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Editorial

Network Security Management in Heterogeneous Networks
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Heterogeneous networks, as a critical component of modern communication technol-
ogy, have experienced rapid development in recent years [1]. The emergence of technologies
like 5G [2], the Internet of Things (IoT) [3,4], and edge computing [5] has significantly en-
hanced the diversity and complexity of heterogeneous networks [6], making them pivotal
for diverse application demands.

However, the openness and diverse characteristics of heterogeneous networks expose
them to serious security challenges [7,8]. Such networks are vulnerable to attacks like
Distributed Denial of Service (DDoS) attacks [9], malware propagation [10], and jamming
attacks [11], posing significant risks to system stability and data privacy.

To address these pressing security challenges, researchers have developed a variety of
defense strategies aimed at mitigating risks in heterogeneous networks [12–17]. Compared
to traditional approaches, these strategies exhibit several distinct advantages, such as the
ability to efficiently handle large amounts of data while ensuring data security, flexibility
in tackling various security challenges, and resilience against advanced and persistent
cyberattacks. These approaches provide significant theoretical and practical support for
improving the security of heterogeneous networks.

The rapid growth of deepfake technology represents a societal risk [18]. The first
contribution to this Special Issue (Contribution 1) proposes a forensic defense method with
robust pseudo-Zernike moment watermarks. It employs an adaptive strategy to embed
a watermark in the image background, acting as a detection marker. After experimental
validation, it was found that the method can effectively improve the robustness of face-
switching detection in complex environments and in the presence of disturbances. On the
other hand, poor-quality images tend to hamper accurate threat detection, which, in turn,
affects the proper functioning of security measures [19]. In Contribution 2, the authors
propose an unsupervised low-light image enhancement method using a U-net neural
network based on Retinex theory and a Convolutional Block Attention Module (CBAM).
The method effectively enhances image details during image decomposition using Retinex
theory, while a local adaptive enhancement function is applied to improve reflection map
brightness. In addition, the designed loss function addresses the challenges of denoising,
brightness enhancement, illumination smoothness, and color restoration.

The growth of low-carbon transport, spurred by environmental policies and techno-
logical advances, highlights the importance of energy trading [20]. The issue of energy
trading in the electric vehicle (EV) market is beginning to attract attention from researchers.
Contribution 3 presents a multi-agent reinforcement learning (MADRL)-based auction al-
gorithm to optimize distributed energy trading in EV charger-sharing networks, enhancing
social welfare and efficiency. This approach leverages blockchain technology to ensure the
transparency and immutability of transactions, providing users with a transparent and

Electronics 2025, 14, 568 https://doi.org/10.3390/electronics14030568
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decentralized trading platform. Deep reinforcement learning (DRL) techniques are used
to train agents (such as EVs or charging stations) to make optimal decisions in uncertain
environments. Contribution 4 presents a blockchain-based framework for secure electricity
trading between EV operators and the electricity market. A Stackelberg game model using
the Tiny DRL algorithm is proposed to optimize trading strategies, enhancing efficiency in
uncertain markets.

Entity and relation extraction plays a key role in real-time cybersecurity monitoring
and analysis [21]. Contribution 5 introduces a model for entity and relation extraction using
an attention mechanism and a Graph Convolutional Network (GCN). The method uses
sequence labeling for entity span detection and employs multi-feature fusion to identify
all entity spans and build an entity span matrix. Next, based on the attention mechanism,
the authors construct an entity relation matrix to represent correlations between entities.
Finally, the entity span matrix and entity relation weighted matrix are fed into the GCN for
unified entity and relation extraction.

Contribution 6 addresses the challenge of drug repositioning using Graph Neural
Networks (GNNs) to model complex relationships between drugs, diseases, and their
subcategories. It incorporates a prototype-based feature-enhancement mechanism (PFEM)
along with a dual-task classification head (D3TC) to enhance the representation of these
relationships. The proposed method was experimentally validated on four public datasets.
The results showed that the method surpasses state-of-the-art approaches, significantly
enhancing drug repositioning accuracy and efficiency.

The rapid growth of the Internet of Vehicles (IoV) has led to increased focus on its
security challenges [22]. Federated learning (FL) can address security and privacy con-
cerns in the Intelligent Connected Vehicle (ICV) domain [23,24], but still faces challenges
like multimodal data integration [25], Byzantine attacks [26], and communication lim-
its [27]. In response to these challenges, Contribution 7 introduces a Byzantine-robust
multimodal FL framework to tackle these issues. It counters Byzantine attacks with a
gradient compression-based aggregation technique. It incorporates a multimodal learning
framework to improve adaptability to complex environments and uses top-k gradient
compression to enhance communication efficiency. Contribution 8 addresses the privacy
leakage risks associated with model parameter exchange in the peer-to-peer (P2P) archi-
tecture of FL for IoV scenarios. To address these risks, a differential privacy scheme is
proposed, allowing nodes to dynamically adjust noise levels in their model parameters
based on their distances to other nodes. This method balances security and model quality.

In edge computing, security is a key factor affecting system performance and user
trust [28–30]. The issue of security in Mobile Edge Computing (MEC) scenarios remains an
open challenge [31]. To address this, Contribution 9 presents a DRL-based security-aware
task-offloading framework. This framework uses an Advanced Encryption Standard (AES)
to secure data during task offloading. Furthermore, the task-offloading process is modeled
as a Markov Decision Process (MDP) and optimized with a Proximal Policy Optimization
(PPO) algorithm to reduce latency and energy use. Contribution 10 introduces an ap-
proach based on a large language model (LLM) called the Spatio-Temporal Large Language
Model with Edge Computing Servers (STLLM-ECS) to predict industrial production na-
tionwide PM2.5. To address security risks in centralized training, such as data leaks during
transmission, the paper introduces an edge-distributed learning framework, STLLM-ECS.
The framework uses a novel method, called NodeSort, to divide the nationwide sensor
network graph into subgraphs. Data and training tasks for each subgraph are allocated to
separate Edge Computing Servers (ECSs), reducing data leakage risks.

To address security challenges in heterogeneous networks, Contribution 11 intro-
duces the optimized multi-objective multipath transmission algorithm (MOMTA-HN). This
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algorithm integrates multiple objectives into path selection, allowing the calculation of
optimal paths. Using these redundant paths, the algorithm provides enhanced protection
for communication processes within heterogeneous networks.

Contribution 12 presents MedMixtral 8x7B, a medical LLM using the mixture-of-
experts (MoE) architecture and an offloading strategy for IoMT deployment. Using the
proposed efficient inference-offloading strategy, the model dynamically allocates its weights
between the CPU RAM and disk during run-time, effectively reducing GPU memory
consumption. This approach enables the deployment of MedMixtral 8x7B on resource-
constrained IoMT devices, thus enhancing user privacy protection.

Community detection is a crucial method for analyzing complex systems and orga-
nizational structures [32]. Contribution 13 reinterprets community structure by encoding
edge information, highlighting its essence by reducing transmitting edge information un-
certainty within community structures. This new definition better captures the intrinsic
characteristics of communities. Based on this concept, the community detection algorithm
CSIM is proposed, which aims to maximize community structure information as its opti-
mization objective and efficiently approximates optimal community partitioning, with its
practical effectiveness validated through experiments.

Scrap detection is key to linking the smelting process with the industrial internet,
prioritizing security and privacy [33]. Contribution 14 introduces FedScrap, a layer-wise
personalized FL framework that coordinates decentralized scrap data while safeguarding
privacy. FedScrap uses a self-attention mechanism to aggregate personalized client models
layer-by-layer, prioritizing data relevance. This approach enhances the accuracy of model
aggregation while addressing data heterogeneity and protecting data privacy.

Funding: This research was funded by the Talent Fund of Beijing Jiaotong University under Grant
number 2023XKRC050; by the National Natural Science Foundation of China (NSFC) under Grant
number 62402029, 62302539; by the China Postdoctoral Science Foundation under Grant number
2024T170047, GZC20230223, 2024M750165.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.
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Abstract: The rapid advancement of Artificial Intelligence Generated Content (AIGC) has significantly
accelerated the evolution of Deepfake technology, thereby introducing escalating social risks due
to its potential misuse. In response to these adverse effects, researchers have developed defensive
measures, including passive detection and proactive forensics. Although passive detection has
achieved some success in identifying Deepfakes, it encounters challenges such as poor generalization
and decreased accuracy, particularly when confronted with anti-forensic techniques and adversarial
noise. As a result, proactive forensics, which offers a more resilient defense mechanism, has garnered
considerable scholarly interest. However, existing proactive forensic methodologies often fall short in
terms of visual quality, detection accuracy, and robustness. To address these deficiencies, we propose
a novel proactive forensic approach that utilizes pseudo-Zernike moment robust watermarking.
This method is specifically designed to enhance the detection and analysis of face swapping by
transforming facial data into a binary bit stream and embedding this information within the non-facial
regions of video frames. Our approach facilitates the detection of Deepfakes while preserving the
visual integrity of the video content. Comprehensive experimental evaluations have demonstrated the
robustness of this method against standard signal processing operations and its superior performance
in detecting Deepfake manipulations.

Keywords: Deepfake detection; face swapping; proactive forensics; robust watermarking; image
hashing; pseudo-Zernike transform

1. Introduction

The rapid advancement of visual generation models, such as Generative Adversar-
ial Networks (GANs) [1] and Stable Diffusion [2], has significantly enhanced Deepfake
technology, particularly in the creation of highly realistic human face images. Face swap-
ping [3,4], a prominent form of Deepfake technology, poses a significant risk to current
social governance, necessitating focused preventive measures. This technique involves the
high-fidelity replacement of a specific person’s face in a given scene, effectively altering the
individual’s depicted identity. Despite the progress made in passive detection methods,
they often struggle with poor generalization and decreased accuracy, particularly when
dealing with anti-forensic techniques and adversarial noise. To address these challenges,
our study introduces a novel proactive forensic approach that employs pseudo-Zernike
moment robust watermarking, specifically designed to enhance the detection and analysis
of face swapping.
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The fundamental principle of face swapping is illustrated in Figures 1 and 2 pro-
vides a detailed comparison of outcomes from various face swapping algorithms. These
comparisons highlight the primary strategy of these algorithms, i.e., modifying only the
facial region of the target image to minimize distortion and maintain scene coherence,
while preserving the rest of the original image. This approach ensures the visual realism
of the resulting image, thereby enhancing the deceptive potential of the technology. Ex-
isting passive detection methods [5–12], which typically employ a supervised approach
to identify face swapping, often face challenges such as overfitting and susceptibility to
anti-forensic techniques and adversarial noise, resulting in reduced accuracy. As passive
detection functions as a post-event defense, it is unable to proactively prevent the malicious
dissemination of forged face images or videos. Moreover, the outcomes of passive detection
frequently lack the reliable evidence necessary to conclusively prove face forgery. To ad-
dress these limitations, researchers have introduced active forensic methods for Deepfake.
These methods center on embedding specific digital watermarks into images or videos
prior to their online distribution. This proactive strategy aims to authenticate and verify
the integrity of images with minimal training costs, thereby achieving higher detection
efficiency and providing a preemptive defense mechanism. For instance, Yu et al. [13]
pioneered an active detection scheme utilizing Artificial GAN Fingerprints (AFP). They
embedded these artificial fingerprints into the training data, ensuring their transferability to
the generated model, which resulted in the fingerprints being present in the forged outputs.
Similarly, Wang et al. [14] developed a method called FakeTagger, which safeguards the
security and privacy of facial images by embedding information into victim images. This
information can be retrieved after Deepfake generation to ascertain whether the images
have been forged and manipulated by GANs. To offer semantic-level protection for facial
images and prevent the manipulation of identity features, Zhao et al. [15] introduced an
active defense method based on identity watermarks. These injected tags are intricately
linked with facial identity features, making them highly sensitive to face-swapping manip-
ulations while remaining robust against traditional image modifications such as resizing
and compression. Furthermore, various studies [16–18] have explored active forensic
methods using robust watermarks, fragile watermarks, and semi-fragile watermarks, each
tailored to specific application scenarios and watermarking characteristics. Although these
methods provide innovative research directions and practical solutions for active Deepfake
forensics, their detection performance may vary when confronted with common signal
processing attacks, including JPEG compression, noise attacks, rotation, and scaling, as
well as Deepfake-specific attacks.

Figure 1. The fundamental principle of face swapping.
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Figure 2. Results of two face-swapping algorithms and difference maps between ground-truth target
images and face-swapping images.

The primary challenges in Deepfake detection include the need for methods that can
generalize well across different datasets and conditions, maintain high accuracy despite
adversarial attacks, and provide robust evidence for forensic analysis. Our approach aims to
overcome these challenges by focusing on proactive forensics, offering a more resilient defense
mechanism. Figure 3 presents the face-swapping detection method based on the pseudo-
Zernike moment robust watermarks proposed in this paper, alongside other active detection
methods that utilize watermarks. Traditional active forensic methods for face swapping
involve embedding predefined watermarking information directly into the protected face.
During the detection process, these methods compare the extracted watermarking from the
detected face with the originally stored watermarking information to ascertain whether a face
swap has occurred. However, these methods are susceptible to false positives, particularly
when exposed to conventional signal processing attacks, as the extracted watermarking can
significantly deviate from the original. Furthermore, they necessitate the management of
original watermarking information, imposing additional burdens on practical applications.
In contrast, the method proposed in this paper offers a more robust and practical solution.
It involves embedding a visual hash result, which represents the protected face information,
into the background region of the image. During detection, the watermarking information
extracted from the background is compared with a visual hash sequence regenerated from
the detected face. This approach not only reduces the likelihood of false positives but also
eliminates the need to manage original watermarking information, thereby enhancing the
method’s practicality and reliability in face-swapping detection.

Figure 3. Diagram compares existing watermark-based active detection methods with the
method proposed.
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Our contributions can be summarized as follows:

• We extend the robust watermarking technique proposed by Tang [19] to the domain of
active forensics specifically for face swapping. By integrating adaptive normalization
and embedding optimization methods, we achieve an optimal balance between robust-
ness and invisibility. This extension forms the basis of our proactive forensic scheme
for face swapping, which utilizes pseudo-Zernike moment robust watermarks.

• We develop a method to generate a hash sequence from the protected face, embedding
it into the background region of the image. This region remains unchanged during
the face-swapping process, thereby enhancing the watermarking’s resilience. Our
approach effectively withstands conventional signal processing attacks, including
compression, noise addition, and geometric distortions, as well as Deepfake attacks
that target facial features.

• An adaptive strategy is developed to determine suitable background regions for
watermarking embedding. By dividing the image into blocks and adaptively selecting
background regions based on the blocks occupied by the face, we address the challenge
of inconsistent face recognition results before and after watermarking embedding.
This inconsistency can lead to failed watermarking extraction. Our strategy ensures
the successful implementation of the proposed scheme, maintaining the integrity of
the watermarking process.

The structure of this paper is organized as follows: Section 2 reviews related work,
focusing on active forensic methods for Deepfake, robust watermarking techniques utilizing
geometric moments, and perceptual image hashing. Section 3 characterizes the problem
and elaborates on the detailed implementation of the proposed method. Section 4 presents
the experimental results and offers a comprehensive analysis. Finally, Section 5 summarizes
the research findings and concludes the paper.

2. Related Works

This paper examines the detection of face swapping through the application of robust
watermarks, specifically utilizing pseudo-Zernike moments. The study is grounded in the
background knowledge of active forensic methods for identifying Deepfake, the imple-
mentation of robust watermarks derived from geometric moments, and perceptual image
hashing. These foundational topics are systematically explored in Sections 2.1, 2.2 and 2.3,
respectively.

2.1. Deepfake Proactive Forensics

Active forensic methods for Deepfake focus on embedding specific information during
the content generation or dissemination process, which can later be used to verify the
authenticity of the content. Yu et al. [13] pioneered the application of image steganog-
raphy techniques to active forensics for Deepfake by introducing artificial fingerprints
into generative models. This innovation enables the identification and tracking of these
models. Liao et al. [20] proposed using adversarial learning to simulate various distortion
enhancement strategies, thereby improving the robustness of artificial or model finger-
prints. In another approach, Wang et al. [14] introduced FakeTagger, a method designed to
protect face security and privacy through image tagging. This method employs a simple
yet effective encoder–decoder design and channel coding to embed messages into facial
images, which can still be recovered after DeepFakes forgery. Despite its effectiveness,
FakeTagger is prone to misclassifying real face images that have undergone conventional
signal post-processing as fakes. Zhao et al. [15] introduced a tamper-proof label mechanism
to provide semantic-level protection for face images, aiming to prevent forgers from manip-
ulating identity features. This approach involves embedding watermarks as adversarial
labels into facial identity features. The entanglement of these labels with facial identity
features makes them highly sensitive to face-swapping manipulations while remaining
robust against traditional image modifications such as resizing and compression. However,
the method necessitates high-intensity watermarks to ensure detectability. To address both
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traceability and Deepfake detection, Wu et al. [16] introduced SepMark, an end-to-end
trainable separable watermarking method. This approach employs robust and fragile de-
coders to extract watermarks with varying levels of robustness, thereby providing a unified
forensic framework. Similarly, Liu et al. [17] extended the application of watermarks to
various forensic scenarios with BiFPro, a bidirectional face data protection framework
where watermarks exhibit either fragility or robustness. Despite the advancements these
methods offer in forensic capabilities for Deepfake content, they still encounter limitations
when confronted with complex attack scenarios.

2.2. Robust Watermarking Technique Based on Geometric Moments

Geometric moments are a feature extraction method for images, projecting them onto
a set of orthogonal basis vectors and exhibiting geometric invariance properties such as
rotation, scaling, and translation [21]. These moments, particularly in their low-order forms,
are statistically robust, meaning their characteristics remain stable even when image quality
degrades. This robustness makes geometric moments a popular choice in the literature
for implementing robust watermarks, enhancing the watermarking’s resilience. In the
realm of robust watermarking design, Hu and Xiang [22] pioneered a method that embeds
watermarking information into the low-order Zernike Moments (ZMs) of an image. This
approach achieves invariance to image scaling and arbitrary rotations, while also pro-
viding robustness against interpolation errors in geometric transformations and common
image processing operations. Recognizing that pseudo-Zernike Moments (PZMs) offer
greater noise resistance than traditional ZMs [23], Tang et al. [19] opted to embed robust
watermarks in PZMs. They utilized an adaptive normalization method to balance invari-
ance to pixel amplitude changes, robustness, and imperceptibility, significantly reducing
embedding distortion through their optimized strategy. Building on the robustness of
Fractional-order Orthogonal Moments (FoOM), Fu et al. [24] employed FoOM to enhance
ZMs/PZMs, thereby improving the numerical stability and computational accuracy of
these moments. This advancement further contributes to the development of robust water-
marking techniques. Pseudo-Zernike moments (PZMs) are recognized for their superior
performance in image reconstruction, numerical stability, and computational complexity
when compared to other geometric moments. Leveraging these advantages, Hu and Xi-
ang [25] developed a novel quantization watermarking strategy utilizing Polar Harmonic
Transforms (PHTs). By embedding bit information into PHTs, their approach achieved
enhanced watermarking robustness and increased embedding capacity.

2.3. Perceptual Image Hashing

Visual Hashing, also known as Perceptual Image Hashing (PIH), algorithms are
designed to extract visual features from images, generating unique hash values that remain
stable under minor modifications, such as rotation, cropping, gamma correction, and noise
addition, while being sensitive to perceptual variations [26]. This technique is crucial in
various applications, including image content identification, authentication, and copyright
protection. A significant contribution to this field was made by Tang et al. [27], who
introduced a robust PIH scheme. Their approach begins by normalizing input images to a
standardized size, followed by segmenting them into non-overlapping blocks. The entropy
of each block is then computed, and a two-dimensional discrete wavelet transform (2D
DWT) is applied for feature compression, resulting in compact hash codes. The similarity
between these hash codes is assessed using correlation coefficients, which highlights the
algorithm’s resilience to common image processing operations such as JPEG compression,
watermarking, gamma correction, Gaussian blurring, brightness and contrast adjustments,
scaling, and slight rotations. Furthermore, the method demonstrates a strong ability to
distinguish between different images, as evidenced by the low similarity scores. Shen
and Zhao [26] introduced a PIH method that utilizes color opponent components (COC)
and quadtree decomposition (QD). Qin et al. [28] developed a PIH method that employs
singular value decomposition (SVD) for preprocessing the original image. Perceptual
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features are then extracted using block truncation coding, followed by the application of
principal component analysis (PCA) to generate the final hash sequence. This method
achieves satisfactory collision resistance and security. Collectively, these methods enhance
the uniqueness and robustness of hash values by extracting visual features from images.

3. The Proposed Method

Images are frequently utilized as materials for Deepfakes due to their ease of acquisi-
tion and transmission. As these images circulate through various social networks, they often
undergo a range of intentional and unintentional conventional signal processing, which
can affect the integrity of embedded digital watermarks. Consequently, when employing
digital watermarks for active forensics, these watermarks are vulnerable to various attacks,
both intentional and unintentional, which can lead to their destruction. This vulnerability
is particularly pronounced when images are subjected to Deepfake manipulations, as there
is a high likelihood that the watermarks will be erased. Therefore, digital watermarks used
for Deepfake forensics must be robust against traditional signal processing attacks, such as
noise, compression, and geometric transformations, as well as resistant to novel Deepfake
attacks that utilize deep neural network content generation. This paper focuses on utilizing
digital watermarking techniques to detect and defend against image face-swapping attacks.
The proposed method employs robust watermarks based on pseudo-Zernike moments,
which are known for their strong resistance to various attacks, including compression,
noise, filtering, and geometric distortions [29]. Specifically, the study introduces a face-
swapping detection approach that leverages these robust watermarks. To extract semantic
features and ensure semantic consistency in published images, visual hash algorithms [30]
are used to generate watermarking information from the protected facial data within the
images. This watermarking information is then embedded into the background outside the
face region, making the method inherently resistant to Deepfake attacks targeting faces.
Furthermore, to ensure the embedded watermarking information can withstand conven-
tional signal processing attacks, it is incorporated into the pseudo-Zernike moments of the
background region. The face-swapping detection process involves two primary steps. First,
the face is extracted from the current image being tested, and the same visual hash method
is employed to generate the watermarking information representing the face. Second, the
embedded watermarking information is extracted from the background of the test image.
These two sets of watermarking information are then compared. If the difference between
them exceeds a certain threshold, it indicates that the face in the current test image has been
swapped. Conversely, if the difference does not exceed the threshold, the face is considered
authentic. The face-swapping detection method based on the pseudo-Zernike moment
robust watermarks proposed in this study meets three essential characteristics. Firstly, the
watermarking data remain extractable even after the images undergo conventional signal
processing attacks, such as compression, noise, and geometric deformations, enabling the
detection and verification of Deepfake attacks. Secondly, in cases of malicious manipulation,
such as face swapping, the embedded digital watermarks can be used for comparison and
authentication. Lastly, the embedded digital watermarks are visually imperceptible and
do not degrade the quality of the images. In conclusion, this method provides natural
resistance to both conventional signal processing attacks and Deepfake attacks targeting
faces, thereby offering robust Deepfake detection performance.

This paper proposes a proactive forensics method named “Pseudo-Zernike Moment-
Based Deepfake Detection (PZM-DD)” to enhance the resilience of deep learning-based
face replacement attacks against common signal processing attacks, including compression,
noise addition, and geometric deformations, as well as Deepfake-specific attacks. Figure 4
provides an illustration of the proposed face replacement proactive forensics method.
The proposed method comprises two main stages: robust watermarking embedding and
detection. The specific procedures are as follows:

(1) In the robust watermarking embedding phase, several preprocessing steps are applied
to the facial image intended for protection before it is uploaded to social networks.
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Initially, the face region within the image is identified through segmentation. A visual
hashing algorithm is then employed to extract visual features from this region, gener-
ating a hash sequence that serves as the watermarking. This sequence is embedded
into the non-facial areas of the image, as these background regions typically remain
unchanged during Deepfake operations. Embedding the hash sequence in these
areas enhances the watermarking’s robustness and provides a defense against deep
learning-driven face replacement attacks. To ensure the watermarking’s resilience
against common signal processing challenges such as compression, noise injection,
and geometric distortions, highly robust pseudo-Zernike moments are chosen as
the carrier for embedding. Once the watermarking embedding is complete, the face
region is restored to its original position within the image, resulting in an image that
integrates the protective visual hash value.

(2) In the detection phase, the received image undergoes a systematic analysis to ascertain
whether the face depicted is original and authentic or has been substituted with
another. The process begins with segmenting the face region from the received
image. Subsequently, a visual hash sequence is generated using the same visual
hashing method employed during the embedding phase. Following this, the robust
watermarking is extracted from the image’s background regions. The final step
involves calculating the Bit Error Rate (BER) between the generated visual hash
sequence and the extracted robust watermarking. The BER that exceeds a predefined
threshold suggests that the face in the image has experienced significant distortion,
indicating a possible replacement. Conversely, if the BER remains below the threshold,
it is concluded that the face in the image has not been tampered with.

Figure 4. The framework of our method.

3.1. Robust Watermarking Embedding Phase

The robust watermarking embedding phase is comprised of three essential steps: deter-
mining the embedding region, generating the watermarking information, and embedding
the robust watermarking. Each of these steps is crucial for the successful implementation of
the watermarking process. Figure 5 provides a flowchart that visually represents this phase,
offering a detailed depiction of each step involved. The flowchart begins with the initial
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input of the image, followed by the segmentation of the image into predefined regions. It
then outlines the extraction of pseudo-Zernike moments for each region, the normalization
process to ensure robustness against image manipulations, and the embedding of the wa-
termark information using Quantization Index Modulation (QIM) technology. Subsequent
steps include the inverse normalization and the reconstruction of the watermarked image,
taking into account rounding errors and compensation techniques to maintain image in-
tegrity. The flowchart concludes with the final output, which is the robust watermarked
image ready for distribution or further processing.

Figure 5. The process of generating robust watermarked images.

3.1.1. Determining the Embedding Region

Determining the location and region for watermarking embedding within facial images
is a critical preliminary step. This is essential for accurately comparing the hash value
of the facial area in the current image with the similarity of the extracted watermarking
information during the detection phase. To avoid interference with the facial area by
the watermarking information, this study chooses to embed the watermarking in non-
facial regions. Predominantly, deep learning-based facial detection networks, known
for their robust performance, are employed to identify facial regions. However, minor
variations in the positions of the facial bounding boxes obtained from these networks can
lead to inconsistencies between the positions during the watermarking embedding and
facial replacement detection phases. This inconsistency poses a significant challenge in
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accurately pinpointing the embedded area for watermarking detection. To address this
issue, this paper introduces a novel strategy named “Adaptive Block Selection Strategy
(ABSS)” for selecting the watermark embedding region, thereby ensuring consistency
between watermark embedding and detection. The ABSS strategy intelligently selects
the most suitable areas for embedding watermark information by analyzing both facial
and non-facial regions in the image. This method not only enhances the robustness of the
watermark but also increases resistance to various signal processing attacks.

This research begins by employing facial detection technology to identify the coor-
dinates of the facial bounding box within an image. As shown in Block a of Figure 6, the
facial image is divided into non-overlapping blocks, each measuring K × K pixels. The
alignment of each block with the facial region is assessed using the facial bounding box data.
If a block aligns with the facial region, it is excluded from the watermarking embedding
process; otherwise, it is considered a candidate for embedding. As shown in the right
figure of Figure 6b locks that overlap with the facial region, as indicated by the black areas
in the accompanying diagram, are not utilized for watermarking embedding, whereas
non-overlapping blocks are deemed suitable. Notably, the method proposed in this study
ensures that even minor displacements in the facial bounding box position do not signifi-
cantly impact the accuracy of determining block overlap. Consequently, the methodology
effectively addresses the challenge of accurately synchronizing the embedding area during
both the watermarking embedding and detection processes.

Figure 6. The determination of the watermark embedding region. (a) The facial region is divided
into 5× 5 non-overlapping blocks. (b) The black areas are not used for watermark embedding.

3.1.2. Generating the Watermarking Information

To verify whether a face in an image has been tampered with using a single image,
our approach involves embedding the visual hash sequence of the detected face as a wa-
termarking into a designated area. High-precision face detection is crucial to minimize
interference with the visual hash value. Therefore, our method employs the highly accu-
rate MTCNN [31] network to detect faces within an image and obtain the bounding box
information of the face. Once the bounding box information is acquired, the face image
is extracted, and the mean hash algorithm is applied to generate the hash sequence of the
face. This hash sequence is then converted into a binary sequence, which functions as the
watermarking information representing the face to be protected.

The inherent randomness of deep neural networks, such as the MTCNN, can result in
inconsistent facial bounding box information when detecting faces in the same image mul-
tiple times. This inconsistency may lead to mismatches between the facial images cropped
during the detection and embedding phases, thereby causing deviations in the facial hash
sequences and increasing the risk of false positives. To address this issue, this paper pro-
poses a facial repositioning strategy. The strategy involves embedding four integers, which
represent the top-left coordinates, length, and width of the facial bounding box, as auxiliary
information into the selected region of the image. This allows for accurate restoration of
the facial detection box position during the detection phase. Given the minor fluctuations
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in facial bounding box positions, only the last five bits of the binary representation of these
four integers are retained as auxiliary information to minimize the number of bits required.
Upon receiving the facial box information, the recipient can use these 20 bits of auxiliary
information to replace the last five bits of the four integers obtained during the detection
phase, thereby accurately restoring the facial box information from the embedding phase.
Experimental results demonstrate that the position fluctuations of facial boxes detected by
MTCNN range from −16 to +16, confirming that these 20 bits of auxiliary information are
sufficient for accurate restoration. Consequently, the watermarking information comprises
three components: the hash sequence representing the face to be protected, 20 bits for restor-
ing the facial box information, and 128 bits obtained by compressing the facial image using
the mean hash algorithm, resulting in a total of 148 bits. Our experiments were conducted
using the FaceForensics++ dataset, which includes 1000 real videos and 3000 Deepfake
videos. From each video, we extracted 8 frames at equal intervals, totaling 32,000 frames for
our tests. The dataset’s diversity in terms of age, gender, ethnicity, and facial expressions
allows for a thorough assessment of the proposed method’s performance across various
real-world scenarios.Through our experiments, we have determined that 20 bits of auxiliary
information are sufficient to accurately restore the facial bounding box information. This
quantization level ensures that even minor fluctuations in facial bounding box positions
do not significantly impact the accuracy of determining block overlap, which is critical for
the synchronization of the embedding area during both the watermarking embedding and
detection processes.

3.1.3. Embedding the Robust Watermarking

This section outlines the process of embedding watermarking information into selected
regions, as detailed in Section 3.1.1. The proposed Deepfake face detection framework
employs the watermarking embedding and extraction scheme introduced by Tang [19]. This
approach involves calculating pseudo-Zernike moments for each non-overlapping K× K
block within the designated embedding region, followed by adaptive normalization of these
moments. Subsequently, the watermarking information is embedded bit-by-bit into the
corresponding moments using Quantization Index Modulation (QIM) technology. Figure 3
illustrates the watermarking embedding process, with further specifics provided below.

(1) Calculation of pseudo-Zernike moments. Consider an image block I of size K× K.
The pseudo-Zernike moment, denoted as Znm, is calculated for order n (where 0 ≤ n ≤ N)
and repetition m (where 0 ≤ |m| ≤ n), with N representing the maximum order. The
radial pseudo-Zernike polynomial Rnm within the inscribed circle of the image block I is
computed as follows:

Rnm(r) =
n−|m|
∑
k=0

(−1)k (2n + 1− k)!rn−k

k!(n + |m|+ 1− k)!(n− |m| − k)!
(1)

Here, ! denotes factorial. Using Rnm, the pseudo-Zernike moment Znm is determined
by the following:

Znm =
n + 1

π

N−1

∑
s=0

N−1

∑
t=0

I(xs, yt)V∗nm(xs, yt)∆xs∆yt (2)

where I(xs, yt) is the pixel value at position (xs, yt) in the image block, and V∗nm(xs, yt) is
the conjugate of Vnm(xs, yt). Vnm(xs, yt) is determined by the following:

Vnm(xs, yt) = Rnm(r)eimθ , (3)

(2) Selection and normalization of pseudo-Zernike moments. While Equation (2) facili-
tates the calculation of pseudo-Zernike moments for discrete digital images, there are com-
putational challenges associated with the calculation of pseudo-Zernike moments, specif-
ically when the repetition parameter m = 4j (where j ∈ Z). In these cases, the moments
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deviate from orthogonality, which affects the accuracy of their calculation. Consequently,
such moments are excluded from watermarking embedding. The selected pseudo-Zernike
moments for embedding are as follows: C = {Znm | 0 < n ≤ N, 0 < m ≤ n, m 6= 4j}.

Assuming each pseudo-Zernike moment carries one watermarking bit, there are
L watermarking bits wi (where wi ∈ {0, 1}, i = 1, 2, . . . , L) with L < length(C). Us-
ing a key, L moments are randomly selected from set C to form the following: Z =
{Zn1,m1, Zn2,m2, . . . , ZnL,mL}.

Normalization is employed to address the significant alterations in the magnitude
of pseudo-Zernike moments due to scaling operations. The normalization formula is as
follows:

ZR
ni,mi =

Zni,mi

Z00
(4)

Normalization ensures scale invariance. Given that low-order pseudo-Zernike mo-
ments exhibit greater stability against common signal processing attacks than high-order
moments, higher embedding strength is applied to high-order moments for enhanced
robustness under the same embedding distortion. An adaptive normalization strategy is
thus adopted:

ZR
ni,mi =

Zn,mi

Z00
× Tni (5)

where Tni is an adaptive normalization weight greater than zero, varying according to the
order of the pseudo-Zernike moment. Consequently, the range of ZR

n,mi is [0, Tni].
Given the challenge of theoretically deriving the optimal Tni, a heuristic strategy is

employed, setting it as follows:

Tni = Tstart − γ× ni (6)

Here, Tstart is the initial value of the adaptive normalization weight, and γ(γ > 0) is a
global parameter for adjusting watermarking embedding strength, with ni denoting the
order of the pseudo-Zernike moment into which the ith watermarking bit wi is embedded.
Parameters Tstart and γ are determined through experimental simulations to adjust the
invisibility of the watermarking information.

(3) Embedding of watermarking information. Normalized pseudo-Zernike moments
ZR

ni,mi are invariant to scaling attacks. To achieve rotation invariance, the amplitude of
rotation-invariant pseudo-Zernike moments |ZR

ni,mi| is used as the watermarking carrier.
To balance robustness, invisibility, and embedding capacity, the QIM robust watermarking
technique is employed:

|ZRj
ni,mi| =

[
|ZR

ni,mi| − βi(j)
∆

]
× ∆ + βi(j), i = 1, 2, . . . , L, j ∈ {0, 1} (7)

where [·] denotes the rounding function, ∆ is the quantization step, and βi(j) is the dither
value, constrained by βi(1) = βi(0) + ∆/2.

After embedding the watermarking into the normalized pseudo-Zernike moments,
inverse normalization is performed to obtain the watermarking-embedded pseudo-
Zernike moments:

ZW
ni,mi =

|ZRj
ni,mi|
|ZR

ni,mi|
× zR

ni,mi (8)

(4) Reconstruction of robust watermarked images. Once all watermarking information
is embedded, the generated watermarking-embedded pseudo-Zernike moments ZW

ni,mi are
used to reconstruct the robust watermarked image Iintr. To ensure the pixel values of the
reconstructed image are real numbers, the conjugate moments Z∗Rn,mi undergo the same em-
bedding operation to obtain Z∗∗ni,−mi. Since only part of the pseudo-Zernike moments carry
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watermarking information, the reconstruction error caused by watermarking embedding is
added to the original image to generate the robust watermarked image Iinter:

Iinter = I +

[
L

∑
i=1

(
(ZW

ni,mi − Zni,mi)Vni,mi + (ZW
ni,−mi − Zni,−mi)Vni,−mi

)]
(9)

Since the pixel values of Iinter must be integers, rounding operations are necessary,
leading to rounding errors. To mitigate these errors, a rounding error compensation tech-
nique is adopted. Specifically, the pseudo-Zernike moments Z̃W

ni,mi of Iinter are recalculated.
Due to rounding, Z̃W

ni,mi does not match ZW
ni,mi. The difference between them represents

the rounding error, which can be used to reduce such errors. An error image Ierror is
reconstructed similarly to Equation (8):

Ierror =

[
L

∑
i=1

(
(ZW

ni,mi − Z̃ni,mi)Vni,mi + (ZW
ni,−mi − Z̃ni,−mi)Vni,−mi

)]
(10)

The error image Ierror is superimposed onto Iinter to compensate for rounding er-
rors, resulting in the final robust watermarked image Iw. This process is mathematically
represented as follows:

Iw = Iinter + Ierror (11)

3.1.4. Watermarking Extraction

The watermarking extraction process, depicted in Figure 7, is essentially the reverse
of the embedding process. Initially, the robust image is segmented into blocks based on a
predetermined threshold K. The background area containing the embedded watermarking
is identified using the face bounding box information. Subsequently, pseudo-Zernike mo-
ments are computed for the background image, and the selected moments are normalized
to form the set ZRrw = {ZRrw

n1,m1, ZRrw
n2,m2, . . . , ZRrw

nL,mL}. The watermarking information w is
then extracted using the following formula:

|ZRrj
ni,mi| =

[
|ZRrw

ni,mi| − βi(j)
∆

]
× ∆ + βi(j), i = 1, 2, . . . , L, j ∈ {0, 1} (12)

w′i =





0 , if
∣∣∣ZRrw

ni,mi

∣∣∣−
∣∣∣ZRr0

ni,mi

∣∣∣ ≤
∣∣∣ZRrw

ni,mi

∣∣∣−
∣∣∣ZRr1

ni,mi

∣∣∣

1 , if
∣∣∣ZRrw

ni,mi

∣∣∣−
∣∣∣ZRr0

ni,mi

∣∣∣ >
∣∣∣ZRrw

ni,mi

∣∣∣−
∣∣∣ZRr1

ni,mi

∣∣∣
(13)

3.2. Robust Watermarking Detection Phase

To assess whether the face in the received image Ir has been altered, a detection process
is conducted, as shown in Figure 8. This phase incorporates the watermarking extraction
process outlined in Figure 7, with the following detailed steps:

(1) Face detection. The MTCNN network, previously utilized during the robust wa-
termarking embedding phase, is employed to detect the face in Ir. This step yields
the face bounding box information Lr, which includes the coordinates of the top-left
corner and the dimensions of the bounding box.

(2) Watermarking region determination and extraction. The watermarking detection
region is identified using the method described in Section 3.1.1. The watermarking
extraction process, as illustrated in Figure 7, is executed to retrieve the embedded
watermarking information from the designated region. Pseudo-Zernike moments
are calculated for each block, and the moments are selected and normalized before
applying Equations (11) and (12) to extract the watermarking. A total of 148 bits of
information is extracted, comprising the watermarking information H and 20 auxiliary
bits embedded during the robust watermarking embedding phase.
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(3) Restoration of face bounding box information. Utilizing the auxiliary information, the
last 5 bits of the four integers in the face bounding box information of the received
image are replaced to accurately restore the face bounding box information from the
embedding phase.

(4) Face localization and hash calculation. With the restored face bounding box infor-
mation, the current face location is repositioned, and the face image I f is extracted
from Ir. The perceptual hash binary sequence Hr of the face to be detected is then
generated using the mean hashing method.

(5) Error rate calculation. Calculate the bit error rate (BER) between H′ and Hr. If Ir
is not under attack, the BER will be 0. If Ir is subjected to typical signal processing
attacks such as compression, noise addition, or geometric transformations, the BER
will be below the predefined threshold B f . However, if Ir undergoes face replacement
operations, the BER will exceed the threshold B f .

Figure 7. The process of generating robust watermarked images.

Figure 8. The process of detection for face swapping.
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4. Experimental Results and Analysis
4.1. Experiment Setups

(1) Datasets. Following the mainstream methods in face swapping detection, this paper
employed the public dataset FaceForensics++ [32] in the experimental simulation
process. FaceForensics++ is widely used for Deepfake face detection and contains
1000 real videos downloaded from YouTube. All videos feature a traceable and
mostly unobstructed frontal face with a resolution of at least 480p. Using Face2Face,
FaceSwap, DeepFakes, and NeuralTextures, four automatic face-swap algorithms
were applied to these 1000 real video sequences, resulting in 3000 Deepfake videos.
Additionally, the videos were subjected to three different levels of compression: no
compression (C0), compression rate 23 (C23), and compression rate 40 (C40), yielding
videos with different compression rates, and totaling 3 × 1000 segments. In the
experimental phase, 50 videos from the FaceForensics++ dataset were selected for
testing. Given the large number of frames in each video and the high time and
computational costs associated with embedding and extracting watermarks for every
frame, this study extracted eight frames from each video at equal intervals, totaling
400 images for subsequent experimental simulation.

(2) Parameter settings. The overall scheme can be divided into three main algorithmic
modules: a robust watermarking algorithm, an image compression hashing algorithm,
and the image blocking algorithm proposed in this paper. This section will introduce
the parameters involved in each algorithm, with specific parameter settings shown in
Table 1. For the robust watermarking algorithm, this paper adopts Tang’s [19] scheme,
using pseudo-Zernike moments as the carrier for watermarking embedding and em-
ploying adaptive normalization to enhance the robustness of the watermarking while
maintaining invisibility. This scheme only uses the robust watermarking embedding
strategy from Tang’s [19] scheme, omitting the integrity authentication and reversible
watermarking parts, involving three main parameters: the watermarking embedding
strength parameter ∆, the number of pseudo-Zernike moments nmax, and the nor-
malization parameters Tstart and γ. The parameter ∆ controls the invisibility and
robustness of the watermarking; nmax determines the highest order and number of
calculated pseudo-Zernike moments, affecting the number of available carriers and
computation time; parameters Tstart and γ are used to control the invisibility of the
watermarking image. For the image-blocking algorithm, the main consideration is
the setting of the block size threshold K. Different values of K significantly affect
the stability of the scheme’s performance, so it needs to be determined through ex-
periments. This paper sets K = 90, which was derived from extensive simulation
experiments to ensure the maximum accurate extraction of watermarking informa-
tion in noise-free conditions. These simulation experiments will be introduced in
Section 4.2. Additionally, due to the large number of video frames, this experiment
extracts eight frames from each video at equal intervals, totaling 400 frames for all
subsequent experiments.

Table 1. Parameter Settings.

Module Parameter Settings

Robust Watermarking Algorithm ∆ = 100, nmax = 18, Tstart = 2000, γ = 10
Image Blocking K = 90

While our work involves a number of parameters and design choices, we aim to
provide clarity and guidance for future researchers. Here are some practical guidelines for
tuning the parameters based on different scenarios:

• Parameter ∆: This controls the robustness and imperceptibility of the watermark.
For applications requiring higher security, consider increasing ∆. However, this may
slightly reduce the image quality.
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• Pseudo-Zernike Moments Order nmax: The order affects the number of carriers avail-
able for watermarking. Higher orders provide more robustness against attacks but
increase computational complexity.

• Normalization Parameters Tstart and γ: These parameters control the invisibility of the
watermark. Adjusting them can help balance the visibility of the watermark against
its robustness.

• Block Size K: The choice of block size significantly affects the stability of the scheme’s
performance. We recommend starting with K = 90 and adjusting based on the specific
characteristics of the dataset.

(3) Comparisons. To assess the efficacy of the face replacement detection method based
on the robust watermarking introduced in this study, we conducted an experimental
simulation phase. During this phase, we selected two comparative methods: FakeTag-
ger, developed by Wang [14], and the bidirectional facial data protection framework
(BiFPro), proposed by Liu et al. [17]. FakeTagger represents the pioneering approach
in utilizing robust watermarking for proactive forensics in Deepfake detection. It
employs an encoder–decoder mechanism to embed watermarking information into
the facial region of an image. This mechanism is trained using Deepfake tampering
simulations, which enhances the watermarking’s resilience against deep tampering
and improves the accuracy of forgery detection. On the other hand, BiFPro focuses on
ensuring the traceability of protected facial images by embedding robust watermarks.
This capability allows for the tracking of fake faces even after facial swapping has
occurred. By comparing these methods, we aim to verify the effectiveness of the
proposed method in this paper.

(4) Evaluation metrics. To evaluate the visual quality, objective visual quality assessment
metrics such as Peak Signal-to-Noise Ratio (PSNR) [33] and Structural Similarity
Index (SSIM) [34] were used in the experimental simulation. In addition, to assess the
robustness of the proposed method, the average bit error ratio (BER) was used as an
evaluation metric; to evaluate the accuracy of face replacement detection, accuracy
(ACC) was used as an evaluation metric. The specific definitions of each metric are
as follows:

PSNR. This is an objective image quality assessment metric, and a higher value
indicates higher image quality. Specifically, for an original image I and a noisy image K of
size m× n, the mean square error (MSE) is defined as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (14)

The calculation formula for PSNR is as follows:

PSNR = 10 · log10
(MAXI)

2

MSE
(15)

where MAXI represents the maximum pixel value in the original image I, for example, for
a grayscale image MAXI = 255.

SSIM. Based on the similarity of structural information in the image, this metric better
reflects the human visual system’s judgment of image similarity. SSIM comprehensively
assesses from three aspects: brightness, contrast, and structure. For an original image I and
a noisy image K of size m× n, the SSIM is expressed as follows:

SSIM =
(2µIµK + C1)(2σIσK + C2)

(µ2
I + µ2

K + C1)(σ
2
I + σ2

K + C2)
(16)

where µI and µK are the average values of I and K, respectively, calculated as follows:

µI =
1

mn

m

∑
i=1

n

∑
j=1

[I(i, j)] (17)
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and σ2
I and σ2

K are the variances of I and K, respectively, given by the following:

σ2
I =

1
mn− 1

m

∑
i=1

n

∑
j=1

[I(i, j)− µI ]
2 (18)

while σIK is the covariance of I and K:

σIK =
1

mn− 1

m

∑
i=1

n

∑
j=1

[I(i, j)− µI ][K(i, j)− µK] (19)

Additionally, C1 and C2 are two stability coefficients, calculated as C1 = (D1L)2 and
C2 = (D2L)2. Here, D1 = 0.001, D2 = 0.003, and L is related to the image type. For uint8
type images, L = 255.

BER. The average bit error ratio, which represents the percentage of bits that change
during transmission due to noise, interference, etc., compared to the total number of
bits. The extracted binary watermarking sequence from the robust watermarking image
is compared with the binary hash sequence obtained from the encrypted face area, and
the percentage of different bits is calculated. Suppose that the embedded watermark is
ω ∈ {0, 1}B×L and the extracted watermark is ω̃ ∈ {0, 1}B×L. Then, BER is computed as

BER(ω, w̃) =
1
R
× 1

L
×

B

∑
i=1

L

∑
j=1
|ωi×j − ω̃i×j| × 100% (20)

And the bitwise accuracy is defined as follows:

Bitwiseaccuray(ω, w̃) = 1− 1
B
× 1

L
×

B

∑
i=1

L

∑
j=1

∣∣∣ωi×j − ω̃i×j
∣∣∣ (21)

ACC. ACC is used to evaluate the accuracy of predictions, and represents the per-
centage of samples that are correctly predicted out of the total number of samples. The
calculation method for accuracy is as follows:

ACC =
TP

TP + FP
(22)

Here, TP (True Positives) refers to the number of samples that are correctly predicted
as the positive class. FP (False Positives) refers to the number of samples that are incorrectly
predicted as the positive class.

4.2. Impacts of the Threshold Parameter on Image Block Size K

To tackle the challenge of inconsistent face bounding box locations before and after
watermarking embedding in facial recognition systems, this paper introduces an image
tiling method. In real-world scenarios, if the face bounding box at the time of embedding is
near the edge of a tile, the bounding box during the extraction phase might extend beyond
the original tile’s boundaries, causing errors in watermarking domain localization and
resulting in the extraction of incorrect watermarking information. Thus, the selection of tile
size is critical for the effectiveness of this approach. To identify the most suitable tile size,
we conducted extensive simulations across 800 images, testing tile sizes ranging from 10 to
100 pixels, with a step increment of 10 pixels. The results, summarized in Table 2, indicate
that a tile size of 90× 90 pixels achieves the best performance, effectively minimizing the
adverse effects of changes in face bounding box positions.

As shown in Table 2, when the tile size K is set to 90, setting the image tiling to
90× 90 pixels can maximize the reduction in the impact caused by changes in face bounding
box positions before and after embedding.
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Table 2. Impact of different tiling sizes K(K ∈ [10, 100]) on performance.

K 10 20 30 40 50 60 70 80 90 100

Correct Extraction 530 582 587 611 623 614 628 633 647 643

Incorrect Extraction 270 218 213 189 177 186 172 167 153 157

Average BER 0.128 0.093 0.082 0.077 0.071 0.065 0.066 0.064 0.059 0.061

4.3. Comparison with Other Proactive Forensics Methods
4.3.1. Robustness Against Conventional Signal Processing Attacks and the Determination
of Parameter Threshold B f

The algorithm proposed in this paper aims to identify whether faces in images have
been forged while ensuring that the scheme can resist common signal processing attacks.
This section discusses the robustness of the watermarking information against various
conventional signal attacks and determines the key parameter B f for proactive forensics.

To verify the robustness of the digital watermarking technique proposed in this
paper, we applied common signal attacks to video images with embedded watermarks.
These attacks primarily include Gaussian low-pass filtering, JPEG compression, JPEG2000
compression, and video compression in MP4 format. We then evaluated the BER of the
proposed watermarking without performing face replacement.

During the simulation, we conducted experiments on four videos, extracting a total of
32 face images. We tested these images with Gaussian low-pass filtering, JPEG compression,
and JPEG2000 attacks. The parameters for Gaussian low-pass filtering were set to [0.1, 1]
with a step size of 0.1. The quality factors for JPEG compression and compression rates
for JPEG2000 were both set to [10, 100] with a step size of 10. We then calculated the
average BER for the 32 images under different attack parameters. Tables 3–5 present
the experimental results of the proposed method’s robustness against common signal
processing attacks.

As shown in Tables 3–5, under all attack parameters of Gaussian low-pass filtering,
the average BER does not exceed 0.13. For JPEG attacks, the BER exceeds 0.16 only when
the quality factor is less than 40; otherwise, it remains below 0.16. Similarly, for JPEG2000
attacks, the BER exceeds 0.15 only when the compression rate is higher than 80. Given
that in real-world scenarios, normal video transmission (e.g., on social media) typically
encounters attack parameters no stronger than those set in our experiments (e.g., JPEG
compression quality factor does not exceed 80), we set the BER threshold for face forgery
detection to 0.20. This threshold is sufficient to resist various common signal processing
attacks encountered during normal transmission.

In other words, when a receiver receives a video, they authenticate the face information
by extracting the watermarking and comparing it with the face information to calculate
the BER. If the BER is below 0.20, we consider that the video has only experienced normal
channel loss during transmission. If the BER exceeds 0.20, we conclude that the video has
undergone more severe attacks, such as face forgery attacks. This method helps distinguish
between normal channel loss and malicious face manipulation.

Table 3. Gaussian low-pass filtering attack.

K 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Average BER 0.03945 0.03945 0.04025 0.07344 0.08840 0.10793 0.11426 0.11307 0.11542 0.10983

Table 4. JPEG attack.

Param 10 20 30 40 50 60 70 80 90 100

Average BER 0.31464 0.20938 0.17690 0.14938 0.15139 0.14111 0.13284 0.12179 0.10040 0.08755
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Table 5. JPEG2000 attack.

Param 10 20 30 40 50 60 70 80 90 100

Average BER 0.08579 0.11451 0.11571 0.12911 0.13689 0.14055 0.14861 0.16913 0.17215 0.16909

4.3.2. Robustness Against Face Swapping

For malicious face replacement operations, we selected two representative methods:
DeepFaceLab [35] and Deepfake [36]. Using BER as the evaluation metric, this paper
performed face-swapping attacks on videos and ultimately assessed the BER of each
tampered image using both DeepFaceLab and Deepfake. During the simulation, the face
images were cropped to a size of 256× 256 pixels. In Section 4.3.1, we determined the
critical threshold Bmax to be 0.2. This threshold is lower than the average BER values
shown in Table 6 for both tampering methods. Therefore, when the sample size is large, the
accuracy of face tampering detection, measured by the ACC metric, can achieve a good
level. Table 7 presents the average BER performance under different face-swapping attacks
on the FF++ dataset.

Table 6. Average BER under different face swapping attacks on the FF++ dataset.

Face Swapping Method Deepfake DeepFaceLab

Average BER (%) 0.267913 0.344242

Table 7 shows the performance of the proposed method compared to other schemes,
specifically FakeTagger and BiFPro, in detecting face forgery on images of size 256× 256 pixels
under Deepfakes and DeepFaceLab tampering. It can be seen that the proposed method
performs slightly worse than other schemes under Deepfakes tampering but outperforms
them under DeepFaceLab tampering. By adjusting the threshold B f , the detection accuracy
can be effectively improved. For example, setting B f to 0.18 increases the detection accuracy
by more than 1 percentage point for DeepFaceLab and nearly 8 percentage points for
Deepfakes, as shown in Table 8. However, adjusting B f comes at a cost; while reducing the
threshold significantly improves ACC, it also affects the robustness of the scheme against
common signal attacks. This trade-off will be discussed in Section 4.3.3.

Table 7. Face forgery detection accuracy and AUC (%).

Detection Methods
Deepfake DeepFaceLab

ACC AUC ACC AUC

FaceTagger [14] - - 87.80 89.90

BiFPro [17] 92.18 93.56 93.75 94.18

Capsule [37] 70.25 73.85 73.75 78.62

SPSL [38] 81.57 82.82 83.84 86.53

LipForensics [39] 86.18 88.56 83.75 84.65

Proposed (B f = 0.2) 72.40 75.68 94.27 96.22

Proposed (B f = 0.18) 80.20 82.56 95.83 97.88

Table 8. Invisibility performance of image frames post-watermarking.

Metric Watermarked Image Tampered with DeepfakeLab

PSNR (dB) 40.088 30.773

SSIM 0.98228 0.96448
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4.3.3. Robustness of the Methods Are Influenced by Different Threshold Settings

In Section 4.3.2, the impact of different decision thresholds on the accuracy of face
forgery recognition is analyzed. This subsection examines how these thresholds influence
the robustness of the proposed method. It is observed that as the decision threshold in-
creases, the accuracy of identifying face forgery decreases, while the method’s resistance to
common signal attacks becomes more pronounced. For example, when the decision thresh-
old is set extremely low, the accuracy of recognizing face forgery approaches 100%, but
the method’s ability to resist common signal attacks is severely compromised. Conversely,
setting the threshold close to 1 renders the scheme nearly ineffective for proactive face
forgery forensics. Therefore, the choice of decision threshold critically affects the overall
performance of the solution.

The scheme’s performance in detecting deep face forgery, with decision thresholds
set to 0.18 and 0.2, is analyzed as depicted in Figure 3. The experiment introduces noise
using Gaussian filtering, JPEG, and JPEG2000, with attack parameters and step sizes shown
in Figure 9. A higher threshold setting significantly enhances the scheme’s ability to
differentiate between noisy images and face forgery, thereby improving its robustness.

The results in Table 7, which detail the performance of face forgery recognition under
various thresholds, support the argument presented in this section. Higher decision
thresholds lead to decreased accuracy in identifying face forgery but increased robustness
against common noise attacks, and the opposite is also true.

Figure 9. ACC of different thresholds under various types of conventional signal attacks.

4.4. Visual Quality

To effectively address the challenge of face replacement forgery detection through
digital watermarking, it is essential to achieve high detection accuracy while maintaining
the visual quality of the watermarked face images. This ensures that the embedded water-
marking remains inconspicuous, thereby evading detection by adversaries and enhancing
the security of digital watermarking-based face replacement detection schemes. A critical
aspect of this approach is balancing robustness and imperceptibility, which can be managed
by controlling the embedding strength parameter under a fixed capacity. In our experi-
mental simulations, we employed a moderate embedding strength parameter of ∆ = 100
to embed a 128-bit watermarking into videos from the FF++ dataset. For each video,
eight frames were selected to serve as carriers for the watermarking, and upon completion
of the embedding process, the average PSNR value for these frames was calculated.

Figure 10 illustrates the effect of watermarking embedding, with the original image
displayed on the left and the watermarked image in the center. Visually, it is challenging to
discern any differences between the two images. The watermarked image achieves a PSNR
of 38.76dB and an SSIM of 0.97, indicating excellent visual quality post-watermarking and
underscoring the high level of concealment of the embedded watermarks. The image on the
far right shows the result after tampering with the watermarked image using DeepfakeLab,
which results in a PSNR of 33.46dB and an SSIM of 0.96. Despite the noticeable differences
in image quality from the original, the tampered face in the watermarked image blends
naturally with the background, making it difficult to detect facial tampering through visual
inspection alone.
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Table 8 presents the average image quality metrics after embedding watermarks in
the FF++ dataset and following tampering with the DeepfakeLab technique. This table
effectively demonstrates the impact of watermarking and subsequent tampering on the
visual quality of images, as quantified by the PSNR and SSIM metrics. The significant
differences in PSNR and SSIM values between the watermarked and tampered images
highlight the robustness of the watermarking technique against tampering.

Figure 10. The visual effects of watermarking image and Deepfake image. (a) Source image:
PSNR = Inf, SSIM = 1.0; (b) Watermarking image: PSNR = 38.76, SSIM = 0.9710; (c) DeepFaceLab
image: PSNR = 33.46, SSIM = 0.9680.

5. Discussion

Our findings indicate that the proposed method PZM-DD shows promise in enhancing
the resilience of deep learning-based face replacement attacks against common signal
processing attacks. The results suggest that our approach is effective in maintaining the
integrity of watermarks under various conditions. Despite the positive outcomes, several
open questions remain. For instance, the scalability of our method to real-time applications
requires further investigation. Additionally, the impact of our method on the visual quality
of high-resolution images is an area that merits more research.

This work is pioneering in integrating traditional robust watermarking for active
forensic detection of face forgery, thereby introducing a new research direction and frame-
work for Deepfake forensics. While most existing solutions that use digital watermarking
for forensic purposes rely on deep watermarking, these approaches, despite enhancing
the traceability of Deepfake content, face limitations in complex attack scenarios due to
restricted training datasets, resulting in poor generalization. Traditional robust watermark-
ing, with its fixed embedding and extraction parameters, offers superior generalization
over deep watermarking. However, this framework, which employs traditional robust
watermarking, experiences lower computational efficiency and slower image processing
compared to deep watermarking. Future research should focus on optimizing the forensic
algorithm’s computational complexity to improve real-time performance.

6. Conclusions

This paper introduces a proactive forensic method, PZM-DD, for deep face swap-
ping, employing robust watermarking based on pseudo-Zernike moments. Our method
not only enhances detection accuracy but also preserves the integrity of the watermark
when subjected to common signal processing attacks. Specifically, our experimental results
demonstrate that the detection accuracy rate remains above 90% under standard signal
processing operations, and its robustness against JPEG compression attacks has reached
an industry-leading level. Despite these achievements, we acknowledge unresolved is-
sues, such as the scalability of our method in real-time applications and its impact on
high-resolution images, which necessitate further investigation. Additionally, our study
highlights that certain groups, including public figures and politicians, are particularly
vulnerable to the misuse of Deepfake technology. To mitigate these risks, we recommend
that these individuals increase their awareness of Deepfake technology and promptly notify
relevant legal authorities upon encountering suspicious content. Looking forward, we pro-
pose that future research should prioritize the following areas: first, the exploration of more
efficient algorithms to enhance real-time performance; second, the examination of water-
marking technology’s effects on images of varying resolutions and finally, the strengthening
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of legal and ethical research on Deepfake misuse to develop more comprehensive protective
measures.

While our study has demonstrated the effectiveness of the proposed method, there
is scope for further enhancement. One promising direction is the exploration of dy-
namic thresholding to overcome the limitations of a fixed BER threshold. We propose
future research into context-aware models, such as statistical analyses, machine learning
classifiers, or deep learning approaches, that could adapt thresholds based on signal
properties or attack scenarios. Additionally, we will employ more standardized bench-
marks using curated datasets that reflect real-world complexities, including adversarial
and multimodal content, to further validate the robustness and practical applicability of
our proposed method.
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Abstract: Captured images often suffer from issues like color distortion, detail loss, and significant
noise. Therefore, it is necessary to improve image quality for reliable threat detection. Balancing
brightness enhancement with the preservation of natural colors and details is particularly challenging
in low-light image enhancement. To address these issues, this paper proposes an unsupervised
low-light image enhancement approach using a U-net neural network with Retinex theory and a
Convolutional Block Attention Module (CBAM). This method leverages Retinex-based decomposition
to separate and enhance the reflectance map, ensuring visibility and contrast without introducing
artifacts. A local adaptive enhancement function improves the brightness of the reflection map, while
the designed loss function addresses illumination smoothness, brightness enhancement, color restora-
tion, and denoising. Experiments validate the effectiveness of our method, revealing improved image
brightness, reduced color deviation, and superior color restoration compared to leading approaches.

Keywords: low-light image enhancement; Retinex theory; attention mechanism; unsupervised
learning

1. Introduction

Low-light conditions often result in poor image quality, hindering accurate threat
detection and compromising security measures. Traditional supervised methods require
extensive labeled datasets, which are impractical to obtain in diverse and dynamic envi-
ronments. Unsupervised learning approaches, on the other hand, can leverage abundant
low-light images without the need for labeled counterparts, enabling the development
of robust enhancement algorithms. These algorithms improve the visibility and detail
of images captured under challenging lighting conditions, thus enhancing the reliability
and effectiveness of security systems across heterogeneous networks. By ensuring better
image quality, unsupervised low-light image enhancement contributes to more accurate
monitoring and analysis, ultimately strengthening overall network security. Therefore,
improving low-light images is essential for security and surveillance.

Algorithms for enhancing low-light images can be broadly divided into two categories:
conventional techniques and deep learning-based methods. Among conventional tech-
niques, histogram equalization and its related methods [1] are the most commonly used.
These methods enhance image brightness by calculating the gray levels of the picture and
redistributing them evenly across the full range of gray levels. The main advantage of this
method is its fast computation speed, which effectively enhances the brightness of general
grayscale images. However, it is less effective for RGB image enhancement, often resulting
in significant noise, color deviation, and over-enhancement issues.

Researchers have developed various low-light image enhancement techniques [2,3]
rooted in Retinex theory [4]. With the success of deep learning in image reconstruction
and restoration, neural network-based algorithms like CNN [5] have gained considerable
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attention. Among them, supervised learning methods rely on large datasets of paired
low-light and well-lit images for training. These methods can achieve impressive results
but are limited by the availability of high-quality paired datasets. In contrast, unsupervised
learning methods do not require paired datasets. Instead, they use loss functions that
incorporate illumination smoothness, brightness consistency, and color restoration to guide
the network. The unsupervised approaches are more flexible and practical in scenarios
where paired datasets are scarce, enabling effective enhancement by training solely on low-
light images. However, unsupervised learning-based algorithms still encounter challenges,
including significant color distortion and the blurring of details.

Significant progress has been made in low-light image enhancement in recent years.
However, in complex low-light scenarios, image enhancement methods still struggle with
preserving natural colors and details while dealing with significant noise. To address these
issues, this paper constructs a U-net network based on the Convolutional Block Attention
Module (CBAM) to decompose images and enhance the brightness of the reflectance map.
The attention mechanism allows the network to concentrate on key features and regions in
the image. Retinex theory explains that image brightness is determined by both illumination
and object reflection. By separating these components, we can effectively enhance image
details. In our approach, we divide the initial image into a low-light RGB image and its
corresponding brightness values. Since the illumination conditions in different regions
of the image may be different, in order to avoid a one-size-fits-all processing method
and enhance local details more finely, we propose a local adaptive enhancement function
when enhancing the low-light image. Meanwhile, an unsupervised learning loss function
is designed for illumination smoothness, brightness consistency, and color restoration,
guiding the network to effectively enhance low-light images. The main contributions of
this paper are as follows:

(1) Combining the U-net network with the CBAM grounded in Retinex theory to achieve
the decomposition of the images.

(2) Establishing a local adaptive enhancement function that calculates the local gray mean
of the image through a block operation and adjusts the enhancement effect according
to the specific values of each gray block. The parameters within the function allow for
the flexible adjustment of the enhancement degree, avoiding over-enhancement.

(3) Designing an unsupervised learning loss function that introduces a color restoration
loss term, further optimizing color restoration, effectively improving image brightness
and preserving image details.

The structure of this paper is as follows: Section 2 reviews related research. Section 3
introduces the unsupervised low-light enhancement algorithm developed in this study,
detailing the design of the local adaptive function and the loss function. The experimental
results are presented in Section 4, and Section 5 offers several conclusions.

2. Related Works
2.1. Unsupervised Low-Light Image Enhancement Algorithms

Many researchers have proposed unsupervised learning-based algorithms to enhance
the generalization and robustness of image enhancement models. Jiang et al. [6] proposed
an unsupervised decomposition and correction network inspired by the Retinex model.
Hu et al. [7] introduced a method that first used the traditional retinol-based method to pre-
enhance images, and then used the thinning network for additional quality improvement.
Shi et al. [8] proposed a structure-aware unsupervised network comprising four modules.
Ma et al. [9] proposed a region-based, unsupervised, low-light image enhancement algo-
rithm that utilizes explicit domain supervision to convert unsupervised segmentation into
a supervised process, developing several region-based loss functions to establish semantic
consistency between regions and daytime. Guo et al. [10] introduced a new hybrid loss
function that combines quality, task, and perception to tackle problems such as blurring
and unnatural colors. Wang et al. [11] presented a mixed-attention-guided Generative
Adversarial Network (GAN) in a fully unsupervised fashion. Fu et al. [12] introduced an
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unsupervised learning network featuring an illumination-aware attention module and a
novel identity-invariant loss.

Unsupervised learning methods leverage loss functions to guide the network without
the need for paired examples. By focusing on intrinsic properties such as illumination
smoothness, brightness consistency, and color restoration, unsupervised approaches offer
greater flexibility and robustness.

2.2. Retinex Theory

An image is decomposed into a reflectance component that represents the inherent
color of objects and an illumination component representing the varying light conditions.
This decomposition allows for the enhancement of images by adjusting the illumination
component without destroying the natural colors and details. Assuming the input image is
S(x, y), it can be expressed as follows:

S(x, y) = I(x, y)
⊙

R(x, y) (1)

where I(x, y) represents the image illumination component, R(x, y) represents the re-
flectance component of the image, and

⊙
denotes pixel-wise multiplication.

Retinex theory is commonly applied to enhance visibility and contrast without in-
troducing significant artifacts. Wu et al. [2] proposed a Retinex-based deep unfolding
network to obtain noise suppression and detail preservation. Zhao et al. [13] presented a
generative strategy for Retinex decomposition, casting the decomposition as a generative
problem. Jiang et al. [14] proposed a self-regularized method that preserves all colors while
integrating Retinex theory solely for brightness adjustments. Liu et al. [15] constructed a
deep learning framework, comprising a decomposition network and adjustment networks
that address both global and local brightness. Ma et al. [16] introduced a Retinex-based
variational model that effectively produces noise-free images and shows generalizability
across various lighting conditions. Yang et al. [17] proposed an image enhancement algo-
rithm that integrates a fast and robust fuzzy C-means clustering technique with Retinex
theory, producing enhanced images characterized by their rich detail and texture.

Numerous studies have demonstrated the effectiveness of Retinex in this field. Retinex-
based methods can effectively improve visibility and contrast in low-light conditions by
accurately decomposing an image into its illumination and reflectance components.

2.3. Attention Mechanisms

To further enhance the feature-learning capability of networks and improve image
enhancement results, many scholars have introduced attention mechanisms to boost per-
formance. Chen et al. [18] proposed an attention-based network that incorporates Retinex
theory, featuring an attention mechanism module integrated into the convolutional layer.
Ai and Kwon [19] developed a convolutional network that integrates an attention gate
with a U-net network. Lv et al. [20] separated the tasks of brightness enhancement and
noise reduction and completed them separately with two attention maps. Atoum et al. [21]
introduced a color-wise attention network that identifies useful color cues to assist with
color enhancement. Zhang and Wang [22] proposed an illumination attention map to
identify areas of different illumination levels, and a multi-scale attention Retinex network.
Zhang et al. [23] developed a neural network that incorporates channel attention and spatial
attention modules and achieved a positive effect.

3. Methodology
3.1. Neural Network Structure

This paper constructs a U-net architecture in which the CBAM is introduced [24].
The U-net decomposes low-light images and regards the reflectance map as the enhanced
image. In Figure 1, the network receives low-light RGB images and the corresponding
brightness values, while the output of the network includes the decomposed reflectance
and illumination maps. The encoder of the network gradually reduces the size of the
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input tensor and increases the number of layers through convolution and max pooling.
The decoder consists of upsampling and convolution layers, which restore the tensor
size through convolution and upsampling. During the upsampling process, the CBAM is
employed to assign weights to the extracted feature maps to enhance feature refinement and
focus during the reconstruction phase, optimizing the network performance. By applying
channel attention mechanisms during decoding, we can selectively enhance important
features that are identified during encoding, improving detail restoration. Spatial attention
enables focus on relevant areas of the image, which is crucial for accurately reconstructing
details under low-light conditions. Meanwhile, placing these mechanisms in the decoder
reduces the computational load during encoding, allowing for efficient feature extraction.
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The CBAM is a type of Channel and Spatial Mixed Attention (CSMA) mechanism, as
shown in Figure 2. The network initially utilizes channel attention, which emphasizes the
relationships and dependencies among various feature channels, enabling the network to
weigh the importance of each channel differently. The channel attention mechanism can be
expressed as follows:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (2)

where σ(·) is the S-shaped function, MLP(·) denotes the multilayer perceptron, AvgPool(·)
represents the average pooling, and MaxPool(·) is the maximum pooling. It then applies
spatial attention to emphasize the significance of various spatial locations, allowing the
network to focus on the relevant regions of the image. The attention module can be written
as follows:

Ms(F) = δ
(

Conv7×7([AvgPool(F); MaxPool(F)])
)

(3)

where δ(·) denotes the sigmoid function and Conv7×7(·) refers to the convolution operation
through a convolution kernel, sized 7× 7. By combining these two types of attention, the
network can capture complex patterns and dependencies in the data, leading to improved
performance in image enhancement where both channel and spatial information are crucial
for achieving high-quality results.
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3.2. Adaptive Enhancement Function

This paper proposes a local adaptive enhancement function that divides a low-light
image into multiple blocks and enhances them separately. The mathematical expression is
as follows:

Lg(x, y) = min
(

α + Lw,max

α + Lw
,

Lw(x, y)
Lw,max

+
Lw(x, y)

Lw

)
∗ log

(
Lw(x, y)/Lw + 1

)

log
(

Lw,max/Lw + 1
) (4)

where Lg(x, y) represents the corresponding pixel value of the globally adaptive output,
Lw(x, y) represents the corresponding input pixel value, Lw,max represents the highest
brightness value of the input image, α is a constant parameter that regulates the overall
enhancement level, and Lw represents the logarithmic mean brightness, which can be
written as:

Lw = exp
{

1
N ∑ log[δ + Lw(x, y)]

}
(5)

Equation (4) uses the minimum function to flexibly adjust the enhancement level
based on the grayscale values of each block, preventing the excessive enhancement of
brightness values.

3.3. Loss Function

By applying the ternary Bayesian theorem, the illumination and reflectance compo-
nents can be derived from Equation (1):

P(R, I|S) ∝ P(S|R, I)P(R)P(I) (6)

The designed loss function includes an illumination smoothness term, a brightness
enhancement term, a color restoration term, and a smoothness term. The reconstruction
loss recon can be written as follows:

Lrc =
∥∥∥S− R

⊙
I
∥∥∥

1
(7)

where S denotes the low-light picture, R represents the reflectance component, I represents
the illumination component, and

⊙
denotes pixel-wise multiplication. The reconstruction

loss primarily constrains the decomposition effect of the network, making the decomposed
image closer to the real image. The RGB image is transformed into an HSV image and
the brightness value V channel can be calculated. And then, the unsupervised learning
reflectance loss LR can be obtained as follows:

LR =

∥∥∥∥ max
C∈R,G,B

RC − F
(

max
C∈R,G,B

sC

)∥∥∥∥
1

(8)

where max
C∈R,G,B

RC refers to the maximum value channel of the reflectance component,

and F(·) represents the local adaptive enhancement function which can be obtained by
Equation (4). The illumination loss LI is calculated as follows:

LI =
∥∥∥∇I

⊙
exp(−λ∇R)

∥∥∥
1

(9)
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where ∇I represents the gradient variation of the illumination component, controlled by
the gradient change of the reflectance, and λ is a constant parameter. The color restoration
loss LC is established as follows:

LC = ∑i,j∈(R,G,B)

∣∣RI − RJ
∣∣2 (10)

Equation (10) expresses a relationship between the RGB channels of the reflectance
map, further enhancing the color restoration effect. In addition, the noise issue after
enhancement is also considered. Thus, the loss function includes the reconstruction loss
Lrc, the reflectance loss LR, the color restoration loss LC, and the denoising loss, expressed
as follows:

L = λ1‖S− R
⊙

I‖1 + λ2

∥∥∥∥ max
C∈R,G,B

RC − F
(

max
C∈R,G,B

sC

)∥∥∥∥
1

+λ3∑i,j∈(R,G,B)
∣∣RI − RJ

∣∣2 + λ4‖∇I
⊙

exp(−λ5∇R)‖1
+λ6‖∇R‖1

(11)

where ∇R represents the gradient of the reflectance component, mainly used for image
denoising. Through the illumination enhancement function, the brightness value of the
reflectance map is increased, ultimately achieving low-light image enhancement.

4. Experimental Results and Analysis
4.1. Experimental Setup

The experiments are implemented with an AMD 7945HX processor (Advanced Micro
Devices, Santa Clara, CA, USA), an NVIDIA GTX 4060 GPU (Colorful, Shenzhen, China),
and 32 GB of memory (Crucial, Meridian, MS, USA). The experimental environment
includes Python version 3.9 and TensorFlow version 2.10.0. The training dataset used is
LOL, consisting of 500 pairs of low-light and normal-light images captured under various
illumination conditions and scenes. In this experiment, LOL contains 485 low/normal-light
image pairs for training and 15 pairs for testing. This dataset comprises images from both
indoor and outdoor scenes, each with a resolution of 600 × 400. We meticulously examine
various hyperparameters, including batch size, learning rate, the number of epochs, and
weight decay. The search range for each hyperparameter is specified, emphasizing the
optimal configuration that yields the best performance. Ultimately, we find that setting
the batch size to 8, learning rate to 0.001, number of epochs to 160, and weight decay
to 0.0005 result in the best performance of our model on the LOL dataset. The selection
of this optimal configuration undergoes thorough experimental validation, ensuring the
robustness and effectiveness of our proposed low-light image enhancement method in
various aspects.

The average training duration is approximately 60 min, while the processing time
for each image in the test set is 0.465 s. Through many experiments, the values of the
six parameters λ1, λ2, λ3, λ4, λ5, λ6 in Equation (11) are set to 20, 1, 5, 0.1, 10, and 0.01,
respectively. This parameter combination has been validated to achieve the best results on
the test set. In this combination, λ1, λ2, λ3, λ4, λ5, λ6 control the weights of reconstruction
loss, reflection loss, color recovery loss, illumination loss, local reflection component
gradient, and global reflection component gradient, respectively. Fine-tuning in different
datasets and application scenarios according to actual needs is recommended.

4.2. Experimental Results

To assess the effectiveness of the proposed algorithm, several comparative experi-
ments are carried out with methods like Retines [25], LIME [26], SCI [27], Zero-DCE [28],
EnlightenGAN [29], and GLADNet [30]. We also choose the methods of class unsupervised
learning, based on deep learning techniques such as RUAS [31] and SSIE [32].
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4.2.1. Subjective Evaluation Results

The enhanced results are shown in Figure 3. The SCI algorithm results in less noise and
better color restoration, but its brightness enhancement is still somewhat lacking compared
to normal light images. Compared to the enhancement results of the presented algorithm,
the brightness of the SCI method is relatively dim. The Zero-DCE and LIME algorithms
exhibit less color distortion, but their brightness enhancement is inadequate, leaving the
dark areas of the image insufficiently illuminated. The Retinex-Net algorithm achieves
positive brightness enhancement, but it suffers from a loss of image detail and texture, and
the variation in brightness across different areas is not natural enough. The EnlightenGAN
algorithm provides positive brightness enhancement, but the dark areas of the image
show noticeable noise, and there is some color distortion present. The RUAS algorithm
provides limited enhancement in extremely dark regions, while the brighter local areas
are excessively enhanced, leading to overexposure. The SSIE algorithm clearly improves
brightness, but the background color of the enhanced image shows a significant deviation.
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Figure 4 illustrates the enhancement effects of various algorithms when applied to
a single image. Compared with SCI, the proposed model performs better in enhancing
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light-colored areas. The EnlightenGAN enhancement algorithm faces certain difficulties
in distinguishing between the black areas of the image, failing to differentiate between
inherent color and low-light conditions. The enhanced results of Retinex-net indicate
significant color deviation. The GLADNet-enhanced image has less noise but exhibits low
color saturation. The enhanced results of RUAS algorithm are not obvious in the dark. The
SSIE algorithm faces image color distortion. It is noted that the proposed approach results
in less color distortion compared to other methods.
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4.2.2. Objective Evaluation Results

The objective evaluation methods used include PSNR, SSIM [33], and NIQE [34]. In
Table 1, an upward arrow (↑) indicates that the metric is positively correlated with image
quality, while a downward arrow (↓) indicates a negative correlation.

Table 1. Objective evaluation indicators of different methods on the LOL dataset.

SCI EnlightenGAN LIME Zero-DCE Retinex-Net GLADNet RUAS SSIE Ours

SSIM↑ 0.635 0.752 0.590 0.664 0.502 0.778 0.441 0.723 0.826
PSNR↑ 17.210 18.849 13.244 15.215 17.839 19.705 10.714 16.800 20.200
NIQE↓ 8.878 7.174 8.640 8.497 11.250 7.084 7.833 3.882 5.05

The SCI, EnlightenGAN, and Zero-DCE algorithms exhibit poor NIQE and PSNR met-
rics due to insufficient illumination enhancement and noise in dark areas. The GALDNet
algorithm performs well across these three metrics due to its effective brightness enhance-
ment and reduced image noise. However, subjective observation reveals significant color
distortion in the results of this algorithm. LIME and Retinex-Net show poor performance in
objective evaluation metrics. Their enhancement results contain substantial noise, and the
Retinex-Net algorithm suffers from severe detail loss. The RUAS algorithm underperforms
when using the proposed approach on all three indicators, and its dark region enhancement
is insufficient. The SSIE algorithm performs best on the NIQE indicator, but not as well as
the proposed approach on SSIM and PSNR, and it also has color distortion problems in
terms of subjective performance.
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4.3. Ablation Experiment

To demonstrate the effectiveness of the CBAM attention mechanism and the color
restoration term in the loss function of the proposed algorithm, ablation studies are con-
ducted on each module.

4.3.1. CBAM Attention Mechanism

This section quantitatively assesses the impact of the CBAM module. Training and
testing are performed on the same dataset, and various evaluation metrics are compared, as
shown in Table 2. The addition of the attention mechanism module lowers the NIQE index,
while both SSIM and PSNR show improvements, indicating that the module improves
brightness. Notably, the performance is best when two attention mechanism modules are
added, with the approach of applying channel attention first, followed by spatial attention
(CBAM), yielding the most effective results.

Table 2. Index data with attention mechanisms.

Model Attention Mechanism SSIM PSNR NIQE

1 none 0.782 20.144 7.030
2 channel attention 0.797 20.169 5.924
3 spatial attention 0.804 20.166 5.600
4 spatial and channel attention 0.822 20.188 5.105

5 (Ours) channel and spatial attention (CBAM) 0.826 20.200 5.057

4.3.2. Color Restoration Term

To validate the contribution of the color restoration term in boosting model per-
formance, several ablation experiments are conducted, as shown in Table 3. In these
experiments, the color restoration term is removed to observe changes in performance, pro-
viding a clearer understanding of its significance in enhancing overall model effectiveness.
Initially, we modify a model that already uses our optimized loss function by removing the
color restoration term. We then retrain the modified model using the same datasets and
training parameters, documenting its performance. It is observed that the configuration
using CBAM and our optimized loss function produces the highest performance. Even
when CBAM is not used, the configuration using the loss function with the added color
restoration loss item performs better than the configuration using the regular loss function.
The color restoration loss term reduces the NIQE metric, making the enhanced images
appear more natural by reducing color deviation.

Table 3. Index data with color restoration terms.

Model CBAM Color Restoration Term SSIM PSNR NIQE

1 × × 0.793 19.822 6.142
2

√ × 0.819 20.050 5.520
3 × √

0.782 20.144 7.030
4 (Ours)

√ √
0.826 20.200 5.057

5. Conclusions

In this paper, a U-net network based on attention mechanisms is built, decomposing
the illumination and reflectance components of low-light images based on Retinex theory.
The local, adaptive enhancement function adjusts the enhancement level for different re-
gions of the image, ensuring that both dark and bright areas are optimally enhanced for
improved overall image quality. In addition, an unsupervised learning loss function is
introduced. The proposed algorithm exhibits minimal dependence on the quality of the
training dataset, low computational complexity, and rapid training speed. Experimental
results show that the algorithm produces enhanced outcomes that closely mimic normal
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lighting conditions, featuring more natural lighting enhancement, improved color restora-
tion, minimal color deviation, and preserved image details. It also shows good model
generalization and robustness, with the peak signal-to-noise ratio and structural similarity
index on real images outperforming other state-of-the-art methods. However, there are
still some shortcomings in this study. The proposed model is suitable for unsupervised
low-light image enhancement, and can only process still images, not videos. The local adap-
tive enhancement function adopts the equal division strategy when it divides the image
into blocks as well. In the future, we plan to extend the proposed model to handle video
data, enabling real-time, low-light video enhancement. Additionally, we will explore more
sophisticated image division strategies, such as adaptive or content-aware partitioning, to
further improve the local adaptive enhancement function for better performance and finer
detail preservation.
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Abstract: With The integration of renewable energy sources into smart grids and electric vehicle
(EV) charger-sharing networks is essential for achieving the goal of environmental sustainability.
However, the uneven distribution of distributed energy trading among EVs, fixed charging stations
(FCSs), and mobile charging stations (MCSs) introduces challenges such as inadequate supply at
FCSs and prolonged latencies at MCSs. In this paper, we propose a multi-agent deep reinforcement
learning (MADRL)-based auction algorithm for energy trading that effectively balances charger
supply with energy demand in distributed EV charging markets, while also reducing total charging
latency. Specifically, this involves a MADRL-based hierarchical auction that dynamically adapts to
real-time conditions, optimizing the balance of supply and demand. During energy trading, each EV,
acting as a learning agent, can refine its bidding strategy to participate in various local energy trading
markets, thus enhancing both individual utility and global social welfare. Furthermore, we design a
cross-chain scheme to securely record and verify transaction results of energy trading in decentralized
EV charger-sharing networks to ensure integrity and transparency. Finally, experimental results show
that the proposed algorithm significantly outperforms both the second-price and double auctions in
increasing global social welfare and reducing total charging latency.

Keywords: electric vehicles; mobile charging stations; charger sharing; blockchain; deep
reinforcement learning

1. Introduction

Electric vehicles (EVs), by utilizing electricity as their primary energy source within
smart grids, play a pivotal role in reducing reliance on finite fossil fuels and enhancing
environmental sustainability [1–5]. By 2035, it is projected that over 60% of all vehicles
will be electrified, necessitating a significant expansion in both the number and capacity
of EV charging infrastructures [6]. To meet the escalating energy demands of EVs, the
development of an efficient and scalable charging infrastructure is imperative. While
existing fixed charging stations (FCSs) provide reliable and accessible charging points
in urban and suburban areas, the surge in EV adoption has placed these facilities under
considerable strain, often leading to congestion and extended waiting periods for charging
services. To mitigate this pressure, mobile charging stations (MCSs) have been introduced
as a versatile addition to the smart grid infrastructure, offering adaptable and on-demand
services, particularly in areas of high demand and remote locations. The integration of FCSs
and MCSs fosters a more resilient and efficient charging ecosystem, capable of dynamically
accommodating the varied demands of EVs [7–9]. However, the implementation of peer-to-
peer energy trading between EVs and MCSs is poised to further alleviate system strain and
enhance the overall energy efficiency of EV charger-sharing networks [10].
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Despite the many benefits of this hybrid EV charging infrastructure, distributed EV
charging still faces significant challenges, particularly in terms of provisioning enough
incentives for FCSs and MCSs and reducing the charging latency of EVs [11]. Without well-
structured incentives, FCSs and MCSs may hesitate to share their energy with EVs. In the
meanwhile, the absence of methods to reduce charging latency might lead to operational
inefficiencies and potential conflicts among EVs. Therefore, it is essential to ensure that
FCSs and MCSs can receive adequate incentives to not only foster participation but also
reduce the charging latency of EVs in the distributed EV charger-sharing networks.

The application of auction theory to the allocation of incentives in EV charger-sharing
networks presents a range of unique challenges [10,12,13]. Although second-price auc-
tions are commonly utilized to balance supply and demand, their effectiveness is often
compromised in the EV charging context due to significant variability in service values
among users. This variability can lead to suboptimal outcomes that fail to effectively
match supply with demand. On the other hand, double auctions [14], which allow both
buyers and sellers to submit bids according to their valuations, aim to maximize the income
of MCSs. Yet, these auctions frequently face challenges in practical applications due to
their inherent complexity and often do not achieve an ideal balance between maximizing
income and ensuring fair service provision [15,16]. Consequently, it becomes imperative to
develop a novel auction mechanism that addresses these issues, thereby optimizing the
distributed energy trading in EV charger-sharing networks for better social welfare and
operational efficacy.

In this paper, we propose a multi-agent reinforcement learning (MADRL)-based auc-
tion algorithm for distributed energy trading in EV charger-sharing networks that integrates
both fixed and mobile charging stations. Utilizing MADRL [16], the proposed auction
mechanism not only achieves a more efficient balance of supply and demand compared to
second-price auctions but also excels at maximizing revenue for MCSs compared to existing
double auctions. Specifically, this algorithm employs a multi-agent system where each
agent (EV or MCS) dynamically adjusts its bids based on real-time market conditions and
historical data, employing predictive analytics and adaptive learning to enhance decision-
making. By integrating dynamic pricing strategies and adaptive incentive structures, our
framework ensures an efficient and equitable allocation of charging resources. The EV
charger-sharing market employs a cross-chain scheme that coordinates local and global
markets through side and main blockchains, respectively. The process begins with local
market energy trading confirmation on the side blockchain, followed by the aggregation
of results into the global market on the main blockchain, utilizing a Two-Phase Commit
protocol to ensure synchronization and atomicity in cross-chain transactions [17]. We
validate the effectiveness and scalability of the proposed algorithm through simulations on
real-world datasets, where the experimental results demonstrate significant performance
improvements in global social welfare and total charging latency.

Our main contributions can be summarized as follows.

1. We propose a MADRL-based distributed energy trading algorithm for EV charger-
sharing networks, where EVs can request charging services from either FCSs or
MCSs. Specifically, the distributed energy trading in EV charger-sharing networks
can enhance the scalability and adaptability of the charging infrastructure by allowing
EVs to flexibly select their charging mode, ensuring access to necessary services under
a wide range of scenarios.

2. We introduce a distributed energy trading structure that enables EVs to choose from
various submarkets based on their immediate energy demands within their local area.
This adaptable market design promotes efficient resource allocation and adheres to
principles of individual rationality and incentive compatibility. To enhance economic
efficiency, we have developed a multi-agent deep reinforcement learning (MADRL)
algorithm to aid EVs and MCSs in making decisions about market participation based
on real-time data and local market conditions.
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3. To enhance the security and reliability of energy trading transaction recording, we
propose a cross-chain scheme that leverages a Two-Phase Commit protocol-based
approach. Specifically, all transaction data of each local market are first accurately
and securely confirmed at the side blockchain and then aggregated into the main
blockchain of the global market.

4. Experimental results confirm significant improvements in the efficiency and effective-
ness of the proposed charging and trading system. Through controlled simulations
and real-world tests, we have demonstrated the robustness of our auction framework
under varied operational conditions, showing marked reductions in charging latency
and the improvement of global social welfare.

The rest of the paper is organized as follows. A literature review identifies gaps
in existing approaches in Section 2. The system model is formulated in Section 3. The
MADRL-based auction is introduced in Section 4. In Section 5, experimental validations
are presented. The paper is concluded in Section 6.

2. Related Work
2.1. Energy Trading for EVs in Smart Grids

With the widespread adoption of EVs, the role of smart grids in managing and op-
timizing charging infrastructure has become increasingly important [18]. Smart grids
can effectively manage power by integrating Distributed Energy Resources (DERs) and
renewable energy sources, such as solar and wind, to meet the significant power demands
posed by EVs. For instance, Danial et al. [1] conduct a techno-economic analysis that
emphasizes cost considerations that are crucial for promoting the widespread adoption of
EVs. They highlight the economic viability threshold for EV charging stations and propose
governmental interventions like subsidies and tax strategies to support the installation of
an estimated 646 to 3300 charging stations in Brunei by 2035. Building on the framework
of energy optimization, Kim et al. [19] design a system that enables EV owners to engage
in energy trading, facilitated by an aggregator. They propose a non-cooperative game
model for energy trading decisions and a coordinated charging/discharging algorithm
to optimize cost efficiency at the aggregator level and minimize energy expenses for EV
owners. Their experimental simulations utilize a double auction mechanism to explore
market dynamics and price uncertainty, thereby enhancing the adaptability of the model to
real-world conditions.

Furthermore, Alvaro-Hermana et al. [20] explore peer-to-peer energy trading among
EVs to alleviate grid strain during peak tariff periods. They propose a system model
employing quadratic programming to optimize energy trading and minimize grid impact
during business hours. The uniqueness of their proposed solutions is validated through
experiments that demonstrate the potential of peer-to-peer trading to mitigate the effects
of EV charging on the grid during peak periods. Additionally, Aggarwal et al. [11] tackle
the challenges of energy trading for EVs in smart grids, emphasizing the integration of
blockchain technology to enhance the security and efficiency of peer-to-peer transactions.
Their approach not only addresses the balancing of energy demands during peak hours
but also enhances transaction security against cyber threats like false data injections. Ex-
periments validate the effectiveness of their distributed secure energy trading scheme,
showcasing its capability to facilitate reliable and secure energy exchanges within smart
grids. Houda et at. [21] proposes a blockchain-based system for vehicle-to-vehicle (V2V)
electricity trading using a reverse auction mechanism. This approach aims to create a
decentralized, secure, and transparent electricity market among electric vehicles (EVs)
within a smart grid environment. By utilizing Ethereum’s smart contracts, the system
facilitates automated and fair trading without the need for third-party intermediaries, thus
eliminating single points of failure associated with centralized models. These studies col-
lectively underscore the progressive efforts to integrate advanced technological solutions,
including blockchain, game theory, and economic incentives to optimize energy trading
and management within smart grid environments tailored for EVs.
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2.2. Economic Optimization of EV Charging in Smart Grids

In smart grids, economic optimization is pivotal for effective EV charging manage-
ment [22]. FCSs, while reliable, lack the flexibility required to adapt to rapidly changing
power demands and price fluctuations. Recent studies have explored dynamic pricing and
auction mechanisms to enhance the economics of EV charging [23]. Wang et al. [24] focus
on the interactions of storage units within smart grids, particularly plug-in hybrid EVs
and batteries, aimed at intelligent decision-making to maximize utility. They introduce
a non-cooperative game model allowing storage units to decide strategically on energy
sales, integrating dynamic pricing and double auction models to optimize trading benefits
against costs. Simulation results reveal up to a 130.2% improvement in the average utility
per storage unit, underscoring the model’s effectiveness in enhancing trading efficiency.
Building on these insights, Hou et al. [12] address EV charging scheduling in a distributed
context to boost social welfare, aligning with user preferences and considering the state of
charge. Their iterative bidding framework enables efficient negotiation on charging times
and prices, with experiments illustrating an 85% efficiency relative to optimal solutions
and highlighting the impact of information disclosure on scheduling efficiency.

Further extending the discussion on optimizing smart grid-based EV charging stations,
Wang et al. [25] introduce a novel operation mechanism named JoAP. This mechanism
optimizes EV admission control, pricing, and charging schedules to maximize profitability.
Using a tandem queueing network model, their study analytically characterizes the influ-
ence of admission control and pricing policies on profits, with simulations showing a 531%
increase in profitability compared to conventional methods. Kikusato et al. [13] propose a
management scheme to optimize the use of photovoltaic power in EV charging, aiming to
reduce operation costs and curtailment in low-voltage distribution systems. Their auction
mechanism ensures voluntary participation, maintaining fairness and autonomy among
customers. Simulations demonstrate effective cost reductions and curtailment mitigation,
even under forecasting errors and unexpected disconnections. Finally, Kim et al. [10]
develop an auction-based incentive mechanism for energy trading between EVs and MCSs,
focusing on efficiently utilizing MCS energy resources. Their distributed auction-based
mechanism ensures truthfulness, individual rationality, and budget balance. Simulation
studies confirm the mechanism’s efficiency, enhancing system performance by more than
twice as much as existing approaches. They highlight the potential of innovative auction
mechanisms and dynamic pricing to adapt to and optimize energy trading within evolving
market conditions, thereby facilitating more efficient and flexible smart grid operations.

2.3. Deep Reinforcement Learning in EV Charging

DRL has emerged as a potent machine learning method, demonstrating significant
potential in addressing complex decision-making problems, particularly in EV charging
optimization within smart grids [22,26,27]. By engaging continuously with the environment
and refining policies, DRL adapts to uncertainties and dynamic demands effectively. For
instance, Zou et al. [28] tackle the unique challenges of EV charging in urban prosumer
communities, characterized by varied energy generation patterns and fluctuating prices.
They introduce an innovative DRL strategy, employing the Asynchronous Advantage
Actor–Critic with Long Short-Term Memory (A3C-LSTM) model, a facet of multi-agent
deep reinforcement learning aimed at optimizing energy purchasing decisions for EVs. Ex-
perimental results highlight significant improvements in charging rates and social welfare,
surpassing traditional methods.

Further exploring the optimization of EV charging, Wang et al. [29] utilize a rein-
forcement learning (RL) approach to refine charging scheduling and pricing strategies at
EV charging stations. Motivated by the unpredictability of EV arrivals and departures,
their model-free RL algorithm focuses on maximizing profit through strategic adjustments
to charging schedules and pricing. Experiments with real-world data demonstrate that
their approach yields a 138.5% increase in profit over benchmark algorithms, showcasing
the efficacy of RL in real-time operational environments. Fan et al. [15] leverage MADRL
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to address supply and demand challenges in EV charging. They develop a distributed
service allocation mechanism where Road-Side Units (RSUs) and Internet of Vehicles
(IoV) [30] serve as markets for AI-generated content (AIGC). In this paper, we propose a
MADRL-based distributed energy trading algorithm for EV charger-sharing networks that
optimizes real-time EV charging decisions to improve global social welfare and reduce
local charging latency.

3. System Model
3.1. Overview

As illustrated in Figure 1, the system aims to optimize EV charging management
within smart grids by integrating three essential components: FCSs, MCSs, and EVs.
Represented as F = {1, . . . , F}, the set of FCSs forms the backbone of the charging network,
offering continuous and dependable charging services from their permanent locations. Each
FCS f is equipped with substantial capacity to handle regular and predictable charging
demands in the local market. Conversely, the set of MCSs under the coverage of FCS
f is denoted asM f = {1, . . . , M}. MCSs can relocate in response to real-time demand,
effectively mitigating peak load pressures and extending services to remote areas that fixed
stations cannot conveniently cover. This flexibility ensures that the system is responsive
to varying charging requirements, providing timely support where necessary. EVs under
the coverage of FCS f , represented by the set E f = {1, . . . , E}, are the primary consumers
within this ecosystem. Each EV requires strategic management to efficiently meet its
charging demands while maximizing the utilization of both fixed and mobile charging
resources. Our auction-based optimization framework orchestrates the interactions among
f ,M f , and E f , ensuring seamless coordination. Specifically, when an EV, denoted as e,
acts as a buyer, it pays a price pb

e that is equal to or lower than its valuation ve, i.e., pb
e ≤ ve.

Conversely, when an MCS, denoted as m, acts as a seller, it receives a payment ps
m that is

equal to or higher than its cost cm, i.e., ps
m ≥ cm.

Fixed
charging
station

Mobile
charging
station

Electric
vehicle

Global market

Sellers

Buyers

Local market

Global
equilibrium 

PaymentsCharging
services

Main
blockchain

Side
blockchain

Figure 1. Blockchain-based energy trading in distributed EV charger-sharing networks, where each
local market maintains its blockchain.

3.2. Charger Sharing Market

In this system, we consider a charger-sharing market with distributed energy trading
where each FCS serves as an auctioneer for its local energy charging market. In each local
market, MCSs act as sellers, and EVs act as buyers. In a local charger-sharing market,
multiple bids from energy consumers (such as EVs) and providers (such as MCSs) are
consolidated at the FCS for determining both pricing and allocation strategies.
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Upon detecting an energy-sharing request from EVs, the system prompts
MCSs in the local market, which may possess surplus charging capacity, to participate
in energy trading. To engage in the market, both EVs and MCSs submit their bids to
their FCSs. Before allocations and pricing can be determined, auctioneers at FCSs must
compile detailed data from the local market to develop an exhaustive supply and de-
mand matrix. The defined rules for allocation, termed as Π, include a supply matrix
X(t) ⊆ {0, 1}|E f (t)|×|M f (t)| = {x1(t), . . . , x|E f (t)|(t)} and a corresponding demand matrix

Y(t) ⊆ {0, 1}|E f (t)|×|M f (t)| = {y1(t), . . . , y|M f (t)|(t)}. The supply vector of MCS m is de-
picted as xm ⊆ {xm,1(t), . . . , xm,|E f (t)|(t)}, and for EV e, the demand vector is shown as
ye ⊆ {ye,1(t), . . . , ye,|M f (t)|(t)}. Then, each FCS calculates allocations and prices according
to the auction protocol M = (Π, Ψ) for its local charger-sharing market, where Π = (X, Y)
indicates the allocation rules and Ψ = (pb, ps) describes the pricing rules. In this model,
a trustworthy bid bt,e from buyer e represents their true valuation ve, ensuring that its
payment pb

e (t) remains within its budget, i.e., pb
e (t) ≤ ve. Similarly, a seller m offers a

selling bid at,m reflecting its real cost cm, ensuring its earning ps
m(t) meets or exceeds these

costs, i.e., ps
m(t) ≥ cm. These methods guarantee the pricing framework, defined by the

vectors pb(t) and ps(t) for buyers and sellers, respectively.

3.3. Problem Formulation

Meanwhile, the mechanism needs to allocate and price energy to meet the demand
and supply conditions and at the same time minimize the total charging time of both
buyers and sellers under imperfect information conditions that any buyer or seller will act
truthfully under individual rationality (IR). It is strategically rational for each participant,
whether as a buyer or as a seller, to gain something out of the auction and therefore must
prevent a utility that is not less than zero from engaging in the auction. Truthfulness in
auctions can be referred to as a notion that reflects the fact that in an auction, buyers and
sellers tender bids that are real regarding their appraisal or cost. This characteristic makes
the auctions accurate and efficient, since all those interested can give an estimation of the
value of the good or service that is being auctioned. In the marketplace, each buyer’s bid
be(t) aligns precisely with their actual valuation ve, ensuring be(t) = ve. Consequently,
the auction design ensures that the amount paid by buyers, pb

e (t), remains within their
evaluated value, namely pb

e (t) ≤ ve. Conversely, each seller’s offer am(t) mirrors the actual
expenses incurred cm, establishing am(t) = cm. This arrangement ensures that the income
received by sellers, ps

m(t), matches or exceeds their expenses, i.e., ps
m(t) ≥ cm. In this

bidirectional market, to preserve integrity, the buyer’s valuation must match or exceed
what they eventually pay, and similarly, the seller’s listed prices reflect or exceed their
perceived value of the goods.

Furthermore, the total societal benefit, labeled as SW(t) at time t, is the aggregate of
values accumulated from both sellers and buyers involved, which can be calculated as

SW(t) = ∑
e∈E f (t)

∑
m∈M f (t)

ye,m(t)ve(t) + ∑
e∈E f (t)

∑
m∈M f (t)

xm,e(t)cm(t). (1)

Furthermore, the total charging latency at time slot t is denoted as L(t), which can be
computed as

L(t) = ∑
e∈E f (t)

[
1− ∑

m∈M f (t)

ye,m(t)



(

Tcharge
e + Ttravel

e (t) + Twait
f (t)

)

+ ∑
m∈M f (t)

ye,m(t)
(

Tcharge
e + Ttravel

m (t)
)]

,

(2)
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where Tchargee is the charging time of EV e, Ttravel
e is the traveling time of EV e, and Twait

f
is the waiting time at FCS f . This formula accounts for the total charging time, which
includes the energy transfer time and the travel time to MCSs for winning EVs in the
auction. For losing EVs, the charging time involves energy transfer, travel to FCSs, and
additional waiting times at these stations, thus highlighting the impact of auction outcomes
on charging efficiency.

4. Multi-Agent Deep-Reinforcement-Learning-Based Energy Trading Algorithm
4.1. Distributed Incentive Mechanism

In this subsection, we discuss the details of distributed energy trading in terms of the
following points: Each MCS creates a local market in the region they cover; this includes all
EVs within that region. As illustrated in Figure 2, there are two submarkets in each local
market, i.e., the single-side urgent submarket and the double-side mundane submarket.
In the urgent submarket, there is transacting immediately into clearing since bids for
buying and selling are matched directly. On the other hand, in the mundane submarket,
the transactions require procedures to be cleared at certain points to enable those with
non-urgent energy requirements to participate in the market at certain times. At time t,
EV e places a bid be(t) to acquire energy, and MCS m offers a bid am(t) catering to these
energy requests.

Charger allocation and payment 

Deep Reinforcement Learning

Buyers

Seller pool

Urgent Submarket:
Second-price auction

Mundane Submarket:
Double auction

Figure 2. The workflow of the MADRL-based energy trading algorithm.

Within the coverage of FCS f , sellers are arranged into a local seller pool
PS

f (t) = {m | ∑e∈E f (t) xm,e(t) = 0, m ∈ M f (t)}, where they react to incoming requests
from buyers. The bids submitted by these sellers are accumulated in a designated value
pool ASf (t) = {am(t) | ∑e∈E f (t) xm,e(t) = 0, m ∈ M f (t)} and are arranged to ensure

am(t) ≤ am+1(t), ∀m, m + 1 ∈ PSf (t). Concurrently, EVs engaging in the routine submarket

are sorted into a buyers’ pool PB
f (t), where their bids are organized in OB

f (t), ranked

such that be(t) ≥ be+1(t), ∀e, e + 1 ∈ PB
f (t). For the urgent submarket on the buyers’
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side, a second-price auction protocol is utilized, whereas the routine submarket adopts
McAfee’s method.

In the single-sided urgent submarket: The auctioneer evaluates the seller pool and
adjusts the supply and demand dynamics along with the monetary stipulations of MCS m.
The logic of the selection of the highest bid from the given number of qualified sellers for
EV e is established by setting up

xm,e(t) = ye,m(t) = 1(am(t) > max{ASf ,−m(t)}), (3)

where 1(·) is the indicator function and ASf ,−m(t) represents the highest bid in the seller
pool excluding MCS m. A second-price sealed-bid auction determines the transaction price
for buying EV e in the urgent market:

pb
e (t) = ∑

m∈PS
f (t)

xm,e(t) ·max{ASf ,−m(t)}, (4)

and the revenue for the selling MCS m is

ps
m(t) = ye,m(t) ·max{ASf (t)}. (5)

Double-side mundane submarket: This submarket comprises the buyer poolPB
f (t) and

untraded sellers in the seller pool PS
f (t), which are cleared periodically. Using McAfee’s

mechanism, the auctioneer sorts buyers and sellers and determines the allocation and
pricing rules by finding the breakeven index k in AB

f (t) and OB
f (t). The average price is

calculated as
pb

e (t) = ps
m(t) =

bk+1 + sk+1
2

, (6)

ensuring the first k buyers and sellers trade at this price, with adjustments made for trade
reduction if necessary.

After all local markets have cleared, the local auctioneers of MCSs calculate the local
budget cost β f (t) for their market, and the aggregate budget cost across the globally
distributed market is computed as

β(t) = ∑
f∈F

β f (t) = ∑
f∈F

[
∑

e∈E f

|pb
e (t)− p̄(t)|+ ∑

m∈M f

|ps
m(t)− p̄(t)|

]
, (7)

where the market clearning price is p̄(t) =
∑e∈E f (t)

pb
e (t)+∑m∈M f (t)

ps
m(t)

∑m∈M f (t) ∑e∈E f (t)
xm,e(t)+∑m∈M f (t) ∑e∈E f (t)

ye,m(t) .

To minimize the total budget cost while optimizing social welfare, the buying of EVs
acts as a learning agent, adopting strategies that ensure equilibrium between supply and
demand across the submarkets.

4.2. Partially Observable Markov Decision Process

Within this framework, every purchaser functions as a cognitive entity governed by a
Partially Observable Markov Decision Process (POMDP), which comprises the components
outlined below:

1. Observation: The observation of EV e at each time step t, denoted as Oe(t), encom-
passes several key market dynamics. These include the number of buyers and sellers
in each local market, represented as |E f (t)|, ∀ f ∈ F and |M f (t)|, ∀ f ∈ F , respec-
tively; the price of the last transaction denoted by p̄(t− 1); and the charging latency,
traveling time, and waiting time of EV e, represented by Tcharge

e , Ttravel
e (t), Twait

n (t),
respectively. The comprehensive observation set is formalized as

Oe(t) = {|E1(t)|, . . . , |E f (t)|, |M1(t)|, . . . , |M f (t)|, p̄(t− 1), Tcharge
e , Ttravel

e (t), Twait
f (t)}. (8)
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2. Action: The action Ae(t) for EV e at time slot t is defined as the market selection
strategy, where Ae(t) = 0, 1. Here, Ae(t) = 0 implies participation in the urgent
submarket, while Ae(t) = 1 indicates entry into the mundane submarket within the
buyer pool.

3. Reward: The reward function, Re(Oe(t), Ae(t)), incorporates the social welfare, bud-
get, and total charging time at the current time slot, calculated as

Re(Oe(t), Ae(t)) = SW(t)− αβ(t)2 − L(t), (9)

where α is a coefficient that scales the budget cost. Social welfare, denoted by SW(t),
reflects the total utility of all buyers and sellers based on transaction prices; the
budget, represented by β(t), measures the net fiscal impact of transactions; and the
total charging time, L(t), accounts for delays due to energy transfer and travel times.

4. Value Function: The value function Vπe(Oe(t)) for the policy πe of EV e is the expected
return starting from state S and following policy πe, which is defined as

Vπe(S) := Eπ [
T

∑
t=0

γkRe(Oe(t), Ae(t))|S0 = S], (10)

where Eπ(·) represents the expected value under policy π, and γ ∈ [0, 1] is the
discount factor that progressively reduces the weight of future rewards.

4.3. Policy Iteration

The POMDP framework offers a comprehensive mathematical model to enhance
decision-making for buyers. By evaluating system outcomes and executing suitable ac-
tions, agents can maximize their long-term expected rewards. This model facilitates the
development of learning agents engaged in P2P energy trading, optimizing their utility
while improving overall system welfare. To refine the valuation function, the Multi-agent
Proximal Policy Optimization (MAPPO) [31], an algorithm based on reinforcement learning,
facilitates the training of numerous agents within settings where rewards serve as feedback.
Within the POMDP framework, each agent assesses the current state of the system and
strategizes to enhance rewards over an extended period.

Define θe as the settings for the policy network specific to EV e and φe as those for
the value network. Within MAPPO, every agent adheres to a policy πe(θe), undergoing
periodic adjustments via a centralized critic V(s; φe), which appraises the overarching
state S. Both the critic and policy frameworks undergo simultaneous training with a
clipped loss metric, expressed as LCLIP(θe, φe) = LP(θe) + LV(φe), integrating losses from
both networks to reflect their collective efficacy in the global scenario. This methodology
supports effective learning and adaptation within a multi-agent environment, ensuring
that each agent’s actions contribute optimally to the collective goals of the energy trading
system. Algorithm 1 provides a summary of the proposed MADRL algorithm.

The complexity of the proposed MADRL-based energy trading algorithm increases
with the number of agents, as each agent (EV or MCS) operates within a dynamic state-
action space, which grows exponentially with the number of participants. This scaling
challenge impacts the learning algorithm, as more agents require additional computational
resources to update policies and value functions through deep learning iterations. Com-
munication overheads also rise with the number of agents, particularly in decentralized
systems where data exchange for coordination becomes necessary across both local and
global markets. Auction mechanisms further introduce complexity, particularly in double
auction scenarios where both buyer and seller bids need to be evaluated. Despite these
challenges, the system is designed to maintain scalability through decentralized learn-
ing and localized markets, which effectively mitigate complexity, making the algorithm
feasible for large-scale deployment. However, the careful management of computational
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resources and communication protocols will be critical to ensure efficiency as the number
of agents increases.

Algorithm 1: Multi-agent deep reinforcement learning-based auction algorithm

1 Initialize policy networks πe(θe) and value networks and V(φe) for each EV e;
2 for episode in range(max_episodes) do
3 Initialize state Oe(t);
4 for t in range(max_timesteps) do
5 for each EV e in EV_set do
6 Observe the current state for Oe(t);
7 Select an action Ae(t) based on its policy network πe(Oe(t); θe);
8 end
9 Execute actions and observe the next state Oe(t + 1) and reward Re(t);

10 for each EV e in E f do
11 Store the experience tuple (Oe(t), Ae(t), Re(t), Oe(t + 1)) in replay

buffer B;
12 Sample a mini-batch of experiences from replay buffers;
13 Update the value network V(φe) using the sampled mini-batch;
14 for Each (Oe(t), Ae(t), Re(t), Oe(t + 1)) in minibatch do
15 Value_loss = (V(Oe(t); φe)− target)2;
16 Update φe using gradient descent on value_loss;
17 end
18 end
19 Update the policy network πe(θe) using the sampled mini-batch;
20 for each experience in minibatch do
21 (Oe(t), Ae(t), Re(t), Oe(t + 1)) = experience;
22 Advantage = Re(t) + γ ·V(Oe(t + 1); φe)−V(Oe(t); φe);
23 Policy_loss = − log(πe(Ae(t); θe)) · advantage;
24 Update θe using gradient descent on policy_loss;
25 end
26 end
27 Update the centralized critic V(s; φe) using global state Oe(t);
28 for each global state Oe(t) in minibatch do
29 Global_target = R(t) + γ ·V(Oe(t + 1); φe);
30 Critic_loss = (V(Oe(t); φe)− global_target)2;
31 Update φe using gradient descent on critic_loss;
32 end
33 end
34 Store results and statistics for the episode.

4.4. Property Analysis

Utilizing the principles of second-price and McAfee’s double auctions, we demon-
strate that our innovative distributed hierarchical auction structure promotes both IR and
truthfulness across a distributed market setting. It is essential initially to verify that this
framework supports IR and truthfulness consistently in local markets.

Lemma 1. With the established market entry strategies Ae, ∀e ∈ E f (t), this system sustains IR
and truthfulness locally.

This principle is derived from the fundamental characteristics of second-price auctions and the
dominant strategies used in double auctions. Expanding from this foundation, the local maintenance
of IR and truthfulness is projected onto the broader, globally distributed market.
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Theorem 1. Across a diverse network of local markets that make up the global market, our frame-
work reliably preserves individual rationality and truthfulness.

Proof. Assessing individual rationality and truthfulness involves examining both urgent
and routine submarkets, following the set market entry strategies. Specifically, an EV e with
Ae(t) = 0 consistently opts for urgent submarkets, whereas one with Ae(t) = 1 chooses
routine submarkets.

We then demonstrate that our auction model guarantees IR for all participants. In
urgent submarkets facilitated by a second-price auction, the top bidder pays only the
second-highest bid, not exceeding their actual valuation. Consequently, the net benefit for
winners remains positive, as shown by

µe(t) = ve(t)− pb
e (t) ≥ 0, (11)

where ∑m∈M f (t) xm,e = 1. For those not winning, their utility remains zero as no payment
is made:

µe(t) = ve(t)− pb
e (t) = 0. (12)

In the mundane submarkets, McAfee’s mechanism ensures that winning buyers pay
the average of the lowest winning bid and the highest losing bid, which is also less than
or equal to their valuation. Hence, the utility for these buyers remains non-negative. For
buyers not succeeding, and for sellers, both losing and winning, the mechanism ensures
their utility is aligned with their actions, maintaining non-negative utility for winners and
zero utility for non-participants.

Next, we establish that the mechanism is truthful for all involved. In the urgent sub-
market’s second price auction, the optimal strategy for buyers is to bid their true valuation
since the payment is the second-highest bid, not their own. In the mundane submarket,
McAfee’s mechanism incentivizes both buyers and sellers to bid truthfully, making truth-
telling a dominant strategy. In conclusion, the proposed distributed hierarchical auction
mechanism consistently upholds individual rationality and truthfulness across a globally
distributed market comprising multiple local markets. This ensures efficient and equitable
distributed energy sharing within EV charging networks, thereby benefiting all participants
in their involvement.

5. Cross-Chain Scheme for Decentralized EV Charger Sharing

In EV charger-sharing networks, the cross-chain scheme for energy trading employs
a structured workflow that coordinates local and global markets through side and main
blockchains, respectively. This technical process can be broken down as follows.

5.1. Local Market Energy Trading Confirmation in Side Blockchain

The energy trading process begins at the local market, where each side blockchain,
which manages local market transactions among charging stations and electric vehicles,
ensuring decentralized verification of energy trades, is maintained by FCS, MCSs, and EVs.

1. Trading Request and Auction Mechanism: In the energy trading process of the local
market, EVs submit charging requests based on their energy needs, while MCSs offer
available energy for sale through the proposed MADRL-based auction mechanism.
The FCS acts as the auctioneer, managing the auction and matching EVs’ demands
with MCSs’ supplies to determine charger allocation and payment.

2. Recording in the Side Blockchain: After the auction concludes, energy trading results,
including successful bids, prices, and energy quantities, are confirmed and recorded in
the side blockchain. Therefore, the side blockchain manages local market transactions
among FCSs, MCSs, and EVs, ensuring decentralized verification of energy trades
and transparency and reliability in the trading process.
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5.2. Aggregation into Global Market in Main Blockchain

The next phase aggregates results from local markets into the global market through the
main blockchain, which aggregates confirmed energy trading results from side blockchains to
maintain data integrity with FCSs serving as recording nodes, which can ensure consistency
and universal coordination between local and global energy demands and supplies.

1. Cross-Chain Interaction: The cross-chain interaction between the side blockchains of
local markets and the main blockchain of global market involves a two-step process.
First, the side blockchain communicates with the main blockchain through cross-chain
interaction protocols. Then, confirmed energy trading results from the side blockchain
are aggregated and submitted to the main blockchain, with FCSs acting as gateways
between the two blockchains. This process ensures the seamless integration of local
market data into the global energy market while maintaining data integrity and security.

2. Main Blockchain Record Update: On the main blockchain, representing the global
energy market, FCSs act as validators to record aggregated results from various local
markets. These results update the global market’s ledger, reflecting the total energy
exchanged, pricing trends, and participation of MCSs and EVs across all local markets.

3. Final Confirmation: Validators on the main blockchain confirm the legitimacy of aggre-
gated results. Once confirmed, the global ledger is updated, ensuring consolidation
and accurate reflection of all energy trading data across multiple local markets.

5.3. Cross-Chain Scheme with Two-Phase Commit Protocol

The cross-chain interaction uses the Two-Phase Commit (2PC) protocol, which ensures
synchronization in cross-chain transactions through a prepare phase for result collection
and a commit phase for result aggregation, to ensure synchronization and atomicity in
cross-chain transactions:

1. Phase 1 (Prepare): Collators in the side blockchain collect local market results (energy
trading outcomes) and submit them to main blockchain validators. Validators check
result validity through lightweight verification, using simplified payment verification
to ensure legitimate and accurate transaction data.

2. Phase 2 (Commit): After verification, the main blockchain validators approve the
transaction. The cross-chain event is recorded, and the results are aggregated into the
main blockchain, completing the global energy market update.

This cross-chain process guarantees decentralized, tamper-resistant verification of
energy trading, ensuring seamless collaboration between local and global markets without
compromising blockchain data integrity or security.

6. Numerical Results
6.1. Experimental Settings

The experimental environment is set up with 50 rounds and includes four FCSs, each
representing a submarket. The total number of vehicles ranges from 20 to 80, and each FCS
has a coverage area of 500 m. In the experiment, we utilize the data proposed in [32], which
consist of 3395 high-resolution charging sessions involving 85 EV drivers across 105 stations
at 25 workplace locations, meticulously recorded to analyze the effects of pricing strategies
and workplace norms on optimizing shared EV charging resources. As shown in Figure 3,
the EV charging data statistics for the experiments are provided as follows: the total kWh
required has a mean of 5.81, a standard deviation of 2.89, and a range from 0 to 23.68, with
a median of 6.23 and a peak range between 6 and 7. The charge time has a mean of 2.84 h, a
standard deviation of 1.51 h, and a range from 0.0125 to 55.24 h, with a median of 2.81 h and
a peak range between 2 and 3.5 h. The distance traveled has a mean of 18.65 km, a standard
deviation of 11.42 km, and a range from 0.86 to 43.06 km, with a median of 21.02 km. We
implemented a prototype system of our cross-chain-empowered charger-sharing market
using Hyperledger Fabric for both the side and the main blockchains, with Chaincode smart
contracts in Go, DPoS consensus, and Hyperledger Cactus for cross-chain interactions.

51



Electronics 2024, 13, 4235

The algorithm settings involve several parameters crucial for the MADRL approach. The
replay buffer size is set to 10,000, with a learning rate of 1× 10−4 and a discount factor
(γ) of 0.95. The training is set to 1000 epochs, with each epoch consisting of 2000 steps.
During each epoch, 16 episodes are collected, and each episode is repeated four times.
The batch size for training is set to 64, and the hidden layers in the neural network have
sizes of 256 and 256. The training involves eight parallel environments, while testing uses
a single environment. Specific parameters for PPO include a value function coefficient
of 0.5, an entropy coefficient of 0.05, an epsilon clip of 0.2, a maximum gradient norm of
0.5, and a Generalized Advantage Estimation (GAE) lambda of 0.95. Additionally, reward
normalization is enabled, and several clipping and normalization parameters are set to
ensure stable training. The environment settings include 20 users and 4 servers, simulating
the interactions within the distributed markets.

The distribution of valuations for buyers and sellers is depicted in Figure 4. The left
histogram shows the distribution of valuations for buyers, ranging from approximately 0.6
to 1.4. The distribution is centered around 1.2, indicating that the most frequent valuations
are close to this value. The frequency peaks at around 1.2, with the highest frequency
just above 140. The distribution appears to be approximately normal, with fewer buyers
having valuations significantly lower or higher than 1.2. The right histogram shows the
distribution of costs for sellers, ranging from 0 to 4. The distribution is centered around 2,
indicating that the most frequent costs are close to this value. The frequency peaks at
around 2, with the highest frequency just above 80. The distribution appears normal, with
fewer sellers having costs significantly lower or higher than 2. Overall, both distributions
exhibit a bell-shaped curve, suggesting a normal distribution with a central tendency
around 1.2 for buyers’ valuations and 2 for sellers’ costs.
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Figure 3. The data distribution of energy demands, charging time, and distance in the dataset.
(a) Energy demands. (b) Charging time. (c) Distance.
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Figure 4. The distribution of valuation of buyers and sellers.

6.2. Convergence Analysis

The convergence performance of the proposed MADRL-based mechanism is analyzed
under different market sizes: 20, 40, 60, and 80. Figure 5 illustrates four subplots comparing
the performance of the DRL-based mechanism with Random, Single Price Auction (SPA),
and Double Auction (DA) mechanisms across 5000 epochs. For a market size of 20, the
DRL mechanism exhibits a steady increase in rewards, initiating at approximately −11
and converging to around −7. It significantly outperforms the Random, SPA, and DA
mechanisms, which display relatively static reward trends at lower levels. The Random
mechanism stabilizes around −11, SPA around −10, and DA around −12. In the scenario
with a market size of 40, the DRL mechanism demonstrates consistent improvement,
initiating at approximately −12 and converging to around −5. It markedly surpasses the
other mechanisms. Random mechanism stabilizes around −11, SPA around −9, and DA
around −12. With a market size of 60, the DRL mechanism begins with an initial dip
followed by a steady increase, starting from around −12 and converging to approximately
−4. The reward trajectory of the DRL mechanism surpasses those of the Random, SPA, and
DA mechanisms. The Random mechanism stabilizes around −11, SPA around −9, and
DA around −12. For the largest tested market size of 80, the DRL mechanism displays
rapid initial improvement, beginning from around −12 and converging to approximately
−4 within 2500 epochs. It consistently outshines the other mechanisms throughout the
training process. The Random mechanism stabilizes around −11, SPA around −9, and DA
around −12. In summary, across all market sizes, the DRL-based mechanism demonstrates
superior convergence performance compared to the Random, SPA, and DA mechanisms.
It consistently achieves higher rewards, indicating enhanced optimization and learning
efficacy. The DRL mechanism exhibits a clear upward trend, steadily improving over time
and converging to higher reward levels, while the other mechanisms maintain relatively
constant and lower reward levels throughout the epochs. This underscores the effectiveness
of the DRL-based approach in adapting to and optimizing the dynamics of EV charging
market scenarios. MADRL shows a clear upward trend, steadily improving over time
and converging to higher reward levels compared to SPA and DA. The consistent increase
suggests that MADRL effectively learns over time, optimizing both the buyers’ and sellers’
utilities. The rewards for MADRL start relatively low, indicating a learning curve where
the system first gathers data, adjusts bidding strategies, and progressively improves its
decision-making. This is expected for reinforcement learning algorithms that require
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sufficient exploration of actions before optimizing for rewards. Meanwhile, the rapid initial
improvements for market sizes of 40 and 80 suggest that the system’s complexity and
available data are more suited for larger market scenarios. This scalability is a crucial
feature of MADRL, ensuring that the algorithm can perform effectively as the number of
vehicles increases.
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Figure 5. Convergence analysis of the proposed learning-based mechanism under different sizes of
EV charging markets. (a) Market size = 20. (b) Market size = 40. (c) Market size = 60. (d) Market
size = 80.

6.3. Performance Comparison

Figure 6 presents a performance comparison of the proposed DRL-based mechanism
with the Random, SPA, and DA mechanisms across various sizes of EV charging markets
(number of vehicles). The DRL mechanism consistently achieves the highest rewards
across all market sizes, maintaining a stable reward close to −5 as the number of vehicles
increases from 20 to 80. In contrast, the Random and SPA mechanisms exhibit relatively
constant rewards around −10 and −11, respectively, while the DA mechanism shows a
significant decrease in reward as the market size increases, dropping from around −10
to nearly −40. In terms of social welfare, the DRL, SPA, and DA mechanisms display a
similar increasing trend as the number of vehicles increases. The DRL mechanism slightly
outperforms the other mechanisms, particularly in larger market sizes, achieving social
welfare close to 55 with 80 vehicles. The Random mechanism, however, lags, demonstrating
lower social welfare across all market sizes. The DRL mechanism also maintains a relatively
low and stable budget cost across all market sizes, approximately 10. The Random and
SPA mechanisms show low budget costs that increase slightly with market size but remain
below 20. Conversely, the DA mechanism experiences a substantial increase in budget
cost as the number of vehicles increases, reaching nearly 50 with 80 vehicles. Finally,
the charging latency performance of the DRL mechanism demonstrates competitiveness,
increasing from about 20 to 55 as the number of vehicles grows. The SPA mechanism
exhibits a similar trend but with slightly lower latency compared to DRL. The Random
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mechanism consistently displays higher latency than both DRL and SPA, while the DA
mechanism shows the highest charging latency across all market sizes, peaking at 60 with
80 vehicles. Across all market sizes (20 to 80 vehicles), MADRL consistently achieves
the highest rewards, maintaining stability near −5. The other mechanisms either stay at
lower reward levels (e.g., around −10 for SPA) or decline significantly (e.g., DA’s reward
dropping to −40 as market size increases). This stability in rewards highlights MADRL’s
ability to maintain an optimal balance of supply and demand over time, even in larger
markets. MADRL’s ability to handle increasing market sizes while maintaining low latency,
high social welfare, and low budget cost underscores its potential for scalability, making
it a promising solution for the future of EV energy trading. Further analysis could focus
on how MADRL adapts to even larger market sizes, different types of auction designs, or
integration with renewable energy sources to improve overall system sustainability.

During the experimentation, the complexity of implementing a MADRL framework
and cross-chain interactions using Hyperledger Fabric could imply potential computational
challenges.
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Figure 6. Performance comparison of the proposed learning-based mechanism under different sizes
of EV charging markets. (a) Reward. (b) Social welfare. (c) Budget cost. (d) Charging latency.

7. Conclusions

In this paper, we introduce a MADRL-based auction algorithm for distributed energy
trading in EV charger-sharing networks for achieving environmental sustainability. The
proposed algorithm significantly enhances the scalability and efficiency of EV charging
infrastructures by dynamically balancing supply and demand across various market sizes,
demonstrating robust adaptability and superior performance in extensive simulations. By
reducing charging latency and improving global social welfare, the proposed algorithm
offers a sustainable solution that is adaptable to smart grid technologies globally. The
proposed blockchain framework enables decentralized, secure, and scalable coordination
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for energy trading in EV charger-sharing markets through cross-chain collaboration, ensur-
ing efficient resource management and transparent transactions between local and global
markets. In future work, we will aim to benchmark our approach against a broader range
of models, potentially including other machine learning techniques, to further validate its
effectiveness and scalability. Moreover, we plan to perform real-world testing to validate
the proposed algorithm in the future.
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Abstract: Electricity markets are intricate systems that facilitate efficient energy exchange within
interconnected grids. With the rise of low-carbon transportation driven by environmental policies and
tech advancements, energy trading has become crucial. This trend towards Electric Vehicles (EVs)
is bolstered by the pivotal role played by EV charging operators in providing essential charging
infrastructure and services for widespread EV adoption. This paper introduces a blockchain-assisted
secure electricity trading framework between EV charging operators and the electricity market with
renewable energy sources. We propose a single-leader, multi-follower Stackelberg game between
the electricity market and EV charging operators. In the two-stage Stackelberg game, the electricity
market acts as the leader, deciding the price of electric energy. The EV charging aggregator leverages
blockchain technology to record and verify energy trading transactions securely. The EV charging
operators, acting as followers, then decide their demand for electric energy based on the set price. To
find the Stackelberg equilibrium, we employ a Deep Reinforcement Learning (DRL) algorithm that
tackles non-stationary challenges through policy, action space, and reward function formulation. To
optimize efficiency, we propose the integration of pruning techniques into DRL, referred to as Tiny
DRL. Numerical results demonstrate that our proposed schemes outperform traditional approaches.

Keywords: electricity market operators; secure energy trading; Stackelberg game; deep reinforcement
learning; pruning techniques

1. Introduction

The electricity market is a structured marketplace where electricity is traded, aiming to
ensure the efficient allocation and use of electrical resources to maintain a balance between
supply and demand. Key participants in this market include generators, transmission
companies, distribution companies, Load-Serving Entities (LSEs), and end users [1]. Price
signals within the electricity market are essential, as they incentivize the optimal use and
dispatch of electricity resources. The market operates through various segments, notably
the day-ahead market, where electricity is traded a day in advance based on forecasts,
and the real-time market, which addresses immediate imbalances in electricity demand
and supply [2]. Moreover, intraday markets offer additional flexibility by allowing market
participants to electricity closer to the time of delivery, further enhancing the market’s
ability to respond to unforeseen changes in demand or supply [3]. These mechanisms
collectively contribute to the reliable and cost-effective delivery of electricity to consumers,
facilitating the integration of renewable energy sources and supporting the overall stability
of the power grid.

Electricity trading is a key strategy for achieving low-carbon transportation and
offers additional benefits such as improving urban air quality and reducing environmental
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pressures [4]. This dual benefit motivates both national and local governments to take
more decisive actions. In recent years, stronger environmental protection policies and
significant reductions in technology costs have solidified commitments from governments
and automakers toward the development of Electric Vehicles (EVs). These developments
indicate that EVs are poised to become the mainstream choice for future transportation [5].
EV charging operators play a crucial role in the growing EV ecosystem, offering charging
facilities and services that are vital for widespread EV adoption. As EV usage increases,
these operators become key players in the electricity market. Beyond providing charging
services, they actively participate in energy trading, mainly electricity trading, through the
use of smart grid technologies [6]. EVs can function as mobile energy storage units, charging
during periods of low electricity demand and prices and discharging back to the grid when
demand and prices are high. This bidirectional energy flow helps optimize electricity
distribution, enhance grid stability, and maximize economic benefits. The integration
of vehicle-to-grid technology further enhances this capability by enabling more efficient
energy management and supporting the overall stability and efficiency of smart grids [7].

Currently, power trading faces several key challenges that hinder its efficiency and
reliability. First, there are inadequate incentive mechanisms in environments with incom-
plete information. Without proper incentives, market participants may be reluctant to
provide reliable and accurate electricity resources, leading to inefficiencies. This issue
is compounded by the lack of transparency and trust between stakeholders, which can
further discourage active and honest participation in the market [8]. Secondly, the dynamic
nature of the trading environment presents significant difficulties. Traditional methods
often fail to achieve optimal trading strategies in real time due to rapid price fluctuations
and the complex requirements of demand response. These methods are generally not
equipped to handle the high volatility and the swift changes in supply and demand, which
are characteristic of modern electricity markets. As a result, there is a pressing need for the
development of more flexible and efficient technological solutions. Advanced approaches
such as machine learning and Deep Reinforcement Learning (DRL), have shown promise
in this regard. These technologies can adapt to changing market conditions and optimize
trading strategies in real time, thereby ensuring more effective market operations [9,10].

The electricity market is essential for the optimal allocation of electrical resources,
ensuring a balance between supply and demand. EV charging operators enhance this
process by integrating smart grid technologies and actively participating in the electricity
market, thereby promoting efficient electricity utilization. To overcome the challenges
posed by incomplete information and dynamic trading environments, it is crucial to contin-
uously innovate and improve market mechanisms and technological solutions [11]. These
advancements are vital for maintaining the efficient operation of the electricity market
and supporting the green transition of energy systems. In the context of emerging tech-
nologies and market dynamics, continuous innovation and the development of advanced
market mechanisms are crucial. For instance, integrating Demand Response (DR) strategies
and employing advanced algorithms, such as those based on game theory and DRL, can
significantly enhance market efficiency and reliability. By leveraging these technologies,
the market can better accommodate the variability of renewable energy sources and ensure
a more resilient and adaptive power system.

Therefore, to address the challenge of ensuring that electricity markets provide real
and reliable resources, we propose a Stackelberg game. This game-theoretic approach
effectively structures interactions between market participants, promoting optimal decision
making and efficient resource allocation. Furthermore, we integrate DRL with pruning
techniques to solve the model efficiently. This combination enables dynamic adaptation to
changing market conditions, significantly enhancing the security and efficiency of electricity
resource provision. The main contributions of this paper are summarized as follows:

• We introduce a blockchain-assisted secure electricity trading framework that facilitates
transactions between EV charging operators and the electricity market. Central to this
framework is an aggregator that leverages blockchain technology to securely record
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and manage these transactions. By employing blockchain, we ensure the integrity and
security of electricity trading operations.

• To address the pricing challenges within the electricity market, we propose a single-
leader, multi-follower Stackelberg model involving the electricity market and EV
charging operators. Here, the electricity market assumes the role of the leader, es-
tablishing the selling price of electric energy units. EV charging operators, as follow-
ers, adjust their resource demand strategies based on the pricing set by the market
leader. This model aims to optimize resource allocation and pricing decisions within
the system.

• Recognizing the computational complexity associated with training traditional DRL
models, we present a Tiny DRL algorithm that integrates pruning techniques with DRL
methodologies. This novel approach enhances computational efficiency while aiming
to achieve Stackelberg equilibrium. By combining pruning techniques with DRL,
our algorithm efficiently navigates complex and dynamic environments, ultimately
improving performance in reaching the desired equilibrium state.

The rest of this paper is organized as follows: Section 2 reviews the related work and
introduces the combination of DRL with pruning techniques. In Section 3, we introduce
the system model considering electricity trading between EV charging operators and the
electricity market. In Section 4, we introduce the single-leader, multi-follower Stackelberg
game model between EV charging operators and the electricity market in detail. In Section 5,
we propose a Tiny DRL algorithm to find the Stackelberg equilibrium. The numerical results
of the proposed scheme are shown in Section 6. Section 7 concludes the paper.

2. Related Work

In this section, we review several related works, with a focus on reliable energy
trading in electricity markets. Ensuring reliable energy trading is crucial for maintaining
grid stability and optimizing resource allocation. Therefore, compared to traditional
schemes, blockchain technology is employed to enhance the security of transactions in this
paper, safeguarding the integrity and transparency of the process. Furthermore, advanced
DRL methods incorporating pruning techniques are utilized to optimize strategic bidding,
energy trading, and load management. By removing less significant neurons or parameters
from the network, these techniques enable more efficient decision making, leading to faster
convergence and more robust learning outcomes.

2.1. Reliable Energy Trading in Electricity Markets

EVs possess dual attributes as both electrical loads and power sources. They play a
crucial role in creating a safe, economical, and environmentally friendly intelligent power
system. EVs significantly contribute to the solving of transportation, energy, and envi-
ronmental challenges by reducing greenhouse gas emissions, enhancing energy efficiency,
and supporting grid stability through the use of smart charging and vehicle-to-grid tech-
nologies [12]. Integrating EVs into smart grids and urban infrastructure not only mitigates
pollution but also fosters the development of sustainable and resilient energy systems.
Therefore, numerous scholars have undertaken extensive and in-depth research on the
integration of EVs into the electricity market [13–16]. The authors of [13] proposed a joint
demand response and energy trading model for electric vehicles in off-grid microgrid
systems, optimizing transaction prices through a broker-led Stackelberg game approach.
The results demonstrated that this model achieves up to 25.8% lower transaction prices
compared to existing markets while maintaining high power reliability, showcasing its
suitability for isolated microgrid environments. The authors of [14] presented a Peer-to-Peer
(P2P) local electricity market model that integrates both energy and uncertainty trading
to enhance the reliability of energy trading in electricity markets, particularly with the
incorporation of EVs. The model significantly improves the local balancing of photovoltaic
forecast errors by matching forecast power with time-flexible demand and uncertain power
with power-flexible demand. The authors of [17] presented a data-driven probabilistic
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evaluation method for determining the hosting capacity of hydrogen fuel cell vehicles,
incorporating a directional mapping approach, a probabilistic model considering high-
dimensional uncertainties, and a cross-term decoupled polynomial chaos expansion for
efficient computation. The authors of [15] introduced a decentralized Quality of Service
(QoS)-based system for P2P energy trading among EVs, leveraging smart contracts to en-
sure reliable and resilient transactions without a third party. By employing QoS attributes
and a fuzzy-based approach, the system effectively matches energy providers and con-
sumers while implementing penalties to maintain contract integrity, thereby enhancing
reliability in electricity markets. The authors of [18] presented a comprehensive analysis
of the application and evolution of cooperative, non-cooperative, and evolutionary game
theory within the electricity market. They examined the effects of these game theory models
on the power generation, power sale, and power consumption sectors, with a particular
focus on energy trading. Additionally, the study assessed the current status and scale of
electricity markets, both domestically and internationally, providing insights and prospects
for future research and the application of game theory in this domain.

2.2. Blockchain-Based Energy Trading in the Electricity Market

With the exponential increase in data volume and the inherent value of these data,
transactions within the electricity market are encountering a critical demand for enhanced
security measures [19–21]. For example, the authors of [22] presented FedPT-V2G, a feder-
ated transformer learning approach for real-time vehicle-to-grid dispatch that addresses
non-IID data issues and data privacy concerns through the use of proximal algorithms
and transformer models, achieving performance comparable to that of centralized learning
in both balanced and imbalanced datasets. The adoption of blockchain technology also
represents a viable solution for the establishment of trustworthiness and ensuring the
continuity of secure transactions within the electricity market. By leveraging blockchain for
secure storage and management, a decentralized system can be established that guarantees
data integrity through encryption protocols, ensuring transparency and robust security
throughout the entire process [23]. The authors of [19] reviewed the role of blockchain
technology, combined with smart contracts, in facilitating peer-to-peer energy trading
among prosumers, highlighting its potential to reshape the energy sector, the challenges it
faces, emerging start-ups, and its application in EV charging. The authors of [20] proposed
a novel blockchain-based distributed community energy trading mechanism designed to
optimize energy trading efficiency and security in the context of shifting from consumers
to producers. The authors of [21] pointed out that the security characteristics of blockchain
technology can improve the efficiency of energy transactions and establish the basic stability
and robustness of the energy market, e.g., the electricity market, and also reviewed the
basic characteristics of blockchain and energy markets. In conclusion, the pivotal role of
blockchain technology in energy trading, particularly electricity trading, is increasingly rec-
ognized by scholars, as evidenced by the growing body of research in this area. Therefore,
in this paper, blockchain technology is utilized to enhance the security of the transaction
process, underscoring its significance in ensuring the integrity and trustworthiness of
energy transactions compared to current electricity trading methods.

2.3. Deep Reinforcement Learning with Pruning Techniques

DRL combines the advantages of deep learning and reinforcement learning, enabling
the creation of algorithms that dynamically interact with and adapt to their environ-
ment. By employing privacy-preserving techniques, DRL algorithms iteratively learn and
optimize decision making while safeguarding sensitive information. In the context of
Stackelberg games, which involve leader–follower dynamics and strategic decision making,
participants might be hesitant to disclose too much information due to competition or
security concerns. DRL is essential for effectively reaching equilibrium solutions in such
settings, as it allows agents to learn optimal strategies through interaction without requir-
ing full disclosure of private information [24]. This capability is particularly beneficial in
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applications like security games, energy trading, and multi-agent systems, where balancing
strategic advantage and information privacy is crucial [25].

However, training DRL models is resource-intensive in terms of computing power
and storage. To address the need for more efficient DRL models in specific scenarios,
researchers have increasingly adopted pruning techniques to optimize and enhance DRL
performance [24,26–29]. For example, the authors of [29] introduced a novel multi-agent
deep reinforcement learning method for urban distribution network reconfiguration, in-
corporating a “switch contribution” concept to reduce the action space, an improved
QMIX algorithm for policy enhancement, and a two-stage learning structure with reward
sharing to improve learning efficiency, which was validated through numerical results
on a 297-node system. Pruning techniques are mainly divided into structured pruning
and unstructured pruning [30]. Structured pruning involves the removal of entire com-
ponents of a neural network, e.g., layers, neurons, or channels [24]. With the pruning of
these larger structures, the shape of the model changes, leading to a more streamlined
and often faster-to-execute network. Unstructured pruning, also known as magnitude
pruning, targets individual parameters or weights within the neural network [30]. It re-
moves weights that have the smallest magnitude, resulting in a sparse network. Pruning
techniques have emerged as a promising approach to compress DRL models and improve
algorithm efficiency, with an increasing amount of research focused on integrating pruning
techniques with DRL. The authors of [26] proposed a novel model compression frame-
work for DRL models using a sparse regularized pruning method and policy-shrinking
technology, achieving a balance between high sparsity and compression rate. The authors
of [27] proposed a compact DRL algorithm that leverages adaptive pruning and knowledge
distillation to achieve high long-term transaction efficiency and lightweight routing for
payment channel networks in resource-limited Internet of Things (IoT) devices. Simulation
results show that the algorithm significantly outperforms baseline methods. The authors
of [24] proposed a Tiny Multi-Agent DRL (Tiny MADRL) algorithm to facilitate the efficient
migration of Unmanned Aerial Vehicle Twins (UTs) in Unmanned Aerial Vehicle (UAV)
metaverses. By using pruning techniques, the algorithm reduces the network parameters
and computational demands, optimizing Roadside Unit (RSU) selection and bandwidth
allocation for seamless UT migration.

3. System Model

Decarbonizing transportation is crucial for climate change mitigation. With the increas-
ing supply of renewable energy, governments are actively promoting the electrification
of vehicle fleets [31]. Figure 1 shows the proposed blockchain-assisted secure electricity
trading between EV charging operators and the electricity market with renewable energy
sources. We provide more details of the system model as follows:

• EV Charging Operator: EV charging operators are responsible for managing and
operating charging stations where EV owners can recharge their vehicles [32]. They
ensure the availability, functionality, and efficiency of charging infrastructure. These
charging operators purchase electricity from different kinds of electricity markets to
supply their charging stations, maintaining a reliable energy source for EVs.

• Aggregator: Traditionally, the aggregator purchases time-varying electricity from
the power grid and sells it to traditional users [33]. In this paper, we consider the
aggregator responsible for managing electric energy trading between the EV charging
operator and electricity markets. Specifically, the aggregator utilizes blockchain tech-
nology to securely record and verify energy trading transactions [34], which ensures
the transparency, traceability, and efficiency of electric energy trading between the EV
charging operator and electricity markets [34]. Note that the Practical Byzantine Fault
Tolerance (PBFT) consensus algorithm is used in the blockchain system to achieve
lightweight consensus. The incorporation of blockchain technology into energy trad-
ing enhances security, transparency, and traceability, surpassing the capabilities of
traditional electricity market trading mechanisms [21]. This advancement empowers
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EV charging operators to make well-informed and optimized operational decisions,
thereby ensuring the efficiency and reliability of electric energy trading processes.

• Electricity Markets: Electricity market operators facilitate the buying and selling of
electrical energy, with EV charging operators participating by purchasing the electric-
ity needed to supply their stations. These markets—especially those incorporating
renewable energy resources—regulate prices by continuously adjusting them based
on the supply-and-demand dynamics of EV charging operators.

EV Charging Operators

Aggregator

Consortium 
blockchains

Electricity Market

Price Electricity

Base station

Edge server

Establish Stackelberg 
game for resource trading

Figure 1. A blockchain-assisted secure electricity trading framework between EV charging operators
and the electricity market.

4. Stackelberg Model for Electric Energy Trading

In this section, we consider that one electricity market and a set (M = {1, . . . , m, . . . , M})
of M EV charging operators participate in electric energy trading.

During electric energy trading, the electricity market is the sole electricity resource,
and EV charging operators rely on electricity resources provided by the electricity market
to supply energy for EVs. Since electric energy trading between the electricity market and
EV charging operators is an incomplete process [35], a monopoly market is formed [36].
Specifically, the electricity market operates as a monopoly with the authority to regulate
electricity, while market supply and demand drive price adjustments. Electric vehicle charg-
ing operators must decide how much electricity to purchase based on the prevailing prices.
If prices are low, EV charging operators may buy more energy to ensure a reliable supply
for EVs. Conversely, high prices may discourage purchases. Therefore, balancing energy
trading is crucial to maximizing the utility of the electricity market while maintaining its
monopoly power.

The Stackelberg game, acting as an effective game-theoretical model, has been widely
used to strategically regulate the price of oligopolies, which can be described as an oligopoly
model [23,36]. The Stackelberg game has two stages, where the leader sets its strategy first,
followed by the followers, who respond accordingly. We model this as a single-leader,
multi-follower Stackelberg game between the electricity market and EV charging operators.
In the first stage, the electricity market, as the leader, sets the selling price to maximize
its utility. In the second stage, each EV charging operator, as a follower, determines its
energy demand to maximize its utility. The Stackelberg game model is described in detail
as follows.
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4.1. Electric Energy Demands of EV Charging Operators in Stage II

We formulate the utility function of EV charging operators, which is the difference be-
tween the profit corresponding to the purchased electric energy and the cost of purchasing
electric energy. Specifically, for EV charging operator m, we define Em as the electric energy
provided by the electricity market. The more electric energy obtained from the electricity
market, the more profits that EV charging operators can obtain. Thus, motivated by [36],
the profit of EV charging operator m can be defined as

Gm(Em) = αm log(1 + Em), (1)

where αm is the unit profit for the purchased electric energy of EV charging operator m.
Thus, the utility function of EV charging operator m is given by

Um(Em) = Gm(Em)− P · Em, (2)

where P > 0 is the unit selling price of electric energy. In Stage II, each EV charging
operator (m) aims to maximize its utility Um(Em) by deciding the optimal electric energy
demand to purchase. Therefore, the optimization problem that maximizes the utility of EV
charging operator m is formulated as

P1: max
Em

Um(Em)

s.t. Em > 0.
(3)

4.2. Selling Price of the Electricity Market in Stage I

The electricity market, as the energy provider, ensures that its energy allocation meets
the demands of EV charging operators while maximizing its utility [23]. To achieve this, it
formulates a dynamic pricing strategy, adjusting based on the energy demands of the EV
charging operators. The utility of the electricity market is the difference between the total
charges paid by EV charging operators and the cost of energy harvesting and transmission.
Thus, the utility of the electricity market is expressed as

Ue(p) =
M

∑
m=1

(P · Em − C · Em), (4)

where C > 0 is the unit cost of supplying electric energy to EV charging operators. From (4),
we know that the electricity market can obtain profits by providing electric energy to EV
charging operators but needs to pay the costs of supplying electric energy. Considering
that the renewable energy harvested by the electricity market is not unlimited, the energy
sold by the electricity market has an upper limit of Emax, and the energy price also has an
upper limit of Pmax. The electricity market aims to maximize its utility by deciding a selling
price under the constraints that the total electric energy sales do not exceed Emax and the
energy price does not exceed Pmax. Hence, the optimization problem of maximizing the
utility of the electricity market is given by

P2: max
P

Ue(p) =
M

∑
m=1

(P · Em − C · Em)

s.t. 0 < ∑M
m=1Em ≤ Emax,

Em > 0, ∀m ∈ {1, . . . , M},
0 < C ≤ P ≤ pmax.

(5)

Note that no EV charging operator would buy electric energy from the electricity
market if the selling price of unit electric energy were to exceed Pmax. Finally, we formulate
the Stackelberg game based on (3) and (5).
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4.3. Stackelberg Equilibrium Analysis

In this part, we seek the Stackelberg equilibrium to find the optimal solution for the
game. This equilibrium ensures that the electricity market maximizes its utility, while EV
charging operators can design energy request policies based on their best response. Both
parties maximize their utility by adjusting strategies until they reach equilibrium [23]. The
Stackelberg equilibrium is defined as follows:

Definition 1 (Stackelberg Equilibrium). We denote E∗ = {E∗m}, m ∈ M and P∗ as the
optimal electric energy demands of EV charging operators and the optimal energy pricing of the
electricity market, respectively. The strategy (E∗, P∗) can be the Stackelberg equilibrium if and only
if the following set of inequalities is strictly satisfied [23,36]:

{
Ue(P∗, E∗) ≥ Ue(P, E∗),

Um(E∗m, E∗−m, P∗) ≥ Um(Em, E∗−m, P∗), ∀m ∈ M.
(6)

In the following, we utilize the backward induction method to analyze the Stackelberg
equilibrium [23,36].

4.3.1. EV Charging Operators’ Optimal Strategies as Equilibrium in Stage II

In the Stackelberg game, EV charging operators act as followers, which determine the
optimal strategies of electric energy demands based on the selling price of a unit of electric
energy (P), thereby maximizing their profits.

Theorem 1. The perfect equilibrium in the EV charging operators’ subgame is unique.

Proof. We derive the first-order derivative and the second-order derivative of Um(Em)
with respect to Em as follows:

∂Um(Em)

∂Em
=

αm

1 + Em
− P,

∂2Un(bn)

∂b2
n

= − αm

(1 + Em)2 < 0.
(7)

Since the first-order derivative of Um(Em) has a unique zero point and the second-order
derivative of Um(Em) is negative, the utility function (Um(Em)) of EV charging operators is
strictly concave with respect to the electric energy demand strategy (Em) of EV charging
operators. Based on the first-order optimality condition, i.e., ∂Um(Em)

∂Em
= 0, we can obtain

the best response function (E∗m) of EV charging operator m, which is given by

E∗m =
αm

P
− 1. (8)

Therefore, perfect equilibrium in the subgame of EV charging operators is unique.

4.3.2. The Electricity Market’s Optimal Strategy as Equilibrium in Stage I

In this part, we focus on studying the concavity of the utility function of the electricity
market, proving the existence and uniqueness of the Stackelberg equilibrium. In Stage I,
the electricity market acts as the leader in maximizing its utility by predicting the strategies
of EV charging operators.

Theorem 2. The uniqueness of the Stackelberg equilibrium (E∗, P∗) can be guaranteed in the
formulated Stackelberg game.

Proof. According to Theorem 1, there exists a unique Nash equilibrium among EV charging
operators under any given value of P. Thus, the electricity market can maximize its utility
by choosing the optimal value of P. Based on the optimal electric energy demand strategies
of EV charging operators, the utility function of the electricity is given by
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Ue(P) =
M

∑
m=1

(P− C)
(αm

P
− 1
)

. (9)

By taking the first-order derivative and the second-order derivative of Ue(P) with
respect to P, we can obtain

∂Ue(P)
∂P

=
M

∑
m=1

(
αmC
P2 − 1

)
,

∂2Ue(P)
∂2P

=
M

∑
m=1
−2αmC

P3 < 0.

(10)

Since the first-order derivative of Ue(P) has a unique zero point, we can obtain

P∗ =
√

C ∑M
m=1 αm
M , and the second-order derivative of Ue(P) is negative, so Ue(P) is also

strictly concave, which indicates that the electricity market has a unique optimal solution
to the formulated game [36]. Based on the optimal strategy of the electricity market, the op-
timal strategies of EV charging operators can be obtained [37]. Therefore, the uniqueness
of the Stackelberg game’s equilibrium is proven.

Due to the dynamic nature of the environment of energy trading between the electricity
market and EV charging operators [38], traditional methods may be difficult to adapt
to the dynamics of energy trading and not be able to efficiently find the Stackelberg
equilibrium. Since DRL agents can learn to adapt their behavior based on environmental
dynamics [39], we utilize a DRL algorithm to find the Stackelberg equilibrium. Furthermore,
we innovatively add dynamic structured pruning techniques to the DRL algorithm for
efficient implementation in energy trading.

5. Tiny Deep Reinforcement Learning for an Optimal Pricing Strategy

In intricate decision-making contexts, sophisticated AI methodologies such as
DRL [40,41] represent promising approaches for the development of incentive mecha-
nisms while addressing privacy concerns [42,43]. In this section, we model the formulated
Stackelberg game between the electricity market and EV charging operators as a Partially
Observable Markov Decision Process (POMDP) [36,44]. To address the challenge posed by
incomplete information and enhance the efficiency of finding the Stackelberg equilibrium,
we propose a Tiny DRL algorithm. The Tiny DRL algorithm is designed to find the Stackel-
berg equilibrium by identifying the optimal solutions of the Stackelberg game, enabling
the electricity market to quickly converge to near-optimal decisions. Unlike traditional
DRL approaches that focus on estimating fixed policies or single-step models, the proposed
method leverages Markov properties to effectively decompose the problem.

5.1. POMDP for the Stackelberg Game between the Electricity Market and EV Charging Operators

Because of the effect of the competition between the electricity market and EV charging
operators, each EV charging operator has local incomplete information in the Stackelberg
game and determines electric energy strategies in a completely non-cooperative manner.
The energy trading environment following a POMDP is needed to train the DRL agent,
which is formulated by conceptualizing the dynamic relationship between the electric-
ity market and EV charging operators as a Stackelberg game. Let F = {S ,O,A,R, γ}
represent a POMDP [45], where S , O, A, R, and γ represent the state space, partially
observable policy, action space, reward function, and discounted factor for the electricity
market, respectively [36,45].

In each time step (t, where t ∈ T = {0, . . . , t, . . . , T}), the electricity market interacts
with the environment to determine its current state, which is denoted as S(t). During the
training process, the electricity market, acting as the DRL agent, engages in interactions
with the environment. At each time step, when the electricity market executes an action
(P(t)) according to the current state (S(t)), the environment provides an immediate reward
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(R(t)) [46]. In the realm of electric energy trading, the electricity market functions as a
game leader, responsible for selecting the action, i.e., the pricing policy (P(t)). After that,
EV charging operators, acting as followers, identify an optimal strategic decision based
on (8). Following this, the environment provides a reward (R(t)) to the electricity market
by considering the strategies decided by all EV charging operators. The system contains a
finite relay buffer, denoted as D, which can store historical operation data, and the capacity
of the finite relay buffer is defined as D. Relevant data of the electricity market can be
extracted from the relay buffer to create new states, triggering the subsequent time step [24].

5.1.1. State Space

In each time step (t ∈ T = {0, . . . , t, . . . , T}), the state space is defined as a union of the
current pricing strategy of the electricity market and the electric energy demand strategies
of EV charging operators, which is denoted as

S(t) , {P(t), E(t)}, (11)

where P(t) and E(t) are the price of the electricity market and the electric energy demand
vector of EV charging operators at time step t, respectively.

5.1.2. Partially Observable Policy

We formulate the partially observable space for energy trading between the electricity
market and EV charging operators, tackling the non-stationary problem in the DRL system.
Throughout the POMDP, the electricity market agent can solely base decisions on local
environmental observations. We define the observation space of the electricity market in
at time step t as O(t), which is a union of its historical pricing strategies and the electric
energy demand strategies of EV charging operators for the previous L games involving
the electricity market and all EV charging operators. Consequently, the observation space
(O(t)) of the electricity market at time step t is represented as

O(t) , {P(t− L), E(t− L), P(t− L + 1), E(t− L + 1), . . . , P(t− 1), E(t− 1)}, (12)

where P(t − L) and E(t − L) can be generated randomly during the initial stage when
t < L. By considering historical information, the electricity market agent can learn how
changes in its strategy impact the game result in the current time slot [36]. When receiving
an observation (O(t)) from the environment, the electricity market agent needs to design
the selling price (P(t)) of electric energy to maximize its utility.

5.1.3. Action Space

A , {P} denotes the action space of the electricity market. Given the lower-bound
cost (C) and the upper-bound price (Pmax) for the pricing action, the electricity market
decides its action (P(t)) at each time step (t), where P(t) ∈ [C, Pmax]. This decision-making
process relies on the information encapsulated in the observation space (O(t)).

5.1.4. Reward Function

R , {R} denotes the reward function of the electricity market. Following the state
transition, the electricity market can acquire an immediate reward based on the current
state (S(t)) and the corresponding action (P(t)) [36]. The reward function is defined as the
utility function of the electricity market that we construct in the Stackelberg game. At time
step t, the reward function for the electricity market is represented as R(t) = Ue(t).

In the actor–critic network framework, the system consists of two crucial elements,
i.e., the actor network and the critic network [24]. Proximal Policy Optimization (PPO)
is a DRL algorithm based on policy gradients [47]. By employing proximal optimization
techniques on the policy, the stability and convergence of agent learning can be enhanced,
ensuring more reliable and efficient learning processes. In the proposed tiny DRL frame-
work, we denote the actor–critic network as (θ, ω). Note that the actor and critic networks
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are all neural networks. The actor network essentially functions as a policy function
(πθ(P|S)) with parameters (θ), which helps to generate the action of the electricity market,
namely the pricing strategy (P), and facilitate interactions with the environment. Con-
versely, the critic network, characterized by the value function (Vω(S)) parameterized by
ω, evaluates the performance of the electricity market agent and guides the actions of the
agent in subsequent phases, which is defined as

Vω(S) , Êπθ

[
T

∑
t=0

γtR(S(t), P(t)) | S0 = S

]
, (13)

where Êπθ
(·) is the expected value of a random variable, given that the electricity market

agent follows the policy (πθ).
The primary objective of the critic network is to minimize the Temporal Difference

(TD) error, which is expressed as

d = R(t) + γVω
(
S(t + 1)

)
−Vω

(
S(t)

)
, (14)

where Vω
(
S(t)

)
and Vω

(
S(t + 1)

)
represent the value functions associated with the current

state (S(t)) and the subsequent state (S(t + 1)), respectively. Therefore, the loss function of
the critic network is derived by minimizing the expected value of the squared temporal
difference (TD) value, which is given by [27]

min
ω

Lc(ω) = min
ω

E
[(

R(t) + γVω
(
S(t + 1)

)

−Vω
(
S(t)

))2].
(15)

Furthermore, the objective of the actor network is specifically defined as

max
θ

Ja(θ) = max
θ

E
[

min
(
ζ(θ)Âπθ

(S, P),

I
(
ι, ζ(θ)

)
Âπθ

(S, P)
)]

,
(16)

where ζ(θ) = πθ(P|S)
πθ̂(P|S) represents the important ratio between the old policy and the new

policy, θ̂ represents the parameters of the strategy used for sampling (P), and πθ̂(P|S)
denotes the policy employed for importance sampling [48]. I

(
ι, ζ(θ)

)
is a piece-wise

function with intervals, which is given by [48]

I
(
ι, ζ(θ)

)
=





1 + ι, ζ(θ) > 1 + ι,
ζ(θ), 1− ι ≤ ζ(θ) ≤ 1 + ι,
1− ι, ζ(θ) < 1− ι,

(17)

where ι represents an adjustable hyper-parameter. Âπθ
(S, P) denotes the estimator for the

advantage function that utilizes Vω(S), which is expressed as

Âπθ

(
S(t), P(t)

)
=γT−tVω(S(T))−Vω(S(t))

+
T−1

∑
x=t

γx−tR(S(x), P(x)),
(18)

5.2. Dynamic Structured Pruning

In the DRL algorithm, the actor and critic networks are essentially deep neural net-
works [49], which typically consist of an input layer, multiple hidden layers, and an output
layer [24]. These layers have numerous parameters, like neurons and weights. Without loss
of generality, we consider an actor network with K layers and denote the weights in the
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k-th fully connected layer as θ(k), where k ∈ {1, . . . , K}. By inputting the state (S(t)) at time
step t into the first layer, the output of the first layer is calculated as

h(1) = σ(1)(θ(1)S(t) + b(1)
)
, (19)

where σj(1) represents the nonlinear response of the first layer, which is typically set to the
ReLU function, and b(1) is the deviation at the h-th layer. The output of each layer in the
network is fed to the subsequent laye ras the input. Therefore, the output of the k-th layer
is expressed as

h(k) = σ(k)(θ(k)h(k−1) + b(k)
)
. (20)

Finally, at time step t, the actor network outputs the action, i.e., the price strategy
(P(t)), which is expressed as

P(t) = σ(K)(θ(K)h(K−1)). (21)

To achieve the Tiny DRL algorithm, we incorporate dynamic structured pruning
techniques into the actor network. This helps eliminate neurons and weights that do not
significantly contribute to the performance of the actor network [49]. Unlike unstructured
pruning techniques for the acceleration of DRL training, which often results in irregular
network structures [24], structured pruning is a technique used to reduce model complexity
by strategically eliminating redundant neurons or connections [50].

To indicate the pruning status of neurons, a binary mask (m(k)) is employed. Specifi-
cally, we denote m(k)

i = 1 as a non-pruning neuron (o(k)i ) and m(k)
i = 0 as a pruning neuron

(o(k)i )[24]. Thus, the action output from the actor network is expressed as

P(t) = σ(H)
(
θ(H)h(H−1) �m(H)

)
, (22)

where � denotes the element-wise multiplication of two matrices. Based on the above
analysis, the loss function of the actor network is rewritten as [24,50]

Ja(θ, m) = E
[

min
(
ζ(θ, m)Âπθ

(S, P),

I
(
ι, ζ(θ, m)

)
Âπθ

(S, P)
)]

.
(23)

As D records accumulate in the replay buffer, the actor and critic networks are updated.
Specifically, the electricity market updates the parameters of the actor network by using
the gradient ascent method, which is given by

θ(k)
′
= θ(k) − ε

∂Ja(θ, m)

∂
(
h(k) �m(k)

) ·
∂
(
h(k) �m(k))

∂θ(k)
, (24)

where ε represents the learning rate employed in the training process of the actor network
and θ(k)

′
represents the updated parameters of the actor network. The parameters of the

critic network are updated through the gradient descent method as follows [24,50]:

ω(k) ′ = ω(k) − ε
∂Lc(ω)

∂ω(k)
, (25)

where ε represents the learning rate employed in the training process of the critic network
and ω(h) ′ represents the updated parameters of the critic network.

The dynamic structured pruning of non-essential neurons consists of two key steps,
namely, determining the pruning threshold and updating the binary mask used for prun-
ing [24,50]. The pruning threshold plays a crucial role in identifying and eliminating
unnecessary parameters or connections during the pruning process. Motivated by [24,50],
we formulate a dynamic pruning threshold, which is given by
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χ(t) =
N

∑
n=1

K

∑
k=1

ρ
(k)
n · τ(t), (26)

τ(t) = τ̌ + (τ̂ − τ̌)

(
1− t

Y4t

)3

, (27)

where ρ
(k)
n and K represent the neuronal importance of the n-th neuron of layer k and the

total number of pruning steps, respectively. 4 represents the pruning frequency. τ(t), τ̂,
and τ̌ represent the current sparsity in epoch t, the initial sparsity, and the target sparsity,
respectively. This dynamic pruning method can adaptively enhance the sparsity of the
model as the iteration goes on, providing a more refined and effective method for structured
pruning. Neurons are ranked according to their importance, from least to most important.
Neurons whose ranks are below a set threshold are then pruned to improve the overall
sparsity of the model. The mask of the n-th neuron of layer k is updated as

m(k)
n =

{
1, if abs

[
m(k)

n , θ
(k)
n

]
≥ ψ,

0, otherwise.
(28)

The above process of dynamic structured pruning is shown in Algorithm 1. In the
Tiny DRL model, we adopt a fully connected deep neural network architecture for the
actor network, which consists of K layers. Algorithm 1 consists of a two-step process,
namely, initially training the DRL model, then using a dynamic pruning threshold to
remove unimportant neurons. Note that the complexity of Algorithm 1 over T episodes is
O
(
T|S|

)
+O

(
T ∑K−1

k=1 u(h)), where u(h) is the number of neurons in each hidden layer (k)
up to the penultimate layer [24,50].

Algorithm 1: Tiny DRL algorithm with dynamic structured pruning for Stackel-
berg equilibrium.

Input: State S.
Output: The optimal strategy (E∗, P∗).

1 Initialize tiny DRL model, training episodes T, reward R, batch size B, binary mask m, and replay
buffer D.

2 for time step t = 1 to T do
3 ## Interacting with environment
4 the electricity market observes a state S(t) and updates its observation O(t− 1) into O(t).
5 Input O(t) into the actor policy πθ and determine the current price strategy P(t).
6 EV charging operators make bandwidth demand decisions based on (8).
7 Update S(t) into S(t + 1).
8 Calculate reward R(t) for the electricity market.
9 Update Ubest(t) when a higher reward is obtained.

10 Store transition (O(t), P(t), R(t), O(t + 1)) into D.
11 if t%|B| == 0 then
12 for x ∈ 1, . . . , X do
13 Sample a random mini-batch of data with a size |B| from D.
14 end
15 end
16 ## Dynamic structured pruning

17 Compute neuron importance ρ
(k)
n .

18 Update actor network parameters θ(k) and critic network parameters ω(k) by (24) and (25),
respectively.

19 Compute dynamic pruning threshold χ(k) by (26).
20 Update binary mask m(k) by (28).

21 if ρ
(k)
n < χ(t) then

22 Remove n-th neuron in k-th layer and associated parameters θ from the actor network.
23 end
24 end
25 Reconstruct the compact tiny DRL model (θ, ω)(K).
26 return (E∗, P∗).
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6. Numerical Results

In this section, we present numerical results to demonstrate the effectiveness of the
proposed tiny DRL algorithm and analyze the proposed Stackelberg game model.

Figure 2 presents a performance comparison between the proposed Tiny PPO algo-
rithm and the PPO algorithm. We set the pruning rate, the learning rate of the actor and
critic networks, the discount factor, the training epoch, and the batch size as 0.05, 1× 10−4,
0.95, 400, and 512, respectively. From Figure 2, we can observe that the proposed Tiny PPO
algorithm is more stable than the PPO algorithm and can obtain more test rewards. The Tiny
PPO algorithm can also promote higher utility of the electricity market and sum utilities of
all EV charging operators, demonstrating the superior performance of the proposed Tiny
PPO algorithm.
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Figure 2. Performance comparison between the proposed Tiny PPO algorithm and the PPO algorithm.

Figure 3 shows the utilities and optimal strategies of the electricity market and EV
charging operators under different costs (C), with M = 5 corresponding to the number
of EV charging operators and a unit profit of α = 50. From Figure 3, we can observe that
as the unit cost (C) increases, the selling price of a unit of electric energy (P) set by the
electricity market also rises. Concurrently, the electric energy demands (Em) determined by
the EV charging operators decrease. The underlying reason for this trend is that an increase
in the unit cost (C) compels the electricity market to raise prices to maintain stable and
increasing profits. Then, this price hike discourages EV charging operators from purchasing
large amounts of electricity, leading to a reduction in electric energy demands. Moreover,
the utilities of the electricity market and EV charging operators decrease as the unit cost (C)
increases. That is because the electric energy demands of EV charging operators decrease,
while the selling price of a unit of electric energy (P) increases. Specifically, the reduction
in electric energy demand has a more substantial negative impact on the utility of the
electricity market than the positive impact of the increased selling price, resulting in a
net decrease in the utility of the electricity market. Similarly, for EV charging operators,
the adverse effect of a higher selling price per unit of electric energy outweighs the effect of
reduced electric energy demands, leading to a decrease in their utility as well.

Figure 4 illustrates the utilities and strategies of the electricity market and EV charging
operators under different numbers of EV charging operators, with a unit cost of C = 5
and unit profit of α = 50. From Figure 4, it is evident that the electric energy demands
increase as the number of EV charging operators (M) rises, while the selling price of a unit
of electric energy (P) remains stable, regardless of changes in the number of EV charging

operators. According to the the equation P∗ =
√

C ∑M
m=1 αm
M , since C and α are constant, P

does not change. Specifically, the stability of the selling price (P) amidst increasing demand
can be attributed to the constancy of the unit cost (C) and unit profit (α), ensuring that the
price equilibrium is maintained. Additionally, we can observe that the utilities of both the
electricity market and the EV charging operators increase as the number of EV charging

71



Electronics 2024, 13, 3647

operators grows. This is because the increased energy demands of EV charging operators
positively impact the utilities of both the electricity market and the EV charging operators.
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Figure 3. Utilities and strategies of the electricity market and EVs under different costs, with M = 5
corresponding to the number of EV charging operators and a unit profit of α = 50.
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Figure 4. Utilities and strategies of the electricity market and EV charging operators under different
numbers of EV charging operators with cost of C = 5 and unit profit of α = 50.

Figure 5 shows the utilities and strategies of the electricity market and EV charging
operators under different unit profits (α), with M = 5 corresponding to the number of EV
charging operators and a cost of C = 5. It is observed that as the unit profit (α) increases,
both the electric energy demands and the selling price per unit of electric energy rise.
This is because a higher unit profit (α) incentivizes EV charging operators to purchase
more electricity resources. The increased demand for electric energy enables the electricity
market to set higher prices to maximize its profit. Furthermore, we can observe that the
utilities of the electricity market and EV charging operators increase as the unit profit (α)
increases. It is obvious that the simultaneous growth in selling price and electric energy
demands boosts the utility of the electricity market. For EV charging operators, the increase
in utility may be attributed to the fact that the positive impact of higher electric energy
demands outweighs the negative impact of rising selling prices.
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Figure 5. Utilities and strategies of the electricity market and EV charging operators under different
unit profits (α), with M = 5 corresponding to the number of EV charging operators and cost of C = 5.

Figure 6 shows the security performance of the PBFT consensus algorithm in the
proposed blockchain system for electricity trading. From Figure 6, we can see that regardless
of the probability of a delegate being malicious, pm exists, and the security probability
increases as the number of miners increases. The PBFT algorithm relies on a majority
consensus, requiring more than half of the nodes to agree. Therefore, as the number
of miners increases, the proportion of honest nodes involved in the consensus process
also grows, which enhances the overall robustness of the system, making it increasingly
difficult for malicious attackers to compromise its integrity [51]. Therefore, the proposed
blockchain system utilizing the PBFT consensus algorithm ensures reliable and secure
electricity trading by guaranteeing trustworthy block verification.
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Figure 6. Security probability under different numbers of miners.

7. Conclusions

In this paper, we proposed a blockchain-assisted secure energy trading framework.
Specifically, we utilized blockchain technology to securely manage energy trading between
the electricity market and EV charging operators. Then, we proposed a single-leader,
multi-follower Stackelberg game model to address the electricity trading problem between
the electricity market and EV charging operators. In this model, the electricity market
acts as the leader, setting the price of a unit of electric energy. The EV charging operators,
as followers, determine their electricity demand based on the price set by the electricity
market. During the trading process, blockchain technology is utilized by EV charging
aggregators to securely record and verify energy transactions. To find the Stackelberg equi-
librium, we employed a DRL algorithm. Given the resource-intensive nature of training
DRL models, we introduced pruning techniques into the DRL framework, referred to as
Tiny DRL, to enhance the efficiency of the algorithm in terms of computing power and
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storage requirements. In future work, we will consider formulating a multi-leader, multi-
follower Stackelberg game between electricity markets and EV charging operators. Our
focus will be on enhancing the verification of our model through rigorous testing and vali-
dation procedures. Furthermore, we will aim to enhance consensus mechanisms, optimize
smart contract functionalities, and explore interoperability with other blockchain networks
to improve security, scalability, and efficiency within the energy trading ecosystem.
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Abstract: For information security, entity and relation extraction can be applied in sensitive informa-
tion protection, data leakage detection, and other aspects. The current approaches to entity relation
extraction not only ignore the relevance and dependency between name entity recognition and
relation extraction but also may result in the cumulative propagation of errors. To solve this problem,
it is proposed that an end-to-end joint entity and relation extraction model based on the Attention
mechanism and Graph Convolutional Network (GCN) to simultaneously extract named entities and
their relationships. The model includes three parts: the detection of entity span, the construction of
an entity relation weighted graph, and the inference of entity relation type. Firstly, the detection of
entity spans is viewed as a sequence labeling problem, and a multi-feature fusion approach for word
embedding representation is designed to calculate all entity spans in a sentence to form an entity
span matrix. Secondly, the entity span matrix is employed in the Multi-Head Attention mechanism
for constructing the weighted adjacency matrix of the entity relation graph. Finally, for the inference
of entity relation type, considering the interaction between entities and relations, the entity span
matrix and relation connection matrix are simultaneously fed into the GCN for integrated extraction
of entities and relations. Our model is evaluated on the public NYT dataset, attaining a precision of
66.4%, a recall of 63.1%, and an F1 score of 64.7% for joint entity and relation extraction, significantly
outperforming other approaches. Experiments demonstrate that the proposed model is helpful for
inferring entities and relations, considering the interaction between entities and relations through the
Attention mechanism and GCN.

Keywords: Graph Convolutional Network; attention mechanism; entity relation extraction

1. Introduction

In information security situational awareness systems, entity relation extraction can
help construct entity relationship networks in cyberspace, enabling real-time monitoring
and analysis of security incidents and abnormal behaviors within the network [1]. Through
in-depth mining and analysis of entity relationships, potential security threats and attack
paths can be discovered. How to extract effective information from text quickly and
efficiently has become an important issue.

The end-to-end method maps the input sentence into meaningful vectors and then
produces the tag sequence. This method is widely used in sequence tagging tasks [2] as
well as in entity and relation extraction [3]. As the core task of information extraction, the
main task of entity relation extraction is to simultaneously detect entities and their relations
from unstructured texts. Entities are words in the given sentence. Relation words are
extracted from a predefined relational set, which may not be explicitly present in the given
sentence. For instance, in the phrase “Qingdao is in the territory of Shandong Province”,
“Qingdao” is an entity, “Shandong” is an entity, and the relation of the two entities is
classified as “located in” in the predefined relational set. Entity recognition and relation
extraction are pivotal stages in constructing knowledge bases and are instrumental in
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diverse natural language processing applications, such as semantic analysis and question
answering systems, occupying a vital role in enhancing the understanding and utilization
of text data.

To solve the problems of entity relation extraction, many methods have been proposed.
According to the order of name entity recognition and relation extraction, these methods can
be divided into two classes: pipeline learning and joint extraction learning. In the pipeline
models, named entity recognition and relation extraction are regarded as independent
subtasks. Firstly, named entity extraction is used to extract entities, and then the relation
is extracted based on named entity recognition. The separated framework is conducive
to the modularization of different stages of language understanding, making tasks easier
to handle and each component more flexible. However, each subtask is treated as an
independent model, which ignores the correlation between the two subtasks. The results of
named entity recognition may potentially affect the results of relation extraction. Seriously,
it will lead to error propagation, producing unsatisfactory performance.

In contrast to pipeline methods, joint extraction approaches concurrently identify
entities and their relations within a unified model. These methods can utilize the mutual
information between entities and relations, achieving superior results in the field of entity
relation extraction. However, the majority of current joint extraction techniques rely
heavily on feature engineering [4], which involves constructing feature vectors by extracting
semantic features from sentences. Subsequently, algorithms such as Conditional Random
Field (CRF) and Support Vector Machine (SVM) are employed to extract relations. These
methods require intricate feature engineering and a large workload. They also rely heavily
on Natural Language Processing (NLP) toolkits, which may lead to error propagation. In
order to reduce the workload of feature engineering, an end-to-end entity relation extraction
based on neural networks has been successfully applied to the task. In recent years, the
research of Graph Neural Networks (GNN) has received more and more attention, and
GNN has been successfully applied to many NLP tasks, such as Machine Translation [5],
Text Classification [6], Semantic Role Labeling [7], and Relation Extraction [8].

However, the intricate interactions between entities are ignored in the above models.
In this paper, an end-to-end relation extraction model is proposed that utilizes GCNs
and an attention mechanism to jointly learn entities and their relations. The proposed
joint extraction model is divided into three parts: entity span detection, construction of
an entity–relation weighted graph, and inference of entity relation types. Firstly, entity
span detection is treated as a sequence labeling problem. A multi-feature fusion word
vector representation approach is devised to identify all entity spans within sentences,
thereby constructing an entity span matrix. Then, for the construction of the entity relation
weighted graph, based on the attention mechanism, the entity span matrix is input into
the Multi-Head attention model. The entity relation weights are calculated to form the
relation adjacency matrix. Finally, for the inference of entity relation types, considering the
interaction between entities and relations, a joint model based on GCN is proposed. Based
on the entity span matrix and relation adjacency matrix obtained in the previous stages,
the entities and relations are jointly inferred to get the final entity relations.

2. Related Work

The task of joint extraction of entities and relations is to simultaneously extract entities
and relations between two entities. There has been a lot of research on entity and relation
extraction. The problem we focused on is related to GCN, attention mechanisms, and
extraction of entities and relations.

2.1. GCN

GCN is a network structure that performs semi-supervised learning on graph structure
data in a scalable method and is an effective variant of neural network. In GCN, the
convolution is performed directly, and the convolution architecture is improved by the
first-order approximate localization of the spectral graph convolution.
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Several studies have demonstrated the powerful capabilities of GCNs. Gilmer et al. [9]
explored the effectiveness of message passing in quantum chemistry by applying GNNs to
predict molecular properties. Garcia & Bruna [10] demonstrated the capability of GNNs
to learn classifiers on image datasets in a few-shot learning paradigm. Dhingra et al. [11]
applied message passing on graphs constructed from common reference links to answer
relational questions. Kipf & Welling (2016) [12] introduced GCNs and applied them to
citation networks and knowledge graph datasets, marking a significant milestone. Marcheg-
giani & Titov [6] further extended GCNs to sequence labeling for semantic role labeling,
while Liu et al. (2018) [13] utilized GCNs to encode long documents for text matching
tasks. Schlichtkrull et al. [14] applied GNNs to knowledge base completion and Zhang
et al. [15] encoded dependency trees with GNNs for relation extraction. Lastly, Cao et al. [16]
demonstrated the effectiveness of GNNs in multi-hop question answering by encoding
co-occurrence and coreference relations.

GCNs offer several advantages in text mining by providing a powerful and flexible
framework for modeling and analyzing textual data as graphs. Their ability to capture com-
plex relationships, incorporate contextual information, and propagate relevant information
efficiently makes them a valuable tool for tackling a wide range of text mining tasks.

2.2. Attention Mechanism

The attention mechanism dynamically assigns varying weight parameters to each
input element, thereby emphasizing relevant aspects while suppressing irrelevant informa-
tion. Its main advantage lies in its capability to concurrently consider both global and local
connections, facilitating parallel computing.

As the attention mechanism has been widely applied to image processing tasks, some
researchers have tried to use the attention mechanism to enhance neural networks and
apply them to NLP. The Google team [17] propelled attention to the forefront of research
by proposing the Self-Attention mechanism for machine translation, revolutionizing text
representation learning. Zheng Y. et al. [18] devised a deep learning architecture that
seamlessly fused BiLSTM (Bidirectional Long Short-Term Memory) with an attention
mechanism, emphatically demonstrating the important role of the attention mechanism in
enhancing the model’s performance for text classification tasks. The integration emphasized
the significance of guiding the model’s focus on the most informative parts of the text,
thereby improving classification accuracy and efficiency. Furthermore, Y. Liu et al. [19]
introduced an innovative approach that harnesses both the attention mechanism and an
embedding perturbed encoder, significantly bolstering the style transfer quality of text
sentiment.

Attention mechanisms help capture context-specific details that might otherwise be
overlooked by traditional models. This targeted focus results in a more precise understand-
ing and representation of the text’s content, leading to better performance in tasks such as
sentiment analysis, topic classification, and question answering.

2.3. Extraction of Entities and Relations

Joint extraction of entities and relations is a crucial step in constructing knowledge
bases, which can significantly benefit numerous NLP applications. At present, two main
frameworks have been widely used to solve the problem of entity relation extraction. One
is the pipeline method, and the other is the joint learning method.

Pipeline methods, employed in earlier works [20], treat the task as two discrete tasks.
Initially, entities within sentences are identified and extracted. Subsequently, the relations
among these recognized entities are obtained. Ultimately, these entity–relation triples are
output as the predicted outcomes. However, the inherent error propagation in pipeline
methods has promoted the emergence of joint extraction of entities and relations. Based
on the principle of parameter sharing strategy, Miwa and Bansal [21] first used neural
networks to jointly extract entities and relations. The approach incorporated sentence-
level Recurrent Neural Networks (RNNs) for entity extraction and dependency tree-based
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RNNs for relation prediction. Furthermore, Katiyar and Cardie [22] first used the attention
mechanism and BiLSTM to jointly extract entities and relations. The model can extend the
defined relation types and is the first joint extraction model of a neural network in the true
sense.

The aforementioned joint methods, while achieving joint learning through parameter
sharing, often lack explicit interaction during type inference. Zheng et al. [3] proposed an
entity relation extraction method based on a novel labeling strategy. Then the original joint
model, which contained two subtasks of named entity recognition and relation extraction,
had completely become a sequence labeling problem. Sequence labeling was used in the
model to identify entities and relations at the same time, which avoided complex feature
engineering. The entity relation triplets were directly obtained through an end-to-end
neural network model, which solved the problem of entity redundancy. Zeng et al. [23]
proposed to use a BiLSTM encoder and multiple LSTM (Long Short-Term Memory) de-
coders to get the relation triplets dynamically. A transition-based method was proposed
to generate directed graphs that convert the joint task into a directed graph, which can
model both entity–relationship and relationship–relationship dependencies [24]. Hidden
layer vectors obtained from a pre-trained named entity recognition model were utilized as
entity features, and there was no need to manually design entity features [25]. COTYPE
was introduced, a domain-independent framework that learned embeddings from both
text corpora and knowledge bases [26]. Utilizing heuristic data from knowledge bases,
COTYPE extracted type entities and relations concurrently, demonstrating remarkable
versatility and adaptability [27]. A prediction framework was designed that double-headed
entities and relations based BERT are extracted. Relation Attention-Guided Graph Neural
Networks were designed to extract joint entities in Chinese electronic medical records [28].

Owing to the excellent expressive capabilities of graphs, the research of GNN has
received more and more attention. Initially, GNN was proposed by Gori et al. in an
attempt to extend the neural network to handle arbitrary graphs. Sun et al. [29] proposed
to use GCN to construct a graph structure to extract entity relations in sentences. A
tagging scheme and designed Character Graph Convolutional Network was proposed to
obtain character vectors in the text [4]. The Multi-Head Self-Attention Mechanism was
seamlessly integrated within the BiLSTM encoding architecture, while the Dense Connected
Convolutional Network was elegantly embedded in the decoding framework, facilitating a
unified and efficient method for joint extraction of entities and relations from textual data.
GCN was used to capture feature representations of the document-level dependency graph,
where the dependency graph was used to capture dependency syntactic information across
sentences [30]. The Multi-Head attention mechanism was used to learn relatively important
contextual features from different semantic subspaces. Chen, Y. [31], on the other hand,
presented a causality–extraction approach that integrated an entity-location-aware graph
attention (GAT) mechanism. This innovative strategy effectively mitigated redundant
content within graph-dependency trees and strengthened the connections between long-
span entities, thereby enhancing the overall extraction capability.

Different from the above methods, an end-to-end relation extraction model is proposed
in this paper. First, a multi-feature fusion word vector representation method is proposed
to calculate all entity spans in sentences to form an entity span matrix. Then, based on the
attention mechanism, the entity span matrix is input into the Multi-Head Attention model.
The entity relation weights are calculated to form the relation adjacency matrix. Finally, a
joint model based on GCN is put forward, the entities and relations are jointly inferred to
get the final entity relations based on the entity span matrix and relation adjacency matrix
obtained in the previous stages.

3. Research Methods

Firstly, the integrated extraction task of entities and relations is defined. Assuming
s is a sentence, s = x1, x2, . . . , xn, where xi represents a word and n denotes the sentence
length. The task objective is to extract a group of entity span E and relation R from a given
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context s. The relation R is formulated as a triplet (e1, e2, l), where e1 and e2 represent the
two distinct entity spans, and l signifies the specific type of relationship that interconnects
these two entities.

The frame figure of the whole process is shown in Figure 1.
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3.1. Entity Span Detection

For entity span detection, a tagging scheme is used to switch the task to a labeling
question. Figure 2 is an example of how to mark the result of entity span.
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Figure 2. Diagram of entity span detection.

The method of multi-feature fusion is used to train word embedding. In addition to
using distributed word vector features, part-of-speech tagging and dependency parsing
will also be used. Then the three parts of embedding are stitched together to form word
embedding.

In the model of conventional neural networks, the issue of vanishing gradients ap-
peared during training. The threshold mechanism introduced by LSTM effectively mitigates
the vanishing gradient problem inherent in RNNs to a considerable degree. Nevertheless,
information can only be propagated from front to back in LSTM, implying that the infor-
mation at time t is solely reliant on the preceding information up to time t. To capture
contextual features comprehensively at every temporal point, BiLSTM is employed to learn
sentence representations. Forward and backward LSTMs are included in BiLSTM, enabling
it to comprehend the semantic content of vocabulary to the fullest extent possible.

Ultimately, the softmax function is employed to forecast the label ŷ of xi, as shown in
Figure 2. “BIESO” (Begin, Inside, End, Single, Other) is adopted to designate the positional
status of words within an entity and to mark the entity span in a sentence. “B” and “E”
express the “Begin” and “End” positions in the entity, respectively. “I” stands for the
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set of positions other than “Begin” and “End” in the entity, and “S” stands for the entity
consisting of a single word. The label “O” stands for the “other” label, which represents
that the word is not an entity in the sentence.

3.2. Calculation of Relation Weight

Next, edges are constructed between entity span nodes to indicate the strength of the
correlation between entity span pairs. The input sentence is a sequence, and the relation
extraction models based on the sequence only work on the word sequence, ignoring the
non-local syntactic relation between words. Dependency-based relation extraction models
use a syntactic dependency graph to construct tree-structure sentences, ignoring the relation
information between entities. In view of the defects of the existing models, the attention
mechanism is adopted to learn the connection relation between entity spans, construct
an entity relation weighted graph, and finally form an adjacency matrix A of the entity
spans. The attention mechanism is utilized to capture the interaction between two words
in arbitrary positions of a sequence. The key idea is to use attention to deduce the relations
between nodes, especially for those nodes that are indirectly connected by multi-hop paths.
Multi-Head Attention [17] is adopted in this paper to compute the relation weight between
entities. The structure of Multi-Head Attention is shown in Figure 3.
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The calculation formula of Multi-Head Attention is:

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
(1)

MultiHead(Q, K, V) = Concat(head 1, . . . , headh)WO (2)

headi represents the i-th attention head, Q is a dq-dimensional query vector, K is a dk-
dimensional key vector, and V is a dv-dimensional value vector. dq, dk, dv express the
dimensionality of query, key, and value vectors. Initially, Q, K, and V are the input word
embeddings. WQ

i , WK
i , WV

i , and WO are the corresponding learnable parameters.
The most important part of Multi-Head Attention is Scaled Dot-Product Attention,

whose framework is shown in Figure 4.
The calculation formula of Scaled Dot-Product Attention is:

Attention(Q, K, V) = so f tmax

(
QKT
√

dk

)
V (3)

In order to use the Scaled Dot-Product Attention, Q and K must have the same
dimension. So in the model, Q and K are mapped into d dimension, and V is mapped into
dv dimension respectively by h = 8 different linear transformations. Then the above matrix
is substituted into the attention mechanism to produce a total of h× dv-dimensional output.
Then the encoded information from h subspaces is fused and the final output is obtained
by a linear transformation.
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The superiority of Multi-Head Attention is that it can acquire the global connection
in one step and addresses the challenge of long-distance dependencies. Since parallel
computing is performed directly in the matrix, it significantly reduces computational
overhead and enhances overall efficiency.

To fully consider the relation information between two connected entities, Multi-Head
Attention is used in this paper to construct a fully connected edge-weighted graph. The
process is shown in Figure 5.
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3.3. Joint Type Inference

Considering the interactions between entities and relations, we devised a joint model
based on GCN. The entity span matrix and relationship adjacency matrix obtained in the
previous stages are used as inputs, and the entities and relations are jointly inferred to
obtain the final entity relations. The architecture of GCN is displayed in Figure 6.
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Given a graph G with n nodes, the nodes in the graph are denoted as O1 to On. The
input part is the input node embedding matrix H ∈ n× d and adjacency matrix A ∈ n× n.
n represents the number of nodes and d represents the embedding dimension of input nodes.
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Each row of H represents the feature vector of the node, and A denotes the connection
relation between the nodes. Aij = 1 means two nodes are connected. In an L-layer GCN,
each layer is expressed as a nonlinear function:

Hl+1 = σ
(

AH(l)W(l) + b(l)
)

(4)

Among them, H(0) = H, W(l) is the weight matrix of the L-th layer neural network, b(l)

is a bias vector of the L-th layer, and σ is the nonlinear activation function of the network in
the layer, such as ReLU, sigmoid.

By stacking multiple GCN layers, GCN can extract the local features of each node.
Considering the different degrees and aggregation of different relations, two layers of GCN
are used in this paper. First, matrix Â is obtained through preprocessing with A. Then
ReLU is utilized as the first layer activation function, and Softmax is adopted as the second
layer activation function. Then the entire GCN is expressed as:

H = f
(

H, Â
)
= so f tmax

(
Â ReLU

(
ÂHW(0)

)
W(1)

)
(5)

ReLU(x) = max(0, x) (6)

so f tmax(xi) =
exp(xi)

∑i exp(xi)
(7)

The traditional GCN only considered undirected graphs when designing. In order
to consider the dependency between entities and relations, as well as the features of both
incoming and outgoing, bi-GCN is used in this paper.

Hl+1 =
−−−→
Hl+1 ⊕

←−−−
Hl+1 (8)

Specifically, based on the entity span extraction of the first part, the entity span matrix
is obtained. Based on the relation weight calculation in the second part, the relation
adjacency matrix is obtained. Then bi-GCN is applied to each graph to integrate entity
relation information.

During the process of training, cross-entropy is adopted as the classification loss
function. To comprehensively account for the interaction between the entities and the
relations, the total loss function L is defined as the sum of the entity loss Lentity and the
relation loss Lrelation:

L = Lentity + Lrelation (9)

Lentity = − 1
n

n

∑
i=1

logP(ŷ = y|ei, s) (10)

Lrelation = −∑
ei ,ej

logP
(
r
∣∣ei, ej, s

)
(11)

In Formula (10), n means the number of entities in the sentence s. ŷ means the predicted
label of the entity ei. y means the true label of the entity. P(ŷ = y|ei, s) means the probability
that the model predicts the entity label as y given entity ei and s.

In Formula (11), ei, ej is a pair of entities within s. r means the relation label between
entities ei and ej. P(r|ei, ej, s) means the probability that the model predicts the relation
between ei and ei as given s.
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4. Experiments
4.1. Dataset and Setting

To validate the performance of the devised methodology, the public dataset NYT
(https://github.com/shanzhenren/CoType (accessed on 26 May 2020)) generated by the
distant supervision method [26] is used. NYT includes training data 353 k triplets, test
set 3880 triplets, and the size of the relation set is 24. To guarantee the accuracy of the
experimental results, the average values of five randomly initialized experiments are
utilized as the evaluation results.

The results are evaluated with Precision (P), Recall (R), and F1 scores. Specifically, if
the output entity spans correctly encompass both e1 and e2, and the relation l is accurately
identified, then the final result is deemed correct.

The pre-trained word vector Glove [32], which is 300-dimensional, is utilized as word
embedding in this paper. Stanford CoreNLP is used to get part-of-speech tagging and
dependency parsing of all data sets. The dimensionality of the distributed word vectors
is 300, while that of the Part-of-Speech (POS) tagging and dependency parsing is 50,
respectively. Other parameter settings are presented in Table 1.

Table 1. The experiment parameter setting.

Hyper-Parameter Value

Batch size 50
Learning rate 0.001

Optimization function Mini-Batch Gradient Descent
Loss function Cross-Entropy Loss Function
Dropout rate 0.5

Hidden state size 256
Non-linear activation Softmax

4.2. Experiment
4.2.1. Comparison with Existing Models

Firstly, to demonstrate the efficacy of the entity relation extraction model proposed
in this paper, a comparative analysis is conducted between the proposed method and
several existing models, utilizing a common corpus as the benchmark for evaluation. The
compared approaches are as follows:

Pipeline models:
DS-logistic [33] is a sophisticated method that leverages both distant supervision

and feature-based approaches, integrating supervised and unsupervised information for
enhanced performance.

LINE [34] is a network embedding method capable of any type of information network.
FCM [35] is a combined model of linguistic vocabulary and word vector representation.
Joint models:
MultiR [36] is a distant supervision method based on a multi-instance learning algo-

rithm, used to combat noisy training data.
CopyR [23] is an end-to-end model that employs a replication mechanism, proficiently

addressing the issue of overlapping in a seamless manner.
Novel Tagging [3] introduces an innovative labeling scheme that transforms the

complex joint extraction task into a more manageable sequence labeling problem.
The comparative experimental results of the various methods, including the pro-

posed approach, are presented in Table 2. The best-performing results on each dataset are
highlighted in bold for clarity.

According to the data in Table 2, a comparison of various entity relation extraction
experiments is illustrated in Figures 7–9.
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Table 2. The results of extraction of entity relation.

Type Model P R F1

Pipeline models
DS + logistic 25.8 39.3 31.1

LINE 33.5 32.9 33.2
FCM 55.3 15.4 24.0

Joint models
MutiR 33.8 32.7 33.3
CopyR 48.6 38.6 43.0

Novel Tagging 61.5 41.4 49.5

Proposed model ATGCN 66.4 63.1 64.7
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As evident from the above figures, the model introduced in this paper outperforms
all baseline models in terms of precision, recall, and F1, reaching 66.4%, 63.1%, and 64.7%,
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respectively. This illustrates that the proposed method can effectively deal with the task of
entity relation extraction. Compared with the pipeline methods, the model proposed in
this paper improves the F1 value by 33.6%, 31.5%, and 40.7%, respectively, with an average
increase of 35.3%. The reason may be that such methods ignore the relation between
the two subtasks. At the same time, errors may occur in two independent subtasks,
resulting in cumulative propagation, which ultimately affects the performance of the
models. Compared with the joint extraction models, the model proposed in this paper
improves the F1 value by 31.4%, 21.7%, and 15.2%, respectively, with an average increase
of 22.8%. The reason may be that most of the joint extraction methods are feature-based
models, which leads to unsatisfactory experimental results.

At the same time, it can be found from Figure 10 and Table 3 that the average precision,
recall, and F1 values of the pipeline methods reach 38.2%, 29.2%, and 29.4% while the
average precision, recall, and F1 values of the joint extraction methods are 48.0%, 37.6% and
41.9%. In contrast, the results of the proposed model are obviously better than these two
methods, which is also as expected. Firstly, we used word vectors with different features to
empower the learning capabilities of the model. Secondly, Multi-Head Attention is adapted
to achieve the entity–relation connection graph to better measure the interaction between
entities and relations. Finally, the entity information and relation information are trained
by GCN, which can fully learn the entity relation information.
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Table 3. Comparison of various entity relation extraction models.

P R F1

Average of Pipeline 38.2 29.2 29.4
Average of Joint 48.0 37.6 41.9
Proposed model 66.4 63.1 64.7

4.2.2. Verification of Effectiveness

To validate the impact of each individual component within the proposed model,
comparative experiments are performed with different settings to verify the contribution of
each part.

1© Influence of word vector

The deep learning method can effectively consider the syntactic structure information
of sentences, so it is widely utilized in entity relation extraction tasks. However, the
lexical features and semantic information of the two entities in the sentence cannot be
well considered simultaneously in the method. Therefore, the part-of-speech features
and dependency parsing features are placed into word embedding in this paper. The
experimental outcomes are displayed in Table 4 and Figure 11.
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Table 4. Comparison of various word embedding.

Word Embedding P R F1

word2vec 65.3 61.6 63.3
word2vec + part of speech 66.2 62.7 64.4

word2vec + part of speech + dependency syntax analysis 66.4 63.1 64.7
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The experimental outcomes demonstrate that compared with the word vector trained
only with Word2vec, the multi-feature fusion word vector representation method proposed
in this paper has obtained good results, increasing the precision, recall, and F1 values by
1.1%, 1.5%, and 1.4%, respectively. It can be seen from the experimental results that each
feature has improved the performance, but the improvement contribution is not the same.
Relatively speaking, the addition of part-of-speech features improved the experimental
results significantly. Compared with the baseline experiment, precision, recall, and F1
values of “word2+ part of speech” method were improved by 0.9%, 1.1%, and 1.1%,
respectively. The addition of dependency syntax analysis has limited improvement in
recognition effects. Compared with “word2+ part of speech” experiment, precision, recall,
and F1 values of muti-feature fusion method were improved by 0.2%, 0.4%, and 0.3%,
respectively. In summary, the various features introduced in the word vector representation
have been proven effective in this paper. The part-of-speech and the dependency syntax
analysis of words in sentences significantly contribute to entity relation extraction.

2© Influence of attention

Traditionally, sequence-based and dependency tree-based methods are usually used
in entity relation extraction. Sun et al. [29] proposed to use the structure of entity relation
bipartite graph in entity relation extraction. Considering the interaction between entities
and relations, the original dependency tree is replaced with Self-Attention in this paper to
generate a fully connected entity connection weighted graph. The experimental results of
different methods are shown in Table 5 and Figure 12.

Table 5. Comparison of different extraction models.

P R F1

Dependency trees 63.9 60.0 61.9
Bipartite graph 68.1 52.3 59.1

Multi-Head Attention 66.4 63.1 64.7
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It is evident from the experimental outcomes that compared with the method based
on the dependency tree, the Self-Attention method proposed in this paper achieved better
results, increasing the precision, recall, and F1 values by 2.5%, 3.1%, and 2.8%, respec-
tively. The Self-Attention mechanism employed in the paper could attain the sequential
information and non-local dependent words simultaneously.

Then GCN is used to consider the dependency between entities and relations, which
can extract more abundant features to improve the performance of the relation extraction
task. At the same time, it shows that the performance of entity relation extraction could
be improved without any external syntactic tools, which saves unnecessary generation
and propagation of some errors. Compared with the model based on the bipartite graph
structure, the proposed Multi-Head Attention method in this paper improves recall and F1
by 10.8% and 5.6%, respectively, which are significant improvements. However, it has a
poor performance in precision. The reason may be that the bipartite graph-based method
can better represent the relation between two entities by using binary classification. On the
whole, our model can obtain a higher F1 score, which is superior to the other two methods
in overall performance.

3© Influence of GCN layer

The number of layers in GCN represents the reasoning ability of the model. Shallow
GCN may not capture non-local interactions in the graph, while deep GCN can capture
more information. However, according to experience, the two-layer GCN exhibits optimal
experimental performance. To substantiate the impact of varying layer counts, comparative
experiments are carried out with the different numbers of layers.

From Table 6 and Figure 13, we can see that when GCN has two layers, the experimen-
tal results reach the best. When the number of layers increases from one to two, the result is
improved, which illustrates that the deeper GCN model can obtain abundant information
and bring better performance. However, when the number of layers increases from two
to three, the result of the experiment decreases. This may be due to the overfitting of the
model. It also shows that a deeper GCN layer may not necessarily bring better experimental
results.

Table 6. Comparison of various GCN layers.

GCN Layer P R F1

Layer = 1 65.6 54.8 59.7
Layer = 2 66.4 63.1 64.7
Layer = 3 64.9 53.4 58.5
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5. Conclusions

An end-to-end relation extraction model is presented that innovatively integrates
GCN with an attention mechanism to facilitate the concurrent learning of entities and
their relations. We introduce a novel multi-feature fusion technique for word vector
representation, alongside a Multi-Head Attention model, which meticulously computes
entity spans and relation weights across sentences. These computations culminate in
the construction of an entity span matrix and a relation adjacency matrix, respectively.
Subsequently, a joint model based on GCN is proposed, where entities and relations
are seamlessly inferred based on these two matrices, ultimately yielding the definitive
entity relations. The empirical evaluation of the NYT dataset demonstrates the model’s
superiority in extracting entity relations, attributed to its nuanced consideration of the
interaction between entities and relations, facilitated by the attention mechanism and GCN.
Specifically, in the domain of information security, entity relation extraction plays a pivotal
role in identifying potential threats, vulnerabilities, and actors involved in cyber attacks.
Notably, while this work represents a significant step forward, it does not delve into the
challenge of overlapping relation extraction. In future research, it is imperative to focus
on analyzing and addressing this complex aspect, which holds immense potential for
promoting the model’s applicability, particularly in the context of information security.
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Abstract: Drug repositioning is a cost-effective approach to identifying new indications for existing
drugs by predicting their associations with new diseases or symptoms. Recently, deep learning-based
models have become the mainstream for drug repositioning. Existing methods typically regard the
drug-repositioning task as a binary classification problem to find the new drug–disease associations.
However, drug–disease associations may encompass some potential subcategories that can be used
to enhance the classification performance. In this paper, we propose a prototype-based subcategory
exploration (PSCE) model to guide the model learned with the information of a potential subcategory
for drug repositioning. To achieve this, we first propose a prototype-based feature-enhancement
mechanism (PFEM) that uses clustering centroids as the attention to enhance the drug–disease features
by introducing subcategory information to improve the association prediction. Second, we introduce
the drug–disease dual-task classification head (D3TC) of the model, which consists of a traditional
binary classification head and a subcategory-classification head to learn with subcategory exploration.
It leverages finer-grained pseudo-labels of subcategories to introduce additional knowledge for
precise drug–disease association classification. In this study, we conducted experiments on four
public datasets to compare the proposed PSCE with existing state-of-the-art approaches and our
PSCE achieved a better performance than the existing ones. Finally, the effectiveness of the PFEM
and D3TC was demonstrated using ablation studies.

Keywords: drug repositioning; prototype; subcategory exploration; graph neural network

1. Introduction

Drug development is crucial for the treatment of diseases [1,2]. Traditional drug
development is divided into three stages: the discovery stage, preclinical stage, and clinical
stage. Developing a new drug typically requires 10–20 years and costs billions of dollars,
which poses considerable challenges. To address these issues, drug repositioning offers
an alternative approach by identifying new therapeutic uses for existing approved drugs.
This strategy significantly reduces the drug development time and lowers the costs [3–5].
Consequently, drug repositioning is widely applied by research-based pharmaceutical
companies in their drug-discovery efforts.

Drug-repositioning algorithms can be typically categorized into feature-based, matrix-
factorization-based, and network-based methods to predict the associations between drugs
and diseases [6,7]. (1) Feature-based methods involve analyzing the chemical and biological
properties of drugs, as well as the phenotypic characteristics of diseases, using data-
driven machine learning models to predict potential connections between drugs and
diseases [8]. (2) Matrix-factorization-based methods decompose the interaction matrix
between drugs and diseases into feature vectors through mathematical techniques to
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compute their similarity, thereby predicting new indications for drugs. This approach can
handle large-scale datasets, flexibly integrate more prior information, identify potential
connections between drugs and diseases, and aid in the rapid discovery of new therapeutic
approaches [9,10]. (3) Network-based drug-repositioning methods aim to use the internal
association matrix (e.g., drug–drug or disease–disease matrix) to predict the external
associations between drugs and diseases, which can be regarded as a binary classification
task for each drug–disease association [11].

With the development of neural networks, network-based algorithms have gradually
become the mainstream for drug-repositioning tasks. As a typical approach, Xuan et al.
developed a drug-repositioning approach based on convolutional neural networks (CNNs)
and bidirectional long short-term memory (BiLSTM) networks, with the BiLSTM module
using an attention mechanism to learn path representations of drug–disease pairs by bal-
ancing contributions from different paths [12]. Graph convolutional networks (GCNs) are
also widely used in this task because the connection nature of association matrices can be
transformed into graphs to capture the features of drug–drug or disease–disease associa-
tions. For example, Wang et al. utilized bipartite graph convolution operations to model
macroscopic and microscopic information exchange between drugs and diseases through
protein nodes, thus effectively leveraging interaction relationships to predict potential dis-
eases that drugs may treat [13]. Yu et al. further introduced a hierarchical-attention-based
graph convolutional network for drug repositioning by utilizing relationships at different
graph convolution layers to enhance the predictive accuracy [14].

Since the drug-repositioning model learns from a small-scale internal association
matrix, it struggles to acquire sufficient knowledge for effective drug repositioning [15].
However, the aforementioned network-based methods hardly rely on the introduced
information for model training. Meanwhile, we observe that there might be diversity
in the associations between each drug and disease, and it is possible to further explore
subcategories of these associations to introduce more information for model learning.
Therefore, the main challenge of this work is how to uncover this potential diversity or
subcategory knowledge to improve the classification performance for drug repositioning.

In this paper, we propose a prototype-based subcategory exploration (PSCE) model
to introduce the potential knowledge of subcategories for model training for drug repo-
sitioning. First, we propose a prototype-based feature-enhancement mechanism (PFEM)
that employs the K-means method [16,17] to obtain the clustering subcategories for each
sample, and the clustering centroids are regarded as the class-relevant prototypes [18–20].
In the proposed PFEM, prototypes are used to attach attention to original graph features
to obtain the enhanced features. Second, we introduce a drug–disease dual-task classifica-
tion head (D3TC) of the model, which consists of a traditional binary classification head
and a subcategory-classification head to learn with subcategory exploration. It leverages
finer-grained pseudo-labels of subcategories to introduce additional knowledge for precise
drug–disease association classification. We conducted experiments on four public datasets
to compare with several existing drug-repositioning methods. In the experiment, the PSCE
achieved a state-of-the-art performance. Finally, we conducted ablation studies to demon-
strate the effectiveness of the proposed PFEM and D3TC. The contributions of this paper
are summarized as follows:

• This paper presents a prototype-based feature-enhancement mechanism (PFEM) by
making full use of the potential knowledge of subcategories for model training, based
on which the classification performance in the drug-repositioning task can be signifi-
cantly improved.

• For the proposed PFEM, we propose a drug–disease dual-task classification head
(D3TC) of the model for subcategory exploration to learn the potential feature represen-
tation of subcategories by building additional constraints to improve the performance
of the drug–disease association predictions.

• Experimental comparisons showed that the PSCE could achieve state-of-the-art perfor-
mance with respect to the best existing drug-repositioning methods on four datasets.
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2. Materials and Methods

As shown in Figure 1, in this section, we systematically introduce the PSCE method
proposed for the drug-repositioning task. We first introduce the datasets we used, and then
we show the overall framework of our model and provide detailed introductions to the
two main modules of our model: the PFEM and D3TC modules. Finally, we present the
implementation details of our approach.
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Figure 1. Illustration of the proposed PSCE pipeline. The middle part of this diagram shows
the main process of the entire pipeline. (a) The proposed prototype-based feature enhancement
mechanism (PFEM), (b) the feature concatenation and split steps, and (c) the proposed drug–disease
dual-task classification head (D3TC).

2.1. Datasets

We used four datasets to demonstrate the effectiveness and evaluate the performance
of our method: Gdataset [21], Cdataset [22], Ldataset [14], and LRSSL [23]. These datasets
are widely used in the drug-repositioning task. Among them, the Gdataset includes 1933
confirmed drug–disease associations, including 593 drugs from the DrugBank database
and 313 diseases from the OMIM database.The Cdataset contains 663 drugs, 409 diseases,
and 2352 drug–disease interaction pairs. The Ldataset was compiled from the CTD dataset,
which includes 18,416 associations between 269 drugs and 598 diseases. The last dataset,
namely, LRSSL, contains 3051 validated drug–disease associations involving 763 drugs and
681 diseases. The specific statistical information of these datasets is shown in Table 1.

In our method, by observing the relationship between the disease and drug features in
the feature space, we propose a novel feature that combines clustering features to calculate
the similarity between drugs and diseases. To better interpret the features, we also propose a
method that divides the binary classification task into more subtasks through unsupervised
clustering so that the model can better distinguish hard samples.
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Table 1. Comparison of the proposed PSCE with six respective algorithms for drug repositioning
under 10-fold cross-validation on Gdataset, Cdataset, the LRSSL dataset, and the Ldataset. The red
and blue markers indicate the best and second-best performances, respectively.

Methods Metrics
Performance on Datasets (Mean ± Sd)

Gdataset Cdataset LRSSL Ldataset Avg

MBiRW [22] AUROC 0.896 ± 0.014 0.920 ± 0.008 0.893 ± 0.015 0.765 ± 0.007 0.868
AUPRC 0.106 ± 0.019 0.161 ± 0.019 0.030 ± 0.004 0.032 ± 0.003 0.082

BNNR [24] AUROC 0.937 ± 0.010 0.952 ± 0.010 0.922 ± 0.012 0.866 ± 0.004 0.919
AUPRC 0.328 ± 0.029 0.431 ± 0.020 0.226 ± 0.021 0.142 ± 0.007 0.282

iDrug [25] AUROC 0.905 ± 0.019 0.926 ± 0.010 0.900 ± 0.008 0.838 ± 0.005 0.892
AUPRC 0.167 ± 0.027 0.250 ± 0.027 0.070 ± 0.009 0.086 ± 0.004 0.143

NIMCGCN [26] AUROC 0.821 ± 0.011 0.827 ± 0.017 0.777 ± 0.012 0.843 ± 0.001 0.817
AUPRC 0.123 ± 0.028 0.174 ± 0.071 0.087 ± 0.010 0.117 ± 0.002 0.125

DRHGCN [27] AUROC 0.948 ± 0.011 0.964 ± 0.005 0.961 ± 0.006 0.851 ± 0.007 0.931
AUPRC 0.490 ± 0.041 0.580 ± 0.035 0.384 ± 0.022 0.498 ± 0.012 0.488

DRWBNCF [28] AUROC 0.923 ± 0.013 0.941 ± 0.011 0.935 ± 0.011 0.824 ± 0.005 0.906
AUPRC 0.484 ± 0.027 0.559 ± 0.021 0.349 ± 0.034 0.419 ± 0.006 0.453

PSCE (ours) AUROC 0.953 ± 0.014 0.964 ± 0.011 0.952 ± 0.016 0.877 ± 0.004 0.936
AUPRC 0.535 ± 0.036 0.582 ± 0.028 0.443 ± 0.032 0.568 ± 0.008 0.532

2.2. Overview

We used the drug–disease association matrix, drug–drug similarity matrix, and
disease–disease similarity matrix to construct a graph network structure and obtain po-
tential drug–disease relationships. The drug–disease association matrix X represents the
known associations between drugs and diseases and is a binary p ∗ q matrix, where p and
q represent the numbers of drug and disease types, respectively. Each element Xij in X
indicates the association between drug Ri and disease Dj, where if there is an association,
Xij = 1, and otherwise, Xij = 0:

Xij =

{
1 If Ri is associated with Dj

0 otherwise
(1)

The drug–drug similarity matrix R represents the similarity between drugs and is a
p ∗ p matrix, where p is the number of drug types. Each element Rij in R represents the
degree of similarity between the i-th drug and the j-th drug, which is specifically defined as

Rij =

{
k If Ri is associated with Rj, 0<k<1
0 otherwise

(2)

Similarly, the disease–disease similarity matrix D represents the similarity between
diseases and is defined as

Dij =

{
k If Di is associated with Dj, 0<k<1
0 otherwise

(3)

The purpose of the drug-repositioning task is to predict unknown potential associa-
tions between drugs and diseases by studying the similarity between drugs, the similarity
between diseases, and the known associations between drugs and diseases.

2.3. Model Architecture

Existing methods have already shown the effectiveness of a GNN in constructing
associations between drugs and diseases. Our method takes the drug similarity matrix
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R and the disease similarity matrix D as the input of the network to construct the corre-
sponding graph structures GR and GD, respectively, according to the element adjacency
relationship. The obtained graph structures are then fed into the graph neural network for
preliminary feature extraction, which results in drug features FR = G(R, GR) and disease
features FD = G(D, GD). To better represent the features of similar drugs/diseases, we
used a clustering feature-enhancement method (PFEM) to strengthen the expression ability
of the features, thus obtaining the enhanced drug features F̂R = f (FR) and disease features
F̂D = f (FD). We obtained the drug–disease similarity features by unfolding the obtained
drug features and disease features in the form of a tensor product, which was then used for
the predictions:

FR_D =




F̂1
R
⊕

F̂1
D, F̂1

R
⊕

F̂2
D, · · · , F̂1

R
⊕

F̂q
D

F̂2
R
⊕

F̂1
D, F̂2

R
⊕

F̂2
D, · · · , F̂2

R
⊕

F̂q
D

· · · · · · · · · · · ·
F̂p

R
⊕

F̂1
D, F̂p

R
⊕

F̂2
D, · · · , F̂p

R
⊕

F̂q
D




(4)

where p is the number of drug types, q is the number of disease types, and
⊕

represents
the concatenation operation.

We then used the drug–disease association matrix MR_D as the label to supervise the
learning of these features. In previous methods, a simple decoder was used to parse the
features to achieve classification, but we believe that simple binary classification cannot
distinguish some difficult samples, and thus, we propose a new classification head (D3TC)
to improve the classification performance and obtain the final prediction probability matrix
Y = D(F̂R, F̂D).

2.4. Prototype-Based Feature-Enhancement Mechanism

In order to obtain the underlying associations between drugs and between diseases,
previous methods often relied on the k-nearest neighbor graph of the similarity matrix to
construct stronger similarity. However, in this paper, we believe that features with closer
clustering in the feature space have stronger similarity. To enhance this similarity, and thus,
obtain more subtle associations between diseases and drugs, we propose a prototype-based
feature-enhancement method (PFEM).

We used the features extracted by the graph neural network as the initial features for
enhancement. For the drug features FR ∈ Rp∗s, where p is the number of drug types and s
is the feature dimension, we performed k-means clustering on the features to group the
p drugs into k clusters and obtained the feature of each cluster center Fi

R(0 < i < k). We
then fused each drug’s own feature Fj

R(0 < j < p) with the feature of the cluster center

Fi
R it belonged to to obtain the enhanced features F̂R = δ(FR, Fi

R). Specifically, we used
an attention mechanism to acquire more representative features. Similarly, for the disease
features FD ∈ Rq∗s, we adopted the same method to obtain the enhanced disease features
F̂D = δ(FD, Fi

D).

2.5. Drug–Disease Dual-Task Classification Head

Although we obtained representative features, predicting the potential similarity
probability between drugs and diseases is still a challenging task, as there are still some
difficult samples. The traditional decoder treats this prediction task as a binary classification
problem that results in classification results with high inter-class similarity, which hinders
the formation of diverse features. To obtain a better prediction performance, we propose a
drug–disease dual-task classification head (D3TC).

In addition to the binary classification task of predicting whether there is an association
between a drug and a disease, we further extended each class into T sub-classes that
represent different degrees of relevance and irrelevance (e.g., extremely irrelevant, possibly
irrelevant, possibly relevant, extremely relevant). This encourages the model to not only
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focus on the differences in binary classification but also on the differences in different
degrees, thus ultimately obtaining a more subtle feature representation:

Yp → Yc =

{
(0, ..., 0, YT+1

c , ..., Y2T
c ), Yp = 1

(Y1
c , ..., YT

c , 0, ..., 0), Yp = 0
(5)

where Yp ∈ {0, 1} is the binary classification label, Yc ∈ {0, 1}2T is the one-hot pseudo-label
for the molecular sub-classes, and→ represents the process of using the original labels to
generate a subcategory label.

First, we trained the binary classification model until it converged. Then, we extracted
deep features for each sample and obtained the pseudo-labels for the sub-classes through
unsupervised clustering. Finally, we jointly trained the network using both the binary
classification labels and the sub-class pseudo-labels. To better train the network, we used a
weighted binary cross-entropy loss to supervise the binary classification task:

Lwbce = −∑
j

wj ∑
i

yjilog(ŷji) + (1− yji)log(1− ŷji) (6)

At the same time, we introduced focal loss and center loss to learn the knowledge
of the pseudo-labels. This allowed us to bring the samples of the same class closer in the
feature space and push the samples of different classes farther apart. By introducing focal
loss, we reduced the weight of the easy samples and focused more on the difficult samples,
which helped to push the different classes apart in the feature space:

LFocal = −∑
i
[(1− ŷi)

γyilogŷi + (ŷi)
γ(1− yi)log(1− ŷi)] (7)

Center loss was used to minimize the intra-class variability by encouraging the feature
vectors of the same class to be close to their corresponding class centers. The center loss
was defined as

LCenter =
1
2

N

∑
i=1
‖xi − cyi‖2

2 (8)

By combining the loss of the binary classification and the sub-class pseudo-labels, we
optimized the classification model:

Ltotal = Lwbce + λ(LFocal + LCenter) (9)

3. Results

In this section, we first give the implementation details of the proposed PSCE in
Section 3.1 and describe the evaluation metrics in Section 3.2. Then, we give the results of
the local leave-one-out 10-time 10-fold cross-validation in Section 3.3 and ablation study in
Section 3.4.

3.1. Implementation Details

During the training process, we divided the training samples and validation samples
based on the drug–disease association matrix. For each element in the matrix, we could
treat it as a sample. We randomly split these samples into a training set and a valida-
tion set at a ratio of 9:1, and adopted a 5-fold cross-validation experiment to obtain the
model’s performance.

Our model used the Adam optimizer for optimization, with a learning rate of 0.01.
The mini-batch size for the model training was set to 2000, and a 5-fold cross-validation was
adopted. Our experiments were conducted on PyTorch 1.13.1 and a workstation equipped
with a 24 GB NVIDIA RTX3090 GPU. In the PFEM, the number of clustering centers was
set to half the number of samples, and in the D3TC, the number of sub-classes T was set to
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five. In the loss function, the weights in Lwbce were set according to the ratio of the number
of positive samples to negative samples in the training set. The value of λ was set to 0.005.

3.2. Evaluation Metrics

We used two metrics, namely, the area under the receiver operating characteristic
(AUROC) [29] and the area under the precision–recall curve (AUPRC) [30], to evaluate
the performance of our model. These two metrics are widely used for evaluating the
performance of binary classification models. The AUROC measures the trade-off between
the true positive rate (TPR) and the false positive rate (FPR) across different classification
thresholds. It represents the probability that a randomly selected positive sample will
be ranked higher than a randomly selected negative sample by the classifier. In contrast,
the AUPRC evaluates the trade-off between the precision and recall across different clas-
sification thresholds. It provides a more comprehensive assessment of the classifier’s
performance, especially when dealing with imbalanced datasets where the positive and
negative classes are significantly unequal.

3.3. Comparison with Existing Methods

In this section, we present the results of the local leave-one-out 10-time 10-fold
cross-validation to compare the proposed PSCE method with six representative methods to
examine the robustness and effectiveness of our PSCE for discovering novel drug candidates
for new diseases without any treatment information on four datasets, which are mentioned
in Section 2.1. The six representative methods were MBiRW [22], BNNR [24], iDrug [25],
NIMCGCN [26], DRHGCN [27], and DRWBNCF [28]. In this experiment, we used the
AUROC and AUPRC metrics to evaluate the performances of methods.

Table 1 presents the quantization results of our PSCE method compared with six
existing methods. In this table, we highlighted the best and second-best performances in
red and blue, respectively. The results demonstrate that our method consistently achieved
the best performance across the Gdataset, Cdataset, and Ldataset. In the LRSSL dataset
experiment, although our method attained the second-best performance for the AUROC
metric, it still achieved the best performance for the AUPRC metric. The last column of
the table displays the mean performances across the four datasets, where it shows that our
method performed well on all datasets and achieved comprehensive optimality.

In Figure 2, we visualized the mean performance of this experiment on four datasets
using a bar chart. This figure demonstrates that our PSCE method outperformed the others
and achieved a state-of-the-art performance. To intuitively demonstrate the robustness and
effectiveness, we visualized the performance of the 10-time 10-fold cross-validation for
each time in Figure 3. We can observe that our method, like other methods, demonstrated
consistent results across repeated experiments, where the outcomes remained within
a certain range and exhibited no significant random fluctuations. This indicates that
the quantification results of our method are robust. The performance stability of our
PSCE method was evident, where it consistently maintained a high performance. This
visual confirmation aligned with the quantitative results presented in our table, which
further verified the effectiveness of our method. Additionally, this stability across various
datasets underscored the reliability of our approach in different experimental conditions.
The robustness of our method ensures that it can be confidently applied in practical
scenarios since it maintains accuracy and efficiency. Overall, these observations highlight
the strength and dependability of our PSCE method in achieving superior quantification
results. Compared with the existing methods, especially NIMCGCN and DRHGCN,
which are also GCN-based methods, the proposed PSCE learned additional potential
knowledge with subcategory pseudo-labels, and the experimental results demonstrated
that our method could indeed achieve better and more robust performance than the
existing ones.
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Figure 2. Bar chart of performance that compares our PSCE and six existing methods. The blue and
green bars represent the performances according to the AUROC and AUPRC metrics, respectively.

Figure 3. Visualization of performance generated by our PSCE and existing methods. Top and bottom
represent the scatter plot of performances according to AUROC and AUPRC metrics, respectively.

3.4. Ablation Study on the Proposed PFEM and D3TC

This work presents a novel drug-repositioning model (PSCE) that incorporates two
modules: PFEM and D3TC, which were designed for subcategory exploration. To investi-
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gate the effectiveness of these two modules, we conducted the ablation study detailed in
this section. In these experiments, we compared the impacts of different combinations of
the two modules, with the quantification results reported in Table 2.

In Tables 2 and 3, we see that when using each module individually, only a comparable
performance could be achieved. However, combining both modules yielded the best
performance; this even led to significant improvements, such as an increase of about
0.1–0.2 on the Cdataset. This not only indicates that both modules are effective but also
that they are complementary. By integrating the two modules, they can leverage each
other’s strengths, thus resulting in superior performance. Figure 4 visually illustrates the
quantization results described above with a line chart. We can observe that combining the
two modules achieved significant and stable improvements over using them individually.
This visual representation further validated the effectiveness of our method.

Table 2. Ablation study using the AUROC metric on the PFEM module and D3TC module. The bold
marker indicates the best performance.

Setting Performance with AUROC Metric on Datasets (Mean ± Sd)

PFEM D3TC Gdataset Cdataset LRSSL Ldataset Avg
√

0.922 ± 0.015 0.945 ± 0.009 0.932 ± 0.014 0.850 ± 0.008 0.912√
0.924 ± 0.008 0.946 ± 0.014 0.940 ± 0.011 0.866 ± 0.005 0.919√ √
0.953 ± 0.014 0.964 ± 0.011 0.952 ± 0.016 0.877 ± 0.004 0.936

Table 3. Ablation study using the AUPRC metric on the PFEM module and D3TC module. The bold
marker indicates the best performance.

Setting Performance with AUPRC Metric on Datasets (Mean ± Sd)

PFEM D3TC Gdataset Cdataset LRSSL Ldataset Avg
√

0.396 ± 0.027 0.458 ± 0.016 0.382 ± 0.018 0.513 ± 0.011 0.437√
0.453 ± 0.044 0.488 ± 0.033 0.401 ± 0.025 0.541 ± 0.009 0.470√ √
0.535 ± 0.036 0.582 ± 0.028 0.443 ± 0.032 0.568 ± 0.008 0.532

Figure 4. The effects of different combinations of the proposed PFEM and D3TC on four datasets.
The top and bottom represent the line charts of performances with AUROC and AUPRC metrics,
respectively.
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4. Conclusions

In conclusion, our proposed PSCE model represents a significant advancement in the
field of drug repositioning by effectively incorporating subcategory information into the
prediction process. Through the innovative use of a prototype-based feature-enhancement
mechanism (PFEM) and a dual-task classification head (D3TC), we demonstrated that it
is possible to achieve more precise and reliable drug–disease association predictions. The
PFEM’s clustering centroids and the D3TC’s subcategory exploration enable our model
to leverage finer-grained pseudo-labels, thus providing a richer source of information
compared with traditional binary classification methods. Experimental results on four
public datasets confirmed that our PSCE model outperformed the current state-of-the-
art approaches, which underscored the potential of our method to improve the accuracy
and efficiency of drug-repositioning tasks. The effectiveness of both PFEM and D3TC
was further validated through comprehensive ablation studies, which highlighted the
robustness and applicability of our approach.

Author Contributions: Conceptualization, R.L. and Y.L.; methodology, R.L.; software, J.L.; vali-
dation, R.L. and J.L.; formal analysis, R.L.; investigation, R.L.; resources, Y.L.; data curation, R.L.;
writing—original draft preparation, R.L.; writing—review and editing, J.L.; visualization, J.L.; su-
pervision, Y.L.; project administration, R.L. and Y.C.; funding acquisition, Y.L. All authors read and
agreed to the published version of this manuscript.

Funding: This work was supported by the Artificial Intelligence Technology Application Research
and Service Center of Dongguan Polytechnic School-Level Fund Project of Dongguan Polytechnic
(no. 2023c27), and was also supported by SSL Sci-tech Commissioner Program Project (no. 20234400-
01KCJ-G).

Data Availability Statement: The data underlying this article are available in our provided github
repository at https://github.com/lu-rong/PSCE_DR/ (accessed on 13 September 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Morgan, S.; Grootendorst, P.; Lexchin, J.; Cunningham, C.; Greyson, D. The cost of drug development: A systematic review.

Health Policy 2011, 100, 4–17. [CrossRef]
2. Ingber, D.E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 2022,

23, 467–491. [CrossRef]
3. Jourdan, J.P.; Bureau, R.; Rochais, C.; Dallemagne, P. Drug repositioning: A brief overview. J. Pharm. Pharmacol. 2020,

72, 1145–1151. [CrossRef]
4. Jarada, T.N.; Rokne, J.G.; Alhajj, R. A review of computational drug repositioning: Strategies, approaches, opportunities,

challenges, and directions. J. Cheminformatics 2020, 12, 1–23. [CrossRef] [PubMed]
5. Hua, Y.; Dai, X.; Xu, Y.; Xing, G.; Liu, H.; Lu, T.; Chen, Y.; Zhang, Y. Drug repositioning: Progress and challenges in drug discovery

for various diseases. Eur. J. Med. Chem. 2022, 234, 114239. [CrossRef] [PubMed]
6. Yu, J.L.; Dai, Q.Q.; Li, G.B. Deep learning in target prediction and drug repositioning: Recent advances and challenges. Drug

Discov. Today 2022, 27, 1796–1814. [CrossRef] [PubMed]
7. Dang, Q.; Liang, Y.; Ouyang, D.; Miao, R.; Ling, C.; Liu, X.; Xie, S. Improved Computational Drug-Repositioning by Self-Paced

Non-Negative Matrix Tri-Factorization. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 20, 1953–1962. [CrossRef]
8. Hou, L.; Samaras, D.; Kurc, T.M.; Gao, Y.; Davis, J.E.; Saltz, J.H. Patch-based convolutional neural network for whole slide tissue

image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 2424–2433.

9. Peska, L.; Buza, K.; Koller, J. Drug-target interaction prediction: A Bayesian ranking approach. Comput. Methods Programs Biomed.
2017, 152, 15–21. [CrossRef]

10. Ceddia, G.; Pinoli, P.; Ceri, S.; Masseroli, M. Matrix factorization-based technique for drug repurposing predictions. IEEE J.
Biomed. Health Inform. 2020, 24, 3162–3172. [CrossRef]

11. Zeng, X.; Zhu, S.; Liu, X.; Zhou, Y.; Nussinov, R.; Cheng, F. deepDR: A network-based deep learning approach to in silico drug
repositioning. Bioinformatics 2019, 35, 5191–5198. [CrossRef]

12. Xuan, P.; Ye, Y.; Zhang, T.; Zhao, L.; Sun, C. Convolutional neural network and bidirectional long short-term memory-based
method for predicting drug–disease associations. Cells 2019, 8, 705. [CrossRef]

13. Wang, Z.; Zhou, M.; Arnold, C. Toward heterogeneous information fusion: Bipartite graph convolutional networks for in silico
drug repurposing. Bioinformatics 2020, 36, i525–i533. [CrossRef] [PubMed]

102



Electronics 2024, 13, 3835

14. Yu, Z.; Huang, F.; Zhao, X.; Xiao, W.; Zhang, W. Predicting drug–disease associations through layer attention graph convolutional
network. Briefings Bioinform. 2021, 22, bbaa243. [CrossRef] [PubMed]

15. Chen, H.G.; Zhou, X.H. MNBDR: A Module Network Based Method for Drug Repositioning. Genes 2021, 12, 25. [CrossRef]
[PubMed]

16. Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means algorithm: A comprehensive survey and performance evaluation. Electronics
2020, 9, 1295. [CrossRef]

17. Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means clustering algorithms: A comprehensive review,
variants analysis, and advances in the era of big data. Inf. Sci. 2023, 622, 178–210. [CrossRef]

18. Zhou, T.; Wang, W.; Konukoglu, E.; Van Gool, L. Rethinking semantic segmentation: A prototype view. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 2582–2593.

19. Zhu, X.; Toisoul, A.; Perez-Rua, J.M.; Zhang, L.; Martinez, B.; Xiang, T. Few-shot action recognition with prototype-centered
attentive learning. arXiv 2021, arXiv:2101.08085.

20. Rymarczyk, D.; Struski, Ł.; Górszczak, M.; Lewandowska, K.; Tabor, J.; Zieliński, B. Interpretable image classification with
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Abstract: In the rapidly advancing domain of Intelligent Connected Vehicles (ICVs), multimodal
Federated Learning (FL) presents a powerful methodology to harness diverse data sources, such as
sensors, cameras, and Vehicle-to-Everything (V2X) communications, without compromising data
privacy. Despite its potential, the presence of Byzantine adversaries–malicious participants who con-
tribute incorrect or misleading updates–poses a significant challenge to the robustness and reliability
of the FL process. This paper proposes a Byzantine-robust multimodal FL framework specifically de-
signed for ICVs. Our framework integrates a robust aggregation mechanism to mitigate the influence
of adversarial updates, a multimodal fusion strategy to effectively manage and combine heteroge-
neous input data, and a global optimization objective that accommodates the presence of Byzantine
clients. The theoretical foundation of the framework is established through formal definitions and
equations, demonstrating its ability to maintain reliable and accurate learning outcomes despite
adversarial disruptions. Extensive experiments highlight the framework’s efficacy in preserving
model performance and resilience in real-world ICV environments.

Keywords: federated learning; multimodal learning; intelligent connected vehicle; Byzantine-robust
federated learning

1. Introduction

The advent of Intelligent Connected Vehicles (ICVs) marks a transformative shift
in transportation technology [1], promising to revolutionize road safety [2], traffic effi-
ciency [3], and the overall driving experience [4]. ICVs leverage an intricate network of
sensors, including high-resolution cameras, Light Detection and Ranging (LiDAR) sys-
tems [5], millimeter-wave radars [6], and Global Positioning System (GPS) receivers, to
create a comprehensive understanding of their environment [7]. This sensor fusion, com-
bined with advanced communication technologies such as Vehicle-to-Everything (V2X)
protocols [8], enables ICVs to make informed decisions [9], navigate complex traffic scenar-
ios [10], and interact seamlessly with other vehicles and infrastructure [11].

However, the proliferation of ICVs introduces unprecedented challenges in data
management and processing [12]. The sheer volume of data generated by a single vehicle–
estimated to be up to 25 gigabytes per hour–multiplied across millions of vehicles, creates
a data deluge that traditional centralized computing paradigms struggle to handle effi-
ciently [13–15]. Moreover, these data often contain sensitive information about vehicle
locations, driving patterns, and potentially even biometric data of drivers, raising signifi-
cant privacy concerns [16].

Federated Learning (FL) [17] has emerged as a promising solution to address these
challenges. FL enables collaborative machine learning without the need for centralized data
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storage or processing [18]. In the context of ICVs, this means that vehicles can collectively
train sophisticated models for tasks such as object detection [19], traffic prediction [14],
and autonomous navigation [20,21], while keeping their raw sensor data securely on-board.
This decentralized approach not only preserves privacy but also significantly reduces the
bandwidth required for model training, as only model updates, rather than raw data,
are transmitted [22].

Despite its potential, the application of FL in ICV scenarios faces several critical
challenges that demand innovative solutions:

• Multimodal Data Integration. ICVs generate a diverse array of data types from vari-
ous sensors [23,24]. Each sensor modality provides unique and complementary infor-
mation. For example, cameras provide rich visual data that are critical for object recog-
nition and scene understanding, while LiDAR provides precise depth information and
3D point clouds for accurate distance measurement and object localization [19]. These
different modality types of data are extremely important for the proper operation of
ICVs. Effectively fusing these heterogeneous data sources while maintaining their
privacy-preserving nature in a FL setup is a complex challenge [25]. Traditional cen-
tralized fusion techniques are not directly applicable, necessitating novel approaches
that can operate on distributed, privacy-sensitive data.

• Byzantine Attacks. In a distributed learning environment like FL, the system is vul-
nerable to Byzantine attacks, where malicious participants or compromised vehicles
may inject false or manipulated data or model updates [26–28]. These attacks can
take many forms, such as data poisoning [26,28], where the adversary injects crafted
malicious samples into local training data, or model poisoning [29–31], where the
adversary sends malicious model updates to corrupt the global model. The conse-
quences of such attacks in an ICV context could be severe, potentially leading to
erroneous object detection or navigation decisions that compromise road safety [32,33].
Developing robust defense mechanisms that can detect and mitigate these attacks
without compromising the efficiency of the federated learning process is crucial.

• Communication Constraints. The mobility of vehicles presents unique challenges to
the FL process, such as vehicles may experience periods of disconnection or weak sig-
nal strength, especially in rural or underground areas [7,9,34]. In addition, the network
capacity available to vehicles may fluctuate widely depending on location, and net-
work congestion and frequent high-bandwidth communications can put stress on the
vehicle’s power system, especially in electric vehicles [5]. Designing a communication-
efficient federated learning protocol that can adapt to these dynamic conditions while
ensuring timely and effective model updates is essential.

To address these challenges, we propose a Byzantine-robust multimodal federated
learning framework specifically designed for intelligent connected vehicles. Specifically,
we first design a novel multimodal fusion architecture that can effectively integrate various
sensor data while preserving privacy. The architecture adopts a hierarchical approach to
first locally fuse data within each modality and then use a privacy-preserving cross-modal
attention mechanism to integrate information across modalities. In addition, we design
a Byzantine-robust aggregation algorithm based on gradient compression that can detect
and mitigate the impact of malicious participants in the FL process while maintaining high
communication efficiency. Our approach combines a statistical analysis of model updates
with a reputation system that tracks the historical reliability of participants. Our framework
not only addresses the immediate challenges facing intelligent connected vehicles, but
also lays the foundation for building a scalable, secure, and efficient federated learning
ecosystem in the broader context of intelligent transportation systems.

The contributions of this paper are listed as follows:

(1) We develop a novel Byzantine-robust aggregation technique based on gradient com-
pression, enhancing the resilience of federated learning against adversarial nodes.
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(2) We introduce an advanced cross-node multimodal alignment and fusion technique that
efficiently combines data from diverse sensors to improve model performance in ICVs.

(3) We implement top-k gradient compression to improve communication efficiency.
This reduces the communication overhead between nodes and the central server,
making the framework suitable for large-scale deployment.

(4) We conducted extensive experiments on three public datasets for the proposed frame-
work and evaluated prior work to demonstrate the advantages of the proposed
framework. Our framework can achieve a better cost–utility trade-off.

The remainder of this paper is organized as follows: Section 2 provides a comprehen-
sive review of related work in federated learning, multimodal fusion techniques, Byzantine-
robust algorithms, and their applications in intelligent transportation systems. Section 3
presents our problem definition in detail, elaborating on the challenges and constraints.
Section 4 presents our proposed framework in detail, including the cross-node multimodal
alignment and fusion method, gradient compression-based Byzantine aggregation algo-
rithm, and time complexity analysis. Section 5 discusses the results of our experiments,
providing a comparative analysis with existing methods and an ablation study to quantify
the impact of each component of our framework. Finally, Section 6 concludes the paper by
summarizing our contributions, discussing the limitations of our approach, and outlining
promising directions for future research in this rapidly evolving field.

2. Related Work

This section provides an overview of the existing literature relevant to our proposed
Byzantine-robust multimodal FL framework for ICVs. We organize the related work into
four key areas: federated learning in vehicular networks, multimodal learning for ICVs,
Byzantine-robust federated learning, and communication-efficient federated learning.

2.1. Federated Learning in Vehicular Networks

FL has gained significant attention in the context of vehicular networks due to its
ability to leverage distributed data while preserving privacy [35,36]. McMahan et al. [17]
introduced the seminal FedAvg algorithm, which forms the basis for many federated
learning approaches. In the vehicular domain, Du et al. [25] proposed a blockchain-based
FL framework for securing data sharing in the Internet of Vehicles (IoVs). Their approach
addresses trust issues in data sharing but does not consider multimodal data or Byzantine
attacks. Samarakoon et al. [35] developed a FL approach for joint power control and
resource allocation in vehicular networks. While their work demonstrates the potential of
FL in optimizing network performance, it focuses on network-level optimization rather
than perception and decision-making tasks. Lu et al. [37] introduced a FL framework for
cooperative sensing in connected and autonomous vehicles. Their approach shows promise
in improving sensing accuracy, but it does not address the challenges of multimodal data
fusion or Byzantine robustness.

2.2. Multimodal Learning for ICVs

Multimodal learning is crucial for ICVs to effectively integrate data from various
sensors [38]. Feng et al. [39] proposed a deep multimodal fusion framework for object de-
tection in autonomous driving, combining data from cameras and LiDAR. However, their
approach assumes centralized data processing, which is not suitable for privacy-preserving
federated learning scenarios. Caesar et al. [23] developed a multimodal attention network
for sensor fusion in autonomous vehicles. While their work demonstrates improved per-
ception accuracy, it does not consider the distributed nature of data in federated learning
settings. In the context of FL, Liu et al. [40] proposed a multimodal federated learning
framework for medical image analysis. Although their work addresses privacy concerns in
multimodal learning, it is not tailored to the specific challenges of vehicular networks and
does not consider Byzantine attacks.
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2.3. Byzantine-Robust Federated Learning

Byzantine robustness is critical for ensuring the reliability of FL systems, especially
in safety-critical applications like ICVs [28,31,41]. Yin et al. [42] introduced the Byzantine-
robust distributed learning algorithm, which can tolerate up to a certain fraction of Byzan-
tine workers. However, their approach assumes a centralized parameter server, which may
not be suitable for fully decentralized vehicular networks. Blanchard et al. [43] proposed
the Krum algorithm for Byzantine-robust aggregation in FL [43]. While Krum provides the-
oretical guarantees against Byzantine attacks, it may not be computationally efficient for the
large-scale and time-sensitive nature of ICV applications. More recently, Fung et al. [26] de-
veloped FoolsGold, a Byzantine-robust federated learning system that can defend against
Sybil attacks [28,33]. Their approach shows promise in identifying and mitigating the
impact of malicious clients, but it does not consider the multimodal nature of ICV data.

2.4. Communication-Efficient Federated Learning

Communication efficiency is paramount in vehicular networks due to bandwidth
limitations and the mobile nature of vehicles [44]. Konečný et al. [34] proposed structured
updates and sketched updates to reduce the communication cost in FL. While their meth-
ods show significant bandwidth savings, they do not address the specific challenges of
vehicular networks. Sattler et al. [35] introduced Sparse Ternary Compression (STC) for
communication-efficient federated learning. STC achieves high compression rates while
maintaining model accuracy, but it does not consider the dynamic nature of vehicular net-
work conditions. In the context of vehicular networks, Ye et al. [45] proposed an efficient
federated learning scheme with adaptive model aggregation. Their approach considers
vehicle mobility and network conditions but does not address multimodal data fusion or
Byzantine robustness.

While the existing literature has made significant strides in various aspects of federated
learning for vehicular networks, there remains a critical gap in addressing the combined
challenges of multimodal data integration, Byzantine robustness, and communication
efficiency in a unified framework for ICVs. By addressing these challenges simultaneously,
our framework aims to provide a comprehensive solution for secure, efficient, and reliable
federated learning in Intelligent Connected Vehicle systems.

3. Problem Definition

In this section, we formally define the problem of Byzantine-robust multimodal feder-
ated learning for ICVs. We outline the system model, the objectives of our framework, and
the specific challenges we aim to address.

3.1. System Model

Consider a network of K ICVs, denoted as V = {v1, v2, . . . , vk}. Each vehicle vk is
equipped with a set of M sensors S = {s1, s2, . . . , sm}, where each sensor captures a different
modality of data (e.g., camera images, LiDAR point clouds, radar signals, GPS coordinates).
Each vehicle vk maintains its local dataset Dk = {(xi, yi)}nk

i=1, where xi represents the
multimodal input data and yi the corresponding labels. As shown in Figure 1, the goal is to
collaboratively train a global model w that can accurately perform a given task (e.g., object
detection, traffic prediction) by aggregating local updates ∆wi from each vehicle without
sharing raw data. The federated learning process can be formalized as follows:

wt+1 = wt + η
K

∑
i=1

αi∆wt
i , (1)

where wt is the global model at iteration t, η is the learning rate, αi is the weight assigned
to the i-th vehicle, and ∆wt

i is the local model update from vehicle i at iteration t.
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Figure 1. Workflow overview of Byzantine-robust multimodal federated learning framework.

Multimodal Fusion. Each vehicle processes multimodal data, necessitating an effec-
tive fusion strategy to handle different types of input data. Let xi denote the multimodal
input data from vehicle vk, comprising m modalities xi = {x1

i , x2
i , . . . , xm

i }. The local model
fi(xi; wi) integrates these modalities to produce predictions ŷi = fi(xi; wi). The multimodal
fusion within each vehicle can be formulated as follows:

hi = F (x1
i , x2

i , . . . , xm
i ) (2)

where F denotes the fusion function that combines the features from different modalities
into a unified representation hi.

Byzantine Adversaries. In this setup, a subset of vehicles may act as Byzantine
adversaries, sending arbitrary or malicious updates ∆wt,adv

i . These adversarial updates
can significantly deteriorate the performance of the global model. Let B ⊆ {1, 2, . . . , N}
denote the set of Byzantine vehicles, with |B| = b. To mitigate the influence of Byzantine
adversaries, we introduce a Byzantine-robust aggregation mechanism. The objective is to
aggregate the local updates in a way that minimizes the impact of adversarial updates.
Formally, the robust aggregation function A is defined as follows:

wt+1 = wt + ηA({∆wt
i}N

i=1). (3)

The aggregation function A should satisfy the following properties: (1) Resilience:
It should be resilient to at most b Byzantine adversaries. (2) Accuracy: It should ensure that
the aggregated update is close to the mean of the non-adversarial updates.

Objective Function. The overall objective is to minimize the global loss function L(w)
over all vehicles, accounting for the presence of Byzantine adversaries:

min
w
L(w) = ∑

i/∈B
αiLi(w), (4)

where Li(w) is the local loss function for vehicle i. Thus, the proposed Byzantine-robust
multimodal federated learning framework aims to ensure robust and efficient collaborative
learning among ICVs, leveraging diverse data modalities while safeguarding against
adversarial disruptions.

3.2. Challenges and Constraints

Implementing the above robust framework for ICVs poses several challenges and
limitations that must be addressed to ensure the effectiveness and reliability of the system.

• Byzantine Robustness. Ensuring robustness against Byzantine adversaries is a signif-
icant challenge. Malicious nodes can send faulty updates that can severely degrade
the performance of the global model. Designing efficient and effective robust aggre-
gation methods to mitigate these attacks while maintaining high model performance
is complex.
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• Communication Overhead. FL inherently involves substantial communication be-
tween nodes and the central server. The gradient compression technique helps reduce
this overhead, but finding the optimal balance between compression rate and model ac-
curacy is crucial. Excessive compression can lead to the loss of important information,
while insufficient compression can cause excessive communication delays.

• Heterogeneous Data. Multimodal datasets from different vehicles may vary in quality,
resolution, and format. Ensuring effective data fusion across these heterogeneous
sources without losing critical information is a key constraint.

Addressing these challenges and constraints requires continuous innovation and
rigorous testing to ensure the framework’s reliability, efficiency, and security in real-world
ICV applications.

4. Our Approach

This section presents the Byzantine-robust multimodal federated learning framework
for ICVs. The framework includes a Byzantine aggregation algorithm based on gradient
compression, a modality alignment fusion method across nodes, and an objective function
designed to enhance learning performance despite adversarial interference, as shown
in Figure 1.

4.1. Cross-Node Multimodal Alignment and Fusion

The cross-node multimodal alignment and fusion technique is designed to handle the
diverse data modalities from different ICVs and align them into a consistent latent space
for effective fusion. This technique ensures that the multimodal features from different
nodes are comparable and can be effectively aggregated for federated learning.

Local Feature Extraction. Each vehicle vi extracts features from its local multimodal
data using dedicated subnetworks. Let xi = {x1

i , x2
i , . . . , xm

i } represent the input data from
m modalities. For each modality j, a feature extraction subnetwork φj is used to obtain the
local features:

hj
i = φj(x

j
i) (5)

where hj
i denotes the extracted feature vector for modality j from vehicle vi.

Discussion. To effectively manage high-dimensional multimodal data in the proposed
framework for ICVs, a combination of dimensionality reduction techniques, feature extrac-
tion, and multimodal fusion strategies is employed. Methods like the above Local Feature
Extraction reduce the dimensionality of data from various sensors and cameras while
preserving essential features. Sparse representations and low-rank approximations further
minimize the complexity of high-dimensional inputs. Additionally, adaptive fusion strate-
gies integrate the reduced representations of different modalities, allowing for efficient
information aggregation across diverse data sources. This ensures that the framework can
handle the high-dimensionality of multimodal data without overwhelming computational
resources while maintaining robustness against adversarial attacks.

Global Modality Alignment. To ensure that the features from different nodes are
aligned into a common latent space, we employ a modality alignment network Aj for each

modality. This network aligns the local features hj
i to a global latent space:

h̃j
i = Aj(h

j
i), (6)

where h̃j
i is the globally aligned feature for modality j from vehicle i.

Alignment Network. The alignment network Aj can be implemented as a neural
network trained to minimize the distance between features of the same class across different
nodes. The loss function for training Aj could be a contrastive loss or a triplet loss:

Lalign = ∑
i,k

[
‖Aj(h

j
i)−Aj(h

j
k)‖2 − ‖Aj(h

j
i)−Aj(h

j
neg)‖2 + α

]
+

, (7)
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where hj
k is a feature from another vehicle with the same label as hj

i , hj
neg is a feature from a

different class, and α is a margin parameter.
Feature Fusion. After aligning the features from all modalities, the next step is to fuse

them into a single representation. This unified representation combines information from all
modalities and serves as the input for the local prediction model. The fused representation
hi for vehicle i is obtained by concatenating the aligned features:

hi = Concat(h̃1
i , h̃2

i , . . . , h̃m
i ), (8)

where Concat denotes the concatenation operation across all m modalities.
Concatenation and Fusion Network. The concatenated feature vector hi is then

passed through a fusion network F to integrate the information from different modalities:

zi = F (hi), (9)

where zi is the final fused feature vector used for prediction. The fused feature vector zi is
used by the local model fi to make predictions:

ŷi = fi(zi; wi), (10)

where wi are the local model parameters.
Training and Optimization. The local models are trained to minimize the empirical

risk over their local datasets. The local loss function for vehicle i is defined as follows:

Li(w) =
1
ni

ni

∑
j=1

`( fi(zi,j; wi), yi,j), (11)

where `(·, ·) is the loss function (e.g., cross-entropy loss for classification tasks). The overall
objective is to minimize the global loss function across all vehicles, accounting for the
presence of Byzantine adversaries (see the following section):

min
w
L(w) = ∑

i/∈B
αiLi(w). (12)

4.2. Gradient Compression-Based Byzantine Aggregation

This section provides a detailed description of the Byzantine aggregation technique
based on top-k gradient compression.

Local Gradient Calculation. Each vehicle vk computes the local gradient ∆wk based
on its local dataset Dk:

∆wk = ∇Lk(wk) (13)

where Lk(wk) is the local loss function for vehicle vk, and wk are the local model parameters.
Then we use top-k gradient compression to improve the communication efficiency, where
top-k gradient compression involves retaining only the most significant elements of the
gradient vector to reduce communication overhead. Given a gradient vector ∆wk from
vehicle vk, we can compute the magnitudes of all elements in ∆wk:

magnitudek = |∆wk|. (14)

Top-k Selection. Here, we identify the indices of the top-k largest magnitudes by
using the following equation:

topk_indices = argsort(magnitudei)[−k :]. (15)
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Then, we create a binary mask mi where the positions corresponding to the top-k
indices are set to 1, and the rest are set to 0:

mi[j] =

{
1 if j ∈ topk_indices
0 otherwise

(16)

Gradient Compression. We apply the binary mask to the gradient vector:

C(∆wk) = ∆wk �mk (17)

In this context, the compressed gradient C(∆wi) contains only the top-k elements of
∆wi, reducing the communication load.

Robust Aggregation. To mitigate the influence of Byzantine adversaries, a robust
aggregation method like trimmed mean aggregation is used at the central server. Given
compressed gradients {C(∆wk)}K

k=1 from K vehicles:

• Dimension-wise Sorting and Trimming. For each dimension d of the gradient vec-
tor, we collect the k-th elements of the compressed gradients from all vehicles, i.e.,
{C(∆wk)d}K

k=1. Then, we sort the collected values, i.e., C(∆w(1))d ≤ C(∆w(2))d ≤
· · · ≤ C(∆w(K))d. After that, we trim the largest and smallest b values, where b is the
estimated number of Byzantine adversaries.

• Mean Calculation. First, we compute the mean of the remaining values after trim-
ming:

Ad({C(∆wt
k)}K

k=1) =
1

K− 2b

K−b

∑
i=b+1

C(∆wt
k)d. (18)

Then, we construct the aggregated gradient A({C(∆wt
k)}K

k=1) by applying Ad to
each dimension d:

A({C(∆wt
i )}N

i=1) =
(
A1({C(∆wt

i )}N
i=1), . . . ,Ad({C(∆wt

i )}N
i=1)

)
, (19)

where d is the dimensionality of the gradient vector.
• Global Model Update. The server updates the global model using the robustly aggre-

gated gradient:
wt+1 = wt + ηA({C(∆wt

k)}K
k=1), (20)

where η is the learning rate.

The Byzantine aggregation technique based on top-k gradient compression involves
compressing local gradients by retaining only the top-k elements and using a robust
trimmed mean aggregation method at the server. This approach effectively reduces com-
munication overhead and mitigates the impact of Byzantine adversaries, ensuring resilient
and accurate global model updates in the federated learning framework for ICVs. The
detailed implementation steps (see Algorithm 1) and formulas provided establish the theo-
retical and practical foundations of the technique, ensuring it can be effectively applied in
real-world scenarios.

4.3. Time Complexity Analysis

Analyzing the time complexity of the Byzantine-robust aggregation technique based
on top-k gradient compression involves examining the computational cost of each step in
the process. Here, we break down the time complexity for the key steps: local gradient
calculation, gradient compression, transmission, robust aggregation at the server, and the
global model update.

• Local Gradient Calculation. Each vehicle computes the local gradient ∆wi based on
its local dataset. Assume the dataset has m samples and the model has d parameters.
The time complexity for gradient computation is O(m · d). This is because each
parameter gradient is typically calculated as a sum over the dataset, involving m
operations per parameter.
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• Top-k Gradient Compression. After computing the gradient, each vehicle compresses it
by retaining the top-k elements, i.e.,O(d) for magnitude calculation,O(d log k) for top-k
selection, andO(d) for binary mask creation and gradient compression. The overall time
complexity for top-k gradient compression: O(d + d log k + d) = O(d log k).

• Transmission. The transmission time depends on the communication bandwidth and is
not typically considered in time complexity analysis. However, since only k elements are
transmitted, the communication cost is O(k).

• Robust Aggregation at Server. The server aggregates the compressed gradients using
the trimmed mean method, i.e., O(N · d) for dimension-wise collection, O(d · N log N)
for sorting, andO(d · (N− 2b)) = O(d · N) for trimming and mean calculation. Overall
time complexity for robust aggregation: O(d · N log N + d · N) = O(d · N log N).

• Global Model Update. The server updates the global model using the aggregated
gradient. The time complexity for this step is O(d).
Combining all the steps, the total time complexity of the Byzantine-robust aggregation

technique based on top-k gradient compression is dominated by the robust aggregation at
the server, which involves sorting and averaging operations. The overall time complexity is

O(m · d) +O(d log k) +O(k) +O(d · N log N) +O(d) (21)

Since O(d · N log N) is the dominant term, the overall time complexity is

O(d · N log N)

This complexity ensures that the framework can efficiently handle large-scale federated
learning with numerous participants, provided the number of parameters d and the number
of vehicles K remain manageable.

Algorithm 1: Byzantine-robust Multimodal Federated Learning Algorithm.
Input: Local model ωk and local multimodal dataset Dk.
Output: Global model ω
The server initializes the generator and global model and sends them to each

vehicle;
while local training do

Use the local model ωk to perform feature extraction on the complete modality;
Each vehicle vk computes its local gradient ∆wk based on its local dataset;
Calculate the magnitudes of the elements in ∆wk;
Identify the top-k largest magnitudes;
Create a binary mask mi;
Apply the binary mask to the gradient;

Transmit the compressed gradient C(∆wk) to the central server;
do

Collect the compressed gradients from all participating vehicles;
Sort the k-th elements of the received gradients;
Trim the largest and smallest b values;
Compute the mean of the remaining values;
Construct the aggregated gradient;
Update the global model using the aggregated gradient;

wt+1 = wt + ηA({C(∆wt
i)}N

i=1)

while execute the above aggregation;
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5. Experiments
5.1. Experiment Setup

To evaluate the performance of our framework, we conducted extensive experiments
on four benchmarking datasets. All experiments were implemented using Python 3.9 and
PyTorch 1.12 and evaluated on a server with an NVIDIA A100 GPU.

Datasets. Our proposed framework was evaluated using three comprehensive multi-
modal datasets: KITTI [46], nuScenes [23], and KAIST Multispectral Pedestrian Detection
Dataset [47]. KITTI provides RGB images, LiDAR point clouds, and GPS/IMU data for
2D and 3D object detection in urban and highway scenes. nuScenes offers a larger-scale
dataset with additional RADAR data, covering diverse driving scenarios in multiple cities.
The KAIST dataset focuses on pedestrian detection using RGB and thermal infrared images,
challenging the framework with day/night variations. These datasets are adapted for
federated learning by partitioning data among simulated ICVs, ensuring non-IID distribu-
tions, implementing privacy-preserving data handling, introducing Byzantine nodes, and
simulating varying communication conditions. Together, they provide a robust testbed for
evaluating our framework’s performance in multimodal fusion, Byzantine resilience, and
adaptation to diverse ICV environments and object detection tasks.

Models. Our framework employs a diverse set of state-of-the-art models adapted
for FL scenarios. These include PointPillars [48], which efficiently processes LiDAR point
clouds and can be extended to incorporate RGB data; MVX-Net [49], designed for the
multimodal fusion of LiDAR and image data; AVOD [50], a 3D object detection model that
fuses LiDAR and RGB inputs; a custom KAIST Multispectral Pedestrian Detection Network
for handling RGB and thermal infrared data; and YOLOv4-Multispectral, an extension of
YOLOv4 [51] adapted for fast, multispectral object detection.

Parameters. In the proposed framework, key parameters include the number of
participating nodes (K = 100 vehicles), gradient compression rate (r = 100 elements), and
learning rate η = 0.001. The framework is designed to handle b = {10, 15, 20, 25} Byzantine
nodes. The model typically involves d = 106 parameters, with each node processing local
datasets of m = 10, 000 samples. The datasets used include RGB images with resolutions of
1242× 375 (KITTI), 1600× 900 (nuScenes), and 1920× 1280 pixels (Waymo). LiDAR point
clouds have densities of around 100,000 (KITTI), 300,000 (nuScenes), and 200,000 points
per frame (Waymo). Radar data are captured at approximately 13 Hz, and GPS accuracy
is within 1–2 m. These parameters ensure the framework’s efficiency, robustness, and
effectiveness in real-world ICV scenarios.

Baselines. The proposed framework was evaluated using the following baselines:

• FedAvg [17]. FedAvg aggregates local models from all vehicles by averaging their
parameters but does not account for Byzantine robustness.

• Krum [43] and Multi-Krum [52]. They are robust aggregation techniques designed to
resist Byzantine attacks by selecting gradients that deviate the least from the majority.

• Trimmed Mean [53] and Median [28]. These aggregation methods enhance robust-
ness by trimming extreme values and using median values to mitigate the influence of
adversarial updates.

• Byzantine-resilient SGD (BrSGD) [54]. This approach focuses on detecting and
excluding malicious updates during training.

• FLTrust [55]. This approach focuses on computing trust scores to select high-quality clients.

These baselines provide a comprehensive evaluation framework, allowing for a robust
comparison of the proposed framework’s effectiveness in handling adversarial scenarios,
maintaining accuracy, and ensuring efficient multimodal data fusion in ICV tasks.

Evaluation Metrics. Evaluating the proposed framework requires a comprehensive
set of metrics to assess its performance across various dimensions. Key evaluation metrics
include accuracy, which measures the proportion of correctly detected objects in multimodal
datasets such as KITTI, nuScenes, and Waymo. Robustness metrics, i.e., the percentage
of successful attacks detected and mitigated, are essential for evaluating the framework’s
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resilience against Byzantine adversaries. We use the communication overhead to assess the
efficiency of the gradient compression and transmission processes, while convergence time
measures how quickly the model reaches a satisfactory performance level. Together, these
metrics ensure a thorough evaluation of the framework’s accuracy, robustness, efficiency,
and overall effectiveness in real-world ICV scenarios.

5.2. Numerical Analysis

System Performance. This experiment aimed to study the system performance of the
proposed framework. Specifically, we adopted local label-flipping attacks and Gaussian
attacks as Byzantine attacks. We explored the performance of the proposed framework and
baselines on different benchmark datasets under local label-flipping attacks. The experimen-
tal results are shown in Table 1, which shows that the proposed framework outperforms
the baselines on different datasets, indicating that the proposed scheme can filter poisonous
data well and maintain model performance. The experimental results show that the frame-
work outperforms other baselines in terms of system performance and anti-poisoning
attacks due to the efficient Byzantine defense mechanism and multimodal fusion design.

Table 1. Accuracy of the proposed framework and benchmarks on different datasets.

Method KITTI nuScenes KAIST

FedAvg 65.4 ± 0.3 58.7 ± 0.2 67.8 ± 0.2
Krum 67.7 ± 0.1 62.4 ± 0.2 71.2 ± 0.1
Multi-Krum 68.9 ± 0.1 65.7 ± 0.3 74.1 ± 0.2
Trimmed Mean 66.8 ± 0.2 64.1 ± 0.2 72.6 ± 0.2
Mean 65.8 ± 0.1 59.7 ± 0.4 70.1 ± 0.2
BrSGD 71.2 ± 0.2 68.3 ± 0.3 75.4 ± 0.2

Ours 73.2 ± 0.2 72.5 ± 0.2 77.9 ± 0.2

Secondly, we explored the impact of different numbers of Byzantine clients on the
performance of the proposed framework and baselines under the above two attacks. Specifi-
cally, we set b = {10, 15, 20, 25}. The experimental results are summarized in Tables 2 and 3.
The experimental results show that the proposed framework is still more robust than other
baselines under different numbers of attackers, which indicates that the proposed Byzantine
defense based on gradient compression is very effective against these Byzantine attacks.

Table 2. Accuracy of the proposed framework and benchmarks under different numbers of compro-
mised clients.

Method b = 10 b = 15 b = 20 b = 25

FedAvg 65.4 ± 0.1 63.8 ± 0.2 58.8 ± 0.3 52.4 ± 0.2
Krum 67.7 ± 0.1 65.6 ± 0.1 60.1 ± 0.2 54.8 ± 0.3
Multi-Krum 68.9 ± 0.2 67.1 ± 0.3 62.5 ± 0.2 58.7 ± 0.1
Trimmed Mean 66.8 ± 0.2 65.6 ± 0.4 63.7 ± 0.3 59.8 ± 0.1
Mean 65.8 ± 0.2 62.7 ± 0.1 58.9 ± 0.2 55.6 ± 0.1
BrSGD 71.2 ± 0.3 68.7 ± 0.2 66.5 ± 0.2 62.7 ± 0.1
FLTrust 72.2 ± 0.1 71.4 ± 0.2 68.7 ± 0.3 65.6 ± 0.1

Ours 73.2 ± 0.1 71.9 ± 0.2 69.7 ± 0.1 68.4 ± 0.2

Communication Efficiency. Table 4 records the communication overhead results of
the proposed framework and the baselines under different numbers of clients. The experi-
mental results show that the proposed framework has a higher communication efficiency
due to the use of a gradient compression scheme, which requires a small gradient size.
In addition, cross-node multimodal alignment and fusion provide high-quality model
update aggregation, thereby accelerating the convergence of the model.
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Table 3. Accuracy of the proposed framework and benchmarks under different numbers of compro-
mised clients for Gaussian attack.

Method b = 10 b = 15 b = 20 b = 25

FedAvg 58.6 ± 0.2 54.2 ± 0.3 48.6 ± 0.3 42.7 ± 0.2
Krum 65.2 ± 0.2 63.2 ± 0.2 61.8 ± 0.3 56.7 ± 0.2
Multi-Krum 67.7 ± 0.2 65.4 ± 0.2 61.6 ± 0.2 56.5 ± 0.1
Trimmed Mean 64.6 ± 0.2 62.4 ± 0.3 58.7± 0.2 54.4 ± 0.1
Mean 62.7 ± 0.2 57.7 ± 0.1 55.4 ± 0.2 53.1 ± 0.1
BrSGD 68.7 ± 0.2 67.1 ± 0.2 64.8 ± 0.2 60.7 ± 0.1
FLTrust 71.7 ± 0.1 66.7 ± 0.2 65.4 ± 0.2 61.8 ± 0.1

Ours 74.2 ± 0.1 73.1 ± 0.2 70.8 ± 0.1 69.3 ± 0.2

Table 4. Communication overhead of the proposed framework and baselines with different numbers
of clients.

Method K = 100 K = 120 K = 140 K = 150

FedAvg 4896 MB 5432 MB 5831 MB 6123 MB
Krum 4984 MB 5641 MB 6023 MB 6457 MB
Multi-Krum 5014 MB 5425 MB 5987 MB 6398 MB
Trimmed Mean 5021 MB 5531 MB 6015 MB 6157 MB
Mean 4974 MB 5324 MB 6074 MB 6248 MB
BrSGD 3697 MB 4125 MB 4897 MB 5324 MB

Ours 49.64 MB 53.24 MB 57.41 MB 60.23 MB

Parameter Sensitivity. Here, we aim to explore the impact of the gradient compression
rate parameter on the communication overhead of the proposed framework. Table 5 shows
the communication overhead results under different gradient compression rates, where the
results show that the proposed framework can achieve a better communication efficiency.

Table 5. Communication overhead of the proposed framework and baselines under compression rates.

Method r = 100 r = 110 r = 120 r = 150

FedAvg 4896 MB 5432 MB 5831 MB 6123 MB
Krum 4984 MB 5641 MB 6023 MB 6457 MB
Multi-Krum 5014 MB 5425 MB 5987 MB 6398 MB
Trimmed Mean 5021 MB 5531 MB 6015 MB 6157 MB
Mean 4974 MB 5324 MB 6074 MB 6248 MB
BrSGD 3697 MB 4125 MB 4897 MB 5324 MB

Ours 49.64 MB 48.23 MB 46.65 MB 41.25 MB

Ablation Studies. Finally, we conducted ablation experiments to study the perfor-
mance impact of different components within the proposed framework. Specifically, we ex-
plored the impact of the multimodal fusion mechanism and the Byzantine aggregation
mechanism based on gradient compression on the framework, respectively. Table 6 sum-
marizes the experimental results. We observed that the performance of the proposed
framework with and without the multimodal fusion mechanism was relatively close, indi-
cating a good privacy–performance trade-off. In addition, we observed that the Byzantine
aggregation mechanism based on gradient compression significantly improved the model’s
robustness and performance.

Discussion. The proposed Byzantine-robust multimodal FL framework for ICVs can
effectively scale to larger networks by leveraging adaptive robust aggregation mecha-
nisms, hierarchical structures, and resource-aware optimization techniques. The dynamic
network topology of ICVs is managed through asynchronous aggregation and buffer mech-
anisms, ensuring stability even with fluctuating connectivity. The framework’s multimodal
fusion strategy accommodates varying data rates and heterogeneous sensor inputs by
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employing dynamic fusion weights and adaptive sampling. To handle increasing adversar-
ial presence, hierarchical Byzantine-resilient aggregation, combined with reinforcement
learning-based optimization, ensures that the system remains robust. Resource constraints
are mitigated through bandwidth-aware compression and gradient sparsification, allowing
for the framework to maintain efficiency even under communication limitations. Overall,
these strategies enable the framework to scale effectively while preserving robustness,
resilience, and performance in real-world ICV environments.

Table 6. Ablation study results.

Method K = 100 K = 120 K = 140 K = 150

w/o Fusion 68.9 67.7 66.8 65.7
w/o Aggregation 66.1 65.4 64.6 62.8

Ours 73.2 72.5 71.1 70.9

6. Conclusions

In this paper, we introduce a Byzantine-robust multimodal federated learning frame-
work designed for ICVs. This framework addresses critical challenges in federated learning,
particularly those related to data privacy, security, and robustness against adversarial at-
tacks. By leveraging advanced techniques such as gradient compression and robust aggre-
gation methods, the framework ensures efficient and secure training across multiple nodes,
even in the presence of Byzantine adversaries. We highlighted the importance of multi-
modal data fusion by integrating diverse sensor data, including RGB images, LiDAR point
clouds, radar data, and GPS/IMU measurements, to enhance the accuracy and reliability
of object detection in autonomous driving. Through the use of benchmark datasets like
KITTI, nuScenes, and Waymo Open Dataset, we demonstrated the framework’s capability
to maintain high performance and robustness. Our evaluation metrics, including accuracy,
precision, recall, robustness, communication overhead, and computational cost, provide
a comprehensive assessment of the framework’s effectiveness. The proposed approach
not only advances the state of federated learning in autonomous driving but also sets a
foundation for future research on secure and resilient distributed machine learning systems.
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Abstract: The current usage of federated learning in applications relies on the existence of servers.
To address the inability to conduct federated learning for IoV (Internet of Vehicles) applications in
serverless areas, a P2P (peer-to-peer) architecture for federated learning is proposed in this paper.
Following node segmentation based on limited subgraph diameters, an edge aggregation mode
is employed to propagate models inwardly, and a mode for propagating the model inward to the
C-node (center node) while aggregating is proposed. Simultaneously, a personalized differential
privacy scheme was designed under this architecture. Through experimentation and verification, the
approach proposed in this paper demonstrates the combination of both security and usability.

Keywords: federated learning; IoV; differential privacy; P2P

1. Introduction

IoV (Internet of Vehicles) applications often require the utilization of big data for model
training, which inevitably raises concerns about user privacy [1]. Therefore, employing
a privacy-preserving algorithm becomes imperative. Federated learning [2,3] emerged
as a privacy-preserving paradigm commonly utilized in machine learning. However,
the prevalent C-S (client-server) architecture presents certain limitations, notably, the
requirement for server involvement. This limitation restricts the application of federated
learning in regions where servers are unavailable or not readily deployable, hindering its
adoption for IoT applications in such areas. An alternative federated learning architecture,
P2P (peer-to-peer), offers a solution to this challenge. However, P2P architectures are more
complex, and most of the research on federated learning for P2P architectures is based on a
complete node distribution network. The implementation of federated learning for P2P
architectures in the context of vehicular networking must also consider the issue of the
distance between vehicles, which need to be sufficiently close to each other to communicate
and exchange model parameters. Therefore, it can be beneficial to group the vehicle nodes
in proximity based on distance before federated learning, ensuring that vehicle nodes at
each position in the node distribution network graph can form a P2P architecture with
nearby vehicle nodes. Additionally, the system should be designed to be straightforward
and efficient to implement, facilitating convenient application in real-world scenarios.

Federated learning, despite its privacy-preserving benefits, has certain security risks,
such as inference attacks and poisoning attacks. Common privacy computation methods
used to enhance the security of federated learning include encrypting the model or using
differential privacy by adding noise. In the context of IoV, model parameters are inter-
changed between vehicle nodes in a P2P architecture, which introduces the possibility of
inferring certain privacy information from the received model parameters if a malicious
node is present. The use of differential privacy reduces this risk. However, the addition
of noise affects the quality of the model. Malicious nodes often choose nearby nodes for
inference attacks, and the risk of privacy information leakage decreases as the distance
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between nodes increases. Therefore, the degree of differential privacy can be adjusted
according to the geographic distance between nodes. When the distance between nodes is
short, the risk of inference attacks is higher, necessitating the addition of more noise to the
model parameters for protection. Conversely, when the distance between nodes is greater,
the risk is reduced, allowing for less noise addition and a greater focus on maintaining
model quality.

Therefore, to extend the provision of federated learning services to a broader customer
base, employing federated learning with a P2P architecture can address the serverless
scenario. However, the realization of P2P architecture federated learning on a complete
node distribution graph is not suitable for IoV. We can consider grouping nodes in proximity
based on distance, which can be used to partition the complete graph into subgraphs as
the basis for grouping before federated learning. The data security of IoV applications
is very important. To prevent vehicles participating in federated learning from inferring
private data from the received model parameters, each vehicle should add noise to the
propagation model to realize the differential privacy mechanism. Furthermore, the degree
of differential privacy can be adjusted based on distance: when the distance between nodes
is greater, the risk of data leakage is smaller, allowing more focus on the quality of the model.
Conversely, when nodes are closer together, the risk of data leakage increases, necessitating
the addition of more noise to the model parameters to enhance privacy protection.

This paper introduces a federated learning scheme specifically designed for the IoV
within a peer-to-peer architecture. In utilizing the minimum spanning tree algorithm and
centrality algorithm, the node distribution graph is segmented to control the diameter
of the subgraph. This segmentation serves as the foundation for node grouping before
federated learning, and the propagation process of federated learning was designed to
align with the topology within the subgraph. To enhance the privacy protection capabilities
of federated learning, a personalized differential privacy scheme is introduced based
on distance adjustment. This scheme enables nodes to dynamically adapt the degree of
differential privacy according to their environmental context.

The primary contributions include the following:

• An F-Prim algorithm, derived from Prim’s algorithm and centrality algorithm, was
devised to group nodes based on proximity while constraining the diameters of the
subgraphs, thereby forming a P2P architecture.

• The propagation path of models within the P2P architecture is designed according
to the node hierarchy, wherein nodes propagate from the periphery to the core of
the subgraph for aggregation, facilitating the completion of the model aggregation
process at the C-node (central node).

• A personalized differential privacy scheme was formulated, enabling each node to
adjust the amount of noise added to the model parameters based on its distance from
other nodes. This scheme aims to strike a balance between security and model quality.

The remainder of this article is structured as follows. In Section 2, existing studies
that deployed P2P-based federated learning in vehicle networks are reviewed. Section 3
introduces the application scenarios of the scheme and the P2P architecture formed after
node segmentation. In Section 4, the federated learning process and its privacy preserving
scheme under P2P architecture are elaborated on. In Section 5, some experiments based
on the scheme are designed to verify the proposed architecture. Section 6 show relevant
proofs of some of the programs. Finally, Section 7 concludes this article.

A summary of the main notations is provided in Table 1.
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Table 1. Main symbols.

Symbol Meaning

N̂ The maximum number of nodes in a single subgraph
|·| The cardinality of a set
vi The i-th node
Di The database held by the owner vi
eij The edge between vi and vj
dij The distance between vi and vj

dmax The maximum of distance in G
d̂i The maximum of the distance between vi and vi’s neighbor node
lij The minimum length between vi and vj

center The ID of the C-node
Ch(i) The value of the harmonic centrality of vi

L1 The set of one-layer node IDs
L2 The set of two-layer node IDs
t The index of the t-th aggregation
T The number of aggregation times
ω The vector of model parameters
ω0 Initial parameters
ωt

i The local training parameters of the i-th node at the t-th aggregation
ω̃t

i Local training parameters ωt
i with noise ni

ωt
vi

Aggregated parameters on vi
n(ε, σ,4 f ) Gaussian noise function

ni The noise added by vi
4 fi The sensitivity of vi

σ Sigma
C Clipping threshold

2. Related Work

Federated learning research has been widely applied in the field of IoV. As a privacy
paradigm for machine learning, federated learning helps to address the privacy issues of
sensitive information such as of path and location in IoV applications without affecting the
model training on IoV data. Samarakoon et al. [4] investigated the joint power and resource
allocation problem for ultra-reliable and low-latency communication in vehicular networks
and used Lyapunov optimization to derive a joint power and resource allocation strategy
with ultra-reliable and low-latency communication in a distributed approach as well.
Kong et al. [5] proposed a federated learning-based cooperative vehicle localization system,
which takes full advantage of the Internet of Things and the potential of collaborative edge
computing to ensure user privacy while providing highly accurate localization corrections.

Architectures for federated learning contain both C-S and P2P, and most of the research
has focused on the C-S architecture. In IoV, V2V(Vehicle-to-Vehicle) communication is also
possible, which allows P2P-based federated learning to be considered in IoV scenarios.
Yuan et al. [6] introduced a novel framework named FedPC aimed at tackling driver
privacy concerns stemming from in-cabin cameras in NDAR. FedPC employs a peer-to-peer
federated learning approach coupled with continual learning to ensure privacy, enhance
learning efficiency, and reduce communication, computational, and storage overheads.
Barbieri et al. [7] investigated decentralized federated learning methods to enhance road
user/object classification based on LiDAR data in smart connected vehicles. They proposed
a consensus-driven FLapproach facilitating the collaborative training of deep ML models
among vehicles by sharing model parameters via V2X links, eliminating the need for a
central parameter server.

Privacy and security in IoV applications have been a major concern. In the domain of
privacy-preserving federated learning within P2P networks under IoV, several notewor-
thy methodologies have emerged to address challenges in security, privacy preservation,
and robustness. Lu et al. [8] proposed an asynchronous federated learning scheme for
resource sharing in vehicular IoT. They used a local differential privacy technique to protect
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the privacy of local updates. An asynchronous approach was employed with FL to enable
distributed peer-to-peer model updates between vehicles, which is more suitable for a
decentralized vehicular network. Chen et al. [9] proposed a novel decentralized feder-
ated learning method called BDFL (Byzantine Fault-Tolerance Decentralized Federated
Learning), which combines Byzantine fault-tolerance mechanisms and privacy-preserving
techniques to address security and privacy challenges. This method utilizes a P2P FL archi-
tecture and the HydRand protocol to establish a robust and fault-tolerant FL environment
and adopts a PVSS (publicly verifiable secret-sharing) scheme to protect the privacy of
autonomous vehicle models.

It is evident that federated learning with a P2P architecture is well suited for the
connected car environment. However, the complexity of the P2P architecture poses chal-
lenges compared to the C-S architecture. Moreover, most existing studies on federated
learning in IoV with a P2P architecture are based on a complete node distribution network.
In real-world environments, the changing distances between nodes may lead to connection
distances that are too far to facilitate the federated learning process effectively. Therefore,
in this paper, a novel approach is proposed. A method is designed to partition the node
distribution network graph and group nearby nodes into the same subgraph as the basis
for federated learning. Subsequently, the federated learning process is deployed, and its
associated privacy protection scheme is used in this framework to address the challenges
posed by real-world IoV environments.

3. System Model

In this section, the operation of a P2P-based IoV scenario is described. And the F-Prim
(Finite-length Prim) algorithm designed in this study is proposed for partitioning the node
distribution graph to realize the P2P federated learning architecture.

3.1. P2P-Based IoV Scenarios

In the study, an IoV scenario was established to offer federated learning services within
a server-less urban environment, as illustrated in Figure 1. In areas devoid of servers, solely
vehicle terminals are observable, forming the entirety of the vehicle network. Each terminal
is endowed with computational and storage capacities and is adept at communicating with
other terminals.

Figure 1. IoV scenario.

To represent the distribution of vehicle terminals, a terminal node network graph
was constructed: G = {v, e, d | v ∈ V, e ∈ E, |V| = N}, as illustrated in Figure 2. In this
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graph G, V = {v1, v2, . . . , vN} denotes the set of vehicle terminal nodes. Each terminal vi is
associated with a local dataset Di. If terminals vi and vj can communicate with each other,
there exists an edge eij ∈ E between the corresponding nodes, and the weight dij of edge
eij represents the geographic distance between the two nodes. However, connections may
become unstable if the distance between two terminals is too large. Therefore, consideration
is given to two terminals capable of communication if the distance between them is less
than dmax. In summary, the weights of edges eij on the node distribution network graph
are represented as |dij| ∈ (0, dmax].

Figure 2. Node mapping network graph.

3.2. Node Segmentation to Build P2P-Based Federated Learning Architecture

In federated learning with a C-S architecture, clients typically prefer selecting nearby
servers to serve themselves [10]. However, in serverless P2P architectures, which exhibit
more complex topologies, special algorithms are required to determine the grouping
method of nodes that are distributed in close proximity to each other. Additionally, in the
context of IoV where vehicle locations are dynamic, grouping methods with too many
conditions may become obsolete as node distributions change rapidly. Therefore, there
is a need for a grouping algorithm with fewer conditions and reduced computational
complexity to facilitate P2P node grouping in IoV scenarios.

In the architecture of IoV, the node distribution graph consists of nodes, edges,
and weights. The algorithm designed for proximity grouping aims to minimize edge
weights mapped to geographic location distributions. Thus, an algorithm from graph
theory that minimizes the sum of edge weights while finding nodes with the shortest
distances is desirable. The Prim algorithm, a classical algorithm for finding a minimum
spanning tree in weighted connected graphs, serves this purpose. This algorithm retrieves
the generated tree that minimizes the sum of edge weights, thereby facilitating the efficient
proximity grouping of nodes in IoV scenarios.

Remark 1. In IoV applications, the primary goal is to group individual nodes rather than connec-
tions. Prim’s algorithm and Kruskal’s algorithm are both classic approaches for generating minimum
spanning trees. However, Prim’s algorithm, which selects nodes based on the shortest distances from
the current spanning tree, aligns more closely with the objective of node grouping in IoV scenarios.
Therefore, it is more suitable as a basis for improvement in this context.

The core of the Prim algorithm lies in finding the shortest pathways among all nodes.
When directly applied to grouping, it tends to include all nodes in a single group. To ensure
effective grouping, a threshold value N̂ for the number of nodes in each group is necessary.
If the group size surpasses N̂, the group becomes saturated, signaling the end of grouping,
and a new grouping process starts from another node.

The Prim algorithm, although effective at grouping nodes, does not inherently limit
the diameters of subgraphs. In the context of federated learning in P2P architectures, exces-
sively long subgraph diameters can lead to extended propagation chains between nodes,
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resulting in prolonged propagation times unsuitable for vehicular networking. To address
this, the Prim algorithm requires modifications to restrict the diameters of subgraphs.

To this end, this paper introduces the F-Prim algorithm, an adaptation of the Prim
algorithm. In the C-S architecture, servers are designated as centers, and a C-node is
established within each subgroup formed by grouping. This facilitates controlling the
distances between remaining nodes and the C-node to limit the diameters of subgraphs.
Ultimately, the number of nodes within each subgraph does not exceed N̂.

Graph centrality serves as a vital metric in complex network analysis, quantifying
the importance or influence of nodes in a graph. Various centrality algorithms exist,
but for selecting a C-node to restrict the subgraph diameter, centrality algorithms related
to shortest distances, such as harmonic centrality and betweenness centrality, are relevant.
Their definitions are as follows.

Definition 1 (Harmonic Centrality). Harmonic centrality [11] is a metric used in network
analysis to assess the importance of a node within a network. A higher harmonic centrality indicates
that the node has shorter average distances than other nodes, implying greater influence within
the network.

Ch(i) = ∑N
j=1

1
l(i, j)

, (1)

Definition 2 (Betweenness centrality). Betweenness centrality [12,13] quantifies a node’s im-
portance by measuring how often it lies on the shortest paths between pairs of other nodes. It reflects
a node’s potential control over information or resource flow in the network.

Cb(i) = ∑
s 6=i 6=t

βst(i)
βst

(2)

where βst represents the total number of shortest paths from node s to node t, and βst(i) denotes the
number of those paths that pass through node i.

Given the constraints of IoV applications, harmonic centrality emerges as the more
suitable choice for centrality computation due to its independence from knowledge of the
entire graph. Unlike betweenness centrality, which requires information about all shortest
paths between nodes, harmonic centrality only necessitates knowledge of distances from a
node to others within its vicinity. This makes it compatible with P2P architectures where
nodes have limited access to information beyond their local neighborhood.

Therefore, the F-Prim algorithm adopts harmonic centrality to identify the C-node of
the subgraph. The algorithm aims to limit the subgraph diameter, thereby constraining
the maximum propagation distance between nodes during model dissemination. By fo-
cusing on propagation length rather than physical distance between nodes, it better aligns
with the dynamic nature of IoV applications. Using propagation length simplifies node
segmentation, as nodes only need to assess connections with neighboring nodes without
requiring stable distance information, which is impractical for vehicles whose positions
change frequently.

To select the C-node accurately, the algorithm computes the harmonic centrality (Ch(i))
for each node within the subgraph as new nodes are added. According to the definition of
harmonic centrality, the node with the highest centrality becomes the new C-node. With a
predetermined upper limit of subgraph diameter set to 4, the algorithm ensures that the
minimum propagation length from each newly added node to the C-node remains within
two hops or less.
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The complete procedure of the algorithm is delineated in Algorithm 1.

Algorithm 1: F-Prim Algorithm(G, V, d)
Input: A graph G, the set of nodes V in G, a matrix d representing the distances

between nodes
1 sgNum← 0;
2 while |V| 6= 0 do
3 for i← 1 to |V| do
4 disSG[i]← ∞;
5 end
6 select vr as root node;
7 disSG[r]← 0;
8 center ← r;
9 while True do

10 minDis← ∞;
11 for vi ∈ V do
12 if dis[i] < minDis & l(center, i) ≤ 2 then
13 minDis← dis[i];
14 rec← i;
15 end
16 end
17 for vu ∈ G.Adj[vrec] do
18 if w(rec, u) < dis[u] then
19 dis[u]← w(rec, u);
20 end
21 end
22 SG[sgNum].add(vrec);
23 V = V − {vrec};
24 center ← SG[sgNum].harmCenter;
25 if |SG[sgNum]| ≥ K̂ then
26 break
27 end
28 end
29 sgNum← sgNum + 1;
30 end

4. P2P-Based Federated Learning Process with Its Privacy Protection

In this study, the federal learning process and its privacy computation scheme were
designed based on the P2P architecture proposed above.

4.1. P2P-Based Federated Learning Process

After partitioning the node graph, each subgraph is limited to a diameter of 4, and the
distance from any node to the C-node is at most 2. Nodes are then organized into layers
based on their distance from the C-node. Nodes at a distance of two hops from the C-node
are labeled as two-layer nodes (set L2), while those at a distance of one hop are labeled as
one-layer nodes (set L1). The C-node constitutes a separate layer. This layering facilitates
efficient communication within the subgraph during federated learning.

4.1.1. Path Selection

In graph theory, directly connected edges do not always represent the shortest distance
paths. In the hierarchical division discussed here, a two-layer node must pass through a
one-layer node to propagate the model to the C-node for aggregation. However, a one-layer
node connected to the center may also be connected to other one-layer nodes. Choosing
the shortest distance path needs to consider the actual IoV application environment.
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As illustrated in Figure 3, where the C is the central node, A and B are one-layer nodes,
and a, b, and c represent geographical distances from B to the C-node, A to B, and A to the
C-node, respectively. According to the triangle inequality theorem, a + b > c, in the actual
geographic distance, the path from each node to the C-node via the minimum number of
hops, i.e., the minimum length, must also be the path of the shortest distance. This means
that the path from A to the C-node via the C-node directly represents the shortest distance
path (Path 2©) rather than the path via B first (Path 1©).

Figure 3. Path selection.

4.1.2. Aggregated Simultaneous Transmission

The federated learning subgraph topology of the P2P model forms a complex, multi-
layered structure, requiring the careful consideration of propagation and aggregation
operations within this topology.

In the general P2P model of federated learning, there are two potential approaches for
propagating aggregation. The first involves each node exchanging locally trained models
with neighboring nodes, resulting in potentially different global models on each node.
The second approach entails finding a path in the topology where each node along the path
can aggregate all models to obtain a global model on a specific node. In this study, with a
C-node present in the subgraph itself, propagation and aggregation were designed based
on the second method.

Following the hierarchical structure of the federated learning subgraph in the P2P
model, propagation occurs from the inside out, starting from two-layer nodes, then moving
inward through one-layer nodes, and finally reaching the C-node for aggregation.

In this propagation mode, all nodes initially train their local models. Once training
is complete, two-layer nodes transmit their local models to all connected one-layer nodes.
If network failure prevents global model aggregation at the C-node, models aggregated
at one-layer nodes can temporarily replace global models to serve surrounding nodes.
Therefore, one-layer nodes propagate to two-layer nodes while passing their local models
to connected one-layer nodes, enhancing model availability.

Increased aggregations expedite model convergence. Consequently, after receiving
all models from connected two-layer and one-layer nodes, a one-layer node aggregates
them to lighten the C-node’s workload and reduce the propagation time within the sub-
graph. After all one-layer nodes perform aggregation, they transmit models to the C-node.
The C-node conducts a final aggregation by combining models from all one-layer nodes
with locally trained models, resulting in the global model within the P2P federated learn-
ing subgraph. This transmission approach is termed AST (Aggregated Simultaneous
Transmission).
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4.1.3. Model Weight Adjustment

In the FedAvg algorithm, the weights are determined based on the data volume in the
model, and the client ci passes its local data volume |Di| to the server to compute its model
weight. As shown in Equation (3), where pi represents the weight of vi’s model ωi in the
global model ω,

pi =
|Di|

∑K
k=1 |Dk|

(3)

However, in this propagation mode, adjustments for the information on the amount
of data transmitted are necessary to maintain fairness in the final model, as discussed in
Section 6.1.

After calculations, the nodes pass the models while transmitting the amount of dataset
|Di|α to calculate the model weights:

|Di|α =
|Di|
αi

(4)

where αi is the following value:




αi =

∣∣∣∣∣∣ ∑
eij∈E

eij

∣∣∣∣∣∣
i ∈ L2

αi =

∣∣∣∣∣∣ ∑
eij∈E

eij

∣∣∣∣∣∣
, j /∈ L2 i ∈ L1

αi = 1 i = center

(5)

4.2. Personalized Differential Privacy

In the proposed scheme, differential privacy is employed to ensure privacy protection
during the propagation of federated learning model parameters.

Definition 3 (Differential privacy [14]). For a function f : D → Rd, the mechanism M satisfies
(ε, δ)-differential privacy if for all adjacent datasets D and D′ that differ in at most one element
and for all measurable sets S in the output space,

Pr[M( f (D)) ∈ S] ≤ eεPr
[
M
(

f (D′)
)
∈ S
]
+ δ, (6)

Gaussian noise is a type of noise characterized by a probability density function
equivalent to a normal distribution, also known as a Gaussian distribution. In essence, it
manifests as values distributed according to this specific distribution pattern.

According to the definition of differential privacy, when equations

σ ≥ c∆ f
ε

(7)

c2 > 2 ln
1.25

δ
(8)

are satisfied, the algorithm M( f (D)) = f (D) + N
(
0, δ2) satisfies (ε, δ)-differential privacy,

where N
(
0, δ2) is a random vector sampled from the Gaussian distribution.

If choosing to add noise after local training to streamline privacy calculations, the train-
ing process of the vehicle terminal node vi on the local dataset Di during the t-th round of
federal learning can be represented as

fi , f (Di) = ωt
i =

1
|Di|

|Di |
∑
j=1

arg min Fi(ω
t−1
i , Di,j) (9)
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The sensitivity of the vehicle terminal node vi is calculated based on this training
process function. To streamline privacy calculations, Gaussian noise was chosen to be
added after local training. In this case, the sensitivity of vi [15] can be expressed as

4 fi = max
Di ,D′i

∥∥ f (Di)− f (D′i)
∥∥

= max
Di ,D′i

∥∥∥∥∥∥
1
|Di|

|Di |
∑
j=1

arg min Fi(ω
t−1
i , Di,j)−

1
|D′i |

|D′i |
∑
j=1

arg min Fi(ω
t−1
i , D′i,j)

∥∥∥∥∥∥

=
2C
|Di|

(10)

So, when σi satisfies

σi ≥
c∆ f

ε
≥

2C
√

2ln
(

1.25
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The sensitivity of the vehicle terminal node vi is calculated based on this training
process function. To streamline privacy calculations, Gaussian noise was chosen to be
added after local training. In this case, the sensitivity of vi [15] can be expressed as

△ fi = max
Di ,D′i

∥∥ f (Di)− f (D′i)
∥∥

= max
Di ,D′i

∥∥∥∥∥∥
1
|Di|

|Di |
∑
j=1

arg min Fi(ω
t−1
i , Di,j)−

1
|D′i |

|D′i |
∑
j=1

arg min Fi(ω
t−1
i , D′i,j)
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=
2C
|Di|

(10)

So, when σi satisfies

σi ≥
c∆ f

ε
≥

2C
√

2ln( 1.25
ffi )

ε|Di|
(11)

the algorithm complies with the (ε, δ)-differential privacy mechanism.
Differential privacy was selected as the model protection algorithm primarily to

address the risk of curious nodes inferring the dataset from received models. Compared to
encryption or other algorithms requiring extensive privacy calculations, it offers a more
suitable solution for environments requiring rapid responses in IoV.

During federated learning, noise added to the model is determined based on inter-
node distance before the propagation of local models. This approach aims to add more
noise when vehicle nodes are close, thereby reducing the risk of data leakage from nearby
nodes. Conversely, less noise is added when nodes are farther apart, balancing privacy
protection with model quality considerations.

However, each node is generally connected to multiple nodes, and the distances
between these nodes are not equal. If the added noise is computed multiple times, it will
necessitate additional privacy computations. Hence, the minimum distance d̂i of the node’s
neighbors is selected, calculated using Equation (12), as the parameter to compute the value
of ε. This ensures that the node only needs to compute the noise once, and irrespective of
the node to which it is passed, it is guaranteed to satisfy (ε, δ)-differential privacy.

d̂i = min
{

dij|vj ∈ SG[h]
}

, i ̸= center (12)

The function f (x) = ln(x + 1) is utilized to compute the ε value, where the function
monotonically increases in the range (0, εmax]. Therefore, 0 < x ≤ eεmax − 1 in this function.
In this design, the range of values for the distance between two nodes is (0, dmax], and
the privacy budget on node vi is given by

εi = ln

(
d̂i

dmax
eεmax−1

+ 1

)
= ln

(
(eεmax − 1)d̂i

dmax
+ 1

)
(13)

In this way, the noise added by node vi after local training is

ni = n(εi, δ,△ fi) = n(ln

(
(eεmax − 1)d̂i

dmax
+ 1

)
, δ,

2C
|Di|

) ∼ N(0, σ2
i ) (14)

In accordance with Equations (8), (10), and (7), σi needs to satisfy

σi ≥
2C
√

2ln
(

1.25
ffi

)

ln
(
(eεmax−1)d̂i

dmax
+ 1
)
|Di|

(15)

)

ε|Di|
(11)

the algorithm complies with the (ε, δ)-differential privacy mechanism.
Differential privacy was selected as the model protection algorithm primarily to

address the risk of curious nodes inferring the dataset from received models. Compared to
encryption or other algorithms requiring extensive privacy calculations, it offers a more
suitable solution for environments requiring rapid responses in IoV.

During federated learning, noise added to the model is determined based on inter-
node distance before the propagation of local models. This approach aims to add more
noise when vehicle nodes are close, thereby reducing the risk of data leakage from nearby
nodes. Conversely, less noise is added when nodes are farther apart, balancing privacy
protection with model quality considerations.

However, each node is generally connected to multiple nodes, and the distances
between these nodes are not equal. If the added noise is computed multiple times, it will
necessitate additional privacy computations. Hence, the minimum distance d̂i of the node’s
neighbors is selected, calculated using Equation (12), as the parameter to compute the value
of ε. This ensures that the node only needs to compute the noise once, and irrespective of
the node to which it is passed, it is guaranteed to satisfy (ε, δ)-differential privacy.

d̂i = min
{

dij|vj ∈ SG[h]
}

, i 6= center (12)

The function f (x) = ln(x + 1) is utilized to compute the ε value, where the function
monotonically increases in the range (0, εmax]. Therefore, 0 < x ≤ eεmax − 1 in this function.
In this design, the range of values for the distance between two nodes is (0, dmax], and
the privacy budget on node vi is given by

εi = ln

(
d̂i

dmax
eεmax−1

+ 1

)
= ln

(
(eεmax − 1)d̂i

dmax
+ 1

)
(13)

In this way, the noise added by node vi after local training is

ni = n(εi, δ,4 fi) = n(ln

(
(eεmax − 1)d̂i

dmax
+ 1

)
, δ,

2C
|Di|

) ∼ N(0, σ2
i ) (14)

In accordance with Equations (8), (10), and (7), σi needs to satisfy

σi ≥
2C
√

2ln
(

1.25
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The sensitivity of the vehicle terminal node vi is calculated based on this training
process function. To streamline privacy calculations, Gaussian noise was chosen to be
added after local training. In this case, the sensitivity of vi [15] can be expressed as

△ fi = max
Di ,D′i

∥∥ f (Di)− f (D′i)
∥∥

= max
Di ,D′i

∥∥∥∥∥∥
1
|Di|

|Di |
∑
j=1

arg min Fi(ω
t−1
i , Di,j)−

1
|D′i |

|D′i |
∑
j=1

arg min Fi(ω
t−1
i , D′i,j)

∥∥∥∥∥∥

=
2C
|Di|

(10)

So, when σi satisfies

σi ≥
c∆ f

ε
≥

2C
√

2ln( 1.25
ffi )

ε|Di|
(11)

the algorithm complies with the (ε, δ)-differential privacy mechanism.
Differential privacy was selected as the model protection algorithm primarily to

address the risk of curious nodes inferring the dataset from received models. Compared to
encryption or other algorithms requiring extensive privacy calculations, it offers a more
suitable solution for environments requiring rapid responses in IoV.

During federated learning, noise added to the model is determined based on inter-
node distance before the propagation of local models. This approach aims to add more
noise when vehicle nodes are close, thereby reducing the risk of data leakage from nearby
nodes. Conversely, less noise is added when nodes are farther apart, balancing privacy
protection with model quality considerations.

However, each node is generally connected to multiple nodes, and the distances
between these nodes are not equal. If the added noise is computed multiple times, it will
necessitate additional privacy computations. Hence, the minimum distance d̂i of the node’s
neighbors is selected, calculated using Equation (12), as the parameter to compute the value
of ε. This ensures that the node only needs to compute the noise once, and irrespective of
the node to which it is passed, it is guaranteed to satisfy (ε, δ)-differential privacy.

d̂i = min
{

dij|vj ∈ SG[h]
}

, i ̸= center (12)

The function f (x) = ln(x + 1) is utilized to compute the ε value, where the function
monotonically increases in the range (0, εmax]. Therefore, 0 < x ≤ eεmax − 1 in this function.
In this design, the range of values for the distance between two nodes is (0, dmax], and
the privacy budget on node vi is given by

εi = ln

(
d̂i

dmax
eεmax−1

+ 1

)
= ln

(
(eεmax − 1)d̂i

dmax
+ 1

)
(13)

In this way, the noise added by node vi after local training is

ni = n(εi, δ,△ fi) = n(ln

(
(eεmax − 1)d̂i

dmax
+ 1

)
, δ,

2C
|Di|

) ∼ N(0, σ2
i ) (14)

In accordance with Equations (8), (10), and (7), σi needs to satisfy

σi ≥
2C
√

2ln
(

1.25
ffi

)

ln
(
(eεmax−1)d̂i

dmax
+ 1
)
|Di|

(15)

)

ln
(
(eεmax−1)d̂i

dmax
+ 1
)
|Di|

(15)
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Based on Equations (14) and (15), it can be observed that the amount of added noise
decreases as the distance between nodes increases.

The entire federated learning process with differential privacy is presented in Algorithm 2.

Algorithm 2: Federated learning process

1 for t← 1 to T do
2 for i← 1 to N do
3 if t = 1 then
4 get ω0

5 end
6 ωt

i ← Train
(
ωt−1, Di

)

7 if i 6= center then

8 ωt
i ←

ωt
i

max
(

1,
ωt

i
C

)

9 ω̃t
i ← ωt

i + ni
10 end
11 end
12 for i ∈ L2 do
13 for j ∈ L1 do
14 if eij ∈ E then
15 vi → vj : ω̃t

i
16 end
17 end
18 end
19 for i ∈ L1 do
20 for j ∈ L1 do
21 if eij ∈ E then
22 vi → vj : ω̃t

i
23 end
24 end

25 ωt
vi
← Agg

(
ω̃t

i , ∑ ω̃t
L1

, ∑ ω̃t
L2

)

26 vi → vcenter : ωt
vi

27 end

28 vcenter : ωt ← Agg
(

ωt
center, ∑ ωt

vL1

)

29 for i← 1 to N do
30 vcenter → vi : ωt

31 end
32 end

5. Experimentation and Analysis

In this study, the scheme presented in this paper was experimented with and analyzed.

Remark 2. In the experiments conducted, it was observed that some subgraphs contain too few
nodes. To better show the impact of node segmentation, subgraphs with insufficient nodes were split.
The internal nodes of these split subgraphs were redistributed to the subgraphs closest to them, while
any isolated nodes still remaining after the splitting process were discarded.

Remark 3. Because node partitioning generates multiple subgraphs, the results in the experiment
were obtained by averaging the results of multiple subgraphs.
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5.1. Node Segmentation

The distribution of vehicle nodes at a given moment was simulated in two ways.
The first method was implemented using the networkx package, while the second method
utilized OpenStreetMap.

In the first approach, generating nodes with random horizontal and random vertical
coordinates in a 100× 100 square area, called an RC (randomized coordinate). In the second
approach, nodes are randomly selected on the actual road map provided by OpenStreetMap,
called MVN (moving vehicle nodes).

The sum of the shortest distances cnodeDis from the C-node to the remaining nodes
V − {vcenter} within the subgraph is computed according to Equation (16) as a measure.

cnodeDis =
N

∑
j=1,i=center

min(
{

dim + dmj, dij
}
) (16)

Under the two node simulation schemes, the total number of nodes N = 160 and the
upper limit of the number of nodes within each subgraph K̂ = 20 were set to compute
cnodeDis, for comparing the betweenness centrality and the F-Prim algorithm designed in
this study.

As shown in Figure 4, the dots in it represent the data for each subplot, the line in the
middle of the box represents the data mean, and the top and bottom edges represent the
maximum and minimum values of the data. Because of the uneven distribution of nodes,
the data distribution is more discrete between subgraphs, but most nodes are distributed
around the mean. The difference between the values of the two centrality algorithms is not
really significant, as nodes that are at more intersections of shortest paths within a better
connected subgraph are also more likely to be nodes closer to the rest of the nodes within
that subgraph, i.e., when a node’s harmonic centrality is high, its harmonic centrality is
likely to be relatively high as well. However, it is still possible to see from the mean median
that F-Prim yields smaller cnodeDis values, i.e., the C-node computed under this algorithm
is closer to the rest of the nodes. Moreover, compared to the RC simulation, the effect of
F-Prim is a little more obvious under the MVN simulation, which may indicate that the
algorithm is more effective on the actual vehicle distribution along the road, while it is
weaker on the simulation with only a random distribution, implying that the algorithm is
more suitable for practical IoV applications.

(a) RC (b) MVN

Figure 4. Comparison of centrality algorithms.

We fixed the upper limit of the number of nodes within each subgraph K̂ = 20, adjusted
the value of the total number of nodes N to 120, 140, 160, 180, and 200, and compared the
resulting cnodeDis values.

As indicated in Figure 5, the cnodeDis values of both algorithms exhibit an overall
upward trend as the total number of nodes increases. However, this trend is not strictly
linear and fluctuates, reflecting the randomness and unpredictability of node distribution.
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Overall, the betweenness centrality utilized by the F-Prim algorithm yields better results
in subgraph segmentation by positioning the C-node closer to other nodes. While the
betweenness centrality algorithm may occasionally outperform other methods, its compu-
tation typically requires access to information about all nodes in the graph, rendering it
unsuitable for P2P mode.

(a) RC (b) MVN

Figure 5. cnodeDis.

5.2. Aggregated Simultaneous Transmission

To demonstrate the accelerated intra-subgraph propagation process facilitated by AST
in the IoV environment, a comparison is drawn with propagation patterns in the PPT
algorithm [16] and the CFL algorithm [17]. Both algorithms are grounded in P2P-mode fed-
erated learning and employ a single-line propagation mode of depth-first traversal. In the
PPT algorithm, depth-first traversal occurs within all nodes participating in federated learn-
ing. Each propagation involves a single aggregation, followed by a backtrack to identify
unaggregated nodes after surrounding nodes have been aggregated. The CFL algorithm
builds upon the PPT algorithm by implementing subclustering. It conducts depth-first
traversal within a single cluster, resulting in more localized aggregation operations.

5.2.1. Communication Time

In the PPT and CFL algorithms, only the target node participates in federated learning,
and in order to facilitate a comparison among the three propagation modes, all nodes were
designated as target nodes to partake in the federated learning process in P2P mode.

Given that the model propagated in the three modes remains unchanged, the model
parameters are set to propagate at an identical rate across all modes. Consequently, the to-
tal communication time for model propagation between subgraph nodes is primarily
determined using the distance of the paths traversed by the model during propagation.

As illustrated in Figure 6, with the same propagation speed, the communication time
of the cluster-medium propagation model is notably shorter compared to the propagation
models of the PPT and CFL algorithms. The cluster-based propagation approach prioritizes
efficiency by distributing nodes in layers based on clustering within the CFL algorithm.
This enables subgraph propagation and interlayer model propagation to occur in parallel,
minimizing serial transmission between nodes and reducing the overall communication
time. In contrast, the propagation modes employed in the PPT and CFL algorithms are
more suited for scenarios with fewer nodes and simpler topologies. They are less effective
in environments with a large number of nodes and complex distribution and connectivity
patterns. Overall, the cluster-medium propagation model demonstrates superior capability
in obtaining the global model and promptly responding to application requirements by
efficiently propagating under the distribution of vehicle networking nodes.
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(a) RC (b) MVN

Figure 6. Communication time.

5.2.2. Number of Aggregations

We adjusted the number of vehicle terminal nodes N and compared the number
of aggregations.

Figure 7 also presents the number of aggregations under all three methods. As the
total number of nodes increases, the number of aggregations rises for all propagation
modes. However, the cluster-in-propagation mode consistently requires fewer aggregations
compared to the other two methods. Despite augmenting the number of aggregations on
layer-1 nodes to expedite global model aggregation within the subgraph, the cluster-in-
propagation mode maintains the number of aggregations within a reasonable range. This
number does not exceed the one-step-at-a-time aggregation mode of the PPT and CFL
algorithms. Additionally, aggregation operations on layer-1 nodes can be performed in
parallel. In contrast, aggregation operations in the PPT and CFL propagation modes must
be executed serially alongside model propagation between nodes. Consequently, even with
the same number of aggregations, the cluster-in-propagation mode is expected to require
less time than the PPT and CFL propagation modes.

(a) RC (b) MVN

Figure 7. Number of aggregations.

5.3. Personalized Differential Privacy

This section will show the impact of personalized differential privacy on the algorithm.
Three datasets were utilized to simulate federated learning in this study, including the

Mnist dataset, Cifar10 dataset, and a specialized vehicle image dataset, Car. This specific
vehicle image dataset is categorized into six classes: garbage trucks, buses, trucks, cars,
pickups, and dump trucks. The training set encompasses approximately 5500 images, while
the test set comprises approximately 750 images. For example, images of the cars are shown
in Figure 8.
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Figure 8. Special vehicle image dataset.

Three datasets were experimented with using specific CNN models and used for the
same federated learning experiment. The results of the accuracy rate are shown in Figure 9,
and loss is shown in Figure 10.

(a) MNIST (b) CIFAR-10 (c) Car

Figure 9. Accuracy.

The impact of personalized differential privacy on the generation of the global model
is evident due to the addition of noise, resulting in decreased accuracy when tested across
three types of data. However, the extent of this impact may vary slightly under the same
node distribution and privacy strategy in federated learning due to differences in datasets.
The MNIST dataset experiences the least impact on model accuracy owing to its simple
image color and abundant data. Conversely, the CIFAR-10 dataset, with its more complex
RGB images and larger dataset for local training, is more sensitive to noise. Moreover,
the Car dataset is the most susceptible to noise due to its intricate image hierarchies and
smaller data volume. When no noise is added, the test accuracy of the Car dataset steadily
increases with the number of aggregations. However, upon introducing noise, the test

133



Electronics 2024, 13, 2276

accuracy remains relatively consistent with minor fluctuations, and the upward trend in
accuracy is not consistently maintained with an increase in the number of aggregations.

(a) MNIST (b) CIFAR-10 (c) Car

Figure 10. Sum of loss.

The impact of the personalized differential privacy scheme on the total loss value of
federated learning follows the descending order of the Car, CIFAR-10, and MNIST datasets.
The smaller number of instances in the self-constructed Car dataset results in significant
fluctuations and challenges in convergence after introducing Gaussian noise to the model.
Conversely, experiments conducted on larger datasets like MNIST and CIFAR-10 exhibit a
smaller influence on the total loss value, allowing the trend of a decreasing total loss value
with the number of aggregations to remain unaffected. This ensures the convergence of
the model under the personalized differential privacy strategy, thereby safeguarding user
security while maintaining the usability of federated learning in the foggy environment of
connected cars.

6. Algorithm-Related Proofs

This section provides some proofs relevant to the scheme of this study.

6.1. Proof of P2P Architecture

To demonstrate that the segmentation performed by the F-Prim algorithm ensures
a subgraph diameter of no more than 4, consider the hypothetical scenario illustrated in
Figure 11. Suppose that there exists a subgraph with a diameter of 4, implying that at
least two nodes within the subgraph are separated by a distance that requires four hops to
traverse between them. Let us denote this path as A-B-C-D-E for the purpose of the proof.

Figure 11. Assumptions in node segmentation.

Indeed, if adding a node F such that the diameter of the subgraph exceeds 4, it implies
that the C-node for this subgraph must be positioned at either D or B to maintain the
condition that the distance from F to the C-node is at most 2. However, this contradicts the
F-Prim algorithm’s methodology.

According to the F-Prim algorithm, after the previous round of node additions, a C-
node is selected through a harmonic centrality computation. Given that the computation
involves nodes A, B, C, D, and E, C is determined to be closer to the center, resulting in a
higher centrality value for C compared to D. Thus, the C-node should logically be located
at node C rather than node D, which contradicts the assumptions.
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Therefore, it can be concluded that the F-Prim algorithm effectively limits the diameter
of the subgraph to 4.

6.2. Aggregation Weight Proof

Above, in FedAvg, it is noted that the weights of node vi’s local training model,
denoted as ωi, in the global model ω can be represented by Equation (3). Consequently,
the global model yields

ωFedAvg =
K

∑
i=1

piωi =
K

∑
i=1

(
|Di|

∑K
k=1 |Dk|

·ωi

)
=

∑K
i=1 |Di|ωi

∑K
k=1 |Dk|

(17)

However, under the architecture, if not adjusted accordingly, there may be an imbalance
in model weights. Within this architecture, the adjustment of model weights is delved into,
simulating both a simple node network, as in Figure 12a, and a more complex node network,
as in Figure 12b, and the global model ω was calculated without differential privacy.

(a) (b)

Figure 12. Node network graph, (a) simple node network and (b) complex node network.

6.2.1. Calculation of Weight

It is assumed that the amount of data collected on each node is different. So right
now, in Figure 12a, |DA| 6= |DB| 6= |DC| 6= |DD|, and in Figure 12b, |DA| 6= |DB| 6= |DC| 6=
|DD| 6= |DE| 6= |DF|.

In Figure 12a, after the one-layer nodes, that is, node vB and node vC, receive the
model from the two-layer nodes and one-layer nodes, aggregation is completed on vB and
vC. The result on node B and node C is

ωvB = ωvC =
ωB|DB|+ ωC|DC|+ ωD|DD|
|DB|+ |DC|+ |DD|

At present, the amount of the dataset used for the aggregation in ωvB and ωvC is

|DvB | = |DvC | = |DB|+ |DC|+ |DD|

Thus, after aggregating ωvB , ωvC , and vA’s model ωA, the global model ω on vA is

ω =
ωvB · |DvB |+ ωvC · |DvC |+ ωA · |DA|

|DvB |+ |DvC |+ |DA|

=
ωA|DA|+ 2ωB|DB|+ 2ωC|DC|+ 2ωD|DD|

|DA|+ 2|DB|+ 2|DC|+ 2|DD|

Also calculated in the same manner, in Figure 12b, the global model ω on vA is

ω =
ωA|DA|+ 2ωB|DB|+ 2ωC|DC|+ ωD|DD|+ 2ωE|DE|+ ωF|DF|

|DA|+ 2|DB|+ 2|DC|+ |DD|+ 2|DE|+ |DF|
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6.2.2. Analysis and Solutions

Through the above calculations, under the designed architecture, it can be summarized
that without tuning, the global model, ω, obtained with FedAvg as the aggregation algorithm is

ω =
∑N

i=1 αiωi|Di|
∑N

n=1 αn|Dn|
=

N

∑
i=1

(
αi|Di|

∑N
n=1 αn|Dn|

·ωi

)
=

N

∑
i=1

ṕiωi (18)

where the value of αi is determined using Equation (5).
So, it becomes evident that there is a discernible pattern in the contribution of a node

to the global model ω:

ṕi =
∑N

i=1 αi|Di|
∑N

n=1 αn|Dn|
(19)

This will cause an imbalance in node vi’s contribution to the global model ω, and the
weight pi is intended to be determined solely through the amount of the dataset Di. There-
fore, in order to ensure consistent contributions, a node vi transmits its model ωi with the
amount of dataset as in Equation (4).

After the adjustment, the weight share p̃i of vi’s model ωi is

p̃i =
αi|Di|α

∑N
n=1 αn|Di|α

=
αi
|Di |
αi

∑N
n=1 αn

|Di |
αn

=
|Di|

∑N
n=1 |Dn|

= pi (20)

which is the same in FedAvg.

6.3. Convergence Proof for Global Model

When Gaussian noise is added by the nodes except the C-node, the global model’s
results in this study were

ω =
N

∑
i=1

p̃iω̃i(i 6= center) + p̃centerωcenter

=
N

∑
i=1

pi(ωi + ni)(i 6= center) + pcenterωcenter

=
N

∑
i=1

pini(i 6= center) +
N

∑
i=1

piωi

(21)

The sum of the Gaussian noise added to the global model is

N

∑
i=1

ni ∼ N(0,
N

∑
i=1

σ2
i ), i 6= center (22)

where the value of σi needs to satisfy Equation (7).
According to Equation (22), ∑N

i=1 ni satisfies the mean value of 0. So, Equation (23) can
be obtained as follows:

E[F(w)] = E[F(wFedAvg)] (23)

Since the FedAvg converges [18], the global model ω discussed in this paper also converges.

7. Conclusions

In summary, a P2P federated learning scheme was implemented for IoV applications,
integrating personalized differential privacy and a special way of communication after
partitioning nodes into multiple subgraphs. Through experiments and analyses, it was
demonstrated that the design of the scheme prepares a good grouping of nodes for federated
learning in P2P architectures, the inward aggregation propagation to C-nodes speeds up
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the process of federated learning within the grouping, and the introduction of personalized
differential privacy provides privacy preservation without affecting the effect of federated
learning too much.

This study can also be improved by thinking about the following aspects:

• The current design will limit the diameter of each subgraph; there is a better solution
through implementing geolocation-based grouping.

• How other privacy-preserving algorithms should be implemented in this specific
architecture.
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Abstract: With the proliferation of intelligent applications, mobile devices are increasingly han-
dling computation-intensive tasks but often struggle with limited computing power and energy
resources. Mobile Edge Computing (MEC) offers a solution by enabling these devices to offload
computation-intensive tasks to resource-rich edge servers, thus reducing processing latency and
energy consumption. However, existing task-offloading strategies often neglect critical security
concerns. In this paper, we propose a security-aware task-offloading framework that utilizes Deep
Reinforcement Learning (DRL) to solve these challenges. Our framework is designed to minimize the
latency of task accomplishment and energy consumption while ensuring data security. We model
system utility as a Markov Decision Process (MDP) and design a Proximal Policy Optimization
(PPO)-based algorithm to derive optimal offloading strategies. Experimental results demonstrate
that the proposed algorithm outperforms traditional methods regarding task execution latency and
energy consumption.

Keywords: task offloading; deep reinforcement learning; mobile edge computing

1. Introduction

The rapid advancement of Artificial Intelligence (AI) has facilitated the widespread
proliferation of intelligent applications, including personalized recommendations [1], face
recognition [2], and keyboard Emoji prediction [3]. These applications, primarily based on
Deep Learning (DL), require substantial computational resources. Although mobile devices
have become more powerful, they still lack sufficient capacity to execute complex DL
models locally. To address these challenges, Mobile Edge Computing (MEC), also known as
multi-access edge computing, has become a promising solution [4,5]. MEC allows mobile
devices to offload computing tasks to nearby edge servers, significantly reducing task
processing latency and energy consumption [6].

In MEC, two critical issues related to task offloading need to be resolved. The first
issue is determining whether each mobile device should offload its tasks to an edge server.
Once the decision to offload is made, the next step is selecting the appropriate edge server.
Various algorithms have been proposed to optimize these decisions. Xu et al. [7] introduced
an algorithm to optimize task offloading in MEC by balancing latency and risk management.
Ding et al. [8] explored a Non-Orthogonal Multiple Access (NOMA)-assisted MEC scenario,
jointly optimizing power and time allocation to reduce energy consumption. Additionally,
Bi et al. [9] proposed a strategy for a wireless-powered MEC scenario that optimizes
offloading decisions and power transfer.

Despite these advancements, the security aspects of task offloading have not been
sufficiently addressed [10–13]. The data transmitted between mobile devices and edge
servers are susceptible to various security threats, such as interception [14] and unautho-
rized access [15]. For example, without robust security measures, cyber attackers could
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potentially intercept sensitive data or manipulate the task execution process [16]. Most
existing offloading algorithms focus primarily on performance metrics like latency and en-
ergy consumption, often overlooking crucial security considerations. This gap underscores
the need for a comprehensive approach that integrates robust security measures into the
offloading process to ensure data integrity and privacy [17].

In this paper, we explore security-aware task offloading in MEC systems using a
DRL-based approach. Our primary objective is to minimize the task execution time and
energy consumption while ensuring data security. To achieve this, we model system utility
as a weighted sum of task execution latency and energy consumption. We have designed a
task-offloading algorithm utilizing Proximal Policy Optimization (PPO) to achieve a near-
optimal computational offloading strategy that minimizes system utility and incorporates
security considerations into the decision-making process. Through this integration, our
approach provides a more robust and efficient MEC system. The main contributions of our
work can be summarized as follows:

• Task Offloading for MEC Systems: We undertake a thorough investigation of task of-
floading within MEC systems, focusing on the security aspects of data transmission
between servers and mobile devices.

• DRL-based Task-Offloading Algorithm: We model system utility as a Markov Decision
Process (MDP) and introduce a novel task-offloading algorithm using a DRL approach.
This algorithm dynamically learns and adapts to the MEC environment to optimize
task-offloading decisions.

• Performance Evaluation: Our results indicate that our proposal significantly outperforms
traditional methods in minimizing task execution latency and energy consumption
while maintaining high levels of data security.

The remainder of this paper is structured as follows. Section 2 reviews related work
on task offloading in MEC systems. Section 3 details the system model and problem
formulation. Section 4 describes the proposed DRL-based algorithm for security-aware
task offloading. Section 5 validates the performance of the proposed offloading algorithm.
Finally, the conclusion is presented in Section 6.

2. Related Work
2.1. Task Offloading in MEC

Task offloading in MEC systems has recently drawn significant attention from industry
and academia. Lyu et al. [18] proposed an asymptotically optimal task-offloading approach
for MEC employing a quantized dynamic programming algorithm to enhance scalability
with minimal extra energy cost. Eshraghi et al. [19] investigated joint offloading decisions
and resource allocation in mobile cloud networks and proposed the TORAUC algorithm,
which optimizes offloading decisions and resource allocation to minimize system costs.
Tang et al. [20] introduced a model-free DRL-based distributed algorithm for task offloading
in MEC, incorporating LSTM, dueling DQN, and double-DQN techniques to minimize
long-term costs, significantly reducing task drop rates and average latency compared to
existing algorithms.

Wang et al. [21] developed a decentralized multi-user offloading framework, DEBO,
for MEC. This framework optimizes user rewards under network latency by addressing
unknown stochastic system-side information, achieving near-optimal performance with
sub-linear regret across various scenarios. Liu et al. [22] proposed COFE, a dependent task-
offloading framework for MEC and cloud systems, which adaptively assigns computation-
intensive tasks with dependent constraints to improve the user experience, using a heuristic
ranking-based algorithm to minimize the average makespan and reduce deadline violations.
Wang et al. [23] explored multiobjective optimization in a multi-user and multi-server MEC
scenario, focusing on joint task offloading, power assignment, and resource allocation. They
developed an evolutionary algorithm to minimize response latency, energy consumption,
and cost, significantly enhancing user offloading benefits. Fang et al. [24] introduced a
dynamic offloading decision algorithm, named DODA-DT, for MEC that employs a DRL-
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based algorithm to reduce the task execution time and energy consumption across multiple
devices under varying wireless conditions. Tan et al. [25] optimized the task offloading and
allocation of physical resources in collaborative MEC networks using OFDMA, proposing
a two-level alternation method that combines a heuristic algorithm for offloading and
collaboration decisions with DRL for optimizing resource allocation.

2.2. Security-Aware Task Offloading in MEC

Task requests often involve sensitive data, making security and privacy concerns
critical when offloading such data to edge servers for processing [26]. To address these
challenges, Samy et al. [27] developed a blockchain-based architecture to enhance secu-
rity in task offloading within MEC systems and implemented a DRL-based algorithm
to optimize both energy and time costs in scenarios involving multiple users and tasks.
Elgendy et al. [28] developed a multi-user resource allocation and task-offloading model
that incorporates AES encryption for data security, optimizing system efficiency in terms of
time and energy consumption. Wu et al. [29] investigated secure offloading for a wireless-
powered MEC system, proposing a physical layer security-assisted scheme where a power
beacon also acts as a cooperative jammer. This scheme maximizes secrecy energy efficiency
by optimizing transmit power, time allocation, and task partitioning while satisfying se-
crecy and energy constraints. Asheralieva et al. [30] employed Lagrange coded computing
to facilitate fast and secure offloading of request tasks in MEC systems. This method
ensures efficient load and bandwidth allocation while promoting timely task completion.
For a detailed comparison of our work with existing studies, please refer to Table 1.

Table 1. Comparison of existing works on task offloading.

Reference Optimization DRL-Based Security No. of Servers

[18] Latency and energy No No Single Server
[19] Energy No No Single Server
[20] Latency Yes No Multiple Servers
[21] Latency Yes No Multiple Servers
[22] Latency No No Multiple Servers
[23] Latency and energy No No Multiple Servers
[24] Latency and energy Yes No Single Server
[25] Energy Yes No Single Server
[27] Latency and energy Yes Yes Single Server
[28] Latency and energy No Yes Single Server
[29] Energy No Yes Single Server
[30] Latency Yes Yes Single Server

Our Work Latency and energy Yes Yes Multiple Servers

While the above studies have employed DRL [31], blockchain [32], and other methods
to optimize task offloading and protect data security, there remains significant potential for
further exploration in addressing the challenges of secure task offloading in MEC systems.

3. System Model and Problem Formulation

This section introduces the MEC system model for task offloading. Specifically, the sys-
tem consists of multiple mobile devices, denoted byM = {1, 2, . . . , m, . . . , M}, and multi-
ple edge servers, represented by N = {1, 2, . . . , n, . . . , N}. The set of tasks to be executed is
indicated by X = {1, 2, . . . , x, . . . , X}. The MEC system operates in episodes, and each is
subdivided into time slots T = {1, 2, . . . , t, . . . , T} with a duration of ∆ seconds [33]. Our
focus is on the computational tasks from mobile devices, each of which is characterized as
indivisible and capable of being processed either locally on the mobile device or offloaded
to one of the edge servers. For offloaded tasks, data encryption is implemented to secure
the data during transmission. Subsequent sections will detail the specific system models
for the mobile device and edge server, as illustrated in Figure 1.
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Figure 1. An illustration of MEC systems over wireless connections. Tasks are encrypted before
offloading and decrypted upon reaching the edge server to ensure data security.

3.1. Communication Model

This subsection introduces the communication model used during task offloading. We
assume that each device can only offload tasks to a single edge server that falls within its
wireless coverage area at a given time slot [20]. The connectivity between a mobile device
m and an edge server n at time t is represented by ζm,n(t), where ζm,n(t) = 1 indicates
that mobile device m is within the communication range of edge server n, and ζm,n(t) = 0
otherwise. Task transmission utilizes Orthogonal Frequency Division Multiple Access
(OFDMA). Accordingly, the transmission rate, denoted by rm,n(t), is defined as follows:

rm,n(t) = bn
m log2

(
1 +

pmgm

bn
mσ2

)
, (1)

where bn
m is the channel bandwidth, gm is the channel gain, pm is the uplink transmission

power of mobile device m, and σ2 denotes the SINR in the wireless link.
During the task-offloading process, a mobile device consumes communication band-

width bn
m when offloading a task to an edge server. If the required bandwidth is less than

the currently available bandwidth Bava
n (t), the task is offloaded immediately. Otherwise,

the task waits until sufficient bandwidth becomes available.

3.2. Security Model

When offloading computational tasks to the edge server, the offloading data may be
susceptible to various types of network attacks [34]. This paper proposes encrypting the
offloaded data to ensure data security in edge task offloading. The Advanced Encryption
Standard (AES) is utilized to encrypt the transmission of task data [35]. The AES is
chosen for its robust security features, efficiency, and widespread acceptance as a standard
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for data encryption. Its symmetric encryption mechanism ensures fast encryption and
decryption processes, which is critical for real-time task-offloading scenarios where low
latency is essential.

For mobile devices requiring task offloading, a 128-bit AES key is first generated
to encrypt the tasks before offloading them to the server. The edge server then uses the
same key to decrypt the received encrypted data and execute the tasks. Upon completion,
the server returns the task results to the mobile device. To formalize the encryption
decision for the offloaded task, we introduce the variable αm ∈ {0, 1}. Specifically, αm = 0
indicates that the offloaded task does not require encryption, while αm = 1 indicates that
the offloaded task must be encrypted before transmission to the edge server.

3.3. Computing Model

Based on the communication and security models, we introduce the computation
model that governs task-offloading requests on mobile devices within the MEC system.
An arriving task x at time slot t is represented by Γx

m(t) = {Ix
m(t), λx

m(t), `x
m(t)}, where

Ix
m(t) denotes the data size of the offloading task, λx

m(t) specifies the CPU cycles required
to complete the task, and `x

m(t) defines the task’s execution deadline. The parameters
Ix
m(t) and λx

m(t) are determined by specific application needs and are typically provided by
the program vendor. Each mobile device selects the optimal execution destination for an
arriving computation task, choosing either local processing or offloading to the edge server.
We formulate two computational modes based on these operational dynamics: mobile
device computing for local processing and edge server computing for offloaded tasks.

3.3.1. Mobile Device Computing

Transmission latency is negligible when a task request Γx
m is processed locally. There-

fore, the focus is only on the local execution latency as well as the energy consumption,
which are the primary concerns in this scenario. These metrics for mobile device m can be
calculated as follows:

Dlocal
m,x (t) =

λx
m(t)
fm

, (2)

Elocal
m,x (t) = ξmλx

m(t), (3)

where fm represents the CPU frequency of the mobile device, and ξm denotes the energy
consumption per CPU cycle.

3.3.2. Edge Server Computing

Edge server computing involves completely offloading the task to servers. To this end,
the mobile device m first transmits the task request to the edge server n. Once the task is
received, the edge server begins processing it. Once the task is completed, the results are
sent back to the mobile device. Since the time required to return results is considerably
shorter than the time needed for uploading tasks, we exclude the return time from our
calculations [7]. In this context, task execution latency comprises both transmission latency
and processing latency. The processing latency includes the computational latency at the
edge server side, as well as the latency for data encryption and decryption, expressed as

Dcomp
m,x (t) =

ηm,x

fm
+

δn,x

fn
+

λx
m(t)
fn

, (4)

where ηm,x and δn,x present the CPU cycles required for encrypting and decrypting the
data, respectively. fn represents the CPU frequency at the edge server.

Based on the data transmission rate defined in Equation (1), the transmission latency
is calculated as follows:

Dcomm
m,x (t) =

Ix
m(t)

rm,n(t)
. (5)
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Combining Equations (4) and (5), the total execution latency for task offloading is
expressed as

Dedge
m,x (t) = Dcomp

m,x (t) + Dcomm
m,x (t). (6)

For the offloading strategy, energy consumption primarily comprises the energy used
for task transmission and the energy required for data encryption. These components are
formulated as follows:

Ecomp
m,x (t) = ξmηm,x, (7)

Ecomm
m,x (t) = pm

Ix
m(t)

rm,n(t)
. (8)

By integrating Equations (7) and (8), the total energy consumed for task offloading
can be represented as follows:

Eedge
m,x (t) = Ecomp

m,x (t) + Ecomm
m,x (t). (9)

In summary, the total latency and energy consumption for task x on mobile device m
are defined as follows:

Dtotal
m,x (t) =

[
(1− βm,x)Dlocal

m,x (t) + βm,xDedge
m,x (t)

]
, (10)

Etotal
m,x (t) =

[
(1− βm,x)Elocal

m,x (t) + βm,xEedge
m,x (t)

]
, (11)

where Dlocal
m,x and Dedge

m,x represent the local and remote execution latencies, and Elocal
m,x and

Eedge
m,x represent local and remote energy consumption, respectively. βm,x is a binary indicator,

where βm,x = 0 indicates local execution and βm,x = 1 indicates remote execution.

3.4. Problem Formulation

In this paper, we aim to minimize the system costs related to task offloading in MEC
systems by taking into account both the task completion time and energy consumption.
To achieve this, we define the total system costs as follows:

min
1
|T |

T

∑
t=1

M

∑
m=1

(
Dtotal

m,x (t) + λEtotal
m,x (t)

)

s.t 0 < fn(t) ≤ Fava
n (t) (C1)

0 < fm(t) ≤ Fava
m (t) (C2)

0 < bn
m ≤ Bava

n (t) (C3)

Dm,x(t) ≤ `x
m(t) (C4)

βm,x ∈ {0, 1}, ∀m (C5)

(12)

where λ represents the weight coefficient of energy consumption, indicating the relative
importance of execution latency and energy consumption across different tasks. Constraint
(C1) ensures that the computing resources required for each task fn(t) do not exceed the
mobile device’s available resources. Constraint (C2) specifies that local computation for
each task fm(t) remains within the mobile device’s capabilities. Constraint (C3) guarantees
that the bandwidth utilized for offloaded tasks does not surpass the edge server’s available
bandwidth. Constraint (C4) imposes time limits on task processing to ensure timely
completion. Finally, Constraint (C5) ensures that the offloading decision βm is binary,
distinctly classifying tasks as either offloaded or executed locally.
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4. DRL-Based Offloading Algorithm

To address the optimization challenge outlined in Section 3.4, efficient task offloading
from mobile devices to edge servers is essential within MEC systems. Task offloading,
however, is proven to be an NP-hard problem [34]. Recent advancements in Deep Reinforce-
ment Learning (DRL) have demonstrated its superior capabilities in various model-free
control problems, making it well suited for our task-offloading scenario. Motivated by
these developments, we adopt the PPO algorithm [36] to solve the dynamic and complex
decisions involved in task offloading. This section defines the task-offloading procedure as
an MDP and explains the PPO algorithm and its implementation.

4.1. MDP Formulation

The results of task offloading are influenced by multiple factors, including local
computing resources, the number of edge servers, and the current available resources on
edge servers. In addition, the current offloading status is affected by the actions taken in the
previous step. Therefore, the task-offloading process is typically considered to have MDP
properties [7]. This subsection defines a discrete-time MDP to describe the edge-assisted
task scheduling system. The three main elements of the MDP, i.e., state, action, and reward,
are defined as follows.

State: The state of the system captures the characteristics of the network environment
within the MEC system, including detailed information about mobile devices and edge
servers. Specifically, the state is defined as

st = {t, Γx
m(t), Fava

n (t), Fava
m (t)}, (13)

where t denotes the current time series, and Γx
m(t) includes task request details such as the

data volume Ix
m(t) to be processed, the required computational resources λx

m(t), and the
maximum time constraint `x

m(t). Additionally, Fava
n (t) and Fava

m (t) indicate the currently
available computational resources of the mobile devices and edge servers, respectively. This
state formulation ensures that decision-making accounts for both detailed task requests
and the availability of resources.

Action: The agent selects an action from a set of possible options according to the
current system state. The action space is defined as

at = {MD, ES1, . . . , ESn, . . . , ESN}, (14)

where MD denotes processing the task locally, and ESn refers to offloading the task to the
n-th edge server.

Reward: At each time step, executing an action yields an immediate reward. The agent
aims to maximize the cumulative rewards by adjusting its behavior based on these reward
signals. This iterative learning approach continuously refines the agent’s strategy for opti-
mal task performance. The reward function is derived from the system cost in Equation (12)
and is expressed as

rt = Dtotal
m,x (t)− λEtotal

m,x (t). (15)

4.2. Preliminaries of DRL

DRL trains agents to make decisions by performing actions within an environment
to maximize cumulative rewards. In DRL, decision-making is typically modeled as an
MDP, where each current state depends only on its preceding state. Within this framework,
the agent observes the environment, selects an action, transitions to a new state, and receives
a corresponding reward. The cumulative reward, denoted by Gt, is the sum of discounted
future rewards, calculated as

Gt =
∞

∑
k=0

γkRt+k+1 (16)
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where γ denotes the discount factor, ranging from 0 to 1. Rt+k+1 represents the reward
received at t + k + 1.

The expected cumulative reward from a given state s, known as the state value V(s),
is defined as

V(s) = E
[

∞

∑
k=0

γkRt+k+1 | St = s

]
. (17)

Furthermore, the value of taking a specific action a in state s, known as the action-value
function Q(s, a), is expressed as

Q(s, a) = E
[

∞

∑
k=0

γkRt+k+1 | St = s, At = a

]
. (18)

The Bellman optimality equation [7], which connects the values of state and state–
action pairs, is given by

Q(St, At) = E[Rt+1 + γV(St+1)]. (19)

Finally, the advantage function A(s, a) is defined as

A(s, a) = Q(s, a)−V(s). (20)

Policy gradient (PG) methods, such as REINFORCE, are policy-based DRL algo-
rithms [37] that optimize a loss function to update policy parameters θ to maximize ex-
pected cumulative rewards. The policy gradient is defined by the following equation:

L(θ) = −Es∼dπ ,a ∼πθ
[∇θ log πθ(a | s)Aπ(s, a)], (21)

where θ represents the parameters of the policy π, s ∼ dπ denotes states sampled from the dis-
tribution under policy π, a ∼ πθ indicates actions sampled from the policy, and∇θ log πθ(a | s)
represents the gradient of the log-probability of selecting action a in state s.

Despite their effectiveness, PG methods face challenges such as high variance and inef-
ficiency due to their reliance on complete state sequences via Monte Carlo sampling. These
issues led to the development of more robust algorithms like Proximal Policy Optimization
(PPO) [36], which builds on PG principles but incorporates advanced strategies to improve
learning stability and efficiency.

PPO is an evolution of the Actor–Critic (AC) architecture, a sophisticated form of PG
that employs two neural networks: the actor that dictates the policy and the critic that
evaluates the action outcome based on the state value. This dual-network structure enables
the continuous learning and adjustment of the policy using more stable and lower-variance
feedback from the critic. In an AC framework, the actor updates its policy based on

Lactor =
πθ′(At | St)

πθ(At | St)
Aπθ , (22)

where πθ′(At | St) represents the new policy.
To further enhance the efficacy and stability of policy updates, PPO introduces an

innovative clipping mechanism in the policy update step, known as PPO-clip. This mecha-
nism ensures that adjustments to the policy do not deviate excessively from the previous
policy, thus maintaining a balance between rapid learning and stability.

The PPO-clip algorithm adjusts the policy parameters θ to maximize the expected
return while ensuring that the new policy remains close to the previous policy θold. The
update is formulated as follows:

θnew = arg max
θ

Es,a ∼πθold
[L(s, a, θold, θ)]. (23)
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The objective function L is defined by

L(s, a, θold, θ) = min
(

πθ(a|s)
πθold

(a|s) Aπθold (s, a),

clip
(

πθ(a|s)
πθold

(a|s) , 1− ς, 1 + ς

)
Aπθold (s, a)

)
,

(24)

where ς is a hyperparameter that limits the extent of policy updates. For ease of representa-
tion, we denote the ratio of the new policy πθ to the old policy πθold for taking an action a

in state s by ρ(s, a) = πθ(a|s)
πθold

(a|s) . The clipping function is defined as

clip(x, 1− ς, 1 + ς) =





1− ς if x < 1− ς
x if 1− ς ≤ x ≤ 1 + ς
1 + ς if x > 1 + ς

(25)

The advantage function Aπθold (s, a) is calculated as

Aπold(s, a) = Eπold

[
∞

∑
k=0

γtrt+k+1 | st = s, at = a

]
−Vπold(s). (26)

The DRL agent is trained using an AC approach, which has been effectively applied
in various domains. The PPO algorithm optimizes the actor network. During training,
the critic network is updated by minimizing the Mean Squared Error (MSE) between its
prediction and the target value function, defined by the following loss function:

L(φ) =
(
rt + γVφ(st+1)−Vφ(st)

)2. (27)

The loss function for the policy network includes a clipped objective to ensure that
updates to the policy remain within an acceptable range. This is formally defined as

L(θ) = min(ρ · Aπold(st, at), clip(ρ, 1− ς, 1 + ς) · Aπold(st, at)) (28)

The advantage function, used for policy updates, is calculated as follows:

Aπθold (st, at) = Qπθold (st, at)−Vφ(st). (29)

4.3. Complexity Analysis

In this section, we analyze the complexity of the PPO algorithm. This paper adopts
an AC architecture to improve the stability of the training process. The complexity of
the algorithm stems from the calculation of model parameters [38]. Since scheduling
tasks are represented as vectors, fully connected networks are primarily used for model
construction. Therefore, the computational complexity of these fully connected networks
can be represented as O

(
∑L−1

l=1 nl · nl−1

)
, where nl denotes the number of neurons in the

lth hidden layer.

4.4. Task Offloading Using PPO

Figure 2 illustrates the proposed PPO-based task-offloading framework, which op-
erates in two alternating phases: interaction and training. During the interaction phase,
the system initializes the actor and critic networks and begins gathering experience data.
At each time slot t, the agent selects mobile devices sequentially, utilizing observations
to generate policies via the actor network. Each mobile device guided by these policies
interacts with the environment, transitioning to subsequent states. The experience data,
i.e., states, actions, and rewards, is preserved in the replay buffer. The interaction phase is
determined once the buffer reaches capacity.
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The training phase begins by sampling batches of data from the replay buffer, denoted
by b ∈ D. In the initial learning round, these batches directly feed into the primary actor
and critic networks without importance sampling. In subsequent rounds within the same
learning episode, data are processed using the updated and original networks within the
importance sampling module, supporting the training of new network configurations.
Once an episode is complete, the buffer is cleared, and the interaction phase is re-initiated
to refill the replay buffer with fresh experience data. This cyclical approach ensures the
continuous learning and adaptation of the networks, optimizing the task-offloading process
in MEC.
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Figure 2. An illustration of PPO-based task offloading in the MEC system. The algorithm is di-
vided into two main modules. The interaction module uses the actor network to interact with the
environment, making specific offloading decisions, and collects experience data for storage in the
experience buffer. The training module then samples these data from the experience buffer to update
both the actor and critic networks. These modules operate alternately, continuing until the agent
achieves convergence.

Training Workflow: Algorithms 1 and 2 further detail the algorithm update and data
collection processes, respectively. Algorithm 1 begins with the initialization of the task
scheduling environment, scheduling algorithm parameters, and the experience buffer D
(Line 3 and Line 4). The agent interacts with the environment within each episode to
generate experience data, which are then stored in buffer D (Line 6). Once the data in
D reaches a preset threshold, the agent proceeds with the model update. This includes
extracting a batch of experiences with sample size b from D for parameter updates (Line 7).
The agent then calculates the advantage function and state value and uses this information
to update the critic and actor networks using the SGD algorithm (Lines 8–11). At the end
of each episode, the experience buffer D is cleared (Line 13). The above training process
will be repeated until the model converges. Subsequently, the policy network πθ can be
deployed in the actual offloading system.
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Algorithm 2 outlines the complete process by which mobile devices interact with the
environment to generate training data. During the data collection phase, the experience
buffer is initialized (Line 1). At each t, the edge server sorts the task requests from the
mobile devices (Line 3). For each task request, the environment state st related to the current
task offloading is constructed, and the policy network generates an (N + 1)-dimensional
offloading decision (Lines 5 and 6). The mobile device then executes the task based on
this decision and receives the corresponding reward (Line 7). This information, including
the state transition and reward, is compiled into a complete sample and stored in the
experience buffer D (Line 8).

Algorithm 1 DRL-based task offloading.

1: Input: Task-offloading environment;
2: Output: Offloading strategy πθ ;
3: Initialize: Parameters θ and φ in actor network πθ and critic network Vφ;
4: Initialize: Replay buffer D;
5: for Episode = 1, 2, . . . , Episodemax do
6: Collect data via Algorithm 2 and store in D;
7: for Each b ∈ D do
8: Compute advantage A according to Equation (29);
9: Obtain state values V(st+1) and V(st) from critic networks;

10: Update parameters φ according to Equation (27);
11: Update parameters θ according to Equation (28);
12: end for
13: Empty the replay buffer D.
14: end for

Algorithm 2 Data collection for DRL-based task offloading.

1: Initialize: Replay buffer D;
2: for Each time slot t do
3: Sort the order of task requests;
4: for Each mobile device do
5: Observe the current environment state st;
6: Compute action at using policy network πθ with input st;
7: Perform action at, transition to state st+1, and collect reward rt;
8: Record the transition (st, at, rt, st+1) in buffer D.
9: end for

10: end for

5. Performance Evaluation

In this section, we first outline the configuration of the MEC systems and the param-
eters of the algorithm. We then proceed to compare the proposed offloading algorithm
against other approaches to validate its performance across various scenarios.

5.1. Experiment Settings

(1) Training Setup: We consider an experimental scenario with 30 mobile devices
and 4 edge servers. Each mobile device is assigned a CPU capacity selected from the set
{0.2, 0.4, 0.6, . . . , 1.4} GHz to simulate computational heterogeneity. In contrast, the CPU
capacity for each MEC server is fixed at 10 GHz. Depending on the task, it is randomly
determined whether the offloading process requires encrypted data transmission. For tasks
requiring encryption, 100 megacycles are allocated for encryption and decryption processes.
For the wireless transmission model, we set the communication bandwidth bn

m to 2 MHz
and the uplink transmission power pm to 0.25 W. The Rayleigh fading channel gm is
modeled according to the methods described in [9], expressed as gm = A

(
3 ∗ 108/4π f d

)2,
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where A is the antenna gain, f is the carrier frequency set at 915 MHz, and d represents the
distance between the user and the server. Table 2 outlines the main system parameters.

For the PPO-based offloading algorithm, the convergence of neural networks is highly
dependent on the selection of hyperparameters. To identify the most appropriate hyperparam-
eters, we employ Neural Network Intelligence (NNI) (https://github.com/microsoft/nni/
(accessed on 15 March 2024)), an automated learning tool, to conduct an exhaustive search.
The optimal parameters identified through this method are then used for the final training
of our algorithm. Specifically, the neural network configuration for the PPO algorithm
includes two hidden layers, each with 128 neurons, in both the actor and critic networks.
The batch size is set to 32. The learning rates are set at 0.003 for the actor and 0.001 for the
critic, with a discount factor of 0.9. The buffer size is 10,000. We implement the algorithm
using the PyTorch framework, updating the model with the Adam optimizer [39]. To com-
pare the performance of the offloading algorithm under different encryption requirements,
we denote the offloading process with data encryption as PPO-E and the offloading process
without data encryption as PPO-WE.

Table 2. System parameter configurations.

Parameters Value Parameters Value

Number of mobile devices 30 Number of edge servers 4
Task data size {5, 10, 15, . . . , 30} MB System bandwidth 15 MHz

Background noise −100 dBm Computation capacity of device {0.2, 0.4, 0.6, . . . , 1.4} GHz
MEC server capacity 10 GHz Transmission power of device 250 mW

Communication bandwidth 2 MHz Carrier frequency 915 MHz

(2) Baselines: We compare the offloading performance of the proposed algorithm
against four methods, described as follows:

• Local Execution: All tasks are executed locally on the device without offloading or
data transmission, i.e., βm,x = 0.

• Full Offloading: All tasks are offloaded to edge servers for execution, i.e., βm,x = 1.
• Offloading based on DQN without security (DQN-WS): This approach utilizes the

DQN algorithm for task offloading but does not incorporate security measures for
data transmission.

• Offloading based on DQN with security (DQN-S): Similar to DQN-WS, this method
employs the DQN algorithm but includes task encryption to secure data transmission.

For the DQN algorithm, we construct a two-layer neural network with 64 units in the
first layer and 128 in the second. We utilize an experience replay buffer of size 10,000 and
set the learning rate at 0.001 [40]. DRL-based algorithms, such as DQN and PPO, mainly
use a trial-and-error learning method, continuously interacting with the environment to
generate reward signals. These signals guide the agent in refining its decision-making
model parameters, thereby enhancing performance.

5.2. Algorithm Convergence Comparison

We first assess the convergence of DRL-based models for task offloading, considering
different data encryption conditions. The encryption status is controlled by the parameter
α. Data transmission encryption is not used when α = 0, making the process standard task
offloading. When α = 1, data transmission encryption is enforced. We evaluate the average
rewards of the agents over 1000 episodes.

As shown in Figure 3, the PPO-based offloading algorithm outperforms the DQN
algorithm in both encrypted and non-encrypted scenarios. Notably, in scenarios involving
data transmission encryption, both DQN-E and PPO-E exhibit lower overall rewards
compared to their non-encrypted counterparts, i.e., DQN-WE and PPO-WE, confirming
that encryption imposes a performance penalty. Despite this, PPO-E achieves a reward
nearly equivalent to its performance in the non-encrypted state. Specifically, by episode
100, PPO-E reaches a reward value of about −100, while DQN-E achieves only about
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−190. This result highlights the PPO algorithm’s superior sample efficiency, enabling it
to learn and adapt more effectively with limited interaction samples. Moreover, the PPO
algorithm’s mechanism of limiting the magnitude of policy updates ensures stability and
consistency in the learning process, reducing efficiency losses due to policy fluctuations.
Overall, the performance superiority of the PPO algorithm in this task scheduling scenario,
especially its significant advantage in sample efficiency, establishes it as a preferred solution
for managing encrypted-task-offloading challenges in edge computing contexts.
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Figure 3. Training convergence of DRL agent in MEC systems.

5.3. Average System Performance Analysis

After offline training, the converged DRL network is saved for subsequent online task
offloading. During online offloading, only the actor network is utilized for model inference
to generate a specific offloading decision. Upon receiving these decisions, the terminal
device transitions to the next offloading state st+1. To evaluate the actual performance of the
algorithm, the actor network is adopted to infer multiple offloading tasks, and the average
of these inferences is taken as the final performance metric. This assessment includes
comparing average system cost, average latency, and average energy consumption across
different offloading methods.

As shown in Figure 4, the proposed PPO-based offloading algorithm demonstrates
superior performance. In non-encrypted scenarios, the average system cost using PPO-WE
is 85, whereas the average system costs for local execution, full offloading, and DQN-WE are
238, 193, and 129, respectively. In encrypted scenarios, PPO-E reduces the average system
cost by 31.9% compared to DQN-E. Note that in our experiments, the tasks are mainly
compute-intensive. Therefore, the benefits of fully offloading tasks to edge servers far
outweigh those of local processing, resulting in the average overhead of local computation
exceeding that of the full offloading strategy. Figure 4 also compares the average execution
latency and energy consumption, demonstrating that the proposed offloading algorithm
achieves the lowest average latency and energy consumption compared to other methods.
Specifically, PPO-WE reduces the average latency by 77.5%, 58.9%, and 28.1% compared to
local execution, full offloading, and DQN-WE, respectively. In encrypted data transmission,
PPO-E reduces average energy consumption by 38.2% compared to DQN-E. In summary,
the proposed offloading algorithm outperforms other methods in the overall system cost,
effectively enhancing the MEC performance.
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Figure 4. Performance comparison of different algorithms.

5.4. Impact of Number of Edge Servers

In MEC systems, mobile devices offload task requests to edge servers, which utilize
their computing resources to process these tasks and return the results. However, a high
volume of task requests can deplete the limited computing resources of edge servers,
potentially leading to increased latency in task offloading. One way to address this issue is
by increasing the number of edge servers, which provides additional computing resources
to mobile devices and improves offloading performance. Therefore, the number of edge
servers is critical to the overall offloading efficiency.

Figure 5 shows the average system cost for various edge servers while keeping
the number of mobile devices fixed at 30. It can be observed that with only two edge
servers, the limited resources result in the highest average system cost. With its effi-
cient offloading strategy, the PPO algorithm effectively improves system performance
under resource-constrained conditions. In both encrypted and non-encrypted scenarios,
PPO-E and PPO-WE reduce the average system cost by 38.6% and 41.1%, respectively,
compared to DQN-E and DQN-WE. Notably, when the number of edge servers increases
from six to eight, the overall performance improvement of different methods is relatively
small. This is because the computing resources of edge servers are no longer a bottleneck
for task offloading, and mobile devices have sufficient resources to offload tasks. With
eight servers, PPO-WE achieves the lowest average system cost, reducing it by 65.1%
compared to DQN-WE. In summary, as the number of edge servers increases, the overall
offloading performance of tasks improves significantly. The proposed algorithm effec-
tively optimizes the decision-making process of task offloading, achieving a lower average
system cost.
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Figure 5. Average system cost with different numbers of edge servers.

6. Conclusions

This paper investigates the critical issue of secure task offloading in MEC systems,
highlighting the limitations of current strategies that often neglect fundamental security
aspects. To this end, we propose a security-aware task-offloading framework utilizing
DRL. Specifically, we employ the AES encryption method to ensure the security of data
transmission during task offloading. We formulate task offloading as an MDP and adopt
the PPO algorithm to optimize task execution latency and energy consumption, thereby
minimizing system utility while ensuring data security. Comprehensive performance
evaluations demonstrate that the proposed framework effectively balances computational
efficiency with security, providing a robust solution for MEC systems.

In future work, we will expand on the following points: (1) Security-Aware Collabo-
rative Offloading for Multiple Mobile Devices: Given the heterogeneity in computational
resources among different mobile devices, it is possible to offload computational tasks
to devices with idle or stronger computational resources while ensuring security. This
collaborative offloading strategy can enhance overall system efficiency and task processing
capabilities. (2) Federated Reinforcement Learning-Based Task Offloading: To further
enhance the security of the task-offloading process, we can leverage the privacy-preserving
characteristics of federated learning. By deploying decision models across different devices,
federated learning can improve the response time of the decision-making process while
maintaining high levels of data security.
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Abbreviations
The following abbreviations are used in this paper:

M Number of mobile devices.
N Number of edge servers.
T Time slots in each episode.
∆ Length of each time slot.
ζm,n(t) Connectivity status between mobile device m and edge server n at time t.
bn

m Channel bandwidth between mobile device m and edge server n.
gm Channel gain between mobile device and edge server.
pm Uplink transmission power of mobile device m.
σ2 Signal-to-Interference-plus-Noise Ratio (SINR) in wireless link.
Γm(t) Computational task request at time t for mobile device m.
Im(t) Data size of offloading task at time t for mobile device m.
λm(t) CPU cycles required for the task requested by mobile device m at time t.
`m(t) Execution deadline for task requested by mobile device m at time t.
fm CPU frequency of mobile device m.
fn CPU frequency of edge server n.
ξm Energy consumption per CPU cycle for mobile device m.
η CPU cycles required to encrypt the data.
δ CPU cycles required to decrypt the data.
β Binary indicator of execution.
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Abstract: The heterogeneous network formed by the deployment and interconnection of various
network devices (e.g., sensors) has attracted widespread attention. PM2.5 forecasting on the entire
industrial region throughout mainland China is an important application of heterogeneous networks,
which has great significance to factory management and human health travel. In recent times, Large
Language Models (LLMs) have exhibited notability in terms of time series prediction. However,
existing LLMs tend to forecast nationwide industry PM2.5, which encounters two issues. First,
most LLM-based models use centralized training, which requires uploading large amounts of data
from sensors to a central cloud. This entire transmission process can lead to security risks of data
leakage. Second, LLMs fail to extract spatiotemporal correlations in the nationwide sensor network
(heterogeneous network). To tackle these issues, we present a novel framework entitled Spatio-
Temporal Large Language Model with Edge Computing Servers (STLLM-ECS) to securely predict
nationwide industry PM2.5 in China. In particular, We initially partition the entire sensor network,
located in the national industrial region, into several subgraphs. Each subgraph is allocated an
edge computing server (ECS) for training and inference, avoiding the security risks caused by data
transmission. Additionally, a novel LLM-based approach named Spatio-Temporal Large Language
Model (STLLM) is developed to extract spatiotemporal correlations and infer prediction sequences.
Experimental results prove the effectiveness of our proposed model.

Keywords: secure forecasting nationwide industry PM2.5; heterogeneous network; LLM; edge
computing; security risks of data leakage

1. Introduction

With the deployment and interconnection of diverse network devices (e.g., sensors
and servers), the heterogeneous network has emerged as a widespread network scenario
covering a wide range of geographic areas and integrating various types of information
for more effective decision-making [1–4]. Recently, the Chinese government has deployed
numerous sensors across national industry regions, forming a nationwide sensor network
(heterogeneous network) to monitor and collect industry Particulate Matter 2.5 (PM2.5),
i.e., particulate matter with a diameter of 2.5 µm or less in industrial regions. Based on
these data in the heterogeneous network, an important application is nationwide industry
PM2.5 prediction, which has important value for overhauling industrial production and
human health [5,6].

Lately, we have viewed the birth of Large Language Models (LLMs) [7] and the
revolutions that it has brought to Natural Language Processing (NLP) [8]. The core idea is
to pretrain LLMs from billions of corpora, bringing about abundant intrinsic knowledge
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for facilitating downstream tasks. Until now, many efforts have attempted to use LLMs
for time series forecasting on sensor networks. Most of these model a sensor network
with small space granularity (e.g., Beijing, Shanghai, Yangtze River Delta, or Pearl River
Delta) and train on a central server [9,10]. However, in our study we broaden our scope
to collectively predict industry PM2.5 in industrial regions of the Chinese mainland with
enormous fine space granularity covering thousands of sensors. More data are generated
due to the large number of sensors. If we continue to use the centralized training pattern,
more data need to be uploaded to the central cloud. This increase in data transmission
volume is bound to raise the security risks around data leakage.

Several studies have shown that spatiotemporal correlations exist among sensors
in the nationwide sensor network [11]. In particular, the nationwide sensor network is
quite complex. Assuming a sensor network with multiple interlinked sensors, industry
PM2.5 concentration on a given sensor is affected by its neighbors; these are identified
as the spatial dependencies. The future industry PM2.5 concentration of each sensor is
substantially influenced by its history, termed the temporal dependencies. These two types
of dependencies change dynamically over time and interact with each other. Collectively,
we call them the spatiotemporal correlations. As a decoder-only structure, an LLM produces
purely output sequences. Thus, if LLMs are employed directly on the sensor network,
the spatiotemporal correlations between the sensors are ignored.

In summary, two urgent challenges necessitate solutions in nationwide industry PM2.5
forecasting via LLM. First, handling large volumes of data on a central server heightens the
related security risks. Second, LLMs struggle to contemplate spatiotemporal correlations
among sensors. Motivated by these challenges, a novel LLM-based approach entitled
Spatio-Temporal Large Language Model with Edge Computing Servers (STLLM-ECS)
is developed to securely forecast nationwide industry PM2.5 in ECS. In detail, we first
represent the nationwide sensor network as an undirected graph. Our NodeSort method
is then used to partition the graph into several subgraphs. We deploy an ECS on each
subgraph accordingly. The sensor data of each subgraph are allocated to the corresponding
ECS for training instead of to a central cloud. This means that the data do not need to be
transmitted to the central cloud, avoiding the security risks triggered by data transmission.
Next, for each subgraph we develop an LLM-based module named the Spatio-Temporal
Large Language Model (STLLM) to learn the spatiotemporal correlations and infer the
output sequences. STLLM fills multiple gaps in modeling spatiotemporal features via LLM.
The idea of our proposed method is depicted in Figure 1. The contributions of our work
are summarized below:

• To mitigate the security risks of centralized training due to data leakage during
transmission, we present an edge-based distributed learning framework, STLLM-
ECS, to securely forecast nationwide industry PM2.5 in ECS. In detail, we develop a
novel method named NodeSort to partition the nationwide sensor network graph into
several subgraphs. The data and training tasks of each subgraph are then uploaded to
an individual ECS rather than to a central cloud. This avoids the security risks around
data leakage when transmitting data from sensors to the central cloud. In addition, we
design an edge training strategy between neighbor subgraphs to speed up training and
achieve the “training-during-inference” pattern. Meanwhile, the strategy facilitates
sharing of similar industry PM2.5 changes among neighboring subgraphs, thereby
improving prediction accuracy.

• An LLM-based model called STLLM is presented. A spatiotemporal module (STM)
is developed to capture spatiotemporal correlations, while GPT-2 [7] is adopted to
produce output sequences. This is a novel hybrid framework that introduces a spa-
tiotemporal feature extraction module into the LLM for industry PM2.5 prediction.
It effectively provides the LLM with the ability to model spatiotemporal features.
In addition, considering the weak computing power of ECS, a pruning strategy is
developed to further lighten model deployment on the ECS.
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• We conduct extensive experiments on a nationwide industry PM2.5 dataset comprising
data from over 1000 sensors collected from across China’s industrial regions. Our re-
sults indicate that the proposed STLLM-ECS is superior to all compared baselines.
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Figure 1. The architecture of STLLM-ECS for nationwide industry PM2.5 prediction. A nationwide
sensor network with over 1000 sensors located throughout China’s industrial areas is first partitioned
into E subgraphs. Each Edge Computing Server (ECS) covers a specific subgraph. Sensors installed on
the subgraph record industrial PM2.5 data, which are uploaded to the surrounding ECS. Meanwhile,
an STLLM is deployed on each ECS. Each ECS is responsible for dealing with industry PM2.5 data,
training the STLLM, and inferring future industry PM2.5 in the specific subgraph. Subsequently,
the future industry PM2.5 information is transmitted to the management department for factory
rectification. To accelerate training, the parameter transfer strategy is used to initialize STLLM
deployment on each ECS.

2. Related Work
2.1. Edge Computing

Presently, various concepts relevant to edge computing have been defined. One
definition declares it to be a methodology that conducts computing at the edge of a network,
i.e., ECS deployment to process computational tasks should occur near the data source [12].
In [13], the researchers classified ECS into three main categories. First, edge servers, which
mainly contains Cloudlets, local cloud, etc. In contrast to traditional cloud computing, edge
servers have weaker arithmetical power. Second, devices that coordinate among terminal
devices. Compared to the edge servers, these have lower computing power, but are more
portable. Third, communication technologies (e.g., opportunistic computing) in the device
cloud accomplish resource migration and exploration among terminal devices. In addition,
a vehicle cloud can be treated as a form of edge computing. In this scenario, the resources
of the vehicle cloud are temporarily requisitioned. The edge, core cloud, and mobile
users constitute the edge architecture. The computational tasks of mobile users can be
offloaded from the central cloud and assigned to the edge for processing [14–16]. To date,
edge applications have appeared in a variety of air pollution analysis tasks, including air
pollution monitoring [17] and air pollution prediction in Beijing [18]. However, few works
have focused on forecasting nationwide industry PM2.5 in China using edge computing.

158



Electronics 2024, 13, 2581

2.2. LLMs for Time Series Analysis

LLMs exhibit powerful capabilities in understanding the complex dependencies of
heterogeneous textual data and offering plausible generation [19]. Representative LLMs
include GPT [20], GPT-2 [7], and GPT-4 [21]. Their presence has revolutionized various
fields, especially time series analysis. To date, several researchers have employed LLMs in
time series analysis. For instance, Yu et al. [22] designed an explainable financial forecasting
approach based on Open-LLaMA and GPT-4. In [23], LLM4TS was proposed for time
series forecasting. Specifically, Chang et al. designed a two-stage fine-tuning strategy, with
Stage 1 consisting of supervised pretraining and Stage 2 of fine-tuning according to specific
tasks. Zhou et al. [24] conducted fine-tuning using a Frozen Pretrained Transformer (FPT)
without adjusting its feedforward or self-attention layers. After fine-tuning, the FPT was
deployed on different time series analysis tasks. Nevertheless, existing LLMs encounter
two issues in industry PM2.5 prediction. First, most LLM-based models use centralized
training, requiring data to be transmitted from sensors to the central cloud. The large
amount of data transmission increases the security risks around data leakage. Second,
LLMs cannot extract the spatiotemporal correlations in the sensor network.

2.3. Air Pollution Forecasting

Air pollution forecasting methods are classified into two main categories, namely,
physics-based and data-driven models.

Physics-based models: Such models treat the emission and diffusion of pollutants as
a dynamic process which can be simulated by numerical functions. In order to achieve
this, researchers must trace back the air pollution to its main causes, e.g., factories and
vehicles [25,26]. However, it can be challenging to accurately collect these data sources.

Data-driven models: This type of model has become the most popular approach for air
pollution prediction. This line of study adopts parameterized methods, e.g., deep neural
networks, to mine the spatiotemporal correlations within air pollution data. In contrast to
physics-based models, data-driven models are more flexible and demand less sophisticated
domain knowledge. For example, Zheng et al. [27] designed a hybrid data-driven model
which integrates predicted outcomes from different perspectives. Yi et al. [28] proposed a
novel model called DeepAir which uses deep neural networks. Their experimental results
proved that DeepAir is significantly superior to other shallow baselines in both long- and
short-term forecasting. Several follow-ups have studied whether Graph Convolutional
Network (GCN) approaches or attention-based approaches are more effective for capturing
spatiotemporal correlations [29,30]. Unfortunately, these methods encounter a number
of issues in the context of nationwide industry PM2.5 prediction, including performance
degradation and inefficiency.

3. Preliminaries

Currently, a large number of sensors are deployed in industrial regions throughout
the country to monitor and collect time series PM2.5 data. This allows critical spatial
information (e.g., connectivity and distances) among sensors to be calculated. Given this
spatial and temporal information, our proposed model has the capacity to forecast future
industry PM2.5. Three definitions are introduced below to facilitate the explanation of
this process.

Definition I: Nationwide Sensor Network. The nationwide sensor network is treated
as a undirected graph G = (V , E), where V is a set of nodes that denote the sensors in
nationwide industry regions. Assuming that N is the total number of nodes, we have
|V| = N and V = (V1, V2, . . . , VN), with E as the set of edges, revealing whether specific
nodes are connected.

Definition II: Subgraphs. In order to employ edge computing, it is necessary to
partition G into some number of subgraphs depending on the number of deployed ECSs.
Each ECS is deployed in the region where a subgraph is located and is responsible for
processing the data of the nodes in the subgraph. Given E ECSs, the subgraphs are identified
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as SG = (SG1, SG2, . . . , SGE), where SGj = (Vj,1, Vj,2, . . . , Vj,nj), j ∈ [1, E], nj stands for the
total number of nodes in subgraph j.

Definition III: Subgraph Representations. For brevity, X j
tk
= (xtk ,1, xtk ,2, · · · , xtk ,nj) ∈

Rnj×F is used to indicate the representations of subgraph j, where F denotes the features
of the nodes (in our case, industry PM2.5; thus, F = 1). Hence, xtk ,i is the industry PM2.5
value of node i at timestep tk.

Problem Formulation. For a subgraph j, given its subgraph representations of past
P timesteps χj = (X j

1, X j
2, · · · , X j

P), we propose learning a mapping function f j(·) which
infers the industry PM2.5 value of nj nodes at the next Q timesteps. The problem can be
formulated as follows:

(χj, SGj) →
f j(·)
Y j (1)

where Y j = (Ŷ j
tP+1

, Ŷ j
tP+2

, · · · , Ŷ j
tP+Q

) denotes the output sequences and SGj is the topology
of subgraph j.

4. STLLM-ECS Design

In this section, we describe the architecture of STLLM-ECS. First, a systematic review
is presented, after which we detail the three main components of STLLM-ECS.

4.1. System Overview

To solve the above-mentioned challenges, STLLM-ECS is presented. The overview of
STLLM-ECS is depicted in Figure 2. First, graph partitioning is proposed. In detail, we
denote the entire nationwide sensor network as a graph. To allocate data and computing
tasks to the ECSs, the graph ought to be partitioned into subgraphs. Unfortunately, the pro-
cedure of graph partitioning leads to information loss, as crucial edges in the graph are
severed. In view of this, we propose the novel NodeSort method. It can evaluate node sig-
nificance and retain the edges of significant nodes, effectively alleviating information loss.
NodeSort follows the basic theory of PageRank [31], the universal algorithm for sorting
web pages. Furthermore, we introduce Betweenness Centrality [32] to incorporate valuable
information into PageRank. In contrast to traditional PageRank, NodeSort can better adapt
to the characteristics of the nationwide sensor network and measure node importance.
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Figure 2. Overview of STLLM-ECS. SA is the spatial attention. TA is the temporal attention.

After graph partitioning, we allocate each subgraph to the corresponding ECS. For each
subgraph, an intelligent method based on STM and Generative Large Language Model
(GLLM) named STLLM is developed to capture spatiotemporal correlations and infer
prediction sequences. In particular, spatial and temporal attention dynamically adjust
model attention in both spatial and temporal dimensions, enabling us to identify compli-
cated relationships in two dimensions. Thus, we introduce them into the STM to capture
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spatiotemporal correlations. Moreover, the LLM facilitates the generation of prediction
sequences due to its extensive intrinsic knowledge acquired from pretraining. We introduce
the LLM into the GLLM to generate future industry PM2.5 predictions.

In addition, an edge training strategy is designed to reduce training time. In particular,
considering the weak computational power of ECSs, pruning operations are adopted to
make STLLM more lightweight and decrease the training workload.

4.2. Graph Partitioning Design

As mentioned above, the entire graph is partitioned into several subgraphs, which are
then allocated to corresponding ECSs. To mitigate information loss during graph partition-
ing, we develop a novel method named NodeSort. The design details are as follows.

Similarly to other networks, e.g., road networks, node significance is a key factor in
nationwide sensor networks. By measuring node significance, we can construct subgraphs
centered on the most important nodes. As a result, the edges of the center nodes are pre-
served. These edges contain more information, which can help to reduce information loss.
This type of method for effectively measuring node importance is indispensable. Therefore,
we introduce PageRank with Betweenness Centrality to form NodeSort for implementation.

(1) PageRank: PageRank was initially applied to rank web pages based on their impor-
tance. Because PageRank can be defined on any digital graph, it has since been adopted in
other domains, e.g., text summarization. Based on a random walk, given that the degree of
node s is D, the likelihood of industrial PM2.5 diffusing from node s to other nodes is

LKs,t =

{
1/D, s links to t
0, otherwise,

(2)

where s, t are set to 1, 2, · · · , N, s 6= t, LKs,t stands for the transition likelihood among
nodes s and t, and LK = [LKs,t]N×N ∈ RN×N denotes the transition matrix. In addition,
two characteristics are present in LK, i.e., LKs,t ≥ 0 and ∑N

s=1 LKs,t = 1.
Now, coming to the value of PageRank, we let PRValue = [PR(Value1), PR(Value2), . . . ,

PR(ValueN)], where PR(Valuen) represents the PageRank value of node n. Given a com-
plete random walk model, each element in its transition matrix LK′ is 1/N. The PageRank
method can be presented as follows:

PRValue = β · LK · PRValue + (1− β) · LK′

= β · LK · PRValue +
1− β

N

(3)

where β ∈ [0, 1] stands for the damping factor, denoted as the resistance from one node
to others. Due to the static distribution property of Markov chains, we further adopt this
algorithm to solve for the PRValue of all nodes.

(2) Betweenness Centrality: Ulrik and Brandes [32] clarified the Betweenness Centrality
as the sum of the shortest paths passing through the node, formulated as follows:

Bc(n) = ∑
s 6=n 6=t∈V

ρs,t(n)
ρs,t

(4)

where ρs,t(n) indicates the shortest path from node s to node t that passes through node n.
The sum of the shortest paths from s to t is ρs,t, while V is the set of nodes in the nationwide
sensor network. According to this definition, we can infer that nodes with large Bc have a
tendency to become industrial PM2.5 pollution centers, as they are the shortest paths for
many routes.

(3) NodeSort: By leveraging PageRank, it is possible to acquire the importance of nodes
in the nationwide sensor network. However, PageRank fails when exploited directly on
the nationwide sensor network due to two factors. First, the distance among nodes is
a crucial feature that can help to determine industrial PM2.5 diffusion and propagation.
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Although we have defined the transition matrix, the distance feature is neglected. Second,
PageRank allocates the same weight to each node without considering discrepancies in
node importance. In light of these factors, our novel NodeSort method is designed to
adapt the characteristics of the nationwide sensor network and assess node importance
more realistically. In particular, affected by Betweenness Centrality, those nodes potentially
serving as industrial PM2.5 pollution centers may be more vital. Thus, Betweenness
Centrality is initially used to quantify node importance through weighting calculations.
First, LKs,t is reconstructed as

LK′s,t =

{ BC(t)
∑t BC

, s links to t

0, otherwise,
(5)

where BC(t) denotes as the Betweenness Centrality of node t and ∑t BC indicates the sum
of Betweenness Centrality values of the nodes connected with t.

In PageRank, the damping factor is usually treated as a constant value of 0.85. In
NodeSort, the distance is employed to compute this factor, whic is possible because the
distance is strongly resistant to movement. Let β be a diagonal matrix β′ = (β1, β2, . . . , βN)
in which βt is defined as

βt = γ · 1

∑s
1

ds,t

, (6)

with ds,t representing the distance among nodes s and t and γ as the scaling factor.
The Markov chain is reconstructed as follows:

PRValue =




β1
. . .

βN


 · LK · PRValue

+
1
N




1− β1
. . .

1− βN


.

(7)

Leveraging the the value vector PRValue of NodeSort, the most important nodes in the
nationwide sensor network are acquired. After that, some subgraphs are constructed
depending on these nodes.

In summary, NodeSort is adopted to calculate the importance of nodes in the large-
scale network. The top-E most important nodes are leveraged as central nodes to construct
the subgraphs. Hence, the edges of important nodes are retained, which assists in more
precise predictions.

4.3. STLLM Design

As shown in Figure 3, STLLM is composed of three parts: (1) Input Embedding Layer;
(2) STM; and (3) GLLM. Specifically, STLLM is a pipeline structure. In the following,
we illustrate how to apply each part to capture spatiotemporal correlations and predict
industrial PM2.5, taking the processing of subgraph j as an example.

(1) Input Embedding Layer: For subgraph j, as the deep neural networks fail to directly
deal with industry PM2.5 data, we need to change these data dimensions. It is necessary
to transform the industry PM2.5 data Xj of P historical timesteps for nj nodes into higher-
dimensional features. In detail, two layers of FCs are used to transform the dimensions
from F to dmodel, represented as Hj ∈ RP×nj×dmodel .

(2) STM: After obtaining the input embedding features, STM is deployed to capture
spatiotemporal correlations among nodes of the subgraph, which is composed of L stacked
Spatio-Temporal blocks (ST block). Each ST block comprises spatial attention, temporal
attention, and the Spatio-Temporal Fusion (ST Fusion) mechanism. Spatial attention
is proposed to capture spatial dependencies. Temporal attention is designed to extract
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temporal dependencies. Depending on the impact of temporal and spatial dependencies on
the prediction, we use ST Fusion for adaptive fusion without human intervention. Figure 3
illustrates the structure of STM. Specifically, let Hj ∈ RP×nj×dmodel denote the input of L
ST blocks. In the lth ST block, its input is the output of the l − 1th ST block, denoted as
HSTl−1 ∈ RP×nj×dmodel . The spatial representations generated by spatial attention are
HSl ∈ RP×nj×dmodel , in which hsl

tk
∈ Rnj×dmodel is the spatial representations at timestep

tk. The temporal representations generated by temporal attention are HTl ∈ RP×nj×dmodel ,
in which htl

n ∈ RP×dmodel is the temporal representations of node n. The spatiotemporal
representations produced by ST fusion are indicated as HSTl ∈ RP×nj×dmodel . In addition,
the residual connections are used to enable a larger receptive field and boost training
speed. Hence, the output of the lth ST block can be expressed as HSTl = HSTl + HSTl−1.
The details of spatial attention, temporal attention, and ST Fusion in the lth ST block are
described below.

𝑿𝑿𝒋𝒋
∈ ℝ𝑷𝑷×𝒏𝒏𝒋𝒋×𝑭𝑭

FCs
M

H
SA

𝑄𝑄
𝐾𝐾
𝑉𝑉

G
AT

𝑄𝑄
𝐾𝐾
𝑉𝑉

�

� 1-

𝝈𝝈
�

FCs

Patching

1

2
3

4

𝑛𝑛𝑗𝑗

. . .

1  2     12…

13 14    24…

25 26    36…

85 86    96…

Token E
ncoding

Flattening+Re
-arrangement

GPT-2

𝒚𝒚𝒋𝒋 ∈
ℝ𝑸𝑸×𝒏𝒏𝒋𝒋×𝑭𝑭

Spatial Attention

Temporal Attention
ST Fusion

STM GLLM

L ×
Fine tune Residual 

Connection 
Summation � Dot product 𝝈𝝈 Sigmoid 

function

Positional 
Encoding

C
hannel-

Independence

Figure 3. Framework of STLLM. STLLM is composed of STM and GLLM, in which STM contains L
stacked ST blocks.

Spatial Attention: To extract spatial dependencies, spatial attention based on a one-
layer graph attention network is designed. Through an attention mechanism, such a
network can dynamically assign weights to sensors in the nationwide sensor network
based on the relevance between sensors.

In the lth ST block at timestep tk, let hstl−1
tk
∈ Rnj×dmodel be the input of a one-layer

graph attention network. The operation of a single hth head is expressed as

hsl,h
tk

= Softmax
(

αQS
h KS

h

)
VS

h , (8)

where hsl,h
tk
∈ Rnj×

( dmodel
Nh

)
refers to the spatial representations in the hth head. Query

QS
h ∈ Rnj×

( dmodel
Nh

)
, key KS

h ∈ Rnj×
( dmodel

Nh

)
, and value VS

h ∈ Rnj×
( dmodel

Nh

)
are generated by

linear mappings hstl−1
tk

WS
Q, hstl−1

tk
WS

K, and hstl−1
tk

WS
V , respectively, while WS

Q, WS
K, and WS

V ∈

Rdmodel ×
( dmodel

Nh

)
are the weight parameters for linear mapping, Nh is the number of heads,

and α is considered as a scaling factor. Later on, the spatial representations hsl
tk
∈ Rnj×dmodel

at timestep tk are obtained through the following concentration operation:

hsl
tk
=
[

hsl,1
tk

, hsl,2
tk

, . . . , hsl,Nh
tk

]
WS

o (9)

where WS
o ∈ Rdmodel ×dmodel is the trainable mapping matrix.

Temporal Attention: To capture temporal dependencies, we develop the temporal atten-
tion with one-layer Multi-Head Self-Attention (MHSA). The main reason for this is that the at-
tention can dynamically allocate weights to different timesteps according to their significance.
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Assuming that the input of the lth ST block in node n is hstl−1
n ∈ RP×dmodel , the opera-

tion of a single hth head is expressed as follows:

htl,h
n = Softmax

(
αQT

h

(
KT

h

)T
)

VT
h (10)

where htl,h
n ∈ RP×

( dmodel
Nh

)
refers to the temporal representations generated by he one-layer

MHSA operation on the hth head, QT
h = hstl−1

n WT
Q, KT

h = hstl−1
n WT

K , and VT
h = hstl−1

n WT
V

are query, key, and value, respectively, and WT
Q, WT

K , and WT
V ∈ Rdmodel ×

( dmodel
Nh

)
are the

learnable parameters for linear mapping. The output results of each head are concatenated
and further mapped to obtain the temporal representations htl

n ∈ RP×dmodel of node n in
the lth ST block, denoted as

htl
n =

[
htl,1

n , htl,2
n , . . . , htl,Nh

n

]
WT

o , (11)

where WT
o ∈ Rdmodel ×dmodel is the trainable mapping matrix.

ST Fusion: The industry PM2.5 value of a node at a specific timestep is associated
with its previous timesteps and other nodes. To adaptively fuse the temporal and spatial
dependencies, we design ST Fusion as described in Figure 3. In the lth ST block, the outputs
of spatial attention and temporal attention are separately denoted as HTl ∈ RP×nj×dmodel

and HSl ∈ RP×nj×dmodel , respectively. These two first conduct FC and layer normalization,
then are fused together:

z = σ
((

HSl � HTl
)

WST
z + HTlWT

z + bz

)
, (12)

HSTl = HSl � z + HTl � (1− z), (13)

where HSTl ∈ RP×nj×dmodel denotes spatiotemporal representations generated by the lth
ST block, z is the gate, σ represents the sigmoid function, � is the element-wise product,
and WST

z ∈ Rdmodel×dmodel , WT
z ∈ Rdmodel ×dmodel , and bz ∈ Rdmodel are trainable parameters.

(3) GLLM: After modeling the spatiotemporal correlations, we need to generate the
output sequences depending on these features. Because the LLM has acquired rich intrinsic
knowledge through pretraining and has been applied to downstream tasks, we design a
novel LLM-based method named GLLM to infer industry PM2.5 in the future, leveraging
GPT-2 [7] as the backbone model. Concretely, GLLM is composed of channel-independence
and patching, token and positional encoding, GPT-2, and the output layer. Next, we present
these individual structures.

Channel-Independence and Patching: To adapt spatiotemporal representations for
GPT-2, channel-independence and patching in the PatchTST method [33] are employed
to tokenize these features. Specifically, we first use the FCs to restore the spatiotempo-
ral features HSTL ∈ RP×nj×dmodel generated by the Lth ST block, denoted as RP×nj×F.
Channel-independence then treats multi-node spatiotemporal representations (P× nj × F)
as multiple single nodes ([P× 1× F]× nj) and a model is used to independently process
them. Channel-blending models are intended to directly leverage cross-channel data,
whereas channel-independence often indirectly extracts cross-channel interactions through
weight sharing, thereby providing more precise predictions. The underlying reason for this
is that channel-blending models often encounter data limitations and overfitting. In the
context of applying channel-independence, the subsequent patching process groups ad-
jacent timesteps into a singular patch-based token. This approach expands the input’s
historical span without increasing the token length, providing more valuable information
for GPT-2.

Token Encoding and Positional Encoding: After obtaining a sequence of tokens
through patching, token encoding is adopted to transform these tokens to ensure com-
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patibility with the GPT-2 backbone model. In traditional NLP practice, token encoding
is usually accomplished by exploiting a learnable lookup table to project tokens into a
high-dimensional space. However, as we are patching for spatiotemporal features that
denote vectors rather than scalars, we use a one-dimensional convolutional layer instead.

For positional encoding, we employ the structure in the transformer [34] to map the
patch locations. During the training phase, token encoding and positional encoding need
to be fine-tuned.

GPT-2: Furthermore, we use a pretrained GPT-2 with six layers as the backbone
architecture of GLLM. To preserve the foundational knowledge acquired by pretraining,
most parameters are frozen during the training phase, including those related to MHSA
and FC layers. In addition to the low data requirements of this approach, retaining most of
the non-training parameters tends to result in better predictive performance than training
LLMs from scratch.

To enhance downstream tasks at minimal cost, we fine-tune the layer normalization,
which is viewed as a common practice.

Output layer: After GPT-2, the output layer is adopted to produce industry PM2.5
value in the future. Because the output of GPT-2 retains the form of patches, essentially
a series of tokens, we utilize flattening, FC, and rearrangement operations, all of which
must be fine-tuned during the training phase. In particular, assuming that the output token
for a specific node n is produced, flattening is first used to straighten the tokens; FCs are
then employed to modify the dimensions; finally, rearrangement is utilized to generate the
unpatched time series for the next Q timesteps as the output of node n, denoted as RQ×1×F.
We separately iterate the spatiotemporal representations of the channel-independent nj

nodes to obtain the industry PM2.5 in the next Q timesteps, denoted as Y j ∈ RQ×nj×F.
Eventually, we optimize the parameters of STLLM-ECS for subgraph j by minimizing

the Mean Squared Error (MSE) loss function, represented as

MSE =
∑Q

ts=1 ∑
nj
n=1(yts ,n − ŷts ,n)

2

Q× nj
+

λ

2
‖W‖2, (14)

where nj is the total number of nodes in subgraph j and Q denotes the length of the
predicted sequence. The predicted and observed values at timestep ts on node n are yts ,n
and ŷts ,n, respectively, while λ denotes the regularization and W is the learnable parameter.

4.4. Edge Training Strategy

Due to the similarity in terms of land use, we generally believe that there is an
association between the industry PM2.5 concentrations of adjacent subgraphs. For instance,
during the weekday in industrial areas, the industry PM2.5 concentrations not only affect
the area but also spread to the surrounding areas; in other words, there are similar industry
PM2.5 features in the surrounding areas due to the diffusion of industry PM2.5. As a result,
transfer learning is introduced to the neighboring subgraphs through sharing trainable
network parameters on each RSU, which aims to shorten the training time and improve
the predictions’ precision. In particular, assuming that the network parameters used to
modeling subgraph j are transferred to its neighboring subgraph k, we first train the jth
STLLM using the jth subgraph representations. After training, STLLM produces output
sequences on the RSU. Meanwhile, the parameters of STM and the unfrozen parameters
of GLLM are transferred to the kth RSU adjacent to the jth RSU for the initialization. The
kth subgraph representations are then adopted to train based on the initialization. After
multiple rounds of iteration, we obtain the optimized kth STLLM. In this way, when the
jth STLLM is performing inference, the kth STLLM starts training. This “inference while
training” mode further decreases the training time. Because the frozen GLLM parameter
do not participate in training, we uniformly deploy these frozen model structures to each
RSU before training. In addition, considering the limited computing power of the RSU,
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pruning operations are performed before uploading, i.e., cutting the heads of the MHSA
and STBMHSA to implement dimensionality reduction and lightening.

5. Experiments
5.1. Experimental Settings
5.1.1. Dataset

STLLM-ECS was assessed on nationwide PM2.5 concentration data from throughout
China’s industrial areas ranging from 1 January 2015 to 31 December 2018. We collected
industrial PM2.5 concentrations from 1065 sites covering industrial areas in 186 cities.
The data collection frequency was one hour. In addition, the method used for data normal-
ization was Z-score normalization. We split the dataset in chronological order, with the
initial two years as the training set, the third year as the cross-validation set, and the fourth
year as the test set.

5.1.2. Baselines

STLLM-ECS was compared with advanced baselines affiliated with the following
four classes:

• Classical statistics and shallow machine learning models: History Average (HA) [35] was
adopted to predict industrial PM2.5 using the average of historical observed values.
Support Vector Regression (SVR) [36] refers to vector autoregression.

• Spatio-Temporal Graph Convolutional Networks (STGCNs)-based models: Selected STGCNs
(e.g., Diffusion Convolutional Recurrent Neural Network (DCRNN) [29] and Spatio-
Temporal Graph Convolutional Network (STGCN) [30]) were used as baselines.
DCRNN and STGCN generalize well to nationwide industrial PM2.5 prediction.

• Attention-based models: Spatio-Temporal Graph Attention (ST-GRAT) [34], Graph
Multi-Attention Network (GMAN) [37], ST-Transformer [38], and Airformer [39]
are transformer variants used for spatiotemporal prediction that can easily accommo-
date industrial PM2.5 prediction.

• LLM-based models: Two LLM-based time series prediction models (e.g., LLM4TS [23]
and FPT [24]) awere choosed for a comparison.

5.1.3. Evaluation Metrics

The performance of STLLM-ECS and the baselines are tested through four metrics
divided into two groups: (a) Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE) were used to evaluate the prediction accuracy; and (b) training time and GPU
memory were utilized to assess model efficiency. In detail:

(1) MAE:

MAE =
1

Q× nj

Q

∑
ts=1

nj

∑
n=1
|yts ,n − ŷts ,n|. (15)

(2) RMSE:

RMSE =

√√√√ 1
Q× nj

Q

∑
ts=1

nj

∑
n=1

(yts ,n − ŷts ,n)
2. (16)

(3) Training time: The training time is composed of the Total Time (TT) and Average
Time (AT); TT represents the overall cost of the entire training phase until the model
converges, while AT is the average training time of the subgraphs. The training efficiency
of a model can be measured through the training time. For instance, if the accuracy of two
models is comparable, a shorter training time implies more efficient training.

(4) GPU M: The GPU M is the the memory usage of the GPU in the training phase,
which can be used to evaluate the space overhead of the model. For example, lower GPU
M means that fewer model parameters need to be trained. This shows that the model does
not consume excessive GPU resources during training.
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5.1.4. Parameter Settings

We reproduced HA through the statsmodels package in Python 3.8. The SVR was im-
plemented using the sklearn package in Python. The remaining models were implemented
using the PyTorch library. For STLLM-ECS, some parameters were set as follows.

In Graph Partitioning, the number of subgraphs was selected as 10. Hence, we em-
ployed ten Nvidia 3090 Ti GPU cards, Nvidia, CA, USA, to simulate ten RSUs. In addition,
We set the scaling factor γ to 0.9.

In each STLLM, the predicted timesteps were set to 36 (Q = 36), i.e., predicting the
nationwide industry PM2.5 for 1065 sites throughout China. The referenced timesteps
were 96 h (P = 96). We set the learning rate and batch size as 0.0002 and 32, respectively.
Stochastic gradient descent was selected as the optimizer, with dmodel as 64. In addition,
hyperparameters need to be set for two parts, i.e., STM and GLLM. For STM, the initial
number of heads in spatial and temporal attention Nh, the dimensions of each head d,
and the number of ST blocks L were set as 4, 16, and 1, respectively. For GLLM, we selected
a patch length of 12 and stride of 12 in patching. The number of GPT-2 layers LGPT was 6.

In pruning, the initial number of heads for MHSA and STBMHSA was 16. After every
two subgraphs, we reduced the number of heads in MHSA and STBMHSA through a
pruning operation.

5.2. Experimental Results
5.2.1. Performance Comparisons

STLLM-ECS was contrasted with the above baselines for nationwide industry PM2.5
prediction in the next 36 h, as shown in Table 1. GPUM is the GPU memory usage, while ‘-’
indicates that the model does not run using the GPU.

Table 1. Industry PM2.5 prediction accuracy comparison of STLLM-ECS and baselines on the nation-
wide sensor network. Bolding indicates the best results.

Model GPUM 1–12 h 13–24 h 25–36 h Average TT ATMAE RMSE MAE RMSE MAE RMSE MAE RMSE

HA - 47.28 92.65 47.28 92.65 47.28 92.65 47.28 92.65 1.95 h -
SVR - 31.04 64.75 34.57 70.41 37.83 75.24 34.48 70.07 2.04 h -

DCRNN 5.03 G 15.63 29.59 16.72 31.15 17.48 34.34 16.52 31.36 4.84 h -
STGCN 4.78 G 15.37 30.28 15.98 31.24 16.82 32.36 16.06 31.29 3.89 h -

ST-GRAT 5.33 G 16.36 31.27 18.01 36.43 19.86 40.24 18.08 35.98 5.61 h -
GMAN 6.73 G 16.84 33.65 17.47 36.92 19.24 39.85 17.85 36.81 6.94 h -
ST-Transformer 5.17 G 16.24 30.89 17.82 35.89 19.01 39.14 17.69 35.31 5.12 h -
Airformer 4.21 G 15.58 29.37 16.96 34.27 18.41 38.12 16.98 33.92 3.98 h -

LLM4TS 1.72 G 14.23 27.84 15.99 30.17 17.72 33.46 15.98 30.49 2.35 h -
FPT 1.58 G 14.12 28.54 16.39 33.95 16.03 32.67 15.51 31.72 2.14 h -

STLLM-ECS 2.24 G 13.25 25.32 15.37 28.89 16.93 32.17 15.18 28.79 2.67 h 0.27 h

(1) Prediction Accuracy Comparison: From Table 1, we can draw the following con-
clusions: (1) deep learning-based models outperform the classical statistical and shallow
machine learning models (e.g., HA and SVR) due to lack of spatiotemporal feature ex-
traction capability; (2) attention-based models (e.g., ST-GRAT, GMAN, ST-Transformer,
and Airformer) are superior to STGCN-based models (e.g., DCRNN, and STGCN), as
the attention-based network further improves the capacity to extract global and dynamic
spatiotemporal features using spatiotemporal attention compared to STGCN-based mod-
els; (3) although the LLM-based models (e.g., LLM4TS and FPT) were originally applied
other spatiotemporal analysis tasks such as traffic flow prediction, they generalize well
to nationwide industry PM2.5 prediction; and (4) compared with all baselines, STLLM-
ECS demonstrates the best prediction accuracy, proving that STM can effectively extract
spatiotemporal correlations and GLLM can generate prediction sequences thanks to the
extensive intrinsic knowledge in the pretrained GPT-2.
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(2) Training Efficiency Comparison: According to TT, AT, and GPUM, shown in Table 1,
the following conclusions can be drawn. First, the TT of HA and ARIMA is lower than that
of the other deep learning-based models due to their simple structures. Second, among
the deep learning-based models, the LLM-based models (FPT and LLM4TS) have the
lowest TT and GPUM. This is because most of the parameters in these models are frozen,
and only a small portion of the parameters need to be trained. Third, except for FPT and
LLM4TS, the TT of STLLM-ECS is the shortest. Meanwhile, the AT of STLLM-ECS does
not exceed 0.5 h. This reveals that STLLM-ECS maintains satisfactory accuracy with small
time overheads. Finally, due to its small-scale structure, the GPU memory overhead of
STLLM-ECS is relatively small. The main reason for this is that the size of the processed
subgraphs is small, allowing STLLM-ECS to maintain relatively low GPU memory usage
even though the size of the national sensor network is large.

5.2.2. Case Study

A case study was conducted to visualize the fitting results of STLLM-ECS. The Ji-
NanHuaGongChang site in Shandong and the TongZhouXinCheng site in Beijing were
chosen for evaluation. We plotted the fitting curves for 500 continuous hours using HA,
GMAN, and STLLM-ECS, as shown in Figure 4, observing the following conclusions. First,
HA fails to learn the complex nonlinear relationships in industry PM2.5 data. Second,
compared with HA, GMAN can extract spatiotemporal correlations, improving the ability
in fitting; however, GMAN cannot recognize sudden changes in industry PM2.5 at the
JiNanHuaGongChang and TongZhouXinCheng sites. Third, our proposed STLLM-ECS
achieves the best fitting. One potential reason is that the pretrained GPT-2 contains rich
intrinsic knowledge, which help to identify various patterns of change in industry PM2.5.

Figure 4. Results of the industry PM2.5 prediction case study using the JiNanHuaGongChang and
TongZhouXinCheng sites.

5.2.3. Effect of Hyperparameters

Figure 5 illustrates the MAE and RMSE of STLLM-ECS on 1065 sites under different hy-
perparameter settings for predicting the next 36 h. When one hyperparameter was adjusted,
the other hyperparameters were kept at their default optimal values (e.g., Nh = 4, d = 16,
L = 1, and LGPT = 6). As shown in Figure 5a,b,d, the more complex model structures make
it easier to underfit the data, while the simpler model structures make it easier to overfit.
Figure 5c illustrates that the model with fewer ST blocks achieves the best prediction
accuracy. This shows that stacking too many ST blocks leads to error accumulation.
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Figure 5. Experimental results under different hyperparameter settings on the nationwide industry
PM2.5 dataset.

6. Conclusions

In this paper, we have proposed a novel framework entitled STLLM-ECS for securely
predicting nationwide industry PM2.5 in China. Specifically, the nationwide sensor network
is first partitioned into several subgraphs. Each subgraph is been assigned an ECS. We then
deploy STLLM on each ECS to extract spatiotemporal correlations and infer prediction
sequences in the subgraphs. We conducted experiments on a nationwide sensor network
throughout China’s industrial areas. Our experimental results show that STLLM-ECS is
superior to state-of-the-art baselines in prediction performance.
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Abstract: With the rapid development of heterogeneous network technologies, such as mobile edge
computing, satellite communications, self-organizing networks, and the wired Internet, satisfying
users’ increasingly diversified and complex communication needs in dynamic and evolving net-
work environments has become a critical research topic. Ensuring secure and reliable information
transmission is essential for stable network operation in these complex environments. Address-
ing this challenge, this study proposed a secure and reliable multi-objective optimized multipath
transmission algorithm for heterogeneous networks to enhance security and reliability during data
transmission. The core principle of this algorithm was that multipath transmission can provide
additional protection through redundant paths. This redundancy ensured that even if one path is
attacked or fails, alternative paths can maintain data integrity and reachability. In this study, we
employed the Optimized Non-dominated Sorting Genetic Algorithm II (ONSGA-II) to determine the
range of the initial population and filter suitable paths by optimizing them according to different
demand objectives. In the path selection process, we introduced an innovative deletion graph method,
which ensures that redundant paths do not share any common links with the original paths, except
when there are unique links. This approach enhances the independence of transmission paths and
improves the security of the transmission process. It effectively protects against security threats such
as single points of failure and link attacks. We have verified the effectiveness of the algorithm through
a series of experiments, and the proposed algorithm can provide decision-makers with high-reliability
and low-latency transmission paths in heterogeneous network environments. At the same time, we
verified the performance of the algorithm when encountering attacks, which is superior to other
classical algorithms. Even in the face of network failures and attacks, it can maintain a high level of
data integrity and security.

Keywords: heterogeneous network; multi-objective optimization; multipath transmission; privacy
protection; security; reliability

1. Introduction

Heterogeneous networks, a significant research direction in the field of networking,
have demonstrated a vigorous development momentum. These networks are composed
of various types of devices, communication technologies, and network structures [1]. The
research scope is broad, encompassing mobile edge networks [2,3], satellite networks [4,5],
self-organized networks [6,7], and the wired Internet [8,9]. The objective of constructing
heterogeneous networks is to integrate diverse network resources to provide users with
more flexible, efficient, and reliable communication services, thereby meeting increasingly
diverse and complex communication needs. Despite the significant advantages of heteroge-
neous networks, their security still faces serious challenges. For instance, replay attacks,
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distributed denial-of-service (DDoS) attacks, and privacy breaches can lead to network
disruptions, transmission failures, or even more severe consequences. Therefore, security
management in heterogeneous networks remains a critical research area, with the secure
transmission of network information being a primary focus.

To address security issues in heterogeneous networks, researchers have proposed
various approaches, including strategies such as mobile target defense, privacy protection,
and malicious traffic detection to counter complex network threats. Data encryption
techniques are most commonly employed to secure data transmission. According to a
Google report, encrypted data accounted for more than 80% of total network traffic as of
2024. Despite this high percentage, data breaches have become more frequent, primarily
due to security vulnerabilities in network data transmission [10]. The main reasons for
these vulnerabilities include the following: encryption and decryption algorithms typically
require substantial computational resources, leading to high computational complexity
and significant operational costs for nodes [11]; the rise of intelligent algorithms, such as
semantic recognition, enables attackers to infer the overall content by obtaining only part of
the data [12]. Clearly, avoiding malicious nodes during transmission is an effective method
to prevent data leakage. Thus, there is a need to develop secure, resilient, and efficient
detection techniques to manage malicious nodes within the network to defend against
network attacks [13].

However, existing detection solutions are not yet adequate for defending against
the latest internal and external threats. These models typically require monitoring both
potential internal and external attacks [14–16] and heavily rely on the accuracy of malicious
node detection. Existing studies indicate that the best malicious node detection methods
achieve an accuracy of up to 80%, leaving a 20% uncertainty [17]. While it is feasible
to develop algorithms that compute secure transmission routing paths to avoid data
eavesdropping or interception by malicious nodes, these paths often require significantly
more hops than optimal routes, reducing transmission efficiency and increasing costs.
Additionally, the destination node must collect all transmitted packets to reconstruct the
original data, which imposes very high reliability requirements on the network [18].

Over time, there has been a growing interest in the introduction of dynamic parameters
in cyber adversarial environments, an approach that has allowed cybersecurity protection
techniques to evolve from static protection to dynamic active defense. For example, Moving
Target Defense (MTD) serves as a defense paradigm aimed at minimizing the inherent
advantages of attackers over defenders [19,20]. MTD protocols increase the cost of an
attack, limit the exposure of susceptible components, and deceive adversaries by devel-
oping mechanisms to continuously and unpredictably change system parameters [21,22].
However, even active defense techniques such as MTD still face significant challenges [23].
These methods have a high probability of escape failure because the dynamic scheduling
links of such approaches and the system execution body itself can still be “bypassed or
short-circuited” by exploiting high-risk vulnerabilities. Additionally, the diversity and
dynamism introduced by MTD do not change the logical nature of software and hard-
ware vulnerability backdoors, nor can they prevent coordinated attacks from internal and
external sources [24].

Indeed, packet routing and communication security are two energy-consuming and
critical network functions, making secure and reliable communication in heterogeneous
networks a challenging task [25,26]. Many current approaches primarily detect threats and
respond to them from a policy perspective. However, a more technical response from a
network function perspective can also be effective. For example, the receiver could make
sender know that the receiver has successfully received each packet or group of packets
through an acknowledgment packet sent by the receiving node. However, this technique is
impractical in a lossy environment—such as when the network is under attack from physical
or information domains—because the acknowledgment messages themselves are at risk
of being lost. Additionally, transmitting a large number of acknowledgment messages or
waiting for their reception can significantly increase network overhead and communication
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delay [27]. Therefore, proposing path redundancy and path backup schemes from a
transport perspective is particularly important to enhance reliability and protect against
multiple network threats, such as Denial of Service (DoS) attacks, through multipath routing.
However, in severely constrained environments, even multipath routing techniques may be
difficult to implement, especially if their traditional principles remain unchanged (i.e., the
involvement of all network nodes in the multipath routing process throughout the network
lifecycle). Achieving secure and reliable data transmission in heterogeneous networks is
thus a crucial and complex research area that warrants in-depth exploration. In this context,
our study makes several significant contributions:

1. A generic secure and reliable multi-objective optimized multipath transmission al-
gorithm for heterogeneous networks is proposed: We propose an algorithm capable
of constructing multiple redundant transmission paths in heterogeneous networks
composed of various sub-networks. By considering the unique characteristics and
task requirements of heterogeneous networks, multiple optimization objectives are
introduced into the path selection process. This allows the computation of multiple
optimal paths that not only meet performance requirements such as delay and reliabil-
ity but also effectively avoid potential security threats, ensuring efficient and secure
transmission across different types of network environments.

2. Optimization of path planning decisions: Path planning decisions in this context
represent a mixed-integer programming problem (MIPP), an NP-hard problem. Addi-
tionally, there are trade-offs between optimization objectives, and the dimensionality
of the solution is variable, making it difficult for traditional algorithms to solve these
problems in polynomial time. To address this, we propose optimizing the initial popu-
lation range using the Optimized Non-dominated Sorting Genetic Algorithm II, which
considers multiple objective functions, such as task reliability and delay. This approach
filters out the optimal combination of paths to satisfy different demand objectives,
ultimately obtaining the Pareto-optimal solution set for the optimization problem.

3. Innovative application of the deletion graph method: After calculating the primary
path, we propose simplifying the topological map using the deletion graph method.
Unless no other links are available, this method ensures that any redundant paths do
not share common links with the original path. This approach enhances the security
of the transmission process and improves transmission reliability. The deletion graph
technique searches for redundant paths on the new pruned graph by gradually
deleting all links on the original paths, ensuring that these paths are physically
independent from the original paths.

4. Experimental validation and evaluation: We further validate the effectiveness of the
proposed method through comparative analysis and experimental demonstration.
The adaptability and robustness of the algorithm in complex and changing network
environments are highlighted. The flexibility of the proposed algorithm in terms of
optimization strategy is demonstrated by adopting a soft update strategy to dynam-
ically adjust network weight parameters. This strategy allows for the collaborative
optimization of the multi-objective problem under different priorities. Experimental
results show that the proposed algorithm exhibits significant advantages in the face
of malicious attacks and network failures, maintaining a high transmission success
rate and low latency.

This study highlights the potential of multi-objective optimized multipath transmis-
sion algorithms in addressing the challenges of secure and reliable communication in
heterogeneous networks. By leveraging advanced techniques like NSGA-II and the dele-
tion graph method, the proposed solution offers a robust and adaptable framework capable
of maintaining high levels of data integrity and security even in the face of network failures
and attacks. The rest of this paper is organized as follows. Section 2 details the specific
methods for achieving multi-objective optimization in multipath transmission for heteroge-
neous networks. In Section 3, we demonstrate the effectiveness of our proposed method
through experimental validation. In Section 4, we review the state of the art in research on
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multi-objective optimization and multi-objective transmission. Finally, Section 5 provides a
summary and discusses future research directions.

2. Methodology
2.1. System Model

This paper proposes a dual-network architecture for secure and reliable transmission
in heterogeneous networks. The system model comprises heterogeneous transmission
network resources, including satellite networks, the Internet, mobile networks, and self-
organized networks, as illustrated in Figure 1. The network architecture employs a layered
decoupling design to separate the transmission control layer from the network resource
layer. This separation forms a flexible dual-network structure, corresponding to the trans-
mission control network and the network resource network. The network resource layer is
designed to ensure stability and reliability while allowing for network flexibility, scalability,
and programmability of the forwarding plane. It provides redundant physical transmission
channels, enhancing the robustness of the network. The transmission control layer is
responsible for the reliable transmission of information. It utilizes innovative lightweight
sharing algorithms, Delay Tolerant Networking (DTN), and other technological means to
flexibly address diverse information transmission needs. The transmission control layer
constructs a logically independent overlay network, with virtual nodes abstracted from the
transmission control system. These virtual links correspond to the heterogeneous network
access points in the network resource layer. Neighboring nodes are connected by multiple
virtual links, forming redundant and reliable transmission paths.

Satellite 
network

Mobile 
network

Internet

Ad hoc 
network

Resource Network
(Heterogeneous network)

Transmission Control
(Stacked network)

Business System
Business Terminal Mocha ITOM Data encryption/decryption

Figure 1. System architecture diagram.

By covering the network, the overall information of the network is shared with
each other through lightweight consensus algorithms, and the transmission path is pre-
calculated in the stacked network for information transmission in the physical network.
The business system issues tasks and instructions at the upper level, while the transmission
control layer encapsulates transmission-related functions into service-oriented entities,
forming corresponding transmission control service entities. With the help of transmission
control interfaces, resource collection and synchronization, path strategy control, and infor-
mation transmission control are completed. We establish an identification system in the
resource network layer to achieve automatic conversion of heterogeneous access protocol
systems and consensus broadcasting between nodes, forming a unified resource status
table for the entire network and providing support for transmission control services.

For the resource network layer, to address the characteristics of physical transmission
network resources, such as heterogeneity and mobility, an overlay network based on overlay
technology is constructed. This overlay network leverages various heterogeneous network
resources to build a transmission control system, thus enabling the unified management
and utilization of these diverse resources. By employing heterogeneous multi-means
connections between disparate resource networks, the system ensures that at least two or
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more independent transmission channels are linked, thereby enhancing communication
reliability and robustness.

The transmission control layer is the fundamental component of the system, respon-
sible for establishing and managing physical information transmission channels across
heterogeneous networks to support the operation of the secure transmission control over-
lay network. By interconnecting multiple heterogeneous network resources and utilizing
dynamic networking functions, the transmission control system can effectively establish
physical information transmission channels across heterogeneous networks. A consensus
algorithm is used between transmission control systems to achieve information synchro-
nization among distributed transmission control systems, thereby establishing a unified
node resource and link state information table across the network. Based on this table,
the system can execute redundant dynamic path calculations and path policy control
through identification, ensuring the routing of heterogeneous networks is reachable and
guaranteeing highly reliable information transmission.

The business system, as the user side, adapts to various types of service terminals and
accepts operation and maintenance management. When accessing the transmission control
system, the business system can perform encryption and decryption operations on the data
as needed to enhance the security and reliability of system transmission. Concurrently,
the business system can interact with the transmission control system to dynamically
adjust the transmission strategy according to system demand and business requirements,
guaranteeing the timely transmission and effective management of information.

The preceding network architecture proposes a secure and reliable multi-objective
optimized multipath transmission algorithm for heterogeneous networks, aimed at safely
and reliably delivering information from the source to the destination. The algorithm’s
framework is depicted in Figure 2. Firstly, the data acquisition module is responsible
for obtaining the topological state of the network, the link state of each node, and the
connectivity state of the links from the heterogeneous network. Then, this information will
be fed into the path planning module, which generates a solution set of all feasible paths
from the source to the destination. And the multi-objective optimization module processes
this solution set to determine Path 1, which is then passed to the multipath computation
module. This module generates a simplified topological graph and updates node states.
The newly generated graph and updated node states are subsequently re-evaluated by the
path planning module and the multi-objective optimization module to determine Path 2.
Ultimately, the system outputs a multipath transmission solution from the source to the
destination, ensuring secure and reliable data delivery.

Data acquisition data 
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module 

Topology 
information

Node status

Path 1
Path 

planning 
module

Feasible 
path 

solution set

Multi 
objective 
optimizati

on 
module

Multipath computing module

Path 2

Output 
multipath 

transmission 
scheme

Heterogeneous 
Network

Figure 2. Algorithm framework diagram.

The specific implementation process is depicted in Algorithm 1. This algorithm
computes multiple redundant transmission paths that satisfy the optimization objectives,
utilizing network topology information and task requirements. The process involves the
following steps: (1) Initialize the current network topology data and optimization parame-
ters. (2) Obtain network topology information from the heterogeneous network, including
the link status of each node and the connectivity status of the links. (3) Execute a variant of
the algorithm based on depth-first search. This step recursively searches all feasible paths
in the network, ensuring there are no duplicate vertices in each path within the set of paths.
During the search, the algorithm records the length of the current path and ceases further

176



Electronics 2024, 13, 2697

searching when the path length exceeds the known maximum path length. This is achieved
by optimizing the initial population size to reduce unnecessary computation. (4) Actively
screen suitable paths using a multi-objective optimization algorithm to obtain the initial
path. The objective is to maximize path reliability and minimize transmission delay. This
study employs the optimized NSGA-II algorithm, which is based on the concepts of genetic
algorithms and Pareto optimality, widely used in multi-objective optimization problems.
The global search capability of the optimized NSGA-II algorithm helps circumvent the
pitfall of local optimal solutions during the iteration process. (5) Utilize the multipath
computation module to simplify the topology based on the first optimal transmission
path. The core operation involves performing three distinct types of simplifications to the
network topology graph to ensure that the newly generated path has no common links with
the original path. (6) Re-run the depth-first search variant and multi-objective optimization
steps with the pruned new topology graph to obtain the second path. (7) The final output
comprises two paths that satisfy the optimization objectives.

Algorithm 1: Secure and Reliable Multi-Objective Optimization Multipath
Transmission Algorithm for Heterogeneous Networks

Input : heterogeneous network G(V, E), source node vs, target node vt,
optimization parameters

Output : Multiple optimal transmission paths

1 Initial: the current network topology data and optimization parameters.
2 Obtain network topology information: the link status and connectivity status of

each node.
3 Path search:
4 a. Run a variant algorithm based on Depth First Search (DFS) to recursively

search for all feasible paths in the network.
5 b. Ensure that each path in the path set does not contain duplicate vertices.
6 c. When the path length exceeds the known maximum path length, stop

further search.
7 Path filtering:
8 a. Using NSGA-II for multi-objective optimization, select the best path to

maximize path reliability and minimize transmission delay.
9 b. The global search capability of NSGA-II avoids getting stuck in local

optima during the iteration process.
10 Topology simplification:
11 a. Delete the network topology based on the first optimal transmission path.
12 b. Ensure that there is no common link between the new path and the

original path.
13 Repeat path search and filtering:
14 a. Re input the deleted new topology map into the path search and

multi-objective optimization module.
15 b. Obtain the second path.
16 Return multiple transmission paths that meet optimization objectives.

2.2. Multi-Objective Optimization Strategy

In this study, to address the conflicts among different optimization objectives, we pro-
pose using an optimized Non-dominated Sorting Genetic Algorithm II (NSGA-II) to solve
multi-objective constrained optimal path problems. The NSGA-II is a powerful decision
space exploration engine based on Genetic Algorithm (GA), primarily used to solve multi-
objective optimization problems (MOOPs) [28]. Among the branches of multi-objective
optimization problems, combinatorial optimization problems (COPs) are considered some
of the most challenging and complex. Since most COPs are NP-hard, their computational
complexity increases significantly as the problem size grows. Consequently, approximate

177



Electronics 2024, 13, 2697

methods such as metaheuristics are preferred over classical methods for solving such
problems [29,30]. Multi-objective optimization involves finding the best possible solutions
for multiple objectives within a given domain. A MOOP consists of a set of n decision
variables, k objective functions, and a set of constraints comprising m inequality constraints
and p equality constraints. The optimization objective is to find solutions that satisfy all
constraints while optimizing the objective functions.

Min/Max y = f (x) = ( f1(x), f2(x), . . . , fk(x)), k ≥ 2 (1)

Subject to gi(x) ≤ 0, i = 1, 2, . . . , m (2)

hj(x) ≤ 0, j = 1, 2, . . . , m (3)

Formally, x = (x1, x2, . . . , xn) ∈ D is the n-dimensional decision vector in X ⊆ Rn, and
y is the k-dimensional objective vector in Rk. f is defined as the mapping function, gi is the
i-th inequality constraint, and hj is the j-th equality constraint. Thus, Equations (2) and (3)
determine the set of all feasible solutions X, so it can also be written as a set of different
feasible solutions (x1, x2, . . . , xn) ∈ X.

Suppose x1, x2 ∈ X are two feasible solutions to a multi-objective problem. A solution
x1 can be regarded as superior to x2 if the following condition is satisfied: x1 is superior to
x2 in at least one of the objectives and no worse than the others. In this case, x1 is said to
dominate x2. {

x1 ≺ x2 ⇔ fi(x1) ≤ fi(x2), ∀i ∈ {1, 2, . . . , m}
∃j : f j(x1) ≤ f j(x2)

(4)

The j-th value of the objective function for the decision vector x is denoted by f j(x).
The solution space is denoted by X, ≺ represents the dominance relation. Let x ∈ ψ ⊆ X,
if all other solutions in ψ do not dominate x then x is nondominated with respect to the
subset ψ. This means that x is nondominated with respect to ψ. Methods for identifying
Pareto-optimal solutions include NSGA-II, the Pareto Adaptive Algorithm (APA), and
others, which are employed in this study.

Optimization problems frequently exhibit not a single solution but a set of solutions,
where improving one objective function necessarily entails a reduction in another. Such
a solution is termed a nondominated or Pareto-optimal solution, and all Pareto-optimal
solutions constitute a Pareto-optimal set (PS). In this context, a Pareto-optimal solution
x ∈ X is nondominated with respect to the entire solution space ψ. The set of all Pareto-
optimal solutions constitutes the Pareto-optimal set (PS). The objective vector corresponding
to the Pareto-optimal set is defined as the Pareto frontier, as illustrated in Figure 3.

f1

f2

dominated sloution

non-dominated solution

pareto front

Figure 3. Pareto domination.
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The NSGA-II is an enhanced iteration of the Non-dominated Sorting Genetic Algo-
rithm (NSGA), widely utilized in multi-objective optimization problems due to its elitist
properties, the absence of the necessity to share parameters, and its rapid computation
speed [31]. NSGA-II effectively avoids falling into local optimal solutions during the itera-
tion process through the use of the crowding distance operator as a diversity preservation
mechanism and the ability to perform global searches based on the concepts of genetic al-
gorithms and Pareto optimality. The optimization objectives proposed in this study include
multiple goals, specifically maximizing reliability and minimizing delay. The objective
of maximizing reliability is to optimize the reliability of the transmission path, thereby
ensuring stability and resistance to interference during data transmission. The objective of
minimizing delay is to optimize the delay of the transmission path, ensuring that data can
be delivered to the target node rapidly and in a timely manner. Therefore, the objective
function can be defined as follows:

min F = min{Rreliabilitymax, delaymin} (5)

min F = w1D + w2(−R) (6)

s.t. D = ∑ ti
R = ∏ rivi

ri =

1
λ

N
∑

j=1
Aj,ice(vj)

E

(
N
∑

j=1
Aj,iS(vi ,vj)

)

ti =
ei
v

R ≥ 0.99
D ≤ 500

(7)

The reliability of the transmission path, R is computed as the cumulative product of the
reliability of each node. The reliability of each node, ri , is determined by node eigenvector
centrality and node similarity. Eigenvector centrality represents the global importance of
a node in the network topology, while the similarity between a node and its neighboring
nodes measures the local importance of the network node. The delay of the transmission
path, D is calculated as the sum of the delays of each link. The delay on each link segment,
di contributes to the total path delay. In the process of multi-objective optimization, we
limit the range of reliability and delay by setting optimization objective constraints. At
the same time, based on the scenario in the algorithm, we prioritize reliability as the first
optimization objective. When the reliability is greater than 0.99, we select paths with a delay
of less than 500 as the selected object. In addition, this algorithm continuously collaborates
on reliability and latency during the cross mutation screening process of offspring by
using optimized NSGA-II algorithm, ultimately achieving Pareto-optimal solution. The
optimization process is described as follows.

The algorithmic process effectively solves the multi-objective optimization problem
in heterogeneous networks, ensuring the reliability and timeliness of information trans-
mission (Algorithm 2). The elitist strategy of NSGA-II optimization retains the best in-
dividuals from the previous generation, allowing the algorithm to avoid local optimal
solutions and improve global search capability. Additionally, the algorithm maintains
population diversity by calculating the crowding distance of individuals in the objec-
tive space, enhancing the stability and convergence of the algorithm. By performing the
non-dominated sorting of the population, the algorithm effectively identifies superior solu-
tions. These characteristics enable the algorithm to excel in multi-objective optimization
problems, improving computational efficiency while ensuring the diversity and compre-
hensiveness of the optimization results. Generating the initial population using heuristics
accelerates the convergence process of the algorithm and enhances the quality of the solu-
tions, thereby achieving efficient, secure, and reliable multipath information transmission.
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Algorithm 2: Multi-objective optimization process of MOMTA-HN algorithm
Input : heterogeneous network G(V, E), source node vs, target node vt,

optimization parameters
Output : Optimal transmission paths

1 Initial: The network with the input parameters.
2 Initialize population: After determining the objective function, use heuristic

methods to obtain a simple path between the source and destination to generate
the initial population.

3 Non dominated sorting and selection: Perform non dominated sorting and
selection on the initial population obtained from the path planning module.

4 Cross and mutation: Performing cross and mutation operations on the selected
population to generate the next generation population.

5 Constraint check and repair: Check whether the generated population meets the
constraint conditions and make necessary repairs.

6 Generate subpopulation: Generate the first generation subpopulation and update
the evolutionary algebra.

7 Fast non dominated sorting: Perform fast non dominated sorting on each
generation of population.

8 Repeat the above steps until the maximum evolutionary number is reached.
9 Return Pareto frontier solution.

2.3. Multipath Transmission Algorithm

This paper proposes a framework for multipath transmission algorithms based on
hierarchical culling. The core operation involves performing three different types of simpli-
fication on the network topology graph. After the NSGA-II-based multi-constraint optimal
path algorithm determines the first path that satisfies the multi-constraint requirements,
the framework performs different simplification operations based on varying situations to
obtain the second path.

2.3.1. The First Type of Simplification Operation

The core idea of the first type of simplification operation is to ensure the indepen-
dence of the new paths by fine-grained management and deletion of the heterogeneous
subnetworks where the source and destination nodes are located. As illustrated in Figure 4,
new links are obtained by deleting different subnetworks and links. The red, yellow, blue,
and purple clouds on the left represent different heterogeneous networks. The source
and destination nodes are node S and node D, respectively. The first calculated path is
S-E-I-K-N-D. Through the first type of graph deletion operation, we deleted the nodes and
links that the purple heterogeneous network and the first path in the red and yellow hetero-
geneous networks passed through. Therefore, the second calculated path is S-A-B-G-L-D.
The specific steps are as follows:
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Figure 4. Schematic diagram of the first type of simplification operation.

Subnetwork lookup: Identify the subnetworks where the source and destination nodes
are located separately. This step ensures that the network locations of the source and
destination nodes are identified.
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Path node subnetwork identification: Identify the subnetwork in which each node
(other than the source and destination nodes) on the first path that satisfies the multi-
constraint requirement is located. This step provides the basis for subsequent simplification
operations by identifying the network locations of the intermediate nodes on the path.

Subnetwork compare and delete: Determine if the subnetwork where each node on
the path is located is the same as the subnetwork where the source or destination node
is located. If it is the same, delete the node and its associated links. Otherwise, delete all
nodes within the subnetwork where the node is located and the links associated with each
node in the subnetwork.

These operations result in a new network topology graph. At this point, the NSGA-
II-based multi-constraint optimal path algorithm is used again to find a second path that
satisfies the multi-constraint requirement. If the second path exists, the search is successful;
otherwise, the second type of simplification operation is used.

2.3.2. The Second Type of Simplification Operation

The core idea of the second type of simplification operation is to delete every link
on the first path that satisfies the multi-constraint requirement in the network topology.
As illustrated in Figure 5, new links are obtained by deleting different subnetworks and
links. The red, yellow, and purple clouds on the left represent different heterogeneous
networks. The source and destination nodes are node S and node D, respectively. The first
calculated path is S-E-I-K-N-D. Through the second type of graph deletion operation, we
removed the nodes and links that the first path passed through in the red, yellow, and
purple heterogeneous networks. Therefore, the second calculated path is S-B-J-L-D. The
specific steps are as follows:
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Figure 5. Schematic diagram of the second type of simplification operation.

Link deletion: In the network topology, delete each link on the first path that satisfies
the multi-constraint requirement. This ensures that the new path does not intersect the
first path in terms of physical links, thus improving the independence of the paths and the
overall reliability of the system.

Path computation: After performing the second type of simplification operation,
obtain a new network topology map. At this point, the NSGA-II-based multi-constraint
optimal path algorithm is used again to find a second path that satisfies the multi-constraint
requirement. If the second path exists, the search succeeds; otherwise, the third type of
simplification operation is used.

2.3.3. The Third Type of Simplification Operation

The core idea of the third type of simplification operation is to find a new independent
path by refining the link processing based on the link bottleneck on the first path. As illus-
trated in Figure 6, The red and yellow clouds on the left represent different heterogeneous
networks. The source and destination nodes are node S and node D, respectively. The first
calculated path is S-A-F-O-R-D. It can only go through link FO. At this point, FO is the only
link of the network, and nodes O and F belong to the point cut set of the network, while
link FO belongs to the edge cut set. When the link FO is deleted, the network topology will
split into two disconnected subgraphs. In this situation, the first and second types of simpli-
fication methods become ineffective, necessitating the use of the third type of simplification.
Based on link FO, the path is divided into two distinct subgraphs. Each subgraph will then
re-determine the source and destination nodes and apply the second type of simplification

181



Electronics 2024, 13, 2697

again to find a second path that satisfies the multi-objective optimization requirements.
Therefore, the second calculated path is S-E-F-O-T-D. The specific steps are as follows:
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Figure 6. Schematic diagram of the third type of simplification operation.

Identify the link bottleneck: Locate the nodes on the first path where only two links
are connected, i.e., the links that may have “link bottlenecks”. These links are the weakest
points in the path and require special handling.

Path splitting: Split the first path into two parts based on unique links. This step
refines the path processing to ensure the new path avoids these bottleneck links.

Path computation: Apply the second simplification method again to find a second
path that satisfies the multi-constraint requirements. This step ensures that a second path is
found even in the presence of a link bottleneck.

The main purpose of the three types of simplification operations is to significantly
improve the overall reliability of the two paths. The first type of simplification ensures that
the nodes on the second path are in different subnets from the nodes on the first path. If
the subnet of a node on the first path fails, the node on the second path can still transmit
data normally, improving the system’s fault tolerance. The second type of simplification
ensures that the two paths do not share links. If a link on the first path fails, the data on
the second path can still be transmitted normally, enhancing the system’s redundancy and
data transmission reliability. The third type of simplification provides an effective path
scheduling scheme for cases where data can only be transmitted over specific segments of
links on the first path. This operation ensures that even with a link bottleneck, a second
path can be found that satisfies the multi-constraint requirements, thereby ensuring the
high reliability and availability of the system.

The multipath transmission algorithm framework based on hierarchical culling, as
proposed in this paper, offers an efficient and reliable multipath transmission scheme
through three different types of simplification operations combined with the NSGA-II multi-
objective optimization algorithm. This framework not only improves the independence
of paths and the overall reliability of the system but also ensures the high efficiency
and security of information transmission. It is particularly suitable for the multipath
transmission requirements in complex heterogeneous network environments. By fine-
grained management of the network topology graph and path planning, the algorithm
effectively addresses various transmission challenges, providing robust technical support
for achieving highly reliable network communication.

3. Experiment
3.1. Experiment Setup

To demonstrate the rationality and applicability of the proposed evaluation method,
we selected the ChinaNet network from the Topology Zoo as the target for this experi-
ment [32]. The Topology Zoo contains 261 real network topologies from around the world
and is recognized by network researchers as a publicly available dataset for experimen-
tal testing, making it a valuable resource for network-related research and experiments,
particularly for various network simulations.

As shown in Figure 7, the topology of the ChinaNet network, which we chose as the
test network for this paper, contains 42 nodes and 66 edges. The topology graph reveals
the presence of both centralized key nodes and edge nodes, thus allowing us to better
characterize different styles within the network. When designing the experiments, we
considered the connectivity between the topology nodes and the ease of operation. We
chose ONOS 2.4.1 and Mininet to build the experimental environment. Mininet allows for
the flexible setup of network topology based on specific requirements, while the ONOS
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controller can automatically disseminate flow tables and control the link relationships
between nodes. In the subsequent attack experiments, we could easily select the nodes to
attack. We replicated the ChinaNet network in Mininet and set various parameters such as
IP address, MAC address, and bandwidth according to the actual network.

(a)

(b)
Figure 7. ChinaNet network topology. (a) Geographic map; (b) PYTHON generation graph.

As shown in Figure 8, based on the actual network configuration, we divided the
network topology into different heterogeneous sub-networks according to a ratio of 2:3:1:4.
Since nodes in different sub-networks exhibit varying information transmission perfor-
mance, we define the common transmission delay of different heterogeneous networks
as different unit times, i.e., the time it takes for data to traverse a link of length 1 in the
topology, based on data from Google. The node types and their corresponding transmis-
sion unit delays are defined as follows: Dark blue nodes represent wired interconnection
networks with a unit delay of 20 ms. Light blue nodes represent the mobile Internet
with a unit delay of 5 ms. Yellow nodes represent satellite networks with a unit delay
of 100 ms. Orange nodes represent drone self-organizing networks with a unit delay of
5 ms. To achieve efficient transmission across different heterogeneous networks, we must
address the protocol conversion problem. When transmitting data across heterogeneous
networks, the protocol fields of packets need to be converted to meet the requirements
of the destination network. Traditional protocol conversion methods typically rely on
complex protocol cross-reference tables, requiring each network node to refer to the table
when transmitting data. This approach not only increases computational overhead but also
introduces potential conversion errors and transmission delays.
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Figure 8. Heterogeneous network composition of ChinaNet network topology.

To address these issues, we propose a cross-layer protocol encapsulation approach.
Specifically, we encapsulate the protocol fields required by different heterogeneous net-
works uniformly in the header of the transport system message at the application layer.
This method allows a network node to parse the relevant fields in the message header
to complete the protocol conversion without referring to a cross-reference table when a
packet enters different heterogeneous networks. This approach simplifies the protocol
conversion process, reduces computational overhead, and improves the efficiency and
reliability of data transmission. Under this cross-layer protocol encapsulation architecture,
data traversing different heterogeneous networks requires only one parsing operation to
complete the protocol conversion, avoiding delays caused by multiple conversions. We
define the uniform delay for cross-network protocol conversion as 50 ms, which includes
the time for parsing message headers and performing protocol conversion. By introducing
the cross-layer protocol encapsulation method, we effectively solve the protocol conver-
sion problem between different heterogeneous networks and enhance the efficiency and
reliability of data transmission.

To better evaluate the security and reliability of the MOMTA-HN algorithm under
attack conditions, we designed a series of experiments to randomly attack different nodes
in the network. In heterogeneous networks, attacks tend to be random and continuous,
with nodes interacting and the network crashing at an accelerating rate. We used the
transmission success rate as a metric to measure the performance of the algorithm. To
ensure the fairness and statistical significance of the experimental results, we performed
1000 independent tests for each round of experiments.

The transmission success rate is calculated using the following formula:

Psuccess =
Nsuccess

Ntotal
(8)

where Psuccess is the success rate, Nsuccess is the number of successful transmissions, and
Ntotal is the total number of trials. For multipath transmission algorithms, the transmission
success rate must be calculated by its complement. Suppose there are m paths in the
network and the attack occurs randomly at any node on any path. After N attempts,
the event of successful transmission on the i-th path is denoted as Si , and the event of
successful multipath transmission S is the case where at least one of all paths is successfully
transmitted. If the success rate of each path independently is P1, P2, . . . , Pm, then the
multipath transmission success rate Pmulti can be calculated by the following formula:

Pmulti = 1−∏m
i=1 (1− Pi) (9)
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where, 1− Pi denotes the probability that the transmission of the i-th path fails, and thus
∏m

i=1 (1− Pi) denotes the probability that all paths fail, while its complement 1−∏m
i=1 (1− Pi)

is the probability that at least one path succeeds. In our experiments, we assume the
existence of m independent transmission paths and evaluate the success rate of each path
independently. Assuming that the number of successful transmissions of the i-th path in N
experiments is NSi, the success rate Pi of the i-th path is

Pi =
NSi
N

(10)

This allows us to systematically evaluate the performance of the MOMTA-HN algo-
rithm in heterogeneous networks, particularly its robustness against malicious attacks. The
experimental results demonstrate the advantages of the algorithm in complex network
environments, as shown below.

3.2. Detailed Analysis and Comparison

Figure 9 presents a comparison of the MOMTA-HN algorithm with the SPFA and Di-
jkstra algorithms. Figure 9a depicts the comparison of reliability, while Figure 9b illustrates
the comparison of delay. In the absence of attacks, we traversed the transmission paths
between all nodes and computed the path transmission delay loss and the path reliability
value for the three algorithms. The path reliability value is the product of the reliability
of the different nodes. Minimum reliability is represented by the positive triangles in the
figure. The minimum reliability for both the MOMTA-HN algorithm and the Dijkstra
algorithm is 99.182%, while for the SPFA algorithm it is 99.004%. Maximum reliability is
represented by the inverted triangles. The maximum reliability for all three algorithms
is 99.999%. Mean reliability is represented by the star in the center of the box. The mean
reliability values for the MOMTA-HN, Dijkstra, and SPFA algorithms are 99.69%, 99.666%,
and 99.654%, respectively. Median reliability is represented by the tan solid line. The
median reliability for all three algorithms is 99.6%.

When calculating the path transmission delay loss, we disregarded the time required
for policy formulation and focused on the transmission time, derived by multiplying
the link relative value by the transmission delay loss through different media, assuming
constant external environmental conditions. Minimum delay is represented by positive
triangles. The minimum transmission delay for all three algorithms is 10 ms. Maximum
delay is represented by inverted triangles. The maximum transmission delay for both the
MOMTA-HN and Dijkstra algorithms is 495 ms, while for the SPFA algorithm it is 425 ms.
Mean delay is represented by the star in the middle of the box. The average transmission
delays for the MOMTA-HN, Dijkstra, and SPFA algorithms are 311.66 ms, 239.5 ms, and
250.06 ms, respectively. Median delay is represented by the tan solid line. The median
transmission delay for the MOMTA-HN algorithm is 325 ms, for Dijkstra it is 270 ms, and
for SPFA it is 290 ms.

We can conclude through numerical analysis and comparison that the SPFA algorithm
exhibited the lowest average delay (270 ms), while the MOMTA-HN algorithm exhibited the
highest reliability. The MOMTA-HN algorithm selects the path with the highest reliability at
the cost of slightly increased transmission delay as a result of multi-objective optimization.
The algorithm enhances transmission security by calculating multiple redundant paths and
ensuring that these redundant paths do not share any common links with the original paths
in non-essential situations. Although the average delay of the MOMTA-HN algorithm is
slightly higher than that of the SPFA algorithm, it has significant advantages in terms of
network reliability. In particular, the MOMTA-HN algorithm is capable of selecting the
path with the highest reliability for data transmission among multiple paths that can reach
the destination during the process of multi-objective optimization. This strategy not only
ensures the stability of data transmission but also improves the overall network quality of
service and user experience to a certain extent.
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(a)

(b)
Figure 9. Comparison of results of different algorithms. (a) Reliability comparison of different
algorithms; (b) delay comparison of different algorithms.

The following presents the results of transmission performance when encountering
attacks, as evaluated by different algorithms.

As illustrated in Figure 10, this study presents the results of transmission success
comparisons among the MOMTA-HN algorithm, the SPFA algorithm, and the Dijkstra
algorithm when encountering attacks. The experiments comprise three scenarios to demon-
strate the performance of each algorithm and their path selection strategies under different
source and destination node configurations.

In Figure 10a, the source and destination nodes are node 9 and node 18, respectively.
In this case, the MOMTA-HN algorithm performs the first type of simplification, which
involves deleting all nodes of the sub-network where the first link transmitting node is
located. This results in the generation of a new multipath for redundant transmission.
The figure illustrates that the red line (MOMTA-HN) is considerably higher than the blue
(SPFA) and green (Dijkstra) lines. Furthermore, the number of successful transmissions
of the MOMTA-HN algorithm exceeds that of the other two algorithms at all stages of
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the attack. The MOMTA-HN algorithm effectively avoids single points of failure through
first-class simplification, thereby enhancing the robustness and reliability of the network. In
contrast, the SPFA and Dijkstra algorithms do not have the same nodes traversed by their
calculated paths due to differing path computation principles. Consequently, the green
and blue lines in Figure 11a do not overlap. This indicates that while all algorithms have
analogous objectives in path selection, the MOMTA-HN algorithm is capable of greater
flexibility in adjusting paths when the network is under attack, thus ensuring the success
rate of transmission.

(a)

(b)

(c)
Figure 10. Transmission success rate of MOMTA-HN, SPFA, and Dijkstra algorithms encountering
attacks with different types of simplifications. (a) Comparison of the number of successful transmis-
sions from node 9 to node 18 encountering an attack; (b) comparison of the number of successful
transmissions from node 18 to node 22 encountering an attack; (c) comparison of the number of
successful transmissions from node 1 to node 9 encountering an attack.
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In Figure 10b, the source and destination nodes are node 18 and node 22, respectively.
The figure shows that the red line (MOMTA-HN) is significantly higher than the blue
(SPFA) and green (Dijkstra) lines. The number of transmission successes of the MOMTA-
HN algorithm is superior to those of the other two algorithms, both in the pre-attack period
and in the later stages when there are fewer remaining nodes. At this juncture, the initial
type of simplification employed by the MOMTA-HN algorithm is rendered ineffective,
necessitating the implementation of a second type of simplification, namely the deletion of
all nodes belonging to the initial link. With this simplification, the MOMTA-HN algorithm
can recalculate the multipath for transmission. The SPFA and Dijkstra algorithms yield
identical results in Figure 11b, resulting in the two lines overlapping.

In Figure 10c, the source and destination nodes are node 1 and node 9, respectively.
The experimental results demonstrate that the red line (MOMTA-HN) is significantly higher
than the blue (SPFA) and green (Dijkstra) lines. Furthermore, the number of successful
transmissions of the MOMTA-HN algorithm outperforms the other two algorithms in both
the pre-attack period and the later period when there are fewer remaining nodes. At this
point, the first transmission path used for source and destination node transmission contains
unique links. When both the Type I and Type II simplification methods of the MOMTA-HN
algorithm prove ineffective, the algorithm employs a multipath computation strategy for
Type III simplification methods, which it then compares with the other algorithms. This
advanced simplification strategy enables the MOMTA-HN algorithm to identify and utilize
new redundant paths, thereby preventing transmission interruptions caused by network
attacks. The experimental results demonstrate that the MOMTA-HN algorithm is still
capable of effectively guaranteeing the success rate of data transmission in this complex
network environment, whereas the SPFA and Dijkstra algorithms are less adept at doing so.

The results of the above comparison experiments demonstrate that the MOMTA-
HN algorithm exhibits a significantly higher success rate in information transmission
than the SPFA and Dijkstra algorithms, particularly in the context of network attacks. The
MOMTA-HN algorithm exhibits enhanced flexibility and reliability in path selection, and its
multi-objective optimization strategy enables it to adapt to diverse network environments,
ensuring the successful completion of transmission tasks. In contrast, the SPFA and Dijkstra
algorithms demonstrate superior path selection capabilities under specific conditions.
However, they lack the flexibility and robustness of the MOMTA-HN algorithm when
confronted with network attacks and complex network environments.

As illustrated in Figure 11, this study presents a comprehensive comparison experiment
among the MOMTA-HN algorithm, the multipath algorithm with the first type of simpli-
fication (MOMTA-I), and the multipath algorithm with the second type of simplification
(MOMTA-II). The experiment is designed to evaluate the performance of these algorithms
under attack scenarios, focusing on their ability to maintain successful transmissions.

In Figure 11a, the source and destination nodes are node 9 and node 18, respectively.
At this juncture, the MOMTA-HN algorithm needs to perform only the first type of simpli-
fication, which involves deleting all nodes in the sub-network where the transmission node
of the first link is located. This simplification aims to derive a second path for redundant
transmission. The multipath algorithm that employs only the first type of simplification
can also compute the same result. The deletion method of multipath algorithms using only
the second type of simplification is simpler compared to the first type. After the optimiza-
tion filtering of the multi-objective optimization algorithm, the second path calculated is
identical for all the algorithms mentioned, causing the three lines in the figure to overlap.
This scenario demonstrates that under certain conditions, both types of simplifications can
achieve similar results.

In Figure 11b, the source and destination nodes are node 18 and node 22, respectively.
In this scenario, the initial simplification approach of the MOMTA-HN algorithm proves
ineffective, necessitating the use of the second type of simplification. This method involves
deleting all nodes associated with the initial link to derive a second path for redundant
transmission. The algorithm that performs only the first type of simplification is unable to
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compute the second path. However, the algorithm that performs only the second type of
simplification can calculate the same second path as the MOMTA-HN algorithm after the
required deletions, resulting in the two lines in the figure overlapping. This demonstrates
the effectiveness of the second type of simplification when the first type fails.

(a)

(b)

(c)

Figure 11. Transmission success rate of MOMTA-HN, MOMTA-I, and MOMTA-II encountering
attacks with different types of simplifications. (a) Comparison of the number of successful transmis-
sions from node 9 to node 18 encountering an attack; (b) comparison of the number of successful
transmissions from node 18 to node 22 encountering an attack; (c) comparison of the number of
successful transmissions from node 1 to node 9 encountering an attack.

In Figure 11c, the source and destination nodes are node 1 and node 9, respectively. At
this juncture, both Type I and Type II simplification methods of the MOMTA-HN algorithm
are ineffective in deriving a second path for redundant transmission. Consequently, Type III
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simplification is required. This advanced method involves a more sophisticated approach
to ensure a new independent path is found, thereby enhancing the system’s robustness.
Both the algorithms that use only the first type of simplification and those that use only
the second type are unable to compute the second path, causing the lines in the figure to
overlap. This highlights the necessity of the third type of simplification in more complex
scenarios where traditional methods fail.

The results of the preceding comparison experiments clearly demonstrate that the
MOMTA-HN algorithm exhibits a markedly superior success rate in information transmis-
sion compared to the multipath algorithms employing only the first type of simplification
(MOMTA-I) or the second type of simplification (MOMTA-II). The MOMTA-HN algorithm
showcases enhanced flexibility and reliability in addressing network attacks. Its advanced
multi-objective optimization strategy allows it to adapt dynamically to diverse network
environments, ensuring the successful completion of transmission tasks. In contrast, while
the SPFA and Dijkstra algorithms demonstrate effective path selection capabilities under
specific conditions, they lack the flexibility and robustness of the MOMTA-HN algorithm
when confronted with network attacks and complex network environments.

The MOMTA-HN algorithm’s ability to utilize multiple types of simplifications al-
lows it to maintain high transmission success rates even under adverse conditions. This
capability is particularly crucial in heterogeneous network environments where attacks
can occur unpredictably and affect various network segments differently. By effectively
managing path redundancy and ensuring that redundant paths do not share critical links
with the original paths, the MOMTA-HN algorithm significantly enhances the overall
network reliability and security.

In conclusion, the experimental results validate the effectiveness of the MOMTA-HN
algorithm in providing robust and reliable data transmission in heterogeneous networks.
Its superior performance, especially in maintaining transmission success rates under attack
conditions, underscores its potential as a highly adaptable and secure solution for com-
plex network environments. This study demonstrates that incorporating multi-objective
optimization and advanced simplification techniques can significantly improve network
resilience and data transmission reliability, offering valuable insights for future research
and development in network security and performance optimization.

4. Related Work

In recent years, the security of network transmission has gained critical importance
due to the increasing complexity and variability of network environments. Particularly in
the field of heterogeneous networks, researchers have been actively exploring methods to
enhance the security and reliability of network transmission. This section reviews related
work from the perspectives of multi-objective optimization and multipath transmission.

4.1. Multi-Objective Optimization

In traditional wireless sensor networks, the most important performance parameters
are typically selected as optimization objectives, with other parameters used as constraints
for optimization. However, these single-objective optimization techniques often struggle to
perform effectively in real network environments [33]. Therefore, the use of multi-objective
optimization (MOO) strategies is more aligned with practical needs. MOO strategies con-
sider multiple performance metrics simultaneously, such as maximum reliability, minimum
delay, and maximum network lifetime. This approach achieves a better performance bal-
ance and meets the complex demands of practical applications. In heterogeneous networks,
each subnetwork has different resources, mission objectives, and constraints due to the
combination of various network resources. Multi-objective optimization strategies are
particularly important to ensure that information reaches the desired destination safely
and reliably. To achieve secure and reliable information transmission, researchers have
proposed various multi-objective optimization strategies.
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Cai et al. [34] proposed a multi-objective algorithm to address the information trans-
mission problem when vehicles switch between different heterogeneous wireless networks
while in high-speed motion. Their algorithm balances service delay and service cost of
packet transmission by adding differential evolutionary variants to the multi-objective evo-
lutionary algorithm, enhancing population diversity and promoting continuous evolution.
Asha et al. [35] proposed a distributed energy-efficient cluster routing based on a clustering
strategy to meet the network energy demands and maintain the quality of service (QoS) for
heterogeneous wireless sensor-based IoT networks. They optimized network QoS parame-
ters such as throughput and delay using a multi-objective squid optimization algorithm to
ensure the best fitness value while optimizing these parameters. Song et al. [36] proposed a
multitasking and multi-objective optimization algorithm for computational offload and
relay communication in an air-ground integrated network consisting of UAVs, EVUs, and
GSNs. The algorithm decomposes emergency communication message transmission into
two multi-objective tasks, optimizing for maximum minimum link transmission rate and
minimum weighted sum of delay and energy consumption. Federated learning and Dual
Deep Q Network (DDQN) jointly optimize resource allocation to improve the model’s
generalization performance.

Pan et al. [37] addressed the resource scheduling problem for device-to-device (D2D)
networks with UAV clusters. They considered the number of UAVs, their locations, trans-
mit power, flight speed, communication channels, and device assignments to maximize
D2D network capacity, minimize the number of deployed UAVs, and minimize the av-
erage energy consumption of all UAVs. Given the mixed integer programming problem
(MIPP) and NP-hard nature of the problem, they proposed a non-dominated sorting genetic
algorithm-III (NSGA-III-FDU) with a flexible solution dimensionality mechanism, a dis-
crete part generation mechanism, and an adjustment mechanism for the number of drones.
Guo et al. [38] discussed the use of multiple reconfigurable intelligent surface (RIS)-assisted
satellite-UAV-terrestrial integrated network (IS-UAV-TN) heterogeneous network commu-
nication with co-optimization performance. They posed a multi-objective optimization
problem for the collaborative UAV concerning obstacles and dynamic environments in the
transmission path to maximize the system’s achievable rate and minimize the UAV’s energy
consumption during a given mission. To facilitate online decision-making, they utilized
Deep Reinforcement Learning (DRL) algorithms to achieve real-time interaction with the
communication environment. Seifhosseini et al. [39] proposed a multi-objective cost-aware
optimization algorithm for task scheduling in heterogeneous Internet of Things, which
optimizes indicators such as execution time, cost, and reliability. They also verified the effec-
tiveness of the algorithm through experiments in different scenarios. Seifhosseini et al. [40]
considered the propagation cost in heterogeneous networks and solved the multi-objective
key entity recognition problem by optimizing the maximum propagation scale and minimiz-
ing the heterogeneous propagation cost. By selecting strategies and hierarchical crossover
operators, more complete Pareto solutions among candidates can be selected during the
evolution process.

The above studies demonstrate that applying multi-objective optimization in hetero-
geneous networks not only improves the security and reliability of transmission but also
offers new solutions for efficient transmission in complex network environments. Combin-
ing evolutionary algorithms, federated learning, and deep reinforcement learning, these
studies have achieved efficient multi-objective optimization, thereby improving network
performance and resource utilization.

4.2. Multipath Transmission

In recent years, researchers have been exploring ways to improve transmission security
and reliability in heterogeneous network environments. Heterogeneous networks, such as
satellite networks, the wired Internet, and mobile communication networks, face numerous
challenges in data transmission due to their complex and variable characteristics. Multipath
transmission protocols use multiple available paths to meet strict quality of service (QoS)
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constraints, achieving goals such as low latency while completing reliable transmission [41].
However, the traditional TCP protocol can only achieve single point-to-point transmission,
and can only re-establish the connection after encountering threats such as attacks that cause
transmission interruption. Therefore, researchers optimized TCP multipath transmission
and proposed algorithms such as SCTP [42] and CMT [43] that can transmit the sender’s
data concurrently through different paths. However, these algorithms still have problems
such as inappropriate packet scheduling, unnecessary packet retransmission, unnecessary
congestion window (CWND) reduction, and receiver buffer blocking (RBB) [44]. In order
to solve these problems, researchers further optimized the traditional TCP algorithm and
proposed MPTCP [45] to use multiple paths to improve the resource utilization of the
transmission path. MPTCP can not only transmit data packets through different paths
according to different strategies, but also has a congestion control (CC) mechanism to
manage network load and avoid congestion.

Okamoto et al. [46] proposed an SCTP extension to mitigate the impact of packet loss
in lossy environments and limit redundant data transmission on different paths, thereby
minimizing network congestion. Silva et al. [47] proposed a selective redundant multipath
transmission (SRMT) strategy that uses the primary path to transmit data and the secondary
path to transmit redundant data. Shailendra et al. [48] proposed an efficient SCTP multipath
scheme (MPSCTP) that transmits packets on multiple paths simultaneously. MPSCTP
solves the problems of packet reordering and invalid CWND growth and improves the
efficiency of multipath transmission. MPSCTP was later enhanced to include full path
delay, taking into account the data rate on each channel, thereby minimizing block delays
on different channels.

Similar to SCTP, MPTCP is a connection-oriented multi-host standard protocol de-
signed to distribute traffic between different routes and provide transparency at the ap-
plication layer. In MPTCP, a session to be transmitted is usually divided into multiple
different data substreams for transmission, and packet loss on different paths can be de-
tected and reordered at the receiving end. Peng et al. [49] further optimized the MPTCP
algorithm to address the problem that the system often misjudges random packet loss as
congestion loss, and proposed a flow-based transmission model to improve the stability of
the transmission system. Cai et al. [50] proposed a packet-differentiated OLIA (D-OLIA)
based on packet loss, combining the delay jitter and CWND jitter eigenvalues to determine
the type of packet loss, making up for the shortcomings of simply judging by delay or
CWND. Oh and Lee [51] proposed a new heterogeneous network multipath transmission
algorithm, which uses the MPTCP algorithm and the receiving end buffer scheduling
strategy to estimate out-of-order packets and allocate packets accordingly based on the
performance differences of each sub-flow, effectively balancing network throughput and
delay performance. Wang et al. [52] studied how to minimize data transmission time in
time-varying networks. The authors proposed a one-time solver that can solve the MDDT
problem in polynomial time and verified the effectiveness of the proposed algorithm.
Ouyang et al. [53] proposed an IMPNC transmission scheme to solve the problem of tra-
ditional TCP single-path transmission delay in low-orbit satellite networks. The scheme
utilizes multiple paths for end-to-end redundant transmission and improves the algorithm
to adapt to limited satellite bandwidth resources.

These studies demonstrate that multipath transmission has significant potential to
improve network performance and reliability, especially in complex heterogeneous network
environments. In conclusion, multi-objective optimization and multipath transmission
techniques play a pivotal role in enhancing the security and reliability of network transmis-
sion. The multi-objective optimization strategy effectively addresses the actual needs in
complex network environments by balancing multiple performance objectives. Further-
more, multipath transmission technology achieves higher data transmission efficiency and
network reliability by utilizing multiple available paths. Consequently, we propose a multi-
objective optimization multipath transmission algorithm for heterogeneous networks. The
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objective is to enhance transmission performance and security in heterogeneous network
environments, better aligning with the needs of practical applications.

5. Conclusions

This paper presents a novel secure and reliable multi-objective optimized multipath
transmission algorithm (MOMTA-HN) for heterogeneous networks. The primary objective
of the algorithm is to provide highly secure and reliable transmission services, even when
network attacks occur in heterogeneous networks. The proposed algorithm optimizes
network task performance metrics, including reliability and delay, by considering multiple
objective functions based on task requirements. Optimizing these objective functions en-
sures the smooth operation of transmission tasks and enhances the overall quality of service
of the network. Furthermore, the algorithm leverages the refined population selection
and ranking mechanism of the optimized Non-dominated Sorting Genetic Algorithm II
(NSGA-II), effectively narrowing the initial population range and improving the conver-
gence speed and optimization efficiency. This improvement enables the MOMTA-HN
algorithm to find the optimal solution in a shorter period, demonstrating higher efficiency
in practical applications. A significant innovation of the MOMTA-HN algorithm is the use
of the pruned graph method to compute multiple paths for redundant transmission. The
application of the pruned graph method makes the MOMTA-HN algorithm more flexible
and secure in path selection. Conventional multipath transmission algorithms frequently
encounter the issue of path sharing, which diminishes the dependability of transmission.
In contrast, the MOMTA-HN algorithm ensures that there are no common links between
the redundant paths and the original paths through the deletion graph technique, thereby
enhancing network resilience and transmission reliability. Finally, this paper validates the
efficacy and superiority of the MOMTA-HN algorithm through comprehensive simulation
experiments and attack tests. The experimental results demonstrate that the MOMTA-HN
algorithm not only maintains a high transmission success rate in the face of network attacks
but also significantly improves the security and quality of service of the network. These
results validate the practicality and reliability of the proposed algorithm in heterogeneous
network environments. In future research, we will consider the impact of transmission
bandwidth on transmission strategies in multi-objective optimization, further optimize
the MOMTA-HN algorithm, and further improve the strategy of deleting graphs in the
multipath transmission stage. And, we will validate it in more practical physical scenarios
to further promote the development of heterogeneous network transmission technology.
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Abstract: Despite recent significant advancements in large language models (LLMs) for medical
services, the deployment difficulties of LLMs in e-healthcare hinder complex medical applications in
the Internet of Medical Things (IoMT). People are increasingly concerned about e-healthcare risks
and privacy protection. Existing LLMs face difficulties in providing accurate medical questions
and answers (Q&As) and meeting the deployment resource demands in the IoMT. To address these
challenges, we propose MedMixtral 8x7B, a new medical LLM based on the mixture-of-experts (MoE)
architecture with an offloading strategy, enabling deployment on the IoMT, improving the privacy
protection for users. Additionally, we find that the significant factors affecting latency include the
method of device interconnection, the location of offloading servers, and the speed of the disk.

Keywords: large language models; efficient inference offloading; mixture-of-experts; Internet of
Medical Things

1. Introduction

In the medical field, the application of conversational large language models (LLM) has
garnered widespread attention to meet the growing demand for personalized healthcare.
However, LLMs deployed on the server side still face significant security challenges, such
as data breaches and unauthorized access, within the network. Developing an IoMT device
that can be deployed on consumer devices is crucial to safeguard user privacy.

The transformer architecture [1] has emerged as a foundational framework for most
LLMs, due to its effectiveness for scalability and ability to outperform previous popular
neural networks in accuracy. LLMs have been widely applied in various domains. By
leveraging edge intelligence, the Internet of Medical Things (IoMT) [2] can collect and
analyze medical information, enabling advice delivery through smartphones, wearable
devices, and smart home sensors. Deployed in IoMT devices, LLMs can provide users with
healthcare services, such as responding to common medical questions and offering health
advice. Moreover, it can maximize the protection of user privacy and avoid privacy leaks
in the network.

However, they present several significant challenges and limitations in healthcare
applications. Given the complex nature of medical data and the specialized knowledge
required in healthcare, direct applications of LLMs can pose risks such as misinterpretations
and inaccuracies. In particular, general LLMs may struggle to grasp medical terminology
and accurately interpret the specific context of medical texts, potentially leading to biased
or incorrect medical advice. The data used in LLMs is sourced from different internet
platforms, varying significantly in quality. While this approach allows LLMs to gather
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vast amounts of information quickly, it also impacts their performance in specific domains,
including healthcare. To harness the full potential of LLMs in the medical domain, re-
training existing general-purpose LLMs based on high-quality medical datasets is a viable
approach. This enables LLMs to attain more accurate language understanding and better
generation quality within specific domains. Furthermore, the selection of parameter scale
has a profound impact on the performance of LLMs based on the transformer architecture,
as a surplus of parameters can cause overfitting, while a shortage can restrict the LLM’s
performance in medical applications. The resource requirements of LLMs present a chal-
lenge in deploying medical LLMs on IoMT devices. LLMs commonly employ a strategy
of distributing multiple models across different devices to enhance performance. This
distributed approach necessitates communication between multiple devices to coordinate
processing and enhance overall system efficiency. In this strategy, different levels of latency
can significantly impact the inference speed of distributed LLMs.

To meet individuals’ personalized healthcare needs, we aim to establish a new medical
LLM specifically designed for deployment on IoMT devices. The literature includes several
applications of LLMs in network communications. For example, Xu et al. [3] discuss their
application in space–air–ground integrated networks, while [4] explore their use in 6G
networks. To integrate theoretical results from these articles and achieve this goal, we
use the latest mixture-of-experts (MoE) model from Mixtral, named Mixtral 8x7B [5], for
fine-tuning in the medical domain, thus creating a new medical LLM, named MedMixtral
8x7B. Its MoE architecture can enhance performance, leading to higher accuracy in medical
questions and answers (Q&As). To deploy MedMixtral 8x7B on IoMT devices, we utilize the
methods proposed by [6], incorporating Accelerate’s offloading techniques proposed by [7],
which allows Mixtral 8x7B to require fewer VRAM and facilitate its deployment on IoMT
devices. This ensures better protection of users’ privacy data. We conducted extensive
evaluations on MedMixtral 8x7B, demonstrating its advantages over strong general large
models such as ChatGPT and Llama3 in various aspects of medical Q&As. The efficient
offloading architecture saves memory, and research on inference latency suggests key
strategies for reducing latency include enhancing disk speed, storing more model weights
in the CPU’s RAM rather than on disk, and opting for wireless communication.

The contributions of this paper are summarized as follows:

• To obtain efficient medical LLMs for healthcare applications, we fine-tune an LLM
based on the MoE architecture, named MedMixtral 8x7B, using medical datasets to
meet individuals’ personalized healthcare needs.

• To deploy MedMixtral 8x7B on IoMT devices, we propose a novel offloading strategy,
which allows the deployment of MedMixtral 8x7B in the IoMT with less resource
requirement, thus enhancing the privacy protection for users.

• To assess latency’s impact on LLM inference speed, we analyze both local and intercon-
nection communication models. We highlight the critical role of latency in inference
processes and propose several strategies to reduce it. These include enhancing disk
speed, storing more model weights in the CPU’s RAM rather than on disk, and opting
for wireless communications.

2. Related Work
2.1. Large Language Models

LLMs, such as the ChatGPT series, have developed significantly in recent years,
especially in model architecture, parameter scale, reinforcement learning, and so on. In 2018,
OpenAI, in [8], proposes the methods of generative pre-training of a language model. The
generative pre-trained transformer (GPT) is a unidirectional autoregressive model. Based
on the GPT, OpenAI developed ChatGPT, which is one of the most influential LLM series.
To address the issue of requiring fine-tuning layers in GPT-1, GPT-2 underwent training
on a larger scale, possessing more parameters, and eliminating the need for fine-tuning
layers. In 2019, OpenAI, in [9], proposes GPT-2, using this model, without fine-tuning for
specific tasks, it enhances performance across tasks in a logarithm linear manner, and it can
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still achieve good results. To enhance contextual understanding and reduce computational
overhead, OpenAI released GPT-3. In 2020, OpenAI, in [10], proposes GPT-3, which is
trained by 1750B parameters, and achieves high performance on many NLP datasets. In
2022, OpenAI, in [11], designed the reward model (RM), and used reinforcement learning
with proximal policy optimization (PPO) to update the GPT model. In 2023, OpenAI
proposes GPT-4 [12], which is one of the highest-performing LLMs.

Although the ChatGPT series LLMs have high performance, the latest ChatGPT is
not an open LLM. In addition to ChatGPT, many other companies and institutions have
also proposed high-performance open LLMs. Zhao et al., in [13], survey the field of LLM,
showing the development of LLMs. After the proposal of the transformers architecture, to
enhance contextual understanding capability, Devlin et al., in [14], propose a new model,
BERT, which is a simple and powerful model that has great results in natural language pro-
cessing (NLP) tasks. To further improve the performance of BERT, Liu et al., in [15], propose
RoBERTa, RoBERTa based on BERT, and introduce several improvements. RoBERTa em-
ploys dynamic masking, training with complete sentences without next sentence prediction
(NSP) loss, large batch sizes, and larger byte-level byte pair encoding (BPE) for training.

Apart from extending BERT, there are also proposals for different architectures based
on transformer. Google proposes the Text-to-Text Transfer Transformer (T5) model in [16].
T5-model modeling every text-related question as a “text-to-text” problem, using the same
model, objective function, training, and decoding process for each NLP task, can lead to
better performance.

In addition to different model architectures, there are also many models trained based
on the traditional transformer architecture. Meta AI, in [17,18], proposes Llama, an open
and efficient LLM. Llama is open and free for anyone, allowing individuals to learn about
the structure of LLMs from Llama. Additionally, users can fine-tune the model based on
Llama. Meta AI, in [19], proposes OPT, which is an open pre-trained transformer LLM. To
satisfy the model requirements for the Chinese language, Zhang et al., in [20,21], propose
CPM series LLMs, which are Chinese pre-trained LLMs. To meet the needs of generating
computer programs, Nijkamp et al., in [22], propose CodeGen, which is a series of LLMs
trained on natural language and programming language data, with 16.1B parameters.
CodeGen series LLMs have advanced in generating computer programs through input–
output examples or natural language descriptions. To fill the gap in open-source models
with a large number of parameters, Le et al., in [23], propose BLOOM, which is an open
LLM with 1760B parameters. To further expand the usability of multilingual language
models, Zeng et al., in [24], propose GLM-130B, which is an English and Chinese pre-
trained LLM with 130B parameters. To address the absence of open LLMs based on the
MoE structure, Jiang et al. propose Mixtral 8x7B in [5], a model using the MoE architecture,
where each token can use 47B parameters but only 13B are used for model inference.

Based on these LLMs, various domain-specific large models have emerged. Due
to their conversational capabilities, LLMs are particularly well suited for applications
in medical Q&As. Many medical LLMs have demonstrated remarkable abilities in the
healthcare field. Luo et al., in [25], propose BioGPT. It is a medical LLM based on GPT-2.
BioGPT is first pre-trained on a large-scale biomedical literature dataset, followed by fine-
tuning and the adoption of new prompting strategies. It has particularly demonstrated
good performance on BC5CDR, KD-DTI, and DDI end-to-end relation extraction tasks.
Singhal et al., in [26], present MultiMedQA, providing benchmark datasets for performance
evaluation of medical LLMs. Meanwhile, they first propose Flan-PaLM. Based on this, it
is fine-tuned into the final product, Med-PaLM, through prompting strategies and other
means. In the evaluation, Med-PaLM achieves accuracy comparable to that of real human
doctors, yielding excellent results. Building upon this success, they further propose Med-
PaLM2 [27]. Med-PaLM2 utilizes an improved base model and employs fine-tuning and
prompting strategies specific to the medical domain, improving answer accuracy.

When it comes to medical Q&A tasks, although various types of LLMs are available,
none are suitable for deployment on IoMT devices for privacy protection while being capa-
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ble of handling such tasks. Typically, models with sufficient performance pose challenges
when deployed on IoMT devices, while deployment on the server side introduces network
security and privacy protection concerns. LLMs deployable on IoMT devices lack the
necessary performance for medical Q&A tasks. To meet the growing demand for medical
Q&As and privacy protection requirements from users, designing a high-performance
medical LLM deployable on IoMT devices with privacy protection is crucial.

2.2. LLM Efficient Inference Offloading Methods

With the development of LLMs, the size of LLMs is increasing, leading to higher re-
source requirements for inference. Consequently, more and more scientists are researching
ways to reduce resource demands and improve inference speed during LLM inference.
Rasley et al., in [28], propose DeepSpeed, which is an optimization library for LLMs. It pro-
vides techniques for distributed training, especially memory optimization. Shoeybi et al.,
in [29], propose Megatron-LM, which is a library for deep learning, and provides a lot of
optimization techniques for GPUs. Kwon et al., in [30], propose vLLM, which is a library
that provides PagedAttention methods, assisting LLMs with efficient inference. Zhao et al.,
in [31], propose FSDP; while maintaining the simplicity of data parallelism, it breaks the
barrier of slicing the model across multiple processes.

However, these methods do not significantly reduce the occupied VRAM in LLM
inference to enable deployment on IoMT devices. Our work greatly improves reducing the
occupied VRAM in LLM inference and LLM can be deployed in IoMT devices more easily.

2.3. AI Used in Communication

In the field of communication, the application of AI is rapidly increasing. Han et al.,
in [32,33], incorporate federated learning into communications yielding promising results.
To enhance the management of base station power consumption, Piovesan et al., in [34],
designed a machine learning algorithm to assess the power consumption of 5G base
stations (BSs).To facilitate the transmission of AI/ML models, Ayed et al., in [35], designed
the framework Accordion, which efficiently facilitates the transfer of AI/ML models. In
addition to traditional AI, with the development of LLMs there is an increasing number of
people applying LLMs in the field of communications. Du et al., in [36], explore using an
LLM to assist FPGA wireless signal processing hardware development. Bariah et al., in [37],
introduce the application of LLMs in future wireless networks and propose relevant theories
along with insights into the challenges LLMs face in communication. Bariah et al., in [38],
fine-tune several LLMs for the telecommunications domain language and use them for
identifying the 3rd Generation Partnership Project (3GPP) standard working groups. Soman
et al., in [39], analyze the capabilities and limitations of integrating LLMs into dialogue
interfaces in the telecommunications domain. LLMs demonstrate their effectiveness in
various communication applications. However, due to the significant resources required
for deployment, there is little discussion about the communication issues of LLMs on IoMT
devices. We integrate our offloading model to examine the communication of LLMs among
consumer devices.

In mobile networks, Zhang et al. have investigated several security issues. Zhang et al.
propose a collaborative mutation-based MTD (CM-MTD) [40] to address the challenges of
poor coordination, high network resource consumption, and lack of consideration for future
information in MTD. Zhang et al. propose a smart-driven host address mutation (ID-HAM)
scheme [41], to address the issues of HAM lacking adaptive adversarial strategies, network
states being time-varying, and the oversight of the survivability of existing connections.
Zhang et al. propose an intelligent MTD scheme to defend against distributed denial-of-
service in SD-IoV [42], to tackle the issues of MTD’s inability to handle high-speed dynamic
environments, lack of intelligence, and difficulty in tracking.
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3. Methods

This section details the design of the communication model, the development of the
MedMixtral 8x7B medical LLM, and the implementation of an efficient offloading strategy.

3.1. Communication Model Design

In this section, we investigate the inference offloading latency across IoMT devices,
including interconnection communication latency and local communication latency. We
model the two types of models separately and calculate the total communication latency at
the end.

In e-healthcare, we propose a system model for the IoMT that enables users to utilize
medical LLMs. As depicted in Figure 1, each model operates independently on one IoMT
device in this system, while possessing the capability to function cooperatively with other
models to enhance performance. For interconnection among IoMT devices, there is a
set N = {1, . . . , n, . . . , N} of IoMT devices, which allows doctors and users to access e-
healthcare services via wireless communication. In the interconnection communication
model with N , the interconnection communication latency between device n and device
n + 1 is denoted as ln. The interconnection communication latency between device i and
device j is denoted as lij. The interconnection communication latency is denoted as lcom

n ;
the lcom

n can be calculated as

lcom
n = dp

n + dpr
n + dq

n + dw
n , (1)

where propagation delay is denoted as dp
n, processing delay is denoted as dpr

n , queueing
delay is denoted as dq

n, and waiting delay is denoted as dw
n .

Figure 1. This is the communication model design. Users ask LLM medical questions from their own
devices, then devices send the token via networks. Devices receive intermediate parameters sent via
networks and complete computation for partial layers, and finally, all devices finish computation;
LLM generates the final medical answers to the user.

3.1.1. Interconnection Communication Model

According to Equation (1), the values of dpr
n , dw

n , and dq
n can be considered negligible

compared to dp
n. Therefore, the lcom

n can be approximately regarded as dp
n. To obtain

the dp
n, we first need to obtain the signal-to-noise ratio (SNR). In wireless networks, the
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signal power between devices is denoted as Sn, and the noise power can be approximately
regarded as white Gaussian noise, denoted as ωn, and the SNRn is calculated as

SNRn =
Sn

ωn
, (2)

where ωn = kTBn is white Gaussian noise, k is the Boltzmann constant, T is the temperature
in kelvin, and Bn is the channel bandwidth.

After obtaining the SNRn, we still need to calculate the channel capacity for obtaining
the dp

n. According to Equation (2), the channel capacity Cn can be calculated as

Cn = Bn log2(1 + SNRn), (3)

then, according to Equation (3), we calculate the dp
n. The data volume of medical services is

denoted as Dn. The dp
n can be calculated as

dp
n =

Dn

Cn
, (4)

and now, we obtain the value of dp
n through the computation.

3.1.2. Local Communication Model

In the local communication model, the local communication latency in device n is
denoted as ln. The speed from the CPU’s RAM to the GPU’s VRAM is denoted as scg

n ,
the speed from the disk to the CPU’s RAM is denoted as sdc

n , the latency from the CPU’s
RAM to the GPU’s VRAM is denoted as lcg

n , the latency from the disk to the CPU’s RAM
is denoted as ldc

n , the latency from the disk to the GPU’s VRAM is denoted as ldg
n , and the

model weight for one layer is denoted as wn.
The latency from the CPU’s RAM to the GPU’s VRAM lcg

n is calculated as

lcg
n =

wn

scg
n

, (5)

the latency from the disk to the CPU’s RAM ldc
n for w is calculated as

ldc
n =

wn

sdc
n

, (6)

when offloading w into a disk, they need to be first loaded into the CPU’s RAM from the
disk, then from the CPU’s RAM to the GPU’s VRAM for computation. The latency from
the disk to the GPU’s VRAM ldg for w is calculated as

ldg
n =

wn

scg
n

+
wn

sdc
n

, (7)

and in an IoMT device, we denote by x the number of model layers offloading in the CPU’s
RAM in devices and denote by y the number of model layers offloading in the disk in
devices. According to Equations (5)–(7), we can calculate lloc

n as

lloc
n =

(xn + yn)wn

scg
n

+
ynwn

sdc
n

, (8)

and now, we obtain the value of lloc
n through the computation.

3.1.3. Total Communication Latency

In this section, we calculate the total communication latency. The total communication
latency is denoted as ltotal among the set of IoMT devices N .
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In the interconnection communication model, different layers are distributed across
various devices. In the beginning, device i needs to send a token to the device that contains
the first layer of the model, which is device 1. Then, it is required to transmit the token
from the first computation device to the last computation device, which is device N. Finally,
the device results are transmitted back to device i. To calculate lcom

n among all devices,
we calculate the sum lcom

n of all devices in N and add the lcom
i1 and lcom

Ni . In the local
communication model, there are N devices; we calculate the sum lloc

n of all devices in N .
According to Equations (1) and (8), the total communication latency can be calculated as

ltotal =
N

∑
n∈N

lloc
n +

N−1

∑
n∈N

lcom
n + lcom

i1 + lcom
Ni , (9)

and now, we obtain the value of ltotal through the computation.

3.2. MedMixtral 8x7B

With the increasing demands in healthcare, both patients and physicians are turning
to medical Q&A services more frequently. Patients seek these services for timely advice,
while physicians utilize them to manage their mounting workloads. Utilizing LLMs offers
an approach to tackle this issue, given their capability to comprehend human language and
facilitate Q&A interactions akin to those between individuals.

LLMs can specifically leverage a wealth of knowledge from the medical literature,
databases, and clinical records, effectively processing and synthesizing this vast amount
of information. As a result, LLMs can more accurately assess a patient’s condition. For
patients, an LLM can provide a preliminary diagnosis, and for physicians, it can reduce the
risks of misdiagnosis. Furthermore, LLMs can provide patients with easily comprehensible
medical explanations, treatment alternatives, and preventive measures. Therefore, LLMs
can enhance patients’ health literacy, increase patients’ engagement, and subsequently,
augment the public’s foundational medical knowledge.

As depicted in Figure 2, we fine-tune an LLM based on the MoE architecture, with
the pre-trained model being Mixtral 8x7B and the dataset named HealthCareMagic 8x7B.
The MoE model is deployed on both memory and disk. We evaluate its performance on
iCliniq. We choose to use the Mixtral 8x7b model due to its high performance. Mixtral 8x7b
adopts a sparse mixture-of-experts (SMoE) architecture [43], functioning as a decoder-only
model, where feedforward blocks are selected from a set of eight distinct parameter groups.
For each token in the layers, the routers select two of these experts to deal with the token
and aggregate outputs. The SMoE architecture enhances the model’s parameters while
reducing costs and latency by using only a fraction of the total parameters.

Specifically, Mixtral 8x7B has a total of 46.7B parameters. Compared to the GPT3.5 base
model, Mixtral demonstrates comparable or superior performance across most benchmarks.
As an SMoE model, it retains the strengths of a traditional MoE model while capitalizing
on the advantages offered by an SMoE architecture.

We use the HealthCareMagic-100k dataset to fine-tune Mixtral 8x7B for medical-
patient dialogue. In these conversations, patients often describe their conditions in non-
standard ways. Self-made medical datasets can overuse specialized terminology and
potentially introduce biased diagnoses, reducing data usefulness. Therefore, it is crucial to
use real-world medical-patient dialogues from trusted sources to maintain data quality and
reliability. The HealthCareMagic-100k dataset includes around 100,000 authentic doctor–
patient dialogues from HealthCareMagic [44], with identifiers deleted and grammar errors
corrected. This makes the HealthCareMagic-100k dataset an effective, information-rich,
and comprehensive dataset, making it an excellent fit for medical Q&As.

The MedMixtral 8x7B model, which is fine-tuned on the HealthCareMagic-100k
dataset, represents a novel medical LLM, enabling deployment on IoMT devices. By
fine-tuning the pre-trained LLM with medical Q&A datasets, the MedMixtral 8x7B LLM
can address medical inquiries and show exceptional performance in medical Q&A tasks.
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Figure 2. This is the MedMixtral 8x7B workflow. First, we prepare a dataset of about 100,000 samples
from HealthCareMagic. Then, we fine-tune the Mixtral 8x7B model. After that, we design a strategy
to offload the weights to both RAM and disk, aiming to alleviate the resource strain on IoMT
deployments of LLMs. We obtain medical advice by asking the MedMixtral 8x7B model, and finally,
evaluate our model’s performance on iCliniq.

MedMixtral 8x7B demonstrates reduced bias and enhanced accuracy in medical Q&A
tasks compared to traditional transformer-based LLMs. Figure 3 shows a medical Q&A
example using MedMixtral 8x7B in the IoMT. The following paragraphs show some real
and comprehensive answers of MedMixtral 8x7B to medical Q&As.

• Question1: Hello doctor, We have a 9-month-old baby girl. She has five brown
marks, two of them are 2 cm size and the other three of 0.5 cm. They are irregular in
shape. Initial two marks appeared when she was 3 months old and now when she is
9 months three more for added that are comparatively light and 0.5 cm of size. Are
these birthmarks? Will they fade with the time? Do we need to take any precautions
so that they do not increase or get added further? Can we also provide any medication
to cure them?

• Answer1: Hello, The brown marks you are describing are commonly known as
birthmarks. The two larger ones that appeared when your baby was three months
old are likely to be called “cafe-au-lait” spots, while the smaller, lighter ones may be
called freckles. Cafe-au-lait spots are harmless and may fade slightly with time, but
they do not typically disappear completely. Freckles, on the other hand, may darken
with sun exposure but can also be lightened with topical treatments. While these
birthmarks are generally not a cause for concern, it is always a good idea to monitor
any changes in their size, shape, or color. If you notice any new or unusual growths,
or if the existing birthmarks become significantly larger or darker, it is recommended
to consult a healthcare professional. In terms of precautions, it is important to protect
your baby’s skin from the sun, as UV radiation can darken the birthmarks and make
them more noticeable. You can do this by dressing your baby in lightweight, long-
sleeved clothing and a wide-brimmed hat, and by using a broad-spectrum sunscreen
with an SPF of at least 30 on any exposed skin. As for medication, there is currently no
cure or effective treatment for birthmarks. However, if the birthmarks are causing any
discomfort, such as itching or irritation, your healthcare provider may recommend a
topical cream or ointment to alleviate the symptoms. I hope this information is helpful.
Please let me know if you have any further questions or concerns.

• Question2: Hello doctor, I have been going to a dentist about a tooth that is sore. They
started a root canal but then did not finish. I have gone back several times and every
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time they open up the tooth and insert medicine. My tooth is in agony right now. I
am just wondering if this is a standard procedure during a root canal? Should not the
dentist remove the nerves so I am not in so much pain? Or is it the standard procedure
to fight the infection first and then remove the nerves?

• Answer2: Hello, During a root canal procedure, the dentist typically removes the
nerve tissue first in order to alleviate the pain caused by the infection. However,
in some cases where the infection is severe, the dentist may choose to administer
medication and apply a temporary filling to the tooth to eliminate the infection before
completing the root canal. This is often done to make the procedure more manageable
for the patient and to ensure the best possible outcome. The fact that your dentist has
been repeatedly opening your tooth and applying medication suggests that they are
trying to eliminate the infection before completing the root canal. While this approach
can be somewhat uncomfortable, it is not uncommon and is often necessary to ensure
the success of the procedure. I would recommend speaking with your dentist about
your concerns and asking for more information about the approach they are taking.
They may be able to provide you with additional pain relief measures or offer further
insight into the procedure and what to expect.

• Question3: Hello doctor, I have been diagnosed with mild hereditary spherocytosis.
My eyes still yellow. Is it unlikely hematologist who diagnosed me three years ago
misdiagnosed? I do not doubt he knows his stuff. More about me getting worried. I
lost weight a couple of months ago. I went very yellow in the eyes. I have always felt
tired. I have had gallbladder out four years ago, I bruise easily, I do get little red skin
dots at times, menstrual cycles can be irregular and spleen slightly enlarged.

• Answer3: Hello, While it is unlikely that your hematologist misdiagnosed you, the
symptoms you have described could be indicative of other conditions such as liver dis-
ease or a more severe form of hereditary spherocytosis. The jaundice you mentioned,
along with weight loss, fatigue, easy bruising, and enlarged spleen, are all potential
symptoms of these conditions. It would be best to consult with your hematologist
and possibly a gastroenterologist or liver specialist to rule out any other potential
causes for your symptoms. They may want to perform additional tests, such as a
liver function test or a bone marrow biopsy, to further evaluate your condition. It
is important to remember that this advice is intended to be general in nature, and
specific causes may not apply to your situation. Always consult with a healthcare
professional for an accurate diagnosis. I hope this information helps, and please let
me know if you have any further questions or concerns.

• Question4: Good evening, doctor. I have a severe toothache.It hurts so bad.It is
difficult for me to eat.The pain is like a sharp knife cutting my teeth.What is the cause
of it?

• Answer4: Good evening, I’m sorry to hear that you’re experiencing tooth pain. The
description you provided suggests that the pain is severe and sharp, which could
indicate a few possible causes. The most common cause of tooth pain is tooth decay,
which can cause a sharp pain when eating or drinking something sweet, hot or cold.
Another possible cause is an infection or abscess in the tooth or gum, which can cause
a persistent, throbbing pain. In some cases, tooth pain can also be caused by gum
disease, injury, or a cracked tooth. It is important to see a dentist as soon as possible to
determine the cause of the pain and to receive appropriate treatment. In the meantime,
you can try taking over-the-counter pain relievers to help manage the pain. However,
it is not recommended to apply pain relievers directly to the tooth or gums, as this can
burn the gum tissue.

In the model fine-tuning process, we employed the LoRA fine-tuning method [45].
LoRA offers a fine-tuning approach that consumes less VRAM and memory while achieving
performance close to full fine-tuning. In the fine-tuning setup, we set warmup steps to 0.03,
max steps to 1000, learning rate to 2× 10−4, and logging steps to 1.

204



Electronics 2024, 13, 2077

Figure 3. An instance of the process of MedMixtral 8x7B generating medical answers. After the input
tokens enter the model, it is routed to the experts by the router. Then, the experts generate responses
based on the input tokens.

3.3. Efficient Inference Offloading

The increasing adoption of LLMs is spurring demand for innovative LLM architec-
tures with superior performance attributes. For instance, SMoE is one of the emergent
architectures, where only specific model layers are activated for any given input, making it
particularly useful for tasks such as NLP. In SMoE, this feature allows LLMs to generate
tokens faster than before, even though it leads to an increase in model size due to the
integration of multiple experts. Therefore, deploying high-performance LLMs demands
considerable VRAM and high-performance GPUs to ensure optimal operation. We propose
a novel strategy called efficient inference offloading to address the challenge of deploying
MedMixtral 8x7B on IoMT devices.

Efficient Inference Offloading Algorithm

For the design of efficient inference offloading algorithms, we employ the least recently
used (LRU) cache strategy [3] to dynamically adjust the number of experts per layer, based
on VRAM size. In instances of limited VRAM availability, we augment the number of
experts, whereas we decrease it when VRAM is abundant. Upon loading all experts of the
current layer, we start the expert loading based on the 1–2 most probable experts derived
from the inference results. These newly loaded experts do not replace any existing experts
in the cache; however, if used in the inference of the subsequent layer, they replace the least
recently used expert in the cache.

Meanwhile, we introduce an efficient strategy for loading model weights. First, an
empty model framework is loaded into the CPU’s RAM, minimizing the CPU’s RAM
consumption. Then, model weights are loaded into the CPU’s RAM and stored on the disk
as the configuration. The loaded weights are moved from the CPU’s RAM to the disk, then
the checkpoint is removed from the CPU’s RAM. When loading the model weights, the
loaded weights are moved from the disk to the CPU’s RAM. Hooks are attached to each
weight of the model, enabling the transfer of weights from the CPU’s RAM to the GPU
when needed, and back to the CPU’s RAM after completing the associated computations.

We chose to offload certain parameters to the disk due to constraints in memory avail-
ability. Our offloading strategy prioritizes memory utilization, resorting to disk offloading
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only when memory resources are insufficient given the considerable size of parameters
in LLMs. In SMoE, this feature allows LLMs to generate tokens faster than before, even
though it leads to an increase in model size due to the integration of multiple experts. We
paid particular attention to the performance of IoMT devices. Considering the limited
memory capacity of IoMT devices in current scenarios, we specifically consider the option
of offloading to the disk. Because we can offload to the disk, our flexible offloading strategy
enables IoMT devices to support larger models without compromising performance.

4. Results

In this section, we first elaborate on our experimental environment by using a 36 vCPU
AMD EPYC 9754 128-core Processor (AMD, Santa Clara, CA, USA) and NVIDIA GTX 3090
x2 (NVIDIA, Santa Clara, CA, USA).

4.1. MedMixtral 8x7B

MedMixtral 8x7B is a medical LLM designed for deployment on IoMT devices. By
fine-tuning Mixtral 8x7B with medical datasets, the MedMixtral 8x7B proficiently addresses
medical questions while demonstrating exceptional performance. The MedMixtral 8x7B
consists of multiple experts, similar to conventional medical practice with multiple experts,
which enhances the accuracy of medical diagnostics.

Comparative evaluations are conducted among our MedMixtral 8x7B, ChatGPT,
Llama3 8B, and the original Mixtral 8x7b model. By utilizing the 4-bit quantized Mixtral
8x7B and MedMixtral 8x7B in this experiment, we observe from Table 1 that MedMixtral
8x7B consistently outperforms them in terms of Q&A accuracy.

The results indicate that our MedMixtral 8x7B shows significant improvements in the
precision, recall, and F1 score metrics compared to the original Mixtral 8x7B metrics. Addi-
tionally, it slightly outperforms ChatGPT and Llama3 8B in all metrics. This demonstrates
that our MedMixtral 8x7B exhibits superior performance in medical Q&As.

Table 1. Quantitative comparison among ChatGPT, Mixtral 8x7B, and MedMixtral 8x7B. According
to the test results, our model MedMixtral 8x7B, which is fine-tuned on Mixtral 8x7B, outperforms
other models in terms of precision, recall, and F1 score when answering medical questions on the test
set. This indicates that our model has an advantage in the medical Q&A domain compared to Mixtral
8x7B, Llama3 8B, and ChatGPT.

Precision Recall F1 Score

ChatGPT 0.837 0.8445 0.8406
Mixtral 8x7B 0.821 0.8434 0.8320

MedMixtral 8x7B 0.838 0.8447 0.8413
Llama 8B 0.799 0.8384 0.8179

4.2. Offloading Strategy

Figure 4 illustrates the occupied VRAM capacity as the number of offloaded experts
changes. When no expert has been offloaded, the quantized Mixtral 8x7B model can be
deployed with 18.4 GB VRAM. Conversely, in original offloading, it requires 20.1 GB VRAM.
With two experts offloaded, the quantized Mixtral 8x7B model can be deployed with 14.5 GB
VRAM, whereas in original offloading it demands nearly 16.3 GB VRAM. Upon offloading
four experts, the quantized Mixtral 8x7B model can be deployed with 10.1 GB VRAM,
whereas in original offloading it demands 11.9 GB, close to 12 GB VRAM. Furthermore, the
model weights are loaded into both the CPU’s RAM and disk, a strategy that conserves a
certain amount of VRAM capacity while expanding the loadable model size.
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Figure 4. This is the trend in changes in VRAM usage with the number of offloading experts. Our
strategy requires less VRAM capacity than the strategy method across all number of offloading
experts scenarios.

4.3. Communication Latency

We conduct experiments to evaluate the interconnection communication latency as-
sociated with transferring intermediate parameters. In the experiment, we consider the
communication latency lcom

n equals dp
n and test its value.

Initially, we consider the interconnect via an SSH connection. The measured average
lcom
n is recorded at 0.1039 s. Despite SSH having certain latency, it still has the advantage of

facilitating distributed computing, upon network availability.
To reduce network latency, wireless networking emerges as a viable option for inter-

connection. In the test, the temperature is 290 K, and the Bn is 160 MHz. We measure an
Sn of 10−3.90 mW. According to Equation (2), we calculate an ωn of 10−9.19 mW in wireless
networks. According to Equation (2), the SNRn can be computed as 105.29. After obtaining
the SNRn, according to Equation (3), we can calculate Cn as 2.796× 109 bit/s. Converting
2.796× 109 bits per second to megabytes per second gives 349.5 MB/s. The Dn is 64 bytes,
according to Equation (4), we can calculate the minimum dp

n as 1.748× 10−7 s. Based on
the results, we ascertain that the observed value of lcom

n is less than 0.001 s. The experiment
meets expectations. Consequently, it can be inferred that the influence of using wireless on
LLM is insignificant.

After testing interconnection communication latency, we test the local communication
latency on the local device. We record the value of sdc

n as 2.135 GBps and record the value of
scg

n as 12.46 GBps. For the quantized LLM weights in the LLM, each layer is approximately
0.55 GB.

If the weight only loads from the CPU’s RAM, according to Equation (5), the lcg
n for

each layer is approximately 0.044 s. However, if the weight loads from the disk, according
to Equation (6), the ldc

n for each layer is approximately 0.26 s. According to Equation (7),
the ldg

n for each layer is approximately 0.304 s. We assume that in the device, eight layers
offload to CPU’s RAM, and eight layers offload to disk, according to Equation (8), the lloc

n
can be calculated as 2.784 s. It is evident that the disk speed significantly influences the
inference speed.

We find that opting for high-performance disks can significantly reduce latency. After
using the high-performance NVMe drive, we boost the sdc

n to 3.166 GBps. According
to Equation (6), the ldc

n is approximately calculated as 0.17 s. To calculate performance
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improvement, we denote the improvement performance as Improvement, while the original
latency is denoted as Original and Improved is the improved latency. The formula is

Improvement =
(

Original − Improved
Original

)
× 100%. (10)

According to Equation (10), we can calculate that the performance improvement is
approximately 32%.

Similarly, loading the majority of the model weights into the CPU’s RAM leads to a
substantial reduction in latency. However, in terms of the model’s performance, the impact
is only on latency and does not affect its inference capabilities.

Finally, we can calculate the ltotal . We assume there are 32 IoMT devices similar to
our device. Each device has one layer in the model. We use SSH connections and offload
the weights to disk. According to Equation (9), we can approximately calculate the ltotal

as 13.16 s. If we offload the model weights to the CPU’s RAM and use SSH connections,
we can approximately calculate the ltotal as 4.837 s. If we offload the model weights to the
CPU’s RAM and use the wireless connection, we can approximately calculate the ltotal as
1.408 s.

5. Discussion and Limitations

The results demonstrate that our MedMixtral 8x7B, fine-tuned on the HealthCareMagic-
100k dataset, excels in answering medical questions.

The robust performance of the MedMixtral 8x7B model is largely attributed to the
extensive medical Q&A data provided by the HealthCareMagic-100k fine-tuning dataset.
However, the model’s remarkable performance cannot be solely attributed to its compre-
hensive learning of the dataset. The superior performance of MedMixtral 8x7B may also
stem from the unique advantages of the MoE architecture in addressing medical Q&A
issues. During the learning process, MedMixtral 8x7B, with its multiple experts, allows dif-
ferent experts to acquire diverse aspects of medical knowledge. When answering medical
questions, the gate evaluates the input query and selects two suitable experts to respond.
This method, which involves choosing a few experts rather than combining the opinions of
all experts, reduces the model’s bias and enhances accuracy.

Our model, fine-tuned on the HealthCareMagic-100k dataset, surpasses traditional
models such as ChatGPT and Llama3 in terms of precision, recall, and F1 score. Moreover,
MedMixtral 8x7B is compatible with our proposed efficient inference offloading architecture.
Our efficient inference offloading algorithm dynamically adjusts the number of experts per
layer based on available VRAM, thereby reducing resource consumption. By employing the
LRU cache strategy and introducing model weight offloading techniques, MedMixtral 8x7B
exhibits lower VRAM usage during deployment, making it a potential candidate for IoMT
devices. Compared to other large LLMs, MedMixtral 8x7B offers superior or comparable
medical Q&A capabilities with reduced resource consumption—utilizing VRAM typically
required by models under 10B in size. Compared to other small LLMs deployable on IoMT
devices, MedMixtral 8x7B provides a significant performance advantage in medical Q&As.
Additionally, deploying MedMixtral 8x7B locally can effectively protect user privacy and
mitigate network security risks.

In addition to addressing resource requirements, we examined the impact of latency
on LLM inference speed. Through investigating local and interconnection communication
models, we identified key factors affecting latency, including device interconnection meth-
ods, offloading locations, and disk speeds. We propose strategies to reduce latency, such as
enhancing disk speed and utilizing wireless communication instead of SSH connections.

Our study highlights the potential of MedMixtral 8x7B in answering medical questions.
Below, we discuss the limitations and outline directions for future research.
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5.1. Hallucinations in LLMs within Medical Settings

Despite the promising results, our manual evaluation on consumer medical Q&A
datasets indicates that the accuracy of existing LLMs remains insufficient. Models like
ChatGPT and MedMixtral 8x7B may generate inaccurate answers in the medical domain,
posing significant safety risks. In the future, we aim to enhance accuracy and safety by
integrating techniques such as chain of thought (CoT), thereby narrowing the gap between
these models and real-world clinicians, and facilitating quicker clinical adoption.

5.2. Expansion of the HealthCareMagic-100k Dataset

The HealthCareMagic-100k dataset encompasses a variety of medical Q&As from
diverse sources, but it is not exhaustive. We plan to expand this dataset to include a broader
range of medical Q&As. During this expansion, preprocessing data obtained from patients
presents a challenge. Compared to multiple-choice tasks, preprocessing Q&A tasks is
more complex. The varied tones and expressions in Q&A pairs affect LLM fine-tuning,
requiring experimentation to determine which types of Q&As yield the best learning
outcomes. We aim to preprocess the data accordingly for optimal results. Additionally,
the HealthCareMagic-100k dataset is purely in English. In the future, we will seek to
incorporate multilingual Q&As and evaluate multilingual capabilities.

5.3. Improving Evaluation Methods

We evaluated model performance on the iCliniq dataset, using metrics such as preci-
sion, recall, and F1 score, with BERTscore as our evaluation method. While BERTscore’s
advantage lies in its ability to assess answers’ similarity to human responses, offering a
more realistic measure than conventional test questions, its drawback is that it only mea-
sures similarity and not specific accuracy. Given the critical nature of medical Q&As, where
errors can have severe consequences, we plan to incorporate additional evaluation methods,
such as multiple-choice questions, to enhance the fairness and comprehensiveness of model
assessments.

6. Conclusions

Through development and fine-tuning based on the HealthCareMagic-100k dataset,
our MedMixtral 8x7B model has emerged as a new solution deployable in the medical
Q&A domain, particularly on consumer devices such as IoMT devices. Its outstanding
performance is attributed not only to the richness of the fine-tuned dataset but also to the
utilization of the MoE architecture in the base model, which incorporates multiple experts
to reduce bias and enhance accuracy.

Moreover, the integration of MedMixtral 8x7B with efficient inference offloading
architectures makes it an excellent LLM deployable on medical IoMT devices. By dynami-
cally adjusting resource allocation based on available VRAM and employing techniques
like LRU cache and model weight offloading, MedMixtral 8x7B demonstrates remark-
able medical Q&A capabilities while minimizing resource consumption. This gives it a
significant advantage over larger language models and smaller deployable alternatives,
while also maximizing user privacy protection and mitigating network attack concerns on
IoMT devices.

Finally, strategies for reducing latency were explored, indicating that optimizing device
interconnection methods, optimizing weight offloading locations, and enhancing disk speed
all contribute to improving the overall efficiency and performance of MedMixtral 8x7B,
enabling faster and more reliable inference. This positions it as one of the most suitable
medical Q&A LLMs for deployment on IoMT devices.
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Abbreviations

Symbol Description in Device n
Bn Channel bandwidth
Cn Channel capacity
dp

n Propagation delay
dpr

n Processing delay
dq

n Queueing delay
dw

n Waiting delay
Dn Data volume
k Boltzmann constant
lcg
n Latency from the CPU’s RAM to the GPU’s VRAM

lcom
n Interconnection communication latency

ldc
n Latency from the disk to the CPU’s RAM

ldg
n Latency from the disk to the GPU’s VRAM

lloc
n Local communication latency
N Set of IoMT devices
wn Model weight for one layer
scg

n Speed from the CPU’s RAM to the GPU’s VRAM
sdc

n Speed from the disk to the CPU’s RAM
Sn Signal power
SNRn Signal-to-noise ratio
T Absolute temperature in kelvin
ltotal Total communication latency
xn The number of model layers in device n
yn The number of model layers offloading in the disk in device n
ωn White Gaussian noise
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Abstract: Community detection has been a subject of extensive research due to its broad applications
across social media, computer science, biology, and complex systems. Modularity stands out as a
predominant metric guiding community detection, with numerous algorithms aimed at maximizing
modularity. However, modularity encounters a resolution limit problem when identifying small
community structures. To tackle this challenge, this paper presents a novel approach by defining
community structure information from the perspective of encoding edge information. This pioneering
definition lays the foundation for the proposed fast community detection algorithm CSIM, boasting
an average time complexity of only O(n log n). Experimental results showcase that communities
identified via the CSIM algorithm across various graph data types closely resemble ground truth
community structures compared to those revealed via modularity-based algorithms. Furthermore,
CSIM not only boasts lower time complexity than greedy algorithms optimizing community structure
information but also achieves superior optimization results. Notably, in cyclic network graphs, CSIM
surpasses modularity-based algorithms in effectively addressing the resolution limit problem.

Keywords: networks; community detection; structure entropy; community structure information;
modularity

1. Introduction

In various fields such as social media, computer science, biology, management science,
and engineering, complex systems are often represented in the form of complex networks.
These complex networks can be depicted as graphs in graph theory, where nodes in the
graph represent entities in the system, and edges represent interactions between entities [1].
For example, in online social networks, nodes may represent users on the platform, and
edges could signify friendship relationships or shared interests [2,3], and in a blockchain
network, nodes represent participants such as individuals, companies, or servers that
execute transactions, while edges represent the connections or interactions between these
nodes, often symbolizing specific transactions. Due to varying degrees of connectivity
between nodes of different types, these natural connections between nodes inherently facil-
itate the formation of communities. Communities are subsets of nodes within the network
that are tightly connected internally but have sparse connections between them. Commu-
nities often reflect common characteristics among nodes, such as similar backgrounds in
social networks or related functionalities in cellular metabolism [4–6].
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Measuring the community structure within networks holds significant implications
for understanding complex systems and characterizing organizational structures. Conse-
quently, metrics for community structure have rapidly garnered widespread attention in
computer science, leading to the introduction of several prominent measures such as mod-
ularity [7], modular density [8], surprise [9], and permanence [10], among others. Among
these metrics, modularity, initially proposed by Newman and Girvan [11], stands out as the
most renowned and widely applied. A specific class of community detection algorithms
is designed to optimize modularity. For example, hierarchical clustering optimization
has been utilized to optimize modularity [12], simulated annealing has been introduced
into modularity optimization [13], extremum optimization methods have been employed
for modularity optimization [14], the optimization of modularity using eigenvalues and
eigenvectors of special matrices has been explored [15], and mathematical programming
has been introduced for modularity optimization [16], among others. Among these, the
Louvain algorithm [12] has become the most commonly used algorithm due to its low time
complexity and high accuracy [17].

Despite the widespread application of modularity, it possesses inherent limitations,
with the most notable being the resolution limit problem [18]. This refers to modularity
optimization’s inability to detect communities smaller than a certain threshold, present-
ing a challenge, particularly in networks with heterogeneous communities or when cer-
tain communities are substantially smaller than the overall network. In such instances,
modularity-based community detection algorithms may overlook or merge smaller sub-
structures, resulting in a loss of granularity in community delineation. This challenge
stems from the inherent difficulty of the modularity function in striking an optimal balance
between the number and size of communities, potentially merging or obscuring small-scale
communities and impacting the accuracy and completeness of the detection process. In
response to this challenge, researchers have proposed various modifications and alternative
metrics [8,19]. However, these methods often address specific scenarios and come with
high time complexity.

In 2015, Li et al. introduced an information-theoretic measure of network complexity
termed the structure entropy of networks [20]. Structure entropy, defined for a graph,
G, represents the average number of bits required to identify the codes of a node, v
accessible from a step of random walk in G relative to a stationary distribution. They
subsequently proposed an algorithm for community detection in networks by minimizing
structure entropy, claiming that their approach achieves a more balanced community
size compared to modularity optimization algorithms. While their research presents a
promising avenue for community detection, the concept of structural entropy, derived from
coded random walks, may pose challenges in terms of intuitiveness and comprehension for
some researchers. Furthermore, their proposed algorithm exhibits higher time complexity
compared to the widely used Louvain algorithm [12], hindering its widespread adoption
and application in practical scenarios.

In summary, current research in community detection confronts several challenges
that warrant attention and further exploration. Firstly, modularity-based algorithms such
as Louvain, while renowned for their efficiency with low time complexity, are hindered by
the resolution limit problem. This limitation poses a significant obstacle, particularly when
dealing with networks exhibiting high heterogeneity or containing small-scale communities
that may be overlooked or merged. Secondly, methods based on structural entropy have
emerged as promising alternatives, boasting claims of achieving a harmonious balance
between community size and quantity. However, the concept of structural entropy, derived
from coded random walks, presents a steep learning curve and may prove less intuitive and
accessible to researchers unfamiliar with its intricacies. Moreover, while some approaches,
including those leveraging structural entropy, offer potential solutions to the resolution
limit problem in certain contexts, they often come with higher algorithmic complexity.
This increased computational overhead may limit their practical applicability, particularly
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in scenarios where computational resources are limited or where real-time processing
is required.

In this paper, we aim to address the above challenging issues. Specifically, we de-
fine community structure information as the average amount of information that can be
compressed per edge, given a known community structure, providing a more intuitive
representation of the essence of structural entropy. Secondly, drawing inspiration from the
Louvain algorithm, we introduce a fast community detection algorithm that optimizes the
value of community structure information. Finally, we validate the practical effectiveness of
the algorithm through experiments. The main contributions of this paper are summarized
as follows:

• We introduce a novel approach to defining structural entropy by focusing on the en-
coding of edge information, named community structure information. This approach
calculates the difference in the number of bytes required to encode an edge under
unknown and known community structures, capturing the amount of information
leaked via the community structure.

• We propose an algorithm, CSIM, for the approximate calculation of the maximum
community structure information, which can be employed for community detection.
Notably, for a social network with n nodes, the time complexity is the same as that of
the Louvain algorithm, with both having an average time complexity of O(n log n).

• We conducted experiments on real-world network data, and the results demonstrate
that the computational output of our proposed algorithm closely approximates the
maximum value of community structure information. Furthermore, the community
structure obtained through this algorithm aligns more closely with the ground truth
community structure.

We organized the paper as follows. Section 2 presents an overview of related works on
the measure of complex networks, community detection, and structure entropy. In Section 3,
we provide the definition of community structure information from the perspective of
encoding edge information and subsequently quantify the information leaked via the
community structure. In Section 4, we introduce a novel community detection algorithm
that maximizes community structure information, accompanied by proof of the algorithm’s
time complexity. In Section 5, we evaluate and analyze the performance of our algorithm
using real-world network data. In Section 6, we discuss the contributions and implications
of our study. Finally, we conclude our work in Section 7.

2. Related Work

In this section, we mainly focus on the related works on the metrics for structural
information in complex network, community detection, and structure entropy.

2.1. Metrics for Structural Information

In the domain of information theory, the precise quantification of structural informa-
tion poses a prominent challenge to computer and information science. Rashevsky [21] is
acknowledged for pioneering the initial measurement of complex networks, inaugurating
efforts to capture the intricacies of structural information. Over the years, researchers have
introduced a myriad of metrics targeting the delineation of structural complexities across
diverse network types, including notable measures like Shannon entropy, von Neumann
entropy [22], parametric graph entropy [23], and Gibbs entropy [24], among others.

While these traditional information metrics have made significant contributions, many
essentially represent variations of Shannon entropy tailored to distinct distribution types.
Recognizing the necessity of innovative approaches, recent advancements have explored
alternative perspectives on structural information [25].

Recognizing the importance of community structure in real-world networks, Newman [26]
introduced modularity as a metric to assess the strength of community divisions within
a network, becoming instrumental in uncovering underlying structures and patterns in
complex systems. Drawing inspiration from random walks, Rosvall et al. [27] proposed a
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novel metric calculating the average bits per step, leveraging ergodic node visit frequencies
within a network. This approach provides a nuanced understanding of structural informa-
tion dynamics. Describing structural information, Li et al. [20,25] introduced the concept of
K-dimensional structural entropy for graphs, defining it as the minimum bits required to
encode a vertex accessible from a random walk step. This metric explores the multidimen-
sional aspects of structural information, offering a more comprehensive characterization.

Additionally, Zhang et al. [28] proposed a novel metric of structural entropy for com-
plex networks, drawing on nonextensive statistical mechanics to enhance comprehension
of complex network structures and characteristics. Liu et al. [29] introduced A-entropy and
B-entropy, metrics tailored to gauge self-reinforcing substructures within multi-agent sys-
tems. Zhang et al. [30] proposed betweenness structural entropy based on betweenness
centrality, with the goal of shedding light on the structural organization and dynamics
of complex systems represented by networks. Cai et al. [31] presented SP structure en-
tropy, aiming to capture the complexity and organization of networks, especially those
characterized by series-parallel components.

Recent advancements highlight a transition towards more diverse and nuanced methods
for measuring structural information in complex networks, surpassing conventional entropy-
based metrics. Drawing inspiration from these metrics, this paper introduces a novel approach
to gauging structured information by encoding edge information perspectives.

2.2. Community Detection

Community detection, a crucial task in unveiling concealed structures within complex
networks, traces its rich history back to 1955, when Weiss and Jacobson pioneered the
analysis, leveraging relationships among members in government organizations to discern
working groups [32]. In contemporary times, the prevalence of complex networks, spanning
online social networks, online transaction networks [33], transportation networks, and
biological information networks [34,35], has provided fertile ground for the evolution of
community detection research.

Scholars from diverse disciplines have contributed myriad community detection
algorithms, each offering unique perspectives. Notably, algorithms for detecting non-
overlapping communities span various methodologies, including graph splitting [11,36],
spectral analysis [37,38], modularity optimization [15,16,39–41], information theory [20,27],
and others [42–44].

In recent years, traditional neural network approaches have been extended to handle
graph data, enabling the swift advancement of graph neural networks for community
detection. By directly applying filtering operations to the graph, graph neural networks
acquire a concise representation of nodes through semi-supervised training methods [45].
This node representation plays a crucial role in tasks such as node classification and
community detection [46]. Representative approaches include recurrent graph neural
networks [47], spectral-based convolutional graph neural networks [48], spatial-based
convolutional graph neural networks [49], graph autoencoders [50], and spatial-temporal
graph neural networks [51].

Among these algorithms, the multilevel modularity optimization algorithm known
as Louvain, proposed by Blondel et al. [12], stands out as the most renowned and widely
adopted. This algorithm excels in both accuracy and efficiency, contributing significantly to
the field. However, despite its widespread application, notable limitations persist, with
the resolution limit problem [18] emerging as a prominent concern. Future research may
explore novel algorithms that address these limitations and further enhance the efficacy of
community detection in complex networks.

2.3. Structure Entropy

In 1953, Shannon [52] proposed addressing communication system issues through
quantifying structural information. Over the past seventy years, this problem has remained
a significant challenge in information science and computer science. In 2016, Li and Pan [25]

216



Electronics 2024, 13, 1119

introduced the concept of K-dimensional structural entropy as a measure of the structural
information of networks, which has since garnered extensive research attention. This
concept provides a deeper understanding of the multidimensional aspects of structural
information, offering insights into the complexity of network structures. Minimizing K-
dimensional structural entropy serves as a principle for detecting natural or ground truth
structures in real-world networks [20].

Furthermore, the notion of graph resistance was introduced as a complementary con-
cept to structural entropy, measuring a graph’s resistance against strategic virus attacks
that cause cascading failures [53]. Li et al. [54] applied structural entropy to decode topo-
logically associated domains in Hi-C data with ultra-low resolution, demonstrating its
applicability in deciphering complex genomic structures. Moreover, Liu et al. [55] pro-
posed community-based structural entropy to express information leakage in community
structures and used it to preserve the privacy of community structures, showcasing the
versatility of structural entropy in diverse contexts.

In addition, Hirai et al. [56] introduced structural entropy as a measure to assess
uncertainty in latent structures within data, aiming to provide insights into the reliability
and stability of structural patterns. Wang et al. [57] introduced DS-entropy and applied it to
perform label-specificity attacks, emphasizing the role of structural entropy in addressing
security and privacy concerns in network data. Tian et al. [58] proposed a novel approach
based on structural entropy in social IoT networks, aiming to protect sensitive informa-
tion while enabling a meaningful analysis of network structure and clustering patterns.
Liu et al. [59] presented a graph-generative algorithm based on structural entropy, demonstrat-
ing its utility in generating synthetic networks that preserve key structural characteristics.

In summary, the applications of structural entropy are increasingly widespread [60,61],
spanning various domains including genomics, network security, privacy preservation,
and network synthesis. Inspired by the aforementioned studies, this paper introduces
a novel representation of structural information from the perspective of encoding edge
information, further contributing to the diverse applications and advancements in structural
entropy analysis.

3. Community Structure Information

In this section, we first address the problems with the definition of modularity. Build-
ing upon the research of these problems, we introduce the definition of community structure
information to overcome the shortcomings of modularity.

3.1. The Problem of Modularity

Modularity stands as the most frequently employed metric for guiding community
detection, utilized in methods like simulated annealing [62], extremal optimization [14],
and greedy approaches [63]. Grounded in the idea that a random graph should lack a
community structure, modularity is calculated as the difference between the actual density
of edges in a community and the expected density of the edges that are constructed regard-
less of community structure [2]. The anticipated edge density is contingent on the chosen
null model, which involves creating a copy of the original graph while maintaining the
same degree distribution but devoid of any community structure. Elevated discrepancies
indicate the potential existence of communities.

Suppose an undirected graph, G = (V, E), consists of a node set, V, and an edge set,
E. Let the number of edges between nodes i and j be denoted with Aij, typically 0 or 1,
although larger values are possible in networks allowing multiple edges. The quantities Aij
are the elements of the adjacency matrix. Simultaneously, the expected number of edges
between nodes i and j, if edges are randomly placed, is didj/2L, where di and dj are the
degrees of the nodes, and L = 1/2 ∑i di is the total number of edges in the network. Thus,
the modularity Q is the sum of Aij − didj/2L over all pairs of nodes i, j that fall in the

217



Electronics 2024, 13, 1119

same community. If C = {C1, C2, . . . , CS} represents the community partition of G, then
the modularity associated with C is determined as follows [64]:

QC =
1

2L ∑
i,j
(Aij −

didj

2L
)δij, (1)

where δij = 1 if i, j ∈ Cs for some 1 ≤ s ≤ S and δij = 0 if not. This equation can be
simplified to the following:

QC =
S

∑
s=1

[
ls
L
− (

νs

2L
)2], (2)

where S is the number of communities, ls is the number of edges inside community Cs,
L is the total number of edges in the network, and νs is the total degree of the nodes in
community Cs.

This definition introduces a novel perspective on measuring community detection,
specifically the distinction between a real graph and a null model with the same degree
distribution. However, certain issues in this definition warrant further consideration:

• The contribution term ls
L − ( νs

2L )
2 for community Cs in modularity is a linear function

of ls plus a quadratic function of νs. This implies that the contribution of adding a
new edge within community Cs to the QC value linearly diminishes with the scale
of νs. However, intuitively, this decay should be superlinear. For example, in two
communities with the same number of nodes, where one is densely connected inter-
nally and the other is sparsely connected, the contribution of a new edge to the sparse
community should be significantly greater than to the dense community.

• On the other hand, considering the addition of a new edge between Cs and other com-
munities, although the term ls

L − ( νs
2L )

2 implies a penalty for the new edge, this penalty
linearly increases with the scale of the community. This is counterintuitive because the
penalty for small communities should be high, while for large communities, it should
be low. This makes it easier for the optimization of QC to lead to the merging of small
communities into larger ones.

These issues call for a new metric to measure community structure information. Next,
we introduce the logarithmic function from information theory to address the aforemen-
tioned problems.

3.2. Community Structure Information

Complex networks represent the sum of all relationships among entities in a complex
system. For a network graph, G = (V, E), the relationships are the edges, E, and the
individuals are the nodes, V, in G = (V, E). Then, the total information of the graph, G,
can be defined as the sum of information for all its edges. However, how much information
does each edge carry? As illustrated in Figure 1, if we already know the degree of each
node, for any edge {u, v} ∈ E, since nodes u and v are independent, the probability of
{u, v} ∈ E occurring is (du/2L)(dv/2L), where du and dv represent the degrees of nodes u
and v, respectively. Consequently, the information content of edge {u, v} ∈ E is determined
using − log2[(du/2L)(dv/2L)]. Thus, the average information carried by one edge in G is
expressed as follows:

H(G) := − 1
|E| ∑

uv∈E
log2[(du/2L)(dv/2L)]. (3)

According to the definition,H(G) represents the average number of bits required to
encode the edges or relationships in the graph, G. It is worth noting that in the construction
of the edge u, v, the selection of nodes u and v is relatively independent. Therefore, the
average number of bits required to encode one edge is equivalent to twice the number of
bits required to encode one node:

218



Electronics 2024, 13, 1119

H(G) = − 1
L ∑

uv∈E
log2[(du/2L)(dv/2L)]

= −2 · ∑
u∈V

du

2L
log2

du

2L
. (4)

Figure 1. Example of encoding graph G when the community structure is unknown.

In the above definition,H(G) represents the average information required to encode
edges when the community structure is not considered. Let C = {C1, C2, . . . , CS} be a
partition of the node set V, satisfying that for any 1 ≤ s, t ≤ S, V = C1 ∪ C2 . . . CS and
Cs ∩ Ct = φ, thus C divides G into S communities {C1, C2, . . . , CS}. With the information
on the community structure, we know whether any two nodes are in the same community.
In this case, the process of selecting two nodes to form an edge is divided into two steps.
The first step is to identify the community to which the nodes belong, and the second step
is to choose the corresponding nodes from the identified community. Let νs be the total
degree of all nodes in community Cs. For any edge u, v ∈ E, the execution of these two
steps involves two scenarios:

(i) u and v belong to the same community Cs. In this case, we first identify community
Cs with a probability of νs/2L, and then we select u with a probability of du/νs and v
with a probability of dv/νs;

(ii) u and v belong to different communities, Cs and Ct, respectively. In this case, we
first identify Cs and Ct with probabilities νs/2L and νt/2L, respectively. Then, we
independently select u from Cs with a probability of du/νs and v from Ct with a
probability of dv/νt.

Therefore, for cases (i) and (ii), the information content of edge {u, v} is determined via
− log2[(νs/2L)(du/νs)(dv/νs)] and− log2[(νs/2L)(νt/2L)(du/νs)(dv/νt)], respectively. In
the case of (ii), this expression can be simplified to − log2[(du/2L)(dv/2L)]. Thus, if the
community structure, C, of graph G is known, the average information content per edge
can be expressed as follows:

HC(G) :=
1
L
(H1(G) +H2(G)), (5)

where

H1(G) = −
S

∑
s=1

∑
uv∈E&u,v∈Cs

log2[(νs/2L)(du/νs)(dv/νs)],

H2(G) = −
S

∑
s=1

∑
uv∈E,u∈Cs&v/∈Cs

log2[(du/2L)(dv/2L)],

andH1(G) andH2(G) correspond to cases (i) and (ii), respectively.
The simplification of Equation (5) yields the following:
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HC(G) =
S

∑
s=1

[
νs

2L
H(Cs)−

νs − ls
L

log2
νs

2L
]

= − ∑
u∈V

du

L
log2

du

2L
+

S

∑
s=1

ls
L

log2
νs

2L

= H(G) +
S

∑
s=1

ls
L

log2
νs

2L
, (6)

whereH(Cs) = −2 ∑u∈Cs
du
νs log2

du
νs , and ls represents the number of edges within commu-

nity Cs. Figure 2 illustrates an example of encoding graph G with a known community
structure. The value ofHC(G) reflects the average information required to encode an edge
when the community structure C is known. In other words, the community structure, C,
provides a certain amount of information, eliminating the uncertainty in encoding an edge.
This reduction in uncertainty is represented by the absolute value of the second term in
Equation (6).

Figure 2. Example of an encoding graph G when the community structure is known.

We define the information provided via the community, C, as a measure of community
structure information:

Definition 1. Let C = {C1, C2, . . . , CS} be the community structure (partition) of the graph,
G = (V, E). The community structure information of G relative to the community C is defined
as follows:

RC(G) = H(G)−HC(G) = −
S

∑
s=1

ls
L

log2
νs

2L
, (7)

where S is the number of communities, ls is the number of edges within community Cs, and νs is the
total degree of nodes in community Cs.

According to the definition, RC(G) reflects the information saved on average when
encoding the edge information of graph G with knowledge of the community structure,
C. The more pronounced the community structure, the greater the amount of saved
information, and the closer the community structure, C, is to the ground truth community
structure. Therefore, optimizing algorithms can be employed to find the maximum value
of RC(G) for community detection.

4. Community Detection Algorithm, CSIM

In this section, we introduce a community detection algorithm based on the maximiza-
tion of community structure information. Since community detection algorithms based
on modularity have been extensively studied, and many excellent algorithms have been
proposed [2,12,63], we drew inspiration from the ideas of these previous algorithms in
designing our algorithm.
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4.1. Preliminaries

Assuming the graph G = (V, E) is the network under investigation, C = {C1, C2, . . . , CS}
represents any community partition of the node set V. Here, ls and νs denote the internal
edge count and total node degree of community Cs, respectively, and L = |E| is the total
number of edges in graph G. The community structure, D, represents the configuration
obtained by merging two communities, Cs and Ct, from the partition, C, into a single
community. Without a loss of generality, let s < t. Then, D can be expressed as follows:

D = {C1, . . . , Cs−1, Cs+1, . . . , Ct−1, Ct+1, . . . , CS, Cs ∪ Ct}.

Then, {
RC(G) = R0 − ls

L log2
νs
2L − lt

L log2
νt
2L

RD(G) = R0 − ls+lt+lst
L log2

νs+νt
2L ,

(8)

where R0 = −∑i 6=s,t
li
L log2

νi
2L , ls, and lt are the numbers of edges within communities Cs

and Ct, respectively, and lst is the number of edges between communities Cs and Ct.
Let ∆Rs,t = RD − RC, and a derivation from Equation (8) leads to the following:

∆Rs,t = −
lst

L
log2

νs + νt

2L
+

ls
L

log2
νs

νs + νt
+

lt
L

log2
νt

νs + νt
. (9)

As we aim to maximize R∗(G), we merge communities Cs and Ct if ∆Rs,t > 0; other-
wise, we refrain from merging. It is noteworthy that, when lst = 0, the following holds:

∆Rs,t =
ls
L

log2
νs

νs + νt
+

lt
L

log2
νt

νs + νt
< 0.

Therefore, in the algorithm aimed at maximizing R∗(G), communities Cs and Ct are
not merged when there are no inter-community edges between them.

4.2. CSIM

Inspired by the Louvain algorithm [12], we designed a fast hierarchical aggregation
algorithm, CSIM. Assuming a graph to be undetected as G = (V, E) and any node vi ∈ V,
the structure {C1, C2, . . . , CS} represents the community partition when node vi is removed
from V. So, which community Ct is more suitable for placing vi? An intuitive idea is to
place vi in the community Ct that maximizes the gain in R∗(G) after placing vi in each
1 ≤ t ≤ S. This becomes a special type of community merging—merging a node as a
standalone community with another community.

Let C = {{vi}, C1, C2, . . . , CS}, D = {C1, . . . , {vi} ∪ Ct, . . . , CS}, and ∆Ri,t = RD − RC.
Then, according to Equation (9), we have the following:

∆Ri,t = −
lit
L

log2
di + νt

2L
+

lt
L

log2
νt

di + νt
, (10)

where lit is the number of edges between node vi and community Ct, and di is the degree
of node vi. Similarly, it can be observed that, if lit = 0, then ∆Ri,t < 0. In such a case, node
vi is not placed in community Ct.

Based on the above analysis, we designed a hierarchical clustering algorithm called
CSIM, as shown in Algorithm 1. It mainly consists of two steps: node movement and node
aggregation. Specifically, at the node movement step, each node is temporarily removed
from its community and then assimilated into the neighboring community that maximizes
the gain in RC(G). This process is repeated for all nodes, corresponding to lines 4 to 16 in
the algorithm. Subsequently, the algorithm performs node aggregation, transforming the
communities obtained from node movement into super-nodes. The total degree (weight)
within each community becomes the self-loop weight of the super-node, and the number of
edges (edge weight) between communities becomes the edge weight between super-nodes.
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This results in the construction of a new graph, corresponding to lines 17 to 19 in the
algorithm. These two steps are iteratively executed until RC(G) no longer increases.

Algorithm 1 Community Structure Information Maximization Algorithm: CSIM
Input: G = (V, E), V = {v1, v2, . . . , vn};
Output: Community structure C and RC(G);

1: do
2: Set each node as a community, namely Ci = {vi};
3: C

′ ← C;
4: for vi ∈ V do
5: ∆max = 0;
6: C ← C\vi;
7: for Ct ∈ C do
8: if lit > 0 then
9: Calculate the value of ∆Ri,t(G);

10: if ∆Ri,t(G) > ∆max then
11: ∆max = ∆Ri,t(G), t∗ = t;
12: end if
13: end if
14: C ← put node vi into Ct∗ of C;
15: end for
16: end for
17: if RC(G)− RC′ (G) > 0 then
18: G ← Aggregate communities into super-nodes, and keep track of the members

of each super-node;
19: end if
20: while RC(G)− RC′ (G) > 0
21: C ← Extract the super nodes in C′;
22: Return: C and RC(G)

Now, let us analyze the time complexity of this algorithm. In the first iteration, CSIM
executes approximately L times to calculate ∆Ri,t(G). In the subsequent iterations, the
nodes aggregated into super-nodes reduce the number to approximately log n. Thus, in
the second iteration, CSIM executes a maximum of log2 n ∆Ri,t(G) operations in the worst
case, and in the third iteration, the number of super-nodes is roughly log(log n), and so on.
Similar to the Louvain algorithm [12], CSIM has an average time complexity of O(n log n),
which outperforms the greedy hierarchical aggregation algorithm proposed in [20], where
the average time complexity is O(n logO(1) n). In the experimental section, we further
compare the performance of these two algorithms in optimizing RC(G).

5. Experiment

For this section, we conducted an experimental analysis of our algorithm with three
main objectives: (1) that, compared to modularity-based optimization algorithms, our
proposed algorithm can discover finer community partitions that are closer to the ground
truth community structure; (2) that, in comparison to the greedy algorithm proposed in [20],
our designed algorithm not only has lower complexity but also demonstrates advantages
in optimizing the maximum value of community structure information; and (3) that our
algorithm does not suffer from resolution limit issues on special cyclic graphs compared to
modularity-based algorithms.

5.1. Experimental Settings

Datasets with ground truth community structure. The experiments with community-
structured data utilized graph data discussed by Fortunato and Barthelemy [18]. Table 1
provides an overview of this data, where |V| and |E| correspond to the number of nodes
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and edges in the network graph. There are a total of five datasets, datasets Yeast, E. coli, Elect.
circuit and Social from link www.weizman.ac.il/mcb/UriAlon (accessed on 20 November
2021), dataset C. elegans from link http://cdg.columbia.edu (accessed on 5 November
2021). The types listed in Table 1 cover various real-world domains, including human
society, animals, microorganisms, and electronic circuits. The Yeast and E. coli represent
transcriptional regulatory networks of microorganisms, where nodes represent operons,
i.e., sets of genes transcribed onto the same mRNA. If operon A activates operon B, an edge
is placed between nodes A and B. In this data, yeast has 688 nodes and 1079 edges, while
E. coli has 423 nodes and 519 edges. The Elect. circuit represents an electronic circuit network,
where nodes are electronic components (capacitors, diodes, etc.), and edges represent wires.
The Social represents a social network, where 67 nodes represent a surveyed group of people,
and 182 edges denote positive emotions transferred from one person to another (based on
questionnaires). The C. elegans represents the neural network of the C. elegans roundworm,
where nodes are neurons, and edges represent synaptic or gap connections. The networks
can be both undirected and directed, and we uniformly treated them as undirected.

Table 1. Overview of graph data with ground truth community structure.

Data G |V | |E| Type Description

Yeast 688 1079 Microorganism Transcriptional regulatory network in brewing
yeast

E. coli 423 519 Microorganism Transcriptional regulatory network in Escherichia
coli

Elect. circuit 512 819 Electronic Electronic circuit network of electronic
components

Social 67 182 Social network Social network of positive emotions among
individuals

C. elegans 306 2345 Animal Neural network of Caenorhabditis elegans

Datasets without a ground truth community structure. In comparing our algorithm
with the experiments of the paper [20] in seeking the maximum value of community
structure information, we introduced some classic datasets, as shown in Table 2, in addition
to the data in Table 1. There are a total of seven datasets, datasets Karate, Dolphin, and
Facebook from link http://konect.cc/networks/ (accessed on 26 November 2021), datasets
Jazz, Email, and PGP from link https://deim.urv.cat/~alexandre.arenas/data/welcome.
htm (accessed on 26 November 2021), dataset Jazz from link https://networkrepository.
com/power-US-Grid.php (accessed on 26 November 2021). The Karate data are from the
well-known Zachary Karate Club network. The data were collected by Wayne Zachary from
a university’s karate club. In this network, each node represents a club member, and each
edge represents a relationship between two club members. The Dolphin data represents
a social network of bottlenose dolphins living near the New Zealand fjord. Edges in the
network represent frequent interactions. The Jazz data represent a collaboration network
among jazz musicians. The nodes represent jazz musicians, and the edges represent
musicians who play together in a band. The Email data represent a communication network
among members of the University of Rovira i Virgili, where edges indicate communication
between members. The Facebook data represent a friend network among some users
on Facebook. Each node represents a user, and the edges represent friendships between
users. The Power grid data represents the high-voltage power grid in the western United
States. The nodes represent transformers, substations, and generators, while the edges
represent high-voltage transmission lines. The PGP data represent a user network for the
Pretty-Good-Privacy algorithm used in secure information exchange, where the edges
represent instances of secure information exchanges between users. All of these networks
are considered undirected.

Benchmark. In this experiment, four community detection algorithms were consid-
ered. Two were based on maximizing modularity, and two were based on maximiz-
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ing community structure information. The four algorithms are described as follows:
(1) Louvain [12] is a heuristic algorithm based on modularity maximization, with av-
erage time complexity of O(n log n); (2) Q_greedy [63] is a greedy hierarchical clustering
algorithm that optimizes modularity through hierarchical merging, with an average time
complexity of O(n logO(1) n); (3) CISM is a heuristic algorithm designed by us based on max-
imizing community structure information, with an average time complexity of O(n log n);
and (4) R_greedy [20] is a hierarchical clustering method based on RC(G), achieving the
maximization of community structure information through hierarchical community merg-
ing, with a time complexity of O(n logO(1) n). In the experiment, the RC(G) values and
modularity Q values of the four algorithms were obtained from the corresponding com-
munity detection algorithms. Additionally, the datasets in Table 1 do not have completely
ground truth community structures, and the ground truth structure was obtained using
the method proposed by Fortunato [18], which involves two rounds of modularity opti-
mization. The network graph was initially partitioned, and then the communities with
significant substructures underwent a second round of partitioning until each community
had no obvious substructure.

Table 2. Overview of graph data without ground truth community structure.

Data G |V | |E| Type Description

Karate 34 78 Social network Social network among members of karate
clubs

Dolphin 62 159 Animal Social network of associations among
dolphins

Jazz 198 2742 Social network A collaboration network among jazz
musicians

Email 1133 5451 Communication Email communication network among
members of a university in Spain

Facebook 2888 2981 Online social Friendship network among selected users on
Facebook

Power grid 4941 6594 Infrastructure Topological network of the power grid in the
western United States

PGP 10,680 24,316 Online social Interacting network among PGP users

Evaluation index: NMI. Mutual information is one of the most commonly used
metrics in information theory. It measures the shared information between two random
variables and is typically employed to express the similarity between two variables [65]. If
we consider community partitions as variables, mutual information can be used to assess
the similarity between the detected community partition and the ground truth community
partition. Let C = {C1, C2, . . . , CS} be the ground truth community partition of the graph
G = (V, E), and let C′ = {C′1, C′2, . . . , C′T} be the artificial partition discovered using the
community detection algorithm. Denote that

H(C) = −
S

∑
i=1

|Ci|
|V| log

|Ci|
|V| , and H(C|C′) = −

S

∑
i=1

T

∑
j=1

|Ci ∩ C′j |
|V| log

|Ci ∩ C′j |/|V|
|C′j |/|V|

,

where |Ci| represents the number of nodes in community Ci, |Ci ∩C′j | represents the number
of nodes in the intersection of communities Ci and C′j , and |V| represents the total number
of nodes. Then, mutual Information is defined as I(C, C′) = H(C)−H(C|C′). Normalizing
the mutual information yields normalized mutual information (NMI) [66]:

NMI(C, C′) =
I(C, C′)

max{H(C), H(C′)} . (11)

The range of NMI is [0, 1], making it suitable for assessing the similarity between two
community partitions. A higher NMI indicates a closer proximity between the detected
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and ground truth community structures, reflecting better detection performance. When
NMI equals 1, the detected and ground truth communities are in perfect agreement.

5.2. Experimental Analysis

Comparison with optimized modularity. This experiment will use the datasets in
Table 1 to validate that, compared to optimizing modularity, detecting communities by
optimizing community structure information yields community partitions closer to the
ground truth community structure. We used the normalized mutual information (NMI)
mentioned in the experimental settings to measure the similarity between the detected
community partition and the ground truth community partition. The NMI values ranged
from 0 to 1, with values closer to 1 indicating a higher similarity to the ground truth
partition and, thus, a better detection result. To achieve this, we first obtained community
partitions of the graph data using the four detection algorithms and then calculated their
NMI values with the ground truth partition. Figure 3 shows the histogram of NMI values
between the partitions obtained via different algorithms and the ground truth partition
on different datasets. From the figure, it is evident that the NMI values of the results
from optimizing community structure information (algorithms CSIM and R_greedy) were
significantly higher than those from optimizing modularity (Louvain and Q_greedy). In
particular, the performance of algorithms CSIM and R_greedy was even close to 1 on
the E. coli, Social, and Yeast datasets, indicating that the partitions detected via these two
algorithms were nearly identical to the ground truth partition. This implies that maximizing
RC(G) not only approximates the number of ground truth communities but also ensures
high consistency among the members within the communities. Additionally, concerning
the optimization of community structure information, the results obtained via the CSIM
algorithm were slightly better than those obtained via R_greedy.

Figure 3. The NMI values between the partitions detected via the four algorithms and the ground
truth partitions.

Comparison of optimized community structure information. This experiment veri-
fied the advantage of our proposed algorithm in optimizing community structure infor-
mation. Tables 1 and 2 together consist of 12 graph datasets, involving network data
from various real-world domains, including offline social domains, online social domains,
animal domains, infrastructure, microbial domains, electronic circuits, etc. We conducted
community detection using CSIM and R_greedy on these 12 datasets, outputting the max-
imum value of the optimized RC(G) for each algorithm. The results are presented in
Table 3. We have highlighted in black and bold text the maximum RC(G) value for each
dataset. It can be observed that, except for the E. coli dataset, for all the other datasets,
the CSIM algorithm obtained larger RC(G) values compared to R_greedy. On the other
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hand, although R_greedy achieved a slightly larger value than CSIM on the E. coli dataset,
their values were very close. This suggests that the CSIM algorithm is more effective than
R_greedy in optimizing RC(G). Combining our discussion on time complexity in Section 4,
it can be concluded that the CSIM algorithm excels in both efficiency and effectiveness
compared to R_greedy.

Table 3. A comparison between the CSIM algorithm and R_greedy in optimizing the value of
community structure information.

Data G RC(G) via CSIM RC(G) via R_greedy

Yeast 3.849 3.847
E. coli 4.005 4.032

Elect. circuit 4.117 4.097
Social 2.494 2.488

C. elegans 1.565 1.548
Karate 1.352 1.298

Dolphin 1.750 1.743
Jazz 1.434 1.308

Email 2.676 2.475
Facebook 2.723 2.723

Power grid 7.019 6.996
PGP 6.647 6.476

Comparison of resolution limits. This experiment verified the advantage of com-
munity structure information over modularity in addressing the resolution limit problem.
Fortunato et al. [18] provided an example illustrating the resolution limit problem when
optimizing modularity on a cyclic network composed of completely identical subgraphs
connected with single edges. In contrast, optimizing community structure information does
not suffer from this issue. We consider subgraphs of the cyclic network complete graphs
with three nodes, as shown in Figure 4. The portions enclosed in dashed circles represent
the community structures detected by optimizing the two metrics. When assuming that the
community structure in Figure 4a is A, and that the community structure in Figure 4b is B,
it is evident that A is the ground truth community structure. According to the definition
of modularity, the modularity value in the ground truth community structure, QA = 0.65,
is less than the value obtained by maximizing modularity, QB = 0.675. On the other
hand, the community structure information value in the ground truth community structure,
RA = 2.4914, is significantly greater than its value, RB = 2.0317, under community struc-
ture B. This implies that community structure information has an advantage in addressing
the resolution limit problem.
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(a) (b)

Figure 4. Comparison of modularity and community structure information in detecting commu-
nity structure. (a) Community structure detected by optimizing community structure information.
(b) Community structure detected by optimizing modularity.

6. Discussion

Here, we discuss the contributions of our study to theory and practice, as well as the
implications of the study.

6.1. Analysis of Contribution

In the preceding three sections, we presented the definition of community structure
information, devised the CSIM algorithm based on this information, and validated the
superior performance of the CSIM algorithm. Next, we explore the key factors contributing
to the outstanding performance of the CSIM algorithm, focusing on theoretical foundations,
algorithm design, and algorithm execution.

Theoretical foundations. In contrast to modularity, which focuses on the probability
of two nodes being connected by an edge [64], our definition of community structure
information was inspired by Shannon’s conception of information entropy, and it directly
focuses on the amount of information conveyed via the connection of two nodes [52]. It
reflects the community structure by compressing the amount of edge information conveyed
via the community structure, which better captures the essence of the community struc-
ture. Furthermore, compared to structural entropy [25], defining community structure
information from the perspective of edge information compression is more intuitive and
straightforward than using random walks.

Algorithm design. In the design of the CSIM algorithm, we drew inspiration from
the widely used Louvain algorithm and adopted a heuristic clustering method based on
node aggregation and graph reconstruction [12]. This approach significantly reduces the
algorithmic complexity of optimizing community structure information [20], bringing it
down to O(n log n), thus enabling the algorithm to be applied to large-scale social networks.
Moreover, similar to the Louvain algorithm, the CSIM algorithm also outperforms greedy
hierarchical clustering algorithms in optimizing community structure information, striking
a balance between efficiency and effectiveness.

Algorithm execution. At the algorithm execution level, due to the concept of commu-
nity structure information being theoretically more reflective of the essence of community
structure, the CSIM algorithm, which optimizes community structure information, can
achieve a balance between community size and quantity [20]. Unlike algorithms optimizing
modularity [18], it does not overlook or merge small-scale communities. Consequently, the
communities detected via the CSIM algorithm are closer to the ground truth communities,
and to some extent, the CSIM algorithm addresses the resolution limit problem.
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6.2. Implications

Although community detection has been studied for many years, this research has
provided important theoretical guidance and practical applications for this field. Firstly,
defining community structure information from the perspective of encoding edge infor-
mation is likely to change the traditional definition, which relies on edge density. This
is conducive to a deeper exploration of the essence of community structure, including
its application in areas such as graph compression, machine learning, and graph neural
networks. Secondly, the CSIM algorithm, based on the theory of community structure
information, offers advantages in both algorithm complexity and balancing community
size and quantity. It can replace traditional algorithms like Louvain, especially for graphs
with imbalanced community structures or a large number of small communities. Lastly,
the related theory and algorithms can be further expanded for applications such as over-
lapping community detection and multi-graph analysis, promoting advancements in the
field. Overall, this research provides a more intuitive, efficient, and effective method for
identifying community structures in complex networks, contributing to the advancement
of community detection.

7. Conclusions

This paper has investigated the direction of community structure detection in complex
networks. Despite the widespread research and application of community structure detec-
tion algorithms in fields such as social media, computer science, and biology, challenges
persist, including the lack of an essential definition of community structure, high algorith-
mic complexity, and the unreasonable structural characteristics of detected communities.
In addressing these issues, we introduced, for the first time, the definition of community
structure information from the perspective of encoding edge information. This information
reflects the essence of community structure by compressing the amount of edge information
conveyed via the community structure, thereby better expressing the intrinsic character-
istics of the community structure. By maximizing community structure information, we
further proposed the CSIM community detection algorithm, which achieves a balance
between community size and quantity to identify the most natural community structure.
Additionally, inspired by the heuristic clustering Louvain algorithm, we reduced the com-
plexity of CSIM to O(n log n), enabling its application to large-scale complex networks.
Our experimental results show that communities detected by optimizing community struc-
ture information are closer to ground truth communities, and they effectively address the
resolution limit problem, especially in cyclic graphs.

Future research can delve deeper into the rationale behind the definition of community
structure information and provide theoretical validation for the benefits of optimizing it.
This will involve investigating its role in striking a balance within a community structure
and overcoming the resolution limit problem. Additionally, the application of community
structure information will be extended to domains like machine learning and graph neural
networks, with the aim of enhancing existing algorithms for tasks such as node or graph
classification. Furthermore, diverse forms of community structure information will be
explored, including its utilization in identifying communities within multigraphs or those
with overlapping structures. Tailoring the granularity of community detection to specific
requirements will be a key focus, thereby broadening the scope of its applicability.
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Abstract: Scrap steel inspection is a critical entry point for connecting the smelting process to the
industrial internet, with its security and privacy being of vital importance. Current advancements
in scrap steel inspection involve collecting scattered data through the industrial internet, then
utilizing them to train machine learning models for distributed classification. However, this detection
method exposes original scrap steel data directly to the industrial internet, making it susceptible
to interception by attackers, who can potentially obtain sensitive information. This paper presents
a layer-wise personalized federated framework for scrap steel detection, termed FedScrap, which
leverages federated learning (FL) to coordinate decentralized and heterogeneous scrap steel data
while ensuring data privacy protection. The key challenge that FedScrap confronts is the heterogeneity
of scrap steel data distributed across the network, which complicates the task of effectively integrating
these data into a single detection model constructed via FL. To address this challenge, FedScrap
employs a self-attention mechanism to aggregate personalized models for each layer of every client,
focusing on the most relevant models to their specific data. By assigning higher attention scores to
more relevant models, it achieves more accurate aggregation weights during the model aggregation
process. To validate the efficacy of the proposed method, a dataset of scrap images was collected from
a steel mill, and the results demonstrate that FedScrap achieves accurate classification of distributed
scrap data with an impressive accuracy rate of 90%.

Keywords: scrap steel detection; federated learning; data heterogeneity; network security

1. Introduction

The classification of scrap steel signifies the preliminary phase of the steelmaking
process and serves as a crucial component in the integration of heterogeneous industrial
internets [1,2]. Currently, the development of scrap steel classification involves utilizing
the industrial internet to gather scattered data on scrap steel, subsequently inputting this
data into artificial neural networks for classification of the scrap. Although the centralized
training via the low-power network [3] facilitates collaboration among scrap data located
in various places, it may also give rise to network security and data privacy concerns [4].
The reason is that raw data transmitted directly through the industrial internet may be
intercepted by attackers, who could obtain sensitive information to launch network at-
tacks [5,6]. Therefore, a distributed scrap inspection method that can protect the original
data is essential.

The emergence of federated learning (FL) makes distributed steel scrap inspection
possible. FL trains a machine learning model locally among dispersed scrap data owners,
whose parameters are collected to aggregate a shared scrap detection model, which is
then fed back to the data owners [7]. Therefore, FL is extremely sensitive to perturbations
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of parameters, and a key factor causing perturbations is the distribution of data. The
industrial internet is emblematic of a multi-user multiple-input single-output (MU-MISO)
heterogeneous network [8]. Its scrap steel data are drawn from numerous recycling points,
each with its own distinctive data distribution patterns. For example, industrial scrap
recycling prefers a single scrap elimination, while social scrap recycling has a wide variety.
The difference of distribution is widely known as the non-independent and identically
distributed (Non-IID) problem in FL [9–11]. This kind of Non-IID data makes the model
trained by each client biased towards its own data distribution, and the single shared model
aggregated by the server cannot represent a unified global distribution, which cannot be
generalized to the clients.

In response to the above problems, Personalized Federated Learning (PFL) was pro-
posed to learn a personalized model for the client that has better performance on local
data while still benefiting from collaborative training. One way to implement PFL is to
cluster clients with similar data distributions, and the model parameters of similar clients
are aggregated as their personalized models [12–19]. For example, Yan et al. [12] proposed
ICFL, which can dynamically determine the cluster structure of clients during each training
round and aggregate a personalized model for each cluster. In [13], Wang et al. proposed
CPFL, which uses Earth mover’s distance to measure the distribution similarity between
client data, thereby clustering clients to combat the Non-IID problem. Long et al. [15]
proposed multicenter FL, which forms multiple personalized models through clustering
based on distributed similarity of data and optimizes them individually.

The above methods essentially make the client model differentiated and aggregated in
the direction of autocorrelation through clustering, and generates the personalized model
of client processing Non-IID. However, these cluster-based methods are lacking in the
following aspects: (i) The number of partitioned clusters needs to be manually determined,
which usually requires first determining the similarity between the data distributions
of the clients. (ii) The collaboration between clients of different clusters is interrupted,
resulting in a change in the base of model aggregation, but there are few ways to adjust the
aggregation weights to accommodate this change. (iii) The object of clustering is the entire
model, without considering the similarity relationship between clients at the level of the
fine-grained model.

In this paper, we propose a FL framework based on self-attention for scrap classifica-
tion, which aims to provide a privacy protection and model training platform for distributed
scrap recycling with heterogeneous data. The core of self-attention is the self-clustering
of clients at the level of granularity in the model, which aggregates a most relevant per-
sonalized model for each client, and the weight of the aggregation is adaptively adjusted
according to the similarity of the model between clients. In this way, the decentralized
scrap recycling sites can combine other inconsistently distributed data to collaboratively
train a scrap classification model to meet their personalized needs, without worrying about
data privacy leakage. Finally, we collected a scrap classification dataset from steel mills,
including 6 scrap varieties, for a total of 1000 samples. The dataset is divided into 10 client
datasets with Non-IID characteristics according to the Diliclet distribution. Specifically,
the main contributions of our approach are as follows:

• We have developed a federated steel scrap classification framework based on self-
clustering, which allows each client to autonomously aggregate a personalized scrap
steel classification model most relevant to them through the self-attention mechanism.

• We propose a model aggregation method based on the self-attention mechanism,
which calculates the attention weights between models after serializing the client
models, and aggregates personalized models according to the weights.

• We compare the proposed method with multiple personalized FL methods using
multiple deep learning models on the dataset collected by ourselves. The experimental
results show that the proposed method can effectively improve the classification
accuracy of scrap steel under Non-IID distribution.
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The structure of this article is as follows: Section 1 provides background and a descrip-
tion of the problem, Section 2 introduces existing methods, Section 3 models the federated
scrap steel detection problem, Section 4 presents our solution to the problem, Section 5
validates the effectiveness of the method through experiments, and Section 6 concludes
the paper.

2. Related Work
2.1. Scrap Steel Classification

At present, the mainstream classification of scrap steel is to establish a classification
model through Deep Learning (DL). In [20], Tu et al. proposed an automatic classification
and grading of scrap based on hierarchical learning, which firstly removes complex back-
ground information from scrap picture data through the attention mechanism, and then
uses a segmentation network to segment the scrap picture. Gao et al. [2] proposed a 3D
vision-based scrap steel grading approach, which can detect the edge of thickness features
in pictures through machine vision, and use the detected features to classify and grade
scrap. Smirnov et al. [21] compared the accuracy of various CNN models for the classifica-
tion of scrap in railway carriages. Xu et al. [1] used a high-resolution sensor-based image
acquisition of scrap steel and proposed a deep learning model based on attention mech-
anism CSBFNet to classify scrap steel. Williams et al. [22] combined magnetic induction
spectroscopy and machine learning technology to develop a scrap classification framework,
using magnetic induction spectroscopy to establish the physical characteristics of scrap
data as the input of the depth model to classify scrap. DazRomero et al. [23] used principal
component analysis to filter scrap out of the environment, and then used deep network
DenseNet to classify it.

The classification of non-ferrous metals is also on the agenda. Picn et al. [24] proposed
to combine hyperspectral and spatial characteristics of materials to form feature vectors
to identify non-ferrous metals. Chen et al. [25] used transfer learning to classify data of
small samples of non-ferrous metals on the basis of traditional image recognition tech-
niques. Han et al. [26] also proposed a scrap classification method based on computer
image recognition.

The above scrap classification methods use deep learning methods to classify scrap,
or based on machine vision on the physical and chemical properties of materials, it can be
predicted that deep learning has great prospects in the application of scrap classification.

2.2. Personalized Federated Learning

FL aims to use the local data distributed in each terminal device to jointly train a
unified model, and upload model parameters instead of uploading local data to protect
user data privacy [7,27,28]. However, in steel scrap classification scenarios, different envi-
ronments and different user characteristics need to be considered, resulting in data with
Non-IID characteristics in distribution, which seriously affects the accuracy of steel scrap
classification in FL.

For Non-IID problems, FL has already developed a personalized method to solve
them. Existing solutions are extensively discussed in [29] by Tan et al. Li et al. [30] proposed
FedProx. On the basis of minimizing the global experience loss, the `2-norm constraint is
introduced to the loss function of the local training, so that the local update should not
be too far away from the initial global model. Sai et al. [31] proposed a new algorithm
(SCAFFOLD), which uses control variates (variance reduction) to correct for the “client-
drift” in its local updates, and could taken advantage of similarity in the client’s data
yielding even faster convergence. In [13], Wang et al. use the parameters in the local
training process as the cognitive basis and calculate Earth mover’s distance to quantify the
differences between different models. Presotto et al. [32] proposed a federated clustering
algorithm FedCLAR, which grouped clients based on the similarity of client models, so
as to better identify and distinguish client data with different distributions. Yan et al. [12]
proposed ICFL, which can dynamically determine the cluster structure of clients during
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each training round and aggregate a personalized model for each cluster. Long et al. [15]
proposed multicenter FL, which forms multiple personalized models through clustering
based on distributed similarity of data and optimizes them individually.

We focused on the clustering-based personalized FL, and found that the existing
clustering methods rely on artificial preset cluster number, there is a lack of cooperation
between clients of different clusters, and the model aggregation of clients within clusters
does not consider the correlation between data distributions in a fine-grained manner. This
inspired us to develop an end-to-end self-clustering approach to cluster a personalized
model for each client that is most relevant to them.

3. Problem Statement
3.1. Federated Learning

There are N clients, and each client has its own local scrap steel data Di(i ∈ [1, N]) and
the loss on jth sample (xi,j, yi,j) is l(xi,j). Moreover, the total loss of the client on its local

data is Fi(w) = 1
|Di | ∑

|Di |
j=1 l(xi,j), where w is the model parameter, and |Di| is the length of

the dataset. The overall loss after aggregation by the FL server is:

F(w) =
∑N

i=1 |Di|Fi(w)

|D| , (1)

where |D| = ∑N
i=1 |Di| is the total size of all client datasets.

Suppose F∗ = ∑N
i=1 αiFi(w∗) is the smallest overall loss, where w∗ is the optimal

parameter that causes the model to converge and αi is the learning rate of gradient descent
algorithm. Let ∆ = |F∗ −∑N

i=1 αiF∗i |, F∗i be the optimal loss, then:

∆ = |
N

∑
i=1

αiFi(w∗)−
N

∑
i=1

αiF∗i |, (2)

where ∆ is the difference between the optimal model of the client and the optimal model
aggregated by the server, and its value can reflect the deviation of the aggregate model in
the global data distribution.

Generally, the value of αi is the proportion of each client to the total data. In this case,
if the distribution of the clients’ data is Non-IID, then Fi(w∗) 6' F∗i and ∆ 6' 0, resulting in
the global model of server aggregation deviating from the global distribution.

In summary, the optimization objective of scrap steel classification based on FL can be
summarized as follows:

w∗ = arg min
w

F(w) (3)

s.t. Di ∼ X(i), X(i) 6= X(j),

i 6= j, (4)

∆ < δ,

where X(·) represents the distribution of the data and δ represents an upper bound on the
difference between the loss at the convergence point and the optimal loss.

3.2. Personalized FL-Based Scrap Steel Classification

In the Non-IID scenario, the global model w∗ obtained by the federated average
algorithm may be a local optimal minimum point for the client, which cannot meet the
optimization requirements of each client [10,33]. Existing work proposes personalized
FL, where customers optimize their local goals while participating in server collabora-
tive training:

w∗1 , ..., w∗N = arg min Φ(F(w1), ..., F(wN)), (5)

where Φ(·) is set to ∑N
i=1 ai · F(wi) and ai is the aggregation weights for wi.

235



Electronics 2024, 13, 527

On the basis of PFL, this paper proposes federated steel scrap classification based
on self-attention hierarchical aggregation. The optimization goal can be summarized
as follows:

w∗1 , ..., w∗N = arg min Φ(w1, ..., wN)

s.t. Di ∼ X(i), X(i) 6= X(j), i 6= j. (6)

where Di is the local dataset of client i, with different distributions (X(i) 6= X(j)), and Φ(·)
is a different aggregation function for different clients’ models, as calculated by:

Φ(wi) =
N

∑
j=1

αi,j · wj (7)

=
N

∑
j=1

‖wi − wj‖2

∑N
j=1 ‖wi − wj‖2

· wj,

where αi,j is the aggregation weight between wi and wj and ‖wi − wj‖2 is the L2-norm
between wi and wj, which signifies their correlation. Through this method of aggrega-
tion, similar clients are allocated greater aggregate weights, enabling the personalized
model aggregated for the clients to benefit more from those that are more closely related
to themselves.

4. Overview and Implementation
4.1. Overview

The overall process of FedScrap is illustrated in Figure 1, which consists of two main
parts: the model training on the client side and the model aggregation on the server side,
as detailed below.

𝑘1𝑞1 𝑣1 𝑘2 𝑣2 𝑘3 𝑣3 𝑘𝑁 𝑣𝑁

𝑤1
𝑙

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,𝑁

ഥ𝑤1
𝑙

𝑤2
𝑙 𝑤3

𝑙 𝑤𝑁
𝑙

𝑐1 𝑐𝑁𝑐2 𝑐3

𝑆𝑒𝑟𝑣𝑒𝑟

…

…

𝑤1

𝑤𝑁

Figure 1. Overview of FedScrap. The dots in different colors represent different client’s Scrap steel
classification models, which are trained locally using pre-processed waste steel data. The server
model aggregation is achieved by layer-by-layer aggregating a personalized model relevant to each
client through the self-attention mechanism.

1. Preprocessing of scrap data and local training of classification models. Due to the
complex scrap detection environment, which contains a large number of stacked
scrap and background information, clients need to preprocess its scrap data and
extract scrap features conducive to classification. Then, clients build their own neural
network models with the same structure (such as resnet18, etc.) for training on the
processed data.
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2. Personalized aggregation of parameters based on self-attention. The server receives
the model parameters trained by the clients and aggregates the personalized model
for each client using self-attention. The core of self-attention is to measure the model
similarity between clients, which can represent the distributed similarity between
clients’ data, and then assign greater aggregate weight to those clients’ models that
are more relevant to them when aggreging models for clients.

4.2. Implementation and Algorithm Description
4.2.1. Preprocessing of Scrap Data and Local Training of Classification Models

The scrap recycling sites collects the image data of scrap steel, and decomposes the
scrap steel data in JPG format into RGB three primary color pixels through the image data
processing function in python. The converted scrap data are unified into input data in the
same format by pre-processing operations, such as cutting, de-noising, and normalization.
The processed data are called the client’s local data Di, where D is the abbreviation for the
dataset and client i is the i-th scrap recycling sites.

After processing the data, the clients locally build a deep learning model with the same
structure to learn the features of the data. Different types of models have different feature
extraction capabilities, but generally have input layers that are in contact with the data,
fully connected layers for decision making, and a backbone network to extract features.
The backbone network adopted in this paper is the residual network ResNet structure,
which has the advantage of extracting the original features of the data and preventing the
gradient disappearance caused by data heterogeneity. For ease of description, the overall
model of the i-th client is denoted as wi.

In order to speed up the training of the model, the scrap data are divided into small
batch data and then iteratively fed into the network model for training. The training method
adopts stochastic gradient descent (SGD) algorithm, which is a fast iterative training
algorithm for small batch data. SGD calculates the error loss F(wi) between the sample
label estimated by the network model and the real label through forward propagation,
and inversely solves the gradient of the model parameters, i.e., ∇F(wi), to update the
parameters so as to reduce the loss. In general, the client’s scrap classification model
parameter wi was updated in round t as follows:

wt
i = wt−1

i + ηi∇F(wt
i ), (8)

where ∇F(wt
i ) and ηi represent the model gradient and the step size of gradient descent,

respectively. After local training, we upload the parameters or gradient values of the steel
scrap classification model to the server for model aggregation.

4.2.2. Personalized Model Aggregation Based on Self-Attention

The server receives the model parameters uploaded by the clients and aggregates
them into a global shared unified model according to the aggregation strategy, as follows:

w =
N

∑
i=1

αiwi, (9)

where αi is the aggregation weight. The traditional aggregation strategy is to weight
the model according to the data volume of the clients, i.e., αi = |Di|/∑N

i=1 |Di|, but this
approach involves the sensitive information of the data volume |Di|, and does not take into
account the model bias caused by the data distribution.

In this paper, we proposes a personalized model aggregation strategy based on layer-
wise self-clustering, which aims to customize a most relevant model for each client to adapt
to its data distribution. According to representation learning, the features presented by two
models with the same structure after training with different data show decreasing similarity
at each layer of the model. In order to examine the fine-grained features between clients,
we quantified the layer-wised correlation of model parameters between clients, which
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is calculated by dl
i,j = ‖wl

i − wl
j‖2. That is, dl

i,j reflects the degree of similarity between
the layers of the model between the two clients, which is determined by the internal
relationship of the data distribution between the clients.

On this basis, we aggregate a personalized model for each client individually. Specifi-
cally, the server takes each client as a cluster center to aggregate the models of other clients,
and the weights of the aggregation are dynamically assigned according to the similarity of
the parameters between them, that is:

αl
i,j =

dl
i,j

∑jεN dl
i,j

, (10)

N

∑
j=1

αl
i,j = 1. (11)

In order to improve the ability of the aggregation model to process heterogeneous
data, a larger aggregation weight αl

i,j is assigned between clients with similar data, which
makes the i-th client more “concerned” about the model parameters of the j-th client at
layer j. In other words, there is more cooperation between similar clients, which is mutually
desirable and satisfies each other’s needs.

Then, the server repeats the aggregate weight αl
i,j between the two clients and cus-

tomizes the aggregate model for each client based on the weight, that is:

wl
i = ∑jεN αl

i,jw
l
j, (12)

where wl
i is the model parameter of layer l aggregated by the server for client i. In a

Non-IID environment, calculating the model similarity between clients layer by layer can
facilitate effective cooperation among multiple parties, but a significant problem with this
is the complexity of the calculations, which require frequent and repeated access to each
client’s parameters at each layer of the model. Therefore, it is necessary to develop a model
aggregation method capable of parallel computation.

In this paper, the idea of self-attention is adopted, which can calculate the attention
weight of serialized data in parallel, so as to extract the correlation within the sequence
data. In this way, the more relevant content of each client is deeply extracted into the server
model, reducing the aggregation of personalized features while preserving shared features.
Specifically, the personalized federated scrap detection process based on self-attention is
as follows:

1. Serialize the model parameters for each client of the same layer into an input vector,
denoted as wl = [wl

1, wl
2, ..wl

N ] for any l ∈ L.
2. Multiply each vector w by three coefficients aq, ak, and av to get three vectors: query,

key, and value, that is, Q = Aq · wl , K = Ak · wl and V = Av · wl , where A =
[a1, a2, ..., aN ].

3. The attention score (similarity score) is calculated for the clients by matrix multiplica-
tion, i.e., αl = Q · K, where αl

i,j = aq ·wl
i · ak ·wl

i , which reflects the degree of similarity
between the parameters.

4. The attention scores were normalized using softmax and other methods, i.e., α̂l =

so f tmax(αl).
5. Finally, the aggregated parameters are obtained by multiplying the normalized atten-

tion score by the parameter vector, i.e., ŵl = α̂l · wl , where ŵl
i = ∑N

j=1 α̂l
i,j · wl

i .

The aggregation algorithm of federated scrap detection is shown in Algorithm 1.
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Algorithm 1 Personalized model aggregation based on self-attention

1: for i ∈ N do
2: The client local model training: wt

i = wt−1
i + ηi∇F(wt

i ).
3: The client uploads its local model parameter wt

i .
4: end for
5: for l ∈ L do
6: The server serializes the model parameters of the clients: wl = [wl

1, wl
2, ..wl

N ].
7: Parameter vector coefficients: Q = Aq · wl , K = Ak · wl and V = Av · wl .
8: The server calculates the attention score for the clients: αl = Q · K.
9: Attention score normalization: α̂l = so f tmax(αl).

10: Aggregate model parameters according to attention scores: ŵl
i = ∑N

j=1 α̂l
i,j · wl

i .
11: end for
12: The server sends the aggregated model parameters ŵi to all clients.

5. Evaluation
5.1. Set Up

In order to effectively evaluate the performance of the method proposed in this
paper, we conduct experimental verification on a self-built FL framework with ten clients.
The framework is deployed on a server with 56 NVIDIA GeForce RTX 3090 Ti graphic cards.

Since there is no open source scrap detection dataset at present, we collected a batch of
scrap image data from a steel mill in China, which has six common types of scrap, including
silicon steel sheet, rebar, steel slag hot pressed block, heavy scrap, square pressed block,
and messy scrap, as shown in the Figure 2, and the total sample size was about 1000 images.

(a) silicon steel sheet (b) rebar (c) steel slag hot pressing block

(d) heavy scrap (e) square pressing block (f) messy scrap

Figure 2. Examples of different scrap types in self-built datasets.

In terms of the depth algorithm for extracting data features, we use three common
models for verification, and the three model pairs are shown in Table 1.

Table 1. Models used to extract data features.

Models Mechanism Parameters Layers Activation Function

LeNet-5 Convolutional Layers 60 k 7 ReLU
ResNet-18 Convolutional Layers 11.7 M 18 ReLU
ViT-12 Self-Attention 86.57 M 12 ReLU/Layer Normalization
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In order to compare the performance of the proposed layer-based method in terms of
model prediction accuracy, client’s local model accuracy, etc., the comparison method in
this paper is as follows:

1. FedAvg [7], an FL classic algorithm that collects and averages model parameters
across clients.

2. FedProx [30], an FL method that restricts the client’s update direction to enhance the
performance of the global model, has a hyperparameter µ for the constraint we set
to 0.01.

3. ICFL [12], a clustering FL algorithm that automatically clusters clients and aggregates
clustering models according to the correlation between clients without setting the
number of clusters.

4. CPFL [13], a clustering FL algorithm that individually aggregates the personalized
models associated with them for each client.

The comparison methods use the same dataset, network model, and hyperparame-
ter settings.

5.2. Overall Accuracy Comparison

We divide the self-built dataset into ten clients using the Dilliclet distribution, with a
Dilliclet coefficient α of 0.01, and each client has a different number or category of scrap data.
Then, resnet and Vit models are used to train and test the accuracy of several comparison
methods on each client. First, we averaged the accuracy of the client to observe the global
average accuracy of the whole and evaluate the performance of each method. The result
records are shown in Table 2, where ± represents the standard deviation between the
accuracy of the clients.

Table 2. Overall accuracy comparison of methods on different models (the unit of accuracy is %).

Models
Methods Local FedAvg FedProx CPFL ICFL FedScrap

ResNet-18 77.868 ± 14.88 97.655 ± 6.3 98.834 ± 2.06 99.583 ± 1.32 99.322 ± 1.43 99.655 ± 1.09

VIT 89.857 ± 15.7 98.199 ± 3.57 94.735 ± 10.38 97.776 ± 3.82 97.164 ± 3.35 98.985 ± 1.74

LeNet 80.593 ± 18.89 98.797 ± 10.99 95.5 ± 9.78 89.819 ± 15.6 94.468 ± 7.24 97.899 ± 2.4

The results indicate that under the Non-IID data distribution, the unprocessed local
scrap steel classification model exhibits extremely low accuracy performance, and there
is a substantial variance in accuracy across clients. This suggests that while some clients
achieve high accuracy, others remain at very low levels, which is clearly unsatisfactory.
Traditional FL methods such as FedAvg and FedProx can enhance classification accuracy;
however, their performance is highly unstable across different models, exhibiting consider-
able variance. This is primarily due to their reliance on a single shared model maintained
on the server to address the data from all clients. Cluster-based PFL methods significantly
mitigate this issue, achieving a high average accuracy with reduced variance. Our pro-
posed FedScrap outperforms these methods, demonstrating high robustness across various
models. Both our accuracy and variance are superior to those of the comparative methods,
which is attributed to the personalized models tailored for each client, absorbing the most
relevant knowledge for their respective contexts.

For a more intuitive comparison, we plotted the test results of different models,
as shown in Figure 3.
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Figure 3. Accuracy comparison of methods on different models.

The analysis reveals that in scenarios characterized by an imbalance in scrap types,
the classification model trained exclusively on local data exhibits low overall accuracy.
This shortcoming arises because certain client-specific samples are too limited to yield
effective training outcomes. Consequently, there is a pressing need for FL to collaborate
with these dispersed clients and enhance the model’s performance. The yellow curve, de-
picting conventional FL, demonstrates a notable enhancement in model accuracy. However,
the accuracy fluctuates markedly and convergence is achieved gradually. This volatility is
attributed to the data heterogeneity resulting from the unbalanced distribution of scrap
types, which challenges a single global model’s capacity to cater to the diverse needs of
all clients.

Although existing cluster-based personalized methods can marginally elevate model
accuracy, they are accompanied by significant fluctuations in the early stages, suggesting a
slow convergence rate. This delay is rooted in the initial step of identifying cluster centers,
followed by the aggregation of personalized models around these centers. The choice of
cluster centers is critical and can significantly impact the model’s convergence. In contrast
to these approaches, our proposed FedScrap method treats each client as a clustering
center, effectively positioning them as individual servers. This strategy facilitates the ag-
gregation of highly relevant personalized models that have absorbed sufficient bespoke
knowledge from similar clients, thereby aligning closely with their respective data distribu-
tions. As a result, FedScrap not only enhances model precision, but also ensures a smooth
convergence process.

5.3. Comparison of Accuracy Differences between Methods among Clients

To more finely compare the individual variations of each method at the client level
and to identify the reasons why the accuracy variances of other methods are not sufficiently
impressive, we have recorded and plotted the accuracy box plots for each client. The results
are shown in Figure 4, where the three box plots represent the three backbone network
models used.
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Figure 4. Accuracy comparison of different methods on boxplots.

It can be observed that the three graphs depict a similar pattern of performance: local
performs the worst, with an accuracy of merely 50%, while FedScrap exhibits the best
performance, consistently maintaining accuracy above 90%, and the other methods each
have their strengths but also suffer from notable drawbacks.

Due to the impact of data Non-IID, there are certain differences in the types of scrap
metal among clients. Some clients have extremely limited samples for certain types of
scrap metal, resulting in poor accuracy, while those with better data resources perform well.
Although FedAvg and FedProx, as representatives of a single global model, have combined
client training, the differentiated data lead to poor performance on some clients. The
cluster-based methods CPFL and ICFL group clients based on their similarity, maintaining
a shared model within each group. However, this breaks the close connection between
clients, leading to a decline in average accuracy.

Unlike these methods, FedScrap not only fully considers the relevance of data between
clients but also uses this relevance to strengthen the connection between clients. As a result,
the personalized models tailored for each client can absorb useful information from other
clients based on their own data distribution. These aspects contribute to FedScrap’s average
accuracy among clients reaching up to 97%, with a standard deviation of only about 2%.

6. Conclusions

This paper introduced FedScrap, a layer-wised personalized FL framework for scrap
detection. Utilizing the self-attention mechanism, FedScrap coordinates distributed scrap
data to train a robust scrap classification model. The framework addressed the challenge of
non-independent co-distribution in distributed scrap data by employing the self-attention
concept to aggregate a personalized model for each client that is most relevant to its specific
data. We also collected scrap pictures from a steel mill and labeled them to make scrap
classification dataset, and carried out verification experiment on this dataset. Experimental
results show that FedScrap accurately classifies distributed scrap data with an impressive
accuracy rate of 90%.
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