the slope of the reservoir bank, tensile
cracks are very developed. During the descending stage of the reservoir water, static and
dynamic water pressures often form towards the outside of the slope, leading to the further
increase in the width of tensile cracks and weakening of the structure of the rock mass.

The specific calculation formula is:

P1 = γwΔHJ (5)

where P1 is the driving force of water flow; γw is the unit weight of water; ΔH is the depth
of water in the drawdown zone of the reservoir water level; and J is the hydraulic gradient.

4.2. Numerical Simulation Results of Bank Slope Stability via Strength Reduction Method

The bank slope stability calculated result by using three-dimensional finite difference
method is listed in Table 9.
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Table 9. Finite difference stability coefficient table.

Calculated Operating Conditions Stability Coefficient Leading Edge (m) Trailing Edge (m)

Before the
construction of

the bridge

Natural working conditions (sudden
drop of water level from 1408 m to

1398 m)
1.59 1410 1730

scheme 1

Bridge operation + natural working
conditions (sudden drop of water

level from 1408 m to 1398 m)
1.55 1410 1730

Bridge operation + rainstorm
condition (1408 m water level

suddenly drops to 1398 m water level)
1.44 1500 1730

Bridge operation + rainfall +
earthquake conditions (sudden drop

of water level from 1408 m to 1398 m)
1.28 1550 1750

scheme 2

Bridge operation + natural working
conditions (sudden drop of water

level from 1408 m to 1398 m)
1.56 1410 1730

Bridge operation + rainstorm
condition (1408 m water level

suddenly drops to 1398 m water level)
1.47 1532 1730

Bridge operation + rainfall +
earthquake conditions (sudden drop

of water level from 1408 m to 1398 m)
1.31 1550 1750

(1) For schemes 1 and 2, the natural bank slope is in a stable state under the action of
Miaowei reservoir operation (with a sudden drop in water level from 1408 m to 1398 m).

(2) Under the load conditions of schemes 1 and 2, the stability coefficient of the bank
slope under each working condition of bridge operation can meet the requirements of
stability coefficient. The coefficient is greater than 1.30 under bridge operation + natu-
ral working condition, more than 1.20 under bridge operation + rainstorm working
condition, and 1.10 under bridge operation + rainfall + earthquake working condition.

(3) Under the load condition of scheme 1, the main area of potential instability of the
Yunlong side slope on the east bank is located between the elevation of 1550 m and
1730 m, and is generally located in the middle and rear of the slope.

(4) Under the load condition of scheme 2, the main area of potential instability of the
Yunlong side slope is located between the elevation of 1532 m and 1730 m, and is
generally located in the middle and rear of the slope.

(5) The stability coefficient of the Yunlong side bank slope in scheme 1 is smaller than that
in scheme 2. The load application location is a small inclined plane, so the stability
coefficient of scheme 1 is greater than that of scheme 2.

4.3. Determination of Optimal Bridge Location

Considering that the bridge loads act on different parts of the toppling deformed rock
mass, the toppling deformation degree caused by the transverse bending action is greater
than the longitudinal bending action. Therefore, when the pile foundation of the bridge
cushion cap is selected, the transverse bending effect should be avoided or reduced as far as
possible. According to the analysis of the engineering geological conditions of the rock and
soil mass of the bank slope, all potential sliding bodies of the bank slope are located in the
strongly weathered rock mass area. The rock mass in the strongly weathered area is broken
due to the geological forces such as the undercutting and fracture of the Lancang River,
the movement of the folded tectonics, and the toppling deformation during the geological
history. The closer it is to the Lancang River channel, especially in areas with raised terrain,
the stronger the weathering and unloading of the rock mass, and the poorer the stability of
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the bank slope. From the perspective of engineering geological safety, the farther away the
main pier of the bridge from the river, the safer it is.

According to the stability analysis results of the bank slope, the stability of the Yunlong
side bank slope is mainly controlled by the potential sliding body Slip 5 of the strong un-
loading zone. If the potential sliding body Slip 5 of the Yunlong side bank slope experiences
sliding failure, it will directly threaten the safety of the main pier of the bridge in scheme
1 (628 m span cable-stayed bridge). Therefore, it is necessary to carry out engineering
pre-reinforcement treatment for scheme 1 bank slope. When selecting bridge scheme 2
(750 m span cable-stayed bridge), although the stability of the potential sliding body Slip 5
in the strong unloading zone of the Yunlong side bank slope does not meet the requirements
of the design safety factor, the horizontal distance from the rear edge of the potential sliding
body to the front edge of the Yunlong side main pier pile foundation cap is 36.0 m. After the
sliding failure of the potential sliding body occurs, it will not affect the safety of the bridge
main pier. It can be seen that bridge scheme 2 is safer than scheme 1 from the perspective
of the results and analysis of the stability of the bank slope.

From the analysis the long-term effects of pre-reinforcement and engineering of
the bank slope, it is recommended to adopt the frame beam + anchor cable as the pre-
reinforcement measures to ensure that the stability of the bank slope is able to meet the
requirements of the design safety factor. As the rock mass of the bank slope is mainly
composed of sandy slate mixed with muddy slate and metamorphic sandstone, it belongs
to relatively soft rock. The potential sliding mass Slip 5 on the Yunlong side of the bank
slope is located in the strongly weathered rock area of the bank slope, with broken rock
masses and developed joint fissures. The inclination of the rock mass is basically consistent
with the installation angle of the anchor cable, and the relaxation of prestressed anchor
cable will be more severe, which leads to the low long-term effect of the pre-reinforcement
project. On the other hand, the construction of the frame beam + anchor cable project
requires the removal of the loose cover layer on the slope surface and the leveling of the
slope surface, which will cause damage to the vegetation ecology of the bank slope and is
not conducive to the protection of the ecological environment in the reservoir area.

From the perspective of bridge construction conditions, the main and auxiliary piers
of the Yunlong side bridge are located in the middle and upper part of the bank slope. By
comparison, the farther away the bridge pier columns are from the Lancang River channel,
the shorter the construction road needs to be, leading to better construction conditions. The
construction conditions of the main pier in scheme 2 are superior to those in scheme 1.

Based on the analysis of various influencing factors such as rock and soil engineering
geological conditions of the bank slope, bank slope stability, pre-reinforcement engineering
of the bank slope and its long-term effects, bridge construction conditions, etc., the determi-
nation of the specific bridge type plan based on the advantages of the location of the main
pier arrangement for the bridge in scheme 2, which means that scheme 2 is the safest and
most suitable one, followed by scheme 1.

4.4. Limitations in Numerical Simulation

Although we have discussed the joint effects of bridge loads and hydrodynamic forces
on the reservoir bank slope from both two-dimensional and three-dimensional perspectives,
there are still some shortcomings in the relevant simulations:

(1) The geological profile used in the two-dimensional simulation is only on the section
where the bridge foundation is located, and the adjacent sections have not undergone
a seepage field simulation, two-dimensional limit equilibrium analysis, or strength
reduction calculation, so the accuracy of the three-dimensional simulation is verified
using the calculation results of other sections.

(2) In a 3D simulation, simulating the influence of bridge loads by using equivalent
concentrated force without any solid elements of the bridge section may have a
certain impact on the analysis results.
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(3) The failure mode of a toppling slope is influenced by numerous factors, and the
scope of failure and sliding surface have certain uncertainties. The use of the strength
reduction method may result in different slope stability analysis results, leading to
significant differences between quantitative and qualitative analysis.

(4) The design of the bridge body was not considered, the structural changes in the bridge
were not simulated, and the impact of changes in pier position on the bridge design
was not verified.

5. Conclusions

(1) The formation of toppled and deformed rock masses in the reservoir area is mainly
due to the rapid deepening of the valley under the action of regional tectonic stress,
leading to the release of stress towards the free space direction, resulting in differential
deformation between thin and interbedded rock layers. The damage caused by the
process of reservoir impoundment to the toppling rock mass is mainly due to the crack
splitting and softening effect of the reservoir impoundment at the foot of the slope.
The foot of the slope loses support for the upper rock mass, causing the toppling rock
mass above the reservoir water level to be subjected to gravity and transverse bending,
transmitted upward through joint dislocation, rotation, and sliding, accelerating the
speed of secondary toppling damage, and forming compressive shear failure along
the tilting tensile cracks.

(2) The shear failure zone below the water storage level is influenced by the saturation
strength of different lithology, the distribution characteristics of different tilting tension
fractures, and the permeability characteristics. Through the softening of water storage
at the foot of the slope, fracturing of fracture water, and wave dynamics, it may lead
to the continued development of toppling deformation. The horizontal depth of the
failure surface is related to the depth of the collapsed deformation body, usually the
sum of the wave-induced erosion zone and the horizontal softening and tilting zone
at the water surface of the reservoir.

(3) The degree of toppling deformation can be determined via the dip angle difference in
rock strata, maximum tension within the layer, unit tension within the layer, unloading
deformation of rock mass, and weathering degree of rock mass.

(4) The strength reduction method is used to analyze the stability of the rock bank slope
before and after the bridge load, and the influence of bridge loads on the shape and
position of the bank slope sliding surface is obtained, creating a local failure zone at
the bottom of the arch is detrimental to the stability of the bank slope.
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Abstract: Landslides in northern India are a frequently occurring risk during the rainy season
resulting in human, animal, and property losses as well as obstructing transportation facilities.
Usually, numerical and analytical approaches are applied to predicting and monitoring landslides,
but the unpredictable nature of rainfall-induced landslides limits these methods. Sensor-based
monitoring is an accurate and reliable method, and it also collects accurate and site-specific required
data for further investigation with a numerical and analytical approach. This study developed a
low-cost tilt-based rainfall-induced landslide monitoring system using the economical and precise
MEMS sensor to record displacement and volumetric water content. A self-developed direct shear-
based testing setup was used to check the system’s operational performance. A physical slope
model was also prepared to test the monitoring system in real scenarios. A debris failure occurred at
Kotrupi village in the Mandi district of Himachal Pradesh, India, which was chosen for the modelling
to investigate the failure mechanism. A rainfall generator was developed to simulate the rainfall,
equipped with a flow sensor for better simulation and data recording. The tilt angle records the
deviation in terms of angle with a least count of 0.01 degrees, and the moisture content was recorded
in terms of percentage with a least count of 1. The results show that the developed system is working
properly and is very effective in monitoring the rainfall-induced landslide as it monitors the gradual
and sudden movement effectively. This study explains the mechanism behind the landslide, and it
can be helpful in monitoring the slope to enable the implementation of preventative actions that will
mitigate its impact.

Keywords: rainfall-induced landslides; debris failure; slope monitoring system; MEMS sensor; tilt
monitoring; physical modelling

1. Introduction

Landslides are a common occurrence during the rainy season, resulting in human,
animal, and property losses and obstructing the area’s transportation facilities. Himachal
Pradesh, a hilly state in north India, is plagued by landslides that frequently recur, making
this study essential [1]. Several instances of landslides caused by rain that damaged infras-
tructure in various nations, including Italy and Central America [2,3]. A global database
of landslides inferred that approximately 75% of the non-seismic landslide occurred in
Asian regions when analyzing the data between 2004 to 2016. Most landslides occur in the
Himalayan region [4,5]. The need and significance of this study are graphically depicted by
the landslide hazard and risk zonation map of Himachal Pradesh (Figure 1).

Rainfall acts as the main triggering factor for landslide; the Himalayan region’s new
folded mountains and seepage adversely affects slope stability, causing an increased num-
ber of slope failure during the monsoonal season [5–7]. The relationship between rainfall
and landslide has been widely discussed [8–10]. Researchers have developed a threshold-
based approach to assess the occurrence of landslides. Various methods can assess these
thresholds: empirical methods [11,12], probabilistic methods [13–16], and mathematical

Water 2023, 15, 1862. https://doi.org/10.3390/w15101862 https://www.mdpi.com/journal/water234



Water 2023, 15, 1862

methods [17,18]. With the advancement in technology, there are other tools, such as geolog-
ical information systems (GISs) and Global Positioning Systems (GPSs) based on remote
sensing and satellite data that can be used to develop a hazard zonation map [19–22] and
to identify landslides through automatic process and calculation [23,24]. These methods
require a skilled team for deployment, which increases the cost. They are suitable for a
regional or larger area for early warning, which requires a large amount of data, without
which could result in a false alarm. Physical model methods are best suited to analyse the
mechanism of rainfall-induced landslides for individual slopes due to their unpredicted
nature and various triggering factors [25–28]. Numerical modelling methods are widely
known to analyse the stability and seepage parameters for individual slopes, as it is not
feasible to perform a physical model test for every individual slope due to its complex
setup and procedure [29–35]. In [36], the study used physical and numerical modelling to
analyse the rainfall-induced landslide and validated the numerical modelling results with
physical modelling. However, the above methods can be combined for hazard risk zonation
and to identify the critical slope. It can be seen that sometimes a steeper slope remains
stable, whereas a gentle slope may fail under critical conditions. Keeping this in mind, it is
important to consider individual slope monitoring for early prediction. As rainfall-induced
landslides show the unpredictable nature of failure than the landslide initiated by the
effect of gravity, scheduled field inspection at regular intervals may not be an effective
method [37]. With the advancement in electronic components and wireless networks, in situ
ground-based monitoring of slopes is another emerging method for real-time monitoring of
slopes. These methods are also suitable for places not suitable for frequent visits. Different
equipment and sensors are used for monitoring and predicting for ages. Extensometers
are used to find the displacement of the moving slope with respect to a stable portion [38].
However, this method needs extreme precision in selecting the critical slip surfaces to be
installed. Inclinometers are also used to monitor deep-seated landslide [39,40] as well as
slow-moving earth flow [41] but the installation and maintenance costs are much higher,
and thus cannot be suitable for low-cost purposes. The use of tilt sensors for the detection
and monitoring of critical slopes is widely known due to its cheaper development and
installation costs, and are found to be effective in monitoring shallow slope failures [42–44].
This technique was developed and successfully tested in Japan [43,45] and is now widely
accepted by various countries for its low cost and efficient performance alternative to the
traditional extensometers and inclinometers. The geology and hydrological pattern of the
Indian Himalayan region are very different from the location where these sensors have
already been used, thus requiring performance evaluation before installation.

Himachal Pradesh in the Indian Himalayan region is one of the states in Indian ter-
ritory that is vigorously affected by landslide events yearly, and the number increases
every monsoonal season. These events severely affect the life and property in nearby
communities [6] as these regions come under the newly folded mountains, which are even-
tually affected by various landslides due to the infiltration and pore pressure that develop
between the soil pores. Only a few researchers have used tilt sensor-based techniques to
monitor the critical slopes in the Indian Himalayan region. Some studies [42,46] used tilt
sensors in Darjeeling Himalayas for monitoring slopes, but very few can be found in the
Himachal Himalayas region, proving this area is open for further research. In this study,
a cost-effective monitoring system has been developed using Micro Electro-Mechanical
System (MEMS) sensors. A volumetric water content sensor has also been used in order
to study the role of the rainwater effect. The laboratory physical modelling method has
been used to evaluate the performance and working efficiency. By integrating multiple
sensor technologies and using advanced data analysis techniques, it is hypothesised that
a landslide monitoring system can be developed that will provide accurate and timely
information about landslide activity, thereby reducing the risk of property damage and loss
of life caused by landslides. This study can provide cost-effective monitoring of slopes and
the development of early warning systems for rainfall-induced landslides so precautions
can be taken to lessen their impact.
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Figure 1. Landslide hazard in Himachal Pradesh (Source: HPSDMA).

2. System Design and Implementation

The design of the proposed landslide monitoring system consists of three major
components: a sensing unit which includes the sensors and microcontroller, a data logging
unit, including a connection and networking module for the collection and storage of data,
and a threshold analysis unit, which can be helpful in generating the warning. Figure 2
shows the schematics of the proposed system.

 
Figure 2. Design of the low-cost framework for monitoring landslides.

2.1. Sensing Unit

The sensing unit is the first and foremost part of the proposed system for monitoring
landslide initiation. It includes the sensors used to sense the required data for the analysis.
This system uses Micro Electro-Mechanical System (MEMS)-based sensors for their efficient
working, durability, and cost-effective availability. This system will be deployed in the field
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and cannot be reused if a landslide takes place, making MEMS-based sensors suitable for
this purpose. In this study, the components that were used are discussed below.

2.1.1. Tilt Sensor

It is necessary to choose a module (MPU6050), which consists of an accelerometer,
gyroscope, and temperature sensor, to record the tilt variation in the x, y, and z directions.
The 16-bit triaxial gyroscope and accelerometer are combined into the six-axis sensor.

The module is built around an MPU6050 InvenSense IMU (Inertial Measurement
Unit) chip. It comes in a PCB board with a 2 cm × 1.6 cm dimension and 24 pins. An
AP2112 K 3.3 V regulator, I2C pull-up resistors, and bypass capacitors are some of the few
components that make up the module, which has a meager component count overall. In
addition to this, there is a power led that displays the current power status of the module
(Figure 3a). The MPU6050 is a Micro-Electro-Mechanical System (MEMS) that contains
within it a three-axis accelerometer as well as a three-axis gyroscope (Figure 3b). This
allows us to measure the acceleration, velocity, orientation, and displacement of a system or
object, in addition to a wide variety of other motion-related parameters. This module also
contains a Digital Motion Processor, abbreviated as DMP, capable of carrying out intricate
calculations and relieving the Microcontroller of some of its responsibilities. Figure 3c
explains the circuit diagram, and Figure 4 shows the block diagram of the MPU6050 module
for a better understanding of the working of the sensor.

Figure 3. MPU6050 module (a) sensor module, (b) working axis details, and (c) circuit diagram.
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Figure 4. Block diagram of MPU6050 Module.

MEMS accelerometers are used in situations where there is a requirement to measure
linear motion, such as movement, shock, or vibration, but there is no fixed reference point.
They track the object’s linear acceleration while being tethered to it. The mass on a spring
principle is the premise on which all accelerometers operate. Due to inertia, the mass seeks
to remain immobile as the item to which they are attached accelerates. As a consequence,
the spring undergoes stretching or compression, resulting in the production of a force
that can be measured and is related to the acceleration that was applied. In a MEMS
accelerometer, a pair of silicon MEMS detectors made of spring-“proof” masses are used to
precisely detect linear acceleration in two orthogonal axes. Every mass supplies a moving
plate with a variable capacitance made up of a variety of interlaced finger-like structures.
Due to the proof mass’s tendency to resist motion when the sensor’s sensitive axis is linearly
accelerated, the mass and its fingers are forced away from the fixed electrode fingers. An
effect of dampening is produced by the gas between the moving and fixed silicon fingers.
This displacement causes a differential capacitance inversely proportional to the applied
acceleration. A high-resolution analog-to-digital converter (ADC) is used to measure the
change in capacitance, and the acceleration is then calculated using the rate of change in
capacitance. This is then transformed into a readable value in the MPU6050 before being
sent to the Inter-Integrated Circuit (I2C) master device.

The MEMS gyroscope’s function is based on the Coriolis Effect. According to the
Coriolis Effect, when a mass moves with velocity in one direction and is subjected to an
external angular motion, a force is created that pushes the mass in a perpendicular direction.
The amount of angular motion used has a direct impact on the rate of displacement. Four
proof masses are included in the MEMS Gyroscope, which is kept oscillating continuously.
The Coriolis Effect alters the capacitance between the masses when an angular motion is
applied, depending on the direction of the angular motion. A reading is created after this
change in capacitance has been detected.
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2.1.2. Soil Moisture Sensor

Unquestionably, water is crucial to the chemical, physical, and mechanical characteris-
tics of the soil. Understanding and analyzing various processes involving soil, vegetation,
and atmospheres, such as soil erosion, runoff, and soil water infiltration, depend on quanti-
fying soil water content from the surface to greater depths. Due to the ability of aerial plant
life to capture some of the water that falls as rain and the ability of plants to absorb moisture
from the soil around them and release it to the atmosphere through evapotranspiration, soil
vegetation alters the hydrological balance of the affected area. The latter mechanism could
result in a decrease in the saturation level of the soil (an increase in suction), which would
increase the soil’s shear strength. In other cases, water accumulation between the soil layer
can cause the formation of the fluid zone, which may lead to a loss in shear strength which
may lead to slope failure [47]. Thus, soil vegetation plays a vital role in stabilizing the slope
to protect the environment.

With the help of this sensor, it is possible to track changes in soil moisture continuously.
The soil moisture sensor consists of two probes to measure the volumetric water content
by measuring the resistance or capacitance value through the soil material. The change in
current or voltage is then calibrated to measure the water content. When the soil pores have
more water, the resistance to current flow will be less as water provides better conductivity.
Similarly, when less water is present in the pores, the resistance offered by the medium
will be very high, reducing the current flow due to the poor conductivity offered between
pores.

Compared to other sensors on the market which measure resistance, in this study, a
capacitive soil moisture sensor version 2.0 is used to measure soil moisture levels through
capacitive sensing. Version 2.0 has a better upgrade and offers a better service life than
previously available versions, as it is corrosion-proof. The output of the capacitive moisture
sensor is known to be influenced by the complicated relative permittivity (ε∗r ) of the soil,
i.e., dielectric medium [48,49].

ε∗r = ε′r − jε′′r = ε′r − j
(
ε
′′
relax +

σdc
2π f ε0

)
(1)

where, ε′r and ε
′′
r are, respectively, the real and imaginary components of permittivity, σdc

referred to the electrical conductivity, ε′′relax is the contribution of molecular relaxation
(dipolar rotation, atomic vibration, and electronic energy states), j indicates the imaginary
number

√
(−1), and f is the frequency. The amount of energy from an external electric field

that is stored in a material is measured by the real part of permittivity (ε′r). The “loss factor”,
also known as the imaginary part of permittivity (ε′′r ), predicts a material’s susceptibility to
dissipation or loss in the presence of an external electric field: ε′′r > 0. Losses are linked to
two main processes: electrical conductivity and molecular relaxation. The soil’s salinity,
ionic composition, frequency, and moisture affect permittivity.

The permittivity of a material is often represented by a complex number with a real
part and an imaginary part. The real part of the permittivity represents the material’s
ability to store electric charge, while the imaginary part represents the material’s ability to
dissipate electric energy.

Capacitive soil moisture sensors utilise the operation of a capacitor to provide an
approximation of the amount of moisture present in the soil. The amount of charge a
material can hold when subjected to a specific external electrical potential is referred to as
its capacitance [50,51]. The most common way to conceptualise capacitors is as parallel-
plate setups, as shown in Figure 5 below.
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Figure 5. Parallel plate capacitor setup.

The capacitance of an object can be expressed as a ratio of its charge to its electrical potential:

C =
Q
V

=

∮
εE.ds∫
E.dl

(2)

The charge Q defined by the integrating relationship between the generated electric
field (E) and the relative permittivity of the surrounding dielectric material (ε) throughout
the gross surface area of the probes. The line integral of the electric field is used in the
definition of electric potential, abbreviated as V. δ is the distance between plates. For the
capacitor with parallel plates, an assumption can be made that the electric field is uniform
throughout the whole surface of the dielectric. This leads to the resulting simplification:

C =
εEA
Eδ

=
εA
δ

(3)

This is usually believed to represent the relationship between the geometric parameters
of a capacitor with parallel plates and the soil material having dielectric properties around
the capacitor. The capacitance measured by a soil moisture sensor is distinct from that
recorded by a capacitor with parallel plates, as the capacitor plates are coplanar rather than
parallel. This indicates that the plates are not stacked on top, but are placed adjacent to one
another and that the dielectric substance is the ground itself instead of a thin layer trapped
between the plates. The following illustration demonstrates this point.

Figure 6 clearly shows the arrangement of electrodes with the dielectric medium,
which can be dry or wet soil and serves the same function similar to the plates of any capac-
itor. The capacitive soil moisture sensor works in conjunction with a timer circuit (TLC555,
in the case of the selected sensor). The combination produces a duty cycle proportional
to an analog voltage. This voltage can be read off using a built-in microcontroller board.
Capacitance for a flat capacitor is a complex function of dielectric constant and sensor shape
that will not be investigated here. The only new component that has been added is G, a
function that summarises the geometric qualities of the sensor. The relationship is shown
in Equation (4).

C = εG (4)
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Figure 6. Illustration concept behind working of soil moisture sensor.

The geometrical and dielectric medium, along with surface line integration in planer
configuration, makes the complex function, which can be simplified for better understand-
ing by assuming a constant (A) as shown in Equation (5), and the solution to finding the
dielectric constant is mentioned in Equation (6).

V =
A
C

(5)

ε =
A

GV
(6)

In essence, this indicates that a correlation between the dielectric constant and the
inverse of the voltage received by the sensor can be anticipated. Using the above relation-
ship, the soil moisture sensor is calibrated to sense the moisture in soil pores in percentage
or as the volumetric water content. Figure 7 shows the chosen, commercially available
blade-shaped Capacitive Soil Moisture Sensor v2.0.

 
Figure 7. A capacitive soil moisture sensor v2.0.

The most recent and reliable information for the version 2.0 soil moisture sensor devel-
oped by DFROBOT and sold under the SKU (stock keeping unit) designation of SEN0193
in various advertisements [52]. The datasheet suggests a suitable depth of penetration in
soil, a working power supply between 3.3 and 5.5 volts, and an output voltage between 0
and 3.3 volts. Initially, a comprehensive investigation into the sensor’s electrical circuits
was carried out to become familiar with the functioning mechanism. The circuit diagram of
the soil moisture sensor from the datasheet is shown in Figure 8.
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Figure 8. Circuit diagram of the capacitive sensors (source: Sensor DFROBOT data sheet).

2.1.3. Development Board

The development board is like the heart of the monitoring system, as all the necessary
parts are connected. The panel includes a microcontroller for reading and processing sensor
values. The board consists of an input pin for analog and digital sensors, a power supply
connecting headers, and a USB port to transfer the data. It can also be combined with
various modules, like the Wi-Fi module, to transmit the data to the cloud or the memory
card module to store it for further analysis.

2.1.4. Power Supply Unit

The power supply unit includes the power supply for all modules in the monitoring
system. It consists of a battery with enough capacity of 10 k mAh for the uninterrupted
working of the system and a solar panel charging system for continuously charging the
battery. The solar charging system was equipped with the overcharging protection of the
battery to ensure the longest battery life.

2.1.5. Programming

Programming is the soul of any monitoring system. It communicates a program’s
intended functionality to a computer through a sequence of instructions. In this system,
two types of sensors were used to monitor the landslide mechanism. Programming for the
MPU6050 sensor was done to compute the tilt angle, and any deviation induced by tilting
can be recorded with time. The system has the capability to adjust itself by restarting to
allow for better visualization. The second sensor was installed to monitor the volumetric
water content of the soil, and programming was done to measure the moisture content in
terms of percentage with time.

2.2. Data Logging Unit

This unit ensures the data collection acquired by the sensor. The data logging module
can be attached to the development board using the USB hub or the memory card module
to save the data. A Wi-Fi or GSM module can also be connected wirelessly to collect the
sensor value on the internet cloud for further analysis. The development board is equipped
with a Wi-Fi module to provide internet connectivity in the developed monitoring system.
A GSM-based Wi-Fi modem was installed so that several monitoring sensors could be
connected using the single modem according to the slope area and location, reducing the
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cost of individual GSM modules and the connectivity charge. The data collected from the
sensors were stored using the Arduino cloud for further analysis.

2.3. Analysis Unit

In this section, the data collected from the sensors are analysed for better monitoring of
slope movement. As the critical threshold value depends upon the geometry and material
of the slope, it varies for individual slope. After sufficient analysis and monitoring, a
warning can be generated for each slope to reduce the catastrophic effects of slope failure
by evacuating or strengthening stability.

3. Study Area

The study location (Figure 9) is in the vicinity of Kotrupi village on the Mandi—
Joginder Nagar—Pathankot National Highway (NH-154), where the Kotrupi landslide
has caused extensive damage [53]. On either side of the slide, the Padhar and Joginder
Nagar tehsils of the Mandi district (Himachal Pradesh) are approximately 4 and 21 km
away, respectively. The study area is covered by the Survey of India Toposheet No. 53 A/13.
Geographical coordinates with latitude N31◦54′37.60′′ and longitude E76◦53′26.30′′ indicate
the location of the landslide [53].

 
Figure 9. A map showing the location of the research area.

3.1. Landslide Event and Mechanism

On Sunday, 13 August 2017, a major landslide happened in the Mandi District of Hi-
machal Pradesh in the village of Kotrupi (near the Kotrupi Bus Stop). The road connecting
Mandi and Pathankot was affected by the landslide. According to reports, a section of the
slope completely collapsed, burying two Himachal State Transport buses and a few other
cars, and at least 47 people were killed in the tragedy [54]. Nearly three hundred meters of
the highway were entirely buried by debris, shutting off contact on a vital corridor. There
have been scars from small landslides in the Kotrupi region prior to the actual landslide.
Debris flow slides occur when significant soil mass has flowed down a steep channel with
debris. The Kotrupi landslide was one of the types of debris failure [54].
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3.2. Description of Study Slope

The area includes part of the catchment basin of the Beas river, and several tributaries
join it. The Uhl river, Rana Khad, Arnodi Khad, and Luni Khad are minor tributaries of
the Beas River. Physiographically, the area falls in the Lesser Himalayan Zone occupied by
the Dhauladhar range in the northeastern part. The topography is rugged, displaying high
ridges and deep valleys. Figure 10 shows the satellite view of the study area, indicating
landslide crown and runout. The slope is moderate to steeply inclined with occasional
breaks in the slope. The slope is moderately to highly dissected, as evidenced by minor
streamlets on either side of the slope. The slope affected by the failure has a 45◦–50◦
inclination. The landslide’s crown is located at an elevation of 1620 m. The main landslide
is approximately 230 m tall, with a 210 m width. The slide is 300 m long from top to bottom.
The landslide’s runout distance was 1155 m [54,55].

 

Figure 10. Satellite view of the study area.

Figure 11 shows the digital elevation model (DEM) of Joginder Nagar, indicating
the landslide location. The DEM is created using SRTM data with the help of the QGIS
tool. Using the profile tool of QGIS software [56], the elevation profile has been generated,
indicating the landslide location.

 

Figure 11. SRTM-DEM of Joginder Nagar, Mandi, Himachal Pradesh.
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3.3. Geotechnical Characteristics of the Slope Material

Slope-forming material was collected during the field survey to find the hydromechan-
ical and geotechnical parameters. In order to minimise the differentiability of location in
the simulation of the material properties and to better understand the Kotrupi landslide’s
behaviour, materials were collected at various locations throughout the landslide area.
Grain size analysis, Atterberg limits, natural water content, specific gravity, a compaction
test, and a triaxial test were carried out using the disturbed samples taken from the site
per the IS code. The material can be simulated in numerical modelling using the outcomes
from experimental investigations. After performing grain size analysis, the material was
categorised by three fractions, i.e., sand, silt, and clay. The material collected from the site
was classified as a non-uniform gradation because it contained a wide variety of possible
particle sizes, including plants, big stones, and boulders. Indian standard code IS: 2720 was
followed to perform sieve and hydrometer analyses to determine grain size [57], and the
results showed the values of coefficient of uniformity Cu is 6.2 and coefficient of curvature
Cc as 0.67. The fineness modulus of the material was found to be between 5 to 12 percent,
and the soil was classified as poorly graded sand containing less amount of silt (SP-SM). To
perform seepage analysis to investigate the pore pressure parameters, the determination of
Atterberg’s limit is an essential parameter in material simulation [58]. Indian standard code
IS:2720 (part 5) was used as a reference to perform Atterberg’s limit tests [59]. Atterberg’s
limit results are summarised in the Results section of the paper. IS code: 2720 (Part-7) was
referred to perform light compaction tests to determine the dry density of the soil [60].
According to the geotechnical investigation performed during the laboratory investigation,
the material obtained from Kotrupi landslide location mostly contain poorly graded sand
(SP). The landslide’s shear strength parameters can be calculated using either the drained
or the undrained stresses, the total or the effective stresses [61]. In the case of a debris-type
landslide, the unconsolidated-undrained test has been recommended for soil characteriza-
tion [62]. Following IS: 2720, part 11, the tests were conducted at normal stress of 50 kPa,
100 kPa, and 200 kPa to determine the shear strength parameters (cu and φu) because the
soil sample contains some silt [63].

4. Methodology

In this study, a low-cost monitoring system that comprises a MEMS-based tilt sensor
and soil moisture sensor is developed to investigate the slope movements monitoring
the tilting behaviour. A self-made testing platform was designed to test the working of
the monitoring system. A soil slope model was prepared in the laboratory to assess how
well the sensor works under real-world conditions, including a self-developed rainfall
generator to simulate the rainfall. The physical model test is also helpful in investigating the
cause and the failure pattern, which helps establish the critical rainfall threshold. A series
of physical model tests were conducted to assess the effectiveness of the sensor column
monitoring process by evaluating the applied sensor column deformation behaviour with
the observed tilt response. Landslide events have been modeled in two different ways: (i) a
direct shear setup simulated first-time landslide failure experiment using a sensor column
to analyse the performance of developed system directly with relative deviation in angle;
and (ii) by creating a soil slope model to test and monitor the functioning of the monitoring
system by simulating real conditions and also to investigate the failure mechanism behind
the rainfall-induced landslide by simulating a case study. The study’s methodology flow
chart is shown in Figure 12.
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Figure 12. Flow chart of the methodology adopted in the study.

4.1. Testing Setup

The testing method includes a predefined failure plane to simulate the slope failure
plane in order to check the working and performance of the developed system. Figure 13 is
a schematic representation of the physical model of a slope failure that was used to analyse
the displacement behaviour using a tilt measurement and to accelerate the top box relative
to the bottom box. The setup includes a hydraulic jack to create a horizontal movement to
the upper block against the fixed wall support. The lower block is fixed to any movement.
Both blocks have holes throughout the depth where the sensor column was installed. An
LVDT (Linear Variable Differential Transformer) sensor was also installed to measure the
horizontal deformation induced by the external force applied by the hydraulic jack.
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Figure 13. The schematic diagram depicts a large-scale physical model of a slope failure used
to accelerate the top box relative to the bottom to analyse the displacement behaviour with tilt
measurements.

The concrete blocks were made using the Plaster of Paris (POP) material, as it is easy
to cast and move around in the lab. The casting was done using a mould of 20 mm ×
20 mm × 30 mm made of acrylic sheet, and a hole of 4 cm diameter was made to place a
PVC pipe longitudinally to create the borehole in the block for the placement of the sensor
column. Figure 14 shows the casted POP block in a casing made of an acrylic sheet of a
thickness of 18 mm, and a borehole was created using a plastic pipe of a 4 cm diameter.

 
Figure 14. Modelling and casting of blocks with boreholes of 4 cm.
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Figure 15 shows the self-made large-scale direct shear model developed using two
concrete blocks placed over one another with a bore hole of 4 cm in diameter. The sensor
was installed using the steel rod through the column of soil representing the in-situ soil
of a slope. The joint made with concrete blocks will act as a predefined failure plane. The
lower blocks have been restricted to any movements, while the upper block is free to move
when any external force has been applied. The upper block can be considered the failed
soil mass, while the lower block is the base of the slab. This sensor was tested by applying
an external force with a hydraulic jack to cause a horizontal relative displacement of the
top concrete block with respect to the bottom block. The movement change in angle in the
x and y directions can be noted for further analysis. The experiment setup was designed
so that various tests could be performed to evaluate how well the sensor functions under
rapidly changing conditions.

 

Figure 15. Self-developed large-scale direct shear setup.

4.2. Physical Modelling of Slope

Debris flows are rapid landslides that pose a threat to human life and property because
of their speed and the destruction of infrastructure along their path. Debris flows usually
start on hillsides or mountains, most likely when recent rainfall occurs. The rapid collapse,
complexity, and random behaviour of debris flow make it difficult to explain the mechanism
using a numerical or mathematical model [27]. Therefore, the most common and efficient
technique for investigating the slipping mechanism of soil slices utilised in studies of
slope collapse is a physical model test, to study the rainfall-induced slope instability, to
monitor for potential landslide danger, and to take preventative measures before they
occur [27,64,65].

The physical modelling was carried out based on the following presumption. The
engineering qualities of the parent soil and experimental soil are the same. There is
nowhere for the water to leak except the toe drain because all the sides are impermeable.
The sprinkler utilised is not a jet type, so direct rain impact has negligible weathering effect
on the slope. For the chosen intensity, rainfall is distributed similarly across the entire slope.
The effect of plants, roots, and vegetation on slope stability has not been considered.

In the study, identical engineering qualities were used to enforce a physical modelling
test [27,36]. Soil’s basic engineering qualities are determined through dimensional testing
of analogous materials in a controlled environment. The identical experimental settings of
the physical model were adapted to fit similar theories. This research uses an experimental
physical model to examine the conditions of landslide initiation and the mechanism of
failure caused by precipitation. The experimental setup is depicted in Figure 16.
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Figure 16. Schematic diagram of experimental setup.

4.2.1. Frame Type Box

To facilitate experimentation, a steel framework supports a transparent acrylic sheet
15 mm thick that serves as the frame type model. The tank used in the experiments is a
cube, measuring 97 × 57 × 49 cm in dimensions. The toe area also features drainage holes
for easy removal of any excess water. The frame type of box was placed over a concrete
block in order to place a hydraulic jack on the hillside of the slope to provide a tilting
mechanism.

4.2.2. Rainfall Simulator

Two primary measurement-based empirical approaches are used to establish its thresh-
old values: (1) Measurements of rainfall for a given occurrence in terms of both intensity
and duration (ID), the sum total of rain that fell during the event (E), duration of a rainfall
event (ED), and intensity of a rainfall (EI) thresholds (Guzzetti et al. 2008) and (2) an-
tecedent rainfall event [11] that is, the specified amount of precipitation above which a
slope would collapse [66,67]. Three factors have been taken into account in this analysis:
(a) precipitation intensity “q”, (b) time duration of rainfall event “t” and (c) the time interval
between the consecutive rainfalls. Both the duration and frequency of rainfalls change with
the passage of time. Total rainfall “Q” is proportional to the product of time duration and
the intensity of rainfall “q” as shown in Equation (7).

q =
Q
t

(7)

In this study, a self-developed rainfall generator was used to simulate the variable
rainfall to simulate a natural environment. An artificial rain generator consisting of a
water storage tank, submersible pump, control valve, flow sensor, and raindrop nozzle
is constructed to produce the required amount of rain. For the generation of rainfall,
several sprinkler nozzles are installed in a rainfall simulator to simulate the rainfall. The
nozzle used is a spray type but does have a fixed opening, and the droplet size may vary
according to the input flow pressure. The rainfall generator was equipped with a flow
sensor that collects the data with a microcontroller. The variable rainfall intensity is attained
by controlling the valve attached to the inlet of the rainfall generator. Figure 17 shows the
input variation of rainfall intensity and accumulated rainfall depth over time. Variable
interval is also introduced after an hour for the next successive rainfalls to make moisture
infiltrate properly.
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Figure 17. Input Rainfall parameter.

5. Results and Discussion

The findings of this investigation are summarised in this section. The results of the
laboratory tests are discussed in greater detail in this article. To better understand the failure
mechanism under rainfall, physical slope modelling was used to simulate and investigate
the start-up mechanism of the slide. Testing and monitoring results are explained in
this section.

5.1. Results of the Self-Developed Test Setup

The self-developed large-scale direct shear setup was used to test the working be-
haviour of the developed sensor column for slope monitoring and failure prediction.
Figure 18 shows the variation detected by the displacement induced using the hydraulic
jack. A very small displacement was induced to check if the system could detect a small
deviation in angle, and the displacement recorded through LVDT can be seen in Figure 19.
In Figure 18, the maximum angle detected is only 0.5 degrees on the y-axis and 0.1 to
0.2 degrees on the x-axis. The system has some noise and variation in readings, but as it is
very low limited to 0.01 to 0.05 degrees only thus can be ignored in further investigations
or monitoring for better understanding.

 
Figure 18. Variation of angle in X and Y direction.
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Figure 19. Linear displacement in X direction using LVDT.

In further testing, the displacement was increased to a large extent to check the working
of the sensor. There was a limitation to the LVDT sensor in that it could not measure such
large deformation in this phase. Figure 20 shows the variation of angle when further
displacement is introduced to the upper block. It shows that there is a large deviation
detected in the y-axis as the slope usually moves downward against the y-axis. However,
there is also some movement in the x-direction which can help in better monitoring of
the slope.

 
Figure 20. Variation of angle in X and Y direction.
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5.2. Results of the Physical Model

A landslide that occurred in Kotrupi village was simulated in this study using the
physical modelling method to study the failure mechanism under variable rainfall con-
ditions. To monitor the movement of the slope, the self-developed tilt-based monitoring
system was installed at the top section of the slope. The results generated from the tilt and
soil moisture sensor were described in this section. A self-developed rainfall generator was
used for the rainfall generation, and the input rainfall with respect to the cumulative rainfall
depth is shown in this section which can be helpful in deciding the threshold rainfall for
the particular slide or can be used to predict the threshold for the nearby areas.

5.2.1. Soil Properties

Dry and saturated unit weights were 16.7 kN/m3, and 20.3 kN/m3, respectively. The
saturated permeability coefficient was 0.00023 m/sec, cohesion 21 kPa, and friction angle
was 31◦. This is because the soil in Kotrupi was mainly made up of very coarse sand as
poorly graded sand (SP) in the USCS classification. The presence of moisture from the
infiltration that the slope has experienced has resulted in the development of apparent
cohesion. As a result, the apparent cohesiveness between different soil particles is revealed
by the cohesion value that is achieved through triaxial testing. Additionally, the existence of
fine soil, as measured by silt content (SM), has been of assistance in the development of the
cohesion value. The liquid limit of slope material was found to be 32%. Extensive research
has been done to investigate the geotechnical characterization of the Kotrupi landslide as
it has been shown to vary in a wide range, although the results from this study fall in the
region, which justifies the laboratory results [53,61,68,69].

5.2.2. Monitoring Results of Soil Slope

The physical slope model is prepared to study the effect of rainfall on the slope. To
study the effect of pre-monsoonal rainfall, an antecedent rainfall of 10 mm was simulated
at 1 mm/h intensity. Figure 21a shows that deep percolation takes place, which justifies
that the low intensity and long duration rainfall causes deep saturation and may result
in a deep-seated landslide. In Figure 21a, it can be seen that the slope is dry at the end,
and the saturation level keeps increasing to the top. This may result in compaction and
consolidation of soil near the junction point of wet and dry soil, which in turn decreases
the permeability. Figure 21b shows the generation of small cracks on top of the slope takes
place after one week. Figure 21c shows the effect after four weeks, and the wide cracks
can be seen on top as well as the slope section that may be generated by soil shrinkage
after wetting and drying. The duration of generated cracks may differ according to the
temperature and humidity of the surrounding environment. Further rainfall on the slope
results in faster and deeper percolation of water through the cracks, which helps in creating
the fluidization zone between the dense and loose soil layer during the monsoonal season.
The tilt sensors were mounted on top of a steel scale. At the bottom, a soil moisture
sensor was attached and placed into the soil after creating a borehole using a drill machine
(Figure 21d). Further, the sensors were installed on the upper section of the slope to monitor
the slope movement and the water content.

The rainfall was simulated by a self-developed rainfall generator equipped with a
flow sensor and a microcontroller to record the flow. Figure 22 shows the variation of water
content against the input rainfall. As the water content increases or varies according to
the input rainfall, the water content change affects the slope stability; thus, the variation
in the tilting angle can be seen in Figure 23. As the slope is much more likely to fail in
the y-direction due to gravity action, the angle deviation is much more significant in the
x-direction. There is also some deviation detected in the x-direction due to some rotation
and settlement.

252



Water 2023, 15, 1862

 
Figure 21. Physical model setup (a) percolation of water, (b) visible small cracks, (c) formation of
larger cracks, and (d) placement of sensors.
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Figure 22. Output volumetric water content.

 
Figure 23. Variation of angle in X and Y direction.

Many researchers worked around the globe in order to test the feasibility of tilt-based
monitoring systems [42,44,70]. This study validates the effective monitoring of rainfall-
induced landslides using a tilt sensor. A direct shear model setup was developed to verify
the sensor’s working and prove its reliability [71]. The physical modelling method is used
to simulate the soil slope to study the effect of pre and post-monsoonal rainfall on the slope
and to test the monitoring sensor in a realistic environment [27,36]. Figure 21 also shows
that wetting and drying can lead to the formation of cracks during pre-monsoonal rainfall,
which can cause the water to infiltrate deep and may cause failure [30]. One study [43]
stated that the change in water content is a better representation than just the water content
and, as Figure 22 depicts, the variation in the volumetric water content is very vigorous,
which may cause the slope to be unstable. Figure 23 also depicts the sudden variation in tilt
angle during heavy rainfall, which validates the result. This study also proved the possible
failure mechanism occurring in rainfall-induced landslides (Figure 24) [36,37].
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Figure 24. Sequential schematic of landslide initiation.

6. Conclusions

The number of landslide incidents in the north Indian Himalayan region has increased
dramatically in every monsoonal season. Mandi, a district in Himachal Pradesh, is among
the widely affected areas. This research led to the following findings:

1. A self-developed direct shear model was used to examine the effectiveness of a
rudimentary monitoring system designed to prevent landslides caused by rainfall.
Tilt sensors were placed on the slope’s surface in a physical slope model to detect any
abnormal variation in the angle at which the sensors are tilted.

2. The tilt and volumetric water content sensors were installed on the upper section of
the slope and were confirmed with the displacement (Figures 20–23). There was a
sudden movement in slope recorded under the influence of applied rainfall in the
course of the research. The precise amount of rain or rate of tilting required for
landslides is hard to express.

3. The findings show that prior rainfall causes slope displacement, supporting earlier
research in this area. By adopting such a system, it may also be possible to validate
existing rainfall threshold models produced, and the site-specific empirical equation
can be created based on circumstances.

4. The study proved that the cracks developed to cause deeper percolation, which leads
to slope failure by generating the fluidization zone between the soil layer. Figure 24
explains the mechanism of landslide failure triggered by rainfall.

With timely data availability, this kind of attempt to put up an early warning system
and validate the well-known empirical models would be enhanced, potentially saving
lives by issuing an alarm for evacuation. This study can be further investigated with a
numerical modelling method to analyse the rainfall-induced landslide and its validation
so that numerical modelling can be used to analyse different slopes for prediction, as it
is not possible to perform the physical model test for all slopes. Furthermore, automated
warning systems can be added to the developed system to generate warnings in real-time.
Although the developed system has only been evaluated for debris failure in this study, it
could be evaluated in the future under varying geological conditions to assess its efficacy
and feasibility in dealing with various types of landslides.
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Abstract: Geologic material properties of hillslopes are inherently heterogeneous, with complex lay-
ering structures due to geological deposition processes. Lacking detailed sampling of the properties’
spatial distribution has led to the stochastic representation of the properties to address uncertainty
in the hillslope stability evaluation. This study treats the spatial distributions of the shear strength
parameters, the cohesion (c), and the internal friction angle (ϕ), in a synthetic two-dimensional slope
as stochastic random fields characterized by their means, variances, and correlation scales. This
study then evaluates the cross-correlation between these parameters and the factor of safety (FS)
using unconditional Monte Carlo simulation (MCS). Different from classical sensitivity analyses,
the cross-correlation analysis of FS and the stochastic parameter fields stresses the importance of
the orientation of the large-scale geological layering, the correlation between the geological media’s
cohesion, and the internal friction angle at the local scale on the probability and uncertainty of failure
of the heterogeneous hillslope. The analysis further guides the field sampling strategy to reduce un-
certainty in the slope stability analysis due to unknown heterogeneity. More importantly, it suggests
the location of stability reinforcement measures. The results of this study provide cost-effective tools
for geoengineers to deal with field slope stability analysis under uncertainty.

Keywords: correlation scales; cross-correlation analysis; shear strength parameters; slope stability;
spatial variability

1. Introduction

Shear strength parameters (cohesion (c) and internal friction angle (ϕ)) are the critical
parameters for evaluating slope stability. These parameters exhibit spatial variability at
different scales due to complex geological processes [1–3]. Many previous studies have
concluded that the spatial variability of geotechnical properties is vital in slope stability
evaluations [4–6]. For example, Qi et al. [7] investigated the effect of the spatial variability
of shear strength parameters on a two-dimensional slope’s critical slip surface distribution.
Griffiths et al. [8] and Jiang et al. [9] suggested that ignoring the spatial variability of the
shear strength parameters would lead to an underestimation of the probability of slope
failure when the coefficient of variation of the shear strength parameters was significant.
The slope stability evaluated using the mean value of the parameter could be misleading.
Cho [10] emphasized the importance of the spatial variability of soil mechanics’ parameters
in evaluating failure probability. Additionally, the effect of the spatial variability of soil
properties is crucial when the slope risk assessment is over large areas due to both the
variability and lack of measurements [11,12]. Based on genetic algorithms and machine
learning, Miao et al. [13,14] performed displacement prediction and landslide susceptibility
mapping over a large area and evaluated its uncertainty.

In recent years, geostatistical random field theory has been used to describe the
heterogeneity of parameters, using its mean, variance, and correlation scales to describe
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the most probable values, variability, and spatial structure of the parameter fields [15].
The heterogeneous parameter field is statistically isotropic when the horizontal correlation
scale is equal to the vertical correlation scale. The field is statistically anisotropic when the
horizontal correlation scale is different from the vertical correlation scale.

Combining random fields and Monte Carlo simulations (MCS), one can conduct a
cross-correlation analysis of heterogeneous shear-strength parameters and slope stability.
Cross-correlation analysis is a method that reveals the spatial relationship between pa-
rameters and processes, considering the variance and spatial structure of the parameters.
Recently, Cai et al. [16] proposed an effective sampling strategy in slope stability evalua-
tion based on the cross-correlation analysis of shear strength parameters and the factor of
safety (FS), defined as the ratio of the slope’s absolute strength to the actual applied load.
Cross-correlation analysis is widely used in many fields, such as underground engineering
and groundwater science. Using cross-correlation analysis, Gao et al. [17] investigated
the spatial relationship between the rock parameters of the unlined rock caverns and the
displacement at a location of interest. Mao et al. [18] studied the relationship between
observed heads and hydraulic properties at different times and locations of unconfined
aquifers during pumping tests. Sun et al. [19] proposed a temporal sampling strategy based
on the cross-correlation analysis of hydraulic parameters and observed hydraulic heads.

Most current studies have investigated the effect of the coefficient of variation of pa-
rameters on slope stability with statistical isotropic media. However, due to sedimentation
processes, geotechnical material often displays a layered structure [7,20–23]. The failure
types of slopes with layered structures are generally translational slides, mudslides, and
creep-fatigue [24–26]. That is, the correlation scales in different directions of the parameters
are different, which leads to the fact that parameter fields with statistical anisotropy are
standard. Moreover, Cai et al. [27] developed an analytical approach for the reliability
analysis of infinite slope stability in the presence of spatially variable shear-strength pa-
rameters. They concluded that the pf increases when the correlation between c and tanϕ
increases. Griffiths et al. [8] and Jiang et al. [9] obtained similar conclusions by studying
two-dimensional heterogeneous slopes using the random finite element method. The
correlation between c and tanϕ significantly influences the probability of slope failure.
However, the influence of the correlation between c and tanϕ on slope stability considering
parameter statistical anisotropy has not been comprehensively studied. Likewise, studies
have compared the effect of the conditional random field with the unconditional random
field on slope stability analysis using MCS with the finite element method. They concluded
that conditional random field simulations could address the reduction in uncertainty due
to conditioning with sampled parameters in evaluating slope stability [28–31]. Nonethe-
less, these studies have not addressed the vital issue of reducing uncertainty by selecting
sampling locations. This issue (where to sample and how many sampling locations) to
reduce the uncertainty is critical since only a limited number of samples is available in
field situations.

This paper investigates the effect of statistical anisotropy of shear strength parameters
on slope stability. We first introduce the influence of the correlation scale on the param-
eter distribution and the method of cross-correlation analysis between the parameters
and FS. Then, we use a two-dimensional slope with statistical isotropy to analyze the
cross-correlation between parameters and FS. The comparison of the correlation analysis,
sensitivity analysis, and traditional limit equilibrium method comes next. The analyses
of the cross-correlations between parameters and FS, and the influences of the correlation
scales on slope stability in statistically anisotropic media are investigated. Lastly, using con-
ditional random fields with MCS, we compared the uncertainty in evaluating slope stability
for four different sampling schemes to validate the results of the cross-correlation analysis.
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2. Methodology

2.1. Random Field Modeling of Heterogeneity

This study adopts the random field theory to describe the heterogeneity of shear
strength parameters. The impossibility of obtaining the parameter values at every slope
location recommends that we consider the c (or ϕ) of each position as a random variable. A
collection of these random variables of c (or ϕ) in the entire slope becomes a random field
characterized by a joint probability density function with mean, variance, and autocorrela-
tion function, which describes the probability of a parameter value at any slope location.
The mean represents the most likely value of the parameter, and the variance represents
its average deviation from the actual value (i.e., uncertainty) due to variability and lack of
measurements. On the other hand, the autocorrelation function quantifies the parameter’s
spatial structure (average spatial distribution of the clusters of the geotechnical properties
in the slope).

Suppose the slope has n × n random variables, and i and j = 1,2 . . . , n, a two-
dimensional autocorrelation function is represented as follows:

ρij = exp

[
−2

(∣∣xi − xj
∣∣

λx
+

∣∣yi − yj
∣∣

λy

)]
(1)

where ρij is the autocorrelation coefficient between the parameter at location (xi, yi) and
location (xj, yj), and λx and λy are the horizontal and vertical correlation scales, respectively.
Many other forms of the autocorrelation function are available. They all are ensemble
statistics (i.e., general knowledge). We, therefore, chose the most simplistic one. This study
considers the correlation scales of c and tanϕ as the same.

Physically, the correlation scale represents the average dimensions (e.g., length, width,
and thickness) of heterogeneity (e.g., layers or stratifications) within the domain [32].
With specified mean, variance, and correlation scales, numerous realizations of parameter
distributions can be generated with different random seeds by a spectral representation
method [33,34]. In order to avoid negative values while generating the random fields, the
natural log-normal distribution of c and tanϕ are employed. Figure 1 shows six realiza-
tions of the cohesion parameter field with the same mean and variance (μc = 15 kN/m2,
σc = 7.5 kN/m2), but with different correlation scales. These fields are called statistically
isotropic when the λx is the same as the λy (Figure 1a,b), and statistically anisotropic when
the λx is different from the λy (Figure 1c–f). In Figure 1c,d, the correlation scales are 1 m
in the vertical direction and 5 m and 10 m in the horizontal direction, respectively. As the
λx becomes large, the strong and weak zones extend greatly in the horizontal direction,
and the slope shows an apparent horizontal layered structure. Figure 1e,f display the
cases where λx = 1 m, λy = 5 m and λx = 1 m, λy =10 m, respectively. The slope exhibits a
vertically layered structure as the λy becomes greater than the λx. In this study, we consider
different cases as follows. For statistical isotropy: λx = λy = 1 m; for statistical horizontal
anisotropy: λy = 1 m, λx = 5 m, 10 m, 20 m, 40 m, 80 m, respectively; for statistical vertical
anisotropy: λx = 1 m, λy = 5 m, 10 m, 20 m, 40 m, respectively.

2.2. Slope Stability Analysis

MCS is one of the widely utilized methods to estimate the probability of failure and
the reliability of a slope with the general knowledge of the mean, variance, and correlation
scales of the geotechnical properties of a hill slope. This study, different from many previous
studies, adopts the MCS to investigate the effects of correlation scales on the analysis of the
probability of failure and reliability of a slope and guides the sampling scheme to reduce
the uncertainty of our estimated probability and reliability.
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Figure 1. Numerically generated realizations of c in different correlation scales: (a,b) λx = λy = 1 m,
with different random seed, (c) λx = 5 m, λy = 1 m, (d) λx = 10 m, λy = 1 m, (e) λx = 1 m, λy = 5 m,
and (f) λx = 1 m, λy = 10 m.

For this purpose, a two-dimensional synthetic slope model for plane strain analysis
(Figure 2) with a slope height H = 10 m and slope inclination α = 26.6◦ was discretized
into 385 elements with 1 m × 1 m in size, and some of them are truncated because of the
slope surface. The left and right boundaries of the model are zero horizontal displacements
(ux = 0 m), the bottom boundaries are zero horizontal and vertical displacements (ux = 0 m,
uy = 0 m), and the slope surface is free displacement. The slope is assumed to be subjected
to gravity loads only and consists of elastic–perfectly plastic soils following the Mohr–
Coulomb failure criterion. Specifically, the loading stress at each element is the total weight
of the element above, and the shear strength of each element follows the Mohr–Coulomb
failure criterion. Other complex or advanced constitutive models [35–37] or numerical
simulation methods [38] could be used with corresponding randomized input parameters.
Table 1 lists the statistics of soil mechanical parameters, except for their correlation scales.
Subsequently, the corresponding FS for the entire slope was evaluated based on the finite
element strength reduction method (SRM) [39,40]. The program for calculating FS in this
study is mainly based on the program p64 [40], and the main difference lies in the automatic
MCS and the search for the critical strength reduction factor. The SRM has been widely used
due to its practicality and reliability. The factor of safety (FS) is defined as the proportion by
which c and tanϕ must be reduced in order to cause slope failure. The strength reduction
based on the Mohr–Coulomb criterion is shown in the following equation [39,40]:

ctrial =
c

SRF
(2)

tan ϕtrial =
tan ϕ

SRF
(3)

where SRF is the strength reduction factor; ctrial and tanϕtrial are the trial shear strength
parameters, which decrease with an increase in SRF. Several gradually increasing values of
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the SRF are tested, and the updated ctrial and tanϕtrial are used for elastoplastic analysis.
When the algorithm does not converge for 1000 iterations, the slope is considered as having
failed in this study. The smallest value of SRF causing failure is then interpreted as the
factor of safety FS. For example, the FS of this slope using the mean values (Table 1) as
input parameters, considering the slope as homogeneous, is 1.141.

Figure 2. The synthetic slope model.

Table 1. Prior statistics of shear strength and other parameters for the numerical model.

Parameters Values

Mean of cohesion, μc 15 kN/m2

Coefficient of variation of cohesion, COVc 0.5
Mean of friction angle, μϕ 10◦

Coefficient of variation of friction angle, COVϕ 0.5
Dilation angle, ψ 0◦

Young’s modulus, E 1 × 105 kPa
Poisson’s ratio, υ 0.3

Unit weight, γ 20 kN/m3

Using this synthetic hill slope model and MCS, we evaluated the probability of slope
failure pf and the reliability index β according to the following formula [16]:

p f =
NFS<1

N
(4)

β =
μFS − 1

σFS
(5)

where N is the number of realizations in MCS; in this study, N = 500 realizations. NFS<1 is
the number of realizations whose FS value is less than 1 (i.e., the slope fails). A small value
of NFS<1 implies that the probability of failure of the slope is small. In Equation (5), μFS is
the mean value and σFS is the standard deviation of FS values of N realizations of MCS.
(μFS − 1) represents the slope stability and σFS represents the uncertainty in the evaluating
FS. Therefore, the larger β is, the more reliable the estimated FS is and the smaller the
probability of slope failure.

2.3. Cross-Correlation Analysis

In the next step, we investigate the sensitivity of a slope’s FS to the parameters’ het-
erogeneity at every part of the slope. Cross-correlation analysis is the sensitivity analysis
of system response cast in a stochastic framework with the consideration of variability
(variance) and spatial structure (correlation scales) of the heterogeneous slope (e.g., [18,19]).
Specifically, a cross-correlation map represents the most likely relationship between sys-
tem responses and spatial variability in system properties. This study applies the cross-
correlation analysis to examine the relationship between shear strength parameters and
slope stability:
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ρFSc(xi) =
1
N

N

∑
k

(FSk − μFS)× (c(xi, k)− μc(xi))

σFSσc(xi)
(6)

ρFS tan ϕ(xi) =
1
N

N

∑
k

(FSk − μFS)×
(
tan ϕ(xi, k)− μtan ϕ(xi)

)
σFSσtan ϕ(xi)

(7)

where xi is the position vector of the parameter considered; ρFSc(xi) and ρFStanϕ(xi) are the
cross-correlations between the cohesion and the internal friction angle at the location xi
and FS, respectively. FSk is the FS at the kth realization; c(xi,k) is the cohesion at the location
xi and kth realization; tanϕ(xi,k) is the tangent of the internal friction angle at the location xi
and kth realization. Lastly, σc(xi) is the standard deviation of the cohesion; σtanϕ(xi) is the
standard deviation of tanϕ.

3. Results of Cross-Correlation Analysis for Statistical Isotropy

This section examines the cross-correlation between FS and two independent variables
(cohesion c and the internal friction angle tanϕ) with correlation scales of 1 m in both
horizontal and vertical directions (statistically isotropic cases). The cross-correlation maps
between the shear strength parameters and FS (Figure 3) reveal that ρFSc is positive at the
toe and the top of the slope (Figure 3a), suggesting a large c value at these areas leads to
the greater FS value of the slope. On the other hand, the interior of the slope areas has a
positive correlation between tanϕ and FS (Figure 3b). The remaining areas have correlation
values close to zero, meaning that shear strength in these areas (i.e., most of the slope
surface and the back of the slope.) has little effect on the slope stability.

Figure 3. (a) Cross-correlation map of FS and c, (b) Cross-correlation map of FS and tanϕ for
statistical isotropy.

Comparing Figure 3a,b, we observe that the locations of the positive correlation regions
of the two parameters are different. Such a difference implies that the mechanisms of c and
tanϕ on slope stability are different within the slope. Physically, c is the maximum shear
stress a rupture surface can carry when the normal stress is absent. On the other hand,
tanϕ is the coefficient that converts the normal stress at the rupture surface to frictional
force. According to the Mohr–Coulomb yield criterion, the shear strength of a geotechnical
material is equal to the sum of c and the normal stress multiplied by tanϕ. In the interior
of the slope, due to the gravity of the overlying material of the slope, the material in the
interior is subjected to high normal stresses, and the coefficient tanϕ becomes the key factor
transforming the normal stress into the anti-slip force. The larger tanϕ is, the greater the
anti-slip force under the same normal stress. Therefore, the value of tanϕ in the slope’s
interior greatly influences the slope stability.

On the other hand, at the toe and top of the slope, the geotechnical mass experiences
low normal stress, and the material’s cohesion c dictates the shear strength and influences
slope stability. The above discussions should explain the differences in the cross-correlation
patterns in Figure 3a,b. For this reason, one must recognize that the impact areas of these
two parameters are different when evaluating slope stability.

Comparing the potential sliding surface (the red line in Figure 3) calculated by the limit
equilibrium method [41] using the mean values of parameters, we observe that the region
of positive correlation partially overlaps the surface. This result demonstrates that the
cross-correlation analysis of FS and parameters pinpoint the slope’s critical areas. Moreover,

264



Water 2023, 15, 1050

the cross-correlation analysis identifies potential sliding zones in contrast to a single sliding
surface obtained by the limit equilibrium method.

The sensitivity analysis results of FS to the cohesion (the sensitivity of FS to c, Jc,
Figure 4a) and internal friction angle (the sensitivity of FS to tanϕ, Jtanϕ, Figure 4b) display
similar patterns to those in Figure 3a,b, derived from MCS. The sensitivity analysis of FS
to the parameter takes the following steps. First, the parameter at each location is set as
the mean value, and the FS of the homogeneous slope is evaluated by the finite element
strength-reduction method. Then, we applied a perturbation of the parameter at a spatial
location xi, keeping the parameter at the other locations as the mean value. We subsequently
evaluated the FS corresponding to this perturbation. The ratio of the change of FS to the
perturbation is the sensitivity of FS to the parameter at this position. After calculating
the sensitivity at each location, we derived a sensitivity map. The map shows that the
sensitivity of FS to c is greater at the foot and top of the slope compared to other regions,
and the sensitivity of FS to tanϕ is more significant in the interior of the slope. Notice that
the sensitivity analysis, based on the perturbation method, aims at the change of FS per
change in the given mean value of the parameter, ignoring the variability (variance) and
spatial structure (correlation scale) of the parameters [42]. Specifically, the cross-correlation
analysis considers many possible slopes with heterogeneous parameter fields with the
same mean parameter value but different perturbations and spatial structure patterns. It
then summarizes the results statistically. Consequently, the sensitivity analysis results
(Figure 4) differ from the cross-correlation analysis (Figure 3), and the cross-correlation
analysis is most appropriate for cases where spatial parameter values are unknown (i.e.,
realistic field situations).

Figure 4. (a) Sensitivity map of FS to c, (b) sensitivity map of FS to tanϕ.

4. Results of Cross-Correlation Analysis for Statistical Anisotropy

4.1. Statistical Horizontal Anisotropy (Horizontal Correlation Scale > Vertical Correlation Scale)

This section investigates the results of the cross-correlation analysis between FS and
shear strength parameters (c and tanϕ) with different λx values (Figure 5) while λy = 1 m.
Figure 5a,c show the cross-correlation maps between FS and c, for λx of c equal to 5, 10,
and 20 m, respectively. The cross-correlation maps between FS and tanϕ, for λx of tanϕ
equal to 5, 10, and 20 m are presented in Figure 5d,f, respectively. We observe that the
positive areas of ρFSc and ρFStanϕ expand as λx increases, but the areas are confined to the
areas at the slope toe. Comparing the results to the cross-correlation map of the statistically
isotropic parameters (Figure 3), we notice that ρFSc develops from the toe. In contrast,
ρFStanϕ develops from the inside of the slope.

Figure 6a,d illustrate the probability of failure (pf), reliability β index, the mean of FS
(μFS), and the standard deviation of FS (σFS) as a function of the normalized horizontal
correlation scale, respectively. The normalized horizontal correlation scale is λx/(H/tanα),
the ratio of the horizontal correlation scale to the horizontal projection of the slope length,
H/tanα. Notice that α is the slope inclination angle. Since the correlation between c and
tanϕ (ϕ is the friction angle) is generally unclear [8,9,16], this study also examines the effect
of perfectly positively, zero, and negatively correlated c and tanϕ perturbation relationships
and they are indicated by the red, green, and blue lines in these figures, respectively.
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Figure 5. Cross-correlation maps of FS and c (a–c) and tanϕ (d–f) under three different horizontal
statistical anisotropic correlation scales.

Figure 6. (a–d) are pf, β, μFS and σFS of FS obtained by MCS for different λx and ρctanϕ values.

According to these figures, if c and tanϕ are positively correlated or uncorrelated
(i.e., the red and green lines), the probability of failure in Figure 6a and the standard
deviation of FS (σFS) in Figure 6d rapidly increase as λxtanα/H approaches one and
stabilize afterward. On the other hand, the reliability (β) (Figure 6b) and the mean of FS (μFS)
(Figure 6c) decrease exponentially. These results stem from the fact that for horizontally
layered slopes, the layer with the lowest parameters (such as the weak interlayer or the
stratum with highly developed joints and fractures) controls the stability of the slope. A
longer correlation scale means that the layer with the weakest strength covers most of the
slope, and the slope is less stable. On the other hand, from the physical meaning of the
correlation between c and tanϕ, the higher the correlation is, the lower c is at a location,
and the lower the tanϕ at the same location. Therefore, the slope is less stable (i.e., the red
line is higher than the green line in Figure 6a).

The blue lines in all figures depict the behaviors of these quantities for the case where
c and tanϕ are negatively correlated. The blue lines show that as λxtanα/H increases,
the pf value increases slightly but remains very low (about 0.05), while the reliability β
index increases and remains high at about 2.4. The value of μFS increases from 1.075 to
1.085 and remains constant over the rest of λx(tanα/H). The value of σFS decreases first at
λx(tanα/H) = 0.5 and remains almost constant at a small value. The trends are distinctly
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different from when ρctanϕ is 1 or 0. The negative correlation means that a large c is at
one location, and a small tanϕ is at the same location or vice versa. As a result, the slope
stability no longer decreases significantly or even increases slightly.

Overall, an underestimation of λx can result in an overestimated slope stability when
evaluating the stability of horizontally layered slopes—the importance of identifying the
spatial structure of the slope is clear.

4.2. Statistical Vertical Anisotropy (Horizontal Correlation Scale < Vertical Correlation Scale)

Figure 7 shows the cross-correlation map between FS and shear strength parameters
(c and tanϕ) with different λy values when the slope has vertically stratified formations.
Figure 7a–c illustrate the cross-correlation maps between FS and c, and λy of c with 5, 10, and
20 m, respectively, while their horizontal correlation scales are 1 m. These figures indicate
a distinctly positive correlation between FS and c at the toe of the slope. Furthermore, as
λy increases, the high correlation area becomes more concentrated and vertical, and the
cross-correlation value weakens slightly.

Figure 7. Cross-correlation maps of FS and c (a–c) and tanϕ (d–f) under three different vertical
statistical anisotropic correlation scales.

Figure 7d–f demonstrate the cross-correlation maps between FS and tanϕ, and λy of
tanϕ equal to 5, 10, and 20 m, respectively. We observe that FS and tanϕ are positively
correlated at the area x = 20 to 25 m and y = 0 to 5 m, and the cross-correlation decreases
slightly as λy increases.

The behaviors of pf, β, μFS, and σFS in the slopes with longer vertical correlation scales
than the horizontal one as a function of λy/H (the vertical correlation scale normalized by
the height of the slope, H) are displayed in Figure 8a–c, and d, respectively. First, we notice
that the value of probability failure (pf) in this case is much less than that in the horizontal
layering slope (i.e., Figure 8a vs. Figure 6a), regardless of the effects of various factors as in
Figure 6. In other words, vertical stratification (the orientation of the large-scale structures)
plays a more dominant role than the others do in slope stability.

Nevertheless, Figure 8 shows that when ρctanϕ is 1 (the red line), with the increase in
λy, pf and σFS decrease, and μFS and β increase, indicative of the fact that as λy increases,
the stability of the slope increases and the uncertainty of the evaluation decreases. This
result stems from the fact that when a slope is vertically layered, the high-strength layer
controls the stability, similar to anti-slip piles. The longer λy means that the layer with high
strength is extensive, and when ρctanϕ is 1, the c is large and so is ϕ large, and the anti-slip
pile can be effective, leading to high slope stability.
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Figure 8. (a–d) are pf, β, μFS, and σFS of FS obtained by MCS for different λy and ρctanϕ values.

When ρctanϕ is 0 or −1 (the green and blue line in Figure 8), the increase in λy leads
to increases in pf and σFS, and it decreases μFS and β values, suggesting that increasing λy
worsens the stability of the slope and increases the uncertainty of the evaluation. These
trends are the opposite of when ρctanϕ is 1, likely because c and tanϕ are uncorrelated or
perfectly negatively correlated, and the effect of anti-slip piles weakens.

4.3. Effects of the Number of Realizations in MCS

All the results above are from 500 MCS. To ensure that the number of simulations
is sufficient to obtain representative results, we plot Figure 9 to show the effect of the
number of realizations on pf and μFS at λx = 10 m and 20 m, respectively, and λy = 1 m,
in these conditions, σFS are the maximums. As shown in the figure, the mean values
of pf and μFS fluctuate widely within 150 realizations but stabilize after more than 300
realizations, certifying the adequacies of the number of realizations used in the MCS and
the results’ representativeness.

Figure 9. Pf and μFS, when λy = 1 m and λx = 10 m and 20 m, respectively, as functions of the number
of realizations.

5. Effects of Conditional Random Fields

To demonstrate that sampling in highly correlated zones (conditioning on the stochas-
tic fields) reduces the uncertainty in the FS assessment, we conducted numerical experi-
ments considering two cases where only the cohesion field is a stochastic process. Case 1
used the distribution of c in Figure 1a as the reference field, and Case 2 used the c distribu-
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tion in Figure 1c. The mean, variance, and λy of the random fields in the two cases were
identical, except that λx was different.

We considered four sampling schemes (Figure 10). In Scheme 1, samples were taken
at the toe of the slope at three 5 m deep vertical boreholes (Figure 10a). In Scheme 2, the
three boreholes were near the slope top (Figure 10b). Scheme 3 took samples over a 15
m borehole horizontally into the slope at the corner of the slope (Figure 10c). The fourth
scheme sampled a 15 m borehole horizontally near the top of the slope (Figure 10d). These
four schemes took a soil sample every meter to obtain 15 samples. As such, we could
evaluate the effects of the same number of parameter values in different correlation areas
for conditioning on the estimates of FS of the slope.

Figure 10. Borehole locations of four sampling schemes.

With the sampled data, 500 realizations of the conditional random field correspond-
ing to each sampling scheme were generated using the Kriging Superposition Approach
(KSA) [43,44]. The resulting conditional realizations honored the sampled values at the
sampled locations and retained the specified spatial statistics of the random fields. After-
ward, we used them to conduct MCS as the previous unconditional MCS, and the results
are summarized in Table 2.

Table 2. The results of conditional MCS.

Scheme 1 Scheme 2 Scheme 3 Scheme 4

μFS of Case 1 1.033 1.041 1.031 1.040
σFS of Case 1 0.066 0.072 0.058 0.072
μFS of Case 2 0.935 0.939 0.924 0.935
σFS of Case 2 0.094 0.105 0.082 0.112

The reference FS of Case 1 is 1.031. The μFS of sampling Scheme 3 is the closest to
the FS of the reference since the sampling area is primarily in the high correlation region.
Sampling Scheme 1, which samples a smaller portion of the highly correlated region, yields
μFS value that is the second closest to the reference value. Since sampling Schemes 2 and 4
cover the minimal correlation between the parameters and FS, they yield a μFS that differs
significantly from the reference value and is close to the μFS of the unconditional random
simulation, indicative of their ineffectiveness for defining the actual factor of safety.

For Case 2, the reference FS is 0.922. The results of the conditional MCS are similar
to Case 1, and the mean and standard deviation of FS are the best for sampling Scheme 3.
Moreover, due to the apparent layered structure of Case 2 (λx = 5 m), Scheme 3 with
horizontal borehole sampling yields significantly better results than the other three schemes.
As expected, the uncertainty in the FS evaluated for sampling Scheme 3, which samples
the most highly correlated areas, is the smallest in both Case 1 and Case 2. That is,
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sampling the high correlation areas’ parameters is critical for evaluating slope stability
because it reduces uncertainty significantly more than sampling in other regions. As
demonstrated in this example, cross-correlation analysis guides optimal borehole placement
locations. Furthermore, we could suggest that focusing on the high correlation areas for
slope reinforcement measures is essential since the same reinforcement measures will be
more effective in the high correlation areas than in the low correlation areas.

6. Conclusions

Cross-correlation analysis of the shear strength parameters and FS of statistically
anisotropic heterogeneous slopes shows that the large-scale heterogeneity structures dom-
inate the stability of a slope. Specifically, with the given mean and variance of the shear
strength parameters, the probability of failure of slopes with a long vertical correlation
scale (vertical structure) is much smaller than that with a long horizontal correlation scale
(horizontal structure).

In statistically isotropic parameter fields, the distributions of the high correlation areas
of ρFSc and ρFStanϕ are different: the former distributes at the toe and top of the slope, and
the latter in the interior of the slope.

For the slope with the long horizontal correlation scale, the high correlation area
of shear strength parameters with FS is located at the toe of the slope and distributed
horizontally. The larger λx is, the longer the extension of the area in the horizontal direction
is. In addition, when c and tanϕ are positively correlated or uncorrelated, the larger λx is,
and the less stable the slope is. When c and tanϕ are perfectly negatively correlated, the
effect of λx on the stability of the slope decreases.

In the slope with a long vertical correlation scale, the high correlation area of the shear
strength parameter with FS is located at the toe of the slope and distributed vertically. With
the increase in λy, the correlation in the high correlation region slightly decreases, and the
region’s distribution becomes more vertical than others. Moreover, when c and tanϕ are
positively correlated, the larger λy is, and the more stable the slope is. When c and tanϕ are
negatively correlated or uncorrelated, the larger λy is, and the less stable the slope is.

This study further demonstrates that sampling in high cross-correlation regions can
reduce the uncertainty in slope stability analysis. In addition, when the slope has an
apparent layered structure (statistical anisotropy), the sampling direction consistent with
its structure is recommended.

In summary, to evaluate the stability of a slope, first, one must detect the orientation
of the large-scale structures (i.e., long correlation scales). The knowledge of the correlation
between c and tanϕ becomes essential, which dictates the probability of slope failure in
the slopes with horizontal layering. The cross-correlation analysis presented in this study
yields the location of the critical areas where shear strength parameters affect slope stability.
Furthermore, these high cross-correlation regions guide the optimal borehole placement
locations to reduce uncertainty in slope stability analysis and even for the selection of slope
stability reinforcement locations.
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Abstract: Indigenous tribes living in the mountainous areas account for about one-fifth of the extreme
poor of the world, and this has made their lives more vulnerable to climate change impacts and
natural hazards. After a series of earthquakes and very strong typhoons, the tilting and cracking
of dwellings, localized slope failure, and severe subgrade settlements, together with damages of
retaining structures and drainage ditches along a section of the Provincial Highway No. 7A on the
west wing of the Central Mountain Range in central Taiwan, have raised concerns to the safety of a
nearby Indigenous settlement, which is situated at an elevation of about EL. +1800 m. This study
investigated and identified the possible causes for a large-scale landslide-prone area on the Central
Mountain Range by employing multi-temporal satellite and aerial images, site investigation, field
instrumentation, geophysics tests, and uncoupled hydromechanical slope stability analyses. The
results were then applied to deduce a sliding susceptibility map and remedial plans to prevent or
mitigate the sliding in the vicinity of an Indigenous settlement. The infiltration of rainwater, an
upraised river-bed elevation, and the erosion of the river bank at the toe of the large-scale slope were
found to be the main triggering factors in inducing sudden and localized failures. Meanwhile, the
process of mass rock creep was deduced to have activated the process of large-scale deep-seated
gravitational slope deformation (DSGSD) on the study slope; the DSGSD could eventually turn into
a huge and catastrophic landslide. The findings of this study would be valuable for formulating
detailed countermeasures to protect and maintain the stability and safety of the Indigenous settlement
located at the crest of the slope.

Keywords: large-scale slope; rainfall; ERT; mass rock creep; DSGSD; sliding susceptibility; hazard
mitigation

1. Introduction

Two-thirds of the total area of the island of Taiwan are covered by forest mountains,
mainly the Alishan (Mount Ali), Xueshan Mountain Range, and Central Mountain Range.
Ever since the intense shaking generated by the various high-intensity earthquakes, such
as the 1999 September 21 (921) Jiji Earthquake (moment magnitude scale Mw = 7.7), the
2016 Tainan Earthquake (Mw = 6.4), and the high-intensity rainfall brought by the various
very strong typhoons including the deadliest Typhoon Morakot in 2009, there has been
a marked increase in the frequency of landslide occurrences on the island, in particular
in the vicinity of the Central Mountain Range of Taiwan. The claim was supported by
the ever-increasing concerns of assessing the stability of the mountainous roads slopes
and monitoring potential landslides by the authorities in recent years. For example, using
the rainfall data of the 2007 Krosa Typhoon and 2009 Morakot Typhoon, Shou et al. [1]
examined the susceptibility of rainfall-induced landslides in southern Taiwan. An analysis
of the rainfall frequency and general circulation of atmospheric models were first used to

Water 2023, 15, 1043. https://doi.org/10.3390/w15061043 https://www.mdpi.com/journal/water273



Water 2023, 15, 1043

understand the trends, distribution, and intensities of temporal rainfall; the results were
then used to produce the landslide susceptibility maps. Weng et al. [2] executed a detailed
multi-scale analysis, which consisted of a desk study, an evaluation of possible failure types
of dip slopes and slope activity using maps of different scales, and a numerical simulation
to identify and assess the stability of a potential dip slope located in the Zengwen Reservoir
Catchment area in central Taiwan. Their numerical results were compared to that of
the inclinometer readings and then used to predict the behavior of the dip slope, where
Provincial Highway No. 18 is running through, under extreme wetting conditions.

Tsao et al. [3], who investigated the effect of geological conditions on the eastern section
of the Provincial Highway No. 8, have found that the metamorphic strata with intricate
folds in their study area were structured by the orogenic deformation and metamorphism as
a result of erosion and scouring, which eventually evolved into meanders and steep slopes
and gullies, which developed along the strata boundary with distinguishable lithology that
tended to disrupt the stability of the slopes. By using traverse surveying to continuously
monitor a series of ground monitoring points installed on a dip slope in a campus in
northern Taiwan for a period of seventeen years, Tseng et al. [4] concluded that the use of
conventional surface monitoring was also a reliable and economical tool for interpreting
the displacement mechanism of a dip slope. Lo et al. [5] conducted a series of assessments
on factors affecting the movement characteristics of a slope, which carries the Provincial
Highway No. 20 and toe by a river in southeast Taiwan, and concluded that river-bed
erosion and sediment accumulation were the main factors affecting their study slope.

This study aimed at assessing a large-scale landslide-prone area on the west wing of the
Central Mountain Range in central Taiwan where its crest houses an Indigenous settlement
and the Provincial Highway No. 7A. According to the World Bank [6], approximately 6%
of the global population is made up of Indigenous or Aboriginal People but they account
for about 19% of the extreme poor of the world; this has made them more vulnerable to
climate change impacts and natural hazards. After a series of earthquakes and very strong
typhoons, severe ground subsidence has caused a section of the Provincial Highway No.
7A to undergo road-bed differential settlements and damage to its retaining structures and
drainage ditches. In addition, the river-bed of the river at the toe of this large-scale slope
has also been inundated by debris from the upstream and forced the river-bed to elevate by
more than 30 m and, hence, altered the topography and the stability of this slope.

The above-mentioned assessments or studies were mostly performed by academics
using a wide range of methods of investigation, which may be too advanced or time-
consuming from a practical point. This study presented an investigation of a large-scale
landslide-prone area using a framework commonly adopted by practicing engineers, in
which it consisted of a field investigation and monitoring, a simulation, and susceptibil-
ity mapping. Multi-temporal satellite and historical aerial images inventories were also
exploited. The results were then used to derive a sliding susceptibility map and mitiga-
tion plan for the study area so as to protect and maintain the stability of the Indigenous
settlement and the safety of the Indigenous People living at the crest of the slope.

2. Background of Study Area

After a series of natural disasters such as the 921-Jiji Earthquake in 1999, the Mindulle
Typhoon in 2004, the Morakot Typhoon in 2009, and other subsequent typhoons and
rainstorms in the following years, the tilting and cracking of dwellings and localized slope
failures along a portion of the ridges of the Central Mountain Range and the nearby Tabuk
Indigenous settlement have been persistently reported. Tabuk Indigenous is one of the
four Atayal tribes living around the Central Mountain Range. Signs of massive sliding
as severe settlements of subgrade on certain sections of the nearby Central Cross-Island
Provincial Highway Route No. 7A have also been observed. Tseng et al. [4] reported that
the ground, building and facilities cracks, and topographic deformation are signs of an
impending landslide.
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The study area (Figure 1) is located in the water catchment area of the Deji Reservoir,
and it was believed to be a large-scale ancient landslip covering a total area of more than
100 hectares and consisted of several small sliding bodies [7]. The Tabuk settlement is
located at the north-east corner of the study area (Figure 2) and at an altitude of about
1800 m. The settlement is about 8.5 km from the location of the Lishan large-scale landslide,
which occurred in mid-April 1990 [8]. Lishan, literally meaning “Pear Mountain”, is one of
the popular tourist destinations for those who would like to get away from the heat in the
summer and enjoy the snowy scenery in the winter and those who would like to experience
the culture of Indigenous People or sight seeing along the hunting trails around the village.

Figure 1. Location of the study area in relation to the island of Taiwan and the 1990 Lishan large-scale
land-sliding zone (Google Earth Pro, 2022).

2.1. Topography

Topographically, the study area is located at the west wing of the Central Mountain
Range, with elevations ranging between EL. +1420 m and EL. +1800 m; mountain and
valley are the two main terrain features found in the study area (Figure 2). The northwest
boundary of the study area is bounded by the Dajia River, which has a total length of about
120 km and flows from the northeast to the central west of the island of Taiwan, while two
transmeridional ridges and the flat-topped Taibaojiu Ecktreppe (Figure 2), respectively,
bound the northern, southern, and eastern boundaries of the study’s large-scale slope. A
third transmeridional ridge divides the study area into the northern and southern slopes
(Figure 2), making the main topography of the study site look like a pair of “dustpans”
with their lip facing the Dajia River. Meanders, alluvial fans, and river terraces are common
topographies found along the river. The overall topography of the study area is high in the
east and low in the west, where the northern and southern slopes both dip to the west with
slope angles ranging between 15◦ and 30◦ down to the Dajia River. The terrain stretching
between the highest point of the Taibaojiu ridgeline and the lowest point of Dajia River
Valley is steep–gentle–steep.
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Figure 2. Location of the northern and southern slopes in relation to Tabuk settlement and Taibaojiu
Ecktreppe (After [9]).

2.2. Temperature and Rainfall

Located at an altitude of EL. +1420 m and above, the study area attracts an average
annual temperature of 15.2 ◦C. The lowest and highest average monthly temperature is
9.4 ◦C in January and 23 ◦C in July, respectively. The average annual rainfall between 1971
and 2016 was about 2215 mm, with a maximum average annual rainfall of 3771 mm in 2005.
Table 1 shows the monthly and yearly average and maximum rainfalls recorded between
1971 and 2016, in which almost 70% of the 2215 mm average annual rainfall occurred
between April and September; the month with the highest average monthly rainfall was
June, which exceeds 300 mm. The huge discrepancy between the monthly average and
the maximum rainfall during the recorded period was due to the extreme weather, which
resulted in the uneven distribution of the rainfall [9].

Table 1. Rainfall characteristics of the study area between 1971 and 2016 [9].

Month Jan Feb Mac Apr May Jun Jul Aug Sep Oct Nov Dec Yearly

Average (mm) 90 180 213 249 284 330 199 254 204 88 60 60 2215
Maximum (mm) 504 710 786 938 560 920 691 784 1351 511 325 170 3771
Year 2016 1983 1983 1990 1984 2006 2004 1994 2008 2007 2012 2012 2005

2.3. Geology

Geologically, the study area is situated in the colluvial formation originally from the
Miocene slate formation, and because of the frequent dynamic tectonic activities along
with the high precipitation, the surficial slate of the study area has been found to be
highly weathered [10]. The rocks stratum in the study area is dominated by the Lishan
formation, also of the Miocene period, which comprises mostly slate and argillite with
mature foliations, i.e., cleavage or schistosity [11]. Slate is characterized by rich foliations
along which it breaks to leave smooth and flat surfaces. Because it is closely related to
the axial planes of folds in the rock, it is often called the axial plane cleavage [11]. The
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orientation of the foliations of the slaty outcrop within the study area varies considerably.
The main foliation fabrics, which were induced by the horizontal northwest–southeast
compression, are sub-vertical, trending northeast–southwest at high angles. On one hand,
slaty foliations with a high dip angle together with overturned and crooked foliations
have been found along the river bank; on the other hand, broken slaty rocks with a
gentle foliations orientation have been discovered at the higher elevations. Because the
rock quality and weathering resistance of the slate with rich foliations are relatively poor,
erosion has been a major concern and it has resulted in a relatively wide river valley.
Lin et al. [12] have pointed out another concern whereby metamorphic rock slopes with
well-developed foliations tend to creep under gravity with considerable variation in the
orientations of the foliation, in compliance with the definition of a deep-seated gravitational
slope deformation.

At the crest of the northern and southern slopes is the Taibaojiu Ecktreppe (Figure 2),
which was formed by the action of the Nanhu and Hehuan creeks further west; its elevation
range is between 1500 and 1900 m, which is the typical elevation for the Ecktreppe topog-
raphy. Alluvial was found on the surface of its topography, indicating that the Ecktreppe
was once the river-bed of a stream [13]. In the Dajia River at the toe of the northern and
southern slopes, sedimentary rocks with clear patterns could be easily found.

2.4. Google Earth Images Taken between 2006 and 2018

Six historical Google Earth [14] satellite images of the study area shot between 2006
and 2021 are presented and compared in Figure 3. Although the interpretation of satellite
images, such as minor terrain variations, may be affected by the vegetation in the study
area, the exposed surfaces as a result of slope collapses could still be identified in normal
circumstances. The majority of the landslides have a visible rupture surface, main scarp,
scarp floor, and deposition fan depositing most of the landslide debris; however, for open
slopes, the deposition fan may not be available because the sliding debris could well
be deposited on the trail path [15]. Perhaps the most obvious changes observed from
these images are the headward erosion of the two concave banks of the northern and
southern slopes.

Figure 3 reveals that the most distinct variation in the study site between 2006 and
2021 was the amount of water in the river and the transformation of the river banks due to
erosion. Figure 3a shows the collapse of two river banks at locations Nos. 1 and 2 of the
convex bank of the southern and northern slopes, respectively, and one collapse at location
No. 3 of the concave bank opposite the northern convex bank. These collapses occurred as
early as 2001, during which the river channel still had a considerable amount of water. On
July 11 of 2004, a rather huge landslide occurred at location No. 4 of the southern slope,
where the highest part of the main scarp of the landslide reached Provincial Highway No.
7A. Prior to November 2013, most likely in early 2012, two new failures were observed
at locations Nos. 5 and 6 of the convex bank of the northern slope (Figure 3b), in which
failure No. 5 was a shallow slope failure, whereas failure No. 6 was a cut bank failure.
No new failures were observed prior to July 2016, as inferred from Figure 3c; however,
surface erosion could be seen at locations Nos. 7 and 8 of Figure 3d while the collapse
of the cut bank at location No. 6 was extended further. A failure at location No. 9 of the
concave bank opposite the northern slope was reported some time in 2017 (Figure 3e).
These collapses have been found to be closely related to the rainfall event associated with
the various typhoons, as tabulated in Table 2. In general, the satellite images revealed that
most of the slope collapses observed along this portion of Dajia River occurred along the
two convex banks as the banks were easily subjected to fluvial attack and erosion. The
critically eroding banks collapsed when an external factor, such as a high-intensity rainfall,
disturbed their already fragile stability.
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Figure 3. Google Earth satellite images and landslide locations (1 to 9): (a) Feb’2006; (b) Nov’2013;
(c) Jul’2016; (d) Apr’2017; (e) Sep’2018; and (f) May’2021 (Google Earth Pro [14]).

Table 2. Relationship between rainfall and the occurrence of local collapses of the large-scale slope
between 2001 and 2018 [7].

Landslide
Locations

Nearest Rainfall
Event

Date of Rainfall
Recorded

Accumulated
Rainfall (mm)

Date of Google
Image Taken

Postulated Cause of
Failure

1, 2, 3 Typhoon Toraji 28 July 2001 244 1 February 2006
4 Typhoon Mindulle 1 July 2004 645 1 February 2006 rainfall
5 Typhoon Morakot 6 August 2009 755 29 November 2013 rainfall
6 Low pressure 8 June 2012 674 29 November 2013 rainfall and fluvial

attack
7, 8 Typhoon Megi 26 Sept 2016 327 30 April 2017 rainfall
9 Typhoon Maria 10 July 2018 276 30 September 2018 rainfall

3. Methods of Study

The main methods used in this study consist of ground investigation via a series
of boreholes and electrical resistivity tomography (ERT), slope monitoring that included
monitoring the depth of ground-water level and the lateral displacement of the slope, and
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slope stability analysis that took into account the influence of a designed storm for 50-year
return period in 24 h.

3.1. Ground Investigations
3.1.1. Boreholes Exploration

Ground investigation via a series of boreholes was conducted in this study to establish
the soil and rock profiles and the materials parameters to be used in the stability analysis.
Wire-line core drilling system with H-size drill rods and Q-group wire-line diamond drilling
machine, which is associated with a core diameter of 63.5 mm and a hole diameter of 96
mm, was used for the exploration. The system is efficient in complete recovery of core from
the rock mass without having to pull out the drill string.

Prior to this study, some fourteen boreholes, which were mainly concentrated in the
southern slope, were drilled by the Soil and Water Conservation Bureau in 2007 [9]. To real-
ize the ground information of the transmeridional (central) ridge and that of the northern
slope, additional boreholes were required. After a detailed on-site visual inspection, eight
additional boreholes (AH–1 to AH–8) were assigned, as shown in Figure 4, and drilled in
2017. The depth of these additional boreholes, except AH–6 and AH–8, was 50 m; AH–6
was 60 m, while AH–8 was 40 m deep.

Figure 4. Location of boreholes, and cross-sections A–A to D–D used in this study (After [9]).

3.1.2. Electrical Resistivity Tomography (ERT)

As a near-surface geophysical tool, the ERT, which computes the below-ground distri-
bution of electrical resistivity from a series of electrical resistance measurements, is a widely
used geophysical subsurface imaging technique for providing information of geologic site
conditions, hydro-geologic characteristics, environmental-related conductivity variability,
etc. [16]. Because ERT is a rather advanced site investigation technique, the principle
behind the technique is briefly described here.
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How difficult it is for an electrical current to pass through a material is described
by its electrical resistance R, where loose soil or a void in the ground will have a higher
resistance reading, while compacted soil or a buried metal will have a lower resistance
reading. Thus, when an electrical current I is generated in the ground, the electrical voltage
V varies depending on the state or condition of the ground and, hence, the resistance R;
according to Ohm’s Law (V = IR), R is expressed as the ratio of the measured voltage and
current, but it varies with material’s volume. For an object with a length L and an area A,
R is given by:

R = ρ
L
A

(1)

where ρ is a constant of proportionality, also called the electrical resistivity or the specific
resistance [Ω · m]. The reciprocal of electrical resistivity is conductivity, which represents a
material’s ability to conduct electrical current and is often used as a representation of bulk
property of earth material.

Unlike electrical resistance R, which varies with a material’s volume, electrical re-
sistivity is a bulk property of a material and it has the same value for all lumps of that
material, regardless of geometry. Thus, using either an alternating current (AC) or a direct
current (DC), ERT can be used to measure the variations in electrical resistivity either at the
ground surface or by electrodes installed at depth [17]. However, the value of resistivity is
commonly affected by ground materials, minerals composition, particles size, and salinity
of water.

From Ohm’s Law and taking the surface area A of a hemisphere with a radius r as
2πr2 and the length L = r, one may derive the electrical potential or voltage V as

V = ρ
I

2πr
(2)

where I is the electric current in amperes, which flows radially away from the current
source along the ground surface; hence, the potential V varies inversely with distance r
from the current electrode.

The voltage, or, more precisely, the potential difference ΔV over a homogeneous
half-space with a four-electrode array (Figure 5), is given by:

ΔV = VP1 − VP2 =
ρI
2π

[(
1

rC1P1

− 1
rC2P1

)
−

(
1

rC1P2

− 1
rC2P2

)]
(3)

where VP1 and VP2 are the electrical potentials at P1 and P2 and rC1P1 is the distance between
electrodes C1 and P1, etc.

In practice, resistivity surveys are normally performed over inhomogeneous mediums
where the subsurface resistivity has a 3-D distribution [18]; in this case, the measurements
of the resistivity are still conducted by passing a current into the ground via the current
electrodes C1 and C2 and recording the potential difference between the electrodes P1 and
P2. The apparent resistivity ρa—defined as the resistivity of an electrically homogeneous
and isotropic half-space—is related to the applied current I and the measured value of
potential difference ΔV for a given arrangement and spacing of electrodes as [18]

ρa = k
ΔV

I
(4)

where k is a geometric factor that is governed by the arrangement of the four electrodes; k
in Equation (4) is found to be

k =
2π[(

1
rC1P1

− 1
rC2P1

)
−

(
1

rC1P2
− 1

rC2P2

)] (5)

Two types of electrode arrays were deployed in this study: the Wenner–Schlumberger
array, Figure 5a, and the pole–pole array, Figure 5b. On one hand, in the Wenner–

280



Water 2023, 15, 1043

Schlumberger array, the distance between the current and potential electrodes rC1P1 (or
rP2C2) was “n” times the distance between the two potential electrodes pair rP1P2. This
arrangement allowed the detection of greater concentration of high resistivity values be-
neath the electrodes P1 and P2 [19]. The configuration of Wenner–Schlumberger array was
reported to be moderately sensitive to changes in resistivity horizontally and vertically and,
thus, it is suitable for areas with complex geological conditions [20].

(a)

(b)
Figure 5. Electrode arrays used in this study: (a) Wenner–Schlumberger array; (b) pole–pole array.

The pole–pole array, on the other hand, is often used for deep imaging through the
placement of two remote electrodes (C2 and P2) at infinity, while the distance between the
transmitter dipole C1 and the receiver dipole P1 was comparatively short [21]. Here, a
single transmitting electrode is called a pole, while a pair of oppositely charged electrodes
is called a dipole. The dipole is closely placed so that the electric field would seem to be a
single electrode field instead of field from two different electric poles [21]. Quantitatively,
to ensure a measurement error of less than 5%, the second current and potential electrodes
(C2 and P2) would have to be moved in the opposite direction and placed at a distance
of at least 10 times the maximum distance between C1 and P1 electrodes; in other words,
this array has a stationary infinity electrode on either side of the survey area, Figure 5b.
“Super-Sting R8” multi-electrode resistivity system was used for geologic mapping in this
study as it allows for rapid analysis of site conditions below the ground surface.

3.2. Field Monitoring

In addition to the boreholes exploration and electrical resistivity tomography, the water
level and lateral deformation of the northern and southern slopes were also monitored by
observing the water level via the observation wells and the inclinometers, respectively.

Observation Wells

Groundwater levels across a site may be determined via (i) groundwater observation
wells; (ii) piezometers; (iii) open boreholes; and (iv) field estimates. For the study site,
direct monitoring via observation wells and piezometers were used. The observation wells
were mainly used to identify the shallow groundwater levels, while the piezometers were
used to measure the piezometric head of the confined groundwater. Because the shallow
groundwater levels are easily influenced by the rainfall and the rise in such water levels
could result in slope instability, eight observation wells (AH–1 through AH–8) were drilled
and installed next to the locations of the inclinometers for the direct monitoring of the
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groundwater levels in the study slopes, in particular during the rainy seasons in 2017. The
groundwater levels in the wells were measured manually with a calibrated steel tape once
a month; in addition, extra measurements were also taken when the 24-hour accumulated
rainfall exceeded 400 mm.

3.3. Inclinometers

Monitoring stations for inclinometer are effective way of monitoring a landslide and
detecting the associated sliding surface [22]. In total, five inclinometer points were installed,
in which a 50 m long specially grooved casing was inserted into each of the existing
boreholes, AH–2, AH–3, AH–4, AH–5, and AH–7. Cement grout was injected to fill the
annular void; these boreholes were thus unsuitable for use as observation wells. The servo-
accelerometer probe was lowered and raised through the specially grooved casing, which
guides the movement of the probe within the casing via its four orthogonal longitudinal
wheel grooves. Readings were taken manually once a month, and additional measurements
were also taken when the 24-hour accumulated rainfall exceeded 400 mm.

3.4. Seepage and Stability Analyses

The stability of the northern and southern slopes may be assessed using conventional
slope stability analysis, taking into consideration, in particular, the effect of short-term
rainwater infiltration. The uncoupled hydromechanical stability analyses were performed
using the program SEEP/W and SLOPE/W with a three-stage approach. Firstly, the steady-
state seepage analysis, using the approach of variably saturated flow and the parameters
listed in Table 3, was performed to obtain the hydrostatic pore-water pressure distribution in
the slopes. Secondly, using the result from the first stage and the designed rainfall (Figure 6),
a transient analysis was conducted to simulate the infiltration of rainwater and obtained the
corresponding change in pore-water pressure distribution in the slopes; this was followed
by assessing the stability of the slopes based upon the shear strength parameters given
in Table 3 and the distribution of pore-water pressure obtained from the above transient
analysis. In Table 3, the parameters: saturated and residual volumetric water content,
a, and n were the fitting parameters for the corresponding van Genuchten’s [23] soil–
water characteristic curve (SWCC) and hydraulic conductivity functions; another fitting
parameter m was taken as (1 − 1/n).

It should be emphasized that uncoupled analysis is by no means perfect. Firstly,
for rainfall infiltration-related analysis, Khoei and Mohammad [24] and Airey and Ghor-
bani [25] recommended that coupled or fully coupled models should be preferably used
because deformation of solid significantly affected its pore air and water pressures. Sec-
ondly, the van Genuchten’s SWCC and hydraulic conductivity models adopted here were
assumed to work under constant void ratio or under conditions in which the material’s
volume does not change appreciably, thus ignoring the effect of initial void ratio on air-
entry value [26,27] and also the effect of hydraulic hysteresis [28], which are known to
significantly affect the hydromechanical response of soils. In practice, because the prob-
lem of slope stability is inherently a large deformation problem, materials’ void ratio
changes appreciably as a result of such deformation [29]; thus, for a more complete analysis,
these two functions should be updated throughout the analysis. In addition, the effect of
stress-induced anisotropy, which has always been a concern in problems related to slopes
stability [30,31], is also not considered in this study. Nevertheless, they were commonly
adopted in practice because of their availability and ease of use.
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Table 3. Input parameters used in seepage and stability analyses [9].

Material
Unit

Weight
Apparent
Cohesion

Friction
Angle

Saturated
Volumetric

Water Content

Residual
Volumetric

Water Content

Saturated
Hydraulic

Conductivity
a n

(kN/m3) (kPa) (◦) (m3/m3) (m3/m3) (m/s) (kPa)

Colluvium 22 0 23.5 0.30 0.02 4.6 × 10−5 2.00 1.35
Slate (SL1) 25 20 30.0 0.25 0.02 9.6 × 10−7 0.19 1.70
Slate (SL2) 25 20 30.0 0.21 0.02 3.8 × 10−8 0.19 1.70

Based on the monitoring data collected between 1990 and 2016 from the nearby Tabuk
rainfall station and the simple scaling Gauss–Markov analysis, the designed storm for
50-year return period in 24 h (Figure 6) was derived and used as the boundary condition in
the transient analysis. The Morgenstern–Price method used in the stability analysis is one of
the many general methods of slices formulated based on the principle of limit equilibrium;
it satisfies both the equilibrium of forces and moments acting on individual blocks.

Figure 6. Rainfall hyetographs of a designed storm for 50-year return period in 24-hour.

4. Results and Discussion

4.1. Ground Investigation Results
4.1.1. Slopes Materials

A general stratigraphy of the study site was derived from the analysis of the cores
extracted from the seven boreholes drilled across the study site. The stratigraphy of each
core and the location of the boreholes are presented in Figure 7.

From the boreholes cores analysis, it was found that colluvium (Cv) of varying thick-
nesses occupied the top layer of the slopes (Figure 7a). The colluvium consists of the
yellowish brown to gray clayey silt, and sand with lightly to moderately weathered slate
fragments, occasionally accompanied by slate debris with quartz detritus, but the engineer-
ing characteristic of this colluvium is dominated by the clayey silt and sand. The Standard
Penetration Test (SPT) “N” values ranged between 2 and 20, but sometimes they could
be as high as 40. The thickness of the colluvium varies considerably, with a maximum
thickness of 31.3 m at borehole AH–1.
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(a) (b)

Figure 7. (a) Stratigraphy of each core; deep red denotes colluvium layer, while black denotes slate
formation; (b) location of boreholes and cross-sections A–A to D–D (AH–8 is not presented as it is
outside the two study slopes), and core sample image for AH–6 (After [9]).

Beneath the colluvium was the gray to dark gray slate of fair rock mass quality,
occasionally with a quartz vein. The disintegrated and fragmented rock materials found
here were mainly due to the weathering process. The slaty cleavage (SL1) has a gentle dip of
between 10◦ and 30◦ and a gouge was found present in this clastic rock mass, indicating that
the fissures of the flexural toppling slate were well-developed and hence induced relative
displacement under the long-term gravitational force; consequently, SL1 is continuously
under creeping and slipping.

The third layer was basically formed by the anti-dip (obsequent) and high-angle
foliations slate (SL2) [32]. Under normal circumstances, obsequent slate slopes with high-
angle foliations would normally cause the deformation of flexural toppling, the formation of
bending folds in the upper slope, and rock falling [11]. However, this should not be the case
for the study site because only a small portion of the rock mass toward the toe of the slope
of section B–B and section C–C (Figure 7b) exhibits such day-lighting foliations; the anti-dip
slate with high-angle foliations in the other two cross-sections were not day-lighting and
thus their tendency to toppling is being refrained by the overlying colluvium.

Finally, a total of 34 soil samples—selected from a total of 360 m long cores recovered
from the boreholes—were tested in a geotechnical laboratory for the determination of their
physical properties and shear strength. The result of the laboratory tests are tabulated in
Table 3, and they were used in the following seepage and stability analyses.

The ERT survey results of the Wenner–Schlumberger and the pole–pole arrays for
cross-sections ERT1 (Section B–B in Figure 4b) and ERT2 (Section C–C in Figure 4c) are
plotted in Figure 8. The ground layers inferred from the borehole cores analysis are also
shown in this figure.

The resistivity readings obtained from both the Wenner–Schlumberger and pole–pole
arrays for the northern and southern slopes ranged between 100 and 500 Ω·m. The variation
in the resistivity reading is more discernible and unevenly distributed near the ground
surface than that at a deeper depth. Care must be taken when interpreting the resistivity
readings for the following reasons: (i) it is possible for a particular material to have a wide
range of resistivity readings as a result of its saturation degree, ions concentration, faulting,
jointing, weathering degree, etc., (ii) most of the resistivity reading of the near-surface
sedimentary materials is mainly dictated by the amount and the chemical contents of their
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pore water, and (iii) clayey soils and sulphide minerals are the only sedimentary materials
that allowed an enormous amount of electrical current passing through themselves [33].

(a) Wenner–Schlumberger array: ERT1 (b) Wenner–Schlumberger array: ERT2

(c) Pole–pole array: ERT1 (d) Pole–pole array: ERT2

Figure 8. Resistivity imaging: (a) Wenner–Schlumberger array: ERT1 (Sec. B–B in Figure 4b);
(b) Wenner–Schlumberger array: ERT2 (Sec. C–C in Figure 4c); (c) pole–pole array: ERT1 (Sec. B–B in
Figure 4b); (d) pole–pole array: ERT2 (Sec. C–C in Figure 4c) (After [7]).

The resistivity reading variation in Figure 8 was expected as the resistivity measure-
ments in the slate formation were dictated by the presence of water in the rock fissures
and the relative degree of the shear fracture and shear gouges; however, in the colluvium,
the degree of moisture content, fine content, and rock-fragment content were the known
factors that governed the resistivity measurement. The borehole sampling revealed that
the fine content of the colluvium was higher than that of the slate; the overall resistivity
reading of the colluvium in the two cross-sections was thus lower than that of the loose
colluvium or with fragmented rock where the resistivity value was higher.

Core samples from the site investigation revealed that the orientation of the disturbed
slate foliation SL1 was almost horizontal or gently plunging, and the disturbed slate SL1
consisted of poor quality rock masses, often filled with gouges of varying thicknesses. The
resistivity measurements of the slate converged with a depth to about 200+ Ω·m, indicating
that within the investigation depth the resistivity measurement was still governed by the
fine content of the slate and the in situ pore water. An intriguing pattern of resistivity
distribution was observed from the results of the Wenner–Schlumberger and pole–pole
arrays. Unlike the low resistivity-based colluvium that occasionally mingled with some
high resistivity reading, a higher resistivity reading was measured near the ground surface
of the ERT-1 survey line between 0K+110 and 0K+230 m, Figure 8c; after re-visiting the site,
it was found that said location was in fact covered by slate with gently plunging foliation.
A similar phenomenon was also seen between 0K+00 and 0K+20 m of the ERT-2 survey line
where the steep slope is located, Figure 8d. A further study can be performed in the future
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to examine whether the method is suitable to be used to deduce the degree of bending and
toppling of the foliated rock mass under gravitational force.

The interface between the colluvium (Cv) and the disturbed slate formation (SL1) was
postulated and is plotted in Figure 8 using the white dotted line. The interface was deduced
from the results of the ERT survey, borehole coring, and outcrops noted from the study site.
The postulated interface revealed that the thickest colluvium was located in the vicinity of
Borehole AH-3 on the ERT-1 survey line, while that on the ERT-2 survey line was roughly
located between 0K+300 m and 0K+500 m.

Finally, the stratigraphic layout for each of the four designated cross-sections, as shown
in Figure 4, is plotted in Figure 9; these layouts were deduced via the combination of the
desk study, the subsurface geologic mapping, and the borehole cores analysis, as presented
above. However, due to the limited number of boreholes, the stratigraphic layouts derived
here may be oversimplified; to quantify the error associated with such a simplification, the
Boolean Stochastic Generation approach, as proposed by Bossi et al. [34], may be adopted.
Nonetheless, such a comprehensive analysis is out of the scope of the current study.

4.1.2. Groundwater Level of Study Slopes

The highest groundwater level in each observation well recorded for the study site
is tabulated in Table 4. The results show that the highest groundwater level was located
either in the colluvium layer or in the vicinity of the interface between the colluvium and
the slate formation (SL1).

(a)

(b)
Figure 9. Cont.
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(c)

(d)
Figure 9. Cross-sectional profile of (a) A–A; (b) B–B; (c) C–C; (d) D–D (see Figure 4 for relative
location of these cross-sections) (Adapted from [7,9]).

Table 4. Highest groundwater levels measured for each observation well located next to the
inclinometer.

Observation Well
No.

Highest Groundwater
Level (m)

AH–2 5.5
AH–3 14.0
AH–4 19.0
AH–5 13.5
AH–7 15.5

4.1.3. Lateral Displacement of Slopes

The installation of the inclinometers AH–3, AH–4, and AH–7 (Figure 4) was completed
on June 11, 2017, while that of AH–2 and AH–5 was completed on August 16. Thus, only
the records of AH–3, AH–4, and AH–7 are presented here in Figure 10. The inclinometer
AH–3 was originally 50 m long, but it was found broken at a depth of 27.5 m in a local
sliding event just after installation (Figure 10), and continuous displacement was observed
at depths between 24.5 and 27.5 m. Coincidentally, the thickness of the colluvium at
AH–3, according to the borehole log, was about 29.2 m, and the large inclinometer or
shear displacement reading at the depths between 24.5 m and 27.5 m revealed that the
sliding surface, induced by the extreme rainfall, was located within the colluvium layer. In
addition, the sliding thickness could be as deep as the thickness of the colluvium because
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the disturbed (SL1) and undisturbed (SL2) slate formations could both be regarded as
relatively stable strata. Within the period of monitoring, no obvious displacement and
trend of movement were observed in the inclinometers AH–4 and AH–7 (Figure 10) as
their readings were within the measurement margin of error. According to Machan and
Bennett [35], the field accuracy of an inclinometer is roughly ±7.6 mm per 30 m, which
includes a combination of random and systematic errors. The random errors occurred
within the sensors and affected the accuracy of the inclinometer probe, while systematic
errors occurred because of human operations and influenced the condition of the probe
and the procedure of data collection [35]. No further measurements were taken for the
inclinometers AH–4 and AH–7 in the subsequent months because of the discontinuation of
the project.

Figure 10. Inclinometers reading recorded between 13 June and 16 Aug of 2017 for inclinometers:
(a) AH–3N; (b) AH–3S; (c) AH–4N; (d) AH–4S; (e) AH–7N; and (f) AH–7S. (Note: “N” and “S” denote
North- and South-bounds, respectively.)

4.2. Factors Causing Short-Term Sliding

The three main factors, (1) the infiltration of rainwater on the slope, (2) upraised
river-bed elevation caused by earthquakes and seasonal typhoons at the toe of the slope,
and (3) erosion of the river bank of the slope toe, were believed to be crucial in initiating
the slope instability.
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The result of the seepage and stability analyses revealed that prior to the rain (0∼2 h),
the factor of safety (FOS) of the cross-section A–A of the northern slope and the cross-
section C–C of the southern slope was 1.04 and 1.22, respectively. The FOS of the slopes was
then re-assessed for every subsequent hour of infiltration. It was found that the FOS of the
cross-section A–A of the northern slope decreased to 1.00 after 14 h of rainfall and to 0.98 at
the end of 24 h. Likewise, for the cross-section C–C of the southern slope, its FOS decreased
to 1.00 after 18 h of rainfall and to 0.98 at the end of 24 h of rain. The corresponding sliding
zone for both the analyzed cross-sections at the end of 24 h rainfall is plotted in Figure 11.
As seen from this figure, both sliding zones were located in the top half of the slopes and
extended to Provincial Highway No. 7A. The colluvium deposit located at the toe of the
study slopes (Figure 9) is believed to be the debris produced as a result of the local failure of
the overlying colluvium of the up-slope. The deposit at the toe of the slopes subsequently
led to the rise in the groundwater level and triggered the instability at the toe of the slopes.
The projected location of the inclinometer AH–3 was included in Figure 11a, which shows
the analyzed sliding surface of the cross-section A–A; the depth of the sliding surface given
by the simulation was about 28 m deep, which was very close to the depth at which the
inclinometer AH–3 was found broken, i.e., at 27.5 m.

(a) (b)

Figure 11. Result of the stability analysis at the end of 24 h for cross-sections: (a) A–A in northern
slope and (b) C–C in southern slope (Adapted from [9]).

The slope collapses reported in Section 2.4 were mainly due to the rise in the river-bed
and the erosion of the river bank or slope toe. The study area is located at the upstream
of Deji Reservoir and the sedimentation produced by the erosion further upstream has
resulted in the rise in the elevation of the river-bed of the study area. According to local
residents, the condition of Dajia River has been deteriorating since after the construction of
the Deji Dam in 1973 as a result of the severe river-bed sedimentation, especially in the early
2000s. The 921-Jiji earthquake resulted in the elevation of the river-bed rising by 10 m; in
2001, the river-bed elevation rose by 8 m around the period when Typhoon Toranji ripped
past the island; in July 2004, Typhoon Mindulle caused the river-bed to rise by a further
10 m; and a month later, on 25 August 2004, Typhoon Aere pounded northern Taiwan with
torrential rains and increased the elevation of the river-bed by another 6 m. Thus, within
a period of five years, the elevation of the river-bed of Dajia River was raised by some
34 m while the width of the river was doubled. The consequent increase in the river-bed
elevation changed the topography of the slopes and eventually affected the movement
characteristics of the slope.

In addition to the uprise in the river-bed elevation, the erosion of the outer-bank (cut
bank) of the meandering, as discussed in Section 2.4, is another destabilizing factor of
the northern and southern slopes. Because the toe of the southern and northern slopes
ended at the concave cut bank, the current of Dajia River was continuously eroding and
steepening the toe of the slopes and increasing the tangential component of the disturbing
force, thereby reducing the stability of the toe of the slopes. Furthermore, rain accumulated
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within the ridge-top depression at the slope crest, infiltrated into the slope, and eventually
seeped out from the surface of the toe of the slopes or river bank before entering into the
Dajia River; the seepage force along the sloping direction together with the gravitational
force caused the slope to be susceptible to instability. Another possible reason could be due
to the excess pore-water pressure generated in the saturated bank, which reduces the shear
strength of the river bank and increases the sliding force and, in turn, contributed to the
instability of the slopes.

4.3. Factors Causing Long-Term Sliding

The result of the ground investigation and geophysics tests of the study area showed
that the slopes were basically formed by disturbed slate (SL1), undisturbed slate (SL2), and
occasionally by the overlying of wedges of colluvium deposit on the surface (Figure 9).
The slate outcrops within the study site revealed considerable variations in the foliation
orientation. The foliations of the SL2 slate of the bank of Dajia River and that toward the toe
of the slopes are found bowing down-slope, while the foliations of the SL1 slate are oriented
nearly horizontally. These down-slope bowing (toppling) foliations were induced by the
long-term down-slope gravitational force and they could lead to the formation of a bending
fold [36]. The SL1 slate was seriously disturbed during the process of the right-angle
curving or bending of its foliations into the gently dipping or horizontal foliation; it is thus
unsurprising to observe on site that SL1 is of a poorly integrated rock mass compared to
the more intact SL2 rock mass.

At the crest of the slope, at an elevation of about 1784 m, is the Taibaojiu Ecktreppe.
Figure 4 reveals that the landform of the Ecktreppe has somehow crept into a double-crested
ridge or ridge-top depression; in other words, the crest crept westward toward the Dajia
River and eastward toward the Hehuan Valley. The phenomena is consistent with the
criteria and structural landform induced by a large-scale deep-seated gravitational slope
deformation (DSGSD), which is driven by the process of mass rock creep (MRC) [37]. In
studying the long-term gravitational deformation of rocks slopes, Chigira [36] concluded
that when the subsurface rocks of the slopes are continuously subjected to an unstable
state under the influence of gravitational force, the subsurface rocks deformed to various
degrees in various ways by means of MRC. The disturbed rock mass SL1 is believed to be
creeping at a very slow rate. Although the creeping rate cannot be detected over a short
period of time and the modes of movements are not always evident, creeping may still
bring gradual but continuous damages to the slopes [36].

Chigira [36] categorized the macroscopic deformational structures of the MRC into
Types I∼IV folds that changed according to the relationships between foliations and slopes.
Using the classification of the attitude of foliations defined by Chigira [36], the MRC struc-
ture of the exposed down-slope bowing foliated rock mass of the northern and southern
slopes shown in Sections B–B and C–C of Figure 9 would be categorized as Type III folds.
According to Chigira [36], this type of fold often led to small debris avalanches by means
of the valley-ward bulging of a fragmented rock mass, and such a phenomenon revealed
the inherent danger of the northern and southern slopes as it could occasionally trigger
huge and catastrophic landslides.

A sliding susceptibility assessment was carried out for the study site. The dip direction
of the slate is plotted together with the sliding susceptibility zones in Figure 12. In general,
the slate around the toe of the slopes and the river valley dipped more steeply than that
of the two slopes. The strike and dip measurements of the slate at the toe of the slopes
and the river valley were more reliable than that of the slopes because the slate at these
two locations is mainly undisturbed, while the measurements on the slopes were made
on the slates that were disturbed by DSGSD and, in particular, the local sliding to varying
degrees. An individual potential sliding body on the study site was interpreted based
on the topography features such as the slope gradient and slope aspect, which can be
clearly interpreted from the Digital Terrain Model (DTM), in this case, with a contour
interval of 1 m. Kasahara et al. [38] used satellite and Google Earth imagery and a visual
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inspection to produce a landslide susceptibility map with respect to land use. In this study,
the Google Earth imagery was cross-examined with that from the aerial photographs taken
on 23 August 2014, the Unmanned Aerial Vehicle (UAV) imagery taken on 19 April 2017,
and field checking; it was decided to classify the sliding susceptibility of the study site into
three categories, low, moderate, and high susceptibility, as shown in Figure 12. The sliding
susceptibility classification was made based on the following evaluation:

Figure 12. Distribution of low, moderate, and high sliding susceptibility zones postulated for the
study large-scale slope; for ease of referencing, location of boreholes (AH–1 to AH–7), dip directions
of slaty cleavage, and cross-sections A–A to D–D are also shown here (Adapted from [7,9]).

1. High susceptibility (red): Evidence of sliding, such as sliding surfaces, indicated by
monitoring instruments, new cracks, ground subsidence, or broken drainage ditches
within the sliding body, was found during field checking.

2. Moderate susceptibility (blue): No evidence of sliding was found; however, signs of
impending sliding, such as scarp, tilted ground, old cracks, and colluvium deposits,
were observed during field checking.

3. Low susceptibility (green): No obvious signs of soil slippage were seen during the
field checking but could be inferred from topography features.

It can be seen that most of the potential sliding zones, in particular the high suscepti-
bility zones, are concentrated on the central transmeridional ridge that divided the study
area into the northern and southern slopes. There was a high sliding susceptibility zone
at the bottom half of the northern slope, which happened to have colluvium as its surface
soil and the river bank at its toe; according to the finding of Zhong et al. [39], although
the slope gradient was not high, it was still prone to rainfall-induced accumulation failure
in which the failure would be initiated from the toe of the slope. The Tabuk Indigenous
settlement that this study is concerned with is exposed to a moderate sliding susceptibility.

4.4. Hazard Mitigation

Intense rainfall and infiltration: The subsequent rise in the groundwater level above
the almost impermeable rock strata that prevented the groundwater from infiltrating
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downward and the upraised elevation of the river-bed of Dajia River together with the
erosion of the river bank were the main destabilizing factors of the northern and southern
slopes. A two-stage mitigation method is proposed for the study site. Firstly, the source
for the rising groundwater or the infiltration of the rain into the ground has to be reduced
quickly by means of surface drainage; secondly, the raised groundwater level has to be
quickly drained off by underground drainage.

Surface drainage is effective in preventing surface erosion, intercepting run-off, and
reducing rain infiltration into the colluvium and the cracks of the fissure of the study
slopes. A man-made surface or open ditches together with Dajia River at the toe of the
slopes seemed to be an ideal surface drainage system of the study site. The flexible and
low-cost ditches could work very well in the hilly environment as the environment fulfilled
the minimum requirement for a ditch gradient of at least 2%; however, ditches should be
lined to minimize the rain infiltration and erosion [40]. In addition, sufficient redundan-
cies have to be provided in a surface drainage design to accommodate for blockage and
uncertainties [41].

The use of underground drainage in preventing the rise in the groundwater level
would indeed prevent the increase in the water content of the slopes, which would other-
wise reduce the shear strength and, hence, the stability of the slopes. Generally, facilities
such as the shallow depth (2 m < depth) subsurface blind ditches, horizontal drainage
pipes, and water collection wells are used jointly to achieve the purpose of underground
drainage. The successful mitigation of the Lishan large-scale landslide, which was about
8.5 km to the southeast of the study site (see Figure 1), involved the use of a subsurface
drainage network that included 15 storm water drainage wells of 15 to 40 m in depth and
3.5 m in diameter [42], in which the drainage well was essentially a manhole structure
designed to gather storm water. Thus, for this study, storm water collection wells would
also be required to receive the infiltrated water from upstream collection via the horizontal
drainage pipes that were connected directly through the walls of the wells. For efficient
water collection, the horizontal drainage pipes connected to the wells should be arranged
in such a way that they are spreading radially upward.

To discharge the groundwater quickly, the horizontal drainage pipes could be installed
at a variety of depths. The horizontal drainage pipes in the shallower layer are applicable
for a location where its groundwater level is within 3 m of the ground surface; pipes with a
diameter of 50 mm to 62.5 mm should be installed at an upward inclination angle of 10◦ to
15◦. The deeper horizontal drainage pipes are suitable for a location where its groundwater
level is deeper than 3 m; in this case, the pipes are installed at an inclination angle of 5◦ to
10◦, the diameter of the pipes varies with the geological conditions but is normally between
75 and 125 mm, and the maximum length of the pipes should be less than 100 m.

It is believed that surface drainage together with the underground drainage system of
horizontal drainage pipes and collection wells could rapidly discharge the surface run-off
and groundwater and decrease the rise in the groundwater level during a heavy storm.
These measures could effectively enhance the stability of the northern and southern slopes.

As for the erosion problem of the two cut banks of the meandering, at first glance,
single-row stabilizing piles seemed to be a good treatment in protecting the river bank.
However, transporting the construction equipment to the required location is a particular
concern because a paved access road is unavailable on the slopes and constructing even
a temporary access road seems inconceivable as it would destroy the fruit farming on
the slopes. It thus seemed that protecting the eroded slopes with a riprap wall using the
material available locally is a more practical approach.

5. Conclusions

A study aimed at investigating the sliding susceptibility of a large-scale landslide-
prone area on the west wing of the Central Mountain Range in central Taiwan where its
crest houses an Indigenous settlement and Provincial Highway No. 7A has been conducted.
Severe subsidence has caused a section of the Provincial Highway No. 7A to undergo
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road-bed differential settlement and damage to its retaining structures and drainage ditches.
At the toe of the slope is Dajia River, which has also recorded several collapses along its
river bank in the past. By accomplishing a series of multi-temporal satellite and aerial
images comparisons, site investigations, ground monitoring, geophysics tests, and slope
stability analyses, the following findings and conclusions have been made:

1. It was astonishing to learn that the river-bed of the river at the toe of the studied
large-scale slope has been raised by more than 30 m within a period of five years as
a result of the inundation of debris from upstream after the construction of a dam
downstream of the study site.

2. The infiltration of rainwater from the surface of the slope, the upraised river-bed
elevation, and the erosion of the river bank of the toe of the slopes have altered the
landform and the groundwater level of the large-scale slope and eventually triggered
several localized slope failures. The results of the uncoupled hydromechanical slope
stability analysis where the analyzed slopes were subjected to a designed storm for a
50-year return period in 24 h revealed that a sliding surface was triggered within the
depth of the colluvium. The thickness of the simulated sliding surface coincided with
that observed on site.

3. The landform of the Taibaojiu Ecktreppe at the crest of the study area has somehow
crept into a double-crested ridge or ridge-top depression, indicating that the study area
is being subjected to large-scale deep-seated gravitational slope deformation (DSGSD)
by means of mass rock creep. Although the creeping rate has yet to be quantified, the
study’s large-scale slope is believed to be creeping gradually. The orientation of the
on-site foliations has also revealed the inherent danger of the northern and southern
slopes in which huge and catastrophic landslides could eventually be triggered. Based
on field monitoring records and the orientation of the foliations, the associated DSGSD
surface was deduced to be developed along the interface of the disturbed (SL1) and
undisturbed (SL2) slates.

4. An intriguing pattern of resistivity distribution was observed from the results of the
Wenner–Schlumberger and pole–pole arrays. Unlike low resistivity-based colluvium
that occasionally mingled with some high resistivity readings, areas with a concen-
trated high resistivity reading were found to be associated with the orientation of
the foliated rock mass. Further studies could be conducted to verify the reason for
this association.

It should be noted that the SWCC and the hydraulic conductivity functions used in the
simulation stated in Conclusion 2 have been assumed to work under a constant void ratio or
conditions in which the material’s volume does not change appreciably. In practice, because
the slope stability problem is inherently a large deformation problem, the materials’ void
ratio changes appreciably as a result of such deformation [29]. Thus, for a more rigorous
analysis, these two functions should be updated throughout the analysis. Nevertheless,
the findings of this study would be valuable for formulating detailed countermeasures to
protect and maintain the stability and safety of the Tabuk Indigenous settlement located at
the crest of the study’s large-scale slope.
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Cv Colluvium
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FOS Factor of Safety
SL1 Disturbed Slate Formation
SL2 Undisturbed Slate Formation
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