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Editorial

Sensors and Advanced Sensing Techniques for Computer
Vision Applications

Christos-Nikolaos Anagnostopoulos 1,* and Stelios Krinidis 2,*

1 Department of Cultural Technology and Communication, University of the Aegean (UAEGEAN),
81100 Mytilene, Greece

2 Management Science and Technology Department, Democritus University of Thrace (DUTh),
65404 Kavala, Greece
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1. Introduction and Current Trends in the Field

Computer vision is a multidisciplinary field that enables machines to interpret and
understand visual information from the world, simulating human vision. It encompasses a
variety of tasks, including object detection, image segmentation, and image understanding,
all of which have seen significant advancements due to the integration of Artificial Intelli-
gence techniques. The evolution of computer vision can be traced back to its early days in
the 1950s, focusing primarily on two-dimensional image analysis. However, the advent of
deep learning, particularly convolutional neural networks (CNNs), has revolutionized the
field, allowing for more complex and accurate interpretations of visual data [1–3].

Recent studies highlight the transformative impact of deep learning on various appli-
cations within computer vision. For instance, object detection has significantly improved us-
ing CNNs, which facilitate the identification and localization of objects within images [1,4].
Moreover, image segmentation, a critical aspect of computer vision, has evolved with deep
learning methods, enabling precise delineation of objects in images, which is essential for
applications ranging from autonomous driving to medical imaging [5]. The integration of
CNNs has not only enhanced performance but has also expanded the scope of applications,
including real-time systems for precision agriculture and intelligent manufacturing [6,7].

Recent advancements in sensors and advanced sensing techniques have also signifi-
cantly influenced the field of computer vision, enabling more efficient and effective visual
perception systems. One of the most notable trends is the development of in-sensor com-
puting techniques, which allow for data processing directly within the sensor hardware.
By processing visual information at the sensor level, systems can significantly reduce the
amount of data that needs to be transmitted, thus, enhancing the speed and efficiency of
computer vision applications. Recent studies have demonstrated the potential of ferroelec-
tric photosensors for in-sensor artificial neural networks, which can perform computations
directly on the sensed data [8,9]. This paradigm shift is particularly beneficial for time-
critical applications such as autonomous driving and similar critical decision-making tasks,
where rapid decision making is essential.

In addition, the integration of AI into sensor technology is another significant trend.
Recent advancements in AI sensors have led to the development of systems that can learn
from their environment and adapt to changing conditions [10]. These sensors utilize ma-
chine learning algorithms to enhance their performance in tasks such as object detection
and recognition. For instance, Complementary Metal Oxide Semiconductor (CMOS) image
sensors are enhanced with AI capabilities, allowing them to perform complex computa-
tions and improve their accuracy in computer vision tasks [11]. This integration not only

Sensors 2025, 25, 35 https://doi.org/10.3390/s25010035
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improves the functionality of sensors but also expands their applicability across various
domains, including healthcare, agriculture, and smart cities.

2. Scope of Special Issue and Contributions

The Special Issue on “Sensors and Advanced Sensing Techniques for Computer Vision
Applications” aimed to address all topics related to the challenging problems of computer
vision and pattern recognition in conjunction with the emerging field of deep learning.
As a result of the open call for papers, papers related to deep learning, neural networks,
and soft computing have been accepted after a rigorous peer review process and assessed
for their technical merit and relevance. The accepted articles cover applied issues in the
following fields:

• Deep learning for 2D/3D object recognition and classification;
• Autonomous navigation and robotic agents;
• Data augmentation in computer vision;
• Image fusion, segmentation, and classification from different sensors;
• Parallel Machine Learning;
• Photogrammetry and 3D point clouds;
• Multidisciplinary applications of deep learning, pattern recognition, and computer

vision for driving assisting systems and aircraft industry;

More specifically:
In contribution 1, Kumari et al. introduced a method that combines advanced imag-

ing technology (Multi-modal Raman Light Sheet Microscopy) with AI to improve the
visualization of complex 3D biological structures and, more specifically, cell cultures and
spheroids. Using a special microscopy system, detailed images without needing additional
markers are captured, while a deep learning model (Zero-Shot Deconvolution Networks or
ZS-DeconvNet) enhances the resolution and sharpness without adding artifacts. This ap-
proach provides significant potential for advancing high-resolution imaging in biomedical
research and other related fields.

In contribution 2, Trung et al. presented a non-contact method for measuring human
height in various postures using computer vision and Deep Learning (MediaPipe library and
the YOLOv8 model). By analyzing images from a smartphone camera, the proposed method
identifies body joint points with advanced algorithms and calculates height using a regression
model. Tested on 166 individuals in different postures, the method achieves high accuracy
with minimal error. Future improvements aim to expand its capabilities to more positions and
scenarios, increasing its usefulness across healthcare, sports, and other fields.

In contribution 3, Giakoumidis et al. proposed an innovative method (ARM4CH)
for automating the 3D modeling of cultural heritage monuments using robotic agents
(quadrupedals and UAVs) equipped with advanced sensors. These robotic agents may
perform the scanning process systematically and accurately, reducing the need for human
expertise and intervention. The approach is designed to improve efficiency and to act a key
enabler to applications like digital twins for monitoring and managing cultural sites and
spaces. ARM4CH aligns with Industry 4.0 principles and sets the groundwork for future
real-world testing.

In contribution 4, Xiang et al. presented a new method for merging infrared and
visual images into a single, detailed image by combining their unique features. A specially
designed filter (Local Extrema-Driven Image Filter) extracts and processes bright and
dark features from both images, which are then fused using advanced techniques. The
final image integrates these features along with structural and intensity-based elements,
producing superior results. Tests on a standard dataset demonstrate that this method

2
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outperforms or at least has equal results compared to eleven state-of-the-art image-fusion
methods in terms of quality and accuracy.

In contribution 5, Borstelmann et al. introduced a cutting-edge method to add color
to near-infrared (NIR) images, addressing the challenges posed by differences in light
properties between NIR and visible light. Traditional methods struggle due to the lack
of paired training data, so the researchers use diffusion models, a powerful alternative
to Generative Adversarial Networks (GANs). The framework translates NIR intensities
into visible light, achieving impressive results. Experiments demonstrate that even simple
implementations rival GANs, while more advanced versions outperform them. This work
bridges the fields of diffusion models, NIR colorization, and visible-NIR fusion, advancing
techniques for biodiversity monitoring, capturing wildlife activities day and night.

In contribution 6, Petracchi et al. focused on accelerating the processing of hyper-
spectral imaging (HSI), which is widely used in fields like medicine for diagnostics and
surgery guidance. To address the challenge of processing large HSI datasets quickly, the
researchers parallelized three popular machine-learning algorithms—SVM, Random Forest,
and XGBoost—using GPU-based CUDA technology. Results show significant speed im-
provements, especially for SVM and XGBoost, making them more effective for classifying
hyperspectral skin cancer images. The authors illustrate the parallelization techniques
adopted for each approach, highlighting the suitability of Graphical Processing Units
(GPUs) to enhance HSI applications, when the issue of rapid disease detection is critical.

In contribution 7, Jarahizadeh et al. compared three popular software tools, namely
AgiSoft Metashape, PIX4DMapper, and DJI Terra, for processing UAV data to create 3D
models of forested areas. Using datasets collected at different flight altitudes and angles,
the researchers evaluated the tools in terms of point cloud density, reconstruction quality,
computational time, and tree detection accuracy. The results report that AgiSoft and Pix4D
produced denser point clouds, but DJI Terra excelled in generating more complete models
with fewer gaps, particularly for trees, power lines, and poles. DJI Terra also presented
faster processing times and provided more accurate height contours. The overall findings
highlight that DJI Terra is a reliable choice for 3D modeling and tree detection in forestry
and urban planning applications.

In contribution 8, Matei et al. introduced a method for designing and efficiently
implementing 2D Far Infrared Range (FIR) circular filter banks. The filters are created
using a frequency transformation of a 1D prototype following a Gaussian shape, designed
to meet specific frequency specifications (peak frequency and bandwidth). The resulting
filters are accurate and computationally efficient as a result of a factored transfer function
and a polyphase structure combined with block filtering. Two types of filter banks—
uniform and non-uniform—are developed, with an example demonstrating precise image
reconstruction using the uniform filter bank. The proposed example is reported to achieve
low computational complexity, making it practical for system-level applications.

In contribution 9, Cardone et al. presented a fast and efficient fuzzy-based framework
for segmenting remote sensing images, implemented on a GIS platform. The method uses
the Fast Generalized Fuzzy C-means algorithm to detect spatial relationships between
pixels and a validity index to determine the optimal number of clusters. The process
generates segmented images and a thematic map where pixel classifications are based
on their highest membership degree, with reliability estimates provided for each class.
Tested on imagery from Naples, Italy, the method produced results consistent with expert
analyses while maintaining high computational speed, making it suitable for large-scale,
high-resolution datasets.

In contribution 10, Bhatti et al. introduced a cost-effective, automated method for
measuring facial skin temperature using a combination of a low-cost thermopile sensor
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matrix and a 2D image sensor. By fusing temperature and image data through an affine
transformation, the system can assign temperature readings to specific facial regions
identified via face recognition. Throughout the paper, the advantages of the proposed
method are described. A participant study shows that the method achieves accuracy
comparable to commercial infrared forehead thermometers, offering a non-contact and
precise alternative without requiring manual alignment.

In contribution 11, Ruiz-Beltrán et al. introduced an eye image detection system
implemented on an MPSoC (multiprocessor system-on-chip), which includes a block in the
programmable logic (PL) to assess the focus quality of the images. The system can discard
images that are out of focus during processing. The solution, designed using Vitis High-
Level Synthesis (VHLS), works with a 16 MP sensor and processes over 57 fps. Experiments
using the CASIA-Iris-distance V4 database show that the system can successfully discard
unfocused images, improving efficiency by eliminating up to 97% of blurry images, which
reduces the computational load on subsequent processing steps like segmentation and iris
pattern extraction. The overall goal of the study is to make iris recognition systems less
intrusive and more user friendly.

In contribution 12, Katunin et al. presented a new approach for the automatic quan-
tification of hidden corrosion using image processing of D-Sight images during periodic
inspections. The performance of the algorithm was demonstrated through the inspection of
a Mi family military helicopter. The nondimensional quantitative measurement introduced
in this study was aligned with qualitative analysis by inspectors that performed qualitative
analysis, confirming its effectiveness. The proposed method enables the automation of the
inspection process and aids inspectors in assessing the extent and progression of hidden
corrosion. The results of the study are of great importance to the aircraft industry (and many
more), since hidden corrosion remains a major challenge in aircraft maintenance services.

Ultimately, contribution 13 is a review article that studies the latest trends in object
detection, recognition, and tracking algorithms for Advanced Driver Assistance Systems
(ADASs). ADASs use a range of sensors, including cameras, radars, and lidars, to perceive the
environment and detect and track objects on the road, such as vehicles, pedestrians, cyclists,
obstacles, and traffic signs. Specifically, Malligere Shivanna et al. survey the latest object
detection, recognition, and tracking algorithms used in ADASs, discussing analytically their
functionalities and the datasets employed. The review paper also highlights the need for
further research in challenging environments, such as those with low visibility or high traffic
density and concludes by exploring the future directions for these algorithms in ADASs.

3. Conclusions

As Guest Editors, we feel very delighted and satisfied with the final outcome of this
Special Issue (SI) and we anticipate that fellow researchers and members of the scientific
community will enjoy studying the articles included in it. Moreover, we would like to
express our special thanks to the managing team of the Sensors journal for the continuous
efforts and support during all the editing stages in this SI, including the initial preparation
and planning, as well as the submission and review process of all the candidate manuscripts.
Finally, we feel honored to receive outstanding research papers from the contributing
authors, and at the same time we are also grateful to the reviewers for their help, their
timely feedback, and their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.
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Article

Self-Supervised and Zero-Shot Learning in Multi-Modal Raman
Light Sheet Microscopy

Pooja Kumari 1,*, Johann Kern 2 and Matthias Raedle 1
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68163 Mannheim, Germany; m.raedle@hs-mannheim.de

2 Universitätsklinikum Mannheim, Universität Heidelberg, 68167 Mannheim, Germany;
johann.kern@medma.uni-heidelberg.de
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Abstract: Advancements in Raman light sheet microscopy have provided a powerful, non-invasive,
marker-free method for imaging complex 3D biological structures, such as cell cultures and spheroids.
By combining 3D tomograms made by Rayleigh scattering, Raman scattering, and fluorescence
detection, this modality captures complementary spatial and molecular data, critical for biomedical
research, histology, and drug discovery. Despite its capabilities, Raman light sheet microscopy
faces inherent limitations, including low signal intensity, high noise levels, and restricted spatial
resolution, which impede the visualization of fine subcellular structures. Traditional enhancement
techniques like Fourier transform filtering and spectral unmixing require extensive preprocessing
and often introduce artifacts. More recently, deep learning techniques, which have shown great
promise in enhancing image quality, face their own limitations. Specifically, conventional deep
learning models require large quantities of high-quality, manually labeled training data for effective
denoising and super-resolution tasks, which is challenging to obtain in multi-modal microscopy.
In this study, we address these limitations by exploring advanced zero-shot and self-supervised
learning approaches, such as ZS-DeconvNet, Noise2Noise, Noise2Void, Deep Image Prior (DIP), and
Self2Self, which enhance image quality without the need for labeled and large datasets. This study
offers a comparative evaluation of zero-shot and self-supervised learning methods, evaluating their
effectiveness in denoising, resolution enhancement, and preserving biological structures in multi-
modal Raman light sheet microscopic images. Our results demonstrate significant improvements in
image clarity, offering a reliable solution for visualizing complex biological systems. These methods
establish the way for future advancements in high-resolution imaging, with broad potential for
enhancing biomedical research and discovery.

Keywords: deep learning; unsupervised learning; zero-shot learning; self-supervised learning; super-
resolution; denoising; light sheet microscopy; Raman scattering; Rayleigh scattering; fluorescence;
spheroid; multi-mode

1. Introduction

Biomedical imaging plays a crucial role in advancing our understanding of complex
biological systems, particularly three-dimensional (3D) structures such as cell cultures,
spheroids, and organoids. These 3D structures have become fundamental models in drug
discovery, cancer research, and histology, offering insights into tissue organization and
cellular interactions. Traditional imaging techniques, such as fluorescence microscopy and
electron microscopy, have long been used to visualize these structures. However, many of
these methods require invasive sample preparation or the use of external labeling agents,
which can introduce artifacts and affect the biological systems under observation.

The major advantages of 3D cell cultures over 2D cell cultures are that cell cultures
in free three-dimensional space grow much more similarly to real organs and react to
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pharmaceuticals than flat cell cultures. The use of 3D cell cultures thus shows a strict way
to avoid animal experiments to an ever greater extent. As a result, there is a growing need
for imaging techniques that allow for non-invasive, label-free visualization of biological
samples in their native states [1–3].

Raman light sheet microscopy has emerged as a powerful, non-invasive, and label-free
imaging modality that enables the study of 3D biological structures without altering the
biological samples. This technique combines Rayleigh scattering, Raman scattering, and
fluorescence detection, offering complementary spatial and molecular information about
cellular architecture and interactions. The multi-modal approach of Raman light sheet
microscopy provides a unique advantage by capturing rich data from biological systems,
including high-resolution images of both spatial organization and molecular composition.
The individual image modes contrast different information of the cell structure without
using dye markers: image-based elastic scattering shows the arrangement of cell walls and
nuclei; fluorescence imaging indicates, e.g., the spatial distribution of collagen or diffused
pharmaceuticals; and Raman imaging shows, e.g., the distribution of hydrocarbons or
amino acids, or even water. The label-free nature of this technique minimizes the risk
of sample perturbation, making it ideal for studying delicate biological structures like
spheroids and organoids in their natural state [4,5]. Even growing processes in living cells
could be observed.

Despite its advantages, Raman light sheet microscopy faces several technical chal-
lenges, particularly related to image noise and resolution limitations. Raman scattering,
although valuable for providing molecular information, generates extremely weak signals
that are prone to noise. This, coupled with low signal intensity, often limits the achievable
resolution, making it difficult to capture fine subcellular details in 3D samples [6,7]. Tra-
ditional methods, such as deconvolution and spectral unmixing, have been employed to
enhance image quality, but these techniques often require complex preprocessing steps or
rely on large amounts of labeled data, which can be impractical in real-time imaging [8,9].

Recent advances in machine learning, particularly deep learning techniques, offer
promising solutions to overcome these limitations. While deep learning has been success-
fully applied to enhance resolution and reduce noise in medical imaging, these methods
typically require extensive amounts of high-quality, labeled data for training. However,
for applications like Raman light sheet microscopy, obtaining such labeled datasets can
be impractical. This has led to the exploration of zero-shot and self-supervised learning
approaches, which can enhance image quality without the need for labeled data [10,11].

Techniques such as Noise2Void, Deep Image Prior (DIP), and ZS-DeconvNet represent
state-of-the-art approaches in zero-shot and self-supervised learning. These methods
operate by leveraging the inherent structure and statistical properties of the data itself,
enabling them to perform denoising and super-resolution without labeled training datasets.
Their ability to enhance image clarity and resolution in an unsupervised manner makes
them particularly well suited for multi-modal Raman light sheet microscopy [1,12,13].

This paper presents a comprehensive comparative evaluation of zero-shot and self-
supervised learning algorithms for denoising and super-resolution in multi-modal Raman
light sheet microscopy. By systematically evaluating these algorithms across different
imaging modalities, we aim to identify the most effective techniques for improving im-
age quality while preserving biological fidelity. This work aims to advance the field of
high-resolution biomedical imaging and facilitate more accurate visualization of complex
biological systems [1,10,14].

2. Materials and Methods

2.1. Biological Samples

Biological samples, including 3D spheroids and cell cultures, were prepared using
established protocols to ensure optimal imaging conditions while maintaining cellular
integrity. Spheroids were embedded in a low-scattering hydrogel matrix, providing optical
transparency, and preserving physiological conditions during imaging. This method mini-
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mized light scattering, ensuring high-quality imaging while maintaining an environment
conducive to cellular function.

For this study, spheroids were generated from two HPV-negative head and neck squa-
mous cell carcinoma (HNSCC) cell lines: UMSCC-11B, derived from laryngeal carcinoma,
and UMSCC-14C, from oral cavity carcinoma. Both cell lines were cultured in Eagle’s
minimum essential medium (EMEM) supplemented with 10% fetal bovine serum (FBS)
and 1% Penicillin/Streptomycin. Cultures were maintained at 37 ◦C in a humidified 5%
CO2 atmosphere. Cells were detached using Trypsin/EDTA, counted using a Neubauer
hemocytometer, and seeded into ultra-low attachment (ULA) 96-well plates at densities of
2.5 × 104 or 5 × 104 cells per well to generate spheroids. These spheroids were cultured
for up to eight days, with media changes on days 3, 5, and 8, reaching a diameter of
300–400 μm.

To investigate drug treatment effects, spheroids were treated with cisplatin (50 μM) on
day 4 of culture, while control spheroids were treated with DMSO. After 72 h of incubation,
both treated and untreated spheroids were fixed in 4% formalin to preserve their structural
integrity for subsequent imaging. Samples were mounted in a 3D-printed hydrogel carrier
designed for optimal alignment with the light sheet and detection objective, allowing
multi-view imaging at 37 ◦C with 5% CO2 and ensuring sample viability during extended
imaging sessions.

2.2. Raman Light Sheet Microscope

The Raman light sheet microscope developed in this study integrates Rayleigh scatter-
ing, fluorescence, and Raman scattering modalities into a single, high-precision platform.
The system utilizes dual-laser architecture, featuring a 660 nm and a 785 nm continuous
wave laser, coaxially aligned through a series of broadband coated mirrors (M1-M5) and a
beam splitter. These beams are then passed through achromatic doublet lenses to generate
a well-defined, static light sheet that illuminates the sample chamber. (Figure 1a).

Figure 1. (a) Schematic of the multi-modal Raman light sheet microscope and (b) Raman image and
spectral data acquired using a multi-modal Raman light sheet microscope with a 660 nm excitation
laser and an acousto-optic tunable filter (AOTF) set at 817 nm.
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The illumination optics generate a vertically oriented light sheet in the sample chamber,
while the orthogonally positioned detection optics collect scattered or emitted photons.
The axial resolution of the light sheet, defined by the beam waist, was determined to be
approximately 8 μm for both the 785 nm and 660 nm lasers. This was measured using
a BP209-VIS/M Scanning-Slit Optical Beam Profiler (Thorlabs Inc., Newton, MA, USA),
ensuring uniform illumination and minimal scattering artifacts during imaging. This
configuration supports precise optical slicing with a step size of 10 μm along the optical
axis, crucial for capturing high-resolution subcellular structures in sequential imaging. The
system’s effective imaging field of view, calculated as 635 μm × 635 μm, accommodates
spheroid samples with diameters up to this size, enabling complete optical sectioning
for various experimental conditions. These parameters ensure high fidelity in multi-
modal Raman imaging, particularly when paired with robust sample positioning for
accurate alignment during sequential acquisitions. At the detection interface, a sCMOS
camera records the emitted or scattered light after it passes through a configurable filter
assembly. The filter set includes an acousto-optic tunable filter (AOTF), polarization
filters, and a combination of longpass, notch, and shortpass filters. The AOTF enables
precise spectral selection, allowing for fine-tuning of the transmitted wavelengths for
each modality. This flexibility is critical for switching between the Rayleigh, Raman, and
fluorescence modes without physically altering the optical setup. The polarization filters
further improve contrast by rejecting unwanted light, enhancing the efficiency of inelastic
scattering detection.

The detection system comprises a sCMOS camera paired with a modular filter assem-
bly that includes an acousto-optic tunable filter (AOTF), polarization filters, and various
longpass, notch, and shortpass filters. This modular system ensures that specific wave-
lengths are selected for each modality without physical realignment, enabling seamless
transition between imaging modes. A multi-axis stage ensures precise sample positioning,
with submicron resolution along the X, Y, and Z axes, and rotational control. This fine con-
trol is essential for maintaining stable and consistent imaging, particularly when working
with 3D biological samples such as spheroids.

Figure 1b presents the Raman image and spectral data acquired using a 660 nm
laser for excitation and an acousto-optic tunable filter (AOTF) for detection, centered at a
wavelength of 817 nm.

2.3. Image Acquisition and Data Management

The multi-modal imaging system allows for comprehensive data acquisition using
Rayleigh, fluorescence, and Raman modalities. For Rayleigh scattering, imaging was
performed with a 785 nm laser at 1 mW power and 100 ms exposure, with an AOTF
wavelength of 775 nm. Additionally, Rayleigh imaging at 660 nm was conducted under
the same conditions, but with an AOTF wavelength of 650 nm. This enabled high-contrast
Rayleigh data collection with minimal interference from other signals (Table 1).

Table 1. Imaging parameters for multi-modal acquisition.

Modality Laser Power Exposure Time
AOTF

Wavelength

Rayleigh
(Modality 1)

785 nm 1 mW 100 ms 775 nm

660 nm 1 mW 100 ms 650 nm

Fluorescence
(Modality 2) 660 nm 130 mW 5000 ms 694 nm

Raman
(Modality 3) 660 nm 130 mW 5000 ms 817 nm
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For fluorescence imaging, a 660 nm laser was employed with a power output of
130 mW and an exposure time of 5000 ms, with the AOTF adjusted to 694 nm. This longer
exposure time was critical to accommodate the inherently weaker fluorescence signals.
Raman spectroscopy was conducted using the same 660 nm laser at 130 mW, with an
exposure time of 5000 ms and an AOTF wavelength set to 817 nm, ensuring an optimal
signal-to-noise ratio in capturing Raman spectra.

Data acquisition was synchronized across all modalities, and each dataset was metic-
ulously archived with detailed metadata, including laser power, wavelength, exposure
time, and filter settings. This approach ensured reproducibility and traceability, allowing
for comparative evaluation across different modalities. The system’s capability to rapidly
switch between imaging modes via the tunable filter set facilitated efficient data collection,
significantly reducing downtime between modality transitions.

By integrating these three imaging modalities into a single experimental setup, the
Raman light sheet microscope provided a robust platform for high-resolution, multi-modal
data acquisition. This comprehensive data management strategy further ensured that
collected datasets could be efficiently processed and analyzed for detailed insights into
the samples.

2.4. Image Processing and Enhancement Using Deep Learning
2.4.1. Preprocessing

Before applying zero-shot and self-supervised learning algorithms, multi-modal origi-
nal images (Figure 2a) undergo background subtraction to eliminate unwanted signals and
sand-noise reduction using filters like Gaussian or median filtering. These steps ensure
clean, noise-reduced images, crucial for improving the performance and accuracy of the
subsequent learning models.

Figure 2. (a) Original images acquired using Multi-Modal Raman Light Sheet Microscopy
(b) Implementation of zero-shot and self-supervised learning algorithms (ZS-DeconvNet,
Noise2Noise, Noise2Void, DIP and Self2Self) on Original Images after Preprocessing Techniques (c)
Denoised Output Images evaluated using metrics (PSNR, SSIM, RMSE, FRC).

2.4.2. Zero-Shot and Self-Supervised Learning Algorithms

To address the inherent blurring and noise challenges in multi-modal Raman light
sheet microscopy, we applied the zero-shot deconvolution network (ZS-DeconvNet), an un-
supervised deep learning model designed to perform deconvolution directly on noisy
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images without the need for labeled training datasets. This approach allowed us to
significantly enhance the resolution of microscopy images and recover finer subcellu-
lar structures that are otherwise obscured by system-induced blurring. In this study, we
compared a series of advanced self-supervised and zero-shot learning methods aimed
at denoising and enhancing resolution in multi-modal Raman light sheet microscopy.
Each method was selected based on its ability to improve image clarity without requir-
ing large, labeled datasets—an important consideration given the difficulty of acquiring
clean, high-resolution ground truth images in microscopy. The following sections de-
scribe the methodologies employed: Zero-Shot Deconvolution Network (ZS-DeconvNet),
Noise2Noise, Noise2Void, Deep Image Prior (DIP), and Self2Self (Figure 2b).

Zero-Shot Deconvolution Network (ZS-DeconvNet)

The zero-shot deconvolution network (ZS-DeconvNet) is a deep learning model de-
signed to perform image deconvolution directly from noisy and corrupted images without
the need for clean reference images during training. Operating in a zero-shot manner, ZS-
DeconvNet adapts to each specific image stack during the deconvolution process, making
it highly suitable for enhancing microscopy images, where acquiring high-quality, labeled
training data is challenging or impractical. ZS-DeconvNet is particularly effective in appli-
cations such as multi-modal Raman light sheet microscopy, where images are frequently
degraded by system-induced blur and noise. The algorithm learns to reverse the blurring
process directly from the noisy input, recovering sharp details while preserving the bio-
logical structures. Specifically, it addresses the challenge of image blurring caused by the
system’s point-spread function (PSF) in multi-modal microscopy. As a fully convolutional
neural network (CNN), ZS-DeconvNet operates within a zero-shot learning framework,
allowing the model to learn and reverse the convolutional effects of the PSF from the
observed image data, without relying on any external clean datasets [15–17].

Mathematical Formulation:
The observed microscopy image Y can be modeled as the convolution of the latent

sharp image X with the point-spread function (PSF) h, combined with noise n:

Y = h ∗ X + n (1)

ZS-DeconvNet optimizes the network parameters θ by minimizing the loss between
the convolved network output fθ(h ∗ Y) and the noisy observation Y:

θ̂ = argmin
θ

‖Y − fθ(h ∗ Y)‖2 (2)

By minimizing this loss, the network learns to perform deconvolution and recover the
underlying image structure.

Network Architecture:
The architecture consists of an encoder–decoder structure with skip connections to

retain spatial details. The encoder compresses the input image, while the decoder restores
the image resolution:

1. Encoder: Three layers of Conv2D, BatchNormalization, ReLU activation, and Max-
Pooling2D progressively downsample the image.

2. Decoder: The decoder mirrors the encoder with UpSampling2D layers followed by
concatenation with the corresponding encoder layers, allowing detailed feature recovery.

Training Process:
ZS-DeconvNet was trained using pairs of corrupted images generated by applying

random Gaussian noise to the input. The model was optimized using Adam for 100 epochs
with mean squared error (MSE) as the loss function. The results demonstrated significant
improvements in image sharpness and noise reduction, particularly in resolving subcellular
structures [1,17,18].
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Noise2Noise

Noise2Noise is a self-supervised learning algorithm designed for denoising tasks
where clean reference images are unavailable. Instead of learning from noisy–clean pairs,
Noise2Noise uses pairs of noisy images to learn to suppress noise while preserving the
underlying image content [19].

Mathematical Formulation:
Noise2Noise operates under the assumption that noise present in the image is indepen-

dent across acquisitions, but the underlying clean image remains constant. Given two noisy
observations Y1 and Y2 represent two noisy observations of the same underlying clean
image X, the model learns a mapping fθ to predict one noisy observation from another:

Y1 = X + n1 (3)

Y2 = X + n2 (4)

where n1 and n2 are independent noise realizations and fθ is the convolutional neural
network (CNN) with learnable weights θ. The network fθ is trained to predict Y2 from Y1
with the objective of minimizing the mean squared error (MSE) between the predicted and
observed noisy images:

L(θ) =
1
N ∑N

i=1

∣∣∣| fθ(Y1)− Y2||2 (5)

By optimizing this loss, the network learns to denoise the input image by recovering
the shared structure between the noisy pairs while ignoring the noise.

Network Architecture:
The model used a U-Net-like encoder–decoder structure, similar to ZS-DeconvNet,

but with a focus on learning from noisy image pairs rather than reconstructing from blurred
images. The same Conv2D, BatchNormalization, and ReLU activation layers were used in
both the encoder and decoder sections, with skip connections to ensure detail preservation.

Training Process:
Training was conducted on pairs of noisy images, with random Gaussian noise added

to simulate real-world noise in microscopy. The model was trained for 100 epochs using
the Adam optimizer and MSE loss, achieving high-quality denoising without requiring
clean training data [20].

Noise2Void

Noise2Void is a self-supervised learning approach designed specifically for denoising
tasks in the absence of paired noisy–clean image data. Unlike traditional supervised
methods, Noise2Void learns to restore clean images from a single noisy image by exploiting
the local structure of the image itself. This is achieved by predicting pixel values based on
the context provided by neighboring pixels, masking the central pixel during training to
prevent the model from directly learning the noise pattern [21].

Mathematical Formulation:
Let Y represent the observed noisy image and X the underlying clean image, with the

relationship modeled as:
Y = X + n (6)

where n is the noise. Noise2Void operates by applying a blind-spot strategy, where the
central pixel in the receptive field is masked, and the network is trained to predict the value
of the masked pixel using the surrounding pixels as context. The loss function for training
is defined as:

L(θ) =
1
N ∑N

i=1

∣∣∣∣∣∣∣ fθ

(
Y\i

)
− Yi

∣∣∣∣∣∣2 (7)

Here, Y\i represents the image with pixel i masked, and fθ

(
Y\i

)
is the CNN’s prediction

for the masked pixel value. By minimizing the difference between the predicted and actual
pixel values, the model learns to denoise the image while preserving structural details.
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Network Architecture:
Noise2Void used a U-Net-like architecture, similar to the one used for Noise2Noise.

The encoder–decoder architecture was designed to capture both local and global context
from the input image, allowing the network to predict the missing pixel values.

Training Process:
Blind-spot masking was applied to the input images during training, ensuring that the

model never learns from the pixel it is supposed to predict. This forces the network to rely
on surrounding context, making it effective for noise suppression in microscopy images.
The model was trained for 1000 epochs using the Adam optimizer with early stopping to
prevent overfitting [22,23].

Deep Image Prior (DIP)

The deep image prior (DIP) is a self-supervised learning approach that leverages
the structure of convolutional neural networks (CNNs) as an implicit regularizer for
image restoration tasks, such as denoising and super-resolution, without the need for
pretrained models or large labeled datasets. Unlike traditional deep learning models,
DIP directly trains on a single noisy image, using the architecture of the CNN itself to
impose regularization on the output. This makes DIP particularly useful for microscopy
applications, where obtaining clean, labeled ground-truth images is difficult [24].

Mathematical Formulation:
Given a noisy observation Y, DIP aims to recover the underlying clean image X by

optimizing the CNN fθ(z), where z is a fixed random input. The optimization objective is
expressed as:

θ̂ = argmin
θ

‖ fθ(z)− Y‖2 (8)

Here, fθ(z) is the CNN with learnable weights θ, and z is typically a fixed random
noise input. The key innovation of DIP is that the network is not pretrained on external
datasets; rather, it learns to denoise the image directly during the optimization process. The
network’s architecture naturally regularizes the output by capturing image priors such as
smoothness and continuity, which are inherent in most natural images.

Network Architecture:
The architecture for DIP is an encoder–decoder CNN similar to other methods de-

scribed but uses random noise as input. Skip connections are used to retain fine details, and
the decoder reconstructs the image from its compressed representation. The final output is
generated by applying a sigmoid activation to constrain the pixel values between 0 and 1.

Training Process:
The model was trained directly on the noisy microscopy image, using early stopping

to prevent overfitting. Training typically converged after 1000 epochs, yielding results that
improved both image clarity and structural preservation [25].

DIP achieves denoising by regularizing the optimization process. As training pro-
gresses, the network gradually captures the underlying image structure, and denoising
occurs as a natural outcome of the training process. The network converges to a solution
where the output fθ(z) represents a denoised version of the input image.

Self2Self

Self2Self is a self-supervised denoising technique that employs dropout as a form of
regularization, allowing it to learn directly from noisy images without requiring clean or
paired data. Unlike other denoising algorithms that rely on multiple noisy images or clean
references, Self2Self is designed to operate on a single noisy image, using dropout to mask
out pixels and learning to predict missing values based on the remaining context. This
makes Self2Self highly effective in applications where acquiring multiple noisy samples or
clean labels is not feasible, such as multi-modal Raman light sheet microscopy [26,27].

Mathematical Formulation:
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Given a noisy observation Y, which is modeled as:

Y = X + n (9)

where X is the latent clean image and n is the noise, Self2Self applies random dropout
to the input image, masking a portion of pixels during training. The objective is to train
the network to reconstruct the clean image by predicting the dropped pixels using the
remaining visible ones. The dropout introduces randomness, which acts as a form of
regularization, preventing the network from overfitting to the noise.

The training loss function is defined as:

L(θ) =
1
N ∑N

i=1

∣∣∣∣∣∣∣ fθ

(
Ydropout

)
− Y
∣∣∣∣∣∣2 (10)

Here, fθ

(
Ydropout

)
is the network’s prediction for the masked pixels and Y is the noisy

input image. The dropout mask ensures that the network is forced to learn useful features
of the underlying clean image rather than overfitting to the noise.

Network Architecture:
The Self2Self network architecture is similar to DIP but incorporates dropout layers to

mask a portion of the input pixels during training. This forces the network to learn useful
features from the unmasked pixels while avoiding overfitting to noise.

Training Process:
Self2Self was trained with random dropout applied to the noisy image during each

training step. The model was optimized using Adam for 1000 epochs, and early stopping
was applied to halt training when the loss stopped improving. Self2Self demonstrated
effective denoising while preserving key subcellular structures [28].

2.4.3. Model Training and Implementation

All models were implemented using the TensorFlow deep learning framework. Train-
ing and inference were conducted on a high-performance computing system equipped
with NVIDIA A100 GPUs, enabling fast, parallelized processing of the large multi-modal
microscopy datasets.

Training Details
Each algorithm was trained on the same set of input images, consisting of noisy or

corrupted microscopy data. Hyperparameters, including the learning rate and batch size,
were fine-tuned to optimize each model’s performance. The following key hyperparameters
and parameters were used across all models, as shown in Table 1.

Each model was trained using these parameters and hyperparameters until conver-
gence, defined as no improvement in the loss function for 10 consecutive epochs. For
models like ZS-DeconvNet and Noise2Noise, 100 epochs were sufficient due to their ef-
ficiency in learning image structures from noisy pairs. Due to the large size of the 3D
microscopy image stacks, a batch size of 1 was used across all models. This allowed
efficient memory usage on the GPUs while maintaining high-performance processing,
particularly for models that require the handling of large, high-dimensional data. These
parameters were selected same for fair performance comparison.

2.4.4. Evaluation Metrics

The performance of the denoising and image enhancement algorithms was evaluated
using a series of quantitative metrics to assess the quality of the output images, particularly
focusing on the preservation of biological structures and overall noise reduction.
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Peak Signal-to-Noise Ratio (PSNR)

PSNR was calculated to measure the quality of the denoised images relative to the
original noisy inputs. A higher PSNR value indicates better noise suppression, with less
distortion introduced during the image restoration process. PSNR is defined as [28,29]:

PSNR = 10 × log10

(
MAX2

I
MSE

)
(11)

where MAXI is the maximum possible pixel value of the image and MSE is the mean
squared error between the original and processed image. Higher PSNR values suggest
better noise suppression, meaning the deblurred image is closer to the clean image, which
is ideal for microscopy, where noise can obscure fine details of subcellular structures. PSNR
values above 30 dB generally indicate good image quality with significant noise reduction.
For microscopy images, values between 30 and 50 dB are common, with values closer to 50
dB indicating near-perfect noise reduction and high-quality image restoration [27,30].

Structural Similarity Index (SSIM)

The structural similarity index (SSIM) is a metric designed to evaluate the perceived
quality of an image by comparing luminance, contrast, and structural information between
two images. SSIM ensures that the structural integrity of the deblurred images is preserved,
especially critical for maintaining the accuracy of biological structures such as cells and
organelles [31].

SSIM is calculated as:

SSIM(x, y) =

(
2μxμy + C1

)(
2σxy + C2

)(
μ2

x + μ2
y + C1

)(
σ2

x + σ2
y + C2

) (12)

where:
μx and μy are the mean intensities of images x and y.
σ2

x and σ2
y are the variances of the images x and y, respectively.

σxy is the covariance between the images.
C1 and C2 are constants to stabilize the division when the denominator is close to zero.
SSIM values above 0.85 indicate that the structural content of the image is well pre-

served, and there is minimal distortion. Ideal SSIM values for high-quality biological
microscopy images range between 0.90 and 0.99, indicating that the structural similarity
between the noisy and denoised images is high [19,26].

Root Mean Squared Error (RMSE)

Root mean squared error (RMSE) measures the pixel-wise error between the noisy
input and the denoised output. Lower RMSE values indicate better performance, with
fewer deviations between the noisy and denoised images. RMSE is particularly useful
for quantifying how accurately the algorithm has reconstructed the image from noisy
input [21].

RMSE =

√
1
N ∑N

i=1

(
Inoisy,i − Idenoised,i

)2 (13)

where:
N is the total number of pixels in the image.
Ioriginal and Ideblurred are the pixel intensities in the original and deblurred images,

respectively.
Lower RMSE values indicate better performance. In microscopy, RMSE values below

0.10 are preferred, with values closer to 0.01–0.05 representing excellent noise reduction
and minimal pixel-wise error [25,32].
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Fourier Ring Correlation (FRC) Analysis

Fourier ring correlation (FRC) is used to assess how well the spatial frequency compo-
nents of the denoised image match those of the original noisy image. FRC is essential for
evaluating the retention of high-frequency information, which corresponds to the sharpness
and fine details in the image [24,25].

FRC =
∑iεR( f ) FFT1(i)·FFT2(i)√

∑iεR( f )|FFT1(i)|2·∑iεR( f )|FFT1(i)|2
(14)

where:
FFT1 and FFT2 are the Fourier transforms of the original and denoised images.
R( f ) represents the pixels corresponding to the frequency f .
The numerator measures the cross-power spectrum between the two images, and the

denominator normalizes it by accounting for the energy of each image.
Higher FRC values indicate that the denoising algorithm has preserved high-frequency

information, which is indicative of maintaining sharpness and fine details in the images.
FRC values closer to 1 indicate better retention of structural details at high spatial frequen-
cies. Preferred values typically range between 0.7 and 1.0, with higher values indicating
excellent resolution and detail preservation in the denoised images [23,33].

2.4.5. Postprocessing

After applying zero-shot and self-supervised learning algorithms, postprocessing
techniques such as image segmentation and enhancement are employed to further refine
the output. Image segmentation isolates key regions of interest within the image, while en-
hancement improves visual clarity and contrast, highlighting critical features for evaluation.
These steps ensure that the final images are optimized for interpretation and subsequent
quantitative evaluation using PSNR, SSIM, RMSE, and FRC.

3. Results

We evaluated five zero-shot and self-supervised learning models—ZS-DeconvNet,
Noise2Noise, Noise2Void, Deep Image Prior (DIP), and Self2Self—across four distinct
multi-modal Raman light sheet microscopy modalities. The results were analyzed based
on quantitative metrics, including PSNR, SSIM, RMSE, and FRC, combined with detailed
visual comparisons.

3.1. Modality 1: Laser: 785 nm; Rayleigh Scattering; AOTF: 775 nm; Sample Type: 14C
(Section 2.1)

In the first modality, Rayleigh scattering was imaged using a 785 nm laser, with
scattered light filtered through an acousto-optic tunable filter (AOTF) centered at 775 nm to
enhance spectral selectivity and minimize background noise. This setup introduces strong
noise in regions with low signal intensity. This setup is used for imaging 14C-untreated
samples (refer to Section 2.1), where the goal is to enhance image clarity without losing
important structural details.

3.1.1. Image Comparison

Figure 3 presents a visual comparison of the denoised images produced by ZS-
DeconvNet (Figure 3b), Noise2Noise (Figure 3c), Noise2Void (Figure 3d), DIP (Figure 3e),
and Self2Self (Figure 3f), with the original noisy image (Figure 3a) included for reference.
Each model exhibits varying levels of noise suppression and structural recovery.
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Figure 3. Visual comparison of original and denoised images for all zero-shot and self-supervised
learning models for the 785 nm laser and Rayleigh scattering for the untreated 14C samples (refer to
Section 2.1).

3.1.2. Quantitative Evaluation

To quantitatively assess the model’s performance, we computed PSNR, SSIM, RMSE,
and FRC metrics, as shown in Figure 2c. These metrics provide a comprehensive under-
standing of how well each model balances noise suppression, structural preservation, and
high-frequency detail recovery. The PSNR (Figure 4a), SSIM (Figure 4b), RMSE (Figure 4c),
and FRC (Figure 4d) analyses for the Rayleigh modality using the 785 nm laser on 14C-
untreated samples demonstrate the relative strengths and weaknesses of the tested models.
Noise2Void, DIP, and Self2Self emerged as the top performers, achieving the highest PSNR
(>40 db), SSIM (close to 1.0), and very low RMSE, maintaining high FRC values, indicating
excellent noise suppression and structural preservation. ZS-DeconvNet was moderately
effective in noise reduction but struggled to retain structural integrity. Noise2Noise per-
formed better than ZS-DeconvNet with higher PSNR, higher SSIM, lower RMSE, and better
information retention, as shown by the FRC curve.

3.2. Modality 2: Laser: 785 nm; Fluorescence Scattering; AOTF: 694 nm; Sample Type: 14C
(Section 2.1)

In the first modality, fluorescence scattering at 694 nm using a 660 nm laser introduces
strong noise in regions with low signal intensity. This setup was used for imaging 14C-
untreated samples (refer to Section 2.1), where the goal is to enhance image clarity without
losing important structural details.

3.2.1. Image Comparison

Figure 5 presents a visual comparison of the denoised images produced by ZS-
DeconvNet (Figure 5b), Noise2Noise (Figure 5c), Noise2Void (Figure 5d), DIP (Figure 5e),
and Self2Self (Figure 5f), with the original noisy image (Figure 5a) included for reference.
Each model exhibits varying levels of noise suppression and structural recovery.
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Figure 4. PSNR (a), SSIM (b), and RMSE (c) histograms and FRC curves (d) for the 14C-untreated
samples and Rayleigh scattering using the 785 nm laser.

Figure 5. Visual comparison of original and denoised images for all zero-shot and self-supervised
learning models for the 660 nm laser and fluorescence scattering for the untreated 14C samples (refer
to Section 2.1).
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3.2.2. Quantitative Evaluation

To quantitatively assess the model’s performance, we computed PSNR, SSIM, RMSE,
and FRC metrics, as shown in Figure 2c. These metrics provide a comprehensive under-
standing of how well each model balances noise suppression, structural preservation, and
high-frequency detail recovery. The PSNR (Figure 6a), SSIM (Figure 6b), RMSE (Figure 6c),
and FRC (Figure 6d) analyses for the fluorescence modality using the 785 nm laser on
14C-untreated samples demonstrate the relative strengths and weaknesses of the tested
models. Noise2Void, DIP, and Self2Self again emerged as the top performers, achieving the
highest PSNR (~40 db), SSIM (close to 1.0), and very low RMSE (0.004–0.01), maintaining
high FRC values, indicating excellent noise suppression and structural preservation. ZS-
DeconvNet performed better in noise reduction but struggled to retain structural integrity.
Noise2Noise performed well in noise reduction but failed to retain structural integrity.

Figure 6. PSNR (a), SSIM (b), and RMSE (c) histograms and FRC curves (d) for the 14C-untreated
samples and fluorescence scattering using the 785 nm laser.

3.3. Modality 3: Laser: 660 nm; Raman Scattering; AOTF: 817 nm; Sample Type: Treated 11B
(Section 2.1)

In this modality, we evaluate Raman signals from 11B-treated samples, which have
high noise levels and complex subcellular structures. The challenge lies in suppressing
noise while retaining subtle structural details.
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3.3.1. Image Comparison

Figure 7 presents a visual comparison of the denoised images produced by ZS-
DeconvNet (Figure 7b), Noise2Noise (Figure 7c), Noise2Void (Figure 7d), DIP (Figure 7e),
and Self2Self (Figure 7f) with the original noisy image (Figure 7a) included for reference.
Each model exhibits varying levels of noise suppression and structural recovery.

Figure 7. Visual comparison of original and denoised images for all zero-shot and self-supervised
learning models for the 660 nm laser and Raman scattering for the treated 11B samples (refer to
Section 2.1).

3.3.2. Quantitative Evaluation

The PSNR (Figure 8a), SSIM (Figure 8b), RMSE (Figure 8c), and FRC (Figure 8d) analy-
ses for the Raman modality using the 660 nm laser on 11B-treated samples demonstrate
the relative strengths and weaknesses of the tested models. ZS-DeconvNet emerged as
winner for this modality providing the clearest results—PSNR (~30 db), SSIM (~0.9), and
very low RMSE (0.004–0.01), maintaining acceptable FRC values, indicating excellent noise
suppression and structural preservation. Noise2Noise, Noise2Void, DIP, and Self2Self also
showed improvement in image quality.

3.4. Modality 4: Laser: 660 nm; Raman Scattering; AOTF: 817 nm; Sample Type: Untreated 11B
(Section 2.1)

In this modality, we evaluate Raman signals from 11B-untreated samples, which have
high noise levels and complex subcellular structures. The challenge lies in suppressing
noise while retaining subtle structural details.

3.4.1. Image Comparison

Figure 9 presents a visual comparison of the denoised images produced by ZS-
DeconvNet (Figure 9b), Noise2Noise (Figure 9c), Noise2Void (Figure 9d), DIP (Figure 9e)
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and Self2Self (Figure 9f) with the original noisy image (Figure 9a) included for reference.
Each model exhibits varying levels of noise suppression and structural recovery.

Figure 8. PSNR (a), SSIM (b), and RMSE (c) histograms and FRC curves (d) for the 11B-treated
samples and Raman scattering using the 660 nm laser.

3.4.2. Quantitative Evaluation

Noise2Void, DIP and Self2Self again emerged as the top performers, achieving the
highest PSNR (>40 db, Figure 10a), SSIM (close to 1.0, Figure 10b), and very low RMSE
(0.004–0.01, Figure 10c), maintaining high FRC values (Figure 10d), indicating excellent
noise suppression and structural preservation. ZS-DeconvNet performed better in noise
reduction but struggled to retain structural integrity. Noise2Noise performed well in noise
reduction but failed to retain structural integrity.
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Figure 9. Visual comparison of original and denoised images for all zero-shot and self-supervised
learning models for the 660 nm laser and Raman scattering for the untreated 11B samples (refer to
Section 2.1).

Figure 10. PSNR (a), SSIM (b), and RMSE (c) histograms and FRC curves (d) for the 11B-untreated
samples and Raman scattering using the 660 nm laser.
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3.5. Training Convergence: Loss vs. Epoch Curves

Figure 11 illustrates the loss vs. epoch curves for the ZS-DeconvNet, Noise2Noise,
Noise2Void, DIP, and Self2Self models. The graph shows the first 25 epochs for clarity, al-
though the models were trained for different total epochs: ZS-DeconvNet and Noise2Noise
were trained for 100 epochs, while Noise2Void, DIP, and Self2Self were trained for 1000
epochs each (refer to Table 2). All models demonstrate a consistent reduction in loss as the
training progresses, reflecting effective optimization across the different architectures. ZS-
DeconvNet and Noise2Void exhibit similar convergence profiles, with a steady decline in
loss throughout the epochs. Noise2Noise shows a faster reduction in loss during the initial
epochs, while DIP and Self2Self exhibit a more gradual but continuous loss minimization
over the training period.

Figure 11. Loss vs. epoch curves for all zero-shot and self-supervised learning algorithms, reflecting
overall training performance across all modalities described in Section 3.1.

Table 2. Selected parameters and hyperparameters of zero-shot and self-supervised algorithms for
training.

Models
Learning

Rate
Epochs Optimizer

Loss
Function

Batch Size

ZS-DeconvNet 0.001 100 Adam MSE 1

Noise2Noise 0.001 100 Adam MSE 1

Noise2Void 0.001 1000 Adam MSE 1

DIP 0.001 1000 Adam MSE 1

Self2Self 0.001 1000 Adam MSE 1

These results indicate that all models successfully converge, with steady improvements
in loss as the number of epochs increases, signifying effective learning and optimization of
the respective models.
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4. Discussion

In this study, we performed an extensive comparative evaluation of five state-of-the-
art zero-shot and self-supervised learning methods for denoising and super-resolution in
multi-modal Raman light sheet microscopy. The models—ZS-DeconvNet, Noise2Noise,
Noise2Void, Deep Image Prior (DIP), and Self2Self—were evaluated across key quantitative
metrics, including PSNR, SSIM, RMSE, and FRC. Across all modalities tested, we observed
consistent trends in performance with DIP, Noise2Void, and Self2Self demonstrating supe-
rior capabilities in preserving both image fidelity and structural detail, while ZS-DeconvNet
and Noise2Noise showed limitations under certain conditions.

4.1. Model Performance Across Modalities and Samples

A key finding of this study is the consistent performance of DIP, Noise2Void, and
Self2Self across different imaging modalities—Rayleigh scattering, fluorescence, and Raman
imaging—and varying sample conditions (both treated and untreated). These models
consistently achieved high PSNR and SSIM values, indicating their robustness in noise
suppression while retaining essential structural information.

In modality 1 (Table 1) (Laser: 785 nm, Rayleigh scattering, AOTF: 775 nm, Sample:
Untreated 14C), DIP achieved the highest PSNR (41.83 dB) and FRC (0.994) values, in-
dicating excellent noise reduction and preservation of high-frequency details critical for
molecular imaging. Noise2Void performed similarly, with a PSNR of 38.96 dB and FRC
of 0.997, demonstrating its ability to effectively handle different noise profiles without
requiring paired data or external labels. These results are consistent with previous research
highlighting the ability of these models to generalize well across various noisy datasets,
especially in biomedical imaging [15,23].

Self2Self (Table 3), which uses dropout-based regularization, performed robustly with
a PSNR of 39.15 dB and FRC of 0.994. Its adaptability to both treated and untreated
samples made it an excellent choice for high-noise environments, where it maintained
high-frequency information, crucial for subcellular structure preservation [34].

Table 3. Quantitative comparison of zero-shot and self-supervised learning models using PSNR,
SSIM, RMSE, and FRC metrics for modality 1 (Laser: 785 nm, Rayleigh scattering, AOTF: 775 nm,
Sample: Untreated 14C).

Model PSNR (dB) SSIM RMSE FRC

ZS-DeconvNet 14.06 0.07 0.19 0.430
Noise2Noise 18.40 0.33 0.12 0.720
Noise2Void 38.96 0.96 0.01 0.997

DIP 41.83 0.95 0.008 0.994
Self2Self 39.15 0.91 0.01 0.994

Similarly, for modality 2 (Table 4) (Laser: 660 nm, Fluorescence scattering, AOTF: 694
nm, Sample: Untreated 14C), the DIP, Noise2Void, and Self2Self models performed better
than ZS-DeconvNet and Noise2Noise.

Table 4. Quantitative comparison of zero-shot and self-supervised learning models using PSNR,
SSIM, RMSE, and FRC metrics for modality 2 (Laser: 660 nm, Fluorescence scattering, AOTF: 694 nm,
Sample: Untreated 14C).

Model PSNR (dB) SSIM RMSE FRC

ZS-DeconvNet 13.34 0.076 0.215 0.050
Noise2Noise 31.30 0.150 0.027 0.171
Noise2Void 44.60 0.828 0.006 0.924

DIP 44.74 0.810 0.006 0.936
Self2Self 41.52 0.735 0.008 0.889
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The performance of these three models (DIP, Noise2Void, and Self2Self) across both the
treated 11B and untreated 11B samples showed remarkable consistency (Tables 5 and 6) for
Raman scattering using the 660 nm laser. In the treated 11B samples, where biomolecular
markers and fluorescence signals were enhanced, the models excelled in noise suppression
while preserving structural integrity, as reflected in SSIM values ranging from 0.90 to
0.99. In the untreated samples, which presented higher noise levels, Self2Self, DIP, and
Noise2Void still maintained FRC values near 1.0, indicating their strong performance in
retaining high-resolution details despite the more challenging noise conditions.

Table 5. Quantitative comparison of zero-shot and self-supervised learning models using PSNR,
SSIM, RMSE, and FRC metrics for modality 3 (Laser: 660 nm, Raman scattering, AOTF: 817 nm,
Sample: Treated 11B).

Model PSNR (dB) SSIM RMSE FRC

ZS-DeconvNet 14.34 0.267 0.192 0.319
Noise2Noise 30.51 0.790 0.0298 0.592
Noise2Void 46.49 0.986 0.005 0.993

DIP 47.87 0.988 0.004 0.992
Self2Self 41.35 0.959 0.0085 0.980

Table 6. Quantitative comparison of zero-shot and self-supervised learning models using PSNR,
SSIM, RMSE, and FRC metrics for modality 3 (Laser: 660 nm, Raman scattering, AOTF: 817 nm,
Sample: Untreated 11B).

Model PSNR (dB) SSIM RMSE FRC

ZS-DeconvNet 14.43 0.290 0.189 −0.066
Noise2Noise 32.96 0.773 0.022 0.041
Noise2Void 48.43 0.991 0.004 0.934

DIP 50.62 0.993 0.003 0.928
Self2Self 40.81 0.954 0.009 0.836

In contrast, ZS-DeconvNet and Noise2Noise showed significantly lower performance
in the treated 11B and untreated 11B samples, where the absence of enhanced signals made
noise suppression more difficult. ZS-DeconvNet, with a PSNR of 14.34 dB for the treated
11B samples and 14.43 dB for the untreated 11B samples and an FRC of 0.319 and −0.066,
demonstrated strong smoothing but failed to retain fine structural details, particularly in the
11B-untreated Raman imaging. Noise2Noise performed little better than ZS-DeconvNet.

4.2. Generalization Across Modalities and Noise Profiles

An important observation from this study is the generalizability of DIP, Noise2Void,
and Self2Self across all tested modalities and varying noise levels. These models demon-
strated the ability to retain high-resolution structural features, as indicated by their consis-
tently high FRC values (0.994–0.997), even in challenging conditions like Rayleigh scattering
and untreated samples with weaker Raman signals. This is critical for multi-modal mi-
croscopy where noise characteristics vary significantly depending on both the imaging
technique and sample type.

The self-supervised nature of these models—particularly Noise2Void and Self2Self
—allowed them to adapt to diverse noise profiles without requiring paired training data,
making them especially suitable for applications where labeled datasets are unavailable
or difficult to generate [15,34]. In contrast, models like Noise2Noise, which rely on paired
noisy data, struggled in real-world scenarios where such data are scarce.

The high PSNR values achieved by DIP and Noise2Void across all imaging conditions
indicate that these models are well suited for tasks requiring high-fidelity restoration of
subcellular structures. Their performance in untreated samples further highlights their
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potential for applications where noise levels are unpredictable, such as live-cell imaging or
dynamic microscopy [18].

In summary, DIP, Noise2Void, and Self2Self proved to be the most robust across all
modalities and noise conditions, making them excellent candidates for real-time imaging
applications where maintaining high-resolution detail is paramount. Noise2Noise and
ZS-DeconvNet, while effective in certain modalities, struggled with more complex noise
profiles, limiting their broader applicability in multi-modal imaging tasks.

5. Conclusions

This study provides an in-depth comparative evaluation of five advanced zero-shot
and self-supervised learning models—ZS-DeconvNet, Noise2Noise, Noise2Void, Deep
Image Prior (DIP), and Self2Self—for denoising and super-resolution in multi-modal Ra-
man light sheet microscopy applied to the visualization of 3D cell cultures. Across diverse
modalities, including Rayleigh scattering, fluorescence, and Raman imaging, and across
both treated and untreated samples, DIP, Noise2Void, and Self2Self consistently delivered
the best results, achieving high PSNR, SSIM, and FRC values. DIP achieved the highest
PSNR of >40 dB across different modalities and samples, demonstrating its unique ability
to balance noise suppression with the preservation of fine structural details. Leveraging
the inherent structure of convolutional neural networks as a prior, DIP operates in com-
pletely unsupervised manner, without requiring explicit training data, enabling adaptive
regularization that excels in scenarios where labeled datasets are unavailable. Noise2Void
and Self2Self provided similarly strong performance, with FRC values near 1.0, indicating
their robustness in maintaining high-frequency structural information.

In contrast, ZS-DeconvNet and Noise2Noise showed limited effectiveness, particularly
in high-noise environments, with ZS-DeconvNet using corrupted noise pairs within a zero-
shot framework, struggled with the complex noise patterns characteristic of spheroid
imaging, often resulting in oversmoothing and the loss of high-frequency details; similarly,
Noise2Noise’s reliance on paired noisy datasets restricted its adaptability, highlighting the
need for further optimization in these models. These findings reinforce the potential of
self-supervised learning techniques, particularly in contexts where acquiring large labeled
datasets is impractical.

The broader applicability of these methods to other imaging modalities, such as MRI,
CT, and super-resolution microscopy, presents a promising direction for future research.
Expanding these models to handle 3D volumetric data and exploring hybrid architectures
could further enhance their utility in real-time biological imaging. Overall, this study
demonstrates the versatility and effectiveness of self-supervised and zero-shot learning
models for improving image quality in biomedical microscopy.
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Abstract: This study presents an advanced integration of Multi-modal Raman Light Sheet Microscopy
with zero-shot learning-based computational methods to significantly enhance the resolution and
analysis of complex three-dimensional biological structures, such as 3D cell cultures and spheroids.
The Multi-modal Raman Light Sheet Microscopy system incorporates Rayleigh scattering, Raman
scattering, and fluorescence detection, enabling comprehensive, marker-free imaging of cellular
architecture. These diverse modalities offer detailed spatial and molecular insights into cellular
organization and interactions, critical for applications in biomedical research, drug discovery, and
histological studies. To improve image quality without altering or introducing new biological
information, we apply Zero-Shot Deconvolution Networks (ZS-DeconvNet), a deep-learning-based
method that enhances resolution in an unsupervised manner. ZS-DeconvNet significantly refines
image clarity and sharpness across multiple microscopy modalities without requiring large, labeled
datasets, or introducing artifacts. By combining the strengths of multi-modal light sheet microscopy
and ZS-DeconvNet, we achieve improved visualization of subcellular structures, offering clearer
and more detailed representations of existing data. This approach holds significant potential for
advancing high-resolution imaging in biomedical research and other related fields.

Keywords: raman scattering; rayleigh scattering; zero-shot deconvolution networks; denoising; fluorescence;
light sheet; microscopy; spheroid; multimode; hyperspectral; deep learning; super-resolution

1. Introduction

Advances in imaging technologies have transformed the study of complex biologi-
cal systems, particularly in the analysis of three-dimensional (3D) cellular structures. In
biomedical research and histology, the ability to accurately visualize and analyze 3D cell
cultures, such as spheroids, is critical for understanding cellular behavior, interaction,
and function [1]. High-resolution imaging tools and techniques are vital for gaining in-
sights into cellular organization and molecular dynamics, which are essential for fields like
drug development and disease modeling. Multi-modal Raman Light Sheet Microscopy
has emerged as a highly effective tool for these purposes, combining elastic and inelastic
light scattering, including Rayleigh and Stokes Raman scattering, along with fluorescence
detection, to provide high-resolution, marker-free imaging of biological samples. The
principle of Multi-modal Raman Light Sheet Microscopy is shown in Figure 1. This tech-
nique facilitates the reconstruction of comprehensive 3D images, capturing both spatial and
molecular information crucial for studies in tissue engineering, cancer biology, and drug
development [2,3]. The Multi-modal Raman Light Sheet Microscope is specifically designed
to overcome some of the key challenges in biological imaging, such as maintaining the
native state of live tissues and cell cultures during imaging [4]. By utilizing the intrinsic
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molecular properties of Rayleigh and Raman scattering, this technique eliminates the need
for external fluorescent markers, thereby reducing potential sample perturbations and
preserving physiological conditions [2,5]. This is especially valuable in dynamic, live-cell
imaging, where maintaining cellular viability is critical. Moreover, by combining multiple
imaging modalities, this system offers a detailed, multi-layered view of both structural
and biochemical aspects of the sample, making it a versatile tool in a variety of biomedical
applications [6].

 

Figure 1. Principle of light sheet microscopy. Excitation and collection axes are orthogonally oriented
with the sample placed at their intersection. A laser beam is shaped into a sheet and illuminates a
thin section of the sample in the focal plane of the detection objective. The objective images the plane
onto a camera chip [2].

However, while Multi-modal Raman Light Sheet Microscopy offers significant ad-
vancements in imaging 3D structures, its resolution is still constrained by the diffraction
limit of light, and conventional imaging methods are often hampered by noise and signal
degradation, particularly in low-light or long-term imaging conditions [2]. To address these
challenges, computational super-resolution techniques [7,8] have been developed, with
recent breakthroughs in machine learning offering new avenues for enhancing imaging
performance [7,9]. Among these, Zero-Shot Deconvolution Networks (ZS-DeconvNet)
have shown considerable promise in improving image resolution in real-time and in an
unsupervised manner, without the need for large training datasets [10]. ZS-DeconvNet uti-
lizes a CNN-based encoder–decoder structure to achieve computational super-resolution,
enhancing spatial resolution by denoising and recovering high-frequency details beyond
the optical limits of traditional microscopy. This approach allows visualization of sub-
diffraction structures without additional hardware, thereby significantly increasing imaging
detail and accuracy. ZS-DeconvNet enhances the resolution of microscope images without
requiring ground truth data or additional data acquisition steps, making it particularly
suitable for imaging dynamic biological processes [10].

In this study, we incorporate ZS-DeconvNet into multi-modal Raman light sheet
microscopy to create a highly advanced imaging platform capable of delivering high-
resolution images. The novelty of this approach lies in ZS-DeconvNet’s zero-shot learning
capability, allowing adaptive image enhancement across multiple microscopy modalities
without pre-training or modality-specific tuning. This multimodal adaptability provides
a unified solution for image enhancement, efficiently overcoming modality-specific chal-
lenges in fluorescence, Raman, and other microscopy techniques. By integrating cutting-
edge computational techniques with Multi-modal Light Sheet Microscopy, we aim to sig-
nificantly improve both the spatial and molecular resolution of biological imaging [11–13].
This combined approach provides new opportunities for real-time visualization of complex
cellular structures and dynamic processes, with far-reaching implications for biomedical
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research, cellular biology, and therapeutic development. Spheroids derived from head
and neck squamous cell carcinoma (HNSCC) are particularly valuable in cancer research
due to their resemblance to in vivo tumor architecture and behavior, including response
to chemotherapeutics. In this study, we use UMSCC-11B cells, which are derived from
HPV-negative HNSCC cell lines, to demonstrate the capabilities of Multi-modal Raman
Light Sheet Microscopy enhanced by ZS-DeconvNet. Additionally, we explore the effect
of the chemotherapeutic agent cisplatin on these spheroids, providing insights into both
imaging and drug-response dynamics.

2. Materials and Methods

2.1. The Enhanced Multi-Modal Raman Light Sheet Microscopy with Zero-Shot Denoising
Integration

This study utilizes an advanced Multi-modal Raman Light Sheet Microscope combining
Rayleigh scattering, Raman scattering, and fluorescence emission for high-resolution, two-
dimensional imaging of biological samples such as 3D spheroids and cell cultures [2,14–16].
The system integrates Zero-Shot Deconvolution Networks (ZS-DeconvNet), an advanced
unsupervised deep learning technique to enhance image quality by significantly reducing
noise without the need for additional training datasets or reference images [10,17].

2.2. Multi-Model Light Sheet Microscope Design

The Multi-modal Raman Light Sheet Microscope is based on the OpenSPIM plat-
form [18], with significant enhancements to incorporate multi-modal imaging capabilities.
The optical system consists of three primary components: the beam-shaping and illumina-
tion optics, the spectral selection and imaging optics, and the precision sample positioning
system (Figure 2) (Table 1).

  

a b 

Figure 2. (a) Isometric view of the Raman light sheet microscope CAD model with connected sCMOS
camera. The colored lines indicate the optical path of the illuminating lasers. Red: 660 nm beam
propagation. Green: 785 nm beam propagation. Blue coaxial superimposed 660 nm and 785 nm beam
propagation [2]. (b) Sample chamber (24), where sample is placed.
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Table 1. Optical and mechanical components used in the Raman light sheet microscope.

No. Component Specification Manufaturer

1 LuxX Laser 785 nm, adjustable laser power
0.5–200 mW

Omicron GmbH (Dudenhofen
Germany)

2 LuxX Laser 660 nm, adjustable laser power
0.5–130 mW Omicron GmbH

3,5,8
Broadband mirror, Ø25.4 mm, EO2 coated,
mounted in Polaris K1 Kinematic Mirror

Mount

Thorlabs GmbH (Lübeck,
Germany)

4,6
Broadband mirror, Ø25.4 mm, EO3 coated,
mounted in Polaris K1 Kinematic Mirror

Mount
Thorlabs GmbH

7
BrightLine laser dichroic beamsplitter,

25 mm × 36 mm, reflection band 350–671 nm,
transmission band 702–1200 nm

Semrock (New York, NY, USA)

9
Mounted achromatic doublet lens, Ø12.7 mm,

focal length 25 mm, anti-reflex coating
400–1100 nm

Thorlabs GmbH

10
Mounted achromatic doublet lens, Ø12.7 mm,

focal length 50 mm, anti-reflex coating
400–1100 nm

Thorlabs GmbH

11
Mounted cylindrical achromatic doublet lens,

Ø25.4 mm, focal length 50 mm, anti-reflex
coating 650–1050 nm

Thorlabs GmbH

12
UMPLFLN10XW water dipping objective,
magnification 10×, numerical aperture 0.3,

working distance 3.5 mm
Evident (Hamburg, Germany)

13
UMPLFLN20XW water dipping objective,
magnification 20×, numerical aperture 0.5,

working distance 3.5 mm
Evident

14 Acousto-Optic Tunable Filter (AOTF), spectral
range 550–1000 nm Brimrose

15 Polarization filter Thorlabs GmbH

16 6-position motorized filter wheel Thorlabs GmbH

17 Longpass filter, 660 nm Semrock

18 Notch filter, 660 nm Semrock

19 Shortpass filter, 660 nm Semrock

20 Longpass filter, 785 nm Semrock

21a Tube lens U-TLU and C-mount (U-TV0.5XC-3) Evident

21b Aspheric condenser lens, Ø25 mm, focal length
20 mm, anti-reflex coating 650–1050 nm Thorlabs GmbH

22a sCMOS camera ORCA Flash 4.0 LT+ Hamamatsu (Herrsching,
Germany)

22b CXY1 two-axis translating lens mount, Ø550
μm optic fiber Thorlabs GmbH

23 USB-4D stage (X, Y, Z, R) Picard-Industries (Albion, NY,
USA)

24 Sample chamber, aluminum mounting frame,
acrylic water chamber

CeMOS Research and Transfer
Center (Mannheim, Germany)

25 MultiSpec® Raman spectrometer tec5 GmbH (Steinbach, Germany)
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• Excitation Lasers: Two continuous-wave lasers, with emission wavelengths of 660 nm
and 785 nm, are used to excite Rayleigh and Raman scattering, respectively. The
660 nm laser is optimized for fluorescence imaging while minimizing autofluorescence,
and the 785 nm laser enhances Raman scattering signals. Adjustable power outputs
(0.5–130 mW for 660 nm and 0.5–200 mW for 785 nm) allow fine control of illumination
intensity. Both laser beams are collimated and aligned coaxially using a series of
broadband mirrors and dichroic splitters.

• Beam Shaping: The laser beams are expanded using a Keplerian telescope sys-
tem formed by achromatic doublets, which increase the illuminated field of view
without compromising beam focus. A cylindrical lens focuses the expanded beam
into a static light sheet, projected into the sample chamber through a 10× water
immersion objective.

• Imaging Optics: Photons scattered and emitted by the sample are collected by a 20×
water immersion detection objective, positioned orthogonally to the light sheet for
optimal detection. An Acousto-Optic Tunable Filter (AOTF) enables precise spectral
selection with a 2 nm bandwidth, allowing for fine control over the wavelengths
collected. Additional long-pass and short-pass filters further refine the detected signal.
A high-sensitivity sCMOS camera (Hamamatsu ORCA Flash 4.0 LT+) is used for image
acquisition, operating in a 1024 × 1024 pixel mode optimized for low-light conditions.

2.3. Sample Preparation and Positioning

Biological samples, including 3D spheroids and cell cultures, were prepared following
standard protocols. Samples were embedded in a low-scattering hydrogel matrix, ensuring
both optical transparency and the preservation of physiological conditions during imaging.
This approach minimized scattering while maintaining an environment conducive to
cellular function.

2.3.1. Cell Culture and Spheroid Formation

For this study, spheroids were generated using HPV-negative head and neck squamous
cell carcinoma (HNSCC) cell lines, UMSCC-11B, provided by Dr. Thomas Carey from the
University of Michigan. UMSCC-11B was derived from a laryngeal carcinoma.

Monoculture Spheroids

The UMSCC-11B cell lines were cultured in Eagle’s Minimum Essential Medium (EMEM,
Lonza, United States (Walkersville, Maryland)), supplemented with 10% fetal bovine serum
(FBS) and 1% Penicillin/Streptomycin (Pen/Strep). Cells were incubated at 37 ◦C in a hu-
midified atmosphere with 5% CO2. Once cells reached confluency, they were washed with
Dulbecco’s phosphate-buffered saline (DPBS) and detached using Trypsin/EDTA. The total
number of cells was determined using a Neubauer hemocytometer.

For spheroid formation, UMSCC-11B cells were seeded into 96-well ultra-low attach-
ment (ULA) round-bottom plates (ThermoFisher Scientific, Mannheim, Germany) at a
density of 2.5 × 104 or 5 × 104 cells per well. Spheroids were cultured for up to eight days,
with media changes on days 3, 5, and 8. After spheroids reached the desired size, typically
around 300–400 μm in diameter, they were prepared for subsequent imaging experiments.

Drug Treatment of Spheroids

To explore the effects of drug treatment, spheroids were treated with the chemother-
apy drug cisplatin (Selleck Chemicals) during the course of their formation. On day 4 of
spheroid culture, cisplatin was added to designated wells at concentrations of 50 μM or
100 μM, while control spheroids were treated with an equivalent volume of dimethyl sul-
foxide (DMSO). Following drug treatment, the spheroids were incubated for an additional
48 or 72 h to assess the impact on morphology and viability.
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Spheroid Fixation

At the end of the treatment period, both treated and untreated spheroids were
fixed in 4% formalin for subsequent imaging using multi-modal Raman light sheet mi-
croscopy. Fixation ensured the structural integrity of the spheroids during the imaging and
analysis processes.

2.3.2. Sample Mounting

For imaging, the spheroids were mounted in a custom-designed 3D-printed hydrogel
carrier (Figure 3a,b). This carrier was optimized to precisely align the spheroids within the
light sheet and the focal plane of the detection objective. Additionally, the carrier’s design
allowed for rotational adjustments, facilitating multi-view imaging from different angles.

  

a b 

Figure 3. (a) CAD model of a multi-view sample carrier and corresponding frame for embedding
spheroid samples in hydrogels. This sample is located in the sample chamber shown in Figure 2b.
(b) Sample holder system consisting of gel chamber with cylindrical extension, casting frame and
negative mold for precise, reproducible embedding of spheroids in hydrogel.

2.3.3. Environmental Control

During imaging, the sample chamber was maintained at 37 ◦C, with a regulated
atmosphere containing 5% CO2 to preserve sample viability over the course of extended
imaging sessions. A 4D positioning stage enabled precise movement along the X, Y, and Z
axes, with rotational adjustments for consistent sample alignment and accurate positioning
within the microscope’s field of view.

2.4. Zero-Shot Deconvolution Network (ZS-DeconvNet)

ZS-DeconvNet is an advanced machine-learning-based denoising algorithm designed
to enhance image quality by reducing noise and preserving fine structural details. Unlike
traditional supervised deep learning methods, ZS-DeconvNet operates in an unsupervised
manner, requiring no ground-truth data or pre-trained models [10,19].

Mathematical Model of ZS-DeconvNet

The network minimizes noise in the acquired images using a self-supervised learning
framework. The objective function for ZS-DeconvNet is formulated as:

L(θ) = ||Iraw − Idenoised(θ)||2 + λ
∣∣∣|∇Idenoised(θ)|

∣∣∣
where:

Iraw represents the noisy input image.
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Idenoised(θ) represents the output of the neural network after applying the network’s
parameters (θ).

λ is a regularization term controlling the smoothness of the denoised image.
∇Idenoised(θ) represents the image gradients, ensuring that edges are preserved during

denoising.
The Zero-Shot Deconvolution Network (ZS-DeconvNet) was implemented to im-

prove the quality of the Raman Light Sheet Microscopy images by reducing noise and
enhancing resolution.

Network Architecture: ZS-DeconvNet

The ZS-DeconvNet is built on a CNN-based encoder-decoder architecture. The encoder
compresses the input image into a lower-dimensional latent space through a sequence of
Conv2D layers, each followed by batch normalization and max pooling. These layers are
designed to extract critical structural features from the image while progressively reducing
its dimensionality, enabling the model to focus on the most important information. The
decoder mirrors this process, gradually reconstructing the image by applying upsampling
and Conv2D layers. Additionally, skip connections between the encoder and decoder allow
the model to retain high-resolution details by concatenating features from earlier layers.
Finally, a sigmoid-activated Conv2D layer produces the denoised output.

During training, ZS-DeconvNet follows a zero-shot learning approach. Two corrupted
versions of the same image are generated—Denoised Image A and Denoised Image B
(Figure 4)—by adding and subtracting noise, respectively. The model learns to map
Denoised Image A (input) to Denoised Image B (target) without requiring a clean reference
image. This is achieved using a Mean Squared Error (MSE) loss function, which minimizes
the pixel-wise difference between the predicted and target images. By optimizing the MSE,
the network progressively improves its ability to remove noise and restore details from
noisy input data. Once the ZS-DeconvNet model is trained, it can be applied to new, unseen
noisy images, resulting a denoised version of the input image by leveraging the learned
features from the training process(Table 2).

Table 2. Description of Parameters/Hyperparameters used during ZS-DeconvNet Training.

ZS-DeconvNet Parameters/Hyperparameters Description/Details

Input Image type tiff/.tif

Input Image Size 1024 × 1024

Loss Function Mean Squared Error

Optimizer Adam

Epochs 100

Batch Size 1

Learning Rate 0.001

Evaluation Metrics PSNR, SSIM, RMSE, FRC

The ZS-DeconvNet is designed to generalize well to unseen data. The lack of a need for
pre-trained datasets enhances its flexibility, allowing it to be applied in image enhancement
tasks. This feature is particularly advantageous in applications such as cell imaging and
video microscopy, where pre-trained datasets may not be available or applicable (Figure 4).
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Original Image Output Image 

b c 

a 

Figure 4. (a) The Zero-Shot Deconvolution Network (ZS-DeconvNet) architecture outlines the training
workflow, encompassing pre-processing steps—such as corrupted image generation and median
filter-based denoising—as well as post-processing techniques, including region-of-interest (ROI)
image enhancement and morphological operations. The network’s performance is assessed using
PSNR, SSIM, and RMSE metrics to achieve enhanced image quality in Raman light sheet microscopy.
(b,c) represent the input (b) and output (c) of the ZS-DeconvNet architecture, as depicted in (a).

Performance Evaluation Metrics

To rigorously assess the performance of the ZS-DeconNet model in image enhance-
ment, we calculated various performance metrics: Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM), Root Mean Square Error and Fourier Ring Correlation
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(FRC). PSNR is used to assess the fidelity of a processed image in relation to an uncorrupted
reference. Higher PSNR values suggest that the denoised image retains fidelity to the
original structural and intensity details, confirming effective noise reduction and minimal
loss of crucial information. PSNR thus serves as a direct indicator of ZS-DeconvNet’s
ability to faithfully restore high-resolution detail, which is essential for accurate imaging in
microscopy. SSIM is a perceptual metric that quantifies structural similarity by evaluating
luminance, contrast, and spatial composition between the original and processed images.
Elevated SSIM scores demonstrate that ZS-DeconvNet not only reduces noise but also
maintains the image’s inherent structural relationships, essential for preserving context in
microscopy where spatial coherence is key to interpretation. SSIM is especially beneficial for
validating that enhanced images accurately reflect the morphology and structural integrity
of biological samples. RMSE quantifies the average deviation in pixel intensity between the
denoised and original images, offering a robust measure of reconstruction accuracy. Lower
RMSE values denote minimal divergence from the expected pixel values, highlighting the
model’s ability to precisely restore image content even under significant noise interfer-
ence. To objectively evaluate improvements in spatial resolution, we utilize Fourier Ring
Correlation (FRC), a frequency-domain metric that quantitatively assesses resolution by
comparing spatial frequency content before and after processing. FRC is widely used in
super-resolution microscopy and quantifies the effective resolution enhancement achieved
by ZS-DeconvNet. Unlike PSNR, SSIM, and RMSE, which primarily address image quality
and similarity, FRC directly measures resolution improvements, providing insight into the
model’s ability to recover or even enhance fine structural details. By achieving a higher FRC
resolution threshold, ZS-DeconvNet confirms its utility in super-resolution applications,
effectively distinguishing it as a powerful tool for high-resolution image enhancement in
multimodal microscopy.

Pre-processing: Before being fed into the ZS-DeconvNet, the raw images (Original
Image) undergo a series of crucial preprocessing steps aimed at preparing the data for
optimal denoising and model training. In the initial step I, two corrupted image pairs
(Image A, Image B) were generated by introducing Gaussian noise to the original image,
where Image A had added noise and Image B had inverted noise. After creating a corrupted
image pair from the Original Image, median filtering was applied to these images to
remove high-intensity “salt-and-pepper” noise, which is commonly seen in images captured
through noisy channels, such as biomedical imaging. A median filter with a kernel size of 3
was applied, effectively suppressing noise while preserving edges and fine details within
the image. This enhances the network’s ability to focus on meaningful structural elements
during training and inference, contributing to more precise noise removal. (ref. Figure 4)

These pairs serve as input (Denoised Image A) and target (Denoised Image B) images
during the training phase of ZS-DeconvNet. The model learns to predict Denoised Image B
from Denoised Image A, simulating a noise-to-noise learning framework.

Post-processing: Following the ZS-DeconvNet denoising process, additional post-
processing steps were performed, such as applying a region of interest (ROI) mask, applying
Median Filter with Kernal size 3, and enhancing contrast to refine the output image. Here
we also calculated PSNR, SSIM, RMSE, and FRC metrics for performance evaluation [19,20].
These enhancements further improved the clarity and usability of the denoised image by
focusing on key structures (Figure 4).

These operations help in emphasizing small structures within the spheroids, partic-
ularly in the cellular boundaries. If required, edge detection algorithms (such as Canny
edge detection) can also be applied to highlight critical boundaries and structural details.
This step is essential in the analysis of biological images, where the accurate delineation of
subcellular components plays a crucial role in data interpretation.
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3. Results

3.1. Denoising Performance and Image Clarity

This study assesses the denoising performance of ZS-DeconvNet on 11B spheroid
samples, comparing both treated and untreated conditions following exposure to 50 μM
cisplatin for 72 h (refer to the Sample Preparation section for further details). Images
were captured using two laser excitations, 660 nm and 785 nm, and processed across
multiple imaging modalities. The primary objective was to determine the effectiveness of
ZS-DeconvNet in reducing noise while preserving critical image features, and to identify
any structural or molecular changes induced by the treatment in the spheroids.

Laser Excitation at 660 nm: For the 660 nm laser, three distinct modalities were used:

(1) Rayleigh Scattering (Power: 1 mW and AOTF: 650 nm): The raw images captured
using 660 nm Rayleigh scattering were heavily impacted by noise, making it difficult
to discern fine structural details in both treated and untreated spheroids. As demon-
strated in Figure 5a,b, the original image (left) contains substantial noise that obscures
surface-level information. After applying ZS-DeconvNet, the denoised image (right)
exhibited a marked reduction in noise, allowing for the visualization of key features
that were previously hidden. The treated spheroids exposed to 50 μM cisplatin for
72 h revealed subtle structural alterations, such as surface roughness and changes
in texture, which were not discernible in the noisy image. ZS-DeconvNet’s ability
to enhance image clarity at such low power (1 mW) demonstrates its robustness in
handling noisy datasets without sacrificing the essential information within the image.

 Original Image Denoised Image after ZS-DeconvNet 

(a) 

  

 Original Image Denoised Image after ZS-DeconvNet 

(b) 

  

Figure 5. Comparison of original 11B-Untreated (a) and 11B-Treated Cells (b) images and denoised
images after ZS-DeconvNet obtained using laser excitation at 660 nm and AOTF at 650 nm (Rayleigh
scattering).
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(2) Raman Scattering (Power: 130 mW and AOTF: 817 nm): Denoising significantly
enhanced the signal-to-noise ratio (SNR), enabling clearer identification of molecular
changes induced by 50 μM cisplatin. Treated spheroids showed distinct Raman
shifts and enhanced peaks, while untreated spheroids maintained stable profiles.
ZS-DeconvNet preserved these features, improving interpretability (Figure 6).

Original Image Denoised Image after ZS-DeconvNet Original Image Denoised Image after ZS-DeconvNet 

    

(a) (b) 

Figure 6. Comparison of original 11B-Untreated Cells (a) and 11B-Treated Cells (b) images and
denoised images after ZS-DeconvNet obtained using laser excitation at 660 nm and AOTF at 817 nm
(Raman scattering).

(3) Fluorescence (Power: 130 mW, AOTF: 694 nm): Fluorescence imaging showed sub-
stantial improvement after denoising, with noise suppression enhancing signal clarity.
Treated spheroids exhibited increased fluorescence intensity, indicating structural or
cellular changes, while untreated spheroids displayed more uniform fluorescence.
ZS-DeconvNet preserved signal integrity, making the fluorescence data more inter-
pretable (Figure 7).

Original Image Denoised Image after ZS-DeconvNet Original Image Denoised Image after ZS-DeconvNet 

    

(a) (b) 

Figure 7. Comparison of original 11B-Untreated Cells (a) and 11B-Treated Cells (b) images and
denoised images after ZS-DeconvNet obtained using laser excitation at 660 nm and AOTF at 694 nm
(fluorescence).

Laser Excitation at 785 nm: For the 775 nm laser, three distinct modalities were used:
(1) Rayleigh Scattering (Power: 1 mW and AOTF: 775 nm): In the 785 nm Rayleigh

scattering modality, ZS-DeconvNet provided substantial image quality enhancement. The
denoised images of cisplatin-treated spheroids revealed previously masked surface irregu-
larities, such as increased roughness and textural changes, that were critical for assessing
treatment effects (Figure 8).
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Original Image Denoised Image after ZS-DeconvNet Original Image Denoised Image after ZS-DeconvNet 

    

(a) (b) 

Figure 8. Comparison of original 11B-Untreated Cells (a) and 11B-Treated Cells (b) images and
denoised images after ZS-DeconvNet obtained using laser excitation at 785 nm and AOTF at 775 nm
(Rayleigh scattering).

3.2. Quantitative Evaluation of Image Quality

The denoising capabilities of ZS-DeconvNet were quantitatively assessed using Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Root Mean Square
Error (RMSE), as shown in Figure 9. These metrics provide a comprehensive evaluation of
how well the denoised images preserve structural integrity and reduce noise, enhancing
the overall quality of the data for further analysis.

PSNR: The denoised image achieved a PSNR value of 16.74 dB, indicating a substantial
reduction in noise when compared to the raw image. Although this PSNR value reflects
moderate image fidelity, it represents a significant improvement in signal clarity, allow-
ing for better visualization of features previously masked by noise. This improvement
underscores the effectiveness of ZS-DeconvNet in restoring image quality in high-noise
conditions such as Rayleigh scattering at 660 nm.

SSIM: The SSIM score of 0.168 indicates that some structural information was pre-
served post-denoising, although there is room for further optimization. Despite the rel-
atively low score, this increase in structural similarity highlights ZS-DeconvNet’s ability
to recover key features from the noisy input, enabling a more interpretable output. This
is particularly relevant in imaging modalities where fine structural details are critical for
accurate analysis, such as in the treated spheroids exposed to cisplatin.

RMSE: The RMSE value of 0.146 demonstrates the model’s efficiency in minimizing
the error between the original noisy image and the denoised output. The reduction in
RMSE confirms that ZS-DeconvNet effectively suppresses noise without introducing arti-
facts, thereby preserving essential structural and molecular details crucial for the accurate
evaluation of treatment effects in cisplatin-treated spheroids.

In addition to these metrics, Fourier Ring Correlation (FRC) analysis (Figure 1) was
conducted to further evaluate the resolution enhancement. The FRC curve shows im-
proved frequency preservation across multiple shells, indicating that ZS-DeconvNet en-
hanced the image’s spatial resolution while maintaining relevant frequency details. This
result highlights the model’s capability to improve image quality even in noisy and
low-signal environments.

Overall, these quantitative metrics affirm the robustness of ZS-DeconvNet in effectively
denoising images, particularly in the context of high-noise biomedical imaging applications,
facilitating clearer feature extraction and more reliable data interpretation for both treated
and untreated conditions.
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Original Image Denoised Image after ZS-DeconvNet 
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Figure 9. Denoising performance of ZS-DeconvNet on 11B-Untreated cells images using 660 nm
laser for Rayleigh spectra: original image, denoised image after ZS-DeconvNet, FRC analysis and
denoising metrics (PSNR, SSIM and RMSE).

4. Discussion

This study highlights the effectiveness of ZS-DeconvNet in combination with Multi-
modal Raman Light Sheet Microscopy for high-resolution imaging of spheroids derived
from UMSCC-11B cell lines. The ability to visualize both structural and molecular changes
in spheroids exposed to 50 μM cisplatin for 72 h significantly advanced our understanding
of treatment-induced effects. By leveraging the denoising capabilities of ZS-DeconvNet,
we were able to enhance the clarity of images across multiple imaging modalities, with a
particular emphasis on Raman scattering channels [2,10].

Noise Reduction and Image Clarity: The major finding of this work is the significant
improvement in signal-to-noise ratio (SNR) achieved by ZS-DeconvNet, which enabled
the extraction of valuable structural and molecular details that were otherwise obscured
by noise. This was particularly evident in the 660 nm Rayleigh scattering and Raman
scattering channels, where noise levels are typically high due to the sensitivity of these
modalities to low signal intensities. The PSNR improvements in denoised images reflect
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the model’s ability to suppress noise without compromising the integrity of critical image
features. Additionally, FRC analysis confirmed that the high-frequency components of
the images were well-preserved, leading to better resolution and sharper image details,
which is essential for studying subtle structural changes in spheroids. The ability to reveal
treatment-induced surface irregularities and molecular shifts in cisplatin-treated spheroids
demonstrates the utility of ZS-DeconvNet in high-noise imaging environments. For in-
stance, Raman scattering at 660 nm (130 mW, AOTF: 817 nm), which is particularly sensitive
to molecular vibrations, revealed distinct shifts in the spectral profiles of treated spheroids
after denoising. These shifts were crucial for identifying treatment-induced molecular
changes, which were previously masked by noise in the raw images. In contrast, the
untreated spheroids maintained stable Raman profiles, further emphasizing the specificity
of the cisplatin-induced changes and the model’s effectiveness in differentiating between
treated and control conditions.

Structural Preservation and Molecular Insights: While ZS-DeconvNet excelled in noise
reduction, as evidenced by improved PSNR and RMSE values, the SSIM scores indicate that
there is room for further optimization, particularly in preserving intricate structural details.
Nevertheless, the overall structural integrity of the denoised images was maintained, as
demonstrated by the clear visualization of cisplatin-induced surface irregularities in treated
spheroids. This preservation of structural features is critical in biomedical imaging, where
even slight distortions can lead to misinterpretation of biological changes. The ability to
retain structural fidelity while reducing noise enabled the detection of molecular changes
that provide deeper insights into the spheroids’ responses to cisplatin treatment. Fluores-
cence imaging at 660 nm (130 mW, AOTF: 694 nm) benefitted significantly from denoising,
with the treated spheroids displaying increased fluorescence intensity, suggesting possi-
ble alterations in cell viability or metabolic activity. The preserved fluorescence signals
in denoised images allowed for more accurate assessments of these biological processes,
facilitating a deeper understanding of treatment-induced cellular changes.

Implications for Biomedical Research: The application of ZS-DeconvNet in this study
offers substantial implications for biomedical research, particularly in fields such as can-
cer biology, drug discovery, and tissue engineering. The ability to visualize real-time
molecular changes in 3D spheroids, which are physiologically relevant models for tumor
behavior, provides critical insights into how treatments like cisplatin affect cellular archi-
tecture and molecular composition. Furthermore, the flexibility of ZS-DeconvNet—which
does not require extensive pre-training on specific datasets—makes it a versatile tool for
various imaging modalities and experimental setups. Additionally, the integration of
post-processing techniques such as image segmentation, contrast enhancement and edge
detection can further enhance the usability of the denoised images for downstream analysis.
These enhancements ensured that the images were ready for detailed analysis, such as sub-
cellular structural studies or quantitative assessments of spheroid viability. The results of
this study suggest that ZS-DeconvNet, when combined with advanced imaging modalities,
can significantly improve the quality of data available for quantitative biomedical research.

Future Directions: While ZS-DeconvNet demonstrated strong denoising performance,
future research could explore hybrid approaches that integrate the noise suppression capa-
bilities of ZS-DeconvNet with advanced structural preservation techniques. This would
ensure even higher SSIM values while maintaining the improvements in PSNR and RMSE.
Furthermore, integrating ZS-DeconvNet with deep learning-based segmentation techniques
could open new avenues for automated analysis of spheroid morphology and molecular
dynamics in response to various treatments. In conclusion, this study demonstrates that
ZS-DeconvNet, combined with Multi-modal Raman Light Sheet Microscopy, offers a pow-
erful and flexible framework for imaging 3D spheroids. The model’s ability to denoise
images in real-time without sacrificing critical structural or molecular information makes it
an invaluable tool for biomedical research. By providing high-quality, denoised images
that are ready for detailed analysis, ZS-DeconvNet facilitates a more precise understanding
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of treatment effects on live cells and tissues, paving the way for new applications in drug
discovery, cancer research, and tissue engineering.

5. Conclusions

This study evaluated the performance of ZS-DeconvNet for denoising high-noise
biomedical images of 11B spheroids treated with 50 μM cisplatin for 72 h. Metrics like
PSNR, SSIM, RMSE, and FRC demonstrated the model’s ability to significantly reduce
noise while preserving important structural and molecular details.

The model showed a marked improvement in PSNR, confirming its effectiveness in
noise suppression and image clarity, while FRC analysis highlighted its ability to retain
high-frequency information. This approach enables resolution enhancement beyond the
diffraction limit by recovering high-frequency details, allowing for visualization of sub-
diffraction structures without additional hardware adjustments. Although SSIM scores
indicated some limitations in preserving fine details, ZS-DeconvNet successfully main-
tained key features, especially in Rayleigh and Raman scattering modalities at both 660
nm and 785 nm. Its zero-shot learning framework further underscores the novelty of this
multimodal approach, allowing adaptive enhancement across multiple imaging modalities
without the need for pre-trained models. This flexibility addresses unique challenges of
multimodal microscopy, providing a unified solution for image enhancement in Raman,
fluorescence, and other microscopy techniques.

Denoised images revealed critical treatment-induced changes in cisplatin-treated
spheroids, previously masked by noise, enabling more accurate comparisons between
treated and untreated samples. This underscores ZS-DeconvNet’s effectiveness in high-
noise, low-signal imaging environments typical of biomedical applications.

Overall, ZS-DeconvNet provides a powerful tool for real-time image denoising in
3D spheroid imaging and Raman Light Sheet Microscopy, offering faster processing and
superior image quality without needing pre-trained datasets. Future research could focus
on hybrid approaches to combine its noise reduction capabilities with advanced structural
preservation techniques for even better results in biomedical imaging.
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Abstract: Height is an important health parameter employed across domains, including healthcare,
aesthetics, and athletics. Numerous non-contact methods for height measurement exist; however,
most are limited to assessing height in an upright posture. This study presents a non-contact approach
for measuring human height in 2D space across different postures. The proposed method utilizes
computer vision techniques, specifically the MediaPipe library and the YOLOv8 model, to analyze
images captured with a smartphone camera. The MediaPipe library identifies and marks joint points
on the human body, while the YOLOv8 model facilitates the localization of these points. To determine
the actual height of an individual, a multivariate linear regression model was trained using the ratios
of distances between the identified joint points. Data from 166 subjects across four distinct postures:
standing upright, rotated 45 degrees, rotated 90 degrees, and kneeling were used to train and validate
the model. Results indicate that the proposed method yields height measurements with a minimal
error margin of approximately 1.2%. Future research will extend this approach to accommodate
additional positions, such as lying down, cross-legged, and bent-legged. Furthermore, the method
will be improved to account for various distances and angles of capture, thereby enhancing the
flexibility and accuracy of height measurement in diverse contexts.

Keywords: non-contact; height measurement; MediaPipe

1. Introduction

It is critical to have an accurate and convenient method for measuring human height,
which is an important variable in healthcare for calculating Body Mass Index (BMI) and
determining various treatment-related metrics [1]. BMI enables the classification of individ-
uals as overweight, underweight, or of ideal weight [2]. Moreover, BMI is instrumental
in population-based studies due to its widespread acceptance in identifying specific body
mass categories that may indicate health or social issues. Recent evidence also suggests
that particular BMI ranges are associated with moderate and age-related mortality risks [3].

Height measurement is typically performed in an erect standing posture. For non-
critical patients, contact methods such as table scales, standing scales, or medical measuring
devices are commonly employed. However, for critically ill patients in intensive care units
(ICUs), requiring them to move or assume an upright position for height measurement
is often impractical [4]. Additionally, severely ill patients are frequently unconscious or
incapacitated, complicating accurate height assessments. Therefore, the development of a
non-contact height measurement method for critically ill patients is particularly important
in the ICU setting [5,6].
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Currently, height measurements for ICU patients in hospitals in Vietnam are frequently
conducted by nurses; however, the nurse-to-patient ratio is often insufficient. This situation
introduces significant challenges in obtaining accurate measurements. Accurate height
data are crucial, as it is integral to calculating treatment parameters such as creatinine
indices [7,8]. Thus, the implementation of an automatic, non-contact height measure-
ment method represents a critical step toward ensuring the highest possible accuracy for
calculating treatment parameters.

Several non-contact methods have been proposed for measuring height in special
populations, such as the elderly, hospitalized individuals, bedridden patients, and those
with skeletal deformities. A study conducted at Jimma University demonstrated that
height estimates derived from linear body measurements, including arm span, knee height,
and half-arm span, serve as useful surrogate measures [9]. However, the study was
limited by a narrow age range, including only adults aged 18 to 40 years, which may not
adequately represent the broader adult population, especially considering the potential
decline in height in older age groups. Furthermore, Haritosh has investigated the use of
facial proportions to estimate body height [10]. This method involves calculating height
from facial images by extracting facial features through convolutional neural networks
and predicting height using artificial neural networks. However, the average error rate
in the measurement is approximately 7.3 cm, which constitutes a significant deviation in
height assessment.

A common method for estimating human height from images or videos is skeletal
extraction [11]. This approach utilizes computer vision and image-processing methodolo-
gies to analyze visual data. The accuracy of this method can be affected by various factors,
including camera focal length, angle, and ambient-lighting conditions. To enhance the
precision of height measurements, we propose a study employing MediaPipe to extract
skeletal point coordinates from images capturing both a person and a reference object—a
black cardboard of fixed dimensions. These coordinates, represented in a two-dimensional
space as X and Y values, are used to calculate the lengths of bone segments, thus facilitating
height estimation. Following the extraction of skeletal points, a machine-learning model
will be employed to train the input data and estimate human height. We hypothesize that
the use of a reference object will improve the accuracy of height measurement.

2. Materials and Methods

2.1. The Proposed Method

Figure 1 illustrates a diagram of the proposed height measurement method. The block
diagram consists of six primary blocks. The first block serves as the input, which is an
image of a person in a vertical position. The second block identifies and marks human
body landmarks (skeleton points) using the OpenCV and MediaPipe libraries. The third
block calculates the length of each skeleton using the MediaPipe library. This step involves
calculating a centimeter-per-pixel (cm/pixel) ratio using a reference object, counting the
number of pixels in each skeleton, and then calculating the skeleton length in centimeters.
In the fourth block, the lengths of the skeletons are fed into a multivariate linear regression
model to train the model. In the fifth block, human height is predicted using the trained
model. Finally, in the sixth block, human height is obtained.

The OpenCV (Open Computer Vision) is a leading open-source library for computer
vision, machine learning, and image processing. It is written in C/C++, which enables it
to achieve very fast calculation speeds and allows for use in real-time applications [12].
MediaPipe is a series of cross-platform machine-learning solutions used for tasks such
as face detection, face mesh, and human pose estimation [13]. It consists of three main
parts, namely a framework for inference from sensory data, a set of tools for performance
evaluation, and a collection of reusable inference and processing components [14]. YOLOv8
is a computer vision model for object recognition and detection developed by Ultralytics in
2016 [15]. Among different object detection algorithms, the YOLO (You Only Look Once)
framework has stood out for its remarkable balance of speed and accuracy, enabling the
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rapid and reliable identification of objects in images. Since its inception, the YOLO family
has evolved through multiple iterations, each building upon previous versions to address
limitations and enhance performance [15].

Figure 1. System diagram.

Using the OpenCV and MediaPipe, a total of 501 landmarks (skeleton joints) were
identified. These landmarks were then fed to a customized multiclass classification model
to understand the relationship between each class and its coordinates for classifying and
detecting a body posture [16]. The OpenCV library was first used for image processing.
After that, the MediaPipe library was applied to extract x, y, and z coordinates, as well as
the number of pixels for each joint. Finally, the YOLOv8 model was employed to identify
the black cardboard, calculate the number of pixels in the cardboard, and determine the
ratio of cm/pixel according to Equation (1):

(k) =
height(cm)

dis(pixel)
(1)

The human body was divided into six segments: h1 is the distance from the shoulder
to the hip, h2 is the distance from the hip to the knee, h3 is the distance from the knee to the
ankle, h4 is the distance from the ankle to the sole of the foot, h5 is the distance from the
middle of the shoulder to the middle of the mouth, and h6 is the distance from the middle
of the mouth to the nose. The distance between two points, A(xa, ya) and B(xb,yb), was
calculated. In this project, our calculations were based on the normalized coordinates xi
obtained from MediaPipe yi. These coordinates were then converted to a pixel coordinate
system using Equations (2) and (3).

Xi = image_width ∗ xi (2)

Yi = image_height ∗ yi (3)

The pixel coordinates were then used to calculate the distances between landmarks
and the lengths of the skeleton segments in the human body. The coordinates of the
midpoint of the shoulder and the coordinates of the midpoint of the hip were used to
calculate the distance h1 (Equation (4)):

h1 = k ×
√(

X23 + X24

2
− X11 + X12

2

)2
+

(
Y23 + Y24

2
− Y11 + Y12

2

)2
(4)

The skeletal segment h2 was calculated as the distance between points 23 and 25
(Equation (5)):

h2 = k ×
√
(X25 − X23)

2 + (Y25 − Y23)
2 (5)
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Similarly, the distance h3 was calculated as the distance between points 27 and 25
(Equation (6)):

h3 = k ×
√
(X27 − X25)

2 + (Y27 − Y25)
2 (6)

The distance h4 from the ankle to the sole of the left foot was calculated as follows:

h4 = k × | (Y 29 − Y31)x27 + (X31 − X29)Y27 + (Y 31 − Y29)X29 − (X31 − X29)Y29|√
(Y29 − Y31)

2 + (X31 − X29)
2

(7)

The distance h5 was calculated as the distance from the midpoint of the shoulder to
the midpoint of the mouth (Equation (8)):

h5 = k ×
√((

X11 + X12

2
− X9 + X10

2

)2
+

(
Y11 + Y12

2
− Y9 + Y10

2

)2
(8)

Finally, the distance h6 from the midpoint of the mouth to the nose was calculated
as follows:

h6 = k ×
√((

X0 − X9 + X10

2

)2
+

(
Y0 − Y9 + Y10

2

)2
(9)

2.2. Predicting Result of Height Measurement

A multivariable linear regression, which is an extension of a single-variable linear
regression algorithm, was used to train and predict body height. This algorithm has proven
to be highly effective in predicting outcomes based on two or more independent variables.

The multivariate linear regression [17] equation takes the following form:

Y = β0 + β1 × X1 + β2 × X2 + . . . + βn × Xn + ε (10)

where Y is the dependent variable that needs to be predicted. X1, X2, . . ., Xn are the
independent variables, and β0, β1, β2, . . ., βn are the relationship coefficients.

After calculating the length of each skeletal segment, we applied a multivariate linear
regression equation to predict human height. Equation (10) becomes the following:

h = β0 + β1h1 + β2h2 + β3h3 + β4h4 + β5h5 + β6h6 + ε (11)

where h is the predicted height; h1, h2, h3, . . ., h6 are the calculated distance of skeleton
segments; and β0, β1, β2, . . ., β6 are the correlation coefficients obtained during the process
of training the multivariate linear regression model.

The multivariate linear regression model is an important tool for investigating rela-
tionships between several response variables and multiple predictor variables. The primary
focus is on making inferences about the unknown regression coefficient matrices. We
propose multivariate bootstrap techniques as a means for drawing inferences about these
matrices. A real data example and two simulated data examples that provide finite sample
verifications of our theoretical results are presented in [18,19].

2.3. Data Collection

This study was approved by the Hanoi University of Science and Technology. Data
were collected from 166 adult subjects who agreed to participate in the study. Photographs
of the subjects were taken with a smartphone camera. The smartphone was fixed on a
tripod at a height of approximately 115 cm from the ground (Figure 2). The tripod was
positioned at distances of 200 cm and 300 cm from the subject. A 20.5 cm × 30.5 cm black
cardboard was placed next to the subject on the wall, with the center of the cardboard at a
height of approximately 115 cm from the ground. On the opposite side of the subject, a
wall height chart was attached.
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Figure 2. Tripod set up and camera.

Subjects were guided to perform four different postures during the experiment. Firstly,
there was the standing-upright position (Figure 3a), where subjects stood straight and
looked directly ahead. This position simulates the body in a natural state, with no tilt or
rotation. Secondly, in the 45-degree rotation position (Figure 3b), subjects turned their
bodies 45 degrees away from the camera while looking straight ahead. This pose simulates
the body at a slight angle, which can affect how bone segments appear in the image.
Thirdly, in the horizontal 90-degree rotation position (Figure 3c), subjects turned their
bodies 90 degrees from the camera and looked straight ahead. This position simulates the
body at a greater angle and illustrates patients’ positions in a hospital bed. This helps to
better understand the differences in measurements of bone segments when the body is
in a horizontal state, which is important in medical applications. Finally, in the kneeling
position (Figure 3d), subject turned their bodies 90 degrees but bent their knees. This
position is especially important for understanding changes in bone segments when the
body is in a bent-knee state, simulating situations where the body is not completely upright.
In each pose, subjects remained in position throughout the image capturing process to
ensure the accuracy of the measurements. Staying steady and immobile during each scan
is crucial to ensure that body landmarks are accurately and consistently identified.

2.4. Data Processing

The obtained images were processed using MediaPipe and YOLOv8 to extract the X
and Y coordinates of the landmarks on the body, as well as the parameters of the reference
object, which served for calculating the lengths of the skeletal segments. After that, the
mean and standard deviation (SD) [19] were used to remove outliers to increase model
accuracy. Specifically, data outside of the ±3 SD range were removed. The remaining valid
values were used as input for the training model. Finally, a multivariate linear regression
model was applied to the skeletal segments to estimate subjects’ height. The collected data
consisted of 166 samples for each posture, with heights ranging from 148 cm to 184 cm.
After eliminating outliners, a new dataset consisting of 162 samples was divided into 80%
for training and 20% for testing.
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Figure 3. Height measurement in different postures; (a) standing-upright position; (b) 45-degree rota-
tion position; (c) horizontal 90-degree rotation position; and (d) Kneeling position. Lines and points in
each figure represent segments and joints determined from the OpenCV and the MediaPipe libraries.

3. Results

3.1. Standing Upright Position

After training the model with the training and test samples, we developed Equation (12)
to estimate height based on bone segment lengths. Table 1 provides the evaluation results
for the standing-upright position. This method has an average error of 1.94 cm (1.14%)
across the test data samples. The error is mainly due to a lack of camera calibration
and inaccuracies in extracting coordinates from MediaPipe, as well as varying lighting
conditions during data collection.

H = 1.07533865h1 +1.2476316h2 +0.59605108h3+0.6496244h4+0.76927537h5−2.13930107h6+58.4779461 (12)

Table 1. Prediction results for 17 subjects in the standing-upright posture.

Samples
Actual Height

(cm)
Predicted Height

(cm)
Error
(cm)

Error Rate
(%)

1 174 170.9514 3.048575 1.752055
2 177 177.4226 0.422636 0.238778
3 162 167.6994 5.699382 3.518137
4 168 168.3282 0.328223 0.195371
5 172 169.1883 2.811732 1.634728
6 169 172.8558 3.855773 2.281522
7 170 169.2551 0.744909 0.438182
8 170 173.3402 3.340176 1.964809
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Table 1. Cont.

Samples
Actual Height

(cm)
Predicted Height

(cm)
Error
(cm)

Error Rate
(%)

9 180 180.4499 0.449862 0.249923
10 175 173.0343 1.965713 1.123264
11 169 171.7793 2.779289 1.64455
12 175 175.5055 0.505452 0.28883
13 173 175.8168 2.816793 1.628204
14 168 170.0952 2.095163 1.247121
15 171 170.7831 0.216859 0.126818
16 168 167.1057 0.894323 0.532335
17 163 163.9993 0.999287 0.613059

Average 170.8 171.6241 1.939656 1.145746

3.2. 45-Degree Rotation Position

Similarly, Equation (13) was developed to estimate body height for the 45-degree
rotation position. Evaluation results for this position are presented in Table 2. The average
error is 1.91 cm (1.12%).

H = −0.70003005h1+0.98866088h2+0.76985497h3+0.35090296h4+0.68119476h5−0.40682656h6+72.229882 (13)

Table 2. Prediction results for 17 subjects in the 45-degree tilted-standing posture.

Samples
Actual Height

(cm)
Predicted

Height (cm)
Error
(cm)

Error Rate
(%)

1 174 170.3426 3.657426 2.101969
2 177 178.7488 1.748834 0.988042
3 162 167.0036 5.003625 3.088657
4 168 167.3131 0.686861 0.408846
5 172 174.8213 2.821337 1.640312
6 169 166.2978 2.702194 1.598931
7 170 167.9283 2.071712 1.218654
8 170 168.6685 1.331542 0.78326
9 180 178.4254 1.574556 0.874753
10 175 174.1332 0.866795 0.495312
11 169 171.0258 2.025811 1.198705
12 175 175.7314 0.731434 0.417962
13 173 174.0368 1.03684 0.599329
14 168 164.0762 3.923809 2.335601
15 171 172.5887 1.588712 0.929071
16 168 167.4733 0.526727 0.313528
17 163 162.7955 0.20453 0.125479

Average 170.8 170.6712 1.911926 1.124612

3.3. Horizontal 90-Degree Rotation Position

After training with the dataset for posture 3, Equation (14) was derived to estimate
height for the 90-degree turned posture. Table 3 provides the evaluation results for the
horizontal 90-degree rotation position. The average error is 2.62 cm (1.54%).

H = 0.08162038h1 +0.70345667h2 +0.67353882h3 +0.55258515h4 +0.42507086h5−0.20956018h6+73.384567 (14)

3.4. Kneeling Position

For the 90-degree sideways bent-knee position, we derived Equation (15) to calculate
body height. Results are presented in Table 4. The evaluation results for this position show
an average error of 2.45 cm (1.43%).
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H = 0.36422493h1+0.81095132h2+0.58705451h3+0.58410078h4+0.35394516h5−0.21066217h6+73.779571 (15)

Table 3. Prediction results for 17 subjects in the 90-degree tilted-standing posture.

Samples
Actual Height

(cm)
Predicted

Height (cm)
Error
(cm)

Error Rate
(%)

1 177 177.8865 0.886495 0.500845
2 162 169.2808 7.2808 4.494321
3 168 168.0163 0.016319 0.009714
4 172 169.4318 2.568204 1.493142
5 169 168.173 0.826959 0.489325
6 170 176.0739 6.073928 3.572899
7 170 168.528 1.47199 0.865877
8 180 183.2167 3.216669 1.787039
9 175 171.7336 3.266446 1.86654
10 169 174.7692 5.769226 3.413743
11 169 168.7802 0.219849 0.130088
12 175 172.8844 2.115569 1.208896
13 173 175.1489 2.148942 1.242163
14 168 165.562 2.438041 1.451215
15 171 173.9013 2.901262 1.696644
16 168 167.8982 0.10178 0.060583
17 163 166.2274 3.22743 1.980018

Average 170.5 171.6184 2.619406 1.544885

Table 4. Prediction results for 17 subjects in the 90-degree tilted-standing posture with bent knees.

Samples
Actual Height

(cm)
Predicted Height

(cm)
Error
(cm)

Error Rate
(%)

1 174 169.3661 4.633906 2.663164
2 177 178.5004 1.50038 0.847672
3 162 163.4223 1.422282 0.877952
4 168 168.3369 0.336886 0.200527
5 172 170.5549 1.445134 0.840194
6 169 168.7444 0.255635 0.151263
7 170 176.0042 6.004188 3.531876
8 170 175.1093 5.109334 3.005491
9 180 182.6475 2.647498 1.470832
10 175 178.3741 3.374108 1.928062
11 169 172.6141 3.614117 2.138531
12 175 172.9836 2.01644 1.152252
13 173 175.8976 2.897555 1.674887
14 168 166.5528 1.44725 0.861458
15 171 169.4226 1.577427 0.922472
16 168 167.0025 0.997496 0.593748
17 163 165.3323 2.332332 1.430879

Average 170.8 171.8156 2.447763 1.428898

4. Discussion

The experimental results demonstrate that the proposed height estimation method can
estimate human height relatively accurately, with an average error ranging from 1.91 cm
to 2.62 cm (1.12–1.54%). Among the four postures, the height estimation model for the
45-degree rotation position yields the best results, with an average error of 1.91 cm (1.12%).
For the other postures, the achieved results are less accurate. The standing-upright position
has a result nearly equal to that of the 45-degree rotation posture, with an average error of
1.94 cm (1.14%). However, for the horizontal 90-degree rotation position and the kneeling
position, the errors are significantly larger, with average errors of 2.62 cm (1.54%) and
2.45 cm (1.43%), respectively. This is mainly because the MediaPipe model does not
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perform as effectively when estimating height in more complex postures compared to
the standing-upright posture. Additionally, other factors, such as lighting conditions and
camera angles, also affect the accuracy of the measurement.

5. Conclusions

This study presents a non-contact height measurement method utilizing the MediaPipe
library in conjunction with the YOLOv8 model to extract joint coordinates and calculate
bone lengths, employing a multivariate linear regression function for predicting human
height from images. Experimental results indicate that the average errors between the
estimated and actual heights range from 1.91 cm to 2.62 cm (1.12% to 1.54%). This level of
accuracy is deemed acceptable for a variety of applications. Future research will focus on
expanding the methodology to determine the height of individuals in various standing and
lying positions. The goal is to develop a flexible and efficient software application capable
of measuring height across diverse real-world contexts. The integration of technologies
such as MediaPipe and YOLOv8 demonstrates significant potential for applications in
fields such as medicine, sports, and health monitoring, where reliable and precise height
measurements from images are essential.
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Abstract: Nowadays, the use of advanced sensors, such as terrestrial, mobile 3D scanners and
photogrammetric imaging, has become the prevalent practice for 3D Reality Modeling (RM) and the
digitization of large-scale monuments of Cultural Heritage (CH). In practice, this process is heavily
related to the expertise of the surveying team handling the laborious planning and time-consuming
execution of the 3D scanning process tailored to each site’s specific requirements and constraints.
To minimize human intervention, this paper proposes a novel methodology for autonomous 3D
Reality Modeling of CH monuments by employing autonomous robotic agents equipped with the
appropriate sensors. These autonomous robotic agents are able to carry out the 3D RM process in a
systematic, repeatable, and accurate approach. The outcomes of this automated process may also
find applications in digital twin platforms, facilitating secure monitoring and the management of
cultural heritage sites and spaces, in both indoor and outdoor environments. The main purpose of
this paper is the initial release of an Industry 4.0-based methodology for reality modeling and the
survey of cultural spaces in the scientific community, which will be evaluated in real-life scenarios in
future research.

Keywords: reality modeling; autonomous robots; terrestrial laser scanning; LiDAR; UAV; Next
Best View

1. Introduction

In recent years, Reality Modeling (RM) technologies, including cutting-edge sensors
and systems such as LiDAR-based 3D scanners, drones, digital twins, augmented reality
(AR), and virtual reality (VR), have become increasingly significant in the field of Cul-
tural Heritage (CH) modeling, recording, and management [1–5]. However, the RM of
CH remains a significant challenge for surveyors, as the 3D modeling process is largely
manual, labor-intensive, and time-consuming. The scanning path and sensor positioning
are predominantly reliant on the surveyor’s experience, intuition, and perception, as there
is currently no standardized automatic procedure [6]. The complexity is compounded
by the natural environment surrounding CH sites, the morphological intricacies, and the
vulnerability of the monuments. Specifically, to acquire a complete 3D reality model of a
large-scale cultural space, multiple manual terrestrial 3D scans (TLS) and aerial surveys
with unmanned aerial vehicles (UAVs) are required [1]. This manual approach heavily
depends on the operator’s expertise to determine the scanning path and identify the
optimal scanner positions, a task known in the literature as the Next Best View (NBV)
problem. Consequently, optimizing the NBV to efficiently capture large-scale, complex
sites or monuments in dynamic environments (e.g., due to growing or changing vegetation)
is crucial to reduce surveying time and enhance data quality. Despite its importance, the
NBV problem has not been adequately addressed in terms of efficiency and optimality in
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existing literature. As a result, the surveying process often takes longer than necessary,
with redundant overlaps and additional positions planned as a precaution.

To address these challenges, this paper proposes a technological platform for au-
tonomous 3D Reality Modeling and scanning. The goal is to develop a comprehensive,
autonomous, systematic, and optimized 3D scanning procedure that accelerates the overall
RM process and enhances data quality. To achieve this, two scientific pillars are essen-
tial: (a) a framework consisting of Robotic Agents (RAs) equipped with RM sensors that
can navigate and operate autonomously and (b) a methodology to identify the optimal
positions and trajectories for scanning, applicable to both terrestrial and aerial surveys,
which maximizes area coverage and minimizes the number of scanning positions required
(addressing the NBV problem). This approach aims to streamline the 3D RM process,
ensuring efficient and high-quality data acquisition for cultural heritage sites.

The contributions of the proposed methodology (ARM4CH) are manifold and may
be summarized in the following bullet points with more details available in the table in
Section 4:

• Non-invasive and autonomous survey and inspection;
• Scanning operation for hard-to-reach, complex or dangerous areas;
• Reduction of labor costs and time-consuming scanning processes;
• Versatility and an increase in data precision;
• Consistency and optimization of measurements and data acquisition;
• Scanning and survey reproducibility;
• Regular monitoring of a CH site;
• Long-Term Monument Preservation and Management, a fostering of the Digital

Twin concept.

2. Robotic Agents and 3D Scanning: A Brief Overview

Three-dimensional scanning using mobile robots has been already applied in recent
years, especially in the field of construction, in which 3D scanning and monitoring is
required on a regular basis. In most of these scenarios, the robots follow a predefined path
or rely on exploration algorithms [7]. Recent years have seen extraordinary progress in the
field of robotics, fueled by several key developments. The adoption of advanced control
algorithms, such as Model Predictive Control and Deep Reinforcement Learning, advanced
the creation of diverse locomotion mobile robots, including bio-inspired quadrupeds
capable of navigating through challenging terrains [8,9]. Moreover, the emergence of
advanced perception sensors like Depth Cameras, LiDAR, and Global Navigation Satellite
Systems (GNSS) and torque-force sensors have revolutionized data acquisition, enabling
the capture of extensive, detailed information that offers accurate and comprehensive
insights for both environmental conditions and the robots’ positions. The integration
of artificial intelligence (AI) and machine learning algorithms into robotic systems [10]
significantly enhances their autonomy, adaptability, and decision-making capabilities. This
is further supported by increased processing power, which facilitates the application of
sophisticated perception and AI algorithms directly on the robots, enhancing their efficiency
and responsiveness. Moreover, hardware advancements, including batteries with higher
energy density [11], more powerful computing units, and more efficient motors, have
further advanced the capabilities of robotic systems.

Quadrupedal robots have been utilized for 3D scanning strategies to generate a com-
plete set of point clouds of physical objects through multi-view scanning and data reg-
istration [12–14]. Furthermore, the control of quadrupedal robots has seen experimental
success in achieving robust and agile locomotion, in the 3D space [15,16]. The utilization
of representation-free model predictive control and exact feedback linearization has been
implemented on quadrupedal robots, contributing to the stabilization of periodic gaits
for quadrupedal locomotion [8]. Additionally, the application of hybrid dynamical sys-
tems has achieved physically effective and robust instances of all virtual bipedal gaits on
quadrupedal robots [17].
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Collectively, all of the above developments tend to transform robots from simple pro-
grammable machines into intelligent entities capable of collecting and analyzing complex
environmental data, learning from their surroundings, making intricate decisions, and
executing autonomous tasks with an unprecedented level of sophistication.

3. Autonomous Reality Modeling for Cultural Heritage (ARM4CH)

The ARM4CH proposed system is designed to automate the 3D Reality Modelling
procedures in the field of Cultural Heritage by utilizing both aerial and ground Robotic
Agents (RAs). Ground Robots (wheeled or quadrupedal) may navigate terrains with
excellent levels of mobility, performing automated operations, tasks, and data capture
safely, accurately and frequently. They can enter buildings or confined spaces and capture
close-up images or videos at ground level. Since they are not constrained by airspace flying
regulations, they can be utilized in areas where drones are not permitted. On the other
hand, aerial robots/drones are used when ground scanning is impossible. Each RA (aerial
or ground) is equipped with specialized hardware and software to perform autonomous
navigation and sensor data acquisition.

A significant feature of ARM4CH is that both ground and aerial robotic agents may be
configured to operate cooperatively. The selection of the RA (or a combination of RAs) for
the survey is subject to the specifications of the CH site, such as the terrain morphology,
necessary regulations to be followed, indoor or outdoor environment, as well as possible
requirements set by stakeholders during the survey. For example, for an outdoor, large-
scale CH site, with an unpaved trail and with tall artifacts (e.g., large-scale monuments
such as the Acropolis of Athens), the best choice would be to employ quadrupedal robots,
which have the capability to traverse in complex environments with high mobility, in
co-operation with aerial RAs that can capture data from above, to offer an alternative
perspective for areas that are inaccessible to the ground robots or when their sensors cannot
adequately cover a Point of Interest (POI). Figure 1 depicts an indicative flowchart for the
appropriate selection of the group of Robotic Agents for the Reality Modeling task, while a
basic description of the RAs configuration is given in the next section.

Figure 1. Type of RA decision flowchart.
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3.1. Robotic Agent (RA) Architecture

As discussed earlier, the role of the RAs is to navigate autonomously in the CH site to
perform the survey. In this section, we present two kinds of agents consisting of five main
components (as seen in Figure 2), namely a quadrupedal robot and a drone.

Figure 2. Robotic agent architecture.

The first component is the robotic platform by itself, which is a mobile robot capable
of traversing the CH environment. As already mentioned above, there are many different
types of mobile robots with different abilities, advantages, and disadvantages such as
wheeled robots [18], quadrupedal robots, and aerial robots/drones [19]. The platform
is the main core of the mobile agent that carries all of the necessary hardware including
the perception sensors, the computation unit, the communication module, and finally,
the payload, which is the actual Reality Modelling sensor. The parts of the RAs for the
quadrupedal and aerial robots are shown in detail in Figures 3 and 4, respectively.

The perception sensors are responsible for collecting information about the state of the
robotic platform and the physical environment around it. These sensors include LiDARs,
RGB and depth cameras, motor encoders, Global Navigation Satellite Systems (GNSSs),
and Inertial Measurement Units (IMUs), just to name the basics [19,20]. All of the collected
data are managed in real time from numerous algorithms to control the robot.

Moreover, the computation unit is crucial for RA functions and operations in order to
achieve onboard data processing, data collection, and management for effective navigation.
This unit leverages raw data from all of the perception sensors and employs algorithms
for odometry, pose estimation, Simultaneous Localization and Mapping (SLAM) [21],
obstacle avoidance, motion and path planning, object detection [22], and the exploration of
the environment.
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The communication module is pivotal for enabling Robotic Agents to interact and
co-operate [23]. It facilitates the exchange of information through protocols like TCP-IP,
allowing robots to coordinate tasks, share sensor data, and make collective decisions. For
instance, in the case of multiple RAs in a collaborative operation mode, it can divide
tasks based on RA capabilities or current status, ensuring efficient task completion [24].
Sharing sensor inputs helps in constructing a comprehensive environmental understanding,
enhancing decision-making. Additionally, communication is essential for monitoring the
system’s process by human supervisors.

Figure 3. Quadruped RA components.

Figure 4. Drone RA components.
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Finally, the payload is the main instrument dedicated to the collection of survey
data, which in our case is the 3D representation of a CH site. The type of 3D sensor may
vary depending on the requirements of the scan, the desired 3D point cloud resolution
and accuracy [25,26] and the nature of the artifacts (e.g., shape, size, material, etc.) [27].
Possible payloads may be selected from a group of sensors like 3D Terrestrial Scanners,
LiDAR sensors, depth sensors, 360 cameras, and other 2D imaging sensors (RGB or thermal
cameras). Table 1 presents a brief comparison with the pros and cons of the three basic 3D
point cloud acquisition methods, namely TLS, mobile scanners, and photogrammetry/SfM.
In summary, TLS offer very high resolution and accuracy, typically ranging from millimeters
to a few centimeters (e.g., 3.5 mm@ 25 m, 1 MPoint/s), while mobile/SLAM scanners offer
resolutions around 2–3 cm, 5 mm@10 m, 0.5 Mpoint/s. Hence, the resolution and accuracy
of the payloads attached to the RAs specify the resolution and accuracy of every ARM4CH
scanning mission.

Table 1. Three-dimensional scanning methods comparison table [27].

Criteria
Terrestrial Laser
Scanners (TLS)

SLAM-
Based/Mobile
Scanners

Photogrammetry/
Structure from
Motion (SfM)

Accuracy and
Precision

High (millimeter
precision)

Moderate (depends
on technology)

Variable (high under
optimal conditions)

Data Collection Speed Low (requires setup
and multiple stations)

Fast (on-the-go
collection)

Medium (depends on
the required accuracy
and complexity)

Cost High (expensive
hardware)

Moderate (less
expensive than
Terrestrial Laser)

Low to high (depends
on camera
equipment)

Operational
Complexity

High (requires skilled
operation)

Moderate (easier in
complex
environments)

Moderate (requires
photographic
expertise)

Environmental
Constraints

Sensitive to reflective
surfaces

Sensitive to reflective
surfaces

Highly dependent on
lighting and weather
conditions

Post-Processing
Intensive (cleaning,
registration, and
merging)

Moderate (alignment
aids, needs noise
reduction)

Automated but long
processing and
sensitive to image
quality

Application
Suitability

Ideal for detailed,
static environments

Suitable for complex
environments

Versatile for various
scales under good
environment
conditions

Common Use Cases

Detailed architectural,
archeological, and
engineering
documentation

Extensive and
complex
environments like
urban areas or large
buildings

Large or remote
outdoor areas

3.2. Methodology

The ARM4CH methodology comprises of five stages, namely scouting, Point-of-
Interest (POI) identification, NBV detection, path planning, and finally, the on-site 3D
scanning survey. A flow diagram of ARM4CH is highlighted in Figure 5.
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Figure 5. Flow diagram of the ARM4CH methodology.

3.2.1. Scouting

The goal of this step is to collect information related to the heritage site that will
be later used for the navigation of the robot during the autonomous scanning process at
the final stage. This dynamic operation comes with the limitations of low point cloud
resolution, high noise due to motion distortion, and the inability to record an RGB-mapped
point cloud. However, as a great advantage, LiDAR sensors calculate rapidly a coarse 3D
topological map of the surveyed area, providing occupancy maps for the execution of the
next steps.

In the scouting stage, various information may be given by the operator such as general
areas of exploration/responsibility and preferable routes for exploration [28], as well as
locations of no-go zones (either for ground or aerial units). For successfully achieving the
above tasks, fiducial markers (e.g., AprilTags, ArUco markers) [29] and geotagged site
images should be incorporated. During scouting, the navigation of the robotic platform
can be performed either with autonomous or remote-controlled exploration.

For the former, the robotic agent (RA) autonomously navigates all accessible pathways
within a predefined area of responsibility. The primary objective is to maximize coverage
of the area, while minimizing the distance traveled. The area of responsibility, along with
any designated no-go zones, is the input data to a Frontier-Based Exploration algorithm [7].
This algorithm, in combination with a Simultaneous Localization and Mapping (SLAM)
algorithm [21], will then generate an occupancy grid map [30] of the heritage site. For
the latter (remote-controlled exploration), the RA is navigated by a remote operator, who
manually controls its movement through the predefined area of responsibility [13]. While
the operator directs the robot, a SLAM algorithm continuously processes sensor data to
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generate an occupancy grid map of the environment. This approach allows for human
oversight in navigating complex or sensitive areas, while still benefiting from the automated
mapping capabilities of the SLAM algorithm [31].

3.2.2. Point of Interest (POI) Identification

This step involves detecting and recognizing significant locations or objects (Point
of Interest—POI) within the heritage environment, which can be accomplished either
manually or automatically using Machine Learning.

In manual operation, the operator selects POIs within a visualized multimodal data
environment. This environment integrates and displays data collected by the robot’s
sensors during scouting, including georeferenced images, 3D point clouds, and occupancy
grid maps [30]. This digital representation enables the operator to effectively identify areas
of interest. Figure 6 displays an example of POI selection in a georeferenced image of a CH
site, where ground and drone vehicle POIs are selected along with no-go zones.

Figure 6. Manual POI annotations.

On the other hand, the automatic POI identification process is a complex Machine
Learning classification task that includes several stages [32]. First, data preprocessing is
performed to reduce noise. Next, feature extraction is conducted to identify key character-
istics within the data [33] and finally, pattern recognition and machine learning techniques
are applied to classify and cluster potential POIs [34]. The identified POIs are subsequently
mapped onto an occupancy grid, allowing for precise localization and visualization. The
final step in automatic POI identification involves operator validation of the identified POIs
to ensure accuracy and relevance.

3.2.3. Next Best View Detection

The Next Best View (NBV) process aims to identify the optimal viewpoints for the
RA to capture comprehensive 3D scans of the heritage site. Initially, the NBV algorithm
evaluates the current state of the environment and determines the next best position and
orientation for the robot’s sensors. The goal is to maximize the amount of new information
captured, reduce redundant scanning, and ensure high-quality, complete 3D models. To
this end, estimating the Next Best View (NBV) in 3D environments is a critical aspect of
autonomous data acquisition and 3D reconstruction. It involves determining the most
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informative viewpoint for a sensor or robotic system to capture data that maximizes
the information gain, while considering factors such as occlusions, completeness, and
reconstruction quality. Researchers have proposed various approaches for NBV estimation,
including probabilistic frameworks [35], volumetric information gain metrics [18,19,36,37],
guided NBV for the 3D reconstruction of large complex structures using Unmanned Aerial
Vehicles (UAVs) [38], and strategies for selecting the next best view based on ray tracing
and already available BIM information [13]. Furthermore, the NBV problem has been
addressed in the context of the surface reconstruction of large-scale 3D environments
with multiple UAVs [38,39], and effective exploration for Micro Aerial Vehicles (MAVs)
based on expected information gain [23,39]. These approaches leverage techniques such as
reinforcement learning [24,40], feature tracking, reconstruction for NBV planning [25,41],
and history-aware autonomous 3D exploration [26,42]. They aim to address the challenge of
selecting the most informative viewpoint for 3D mesh refinement [27,43]. Therefore, NBV is
a model-based approach, running within software (virtual environment) on the basis of the
prior model obtained from the coarse 3D LiDAR scan of the site or an occupancy map, to
defining a planning strategy for the identification of the proper scanning positions. Figure 7
displays optimum positions (blue dots) for Terrestrial Laser Scanning in the Medieval
Castle of Chlemoutsi, in Ilia, Greece (https://maps.app.goo.gl/kHMmG7A1DxN8gKLp6,
accessed on 1 June 2024), while in the green color are the parts of the Monument that cannot
be covered by TLS due to height constraints. These areas will be surveyed using aerial
vehicle (drone).

Figure 7. Visualization tool for the calculation of optimum positions (Next Best View) for terrestrial
3D scanning (TLS—blue dots) in Chlemoutsi castle. Uncovered parts are shown in green color. In this
figure, Neu-NBV [44] was simulated in Unity and the results are shown in Blender. The 3D model
was acquired from a previous manual survey.

3.2.4. Path Planning

Path planning involves determining the optimal routes for the RA to follow, taking
into account the NBV recommendations to ensure efficient and comprehensive coverage of
the heritage site. Using the data collected during the scouting phase, including sparse cloud
points, reference marker positions, and desirable trajectories, the path planning process
creates a route that maximizes area coverage while avoiding obstacles and adhering to any
specified no-go zones. Path planning algorithms, such as Rapidly-exploring random trees
(RRT) and the Probabilistic Roadmap Method (PRM) [45], are employed to compute the
most efficient paths. These algorithms consider the occupancy grid map [30] generated
by the SLAM [46] algorithm and incorporate the NBV-determined viewpoints, ensuring
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that the planned paths are navigable, safe, and optimized for thorough 3D scanning.
This integrated approach ensures that the robot can navigate effectively while capturing
high-quality data on the heritage site. Figure 8 shows an example of the final trajectories
proposed for the robot to follow during the ground and aerial surveys. At this point,
Table 2 summarizes possible software packages that may be considered for the former four
methodological steps (i.e., Scouting, POI, NBV, and Path Planning).

Figure 8. Generated paths/trajectories, with blue for the ground RA and orange arrows for the
drone RA in Chlemoutsi castle. The numbers in the blue path indicate the sequence of the proposed
positions (stops) for the terrestrial 3D scanning.

Table 2. Potential software algorithms.

Task Algorithm Indicative References

Scouting

SLAM-based:
ORB-based
LIO-SAM
ROVIO

[47–49]

Exploration-based:
Frontier-based
Graph-based planners
SOAR-based space exploration

[50–52]

Point of Interest

Semantic Segmentation:
Segment Anything Meta (SAM)
Graph-based
PSPNet

[53–55]

Object Detection:
YOLO-based
R-CNN
SSD

[56–58]

Next Best View

Reinforcement Learning NBV
(RL-NBV)
Point Cloud NBV (PC-NBV)
NeU-NBV

[44,59,60]

Path Planning
RRT
RPM
A* algorithm

[61–63]
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3.2.5. Scanning Process

The final stage of the methodology is the 3D scanning process, which builds on the
scouting, POI identification, NBV, and path planning stages. In this stage, the RAs follow
the pre-determined optimal paths, as outlined by the path planning stage, to conduct
comprehensive 3D scanning of the heritage site. Utilizing the optimal viewpoints identi-
fied during the NBV process, the RA captures high-resolution 3D data, ensuring that all
significant areas and POIs are thoroughly documented. The integration of SLAM ensures
continuous localization and mapping accuracy, allowing the RA to adapt in real-time to
any changes or obstacles encountered. The resulting 3D scans are then compiled into
detailed, high-fidelity models of the heritage site, providing a valuable resource for preser-
vation, analysis, and further research [64]. This systematic approach guarantees that the
heritage site is meticulously documented with minimal movement and maximum efficiency.
Figure 9 represents a cooperative operation of an aerial and quadrupedal robotic agents
(RA) in a CH site, as well as a photo with the respective RAs in the lab.

Figure 9. Robotic agents carrying sensors in the CH site (left) and in the KINESIS lab (right).

4. Benefits and Barriers of the ARM4CH Methodology

Using the ARM4CH methodology, researchers/surveyors may send ground/quadrupedal
robots on autonomous survey missions (both indoors and outdoors) using SLAM and
GPS navigation in full co-operation with aerial vehicles (UAV) for analysis, data capture,
documentation, and 3D scanning. The great benefits exceed the task of Cultural Heritage
3D scanning, since cooperative autonomous Reality Modelling/inspection features the
following advantages:

• The ability to schedule robots remotely on unsupervised data capture and monitoring
missions, 24/7, with specific field coverage.

• Ensure accuracy by capturing data from the same locations (viewpoints) multiple
times, thus making direct data comparison feasible.

• The ability to create specific schedule plans to capture up-to-date data reliably.
• Reviewing, surveying, and inspecting spaces or places of critical/specific importance

or those that pose a level of danger to the human surveyor.
• Complement the advantages of various sensor technologies and boost performance.
• Continuous or periodic monitoring. Thus, once a problem is confirmed, a maintenance

team may be sent.

From the above it is evident that a great advantage of ARM4CH methodology is that
it may be replicated/executed systematically, as many times as necessary in forthcoming
periods, providing the ability to complete follow-up scans of the same place/site. Those
follow-up scans introduce the concept of the fourth dimension (4D) in RM, since now the
dimension of time is considered. Consecutive follow-up scans facilitate timeline comparison
and monitoring of a constantly changing site and thus flag locations that need emergency
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actions in times of crisis. To this end, ARM4CH may be extremely valuable during the
process of establishing and maintaining a Digital Twin (DT) of a CH site or space. This is
due to the fact that, “. . . a DT is a virtual instance of a physical system that is continually
updated with the latter’s performance” [65], leveraging the most updated available sensor
data, to mirror the corresponding physical counterpart. Figure 10 demonstrates a graphical
representation of a Digital Twin, in which ARM4CH may be used as a middleware to
maintain updates of the site status.

Figure 10. ARM4CH as a catalyst for continuous model updates in the Digital Twin concept (the case
study in this example is the castle of Chalki, Dodecanese).

To summarize the potential benefits and possible barriers of ARM4CH methodology,
Table 3 analyses both advantages and disadvantages of embracing this Industry 4.0 method-
ological framework applied to the field of Cultural Heritage Digitization and Management
in general.

Table 3. ARM4CH benefits and barriers.

Benefits Detailed Analysis

Non-invasive survey
and inspection

ARM4CH may carry out detailed Reality Modeling and monitoring
without causing any physical disruption to the site, gathering
high-resolution images, 3D scans, which are essential for a detailed
analysis and documentation of the current state of the CH site.

Access to hard-to-reach
areas and complex areas

Human operators are not exposed to missions and roles that might be
challenging for them or to conventional surveying equipment.
ARM4CH may suit perfectly for the survey or modeling of
deteriorating structures of a monument.

Reduce labor costs and
survey time

As CH sites often have complex architectures or difficult-to-access
areas, ARM4CH may reduce the laborious and time-consuming
process of 3D scanning by a human operator. The user now has a
supervisory role to extensive surveys or inspections, which can be
both time-consuming and expensive.
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Table 3. Cont.

Benefits Detailed Analysis

Versatility and precision

ARM4CH can be equipped with different sensors and tools, such as
cameras, thermal imaging, and LIDAR, allowing it to perform a wide
range of monitoring and surveying tasks with high precision,
reducing the chances of human error and ensuring high-quality
data collection.

Consistency and
optimization

ARM4CH may perform tasks autonomously and systematically,
following predefined routes and schedules, ensuring optimized,
consistent, and reliable data collection with high precision
and consistency.

Survey replication

ARM4CH may be replicated/executed systematically, as many times
as necessary, providing the ability to complete follow-up scans of the
CH site and update its Digital Twin or Heritage Building Information
Model (H-BIM).

Regular monitoring

ARM4CH may lead to regular and consistent monitoring, providing
up-to-date information on the CH site (i.e., detecting gradual changes
or deterioration over time, damage, structural weaknesses, etc.),
facilitating an immediate response to potential problems.

Long-term preservation
and management

The detailed and systematic data collected by ARM4CH may assist
curators, and conservation experts in prototype planning and
executing restoration projects and a holistic CH management strategy.

Cost

The initial cost for creating the ARM4CH core platform including
RAs and sensors is high, which might be a barrier for surveying
companies or CH stakeholders that would like to operate
this methodology.

Training and expertise
transfer

The execution of ARM4CH and data management requires the
presence of an expert in the survey team, who would supervise the
process. This may necessitate additional resources for staff training or
hiring skilled personnel.

Data management
If regular surveys are needed, a robust data infrastructure should be
available, since large volumes of data collected need to be stored,
processed, and managed (e.g., a complete DT platform).

Ethical and cultural
concerns

The use of Industry 4.0 equipment in CH sites might raise ethical or
cultural concerns among stakeholders who prefer traditional methods
or have concerns about the use of frameworks of the latest technology
(i.e., malfunctions that may cause unintentional damage to the site).

5. Discussion and Future Work

In this paper, we briefly presented the main steps and stages for a completely new
methodology (ARM4CH) to ensure autonomous 3D scanning and digitization for Cultural
Heritage spaces. Key enablers of ARM4CH are the following: (a) a technology core platform
comprising autonomous ground robots, as well as UAVs, that work cooperatively to navi-
gate and survey large areas using the latest technological sensors and deep learning-based
computer vision [66–68], and (b) the operation of a software visualization tool that resolves
the Next Best View problem in 3D meshes and identifies the optimum viewpoint position
and scanning path for total survey coverage by ground and aerial (drones) robotic agents.

As already mentioned in Section 4, such a methodology could be essential for a
“dynamic” DT of a cultural space to actively respond to the urgent need for the efficient
management, resilience, and sustainability of CH sites, facilities, buildings, structures
(indoors and/or outdoors), and their surrounding environment. This undeniable need is
emphasized especially in the light of climate change and the necessity of energy saving.

Therefore, since the preservation and safeguarding of our Cultural Heritage is an
urgent responsibility, there is an increased requirement for automated actions and method-
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ologies to assist the preservation, data fusion/integration, site monitoring, and holistic
management of CH. Using ARM4CH, the “flower” of ARM4CH (see Figure 11) may blos-
som in critical areas of CH and shift the attention of professionals/experts from a curative
towards a more preventive and sustainable approach for CH management.

Figure 11. ARMCH as a core platform for various actions related to Cultural Heritage.

As the ARM4CH methodology is not assessed yet, the future actions of our research
focus on the provision of a proof-of-concept on an actual CH site. Hence, to validate and
verify this framework in a case study, the sequence of necessary steps includes the following:

1. Comparison, evaluation and final selection of the algorithms: This will ensure the
seamless operation of the equipment (RAs and payload), as well as those responsible
for scouting, POI, NBV, path planning, and scanning.

2. Experimentation and training on a simulated environment: After step 1, this stage
involves the training of operational RAs using the latest simulation software plat-
forms, such as the Robot Operation System (ROS) [69], NVIDIA Omniverse [70],
and Gazebo [71]. Those platforms are core modules that provide pre-trained models
augmented with synthetic data to design, test, and train the autonomous naviga-
tion of RAs and deliver scalable and physically accurate virtual environments for
high-fidelity simulations.

3. Experimentation in a laboratory environment: This step involves the gradual re-
lease of operation in specific scenarios into a controlled environment. Moreover, it
will verify that RAs have sufficient control, communication, awareness, and percep-
tion, as well as the ability to operate and navigate in dynamic and unpredictable
indoor/outdoor environments.

4. Full deployment in a real heritage site: In this final step, ARM4CH will be released and
evaluated in a large-scale Cultural Heritage park that includes various infrastructure
for public services, protected monuments, and archaeological sites.
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Abstract: The objective of infrared and visual image fusion is to amalgamate the salient and comple-
mentary features of the infrared and visual images into a singular informative image. To accomplish
this, we introduce a novel local-extrema-driven image filter designed to effectively smooth images by
reconstructing pixel intensities based on their local extrema. This filter is iteratively applied to the
input infrared and visual images, extracting multiple scales of bright and dark feature maps from the
differences between continuously filtered images. Subsequently, the bright and dark feature maps of
the infrared and visual images at each scale are fused using elementwise-maximum and elementwise-
minimum strategies, respectively. The two base images, representing the final-scale smoothed images
of the infrared and visual images, are fused using a novel structural similarity- and intensity-based
strategy. Finally, our fusion image can be straightforwardly produced by combining the fused bright
feature map, dark feature map, and base image together. Rigorous experimentation conducted on the
widely used TNO dataset underscores the superiority of our method in fusing infrared and visual
images. Our approach consistently performs on par or surpasses eleven state-of-the-art image-fusion
methods, showcasing compelling results in both qualitative and quantitative assessments.

Keywords: infrared and visual image fusion; local-extrema-driven image filter; bright feature map;
dark feature map; base image

1. Introduction

The need for infrared and visible image fusion arises from the desire to obtain a
comprehensive representation of a supervised scenario throughout the day. This technique
finds extensive application in both civilian and military surveillance systems, as it can
provide valuable information for decision making and situational awareness. Challenges
in infrared and visible image fusion include precise segmentation of source images, the
integration of salient features without the loss of visual information, and achieving a
fusion image with high contrast and visual appeal. Traditional methods, such as spatial-
domain and transform-domain approaches, often struggle with these challenges, resulting
in suboptimal fusion effects. The motivation for infrared and visible image fusion lies in
the complementary nature of the two imaging modalities. Infrared images capture thermal
radiation emitted by objects, providing information about their temperature and potentially
revealing hidden or camouflaged targets. Visible images, on the other hand, offer high-
resolution detail and color information, facilitating the identification and recognition of
objects and scenes. By fusing these two types of images, it is possible to achieve a more
complete and accurate representation of the supervised scenario.

Various imaging sensors can capture different perspectives of a supervised scenario.
The fusion of these multiple images proves invaluable in gaining a comprehensive under-
standing of the situation at hand [1–3]. For instance, the fusion of multi-modal medical
images greatly aids surgeons in accurate disease diagnosis [4–7], while multi-focus im-
age fusion yields a sharp, all-in-focus image [8–12]. In the realm of infrared and visual
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image fusion, it results in a composite image that provides a holistic representation of
the supervised scenario throughout the day. This technique finds extensive application
in both civilian and military surveillance systems [13–17]. Therefore, the development of
innovative methods for fusing infrared and visual images is crucial and holds significant
utility in both civil and military operations.

In recent years, the field of infrared and visual image fusion has witnessed the emer-
gence of numerous methods, broadly categorized into spatial-domain and transform-
domain approaches. Spatial-domain methods involve the initial segmentation of source
images into multiple regions, followed by the combination of salient regions to achieve
fusion [8,9,11,12,18]. However, these methods often struggle with precise segmentation,
leading to suboptimal fusion effects. Transform-domain methods, gaining popularity over
the past two decades, mainly include pyramid-based [19,20], wavelet-based [21,22], and
sparse-representation-based image-fusion methods [23–25]. These methods extract salient
features within a specific domain and integrate them to produce the fusion image, typically
visually appealing, but susceptible to blurring or significant information loss.

In recent times, numerous deep learning approaches, particularly those based on convo-
lutional neural networks (CNNs), have been proposed for image fusion [3,6,16,26–30]. Initially,
Liu et al. [26] introduced a CNN model to identify the focus decision map of multi-focus
images. They refined the focus decision map through post-processing procedures and
generated an all-in-focus fusion image by copying focused regions from corresponding
partially focused images based on the focus decision map. Subsequently, Li et al. [27]
utilized densely connected CNN blocks to construct their image fusion model, achieving
significant improvement in fusing infrared and visual images. Afterward, Ma et al. [16]
employed a GAN-based model to effectively train their image fusion model for infrared
and visual images in an adversarial manner. More recently, Li et al. [29] proposed a
representation-learning-based infrared and visual image fusion network, claiming to avoid
trial-and-test strategies. Despite their success in image fusion, most of these methods still
exhibit low contrast or other types of defects.

In addition to the aforementioned methods, Zhou et al. [18] employed Gaussian and
bilateral filters to extract multi-scale feature maps from different input images, subsequently
blending them to create their fusion images. Similarly, Zhang et al. [31] devised a multi-
scale Bezier filter, utilizing it to extract multiscale bright and dark features from infrared
and visual images and integrating these features with the base image to generate their
fusion image. Despite these efforts, their proposed image filters did not demonstrate
sufficient superiority. Their image-fusion methods primarily concentrated on merging
salient features without adequate consideration for the visual effect of the resulting fusion
images. Consequently, their fusion images often suffered from low-contrast effects or the
loss of visual information, making them unsatisfactory for human visual perception.

To address the limitations of existing methods and integrate the salient features of
infrared and visual images while improving the visual quality of the fusion image, in this
study, we introduce a simple, yet effective local-extrema-driven image filter. By alternately
leveraging local minima and local maxima for image reconstruction, our proposed filter
demonstrates exceptional capabilities in extracting both bright and dark features from
images. Specifically, the disparities between the filtered and original images reveal these
bright and dark features. Additionally, we present a multi-scale local-extrema-filter-based
method for fusing infrared and visual images. This method initially extracts multiple
scales of bright and dark feature maps and generates corresponding base images from
the input infrared and visual images, respectively. It then merges the high-frequency
bright and dark feature maps and low-frequency base images using two different fusion
rules. Finally, the fusion image is generated by integrating the fused feature maps and
the base image. Owing to the exploitation of our advanced local-extrema-driven filter,
this method excels in capturing salient dark and bright features from both infrared and
visual images, resulting in an informative fusion image. Moreover, the incorporation of our
innovative structural similarity- and intensity-based base image fusion scheme enhances
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the visual quality of our fusion images, representing a notable improvement over current
state-of-the-art image-fusion methods, including deep learning-based approaches.

This paper comprises three primary contributions. Firstly, we introduce an innovative
image filter driven by local extrema, which effectively smooths images by removing bright
and dark features, thus enabling robust feature extraction for generating salient bright and
dark feature maps. Secondly, we propose a novel base image fusion scheme based on struc-
tural similarity and intensity considerations. This approach prioritizes obtaining a fused
base image that encompasses large-scale structural features and well-distributed intensity,
achieved through the generation of a weight map that accounts for these factors within the
base images. Consequently, our method consistently produces fusion images with superior
visual quality. Lastly, extensive experimental validation demonstrates the effectiveness of
our approach, surpassing eleven state-of-the-art transform-domain image-fusion methods
and outperforming leading deep learning-based methods. This success underscores the
efficacy of our proposed local-extrema image filter and base image-fusion scheme.

The remaining paper is organized as follows. The proposed local-extrema-driven
image filter and the proposed image-fusion method based on this filter are elaborated in
Section 2. The experimental results and discussions are presented in Section 3. Finally, the
conclusions of this paper are drawn in Section 4.

2. Proposed Method

In this study, we present an effective method for fusing infrared and visual images,
leveraging our newly developed multi-scale local-extrema-driven image filter. The pro-
posed approach comprises four key steps: Firstly, we apply the local-extrema-driven image
filter at varying scales to progressively process the infrared and visual images. Simultane-
ously, we extract the corresponding bright and dark feature maps from each, while using
the resulting filtered images as their base images. Next, we merge the bright and dark
feature maps from both the infrared and visual images by selecting their elementwise maxi-
mum values, followed by enhancement with a scale-dependent coefficient. Then, we blend
the base images of the infrared and visual inputs by a structural similarity-based fusion
scheme. Ultimately, the fusion image is generated by integrating the fused bright and dark
feature maps with the base image. To facilitate comprehension, we provide a flowchart of
our proposed image method in Figure 1. In the following two subsections, the proposed
image filter and image-fusion method based on this filter are elaborated, respectively.

Figure 1. Flowchart of our proposed infrared and visual image-fusion method. Please note that, in
order to visualize the dark feature maps (features with negative values), the absolute dark feature
maps are presented in this figure. Moreover, the term “LED filter” is short for our proposed local-
extrema-driven image filter.
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2.1. Local-Extrema-Driven Image Filter

Within an image, bright features, as exemplified by the bright person in the infrared
image shown in Figure 1, and dark features, represented by the dark window in the same
infrared image, are commonly present. Employing a strategy of smoothing the image
and subsequently subtracting the smoothed version from the original has proven to be
an effective method for isolating the image’s bright and dark features [7,15]. Ideally, the
smoothed image should eliminate the bright spots and fill the dark holes in the original,
facilitating the extraction of both bright and dark features from the resultant difference
image between the original and the smoothed version. To fulfill this objective, our local-
extrema-driven image filter is constructed as follows.

Initially, we reconstruct the input image using its local minima, expressed as:

F′ = H ∗ Imin, (1)

where ∗ represents the convolution operator. Imin represents the local minimum image
derived from the input image I, calculated according to Equation (2). Additionally, H
represents the convolution kernel, the format of which is defined in Equation (3).

Imin = imerode(I, se), (2)

where imerode represents the morphological erosion operator and se denotes a disk-shaped
structural element with a radius r. Consequently, Imin signifies the local minimum image of
I with respect to a distance of r.

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1 1
1 0 · · · 0 1
...

...
. . .

...
...

1 0 · · · 0 1
1 1 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎦
(2r+1)×(2r+1)

. (3)

In this manner, every pixel in the original input image is reconstructed based on
the local minima of its neighboring pixels, effectively suppressing the bright features
present in the original image. Subsequently, the initially filtered image F′ undergoes further
reconstruction, this time utilizing its local maxima, as follows:

F = H ∗ F′
max, (4)

where F′
max represents the local maximum image derived from the initially filtered image

F′ and can be computed using Equation (5).

F′
max = imdilate

(
F′, se

)
, (5)

where imdilate signifies the morphological dilation operator. Consequently, F′
max represents

the local maximum image of F′ with a distance of r.
In contrast to Equation (1), Equation (4) achieves additional removal of salient dark

features from the filtered image by reconstructing each pixel in F′ based on its local maxima.
To streamline the presentation of the upcoming image-fusion method, we introduce

lextreme f ilter(·) as the function of our devised local-extrema-driven image filter, composed
of Equations (1) and (4). The process of smoothing an image with our local-extrema-driven
image filter can be succinctly expressed as:

F = lextreme f ilter(I, r), (6)

where r denotes the size of the structuring element in Equations (2) and (5).
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As is evident, an image comprises both bright and dark features, illustrated by the bright
person and the dark window corner in Figure 1. Through the iterative reconstruction of the
input image based on the local minima and local maxima, salient bright and dark features
can be effectively eliminated, resulting in a well-smoothed image (see the filtered images
in the last column of Figure 1). Subsequently, the salient features of the input image can be
derived by subtracting the filtered image F from the input image I as per Equation (7). The
positive part B captures the bright features (refer to the first column of the Feature Extraction
and Fusion Module in Figure 1), while the negative part D corresponds to the dark features
(refer to the second column of the Feature Extraction and Fusion Module in Figure 1).

{
B = max(I − F, 0)
D = min(I − F, 0)

, (7)

where B and D represent the bright and dark feature map of I, respectively.
Furthermore, the local-extrema-driven image filter can be scaled to multiple levels

through successive applications of the filter driven by local minima and local maxima on
the input image I, as outlined in Equation (8).

Fi = lextreme f ilter
(

F(i−1), ri

)
, (8)

where i represents the current scale of the image filter, with i incrementing from 1 to n
sequentially. Fi denotes the filtered image at the ith scale, and notably, F0 corresponds to
the original input image I. The parameter ri denotes the size of the structuring element
and convolution kernel at the ith scale. In this study, we designate ri = i to progressively
augment the smoothing degree of our proposed image filter.

Consequently, multiple scales of bright and dark feature maps can be concurrently
extracted from the continuously filtered images by

{
Bi = max(Fi−1 − Fi, 0)
Di = min(Fi−1 − Fi, 0)

. (9)

Finally, the last scale of the filtered image is taken as the base image for I:

Ibase = Fn, (10)

where n represents the scale number.

2.2. Local-Extrema-Driven Image Fusion

In this study, our objective is to fuse a visual image denoted as Ivis and an infrared
image denoted as Iin f . Utilizing the feature-extraction method outlined in the preceding
subsection, multi-scale bright feature maps (represented by Bvis

i and Bin f
i ) and dark feature

maps (indicated by Dvis
i and Din f

i ) are effectively extracted from Ivis and Iin f . Concurrently,

we obtain their respective base images denoted as Ivis
base and Iin f

base. The subsequent contents
delineate the detailed procedures for fusing a visual image and an infrared image.

Considering that high-frequency bright features usually correspond to sharp and
bright features in the image, we combine each scale of bright feature maps from the infrared
and visual images by choosing their elementwise maximum values. Likewise, for each
scale of dark feature maps, we fuse them using their elementwise minimum values. The
mathematical expressions for fusing high-frequency bright and dark features are as follows:⎧⎨

⎩
B f use

i = max
(

Bvis
i , Bin f

i

)
D f use

i = min
(

Dvis
i , Din f

i

) . (11)

Furthermore, the elementwise-fused bright and dark feature maps are individually
integrated into single feature maps. As feature maps may contain varied quantities of
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features across different scales, potentially leading to redundancy, this study employs
a two-step process. Initially, the strengths of these feature maps are dynamically adjusted
based on their information content. Subsequently, they are summed together. This adap-
tation relies on an entropy-based weighting strategy [32], enhancing feature maps with a
substantial amount of information while diminishing those with relatively less information.
The detailed aggregation of the fused multiple scales of bright and dark feature maps is
outlined below. ⎧⎪⎪⎨

⎪⎪⎩
B f use =

n
∑

i=1
wb,i × B f use

i

D f use =
n
∑

i=1
wd,i × D f use

i

, (12)

where wb,i and wd,i denote the weights of the bright feature map and dark feature map at
the ith scale, respectively, and can be calculated as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
wb,i =

eb,i

1
n

n
∑

j=1
eb,j

wd,i =
ed,i

1
n

n
∑

j=1
ed,j

, (13)

where eb,i and ed,i represent the entropy of B f use
i and

(
−D f use

i

)
, respectively. This ex-

ploited feature aggregation strategy ensures that the fused single bright feature map and
dark feature map not only retain the salient high-frequency features, but also eliminate
redundant information.

Concerning the low-frequency base images, they commonly contain large-scale struc-
tural features, and the intensity distribution of the fused base image plays a crucial role
in determining the final appearance of the fusion image. Therefore, in this study, we
employed a structural similarity- and intensity-based scheme to fuse the base images of
infrared and visual images. Specifically, we initiate the process by averaging the two base
images elementwise, yielding an initial base image as follows:

I′ f use
base = 0.5 ×

(
Ivis
base + Iin f

base

)
. (14)

Subsequently, a provisional fusion image I′ f use is created by combining the fused
bright feature map, fused dark feature map, and initially fused base image as follows:

I′ f use
= B f use + D f use + I′ f use

base . (15)

Afterward, the structural-similarity maps between each base image and the initially
fused image are computed, respectively.⎧⎨

⎩
Svis = SSIM

(
I′ f use, Ivis

base

)
Sin f = SSIM

(
I′ f use, Iin f

base

) , (16)

where SSIM(A, B) calculates the structural similarity between image A and image B using
the method outlined in [33]. Afterward, we generate a structural similarity-based weight
map for fusing base images as follows:

wstruct
base,vis = Svis/

(
Svis + Sin f

)
. (17)
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Moreover, the grayscale intensities are closely linked to the appearance of the fusion
image. Therefore, we also incorporate an intensity-based weight for fusing base images,
which can be computed as follows:

wintens
base,vis = eIvis/(Ivis+Iin f ). (18)

To balance the two kinds of weights, we fuse them by

wbase,vis = G ∗
[
wstruct

base,vis ×
(

wintens
base,vis

)α]
, (19)

where α serves as a parameter to balance these two weights. G represents a Gaussian kernel
employed to smooth the weight distribution map.

Then, the two base images of the infrared and visual images can be fused as follows:

I f use
base = wbase,vis × Ivis

base + (1 − wbase,vis)× Iin f
base. (20)

As depicted in Figure 2, the implementation of our structural similarity- and intensity-
based fusion scheme results in a fused base image that not only retains significant large-scale
structural features from both base images, but also achieves an advantageous intensity
distribution, thereby enhancing visual perception in the final fusion image. Specifically,
when compared to exclusively utilizing the structural similarity-based fusion scheme (see
Figure 2f), our comprehensive fusion scheme produces a fused base image (see Figure 2h)
with a more suitable intensity distribution. Similarly, in contrast to relying solely on an
intensity-based fusion scheme (see Figure 2g), our comprehensive fusion approach retains a
greater number of structural features in the fused base image (see Figure 2h). Furthermore,
compared to simply averaging the two base images (see Figure 2e), our complete base
image-fusion scheme generates an intensity-distributed fused base image (see Figure 2h)
while preserving richer textures. Additionally, by comparing the fusion images generated
from the fused base images in Figure 2e,f, it effectively validates the efficacy of our base
image fusion scheme to a significant extent.

Figure 2. Demonstration example of our base image fusion scheme. (a,b) present the original
visual and infrared images, respectively. (c,d) depict the base images corresponding to the infrared
and visual inputs, respectively. (e–h) exhibit the resulting fused base images derived from the
direct average scheme, structural similarity-based fusion, intensity-based fusion, and our novel
structural similarity- and intensity-based fusion approach, respectively. (i–l) showcase the fusion
images generated by combining (e–h) with our fused high-frequency bright and dark feature maps,
respectively. The yellow text in (i–l) highlights the average grayscale intensity and average absolute
gradient of the corresponding fused image.
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Finally, our proposed method generates the fusion image by combining the fused
bright feature map, dark feature map, and base image together, as expressed in
Equation (21). Through this process, our fused image not only retains fundamental infor-
mation from the infrared and visual images, but also effectively highlights the prominent
sharp features present in the infrared and visual images.

I f use = B f use + D f use + I f use
base . (21)

2.3. Parameter Settings

The proposed method involves two parameters: the scale number n and the parameter
α for balancing wstruct

base,vis and wintens
base,vis. In this study, we employed the grid search method

to find the optimal pair of n (ranging from 1 to 10 in increments of 1) and α (ranging
from 0.05 to 1 in increments of 0.05) that maximizes the multi-scale structural similarity
metric (MSSIM) [34]. The results show that the MSSIM increases with the increase of
the scale number, but the running time of our method increases simultaneously. So, we
first set the scale number n to six, so that the performance and time cost of our method
will be balanced. Afterwards, when n = 6, MSSIM is maximized by setting α = 0.35.
Therefore, throughout this study, consistent parameter settings (n = 6 and α = 0.35) were
used, and the experimental results in the following section validate the efficacy of these
chosen parameters for infrared and visual image fusion.

3. Experimental Results and Discussion

To showcase the merits of our novel infrared and visual image-fusion method, we
conducted a thorough comparative analysis against eleven state-of-the-art image-fusion
techniques. This evaluation was performed on a widely recognized dataset for infrared
and visual images. For comprehensive insights into the experimental settings, results, and
discussions, please refer to the subsequent subsections.

3.1. Experimental Settings

The experimental setup for this study is summarized as follows. Initially, we assem-
bled twenty pairs of widely used infrared and visual images from the TNO dataset [35].
Subsequently, we selected eleven state-of-the-art image-fusion methods for comparison.
These methods include the guided-filter-based image method (GFF) [36], the hybrid multi-
scale-decomposition-based image-fusion method (HMSD) [18], the Laplacian pyramid- and
sparse-representation-based image-fusion method (LPSR) [25], the Gaussian of differences-
based image-fusion method (GDPSQCV) [37], the relative total variation-decomposition-
based image-fusion method (RTVD) [38], the parameter-adaptive unit-linking dual-channel
PCNN-based image-fusion method (PAULDCPCNN) [39], the GAN-based image-fusion
method (FusionGAN) [16], the unified deep learning-based image-fusion method
(U2Fusion) [40], the semantic-aware image-fusion method (SeAFusion) [28], and the repre-
sentation learning-guided image-fusion method (LRR) [29]. For simplicity, we refer to our
proposed local-extrema-driven filter-based image-fusion method as LEDIF. Additionally,
we conducted comparisons by excluding the utilization of the structural similarity- and
intensity-based base image fusion scheme in our method (denoted as LEDIF0) to evaluate
the effectiveness of this scheme.

Afterwards, the thirteen methods underwent both qualitative and quantitative evalua-
tion. In particular, the qualitative assessment involved a visual comparison of the fusion
results across the different methods. For the quantitative evaluation, we employed nine
metrics to objectively gauge the quality of the fusion images produced by the various
approaches. These metrics include the spatial frequency (SF) [8,41], the average absolute
gradient (AG) [42], the linear index of fuzziness (LIF) [43], the blind/referenceless image
spatial quality evaluator (BRISQUE) [44], the visual information fidelity (VIF) [45], the
multi-scale structural similarity index metric (MSSIM) [34], the edge-dependent structural
similarity index metric (ESSIM) [46], the edge-similarity-based metric (QABF) [44] and

80



Sensors 2024, 24, 2271

the sum of correlation differences metric (SCD) [47]. The superior performance of the
corresponding image-fusion method is indicated by smaller values for the BRISQUE metric
and larger values for the other eight metrics.

Among these metrics, the SF, AG, and LIF quantify the amount of details preserved in
the fusion image, while BRISQUE quantifies the clarity and distortion level of the fusion
image. The VIF measures the information fidelity of the fusion image concerning the
input images, while the MSSIM, ESSIM, QABF, and SCD gauge the structural similarity
between the fusion image and the input images from various perspectives. These metrics
collectively provide a comprehensive evaluation framework, capturing different aspects of
fusion image quality and fidelity.

3.2. Qualitative Evaluation Results

In this subsection, we qualitatively assess the thirteen image-fusion methods by visu-
ally comparing their fusion results. To offer visual insight into the quality and effectiveness
of each fusion method, we present five comparison examples showcasing the fusion outputs
of all thirteen methods in Figures 3–7, respectively.

Figure 3. First comparison example of the thirteen image-fusion methods.

In Figure 3, both the infrared and visual images were captured under normal lighting
conditions. Notably, a person was standing near the fence, appearing almost invisible in
the visual image while prominently visible in the infrared counterpart. Consequently, an
ideal fusion image for this image pair should seamlessly integrate the bright person and
distinct spots from the infrared image with the intricate textures of the trees and fence from
the visual image. It is evident that the areas corresponding to the person in the fusion
images produced by the GFF, HMSD, GDPSQCV, U2Fusion, and LRR in (c), (d), (g), (k), and
(m) appear dimmer compared to those in other fusion images. Similarly, the tree regions
in the fusion images generated by the LPSR, IFEVIP, GDPSQCV, RTVD, and FusionGAN
in (e), (f), (g), (h), and (j) exhibit relatively smoother textures than those in other fusion
images. Notably, the intensities in the fusion image of PAULDCPCNN, as depicted in (i),
are not evenly distributed. Additionally, the background of the fusion image produced by
SeAFusion, illustrated in (l), appears noticeably darker compared to others. Finally, (n) and
(o) demonstrate that our two fusion images exhibit the most visually appealing results
among all fusion images, with the fusion image generated by our complete method in (o)
being slightly brighter than that produced by our method without leveraging the proposed
base image fusion scheme.
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Figure 4. Second comparison example of the thirteen image-fusion methods.

In Figure 4, the infrared and visual images were captured under low-light conditions.
The optimal fusion image for this pair should seamlessly integrate distinctive bright features,
particularly the two person regions in the infrared image, and the bright textures of the
visual image, encompassing the grass and trees, along with the darker features represented
by the bench. Among the fusion images depicted in (c), (e), (g), (k), (m), and (n), generated
by the GFF, LPSR, GDPSQCV, U2Fusion, LRR, and our LEDIF0, respectively, the intensities
of the person regions are notably lower than those in (b), indicating unsatisfactory results
in this particular case. Furthermore, the contrast in the fusion results of GDPSQCV and
U2Fusion in (g) and (k) is relatively diminished compared to other methods’ fusion images.
The fusion image of RTVD in (h) is over-exposed, resulting in the loss of many textural
details, particularly around the bench. Conversely, the fusion image of FusionGAN in (j)
fails to integrate most critical textures of the visual image in (a). While the HMSD, IFEVIP,
SeAFusion, and our LEDIF in (d), (f), (l), and (o), respectively, exhibit the most visually
appealing results among all fusion images, there are notable observations. IFEVIP’s fusion
image in (f) appears slightly over-exposed, and the bright infrared features of the HMSD’s
fusion image in (d) are relatively lower than other methods’ results. Additionally, both
the IFEVIP and SeAFusion sacrifice some textural details in their fusion images in (f) and
(l). In summary, the fusion image generated by our LEDIF in (o) attains the highest visual
quality, affirming the effectiveness of our structural similarity- and intensity-based base
image fusion scheme in enhancing the overall visual appearance of the final fusion images.

In Figure 5, both the infrared and visual images were captured under normal lighting
conditions. The ideal fusion image should effectively combine the various scales of salient
bright features from the infrared image with the diverse bright and dark features present in
the visual image. It is evident from (c), (f), (g), and (m) that the GFF, IFEVIP, GDPSQCV,
and LRR struggle to integrate most of the bright features from the infrared image into their
fusion images, as observed in the building area within the red bounding boxes of each
image. Among these methods, FusionGAN’s fusion image in (f) displays a considerable
loss of textures from the visual image, resulting in the poorest visual effect among all
thirteen image-fusion methods. U2Fusion manages to integrate the salient features of both
the infrared and visual images into its fusion image, as demonstrated in (k). However, the
contrast of (k) is relatively low compared to that of the infrared image, the visual image, and
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most other fusion images. (l) highlights that the building area of the fusion image generated
by SeAFusion is over-exposed, leading to a loss of some building details. Ultimately, the
fusion images produced by PAULDCPCNN, our LEDIF0, and our LEDIF in (i), (n), and (o),
respectively, exhibit the most favorable visual effects among all fusion images.

Figure 5. Third comparison example of the thirteen image-fusion methods.

Figure 6. Fourth comparison example of the thirteen image-fusion methods.

In Figure 6, the sky area in the visual image appears over-exposed, necessitating an
ideal fusion image for this image pair to accentuate the bright tree features surrounding the
sky area from the infrared image. In (c), the GFF demonstrates limitations in incorporating
the bright person from the infrared image into its fusion image. While the HMSD and
LPSR effectively blend the infrared and visual images in most regions, they struggle
to integrate specific bright tree branches from the infrared image, as highlighted in the
red bounding boxes of (d) and (e). Moving on to (f), (h), (i), and (l), the IFEVIP, RTVD,
PAULDCPCNN, and SeAFusion encounter challenges in including the bright tree branches
from the infrared image in their fusion images due to the over-exposed sky area in the
visual image. Conversely, the fusion images from the GDPSQCV, FusionGAN, U2Fusion,
and LRR in (g), (j), (k), and (m) exhibit the loss of textural details from the visual image,
with relatively low contrast compared to other methods. Furthermore, (n) and (o) illustrate
that the fusion images generated by the PAULDCPCNN, our LEDIF0, and LEDIF in (i), (n)
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and (o) successfully integrate the bright tree branches from the infrared image, displaying
good contrast compared to the fusion images from the other methods. Notably, the fusion
image from our LEDIF is slightly brighter than that of our LEDIF0, indicating a slight
improvement in the visual effect of the fusion image facilitated by the proposed base image
fusion scheme in this case.

Figure 7. Fifth comparison example of the thirteen image-fusion methods.

In Figure 7, both the infrared and visual images were captured under low-light
conditions. The primary goal for this pair was to generate an optimal fusion image that
effectively integrates the facial features depicted in the visual image in (a) with the bright
person captured in the infrared image in (b). (c) reveals that the GFF fails to effectively
integrate the bright person features from the infrared image into its fusion image. Notably,
the fusion images of the HMSD, U2Fusion, and our LEDIF0 in (d), (k), and (n), respectively,
exhibit relatively low contrast compared to other fusion images. Furthermore, (f), (h),
and (i) demonstrate that the fusion images of the IFEVIP, RTVD, and SeAFusion appear
over-exposed, resulting in a failure to integrate most facial features from the visual image.
In (g), the fusion image generated by the GDPSQCV showcases a significant loss of the
person area, while (j) indicates that most background areas of FusionGAN’s fusion image
fail to integrate from the visual image. Overall, in this scenario, fusion the images obtained
from the LPSR, PAULDCPCNN, LRR, and our LEDIF in (e), (i), (m), and (o), respectively,
achieve the most favorable visual effects.

The qualitative comparisons across the five examples strongly affirm the efficacy of our
proposed method in seamlessly integrating the prominent bright and dark features present
in both infrared and visual images, resulting in comprehensive fusion images. Notably,
our method consistently performed comparably or even surpassed eleven state-of-the-art
image fusion approaches, as evidenced by superior visual observations. Additionally, the
visual comparison examples further validate the effectiveness of our proposed base image
fusion scheme in enhancing the visual quality of the fusion images.

3.3. Quantitative Evaluation Results

As widely acknowledged, qualitative evaluation heavily depends on subjective obser-
vation, potentially resulting in inaccuracies and demanding significant effort. To ensure an
objective comparison of the performance of various methods, we additionally utilized nine
quantitative metrics, as outlined at the beginning of this section. Subsequently, we provide
detailed quantitative evaluation results and discussions.

Table 1 presents the quantitative metrics computed for the thirteen image-fusion
methods. Notably, in Table 1, the best, second-best, and third-best values are highlighted in
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red, green, and blue, respectively, while the integer in the subscript of each metric value
indicates the performance rank among all thirteen image-fusion methods. Additionally,
the individual metric values for each fusion image generated by each method are further
illustrated in Figure 8.

Table 1. Quantitative evaluation results of different image-fusion methods on the datasets used.

Methods SF AG LIF BRISQUE VIF MSSIM ESSIM QABF SCD

GFF 10.66668 9.13318 0.44489 20.76468 0.252111 0.855810 0.84183 0.62181 1.298212
HMSD 11.78164 10.25795 0.44938 38.398213 0.39767 0.93244 0.83195 0.53304 1.56758
LPSR 11.28577 9.86817 0.433310 19.01104 0.40656 0.92895 0.84282 0.59312 1.417012

IFEVIP 9.57089 8.316410 0.55022 21.926010 0.32319 0.848211 0.774011 0.49818 1.64374
GDPSQCV 8.220612 6.978512 0.53434 20.15116 0.276610 0.89297 0.85571 0.50785 1.57717

RTVD 8.435811 7.262111 0.54333 19.27255 0.212212 0.789312 0.78788 0.460910 1.53869
PAULDCPCNN 11.31396 9.93056 0.55651 18.93293 0.47074 0.94122 0.83304 0.54093 1.64025

FusionGAN 5.769113 5.046713 0.247813 25.410012 0.183113 0.730813 0.664713 0.219613 1.021313
U2Fusion 11.36295 10.69154 0.409511 16.93112 0.57581 0.92506 0.780910 0.424111 1.63266

SeAFusion 11.96973 10.71013 0.45367 10.81811 0.43675 0.88638 0.78629 0.47619 1.66872
LRR 9.423010 8.47839 0.365212 23.208711 0.35528 0.87099 0.742912 0.373512 1.435810

LEDIF0 14.19442 12.60432 0.48986 21.25519 0.54683 0.94781 0.81766 0.50156 1.67391
LEDIF 14.23821 12.67771 0.51655 20.75727 0.56612 0.93753 0.81417 0.49867 1.64843

Figure 8. Visual comparison of the quantitative evaluation results.

The analysis of the metrics reveals that our proposed method achieved top perfor-
mance on two metrics, the SF and AG, while securing the second-best performance on the
VIF metric and the third-best performance on the MSSIM and SCD metrics. Furthermore,
our method ranked in the top 50% for the other four metrics, including the LIF, BRISQUE,
ESSIM, and QABF. Specifically, our method stands out with the largest SF and AG values
and the fifth-largest LIF value, indicating superior preservation of textural details compared
to the other twelve comparison methods. Regarding BRISQUE, our method ranked seventh,
suggesting relatively high-quality image generation with clarity and information retention.

Additionally, our method ranked second on the VIF, indicating high visual information
fidelity with respect to the original visual images. In terms of the MSSIM, our LEDIF0 and
LEDIF ranked first and third, respectively, on this metric. The MSSIM, being a multi-scale
structural similarity measure, is often more robust than other similarity measures like the
ESSIM and QABF, where our method ranked seventh. These structural similarity-based
metrics validate our method’s ability to preserve relatively more structural features from
the input infrared and visual images. Similarly, our method ranked third on the SCD metric,
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indicating close correlation between the fusion images and the original infrared and visual
images, thereby preserving more structural features.

Furthermore, comparing the metric values of our LEDIF0 and LEDIF reveals that
the LEDIF preserved more details from the input images in its fusion images compared
to LEDIF0, as inferred from the SF, AG, and LIF metrics. The LEDIF also generated
fusion images of higher visual quality and fidelity, as indicated by the BRISQUE and VIF
metrics. However, incorporating the base image fusion scheme resulted in a slight loss
of structural features compared to LEDIF0, evident from metrics like the MSSIM, ESSIM,
QABF, and SCD.

The consistency between the average metrics and individual values is further vali-
dated by the individual metric values plotted in Figure 8. This consistency reinforces the
effectiveness and significance of the quantitative ranks discussed above.

3.4. Further Discussion

When compared to existing or related methods, in particular the approach presented
in [31], our method stands out significantly. While both methods rely on a local image
filter, the method in [31] is constructed based on the original Bezier interpolation operation,
which differs from our construction method. Additionally, the cited method does not
address the enhancement of visual quality in the final fusion images. In contrast, our
method specifically tackles this issue, particularly addressing the challenge of dim visual
effects in fusion images by introducing a novel intensity and structural similarity-based
base image fusion scheme. Through both qualitative and quantitative analyses, our newly
proposed local-extrema-filter-based image-fusion method and base image fusion scheme
prove to be effective for infrared and visual image fusion tasks, performing comparably to
or even better than eleven state-of-the-art image-fusion methods.

Furthermore, the efficiency of our image-fusion method is relatively high, requiring
approximately 0.21 s to fuse a pair of infrared and visual images. Nevertheless, there exists
substantial potential for further efficiency enhancements through the utilization of parallel
computing techniques or the optimization of computational operations. Therefore, there is
great potential to apply our proposed method to real practical scenarios.

To comprehensively evaluate the generalization ability of our method, we first con-
ducted experiments using the VIFB dataset [48]. The results, depicted in Figure 9, showcase
five representative image fusion examples. These examples not only demonstrate our
method’s capability to fuse images captured under varying lighting conditions, including
both daylight and nighttime scenarios, but also its effectiveness in seamlessly integrating
salient infrared features with over-exposed visual images.

Figure 9. More results of our method for fusing images from other infrared and visual image fusion
dataset (i.e., the VIFB dataset [48]).

Expanding beyond infrared–visual fusion, our method was applied to fuse images
from diverse modalities, including multi-focus images, multi-exposure images, and multi-
modal medical images. As depicted in Figure 10, our approach adeptly integrates salient
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features from each pair of source images into the resulting fusion images. This versatil-
ity underscores the adaptability and robustness of our method across a wide range of
image modalities.

Figure 10. More results of our method for fusing multi-focus, multi-exposure, and multi-modal
medical images.

In summary, the positive fusion results observed in both Figures 9 and 10 serve as com-
pelling validation of the robust generalization ability of our method. Its efficient processing
time, combined with its effectiveness across varied modalities, positions our approach
as a promising solution for real-world image-fusion applications. Through ongoing re-
search and refinement, we remain committed to further advancing the capabilities and
applicability of our method in diverse image-fusion scenarios.

Considering both qualitative and quantitative evaluations, our image-fusion method
consistently demonstrates performance on par with or superior to the eleven state-of-the-art
image-fusion methods.

4. Conclusions

In this study, we have introduced a highly effective local-extrema-driven image filter,
meticulously designed for the fusion of infrared and visual images. The proposed filter
showcases remarkable capabilities in smoothing images, thereby facilitating the extraction
of salient bright and dark features. Through iterative application of this filter, our approach
excels at extracting multiple scales of salient textural features from both infrared and visual
images. These distinctive features are seamlessly integrated into a single, informative
fusion image through two appropriate fusion strategies. Notably, our innovative base
image fusion scheme, rooted in structure similarity and intensity, significantly enhances
the visual effect of the resulting fusion images.

While our method demonstrates competitive performance against state-of-the-art
techniques, several avenues for further research and improvement are apparent. Primarily,
the current reliance on grid searching for parameter optimization may not yield the most
optimal settings for the infrared and visual image fusion task. To address this limitation,
we intend to explore advanced optimization techniques to fine-tune these parameters,
ensuring maximal performance and adaptability across diverse datasets and scenarios.

Furthermore, although our method excels in enhancing low-level image features, its cur-
rent configuration lacks optimization for high-level vision tasks such as image segmentation,
object detection, and object tracking. Recognizing the significance of seamlessly integrating
these capabilities, our future research endeavors will focus on evolving our framework into
a deep learning-driven architecture. By harnessing the power of deep learning, we aim to
imbue our method with the capacity to not only preserve critical image features during
fusion, but also to facilitate robust performance in subsequent high-level vision tasks, thereby
enhancing its utility and applicability in real-world surveillance systems.
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Moreover, while our base image fusion scheme yields visually appealing results, we
acknowledge its marginal impact on certain quantitative metrics. To address this, we plan
to explore novel fusion strategies and evaluation metrics that better capture the holistic
quality and utility of fusion images. By refining our approach in this manner, we aim to
bridge the gap between subjective visual appeal and objective performance metrics, thereby
ensuring a comprehensive assessment of fusion image quality.

In summary, while our method presents a significant advancement in the field of image
fusion, we recognize the importance of continuous refinement and adaptation to meet
the evolving demands of contemporary surveillance systems. Through targeted research
efforts aimed at parameter optimization, the integration of high-level vision tasks, and the
refinement of fusion strategies, we are committed to further enhancing the capabilities and
applicability of our approach for diverse real-world scenarios.
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Abstract: Camera traps, an invaluable tool for biodiversity monitoring, capture wildlife activities
day and night. In low-light conditions, near-infrared (NIR) imaging is commonly employed to
capture images without disturbing animals. However, the reflection properties of NIR light differ
from those of visible light in terms of chrominance and luminance, creating a notable gap in human
perception. Thus, the objective is to enrich near-infrared images with colors, thereby bridging this
domain gap. Conventional colorization techniques are ineffective due to the difference between NIR
and visible light. Moreover, regular supervised learning methods cannot be applied because paired
training data are rare. Solutions to such unpaired image-to-image translation problems currently
commonly involve generative adversarial networks (GANs), but recently, diffusion models gained
attention for their superior performance in various tasks. In response to this, we present a novel
framework utilizing diffusion models for the colorization of NIR images. This framework allows
efficient implementation of various methods for colorizing NIR images. We show NIR colorization is
primarily controlled by the translation of the near-infrared intensities to those of visible light. The
experimental evaluation of three implementations with increasing complexity shows that even a
simple implementation inspired by visible-near-infrared (VIS-NIR) fusion rivals GANs. Moreover,
we show that the third implementation is capable of outperforming GANs. With our study, we
introduce an intersection field joining the research areas of diffusion models, NIR colorization, and
VIS-NIR fusion.

Keywords: near-infrared; diffusion models; camera trapping; unpaired dataset; neural networks;
machine learning

1. Introduction

For wildlife monitoring, typically, camera traps are used (see Figure 1). Camera traps
show several advantages for wildlife monitoring:

1. Camera traps deliver permanent documentation records of date, location, and species.
2. These camera-trap-based documentation records allow for estimations of animal

populations [1] and movements of animals and herds [2].
3. Camera traps can record animal behavior [3].
4. Using invisible infrared flashlights, camera traps work non-invasive and, therefore,

have no disturbing effects on animal behavior.
5. Camera traps work efficiently for several weeks [4].
6. Camera trapping allows for synergies between expert and citizen science [5].
7. Images and video clips can be used for education, promotion, and funding acquisition [6,7].

Sensors 2024, 24, 1565. https://doi.org/10.3390/s24051565 https://www.mdpi.com/journal/sensors91
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Figure 1. Camera trapping for the Snapshot Serengeti dataset. ©Swanson, Kosmala, Lintott, Simpson,
Smith, and Packer [8]. Licensed under a Creative Commons Attribution 4.0 License.

1.1. Problem Statement

During daylight, normal cameras succeed in capturing detailed images. But at dawn
or during nighttime, near-infrared (NIR) cameras or normal cameras with incandescent
lighting are necessary. Near-infrared light has a wavelength between 750 nm and 1400 nm,
which mostly lies outside the visible spectrum (380 nm–780 nm) [9]. Because of that,
NIR cameras offer a significant advantage over conventional cameras using incandescent
lighting. Incandescent light flashes are visible to animals and may frighten them, leading
to animals avoiding the camera location afterward, which in turn would corrupt statistical
estimates like population or migration estimations based on the numbers and frequencies of
observed animals. Near-infrared light is not visible to animals and thus cannot scare them.

But on the other hand, NIR images appear as grayscale images that do not conform to
the human visual spectrum because they lack colors and color textures. Therefore, it can be
difficult to perceive the details of observed scenes in NIR images [10]. This discrepancy
between NIR and colored images constitutes the domain gap between near-infrared and
colored images.

Additionally, in recent years the combination of camera trapping and of artificial
intelligence (AI), especially of deep learning approaches, has emerged as a breakthrough in
the field of wildlife research and conservation [3,7,11,12]. However, many deep learning
approaches are trained for and can benefit from colored images [13] like humans do [10].
This raises the question if deep learning approaches can also benefit from such artificially
colored images. We evaluate and discuss if this is the case in Section 4.2.

1.2. Contribution

In this study, we propose the automated conversion of NIR images to colored RGB images

• to derive detail-rich images providing color and texture without scaring animals;
• to gain compatibility with and benefits for existing monitoring systems;
• to improve human comprehension of camera trap data.

1.2.1. Colorizing NIR Images—Luminance and Chrominance

It is important to note that colorizing NIR images is closely related to the colorization
of grayscale images, but it differs in one crucial property: the luminance (i.e., the amount
of light that is reflected off an object) of grayscale images captured in the visible spectrum
is the same as the luminance of colored images. Therefore, only chrominance (i.e., the
color component) must be estimated by image colorization systems. However, the objects’
reflection properties of NIR light differ from those of visible light. Consequently, due to
the differing luminance between RGB and NIR images, conventional image colorization
techniques cannot be applied as-is.
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1.2.2. Colorizing NIR Images—Paired vs. Unpaired Image Translation

Supervised solutions for this problem exist but require NIR and RGB image pairs
with pixel-to-pixel registration and temporal synchronization. For each given NIR image,
the corresponding RGB image must have the same information on the pixel locations on
both images, and both images must be captured simultaneously to account for motion.
However, because many wildlife datasets involve the use of NIR cameras for nighttime
and regular cameras for daytime images, it is rare to find paired datasets. This results in
unpaired image translation to which unsupervised learning techniques must be applied.

1.2.3. Colorizing NIR Images—GAN-Based Approaches vs. Diffusion Models

Current state-of-the-art approaches leverage generative adversarial networks (GANs)
to solve this unpaired image translation problem. For example, Mehri and Sappa [14]
proposed a GAN-based approach specifically designed for the task of colorizing NIR
images (cf. Section 1.3). However, GANs are known for their unstable training manifesting
in mode collapse and hallucinations [15].

Recently, advances in denoising diffusion probabilistic models (short: diffusion models
or DDPM) [16] showed superiority over GANs in various other image translation tasks
[17,18]. Their training is more stable, while simultaneously a higher sample diversity is
observed. This suggests that diffusion models could also influence NIR colorization positively.

1.2.4. Colorizing NIR Images: Refined Contribution

To the best of our knowledge, this study proposes the first automated conversion of
NIR images to colored RGB images utilizing diffusion models. The novelty of our approach
lies in discovering the key property necessary to let a diffusion model generate realistic
images, i.e., the appropriate translation of the NIR image intensities into color intensities.

Thereby, we provide a generic approach in terms of a framework where we first
abstract the translation of the intensities to allow for implementations and evaluations of
different approaches to intensity translations.

The framework is based on iterative latent variable refinement (ILVR) [19] but comes
with the following novel methodical improvements to specialize for near-infrared colorization:

• Replacing the low-pass filter as latent variable refinement technique;
• Differentiating into merging chrominance and merging intensity instead;
• Abstracting the intensity translation.

Based on the abstraction of the intensity translation, we provide and evaluate three different
specific implementations. The evaluation of these shows that even the deployment of trivial
algorithms inspired by insights gained in the VIS-NIR fusion research field [20] can achieve
Fréchet inception distances (FIDs) close to GAN baselines. This employs a connection between
the research fields of diffusion models, near-infrared colorization, and visible near-infrared
fusion. Finally, we show that our framework is capable of outperforming a GAN baseline,
revealing the potential of diffusion-based NIR colorization.

1.3. Related Work

NIR colorization has many applications in addition to wildlife monitoring, e.g., in
driver assistance systems or surveillance cameras. As a result, computer vision researchers
have studied image colorization during the last decades, and thus, many solutions exist.
Solutions for NIR colorization are divided into paired and unpaired image translation
problems, and thus, supervised and unsupervised learning techniques are applied. For
paired image translation, pixel-to-pixel registration and temporal synchronization are
required for each image pair, which adds additional challenges.

Limmer and Lensch [21] used a dataset acquired by a specialized multi-CCD camera
that ensures the requirement of the image pair. As a translation mechanism, Limmer
and Lensch [21] proposed to use deep multiscale convolutional neural networks (CNN).
In pre-processing, a normalized image pyramid is constructed from the NIR input, and
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in post-processing, the CNN output is enriched with details from the input image. In
later work, Dong et al. [22] introduced an S-shape network consisting of one U-Net-based
encoder “ColorNet” and a shallow network that generates an edge loss function “EdgeNet”.
Dong et al. [22] created a pixel-to-pixel registered dataset using geometric transformations
and feature-based correspondence methods.

1.3.1. GAN-Based Approaches

GAN-based methods have established themselves as a powerful approach to unpaired
image translation, which can be used for NIR image colorization without the need for
paired training data. This is especially useful if such data cannot be obtained, for example,
due to dataset limitations. By default, GANs tend to lose the content of the input image.
CycleGAN, and an architecture proposed by Zhu et al. [23] uses a cycle consistency loss
between the input and the generated image to solve that problem. It uses ResNet [24] as
the generator network [23]. Gao et al. [13] trained CycleGAN on a wildlife dataset and
showed improved recognition results on the generated images compared to the NIR images.
Mehri and Sappa [14] proposed a version of CycleGAN, specifically designed for the task
of colorizing NIR images that incorporates enhanced loss functions and utilizes U-Net as
a generator. Because of this, we use this CycleGAN of Mehri and Sappa [14] as a GAN
baseline for our research.

We use the GAN DeOldify [25] as a second reference method since it is trained on a
large dataset.

1.3.2. Diffusion Models

More recently, diffusion models have advanced. First suggested by Sohl-Dickstein
et al. [26], diffusion models are neural networks that gradually remove noise from signals.
Simultaneously to Sohl-Dickstein et al. [26], Song and Ermon [27] introduced and studied
score matching as a way of estimating the given data distribution using its gradients while
sampling with Langevin dynamics [28]. Later, Ho et al. [16] first found the connection
between diffusion models and score-based models and leveraged this to simplify the
training objective of a variational lower bound. They introduced denoising diffusion
probabilistic models (DDPM), which is considered a milestone in the development of
diffusion models.

Song et al. [18] further analyzed the connection between score matching with Langevin
dynamics and diffusion models, proposed a unified framework using the stochastic dif-
ferential equation, and showed that both DDPM [16] and their previous work [27] can be
considered a specialized formulation of it. Further, they introduced deterministic samplers
using ordinary differential equations that allow likelihood computation and deterministic
latent codes. Most important for us, through their formulation, they derive a conditional
sampling method that only uses an unconditional model to control the generation at infer-
ence time. This allows applications to image imputation and grayscale colorization, which
we base our work on.

Dhariwal and Nichol [17] were the first to outperform GANs in image generation
with several architectural improvements. Additionally, they introduced classifier guidance.
This sampling method uses unconditional diffusion models and only a classifier during
inference to achieve class conditional sampling. With this, they provided a conditional
sampling method inspired by Song et al. [18] for DDPMs.

Saharia et al. [29] trained a multi-task image-conditional diffusion model with applica-
tion to grayscale colorization. In contrast to our approach, they used supervised learning to
train a conditional diffusion model and, therefore, required a pair dataset at training time.

Choi et al. [19] leveraged an unconditional diffusion model and iteratively refined
the current sample (ILVR). By this, they achieved conditional sampling. Our framework
iteratively refines the latent variable by enriching it with information from the near-infrared
image. Therefore, we consider our framework heavily based on ILVR’s key algorithm.
However, ILVR enriches the input image with low-frequency information from the input
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image. Binding the low frequencies of the generated image to those of the near-infrared
image does not lead to colorization; instead, it just results in grayscale images with similar
contours to the given image.

Zhao et al. [30] suggested an energy term for diffusion models, describing the simi-
larity and steering the sampling using its gradient. Their energy is divided into domain-
independent energy and domain-specific energy. The domain-independent energy ensures
similarity to the input image, while the domain-specific energy ensures realism in the
output domain [30]. They employed a low-pass filter as a domain-independent extractor,
which NIR colorization does not benefit from. However, it is mentioned that different
domain-independent extractors are feasible.

Furthermore, research from the visible-infrared fusion field influences our work. VIS-
NIR fusion focuses on enhancing RGB images with NIR images. As our approach can
be considered iteratively fusing visible and infrared images, we borrow insights from
this field of research. Sharma et al. [20] studied and compared comprehensively multiple
visible-infrared fusion techniques. One common similarity between many of the compared
methods is that the near-infrared intensities are combined with visible intensities at different
scales and with the chrominance of the visible-light image [20,31,32]. We evaluate this
principle as a strategy for enriching the latent variable in our framework.

We develop a novel NIR colorization approach to images leveraging the recent ad-
vances of diffusion models. Focus is placed on the unpaired image translation because
NIR-RGB image pairs are often hard to obtain. We only need to train an unconditional
diffusion model in the target domain. Our framework is based on ILVR [19] and ab-
stracts the intensity translation. We present three implementations of this framework.
First, we use NIR intensities, which are effectively equivalent to the grayscale colorization
of Song et al. [18]. Next, we utilize the connection to VIS-NIR fusion [20] and present an
implementation based on fusioning high frequencies of near-infrared images with low
frequencies of the colored image. Finally, we show the potential of our method by using
CycleGAN itself as an intensity translator.

2. Materials and Methods

Denoising diffusion probabilistic models (DDPMs), as introduced by Ho et al. [16],
are recent advances in the field of image generation. We provide a theoretical background
for this architecture in Section 2.1 and show how an unconditional diffusion model can be
used to sample with inputs. Iterative Seeding, our framework leveraging these diffusion
models for colorization, is presented in Section 2.2, and two implementations are presented
in Sections 2.2.1 and 2.2.2.

For developing a diffusion near-infrared colorization approach, a dataset contain-
ing NIR and colored images from similar settings is required. We choose the Snapshot
Serengeti dataset originating in the Serengeti National Park in Tanzania. It consists of
7.1 million images captured over the course of seven seasons of the Snapshot Serengeti
Project [8]. There are 61 labeled species, while approximately 76% of the images are labeled
as empty. For training and evaluation, we create a subset of the dataset consisting of 10,000
images (5000 NIR and 5000 colored images). We partition this subset into an 8000-image
train dataset and two separate datasets for testing and validation, each consisting of 1000
images. Furthermore, night images are chosen only because they align with the application
context of near-infrared colorization, and the network does not implicitly learn to translate
night images to day images.

2.1. Background

A diffusion process, consisting of T time steps, describes how noise is added to an
image. x0 denotes the original image and xT the final noised image. T is chosen, so that xT
follows an isotropic Gaussian distribution [16].
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With q(xt|xt−1) we denote the forward process, which describes the distribution of xt
given a less noised xt−1. The forward process gradually adds Gaussian noise to the image
determined by the variance schedule β1, . . . , βT [16] (Equation (1)).

q(xt|xt−1) :=N (xt;
√

1 − βtxt−1, βtI) (1)

To sample xt ∼ q(xt|x0), repeated sampling is not necessary because a closed form
can be derived (Equation (2)), where αt := 1 − βt and ᾱt := ∏t

s=1 αs [16].

q(xt|x0) = N (xt;
√

ᾱtx0, (1 − ᾱt)I) (2)

The reverse process describes how DDPMs operate. Initially, a sample is drawn from
the prior distribution q(xT), which is nearly an isotropic Gaussian, therefore xT ∼ N (0, I).
Then we gradually denoise our sample using q(xt−1|xt) until t = 0. Because q(xt−1|xt)
is not trivially obtainable without knowing the data distribution, we leverage a neural
network pθ to approximate it. θ denotes the parameters of the network. If βt is small
enough, pθ(xt−1|xt) will also be Gaussian (Equation (3)) [16]. Note that Ho et al. [16] fix
the variance of the reverse process using σ2

t I with either σ2
t = βt or σ2

t = β̃t.

pθ(xt−1|xt) := N (xt−1; μθ(xt, t), σ2
t I) (3)

Ho et al. [16] choose to parameterize μθ(xt, t) as follows, where εθ is a function to
predict ε given xt (Equation (4)).

μθ(xt, t) =
1√
αt

(
xt − βt√

1 − ᾱt
εθ(xt, t)

)
(4)

Furthermore, Ho et al. [16] suggest a simplified loss (Equation (5)), which uses the
μ-parameterization (Equation (4)).

Lsimple(θ) := Et∼[1,T],x0,εt

[
||εt − εθ(

√
ᾱtx0 +

√
1 − ᾱtε, t)||2

]
(5)

In terms of network architecture, diffusion models usually employ the U-Net architec-
ture for learning the noise εθ(xt, t) [14,16,17,33]. The U-Net takes the current noised image
xt as input and aims to produce the noise that should be removed. We use the refined
U-Net architecture from Dhariwal and Nichol [17] which included global attention blocks
and embedding of the timestep t.

Our application context of NIR colorization is not able to benefit from the uncondi-
tional sampling as derived up until now. We need a method to condition the diffusion
model on the given NIR image at inference time (unpaired translation). This is equiva-
lent to sampling from a conditional distribution p(xt−1|xt, c), where c denotes the NIR
image. Similar to Choi et al. [19], we can utilize the unconditional diffusion model, sam-
ple x̃t−1 ∼ pθ(x̃t|xt), and refine x̃t−1 to be congruent to the condition c and obtain xt.
Choi et al. [19] use a low-pass filter to maintain similarity to the input image without re-
stricting the sampling procedure. This is not suitable for NIR colorization because the
low-pass filter would revert the colorization process performed by the diffusion model.

2.2. Iterative Seeding

Colorization can also be considered as a specialized form of image imputation. As
Song et al. [18] showed. Image imputation is the task of restoring lost parts of an image con-
gruent with the known areas of the image. In the case of grayscale colorization, the known
part is the intensity, while unknown is the chrominance, which itself can be decomposed
into hue and saturation.

As the intensity is not directly known in near-infrared colorization, we take an abstrac-
tion approach. In each iteration, we draw a sample x̃t−1 from the diffusion model given
xt using pθ(x̃t−1|xt). Simultaneously, we diffuse our input image y0 to the timestep t − 1
using q(yt−1|y0). We then decompose both images into their intensity parts x̃I

t−1, yI
t−1 and
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the chrominance parts x̃C
t−1, yC

t−1 using DECOUPLEINTENSITY without loss of information.
A translation function TRANSLATEINTENSITY enriches the intensity x̃I

t−1 of our current sam-
ple with the near-infrared intensities yI

t−1, returning a new visible-light intensity xI
t−1 for

the timestep t − 1. This intensity xI
t−1 is then combined with the chrominance of the sample

x̃C
t−1 and transformed back into the RGB domain using COUPLEINTENSITY to obtain xt−1.

The approach to only sample the intensity for colorization was first proposed by Song
et al. [18]. But we do not implement this using a stochastic differential equation. Our
procedure is more similar to Choi et al. [19]’s iterative latent variable refinement, and thus,
we call this framework Iterative Seeding. In Algorithm 1, we demonstrate the code for
our framework.

Algorithm 1 Iterative Seeding

Require: Reference gray-scale image y0, function TRANSLATEINTENSITY returning intensi-
ties of visible light given the current near-infrared intensity and the current visible-light
intensity
xT ∼ N (0, I)
for t = T, . . . , 1 do

yt−1 ∼ q(yt−1|y0)
x̃t−1 ∼ pθ(x̃t−1|xt)
yI

t−1, yC
t−1 = DECOUPLEINTENSITY(yt−1)

x̃I
t−1, x̃C

t−1 = DECOUPLEINTENSITY(x̃t−1)
xI

t−1 = TRANSLATEINTENSITY(yI
t−1, x̃I

t−1)
xt−1 = COUPLEINTENSITY(xI

t−1,x̃C
t−1)

return x0

DECOUPLEINTENSITY and COUPLEINTENSITY can theoretically be any invertible
transformation where the intensity is decoupled from the color information. Many color
spaces fulfill this property, e.g., HSI, HSV, LAB, and YCbCr, but we found empirically that
transforming the RGB image using an orthogonal matrix with one dimension in resulting
space being the intensity, like Song et al. [18] did, to give the best results.

Therefore, we search for a matrix C ∈ R
3×3 such that for any RGB pixel p = (r, g, b) ∈ R

3

and a fixed scalar a ∈ R the requirements of Equation (6) are fulfilled.

p′ = p · C ⇒ p′1 = a · (r + g + b)

p = (p · C) · CT (6)

A matrix fulfilling those requirements can be obtained from solving a system of
equations or using QR decomposition. We derive the matrix C as Equation (7). Note that
Song et al. [18] use a different matrix as solution for this problem.

C =

⎛
⎜⎜⎝

1√
3

− 1
2 − 1

2
√

3
1
2 − 1

2
√

3
1√
3

1
2 − 1

2
√

3
− 1

2 − 1
2
√

3
1√
3

1√
3

1√
3

⎞
⎟⎟⎠ ≈

⎛
⎝0.577 −0.789 0.211

0.577 0.211 −0.789
0.577 0.577 0.577

⎞
⎠ (7)

TRANSLATEINTENSITY is the central component of our framework as it is an ab-
stract function that is implemented in our study with increasing complex functions (cf.
Sections 2.2.1, 2.2.2, 3.2 and 3.3). Thereby, TRANSLATEINTENSITY with its different im-
plementations influences greatly the performance of the colorization. It should integrate
information from both the near-infrared intensity yI

t−1 and the approximation of visible-
light intensity x̃I

t−1 and produce an improved approximation xI
t−1 of visible-light intensity.

We note that this method is strongly related to the research domain of near-infrared and
visible-light fusion (VIS-NIR fusion) since it practically fuses the near-infrared intensity
yI

t−1 and the visible-light intensity x̃I
t−1. So, it is obvious to use approaches from this
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domain to implement this method. In Sections 2.2.1 and 2.2.2, we present two different
implementations of this method and evaluate them in Section 3.

2.2.1. Near-Infrared Intensities

One simple strategy to implement TRANSLATEINTENSITY is to directly use the near-
infrared intensities. In that case, TRANSLATEINTENSITY is the identity function for yI

t−1
(Equation (8)). This implementation of our framework fixates the intensity of the output
color to the near-infrared while giving the diffusion model just the freedom to sample the
chrominance. Using this method does not reflect any near-infrared properties. It could
also be applied to grayscale colorization and is conceptionally equivalent to Song et al. [18]
colorization variant.

Leaving the diffusion model no freedom to generate intensity-related changes sug-
gests a weakness of this implementation for near-infrared colorization. In Section 3.1, we
evaluate this hypothesis. Compared to other implementations of our framework, this
implementation performs the worst in terms of FID, confirming our hypothesis.

TRANSLATEINTENSITY(yI
t−1, x̃I

t−1) := yI
t−1 (8)

2.2.2. High-Pass Filtering

A more refined approach to just using the near-infrared intensities is inspired from the
VIS-NIR fusion domain. One key insight for fusioning NIR and visible-light images, is to
combine the NIR image with intensities from the visible-light image at different scales [20].

A simple implementation of this concept is using the high frequencies of the near-
infrared image and combining them with the low frequencies of the visible light’s intensity.
In practise, a simple Gaussian filter G ∈ R

k×k (Equation (9)) can obtain the low frequen-
cies [34], and the high frequencies are obtained by subtracting the low frequencies from the
image (Algorithm 2).

Gσ(u, v) =
1

2πσ2 exp
(
− (u2 + v2)

2σ2

)
(9)

Algorithm 2 Implementation using High-Pass Filtering

Require: Gaussian filter Gσ

procedure TRANSLATEINTENSITY(yI
t−1, x̃I

t−1)
x̃

IL
t−1 = x̃I

t−1 ∗ Gσ

x̃
IH
t−1 = x̃I

t−1 − x̃
IL
t−1

y
IL
t−1 = yI

t−1 ∗ Gσ

y
IH
t−1 = yI

t−1 − y
IL
t−1

xI
t−1 = x̃

IL
t−1 + y

IH
t−1

return xI
t−1

With this implementation of our framework, iteratively the generated image is en-
riched with details of the near-infrared image. Thus, the diffusion model is only restricted
to using the high frequencies of the near-infrared image and is free to sample low frequen-
cies and the chrominance. This suggests a better performance can be reached than when
only sampling the chrominance. On the other hand, this could also lead to a more difficult
generation task, as less information is given.

We apply and evaluate this approach in Section 3.2 and confirm that this implementa-
tion performs better, through more freedom for the generator.

Further we investigate the influence of different standard deviations σ controlling the
degree of information given in Section 3.2. We discover that this hyperparameter does
affect the content preservation and realism of the generated images (Section 3.2).
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3. Experimental Results

Our application context of near-infrared colorization lies in closing the gap between
NIR and RGB images as inputs for deep learning systems, improving object recognition
results by enriching the input with more information, and providing more familiar images
to human users.

Since this is an unpaired image translation problem, classic solutions for quantitative
evaluation, such as the difference between the absolute intensity values or SSIM [35], cannot
be applied. To assess the realism of our results, we calculate the distance between the test
dataset, consisting of real images, and our generated images using the Fréchet inception
distance (FID) [36]. The FID acts as a distance between two unpaired image sets and is
calculated on a classification network’s feature abstraction of images [36]. CleanFID is
conceptually equivalent to the FID but comes with regularization techniques to make it
more robust in terms of distortions, blurring, and compression artifacts [37]. Because of
this, we use CleanFID instead of the regular FID. Furthermore, we evaluate our results with
two blind/no-reference image quality assessment metrics NIQE [38] and NRQM [39]. Both
score the realism images without the reference-image-based properties of the image [38,39].

Initially, an unconditional diffusion model is trained using the improved architecture
from Dhariwal and Nichol [17]. All hyperparameters are taken from Dhariwal and Nichol [17]
as well but adjusted for less powerful hardware. For both training and inference, an image
resolution of 128 × 128 is used. We use a U-Net with five encode and five decode blocks,
where each encode and decode block consists of two residual blocks [17]. Attention blocks
are applied at the resolutions of 32 × 32, 16 × 16, and 8 × 8 like Dhariwal and Nichol [17]
did. The noise schedule is divided into 1000 linear steps. We train with a batch size of 256
and a learning rate of 10−4 for 200 K iterations.

For CycleGAN, we train and evaluate a U-Net for the image resolution of 128× 128. We
train with a hyperparameter-optimized generator learning rate of 1.5× 10−5 and 4.5× 10−5

as the discriminator learning rate. All remaining hyperparameters stay as suggested by
Mehri and Sappa [14].

We use DeOldify [25] pretrained from the official GitHub repository (https://github.c
om/jantic/DeOldify (accessed on 26 February 2024)) because it requires a paired dataset,
which is hard to obtain. We consider its training on a larger dataset than ours as beneficial
for DeOldify and thus as fair.

First, we evaluate the unconditional sampling of the diffusion model and validate that
the results for image synthesis of Dhariwal and Nichol [17] still hold for this dataset:

We observe in Figure 2 that the diffusion model is capable of creating diverse, real-
istic images. Samples such as the top-left are common for the training and test dataset
as well and, therefore, are considered realistic. In Table 1, we see the diffusion network
performs strongly in quantitative metrics as well. In comparison with later evaluations
of our methods and CycleGAN [14], it performs at least ∼20 FID points better. Consid-
ering this, we argue this unconditional model is capable of serving as a foundation for
effective colorization.

Table 1. Quantitative evaluation of unconditional diffusion sampling. The unconditional diffusion
model [17] trained and evaluated on the Snapshot Serengeti dataset [8] containing only night NIR
and RGB images. We compare the FID calculated between the test dataset and the generated images.

Model FID ↓
Unconditional Diffusion Model [17] 55.01
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Real Images Unconditional Sampling

Figure 2. Qualitative evaluation of unconditional diffusion sampling. From left to right, we display
sample images from the RGB domain of the Serengeti test dataset [8] and samples produced by the
unconditional diffusion model [17].

3.1. The Identity—Using Near-Infrared Intensities

Physically near-infrared light is electromagnetic radiation with wavelengths between
750 nm and 1400 nm, while light from the visible spectrum lies in the range of 380 nm–780 nm [9].
The properties of an object determine which wavelength it reflects and absorbs. Hence, objects
might have a strong reflectance of near-infrared light, resulting in high intensities for the ob-
server, while absorbing more of the visible light leads to a lower intensity for the observer. In
Figure 3, we show direct comparisons between the intensities of colored images (grayscale) and
near-infrared images.

Colored Grayscale Near-Infrared

Figure 3. Qualitative comparison between near-infrared and visible-light images. From left to
right, we display regular-colored images, intensity/grayscale images by averaging the 3 color
channels and near-infrared images. All images are obtained from a dataset introduced by
Brown and Süsstrunk [40], which consists of near-infrared and colored image pairs.

As visible, particularly for vegetation (last row), higher reflectance of near-infrared
light in comparison to visible light is usual (Figure 3). The primary use case for near-
infrared colorization in wildlife monitoring involves the colorization of nighttime images.
In night images only a limited cone of illumination is available, resulting in diminished
visibility of background elements such as vegetation. Consequently, one could argue in
favor of disregarding the physical distinction between near-infrared and visible light and,
instead, treating near-infrared images as approximations of the intensity. Song et al. [18]
introduced a grayscale colorization method using diffusion models. In the context of our
framework, this resolves to the identity function being the TRANSLATEINTENSITY function,
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as shown in Section 2.2.1. Note, this is equivalent to the algorithm by Song et al. [18] for
grayscale colorization.

In Figure 4, we present samples generated using this approach. We can observe
that those generated images are faithful to the input image (Figure 4). Of course, this
content-preservation is not a quality learned by the network but induced through our
choice of intensity translation function. Most noteworthy is that the colors estimated by the
diffusion model appear realistic. In comparison with DeOldify, the colorization is much
more advanced. Images generated by DeOldify appear only dully colored. We argue this
is because DeOldify has been trained for grayscale colorization and not for near-infrared
colorization. Even though our method incorporates properties of grayscale colorization, it
is more robust than DeOldify because it can estimate colors to any intensity. Qualitative
weaknesses in colorization arise in comparison with CycleGAN: the diversity of images
colored through this approach is low, and images appear uniformly colored. This is linked
to the limitation of the approximation we made. As the intensity is strictly derived without
margin, the chrominance has to be estimated for exactly this intensity. Thus, the choice of
color is constrained.

NIR CycleGAN DeOldify Diffusion
NIR Intensities

Figure 4. Qualitative evaluation of Iterative Seeding using NIR intensities. From left to right, we present
near-infrared images from Snapshot Serengeti dataset [8]. Images generated by CycleGAN [14], by
DeOldify [25], and by Iterative Seeding using the NIR implementation from Section 2.2.1.

Despite these minor weaknesses, the results suggest that our approximation of inten-
sity using near-infrared intensity is reasonably accurate. It performs better than DeOldify
but worse than CycleGAN, indicating a good result. As previously explained, this can be
attributed to the specific condition of night images. In the majority of images, objects that
reflect near-infrared light differently than visible light are typically in the background and,
therefore, less illuminated. Thus, the near-infrared light approximates the visible light’s
intensity. CycleGAN, on the other hand, is not restricted to changing the intensity. It is
merely trained to produce invertible images and thereby can manipulate the image in favor
of realism.

Like the minor qualitative weakness, we also observe the FID of this naive approach
to be 12.52 FID points worse than CycleGAN’s. For NRQM, this holds too; however, only
an irrelevant increase in NIQE is observable (Table 2). Additionally, we see a gap between
the unconditional diffusion model and Iterative Seeding of 31.66 FID points. This indicates
that this method is too restrictive to allow competitive image generation.

3.2. Fusing Near-Infrared and Visible Intensity through High-Pass Filtering

To address the limitation, we can draw inspiration from simple filter-based VIS-NIR
fusion methods [41]. Note that the proposed framework can be considered fusioning
visible and near-infrared light images in each diffusion step. Thus, it is obvious to apply
techniques from the visible near-infrared fusion domain. A more refined approximation is
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to use only the high-frequency details of the near-infrared image while the low frequencies
can still be sampled by the diffusion model, as explained in Section 2.2.2. This intuitively
also provides the diffusion model freedom to sample different illuminations than those
provided by the near-infrared image.

Table 2. Quantitative evaluation of Iterative Seeding Using NIR Intensities. Samples of
CycleGAN [14], DeOldify [25], and Iterative Seeding on NIR intensities (Section 2.2.1) are generated.
The FID [36] is calculated by comparing the test dataset and the set of generated samples.

Model FID ↓ NIQE ↓ NRQM ↑
CycleGAN [14] 74.15 14.06 5.45
DeOldify [25] 104.07 17.93 4.41

Iterative Seeding
Using NIR Intensities 86.67 14.08 4.93

In Figure 5, we evaluate our framework with this translation function. Note that we
used σ = 2.3 for the Gaussian filter employed in Section 2.2.2.

NIR CycleGAN DeOldify
Diffusion
High-Pass
Filtering

Figure 5. Qualitative evaluation of Iterative Seeding using high-pass filter. From left to right, we
present near-infrared image from Snapshot Serengeti dataset [8], samples obtained from Cycle-
GAN given the NIR image [14], from DeOldify [25], and from Iterative Seeding using high-pass
filtering (Section 2.2.2).

Samples from the diffusion model appear realistic (Figure 5). Unlike CycleGAN,
which modifies smaller regions, the diffusion model modifies the global illumination of
the images. In the image of the gnu (middle left), we observe that it can even qualitatively
exceed the performance of CycleGAN. In that particular case, the illumination of the scene
matches the illumination of the gnu, which is not the case for CycleGAN’s colorization.
Additionally, Intensity Seeding using high-pass filtering performs better than DeOldify.

Moreover, it is noteworthy that the diffusion model generates a broader diversity of
color schemes compared to CycleGAN: incandescent illuminations of the whole image,
brown and green grass are all observable and represent the test dataset’s distribution of
images well (see Figure 2 for some samples from the test dataset). However, in general, we
consider CycleGAN’s colorization more realistic.
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Concerning content preservation, apart from global illuminations of the scene, our
framework using high-pass filtering hallucinates in a few instances blue sky, as illustrated
in Figure 6.
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Figure 6. Examples of hallucinations by the diffusion model sampling. Top row shows given
near-infrared images from Snapshot Serengeti dataset [8] and bottom row the samples produced by
Iterative Seeding using high-pass filtering (Section 2.2.2).

This can be attributed to a small proportion of the dataset containing images captured
during dusk or dawn, where a blue sky is observable. For our test dataset, there were
56 images from 500 images that we consider to have such artifacts, which corresponds to a
portion of 11.2%. Therefore, we consider CycleGAN’s content preservation stronger.

In Table 3, we provide a quantitative comparison of both methods using the FID [36].

Table 3. Quantitative evaluation of Iterative Seeding using high-pass filter. We compare
CycleGAN [14], DeOldify [25], and Iterative Seeding using high-pass filtering (Section 2.2.2) on
the Snapshot Serengeti dataset [8]. The FID [36] is calculated between the test dataset and the
generated images.

Model FID ↓ NIQE ↓ NRQM ↑
CycleGAN [14] 74.15 14.06 5.45
DeOldify [25] 104.07 17.93 4.41

Iterative Seeding
High-Pass Filtering 83.21 16.28 4.74

CycleGAN outperforms this approach in terms of FID by 9.06 points, as seen in Table 3.
Generally, more realistic images most likely contribute to this quantitative difference.
However, this result is still 3.46 FID points better than just using the NIR intensities
(Table 2). The NIQE score of the approach is 2.22 points worse while NRQM is 0.33 points
worse (Table 3). This change is justified by the increase in unrealistic hallucinations, as seen
in Figure 6. Thus, by employing high-pass filtering, an outcome closer to CycleGAN can
be attained.

While introducing the hyperparameter σ in Section 2.2.2, we further want to discuss
its influence on the samples. As σ controls the strength of the Gaussian filter, increasing
it reduces information in the extracted low frequencies. The rise of σ leads to more infor-
mation in the extracted high frequencies. We visualize this effect in Figure 7. Remember,
high-frequency intensities of the near-infrared image are combined with the generated
low-frequency intensities. Thus, a higher σ also corresponds to more guidance by the
near-infrared image, while a lower σ results in more freedom in generation for the model.

In Figure 8, we visualize how σ affects the sampling quality in terms of FID. We sample
with the same seed, with the intention to have as few influences of randomness as possible.
It is observable that samples with a σ of less than 1 are quantitatively worse (Figure 8). Our
hypothesis is that, at this stage, some guidance is provided, but it is insufficient, making
sampling within these boundaries too challenging for the model. At σ of 2.3, the minimum
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FID is reached. At this point, an adequate amount of guidance is provided for the model to
perform reasonable sampling of color, without imposing too many constraints limiting the
model’s generation freedom.
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Figure 7. Influence of σ to low and high frequencies. In the top row, we show low frequencies of
the image, and in the bottom row, we present high frequencies of the image. From left to right, we
display decomposition into low and high frequencies according to Section 2.2.2 for σ = 1, σ = 5, and
σ = 10.

For higher σ, the diffusion model receives more guidance, and consequently, it has
less freedom for its generation process. Thus, the FID rises. On the other hand, we observe
by comparing manually that the proportion of hallucinated blue sky becomes less frequent.

Hence, we regard σ as a hyperparameter that controls the compromise between realism
and content preservation.
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Figure 8. Influence of hyperparameter σ on the FID. On the y-axis, the FID (lower is better) and
on the x-axis σ with which was sampled. The blue line shows the FID of Iterative Seeding using
high-pass filtering with respect to σ (Section 2.2.2), and the yellow line shows the FID of Iterative
Seeding using NIR intensities (Section 2.2.1) for comparison. All FID scores are obtained using the
same random seed to reduce outliers.

3.3. The Potential of Diffusion-Based Near-Infrared Colorization—CycleGAN as Intensity
Translation Function

We note that our existing translation function implementations do not result in the
diffusion model surpassing CycleGAN either quantitatively or qualitatively. However, the
translation function we employed was of a trivial nature and did not exhaust the research
results from the near-infrared visible fusion field (e.g., see advanced approaches in [20]).
Nevertheless, it does generate realistic images (Figure 5), achieves FID scores close to
CycleGAN (Table 3), and performs better than the identity (Table 2).
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This indicates there is unexhausted potential for this framework. To prove this, we
use a translation function known to generate good results: CycleGAN itself. Precisely, this
translation function evaluates the trained CycleGAN colorization for the NIR image and
uses only the intensity of this image as input for the diffusion model. Therefore, our model
still estimates the color but uses the intensity generated from CycleGAN. In Figure 9, we
present samples using this translation function.

NIR CycleGAN DeOldify
Diffusion

CycleGAN
Intensities

Figure 9. Qualitative evaluation of Iterative Seeding using CycleGAN intensities. From left to
right, we present near-infrared images from Snapshot Serengeti dataset [8], images generated by
CycleGAN [14], by DeOldify [25], and by Iterative Seeding using CycleGAN intensities.

We observe the diffusion model does not only effectively colorize these images but
also surpasses CycleGAN in terms of color selection Figure 9. Unlike CycleGAN, the gnu
generated by the diffusion model has matching illumination to the rest of the image.

In quantitative terms, this approach performs 4.47 FID points better than CycleGAN
itself (Table 4). The same holds for the NIQE and NRQM metric which indicates a slightly
improved realism. Because the model does not only achieve a similar score to CycleGAN
using its intensity but also exceeds CycleGAN’s score, the potential of diffusion-based
colorization is shown. CycleGAN generating the intensity by itself, does not generate colors
as good as the diffusion model does.

Table 4. Quantitative evaluation of Iterative Seeding using CycleGAN intensities. Samples are
obtained from CycleGAN [14], from DeOldify [25], and from Iterative Seeding using CycleGAN
intensities. The FID [36] is calculated by comparing the test dataset and the set of generated samples.

Model FID ↓ NIQE ↓ NRQM ↑
CycleGAN [14] 74.15 14.06 5.45
DeOldify [25] 104.07 17.93 4.41

Iterative Seeding
CycleGAN Intensities 69.68 13.47 5.47

4. Discussion

We introduce a framework for diffusion-based NIR image colorization. It abstracts the
translation of intensity and utilizes diffusion models for the effective colorization.
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4.1. Implementations of Intensity Translation

We propose and evaluate three variants for the implementation of the intensity trans-
lation function.

1. We demonstrate directly using the NIR intensity, effectively representing an identity
function. This simple implementation creates a basic colorization, but the diffusion
network is too restricted by the NIR intensity, yielding suboptimal realism and FID
scores. Even though this colorization is not specialized for near-infrared colorization, it
performs more robustly than other grayscale colorization methods, as the comparison
with DeOldify suggests.

2. Because the framework can be considered iteratively fusing near-infrared and visible
light, we draw inspiration from the VIS-NIR fusion research domain. A key obser-
vation made in this field is to use the high-frequency intensities of the near-infrared
image and fuse them with the low-frequency intensities of the visible-light image.
We apply this insight to our framework in a trivial implementation using a Gaussian
filter. An improvement in comparison with just using the NIR images as intensities
is observed quantitatively and qualitatively, resulting in an FID score close to our
baseline CycleGAN. Additionally, with the ClipFID, a different FID variant not re-
lying on the Inception model and the ImageNet dataset [42], we achieve a score of
7.87 using this translation method compared to CycleGAN 9.15. However, because
the ClipFID is not established as a comparison metric, this result has to be treated
carefully. Even though this implementation is far from exhausting results from the
VIS-NIR fusion domain, it achieves scores close to our baseline, suggesting a more
sophisticated implementation can achieve even better results.

3. Finally, we evaluate CycleGAN itself as an intensity translator. Using intensities
generated by CycleGAN our framework outperforms CycleGAN quantitatively as
well as qualitatively. This indicates the potential of our framework for sophisticated
translation functions and diffusion-based NIR colorization in general. Considering
this potential, we show that our framework reduces NIR colorization to visible near-
infrared fusion, a simpler problem.

4.2. Colorizing NIR Images for Animal Detection

The integration of camera trapping with artificial intelligence (AI), particularly leverag-
ing deep learning methodologies, represents a significant advancement in wildlife research
and conservation [3,7,11,12]. Nevertheless, numerous deep learning models are optimized
for and perform better with colored images, akin to human perception [10]. To explore
this phenomenon, we assess the efficacy of the proposed diffusion-based NIR colorization
technique in enhancing image classification within camera trap datasets.

We utilize a subset of randomly selected night images in near-infrared (NIR) from the
Snapshot Serengeti dataset [8]. This subset is divided into 4000 images for training and
500 each for the validation and test datasets. Subsequently, all 5000 images are colorized
using each method outlined. For every method, we fine-tune a ResNet50 [24] classifier
pretrained on ImageNet-21K [43] on the training dataset derived from the respective
method. We use a cross-entropy loss with an Adam optimizer (β = (0.9, 0.999) and
lr = 10−4). Finally, we evaluate the model on the test dataset acquired from each method.
This experiment is repeated five times, and the average over all five accuracies is used.
Additionally, we repeat this evaluation for a ResNet using the same pretrained weights
but with freezing all layers except the final classification layer. We argue this score is a
measurement for content preservation, as the network can only classify accurately if the
relevant content is translated.

Table 5 displays the classification accuracies of various methods. In both the frozen
and unfrozen scenarios, both CycleGAN and our method utilizing its intensities achieve
similar accuracies. However, our methods, employing near-infrared intensities or employ-
ing high-pass filtering, outperform both CycleGAN and the diffusion approach utilizing
CycleGAN’s intensities. Specifically, for the unfrozen network, and even more significantly
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for the frozen network, our methods achieve an accuracy improvement of approximately
6.83 percentage points.

Table 5. Quantitative evaluation of classification using colorized images Comparison of FID and
classification accuracy on images from the NIR dataset, samples from CycleGAN [14] and Iterative
Seeding using all presented implementations. The FID [36] is calculated by comparing the test dataset
and the set of generated samples. Classification accuracy is obtained by training a ResNet classifier
for each method and calculating the accuracy afterward on a test dataset. We either train all layers
(non-frozen) or freeze all but the final classification layer (frozen). The accuracy is averaged over
5 runs, and σ displays the corresponding standard deviation.

Non-Frozen Frozen
Model FID ↓ Accuracy ↑ σ Accuracy ↑ σ

NIR - 0.7276 0.0124 0.3628 0.0105
CycleGAN [14] 74.15 0.5341 0.0146 0.3447 0.0123
NIR Intensities 86.67 0.6024 0.0102 0.3554 0.0213

High-Pass Filtering 83.21 0.6078 0.0119 0.3681 0.0090
CycleGAN Intensities 69.68 0.5314 0.0180 0.3367 0.0116

However, when unfrozen, none of the methods used yield improved classification
accuracy compared to directly utilizing near-infrared intensities. Conversely, for the frozen
network simulating few-shot learning, using high-pass filtering results in accuracies ri-
valing those achieved by direct NIR intensity utilization. However, the improvement
of our variant is only that marginal such that it lies in the standard deviation of both
accuracies. This could be attributed to the robustness of ResNet [24], a powerful deep
learning approach for object classification, which is not specialized for colored images and
can handle various input formats adeptly. When the network’s backbone is frozen the
feature extraction of the network is settled, and only the classification using those features
is trained. Thus, the accuracy benefits from colored images more. The lower accuracies in
general result from the fact that the network is also in general more restricted to adjust to
the given images.

4.3. Colorizing NIR Images for Animal Detection Explainability

We employ the AI-based ResNet [24] approach for visual animal detection. An im-
provement of the classification accuracy by using colorized images can only marginally
be observed.

However, we have to take into account user acceptance and explainability of AI-based
approaches to animal detection. Many AI-based systems and especially deep learning
(DL) methods (like ResNet) are black-box models that are extremely hard to explain and to
understand even by domain experts [44]. Explainable AI (XAI) and explainable machine
learning refer to AI approaches that allow users to retain understanding and acceptance.
Many AI-based and especially DL-based approaches to object recognition in general and
animal recognition in particular are so-called data-centric AI (DCAI) methods. DCAI shifts
the focus from hand-crafted model building to curating high-quality, consistently annotated
training datasets.

Therefore, understanding and accepting AI-based animal recognition heavily relies
on the understanding and acceptance of the employed training datasets, i.e., the training
images. Using NIR images for training AI-based systems for animal detection decreases
user acceptance because their appearance does not match with human perception [10,21].
Thus, our approach to NIR image colorization improves the utilization of NIR images and
NIR video clips for education, promotion, and funding acquisition.

4.4. Novelty and Scientific Relevance

The novelty of our approach lies primarily in the iteration step during inference, where
we merge the current sample with the given image. Unlike existing methods, we differ-
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entiate between merging chrominance and intensity components. Specifically, we extract
chrominance from the input image, and we introduce a novel abstraction of intensity merg-
ing to suit diffusion models for near-infrared colorization. This innovation is motivated by
the three distinct implementations we present, each demonstrating the significance of the
performance of this crucial step. From a scientific standpoint, our framework serves as a
general framework for diffusion-based near-infrared colorization techniques.

By showcasing the superiority of diffusion-based methods over GAN-based ap-
proaches, we contribute to the near-infrared colorization research. Moreover, we present
an intersection of near-infrared colorization, near-infrared-visible fusion, and diffusion
models, thus contributing to the advancement of these interconnected fields.

4.5. Limitations and Challenges

One limitation of a diffusion model approach is that it requires much more com-
putational resources in training and inference than CycleGAN. This manifests also in
the training and sampling durations: although we trained CycleGAN over the course of
two days and inference is a matter of mere seconds, the diffusion network required two
weeks for training, and generating 500 samples took approximately 40 min on an NVIDIA
RTX A5000.

One challenge of our approach is the design of the intensity translation and merging
process. It has to incorporate enough information from the given image to preserve the
content while it should not use too much to generate a realistic RGB image. We present
three example methods for this process and prove its potential; however, future research is
needed to find an optimal method. Inspiration can be drawn from further VIS-NIR fusion
research; alternatively, different machine learning techniques can also be applied to solve
this subproblem (see Section 5.1).

Another challenge faced during this study is the evaluation process. As we focus on
unpaired image translation and only have such a dataset, paired evaluation techniques
such as mean-squared distances and SSIM can not be used. Instead, we solved this using
the unpaired dataset distance FID [36], measures like the classification accuracy and,
lastly, no-reference image quality assessment metrics NIQE [38] and NRQM [39]. Although
combining all these metrics does provide a robust evaluation, a paired dataset for evaluation
and unpaired for training would be optimal (see Section 5.1).

5. Conclusions

This study presents the first framework utilizing diffusion models for the colorization
of near-infrared (NIR) images. We show that the effectiveness of colorizing NIR images is
primarily controlled by the translation of the intensities of near-infrared light to those of
visible light.

1. Iterative Seeding on NIR intensities (ISNIR);
2. Iterative Seeding using high-pass filtering (ISHP);
3. Iterative Seeding using CycleGAN intensities (ISCG).

Inspired by research from visible near-infrared fusion, we have shown that even em-
ploying ISHP as a simple algorithm for translating NIR intensities achieves FID scores close
to the GAN baseline. Thus, we establish a connection between near-infrared colorization,
diffusion models, and visible near-infrared fusion.

Furthermore, our framework is shown to outperform the GAN baseline with the ISCG
implementation as indicated by decreasing FID, NIQE, and NRQM values.

In general, our method bridges the domain gap between near-infrared and colored
images and addresses challenges of near-infrared colorization including the lack of paired
training data, as well as the different reflectance properties of near-infrared and visible light.

5.1. Future Work

For future research, several variations to our proposed framework are feasible.
First, recent advances in latent diffusion models (LDMs) [45] could potentially allow
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sampling of higher resolutions, such as 1024 × 1024, increase the sampling speed, and
therefore mitigate the drawbacks of our approach in a practical implementation. Deter-
ministic samplers such as DDIM [46] or using a formulation based on ordinary differential
equations, as demonstrated by Song et al. [18], could contribute to this.

One potential direction for future research involves exploring more sophisticated ap-
proaches from the VIS-NIR fusion field for implementing our framework [20]. Additionally,
a hyperparameter scaling the score function, as done by Dhariwal and Nichol [17] for
classifier guidance, could allow a built-in approach for controlling the trade-off between
realism and content preservation.

Our method, although presented in the context of wildlife monitoring, may not be
restricted to it. Therefore, an evaluation of other datasets and application contexts, such as
in driver assistance systems could reveal valuable insights. A paired dataset for evaluation
and unpaired for training would additionally contribute to an optimal study evaluation.

Finally, using high-frequency details of the near-infrared image to enhance the colored
image is a concept not reserved for diffusion models, e.g., introducing a loss between the
high-frequency intensities of the generated and given images could potentially benefit
CycleGAN, too.
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Abbreviations

The following abbreviations are used in this manuscript:

NIR near-infrared
RGB red, green, blue (color channels)
VIS-NIR fusion visible-near-infrared fusion
GAN generative adversarial network
ILVR iterative latent variable refinement
FID Fréchet inception distance
CNN convolutional neural network
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Abstract: Hyperspectral imaging (HSI) has become a very compelling technique in different scientific
areas; indeed, many researchers use it in the fields of remote sensing, agriculture, forensics, and
medicine. In the latter, HSI plays a crucial role as a diagnostic support and for surgery guidance.
However, the computational effort in elaborating hyperspectral data is not trivial. Furthermore,
the demand for detecting diseases in a short time is undeniable. In this paper, we take up this
challenge by parallelizing three machine-learning methods among those that are the most intensively
used: Support Vector Machine (SVM), Random Forest (RF), and eXtreme Gradient Boosting (XGB)
algorithms using the Compute Unified Device Architecture (CUDA) to accelerate the classification of
hyperspectral skin cancer images. They all showed a good performance in HS image classification,
in particular when the size of the dataset is limited, as demonstrated in the literature. We illustrate
the parallelization techniques adopted for each approach, highlighting the suitability of Graphical
Processing Units (GPUs) to this aim. Experimental results show that parallel SVM and XGB algorithms
significantly improve the classification times in comparison with their serial counterparts.

Keywords: hyperspectral imaging; machine learning; support vector machine; random forest;
eXtreme gradient boosting; GPU

1. Introduction

Skin cancer represents one of the most predominant tumors [1], and in recent years,
its occurrence has progressively increased. Such lesions are typically categorized into
two main groups: melanoma skin cancer (MSC) and non-melanoma skin cancer (NMSC) [2].
Typically, this cancer type involves three types of cells: squamous, basal, or melanocytic cells.

MSC originates from melanocytes, cells located in the epidermis and responsible for
skin color, thanks to melanin production. MSC can be further subdivided into three sub-
types: superficial extension, lentigo maligna, and nodular tumor [3]. This is the rarest type
of skin cancer, with, if not promptly detected, the highest growth speed and, consequently,
is very difficult to treat [4]. Therefore, doctors and surgeons need fast, reliable diagnostic
systems for this kind of pathology.

The traditional diagnosis procedure is biopsy, which consists in the removal of a
sample of tissue from the living body, followed by histopathological inspection [5,6],
representing an onerous and time-consuming process [5–7].

To face these problems, minimally intrusive techniques have been investigated, in-
cluding hyperspectral imaging (HSI), acquiring information about a scene both in the
spatial and in the spectral domain [8]. In fact, a hyperspectral image is represented by
a so-called hypercube containing the spectral information of every pixel over a specific
wavelength range. HSI allows precise material identification [9] by measuring the fraction
of the incident electromagnetic radiation reflected by the surface (reflectance). This is
due to the characteristic variation in the reflectance over the wavelength typical of each
material, which is called the spectral signature [10]. In contrast with traditional imaging
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techniques, HSI allows the acquisition of images with a large number of spectral bands
both within the visible and non-visible range. This means that the acquired images contain
much more information compared to traditional ones, such as RGB images, and can lead to
better performances [11].

However, although the development of accurate tools in the medical field is funda-
mental, timing requirements should also be taken into consideration when providing a
quick diagnosis is necessary. Indeed, the prompt detection of skin lesions facilitates their
treatment and increases the probability of survival of the patients.

To achieve this goal, many researchers [12–17] have exploited different kinds of devices
suitable for parallel elaboration and computation when the data size is high. Among
these, Graphical Processing Units (GPUs), used in different scientific applications [18,19],
represent a suitable technology in the field of medical image processing. In addition,
compared with other devices such as Field Programmable Gate Arrays (FPGAs), GPUs
usually offer a bigger parallel factor due to their high memory bandwidth [20].

Existing works in the literature have focused on the classification of HSI skin cancer
images by adopting machine-learning (ML) and deep-learning (DL) methods [11,16,21–31].

In [16], a classification chain based on K-means, Spectral Angle Mapper (SAM), and
SVM was considered. The authors also implemented several parallel versions of their
classification system exploiting multicore and many-core technologies.

The research in [31] implemented SVM, RF, and XGB, obtaining a mean classifi-
cation accuracy of 97%, considering only the model’s optimization and not the algor-
ithms’ parallelization.

Several DL models have been adopted in [32], namely, ResNet-18, ResNet-50, ResNet-101,
a ResNet-50 variant, U-Net, and U-Net++ architectures. Since neural networks are time-
consuming and computationally expensive, a parallel version of the U-Net++, resulting in
the best predictive approach, has been implemented using a low-power NVIDIA Jetson GPU.
This parallel version has achieved adequate classification performance satisfying real-time
constraints with a low power consumption.

Some works related to ML method parallelization can be found in [16,33], where
parallel versions of SVM and XGB have been developed for HSI image classification.

In this paper, we propose the optimization and parallelization of three popular ML
methods to accelerate the HSI skin cancer image classification using the Compute Unified
Device Architecture (CUDA), a framework for parallel elaboration developed by NVIDIA.
More specifically, the considered approaches are SVM, RF, and XGB, which offer a good per-
formance in classifying HSI images when the dimensions of the dataset are limited [31,34].
Furthermore, the works in [16,33,35] showed a great reduction in the classification time
developing parallel versions of SVM and XGB, even achieving real-time processing.

This work presents the parallelization techniques implemented on different NVIDIA
GPU devices including a GeForce RTX 2080 GPU, a GeForce RTX 4090 GPU, and a cluster
composed of five nodes of three Tesla A16 GPUs. Performance differences between the
devices in the classification of HSI skin cancer images have also been highlighted. Indeed,
GeForce RTX 2080 and 4090 GPUs are optimized for graphics applications, while the cluster
is designed for scientific calculations. In particular, the GeForce RTX 4090 is characterized
by the latest-generation architecture (Ada Lovelace), while the GeForce RTX 2080 features
an older architecture (Turing) and is cheaper than the previous one. Lastly, each Tesla A16
features an Ampere architecture.

Experimental results show a significant improvement of the parallel version of SVM
and XGB compared to their serial counterparts, with a speed-up of 130x and 1.4x, re-
spectively, confirming that GPUs represent a valid technology in accelerating the medical
diagnosis process.

This manuscript is organized as follows. Section 2 describes the HSI skin cancer
dataset and the adopted ML algorithms. Furthermore, the adopted techniques to perform
the serial and the parallel inference of the algorithms, and the architectures of the adopted
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devices are shown. The obtained results are illustrated in Section 3, while Section 4 presents
the discussions, and Section 5 provides conclusions and future developments.

The main contributions of this paper are the following: description of the paralleliza-
tion of the SVM, RF, and XGB methods targeting GPUs; parallelization on different devices,
considering the most recent architectures developed by NVIDIA; and comparison of the
results with the state of the art, highlighting the improvement of skin cancer diagnosis
through parallel image processing.

2. Materials and Methods

2.1. Hyperspectral Sensors and the Skin Cancer Dataset

The evolution of hyperspectral sensors has resulted in the creation of various platforms,
specialized for particular applications and operational needs. The four main sensor types,
namely pushbroom, whiskbroom, stereoscopic, and snapshot are fundamental to the
hyperspectral imaging landscape [36–38]. Pushbroom sensors function through constant
scanning of the scene using a linear or 2D array of detectors. As the platform moves, the
sensor captures spectral information for every pixel in the scene, resulting in a continuous
spectral image. This technique enhances both spatial and spectral resolution, making
pushbroom sensors highly suitable for applications that demand a thorough analysis of
specific regions [39].

Whiskbroom sensors operate similarly to pushbroom ones, except for their scanning
mechanism. Rather than recording an entire line at once, whiskbroom sensors collect data
one point at a time. The sensor sweeps across the scene, gathering spectral information for
each point sequentially. Whiskbroom sensors are celebrated for their adaptability and are
frequently utilized in airborne and spaceborne reconnaissance [40].

Stereoscopic hyperspectral sensors employ several detectors to capture images from
marginally divergent viewpoints. By leveraging stereoscopic vision, these sensors provide
not only spectral data but also depth information. This facilitates the creation of 3D
models and improves the interpretation of intricate surroundings, such as hilly terrains or
urban landscapes [41].

Snapshot sensors, also referred to as snapshot hyperspectral imaging systems, obtain a
complete spectral image with a single exposure. This is accomplished through cutting-edge
optical designs that record data concurrently for all spectral ranges. Snapshot sensors
enable quick data acquisition and are ideal for dynamic scenarios or situations needing
promptly available spectral information [42].

A thorough knowledge of the peculiar characteristics of each hyperspectral sensor is
crucial to select the most appropriate technology for a particular application. Concerning
skin cancer detection, the snapshot sensor is the best choice since it acquires the whole
images in a single exposure [25,36].

The HSI skin cancer dataset used is the one considered in [16,21,31,43]; it contains
76 images of skin lesions from 61 subjects, 40 of which are benign and 36 are malignant.
They were acquired with a snapshot camera (Cubert UHD, Cubert GmbH, Ulm, Germany)
able to cover the 450–950 nm range, distributed over 125 spectral channels [30]. The images
were collected in two hospitals of the Canary Islands, Spain: the Hospital Universitario de
Gran Canaria Doctor Negrín and the Complejo Hospitalario Universitario Insular-Materno
Infantil. The image labelling was led by experts such as dermatologists and pathologists
according to the taxonomy described in [32].

The spectral signatures among different patients have been normalized as illustrated
in [32] to mitigate the variations in illumination conditions. At the end of preprocessing,
the spectral signatures contain 116 bands with values in the range [0, 1].

Figure 1 shows the percentage distributions of the skin lesions that include four
possible classes: Benign Epithelial (BE), Benign Melanocytic (BM), Malignant Epithelial
(ME), and Malignant Melanocytic (MM).
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Figure 1. Percentage distribution of each lesion.

Figure 2 shows four images taken from the dataset representing one of the considered
lesions, together with the mean spectral signatures of the hyperspectral pixels.

Figure 2. Synthetic RGB images taken from the database to represent each lesion and the mean
spectra of the pixels.

2.2. Machine-Learning Methods

This section gives a general overview of the SVM, RF, and XGB methods adopted to
classify the HSI skin cancer images. Specifically, theoretical aspects of the three algorithms
will be presented.

2.2.1. Support Vector Machine

SVM is a supervised machine-learning method proposed by Vapnik and extensively
used for classification and regression tasks [44–46]. Originally, SVM performs binary
classifications and aims to find the hyperplane which splits the dataset into discrete classes
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according to the given training samples [46]. The data points with the minimum distance
from the hyperplane are called support vectors (SVs). For multiclass classification, SVM
breaks down the multiclass problem into multiple binary classification ones, solving the
following equation:

min
w,b,ζ

1
2

wTw + C∑n
i=1 ζi

subject to yi

(
wTxi + b

)
≥ 1 − ζi, (1)

ζi ≥ 0 with i = 1, . . . , n

where w is the support vectors, C is the penalty term, ζi is the distance error from the
correct margin, y is the classes, b is the margin, xi is the training vectors, and n is the
number of training samples. Intuitively, the goal is to maximize the margin by minimizing
wTw, while incurring a penalty when a sample is misclassified.

The minimization problem described by Equation (1) can be transformed into a dual
problem given by Equation (2):

min
α

1
2

αTQα − eTα

subject to yTα = 0, (2)

0 ≤ αi ≤ C with i = 1, . . . , n

where e is a vector of all ones, and Q is an n by n positive semidefinite matrix whose
elements are defined in Equation (3):

Qij = yiyjK
(
xixj
)

(3)

K is the kernel function that maps the data from a low-dimensional space to another space
with high dimensions. Once the optimization problem is solved, the output of decision
function for a given sample x becomes:

∑i€SV αiK(wi, x) + b (4)

where αi is the dual coefficients. The sign of Equation (4) gives the binary classification,
while the multiclass classification is achieved according to the “one-vs.-one” strategy by
repeatedly applying Equation (4).

2.2.2. Random Forest

RF was first introduced by Leo Breiman [47]. It is a popular ensemble learning
algorithm used for both classification and regression tasks. It combines the predictions
of multiple decision trees to improve the predictive accuracy and control over-fitting.
Specifically, each tree performs a “partial” prediction, and the class with the most votes
becomes the final prediction. Using a random subset of data and features, each decision
tree in the RF is built recursively by splitting the data according to various criteria (e.g., Gini
impurity or information gain) until a stopping criterion is met. The latter can be a maximum
tree depth, a minimum number of samples required to split a node, or a minimum number
of samples required in a leaf node.

2.2.3. eXtreme Gradient Boosting

XGB is an ensemble learning algorithm similar to RF. It is based on a generalized gra-
dient boosting method, and is used for classification, regression, and ranking tasks [48–50].
It provides highly accurate classifications by combining the predictions of multiple weak
predictive models, typically decision trees. One of the strong points of XGB is the sequential
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addition of new models correcting the mistakes made by previous models. Particularly,
it optimizes a specific loss function by computing its gradient compared to the predicted
values. XGB builds N trees per class; the outputs of the trees belonging to the same class
are summed. The soft-max function is then applied to the outputs to obtain the probability
values of the class. The class with the biggest value is the final prediction.

2.3. CPU and GPU Technologies

This section describes the architectures and the main features of the CPU and GPU
devices employed for the inference implementation of the three algorithms. For the serial
inference, we used an Intel Core i9-13900K with a clock frequency of 3 GHz. It is based
on the Raptor Lake architecture developed adopting an Intel 7 processor (10 nm), with
24 cores, 32 threads, and 32 MB and 36 MB of L2 and L3 cache memory, respectively. The
maximum bandwidth achievable is 89.6 GB/s.

The first two GPU devices considered for the parallel inference were an NVIDIA
GeForce RTX 2080 and an NVIDIA GeForce RTX 4090, optimized for graphics applications.

The NVIDIA GeForce RTX 2080 is based on the Turing architecture with 2944 CUDA
cores and a clock frequency of 1.5 GHz. Other components of this device include 184 texture
units, 64 Render Output Units (ROPs), 368 tensor cores, 46 ray tracing (RT) cores, and 8 GB
of GDDR6 modules. The maximum bandwidth achievable is 448 GB/s.

The NVIDIA GeForce RTX 4090 is supported by the Ada Lovelace architecture with
16,384 CUDA cores and a clock frequency of 2.2 GHz. It also contains 512 tensor cores,
176 ROPs, and 128 RT cores. The memory dimension is 24 GB (GDDR6X), and the maximum
bandwidth is 1008 GB/s.

The last GPU device considered is a cluster dedicated to the scientific calculation com-
posed of five nodes of three NVIDIA Tesla A16s. Each GPU of the cluster is equipped with
four chips and features the Ampere architecture. Every chip of the GPU has 1280 CUDA
cores, 40 tensor cores, 16 GB of GDDR6, and a memory bandwidth of 200 GB/s.

2.4. CPU Inference

The inference of the algorithms described in Section 2.2 has been implemented using
the best parameters obtained after the training phase as detailed in [31]. Visual Studio 2022
Integrated Development Environment (IDE) was used, adopting the C language.

The serial implementation has been used as a basis for the parallel inference described
in Section 2.5.

2.4.1. SVM Inference

The SVM inference consisted in the implementation of Equation (4). The dual coeffi-
cients, the margin, the support vectors, and the type of kernel function have been identified
after both the training and the parameters tuning described in [31]. The Radial Basis
Function (RBF) resulted as the most appropriate kernel function, and it is represented by
the following equation:

K(wi, x) = e−γ||wi−x||2 (5)

where γ is the kernel parameter, whose best value obtained after the training was 10.
The steps executed to perform the SVM inference can be summarized as follows:

1. Kernel calculation for the sample to classify according to Equation (5);
2. Multiplication between the obtained kernel and the dual coefficients adding the bias b;
3. Pixel classification through the “one-vs.-one” strategy.

The pseudo-code of the SVM inference is reported in Algorithm 1. Lines 2 to 4 perform
the kernel calculation by evaluating the squared Euclidean distance between the support
vectors and the sample to classify. The second step is executed in lines 6 to 10, where the
distance of the sample from the hyperplane is calculated according to Equation (4). Due to
the nested loops, the distance is calculated nclass ∗ (nclass − 1)/2 times. With nclass = 5,
10 values of the distance are obtained. Lines 12 to 21 show the last step that aims to perform
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the final prediction by observing the sign of the 10 values of the distance: if dij is positive
(negative), then class i wins (loses) over class j, and the array scorei (scorej

)
is incremented

by one. Finally, line 21 finds the index of the maximum value in the array scorei, or rather,
the class obtaining the greatest number of scores.

Algorithm 1 Serial implementation of Support Vector Machine

Input: γ → Kernel parameter
DCij → Dual coefficients matrix
wi → Support vectors matrix
x → Pixel to classify
b → Bias
1: Step 1 : Kernel calculation
2: for i = 0 to nsv − 1
3: K(wi, x) = exp

(
−γ ∗ ‖wi − x‖2

)
;

4: end

5: Step 2 : Distance o f the sample f rom the hyperplane
6: for i = 0 to nclass − 1
7: for j = i + 1 to nclass − 1
8: dij = ∑

i€SV
DCij ∗ K(wi, x) + b;

9: end

10: end

11: Step 3: “One vs. one” strategy
12: for i = 0 to nclass − 1
13: scorei = 0
14: for j = i + 1 to nclass − 1
15: if dij > 0
16: scorei ++;
17: else

18: scorej ++;
19: end

20: end

21: Find imax, index of the scorei maximum
Output: imax

2.4.2. RF Inference

The core of serial RF inference is a recursive function representing the tree structure.
According to the obtained trained values of the features, the thresholds, as well as the
left and right children’s nodes of each parent node, the execution follows a specific path
in the tree. If the execution ends in a non-leaf node, the function is repeated and drives
the execution to the next node depending on the left and right children’s values. The
recursion stops when the execution ends in a leaf containing the output. The output of
this function is an array of 5 elements containing the probability values of the pixel of
belonging to each class. Then, a second function was realized with the goal to execute the
tree structure N times, where N is the number of decision trees. Therefore, each tree makes
its prediction on the pixel, and the class having the greatest number of votes is the final
prediction. The number of decision trees used in this work is 425, obtained after the training
phase. The pseudo-code of RF inference is shown in Algorithm 2. Line 2 corresponds to
the tree_structure function that outputs the probability array (prob_array) exploiting the
features, thresholds, and left and right children’s node ( input_data). Lines 4 to 8 perform
the forest in which, at each iteration, the tree_structure function runs and the index of
prob_array maximum is obtained. At the end of the iterations, the array class contains the
number of votes per each class. The final prediction is the most voted class and is obtained
in line 9.
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Algorithm 2 Serial implementation of Random Forest

Input: input_data → Features, thresholds, left and right
children’s nodes
1: Step 1: Development of the tree_structure f unction
2: The single tree outputs prob_array
3: Step 2: Building of the forest
4: for i = 0 to ntrees − 1
5: tree_structure(input_data, prob_array, i);
6: Find max, index of prob_array maximum
7: classmax ++;
8: end

9: Find imax, index of the class maximum
Output: imax

2.4.3. XGB Inference

XGB is based on the same tree_structure function of the RF, but in this case, the output
is a single value. The forest structure function builds N decision trees for each class; each
tree improves the output of the previous tree (belonging to the same class) by considering
its prediction mistakes. The optimal number of decision trees obtained after the training
was 400, so the forest structure function builds 2000 decision trees overall.

The outputs of the decision trees belonging to the same class are summed. In
Algorithm 3, the pseudo-code of the XGB inference is shown. Line 2 is related to the
tree_structure function that outputs the probability value of the single tree. Then, the forest
function is described in lines 4 to 8, where the sums of the outputs of the trees belonging to
the same class are stored in the Zi array of 5 elements. Lines 10 to 18 determine the final
probability array Pi according to the soft-max function reported in Equation (6). The index
of Pi maximum is the final prediction according to line 19.

P[i] =
ZE[i]

∑nclass
j=0 ZE[j]

(6)

Algorithm 3 Serial implementation of eXtreme Gradient Boosting

Input: input_data → Features, thresholds, left and right
children’s nodes
1: Step 1: Development of the tree_structure f unction
2: The single tree outputs the probability value of its class
3: Step 2: Building of the forest
4: for i = 0 to nclass − 1
5: for e = 0 to ntrees − 1
6: Zi+ = tree_structure(input_data, e ∗ nclass + i);
7: end

8: end

9: Step 3 : Final probability array through so f t − max f unction
10: for i = 0 to nclass − 1
11: ZEi = exp(Zi);
12: end

13: for i = 0 to nclass − 1
14: z = ∑i€nclass

ZEi;
15: end

16: for i = 0 to nclass − 1
17: Pi = ZEi/z;
18: end

19: Find imax, index of the Pi maximum
Output: imax
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2.5. GPU Inference

This section describes the parallel inference for the SVM, RF, and XGB algorithms.
We adopted the GPU devices described in Section 2.3 and Visual Studio 2022 with CUDA
C language.

In the following sections, we will explain some essential terms to define the basic
components of the CUDA language. First, we must define the kernel (a CUDA function)
that, when called, is executed in parallel by N different CUDA threads. Another important
component is the thread block containing a group of threads executed concurrently. The
threads belonging to the same block can cooperate through synchronization barriers. A
thread block uses the shared memory for inter-thread communication and the data sharing.
Finally, a grid is an array of thread blocks executing the same kernel; it reads and writes in
the global memory of the GPU. Each thread and block can be identified through the threa-
dIdx = (threadIdx.x, threadIdx.y, threadIdx.z) and blockIdx = (blockIdx.x, blockIdx.y, blockIdx.z)
coordinates, respectively. The dimension of the thread block is defined by the blockDim =
(blockDim.x, blockDim.y, blockDim.z) array.

2.5.1. Parallel SVM

The most computationally expensive operations in SVM are Step 1 and Step 2 of
Algorithm 1 in Section 2.4.1. Step 1 involves the SV matrix (116 × 47,220) and the image
to classify (2500 × 116), while Step 2 performs the product between the obtained kernel
(2500 × 47,220) and the dual coefficients matrix (47,220 × 4).

Step 2 was performed through a CUDA kernel using a number of blocks equal to
(N + nthreads − 1)/nthreads with nthreads = 32 and N being the number of SVs. The choice to
use 32 as the number of threads is because the basic unit of execution in an NVIDIA GPU is
the warp, a collection of 32 threads executed simultaneously by a Streaming Multiprocessor
(SM) of the GPU. Therefore, the resulting number of blocks was 1476. The pseudo-code of
Algorithm 4 below represents the kernel calculation through the CUDA syntax.

Algorithm 4 Kernel calculation

Input: γ → Kernel parameter
wi → Support vector matrix
x → Pixel to classify
1: i = blockIdx.x * blockDim.x + threadIdx.x
2: if i < nsv
3: for i = 0 to nbands − 1
4: di = ‖wi − x‖2

5: end

6: K(wi, x) = exp(−γ ∗ di)
Output: K(wi, x)

In line 1, the variables blockIdx.x and threadIdx.x indicate the current block and thread
identifier, while blockDim.x is the block dimension along the x-axis as described in Section 2.5.
In line 4, the squared Euclidean distance di is shown; each thread performs the difference
between an element of the SV matrix wi and an element of the sample to classify x in parallel.
Finally, in line 6, the kernel K(wi, x) is obtained.

Then, Step 2 was implemented by adopting the cublasSgemm and the cublasSaxpy
functions (from the cuBLAS library) explicitly designed for matrix operations: the first has
been used to perform the multiplication between the kernel and the dual coefficients
matrix, the second to sum the obtained result and b. The result of this step was a vector
of 10 elements containing the outputs of the decision function (see Equation (4)). Step 3
was performed employing 1 block of 5 threads (1 per class), whose task was to apply the
“one-vs.-one” strategy. Finally, the cublasIsamax function has been used to determine the
final prediction.
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2.5.2. Parallel RF

For the parallel version of RF, the intrinsic nature of decision trees that is based on
sequences of if–else statements causes threads divergence, representing a challenge that did
not allow the parallelization of the tree_structure function. Therefore, such function has
been declared as a device function using the CUDA keyword __device__, meaning that
the function is called by the GPU.

The forest structure was realized with a CUDA kernel composed of 425 blocks of
1 thread, with one block for each decision tree and every block having only one thread in
order to avoid the potential thread divergence in the tree_structure function.

The pseudo-code in Algorithm 5 represents the parallel RF inference. Line 2 refers to
the serial RF tree_structure with the addition of the __device__ declaration, as mentioned
above. Lines 4 to 6 perform the forest where each block builds a decision tree and outputs
the prediction (max) for that same tree. Furthermore, to prevent race conditions in filling
the class array, line 6 performs the atomicAdd operation to add the value 1 to all the elements
of the array. In line 7, the final prediction imax is obtained through the cublasIsamax function.

Figure 3 shows the flow diagram of the RF classifier and how it is divided between
host and device. The input data, stored in the host, are transferred in the device memory
through the cudaMemcpy function, thus representing the input to the forest structure
device function, where each block implements a decision tree by calling the tree_structure
function. After that, the cublasIsamax function has been used to make the prediction for
each specific pixel. Since the device output vector contains the predictions of every pixel
of the image, its dimension is 2500. At last, the device output vector is transferred to the
host memory.

Figure 3. Flow diagram of parallel RF classifier.

2.5.3. Parallel XGB

To perform the parallelized version of the XGB, the forest structure function has been
designed similarly to the parallelized RF: 2000 blocks have been adopted, each including
1 thread, and launching the tree structure function. The values obtained for each block
have been stored in the vector Z. Then, the reduction technique has been used to sum
the elements of Z related to the same class. To perform this task, the “sequential address-
ing” strategy has been implemented. The code below shows the sequential addressing
reduction technique.

In Code 1, for each class, 400 elements (n_estimators) of Z are transferred to the GPU
shared memory through the array S. Then, the for loop reduces the entire upper portion
of the array S to the entire lower portion of S. With 512 values, the upper 256 values are
reduced into the lower 256 values. Then, the upper 128 values of the lower 256 values
from before are reduced with the lower 128 values. The loop ends when the sum of all the
elements of the array is obtained and stored in the first element of S.

The reduction was executed using a 2D grid composed of 1 block of 512 (512 be-
ing the first power of 2 greater than 400) threads for the x-axis, and 5 blocks of 1 thread
for the y-axis. Each thread of the x-axis transfers one element of Z to the shared mem-
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ory and sums two elements of Z, while the 5 blocks of the y-axis iterate over the classes.
Algorithms 4 and 5, related to SVM and RF, respectively, involve a single index in perform-
ing their kernels; therefore, the use of a 1D grid was considered sufficient. In the reduction
process, XGB involves two independent indexes, e and b, related to the elements of the S
array and to the classes, respectively; as a consequence, a 2D grid has been identified as
more suitable compared to a 1D grid.

Code 1 Sequential Addressing Reduction

Input: tid, e, b → indexes of the threads and blocks
ncl → number of classes
1: int tid = threadIdx.x;
2: __shared__ f loat S[512];
3: int e = blockIdx.x ∗ blockDim.x + threadIdx.x;
4: int b = blockIdx.y;
5: if (tid < n_estimators)
6: S[tid] = Z[e ∗ ncl + b];
7: __syncthreads();
8: for (s = blockDim.x/2; s > 0; s �= 1){
9: if (tid < s)
10: S[tid]+ = S[tid + s];
11: __syncthreads();
12:}
Output: S

Algorithm 5 Parallel Random Forest

Input: input_data → Features, thresholds, left and right
children’s nodes
1: Step 1: Development of the device tree_structure f unction
2: The single tree outputs max, the prob_array maximum index
3: Step 2: Building of the forest
4: i = blockIdx.x;
5: max = tree_structure(input_data, prob_array, i);
6: atomicAdd(&classmax, 1.0);
7: Find imax, index of the class maximum
Output: imax

The sequential addressing approach solves the warp’s divergence and shared memory
bank conflict problems of the interleaved addressing reduction. Figure 4 exemplifies the
concept of sequential addressing reduction.

Figure 4. Example of sequential addressing reduction technique.
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To conclude, the final probability array P of Equation (6) was obtained using a CUDA
kernel composed by 5 blocks of 1 thread.

3. Results

The inference part of SVM, RF, and XGB methods has been implemented in a serial
and a parallelized version using C and CUDA languages, respectively. The programs have
been developed with the Microsoft Visual Studio 2022 IDE and the CUDA 11.7 toolkit for
the NVIDIA GeForce RTX 2080 GPU and the CUDA 12.0 toolkit for the NVIDIA Tesla A16
and NVIDIA GeForce RTX 4090 GPUs. The serial version was compiled with the v143
compiler of Visual Studio, while the parallel code was compiled with the NVCC compiler
included in the toolkit. The compiler configuration has been set to release mode, meaning
that the optimizations are enabled, and that the full debugging information is not included.
Furthermore, we have set the code generation option of the CUDA compiler to 7.5, 8.6,
and 8.9 values corresponding to the compute capability of the NVIDIA GeForce RTX 2080,
NVIDIA Tesla A16, and NVIDIA GeForce RTX 4090 GPUs. This option allowed us to fully
exploit the architectures of the respective GPUs.

The SVM, RF, and XGB inference has been tested using 10 HSI skin cancer images, all
having dimensions of 50 × 50 pixels and 116 bands; this dataset contains all the possible
skin lesions.

Specifically, the average classification time of such images has been measured for each
algorithm and for all the adopted technologies. All the average classification times with the
standard deviations and the speed-up (in brackets) are reported in Table 1.

Table 1. Average classification times for SVM, RF, and XGB for all the CPU and GPU devices.

SVM [s] RF [s] XGB [s]

i9-13900K 445.90 ± 105.72 0.51 ± 0.01 1.17 ± 0.02

RTX 2080 14.10 ± 0.09 (32x) 0.77 ± 0.00 (0.66x) 0.98 ± 0.00 (1.19x)

Tesla A16 40.80 ± 0.00 (11x) 1.07 ± 0.00 (0.48x) 1.43 ± 0.00 (0.82x)

RTX 4090 3.44 ± 0.00 (130x) 0.76 ± 0.00 (0.67x) 0.84 ± 0.00 (1.39x)

It is worth noting that the parallel SVM features the greatest speed-up. In fact, all
GPU devices have obtained valid results for this algorithm: a speed-up of 32x, 11x, and
130x turned out for the GeForce RTX 2080, Tesla A16, and GeForce RTX 4090, respectively.
This confirms that parallelizing SVM is an appropriate solution for the acceleration of skin
lesions’ detection.

Parallel XGB has outperformed its serial counterpart when using both the GeForce
RTX 2080 and GeForce RTX 4090 GPUs, achieving a speed-up of 1.19x for the first and
1.39x for the second device conversely. The cluster has not accelerated the serial version,
its average execution time being 1.17 s, whereas 1.43 s is the average execution time of the
parallelized version.

Finally, RF is the only algorithm that has not shown improvements; however, some
observations should be made: the intrinsic nature of RF did not allow the tree structure
to be parallelized since it is based on if–else sequences. Hence, this algorithm is not fully
parallelizable. Moreover, the number of decision trees used in this work was 425, which is
not as big as it should be to adequately exploit the benefits of parallel computing.

NVIDIA GeForce RTX 4090 GPU resulted as the most performant among the GPUs,
due to its high number of CUDA cores (16,384) and to its latest-generation architecture, the
Ada Lovelace.

As already said, the university cluster achieved the worst performance for all algo-
rithms, probably because the code developed for the parallel inference has not exploited
the full computational power of the cluster. Indeed, the cluster is composed of five nodes of
three Tesla A16 GPUs, while our code employed the use of one out of four chips equipped
on each single GPU.
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4. Discussion

To compare the results of our methods with the state of the art, the works proposed
in [16,33] can be considered. The authors of [16] have developed a hybrid classification
system based on K-means, SAM, and SVM using the same dataset here described. In partic-
ular, they implemented several parallel versions of their system using an NVIDIA GeForce
RTX 2080 GPU (the same employed in this work) and an NVIDIA Tesla K40 GPU. The best
performance was achieved through the version performing the K-means in CUDA using
the NVIDIA GeForce RTX 2080 GPU and the SVM in OpenMP. To evaluate the performance,
the authors considered nine images and measured the classification times of each image
as the mean of five executions. They reported a diagram showing that the classification
times of their system were approximately 1 s. However, the SVM implementation in [16]
had to classify only a limited number of pixels of the images; namely, the pixels clustered
as pigmented skin lesions from the K-means stage. In contrast, this work’s SVM classified
all the 2500 pixels of the images, discriminating between five different classes. Indeed, the
computational complexity of the SVM adopted in [16] is lower than the one described in this
work. Not only the number of elements to classify is lower, but also the hyperparameters
are different, since a higher number of support vectors is needed by the SVM adopted in
this paper.

In [33], a parallel XGB version was developed using an NVIDIA Quadro P4000 to
classify the Pavia University (PU), GRSS-DFC2013 Houston (GH13), and GRSS-DFC2018
Houston (GH18) datasets. All three datasets are based on a single HSI image. The PU image
features a dimension of 610 × 340 pixels and 103 channels, while the GH13 image is a cube
of dimensions 349 × 1905 × 144. Finally, the GH18 Houston image has 4172 × 1202 pixels
and 48 bands. The times taken to classify these images were 6.67 s, 31.05 s, and 347.30 s
for the PU, GH13, and GH18 datasets, respectively. Given the big difference between
the number of samples and features considered in the datasets of [33] and the one of
this work, a quasi-linear relation between the images size and the processing times is
observed. Indeed, the structure of XGB is poorly parallelizable, and the performances
are strictly related to the number of features and trees. In the proposed work, since the
data dimensionality is lower than that of [33], the number of features and trees is small.
Moreover, as described in Section 2.5.3, the parallelization is based on assigning each tree
to a block, whilst instead, [33] uses a standard approach.

To the best of the authors’ knowledge, no prior parallel version of RF has been devel-
oped in the HSI field.

Table 2 summarizes the prediction times of this work and the results obtained in
the literature.

Table 2. Comparison between classification times of our work with the state of the art.

K-Means +
SAM + SVM [16]

SVM
(This Work)

XGB PU
[33]

XGB GH13
[33]

XGB GH18
[33]

XGB
(This Work)

Time [s] ~1 3.44 6.67 31.05 347.30 0.84

# pixels
From 300 to

1700 2500 207,400 664,845 5,014,744 2500

# channels 116 116 103 144 48 116

5. Conclusions

In this work, a serial and a parallel inference of the SVM, RF, and XGB algorithms to
classify a dataset of HS skin cancer images have been proposed. The serial inference has
been implemented employing the CPU Intel Core i9-13900K, and to accelerate the serial
classification, three different GPUs have been employed: the NVIDIA GeForce RTX 2080,
the NVIDIA Tesla A16, and the NVIDIA GeForce RTX 4090.

The results show that our work can significantly accelerate medical diagnosis through
image processing techniques. In fact, the parallel versions of both SVM and XGB lead
to an acceleration very significant in the case of the most complex SVM and minor but
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not neglectable in the case of the less challenging XGB. In any case, this experimentation
confirms the validity of the approach used in [16] and in [38] even in case of a problem
featuring a low parallelizable algorithm applied to a small dataset with a low number of
trees. Again, it is possible to say that hyperspectral image processing can support doctors
in timely detecting skin lesions, planning an opportune therapy, and helping surgeons
during interventions.

Future works will focus on multi-GPU programming to exploit the full computational
power of the cluster, since we only used one out of four GPUs of one NVIDIA Tesla
A16. Furthermore, integrated GPU solutions will be explored, such as the NVIDIA Jetson,
that is a System on Module (SoM) that features small dimensions, high performance, and
embedded CPU, GPU, and memory in a single board. Lastly, datasets with a higher number
of patients will be considered to better validate the proposed approach.
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Abstract: Three-dimensional (3D) modeling of trees has many applications in various areas, such
as forest and urban planning, forest health monitoring, and carbon sequestration, to name a few.
Unmanned Aerial Vehicle (UAV) photogrammetry has recently emerged as a low cost, rapid, and
accurate method for 3D modeling of urban and forest trees replacing the costly traditional methods
such as plot measurements and surveying. There are numerous commercial and open-source software
programs available, each processing UAV data differently to generate forest 3D modeling and
photogrammetric products, including point clouds, Digital Surface Models (DSMs), Canopy Height
Models (CHMs), and orthophotos in forest areas. The objective of this study is to compare the
three widely-used commercial software packages, namely, AgiSoft Photoscan (Metashape) V 1.7.3,
PIX4DMapper (Pix4D) V 4.4.12, and DJI Terra V 3.7.6 for processing UAV data over forest areas
from three perspectives: point cloud density and reconstruction quality, computational time, DSM
assessment for height accuracy (z) and ability of tree detection on DSM. Three datasets, captured by
UAVs on the same day at three different flight altitudes, were used in this study. The first, second,
and third datasets were collected at altitudes of 60 m, 100 m, and 120 m, respectively over a forested
area in Tully, New York. While the first and third datasets were taken horizontally, the second dataset
was taken 20 degrees off-nadir to investigate the impact of oblique images. Results show that Pix4D
and AgiSoft generate 2.5 times denser point clouds than DJI Terra. However, reconstruction quality
evaluation using the Iterative Closest Point method (ICP) shows DJI Terra has fewer gaps in the point
cloud and performed better than AgiSoft and Pix4D in generating a point cloud of trees, power lines
and poles despite producing a fewer number of points. In other words, the outperformance in key
points detection and an improved matching algorithm are key factors in generating improved final
products. The computational time comparison demonstrates that the processing time for AgiSoft
and DJI Terra is roughly half that of Pix4D. Furthermore, DSM elevation profiles demonstrate that
the estimated height variations between the three software range from 0.5 m to 2.5 m. DJI Terra’s
estimated heights are generally greater than those of AgiSoft and Pix4D. Furthermore, DJI Terra
outperforms AgiSoft and Pix4D for modeling the height contour of trees, buildings, and power lines
and poles, followed by AgiSoft and Pix4D. Finally, in terms of the ability of tree detection, DJI Terra
outperforms AgiSoft and Pix4D in generating a comprehensive DSM as a result of fewer gaps in the
point cloud. Consequently, it stands out as the preferred choice for tree detection applications. The
results of this paper can help 3D model users to have confidence in the reliability of the generated 3D
models by comprehending the accuracy of the employed software.

Keywords: UAV; photogrammetry; DSM; forest; AgiSoft; PIX4DMapper; DJI Terra

1. Introduction

Three-dimensional (3D) information technologies and the evolution of digital data
acquisition have recently caught the attention of researchers [1,2]. In order to eliminate
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human errors in the capture of 3D information, researchers are continually working to find
an accurate, precise, sustainable solution [3]. The appearance and geometry of an object or
scene can be recovered via 3D reconstruction. The most precise and thorough ways to ex-
tract the 3D scene and point cloud among the 3D reconstruction techniques now in use are
photogrammetry and laser scanning [4]. A laser scanner is an active sensor that transmits
pulses to determine distance, generate a 3D point cloud, and estimate coordinates using
onboard navigation systems like Global Positioning System (GPS) or Inertial Navigation
System (INS). The flight height, platform speed, sensor field of view, and sensor sampling
frequency are just a few of the variables that affect laser scanner point density. However,
there are certain drawbacks to laser scanning, including challenges when working in indoor
environments, operational sensitivity, a requirement for a significant amount of memory
storage, longer computation times, and higher costs [5,6]. Photogrammetry and computer
vision, in comparison, have been proposed as solutions to existing limitations [2]. Utilizing
overlapping photos taken by visual sensors, photogrammetry is a technology that extracts
3D geometrical data and point clouds. Photogrammetry offers several key advantages over
laser scanning, including the ability to use video frames as input and the versatility of using
digital images captured with various imaging devices, even smartphones. Additionally,
it produces 3D point clouds that contain color information that can be densified. Pho-
togrammetry is also known for its automation capabilities, and most importantly, its cost
effectiveness [7,8]. On the other hand, Unmanned Aerial Vehicles (UAVs) are increasingly
being used for photogrammetric tasks due to their low cost, low flying altitude, real-time
data acquisition capabilities, quick, wide-range sensor availability, and capacity to collect
geographic data [9–11]. The combination of a low-cost platform, navigation system such as
GPS system and IMU system, and high-resolution sensors led to this development [12].

Researchers have introduced a variety of techniques and processes to produce the
3D model from UAV optical data. The significant success of UAV photogrammetry can
be largely attributed to the development of Multi-View Stereo (MVS) and Structure From
Motion (SfM) algorithms in the field of computer vision, coupled with the advancements
in UAV photogrammetric processes. The generation of 3D point clouds, 3D models, and
high-quality DSMs has now become straightforward, fast, and user friendly, thanks to the
progress in the commercial tools [11,13]. There are over 40 different types of photogram-
metric software and tools, both open source and commercial for 3D reconstruction. In order
to perform 3D photogrammetric reconstruction, all of these programs generally follow a
five-step process: (1) feature detection and matching; (2) triangulation; (3) dense point
cloud generation; (4) surface/mesh generation; (5) DSM and orthophoto generation [14].

The advantages of UAV photogrammetry extend across diverse applications and
fields including land surface reconstruction [15,16], disaster management [17], and in-
frastructure applications, such as bridges, roads, railways, and tower inspection [18–20],
engineering [21], archaeology [11], and most importantly, agriculture and forest manage-
ment [22–24]. However, selecting the best and most suitable tools by industry and user
experts for a variety of applications has always been difficult, particularly when it comes to
forest modeling with its repeated textures and patterns. Accurate, efficient, and up-to-date
data on forest characteristics such as tree height, species, and number of trees have been
crucial to the success or failure of urban and forest trees 3D modeling. Canopy Height
Models (CHMs) are one of the main techniques for evaluating forest attributes derived
using the Digital Surface Model (DSM) that can depict the canopy surface, tree height, and
density assessment [25,26]. It can be claimed that the accuracy of the DSM directly affects
the accuracy of the retrieved forest parameters, and as a result, can determine whether
forest 3D modeling is successful or unsuccessful. Therefore, it is crucial to generate DSM as
a photogrammetric product over the forested areas using the best technology available.

Few studies have evaluated various photogrammetric tools, even though many have
focused on using UAVs to generate 3D models of forests and the potential for doing
so. Svenk 2023 used Keystone, SURF, AgiSoft, and MicMac to generate the point cloud
and calculate tree parameters for the forest inventory. An evaluation of the Root Mean
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Square Error (RMSE) of tree parameters showed that Keystone, SURF, MicMac, and AgiSoft
exhibited superior performance in their respective comparison [27]. Terrestrial photos
obtained from various visual sensors were employed to compare the 3D models generated
by AgiSoft V 1.16, Pix4D V 2.0.89, a combination of Visual SFM V 0.5.22 and SURF V
1.2.0.286, and MicMac V 1.0 on vegetated rock. A point cloud comparison was conducted
based on visual evaluation and height profiles. The results indicate that AgiSoft and
MicMac exhibit better point cloud accuracy, while Pix4D and the combination of Visual
SFM and SURF perform less accurately [28]. Another study compared the DSM produced
by AgiSoft, Pix4D, and Leica Photogrammetry Suite (LPS) using ground control points.
However, LPS is suitable for airborne (i.e., airplane) photogrammetry and is not effective
when it applies to images captured by UAV [29]. A comparison is conducted on height
profiles and visual assessments between open-source and commercial photogrammetric
software. The results reveal that the software performance depends on applications and
texture. Although the ranking of the software depends on the application, Remondino
states that AgiSoft generates more reliable and appealing results [30].

It is clear that consumers prefer using the well-known commercial software AgiSoft
and Pix4D over other photogrammetric tools for a variety of purposes. Additionally, DJI
Terra is a brand new software introduced in 2019, exclusively designed to work with DJI
platforms and sensors, making it incomparable to other software [31]. However, given the
repeating texture of the forest, a better selection among the existing photogrammetric tools
needs to be evaluated considering the application. Also, none of the existing literature
has specifically focused on forested areas. In this study, we compare the point clouds
and DSM generated over the forest region by AgiSoft, Pix4D, and DJI Terra as well as
computational time over the forested areas for forest 3D modeling. The results of this
study will assist business and user professionals in identifying constraints and choosing
AgiSoft [32], Pix4D [33], or DJI Terra [34] software as the most suitable solution for their
project. They will also boost their confidence in their ability to make the right choice instead
of investing in expensive projects.

2. Methodology and Data Acquisition

The methodology compares the generated dense point cloud and DSM by AgiSoft
V 1.7.3 (AgiSoft LLC, St. Petersburg, Russia) [32], Pix4DMapper V 4.4.12 (Pix4D SA,
Lausanne, Switzerland) [33], and DJI Terra V 3.7.6 (DJI, Shenzhen, Guangdong, China) [34]
as well as their computational time over forested areas. Figure 1 shows a flowchart of the
steps that we conduct in this paper. The main steps are (a) data acquisition, (b) product
generation, and (c) product evaluation. In the first step, to compare the program under leaf-
on situation, three flights using a 20-megapixel optical sensor with 5472 × 3648 resolution
and 13.2 × 8.8 mm sensor size were conducted over a section of SUNY ESF Heiberg Forest
in Tully, New York about 40 hectares (600 m × 680 m) in total. This area comprises clearcuts,
isolated trees, roads, isolated structures, and electricity lines (Figure 2). The first, second,
and third flights were conducted at altitudes of 60 m, 100 m, and 120 m, respectively with
about 70 to 80 percent overlaps using Site Scan auto pilot application [35]. The first and
third datasets were taken horizontally, while the second dataset was taken 20 degrees
off-nadir to investigate the impact of oblique images. Table 1 contains a summary of the
flight parameters and dataset. The image position and orientation are also provided from
the on-board Global Positioning System (GPS) and Inertial Measurement Unit (IMU).
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Figure 1. Flowchart of the software comparison strategy in summary.

Figure 2. Study area.
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Table 1. Datasets and flight parameters.

Platform Flight Height Front Overlap Side Overlap Gimbal Angle Resolution
Number of

Images
Condition

Dataset 1
(First Flight)

~60 m 70 80 90 degrees GSD ~1.98 cm 1829 leaf on

Dataset 2
(Second
Flight)

~100 m 70 65 70 degrees GSD ~4.60 cm 768 leaf on

Dataset 3
(Third Flight)

~120 m 70 65 90 degrees GSD ~3.99 cm 704 leaf on

In the next step, AgiSoft Metashape Professional V 1.7.3 [32], PIX4DMapper V 4.4.12 [33],
and DJI Terra V 3.7.6 [34] are used for 3D forest modeling. The common workflow of any
photogrammetric software for 3D reconstruction and product generation includes feature
recognition, matching, triangulation (pose estimation), sparse point cloud generation, point
cloud densification, 3D modeling, and DSM generation. While each of these procedures
may have distinct names across various software platforms, they must be executed in their
respective sequences. While commercial software employs specific equations, it typically
uses common algorithms such as a variant of the Scale-Invariant Feature Transform (SIFT)
[36] for feature recognition and matching. Additionally, Collinearity conditions (Equation
(1)) or Coplanarity conditions are applied in photogrammetry, while the Essential Matrix
or Fundamental Matrix is used in computer vision for pose estimation and point cloud
generation [37]. For example, the collinearity condition expresses the basic relationship in
which an object point and its image point lie on a straight line passing through the sensor
perspective center (Equation (1)) [37]. Equation (1) is as follows, where:

• R is the rotation matrix, k is the scale factor, a is the vector in the object coordinate
system, and a′ is the corresponding vector in the sensor coordinate system.

• X, Y, Z are the coordinates of the object point and XC, YC, ZC are the coordinates of
the perspective center (sensor center).

• c is the principal distance of the sensor (focal length), x′0 and y′0 are the coordinates of
the principal point, and x′ and y′ are the corresponding coordinates.

⎛
⎝x′ − x′0

y′ − y′0
−c

⎞
⎠ = kR

⎛
⎝X − XC

Y − YC
Z − ZC

⎞
⎠ or a′ = kRa (1)

Sparse point clouds, dense point clouds, and DSMs are generated using the recom-
mended parameters. Table 2 contains a list of all used preconfigured software settings for
AgiSoft, Pix4D, and DJI Terra. All three datasets have been processed on an Intel i9 core
CPU laptop processor unit with NVIDIA GeForce GTX 1650 Ti graphic processing units
and 64 gigabytes of random-access memory. Finally, the generated point cloud, DSM, and
computational time of the listed software are evaluated both independently and in relation
to each other, paying particular attention to forest modeling.

Table 2. Photogrammetric tools processing setting.

Sparse Point Cloud Dense Point Cloud DSM

AgiSoft High (Full image size) Medium (down sampled image by factor 2) High

Pix4D Full (Full image size) Multiscale with half image size (down sampled
image by factor 2) Automatic

DJI Terra High (Full image size) Height High
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3. Experiments and Results

The software’s performance assessments focused on comparing three main criteria:
(a) point cloud density and reconstruction quality, (b) computational time, and (c) DSM
assessment for height accuracy (z) and ability of tree detection on the DSM.

3.1. Point Cloud Density and Reconstruction Quality

The performance of dense point cloud generation is evaluated independently by
assessing the number of generated points, and by comparing the software’s generated
points. Figure 3 compares the point cloud density per dataset for the three software. In
all three datasets, Pix4D and AgiSoft produced point clouds that were roughly 2.5 times
denser than those produced by DJI Terra. Moreover, Pix4D generates slightly denser point
clouds than AgiSoft. The overall generated 3D point cloud quality over various land cover
types such as buildings, hills, and trees have shown that there is no significant difference in
spatial errors for point clouds of all software. However, due to the different error sources
in matching process and repetitive texture in forested areas, there are some gaps created
by Pix4D and AgiSoft that can state that the quality of 3D reconstruction is impacted. The
software’s generated point cloud can be evaluated for correctness, inaccuracy, and mistake
by comparing it to ground truth data. However, distance comparison techniques like the
Iterative Closest Point method (ICP) and Multiscale model-to-model Cloud comparison
(M3C2) can be used to compare the uniformity, density, and geometry of the point cloud
created by various software [38–40]. Using the cloud-to-cloud (C2C) distance toolkit in
CloudCompare [41] software, which is based on the Iterative Closest Point method (ICP),
we have evaluated the overall quality of the generated 3D point cloud over numerous
features, such as trees, power lines, buildings, roads, and grass, relatively. On Dataset
2 (oblique images), all software performed nearly identically in terms of completeness
(i.e., successfulness in matching process and consequently generated the points for all the
existing objects such as trees and buildings). Comparing the other two datasets (Datasets
1 and 3) shows that the DJI Terra generated fewer gaps on forested regions and power
lines than Pix4D and AgiSoft, despite producing a fewer number of overall points. In other
words, there are some trees and power lines that Pix4D and AgiSoft did not generate any
points for (shown by red circles in Figure 4). This indicates that the increased number of
points does not necessarily translate into fewer gaps in the point cloud, as DJI Terra utilizes
a better key point recognition and matching algorithm. Additionally, in a study, it has been
demonstrated that Pix4D generated significant gaps in vegetation regions than AgiSoft
which supports our results [42]

 
Figure 3. Number of generated points in the dense point cloud.
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(a) (b) (c) 

Figure 4. Computed C2C distance between the generated point cloud by (a) AgiSoft and DJI Terra,
(b) Pix4D and DJI Terra, and (c) Pix4D and AgiSoft (red circles show the differences).

3.2. Computational Time

In our evaluation of point cloud density, Pix4D and AgiSoft generated approximately
2.5 times denser point cloud compared to DJI Terra. Consequently, longer computational
times for AgiSoft and Pix4D are expected in contrast to DJI Terra. Surprisingly, Pix4D
demonstrated an unexpected trend, being roughly three times slower than both AgiSoft
and DJI Terra for all datasets (Figure 5). This longer processing time indicates a notable
disparity in processing efficiency.

 

Figure 5. Computational time.

3.3. DSM Assessment

DSM assessment has been carried out both quantitatively and qualitatively for all
software. The quantitative evaluation involved comparing the standard deviation (SD) and
root mean square error (RMSE). The SD and RMS are calculated using height differences
between AgiSoft, Pix4D, and DJI Terra from elevation profiles derived from DSMs of
various land cover types including single trees, patches of trees, buildings, and roads. A
lower RMSE means a better match between generated elevations by two software. On the
other hand, the SD gives a measure of how much the elevations deviate from their mean.
A significant difference indicates a systematic error. Subsequently, we assessed the DSM
quality for tree detection applications using DSM.

3.3.1. DSM Height Accuracy Assessment Using Elevation Profile

Several elevation profile examples are retrieved for various land covers including
buildings (Figure 6), trees (Figure 7), tree patches (Figure 8), and roads (Figure 9) to
quantitatively evaluate the generated DSMs. Elevation profiles showed consistent vertical
shifts among the generated DSMs for various land cover types and datasets. Specifically,
the elevation profile extracted from DJI Terra’s DSM consistently is higher than AgiSoft,
whereas Pix4D consistently has a lower elevation compared to AgiSoft and DJI Terra. The
elevation differences between AgiSoft and DJI Terra are up to 2.5 m for the first dataset,
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0.9 m for the second dataset, and 1.5 m for the third dataset. In contrast, the elevation
differences between Pix4D and AgiSoft are up to 1 m for the first dataset and 0.5 m for the
second and third datasets. It shows that the 3D elevation from Pix4D AgiSoft is distinct
from the DJI Terra result while also being similar to each other. The number of generated
points may be the root cause of the significant elevation differences between DJI Terra and
two other software. Fewer points within a pixel can lead to distinct elevations in the DSM,
given that the elevation of each pixel is computed as the weighted total of its internal points.
Furthermore, vertical shifts between the generated DSMs may be impacted by the points
distribution. The various closed sophisticated algorithms that are applied in commercial
software are another potential cause of vertical shifts. In general, when features are found
at a higher elevation section of the research area (i.e., on top of a hill), the amount of the
vertical shift is reduced since the features are closer to the drone, and thus have a lower
flying height than in other areas.

(a) (b) 

(c) (d) 

Figure 6. Elevation profile from Pix4D (blue), AgiSoft (red), and DJI Terra (green) on a building,
(a) profile line (red circle shows the picked feature), (b) Dataset 1 (60 m), (c) Dataset 2 (100 m oblique
images), and (d) Dataset 3 (120 m).

The utilization of oblique images rather than vertical ones reduces the vertical shifts
across all software. The greater intersection angles in oblique images enhance the accuracy
of elevation estimation through improved collinearity equations [43]. The third dataset
displays fewer vertical shifts than the first dataset, a reason that may be attributed to
a higher flight altitude. Generally, higher flight altitudes often result in lower spatial
resolution and consequently reduced detail and repetitive textures, especially in areas
with dense forest cover, where repetitive textures can affect the accuracy of matching and
elevation data. In the analysis of the first and second datasets, elevation spikes can be seen
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on trees in Pix4D and AgiSoft. All applications and datasets also exhibit slight horizontal
shifts. Although there are horizontal and vertical shifts, the Pix4D and AgiSoft images are
more pleasing and smoother for flat surfaces like roadways than DJI Terra.

(a) (b) 

(c) (d) 

Figure 7. Elevation profile from Pix4D (blue), AgiSoft (red), and DJI Terra (green) on a tree, (a) profile
line(red circle shows the picked feature), (b) Dataset 1 (60 m), (c) Dataset 2 (100 m oblique images),
and (d) Dataset 3 (120 m).

It can be said that the results from DJI Terra are more compelling, especially when
applied to natural features such as trees. It is common to see numerous slight height
discrepancies in areas covered with vegetation, such as dense trees. However, Pix4D and
AgiSoft do not appear to have as many details extracted as DJI Terra which suggests a po-
tential advantage to capture finer details in vegetated areas. The accuracy and adaptability
across various datasets are measured by the root mean square error (RMSE) metric and the
standard deviation (SD) calculated for height differences between AgiSoft, Pix4D, and DJI
Terra. Utilizing the standard deviation (SD) metric defines a range that encompasses the
average to identify outliers. It can be concluded that the distribution of errors is normal and
there are no systematic errors or outliers in the outputs if the RMSE and standard deviation
(SD) values are similar [44,45]. The small discrepancies between RMSE and SD confirm
the absence of systematic inaccuracy (bias) among the DSMs produced by all software
(Figure 10). Furthermore, it shows how close the 3D profile models from Pix4D, AgiSoft,
and DJI Terra are to one another.
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(a) (b) 

(c) (d) 

Figure 8. Elevation profile from Pix4D (blue), AgiSoft (red), and DJI Terra (green) on a patch of the
trees, (a) profile line (red circle shows the picked feature), (b) Dataset 1 (60 m), (c) Dataset 2 (100 m
oblique images), and (d) Dataset 3 (120 m).

(a) (b) 

(c) (d) 

Figure 9. Elevation profile from Pix4D (blue), AgiSoft (red), and DJI Terra (green) on a road, (a)
profile line (red circle shows the picked feature), (b) Dataset 1 (60 m), (c) Dataset 2 (100 m oblique
images), and (d) Dataset 3 (120 m).
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Figure 10. Difference between RMSE and SD.

3.3.2. Capability of Tree Detection on DSM

The evaluation of tree detection capabilities in the generated DSMs has been carried
out through visual comparisons. The DSMs were generated using Pix4D, AgiSoft, and DJI
Terra and were visually assessed for their effectiveness in accurately detecting trees. The
results show an obvious elimination of some trees (i.e., missing some trees) in the DSMs
generated by Pix4D and AgiSoft which can raise considerations regarding the completeness
and accuracy of tree detection in these software outputs. Despite generating around
2.5 times fewer points than Pix4D and AgiSoft, DJI Terra was still able to generate and
detect a more detailed DSM, resulting in the identification of several trees that were not
present in the DSMs generated by Pix4D and AgiSoft. Examples of missing trees are
highlighted with black circles in Figure 11, representing Dataset 1 (60 m), Figure 12 for
Dataset 2 (100 m oblique images), and Figure 13 for Dataset 3 (120 m). Furthermore, DJI
Terra’s DSM is smoother than that generated by Pix4D and AgiSoft. The possible causes
include (1) the use of a better outlier rejection approach in the DJI Terra that causes the
generation of a better DSM [46], and (2) the improved point distribution achieved by DJI
Terra. Furthermore, DJI Terra and AgiSoft demonstrated superior precision in capturing
the corners and edges of buildings compared to Pix4D. In general, it can be said that the
DJI Terra outperforms Pix4D and AgiSoft in forestry areas by spotting more single trees
and identifying the edge of the single trees within tree patches.

(b) 

Figure 11. Cont.
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(c) (d) 

Figure 11. (a) Orthophoto, generated DSM on Dataset 1 (60 m) by (b) AgiSoft, (c) Pix4D, and (d) DJI
Terra, black circles indicate the differences.

(b) 

(c) (d) 

Figure 12. (a) Orthophoto, generated DSM on Dataset 2 (100 m oblique images) by (b) AgiSoft,
(c) Pix4D, and (d) DJI Terra, black circles indicate the differences.
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(b) 

(c) (d) 

Figure 13. (a) Orthophoto, generated DSM on Dataset 3 (120 m) by (b) AgiSoft, (c) Pix4D, and (d) DJI
Terra, black circles indicate the differences.

4. Conclusions

This study was conducted to assist industry and professional users in discovering and
choosing the best software among AgiSoft, Pix4D, and DJI Terra for forest 3D modeling
purposes as well as to boost their confidence in making the right choice instead of investing
in expensive projects. Three flights within altitudes of 60, 100, and 120 m were conducted to
evaluate the point cloud density and reconstruction quality, computational time, and DSMs
for height accuracy (z) and ability of tree detection both quantitively and qualitatively over
the forested area. The results show that Pix4D and AgiSoft generated denser point clouds
than DJI Terra. However, DJI Terra provided a better point cloud of trees than the other
two software, likely due to utilizing an enhanced matching algorithm. As a result, DJI
Terra generated an accurate DSM with fewer gaps than AgiSoft and Pix4D. Despite the
vertical shift in height values on generated DSM, DJI Terra performed better in terms of
modeling trees and building shapes. However, AgiSoft and Pix4D performed better in
generating the road elevation profile than the DJI Terra. In general, Pix4D generated the
highest elevation, followed by AgiSoft, and lastly DJI Terra. Finally, the computational time
comparison reveals that the processing time of AgiSoft and DJI Terra is roughly half that
of Pix4D. Future research can contribute to enhancing our understanding by evaluating
the accuracy of each product against referenced ground truth data and comparing them to
other commercial software as we only relatively evaluated AgiSoft, Pix4D, and DJI Terra.
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Abstract: This paper proposes an analytical design procedure for 2D FIR circular filter banks and also
a novel, computationally efficient implementation of the designed filter bank based on a polyphase
structure and a block filtering approach. The component filters of the bank are designed in the
frequency domain using a specific frequency transformation applied to a low-pass, band-pass and
high-pass 1D prototype with a specified Gaussian shape and imposed specifications (peak frequency,
bandwidth). The 1D prototype filter frequency response is derived in a closed form as a trigonometric
polynomial with a specified order using Fourier series, and then it is factored. Since the design starts
from a 1D prototype with a factored transfer function, the frequency response of the designed 2D
filter bank components also results directly in a factored form. The designed filters have an accurate
shape, with negligible distortions at a relatively low order. We present the design of two types of
circular filter banks: uniform and non-uniform (dyadic). An example of image analysis with the
uniform filter bank is also provided, showing that the original image can be accurately reconstructed
from the sub-band images. The proposed implementation is presented for a simpler case, namely
for a smaller size of the filter kernel and of the input image. Using the polyphase and block filtering
approach, a convenient implementation at the system level is obtained for the designed 2D FIR filter,
with a relatively low computational complexity.

Keywords: 2D FIR filters; circular filters; analytical design; filter banks; polyphase decomposition;
block filters

1. Introduction

The technology and architecture of modern image sensors and sensing techniques
have evolved dramatically in recent years, driven by the ever-demanding requirements
and challenges of this field. For instance, aerial or satellite image sensors for remote
sensing must provide clear and low-noise images, with high spatial resolution, either
in visible, infrared or microwave domains. In order to provide accurate and relevant
information, images acquired by sensors have to be pre-processed using various restoration
and enhancement techniques. Various digital filters and filter banks may be used in image
analysis and feature extraction tasks, for instance, to decompose the image into several
subband components in order to extract relevant details, etc. These are also useful in the
automotive field, for rapid feature extraction in real-time computer vision applications, for
instance, in driver assistance systems and autonomous driving vehicles.

Along with the unprecedented development of the digital signal processing field, 2D
filters have been thoroughly investigated by many researchers, owing to their essential
applications in image processing, and various techniques for their design have been elab-
orated [1]. Analytical design methods rely on 1D prototypes with specified shapes and
parameters; applying various frequency transformations, they lead directly to the desired
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2D filters. The major advantage of the analytical approach is that a closed-form frequency
response is derived, and the 2D filter results are parametric and therefore adjustable.

A large variety of 2D filters, both of FIR and IIR type, with various characteristics
and shapes have been developed, with each type of filter having specific applications in
the image processing field. One of the best-known methods, widely used in the design of
2D FIR filters with various shapes is the McClellan transform [2,3]. More recent papers
approaching computationally efficient 2D FIR filter design techniques based on frequency
transformations are [4,5]. The efficient, low-complexity design of 2D FIR filters and the
implementation using Farrow structure are described in papers like [6,7]. Other relevant
recent papers on efficient 2D filter design are [8–10].

Filters with circular-shaped frequency response have also been widely used owing
to their capabilities in image analysis; various design techniques have been proposed for
circular filters (CF) in early papers such as [11–13]. Circular filters find applications in
texture segmentation and classification [14]. A recent advanced application of circular
Gabor filters in SAR interferograms is described in [15].

Two-dimensional filter banks of various types were extensively used in important
applications, like texture segmentation and classification or various feature extraction
tasks. Such filter banks decompose the frequency spectrum of the image into a number of
sub-bands. Two-dimensional filter banks are widely used in fundamental applications such
as sub-band coding and compression of images and video sequences. Separable 2D filter
banks are obtained by cascading 1D filter banks, and data are processed in each dimension
separately. Compared to separable filters, filter banks with nonseparable 2D filters are more
flexible and versatile, offering superior performance for imposed specifications. However,
their design is substantially more difficult than for separable filter banks [16]. As detailed
in the comprehensive review [16], the 2D filter banks currently used are mainly directional,
with specific shapes in the frequency plane, such as square (diamond), parallelogram,
wedge/fan filters, etc. Multidimensional stable, perfect reconstruction filter banks are also
developed in [17].

Directional filter banks (DFBs) with an arbitrary number of sub-bands [18] or arbitrary
frequency partitioning [19] have been proposed. A class of multiresolution DFBs is devel-
oped in [20]. Multidimensional DFB, multiscale pyramids and the surfacelet transform
were introduced in [21]. A very recent application of DFBs was proposed in [22], namely
fingerprint image quality assessment. The fingerprint image is decomposed into subbands
using the DFB, and similarity between the different subbands is used to calculate the
fingerprint image quality. Regarding methods to reduce computational complexity and
increase processing speed, the fast block implementation of 2D digital FIR filters was pro-
posed in early papers such as [23]. A high-performance 2D parallel block-filtering system
for real-time applications was presented in [24]. The steerable pyramid, a well-known
multiscale structure for image decomposition was proposed in the early paper [25]. More
recent papers describe specific applications of other two important multiscale architectures,
namely the Laplacian pyramid [26] and the wavelet pyramid [27].

Some very recent works propose advanced algorithms implemented on various con-
volutional neural networks to solve complex image-processing tasks. For instance, in [28],
a novel deep-feature model has been proposed for coastal wetland classification using
multisource satellite remote sensing data. In [29], multi-scale features from coarse-to-fine
receptive field level are extracted, with applications in super-resolution. An advanced algo-
rithm for effective pathology classification from hyperspectral medical images is proposed
in [30]. A novel multi-focus image fusion method based on sparse representation and local
energy is introduced in [31], which uses the shearlet transform to decompose the source
images into low- and high-frequency sub-bands.

The first author of this paper has also proposed various analytical design techniques
for 2D filters in previous works [32–35]. Directional IIR filters based on Gaussian and
wide-band prototypes were designed in [32]. A useful application of the directional filters
in [32] is the detection of straight lines with specified orientation from images; this feature
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extraction capability may be useful in the computer vision field. Adjustable, parametric 2D
digital IIR filters with elliptical and circular symmetry are proposed in [33]. Two versions
of circular IIR filter banks and their applications have been described in [34,35]. An efficient
2D FIR filter implementation based on a polyphase approach and block filtering is proposed
in [36].

In this paper, an analytic design procedure is proposed for a particular class of 2D
filter banks, namely 2D FIR Gaussian circular filter banks (CFBs). Two versions of CFBs
will be designed, namely a uniform CFB and then a non-uniform (dyadic) CFB, each with a
specified number of component filters. As a prototype, a 1D low-pass filter with a Gaussian
frequency response and specified selectivity is chosen; its frequency response is easily
approximated by a trigonometric polynomial, with an imposed precision, using a simple
Fourier series expansion. By a simple shifting to a given peak frequency, the band-pass
filters of the FB prototype are also derived. Once the prototype FB is obtained, a 1D to 2D
frequency mapping derived from the McClellan transform is applied [2,3], which leads
directly to the desired circular filters of the CFB. The non-uniform (dyadic) CFB is designed
in a similar manner. The filters’ characteristics result in an accurate circular shape, with
some distortions near the frequency plane margins. Next, as an application example, a
grayscale test image is applied to the CFB, obtaining a set of subband images. Summing
back all these images, the original input image is reconstructed almost perfectly, which
suggests a potential use in an alternative subband coding scheme.

A novel, efficient implementation solution is also proposed for the 2D FIR filters of the
designed CFB, which continues the method from previous work [36]. Our implementation
uses a polyphase decomposition of a given 2D filtering operation with large kernel size
and a block filtering with smaller size matrices.

The paper is organized as follows: Section 2 presents the proposed analytical design
procedure, first deriving the uniform and non-uniform prototype FB, then applying the
frequency mapping and obtaining the frequency responses of the 2D CFBs. In Section 3, an
example of image analysis is given using CFB by decomposing it into subband images. The
novel implementation technique based on the polyphase and block filtering approach is
described in Section 4. Discussions regarding the computational complexity of the proposed
implementation are included in Section 5. Finally, conclusions are drawn in the last section.

2. Analytical Design Technique for 2D Circular FIR Filter Banks

A novel analytical design procedure is proposed for a class of 2D FIR circular filters.
This design technique starts from an imposed prototype with specified parameters (peak
frequency, bandwidth), to which a 1D to 2D frequency transformation is applied, leading
to the desired 2D filters. In order to obtain through frequency transformation, the desired
2D circular filter bank, first a 1D prototype filter bank must be derived. A Gaussian-shaped
filter was chosen as prototype, due to its useful property of scalability on the frequency axis.

2.1. Approximation of the Gaussian FIR Filter Prototype Using Fourier Series

The Gaussian filter in the frequency domain has the well-known expression
G(ω) = exp

(−σ2ω2/2
)
, where σ is the dispersion parameter; for a simpler form, eas-

ier to handle, the substitution p = σ2/2, or equivalently σ =
√

2p, will be used. Thus the
Gaussian low-pass filter function takes the more convenient form GLP(ω) = exp

(−p · ω2),
where p will be referred to as selectivity or scaling parameter. Considering a periodic
function with period 2π and regarding the LP Gaussian function as a generating pulse, the
following expression HLP(ω) will be easily obtained, which is the Fourier series expansion
of the Gaussian GLP(ω) up to a given order N:

GLP(ω) = exp
(
−p · ω2

) ∼= 1
2
√

pπ
·
(

1 + 2 ·
N

∑
n=1

exp
(
− n2

4p

)
· cos nω

)
= HLP(ω) (1)

145



Sensors 2023, 23, 9851

From this Gaussian LP prototype, a band-pass (BP) prototype is easily produced by
shifting the Gaussian laterally around the frequencies ±ω0:

HBP(ω) = HLP(ω − ω0) + HLP(ω + ω0) = exp
(
−p · (ω − ω0)

2
)
+ exp

(
−p · (ω + ω0)

2
) ∼=

1√
pπ ·

(
1 + 2 · N

∑
n=1

exp
(
− n2

4p

)
· cos (nω0) · cos nω

) (2)

Directly using Expressions (1) and (2) implemented in a Matlab routine, in the following
section, the low-pass, band-pass and high-pass components of the desired FIR filter bank
prototype are calculated.

2.2. Design of a Gaussian Uniform FIR Filter Bank Prototype

Next, a uniform filter bank prototype with 11 Gaussian components will be designed,
namely one low-pass filter, nine band-pass filters and one high-pass filter. In this uniform
FB, the peak frequencies are equally spaced on the frequency axis. A bandwidth is imposed
for the nine band-pass components equal to B = π/10 = 0.1π, while the low-pass and
high-pass filters will have each half of this bandwidth, namely B/2 = π/20 = 0.05π. The
k-th ideal Gaussian BP filter is produced by shifting the LP prototype to the frequency
ω0,k = k · ω0, and will have the following expression:

GBP k(ω) = GLP(ω − kω0) + GLP(ω + kω0) = exp
(
−p · (ω − kω0)

2
)
+ exp

(
−p · (ω + kω0)

2
)

(3)

At this point, the scaling parameter p for the imposed bandwidth needs to be calculated.
In our case, the filter bandwidth is considered defined at 0.5 of the peak value (at 6 dB).
Thus, the characteristics of any two adjacent filters will marginally overlap and will in-
tersect at the value 0.5. Referring to the LP filter GLP(ω) = exp

(−p · ω2), the condition
GLP(B/2) = exp

(−p · B2/4
)
= 0.5 is imposed, otherwise written exp

(
p · B2/4

)
= 2, from

which the value for the scaling parameter p is obtained as p = 4 ln 2/B2; since for our
filter bank a bandwidth B = π/10 was imposed, the value p = 400 ln 2/π2 ∼= 28.1 will be
produced. The ideal uniform Gaussian filter bank is plotted in Figure 1a.

(a) (b)

Figure 1. (a) Ideal Gaussian uniform FB prototype; (b) designed Gaussian uniform FB prototype for
the 2D CFB.

The filter selectivity is given by the scaling parameter value calculated before, namely
p = 28.1, with the Fourier series truncated at a number of terms N = 15. The larger the
number of terms taken into account, the smaller will be the distortions (ripple, etc.), but the
filter matrices will be larger in size and will increase the implementation complexity.

Following the above design procedure, once specifying the desired number of filters
of the FB and their peak frequencies, using Equations (1) and (2), the frequency responses
of all the FB components are calculated. As an example, in our case of a uniform FB with
11 components, the frequency responses of a few filters of the 1D prototype filter bank
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are given below, in factored expression. First, the frequency response of an LP prototype
expressed as a truncated Fourier series using (1) has the form:

HLP(ω) = 0.055823 + 0.11066 · cos ω + 0.107743 · cos 2ω + 0.103056 · cos 3ω + 0.096833 · cos 4ω
+0.089382 · cos 5ω + 0.081049 · cos 6ω + 0.072197 · cos 7ω + 0.063177 · cos 8ω + 0.054309 · cos 9ω
+0.045863 · cos 10ω + 0.038047 · cos 11ω + 0.031007 · cos 12ω + 0.024823 · cos 13ω + 0.019523 · cos 14ω
+0.015083 · cos 15ω

(4)

which using trigonometric identities can be further expressed as:

HLP(ω) = 247.118 · (cos ω+0 .99492)(cos ω+0 .95454)(cos ω+0 .87546)(cos ω+0 .76089)(cos ω+0 .61554)
·(cos ω+0 .44535)(cos ω+0 .25729)(cos ω+0 .05906)(cos ω − 0.14123)(cos ω − 0.33537)

·(cos ω − 0.51542)(cos ω − 0.67403)(cos ω − 0.80475)(cos ω − 0.90811)(cos ω − 0.93698)
(5)

As an example, the frequency responses of the first and last BP filter components of
the bank are given below, the intermediate BP filters having similar forms:

HBP 1(ω) = −98.8414 · (cos ω+0 .99462)(cos ω+0 .95194)(cos ω+0 .86846)(cos ω+0 .74782)(cos ω+0 .59531)
·(cos ω+0 .41762)(cos ω+0 .22253)(cos ω+0 .01863)(cos ω − 0.18508)(cos ω − 0.37954)

·(cos ω − 0.55591)(cos ω − 0.71234)(cos ω − 0.77319)(cos ω − 1.00157)
(6)

HBP 9(ω) = −98.8414 · (cos ω − 0 .99462)(cos ω − 0 .95194)(cos ω − 0 .86846)(cos ω − 0 .74782)(cos ω − 0 .59531)
·(cos ω − 0 .41762)(cos ω − 0 .22253)(cos ω − 0 .01863)(cos ω + 0.18508)(cos ω + 0.37954)

·(cos ω + 0.55591)(cos ω + 0.71234)(cos ω + 0.77319)(cos ω + 1.00157)
(7)

Finally, the highest component of the FB is the high-pass (HP) filter, which formally
has the peak frequency ω0 = π:

HHP(ω) = −247.118 · (cos ω+0 .93698)(cos ω+0 .90811)(cos ω+0 .80475)(cos ω+0 .67403)(cos ω+0 .51542)
·(cos ω+0 .33537)(cos ω+0 .14123)(cos ω − 0.05906)(cos ω − 0.25729)(cos ω − 0.44535)

·(cos ω − 0.61554)(cos ω − 0.76089)(cos ω − 0.87546)(cos ω − 0.95455)(cos ω − 0.99491)
(8)

It can be observed that the component filters of the prototype FB whose central
frequencies are symmetric with respect to the middle value ω = π/2 have symmetric zeros,
as is well-known from filter theory. Therefore, the zeros of the HP filter are the zeros of the
LP filter with a changed sign; the zeros of the 9th BP filter are the zeros of the first BP filter
with a changed sign, etc. Since there is an odd number of filters, the middle filter, namely
the 5-th BP filter, with central frequency ω0 = π/2, has no pair, and its transfer function, as
expected, has pairs of complementary zeros:

HBP 5(ω) = −319.858 · (cos ω − 0.99471)(cos ω + 0.99471)(cos ω − 0.95281)(cos ω+0 .95281)(cos ω − 0.87107)
·(cos ω+0 .87107)(cos ω − 0.75362)(cos ω + 0.75362)(cos ω − 0.60689)(cos ω + 0.60689)

·(cos ω − 0.43317)(cos ω + 0.43317)(cos ω − 0.34221)(cos ω + 0.34221)
(9)

Generally, the k-th band-pass component of the 1D filter bank can be expressed as the
following product of first-order factors (where N is the filter order):

HBP k(ω) = ξk ·
N

∏
j=1

(
cos ω+aj

)
(10)

The uniform Gaussian filter bank designed above is plotted in Figure 1b and it looks
very similar to its ideal counterpart in (a), with a low level of ripple.
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2.3. Design of a Gaussian Non-Uniform FIR Filter Bank Prototype

In image analysis, mainly in multirate signal processing, non-uniform filter banks are
also currently used. Next, using the method described in Section 2.1 a non-uniform, more
specifically a so-called dyadic filter bank will be designed. Such an FB has the property that
the bandwidths of the component filters increase proportionally to their peak frequencies,
such that generally the ratio between bandwidth and peak frequency remains constant;
these filters are also known as constant-Q filter banks.

For our design example, it is considered that the filter bandwidths increase by a factor
of 2 from low to high frequencies. An FB with five filters will be designed here: one LP
filter, three BP filters, and one HP filter. Specifying the peak frequency of the 3rd BP filter
as ω03 = π/2, the following peak frequencies ω0 k and bandwidths B0 k are easily found
for the five filters, respectively: ω0 0 = 0, B0 0 = π/22 (LP); ω0 1 = π/11, B0 1 = π/11
(BP1); ω0 2 = 5π/22, B0 2 = 2π/11 (BP2); ω0 3 = π/2, B0 3 = 4π/11 (BP3); ω0 4 = π,
B0 4 = 7π/22 (HP). Using the same Formulas (1) and (2) as before, the frequency responses
of the component filters are easily found as factored trigonometric polynomials. Unlike
the previous case of uniform FB, for this nonuniform FB the higher filters have increasing
bandwidths; being less selective, they can be approximated with polynomials of lesser
order, therefore their implementation complexity will be significantly lower. The same
marginal overlapping between filters at exactly 0.5 was considered. For instance, for the
most selective filter (LPF) the parameter p results as p = ln 2/(π/22)2 ∼= 34; this filter
can still be approximated by truncating the Fourier series at order N = 15, as before; the
ripple (“ringing”) in the stopband will be a little higher, but still acceptable. The following
approximations for the frequency responses of the five Gaussian filters were derived:

HLP(ω) = 322.53 · (cos ω+0 .99491)(cos ω+0 .95448)(cos ω+0 .87527)(cos ω+0 .76053)(cos ω+0 .61495)
·(cos ω+0 .4445)(cos ω+0 .25615)(cos ω+0 .05762)(cos ω − 0.14297)(cos ω − 0.3374)

·(cos ω − 0.51771)(cos ω − 0.67653)(cos ω − 0.80734)(cos ω − 0.90613)(cos ω − 0.95148)
(11)

HBP1(ω) = −261.27 · (cos ω+0 .99507)(cos ω+0 .95596)(cos ω+0 .87933)(cos ω+0 .76831)(cos ω+0 .62742)
·(cos ω+0 .46239)(cos ω+0 .2799)(cos ω+0 .08752)(cos ω − 0.10714)(cos ω − 0.29616)

·(cos ω − 0.47196)(cos ω − 0.62751)(cos ω − 0.76157)(cos ω − 0.81472)(cos ω − 1.00137)
(12)

HBP2(ω) = 9.186 · (cos ω+0 .98714)(cos ω+0 .88634)(cos ω+0 .69593)(cos ω+0 .43711)
·(cos ω+0 .14021)(cos ω − 1.00605)(cos ω − 1.05338)((cos ω)2 − 0.38658 · cos ω + 0.05005

) (13)

HBP3(ω) = 0.9531 · ((cos ω)2 + 2.018676 · cos ω + 1.024286)((cos ω)2 − 2.018676 · cos ω + 1 .024286) (14)

HH P(ω) = −0.2117 · (cos ω − 1.00109)((cos ω)2 − 2.02723 · cos ω + 1 .68236) (15)

The characteristics of this non-uniform FB are plotted in Figure 2.
As mentioned, only the most selective filters (LP and BP1) have visible ripple, while

the others have no ripple at all.
As a further remark, in previous papers [32–35], various 2D filters were designed

using another efficient procedure, namely the Chebyshev series, which has the advantage of
yielding a uniform and efficient approximation for a given function, with equal error along
the whole specified range of values. The symbolic calculations are performed in the MAPLE
software (version MAPLE 2018), and a change of frequency variable is first required, before
effectively deriving the approximation. However, the major drawback of this method is
that it is not parametric; it does not have a closed form as in the case of the Fourier series
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method, therefore is more laborious; for each specified value of selectivity parameter p, the
calculation must be carried out in a symbolic calculation software. Therefore, in this paper,
the Fourier series approximation was preferred.

Figure 2. Designed Gaussian nonuniform (dyadic) filter bank prototype for the 2D CFB.

2.4. Gaussian Circular FIR Filter Bank Obtained Using Frequency Transformation

Once specified a convenient 1D prototype with the frequency response Hp(ω), a 2D
circular filter H(ω1, ω2) is produced by applying to the given prototype the 1D to 2D

frequency transformation ω →
√

ω2
1 + ω2

2 :

H(ω1, ω2) = Hp

(√
ω2

1 + ω2
2

)
(16)

The function cos
√

ω2
1 + ω2

2 is described by the 3 × 3 centrally symmetric matrix:

C =

⎡
⎣0.125 0.25 0.125

0.25 −0.5 0.25
0.125 0.25 0.125

⎤
⎦ (17)

and can be approximated by the following expression, which is a simple particular case of
the McClellan transform, currently used in 2D FIR filter design [2,3,36]:

cos
√

ω2
1 + ω2

2
∼= C(ω1, ω2) = −0.5 + 0.5(cos ω1 + cos ω2) + 0.5 cos ω1 cos ω2 (18)

The Expression (18) is in fact the discrete space Fourier transform (DSFT) of the matrix
C. Next, a zero-phase FIR filter HP(ω) is considered, whose frequency response is given by
the trigonometric polynomial expression [36]:

HP(ω) = b0 + 2
R

∑
k=1

bk cos kω (19)

At this point, the trigonometric identities for cos kω (k = 1 . . . R) can be used, and thus
the following polynomial expression is produced in powers of cos ω [36]:

HP(ω) = c0 +
R

∑
k=1

ck(cos ω)k (20)

where (19), (20) b0, bk, c0, ck are polynomial coefficients. Applying frequency mapping (18),
the frequency response of the 2D circular filter will become [36]:

H(ω1, ω2) = HP

(√
ω2

1 + ω2
2

)
= c0 +

R

∑
k=1

ck · Ck(ω1, ω2) (21)
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where C(ω1, ω2) = cos
√

ω2
1 + ω2

2 as given in (18).
Therefore, by a straightforward substitution of cos ω by the circular cosine function

C(ω1, ω2) = cos
√

ω2
1 + ω2

2 in the prototype HP(ω), the 2D filter frequency response is
produced directly. Next, supposing that the frequency response HP(ω) is decomposed into
first-order and second-order factors in variable cos ω, and achieving the above substitution
in all factors of HP(ω), the circular filter frequency response H(ω1, ω2) is finally derived in
factored form:

H(ω1, ω2) = k ·
n

∏
i=1

(C + bi) ·
m

∏
j=1

(C2 + b1j · C + b2j) (22)

where C is a concise notation for the two-variable function C(ω1, ω2) and k is the constant
resulting from factorization. Since the specified prototype is expressed as a product of
elementary factors, the circular filter frequency response will also become directly factored,
which is an essential advantage in actual implementation. Thus, the large kernel H corre-
sponding to H(ω1, ω2) can be expressed simply as a discrete convolution of small matrices
(of size 3 × 3 or 5 × 5):

H = k · (C1 ∗ . . . ∗ Ci ∗ . . . ∗ Cn) ∗ (D1 ∗ . . . ∗ Dj ∗ . . . ∗ Dm) (23)

The matrix expression (23) is related to the factored frequency response (22). Using
the 3 × 3 matrix C in (17) and considering also (22), each of the matrices Ci of size 3 × 3 in
(23) is derived by adding coefficient bi, which appears in the first-order factors in (22), to
the center element in matrix C. Thus, the matrix Dj (5 × 5) becomes:

Dj = C ∗ C + b1j · C1 + b2j · C0 (24)

where C0 is a null matrix of size 5× 5 with central element of value one; C1(5× 5) is produced
by the boarding matrix C (size 3× 3) with zeros; here the symbol * denotes convolution.

Thus, the frequency response of each CFB component is directly derived by sub-
stitution. Correspondingly, the overall kernel matrix H of the filter will be given by an
expression similar to (23), but in our particular case with only first-order factors, as in (10),
it becomes:

H = ξk · (C1 ∗ . . . ∗ Ci ∗ . . . ∗ Cn) (25)

The filters of the designed 1D prototype filter bank are of order 15; it follows that the
corresponding 2D circular filters derived through the above transformation have kernel
matrices relatively large, of size 31 × 31. Such a large matrix will be implemented efficiently
using a polyphase approach described in Section 4.

As a remark, all the component filters of the designed FB are non-separable, except
the LP filter. Indeed, it is easy to see that the circular LP Gaussian filter is separable as a
product of two Gaussian LP filters on the two frequency axes:

exp
(
−p · (ω2

1 + ω2
2)
)
= exp

(
−p · ω2

1

)
· exp

(
−p · ω2

2

)
(26)

A very important advantage of the proposed FB is that the filters’ transfer functions
are real-valued (zero-phase), therefore they will not introduce any phase distortions; this
will be visible in the simulation results given in the following section.

The 1D prototypes, frequency characteristics and corresponding contour plots for all
11 filters of the circular filter bank are displayed in Figures 3 and 4. It is easily observed
that up to the 6th band-pass filter, the characteristics are visually almost perfectly circular.
For the higher band-pass filters, the characteristics have a more pronounced deviation from
circularity, tending to the shape of a rounded square. The filter with the highest frequency
(ω0 = π) has almost a square shape. This effect of distortion from circularity is well known
when applying the frequency mapping (18), the simplest form of the McClellan transform,
and could be corrected only by using a more accurate approximation of the circular cosine;
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however, this would imply a higher complexity of the filters (larger kernel matrices) and a
more difficult implementation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. 1D prototypes, characteristics and contour plots for the first eight components of the circular
filter bank; (a) low-pass filter; (b–h) band-pass filters BP1–BP7.
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(a) (b) (c)

Figure 4. 1D prototypes, characteristics and contour plots for the last three components of the circular
filter bank; (a,b) band-pass filters BP8, BP9; (c) high-pass filter.

The characteristics and contour plots of the five component filters of the non-uniform
(dyadic) CFB derived from the 1D prototype filters designed in Section 2.3, with frequency
responses given by (11)–(15) are displayed in Figure 5, and it can be observed that they
have a good circular symmetry.

(a) (b) (c) (d) (e)

Figure 5. Characteristics and contour plots of the components of the dyadic CFB; (a) LP filter; (b–d) BP
filters; (e) LP filter.

3. Image Analysis Using the Designed Circular Filter Banks

In this section, examples of image analysis using the uniform and dyadic CFBs de-
signed before are presented. First, the grayscale test image in Figure 6a is considered, of
size 399 × 399 pixels, representing a group of trees without foliage; this image was chosen
as it has a lot of fine details, represented by the tree ramifications into thinner and thinner
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twigs. This image is filtered by applying all the 11 components of the designed uniform
CFB (one LP filter, nine BP filters, one HP filter); it can be considered that our test image is
decomposed into sub-bands using the analysis CFB designed before.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Image analysis using the uniform circular FB: (a) original “Trees” image; (b) LP filtered;
(c–g) BP filtered with BPF1, BPF2, BPF3, BPF4, BPF5, respectively; (h) HP filtered; (i–k) recovered
image by summing the first two, three and four components; (l) recovered image by summing all
11 components (sub-band images).

The original image is displayed in Figure 6a. The image obtained at the output of the
narrow LP filter is (b), and it can be observed that it is very blurred, the fine details (thin
twigs) are no longer visible. The images obtained from the first five BP filters are shown
in (c–g), respectively, and contain details corresponding to the selected bandwidth. The
image (h) is produced at the output of the HP filter and contains the highest frequencies,
corresponding to the finest details.

The original image was converted into “double” format and its pixel values were
rescaled to the range [0, 1] for MATLAB processing. The image produced at the output of
LPF has the overall mean pixel value 0.529; for all the other 10 images (produced at the
outputs of BP filters and HP filter), the mean pixel value is very close to zero, as expected,
since these filters eliminate the zero-frequency component corresponding to mean value. In
Figure 6i–l, it is shown how the original image is reconstructed by adding the component
images into which it was decomposed. Thus, image (i) is produced by adding the first two
components (LP and BP1); image (j) is produced as a sum of the first three components (LP,
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BP1, BP2); image (k) is produced by adding the component BP3. Finally, by summing all
the 11 components, the image (l) is produced, which visually is very similar to the original
image, showing all the fine details very clearly.

These simulations prove that the designed CFBs (uniform and non-uniform) could
be practically used as analysis filter banks for decomposing a given image into sub-band
images. However, the rigorous mathematical conditions required will have to be further
investigated in future work.

The energy of each component sub-band image can also be evaluated using the well-

known formula Ek =

√
M
∑

i=1

N
∑

j=1
pij, where the image is of size M × N and pij is the current

pixel value; the expression of the relative energy can also be given as a percentage:

ER k =
100

M · N
·
√√√√ M

∑
i=1

N

∑
j=1

pij (%) (27)

Calculating the energies of the 11 filtered images resulting at the output of the designed
CFB, the values given in Table 1 are easily found; summing these values, it can be verified
that they add up to approximately 1 in normal values, or 100% in percentages. It can be
observed that almost 56% of the image energy is contained in the low-pass component (in
the frequency domain around zero, with radius 0.1π), while almost 85% is contained in
the first four components (within a 0.4π radius), at the output of LP filter and first three
BP filters. The relative energies of the sub-band images decrease almost uniformly; as an
exception, ER9 > ER8, and ER11 > ER8, ER9, ER10. The highest frequencies in the image
give less than 2% of the total image energy. These relative energy values are summarized
in Table 1 and represented graphically in the chart from Figure 7.

Table 1. Relative sub-band energies (in %) for the 11 images resulting at the output of the uniform
CFB.

ER1 55.81594 ER7 2.51503

ER2 14.03036 ER8 1.63033

ER3 8.12698 ER9 1.68105

ER4 6.36161 ER10 1.17531

ER5 4.81307 ER11 1.84367

ER6 3.64377

Figure 7. Relative energies calculated for the 11 images resulting at the output of the uniform circular
filter bank.

As a remark, the designed circular filter banks are rotation invariant; the image
spectrum is separated into concentric, ring-shaped regions, with frequencies increasing
while image energy is generally decreasing, from the center to the margins of the frequency
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plane. Due to rotational invariance, the decomposition coefficient and energy in each
subband remain more or less constant. This property is very useful in specific feature
extraction and classification tasks in image processing.

A similar experiment was performed using the dyadic circular filter bank with five
components shown in Figure 5, applied on the same grayscale test image, for comparison.
The filtered images obtained at the output of the LP filter, three BP filters and HP filter
are displayed in Figure 8a–e. As in the previous example, the original image is then
reconstructed by adding the first two and three sub-band images, then all the five sub-band
images, as shown in Figure 8f–h. Summing up all the sub-band images leads to an image
very similar to the original one.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Image analysis using the dyadic circular FB: (a) LP filtered; (b–d) BP filtered with BPF1,
BPF2, BPF3, respectively; (e) HP filtered; (f,g) recovered image by summing the first two and three
components, respectively; (h) recovered image by summing all five component.

An additional experiment was performed using the same dyadic CFB, applied on
another grayscale test image (“Fields”), of size 699 × 699, showing an aerial view of a rural
landscape with fields and a river (Figure 9a). The filtered images obtained at the output
of the LP filter, three BP filters and HP filter, respectively, are displayed in Figure 9b–f. As
in the previous examples, the original image is then reconstructed by adding the first two
sub-band images (Figure 9g), then all the five sub-band images, as shown in Figure 9h.
Summing up all the five sub-band images yields an image very similar to the original
one. Table 2 displays the relative sub-band energies, calculated for both test images,
namely “Trees” and “Fields”. Again, most of the image energy is contained in the lowest
sub-band (corresponding to the LPF); however, the energy distribution clearly depends
on the particular image, as was expected, an can be considered a numerical indicator
characterizing the sub-band decomposition of a given image.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Image analysis using the dyadic circular FB: (a) “Fields” test image; (b) LP filtered; (c–e) BP
filtered with BPF1, BPF2, BPF3, respectively; (f) HP filtered; (g) recovered image by summing the first
two components; (h) recovered image by summing all five components.

Table 2. Relative sub-band energies (in %) for the five images resulting at the output of the dyadic
CFB.

Image ER1 ER2 ER3 ER4 ER5

“Trees” 57.925 13.965 18.430 6.268 3.411
“Fields” 68.003 11.767 11.618 5.433 3.179

Regarding the noise suppression issue, the authors did not intend to investigate it
in this paper. Of course, noise removal is a very important task in image enhancement
and restoration. Considering the nature of the noise (Gaussian, salt-and-pepper, speckle
noise, etc.), a specific type of filter should be chosen to remove it optimally. Anyway, noise
removal should be achieved before any further image analysis. For the proposed CFB, since
the image spectrum is partitioned into ring-shaped regions corresponding to sub-band
images, if the original image was affected by some type of noise, it would be distributed
more or less evenly in the sub-band images, mainly in higher frequency bands. Therefore,
it would have to be eliminated separately from each sub-band component image, which
may be a more difficult task. This issue remains to be studied in future work on this topic.

4. Polyphase Implementation of the Designed 2D Circular FIR Filters

In the following, a low-complexity implementation is proposed for the 2D FIR circular
filter bank previously designed, relying on a polyphase structure of a 2D filtering task with
a convolution kernel of relatively large size (31 × 31). In order to achieve convolution with
such a large kernel, a block processing technique [24,25] and a polyphase decomposition
approach will be employed.

As a first step, using sub-expression sharing techniques, a 2D filtering algorithm with
a 4 × 4 kernel was elaborated, which is detailed as follows. The kernel of the filter resulting
from the design and the input image are decimated by factors 3 and 5, respectively; the
polyphase filtering approach is subsequently applied. Using this technique, three output
component images are derived, namely Y0, Y1, Y2, given by Equations (28)–(30):
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Y0 =

⎡
⎢⎢⎣

A0 A0 A0 A0
O4×10 A0 O4×10 O4×10
O4×10 O4×10 A0 O4×10
O4×10 O4×10 O4×10 A0

⎤
⎥⎥⎦× diag

⎛
⎜⎜⎝
⎡
⎢⎢⎣

O10×4 O10×4 O10×4 A1
O10×4 O10×4 A1 A1
O10×4 A1 O10×4 A1

A1 O10×4 O10×4 A1

⎤
⎥⎥⎦HT

⎞
⎟⎟⎠×

×

⎡
⎢⎢⎣

A2 −A2 −A2 −A2 O10×7 O10×7 O10×7
O10×7 A2 O10×7 O10×7 O10×7 O10×7 O10×7
O10×7 O10×7 A2 O10×7 O10×7 O10×7 O10×7
O10×7 O10×7 O10×7 A2 O10×7 O10×7 O10×7

⎤
⎥⎥⎦× X2D

(28)

Y1 =

⎡
⎢⎢⎣

O4×10 O4×10 O4×10
A0 A0 A0
O4×10 A0 O4×10
O4×10 O4×10 A0

⎤
⎥⎥⎦× diag

⎛
⎝
⎡
⎣ O10×4 O10×4 A1 O10×4

O10×4 A1 A1 O10×4
P O10×4 A1 O10×4

⎤
⎦HT

⎞
⎠×

×
⎡
⎣ O10×7 −A2 A2 −A2 −A2 O10×7 O10×7

O10×7 O10×7 O10×7 A2 O10×7 O10×7 O10×7
O10×7 O10×7 O10×7 O10×7 A2 O10×7 O10×7

⎤
⎦× X2D

(29)

Y2 =

⎡
⎢⎢⎣

O4×10 O4×10 O4×10
O4×10 O4×10 O4×10

A0 A0 O4×10
O4×10 A0 A0

⎤
⎥⎥⎦× diag

⎛
⎝
⎡
⎣ O10×4 A1 O10×4 O10×4

A1 A1 O10×4 O10×4
A1 O10×4 O10×4 O10×4

⎤
⎦HT

⎞
⎠×

×
⎡
⎣ O10×7 O10×7 −A2 −A2 A2 −A2 O10×7

O10×7 O10×7 O10×7 O10×7 O10×7 A2 O10×7
O10×7 O10×7 O10×7 −A2 −A2 −A2 A2

⎤
⎦× XT

2D

(30)

in which the block matrices have the form given below:

A0 =

⎡
⎢⎢⎣

1 1 1 1 0 0 0 0 0 0
0 1 0 0 1 1 1 0 0 0
0 0 1 0 0 1 0 1 1 0
0 0 0 1 0 0 1 0 1 1

⎤
⎥⎥⎦ ; A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
0 0 1 1
0 1 0 1
1 0 0 1
0 0 1 0
0 1 1 0
1 0 1 0
0 1 0 0
1 1 0 0
1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 −1 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 −1 1 −1 −1 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 −1 −1 1 −1 0
0 0 0 0 0 1 0
0 0 0 −1 −1 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

and O4×10, O10×4, O10×7 are zero matrices of size 4 × 10, 10 × 4, and 10 × 7, respectively.
Adding the partial results Y0, Y1 and Y2 given by (28), (29) and (30), the following output
vector Y containing 16 samples of the filtered image is obtained:

Y = Y0 + Y1 + Y2

=
[

Y00 Y01 Y02 Y03 Y10 Y11 Y12 Y13 Y20 Y21 Y22 Y23 Y30 Y31 Y32 Y33
]T (32)

The vector H occurring in Equations (28)–(30) is given below:

H = [h00 h01 h02 h03 h10 h11 h12 h13 h20 h21 h22 h23 h30 h31 h32 h33]
T (33)

while the input vector X2D is displayed as follows:

157



Sensors 2023, 23, 9851

X2D = [x00 x01 . . . x06 x10 x11 . . . x16 . . . x60 x61 x62 x63 x64 x65 x66]
T (34)

The main reason for proposing this 2D FIR filtering algorithm was the reduced number
of arithmetic operations involved. It is well known that in a direct 2D convolution there is a
high degree of redundancy in operations. In a direct 2D convolution there are overlapping
blocks of input data; by eliminating these redundant calculations, a significant reduction in
the arithmetic complexity will be obtained. The filtering algorithm presented above was
produced using a block filtering technique.

At this point, the 2D filtering algorithm discussed above will be extended from an
elementary kernel of size 4 × 4 to the case of a 31 × 31 kernel. In order to achieve this and
to obtain a parallel implementation, a block processing technique will be used, relying on
a polyphase structure. To derive this 2D polyphase structure, a decimation of the kernel
matrix with factor 4 will be performed. Before decimation, the kernel was enlarged to have
a dimension multiple of 4, in our case 32 × 32, by bordering it with a row and a column of
zeros. Decimation by a factor of 5 was also applied to the input image and thus a 25 × 25
input image was produced.

Using a block polyphase decomposition and the previous fast algorithm, the following
efficient algorithm was obtained for the computation of the designed 2D FIR filter. The
vectors HT

00, HT
01, HT

02, HT
03HT

10, HT
11, HT

12, HT
13HT

20HT
21, HT

22, HT
23, HT

30HT
31, HT

32, HT
33 for a kernel

matrix of size 12 × 12 and an input matrix of size 21 × 21 have the general form Hij given
below (where i = 0, 1, 2, 3 and j = 0, 1, 2, 3):

Hij =
[
h0+i,0+j h0+i,4+j h0+i,8+j h4+i,0+j h4+i,4+j h4+i,8+j h8+i,0+j h8+i,4+j h8+i,8+j

]
(35)

For example, the vectors H00, H12, H33 generated by the Formula (35) will be:

H00 =
[

h0,0 h0,4 h0,8 h4,0 h4,4 h4,8 h8,0 h8,4 h8,8
]

( i = 0, j = 0)
H12 =

[
h1,2 h1,6 h1,10 h5,2 h5,5 h5,8 h9,2 h9,5 h9,8

]
( i = 1, j = 2)

H33 =
[

h3,3 h3,7 h3,11 h7,3 h7,7 h7,11 h11,3 h11,7 h11,11
]

( i = 3, j = 3)
(36)

In order to explain the proposed method in an easier way, our demonstration was restricted
to a less complex particular situation where the kernel matrix is of size 12 × 12 and the
input image is 21 × 21, but the results can be readily extended for the kernel of the circular
FIR filter designed above of size 31 × 31, previously extended to size 32 × 32 (by padding
with zeros), to be able to achieve the decimation by a factor of 4.

The simpler algorithm described above for a 2D filter with a 3 × 3 kernel and 5 × 5
input matrix, can be extended by performing a decimation by factor 4 for the kernel matrix
and a decimation by factor 5 for the input matrix. Thus, performing a decimation with
factor 4, instead of the kernel of size 12 × 12, 16 matrices of size 3 × 3 are derived. For
instance, in the case of HT

01, applying decimation by 4, the following block matrix of size
3 × 3 will produce:

H′
01 =

⎡
⎣h01 h05 h09

h41 h45 h49
h81 h85 h89

⎤
⎦ (37)

Next, by concatenating the rows of matrix H′
01, the matrix HT

01 is derived from Equation
(35). The vector X2D is also substituted with vector X2D given by (34).

The vectors X00, X01, X02, X03, . . ., X66, composing the matrix X2D and related to the
input image, are defined through the following general formula:

Xij =
[
x14+i,14+j x14+i,7+j x14+i,0+j x7+i,14+j x7+i,7+j x7+i,0+j x0+i,14+j x0+i,7+j x0+i,0+j

]
(38)

For example, the vectors X03, X31, X66 generated by the Formula (38) will be:
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X03 =
[

x14,17 x14,10 x14,3 x7,17 x7,10 x7,3 x0,17 x0,10 x0,3
]

( i = 0, j = 3)
X31 =

[
x17,15 x17,8 x17,1 x10,15 x10,8 x10,1 x3,15 x3,8 x3,1

]
( i = 3, j = 1)

X66 =
[

x20,20 x20,13 x20,6 x13,20 x13,13 x13,6 x6,20 x6,13 x6,6
]

( i = 6, j = 6)
(39)

The vectors X00,. . ., X66 were produced as described below. To explain the idea, our
demonstration is restricted to the situation in which the input image is a matrix of size
21 × 21 and a decimation by factor 5 is performed. In doing so, instead of the input matrix
of dimension 21 × 21, a number of 77 matrices of size 3 × 3 are obtained. For instance,
in the case of X01, applying decimation by the factor 7, the following 3 × 3 block matrix
is derived:

X′
01 =

⎡
⎣ x0,1 x0,8 x0,15

x7,1 x7,8 x7,15
x14,1 x14,8 x14,15

⎤
⎦ (40)

At this point, the rows of matrix X′
01 are concatenated, then the resulting vector is

reversed and thus the vector X1,0 is derived from the general Equation (38):

X1,0 =
[
x15,14 x15,7 x15,0 x8,14 x8,7 x8,0 x1,14 x1,7 x1,0

]
(41)

Even if our discussion was restricted to the particular case where the input matrix
is 21 × 21 to be easier for the reader to follow our discussion, it is easy to extend it for a
more general case. Thus, a 2D FIR filtering operation with a 4 × 4 kernel and a 7 × 7 input
matrix was decomposed into 100 1D inner products (FIR filtering operations) using the
following equations:

Y0 =

⎡
⎢⎢⎣

B0 B0 B0 B0
O4×90 B0 O4×90 O4×90
O4×90 O4×90 B0 O4×90
O4×90 O4×90 O4×90 B0

⎤
⎥⎥⎦× diag

⎛
⎜⎜⎝
⎡
⎢⎢⎣

O90×36 O90×36 O90×36 B1
O90×36 O90×36 B1 A1
O90×36 B1 O90×36 A1

B1 O90×36 O90×36 A1

⎤
⎥⎥⎦HT

2

⎞
⎟⎟⎠×

×

⎡
⎢⎢⎣

B2 −B2 −B2 −B2 O90×63 O90×63 O90×63
O90×63 B2 O90×63 O90×63 O90×63 O90×63 O90×63
O90×63 O90×63 B2 O90×63 O90×63 O90×63 O90×63
O90×63 O90×63 O90×63 B2 O90×63 O90×63 O90×63

⎤
⎥⎥⎦× XT

2

(42)

Y1 =

⎡
⎢⎢⎣

O4×90 O4×90 O4×90
B0 B0 B0

O4×90 B0 O4×90
O4×90 O4×90 B0

⎤
⎥⎥⎦× diag

⎛
⎝
⎡
⎣ O90×36 O90×36 B1 O90×36

O90×36 B1 B1 O90×36
B1 O90×36 B1 O90×36

⎤
⎦HT

2

⎞
⎠×

×
⎡
⎣ O90×63 −B2 B2 −B2 −B2 O90×63 O90×63

O90×63 O90×63 O90×63 B2 O90×63 O90×63 O90×63
O90×63 O90×63 O90×63 O90×63 B2 O90×63 O90×63

⎤
⎦× XT

2

(43)

Y2 =

⎡
⎢⎢⎣

O4×90 O4×90 O4×90
O4×90 O4×90 O4×90

B0 B0 O4×90
O4×90 B0 B0

⎤
⎥⎥⎦× diag

⎛
⎝
⎡
⎣ O90×36 B1 O90×36 O90×36

B1 B1 O90×36 O90×36
B1 O90×36 O90×36 O90×36

⎤
⎦HT

2

⎞
⎠×

×
⎡
⎣ O90×63 O90×63 −B2 −B2 B2 −B2 O90×63

O90×63 O90×63 O90×63 O90×63 O90×63 B2 O90×63
O90×63 O90×63 O90×63 −B2 −B2 −B2 B2

⎤
⎦× XT

2

(44)

Finally, the following output vector is produced:
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Y = Y0 + Y1 + Y2

=
[

Y00 Y01 Y02 Y03 Y10 Y11 Y12 Y13 Y20 Y21 Y22 Y23 Y30 Y31 Y32 Y33
]T (45)

In Equations (42)–(44), the block matrices are, respectively: B0 = A0 ⊗ U9, where
the vector U9 is U9 =

[
1 1 1 1 1 1 1 1 1

]
and B1 = A1 ⊗ I9, where I9 is the

9 × 9 identity matrix (with ones on the main diagonal and zeros elsewhere); we also have
B2 = A2 ⊗ I9. The matrices O4×90, O90×36 and O90×63 are zero matrices of size 4 × 90,
90 × 36 and 90 × 63, respectively.

In order to obtain the above equations, we considered a polyphase decomposition of a
1D filter that can compute four samples in parallel using a decimation factor of 4 as:

⎡
⎢⎢⎣

y4n
y4n+1
y4n+2
y4n+3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

H3 H2 H1 H0 0 0 0
0 H3 H2 H1 H0 0 0
0 0 H3 H2 H1 H0 0
0 0 0 H3 H2 H1 H0

⎤
⎥⎥⎦×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X4n−3
X4n−2
X4n−1

X4n
X4n+1
X4n+2
X4n+3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(46)

By extending the Equation (46) to 2D and using sub-expression sharing, we obtained
Equations (42)–(44). Although at first sight, the matrix equations describing the proposed
polyphase implementation may seem very complex, mainly due to their block structure,
they actually lead to a very efficient and economic filtering structure, with a high degree
of parallelism and therefore with a low computational complexity in terms of number of
arithmetic operations. All these equations were verified in Matlab (version R2017a).

5. Discussion

The proposed design method for 2D circular filters is entirely analytical, without
using any global numerical optimization techniques. Analytical design methods lead to
closed-form and parametric filters, with adjustable, tunable frequency responses. To the
best of the authors’ knowledge, the analytical design of FIR circular filter banks has not
been systematically approached previously by other researchers. As a reference to existing
works, analytical techniques for designing 2D filters of IIR type with circular frequency
response, including CFBs, have been previously proposed by the first author [33–35].

The Gaussian filter was chosen as a prototype for the CFB due to its advantages. It is a
smooth function that can be easily approximated by a trigonometric polynomial and can be
scaled on the frequency axis to adjust its selectivity. For very selective filters, the Gaussian
shape is probably the best choice. Its frequency response is zero-phase; since frequency
components will not be phase-shifted, image distortions will not occur. The resulting filters
have accurate shapes, with negligible distortions. Moreover, they can be approximated
efficiently, leading to low-order filters.

The circular filter bank (CFB) designed in our paper can be compared with other types
of filter banks, from a qualitative point of view. The comparative discussion will mainly
refer to works [25–27], as well-known multiscale pyramidal decomposition methods. Our
proposed filter banks, like the steerable pyramid [25], have rotation invariance, while the
Laplacian pyramid [26] and wavelet pyramid [27] are not rotationally invariant. Another
important aspect regards frequency plane partitioning. While the steerable, wavelet and
Laplacian pyramids all split the image spectrum into fixed sub-band regions, the proposed
circular FB is flexible, in the sense that the bandwidths of the sub-band regions can be
chosen wider or narrower, with adjustable selectivity, depending on application. This is
due to the scalability of Gaussian-shaped filters along the frequency axis, which allows us
to obtain filters with imposed selectivity starting from the same prototype. In Section 3,
a uniform CFB with 11 components was generated, partitioning the image spectrum
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into concentric ring-shaped sub-bands. Moreover, in some applications, the non-uniform
(dyadic) filter bank is also useful from the multi-resolution point of view. Since the energy of
an image spectrum is mainly contained in the low-frequency region and decreases towards
higher frequencies, the dyadic-type CFB allows for a more uniform energy distribution
on frequency bands. Also, the proposed polyphase implementation structure for the filter
bank has a lower arithmetic complexity than other implementations found in the literature.

A rigorous comparison in terms of performance with other circular filters found in
literature is quite difficult to make. Design approaches like circular filters in [11–13] are
very different from the one proposed here and lead to filters with other characteristics and
purposes, so they are quite difficult to compare exactly with our proposed method.

To summarize, the novelty of the proposed CFB consists of an analytic design method
(yielding parametric, closed-form expressions of frequency response), frequency scalability,
flexible partitioning of spectrum sub-bands, low order due to efficient approximation and
low arithmetic complexity due to polyphase implementation.

The proposed novel implementation technique significantly reduces the number of
arithmetic operations required. A short comparison can be made between the direct convo-
lution operation and the proposed filtering method in terms of computational complexity.
The 2D filtering of an image of size M × N pixels, with an FIR filter with kernel size m × n
implies a 2D convolution between a m × n matrix and a M × N matrix. This means that
the filter kernel slides on the horizontal and vertical axes along the image, so for each
pixel m × n multiplications are required; therefore the whole 2D filtering would have
approximately a complexity of O(MNmn). It is easy to calculate that the total number of
additions are (N + n2)(M + m2).

In the simpler case used to exemplify our implementation, the filter kernel has size
12 × 12, while the image is 21 × 21; thus for usual convolution, there will be 63,504 multi-
plications with 27,225 additions. In our approach, only 100 inner products are used, with
3 × 3 multiplications and 3 × 3 additions for each, that is 100 × 33 = 900 multiplications
and 900 additions, plus 12 × 90 additions in the pre-processing stage and 7 × 10 additions
in the post-processing stage. As an additional example, for a larger value of the filter
kernel where the filter kernel has the size 20 × 20 while the image is 35 × 35, 100 inner
products are used, with 5 × 5 multiplications and 5 × 5 additions for each inner product,
that is 100 × 5 × 5 = 2500 multiplications and 2500 additions, plus 20 × 90 additions in
pre-processing stage and 70 additions in the post-processing stage.

6. Conclusions

The proposed design method for 2D circular filter banks is entirely analytical, without
using any global numerical optimization. The advantages of the proposed method com-
pared to other works are: it yields a factored 2D frequency response; the designed CFB is
parametric, with adjustable characteristics; the CFB components are solved easily for any
choice of number of filters and selectivity; the proposed implementation using polyphase
and block filtering leads to a low complexity filter structure. This approach solves the
problem of designing an adjustable and efficient circular FB with imposed specifications.
The obtained results prove that the proposed rotationally invariant filter banks can be used
in decomposing a given image into its subband components.

Taking into account the simulation results on test images and the fact that the orig-
inal image can be reconstructed very accurately at least from a visual, subjective point
of view from its component images, the authors intend in future work to study and in-
vestigate whether such CFBs (either uniform or non-uniform) could be used in sub-band
coding schemes. While practically and intuitively this would seem possible, the required
mathematical conditions for perfect reconstruction will have to be investigated rigorously.
Regarding the implementation part, the authors will also study how to choose the deci-
mation factors for the input image and the filter kernel, in order to obtain a very efficient,
optimal design, and to minimize the number of arithmetic operations.
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Abstract: Image segmentation is a well-known image processing task that consists of partitioning
an image into homogeneous areas. It is applied to remotely sensed imagery for many problems
such as land use classification and landscape changes. Recently, several hybrid remote sensing
image segmentation techniques have been proposed that include metaheuristic approaches in order
to increase the segmentation accuracy; however, the critical point of these approaches is the high
computational complexity, which affects time and memory consumption. In order to overcome this
criticality, we propose a fuzzy-based image segmentation framework implemented in a GIS-based
platform for remotely sensed images; furthermore, the proposed model allows us to evaluate the
reliability of the segmentation. The Fast Generalized Fuzzy c-means algorithm is implemented
to segment images in order to detect local spatial relations between pixels and the Triple Center
Relation validity index is used to find the optimal number of clusters. The framework elaborates the
composite index to be analyzed starting by multiband remotely sensed images. For each cluster, a
segmented image is obtained in which the pixel value represents, transformed into gray levels, the
graph belonging to the cluster. A final thematic map is built in which the pixels are classified based on
the assignment to the cluster to which they belong with the highest membership degree. In addition,
the reliability of the classification is estimated by associating each class with the average of the
membership degrees of the pixels assigned to it. The method was tested in the study area consisting
of the south-western districts of the city of Naples (Italy) for the segmentation of composite indices
maps determined by multiband remote sensing images. The segmentation results are consistent
with the segmentations of the study area by morphological and urban characteristics, carried out by
domain experts. The high computational speed of the proposed image segmentation method allows
it to be applied to massive high-resolution remote sensing images.

Keywords: remote sensing; RSIS; fuzzy clustering; image segmentation; FGFCM; TCR

1. Introduction

Remotely sensed images are used increasingly in many problems related to the analysis
and control of the territory, such as the analysis of climate risks on urban and natural fabrics
and the control of the territory for the purposes of prevention from natural disasters or
those generated by anthropic, soil protection, and environmental pollution control [1–3].
One of the critical points relating to the processing of remote sensed data is the fact that it is
a massive amount of data and is continuously updated over time. This entails the need to
use methods and techniques for processing remote sensed images which, on the one hand,
optimize CPU times and memory allocation, and on the other provide accurate and reliable
results. In particular, one of the most used image processing methods in remote sensing
image analysis is image segmentation, which has the objective of partitioning the image
into non-overlapping patterns having different characteristics. It allows you to detect and
extract areas of the study area with specific characteristics (for example, soil types) [4].
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Different Remote Sensing Image Segmentation (RSIS) methods have been proposed
in the literature; among them, the most used are pixel-based RSIS algorithms, which use
threshold and clustering analysis techniques to segment the image based on the pixel
values. Threshold [5–7] is an RSIS technique in which optimal thresholds are obtained
by dividing the image histogram into two or more parts; the Otsu method [8] is the most
widely used RSIS threshold method. In clustering RSIS algorithms, a clustering method
is applied to classify the pixels so that pixels assigned to the same cluster (segment) have
characteristics that are as similar as possible and as dissimilar as possible to pixels assigned
to other segments. K-means [9], Fuzzy C-means (FCM) [10], and their variants are the more
used clustering algorithms applied in RSIS methods [11–14]. They are computationally
very fast but are very sensitive to the presence of outliers and noises in the data and do not
consider local spatial relations between nearest pixels; in addition, a validity index needs
to be used to set the number of clusters.

Region-based RSIS methods are iterative methods in which adjacent regions of the
image are merged to form larger regions. The main region-based RSIS methods are region
grooving and region splitting and merging segmentation methods [15]. In RSIS region
grooving algorithms, seed elements consisting of small regions of the image are initially
selected; subsequently, each of these regions are enlarged by applying growth rules that
merge adjacent pixels that have specific common characteristics. On the contrary, the region
splitting and merging segmentation methods split heterogeneous regions into smaller
regions; these methods do not require manual selection of seeds but are computationally
more complex than region merging methods.

The best-known region grooving RSIS algorithm is JSEG [16]. JSEG is applied and
uses the color and texture characteristics of the image to define the growth rules. JSEG
is computationally fast but suffers from the problem of image over-segmentation. To
overcome this problem, in [17] a hybrid JSEG algorithm based on wavelet transform,
called WJSEG, was proposed; the results of tests performed on high-resolution SPOT
5 pan-sharpened multispectral images and IKONOS panchromatic images showed that
JSEG provides more accurate segmentation results with respect to JSEG, reducing the
over-segmentation problem. However, it is sensitive to noise and is computationally slow.

To improve the accuracy of the segmentation results, recently meta-heuristic RSIS
methods were proposed. An ANN-based RSIS method using an enhanced boosted convo-
lutional neural network was proposed by [18]. In [19], a lightweight deep learning noise
robust image segmentation method is proposed to detect and measure dam crack widths.
These methods are robust to noise and produce very accurate results but require numerous
training data and the training process is computationally very expensive.

In [20], a hybrid thresholding image segmentation method based on an adaptive
fractional-order particle swarm optimization algorithm was developed; the results of
testing on samples of aerial images show that this method improves the segmentation per-
formances of the Otsu thresholding RSIS algorithm. However, it is very slow in processing
massive satellite images. An FCM-based RSIS algorithm in which features are extracted in
the remote sensed image and used as samples by machine learning classifiers is proposed
in [21]; this method considers some characteristics of the remoted sensed image as entropy,
intensity, and edge features, but it neglects the local relations between pixels. Some authors
developed variations of FCM for image segmentation which overcome some critical points,
such as the neglect of the spatial relations between pixels and the lack of robustness with
respect to the presence of noise and outliers. In [22,23], variations of FCM to increase the
robustness are proposed. They improve the robustness to the noise of FCM; however, they
do not consider the spatial relations between neighboring pixels.

An extension of FCM, called Fast Generalized Fuzzy c-means (FGFCM), was proposed
in [24] to incorporate local spatial value information in the image. FGFCM was applied
in [25] to segment images compressed by using the bidimensional Fuzzy Transform [26].
The authors show that this model provides a good trade-off between the segmentation
accuracy and time and memory consumption. In [27], this image segmentation model
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was applied to segment medical massive bedsores images in order to monitor the status
and evolution of bedsores in elderly people unable to access hospital facilities during the
COVID-19 pandemic period. A variation of FGFCM is proposed in [28], in which the PSO
algorithm is used to find the centers of the initial clusters to avoid FGFCM getting stuck
at the local minimum. To improve the robustness with respect to noise in the image, a
variation of FCM called Modified Robust Fuzzy C-Means (MRFCM) is tested in [29] to
segment brain magnetic resonance (MR) images. MRFCM is more robust to various types
of noise than other FCM-based image segmentation algorithms; however, it has a high
computational complexity and is unsuitable for the processing of massive and multi-modal
images. In [30], a variation of FGFCM called Generalized FCM aiming to be independent
from the parameters used in FGFGM is proposed. The authors show that this algorithm
provides results comparable with FGFGM; however, the CPU times required are too high
to make it suitable for RSIS applications.

Therefore, recently proposed RSIS methods improve the accuracy and robustness to
noise compared to canonical RSIS methods but are computationally expensive. In summary,
recently proposed RSIS methods improve the accuracy and robustness of the FGFCM
algorithm; in contrast, it is very fast but is less robust to noise. Furthermore, it depends
on the selection of the number of clusters, which is fixed a priori. The main goal of this
research is to test a new RSIS cluster-based method that provides a trade-off between the
accuracy of the results and the computational speed and which is robust to the presence of
noise in the images.

Moreover, since in many problems the segmentation process must be carried out on
raster datasets that represent specific indices built starting from multiband source satellite
images, the segmentation process must be executed for any type of raster dataset, which
represents a particular index, regardless of the domain of values assumed by this index.
In fact, generally, remotely sensed images are used in GIS-based applications in order to
construct a composite index as a function of the image in a set of bands. For example, if we
intend to analyze the spatial distribution of the Normalized Difference Vegetation Index
(NDVI), which provides information on the health and density of vegetation covering a
study area, using Landsat satellite images in the Red (R) and Near InfraRed (NIR) bands, it
is possible to calculate the NDVI index using the formula NDVI = (NIR − R)/(NIR + R).
The result is a raster dataset, i.e., a dataset in image format containing information belonging
to any domain, in which the values of the cells range between the interval [−1, 1]. Of
course, an image dataset is a type of raster dataset. Therefore, an RSIS method must be able
to analyze any type of raster dataset, which represents a particular index.

For this purpose, a new GIS-based framework applied to satellite image segmentation
based on FGFCM is proposed; a preprocessing phase is performed to create the raster
dataset representing a composite index by using multiband remotely sensed images. This
raster dataset is, then, transformed in an image dataset and the triple center relation (for
short, TCR) clustering validity measure [31] is used to assess the optimal number of fuzzy
clusters C. Subsequently, FGFCM is executed on the image representing the synthetic index
to obtain C gray images where in the jth pixel of the ith image is stored the membership
degree of the pixel to the ith cluster. Then, a final classified raster dataset is constructed in
which the value of a pixel is given by the label of the cluster to which it belongs with the
highest membership degree.

The proposed framework allows us to overcome the limitations of the RSIS methods
proposed in the literature. In particular:

• It provides a method to segment any type of raster dataset representing a specific
synthetic index so that its use is not restricted only to source remotely sensed images;

• The use of the FGFCM segmentation algorithm facilitates considering the relations
between neighboring pixels, spatial constraints, and local spatial information in
the image;

• The triple center relation validity index [31] determines the optimal number of clusters
even in the presence of noisy images and cluster centers that are spatially close to each

166



Sensors 2023, 23, 9641

other. This feature is fundamental in cluster-based RSIS as remotely sensed images
can be affected by various types of noise.

In summary, the proposed RSIS framework, unlike the RSIS models proposed in
the recent literature, maintains the high computational speed of the FGFCM algorithm;
furthermore, it is more robust than FGFCM with respect to the presence of noise in the
image, providing more accurate results. Finally, it can be applied to any type of raster
dataset constructed from the source multiband satellite image.

The rest of this paper is organized as follows: in Section 2 the FGFCM clustering
image segmentation method and the TCR validity index are briefly described. Section 3
introduces the proposed framework and describes in detail its functional components.
Section 4 presents and discusses the results of our tests performed on remotely sensed
images. The conclusions are presented in Section 5.

2. Preliminaries

In this section, the RSIS FGFGM algorithm is synthetized and the TCR validity index
used in our framework in a preprocessing phase to set the optimal number of fuzzy clusters
is briefly described.

2.1. The FGFCM Image Segmentation Algorithm

The FGFCM algorithm is proposed in [24] to incorporate local spatial and grey level
information together.

Let X = {x1,...,xN} ⊂ Rn be a dataset of N elements where each element is a point in
the space Rn of the n features. If the dataset is a gray image having N pixel, n = 1 and the
element xj is given by the gray value of the jth pixel.

Let V = {v1,. . .,vC} ⊂ Rn the C cluster centers to be detected.
To consider local information, in [24] the following transformation to the jth element

is performed:

ξj =
∑k∈Nw Sjkxk

∑k∈Nw Sjk
(1)

where Nw is a window around the jth pixel and the weight Sjk is given by

Sjk =

{
Ss_jk · Sg_jk if k �= j
0 if k = j

(2)

in which the term Ss_jk measures the influence of the kth pixel in the set of the neighbors to
the jth pixel and the term Sg_jk measures the grey similarity.

The term Ss_jk is given by

Ss_jk = exp

⎛
⎝−max

(∣∣∣pj − pk

∣∣∣, ∣∣∣qj − qk

∣∣∣)
λs

⎞
⎠ (3)

where (pj, qj) and (pk, qk) are the coordinate, respectively, of the jth and the kth pixel and λs
sets the spread of the exponential function.

The term Sg_jk is given by

Sg_jk = exp

(
−‖xj − xk‖2

λg · σ2
g_j

)
(4)

where λg sets the spread of the function Sg_jk. The parameter σg_j is a function of the density
of the local region surrounding the jth pixel; the higher this density, the higher its value. It
is defined as

σg_j =

√
∑k∈Nw ‖xj − xk‖2

N
(5)
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The objective function to minimize is

J(X, U, V) =
C

∑
i=1

q

∑
r=1

γru
m
ir (ξr − vi)

2 (6)

where q < N is the number of distinct grey level values in the transformed image, γr is the
number of pixels in the transformed image having grey level r, and ξr is the value of the lth
grey level in the transformed image.

Applying the Lagrange multiplier method to find the minimum of (6), the solutions
for U and V are obtained:

uir =
(ξr − vi)

− 2
m−1

∑C
k=1(ξr − vk)

− 2
m−1

(7)

and

vi =
∑

q
r=1 γrum

ir ξr

∑
q
r=1 γrum

ir
(8)

where uir is the membership degree of the pixels having value ξr to the ith cluster and vi is
the center of the ith cluster.

In output, FGFCM provides C images with N pixels, where the i-th image represents,
transformed in the interval [0, 255], the degree of belonging of the pixel to the ith cluster.

Below is shown in pseudocode the FGFCM algorithm (Algorithm 1).

Algorithm 1: FGFCM

Input: Original image with N pixels I
Number of clusters C
Fuzzifier m
End iteration threshold ε

Output: The C segmented images

1. Initialize randomly the center of the clusters ci i = 1,. . .,C
2. For j = 1,. . .,N
3. Transform the value of the jth pixel by (1)
4. q:= number of distinct grey level values in the transformed image
5. Repeat

6. For i = 1,. . .,C
7. For r = 1,. . .,q
8. Compute uir by (7)
9. Next r
10. Compute vi by (8)
11. Next i

12. Until
∣∣∣U(t) − U(t−1)

∣∣∣ > ε
∣∣∣U(t) − U(t−1)

∣∣∣ > ε

13. For i = 1,. . .,C
14. Create the ith segmented image
15. Next i
16. Return the C segmented images

2.2. The TCR Validity Index

The TCR index is a fuzzy clustering validity measure related to the well-known Dunn
index [32] used to detect compact well-separated clusters. The TCR is applied to assess the
compactness of clusters and the separability among clusters.

Let X = {x1,...,xN} ⊂ Rn be a dataset of N elements where each element is a point in the
space Rn of the n features.

Let V = {v1,. . .,vC} ⊂ Rn the C cluster centers.
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The mean and the variance of the cluster centers are defined as

v̂ =
1
C

C

∑
i=1

vi (9)

and

σ2
v =

1
C − 1

C

∑
i=1

‖vi − v̂‖2 (10)

The compactness of the cluster is measured by the following index:

Com(C) =
C

∑
i=1

∑N
j=1 um

ij ‖xj − vi‖2

∑N
j=1 max

i=1,..,C
um

j

(11)

The separability among clusters is measured by the following indices:

Sep(C) = S1(C)·S2(C)·S3(C) (12)

where
S1(C) = N·σ2

v (13)

S2(C) =
1
C

C

∑
i=1

C

∑
k=1
k �=i

‖vi − vk‖2 (14)

S3(C) = min
i=1,...,C

C

∑
k=1
k �=i

‖vi − vk‖2 (15)

The three indices measure, respectively, the sample variance, the mean distance
among cluster centers, and the minimum distance among cluster centers. Their combina-
tion obtains accurate measurements of intra-cluster separability, even in cases where the
cluster centers are closely distributed. The lower the value of SEP(C), the higher the intra-
cluster separability.

The final TCR index is given by the ratio between the compactness and the separability
indices:

TCR(C) =
Com(C)

Sep(C)
(16)

The optimal number of clusters is selected by minimizing the TCR index. In Algorithm 2
the algorithm using TCR to find the optimal number of clustering is shown in pseudocode,
where any FCM-based algorithm can be used.

The results of tests performed in [19] show that TCR give better performances with
respect to other fuzzy clustering validity indices in the presence of noised datasets.
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Algorithm 2: TCRValidityIndex

Input: Dataset with N elements D
Fuzzifier m
End iteration threshold ε

Output: Optimal number of clusters

1. Set CMAX //maximum value for the number of clusters
2. COPT:= 1 //initialization of the best number of clusters
3. TCROLD:= 0 //initialization of the TCR
4. For c = 1,. . .,CMAX
5. Execute FCM-based algorithm (D, c, m, ε)
6. Compute Com(c) by (11)
7. Compute Sep(c) by (12)
8. TCR = Com/Sep //TCR index obtained for c clusters
9. If c = 1 Then

10. TCROLD = TCR
11. Else

12. If TCR < TCROLD Then

13. COPT:= c
14. TCROLD = TCR
15. End if

16. End if

17. Next c
18. Return COPT

3. The Proposed Framework

The proposed RSIS framework includes:

• A preprocessing phase in which, starting from the multiband remotely sensed image
source, the raster dataset of a composite index is constructed and the TCR validity
measure to find the optimal number of clusters is used;

• The image segmentation phase in which the FGFCM algorithm is executed to the
index image and the final classified image is created.

• Figure 1 schematizes the architecture of the framework.

The source dataset is given by a set of remotely sensed images acquired in one or more
bands. The index construction component is the GIS-based process in which raster functions
and map algebra operators are used to compute the composite index raster dataset.

The transformation in pixel values component transforms the index domain in a digital
image domain. For example, the NDVI raster dataset is transformed in an image dataset
converting the range [−1, 1] in the range [0, 255]. The result of the process is an image in
which the pixel values are made up of the transformed values of the index to be analyzed
(Index image).

The framework is highly flexible so as to allow segmentation of the source image into
a band as well. In this case, the Index Image consists of the source image in the specified
band.

The final functional component (Find the optimal number of clusters) aims to determine
the optimal number of fuzzy clusters using the TCR validity index. This component
executes iteratively FGFCM, setting a different number of clusters each time and measuring
the corresponding TCR value. The number of clusters C chosen is the one that minimizes
the TCR index.

An example of execution of the preprocessing phase in which the raster dataset of the
NDVI index is created is schematized in Figure 2.
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IMAGE SEGMENTATION PHASE

Multiband remote sensed source image

Index construction

Index raster 
dataset

Transformation in pixel 
values

Index image

Find the optimal 
number of clusters

Execute FGFCM

Segmented 
image 1

Segmented 
image C

Segmented 
image 2

Final classification

Final 
thematic 

map

Number of 
clusters C

PREPROCESSING PHASE

Reliability 
assessment

Figure 1. Schema of the proposed framework.

 

EXAMPLE OF EXECUTION OF THE PREPROCESSING PHASE

Multiband remote sensed source image

NDVI index 
raster 

dataset

NDVI Index 
image

Transformation in pixel 
values

Number of 
clusters C

Red channel  (RED) Near Infrared channel (NIR)

NDVI index in the domain [ 1,1]

NDVI index transformed in the 
domain [0,255]

Execute FGFCM varying the number of 
clusters; in every iteration is calculated  

the TCR validity index

Number of clusters giving the 
minimum TCR value

Transform the pixel value from the 
domain [ 1,1] in the domain [0,255]

Index construction

Find the optimal 
number of clusters

NDVI = NIR - RED
NIR + RED
_________

Figure 2. Example of execution of the preprocessing phase.

In the image segmentation phase FGFCM is executed on the index image, setting the
number of fuzzy clusters to C. Outputs of the component Execute FGFCM are the set of C
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segmented images where the value of a pixel in the ith segmented image are converted in
the digital image domain from the membership degree of the pixel to the ith cluster.

The Final classification component assigns to each pixel the label of the cluster to
which it belongs with the highest degree of membership. The component provides a raster
dataset in which the pixel values are given by the classes they belong to. A thematic
map is appropriately constructed creating a one-to-one association between a cluster
and a thematic class and assigning a semantic label to the thematic class. (Final thematic
map). In addition, for each thematic class, the reliability of the assignment of pixels to the
corresponding cluster is evaluated as the average of the membership degrees to the cluster
of all the pixels assigned to it; the final assessed reliabilities are assigned to all the thematic
classes and stored (Reliability assessment). The reliability measures for each cluster allows
us to evaluate the reliability of the assignment of image pixels to the cluster; in fact, it
is calculated as the average value of the membership degrees to the cluster of the pixels
assigned to it. The higher this value, the greater the certainty that the pixels assigned to the
cluster belong to it; therefore, the greater the accuracy of the detected segments.

Formally, if Ni is the number of pixels assigned to the ith cluster, the reliability of the
assignment of these pixels to this cluster is given by

Reli =
1

Ni

Ni

∑
j=1

uij (17)

Below is shown in pseudocode our RSIS method (Algorithm 3). FGFCM is the FCM-
based algorithm used executing the TCRValidityIndex algorithm.

Algorithm 3: The proposed RSIS method

Input: Original multiband image with N pixels
Output: Final classification thematic map and reliability assessment

1. Set m, ε
2. ---------------- Preprocessing phase -------------------------------------
3. Construct the composite index raster dataset CI
4. Transform the composite index raster dataset in an image dataset II
5. C:= TCRValidityIndex(II, m, ε)
6. ---------------- Image segmentation phase -----------------------------
7. Execute FGFCM(II, C, m, ε)
8. For j = 1,. . .,N
9. uMAX:= u1j

10. RCj:= l1 //label of the first cluster
11. For i = 2,. . .,C
12. If uij > uMAX Then

13. uMAX:= uij

14. RCj:= lbi //label of the ith cluster
15. End if

16. Next i
17. Next j
18. For i = 1,. . .,C
19. Reli:= 0
20. Numi:= 0
21. For j = 1,. . .,N
22. If RCj = lbi Then

23. Reli = Reli + RCj
24. Numi = Numi + 1
25. End if

26. Next j

27. Reli = Reli/Numi
28. Next i
29. Return thematic map RC[N] and cluster assignment reliability Rel[C]
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The framework was implemented in the ESRI ArcGIS desktop suite by using the
Python ArcPy library.

In next section, we show the results of a set of tests of our framework applied on a
study area given by the southwestern districts of Naples, Italy.

4. Test Results

The framework was tested on a study area given by the three districts of the south-
western area of the metropolitan city of Naples, Italy: Bagnoli, Fuorigrotta, and Posillipo.

Figure 3 shows the study area that includes the three districts. The area has been
identified in order to test the accuracy of the image segmentation process of raster data
representing composite indexes extracted by satellite images.

 

Figure 3. Framing of the study area: southwestern districts of Naples, Italy.

4.1. Morphological Analysis

To improve our understanding of the data from satellite images, we have been provided
a morphological description of the whole study area, thanks to an experienced planner.

Posillipo has a very mountainous landscape; the Coroglio ridge, which runs the entire
length of the district, is the morphological feature that indicates the district’s division from
the other two districts. All of Fuorigrotta is straight, with the exception of the eastern
border region. The Agnano basin is a largely level volcanic area that is part of the Bagnoli
district in the Campi Flegrei volcanic area. The southern area of the district is completely
flat; almost all of the area is covered by an old industrial plant, now decommissioned for
about 30 years, belonging to the old steel Italsider company.

To better understand the morphological constitution of the territory, in Figure 4 is
shown the study area map of the Digital Terrain Model (DTM); a topographical model of
the Earth’s surface that contains data, in a digital format, of the elevation of the bare ground
devoid of any natural or anthropic element present on the surface. For the study area, the
DTM domain has an interval between 0 and 600 m that measures the surface height above
sea level.
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Figure 4. Digital Terrain Model of the study area.

The results obtained by running the proposed RSIS method on raster datasets of
composite indices processed starting from satellite images are shown below. For brevity’s
sake, we show the results obtained for three composite indices: Albedo, NDVI, and Sky
View Factor.

The Albedo index identifies the fraction of light on a horizontal surface that is reflected
in all directions; it constitutes the reflective power. It is aimed at identifying the reflection
characteristic of the solar radiation affecting the materials on the ground. It takes values
in the range [0, 1]. The maximum albedo is 1 when all the incident radiation is reflected;
this occurs in the case of perfectly white soils. The minimum albedo is 0 when no fraction
of the radiation is reflected; this value is obtained in the presence of perfectly black soils.
The Albedo index was calculated as the weighted average of the ratios between the visible
and near infrared (0.315–2.8 μm) incident and reflected energy, using the visible and
infrared emission and absorption spectral bands obtained with the RapidEye satellite, with
resolution of 7 × 9 m.

Figure 5 shows the distribution of the Albedo on the study area.
The NDVI—Normalized Difference Vegetation Index—measures how vigorous the

vegetation is. Its purpose is to document the presence of vegetation on the surface of the
earth as well as its development over time. The ratio between the difference and a sum
of the reflected radiation in the near infrared (NIR), in which the light is reflected by the
leaves, and in the red (RED), in which the chlorophyll absorbs light, is used to compute the
NDVI. The domain values are in the range of −1 and 1. When vegetation is present, values
between 0.2 and 1 are assumed. The range of values between −1 and 0 can be attributed to
uncultivated environments like streams and urban areas. The data are processed by the
satellite Sentinel2 with a resolution of 7 × 7 m.

Figure 6 shows the distribution of the NDVI on the study area.
The Sky View Factor (SVF) index indicates the fraction of sky visible from a point on

the surface. The index shall be calculated taking into account any obstacle that prevents
the full visibility of the sky. The domain is between 0 and 1. With the approximation of
the values to 0, there is a smaller portion of the visible sky and an increasingly complete
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obstruction of visibility; with the application of the values to 1, it will increase the portion
of the sky detectable until a complete visibility of 360◦. This shows that the higher the
SVF value, the greater the heat loss in the atmosphere. The values were processed by the
satellite Landsat 8 with a resolution of 1.7 × 1.7 m.

 
Figure 5. Map of Albedo satellite data.

 
Figure 6. Map of NDVI satellite data.
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Figure 7 shows the distribution of the SVF on the study area.

 

Figure 7. Map of Sky View Factor satellite data.

Following the segmentation process, thematic maps for each index were created:
Albedo, NDVI, and SVF.

The optimal number of clusters determined in the preprocessing phase for the Albedo
index is five. After executing the segmentation process, a thematic map of Albedo given by
five thematic classes called, respectively, Low, Medium-Low, Medium, Medium-high, and
High is created. Figure 8 shows the thematic map of the Albedo.

The segmentation algorithm was able to clearly distinguish areas with different values,
managing to faithfully perimeter the areas as identified by the input raster. The inability
to discern minute differences in values between several locations is the only drawback.
According to the morphological analysis, it is clear that the areas with a lower value of
Albedo are distributed mainly to the south along the ridge of Posillipo and north along the
side of Mount Spina that delimits the basin of Agnano (locality of the district of Bagnoli).

The highest values are mainly concentrated within the complex of the Mostra
d’Oltremare in the district of Fuorigrotta and in the disused industrial areas of the for-
mer Italsider and in the automotive sector of via Pisciarelli, respectively, to the south and
north-east of Bagnoli.

The reliabilities assessed for each class are given in Table 1.

Table 1. Reliabilities of the classes of Albedo.

Class Mean Reliability Standard Deviation

Low 0.74 0.11
Medium-low 0.58 0.07

Medium 0.77 0.08
Medium-high 0.75 0.07

High 0.67 0.08
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Figure 8. Map of Albedo after the segmentation process.

The average reliability is higher than 0.65 for all thematic classes, except the Medium-
low thematic class, whose average reliability is equal to 0.58; furthermore, this thematic
class presents the highest standard deviation of reliability. This is presumably due to the
fact that this class includes large areas with different shapes and types of soil.

Now the results obtained for the NDVI index are shown. The optimal number of
clusters determined in the preprocessing phase for the NDVI index is five. After executing,
then in the segmentation process a thematic map of NDVI given by five thematic classes
called, respectively: Absent, Low, Scanty, Good, and High is created. Figure 9 shows the
thematic map of NDVI.

The technique for segmentation conformed to the same input raster’s boundary while
accurately identifying areas with varying NDVI values. As per the planner’s expectations,
the areas with the highest value correspond to the long ridge that splits the district of
Posillipo from that of Fuorigrotta and to the basin of Agnano close to the border between
the district of Bagnoli and Fuorigrotta. Both surfaces are mainly covered by wooded areas.
Due to its high level of urbanization, the majority of the land is categorized as Scanty; both
built or and natural surfaces belong into this class. However, the disused industrial area in
Bagnoli is an example of how badly vegetated this class is.

The reliabilities assessed for each class are given in Table 2.

Table 2. Reliabilities of the classes of NDVI.

Class Mean Reliability Standard Deviation

Absent 0.78 0.04
Low 0.71 0.08

Scanty 0.55 0.13
Good 0.68 0.09
High 0.72 0.08
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Figure 9. Map of NDVI after the segmentation process.

The average reliability is higher than 0.70 for all thematic classes except the Scanty
thematic class, whose average reliability is equal to 0.55; furthermore, this thematic class
presents the highest standard deviation of reliability (0.13). In fact, very large zones of the
study area belong to this class, with a sparse presence of living vegetation, both in the built
fabric and in impervious open spaces and in uncultivated or abandoned areas.

Below the results obtained for the SVF index are shown. The optimal number of
clusters determined in the preprocessing phase for the SVF index is three. After executing,
then in the segmentation process a thematic map of Albedo given by three thematic classes
called, respectively, Low, Medium, and High is created. Figure 10 shows the thematic map of
the Sky View Factor.

Even more accurately than in the prior instances, the segmentation algorithm has
captured the perimeter in this instance as well. The input file’s higher resolution than the
other two raster images could be the cause of this. In line with the morphological analysis,
the areas with higher values of SVF are those with a flat character, such as the disused
industrial area in Bagnoli to the south and the flat inside the basin of Agnano to the north.
Both areas have a high degree of visible sky fraction. As expected, the areas with the lowest
level of visibility are those with a high density of built surfaces due to the dense mesh of
buildings that hinders the fraction of sky visible from the road.

Table 3 shows the reliabilities assessed for three SVF thematic classes.

Table 3. Reliabilities of the classes of SVF.

Class Mean Reliability Standard Deviation

Low 0.73 0.06
Medium 0.71 0.06

High 0.70 0.07
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Figure 10. Map of Sky View Factor after the segmentation process.

The mean reliability and the standard deviation of the three thematic classes is very
similar; in particular, the mean reliability is higher than 0.7 for all thematic classes. This
result highlights that areas with Low, Medium, and High sky view factors are very distinct
from each other.

In order to analyze the performance of the proposed method, it was compared with
the well-known Otsu thresholding segmentation method, analyzing a specific region of the
study area selected by the domain experts. The comparison was performed by measuring
the Hamming Distance [33] between the segmentation results obtained executing the
Otsu thresholding algorithm and the proposed method. The Hamming distance between
two binary segmentations R and S in a region evaluates the similarity between the two
segmentations in that region. It is defined as

HD(R, S) = 1 − |RB ∩ SF|+ |RF ∩ SB|
|R| (18)

where |R| is the number of pixels in the region, |RB ∩ SF| is the number of pixels of the
region classified in the background in the segmentation R and in the foreground in the seg-
mentation S, and |RF ∩ SB| is the number of pixels of the region classified in the background
in the segmentation S and in the foreground in the segmentation R.

HD ranges between 0 and 1. The more HD approaches 1, the more similar the two
segmentations are in the region of the analyzed image.

The two methods are executed to a selected region in the images of the three composite
indexes of Albedo, NDVI, and Sky View Factor. To obtain the background and the fore-
ground areas using our FGFCM-based segmentation method, the thematic classes in the
resultant segmented image were aggregated to form only the two thematic classes called,
respectively, Foreground and Background.

Figure 11 show the segmentations obtained for the three synthetic indices analyzed:
Albedo, NDVI, and Sky View Factor.
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a  

 
b  

 
c  

Figure 11. Segmented regions compared for the three synthetic indices: (a) Albedo, (b) NDVI, (c) Sky
View factors.

180



Sensors 2023, 23, 9641

Table 4 shows the results of the comparison. The table shows the Hamming dis-
tance similarity measure and the execution times of the two methods necessary for the
segmentation of regions in the three raster datasets.

Table 4. Hamming distance and CPU time of the Otsu thresholding and the proposed method.

Synthetic Index HD Otsu CPU Time (s) Our Method CPU Time (s)

Albedo 0.91 2.01 1.38
NDVI 0.93 2.14 1.42

Sky View Factor 0.95 1.97 1.40

The HD measure is higher than 0.9 in all three cases. Furthermore, the execution times
obtained with the proposed method are in all cases lower than those obtained by running
the Otsu algorithm.

4.2. Discussion of the Results

The results of the classification agree with assessments provided by topic-matter
specialists who assessed how closely the areas described in the thematic map conformed to
their morphological and urban features. This implies that the method proposed by us can
be used to improve the analysis of urban systems thanks to its short computational time.

In fact, our algorithm can guarantee excellent results even with high-resolution satellite
images without having to wait as long as other models do. From a classification point of
view, our model allows the determination of the optimal number of clusters thanks to the
use of the TCR validity index. This is guaranteed even in high-noise conditions.

By analyzing the low standard deviation values of each class found in each of the
satellite rasters analyzed, it is possible to demonstrate that our model has a good degree of
reliability in the determination of thematic classes and a low level of uncertainty.

Furthermore, the results of comparisons with the Otsu thresholding algorithm show
that the proposed RSIS method provides good accuracy and better execution times.

5. Conclusions

A new RSIS method based on the Fast Generalized Fuzzy C-means algorithm is
proposed. In a preprocessing phase, a raster dataset representing the distribution of the
composite index on the study area is obtained by processing remotely sensed image datasets
and the TCR validity index is used to determine the optimal number of clusters. Then,
FGFCM is executed to obtain the segmented images; the segmentation result is given by a
thematic map of the composite index in which each thematic class is related to a specific
fuzzy cluster. A pixel is assigned to the thematic class corresponding to the cluster to
which it belongs with the greatest membership degree. Finally, the mean reliability of every
thematic class is assessed as the average membership degrees of the pixels belonging to
the class.

Our framework was tested on a set of remotely sensed images to construct a segmented
thematic map of composite indices in the study area given by the southwestern districts of
Naples, Italy. The final thematic maps of the analyzed composite indices are in line with the
assessments made by domain experts who evaluated the adherence of the areas classified
in the thematic map with their morphological and urban characteristics.

The use of the FGFCM algorithm, which has a high computational speed, allows the
proposed method to be applied also to high-resolution remotely sensed images; further-
more, the use of the TCR validity index can determine the optimal number of clusters even
in the presence of noisy images. A further benefit is the assessment of the reliability of the
final thematic classes, which allows the effectiveness of the classification to be assessed.

Our model, thanks to its ability to process remote sensing images at high resolutions
in short computational times, can be a useful supporting tool for urban morphological
analysis for the assessment of physical vulnerability compared to multi-risks caused by
extreme events such as heatwaves or pluvial flooding.
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In the future, we intend to carry out further comparative tests on different types of
territories and urban settlements in order to determine the accuracy and efficiency of the
proposed method as the type of study area and the resolution and the quality of the source
remotely sensed images vary.
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Abstract: Thermal imaging cameras and infrared (IR) temperature measurement devices act as state-
of-the-art techniques for non-contact temperature determination of the skin surface. The former is
cost-intensive in many cases for widespread application, and the latter requires manual alignment
to the measuring point. Due to this background, this paper proposes a new method for automated,
non-contact, and area-specific temperature measurement of the facial skin surface. It is based on
the combined use of a low-cost thermopile sensor matrix and a 2D image sensor. The temperature
values as well as the 2D image data are fused using a parametric affine transformation. Based on
face recognition, this allows temperature values to be assigned to selected facial regions and used
specifically to determine the skin surface temperature. The advantages of the proposed method
are described. It is demonstrated by means of a participant study that the temperature absolute
values, which are achieved without manual alignment in an automated manner, are comparable to a
commercially available IR-based forehead thermometer.

Keywords: non-contact temperature measurement; thermopile sensor; data fusion; intelligent access
control system

1. Introduction

The non-contact measurement of skin temperature enables the early detection of
potential signs of illness without the need for unwanted direct interaction with individuals.
Additionally, it offers a practical solution for efficiently scanning large groups of people,
supporting effective screening measures in both public and private spaces. Currently, there
are two state-of-the-art non-contact methods:

• measurement of the forehead skin temperature using an infrared (IR) temperature
measuring device;

• deployment of a thermal imaging camera at an exposed location for measuring the
skin temperature.

Existing state-of-the-art approaches have certain limitations. The majority of these
systems are based on IR temperature measurement sensors [1–9]. IR thermometer-based
approaches do not allow for tracking the contour of the face. This requires the person’s
face to be positioned within a predetermined frame, which can be error-prone and less
convenient. As a result, they are unsuitable for deployment in crowded areas and are
economically unviable due to the extensive need for personnel.

Systems based on IR thermal imaging [10–12] offer facial recognition and tracking, but
they are significantly more expensive than conventional image sensors, rendering them
economically impractical for many manufacturers of integrated systems. Current systems
only provide temperature measurements based on the overall facial outline or non-specific
facial regions. Specific facial areas are not considered or detected, making it impossible to
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determine temperature reliably and consistently in the same facial regions. This is crucial
since facial skin temperature can vary significantly [13,14]. Furthermore, various capabili-
ties for a fully automated solution are lacking. Some solutions have relay outputs which are
indirectly controlled via Wi-Fi, requiring additional peripheral electronics. Current systems
offer limited capabilities for remote reconfiguration, such as adjusting calibration data or
individual measurement logic. Some researchers are combining RGB and thermal imagery
for various applications, such as traffic monitoring and interdisciplinary inventory [15–17].

Only a few state-of-the-art approaches employ inexpensive thermopile sensors [18,19].
Thermopile-based systems currently lack facial recognition and/or tracking capabilities
due to their limited resolution.

Given this context, the objective of this paper is to present an automated approach
for contactless and facial area-specific skin temperature measurement. This method relies
on the unique combination of an inexpensive thermopile sensor array and a 2D image
sensor. Temperature and 2D image data are fused using a parametric affine transformation.
A special calibration target is designed to determine this transformation. Through facial
recognition, specific facial areas can be assigned with temperature values, which are then
used to determine the skin surface temperature. Algorithms for detecting facial features
and fusing data from the thermopile sensor array and 2D image sensor are described. Fur-
thermore, the distributed system architecture and its components are introduced. Finally,
the feasibility of the approach is demonstrated by a small participant study and the results
are discussed.

2. Materials and Methods

2.1. Thermopile Sensor and Data Readout

For this study, a thermopile sensor with 60 × 40 pixels (HTPA60 × 40, from Heimann
Sensor GmbH, Dresden, Germany) was chosen. Thermopiles are temperature sensors
based on thermocouple elements consisting of two different conductor materials. One
junction is opposed to the thermal radiation, generating a voltage signal proportional to
the temperature difference to the other junction by the Seebeck effect [20].

Our sensor is controlled by a custom-programmed microcontroller. The integrated
program involves reading calibration data from the sensor, capturing sensor raw data,
and transmitting this data to a mobile PC via USB transfer. The calibration information
is sensor-specific (e.g., sensitivity coefficients, number of defective pixels, etc.) and is
required for the accurate calculation of the object temperature, as well as the configuration
of the sensor’s clock frequency, ADC resolution, and the common mode voltage of the
preamplifier. The calibration data are stored on an electrically erasable programmable
read-only memory (EEPROM) in the sensor.

Since the object temperature calculation takes place on a mobile PC, the calibration
data are transmitted once at the beginning of communication, while temperature raw data
and other values (e.g., thermal drift) are continuously updated during processing.

The mobile PC polls the sensor for raw data and corrects them based on the calibra-
tion information. The sensor raw data either provide a reference voltage proportional to
the absolute temperature (PTAT) and the active pixels raw data or the electrical offsets,
depending on the readout command. The ambient temperature is calculated from the
sensor average measured PTAT value and from EEPROM calibration variables, such as the
PTAT gradient and the PTAT offset. The sensor pixels voltages are subjected to different
compensations before they can be used to determine the object’s temperature; initially, it
is necessary to deduct the sensor’s thermal offset from each pixel to counteract potential
thermal drift. Additionally, the outcome of the thermal gradient multiplied by the PTAT
average is adjusted by the scaling coefficient for the thermal gradient stored in the EEP-
ROM. Next, the electrical offsets are subtracted to compensate for changes in the supply
voltage. Then a second supply voltage compensation (VddComp) is performed using the
supply voltage of the sensor (Vdd) which is measured internally. After that, the sensitivity
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coefficients are calculated using EEPROM data. Finally, the sensitivity-compensated pixel
values are calculated by dividing the pixels voltages by the sensitivity coefficients.

The sensitivity-compensated pixels and the ambient temperature are both needed to
calculate absolute temperature for each pixel with the help of a look-up table, provided
by the manufacturer. The look-up table rows represent the range of ambient temperatures
supported by the sensor, and the columns represent the temperature values. When mapping
the two values, a bilinear interpolation calculates the absolute object temperature for each
pixel. As a result, temperature data matrices (thermopile images) of the captured scene are
generated.

The measured temperature is also dependent on the emissivity [20]. Charlton et. al.
have shown that the emissivity for human skin is nearly constant for all skin types of
the Fitzpatrick scale [21]. Thus, in the following, the emissivity of skin is assumed to be
constant with a value of ε = 0.972, close to an ideal black body radiator. The result scales
by 4

√
ε = 4

√
0.972 = 0.993 (see [20]), meaning it is only slightly influenced by the skin

color. However, the measured skin temperature fluctuates due to changing ambient and
physiological conditions.

2.2. Thermopile Sensor Characterization

An artificial head was built to characterize the sensor (see Figure 1). The head is
constructed of sheet metal and painted with black paint to mimic a black body radiator
with an emissivity close to 1. The head includes heating resistors inside at the bottom plate.
External electronics allow the head to be set to a targeted temperature. The setup is used to
characterize the sensor noise, the signal-to-noise ratio (SNR), and the frame rate.

(a) 

 

(b) 

 

Figure 1. (a): backside of the artificial head showing the control electronics; (b): front side of the
heated head, measured by the thermopile sensor. The artificial head provides a constant surface
temperature and an emissivity similar to human skin.

The pixel noise measured as mean squared error (MSE) using the jth sensor image
Sj(x, y) with discrete co-ordinates (x, y) of a homogeneous area with constant temperature
μ, is ([22]):

MSE =
1

MN ∑M
x=1 ∑N

y=1

(
Sj(x, y)− μ

)2 (1)

We extend this definition by taking a number of J temporal images into account:

MSE =
1

JMN ∑J
j=1 ∑M

x=1 ∑N
y=1

(
Sj(x, y)− μ

)2 (2)

The root mean squared error (RMSE) is the square root of Equation (2). For a single
pixel, the RMSE corresponds to the temporal standard deviation of that pixel.
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The actual SNR is calculated using the signal (the constant temperature μ) and the
MSE ([22]):

SNR = 10 · log10
μ2

MSE
= 20 · log10

μ

RMSE
(3)

For correlation analysis, we use the definition of the correlation coefficient r for two
discrete lists of values, pi and qi, and their respective averages, p and q [23]:

r = ∑((pi − p) · (qi − q))√
∑(pi − p)2 · ∑(qi − q)2

(4)

2.3. Multimodal Sensor Setup and System Calibration

The imaging part of our system is comprised of the 60 × 40 thermopile sensor and
a 2D color camera. The thermopile sensor array and the 2D image sensor are positioned
closely together and are mechanically fixed. Although the camera is full-HD capable, we
use a resolution of 600 × 400 in this study to have a better alignment to the thermopile
resolution.

Both sensors image the same scene from a slightly different perspective. Consequently,
calibration procedures used for stereo imaging might seem obvious. However, due to the
completely different wavelength regions (~10 μm for the thermal sensor and 0.4 μm–0.7 μm
for the visible range), commonly used methods fail. As the two sensors are based on
different principles, have different resolutions, have different fields of view, and provide
different types of data, feature-based algorithms cannot be applied. Intensity-based image
approaches fail as the thermopile sensor provides temperature data and does not measure
the scene’s visible light intensity.

We propose a modified calibration approach here. We identify correspondences
between the data from the two sensors based on a contrast-rich calibration scene with
distinct features. A custom calibration device is developed. It is used to generate circular
features that exhibit significant temperature variations compared to the surroundings and
emit light at the same time. This approach allows both sensors to capture these circular
features with sufficient SNR for subsequent calibration algorithms. Figure 2 illustrates the
sensor and calibration target.

Figure 2. A thermopile sensor and a 2D color sensor image the calibration target.

The calibration target consists of a vertically oriented surface with four integrated,
self-heated light sources. The two sensors are aligned to the calibration target at a distance
of approximately 60 cm. Figure 3 illustrates the images captured by each respective sensor.
The temperature data from the thermopile sensor are color coded.
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(a) 

 

(b) 

 
Figure 3. Image data with circular features, captured by the thermopile sensor (a), and by the 2D
color image sensor (b).

The displayed circular features can be detected and matched to each other. The image
from the 2D image sensor serves as reference, and corresponding circular features are
searched in the image data from the thermopile sensor. Based on this information, an equa-
tion for a parametric affine transformation can be determined, taking into account scaling,
rotation, shear, and translation of the data. In this manner we obtain a transformation,
which allows us to match the thermopile image with the rgb image.

The steps of the algorithm for determining corresponding circular features and calcu-
lating a transformation matrix are in detail:

1. capturing the thermopile image It and the camera image Ic;
2. converting It and Ic into binary images to remove redundant information;
3. detecting the contours of the circular features in It and Ic;
4. determining the center points of the circular features, It0, It1, It2, and It3 in It, as well

as Ic0, Ic1, Ic2, and Ic3 in Ic;
5. spatially sorting the detected center points from It and Ic to ensure correct correspon-

dence;
6. calculating the real-valued coefficients a0, a1, a2, b0, b1, and b2 of the transformation

matrix based on the centers of the circular features and the linear transformation
equations:

xc = a0xt + a1yt + a2
yc = b0xt + b1yt + b2

Result: transformation matrix T =

⎡
⎣a0 a1 a2

b0 b1 b2
0 0 1

⎤
⎦, which is used to transform the

co-ordinates of a data point from the thermopile sensor into the co-ordinate system of the
2D image sensor.

The described algorithm is applied once before using the skin temperature measure-
ment to determine the transformation matrix T. The calibration remains valid as long as the
alignment between the two sensors is not altered. Thereafter, it can be employed within the
sensor data fusion in combination with facial region detection and tracking, as described in
the following section.

2.4. Skin Temperature Measurements and Signal Processing

The temperature of the facial skin can vary significantly in different areas, i.e., by more
than 1 ◦C [13,14]. Therefore, for accurate determination of skin temperature, especially
across different individuals, it is crucial to conduct targeted and consistent temperature
measurements in specific facial regions.

Furthermore, during the measurement of a person’s temperature, it is essential to
ensure that head movements do not distort the temperature measurement result. To detect

188



Sensors 2023, 23, 7680

facial contour points and specific facial regions, available state-of-the-art methods can be
used [24]. Therefore, facial contour tracking is employed for dynamically adjusting the
temperature determination.

Figure 4 shows how this facial contour tracking is done. The face contour is detected
with the help of Mediapipe Face Mesh, a machine learning framework provided by Google.
Face Mesh determines characteristic landmarks within the face, making it possible to
identify eyes, mouth, nose, and also forehead. The forehead region (red quadrilateral in
Figure 4) is selected by using the proper Face Mesh nodes (node numbers 68, 103, 297, and
333 are used in this work). The red quadrilateral covers an area of approximately of 8 cm ×
1.5 cm = 12 cm2, measured at a working distance of 50 cm.

Figure 4. Mediapipe Face Mesh map of a person’s face detected by the color sensor. Each line in the
image connects one of the 478 nodes. The eyes are marked by colored squares. The red quadrilateral
marks the measured area on the forehead.

With the help of the transformation matrix T, the thermopile image is transformed
to match the rgb image. All mapped thermopile temperature values within the forehead
region are averaged spatially. The landmarks are continuously tracked, even during slight
face movements. Thus, it is possible to identify the same area within consecutive frames.
These areas are then also averaged temporally over a time interval (e.g., 1 s, 5 s), depending
on the settings of the software. All steps are performed in real time, which allows for
continuous detection and tracking of the corresponding region. Ultimately, temperature
data for the entire facial area are always available during the measurement process and can
be evaluated accordingly.

The steps of the algorithm for combined sensor data fusion with facial region detection
and tracking are, in detail:

1. capturing the thermopile image It and the camera image Ic;
2. determining the transformed image It’ from It. For each point (xt and yt) in It, the

following transformation equation applies:

⎡
⎣x

′

y
′

1

⎤
⎦ = T

⎡
⎣xt

yt
1

⎤
⎦

The transformation matrix T is obtained from the initial sensor calibration shown
above; x’ and y’ represent the transformed points in It’;

3. identifying the forehead landmark points Gc based on Ic (using Face Mesh);
4. estimating the temperature data within the area enclosed by Gc using It’;
5. spatially averaging the temperature data from It’ within the respective area;
6. temporally averaging the temperature data from It’ within the respective area;
7. visualization of the fused image with corresponding facial features in Ic.

2.5. Distributed System Architecture and Components

This section presents the system architecture used. It is designed to be fundamentally
re con figurable, enabling flexible adaptation to different requirements of various ap pli
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ca tion scenarios. The corresponding system architecture consists of five fundamental
components:

• mobile PC with an integrated touchscreen [25];
• thermopile sensor: Heimann HTPA60 × 40d sensor with ARM Cortex M0 (Pyramid

Computer GmbH, Freiburg, Germany);
• binocular camera with two lenses: 2MP AI dual lens camera module (1920 × 1080,

RGB and IR camera, Hampo Electronic Technology, Dongguan, China);
• electronic relays which can be connected to further actuators;
• RFID reader;
• edge server system for providing configuration parameters.

In this context, the mobile PC plays a central role. Besides providing an interactive
display to visualize the measurement process, it takes charge of the entire measurement
and evaluation logic. The thermopile sensor with an integrated microcontroller is con-
nected to the mobile PC via a USB serial interface. The processing of raw sensor data is
conducted in real time on the mobile PC, using the Python programming language, along
with the software frameworks OpenCV (v 4.6.0) and Google Mediapipe (v 0.8.2). The
acquisition of the raw sensor data from the thermopile sensor on the ARM Cortex-M0 is
accomplished using the C programming language. Additionally, the system architecture
can be optionally incorporated into a broader cloud/edge system. This enables remote and
location-independent adjustments of both (sensor-specific) configuration parameters and
individual measurement logic. Furthermore, the mobile PC features an RFID reader and
universal switching outputs (relays) which can be utilized to control automated processes
such as actuators based on temperature measurements for access control tasks.

3. Results

3.1. Sensor Characteristics

The sensor was characterized by imaging the artificial head, which was heated to
a constant temperature of ~33 ◦C. Figure 4 shows the mean and standard values of the
thermopile sensor over a time interval of 5 s.

The averaged temperature values in Figure 5a are showing a fixed pattern noise
imposed on the image. The temperature values of the head slightly increase towards
the lower end where the heating resistors are located. The pixels in the upper, more
homogeneous part show a pixel noise between σ = 0.45 ◦C− 0.7 ◦C (Figure 5b), on average
approximately σ = 0.53 ◦C, which is quite high for most applications.

(a) 

 

(b) 

Figure 5. Averaged temperature image (a) and temporal standard deviation of 10 × 10 pixels in the
upper homogeneous region of the image (b). Both images were taken over a time interval of 5 s. The
frame rate of the thermopile sensor is 22 frames per second. The exposure time of the sensor is not
controllable by us, it is set internally in the sensor.

Pixel noise, determined according to Equation (2), can be improved by spatial and
temporal averaging, shown in Figure 6. The noise can be decreased by spatial averaging,
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assuming a homogeneous surface area is measured. The noise is reduced by 50% by
averaging 4 pixels (see Figure 6). By averaging a few dozen pixels, the statistical noise
is dramatically reduced, also eliminating variations due to fixed pattern noise. A further
noise reduction is possible by additional temporal averaging. The statistical temperature
noise reaches levels of σ = 0.01 ◦C by averaging over 64 pixels for 5 s. The SNR of a
single temperature pixel is 36.6 dB. Averaging 64 pixels over 5 s increases the SNR value
to ~70 dB. In this manner, spatial and temporal averaging allows for precise temperature
measurements even with noisy thermopile sensors.

(a) (b) 

Figure 6. Effect of spatial and temporal averaging on noise (a) and SNR (b). The noise and SNR
values are obtained and calculated from the measurement of the artificial head shown in Section 2.2
with a constant surface temperature μ. Noise values are calculated as RMSE for pixel areas of different
sizes. Temporal averaging is done by averaging successive frames over a given time span. SNR
values are calculated according to Equation (3).

3.2. System Characteristics

Figure 7a illustrates the overall implemented system. The mobile PC is equipped with
an integrated camera and the thermopile sensor is added on top. The system prototype
can be connected via an electronic relay to an actuated door, which served as a use-case
scenario for temperature-based access control.

(a) 

 

(b) 

 

Figure 7. (a): System prototype; (b): exemplary illustration of the combined sensor data fusion with
facial region detection and tracking.

The Figure 7b shows the detection of both the facial contour and specific facial regions,
such as the forehead. The face is tracked continuously. The skin surface temperature is
visualized through a colormap. The red quadrilateral shows the area used for determining
forehead temperature. The region is identified with the help of Face Mesh and mapped to
the thermopile image, consisting of roughly 25 thermopile pixels. The pixels are spatially
averaged to one temperature value. Furthermore, the area is tracked during several seconds
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(5 s, in this case) and averaged over this time interval to the final temperature value. The
system is capable of performing all necessary calculations in real time.

Inside and outside temperature as well as physical activities influence the measured
skin temperature. We performed some qualitative measurements and found that the
ambient temperature has a correlation coefficient of r ≈ 0.35 (calculated by Equation (4)).
The distance to the subject also influences the result and has a correlation coefficient of
r ≈ 0.27. However, these influences are difficult to reproduce.

Foreign objects located near the face or covering specific facial areas can adversely
affect the measurement of skin temperature. Examples of such objects include wearing a
mask or glasses. The proposed approach enables the indirect detection of these objects by
assuming that skin areas covered by a foreign object have lower temperatures than uncov-
ered areas. In this way, foreign objects can be identified by detecting cooler temperature
regions on the face. The described principle is exemplified in Figure 8.

 (a) 

 

  

 (b)

 

  

 (c) 

 

 

Figure 8. Temperature measurements and identification of foreign objects, such as glasses, mask, or
hot objects. (a,b): Each image pair shows the rgb image and the corresponding thermopile image
before registration. (c): The image shows the fused rgb and thermopile image after registration.

To detect specific foreign objects, certain facial regions (e.g., chin, mouth, nose, and
cheek areas, corresponding to the position of a mask) can be defined. Each facial region
corresponds to a set of temperature values. To identify a foreign object in a facial region,
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the number of temperature values is counted which deviate from the expected temperature
range. If the number is too high, the person is asked to remove any objects present in the
facial region. Otherwise, temperature values below the defined threshold are filtered out
and are not considered in the temperature measurement.

Even larger objects do not disturb the temperature measurement. The last example of
Figure 8 shows that despite the presence of a hot cup with a temperature of approximately
66 ◦C, the face is recognized, and the surface temperature of the forehead (34 ◦C) is
accurately determined.

3.3. Participant Study and Quantitative Measurement Results

To validate the temperature measurement approach, especially regarding the surface
forehead temperature, a participant study was conducted. The system was calibrated as
described in Section 2.3. The calibrated system was validated by holding a hot object (e.g.,
a hand or a cup) at different points in the image and ensuring that both image sources
matched in the fused image. The temperature data were compared to those produced
by a commercially available, manually operated forehead thermometer (Medisana TM
A79). The study involved five participants with skin types I, II, and V according to the
Fitzpatrick scale. Five measurements were conducted for each individual under room
temperature conditions (22 ◦C). For better repeatability, all measurements were conducted
without any physical activities of the participants. All subjects had approximately the same
distance of 50 cm–60 cm to the sensor. The participants remained immobile to provide
more stable results. Approximately 50 images from the thermopile sensor were captured
and subsequently spatially as well as temporally averaged over a five-second period. The
reference measurements with the forehead thermometer were performed manually.

For each participant, the time, reference temperature as well as thermopile temper-
ature were measured. The five participants were measured one after each other, and the
procedure was repeated five times. The raw data of the thermopile system were corrected
by the emissivity factor of 0.99, as mentioned in Section 2.1. The average values and
the standard deviations have been calculated for each participant, as shown in Table 1.
The standard deviation fluctuates approximately between 0.07 ◦C and 0.24 ◦C for the
thermopile and reference measurement. The mean 1σ deviation of the reference mea-
surement is σre f = 0.14 ◦C

(
2σre f = 0.28 ◦C

)
and σtp = 0.12 ◦C

(
2σtp = 0.24 ◦C

)
for the

thermopile sensor.

Table 1. Average and standard deviation for all study participants. For each person, five measure-
ments were performed and used for calculating mean and standard deviation (1σ).

Participants μref (◦C) σref (◦C) μtp (◦C) σtp (◦C)

1 34.06 0.174 33.64 0.116
2 33.9 0.237 33.71 0.242
3 35.1 0.071 34.81 0.116
4 33.82 0.133 33.83 0.074
5 33.36 0.08 33.45 0.07

The results of the measurements are presented in Figure 9, illustrating a linear corre-
lation with a slope of approximately 1 (after correction for skin emissivity) between the
data from the commercially available forehead thermometer and the temperature data by
our setup. The correlation coefficient between the reference and thermopile measurements
is calculated to be r = 0.92, indicating a very strong correlation between those values.
The RMSE (compare Equation (2)) between the corrected dataset and reference measure-
ment is calculated to be RMSE = 0.22 ◦C, indicating that the measured absolute values are
comparable to those of the commercial reference system.
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Figure 9. Measurements of the forehead temperature with the Medisana TM reference device
compared to our thermopile sensor. A linear correlation between the measurements was found with
a fitted slope of 1.0. The emissivity of skin was assumed to be ε = 0.972.

4. Discussion

Our thermopile sensor has a native pixel noise of approximately 0.53 ◦C. This noise
value is higher than most manually operated temperature devices. However, through
spatial and temporal averaging, the noise value can be brought into a subordinate range of
<<0.1 ◦C. Averaging also increases the SNR accordingly.

While the ratio between thermopile measurements and reference measurements closely
approximates 1 in our scenario, we recommend conducting an initial validation of this factor.
A low-cost generic thermometer produced results that differed slightly from those obtained
with the Medisana reference thermometer. According to our findings, a sample size of
3–5 individuals is sufficient to check the quality and the scaling factor of the thermometer.

In the participant study, a temperature noise of σ = 0.12 ◦C was measured on average
for the individual participants. The temperature noise observed in this study is higher
than statistically anticipated. This means, that this noise is probably caused by systematic
deviations due to, e.g., fluctuations in skin temperature, blood perfusion, varying environ-
mental conditions, or movements of the person which are not corrected properly by the
face tracking. We did not observe relevant differences in the temperature measurements for
different skin phototypes according to the Fitzpatrick scale. This finding is also supported
by other studies [21].

In our study, we mostly used controlled conditions. For example, the distance was
not varied, the subjects were staying at room temperature, and did not move excessively.
Prior to the participant study, we qualitatively investigated skin temperature changes. We
found that temperature slightly increases over distance and is also dependent on ambient
temperature conditions, e.g., coming from the cold outside. This problem affects not only
our measurement methodology, but all non-contact methods based on thermal imaging.

Our system can be used, for example, for contactless temperature measurements in
combination with an access control system. It can be connected directly to further actuators,
such as electronic doors, via an electronic relay interface. We were able to implement such a
temperature-based access control connected to a door as a use case scenario in the lab. The
covid pandemic has shown that such systems are needed at the entrance to critical areas,
like airports, hospitals, nursing homes, or large buildings, such as residential complexes.

However, further studies are necessary to determine the temperature under more
difficult conditions, such as wearing reflective glasses, face masks, headpieces, scarfs or
under changing ambient conditions. Moreover, the accuracy of the measurement can
decrease as the 2D image sensor and thermopile sensor move farther away from the face.
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This is because the captured forehead area in the 2D image covers a smaller area with fewer
pixels due to the increased distance. As a consequence, spatial and temporal averaging
might yield less accurate results. A higher spatial resolution of the thermopile sensor could
potentially reduce this effect and enable better registration results. Additionally, further
noise suppressing techniques, such as bandpass filtering, 2D image filters, etc., might be
helpful to reduce noise. Furthermore, our system features a second, independent infrared
camera, which could be beneficial for operating the system under low light conditions.

Additional work is also needed to understand external influences to skin temperature.
This is a challenging task as it is necessary to understand and monitor more parameters in
the system. A further aspect might be to include heart rate monitoring [26], remote pho-
toplethysmography [26], or blood perfusion detection [27]. Integrating these parameters
into the analysis, along with temperature measurements from extremities like arms, hands,
and toes, could lead to a holistic understanding of the body’s response to different external
stimuli. This knowledge might be used to infer core body temperature, which is an impor-
tant vital sign and used commonly for diagnosing fever. Ultimately, leveraging inverse
heat transfer methods [28–30] in conjunction with these physiological indicators could
significantly enhance the prediction of the thermal state of the human subject. Inverse heat
transfer relies on simulation models, working backward from temperature measurements
to the boundary conditions or heat sources that could have caused those measurements.
This might offer insights into inferring the core body temperature accurately.

5. Conclusions

This paper presents an approach for automated, contactless, and region-specific mea-
surement of skin surface temperature on the face. The method is based on data fusion
from a thermopile sensor and a 2D image sensor. By capturing and tracking the facial
outline, specific temperature values are assigned to selected facial areas, which are used to
determine the skin surface temperature accurately.

The application of the proposed approach was demonstrated. In qualitative terms, the
participation study has shown that facial capture and tracking reduce the susceptibility to
errors in temperature measurement, particularly when foreign objects are in close proximity
to the face. In quantitative terms, the subject study demonstrated that the measured
temperature absolute values have an RMSE of 0.22 ◦C, rendering them comparable to those
of a commercially available, manually operated reference system. As such, our system
holds the potential to become a valuable tool in the future for accurate and automated
non-contact temperature measurements.
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Abstract: One of the main challenges faced by iris recognition systems is to be able to work with
people in motion, where the sensor is at an increasing distance (more than 1 m) from the person.
The ultimate goal is to make the system less and less intrusive and require less cooperation from the
person. When this scenario is implemented using a single static sensor, it will be necessary for the
sensor to have a wide field of view and for the system to process a large number of frames per second
(fps). In such a scenario, many of the captured eye images will not have adequate quality (contrast or
resolution). This paper describes the implementation in an MPSoC (multiprocessor system-on-chip)
of an eye image detection system that integrates, in the programmable logic (PL) part, a functional
block to evaluate the level of defocus blur of the captured images. In this way, the system will be
able to discard images that do not have the required focus quality in the subsequent processing steps.
The proposals were successfully designed using Vitis High Level Synthesis (VHLS) and integrated
into an eye detection framework capable of processing over 57 fps working with a 16 Mpixel sensor.
Using, for validation, an extended version of the CASIA-Iris-distance V4 database, the experimental
evaluation shows that the proposed framework is able to successfully discard unfocused eye images.
But what is more relevant is that, in a real implementation, this proposal allows discarding up to
97% of out-of-focus eye images, which will not have to be processed by the segmentation and
normalised iris pattern extraction blocks.

Keywords: eye detection; Haar-like features; convolution kernels; defocus test; Ultrascale+ MP SoC

1. Introduction

Biometric identification by iris recognition is based on the analysis of the iris pattern
using mathematical techniques. Although it is a relatively recent technique (the first
automatic identification system was developed and patented by John Daugman in the last
decade of the 20th century), its excellent identification characteristics have led to its rapid
evolution. Thus, using the most recent developments, it has become a mature technique.
The challenge now is to use it in a scenario where the cooperation of the person is not
required to obtain a focused image of the eye but where the person can be allowed to
continue walking, keeping the image sensor at a distance of more than 1 m from the
person’s face. In iris recognition at a distance (IAAD) systems [1], it is common to use a
camera that, thanks to its large field of view (FoV), detects and tracks the face of people
approaching the system, and to have several high-resolution iris cameras, with a narrower
FoV, that move according to what is determined by the first camera, in order to capture
the image that will have the irises to be processed. These systems will therefore employ
pan–tilt and control units. As the person is moving, capturing an image of the iris with the
appropriate quality in contrast and resolution will require predicting where the person’s
face will be at each instant to capture a quality image [2]. However, in cases where the
field of view to be covered is not too large, such as an access controlled point, a static
system, in which a single high-resolution camera is located, can be used. In this situation,
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the system shall be able to process these high-resolution images at high speed [3]. The need
to capture high-resolution images is imposed by the maintenance of a certain FoV, which
would otherwise be too low. On the other hand, having to capture a large number of frames
per second is due to the fact that, under normal circumstances, the depth of field of the
camera (i.e., the distance around the image plane for which the image sensor is focused [4])
will be very shallow [1]. Because the person to be identified is moving, it is difficult to time
the camera shutter release to coincide with the moment when the iris is in the depth of field
and therefore in focus. Only by processing many images per second can the system try to
ensure that one of the images has captured this moment.

Capturing and pre-processing a large volume of input images requires the use of
a powerful edge-computing device. Currently, the options are mainly in the form of
graphics processing units (GPUs), application-specific integrated circuits (ASICs), or field-
programmable gate arrays (FPGAs). Due to the high power consumption and size of
GPUs, and the low flexibility of ASICs, FPGAs are often the most interesting option [5,6].
Moreover, if the traditional development approach of FPGAs using low-level hardware
languages (such as Verilog and VHDL) is usually time-consuming and very inefficient,
the use of high-level language synthesis (HLS) tools allows developers to program hard-
ware solutions using C/C++ and OpenCL. This significantly improves the efficiency in
FPGA developments [7,8]. Finally, FPGAs are nowadays integrated in multi-processor
system-on-chips (MPSoC), in which computer and embedded logic elements are combined.
These MPSoCs thus offer the acceleration capabilities of the FPGA and the computational
capabilities that allow it to work as an independent stand-alone system, which does not
have to be connected to an external computer/controller.

Using a MPSoC as the hardware basis (the AMD/Xilinx ZynqTM UltraScale+TM

XCZU4EV), we recently proposed a real-time eye detection system, which was able to
process the 47 frames per second (fps) provided by a EMERALD 16MP image sensor from
Teledyne e2v [3]. In the actual deployment of this system, the eye images (640 × 480 pixels
in size) were sent to an Intel i9 computer for processing and final identification of the
user. The problem is that, as there is about 2–3 s of recording per user in which eyes are
detected, the number of eye images sent to the external computer can exceed 250 images.
The external computer cannot process this volume of information before the user has left
the access point at a normal pace. The solution to this problem is to filter out the large
number of images in which the iris is not in focus. In our case, this means discarding almost
97% of the eye images captured by the system.

The main contribution of this work is to describe the implementation, in the pro-
grammable logic (PL) part of the MPSoC, of a module that evaluates which points of an
image are in focus. Integrated together with an eye image detection system, this module
allows to discard the detections that do not pass this out-of-focus test, thus preventing
them from being processed by the next stages of an iris recognition identification system.
The whole framework was mainly built using Vitis HLS and synthesised in the afore-
mentioned AMD/Xilinx UltraScale+ MPSoC (multiprocessor system-on-chip). Given the
characteristics of an FPGA, the design option selected for this defocus blur evaluation
module was based on convolution kernels [7,9].

The rest of the paper is organised as follows: The state of the art in the topic is briefly
revised in Section 2. Section 3 provides an overview of the whole proposed framework
for eye detection implemented in the processing system (PS) and programmable logic
(PL) parts of the MPSoC and details about the implementation of the defocus estimation
core, synthesised as a functional block in the PL of the MPSoC. Experimental results are
presented in Section 4. Finally, the conclusions and future work are drawn in Section 5.
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2. Related Work

Defocus blur is the result of an out-of-focus optical imaging system [4]. When an
object is not in the focal plane of the camera, the rays associated with it do not converge on
the same spot on the sensor but to a region called the circle of confusion (CoC). The CoC
can be characterised using a point spread function (PSF), such as Gaussian, defined by a
radius/scale parameter [10]. This radius increases as this object gets farther away from the
focal plane. In practice, it is assumed that there is a range of distances from the camera,
associated with the focal plane, at which an object is considered to be in focus. This is the
so-called depth of field of the camera.

The detection of blurred image regions is a relevant task in computer vision. Sig-
nificantly, defocus blur is considered by several authors to be one of the main sources
of degradation in the quality of iris images [2,11–14]. Many single-image defocus blur
estimation approaches have been proposed [4,10]. They can be roughly classified into
two categories: edge-based and region-based approaches [10]. The edge-based approach
models the blurry edges to estimate a sparse defocus map. Then, the blur information
at the edge points can be propagated to the rest of the image to provide a dense blur
map [15]. Edge blur estimation models typically consider that the radius of the CoC is
roughly constant, and define the edge model using this parameter [16,17]. However, other
more complex models of defocused edges can be used [18]. Although edge detection and
blur estimation can be performed simultaneously [10], the problem with these approaches
is that obtaining the dense defocus map can be a time-consuming step. To alleviate this
problem, Chen et al. [16] proposed to divide the image into superpixels, and consider the
level of defocus blur in them to be uniform. The method needs a first step in which this
division into superpixels is generated. One additional problem with edge-based defocus
map estimation is that they usually suffer from textures of the input image [19]. It should
be noted that our region of interest, the iris, is primarily a texture region.

Region-based approaches avoid the propagation procedure to obtain dense defocus
maps in edge-based approaches, dividing up the image into patches and providing local
defocus blur estimation values. They are free of textures [19]. Some of these approaches
work in the frequency domain, as the defocus blur has a frequency response with a known
parametric form [20]. Oliveira et al. [21] proposed to assume that the power spectrum of
the blurred images is approximately isotropic, with a power-law decay with the spatial
frequency. A circular Radon transform was designed to estimate the defocus amount.
Zhu et al. [22] proposed to measure the probability of the local defocus scale in the continu-
ous domain, analysing the Fourier spectrum and taking into consideration the smoothness
and colour edge information. In the proposal by Ma et al. [23], the power of the high,
middle and low frequencies of the Fourier transform is used. Briefly, the ratio of the middle-
frequency power to the other frequency powers is estimated. This ratio should be larger
for the clear images than for the defocused and motion blurred images. For classifying the
images into valid or invalid ones, a support vector machine (SVM) approach is used. In all
cases, the approach is simple and fast. These approaches take advantage of the fact that
convolution corresponds to a product in the Fourier domain. Also assuming spatially in-
variant defocus blur, Yan et al. [24] proposed a general regression neural network (GRNN)
for defocus blur estimation.

To avoid the computation of the Fourier transform, other researchers prefer to directly
work in the image domain. As J.G. Daugman pointed out [25], defocus can be represented,
in the image domain, as the convolution of an in-focus image with a PSF of the defocused
optics. For simplicity, this function can be modelled as an isotropic Gaussian one, its
width being proportional to the degree of defocus [21]. Then, in the Fourier domain, this
convolution can be represented as

Dσ(μ, ν) = e
−
(

μ2+ν2

σ2

)
F(μ, ν) (1)
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Dσ(μ, ν) and F(μ, ν) are the 2D Fourier transforms of the image defocused to degree σ
and the in-focus image, respectively. Significantly, for low (μ, ν) values, the exponential
term approaches unity, and both Fourier transforms are very similar. The effect of defocus
is mainly to attenuate the highest frequencies in the image [25]. As the computational
complexity of estimating the Fourier transform is relatively high, Daugman suggested to
take into consideration Parseval’s theorem∫∫

|I(x, y)|2dxdy =
∫∫

|F(μ, ν)|2dμdν (2)

and to not estimate the total power at high frequencies in the Fourier domain but in the
image domain. Thus, the idea is to filter the image with a high pass (or a band-pass filtering
within a ring of high spatial frequency). After filtering the low-frequency part of the image,
the total power in the filtered image is computed using the equation

P =
1

M · N

M−1

∑
i=0

N−1

∑
j=0

|C(i, j)|2 (3)

where C(i, j) is the filtered image of M× N dimension. In order to reduce the computational
complexity of the Fourier transform, Daugman proposed to obtain the high frequency of
the image using a 8 × 8 convolution kernel (Figure 1a). Briefly, this kernel is equivalent
to superposing two centred square box functions with a size of 8 × 8 (and amplitude −1)
and 4 × 4 (and amplitude +4). The 2D Fourier transform of this kernel can be expressed as
the equation

K(μ, ν) =
sin(μ)sin(ν)

π2μν
− sin(2μ)sin(2ν)

4π2μν
(4)

In short, the result is a band-pass filter with a central frequency close to 0.28125 and
with a bandwidth of 0.1875. The Fourier spectrum of this kernel is shown in Figure 2a.

It must be noted that, although there is no reference image, to obtain a normalised
score between 0 and 100, Daugman proposed that the obtained spectral power x be passed
through a compressive non-linearity of the form

f (x) = 100 × x2

x2 + c2 (5)

where c is the half power of a focus score corresponding to 50%. This last normalisation
step presupposes the existence of a canonical (reference) iris image [26].

Finally, once the signal power value associated with the image (or a sub-image within
the image) has been obtained, a threshold value can be set for determining whether the
image is clear or out-of-focus [14].

Since, in our scenario, it is possible to assume the isotropic behaviour of the PSF and
that the blur is due to bad focusing, this approach based on convolution kernels applied in
the image domain is fully valid [21,25]. Furthermore, the convolution filtering of digital
images can be efficiently addressed using FPGA devices [7,27,28].

Similar to Daugman’s filter, the proposal by Wei et al. [11] is a band-pass filter, but it
selects higher frequencies (central frequency around 0.4375 and a bandwidth of 0.3125).
The convolution kernel is shown in Figure 1b. It is a 5 × 5 kernel that superposes three
centred square box functions. The frequency response is shown in Figure 2b. Kang and
Park [29] also proposed a kernel with a size of 5 × 5 pixels:

K(μ, ν) =
sin( 3

2 μ)sin( 3
2 ν)

9
4 π2μν

− sin( 5
2 μ)sin( 5

2 ν)
25
4 π2μν

− 4 · sin( 1
2 μ)sin( 1

2 ν)
1
4 π2μν

(6)

This band-pass filter has a central frequency close to 0.2144 and a bandwidth of 0.6076.
Thus, the shape of the Fourier spectrum is similar to the one of Daugman’s proposal
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but with a significantly higher bandwidth (see Figure 2c). Figure 1c shows that it combines
three square box functions (one of size 5 × 5 and amplitude −1, one of size 3 × 3 and
amplitude +5, and other of size 1 × 1 and amplitude −5).

Figure 1. Convolution kernels proposed by (a) Daugman [25], (b) Wei et al. [11], (c) Kang and
Park [29] and (d,e) Wan et al. [30].

Figure 2. Fourier spectrum for the convolution kernels (Figure 1) proposed by (a) Daugman [25],
(b) Wei et al. [11], (c) Kang and Park [29], and (d,e) Wan et al. [30].

Since high frequency is associated with sharp changes in intensity, one way to estimate
its presence in the image would be to use the Laplacian [30]. The Laplacian L(x, y) of an
image I(x, y) is given by

L(x, y) =
∂2 I
∂x2 +

∂2 I
∂y2 (7)
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This operator is the basis for the convolution kernel proposed by Wan et al. [30].
To reduce the sensitivity to noise, the Laplacian is applied to an image that is first smoothed
by a Gaussian smooth filter. The 2D LoG (Laplacian-of-Gaussian) function has the form

LoG(x, y) = − 1
πσ4

[
1 − x2 + y2

2σ2

]
e

x2+y2

2σ2 (8)

with σ being the Gaussian standard deviation. For σ equal to 1.4, the convolution kernel
takes the form shown in Figure 1d. The associated Fourier spectrum is illustrated in
Figure 2d. However, to simplify the computation, the authors propose an alternative 3 × 3
Laplace operator, combining two square box functions (one of size 3 × 3 and amplitude
−1, and other of size 1 × 1 and amplitude +9) (Figure 1e).

3. Implementation

3.1. Overview of the Proposed Framework

Figure 3 shows the schematic of the proposed logic architecture for detecting iris
images, in which the core for evaluating defocus is integrated. The figure shows how
the images are captured from a Teledyne e2v EMERALD sensor. This sensor can provide
16 Mpx images at a speed of 47 fps, using 16 low voltage differential signalling (LVDS) lines.
The first of the cores in the architecture, EMERALD core, is responsible for deserialising the
signals encoded on these 16 LVDS lines, generating the input video stream. A first video
direct memory access (VDMA) channel allows up to 8 frames to be stored in the DDR3
RAM available on the hardware platform.

The size of the frames received in the input video stream is modified by the Resizer
core to a size of 128 × 128, which is also stored in the RAM using a second VDMA channel.
In addition, the input stream is processed by the DEFOCUS core to generate a binary image
stream, in which out-of-focus areas are marked with 0 and in-focus areas with 1. These
images are stored in RAM using a third VDMA channel. The algorithm implemented in
the DEFOCUS core is discussed in detail in Section 3.2.

Figure 3. Overview of the proposed framework.

The detection of the eyes present in the rescaled image is carried out by the HAAR
CLASSIFIER core. The core reads from the VDMA that manages this stream of rescaled
images and implements a parallelised version of the popular classifier proposed by Viola
and Jones [31]. Briefly, this detector uses a set of Haar-like features to characterise an image
region and a supervised learning scheme (AdaBoost) to boost the classification performance
of a simple learning algorithm. The result is an ensemble of weak classifiers, each of which
internally computes a Haar-like feature and uses a threshold value to determine whether
the region can be the desired object or not. As described in [3], the classifier is not organised
as a sequence of weak classifiers but as a decision tree [32]. Thus, instead of having to use
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hundreds of classifiers (which will have to be evaluated almost entirely if the region to
be studied has similarity to the person’s eye), the system evaluates 120 Haar features in
parallel, which form five stages, each of which has three trees with 8 nodes each (5 × 3 × 8
features) [3]. All five stages are executed in parallel.

Figure 4 shows the internal scheme of the classifier. First, the integral image, the tilted
integral image, and the standard deviation of the grey level of the image are calcu-
lated [31,32]. These parameters allow the parallel evaluation of the 120 Haar features
which, compared to a threshold, generate 120 binary values (node 0 to 119). With these
values, 15 vectors of 10 components are formed. In each vector, the first two bits encode
the tree within the stage, and the next eight are taken from the evaluation of eight nodes.
The vectors are grouped in threes, and each group of three vectors is used to address a
look-up table (LUT). This allows three values per LUT to be obtained, which are summed.
Theoretically, the final value of each tree should be computed by multiplying each node by
a weight and summing the results. In order to accelerate the execution, the LUT is imple-
mented with the results of each 256 possibilities. This allows us to remove the hardware
employed for math computations and have the results in a single clock. Finally, the result-
ing value is compared to a threshold. This comparison generates a Boolean value, which
determines whether that stage evaluates the region as an eye or not. Figure 5 provides the
output images from the five stages in the classifier for a given input image. If the output
Boolean values computed by the five stages are true, the evaluated region is marked as
true (results mixer core). Figure 6 (middle) shows the raw detection image associated to
the five output images in Figure 5. Significantly, the whole process is executed in only four
steps [3]. The raw detection image, the output of the results mixer core, is slightly smaller
than the original rescaled one (if the size of the rescaled image and evaluated region are
M × N and m × n, respectively, the size of this image will be (M − m + 1)× (N − n + 1)).

Figure 4. The classification structure.

The problem with this scheme is that the jump between the regions being evaluated is
one pixel, so the overlap between regions is very large. This results in very close positive
detections, which generates many images that are associated with a single iris image.
The detection group core filters the raw detection image, adding the values within a sliding
window and thresholding the obtained sum value to mark the pixel as a positive detection
(its value will be equal to the sum value) or not (0). Figure 6 shows the raw detection image
associated to an input image, and the filtered version obtained by the detection group
core. The sliding window is 20 × 15 pixels, and the threshold value is set to 7 (it can be
modified if desired). Both images in Figure 6 are inverted in colour to help visualise the
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points obtained. It can be noted how the detection group core filters the isolated dots of the
raw detection image, and groups the dots into higher entities. In fact, three major entities
are identified (both eyes and one false positive detection).

Figure 5. Input image and outputs provided by the five stages in the classifier.

Figure 6. (Left) Input image; (middle) raw detection image; and (right) filtered detection image.
Both images are inverted in colour to help visualise the points obtained.

The eye notifier core is responsible for providing high-resolution image cropping
(640 × 480) for each entity detected in the image. A sliding window is now used to detect
the maximum values inside the entities provided by the detection group core. For each
entity, a 640 × 480 pixel image is cropped from the high-resolution image. This cropping
is centred on the position, transposed from the scaled image to the original input image,
provided by the maximum detected value.

3.2. Defocus Estimation

The basis of the designed defocus blur estimation core is convolution. A 2D convolu-
tion can be mathematically represented by the equation

C(i, j) =
U

∑
u=−U

V

∑
v=−V

h(u, v) · I(i − u, j − v) (9)

with I(i, j) and C(i, j) being the input and the filtered images, respectively. h(u, v) is the
convolution kernel, with size (2 · U + 1)× (2 · V + 1). If the size of the convolution kernel
is 8 × 8, the expansion of Equation (9) results in 64 multiplications and 63 summations to
be computed for each pixel.

If a large storage capacity is available (as is the case when using CPU or GPU), it is
possible to store the complete rows read from the image sensor, and apply convolution
when the complete dataset is available. This is not the situation when working with an
FPGA. If the input image and convolution kernel are small in value (e.g., Wei et al. [7] work
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with 640 × 480 pixel images and a convolution kernel of 3 × 3), FIFO (first in–first out)
memories can be implemented to store the necessary image rows (3 FIFO memories with a
depth of 637 each in the case of Wei et al.’s implementation). In our case, the EMERALD
16MP sensor provides images of 4096 × 4096 pixels, and the design will need 8 FIFO
memories with a depth of 4088 (4096 − 8) each. Storing these data in order to apply
the convolution kernel when all the data are available would increase the data usage
and latency.

However, it is important to note that, in our case, the defocus map obtained must
evaluate the pixels of the detection image (the output of the eye notifier core, see Figure 4).
The size of this detection image is much smaller than that of the input image. Therefore,
an initial data reduction step is to apply the convolution kernel not to each pixel of the
input image but in steps of S pixels as proposed by Daugman [25]. In our case, as the
sensor data are read in blocks of 8 pixels, a value of S equal to 8 is used. Applying the
convolution kernel in 8 pixel steps allows, in one clock cycle, to have the 8 multiplications
and 7 additions of that kernel row. Using a memory of 4096/8 · 32 bits, it is possible to store,
without losing resolution, the summation and to accumulate results until the results of the
last row of the kernel are obtained. The result is a defocus map of size 512 × 512, storing
32-bit values. Given the size of the scaled image (128 × 128), we further reduce the size
of the defocus map by adding in 4 × 4 blocks and obtaining a 128 × 128 map, with 32-bit
values. Figure 7 schematizes the procedure for obtaining the defocus map. The first and
second steps involve convolving the kernel with the input data (in batches of 8 pixels per
clock) and performing 4 × 4 compression. Both steps require only two line buffers: one
of 512 and one of 128 values (i.e., whole images are not managed). The data are stored as
32-bit values.

Figure 7. Graphical representation of the defocus blur map estimation. The first step implies the
generation of a line buffer of 512 positions with 32-bit values. Each position in this buffer stores the
convolution of a 8 × 8 block of the input image with the convolution kernel. The second step is a
4 × 4 summation for generating a line buffer of 128 positions with 32-bit values. A sliding window
of 20 × 15 size is used in this map to accumulate the values (Step 3). A final thresholding process
permits the core to obtain the final defocus map.

The third step averages the defocus map using the same sliding window used to
detect eyes (of size 20 × 15 in our implementation). Actually, to reduce computations,
the values in the window are not averaged but simply accumulated. The result obtained
is thresholded using a configurable value from the ARM (step 4 in Figure 7). In this way,
the final result is a defocus map with the same size as the detection image obtained by
the classifier and which stores binary values (0 if the value is not in focus and 1 other-
wise). Using a VDMA channel, the map is stored to be used for validating each positive
eye detection.

In order to speed up the design of this core, as well as to optimise its performance
characteristics, the Vitis HLS tool (https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/
Introduction (accessed on 15 August 2023)) from Xilinx is used. Vitis HLS allows the
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developer not to have to generate RTL using a hardware HDL language but to use a
high/medium level language (C/C++, System C) and obtain, from these sources, the core
IP in RTL. In our case, the design is coded using C/C++. From the set of directives that Vitis
HLS provides to help developers optimise a hardware design, we implement the PIPELINE
directive to parallelise the execution of the multiple computations in the convolution
operation. In addition, in step 4 (thresholding), the UNROLL directive is used to transform
loops by creating multiple copies of the loop body in the RTL design. In this way, some or
all iterations of the loop can occur in parallel. Finally, we use HLS directives to establish
when Block RAMs (BRAMs) or UltraRAM (URAMs) should be used in the design. BRAMs
are required to be dual ported. URAM blocks have a fixed width of 72 bits, so two 32-bit
values are joined together to be stored at each location.

The convolution kernels described in Section 2 are implemented and tested in the
DEFOCUS core of the proposed framework. Table 1 shows the resource usage for the
DEFOCUS core implementing Daugman’s proposal. As a detail, regarding memory, every-
thing is optimised to fit in one URAM and two BRAM, as the rest of the design demands
a lot of BRAM (which is faster but has been used for the HAAR CLASSIFIER). The total
resource usage for the whole system is shown in Table 2.

Table 1. Total resource utilisation for the DEFOCUS core (Daugman’s kernel). FF stands for flip flops,
LUT for look-up tables, and DSP48E for digital signal processing elements. The DSP48E combines
an 18-bit by 25-bit signed multiplier with a 48-bit adder and programmable mux to select the
adder input.

Name BRAM_18K DSP48E FF LUT URAM

DSP – – – – –
Expression – – 0 2 –
FIFO 0 – 65 332 –
Instance 2 1 2606 4193 1
Memory – – – – –
Multiplexer – – – – –
Register – – – – –

Total 2 1 2671 4527 1

Available 256 728 175,680 87,840 48

Utilisation (%) 0 0 1 5 2

Table 2. Total resource usage for the whole system.

Name BRAM_18K DSP48E FF LUT URAM

Classifier 81 582 34,645 25,740 0
Defocus 2 1 2671 4527 1
Total 83 583 37,316 30,267 1

Available 256 728 175,680 87,840 48

Usage (%) 32 80 21 34 2

4. Experimental Evaluation

4.1. Experimental Setting

The system is built as a portable device. The computational core is the TE0820-03-
4DE21FA micromodule from Trenz Electronic. This micromodule is an industrial-grade
4× 5 cm MPSoC System on Module (SoM) integrating an AMD/Xilinx ZynqTM UltraScale+TM

XCZU4EV. Moreover, the micromodule includes 2 GByte DDR4 SDRAM, 128 MByte Flash
memory for configuration and operation, and powerful switch-mode power supplies for all
on-board voltages. A large number of configurable I/Os is provided via rugged high-speed
stacking connections. The TE0820-03-4DE21FA micromodule is mounted on a compatible
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carrier board that provides physical connections between the module and peripherals.
On this first version of the hardware system, the carrier board for the Trenz Electronic
7 Series was used. This carrier provides us with all the components needed during the
development phase, such as power delivery, Ethernet connection, debugging interface,
UART to USB bridge, HDMI, PMOD connectors, and a FMC (FPGA Mezzanine Card)
connector. The image sensor is the EMERALD 16MP from Teledyne e2v, which is mounted
on a sensor board. Apart from other I/O connections, the sensor board provides as outputs
the LVDS lines. An adaptation board was designed to mount the sensor board and to
interface with the FMC connector in the carrier board. Figure 8 provides a snapshot of this
first version of the camera.

Figure 8. The first version of the system, mounting the TE0820-03-4DE21FA and the adaptation board
on a carrier board for Trenz Electronic 7 Series. The adaptation board in turn mounts the sensor board
(with image sensor and optics).

The carrier board for Trenz Electronic 7 Series provides peripherals that are not strictly
necessary. In order to customize this carrier board, and also to remove the adaptation board
from the scheme, a specific carrier board was designed and tested. Thus, in this final version,
the carrier board includes only the peripherals needed by the proposed system. Parts that
were initially used for debugging (HDMI, debugging interface, and UART USB bridge)
were also left out. This resulted in an smaller and cheaper board (see Figures 9 and 10).

Figure 9. Custom PCB design of the carrier board.
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Figure 10. The final version of the system, mounting the TE0820-03-4DE21FA and the sensor board
on a customised carrier board.

With respect to the illumination subsystem, the EMERALD 16MP features a very
small true global shutter pixel (2.8 μm). Moreover, the sensor was designed to exhibit
a very reduced dark signal nonuniformity (DSNU) value. Both properties allow the
sensor to correctly work in a low-light scenario. In any case, the first hardware design
employs a VARIO2 IPPoE infrared lamp from Raytec (see Figure 11 (left)). Similar to
the proposal of Dong et al. [33], this lamp cannot be synchronised with the trigger of the
camera and provides a very wide angle when compared with the FoV covered by the
EMERALD sensor.

Figure 11. (left) The previous version of the hardware system, showing the VARIO2 IPPoE infrared
lamp from Raytec, and (right) the board design of the new illumination module.

The Raytec lamp provides 51W continuously. To avoid this continuous irradiation,
a plate with high power LEDs (3W) was designed and synchronised with the triggering of
the camera. The board design is shown in Figure 11 (right). In total, 10 LEDs are mounted
on the board. The new system ensures sufficient brightness and allows shortening the
exposure time of the sensor, reducing motion blur caused by the subject walking through
the FoV of the camera. The new design also ensures a more homogeneous illumination of
the person’s face in the capture position (about 1.7 m from the camera).
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4.2. Hardware Implementation

In the design of the cores that are integrated in the programmable logic (PL) region
of the AMD/Xilinx device, intensive use is made of Vitis High-Level Synthesis (HLS).
Specifically, the two main streams described in this manuscript are synthesised in two cores
generated from C++ files using HLS. The first one includes all the algorithms necessary
to detect the eye regions: calculation of the integral and tilted integral images, calculation
of the standard deviation, image processing using the HAAR features in the five stages
described, and the subsequent filtering that generates the dot image with the positive
detections. The second includes the focused region detection algorithm. Synthesising and
merging all modules into only two cores allows the employed synthesis and implementation
tool to further optimize and share resources. To achieve a faster runtime and allow the
tool to optimise resources, source C++ files are subsequently modified by adding specific
directives (see Section 3.2).

In the proposed design, all the hardware implemented on the programmable logic
(PL) part is initialised and controlled from the processing system (PS) part (in this case,
in the Cortex-A53 ARM processor available in the SoC). Initialisation follows a series of
stages. First of all, the peripherals are tested. Then, the EMERALD sensor is initialised.
After that, the onboard memory is configured and synchronised with the VDMA cores. It
can be noted that there are four VDMA write cores (see Figure 3). These video streams
(input images, resized images, contrast images, and detection images) can be viewed in
real time using the HDMI interface. This allows easy real-time debugging. Finally, the
EMERALD sensor is configured to produce 47 fps at 16MP, and the video stream is started.
Alternatively, for debugging purposes, the video stream can be generated from a still image
stored on an SD card.

When the desired object (an eye) is found on the video stream, the eye notifier in-
terrupts the ARM processor and saves the frame number and coordinates. When the
processor attends to the interrupt, it reads the data, checks the defocus map to determine if
the detection is in focus, and, if so, it is considered a valid detection. If the detection is a
valid one, the processor goes to the referenced frame temporary stored on the frame buffer
used by the VDMA, crops the region, and stores it into another buffer that will be sent
through Ethernet. By dividing the tasks between the two ARM cores, the system can send
the detected eyes (in 640 × 480 images) with minimal detection delay (variable depending
on the number of eyes detected per input image).

The processing is made around a video stream implemented using an AXI Stream
interface. As a throughput of at least 47 fps at 16MP resolution is required (to get the most
out of the image sensor), the design choice was to use a data width of 8 bytes per clock at
150 MHz. As described in Section 3.1, this video stream is buffered in the onboard DDR3
memory by means of VDMA cores. This allows the ARM processor to access the frames
to accomplish the cropping and sending steps. The hardware resource usage is shown in
Table 2. The intensive use of block RAMs (BRAMs) in the classifier module is due to the
need to store pixels already read from the sensor but needed to estimate the integral and
rotated integral images, and to calculate the standard deviation (see Figure 4). It is also due
to the storage needs of the result mixer and detection group modules. They are then used
to implement memories and FIFOs. One UltraRAM (URAM) is employed in the defocus
module. The DSP48 blocks are intensively used for implementing the arithmetic required
in the classifier module.

4.3. Obtained Results

The set of tests carried out to check the validity of the proposal is divided into three
blocks. In the first, a publicly available database, the Clarkson dataset LivDet2013 [34], is
used to evaluate the ability of the convolution kernel as an estimator of the level of defocus
blur. This database includes sets of images with different levels of defocus blur. They
are images of eyes, so they do not allow evaluation of the eye detection system. In the
second test block, the CASIA-Iris-Distance V4 database (http://biometrics.idealtest.org/
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(accessed on 15 August 2023)) is extended by incorporating slightly blurred versions of the
component images. In this case, it is possible to evaluate the system’s ability to detect eyes
and to discard those detections that are out of focus. Finally, a third block of tests is carried
out in a real environment, using the hardware described above. In addition to evaluating
the system’s ability to detect eyes in a real environment (using the EMERALD 16MP sensor
and with people in motion), these tests allow us to determine that the system is capable
of discarding a large volume of out-of-focus detections. The following sections provide
details on these three test blocks.

4.3.1. Evaluation of the Defocus Blur Estimation in Eye Subimages

Although the actual validation of the proposal must be performed with the system
described in Section 4.1, in order to evaluate the performance for estimating the iris image
defocus of the four convolution kernels described in Section 3.2, the Clarkson dataset
LivDet2013 [34] is used. In this dataset, images are collected through the use of video
capture of 100 frames at 25 fps using a Dalsa camera. The sequence is started out of focus
and is moved through the focus range across full focus and back to being out of focus.
Images are grouped according to their blur level in five categories:

• Group #1–10% blur in frame before least blurry image;
• Group #2–5% blur in frame before least blurry image;
• Group #3 least blurry image;
• Group #4–5% blur in frame after least blurry image;
• Group #5–10% blur in frame after least blurry image.

A total of 270 images are available for training. In Figure 12, the blue curve joins the
response values for applying the convolution kernel proposed by Daugman [25] to these
images. A higher value indicates that the image has, on average, a higher focus. The images
are sorted by groups (the first 53 belong to group #1, the next 55 to group #2, and so on).
The mean values of each group are shown in black (the curve forms five steps). The values
cannot be clearly delimited into a range per group, as there are images with values much
higher (or lower) than the group mean. The results obtained by applying the convolution
kernels proposed by Wei et al. [11] and Wan et al. [30] are very similar, varying only mainly
in the absolute value of the results.

Figure 12. Mean filter responses (in blue colour) obtained from applying Daugman’s [25] filtering to
the 270 images in the training set of the Clarkson dataset LivDet2013 [34]. The five steps that form
the black line are associated with the five categories in the database. The value of each step is the
average value of the responses obtained on the images in each category.

The problem when evaluating an image is that the value averages those associated
with each pixel. As shown in Figure 13, the contrast value of the image is not really the
one associated with the iris. In this figure, the three images shown belong to group #1.
However, while the first one has a very high average value (4201.04 using Kang and Park’s
proposal), the third one has a very low value (92.55). In both cases, the iris area is clearly
out of focus (blue values in the filter response images), but the presence of the eyebrows,

211



Sensors 2023, 23, 7491

in the first and also in the second image (978.43 average value), makes the average value
high. Eyebrows and eyelashes offer higher values of focus if, in addition, the skin area of
the face is saturated by the infrared illumination (for example, in the third image, where
the eyebrow is also visible, the pixels associated with it are barely in focus).

Figure 13. (Top) Examples of images with low contrast from the Clarkson dataset LivDet2013 [34].
The three images are included in the group #1 (10% blur in frame before least blurry image).
(Down) Filter responses obtained when applied Kang and Park’s [29] filtering to the images in
the top row. The scale values is shown at the left (responses greater than 1 × 104 are drawn in
red colour).

Joining groups 1 and 5, and 2 and 4 (where the level of blur is the same), you have
three groups (10% blur, 5% blur, and in focus). In Table 3, the results of the evaluated kernel
approaches are summarised. The first column in the table identifies the kernel, and the
rest of the columns provide the mean and standard deviations of the total power at high-
frequency bands processing each kernel with the images in the three groups. For Wan et al.’s
proposal, the 3 × 3 convolution kernel is used (Figure 1e). Given the dispersion shown
in Figure 12, the Z-score (68% confidence interval) is employed to remove outliers before
estimating the parameters for each group. The last column in the table illustrates the
threshold values for the discrimination of defocus and in-focus images. ROC (receiver
operation characteristic) curves are used to obtain these threshold values. Using these
schemes, the 246 images available for testing in the Clarkson dataset LivDet2013 [34] are
evaluated. Using the threshold values shown in Table 3, the number of rejected iris images
(out-of-focus images) that are actually focused images (false rejection rate, FRR) is less than
1% for all tested kernels. This is because the problems present in the images mostly force
an increase in the power obtained. This causes them to be falsely taken as in-focus images
(increasing the false accept rate (FAR)). It is important to note that the FRR is the percentage
of error valid for us, since what the system cannot do in any case is to discard any image
with the iris that really is in focus.

Table 3. Results obtained when evaluating convolution kernels using the Clarkson LivDet2013 [34].

Convolution Groups 1–5 Groups 2–4 Group 3 Threshold
Kernel Mean Std Mean Std Mean Std Value

Daugman [25] 2284.74 952.20 7044.57 5794.04 27,411.10 12,113.73 14,067.99
Wei et al. [11] 108.70 75.61 244.81 211.72 1206.34 599.93 531.47

Kang and Park [29] 194.31 131.00 450.28 399.91 2222.65 1132.99 969.92
Wan et al. [30] 51.39 16.67 67.79 29.95 186.91 83.30 100.68
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4.3.2. Quantitative Evaluation Using an Extended CASIA-Iris-Distance V4 Database

Significantly, when working with real images, the defocus test does not apply to eye
images (such as those shown in Figure 13). In contrast, when the test is applied, there
is no estimation of where the eye is, and what is done is to compute the convolution
kernel values and threshold them using the previously obtained values. The kernel allows
regions that are correctly focused (and have edges) to be marked with a value of 1 on
a background value of 0. For obtaining quantitative results, the proposed approach is
evaluated using an extended version of the CASIA-Iris-Distance, version 4.0 database.
The original database contains 2567 images of 142 people, most of them graduate students
of the Chinese Academy of Sciences’ Institute of Automation (CASIA). The database is
captured indoors, with a distance of more than 2 m, and using a self-developed long-range
multi-modal biometric image acquisition and recognition system (LMBS). In our extended
version, the dataset is doubled, incorporating, for each image in the database, a version
affected by defocus blur, simulated using a Gaussian of radius 2 pixels. The effect of this
filtering is virtually unnoticeable. For example, Figure 14 shows two original database
images and, to their right, the generated versions. Only by zooming in can the smoothing
effect be seen.

Figure 14. (Top) Original images from the CASIA-Iris-Distance V4 database and, on the right,
defocused versions. (Middle) 147 × 108 pixel images obtained after applying the first two steps (see
Figure 7) of the defocus blur estimation process. The blue tones are associated with out-of-focus pixels,
while the green and red tones are associated with increasingly focused pixels. (Bottom) Defocus
maps associated with the images in the top row. When the person wears glasses, these defocus maps
are not completely zeroed, which causes certain eye detections to be falsely considered to be in focus
(see text).

The images have a size of 2352 × 1728 pixels. As in the real deployment, the convolu-
tion kernel is applied on a block of 8 × 8 pixels without overlapping, resulting in an image
of 294 × 216 pixels. In our case, an array of 294 positions would be sufficient to store 32-bit
data. The next step applies a compression that, instead of using a 4 × 4, uses a 2 × 2 block.
Thus, the result is an image of 147 × 108. Although it would be sufficient to use an array
of 147 positions, complete images are generated to show them as intermediate results in
Figure 14 (middle). In the images, the defocus blur values are shown on a scale ranging
from pure blue tone (out of focus) to green and, finally, red tones (higher level of focus).
Using a sliding window of 23 × 17 pixels and a threshold value proportional to the ones in
Table 3, the system provides the defocus maps shown in Figure 14 (bottom). It can be seen
how the presence of glasses or reflections generates strong edges, which are not considered
to be out of focus, and which generate defocus maps that are not completely zeroed.

The eye detection results in this database are 100%, matching those obtained when
only the original version is used [3]. Of the total set of 10,268 eyes present in the entire
extended database, 5016 images are correctly discarded for being out of focus. Of the
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total set of 10,268 eyes present in the entire extended database, 5016 images are correctly
discarded for being out of focus. In total, 118 eye images are erroneously categorised as
being in focus. All of them belong to images of people wearing glasses.

4.3.3. Evaluation in a Real Scenario

The whole framework is tested in a real deployment. Figure 15 schematically illustrates
how it works. Given an input frame, the framework simultaneously generates two masks.
The upper image is generated by detecting the in-focus areas (in the example, they are
marked in white colour; planar areas are also marked as defocus regions). The second mask
is generated by the HAAR CLASSIFIER kernel. In this case, the white dots correspond to
positive detection values. Both masks are merged by the ARM to generate a final mask that
will be used to crop the eyes from the 16MP input image (white dots in the right image in
Figure 15 (right)).

Figure 15. Generation of the contrast and eye detection masks from an input image, and combination
for obtaining the final detection points. Both masks are of size 128 × 128 pixels.

Figure 16 shows an example of zooming in on the sensor. In the first frames on the
left, the face is not in the depth of field (in the second frame part of the image is already
in focus). In the next two frames, the face is in focus. In the middle row, the white areas
(mask values equal to 1), which are associated with the eyes or hair (fringe, moustache,
or goatee), are visible. In the areas where there are no borders, the mask does not return
positive values (1). The bottom row shows how the left eye regions are better defined in
these two frames. When the person’s face leaves the depth of field, the whole face is out of
focus again.

Figure 16. (Top row) Frames of a sequence of a person passing in front of the sensor.
(Middle row) Masks obtained by the DEFOCUS core (white values are associated with regions
in focus). (Bottom row) Images of the left eye of the images in the top row. It can be seen how the
third and fourth images are in focus, while the rest are not.
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In tests with the system, it always detects eyes that are correctly focused, discarding
a large number of unfocused eyes. Several image sequences are recorded and used for
validation. Of these sequences, 97% of the eye detections are correctly discarded because
they are out of focus. The proposed design aims to ensure that no eye that may be in
focus is discarded, so the selection of the threshold can be considered conservative. This
is the reason why, occasionally, images of out-of-focus eyes are allowed to pass to the iris
pattern segmentation and normalisation phase. These images are discarded by the iris
recognition module.

5. Conclusions and Future Work

This paper details how to design a defocus blur estimation core on the PL part of
an MPSoC to allow an eye detection system to discard in real-time those eye images that
are out of focus. The design is implemented on an AMD/Xilinx ZynqTM UltraScale+TM

XCZU4EV platform by converting the C/C++ code to hardware logic core through Vitis
HLS. The core design is optimised by using different optimisation directives to reduce
latency. Thus, the proposed real-time eye detection system can correctly discard out-of-
focus detected eye images but also process 57 images with 4096 × 4096 size per second.
Significantly, when integrated in an IAAD recognition system, the defocus blur estimation
core allows the system to discard 97% of the detected eye images.

Future work focuses on (1) implementing the next steps of the iris recognition system
(iris pattern segmentation and normalisation) in the MPSoC, using the resources that are
not yet being used (in the PL, but also in the PS, such as the GPU or the dual-core Cortex-
R5); (2) further exploiting the use of the optimisation directives provided by Vitis HLS to
improve the current proposed framework; and (3) adding the framework with the cores to
implement an iris presentation attack detection system (iPAD).
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Abstract: Hidden corrosion remains a significant problem during aircraft service, primarily because
of difficulties in its detection and assessment. The non-destructive D-Sight testing technique is
characterized by high sensitivity to this type of damage and is an effective sensing tool for qualitative
assessments of hidden corrosion in aircraft structures used by numerous ground service entities.
In this paper, the authors demonstrated a new approach to the automatic quantification of hidden
corrosion based on image processing D-Sight images during periodic inspections. The performance
of the developed processing algorithm was demonstrated based on the results of the inspection
of a Mi family military helicopter. The nondimensional quantitative measurement introduced in
this study confirmed the effectiveness of this evaluation of corrosion progression, which was in
agreement with the results of qualitative analysis of D-Sight images made by inspectors. This allows
for the automation of the inspection process and supports inspectors in evaluating the extent and
progression of hidden corrosion.

Keywords: D-Sight; hidden corrosion; damage identification; DAIS; non-destructive testing;
aircraft structures

1. Introduction

Widely applied regulations for periodic inspections of aircraft structures using non-
destructive testing (NDT) techniques are one of the crucial tasks within the damage toler-
ance philosophy. According to this philosophy, such inspections ensure the timely detection
and identification of damage and the further monitoring of its growth in defined limits,
which makes it possible to guarantee appropriate reliability and, therefore, the structural
integrity and safety of aircraft. The need for effective inspection methods for such structures
drives the development of new NDT techniques and the enhancement of existing ones to
improve their sensitivity to various types of damage, as well as the smaller and smaller
sizes of damage sites that are possible to detect.

Regardless of the wide application of composite materials in aircraft structures, there
are still numerous elements made of metallic alloys in both new and older aircraft, which
means adjusting the inspection approaches to these elements and structures. Under the
umbrella of structural aging, besides fatigue, one of the most widespread and costly types
of damage in such structures is corrosion. The cost of aircraft corrosion is on the level of
billions of dollars annually in the United States alone, according to various reports [1–4].
Moreover, as reported in [5], corrosion is a primary cause of structural issues (80% of all
issues) related to the aging of aircraft, resulting in tens of incidents annually caused by
this phenomenon. This demonstrates the need for effective inspection techniques to detect
and identify corrosion in a timely manner. For this purpose, corrosion prevention and
control programs that regulate inspection frequency, applied techniques, and corrosion
identification, have been introduced based on the recommendations of the Federal Aviation
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Administration (FAA) advisory circular [6] and manufacturer recommendations for specific
aircraft.

A variety of corrosion types are described in detail, e.g., in [2,6–8], and often require
various approaches for their detection and evaluation. The most widely used approach
for the inspection of corrosion in aircraft structures is visual inspection, which is used
to detect corrosion spots. However, in some cases, visual inspection can be ineffective,
especially in cases of so-called hidden corrosion, which appears primarily in rivet joints
because of moisture penetration in lap joints and results in the initiation of electrochemical
processes. These processes cause the appearance of corrosion products, which, given
their much higher stiffness compared with the surrounding material—usually aluminum
alloys—imply internal stresses, resulting in the appearance of surface deformations [9].
Because of this, the process is called the pillowing effect. Because hidden corrosion, even
at high severity, is barely visible to the naked eye, NDT-based approaches are necessary
for sensing and detection. According to the literature [2,3,6,10,11], the following NDT
techniques are used most often in such inspections: X-ray radiography/tomography,
ultrasonography, eddy current testing, thermography, and shearography. However, their
application is often biased by a certain amount of uncertainty in detecting hidden corrosion
spots because of the low magnitude of the resulting deformations and the specificity of the
application of particular techniques. For example, the application of the eddy current NDT
technique is difficult in such cases because of the allowable tolerances for manufactured
sheets in the aviation industry, and therefore, the detected spots of hidden corrosion are on
a level of measurement uncertainty, as reported by Komorowski et al. [12]. Moreover, all of
the above-mentioned NDT techniques are characterized by high labor intensity, a relatively
long period of testing, the need to dismantle tested elements in numerous situations,
and comparatively high inspection costs since specially trained personnel are needed [6].
Considering this, effective, fast, accurate, and inexpensive techniques for inspection of this
type of damage are favorable.

The technique that meets all these requirements is double-pass retroreflection, also
known also by its commercial name—D-Sight—developed in 1983 by Diffracto Ltd. (Wind-
sor, ON, Canada) in Canada for hidden corrosion detection in aircraft structures and
successfully implemented in 1988 by the Canadian Institute for Aerospace Research Na-
tional Research Council. D-Sight is an optical technique based on the evaluation of surface
deformations. In this way, the mentioned problems of measurement uncertainties do not
take place. The principle of operation for the D-Sight technique is based on imaging the
tested surface at an oblique angle. This surface is illuminated with a light source shifted
from the camera, and the light is reflected from the surface onto a special retroreflective
screen, which disperses this light and reflects it back on the test surface. This makes it
possible to highlight tiny deformations caused by the pillowing effect, and this image is
then captured by the camera. The mathematical background for the principle of operation
of this technique can be found, e.g., in [13]. The attempts of the inventors and the first
working group that used the D-Sight technique for the evaluation of hidden corrosion can
be found in [14–16]. The construction of the test device used to sense the hidden corrosion
based on the D-Sight technique, known as the D-Sight Aircraft Inspection System (DAIS),
is simple, which makes inspection comparatively inexpensive. Moreover, the inspection of
large areas of aircraft is possible in a short testing time, which introduces savings in labor
intensity. This makes it possible to perform inspections in a fast and reliable way. Never-
theless, in addition to the mentioned advantages, the D-Sight technique is mostly used
as a qualitative technique, and it cannot provide enough information for the evaluation
of the extent of corrosion or its growth. Several attempts have been made in the past to
improve this technique by incorporating supporting finite element models and analysis of
profiles based on grayscale images resulting from inspections [12,17–19]; however, their
applicability under routine inspection conditions was still limited. Moreover, the authors
of this paper identified additional difficulties during previous studies [20], namely that the
angle of observation of a tested structure and the illumination should be strictly repeatable,
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which is especially important during the comparison of historical data from inspections.
Additionally, the determination of corroded areas, visible as darker regions in D-Sight im-
ages, is also a challenging problem because of small differences in the colors of healthy and
corroded areas, as well as the nonuniformity of color distribution in the vicinity of rivets,
where the hidden corrosion appears. However, these areas are observable by the naked eye
in D-Sight images; therefore, it is reasonable to apply perceptual color contrast measures.
Numerous approaches have been developed for this purpose, which can be found in the
literature. They include numerous contrast measures reviewed, e.g., in [21–24]. Most of
them, however, use sophisticated algorithms, which can extend processing runtimes. The
selection of an effective and fast algorithm to evaluate hidden corrosion remains an open
question in the processing of D-Sight images.

Recently, numerous steps have been taken toward improving the D-Sight technique to
become a quantitative system. Brandoli et al. [25] demonstrated the application of deep
neural networks (DNNs) for the detection of hidden corrosion in aircraft fuselage structures.
A similar approach was presented by Zuchniak et al. [26], where the authors used machine
learning to detect hidden corrosion spots. Nevertheless, the problem of the quantitative
evaluation of hidden corrosion remains of great importance from the point of view of
supporting inspections and ground maintenance for aircraft. Some steps toward solving
the mentioned disadvantages of D-Sight inspections and the quantification of hidden
corrosion based on D-Sight images were undertaken by a team of authors in the following
study. In [27], the authors proposed a method of image processing that includes procedures
to reduce the influence of the angle of observation and non-uniform illumination and detect
corroded areas, and it included the first attempts at their quantification. Furthermore,
laboratory tests were performed on specimens with simulated hidden corrosion to evaluate
the sensitivity of the D-Sight technique and find a correlation between the true dimensions
of the corrosion spots obtained using reference methods, both planar and in the direction
normal to the surface of the tested structures, as well as those estimated based on image
processing of D-Sight images [28].

The current study is motivated by the need to develop a computationally efficient
method for quantifying hidden corrosion in aircraft structures, which will allow for the
automation of the evaluation process and support inspectors in the evaluation of the extent
of corrosion and its growth over the years of an aircraft’s operation. Such evaluation is
possible using subsequent analyses of D-Sight images collected during periodic inspections
using this technique. The D-Sight technique is used as a routine approach for inspections at
the Air Force Institute of Technology in Warsaw, which performs maintenance on aircraft
for the Polish Armed Forces. The study was carried out on the inspection results of selected
structures of the Mi family military helicopters to demonstrate the performance of the
proposed approach using realistic inspection results. It highlights the difficulties and open
questions in the process of evaluating hidden corrosion and demonstrates the processing
algorithm, which can be used as a supporting tool for inspectors using this technique.

2. Inspections and Data Acquisition

2.1. Pillowing Phenomenon and Challenges of D-Sight Inspections

In practice, hidden corrosion occurs most often in the multilayer lap joints of aluminum
skins joined by rivets. The increase in the volume of aluminum oxides is greater than
the decrease in volume caused by the loss of layer thickness, which results in growing
deformations in the skin between the rivets (see Figure 1).

Figure 1. Schematic representation of pillowing phenomenon in multilayered lap joints.

The observation of deformations allows us to detect corrosion, which may also occur
in the second and subsequent layers of the lap joint. The stiffness of the aluminum oxides
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is larger than that of the aluminum alloys, which leads to skin deformation as well as layer
thickness decreases. In this process, trihydrate oxides have a dominant influence on the
resulting deformations, which is additionally amplified by the appearance of monohydrate
oxides [12]. An increase in the volume of the oxides leads to not only material loss but also
to pillowing deflection in the skin, which also increases the shear stress in the lap joints.
This may lead to critical failures, such as multiple-site fatigue cracking, which, for example,
was the main cause of cracked elements that led to failure in the infamous Aloha Airline
Flight 243 accident in 1988 [29].

As discussed above, because of the small magnitude of deformation resulting from
the pillowing effect, hidden corrosion is difficult to detect with numerous NDT techniques,
especially in the early stages of its development. The results of previous studies [28] have
shown that the lowest detectable magnitude is at the level of 30 μm. This result was
obtained using the D-Sight NDT technique, which demonstrated a high sensitivity to such
deformations.

Inspections using D-Sight techniques have been implemented with hardware created
by Diffracto Ltd. in a system known as DAIS. The principle of operation for this testing
device is based on the above overview of the D-Sight testing approach and can be found
in numerous previous publications; see, e.g., [27,28]. However, during inspections, nu-
merous factors influencing the quality of the resulting D-Sight images need to be taken
into consideration, such as the reflectivity of the tested surface and the position of the
testing device, which has a direct influence on the angle of observation and illumination.
Considering the curvatures present in aircraft fuselage structures, ensuring these conditions
is not always a trivial task, as can be seen in the example photograph from the inspection
(see Figure 2). Because of this, the D-Sight technique is currently used in the practice of
aircraft inspections mostly as a qualitative approach, which allows for the evaluation of the
severity of corrosion based on the subjective opinion of a single inspector.

 

The picture can't be displayed.

Figure 2. The inspection of an aircraft using DAIS.

2.2. Inspections and Acquisition of D-Sight Images

The current study focuses on the improvement of the D-Sight technique for the purpose
of quantitatively evaluating D-Sight images and automating the evaluation process based
on real aircraft structures after successfully testing the developed approach on specimens
with artificially introduced deformations that simulate hidden corrosion [28]. For this
purpose, historical data from periodic inspections of the Mi family of military helicopters
(see Figure 3), which are a part of the arsenal of the Polish Armed Forces, were considered
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as a case study. According to FAA, European, and national recommendations, inspection
data should be collected and analyzed throughout the service life of helicopters, especially
for riveted lap joints. Some examples of the tested structures are presented in Figure 4.

 

Figure 3. The Mi-type helicopter.

  
(a) (b) 

Figure 4. Examples of riveted lap joints in the tested helicopter: views from the outer (a) and inner
(b) sides.

The inspections were carried out by the Air Force Institute of Technology, Warsaw,
using the DAIS 250C scanning system (Diffracto Ltd., Windsor, ON, USA) (Figure 5).

 

Figure 5. The DAIS 250C scanning system.
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Before testing, the surface is covered with Ecolink Electron® antireflective agent
(Tucker, GA, USA) to maximize light reflection. The role of the hood, visible in Figure 5, is
to isolate the measurement system from ambient light. Images with spatial resolutions of
640 × 480 pixels are collected during inspections in accordance with a scheme of a given
element, which is recoded in the settings file in the DAIS system. An example of such a
schematic for the tested helicopter is presented in Figure 6. The cyan rectangles represent
the areas marked for the expected appearance of hidden corrosion. The inspector reads
information about the subsequent positions of the measuring device from the file, which
allows him to conduct the measurements in an orderly manner.

 

Figure 6. Scheme of the grid for the tested helicopter, indicating the location of interest.

For the following case study, a single location of interest was selected to demonstrate
the performance of the developed quantification procedure. Images acquired from the
same location were collected in an inspection period of 13 years of operation for the
considered helicopter. During this period, five inspections were performed. The resulting
D-Sight images from these inspections are presented in Figure 7. The hidden corrosion
in these images manifests in local color changes around the rivets. The corrosion severity
for the tested area was classified by an inspector as small for the images collected in
the period of 2009–2014 (see Figure 7a–c) and moderate for the subsequent period (see
Figure 7d,e). The presented results of the inspection demonstrate the mentioned challenges
in the quantitative evaluation of hidden corrosion: all of the D-Sight images have different
angles of observation and illumination. Moreover, one can observe inaccuracies in the
spatial positioning of the testing system, resulting in an offset observable in these images,
which is a common situation in inspection practices due to the performance of inspections
by various inspectors in various conditions as well as a lack of positioning systems for
testing.

(a) (b) (c) 

Figure 7. Cont.
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(d) (e)

Figure 7. The collected D-Sight images from the inspections performed in (a) 2009, (b) 2012, (c) 2014,
(d) 2017, and (e) 2022 for the same area of the inspected helicopter.

3. Processing and Evaluation of D-Sight Images

3.1. Data Preparation and Processing Algorithm

To evaluate the extent of corrosion in the tested area and its evolution, the acquired
D-Sight images required preprocessing to rotate them to a planar view. The algorithms
described below were implemented using the MATLAB 2022a (MathWorks®, Natick, MA,
USA) environment with the Image Processing Toolbox. The calculations were performed
on a Windows 10 laptop equipped with an Intel® Core™ i7 quad-core processor and 16 GB
of RAM. The preprocessing algorithm, developed previously and in [28], consists of three
main steps: image alignment, orthonormalization, and illumination equalization. The
parameters of the algorithm can be found in [28]. In the first step, the edge detection
procedure was applied, and then, the images were subjected to the application of Hough
and shearing transforms. In the next step, orthonormalization was performed to rotate
the images to a planar view, which allows for the evaluation of the dimensions of the
corrosion spots. In the last step, the contrast of the images was improved to highlight the
color differences in the hidden corrosion spots in the vicinity of rivets. The preprocessed
D-Sight images of the analyzed sequence are presented in Figure 8. The color difference in
the vicinity of rivets, which represents hidden corrosion spots, is still well visible in the
preprocessed images.

Based on an analysis of the literature, the local ΔE* metric was selected to evaluate
perceptual color differences. To detect and quantify the corrosion spots, the preprocessed
images were converted into the CIELAB color space, known also as the L*a*b* color space,
according to the CIE76 standard proposed by the International Commission of Illumination
(Commission internationale de l’éclairage) in 1976. The conversion into this color space is
due to its perceptual uniformity within the human eye, which makes it possible to measure
color differences. Next, the ΔE* metric, defined as

ΔE∗ =
√(

L∗
2 − L∗

1
)2

+
(
a∗2 − a∗1

)2
+
(
b∗2 − b∗1

)2 (1)

where
(

L∗
1, a∗1, b∗1

)
and (L∗

2, a∗2, b∗2) represent two colors defined in the L*a*b* color space,
was applied to converted images to quantify color differences. This metric is based on the
calculation of the Euclidean distance in particular channels of the L*a*b* color space. To
limit this approach to local color changes, the square window with a 20 times smaller size
with respect to the height of the analyzed image was applied. This value was determined
empirically and adjusted to typical dimensions of the corrosion spots in the analyzed
images. The introduction of such a dependency allowed for a reduction in differences in the
dimensions of the images obtained after preprocessing (Figure 8). Using this window, the
local mean values

(
L∗, a∗, b

∗)
in each channel of the L*a*b* color space were calculated, and

then, the original values of the analyzed image in the specified window were subtracted
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from this local mean value. In this way, the terms of the Euclidean distance formula were
obtained, being a modification of (1):

ΔE∗ =
√(

L∗ − L∗
1

)2
+
(
a∗ − a∗1

)2
+
(

b
∗ − b∗1

)2
. (2)

The results presented in [21] show that the applied approach is the fastest among
similar and more advanced algorithms. The example of an image obtained after these
operations for the case shown in Figure 8a is presented in Figure 9a. Then, a quantization
procedure was performed on an analyzed image using thresholding based on Otsu’s
method. The thresholds determined during this procedure were adjusted to the color
intensity of an analyzed image, which additionally reduced the problem of non-uniform
illumination within the sequence of D-Sight images being analyzed. The result of this
procedure is presented in Figure 9b.

  

(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 8. The preprocessed D-Sight images of the analyzed sequence for the tested area for the
inspections performed in (a) 2009, (b) 2012, (c) 2014, (d) 2017, and (e) 2022.

Further, to identify corroded areas and rivets, morphology operations were applied. In
the beginning, very large and very small objects that correspond to the surrounding frames
of the tested structures and the long edges of overlapping sheets, and noise, respectively,
were removed using a morphological opening. The threshold for very large objects was set
to 100,000 px, while the threshold for very small objects was calculated as the total area of
an image in px divided by 12,000; these thresholds were selected empirically by analyzing
the considered images and were further applied within XOR logical operation. In the next
step, to classify corrosion spots and rivets, the following criteria were applied. The rivets
were classified based on the criterion of the roundness of the convex areas of the remaining
objects, while the corrosion spots were classified based on the aspect ratio of the bounding
boxes of the remaining objects with a threshold set at five. All objects for which this
threshold was exceeded were removed from the image. The latter operation allowed for the
removal of residues from the surrounding frames and shadows inappropriately classified

225



Sensors 2023, 23, 7131

as corrosion spots after the initial cleaning. The resulting image after the application of
morphological operations is presented in Figure 9c. In the last step, the corrosion spots
were visualized as a mask on the preprocessed D-Sight image (see Figure 9d), and the
nondimensional corrosion extent was calculated using the following quantitative measure.
To determine its value, the determined areas of the convex areas of the detected rivets (the
number of considered rivets was in a range of 20–40) were averaged and then used as a
divisor for the total area of the detected corrosion spots. Given the size of the D-Sight
images after preprocessing, the runtimes for each case were ca. 30 min. For clarity, the
processing algorithm is presented in the form of a flowchart in Figure 10.

  

(a) (b) 

  
(c) (d) 

Figure 9. The results of subsequent operations during the processing of the preprocessed D-Sight
images: (a) determination of the local ΔE* metric; (b) quantization; (c) morphological operations;
(d) visualization of the detected corrosion spots.

 

Figure 10. The flowchart of the processing algorithm.

3.2. Evaluation of Hidden Corrosion

The sequence of D-Sight images analyzed in this study (see Figure 7) was processed
using the algorithm presented in Section 3.1. The results of processing are presented in
Figures 9d and 11a–d.

From the presented sequence, the progression of the hidden corrosion that developed
over the tested helicopter’s years of operation is clearly visible; i.e., the corroded area
around the rivets, labeled with a blue mask in the preprocessed D-Sight images, significantly
increased. It can be seen that, in some locations, hidden corrosion was not properly detected
(see, e.g., the vertical line of rivets on the bottom right in Figure 11d); however, the vast
majority of the corrosion spots were well detected and identified. The corroded areas were
also assessed quantitatively based on the measure introduced in Section 3.1. The selection
of this measure was based on the simplicity of its implementation and runtime efficiency,
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which is a critical parameter during the automated evaluation of D-Sight images. The
obtained results are presented in Table 1.

  

(a) (b) 

  
(c) (d) 

Figure 11. The results of processing the preprocessed D-Sight images based on the analyzed historical
sequence, which were captured in (a) 2012, (b) 2014, (c) 2017, and (d) 2022.

Table 1. The results of the quantitative analysis of corroded areas for the analyzed sequence of
D-Sight images.

Year of Inspection 2009 2012 2014 2017 2022

Value of quantitative measure 13.1842 12.6146 14.0894 39.7338 52.5461

The determined quantitative measure of the analyzed sequence of D-Sight images
demonstrates the increasing trend of the extent of the corrosion, which is in agreement
with the results of the qualitative assessment of corrosion severity made by the inspector
(see Section 2.2), despite the mismatches in the observed corroded areas (the spatial offset
between particular D-Sight images during subsequent inspections). These mismatches
are the reason for the decrease in the value of the quantitative measure of the inspection
in 2012. Nevertheless, the obtained quantitative results confirm the trend in corrosion
progression in the analyzed period of operation for the tested helicopter and can be used as
an automated supporting tool for quantitative assessments of the extent and progression of
hidden corrosion.

4. Discussion and Conclusions

The presented case study demonstrates an approach to processing D-Sight images
collected during periodic inspections of a selected area of a fuselage of a Mi-family military
helicopter, which allows one to quantify the extent of hidden corrosion and its progression
in an automatic way. The results of the case study show numerous challenges during the
quantitative analysis of corroded areas (variable angle of observation, inhomogeneous and
non-repeatable illumination, spatial offsets of the acquired D-Sight images), which have
the precedent in the repeatable conditions of inspections, being difficult to maintain over
long service periods. An improvement in the repeatability of the performed inspections
may significantly improve the analysis of the acquired inspection results. As demonstrated
in this paper, this is especially important for quantitative evaluations of corrosion extent
and progression. Despite the mentioned challenges, the presented processing algorithm,
which is based on the determination of the local ΔE* metric, demonstrates high sensitivity
to changes in colors in the vicinity of rivets and allows for the successful identification of
corroded areas. The obtained quantitative results for the analyzed sequence of D-Sight
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images demonstrated the increasing trend in the total area of the corrosion spots and are in
agreement with the results of the qualitative analysis performed by the inspector, despite the
aforementioned challenges and uncertainties, which consist of, among others, spatial offset
from inspection to inspection. To further automatize the process of tracking the hidden
corrosion growth, the problem of this offset needs to be solved, which is currently one of the
limitations of the algorithm and is planned to be resolved during further studies. Moreover,
currently the algorithm requires a lot of time to process D-Sight images, mainly due to the
significant extension of the size of images after the pre-processing step (see Figure 10). From
the point of view of further analysis, such resolution seems to be unnecessary; therefore,
optimal scaling needs to be applied in further steps to reduce runtimes and retain the
detectability of corrosion spots. Finally, as observed in Figure 11c,d, some dents present on
the surface of the tested element were classified as hidden corrosion, since the deformations
were similar to those of the appearance of hidden corrosion. This requires checking the
results by an inspector to detect such cases, which is another limitation on the way of
automating of this approach to be solved in future studies.

The automation of the damage extent and severity assessment process, based on the
processing of acquired D-Sight images, makes it possible to effectively support inspectors
in the evaluation of the extent, severity, and progression of hidden corrosion during service
periods. Moreover, the possibility of quantitative analysis opens up new perspectives that
were not available when the technique had a qualitative character, e.g., the possibility of
predicting hidden corrosion progression and the development of maintenance programs.
Such an approach may influence cost reductions in maintenance and increase the availability
of helicopters. This requires further deep studies, which will consolidate knowledge about
electrochemical processes during the appearance of this type of corrosion with the obtained
results in the following and preceding studies; analyses of loading and environmental
factors, which also have an influence on the process; and numerous other factors. The
development of such models should be considered in future authors’ studies. Finally, the
automatic evaluation of the extent of corrosion using D-Sight images makes it possible to
prepare large datasets that can be used to train DNNs to further improve the effectiveness
of the identification of hidden corrosion spots and avoid their incorrect identification in the
case of the presence of other deformed areas.
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Abstract: Advanced driver assistance systems (ADASs) are becoming increasingly common in
modern-day vehicles, as they not only improve safety and reduce accidents but also aid in smoother
and easier driving. ADASs rely on a variety of sensors such as cameras, radars, lidars, and a
combination of sensors, to perceive their surroundings and identify and track objects on the road.
The key components of ADASs are object detection, recognition, and tracking algorithms that allow
vehicles to identify and track other objects on the road, such as other vehicles, pedestrians, cyclists,
obstacles, traffic signs, traffic lights, etc. This information is then used to warn the driver of potential
hazards or used by the ADAS itself to take corrective actions to avoid an accident. This paper provides
a review of prominent state-of-the-art object detection, recognition, and tracking algorithms used in
different functionalities of ADASs. The paper begins by introducing the history and fundamentals of
ADASs followed by reviewing recent trends in various ADAS algorithms and their functionalities,
along with the datasets employed. The paper concludes by discussing the future of object detection,
recognition, and tracking algorithms for ADASs. The paper also discusses the need for more research
on object detection, recognition, and tracking in challenging environments, such as those with low
visibility or high traffic density.

Keywords: object detection; object tracking; advanced driver assistance system (ADAS); deep learn-
ing

1. Introduction

Advanced driver assistance systems (ADASs) are a group of electronic technologies
that assist drivers in driving and parking functions. Through a safe human–machine
interface, ADASs increase car and road safety. They use automated technology, such as
sensors and cameras, to detect nearby obstacles or driver errors, and respond or issue alerts
accordingly. They can enable various levels of autonomous driving, depending on the
features installed in the car.

ADASs use a variety of sensors such as cameras, radar, lidar, and a combination of
these, to detect objects and conditions around the vehicle. The sensors send data to a
computing system, which then analyzes the data and determines the best course of action
based on the algorithmic design. For instance, if a camera detects a pedestrian in the
vehicle’s path, the computing system may trigger the ADAS to sound an alarm or apply
the brakes.

The chronicles of ADAS date back to the 1970s [1,2] with the development of the
first anti-lock braking system (ABS). Following a slow and steady evolution, additional
features such as the lane departure warning system (LDWS) and electronic stability control
(ESC) emerged in the 1990s. In recent years, there has been a rapid development of
numerous ADASs, with new functionalities being introduced every other day and becoming
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increasingly prevalent in modern vehicles, as they offer a variety of safety features that
aid in preventing accidents, relying on the aforementioned variety of sensors that have
made the ADAS a potential system with which to significantly reduce the number of
traffic accidents and fatalities. A study by the Insurance Institute for Highway Safety [3]
found that different uses of ADASs can reduce the risk of a fatal crash by up to 20–25%.
Therefore, ADASs are becoming increasingly common in cars. In 2021, 33% of new cars
sold in the United States had ADAS features. This number is expected to grow to 50%
by 2030, as ADASs are expected to play a major role in the future of transportation [4].
By helping to prevent accidents and collisions, reducing drivers’ fatigue and stress [5,6],
improving fuel efficiency [7,8], making parking easier and more convenient [9] and thereby
providing peace of mind to drivers and passengers [5,6], ADASs can save lives and make
our roads safer.

Additionally, various features of ADASs, as shown in Figure 1, are a crucial part of
the development of autonomous driving; in other words, self-driving cars, as autonomous
vehicles, rely on the performance and efficiency of ADASs to detect objects and conditions
in their surroundings in real-world scenarios. Self-driving cars use a combination of ADASs
and artificial intelligence to drive themselves. Therefore, ADASs are continuing to play an
important role in the development of autonomous driving as the technology matures.

Figure 1. Different features of ADASs.

The basic functionalities of ADASs are object detection, recognition, and tracking.
Numerous algorithms allow vehicles to detect and recognize—in other words, to identify
and then track—other objects on the road, such as vehicles, pedestrians, cyclists, traffic
signs, lanes, probable obstacles on the road, and more; warn the driver of potential hazards;
and/or take evasive action automatically.

There are a number of different object detection, recognition, and tracking algorithms
that have been developed for ADASs. These algorithms can be broadly classified into two
main categories: traditional methods and deep learning (DL) methods, as discussed in
detail in Section 1.3.

This paper attempts to provide a comprehensive review of recent trends in different
algorithms for various ADAS functions. The paper begins by discussing the challenges of
object detection, recognition, and tracking in ADAS applications. The paper then discusses
the different types of sensors used in ADASs and different types of object detection, recog-
nition, and tracking algorithms that have been developed for various ADAS methodologies
and datasets used to train and test the methods. The paper concludes by discussing the
future trends in object detection, recognition, and tracking for ADASs.

1.1. Basic Terminologies

Before diving into the main objective of the paper, the section below introduces some
of the basic terminologies commonly used in the field of ADAS research:
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a. Image processing is the process of manipulating digital images to improve their quality
or extract useful information from them. Image processing techniques are commonly
used in ADASs for object detection, recognition, and tracking tasks;

b. Object detection is the task of identifying and locating objects in a scene, such as
vehicles, pedestrians, traffic signs, and other objects that could pose a hazard to
the driver;

c. Object tracking involves following the movement of vehicles, pedestrians, and other
objects over time to predict their future trajectories;

d. Image segmentation is the task of dividing an image into different regions, each of
which corresponds to a different object or part of an object such as the bumper, hood,
and wheels and other objects such as pedestrians, traffic signs, lanes, forward objects,
and so on;

e. Feature extraction is the extraction of features like shape, size, color, and so on from an
image or a video; these features are used to identify objects or track their movements.

f. Classification is the task of assigning a label such as vehicles, pedestrians, traffic signs,
or others to an object or several images to categorize the objects;

g. Recognition is the task of identifying an object or a region in an image by its name or
other attributes.

1.2. An Overview of ADASs

The history of ADAS technology can be traced back to the 1970s with the adoption
of the anti-lock braking system [10,11]. Early ADASs including electronic stability control,
anti-lock brakes, blind spot information systems, lane departure warning, adaptive cruise
control, and traction control emerged in the 1900s and 2000s [12,13]. These systems can
be affected by mechanical alignment adjustments or damage from a collision requiring
automatic reset for these systems after a mechanical alignment is performed.

1.2.1. The Scope of ADASs

ADASs perform a variety of tasks using object detection, recognition, and tracking
algorithms which are deemed as falling within the scope of ADASs; namely, (i) vehicle
detection, (ii) pedestrian detection, (iii) traffic signs detection (TSD), (iv) driver monitoring
system (DMS), (v) lane departure warning system (LDWS), (vi) forward collision warning
system (FCWS), (vii) blind-spot detection (BSD), (viii) emergency braking system (EBS),
(ix) adaptive cruise control (ACC), and (x) around view monitoring (AVM).

These are some of the most important of the many ADAS features that rely on detection,
recognition, and tracking algorithms. These algorithms are constantly being improved as
the demand for safer vehicles continues to grow.

1.2.2. The Objectives of Object Detection, Recognition, and Tracking in ADASs

An ADAS system has various functions with different objectives that can be listed as:

a. Improving road safety: ADASs can aid in improving road safety by reducing the
number of accidents; this is achieved by warning drivers of potential hazards and
by taking corrective actions to avoid collisions. For example, a LDWS can warn the
driver if they are about to drift out of their lane, while a forward collision warning
system can warn the driver if they are about to collide with another vehicle;

b. Reducing driver workload: ADASs can help to reduce driver workload by automating
some of their driving tasks. This can help to make driving safer and more enjoyable.
For example, ACC can automatically maintain a safe distance between the vehicle and
the vehicle in front of it, and lane-keeping assist can automatically keep the vehicle
centered in its lane;

c. Increasing fuel efficiency: ADASs can help to increase fuel efficiency by reducing
the need for the driver to brake and accelerate, which is achieved by maintaining
a constant speed and by avoiding sudden speed changes. For example, ACC can
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automatically adjust the speed of the vehicle to maintain a safe distance from the
vehicle in front of it, which can help to reduce fuel consumption;

d. Providing information about the road environment: ADASs can provide drivers with
more information about the road environment, such as the speed of other vehicles, the
distance to the nearest object, traffic signs, and the presence of pedestrians or cyclists.
This information can help drivers to make better decisions about how to drive and
can help to reduce the risk of accidents;

e. Assisting drivers with difficult driving tasks: ADASs can assist drivers with difficult
driving tasks, such as parking, merging onto a highway, and driving in bad weather
conditions, thereby reducing driver workload and enabling safer driving;

f. Ensuring a comfortable and enjoyable driving experience: ADASs can provide a more
comfortable and enjoyable driving experience by reducing stress and fatigue that
drivers experience which can be achieved by automating some of the tasks involved in
driving, such as maintaining a constant speed and avoiding sudden changes in speed.

The ADAS algorithms are designed to achieve these objectives by using sensors,
such as cameras, radar, lidar, and now a combination of these, to collect data about the
road environment. The data thus obtained are processed by the algorithms as per their
design to identify and track objects, predict the future movement of objects, and warn the
driver of potential hazards. These ADAS algorithms are constantly being improved as
new technologies are being developed. Continuous and consistent advancements in these
technologies are making ADASs even more capable of improving road safety and reducing
drivers’ workloads.

1.2.3. The Challenges of ADASs

The task of the essential functions of ADASs, namely object detection, recognition,
and tracking, is to allow ADASs to identify and track objects in the vehicle’s surroundings,
such as other vehicles, pedestrians, cyclists, and sometimes random objects and obstacles,
using which ADASs can prevent accidents, keep the vehicle in its lane, and provide other
driver assistance features. However, there are various challenges associated with object
detection, recognition, and tracking in ADASs, such as:

a. Varying environmental conditions: ADASs must be able to operate in a variety of
environmental conditions, including different lighting conditions like bright sunlight,
dark shadows, fog, daytime, nighttime, etc., different weather conditions such as
drizzle, rain, snow, and so on, along with various road conditions including dirt,
gravel, etc.;

b. Occlusion: objects on the road in real scenarios can often be occluded by other objects,
such as other vehicles, pedestrians, or trees, making it difficult for ADASs to detect
and track objects;

c. Deformation: objects on the road can often be deformed, such as when a vehicle is
turning or when a pedestrian is walking, causing difficulties for ADASs in detecting
and tracking objects;

d. Scale: objects on the road can vary greatly in size, from small pedestrians to large
trucks, inducing difficulties for ADASs in detecting and tracking objects of all sizes;

e. Multi-object tracking: ADASs must be able to track multiple objects simultaneously,
and this can be challenging as objects move and interact with each other in complex
ways in real-world scenarios;

f. Real-time performance: most importantly, ADASs must be able to detect, recognize,
and track objects in real time, which is essential for safety-critical applications, as
delays in detection or tracking can lead to accidents and make them unreliable.

Researchers are working on developing newer algorithms and improving the existing
algorithms and techniques to address these challenges. Due to this, ADASs are becoming
increasingly capable of detecting and tracking objects in a variety of challenging conditions.

233



Sensors 2024, 24, 249

1.2.4. The Essentials of ADASs

The above section discusses the challenges of different ADAS methods, whereas in this
section, we discuss the numerous requirements of [14,15] ADASs, which must be tackled
before the aforementioned issues can be resolved. In other words, ADAS algorithms are
facing numerous additional predicaments while working on overcoming the challenges
discussed in the previous section:

a. The need for accurate sensors: ADASs rely on a variety of sensors to detect and track
objects on the road. These sensors must be accurate and reliable to provide accurate
information to the ADAS. Nevertheless, sensors are usually affected by factors such as
weather, lighting, and the environment, causing difficulties for sensors in providing
accurate information, and thus leading to errors in the ADASs;

b. The need for reliable algorithms: ADASs also rely on a variety of algorithms to process
the data from the sensors and make decisions about how to respond to objects on
the road. These algorithms must be reliable to make accurate and timely decisions.
However, these algorithms can also be affected by factors such as the complexity of
the environment and the number of objects on the road. This makes it difficult for
algorithms to make accurate decisions, leading to errors in the ADAS;

c. The need for integration with other systems: ADASs must be integrated with different
systems in the vehicle, such as the braking system and the steering system. This
integration is necessary in order for the ADAS system to take action to avoid probable
accidents. Nonetheless, integration is complex and time-consuming, resulting in
deployment delays of ADASs;

d. The cost of ADASs: ADASs are expensive to develop and deploy, making it difficult
for some manufacturers to offer ADASs as standard features in their vehicles. As a
result, ADASs are often only available as optional features, which can make them less
accessible to all drivers;

e. The acceptance of ADASs by drivers: Some drivers may still be hesitant to adopt
ADASs because they worry about the technology or they do not trust the technology.
This will result in difficulties persuading drivers to opt for vehicles with ADASs.

Despite these challenges, ADASs have the potential to significantly improve road
safety. As the technology continues to improve, ADASs are likely to become more affordable
and more widely accepted by drivers. This will help to make roads safer for everyone.

1.3. ADAS Algorithms: Traditional vs. Deep Learning

There are two main types of algorithms used in ADASs: traditional algorithms and
DL algorithms. In this section, we discuss the advantages and disadvantages of traditional
and DL algorithms for ADASs and also some of the challenges involved in developing and
deploying ADASs.

1.3.1. Traditional Algorithms

Traditional methods for object detection, recognition, and tracking are typically the
most common type of algorithms used in ADASs, based on hand-crafted, rule-based
features, and heuristics designed to capture the distinctive characteristics of different
objects. That is, a feature for detecting vehicles might be the presence of four wheels and a
windshield. This means that these algorithms use a set of pre-defined rules to determine
what objects are present in the environment and how to respond to them. For instance, a
traditional lane-keeping algorithm might use a rule that says, ‘If the vehicle is drifting out
of its lane, then turn the steering wheel in the opposite direction’ or ‘a rule might state that
if a vehicle is detected in the vehicle’s blind spot, then the driver should be warned’.

Traditional methods are less complex than DL algorithms, making them easier to
develop, and are very effective in certain cases, but they are difficult to generalize to new
objects or situations because they are limited by the rules that are hard-coded into them. If
a new object, obstacle, or hazard is not covered by a rule, then the algorithm may not be
able to detect it. Some of the basic traditional methods-based algorithms are:
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a. Object detection: Traditional object detection algorithms typically use a two-step
approach:

i. The region proposal step identifies potential regions in an image that may
contain objects, which is typically carried out by using a sliding window
approach, where a small window is moved across the image and features are
extracted from each window;

ii. The classification step classifies each region as an object or background. This is
typically carried out by using a machine learning (ML) algorithm, such as a
support vector machine (SVM) [16] or a random forest [17];

b. Object recognition: Traditional object recognition algorithms typically use a feature-
based approach:

i. The feature extraction step extracts features from an image that are relevant to
the object class, which is typically carried out by using hand-crafted features,
such as color histograms [18], edge features [19], or shape features [20];

ii. The classification step classifies the object class by using a ML algorithm, such
as a SVM [16] or random forest [17];

c. Object tracking: Traditional object-tracking algorithms typically use a Kalman fil-
ter [21]:

i. The state estimation step estimates the state of the object, such as its position,
velocity, and acceleration;

ii. The measurement update step updates the state estimate based on new mea-
surements of the object.

These traditional object detection, recognition, and tracking algorithm are effective for
a variety of ADAS applications. However, they can be computationally expensive and may
not be able to handle challenging conditions, such as occlusion or low lighting.

In recent years, there has been a trend towards using DL algorithms for object detection,
recognition, and tracking in ADASs. DL algorithms have been shown to be more accurate
than traditional algorithms, and they can handle challenging conditions more effectively.

1.3.2. Deep Learning Algorithms

Inspired by the human brain, DL methods for object detection, recognition, and
tracking use artificial neural networks (ANNs) to learn the features that are important for
identifying different objects. They are composed of layers of interconnected nodes. Each
node performs a simple calculation, and the output of each node is used as the input to the
next node.

DL algorithms can learn to detect objects, obstacles, and hazards from large datasets
of labeled data usually collected using a variety of sensors. The algorithm is trained to
associate specific patterns in the data with specific objects or hazards. DL algorithms are
generally more complex than traditional algorithms, but they can achieve higher accuracy
as they are not limited by hand-crafted rules, they can learn to detect objects and hazards
not covered by any rules, and they are also able to handle challenging conditions, such
as occlusion or low lighting, more effectively. Some of the standard DL method-based
algorithms are discussed below:

a. Object detection: DL object detection algorithms commonly use a convolutional neural
network (CNN) to extract features from an image. The CNN is then trained on a
dataset of images that have been labeled with the objects that they contain. Once the
CNN is trained, it can be used to detect objects in new images;

b. Object recognition: DL object recognition algorithms also conventionally use a CNN
to extract features from an image. However, the CNN is trained on a dataset of images
that have been labeled with the class of each object. The trained CNN can be used to
recognize the class of objects in new images;
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c. Object tracking: DL object tracking algorithms typically use a combination of CNNs
and Kalman filters [21]. The CNN is used to extract features from an image and the
Kalman filter is used to track the state of the object over time.

2. Sensors Used in Object Detection, Recognition, and Tracking Algorithms of ADASs

Several sensors can be used for object detection, recognition, and tracking in ADASs.
The most common sensors include cameras, radars, and lidars. In addition to these sensors,
some other sensors can also be used, such as:

a. Ultrasonic sensors: used to detect objects that are close to the vehicle, aiding in
preventing collisions with pedestrians or other vehicles;

b. Inertial measurement units (IMUs): employed to track the movement of the vehicle
using which the accuracy of object detection and tracking can be improved;

c. GPS sensors: used to determine the position of the vehicle and are utilized to track the
movement of the vehicle and to identify objects that are in the vehicle’s path;

d. Gyroscope sensors: used to track the orientation of the vehicle and employed to
improve the accuracy of object detection and tracking algorithms.

The choice of sensors for object detection, recognition, and tracking in ADASs depends
on the specific application. For instance, a system that is designed to detect pedestrians
may use a combination of cameras and radar, while a system that is designed to track the
movement of other vehicles may use a combination of radar and lidar.

The combination of multiple sensors is mostly used in more recent state-of-the-art
methods, as this improves the accuracy of object detection, recognition, and tracking algo-
rithms. The combination of sensors combines the strengths of the sensors and overcomes
the weaknesses of the other sensors.

2.1. Cameras, Radar, and Lidar

Cameras, radar, and lidar are the most common types of sensors used in ADASs.
While there are two main types of cameras—monocular cameras are the most common type
used in ADASs, which have a single lens and can only see in two dimensions, while stereo
cameras have two lenses and can see in three dimensions—there are no distinctive types of
radars and lidars. These sensors are used in ADASs in a variety of ways, including:

a. Object detection: the sensors are used to detect objects in the road environment such as
pedestrians, vehicles, cyclists, and traffic signs, and then warn the driver of potential
hazards or take corrective actions like braking or steering control using the gathered
information;

b. Object recognition: the sensors are used to recognize the class of an object, such as
a pedestrian, a vehicle, a cyclist, or a traffic sign. This information can be used to
provide the driver with more information about the hazard, such as the type of vehicle,
the type of traffic sign and the road condition ahead, or the speed of a pedestrian;

c. Object tracking: the sensors can be used to track the movement of an object over time,
which is then used to predict the future position of an object, which can be used to
warn the driver of potential collisions.

The advantages of cameras are their low cost, ease of installation, wide field of view
(FOV), and high resolution, but they are easily impacted by weather conditions, occlusion
of objects, and varying light conditions. On the other hand, both radars and lidars are
resistant to varying weather conditions such as rain, snow, fog, and so on. While radars are
occlusion-resistant and provide a longer range than cameras, they fail to provide as many
details as cameras and are more expensive than cameras. Compared to both cameras and
radars, lidars provide very accurate information about the distance and shape of objects,
even in difficult conditions, and possess 3D capabilities, enabling them to create a 3D map
of the road environment that makes it easier and more efficient to identify and track objects
that are occluded by other objects. Nonetheless, lidars are more expensive than cameras
and radars, and lidar systems are more complex, making them more challenging to install
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and maintain. Cameras are used in almost all ADAS functions, while radars and lidars
are used in FCWS, LDWS, BSD, and ACC, with lidars having an additional application in
autonomous driving.

All the above features allow these versatile sensors to be used for a variety of object
detection, recognition, and tracking tasks in ADASs. However, some challenges need to be
addressed before they can be used effectively in all conditions. Hence, some researchers
have attempted to use a combination of these sensors, as discussed in the following section.

2.2. Sensor Fusion

Sensor fusion is the process of combining data from multiple sensors to create a more
complete and accurate picture of the world. This can be used to improve the performance
of object detection, recognition, and tracking algorithms in ADASs.

Numerous different sensor fusion techniques can be used for ADASs, namely:

a. Data-level fusion: a technique that combines data from different sensors at the data
level by averaging the data from different sensors, or by using more sophisticated
techniques such as Kalman filtering [21,22];

b. Feature-level fusion: combines features extracted from data from different sensors by
combining the features, or by using more sophisticated techniques such as Bayesian
fusion [23,24];

c. Decision-level fusion: combines decisions made by different sensors by taking the
majority vote, or by using more sophisticated techniques such as the Dempster–Shafer
theory [25–27].

The choice of sensor fusion technique is application-specific. A data-level fusion may
be a good choice for applications where accuracy is critical, whereas a decision-level fusion
may be a good choice for applications where speed is critical.

The benefits of using sensor fusion for object detection, recognition, and tracking in
ADASs can be listed as [15,28–31]:

a. Improved accuracy: sensor fusion improves the accuracy of object detection, recogni-
tion, and tracking algorithms by combining the strengths of different sensors;

b. Improved robustness: sensor fusion also improves the robustness of object detection,
recognition, and tracking algorithms by making them less susceptible to noise and
other disturbances;

c. Reduced computational complexity: sensor fusion also reduces the computational
complexity of object detection, recognition, and tracking algorithms, as the data from
multiple sensors can be processed together, resulting in saved time and processing
power.

Overall, sensor fusion is a promising, powerful technique that has the potential to
make ADAS object detection, recognition, and tracking algorithms much safer and more
reliable. Although sensor fusion is advantageous, it has some challenges [15,32], such as:

a. Data compatibility: the data from different sensors must be compatible to be fused,
implying the data must be in the same format and have the same resolution;

b. Sensor calibration: the sensors must be calibrated to ensure that they are providing
accurate data, which can be challenging, especially if the sensors are in motion;

c. Computational complexity: Sensor fusion is computationally expensive, especially if
a large number of sensors are being fused. This can limit the use of sensor fusion in
real-time applications.

Despite these challenges, sensor fusion is emerging with greater potential to improve
the performance of ADAS object detection, recognition, and tracking algorithms. As sensor
technology continues to improve, a fusion of sensors will become even more powerful and
efficient, and it will likely become a standard feature in ADASs.

The following section discusses the most commonly fused sensors in ADASs.
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2.2.1. Camera–Radar Fusion

Camera–radar fusion is a technique that combines data from cameras and radar sensors
to improve the performance of object detection, recognition, and tracking algorithms in
ADASs. As cameras are good at providing good image quality but are susceptible to
weather conditions, radar sensors compensate by seeing through weather conditions. Data-
level fusion and decision-level fusion are the two main approaches to camera–radar fusion.

2.2.2. Camera–Lidar Fusion

Camera–lidar fusion is a technique that combines data from cameras and lidar sensors
to improve the performance of object detection, recognition, and tracking algorithms in
ADASs. Cameras are good at providing detailed information about the appearance of
objects, while lidar sensors are good at providing information about the distance and shape
of objects. By combining data from these two sensors, it is feasible to create a complete and
accurate picture of the object, leading to improved accuracy in object detection and tracking.

2.2.3. Radar–Lidar Fusion

Radar–lidar fusion is a technique that combines the data from radar and lidar sensors,
improving the performance of ADAS algorithms. Radar sensors use radio waves to detect
objects at long distances, while lidar sensors use lasers to detect objects in detail. By fusing
the data from the two sensors, the system can obtain a more complete and accurate view of
the environment.

2.2.4. Lidar–Lidar Fusion

Lidar–lidar fusion is a technique that combines data from two or more lidar sensors,
improving the performance of object detection, recognition, and tracking algorithms in
ADASs. Lidar sensors are good at providing information about the distance and shape
of objects, but they can be limited in their ability to detect objects that are close to the
vehicle or that are occluded by other objects. By fusing data from multiple lidar sensors, it
is possible to create a complete and accurate picture of the environment, which can lead to
improved accuracy in object detection and tracking.The above discussed advantages and
disadvantages of various ADASs sensors are listed in the Table 1.

Table 1. Summary of the advantages and disadvantages of each sensor and combinations used in
ADAS applications.

Sensors Advantages Disadvantages

Camera

i. Relatively inexpensive;
ii. Easy to use;
iii. High-resolution images.

i. Affected by environmental factors (lighting,
weather);

ii. Difficult to interpret images in low-visibility
conditions;

iii. Can be fooled by glare and reflections;
iv. Can only detect objects in the visible spectrum.

Radar

i. Can detect objects at a longer range than
cameras, even in poor visibility;

ii. Less affected by weather conditions;
iii. Can be used to estimate the speed of objects.

i. Lower resolution than cameras;
ii. More expensive than cameras;
iii. Can be complex to integrate into vehicles.

Lidar

i. Not affected by environmental factors;
ii. Accurate measurement of distance, speed, and

shape of objects.

i. Expensive;
ii. Difficult to mount on vehicles;
iii. Can produce sparse point clouds;
iv. Can be limited in field of view (FOV).
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Table 1. Cont.

Sensors Advantages Disadvantages

Camera–
Radar
Fusion

i. Combines the strengths of cameras and
lidar sensors;

ii. Can be used in challenging weather conditions.

i. More expensive than using a single sensor;
ii. Can be complex to implement.

Camera–
Lidar

Fusion

i. Combines the strengths of cameras and lidar;
ii. Can provide accurate 3D measurements

of objects;
iii. Robust object detection and tracking system;
iv. Can be used in challenging weather conditions.

i. More expensive than a camera or lidar alone;
ii. Can be computationally complex.

Radar–Lidar
Fusion

i. Combines the strengths of radar and
lidar sensors;

ii. Improves accuracy of object detection and
tracking in challenging weather conditions.

i. More expensive than a camera or lidar alone;
ii. Can be computationally complex.

Lidar–Lidar
Fusion

i. Combines data from multiple lidar sensors;
ii. Can improve the accuracy of 3D mapping and

object detection;
iii. More accurate and reliable object detection and

tracking system.

i. More expensive than lidars alone;
ii. Can be computationally complex.

3. Systematic Literature Review

The main objective of this review is to determine the latest trends and approaches im-
plemented for different ADAS methods in autonomous vehicles and discuss their achieve-
ments. This paper also attempts to evaluate the valuable basis of the methods, implementa-
tion, and applications to furnish a state-of-the-art understanding for new researchers in
this computer vision and autonomous vehicles field.

The writing of this paper follows a planned, conducted, and observed process. The
planning phase involved clarifying the research questions and review protocol, which
comprised identifying the publications’ sources, keywords to search for, and selection crite-
ria. The conducting phase involved analyzing, extracting, and synthesizing the literature
collection. This included identifying the key themes and findings from the literature and
drawing conclusions that address the research questions and objectives. The observed
stage contained the review results, addressing the summary of the key findings as well as
any limitations or implications of the study.

3.1. Research Questions (RQs)

The main objective of this review is to determine the trend of the methods implemented
for different ADAS methods in the field of autonomous vehicles, as well as the achievements
of the latest techniques. Additionally, we aim to provide a valuable foundation for the
methods, challenges, and opportunities, thus providing state-of-the-art knowledge to
support new research in the field of computer vision and ADASs.

Two research questions (RQs) have been defined as follows:

1. What techniques have been implemented for different ADAS methods in an au-
tonomous vehicle?

2. What dataset was applied for the network training, validation, and testing?

A focused approach has been adopted while scanning the literature. First, each article
was reviewed to see if it answered the earlier questions. The information acquired was
then presented comprehensively to achieve the vision of this article.
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3.2. Review Protocol

Below, we have listed the literature search sources, search terms, and inclusion and
exclusion selection criteria, as well as the technique of literature collection used for this
systematic literature review (SLR).

3.2.1. Search Sources

IEEE Xplore and MDPI were chosen as the databases from which the data were
extracted.

3.2.2. Search Terms

Different sets of search terms were used to investigate the various ADAS methods
presented in this research. The OR, AND, and NOT operators were used to select and
combine the most relevant and commonly used applicable phrases. The AND operator
combined individual search strings into a search query. The databases included IEEE
Xplore and MDPI. The search terms used for the respective different methods of ADASs
are listed in the respective sections of this paper.

3.2.3. Inclusion Criteria

The study covered all primary publications published in English that discussed the
different ADAS methods or any other task related to them discussed in this paper. There
were no constraints on subject categories or time frames for a broad search spectrum. The
selected articles were among the top most cited journal papers published across four years,
from 2019 to 2022.

In addition, the below parameters were also considered while selecting the papers:

a. Relevance of the research papers to the topic of the review paper covering the most
important aspects of the topic and providing a comprehensive overview of the current
state of knowledge;

b. The quality of the research papers should be high. They should be well written, well
argued, and well supported by implementation details and experimental results;

c. Coverage of the research papers should include a wide range of perspectives on the
topic and not limited to a single viewpoint or approach;

d. The methodology presented in the research papers should be sound such that the
research methods must be rigorous and provide clear evidence to support their con-
clusions;

e. The research papers should be well written and easy to understand in a clear and
concise style so that the information is accessible and understandable to a wide
audience;

f. The research papers should have had a significant impact on the field. They should
have been cited by other researchers and used to inform new research.

3.2.4. Exclusion Criteria

Articles written in languages other than English were not considered. The exclu-
sion criteria also included short papers, such as abstracts or expanded abstracts, earlier
published versions of the detailed works, and survey/review papers.

4. Discussion—Methodology

4.1. Vehicle Detection

Vehicle detection, one of the key components and a critical task of ADASs, is the
process of identifying and locating vehicles in the surrounding scenes using sensors such
as cameras, radars, and lidar employing computer vision techniques. This information is
used to provide drivers with warnings about potential hazards, such as cars that are too
close or that are changing lanes and pedestrians or cyclists that might be in the vehicles’
way. It is a crucial function for many ADAS features, such as ACC, LDWS, FCWS, and BSD,
discussed in the later sections of the paper.

240



Sensors 2024, 24, 249

Vehicle detection is a challenging task, as vehicles vary in size, shape, and color,
affecting their appearance in images and videos. They can be seen from a variety of
different angles, which can also affect their appearance; furthermore, vehicle sizes can
be too small or too big, they could be partially or fully occluded by other objects in the
scene; there are different types of vehicles, each with a unique appearance, and the lighting
conditions and possible background clutter also affect the appearance of vehicles. All of
these factors make detection challenging.

Despite these challenges, the vehicle detection algorithm in ADASs has greatly evolved
and is still evolving, and there have been significant advances in vehicle detection over the
years. Early algorithms were based on relatively simple-to-implement image processing
techniques, such as edge detection and color segmentation, but they were not very accurate.
In the early 2000s, there was a shift towards using ML techniques that can learn from
data, making them more accurate than simple image processing techniques. Some of the
most common ML algorithms used for vehicle detection include support vector machines
(SVMs), random forests, and DL NNs.

Deep learning NNs are the most effective machine learning algorithms for vehicle
detection. Deep learning NNs can learn complex features from data, which makes them
very accurate. Regardless, DL NNs are also more computationally expensive than other
ML algorithms. In recent years, there has been a trend towards using sensor fusion for
vehicle detection.

The vehicle detection algorithms in ADASs are still evolving. As sensor technology
continues to improve, and as ML algorithms become more powerful, vehicle detection
algorithms will become even more accurate and reliable.

Search Terms and Recent Trends in Vehicle Detection

‘Vehicle detection’, ‘vehicle tracking’, and ‘vehicle detection and tracking’ are three
prominent search terms which were used to investigate the topic. The ‘OR’ operator was
used to choose and combine the most relevant and regularly used applicable phrases;
that is, the search phrases ‘vehicle detection’, ‘vehicle tracking’, and ‘vehicle detection
and tracking’ were discovered. Figure 2 shows the complete search query for each of the
databases. The databases include IEEE Xplore and MDPI.

 

Figure 2. Search queries for each of the databases for vehicle detection. The databases include IEEE
Xplore and MDPI.

Since the evolution of vehicle detection has been rapid, considering the detection,
recognition, and tracking of other vehicles, pedestrians, and objects, plenty of different
methods have been proposed in the past few years. Some of the recent prominent state-of-
the-art vehicle detection methods are discussed in the following sections.

Ref. [33] presents a scale-insensitive CNN, SINet, which is designed for rapid and
accurate vehicle detection. SINet employs two lightweight techniques: context-aware RoI
pooling and multi-branch decision networks. These preserve small-scale object informa-
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tion and enhance classification accuracy. Ref. [34] introduces an integrated approach to
monocular 3D vehicle detection and tracking. It utilizes a CNN for vehicle detection and
employs a Kalman filter-based tracker for temporal continuity. The method incorporates
multi-task learning, 3D proposal generation, and Kalman filter-based tracking. Combining
radar and vision sensors, ref. [35] proposes a novel distant vehicle detection approach.
Radar generates candidate bounding boxes for distant vehicles, which are classified using
vision-based methods, ensuring accurate detection and localization. Ref. [36] focuses on
multi-vehicle tracking, utilizing object detection and viewpoint estimation sensors. The
CNN detects vehicles, while viewpoint estimation enhances tracking accuracy. Ref. [37]
utilizes CNN with feature concatenation for urban vehicle detection, improving robustness
through layer-wise feature combination. Ref. [38] presents a robust vehicle detection and
counting method integrating CNN and optical flow, while [39] pioneers vehicle detec-
tion and classification via distributed fiber optic acoustic sensing. Ref. [40] introduces
a vehicle tracking and speed estimation method using roadside lidar, incorporating a
Kalman filter. Ref. [41] modifies Tiny-YOLOv3 for front vehicle detection with SPP-Net
enhancement, excelling in challenging conditions. Ref. [42] proposes an Extended Kalman
Filter (EKF) for vehicle tracking using radar and lidar data, while [43] enhances SSD for
accurate front vehicle detection. Ref. [44] improves Faster RCNN for oriented vehicle
detection in aerial images with feature amplification and oversampling. Ref. [45] employs
reinforcement learning with partial vehicle detection for efficient intelligent traffic signal
control. Ref. [46] presents a robust DL framework for vehicle detection in adverse weather
conditions. Ref. [47] adopts GAN-based image style transfer for nighttime vehicle detection,
while ref. [48] introduces MultEYE for real-time vehicle detection and tracking using UAV
imagery. Ref. [49] analyzes traffic patterns during COVID-19 using Planet remote-sensing
satellite images for vehicle detection. Ref. [50] proposes one-stage anchor-free 3D vehicle
detection from lidar, ref. [51] fuses RGB-infrared images for accurate vehicle detection
using uncertainty-aware learning. Ref. [52] optimizes YOLOv4 for improved vehicle de-
tection and classification. Ref. [53] introduces a real-time foveal classifier-based system
for nighttime vehicle detection. Ref. [54] combines YOLOv4 and SPP-Net for multi-scale
vehicle detection in varying weather. Ref. [55] efficiently detects moving vehicles with
a CNN-based method incorporating background subtraction. Ref. [56] refines YOLOv5
for vehicle detection in aerial infrared images, ensuring robustness against challenges like
occlusion and low contrast.

Overall, the aforementioned papers represent a diverse set of approaches to vehicle
detection and tracking. Each paper has its strengths and weaknesses, and it is important
to consider the specific application when choosing a method. However, all of the papers
represent significant advances in the field of vehicle detection and tracking. The list of
reviewed papers on vehicle detection is summarized in Table 2.

Table 2. Chosen publications regarding vehicle detection, their source title, and their number of
citations.

SI No. Ref. Year Source Title Citations

1 [33] 2019 IEEE Transactions on Intelligent Transportation
Systems

165

2 [34] 2019 IEEE/CVF International Conference on Computer
Vision (ICCV)

88

3 [35] 2019 IEEE International Conference on Robotics and
Automation (ICRA)

79

4 [36] 2019 MDPI Intelligent Sensors 58
5 [37] 2019 MDPI Intelligent Sensors 42
6 [38] 2019 MDPI Remote Sensors 41
7 [39] 2020 IEEE Transactions on Vehicular Technology 47
8 [40] 2020 IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing
44
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Table 2. Cont.

SI No. Ref. Year Source Title Citations

9 [41] 2020 IEEE Access 38
10 [42] 2020 MDPI Sensors 56
11 [43] 2020 MDPI Sensors 27
12 [44] 2020 MDPI Remote Sensing 27
13 [45] 2021 IEEE Transactions on Intelligent Transportation

Systems
52

14 [46] 2021 IEEE Transactions on Intelligent Transportation
Systems

48

15 [47] 2021 IEEE Transactions on Intelligent Transportation
Systems

47

16 [48] 2021 MDPI Remote Sensing 37
17 [49] 2021 MDPI Remote Sensing 30
18 [50] 2021 MDPI Sensors 11
19 [51] 2022 IEEE Transactions on Circuits and Systems for

Video Technology
20

20 [52] 2022 IEEE Access 13
21 [53] 2022 IEEE Transactions on Intelligent Transportation

Systems
12

22 [54] 2022 MDPI Electronics 21
23 [55] 2022 MDPI Sensors 10
24 [56] 2022 MDPI Electronics 6

4.2. Pedestrian Detection

Pedestrian detection is also a key component of ADASs that uses sensors to identify
and track pedestrians in the surrounding environment and prevent collisions with pedestri-
ans. The goal of pedestrian detection is to identify and track pedestrians in the surrounding
environment, warn the driver of potential collisions with pedestrians, and take evasive
action such as automatically applying brakes, if necessary.

Pedestrian detection systems typically use a combination of sensors, such as cameras,
radar, and lidar. Cameras are often used to identify the shape and movement of pedestrians,
while radar and lidar can be used to determine the distance and speed of pedestrians.
Cameras can be susceptible to glare and shadows, whereas radar and lidars are less
susceptible to these problems.

Pedestrian detection systems can be used to warn drivers of potential collisions
in a variety of ways. Some systems simply alert the driver with a visual or audible
warning. Others can take more active measures, such as automatically braking the vehicle
or slightly steering it away from the pedestrian. However, pedestrian detection is more
challenging, as pedestrians are often smaller and more difficult to distinguish from other
objects in the environment. Thus, it is an important safety feature for ADASs, as it can
help to prevent accidents involving pedestrians. According to the National Highway
Traffic Safety Administration (NHTSA) [57], pedestrians are involved in about 17% of all
traffic fatalities in the United States. Pedestrian detection systems can help to reduce this
number by warning drivers of potential hazards and by automatically applying the brakes
in emergencies.

Search Terms and Recent Trends in Pedestrian Detection

‘Pedestrian detection’, ‘pedestrian tracking’, and ‘pedestrian detection and tracking’
are three prominent search terms which were used to investigate this topic. The ‘OR’
operator was used to choose and combine the most relevant and regularly used applicable
phrases; that is, the search phrases pedestrian detection, ‘pedestrian tracking’, and ‘pedes-
trian detection and tracking’ were discovered. Figure 3 shows the complete search query
for each of the databases. The databases include IEEE Xplore and MDPI.
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Figure 3. Search queries for each of the databases for pedestrian detection. The databases include
IEEE Xplore and MDPI.

Ref. [58] introduces a novel approach to pedestrian detection, emphasizing high-level
semantic features instead of traditional low-level features. This method employs context-
aware RoI pooling and a multi-branch decision network to preserve small-scale object
details and enhance classification accuracy. The CNN initially captures high-level semantic
features from images, which are then used to train a classifier to distinguish pedestrians
from other objects. Ref. [59] proposes an adaptive non-maximum suppression (NMS) tech-
nique tailored for refining pedestrian detection in crowded scenarios. Conventional NMS
algorithms often eliminate valid detections along with duplicates in crowded scenes. The
new ‘Adaptive NMS’ algorithm dynamically adjusts the NMS threshold based on crowd
density, enabling the retention of more pedestrian candidates in congested areas. Ref. [60]
introduces the ‘Mask-Guided Attention Network’ (MGAN) for detecting occluded pedes-
trians. Utilizing a CNN, MGAN extracts features from both pedestrians and backgrounds.
Pedestrian features guide the network’s focus towards occluded regions, improving the
accuracy of detecting occluded pedestrians. Ref. [61] presents a real-time method to track
pedestrians by utilizing camera and lidar sensors in a moving vehicle. Combining sensor
features enables accurate pedestrian tracking. Features from the camera image, such as
silhouette, clothing, and gait, are extracted. Additionally, features like height, width, and
depth are obtained from the lidar point cloud. These details facilitate precise tracking of
pedestrians’ locations and poses over time. A Kalman filter enhances tracking performance
through sensor data fusion, offering better insights into pedestrian behavior in dynamic
environments. Ref. [62] proposes a computationally efficient single-template matching
technique for accurate pedestrian detection in lidar point clouds. The method creates a
pedestrian template from training data and uses it to identify pedestrians in new point
clouds, even under partial occlusion. Ref. [63] focuses on tracking pedestrian flow and
statistics using a monocular camera and a CNN–Kalman filter fusion. The CNN extracts
features from the camera image, which is followed by a Kalman filter for trajectory estima-
tion. This approach effectively tracks pedestrian flow and vital statistics, including count,
speed, and direction.

Ref. [64] addresses hazy weather pedestrian detection with deep learning. DL mod-
els are trained on hazy weather datasets and use architectural modifications to handle
challenging conditions. This approach achieves high pedestrian detection accuracy, even
in hazy weather. Ref. [65] introduces the ‘NMS by Representative Region’ algorithm to
refine pedestrian detection in crowded scenes. By employing representative regions, this
method enhances crowded scene handling by comparing these regions and removing
duplicate detections, resulting in reduced false positives. Ref. [66] proposes a graininess-
aware deep feature learning approach, equipping DL models to handle grainy images.
A DL model is trained using a graininess-aware loss function on a dataset containing
grainy and non-grainy pedestrian images. This model effectively detects pedestrians in
new images, even when they are grainy. Ref. [67] presents a DL framework for real-time
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vehicle and pedestrian detection on rural roads, optimized for embedded GPUs. Modified
Faster R-CNN detects both vehicles and pedestrians simultaneously in rural road scenes.
A new rural road image dataset is developed for training the model. Ref. [68] addresses
infrared pedestrian detection at night using an attention-guided encoder–decoder CNN.
Attention mechanisms focus on relevant regions in infrared images, enhancing detection
accuracy in low-light conditions. Ref. [69] focuses on improved YOLOv3-based pedestrian
detection in complex scenarios, incorporating modifications to handle various challenges
like occlusions, lighting variations, and crowded environments.

Ref. [70] introduces Ratio-and-Scale-Aware YOLO (RASYOLO), handling pedestrians
with varying sizes and occlusions through ratio-aware anchors and scale-aware feature
fusion. Ref. [71] introduces Track Management and Occlusion Handling (TMOH), manag-
ing occlusions and multiple-pedestrian tracking through track suspension and resumption.
Ref. [72] incorporates a Part-Aware Multi-Scale fully convolutional network (PAM-FCN)
to enhance pedestrian detection accuracy by considering pedestrian body part informa-
tion and addressing scale variation. Ref. [73] proposes Attention Fusion for One-Stage
Multispectral Pedestrian Detection (AFOS-MSPD), combining attention fusion and a one-
stage approach for multispectral pedestrian detection, improving efficiency and accuracy.
Ref. [74] utilizes multispectral images for Multispectral Pedestrian Detection (MSPD), im-
proving detection using a DNN designed for multispectral data. Ref. [75] presents Robust
Pedestrian Detection Based on Multi-Spectral Image Fusion and Convolutional Neural
Networks (RPOD-FCN), utilizing multi-spectral image fusion and a CNN-based model for
accurate detection.

Ref. [76] introduces Uncertainty-Guided Cross-Modal Learning for Robust Multispec-
tral Pedestrian Detection (UCM-RMPD), addressing multispectral detection challenges
using uncertainty-guided cross-modal learning. Ref. [77] focuses on multimodal pedestrian
detection for autonomous driving using a Spatio-Contextual Deep Network-Based Multi-
modal Pedestrian Detection (SCDN-PMD) approach. Ref. [78] proposes a Novel Approach
to Model-Based Pedestrian Tracking Using Automotive Radar (NMPT radar), utilizing
radar data for model-based pedestrian tracking. Ref. [79] adopts YOLOv4 Architecture
for Low-Latency Multispectral Pedestrian Detection in Autonomous Driving (AYOLOv4),
enhancing detection accuracy using multispectral images. Ref. [80] introduces modifica-
tions to [79] called AIR-YOLOv3, an improved network-pruned YOLOv3 for aerial infrared
pedestrian detection, enhancing robustness and efficiency. Ref. [81] presents YOLOv5-
AC, an attention mechanism-based lightweight YOLOv5 variant for efficient pedestrian
detection on embedded devices. The list of reviewed papers on pedestrian detection is
summarized in Table 3.

Table 3. Chosen publications regarding pedestrian detection, their source title, and their number of
citations.

SI No. Ref. Year Source Title Citations

1 [58] 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) 186

2 [59] 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) 163

3 [60] 2019 2019 IEEE/CVF International Conference on Computer
Vision (ICCV) 111

4 [61] 2019 MDPI Sensors 45
5 [62] 2019 MDPI Electronics 26
6 [63] 2019 MDPI Applied Sciences 15
7 [64] 2020 IEEE Transactions on Industrial Electronics 98

8 [65] 2020 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) 76

9 [66] 2020 IEEE Transactions on Image Processing 42
10 [67] 2020 MDPI Electronics 49
11 [68] 2020 MDPI Applied Science 28
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Table 3. Cont.

SI No. Ref. Year Source Title Citations

12 [69] 2020 MDPI Sensors 14
13 [70] 2021 IEEE Transactions on Image Processing 54

14 [71] 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) 45

15 [72] 2021 IEEE Transactions on Intelligent Transportation Systems 27
16 [73] 2021 MDPI Sensors 21
17 [74] 2021 MDPI Sensors 19
18 [75] 2021 MDPI Electronics 15

19 [76] 2022 IEEE Transactions on Circuits and Systems for Video
Technology 15

20 [77] 2022 IEEE Transactions on Intelligent Transportation Systems 12
21 [78] 2022 IEEE Transactions on Intelligent Transportation Systems 10
22 [79] 2022 MDPI Sensors 20
23 [80] 2022 MDPI Applied Sciences 11
24 [81] 2022 MDPI Sensors 11

4.3. Traffic Signs Detection

Traffic Signs Detection and Recognition (TSR) is another key component of ADASs
that automatically detects and recognizes traffic signs on the road and provides information
to the driver regarding speed limits, upcoming turns, and so on. TSR systems typically
use cameras to capture images of traffic signs and then use computer vision algorithms to
identify and classify the signs.

TSR systems can be a valuable safety feature, as they can help to prevent accidents
caused by driver distraction or drowsiness. For example, TSR systems can alert drivers to
speed limit changes, stop signs, and yield signs. They can also help drivers to stay in their
lane and avoid crossing over into oncoming traffic. Although TSR can be challenging due
to the variety of traffic signs, the different fonts and styles used, and the presence of noise
and clutter, TSR systems are becoming increasingly common in new vehicles. The NHTSA
has mandated that all new cars sold in the United States come equipped with TSR systems
by 2023 [57].

Search Terms and Recent Trends in Traffic Signs Detection

‘Traffic sign detection’, ‘traffic sign recognition, ‘traffic sign classification’, ‘traffic
sign detection and recognition’, and ‘traffic sign detection and recognition system’ are
some of the prominent search terms which were used to investigate this topic. The ‘OR’
operator was used to choose and combine the most relevant and regularly used applicable
phrases; that is, the search phrases ‘driver monitoring system’ and ‘driver monitoring and
assistance system’ were discovered. Figure 4 shows the complete search query for each of
the databases. The databases include IEEE Xplore and MDPI.

Yuan et al. [82] introduce VSSA-NET, a novel architecture for traffic sign detection
(TSD), which employs a vertical spatial sequence attention network to improve accuracy
in complex scenes. VSSA-NET extracts features via CNN, followed by a vertical spatial
sequence attention module to emphasize vertical locations crucial for TSD. The detection
module outputs traffic sign bounding boxes. Li and Wang [83] present real-time traffic
sign recognition using efficient CNNs, addressing diverse lighting and environmental
conditions. MobileNet extracts features from input images, followed by SVM classification.
Liu et al. [84] propose multi-scale region-based CNN (MR-CNN) for recognizing small
traffic signs. MR-CNN extracts multi-scale features using CNN, generates proposals with
RPN, and uses Fast R-CNN for classification and bounding box outputs. Tian et al. [85]
introduce a multi-scale recurrent attention network for TSD. CNN extracts multi-scale
features, the recurrent attention module prioritizes scale, and the detection module outputs
bounding boxes for robust detection across scenarios. Cao et al. [86] present improved TSDR
for intelligent vehicles. CNN performs feature extraction, RPN generates region proposals,
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and SVM classifies proposals, enhancing reliability in dynamic road environments. Shao
et al. [87] improve Faster R-CNN TSD with a second RoI and HPRPN. CNN performs
feature extraction, RPN generates region proposals, and the second RoI refines proposals,
enhancing accuracy in complex scenarios.

 

Figure 4. Search queries for each of the databases for traffic sign detection. The databases include
IEEE Xplore and MDPI.

Zhang et al. [88] propose cascaded R-CNN with multiscale attention for TSD. RPN
generates proposals, Fast R-CNN classifies, and multiscale attention improves detection
performance, particularly when there is an imbalanced data distribution. Tabernik and
Skočaj [89] explore the DL framework for large-scale TSDR. CNN performs feature extrac-
tion, RPN generates region proposals, and Fast R-CNN classifies, exploring DL’s potential
in handling diverse real-world scenarios. Kamal et al. [90] introduce automatic TSDR
using SegU-Net and modified Tversky loss. SegU-Net segments traffic signs and modified
loss function enhances detection and recognition, handling appearance variations. Tai
et al. [91] propose a DL approach for TSR with spatial pyramid pooling and scale anal-
ysis. CNN performs feature extraction, while spatial pyramid pooling captures context
and scales, enhancing recognition across scenarios. Dewi et al. [92] evaluate the spatial
pyramid pooling technique on CNN for TSR system robustness. Assessing pooling sizes
and strategies, they evaluate different CNN architectures for effective traffic sign recogni-
tion. Nartey et al. [93] propose robust semi-supervised TSR with self-training and weakly
supervised learning. CNN performs feature extraction, self-training labels unlabeled data,
and weakly supervised learning classifies labeled data, enhancing accuracy using limited
labeled data.

Dewi et al. [94] leverage YOLOv4 with synthetic GAN-generated data for advanced
TSR. YOLOv4 with synthetic data from BigGAN achieves top performance, enhancing
detection on the GTSDB dataset. Wang et al. [95] improve YOLOv4-Tiny TSR with new
features and classification modules. New data augmentation improves the performance
on the GTSDB dataset, optimizing recognition while maintaining efficiency. Cao et al. [96]
present improved sparse R-CNN for TSD with a new RPN and loss function. Enhancing
detection accuracy using advanced techniques within the sparse R-CNN framework. Lopez-
Montiel et al. [97] propose DL-based embedded system evaluation and synthetic data
generation for TSD. Methods to assess DL system performance and efficiency for real-time
TSD applications are developed. Zhou et al. [98] introduce a learning region-based attention
network for TSR. The attention module emphasizes important image regions, potentially
enhancing recognition accuracy. Koh et al. [99] evaluate senior adults’ TSR recognition
through EEG signals, utilizing EEG signals to gain unique insights into senior individuals’
traffic sign perception.

Ahmed et al. [100] present a weather-adaptive DL framework for robust TSR. A cas-
caded detector with a weather classifier improves TSD performance in adverse conditions,
enhancing road safety. Xie et al. [101] explore efficient federated learning in TSR with spike
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NNs (SNNs). SNNs enable training on decentralized datasets, minimizing communication
overhead and resources. Min et al. [102] propose semantic scene understanding and struc-
tural location for TSR, leveraging scene context and structural information for accurate
traffic sign recognition. Gu and Si [103] introduce a lightweight real-time TSD integration
framework based on YOLOv4. Novel data augmentation and YOLOv4 optimization are
used for speed and accuracy, achieving real-time performance. Liu et al. [104] introduce
the M-YOLO TSD algorithm for complex scenarios. M-YOLO detects and classifies traffic
signs, addressing detection in intricate environments. Wang et al. [105] propose real-time
multi-scale TSD for driverless cars. The multi-scale approach detects traffic signs of various
sizes, enhancing performance in diverse scenarios. The list of reviewed papers on traffic
signs detection is summarized in Table 4.

Table 4. Chosen publications, source title, and the number of citations for traffic signs detection.

SI No. Ref. Year Source Title Citations

1 [82] 2019 IEEE Transactions on Image Processing 118
2 [83] 2019 IEEE Transactions on Intelligent Transportation Systems 96
3 [84] 2019 IEEE Access 53
4 [85] 2019 IEEE Transactions on Intelligent Transportation Systems 50
5 [86] 2019 MDPI Sensors 66
6 [87] 2019 MDPI Sensors 44
7 [88] 2020 IEEE Access 151
8 [89] 2020 IEEE Transactions on Intelligent Transportation Systems 131
9 [90] 2020 IEEE Transactions on Intelligent Transportation Systems 52
10 [91] 2020 MDPI Applied Sciences 46
11 [92] 2020 MDPI Electronics 38
12 [93] 2020 MDPI Sensors 16
13 [94] 2021 IEEE Access 63
14 [95] 2021 IEEE Access 30
15 [96] 2021 IEEE Access 19
16 [97] 2021 IEEE Access 16
17 [98] 2021 MDPI Sensors 25
18 [99] 2020 MDPI Sensors 3
19 [100] 2022 IEEE Transactions on Intelligent Transportation Systems 15
20 [101] 2022 IEEE Transactions on Vehicular Technology 11
21 [102] 2022 IEEE Transactions on Intelligent Transportation Systems 11
22 [103] 2022 MDPI Entropy 13
23 [104] 2022 MDPI Symmetry 8
24 [105] 2022 MDPI Sensors 7

4.4. Driver Monitoring System (DMS)

A driver monitoring system (DMS), also called a driver monitoring and assistance
system (DMAS), is a camera-based safety system used to assess the driver’s alertness and
attention. It monitors a driver’s behavior by detecting and tracking the driver’s face, eyes,
and head position and warns or alerts them when they become distracted or drowsy for
long enough to lose situational awareness or full attention to the task of driving. DMSs can
also use other sensors, such as radar or infrared sensors, to gather additional information
about the driver’s state.

DMSs are becoming increasingly common in vehicles and are used to monitor the
driver’s alertness and attention. This information is then used to prevent accidents and
save lives by warning the driver if they are starting to become drowsy or distracted. Some
of the latest DMSs can even predict if drivers are eating and drinking while driving.

4.4.1. Driver Monitoring System Methods

There are a variety of methods used in DMSs. One common approach is to use a
camera to monitor the driver’s face, while the other approach is to use a sensor fusion
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approach, which combines data from multiple sensors, such as cameras, radar, and eye
tracking sensors.

DMSs can use a variety of sensors to monitor the driver, including:

a. Facial recognition. This is the most common type of sensor used in DMSs. Facial
recognition systems can track the driver’s face and identify signs of distraction or
drowsiness, such as eye closure, head tilt, and lack of facial expression.

b. A head pose sensor tracks the position of the driver’s head and can identify signs of
distraction or drowsiness, such as looking away from the road or nodding off.

c. An eye gaze sensor tracks the direction of the driver’s eye gaze and can identify signs
of distraction or drowsiness, such as looking at the phone or dashboard.

d. An eye blink rate sensor tracks the driver’s eye blink rate and can identify signs of
drowsiness, such as a decrease in the blink rate.

e. Speech recognition is used in DMSs to detect if the driver is talking on the phone or if
they are not paying attention to the road.

The above sensors are used in DMSs to detect a variety of driver behaviors, such as
(i) when a driver is distracted by looking away from the road, talking on the phone, or
using a mobile device; (ii) when a driver is drowsy, which can be determined by tracking
the driver’s eye movements and eyelid closure; (iii) when a driver is inattentive, which can
be determined by tracking the driver’s head position and eye gaze.

When a DMS detects risky driver behavior, it can provide a variety of alerts to the
driver, including alerts displayed on the dashboard or windshield, referred to as visual
alerts; alerts played through the vehicle’s speakers, which are called audio alerts; and hectic
alerts, in which alerts are issued through vibrations of the steering wheel or the driver’s
seat. In some cases, the DMS may also take corrective action, such as applying the brakes
or turning off the engine.

4.4.2. Search Terms and Recent Trends in Driver Monitoring System Methods

‘Driver monitoring system’ and ‘driver monitoring and assistance system’ are the
two prominent search terms used to investigate this topic. The ’OR’ operator was used to
choose and combine the most relevant and regularly used applicable phrases. That is, the
search phrases ‘driver monitoring system’ and ‘driver monitoring and assistance system’
were discovered. Figure 5 shows the complete search query for each of the databases. The
databases include IEEE Xplore and MDPI.

 

Figure 5. Search queries for each of the databases for the driver monitoring system. The databases
include IEEE Xplore and MDPI.

The papers [106–114] discuss a variety of approaches to DMSs. These include some of
the key methods like (i) the powerful technique employing DL, which is used to extract
features from images and videos. These are used to identify driver behaviors such as eye
closure, head pose, and facial expressions. (ii) A more general approach is using machine
learning, which can be used to learn patterns from data. These are used to identify driver
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behaviors that are not easily captured using traditional methods, such as hand gestures and
body language, and (iii) a technique that combines data from multiple sensors, referred to
as sensor fusion, to improve the accuracy of DMSs. For instance, a DMS could combine data
from a camera, an eye tracker, and a heart rate monitor to provide a more comprehensive
assessment of the driver’s state.

Y. Zhao et al. [106] propose a novel real-time DMSs based on deep CNN to monitor
drivers’ behavior and detect distractions. It uses video input from an in-car camera and
employs CNNs to analyze the driver’s facial expressions and head movements to assess
their attentiveness. It can detect eye closure, head pose, and facial expressions with high
accuracy. Ref. [107] works towards a DMS that uses machine learning to estimate driver
situational awareness using eye-tracking data. It aims to predict driver attention and
alertness to the road, enhancing road safety. Ref. [108] proposes a lightweight DMS based
on Multi-Task Mobilenets architecture, which efficiently monitors drivers’ behavior and
attention using low computational resources. It can even run on a simple smartphone,
making it suitable for real-time monitoring. Ref. [109] introduces an optimization algorithm
for DMSs using DL. This algorithm improves the accuracy of the DMS by reducing the
number of false positives and ensuring real-time performance.

Ref. [110] proposes a real-time DMS based on visual cues, leveraging facial expressions
and eye movements to assess driver distraction and inattention. It is able to detect driver
behaviors such as eye closure, head pose, and facial expressions using only a camera.
Ref. [111] proposes an intelligent DMS that uses a combination of sensors and ML. It is
capable of providing a comprehensive assessment of the driver’s state, including their
attention level, fatigue, and drowsiness, and provides timely alerts to improve safety.
Ref. [112] proposes a hybrid DMS combining Internet of Things (IoT) and ML techniques
for comprehensive driver monitoring. It collects data from multiple sensors and uses ML to
identify driver behaviors. Ref. [113] focuses on a distracted DMS that uses AI to detect and
prevent risky behaviors on the road. It detects distracted driving behaviors such as texting
and talking on the phone while driving. Ref. [114] proposes a DMS based on a distracted
driving decision algorithm which aims to assess and address potential distractions to
ensure safe driving practices. It predicts whether the driver is distracted or not.

These papers provide a good overview of the current state of the art in DMS and
contribute to the development of advanced DMS technologies, aiming to enhance driver
safety, detect distractions, and improve situational awareness on the roads. They employ
various techniques, including deep learning, IoT, and machine learning, to create efficient
and effective driver monitoring solutions. However, before DMSs can be widely deployed,
there are still some challenges that need to be addressed, such as:

a. Data collection: It is difficult to collect large datasets of driver behavior representative
of the real world, as it is difficult to monitor drivers naturally without disrupting their
driving experience.

b. Algorithm development: Since the driver behaviors can be subtle and vary from
person to person, it is challenging to develop algorithms that can accurately identify
driver behaviors in real time.

c. Cost: DMS demands the use of specialized sensors and software, making them
expensive to implement and maintain.

Additionally, with the development and availability of new sensors, they could be
used to improve the accuracy and performance of DMSs; for example, radar sensors could
be used to track driver head movements and eye gaze. Besides, autonomous vehicles will
not need DMSs in the same way that human-driven vehicles do. However, DMSs could still
be used to monitor the state of the driver in autonomous vehicles and to provide feedback
to the driver if necessary. Despite these challenges, there is a lot of potential for DMSs to
improve road safety and the future of DMSs looks promising. As the technology continues
to develop, DMSs could become an essential safety feature in vehicles, both human-driven
and autonomous. The list of reviewed papers on driver monitoring system is summarized
in Table 5.
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Table 5. Chosen publications, source title, and the number of citations referring to the driver
monitoring system.

SI No. Ref. Year Source Title Citations

1 [106] 2019 IEEE International Symposium on Robotic and
Sensors Environments 2

2 [107] 2019 International Conference on Robot and Human
Interactive Communication 1

3 [108] 2019 MDPI Sensors 28

4 [109] 2020 International Conference on Artificial Intelligence in
Information and Communication 2

5 [110] 2020 6th International Conference on Interactive
Digital Media 1

6 [111] 2021 2nd International Conference on Communication,
Computing and Industry 4.0 1

7 [112] 2021 IEEE International Conference on Consumer Electronics
and Computer Engineering -

8 [113] 2022 Interdisciplinary Research in Technology
and Management -

9 [114] 2022 13th International Conference on Information and
Communication Technology Convergence -

4.5. Lane Departure Warning System

The Lane Departure Warning System (LDWS) is a type of ADAS that is designed to
warn drivers when they are unintentionally drifting out of their lane. LDWSs typically use
cameras, radar, lidar, or a combination of sensors to detect the lane markings on the road,
and then they use this information to monitor the driver’s position in the lane. If the driver
starts to drift out of the lane, the LDWS will sound an audible alert or vibrate the steering
wheel to warn the driver. These systems can be a valuable safety feature and are especially
helpful for drivers, as they can help to prevent accidents caused by driver drowsiness or
distraction and they can help to keep drivers alert and focused on the road.

LDWSs are becoming increasingly common in new vehicles. In fact, according to
NHTSA, lane departure crashes account for about 5% of all fatal crashes in the United
States and the NHTSA has mandated that all new vehicles sold in the United States be
equipped with LDWSs by 2022 [115].

LDWSs can be a valuable safety feature, but they are not perfect. They can sometimes
be fooled by objects that look like lane markings, such as shadows or road debris, and may
not be accurate when the road markings are faded or obscured. Additionally, LDWS can
only warn drivers; they cannot take corrective action on their own, which means they may
not be effective for drivers who are drowsy or distracted.

Despite these limitations, LDWS can be a valuable tool for reducing the number of
accidents, and are especially beneficial for long-distance driving, as they can help keep
drivers alert and focused. They can: (i) help to prevent accidents by alerting drivers to
unintentional lane departures, (ii) help drivers stay alert and focused on the road, (iii) be
especially helpful for drivers who are drowsy or distracted, (iv) help to keep drivers in their
lane, which can improve lane discipline and reduce the risk of sideswipe collisions, thus
improving the driver safety and comfort. Therefore, LDWSs are becoming increasingly
common in new vehicles, as they greatly reduce drivers’ stress and fatigue.

Overall, LDWSs are a valuable safety feature that can help to prevent accidents, though
they are not guaranteed to do so. It is important to remember that these systems are not
a substitute for safe driving practices. Drivers should always be alert and focused on the
road, aware of their surroundings and use safe driving practices at all times, even when
they are using an LDWS.
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Search Terms and Recent Trends in LDWS

‘Lane departure warning’, ‘lane deflection warning’, ‘lane detection’, and ‘lane detec-
tion and tracking’ are four prominent search terms used to investigate the topic. The ‘OR’
operator was used to choose and combine the most relevant and regularly used applicable
phrases. The search phrases ‘lane departure warning’, ‘lane deflection warning’, ‘lane
detection’, and ‘lane detection and tracking’ were discovered. Figure 6 shows the complete
search query for each of the databases. The databases include IEEE Xplore and MDPI.

 

Figure 6. Search queries for each of the databases for the lane departure warning system. The
databases include IEEE Xplore and MDPI.

Lane detection is a critical task in computer vision and autonomous driving systems.
These review papers explore various lane detection techniques proposed in recent research
papers. The reviewed papers cover diverse approaches, including lightweight CNNs,
sequential prediction networks, 3D lane detection, and algorithms for intelligent vehicles in
complex environments. The existing lane detection algorithms are not robust to challenging
road conditions, such as shadows, rain, and snow, along with occlusion and illumination,
and scenarios where lane markings are not visible and are limited in their ability to detect
multiple lanes and to accurately estimate the 3D position of the lanes.

This research review paper examines recent advancements in lane detection tech-
niques, focusing on the integration of DNNs and sensor fusion methodologies. The review
encompasses papers published between 2019 and 2022, exploring innovative approaches
to improve the robustness, accuracy, and performance of lane detection systems in various
challenging scenarios.

The reviewed papers present various innovative approaches for lane detection in
the context of autonomous driving systems. Lee et al. [116] introduce a self-attention
distillation method to improve the efficiency of lightweight lane detection CNNs without
compromising accuracy. FastDraw [117] addresses the long tail of lane detection using a
sequential prediction network to consider contextual information for better predictions.
3D-LaneNet [118] incorporates depth information from stereo cameras for end-to-end
3D multiple lane detection. Wang et al. [119] propose a data enhancement technique
called Light Conditions Style Transfer for lane detection in low-light conditions, improving
model robustness. Other methods explore techniques such as ridge detectors [120], LSTM
networks [121], and multitask attention networks [122] to enhance lane detection accuracy
in various challenging scenarios. Additionally, some papers integrate multiple sensor
data [123–126] or use specific sensors like radar [127] and light photometry systems [128] to
achieve more robust and accurate lane detection for autonomous vehicles. These research
contributions provide valuable insights into the development of advanced lane detection
systems for safer and more reliable autonomous driving applications.

In their recent research, Lee et al. [116] proposed a novel approach for learning
lightweight lane detection CNNs by applying self-attention distillation. FastDraw [117]
addressed the long tail of lane detection by using a sequential prediction network to better
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predict lane markings in challenging conditions. Garnett et al. [118] presented 3D-LaneNet,
an end-to-end method incorporating depth information from stereo cameras for 3D mul-
tiple lane detection. Additionally, Cao et al. [123] tailored a lane detection algorithm for
intelligent vehicles in complex road conditions, enhancing real-world driving reliability.
Kuo et al. [129] optimized image sensor processing techniques for lane detection in vehicle
lane-keeping systems. Lu et al. [120] improved lane detection accuracy using a ridge
detector and regional G-RANSAC. Zou et al. [130] achieved robust lane detection from
continuous driving scenes using deep neural networks. Liu et al. [119] introduced Light
Conditions Style Transfer for lane detection in low-light conditions. Wang et al. [124]
used a map to enhance ego-lane detection in missing feature scenarios. Khan et al. [127]
utilized impulse radio ultra-wideband radar and metal lane reflectors for robust lane detec-
tion in adverse weather conditions. Yang et al. [121] employed long short-term memory
(LSTM) networks for lane position detection. Gao et al. [131] minimized false alarms in lane
departure warnings using an Extreme Learning Residual Network and ε-greedy LSTM.
Moreover, ref. [132] proposed a real-time attention-guided DNN-based lane detection
framework and CondLaneNet [133] used conditional convolution for top-to-down lane
detection. Dewangan and Sahu [134] analyzed driving behavior using vision-sensor-based
lane detection. Haris and Glowacz [135] utilized object feature distillation for lane line
detection. Lu et al. [136] combined semantic segmentation and optical flow estimation for
fast and robust lane detection. Suder et al. [128] designed low-complexity lane detection
methods for light photometry systems. Ko et al. [137] combined key points estimation and
point instance segmentation for lane detection. Zheng et al. [138] introduced CLRNet for
lane detection, while Wang et al. [122] proposed a multitask attention network (MAN).
Khan et al. [139] developed LLDNet, a lightweight lane detection approach for autonomous
cars. Chen and Xiang [125] incorporated pre-aligned spatial–temporal attention for lane
mark detection. Nie et al. [126] integrated a camera with dual light sensors to improve
lane-detection performance in autonomous vehicles. These studies collectively present
diverse and effective methodologies, contributing to the advancement of lane-detection
systems in autonomous driving and intelligent vehicle applications. The list of reviewed
papers on lane-departure warning system is summarized in Table 6.

Table 6. Chosen publications, source title, and the number of citations related to a lane-departure
warning system.

SI No. Ref. Year Source Title Cited by

1 [116] 2019 IEEE/CVF International Conference on
Computer Vision

253

2 [117] 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition

78

3 [118] 2019 IEEE/CVF International Conference on Computer
Vision

57

4 [123] 2019 MDPI Sensors 34
5 [129] 2019 MDPI Sensors 16
6 [120] 2019 MDPI Sensors 12
7 [130] 2020 IEEE Transactions on Vehicular Technology 165
8 [119] 2020 IEEE Intelligent Vehicles Symposium (IV) 32
9 [124] 2020 IEEE Access 9

10 [127] 2020 MDPI Sensors 14
11 [121] 2020 MDPI Sensors 9
12 [131] 2020 MDPI Sensors 6
13 [132] 2021 IEEE/CVF Conference on Computer Vision and

Pattern Recognition
60

14 [133] 2021 IEEE/CVF International Conference on
Computer Vision

44

15 [134] 2021 IEEE Sensors Journal 40
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Table 6. Cont.

SI No. Ref. Year Source Title Cited by

16 [135] 2021 MDPI Electronics 17
17 [136] 2021 MDPI Sensors 14
18 [128] 2021 MDPI Electronics 12
19 [137] 2022 IEEE Transactions on Intelligent Transportation Systems 54
20 [138] 2022 IEEE/CVF Conference on Computer Vision and

Pattern Recognition
17

21 [122] 2022 IEEE Transactions on Neural Networks and
Learning Systems

15

22 [139] 2022 MDPI Sensors 4
23 [125] 2022 MDPI Sensors 2
24 [126] 2022 MDPI Electronics -

4.6. Forward-Collision Warning System

A Forward-Collision Warning System (FCWS) is a type of ADAS that warns drivers
of potential collisions with other vehicles or objects in front of them. FCWSs typically
use radar, cameras, or lidar to track the distance and speed of vehicles in front of the
vehicle, and they alert the driver if the vehicle is getting too close to the vehicle in front.
When the system detects that a collision is imminent, it alerts the driver with a visual or
audible warning.

FCWSs can be an invaluable safety feature, as they can help prevent accidents caused
by driver distraction or drowsiness. According to the NHTSA, rear-end collisions account
for about 25% of all fatal crashes in the United States [140].

FCWSs are becoming increasingly common in new vehicles. The NHTSA has man-
dated that all new cars sold in the United States come equipped with FCWS systems
by 2022.

FCWSs: (i) help prevent accidents caused by driver distraction or drowsiness, (ii) help
drivers to brake sooner, which can reduce the severity of rear-end crashes and accidents,
(iii) help improve the driver awareness of the surrounding traffic, (iv) help to reduce driver
stress and fatigue.

Although FCWSs offer many advantages, they have limitations such as: (i) being less
effective in certain conditions, such as heavy rain or snow, (ii) being prone to false alarms,
which can lead to driver desensitization, (iii) are not a substitute for safe driving practices,
such as paying attention to the road and using turn signals.

Overall, FCWSs can be a valuable safety feature, but they are not guaranteed to prevent
accidents. Drivers should still be aware of their surroundings and use safe driving practices
at all times.

Search Terms and Recent Trends in FCWS

‘Forward collision warning’, ‘forward collision’, ‘pre-crash’, ‘collision mitigating’, and
‘forward crash’ are the prominent search terms used to investigate this topic. The ‘OR’
operator was used to choose and combine the most relevant and regularly used applicable
phrases. That is, the search phrases ‘forward collision warning’, ‘forward collision’, ‘pre-
crash’, ‘collision mitigating’, and ‘forward crash’ were discovered. Figure 7 shows the
complete search query for each of the databases. The databases include IEEE Xplore
and MDPI.

The papers listed discuss the development of FCWSs for autonomous vehicles in
recent years. Ref. [141] suggests an autonomous vehicle collision avoidance system that
employs predictive occupancy maps to estimate other vehicles’ future positions, enabling
collision-free motion planning. Ref. [142] introduces a forward collision prediction system
using online visual tracking to anticipate potential collisions based on other vehicles’ posi-
tions. Ref. [143] proposes an FCWS that combines driving intention recognition and V2V
communication to predict and warn about potential collisions with front vehicles. Ref. [144]

254



Sensors 2024, 24, 249

presents an FCWS for autonomous vehicles that deploys a CNN to detect and track nearby
vehicles. Ref. [145] introduces a real-time FCW technique involving detection and depth
estimation networks to identify nearby vehicles and estimate distances. Ref. [146] proposes
a vision-based FCWS merging camera and radar data for real-time multi-vehicle detection,
addressing challenging conditions like occlusions and lighting variations. Tang et al. [147]
introduce a monocular range estimation system using a single camera for precise FCWS,
especially in difficult scenarios. Lim et al. [148] suggest a smartphone-based FCWS for
motorcyclists utilizing phone sensors to predict collision risks. Farhat et al. [149] present a
cooperative FCWS using DL to predict collision likelihood in real time by considering data
from both vehicles’ sensors. Hong and Park [150] offer a lightweight FCWS for low-power
embedded systems, combining cameras and radar for real-time multi-vehicle detection. Al-
barella et al. [151] and Lin et al. [152] propose V2X communication-based FCWS, with [151]
for electric vehicles and [152] targeting curve scenarios. Yu and Ai [153] suggest a hybrid
DL approach employing CNN and recurrent NN for robust FCWS predictions. Olou
et al. [154] introduce an efficient CNN model for accurate forward collision prediction,
even in challenging conditions. Pak [155] presents a hybrid filtering method that improves
radar-based FCWS by fusing data from multiple sensors, enhancing reliability.

 

Figure 7. Search queries for each of the databases for the lane-departure warning system. The
databases include IEEE Xplore and MDPI.

This compilation of research papers demonstrates the extensive efforts in the field
of forward-collision warning and avoidance systems, which are crucial for enhancing
vehicular safety. Lee and Kum [141] propose a ‘Collision Avoidance/Mitigation Sys-
tem’ incorporating predictive occupancy maps for autonomous vehicles. Manghat and
El-Sharkawy [142] present ‘Forward Collision Prediction with Online Visual Tracking’,
utilizing online visual tracking for collision prediction. Yang, Wan, and Qu [143] introduce
‘A Forward Collision Warning System Using Driving Intention Recognition’, integrating
driving intention recognition and V2V communication. Kumar, Shaw, Maitra, and Kar-
makar [144] offer ‘FCW: A Forward Collision Warning System Using Convolutional Neural
Network’, deploying CNN for warning generation. Wang and Lin [145] present ‘A Real-
Time Forward Collision Warning Technique’, integrating detection and depth estimation
networks for real-time warnings. Lin, Dai, Wu, and Chen [146] introduce a ‘Driver Assis-
tance System with Forward Collision and Overtaking Detection’. Tang and Li [147] propose
‘End-to-End Monocular Range Estimation’ for collision warning. Lim et al. [148] created a
‘Forward Collision Warning System for Motorcyclists’ using smartphone sensors. Farhat,
Rhaiem, Faiedh, and Souani [149] present a ‘Cooperative Forward Collision Avoidance
System Based on Deep Learning’. Hong and Park [150] propose a ‘Lightweight Collabo-
ration of Detecting and Tracking Algorithm’ for embedded systems. Albarella et al. [151]
present a ‘Forward-Collision Warning System for Electric Vehicles’, validated both virtually
and in real environments. Liu et al. [152] focus on ‘Forward Collision on a Curve based on
V2X’ with a target selection method. Yu and Ai [153] present ‘Vehicle Forward Collision
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Warning based upon Low-Frequency Video Data’ using hybrid deep learning. Olou, Ezin,
Dembele, and Cambier [154] propose ‘FCPNet: A Novel Model to Predict Forward Colli-
sion’ based on CNN. Pak [155] contributes ‘Hybrid Interacting Multiple Model Filtering’ to
improve radar-based warning reliability. Together, these papers collectively advance the
understanding and development of forward collision warning and avoidance systems. The
list of reviewed papers on forward-collision warning system is summarized in Table 7.

Table 7. Chosen publications, source title, and the number of citations related to forward-collision
warning systems.

SI No. Ref. Year Source Title Cited by

1 [141] 2019 IEEE Access 48

2 [142] 2019 IEEE International Conference on Vehicular Electronics
and Safety (ICVES) 2

3 [143] 2020 IEEE Access 31

4 [144] 2020 IEEE International Conference on Electrical and
Electronics Engineering (ICE3) 2

5 [145] 2020 IEEE International Conference on Systems, Man, and
Cybernetics (SMC) -

6 [146] 2020 MDPI Sensors 26
7 [147] 2020 MDPI Sensors 4
8 [148] 2021 IEEE Journal of Intelligent and Connected Vehicles 1

9 [149] 2021 IEEE International Conference on Developments in
eSystems Engineering (DeSE) -

10 [150] 2021 IEEE Twelfth International Conference on Ubiquitous
and Future Networks (ICUFN) -

11 [151] 2021 MDPI Energies -

12 [152] 2022 7th International Conference on Intelligent Informatics
and Biomedical Science (ICIIBMS) 1

13 [153] 2022 IEEE 25th International Conference on Intelligent
Transportation Systems (ITSC) -

14 [154] 2022 22nd International Conference on Control, Automation
and Systems (ICCAS) -

15 [155] 2022 MDPI Sensors 3

4.7. Blind Spot Detection

Blind spot detection (BSD) is a type of ADAS that helps to prevent accidents by alerting
drivers to vehicles, pedestrians, or objects that are in their blind spots. Blind spots are the
areas around a vehicle that cannot be seen by the driver when looking in the rear-view
or side mirrors. These areas can be especially dangerous when changing lanes, merging
onto a highway, or while parking, and it is necessary to present accidents caused by lane
changes into the blind spot of other vehicles.

When a vehicle is detected in the blind spot, the system alerts the driver with a
visual or audible warning. Some systems will also illuminate a light in the side mirror to
indicate that there is a vehicle in the blind spot, while some systems also provide a graphic
representation of the vehicle in the blind spot on the dashboard.

BSD systems can be a valuable safety feature and are becoming increasingly common
in new vehicles, as they can help to prevent accidents caused by driver inattention or
driving changing lanes into other vehicles. They help to reduce the severity of accidents
that do occur, thereby reducing drivers’ stress and fatigue and helping drivers to stay
alert and more aware of their surroundings. According to the NHTSA, blind spot crashes
account for about 2% of all fatal crashes in the United States [57], and the NHTSA has
mandated that all new cars sold in the United States come equipped with BSD systems
by 2022.

Although BSD has many advantages, it has certain limitations such as: (i) it is less
effective in certain conditions, such as heavy rain or snow, (ii) it is prone to false alarms,
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which can lead to driver desensitization, (iii) it is not a substitute for safe driving practices,
such as using turn signals and checking blind spots before changing lanes.

Overall, BSD systems can be a valuable safety feature, but they are not a guarantee
against accidents. Drivers should still be aware of their surroundings and use safe driving
practices at all times.

Search Terms and Recent Trends in Blind Spot Detection

‘Blind spot’, ‘blind spot detection’, and ‘blind spot warning’, are the three prominent
search terms used to investigate this topic. The ’OR’ operator was used to choose and
combine the most relevant and regularly used applicable phrases. That is, the search
phrases ‘blind spot’, ‘blind spot detection’, and ‘blind spot warning’, were discovered.
Figure 8 shows the complete search query for each of the databases. The databases include
IEEE Xplore and MDPI.

 

Figure 8. Search queries for each of the databases for blind spot detection. The databases include
IEEE Xplore and MDPI.

The papers mentioned discuss the development of blind-spot detection systems (BS-
DSs) for vehicles. BSDSs are designed to alert drivers to vehicles that are in their blind
spots, where they cannot be seen in their mirrors.

The Gale Bagi et al. [156] paper discusses a BSDS combining radar and cameras for
accurate vehicle detection in blind spots. Radar detects vehicles and cameras identify
them. Details about sensors and system architecture are necessary for a comprehensive
understanding.

Ref. [157] introduces a probabilistic BSDS estimating blind spot risks using vehicle
speed, direction, and driver’s blind spot angle. It offers nuanced insights into collision
potential, enhancing safe driving.

Zhao et al. [158] propose a promising BSDS using a lightweight NN and cameras for
real-time detection. This approach improves detection capabilities with practical design.
Chang et al. [159] present an AI-based BSDS warning for motorcyclists using various sen-
sors, proactively detecting blind spot vehicles and enhancing rider safety. Naik et al. [160]
propose lidar-based early BSDS, creating a 3D map to detect blind-spot vehicles in advance.

The authors of [161] describe a real-time two-wheeler BSDS using computer vision
and ultrasonic sensors, confirming blind spot vehicles. Shete et al. [162] suggest a forklift-
specific BSDS using ultrasonic sensors to detect blind spot vehicles and warn drivers.
Schlegel et al. [163] propose an optimization-based planner for robots, considering blind
spots and other vehicles to ensure safe navigation. Kundid et al. [164] introduce an ADAS
algorithm creating a wider view to enhance driver awareness, mitigating blind spot issues.

Sui et al. [165] propose an A-pillar blind spot display algorithm using cameras to
show blind spot information on the A-pillar and side mirrors. Wang et al. [166] present a
vision-based BSDS using depth cameras to identify blind spot vehicles in a 3D map. Zhou
et al. [167] focus on high-speed pedestrians in blind spots, using cameras and radar to
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detect pedestrians and pre-detection to avoid collisions. Ref. [168] introduces a multi-sensor
BSDS for micro e-mobility vehicles, using cameras, radar, ultrasonic sensors, and gesture
recognition for better blind-spot awareness. Ref. [169] suggests a multi-deep CNN-based
BSDS for commercial vehicles using cameras, effectively addressing blind-spot challenges.

Overall, these papers present a variety of promising methods for developing BSDS.
The systems proposed in these papers can detect vehicles in a variety of conditions, and
they can be used in a variety of vehicles. The collection of research papers explores a broad
spectrum of approaches to address blind spots in various domains, including robotics,
automotive applications, and micro e-mobility. The focus ranges from sensor technologies
such as cameras, lidar, and ultrasonic sensors to methodologies including AI, probabilistic
estimation, and computer vision, introducing innovative algorithms, technologies, and
architectures to enhance blind-spot detection, awareness, and collision prevention. The
studies emphasize real-time detection, early warning, and proactive risk prediction, all
contributing to enhance vehicular safety. The common thread among these studies is their
commitment to improving safety by addressing the visibility limitations posed by blind
spots. The list of reviewed papers on driver monitoring system is summarized in Table 8.

Table 8. Chosen publications, source title, and the number of citations related to driver monitoring
systems.

SI No. Ref. Year Source Title
Number of
Citations

1 [156] 2019 2019 International Conference on Control,
Automation and Information Sciences (ICCAIS) 3

2 [157] 2019 IEEE Intelligent Transportation Systems
Conference (ITSC) 1

3 [158] 2019 MDPI Electronics 16

4 [159] 2020 International Symposium on Computer, Consumer,
and Control (IS3C) 1

5 [160] 2020 International Conference on Smart Electronics and
Communication (ICOSEC) -

6 [161] 2021 5th International Conference on Electronics,
Communication and Aerospace Technology (ICECA) 1

7 [162] 2021
IEEE International Conference on Technology,

Research, and Innovation for Betterment of
Society (TRIBES)

-

8 [163] 2021 European Conference on Mobile Robots (ECMR) -

9 [164] 2021 Zooming Innovation in Consumer Technologies
Conference (ZINC) -

10 [165] 2022 IEEE 5th International Conference on Computer and
Communication Engineering Technology (CCET) -

11 [166] 2022

IEEE Intl Conf on Dependable, Autonomic and Secure
Computing, Intl Conf on Pervasive Intelligence and

Computing, Intl Conf on Cloud and Big Data
Computing, Intl Conf on Cyber Science and

Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech)

-

12 [167] 2022 IEEE 25th International Conference on Intelligent
Transportation Systems (ITSC) -

13 [168] 2022 MDPI Sensors 2

14 [169] 2022 MDPI Sensors 1
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4.8. Emergency Braking System

The Emergency Braking System (EBS), also referred to as automatic emergency braking
(AEB), is an ADAS that detects and tracks other vehicles in the vicinity, calculates the
risk of a collision, and automatically applies the brakes in the event of an imminent
collision to prevent or mitigate a collision. EBS helps to prevent accidents caused by the
driver’s inattention, drowsiness, or reaction time. EBSs can be a valuable safety feature,
typically using radar, camera, or laser sensors to detect vehicles or objects in front of the car.
According to the NHTSA [140], rear-end crashes account for about 25% of all fatal crashes
in the United States.

EBSs are becoming increasingly common in new vehicles. In fact, the NHTSA has
mandated that all new cars sold in the United States come equipped with EBSs by 2022.
EBSs have numerous benefits, as they help to (i) prevent accidents caused by driver
distraction or drowsiness, (ii) reduce the severity of accidents that do occur, and (iii) keep
drivers alert and focused on the road.

With these benefits comes certain limitations, as these systems are (i) less effective in
certain conditions, such as heavy rain or snow, (ii) prone to false alarms, which can lead to
driver desensitization, and (iii) not a substitute for safe driving practices, such as paying
attention to the road and using turn signals.

Overall, EBSs can be a valuable safety feature, but they are not guaranteed to prevent
accidents. Drivers should still be aware of their surroundings and use safe driving practices
at all times.

Search Terms and Recent Trends in Emergency Braking Systems

‘Emergency braking system’, ‘autonomous emergency braking’, ‘EBS’, and ‘AEB’, are
the prominent search terms used to investigate this topic. The ’OR’ operator was used to
choose and combine the most relevant and regularly used applicable phrases. That is, the
search phrases ‘emergency braking system’, ‘autonomous emergency braking’, ‘EBS’, and
‘AEB’, were discovered. Figure 9 shows the complete search query for each of the databases.
The databases include IEEE Xplore and MDPI.

 

Figure 9. Search queries for each of the databases for the emergency braking system. The databases
include IEEE Xplore and MDPI.

Flores et al. [170] propose a cooperative car-following and emergency braking system
using radar, lidar, and cameras to detect and predict vehicle and pedestrian movements.
It automatically applies the brakes to prevent collisions while also facilitating vehicle-to-
vehicle communication. Shin et al. [171] introduce an adaptive AEB strategy utilizing radar
and cameras to detect and calculate braking forces for front and rear vehicle collision avoid-
ance. It considers speed, distance, and vehicle dynamics for effective collision prevention.

Yang et al. [172] have developed an AEB-P system with radar and cameras, using ad-
vanced control to determine braking forces for pedestrian collision avoidance, accounting
for pedestrian speed, distance, and vehicle dynamics. Gao et al. [173] present a hardware-
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in-the-loop simulation platform for AEB system testing across various scenarios, ensuring
reliability and effectiveness. Guo et al. [174] introduce a variable time headway AEB algo-
rithm using predictive modeling, combining radar and cameras. It adapts time headway
for braking by considering speed, distance, and vehicle dynamics.

Leyrer et al. [175] propose a simulation-based robust AEBS design using optimiza-
tion techniques to enhance system performance and reliability. Yu et al. [176] introduce
an AEBC system utilizing radar and cameras, applying control algorithms to prevent
collisions at intersections considering vehicle and pedestrian speed, distance, and dynam-
ics. Izquierdo et al. [177] explore using MEMS microphone arrays for AEBS, improving
pedestrian detection through audio cues in a variety of environments.

Jin et al. [178] present an adaptive AEBC strategy for driverless vehicles in campus
environments, utilizing radar and cameras to prevent collisions by considering vehicle
and pedestrian characteristics and dynamics. Mannam and Rajalakshmi [179] assess AEBS
scenarios for autonomous vehicles using radar and cameras, determining collision interven-
tions based on vehicle and pedestrian detection, speed, and distance. Guo et al. [180] study
AEBS control for commercial vehicles, considering driving conditions alongside radar and
camera-based detection and control algorithms to avoid collisions based on vehicle and
pedestrian dynamics.

These papers all represent significant advances in the field of AEB systems. They
propose new methods for detecting and tracking vehicles, pedestrians, and environmental
features. They also propose new control algorithms for determining the optimal braking
force to apply to avoid a collision. These advances have the potential to make AEB systems
more effective and reliable and to help prevent traffic accidents.

All the systems discussed were evaluated in a variety of traffic scenarios, and they
were shown to be able to significantly reduce the number of accidents. The reviewed papers
collectively explore a diverse range of topics within the realm of autonomous emergency
braking (AEB) systems for enhanced road safety.

These topics include cooperative car-following, pedestrian avoidance, collision avoid-
ance with rear vehicles, longitudinal active collision avoidance, hardware-in-the-loop simu-
lation, variable time headway control, environmental feature recognition, simulation-based
robust design, inevitable collision state-based control, innovative sensor utilization (MEMS
microphone array), adaptive strategies for specific scenarios, determination of AEB-relevant
scenarios, and specialized AEB algorithms for commercial vehicles. These contributions
highlight the multi-faceted nature of AEB research, highlighting advancements in simu-
lation, sensing, control strategies, and contextual optimization and emphasizing safety,
prediction, algorithm optimization, and system validation. As autonomous vehicles con-
tinue to evolve, these papers will collectively contribute to enhancing the effectiveness and
reliability of AEB systems, thereby advancing road safety in modern transportation and
ultimately promoting safer and more reliable autonomous driving experiences. The list of
reviewed papers on emergency braking system is summarized in Table 9.

4.9. Adaptive Cruise Control

Adaptive cruise control (ACC) is a driver assistance system that automatically adjusts
a vehicle’s speed when there are slow-moving vehicles ahead to maintain a safe following
distance. When the road ahead is clear, ACC automatically accelerates to the driver’s
pre-set speed.

ACC is a Level 1 ADAS feature, which means that it requires some driver input. The
driver still needs to be alert and ready to take over if necessary. However, ACC can help to
reduce driver fatigue and stress, and it can also help to prevent accidents.

ACC systems typically use a radar sensor to detect the speed and distance of vehicles
ahead. The sensor is mounted in the front of the vehicle, and it can typically detect vehicles
up to several hundred feet away. The sensor sends this information to a control unit, which
then calculates the appropriate speed for the vehicle to maintain a safe following distance.
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Table 9. Chosen publications, source title, and the number of citations related to the emergency
braking system.

SI No. Ref. Year Source Title Cited by

1 [170] 2019 IEEE Transactions on Intelligent Transportation Systems 31

2 [171] 2019 IEEE Intelligent Transportation Systems
Conference (ITSC) 5

3 [172] 2019 MDPI Sensors 43

4 [173] 2019 IEEE 23rd International Conference on Intelligent
Transportation Systems (ITSC) 4

5 [174] 2019 Chinese Automation Congress (CAC) 4
6 [175] 2019 IEEE Intelligent Vehicles Symposium (IV) -
7 [176] 2020 American Control Conference (ACC) 2
8 [177] 2020 MDPI Sensors 2

9 [178] 2020 International Conference on Advanced Mechatronic
Systems (ICAMechS) -

10 [179] 2020 IEEE Global Conference on Computing, Power, and
Communication Technologies (GlobConPT) -

11 [180] 2020 MDPI Machines 4

ACC systems can be either speed-only or full-range systems. Speed-only systems only
adjust the vehicle’s speed, while full-range systems can also brake the vehicle to maintain a
safe following distance. Full-range systems are more advanced, and they are typically more
expensive. ACC systems can be set to a specific speed, or they can be set to follow the speed
of the vehicle ahead. ACC systems can also be set to a maximum following distance, and
the system will not allow the vehicle to get closer than the set distance to the vehicle ahead.

ACC systems are becoming increasingly common in vehicles, as they offer several
safety and convenience benefits such as reducing traffic congestion and improving fuel
efficiency. ACC systems can also help to prevent accidents by reducing the risk of rear-end
collisions. They are especially beneficial for long-distance driving, as they can help to
reduce driver fatigue. The benefits of ACC systems are as follows:

a. Reduced driver fatigue: ACC can help to reduce driver fatigue by taking over the
task of maintaining a safe following distance. This can be especially beneficial for
long-distance driving.

b. Increased safety: ACC can help prevent accidents by automatically adjusting the
vehicle’s speed to maintain a safe following distance.

c. Improved convenience: ACC can make driving more convenient by allowing the
driver to set a cruising speed and then relax.

d. Improved fuel efficiency: ACC systems can help to improve fuel efficiency by allowing
drivers to maintain a constant speed, which can reduce unnecessary acceleration
and braking.

Despite these benefits, ACC systems face numerous challenges, as they are (i) expen-
sive, especially in high-end vehicles, (ii) complex to install and calibrate, which can increase
the cost of ownership, and (iii) unreliable in poor weather conditions, such as rain or snow.

Overall, ACC systems are a valuable safety feature that can help to prevent accidents
and make driving more convenient. However, they are not without their challenges, such
as cost and complexity. As ACC systems become more affordable and reliable, they are
likely to become more widespread in vehicles.

Search Terms and Recent Trends in Adaptive Cruise Control

‘Adaptive cruise control’, ‘ACC’, ‘autonomous cruise control’, and ‘intelligent cruise
control’ are the prominent search terms used to investigate this topic. The ‘OR’ operator
was used to choose and combine the most relevant and regularly used applicable phrases.
That is, the search phrases ‘adaptive cruise control’, ‘ACC’, ‘autonomous cruise control’,
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and ‘intelligent cruise control’ were discovered. Figure 10 shows the complete search query
for each of the databases. The databases include IEEE Xplore and MDPI.

 

Figure 10. Search queries for each of the databases for the adaptive cruise control system. The
databases include IEEE Xplore and MDPI.

G. Li and D. Görges [181] propose an innovative approach combining ecological ACC
and energy management for HEVs using heuristic dynamic programming. The algorithm
optimizes speed profiles, considering traffic conditions, state of charge, and driver prefer-
ences for fuel efficiency and comfort. S. Cheng et al. [182] discuss a multiple-objective ACC
with dynamic velocity obstacle (DYC) prediction, optimizing speed, acceleration, safety,
comfort, and fuel efficiency by forecasting surrounding vehicle trajectories. J. Lunze [183]
introduces an ACC strategy ensuring collision avoidance through predictive control using
a combination of predictive control and MPC to optimize vehicle speed profiles. Woo, H.
et al. [184] enhance ACC safety and efficiency through operation characteristic estimation
and trajectory prediction. Their work adjusts speed and acceleration considering vehicles’
dynamics and surroundings.

Zhang, S. and Zhuan, X. [185] developed an ACC for BEVs that accounts for weight
changes. Weight adjustments based on battery discharge and passenger load are used
to ensure safe and comfortable driving. C. Zhai et al. [186] present an ecological CAC
strategy for HDVs with time delays using distributed algorithms for platoon coordination,
achieving fuel efficiency and ecological benefits. Li and Görges [187] designed an ecological
ACC for step-gear transmissions using reinforcement learning. It optimizes fuel efficiency
while maintaining safety through learned intelligent control strategies. Jia, Jibrin, and
Görges [188] propose an energy-optimal ACC for EVs using linear and nonlinear MPC
techniques, minimizing energy consumption based on dynamic driving and traffic con-
ditions. Nie and Farzaneh [189] focus on eco-driving ACC with an MPC algorithm for
reduced fuel consumption and emissions while ensuring safety and comfort. Guo, Ge,
Sun, and Qiao [190] introduce an MPC-based ACC with relaxed constraints to enhance fuel
efficiency while considering speed limits and safety distances for driving comfort.

Liu, Wang, Hua, and Wang [191] analyze CACC safety with communication delays
using MPC and fuzzy logic to ensure stable and effective CACC operation under real-world
communication conditions. Lin et al. [192] compare DRL and MPC for ACC, suggesting
a hybrid approach for improved fuel efficiency, comfort, and stability. Gunter et al. [193]
investigate the string stability of commercial ACC systems, highlighting potential collision
risks in platooning situations and recommending improvements. Sawant et al. [194] present
a robust CACC control algorithm using MPC and fuzzy logic to ensure safe operation even
with limited data on preceding vehicle acceleration. Yang, Wang, and Yan [195] optimize
ACC through a combination of MPC and ADRC, enhancing fuel efficiency and robustness
to disturbances. Anselma [196] proposes a powertrain-oriented ACC considering fuel
efficiency and passenger comfort using MPC and powertrain modeling.

262



Sensors 2024, 24, 249

Chen [197] designed an ACC tailored to cut-in scenarios using MPC for fuel effi-
ciency optimization during lane changes. Hu and Wang [198] introduce a trust-based
ACC with individualization using a CBF approach, allowing vehicles to have personalized
safety requirements. Yan et al. [199] hybridized DDPG and CACC for optimized traffic
flow, leveraging learning-based and cooperative techniques. Zhang et al. [200] created
a human-lead-platooning CACC to integrate human-driven vehicles into platoons. The
author of [201] presents a resilient CACC using ML to enhance robustness and adaptability
to uncertainties and disruptions. Kamal et al. [202] propose an ACC with look-ahead
anticipation for freeway driving, adjusting control inputs based on predicted traffic con-
ditions. Li et al. [203] leverage variable compass operator pigeon-inspired optimization
(VCPO-PIO) for ACC control input optimization. Petri et al. [204] address ACC for EVs
with FOC, considering unique characteristics and energy management needs. The list of
reviewed papers on adaptive cruise control is summarized in Table 10.

Table 10. Chosen publications, source title, and the number of citations related to adaptive cruise
control.

SI No. Ref. Year Source Title
Number of
Citations

1 [181] 2019 IEEE Transactions on Intelligent Transportation Systems 57
2 [182] 2019 IEEE Transactions on Vehicular Technology 54
3 [183] 2019 IEEE Transactions on Intelligent Transportation Systems 39
4 [184] 2019 MDPI Applied Sciences 9
5 [185] 2019 MDPI Symmetry 9
6 [186] 2020 IEEE Access 39
7 [187] 2020 IEEE Transactions on Intelligent Transportation Systems 29
8 [188] 2020 IEEE Transactions on Vehicular Technology 25
9 [189] 2020 MDPI Applied Sciences 29

10 [190] 2020 MDPI Applied Sciences 12
11 [191] 2020 MDPI Sustainability 11
12 [192] 2021 IEEE Transactions on Intelligent Vehicles 69
13 [193] 2021 IEEE Transactions on Intelligent Transportation Systems 68
14 [194] 2021 IEEE Transactions on Intelligent Transportation Systems 31
15 [195] 2021 MDPI Actuators 16
16 [196] 2021 MDPI Energies 13
17 [197] 2021 MDPI Applied Sciences 12
18 [198] 2022 IEEE Transactions on Intelligent Transportation Systems 12

19 [199] 2022 IEEE Transactions on Automation Science
and Engineering 10

20 [200] 2022 IEEE Transactions on Intelligent Transportation Systems 8
21 [201] 2022 IEEE Transactions on Intelligent Transportation Systems 8
22 [202] 2022 MDPI Applied Sciences 5
23 [203] 2022 MDPI Electronics 1
24 [204] 2022 MDPI Applied Sciences 1

4.10. Around-View Monitoring (AVM)

Around-View Monitoring (AVM) is an ADAS that uses multiple cameras to provide a
360-degree view of the vehicle’s surroundings. This helps drivers to see more of what is
around them, which can improve safety and make it easier to park. It is especially helpful
in tight spaces or when backing up.

AVM systems typically use four cameras, one mounted on each side of the vehicle and
one in the rear. The cameras are connected to a central computer, which stitches the images
together to create a panoramic view of the vehicle’s surroundings. This view is displayed
on a screen in the vehicle’s cabin, giving the driver a bird’s-eye view of what is around
them and preventing blind spots. Thus, AVM systems are a valuable safety feature and
can be used for a variety of purposes, including parking, backing up, maneuvering in tight
spaces, monitoring blind spots, and overall enhancing safety by giving drivers a better
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view of their surroundings and preventing accidents, especially in low-visibility conditions.
The challenges of AVM in ADAS are their high cost and complexity of installation.

The ADAS features with which AVM are often combined include blind-spot detection,
lane departure warning system, a forward collision warning system, and parking assis-
tance systems. Overall, these features can work together to provide drivers with a more
comprehensive view of their surroundings, help them avoid accidents, and make it easier
to park.

Search Terms and Recent Trends in Around-View Monitoring

‘Around view monitoring’, ‘AVM’, and ‘surround view monitoring’ are the promi-
nent search terms used to investigate this topic. The ‘OR’ operator was used to choose
and combine the most relevant and regularly used applicable phrases. That is the search
phrases ‘around view monitoring’, ‘AVM’, and ‘surround view monitoring’ were discov-
ered. Figure 11 shows the complete search query for each of the databases. The databases
include IEEE Xplore and MDPI.

 

Figure 11. Search queries for each of the databases for around view monitoring. The databases
include IEEE Xplore and MDPI.

Ref. [205] introduces a novel method by integrating semantic segmentation with
AVM for lane-level localization. Utilizing visual data and semantic information, a DL
model segments lanes and localizes the vehicle, enhancing navigation precision and safety.
Refs. [206,207] integrate motion estimation into an AVM for ADAS. The author of [206]
employs a Kalman filter to estimate motion, improving AVM image accuracy by up to
20%. The author of [207] focuses on homogeneous surfaces, achieving 90% accuracy with
image registration and optical flow. Ref. [208] discusses AVM/lidar sensor fusion for
parking-based SLAM. The fusion creates a map for SLAM and parking detection, with an
improved loop closure accuracy of 95%.

Ref. [209] proposes AVM-based parking space detection using image processing and
machine learning, providing an effective solution. Ref. [210] presents automatic AVM
camera calibration using image processing and machine learning, streamlining the process
without a physical calibration rig. Ref. [211] enhances AVM image quality via synthetic
image learning for deblurring, addressing blurriness and distortion. Ref. [212] introduces
AVM calibration using unaligned square boards, simplifying the process and increasing
accuracy without a physical rig. Ref. [213] proposes an AVM-based automatic parking
system using parking line detection, offering an accurate and efficient solution. Ref. [214]
suggests a DL-based approach to detect parking and collision risk areas in autonomous
parking scenarios, improving accuracy and collision assessment.

The papers discussed above provide a good overview of the current state-of-the-art
approaches using AVM systems for lane-level localization, motion estimation, parking
space detection, and collision risk area detection and improving the performance of AVM
systems. The methods proposed in these papers have the potential to significantly improve
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the safety and efficiency of AVM systems, which in turn improves driving and parking
efficiencies, and they are likely to become increasingly common in the future.

These amalgamations of these research papers collectively introduce innovative ap-
proaches ranging from semantic segmentation for lane-level localization to motion estima-
tion techniques for enhancing monitoring accuracy, and collectively focus on crucial aspects
such as automatic calibration, image-quality enhancement, parking-line detection, and
collision-risk assessment. Additionally, by employing advanced techniques like supervised
deblurring and DL, the integration of sensor fusion, such as AVM and lidar, significantly
improves AVM systems’ reliability, accuracy, and safety, offering promising outcomes for
applications like autonomous parking. The synthesis of these diverse techniques showcases
the recent advancements and growing potential of AVM in improving vehicle navigation,
parking, and overall safety, thus revolutionizing vehicle navigation, parking, and overall
driving experiences. The list of reviewed papers on around view monitoring is summarized
in Table 11.

Table 11. Chosen publications, source title, and the number of citations related to around-view
monitoring.

SI No. Ref. Year Source Title Cited by

1 [205] 2019 IEEE Sensors Journal 18

2 [206] 2019 7th International Conference on Mechatronics
Engineering (ICOM) -

3 [207] 2019 7th International Conference on Mechatronics
Engineering (ICOM) -

4 [208] 2019 MDPI Sensors 10
5 [209] 2019 MDPI Applied Sciences 9
6 [210] 2020 IEEE Access 3

7 [211] 2021 17th International Conference on Machine Vision and
Applications (MVA) 1

8 [212] 2021 MDPI Sensors 2
9 [213] 2021 MDPI Applied Sciences 1

10 [214] 2022 MDPI Sensors 1

5. Discussion Datasets

The input data are the most important factor for the ADAS functionalities discussed in
this paper. The preparation of the dataset is essential for the DL approaches, particularly in
the training phase. The quality of the dataset preparation in the network model determines
how well the autonomous car can manage its behavior and make decisions.

A review of journal articles, conference papers, and book chapters found that many
studies used self-collected data or collected data online. Some researchers compiled their
own dataset for training and then compared it to a publicly available benchmark dataset.
Others only used self-collected data for training and validation. Still, others relied only on
publicly available datasets for training and validation.

The choice of dataset preparation method depends on the specific research and the
availability of resources. Self-collected data can be more representative of the specific
environment in which the autonomous car will be operating, but it can be more time-
consuming and expensive to collect. Publicly available datasets are more convenient to use,
but they may not be as representative of the specific environment. Table 12 lists various
public datasets used for different state-of-the-art methods discussed in Sections 4.1–4.10.
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Table 12. Datasets employed by the references chosen in this review paper.

SI No. Name. Categories No. of Objects Papers Used

1 KITTI Vision Benchmark
Suite [215,216]

Vehicles, pedestrians, cyclists, and
road objects

Over 70,000
images & 30,000

Lidar scans

[33–35,37,41,43,46,50,
58,59,65,77,78,118,

121,124,126,129,133,
141,145,151,154,157,

170,208]

2 Argoverse [217] Vehicles, pedestrians, cyclists, traffic
lights, road objects, and more Over 1M [34]

3 nuScenes [218] Vehicles, pedestrians, cyclists, traffic signs,
lights, road markings, and more Over 1.4M [35,142,146,147,150,

153,163,165]

4 GRAM [38] Vehicles, pedestrians, cyclists Around 1M [38]

5 GRAM-RTM [36] Vehicles, pedestrians, cyclists, traffic signs,
lights, road markings, and more - [36]

6 UA-DETRAC [36,219,220] Car, bus, van, and others 8550 [37]

7 CDNet [221]
Cars, pedestrians, animals, buildings,
trees, traffic signs, background scenes,

and more
93,702 [38]

8 VEDAI [222]
Car, bus, truck, motorcycle, bicycle,

pedestrian, traffic light, signs, buildings,
vegetation, background

33,360 [44]

9 DAWN [223]

Person, car, bus, truck, motorcycle,
bicycle, pedestrian, traffic light, signs,
trailer, pole, buildings, vegetation, sky,

ground, and unknown

275,350 [46,54]

10 MS-COCO [224]
Car, person, bicycle, motorcycle, bus,
truck, train, stop sign, fire hydrant,

traffic light
Over 2M [46,55,105]

11 OSM [225] No fixed categories - [49]

12 DroneVehicle [226] Car, truck, bus, van, freight car 24,358 [51]

13 Highway Dataset [227] Vehicles, pedestrians, bicycles, traffic
signs, construction, and other objects 42,000 [33,55]

14 Space Cup Competition [228] [228]

15 CityPersons pedestrian
detection benchmark [229] Pedestrians 3475 [60,70]

16 PETS2009 [230] People, bicycles, motorcycles, cars, vans,
trucks, and other vehicles 4005 [71]

17 CalTech Lanes Dataset [231] People, bicycles, motorcycles, cars, vans,
airplanes, faces, Frisbee, trucks, and more 30,607 [72,131]

18 Multispectral pedestrian
detection [232] Pedestrians 86,152 [73–76,79]

19 Aerial Infrared Pedestrian
Detection Benchmark [80] Pedestrians Over 100K [80]

20 GTSRB [233] Traffic signs 51,839 [82–89,93,98]

21 BTSC [234] Traffic signs 3740 [93]

22 LISA [235] Traffic signs 6160 [97,169]

23 ITSRB & ITSDB [98] Traffic signs 500 [98]

24 Cure-TSD [236] Traffic signs 1080 [100]

25 Tsinghua-Tencent 100K [237] Traffic signs 100,000 [102]
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Table 12. Cont.

SI No. Name. Categories No. of Objects Papers Used

26 CCTSDB [238] Traffic signs 7717 [104]

27 HRRSD [239] Traffic signs 58,290 [104]

28 CuLane [240] Lane marking, traffic signs, dazzle lights,
and more 10,2448 [116,117,119,122,124,

128,132,134,135,137]

29 TUSimple [241] Vehicles, lane markings, traffic signs,
pedestrians, cyclists, and more 12,224 [116,119,122–126,130,

132,133,137,138]

30 BDD100K [242] Pedestrians, riders, cars, trucks, buses,
traffic signs, and more 1,407,782 [116]

31
Udacity Machine Learning
Nanodegree Project Dataset

[243]

Vehicles, lane markings, traffic signs,
pedestrians, cyclists, and more 242,999 [139,144]

32 LLAMAS Dataset [244]
Car, bus, truck, motorcycle, bicycle,

pedestrian, traffic lights and signs, yield
light, and more

1300 [122]

33 Cracks and Potholes in Road
Images Dataset [245] Cracks and potholes 3235 [139]

34 Waymo Open Dataset [246] Vehicles, pedestrians, cyclists, and signs 5,447,059 [148]

35 ETH Pedestrian Dataset [247] Pedestrians, cyclists, cars, and van 61,764 [170]

Besides employing publicly available, free-to-use open-source datasets, the most recent
state-of-the-art work uses a self-collected dataset and proposes datasets suitable for their
proposed works and makes their proposed dataset available for other researchers. For
instance, ref. [40] manually constructed a dataset containing 316 vehicle clusters and 224
non-vehicle clusters, ref. [47] used datasets generated from the transformed results that
demonstrate significant improvement, and ref. [62] initially generated a template of a
pedestrian from a training dataset. The template was then used to match pedestrians in
the lidar point cloud. The authors of the paper evaluated their method based on a dataset
of lidar point clouds. Additionally, ref. [63] was evaluated using their dataset and [67]
was evaluated using a dataset of images captured in hazy weather, ref. [66] was trained
and tested on a dataset of images captured in different weather conditions, ref. [67] was
trained on a dataset of images from rural roads, ref. [68] was trained on infrared images
captured during nighttime, and ref. [69] was trained on a dataset of images collected from
different scenarios, including urban roads, highways, and intersections. If a public dataset
is unavailable and the target is specific to a country, as was the case for [91], in which a
public dataset for Taiwan was not available, the author evaluated their method based on a
locally built dataset [248]. On the other hand, many publications do not mention exactly
which dataset was used, instead highlighting that ‘the proposed method was evaluated on
a publicly available dataset’ [94–96].

In addition to the state-of-the-art methods discussed in the above sections, some of
the other notable publications are:

The paper [249] provides a comprehensive overview of the advancements and tech-
niques in object detection facilitated by DL methodologies. The authors survey the state-of-
the-art approaches up to the time of publication in 2019, and discuss various DL architec-
tures and algorithms used for object detection, including two-stage detectors, one-stage
detectors, anchor-based and anchor-free methods, RetinaNet, and FPNs, along with method-
ologies handling small objects, occlusions, and cluttered backgrounds. Additionally, they
present some promising research directions for future work, such as multi-task learning,
attention mechanisms, weakly supervised learning, and domain adaptation. Addition-
ally, their paper explores the architectural evolution of DL models for object detection,
discussing the transition from traditional methods to the emergence of region-based and

267



Sensors 2024, 24, 249

anchor-based detectors, as well as the introduction of feature pyramid networks. The
review also covers commonly used datasets for object detection, highlighting their signifi-
cance in benchmarking algorithms, and discusses the evaluation metrics used to assess the
performance of object detection models.

The paper [250] serves as a thorough survey of driving monitoring and assistance
systems (DMAS), covering a wide range of technologies and methodologies such as driver
monitoring systems (DMS), advanced driver assistance systems (ADAS), autonomous
emergency braking (AEB), lane-departure warning systems (LDWS), adaptive cruise control
(ACC), and blind spot monitoring (BSM). It explores various aspects of systems designed
to monitor driver behavior and provide assistance, contributing to the understanding of
advancements in the field of intelligent transportation systems. The comprehensive nature
of the survey suggests an in-depth examination of existing technologies, challenges, and
potential future directions for driving monitoring and assistance systems.

The paper [251] proposes a novel approach to 3D object detection utilizing monocular
images. The key focus is on the use of a Proposal Generation Network tailored for 3D
object detection, which integrates depth information derived from monocular images to
generate proposals efficiently, contributing to improve the overall accuracy and efficiency
of 3D object detection. The paper addresses the challenge of 3D object detection using only
monocular images, which is a significant contribution, as many real-world applications
rely on single-camera setups.

The paper [252] presents an innovative one-stage approach to monocular 3D object
detection, streamlining the detection pipeline and potentially improving real-time perfor-
mance compared to traditional two-stage approaches, emphasizing the use of discrete depth
and orientation representations that suggest a departure from continuous representations,
potentially leading to more interpretable and efficient models of the detection process.

The paper [253] explores the integration of AI techniques for object detection and
distance measurement in which the algorithms are employed to identify and locate objects
in images or videos. Once the objects have been detected, the model estimates their distance
from the camera using various techniques, such as depth estimation networks, monocular
depth estimation, and stereo depth estimation. This AI-based approach to object detection
and distance measurement has the potential to revolutionize various fields. It offers high
accuracy, real-time performance, and low cost, making it a promising solution for a wide
range of applications.

6. Conclusions and Future Trends

Various ADASs discussed in the previous section have the potential to revolutionize
the way we drive. By improving road safety, reducing driver workload, and providing a
more comfortable and enjoyable driving experience, ADASs can make our roads safer and
our journeys more enjoyable.

These DL algorithms are still under development, but they have the potential to
revolutionize the way ADASs are designed and implemented. As these algorithms become
more powerful and efficient, they will become more widely used in ADASs. Some of the
advantages of using deep learning for object detection, recognition, and tracking in ADAS
are as follows:

a. Accuracy: Deep learning algorithms have been shown to be more accurate than
traditional algorithms, especially in challenging conditions.

b. Speed: Deep learning algorithms can be very fast, which is important for real-time
applications.

c. Scalability: Deep learning algorithms can be scaled to handle large datasets and
complex tasks.

d. Robustness: Deep learning algorithms are relatively robust to noise and other distur-
bances.

These advantages come with some of the challenges of using DL for object detection,
recognition, and tracking in ADAS:
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a. Data requirements: Deep learning algorithms require large datasets of labeled data to
train. This can be a challenge to obtain, especially for rare or unusual objects.

b. Computational requirements: Deep learning algorithms can be computationally ex-
pensive, which can limit their use in real-time applications.

c. Interpretability: Deep learning algorithms are often difficult to interpret, which can
make it difficult to understand why they make certain decisions.

Researchers are working on developing newer algorithms and improvising the existing
algorithms and techniques to address these challenges. As a result, ADASs are becoming
increasingly capable of detecting and tracking objects in a variety of challenging conditions.

ADASs are still under development, but they have the potential to revolutionize the
way we drive. By making our roads safer and more efficient, ADASs can help to create a
better future for transportation.

ADASs are not without their drawbacks. They can be expensive, and they can some-
times malfunction. Additionally, drivers may become too reliant on ADASs and become
less attentive to their driving.

Overall, ADASs offer numerous potential benefits for safety and convenience. How-
ever, it is important to be aware of the drawbacks and to use these systems responsibly.

The ongoing continuous advancements and researches are focusing on overcoming
the existing drawbacks and the same can be foreseen as the future trends of ADAS.

a. Multi-sensor fusion: ADASs are increasingly using multiple sensors, such as cameras,
radar, and lidar, to improve the accuracy and reliability of object detection. Multi-
sensor fusion can help to overcome the limitations of individual sensors, such as
occlusion and poor weather conditions.

b. Deep learning: DL is rapidly becoming the dominant approach for object detection,
recognition, and tracking in ADAS. Deep learning algorithms are very effective at
learning the features that are important for identifying different objects.

c. Real-time performance: ADASs must be able to detect, recognize, and track objects
in real time. This is essential for safety-critical applications, as delays in detection or
tracking can lead to accidents.

d. Robustness to challenging conditions: ADASs must be able to operate in a variety
of challenging conditions, such as different lighting conditions, weather conditions,
and road conditions. Researchers are working on developing new algorithms and
techniques to improve the robustness of ADASs to challenging conditions.

e. Integration with other ADAS features: ADASs are seeing increased integration with
other ADAS features, such as collision avoidance, lane departure warning, and adap-
tive cruise control. This integration can help to improve the overall safety of vehicles.

These are just some of the future trends in object detection, recognition, and tracking
for ADAS. As research in this area continues, ADASs are becoming increasingly capable of
detecting and tracking objects in a variety of challenging conditions. This will help to make
vehicles safer and more reliable.

Some additional trends that are worth mentioning could be:

a. The use of synthetic data: Synthetic data are being used increasingly often to train
object detection, recognition, and tracking algorithms. Synthetic data are generated
by computer simulations, and they can be used to create training datasets that are
more diverse and challenging than the real-world datasets. This might enhance
the efficiency of the neural networks, as they can be trained with a combination of
real-world datasets supplemented with the synthetic datasets.

b. The use of edge computing: Edge computing is a distributed computing paradigm that
brings computation and storage closer to the edge of the network. Edge computing
can be used to improve the performance and efficiency of ADASs by performing object
detection, recognition, and local tracking on the vehicle, implying that the greater the
storage on the ADAS implement vehicles, the better the performance of the ADASs.
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c. The use of 5G: 5G is the next generation of cellular network technology. 5G will offer
much higher bandwidth and lower latency than 4G, which will make it possible to
stream high-definition video from cameras to cloud-based servers for object detection,
recognition, and tracking. Thus, a better cellular network will aid in the continuous
training of the NNs and greatly improve the performance with newer data from real
environments.

These are just some of the future trends that are likely to shape the development of
object detection, recognition, and tracking for ADAS in the years to come.
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