
mdpi.com/journal/plants

Special Issue Reprint

QTL Mapping of Seed  
Quality Traits in Crops

Edited by 
Abdelmajid Kassem



QTL Mapping of Seed Quality
Traits in Crops





QTL Mapping of Seed Quality
Traits in Crops

Guest Editor

Abdelmajid Kassem

Basel ‚ Beijing ‚ Wuhan ‚ Barcelona ‚ Belgrade ‚ Novi Sad ‚ Cluj ‚ Manchester



Guest Editor

Abdelmajid Kassem

Biological and Forensic Sciences

Fayetteville State University

Fayetteville

United States

Editorial Office

MDPI AG

Grosspeteranlage 5

4052 Basel, Switzerland

This is a reprint of the Special Issue, published open access by the journal Plants (ISSN 2223-7747),

freely accessible at: www.mdpi.com/journal/plants/special issues/QTL Seed.

For citation purposes, cite each article independently as indicated on the article page online and

using the guide below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-7258-3350-4 (Hbk)

ISBN 978-3-7258-3349-8 (PDF)

https://doi.org/10.3390/books978-3-7258-3349-8

© 2025 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license (https://creativecommons.org/licenses/by-nc-nd/4.0/).

www.mdpi.com/journal/plants/special_issues/QTL_Seed
https://doi.org/10.3390/books978-3-7258-3349-8


Contents

About the Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Moulay Abdelmajid Kassem
QTL Mapping of Seed Quality Traits in Crops
Reprinted from: Plants 2025, 14, 482, https://doi.org/10.3390/plants14030482 . . . . . . . . . . . 1

Hye Rang Park, Jeong Hyun Seo, Beom Kyu Kang, Jun Hoi Kim, Su Vin Heo and Man Soo
Choi et al.
QTLs and Candidate Genes for Seed Protein Content in Two Recombinant Inbred Line
Populations of Soybean
Reprinted from: Plants 2023, 12, 3589, https://doi.org/10.3390/plants12203589 . . . . . . . . . . 4

Dounya Knizia, Nacer Bellaloui, Jiazheng Yuan, Naoufal Lakhssasi, Erdem Anil and Tri
Vuong et al.
Quantitative Trait Loci and Candidate Genes That Control Seed Sugars Contents in the Soybean
‘Forrest’ by ‘Williams 82’ Recombinant Inbred Line Population
Reprinted from: Plants 2023, 12, 3498, https://doi.org/10.3390/plants12193498 . . . . . . . . . . 19
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Preface

Quantitative trait locus (QTL) mapping has transformed plant genetics, providing crucial

insights into the genetic architecture of complex agronomic traits. This Special Issue, “QTL Mapping

of Seed Quality Traits in Crops”, brings together 11 groundbreaking research articles that explore

the identification and characterization of QTLs associated with key seed quality traits, including

protein content, sugar accumulation, frost tolerance, seed longevity, and biochemical composition

across various crop species.

The contributions in this issue highlight the latest advancements in QTL mapping

methodologies, integrating high-throughput genomics, phenotypic analysis, and bioinformatics to

unravel the genetic determinants of seed quality. These studies span multiple crops such as

soybean, wheat, common bean, mustard, and Capsicum annuum, reflecting the broad applicability

of QTL mapping in improving seed traits critical for food security, nutritional enhancement, and

environmental adaptation.

A key focus of this issue is the translational potential of QTL discoveries. The identification of

candidate genes linked to desirable seed traits opens new possibilities for molecular breeding and

genetic improvement. By bridging fundamental research and practical applications, the findings

presented here serve as a valuable resource for researchers, breeders, and agricultural scientists

dedicated to enhancing seed quality through targeted breeding strategies.

As we face increasing global challenges in agriculture, including climate change and the demand

for high-yield and nutrient-rich crops, QTL mapping remains a vital tool in plant science. This Special

Issue not only advances our understanding of seed quality genetics but also provides a foundation for

future innovations in crop improvement. I extend my sincere gratitude to all contributing authors,

reviewers, and the editorial team for their efforts in making this issue a significant addition to the

field of plant genetics.

Abdelmajid Kassem

Guest Editor
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Editorial

QTL Mapping of Seed Quality Traits in Crops
Moulay Abdelmajid Kassem

Plant Genomics and Biotechnology Laboratory, Department of Biological and Forensic Sciences, Fayetteville State
University, Fayetteville, NC 28301, USA; mkassem@uncfsu.edu

The ability to map quantitative trait loci (QTLs) has revolutionized plant genetics,
providing an essential toolkit for dissecting the genetic basis of agronomic traits. This
Special Issue, “QTL Mapping of Seed Quality Traits in Crops”, published in the journal
Plants, features 11 cutting-edge research articles that exemplify the current advances in
QTL mapping and its application to seed quality traits, including protein content, sugar
accumulation, frost tolerance, seed longevity, and more. These contributions highlight the
importance of QTL mapping as a powerful approach to improve seed quality, which is
crucial for food security, nutritional improvement, and environmental adaptability in crops.

1. Advances in Understanding Seed Quality Traits Across Crop Species
Seed quality traits are often complex, influenced by multiple genetic loci and environ-

mental factors. This complexity necessitates robust tools and methodologies, such as QTL
mapping and candidate gene identification, to unravel the genetic architecture underlying
these traits. The articles in this Special Issue reflect a diverse set of approaches and crop
species, from soybean and wheat to common bean and mustard. Together, they provide an
invaluable resource for researchers and breeders striving to improve seed quality.

2. Highlights of the Contributions
2.1. Protein and Nutritional Composition in Soybean

Soybean, a major global source of plant-based protein, has been the focus of multiple
studies in this issue. Two recombinant inbred line (RIL) populations were studied in
relation to seed protein content [1], revealing QTLs and candidate genes associated with
this critical trait. Additionally, QTL mapping for seed sugar contents in the well-studied
soybean population ‘Forrest’ × ‘Williams 82’ identified genomic regions influencing seed
carbohydrates [2].

2.2. Frost Tolerance and Seed Longevity in Wheat and Capsicum

Understanding environmental stress responses is critical for sustainable agriculture.
The identification of novel QTLs associated with frost tolerance in winter wheat [3] and
seed longevity in Capsicum annuum [4] provides valuable insights into breeding crops
resilient to cold climates and storage conditions.

2.3. Seed Morphology and Biochemical Composition

Digital image processing techniques were applied to assess seed size, shape, and
color in bread wheat, enabling precise phenotypic measurements and QTL mapping [5].
Similarly, tocopherol content in soybean [6] and glucosinolate accumulation in mustard [7]
were mapped to candidate loci, advancing our understanding of seed biochemical traits.

Plants 2025, 14, 482 https://doi.org/10.3390/plants14030482
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2.4. Diversity in Common Bean and Wheat

Natural variation in Portuguese common bean populations provided insights into the
genetic architecture of nutritional traits [8], while high-density SNP-based genetic linkage
maps were utilized to identify QTLs for grain traits in wheat [9].

2.5. Integration of Databases and Bioinformatics

Modern plant breeding relies heavily on data integration and bioinformatics. An article
focused on leveraging crop databases for candidate gene identification [10] underscores
the increasing role of computational tools in QTL analysis.

2.6. Isoflavone and Nutraceutical Properties in Soybean

Isoflavones are bioactive compounds with significant health benefits. Mapping QTLs
for seed isoflavone content in soybean [11] highlights the potential for enhancing nutraceu-
tical properties through targeted breeding.

3. Looking Ahead: Bridging the Gap Between Research and Application

The findings presented in this Special Issue demonstrate how QTL mapping has
matured as a discipline, integrating high-throughput phenotyping, genomics, and bioin-
formatics. While significant progress has been made, the transition from mapping to
application in breeding programs remains a challenge. Bridging this gap will require
greater emphasis on candidate gene validation, functional genomics, and the incorporation
of genomic selection in breeding pipelines.

4. Concluding Remarks
As the global population grows and climate change exerts increasing pressure on

agricultural systems, the need for high-quality seeds is becoming ever more critical. The
research presented in this Special Issue represents a step forward in addressing this chal-
lenge, offering novel genetic insights and practical tools for breeding programs. I hope
these studies will inspire further research and innovation in QTL mapping and beyond.

Acknowledgments: I would like to extend my heartfelt gratitude to the authors, reviewers, and
editorial staff whose dedication made this Special Issue possible. Their contributions have not only
advanced the field of QTL mapping but have also provided practical insights for improving seed
quality traits in crops. Special thanks go to the editorial team at Plants for their unwavering support
and professionalism.
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3. Bolouri, P.; Haliloğlu, K.; Mohammadi, S.A.; Türkoğlu, A.; İlhan, E.; Niedbała, G.; Szulc, P.; Niazian, M. Identification of Novel
QTLs Associated with Frost Tolerance in Winter Wheat (Triticum aestivum L.). Plants 2023, 12, 1641. [CrossRef]

4. Arif, M.A.R.; Tripodi, P.; Waheed, M.Q.; Afzal, I.; Pistrick, S.; Schütze, G.; Börner, A. Genetic Analyses of Seed Longevity in
Capsicum annuum L. in Cold Storage Conditions. Plants 2023, 12, 1321. [CrossRef]

5. Arif, M.A.R.; Komyshev, E.G.; Genaev, M.A.; Koval, V.S.; Shmakov, N.A.; Börner, A.; Afonnikov, D.A. QTL Analysis for Bread
Wheat Seed Size, Shape and Color Characteristics Estimated by Digital Image Processing. Plants 2022, 11, 2105. [CrossRef]
[PubMed]

2



Plants 2025, 14, 482

6. Knizia, D.; Yuan, J.; Lakhssassi, N.; El Baze, A.; Cullen, M.; Vuong, T.; Mazouz, H.; Nguyen, H.T.; Kassem, M.A.; Meksem, K. QTL
and Candidate Genes for Seed Tocopherol Content in ‘Forrest’ by ‘Williams 82’ Recombinant Inbred Line (RIL) Population of
Soybean. Plants 2022, 11, 1258. [CrossRef] [PubMed]

7. Tandayu, E.; Borpatragohain, P.; Mauleon, R.; Kretzschmar, T. Genome-Wide Association Reveals Trait Loci for Seed Glucosinolate
Accumulation in Indian Mustard (Brassica juncea L.). Plants 2022, 11, 364. [CrossRef] [PubMed]

8. Mendes, F.A.; Leitão, S.T.; Correia, V.; Mecha, E.; Rubiales, D.; Bronze, M.R.; Vaz Patto, M.C. Portuguese Common Bean Natural
Variation Helps to Clarify the Genetic Architecture of the Legume’s Nutritional Composition and Protein Quality. Plants 2022,
11, 26. [CrossRef]

9. Lv, D.; Zhang, C.; Yv, R.; Yao, J.; Wu, J.; Song, X.; Jian, J.; Song, P.; Zhang, Z.; Han, D.; et al. Utilization of a Wheat50K SNP
Microarray-Derived High-Density Genetic Map for QTL Mapping of Plant Height and Grain Traits in Wheat. Plants 2021, 10, 1167.
[CrossRef] [PubMed]

10. Brown, A.V.; Grant, D.; Nelson, R.T. Using Crop Databases to Explore Phenotypes: From QTL to Candidate Genes. Plants 2021,
10, 2494. [CrossRef] [PubMed]

11. Knizia, D.; Yuan, J.; Bellaloui, N.; Vuong, T.; Usovsky, M.; Song, Q.; Betts, F.; Register, T.; Williams, E.; Lakhssassi, N.; et al. The
Soybean High Density ‘Forrest’ by ‘Williams 82’ SNP-Based Genetic Linkage Map Identifies QTL and Candidate Genes for Seed
Isoflavone Content. Plants 2021, 10, 2029. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

3



Citation: Park, H.R.; Seo, J.H.; Kang,

B.K.; Kim, J.H.; Heo, S.V.; Choi, M.S.;

Ko, J.Y.; Kim, C.S. QTLs and

Candidate Genes for Seed Protein

Content in Two Recombinant Inbred

Line Populations of Soybean. Plants

2023, 12, 3589. https://doi.org/

10.3390/plants12203589

Academic Editor: Abdelmajid

Kassem

Received: 11 September 2023

Revised: 11 October 2023

Accepted: 12 October 2023

Published: 16 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Article

QTLs and Candidate Genes for Seed Protein Content in Two
Recombinant Inbred Line Populations of Soybean
Hye Rang Park , Jeong Hyun Seo * , Beom Kyu Kang, Jun Hoi Kim, Su Vin Heo, Man Soo Choi, Jee Yeon Ko
and Choon Song Kim
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itomi123@korea.kr (J.H.K.); hsb3937@korea.kr (S.V.H.); mschoi73@korea.kr (M.S.C.); kjeeyeon@korea.kr (J.Y.K.);
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Abstract: This study aimed to discover the quantitative trait loci (QTL) associated with a high seed
protein content in soybean and unravel the potential candidate genes. We developed two recombinant
inbred line populations: YS and SI, by crossing Saedanbaek (high protein) with YS2035-B-91-1-B-1
(low protein) and Saedanbaek with Ilmi (low protein), respectively, and evaluated the protein content
for three consecutive years. Using single-nucleotide polymorphism (SNP)-marker-based linkage
maps, four QTLs were located on chromosomes 15, 18, and 20 with high logarithm of odds values
(5.9–55.0), contributing 5.5–66.0% phenotypic variance. In all three experimental years, qPSD20-1
and qPSD20-2 were stable and identified in overlapping positions in the YS and SI populations,
respectively. Additionally, novel QTLs were identified on chromosomes 15 and 18. Considering
the allelic sequence variation between parental lines, 28 annotated genes related to soybean seed
protein—including starch, lipid, and fatty acid biosynthesis-related genes—were identified within the
QTL regions. These genes could potentially affect protein accumulation during seed development, as
well as sucrose and oil metabolism. Overall, this study offers insights into the genetic mechanisms
underlying a high soybean protein content. The identified potential candidate genes can aid marker-
assisted selection for developing soybean lines with an increased protein content.

Keywords: quantitative trait loci; soybean protein; high protein; genetic map; single-nucleotide
polymorphism

1. Introduction

Soybean [Glycine max (L.) Merr.] is an important legume crop globally known for its
high-quality protein and oil content [1,2]. Asian countries, such as Korea, Japan, China, and
Indonesia, have a strong cultural tradition of consuming soy-based products. Recently, the
consumption of traditional soy-based products has surged globally, dominating the global
protein market [3–6]. This substantial growth is attributed to changing dietary preferences
and the shifting behavior of consumers towards more sustainable and environmentally
friendly food choices [7–10].

Soybean protein research has gained increasing interest because of its significance.
Many researchers have aimed to explore the genetic aspects of the protein traits in soybeans
through quantitative trait loci (QTL) and genome-wide association studies (GWAS) [2,4].
The seed protein traits in soybeans are linked with the seed oil content and weight. These
quantitative traits are complex and influenced by multiple genes and environmental fac-
tors [4,11,12]. In particular, soybean seed storage proteins are influenced by multiple factors,
including major transcription factors, phytohormones, protein accumulation, storage pro-
tein regulation and deposition, and environmental factors [4]. Since the publication of
the soybean reference genome, research on the genetics of these factors has been actively

Plants 2023, 12, 3589. https://doi.org/10.3390/plants12203589 https://www.mdpi.com/journal/plants4
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conducted [13]. Researchers have actively reported the genetic regions associated with
the protein content using traditional linkage analyses to identify QTLs [11], high-density
single-nucleotide polymorphism (SNP) linkage maps for precise QTL detection [4], and
GWAS to unravel the genetic basis of soybean protein traits [12,14]. These analyses have
been conducted on a wide range of soybean resource populations, genetic resources with a
high protein content in backcross, and recombinant inbred line (RIL) populations [12,14,15].

Numerous studies have mapped seed protein and oil content to specific genomic
regions, primarily located on chromosomes 15 and 20 [14,16–20]. For example, cqSeed
protein-03 has been identified as a major QTL for seed protein on chromosome 20. This
QTL has been extensively represented in several large populations using various mapping
methods since the publication of the reference genome. However, an accurate identification
of the precise location and reliable candidate genes is challenging [11,19–23]. Only recently
have some studies successfully fine-mapped cqSeed protein-003 across several mapping
populations and narrowed its interval to 77.8 kb [24]. These studies identified an inser-
tion/deletion within the CCT domain of Glyma.20g085100 and showed a strong correlation
with the seed protein content. The function of Glyma.20g085100 has been confirmed using
RNA interference (RNAi) in transgenic soybean plants [24,25].

Furthermore, through the fine mapping of the QTL detected on chromosome 15 [26],
a specific allele derived from wild soybean was found to confer simultaneous effects
on the 100-seed weight, protein content, and oil content traits that are negatively corre-
lated [19,25,27,28]. This allele was localized to a 329 kb region on chromosome 15 [26]. In
addition, GmSWEET10a, GmSWEET10b, and GmSWEET39—other representative genes on
chromosome 15—are sugar transporters that affect seed protein and oil content [29–31].
GmST05 (Glyma.05g244100) affects both the seed protein and oil content, in addition to
its role in controlling seed size. This effect is likely achieved by regulating GmSWEET39
transcription [32]. However, despite these findings, a comprehensive understanding of the
genetic factors influencing soybean protein traits remains elusive.

GWAS signals for protein content were identified on chromosomes 15 and 20, exhibit-
ing a greater prominence in Korean accessions. The frequency of alleles linked to a high
protein content was lower in Chinese and US accessions. In Korea, soybean breeding and
pedigree programs have focused on breeding for traits specifically related to soy-based
food, with a particular emphasis on protein content [33]. Furthermore, the lack of thorough
validation for diverse genetic backgrounds and limited utilization in practical breeding
programs have been challenging. The main reason for this limitation is the modest effect of
these QTLs on phenotypic variation [34]. To overcome this, it is crucial to further validate
and evaluate these QTLs for their effective incorporation into breeding programs.

‘Danbaekkong’, previously utilized in several studies, has proven valuable for de-
tecting the QTLs associated with protein content [20,33,35,36]. Several studies have exten-
sively employed ‘Danbaekkong’ in QTL identification and breeding programs utilizing
Danbaekkong-derived RIL populations [20,35]. However, Saedanbaek (SD) possesses a
genetically distinct background from that of Danbaekkong. The high protein traits found
in SD can be traced back to BARC-10 (MD87L, PI 572270), a breeding material recognized
for its high protein content that is officially registered in the US National Plant Germplasm
System [37]. Therefore, because SD genetically differs from the widely used high-protein
cultivar ‘Danbaekkong’, it could unravel new allelic sources to increase the protein content.

The primary focus of this study was to identify the QTLs specifically linked to the
seed protein content using two populations of RILs derived from SD, an elite high-protein
cultivar as one of the parental lines, over three years. This finding will enhance our
understanding of the genetic factors influencing seed protein content and provide valuable
insights for future breeding efforts to improve soybean protein traits.

5
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2. Results
2.1. Phenotypic Variation in the Seed Protein Content

The seed protein contents (%) in the parental lines [YS2035-B-91-1-B-1 (YS2035),
Saedanbaek (SD), and Ilmi (IM)] and the two RIL mapping populations [YS2035 × SD (YS)
and SD × IM (SI)] were assessed in 2020, 2021, and 2022. The protein contents of YS2035,
SD, and IM in the parental lines were 47.3, 54.2, and 42.4%; 46.8, 54.3, and 44.4%; and 43.3,
50.6, and 41.2% in 2020, 2021, and 2022, respectively. The average seed protein content of
SD (53.1%) was significantly higher than that of YS2035 (45.6%) and IM (42.7%; Figure 1
and Supplementary Table S1). The average protein content in the YS and SI populations
ranged from 39.4 to 52.3% and 39.6 to 52.1%, respectively. Substantial variations in the
protein content were observed between the parental lines, and the H2 values in the YS
and SI populations were 0.84 and 0.86, respectively (Supplementary Table S1). The protein
content (%) in both populations showed a normal distribution and slightly transgressive
inheritance. However, this transgressive inheritance was specifically prominent in the
SI population, especially in 2021 and 2022 (Figure 1). An analysis of variance (ANOVA)
revealed that the year differences and genotype × year interaction effects were highly
significant in both the YS and SI populations (Supplementary Table S2).
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Figure 1. Frequency distribution of RIL protein content in the two mapping populations evaluated in
2020, 2021, and 2022. The parental values are shown using arrows. YS2035; YS2035-B-91-1-B-1, SD;
Saedanbaek, IM; Ilmi, YS; YS2035 × SD, SI; and SD × IM.

2.2. Linkage Map Construction

A total of 180,375 high-quality SNPs markers were genotyped, of which 27,724 in the
YS populations and 27,896 in the SI populations were polymorphic between the respective
parental lines. After deleting redundant markers with >5% missing values, 2254 and
3544 SNPs were selected and used to construct linkage maps for the YS and SI populations,
respectively. The polymorphic SNP markers were distributed across all 20 chromosomes
with an average of 113 and 177 markers per chromosome and covered a total of 5339
and 3248 cM genetic distances in the YS and SI linkage maps, respectively. The average
distances between the adjacent SNPs in the YS and SI populations were 2.5 and 0.9 cM,
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respectively. The average lengths (cM) in the YS and SI populations were 267 cM and
162 cM, respectively (Supplementary Tables S3 and S4). The YS population exhibited the
lowest number of SNP markers on chromosome 18 (62), while the highest number was
found on chromosome 16 (206). In the SI population, the lowest number of SNP markers
were observed on chromosome 17 (88), while the highest number were on chromosome
5 (235) (Supplementary Tables S3 and S4). Despite using SD as the common parental line,
the differences in the genomic length coverage between the two linkage maps could be
attributed to the genetic differences between the other two parental lines (YS2035 and IM).
Based on the above results, it was used more accurately for QTL mapping (Supplementary
Table S5).

2.3. QTL Analysis

Across the three years of the experiment, specific QTLs with marker intervals (left–
right) for seed protein were detected on chromosomes 15, 16, 17, 18, and 20 in the YS
population and on chromosomes 9, 15, and 20 in the SI population (Figure 2 and Supple-
mentary Tables S5 and S6). The differences in detecting different QTLs in the two mapping
populations could be attributed to the genetic differences between YS2035 and IM. We
selected four QTLs considering the logarithm of odds (LOD) and phenotypic variance
explained (PVE) value of five or more years and environment. Subsequently, three out of
four QTLs were detected on chromosomes 15, 18, and 20 in the YS population, and one QTL
was detected on chromosome 20 in the SI population (Table 1). The LOD of the identified
QTLs ranged from 5.9 to 55.0, and the PVE varied from 5.5 to 66.0%. The major QTLs—
qPSD20-1 (LOD, 20.9–30.6; PVE, 22.5–35.4%) in the YS population and qPSD20-2 (LOD,
23.0–55.0; PVE, 34.1–66.0%) in the SI population on chromosome 20—were consistently
detected across all three years. Most of the QTLs identified in relation to the IciM-ADD
values were designated as qPYS16, as they originated from YS as the parent chromosome
16 in the YS population; however, all of the QTLs were named qPSD, because the QTLs
appeared in the parent SD regardless of the populations (Supplementary Table S6). The
major qPSD20-1 spanned from 31,781,045 to 31,961,695 bp in the YS population. In addition,
another major QTL on chromosome 20, qPSD20-2, spanning from 30,395,400 to 31,781,045
bp on the physical map, was stably detected for three consecutive years in the SI population.
In addition, the QTLs on chromosomes 15 and 18 were detected in more than one year.
The physical positions of the markers flanking qPSD15-1 on chromosome 15 in the YS
population detected in 2020 and 2021 were from 7,930,801 to 8,678,412 bp. The physical
positions of the QTL qPSD18-1 detected in 2020 were from 46,911,930 to 47,526,734 bp. A
total of 181 genes were identified in the four QTL regions (Table 1 and Supplementary
Table S6).

Table 1. Quantitative trait loci (QTL) associated with high protein identified in the two recombinant inbred
line (RIL) mapping populations derived from ‘YS2035’ × ‘Saedanbaek’ and ‘Saedanbaek’ × ‘Ilmi’.

Population 1 Marker 2 Chr 3
Genetic
Position

(cM)

Physical
Position of

Markers (bp) 4
Year Gene Name Gene

No. LOD 5 PVE 6

(%) Add 7 Reference

Y × S qPSD15-1 15 305 7,930,801–
8,678,412

2020
2021

Average 8

Glyma.15g101800–
Glyma.15g110600 89

14.0
14.6
12.3

17.5
17.1
13.8

−2.7
−2.1
−1.7

Y × S qPSD18-1 18 75 46,911,930–
47,526,734

2022
Average

Glyma.18g193300–
Glyma.18g197100 39 6.7

5.9
7.0
5.5

−0.9
−0.6 [38–40]

Y × S qPSD20-1 20 96 31,781,045–
31,961,695

2020
2021
2022

Average

Glyma.20g085100–
Glyma.20g085700 7

21.1
24.7
20.9
30.6

22.5
29.1
24.7
35.4

−1.8
−1.6
−1.8
−1.6

[14,24,25]

S × I qPSD20-2 20 68 30,395,400–
31,781,045

2020
2021
2022

Average

Glyma.20g081000–
Glyma.20g085450 46

23.0
48.2
55.0
52.7

34.1
59.7
66.0
61.5

2.4
2.1
2.4
2.3

[14,15,19,
24,25,41]

1 Y × S, YS2035 × Saedanbaek; S × I, Saedanbaek × Ilmi. 2 qPSD, ‘Saedanbaek’ contributed to the allele. 3 Chr,
Chromosome. 4 Physical position of the markers, the soybean reference genome (Glycine max Wm82.a2.v1) was
used to determine the physical positions of the markers. 5 Logarithm of odds value at the peak likelihood of QTL.
6 Phenotypic variation explained (PVE) by QTL. 7 Additive effect. 8 Average values for three years: 2020, 2021,
and 2022.
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Figure 2. Quantitative trait loci (QTL) associated with seed protein content in (a) YS2035 × Saedan-
baek (YS) and (b) Saedanbaek × Ilmi (SI) mapping populations. The bars inside each chromosome
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Genetic map details are provided in Supplementary Table S5.

2.4. Phenotypic Variation According to the Allele Patterns

The top 20 and bottom 20 RILs with high and low seed protein content were selected
from the YS and SI populations (Table 2). These genotypes were assessed using representa-
tive markers linked to qPSD15-1, qPSD18-1, and qPSD20-1, located on chromosomes 15, 18,
and 20, respectively, which are associated with genes that promote a high protein content.

The average protein content in the RILs with SD genotypes (high protein) was 53.1%,
while that in the RILs with the YS and IM genotypes (low protein) was 45.6% and 42.7%,
respectively, over the three years (Supplementary Table S1). The protein content in the top
20 RILs ranged from 51.1 to 52.3%, whereas that in the bottom 20 RILs ranged from 39.4 to
41.6% in both the YS and SI populations (Supplementary Table S1). Through the genome
sequencing of the three parents—SD, YS, and IM—both populations included SD, and the
QTL regions were all derived from SD, so the RILs in the SI population were included
in the top 20 proteins. An analysis of the allelic patterns in the top 20 RILs revealed that
the SD was predominantly present in these recombinants at the three loci. In contrast, the
alleles of the bottom 20 recombinants at the representative markers were mostly derived
from IM or YS (Table 2). In both populations, the RILs with the SD allele in the qPSD15-1
marker exhibited an average protein content of 46.6%, whereas those with the YS or IM
allele showed a protein content of 45.2% (Figure 3a). Similarly, the RILs with the SD allele
for the qPSD18-1 marker had an average protein content of 47.0%, whereas those with the
YS or IM allele displayed 45.5% (Figure 3b). The RILs with the SD allele at the qPSD20-1
marker had an average protein content of 49.3%, whereas those with the YS or IM allele had
a protein content of 44.9% (Figure 3c). According to the combination of the allele patterns
of qPSD15-1, qPSD18-1, and qPSD20-1, the protein content of the RILs with all low-protein
alleles (AAA) was 43.3%, whereas that of the RILs with all high-protein parental alleles
(BBB) was 49.6%. The RILs with an SD allele at qPSD15-1 (BAA) exhibited an average
protein content of 44.6%, while those with an SD allele at qPSD18-1 (ABA) had a protein
content of 44.0%. The RILs with an SD allele at qPSD20-1 (AAB) showed a protein content
of 48.1%. Furthermore, recombinants harboring SD alleles at qPSD15-1 and qPSD18-1 (BBA)
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had an average protein content of 45.7%. Similarly, the protein content in the RIL with SD
alleles at both qPSD18-1 and qPSD20-1 (ABB) was 48.9%, while that in the RILs with SD
alleles at both qPSD15-1 and qPSD20-1 (BAB) was 48.6% (Figure 3d).

Plants 2023, 12, x FOR PEER REVIEW 7 of 15 
 

 

 

Figure 3. Boxplots of protein content and the allele effect of the major QTLs on chromosomes 15, 18, 

and 20. Trait values of the recombinants with high (SD; B) or low parent (YS/IM; A) alleles (a) 

qPSD15-1, (b) qPSD18-1, (c) qPSD20-1 markers and (d) with all three markers. Asterisks indicate 

significant differences between parental lines in the RILs of ‘YS2035’ and ‘Saedanbaek’ (YS) or 

‘Saedanbaek’ and ‘Ilmi’ (SI) at p < 0.001. The center bold line represents the median. Different low-

ercase letters indicate significant differences between genotypes; p < 0.05; Duncan’s multiple range 

test (DMRT). 

2.5. SNP Variation Analysis and Variant Annotation 

Next, we annotated the polymorphic SNPs in the genes mapped to the qPSD15-1, 

qPSD18-1, and qPSD20-1 QTLs using the whole-genome sequencing of SD, YS2035, and 

IM. After verifying the tri-parent SNP selection based on the soybean reference genome, 

only genes that exhibited differences from SD were screened for SNPs in YS2035 and IM. 

In total, 28 genes were selected among the 181 genes mapped to the intervals of the four 

QTLs (Table 3). The variant annotations identified 9 frameshift, 96 missense, 4 stop-gains, 

and other variants in 89 genes mapped to qPSD15-1. The genes mapped to qPSD18-1 (39) 

comprised 6 frameshift, 91 missense, 3 stop-gains, and others. In all three experimental 

years, qPSD20-1 and qPSD20-2 were consistently identified in the overlapping genomic 

regions in the YS and SI populations. Glyma.20g085100 was selected in a common SNP 

from two populations as the missense variant. In the qPSD20-1 and qPSD20-2 regions, we 

identified 7 and 46 genes, respectively. In these genes, we detected 1 frameshift, 55 mis-

sense, 1 stop-gain, and more (Table 1 and Supplementary Table S7). Of the 28 annotated 

genes in the QTL regions, 6 harbored stop-gain, 13 harbored frameshift, and 9 harbored 

missense variants (Table 3). The annotation of these 28 genes identified their association 

with several biological processes, including starch biosynthetic, carbohydrate metabolic 

process, sucrose metabolic process, fatty acid biosynthesis, lipid metabolic process, and 

protein polymerization (Table 3). 

Figure 3. Boxplots of protein content and the allele effect of the major QTLs on chromosomes 15, 18,
and 20. Trait values of the recombinants with high (SD; B) or low parent (YS/IM; A) alleles (a) qPSD15-
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Table 2. Genotypes of the top and bottom 20 RILs in YS2035 × Saedanbaek (YS) and
Saedanbaek × Ilmi (SI) populations based on high and low protein content at markers linked to
qPSD15-1, qPSD18-1, and qPSD20-1 markers. ‘A’ genotype shows that the selected RILs derived line
was homogeneous for the allele from YS2035-B-91-1-B-1 (YS: low protein) and Ilmi (IM: low protein),
‘B’ genotype shows that the line was homogeneous for the allele from Saedanbaek (SD: high protein).

Top 20
RILs with High
Protein Content

Genotype of the Marker
Linked to the QTLs

Protein
Content

(%)

Bottom 20
RILs with Low

Protein Content

Genotype of the Marker
Linked to the QTLs

Protein
Content

(%)qPSD15-1 qPSD18-1 qPSD20-1 qPSD15-1 qPSD18-1 qPSD20-1
YS-196 B B A 52.3 YS-229 A B A 39.4
SI-400 B B B 52.1 SI-465 A A A 39.6
YS-068 B B B 52.1 YS-111 A A A 39.8
YS-080 B A B 52.0 YS-209 A A A 39.9
YS-005 B A B 52.0 YS-036 B B A 40.0
SI-317 A A B 51.9 YS-037 A A A 40.3
YS-190 B A B 51.8 YS-117 A A A 40.4
YS-109 B B B 51.7 SI-337 A A A 40.6
YS-199 B B B 51.6 YS-043 B A A 40.8
SI-428 B B B 51.5 YS-118 B A A 40.9
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Table 2. Cont.

Top 20
RILs with High
Protein Content

Genotype of the Marker
Linked to the QTLs

Protein
Content

(%)

Bottom 20
RILs with Low

Protein Content

Genotype of the Marker
Linked to the QTLs

Protein
Content

(%)qPSD15-1 qPSD18-1 qPSD20-1 qPSD15-1 qPSD18-1 qPSD20-1
YS-173 B A B 51.4 SI-361 B B A 41.1
SI-423 B A B 51.4 YS-063 A B A 41.1
YS-205 B A B 51.3 YS-227 B A A 41.2
SI-445 B B B 51.3 YS-048 B A A 41.2
YS-090 B B B 51.3 SI-473 B A A 41.2
YS-008 B A B 51.2 YS-015 B A A 41.4
SI-348 B B B 51.2 YS-235 A A A 41.6
YS-202 B B B 51.2 YS-100 B B A 41.6
SI-326 B B B 51.1 SI-502 A A A 41.6
SI-345 A B B 51.1 YS-045 B A A 41.6

2.5. SNP Variation Analysis and Variant Annotation

Next, we annotated the polymorphic SNPs in the genes mapped to the qPSD15-1,
qPSD18-1, and qPSD20-1 QTLs using the whole-genome sequencing of SD, YS2035, and
IM. After verifying the tri-parent SNP selection based on the soybean reference genome,
only genes that exhibited differences from SD were screened for SNPs in YS2035 and IM.
In total, 28 genes were selected among the 181 genes mapped to the intervals of the four
QTLs (Table 3). The variant annotations identified 9 frameshift, 96 missense, 4 stop-gains,
and other variants in 89 genes mapped to qPSD15-1. The genes mapped to qPSD18-1 (39)
comprised 6 frameshift, 91 missense, 3 stop-gains, and others. In all three experimental
years, qPSD20-1 and qPSD20-2 were consistently identified in the overlapping genomic
regions in the YS and SI populations. Glyma.20g085100 was selected in a common SNP
from two populations as the missense variant. In the qPSD20-1 and qPSD20-2 regions, we
identified 7 and 46 genes, respectively. In these genes, we detected 1 frameshift, 55 missense,
1 stop-gain, and more (Table 1 and Supplementary Table S7). Of the 28 annotated genes in
the QTL regions, 6 harbored stop-gain, 13 harbored frameshift, and 9 harbored missense
variants (Table 3). The annotation of these 28 genes identified their association with
several biological processes, including starch biosynthetic, carbohydrate metabolic process,
sucrose metabolic process, fatty acid biosynthesis, lipid metabolic process, and protein
polymerization (Table 3).

Table 3. Candidate genes for seed protein content identified on the reference genome based on the
QTL-linked SNPs in the YS and SI mapping populations.

Population Marker Gene ID Annotation Description Biological
Process Reference SNP Type

Y × S qPSD15-1

Glyma.15g102100 Alpha/Beta hydrolase
domain-containing protein NA Stop gain

Glyma.15g102202 Elongation factor Tu GTP
binding domain

Translational
elongation

Frameshift
variant

Glyma.15g102252 Elongation factor Tu
C-terminal domain

Translational
elongation

Frameshift
variant

Glyma.15g102800
Mediator of RNA

polymerase II transcription
subunit 33a

Phenylpropanoid
metabolic process Stop gain

Glyma.15g103100 Mitochondrial editing
factor 18

RNA
modification

Frameshift
variant

Glyma.15g107200 GPI-anchored protein Biological process Stop gain

Glyma.15g108000
Starch/carbohydrate-

binding module
(family 53)

Starch
biosynthetic

process

Frameshift
variant
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Table 3. Cont.

Population Marker Gene ID Annotation Description Biological
Process Reference SNP Type

Y × S

qPSD15-1

Glyma.15g108900 Glycosyl hydrolases
family 17

Carbohydrate
metabolic process

Frameshift
variant

Glyma.15g109800 Peroxisomal membrane
protein 2 Biological process Frameshift

variant

Glyma.15g109900 F-BOX protein with a
domain protein NA Frameshift

variant

qPSD18-1

Glyma.18g193300 Laccase Iron ion transport Frameshift
variant

Glyma.18g193600
Fructose-1,6-

bisphosphatase, N-terminal
domain

Sucrose metabolic
process [38] Frameshift

variant

Glyma.18g194700 NA NA Stop gain

Glyma.18g194900 NA NA Frameshift
variant

Glyma.18g195000 NA Biological process Frameshift
variant

Glyma.18g195700 Alpha-carboxyltransferase
aCT-1 precursor

Fatty acid
biosynthesis [39,40] Missense

variant

Glyma.18g195900 Carboxyl transferase domain Fatty acid
biosynthesis [39,40] Missense

variant

Glyma.18g196000 Carboxyl transferase domain Fatty acid
biosynthesis [39,40] Missense

variant

Glyma.18g196600 NA NA Stop gain

Glyma.18g197100 NA NA Frameshift
variant

qPSD20-1 Glyma.20g085100 POWR1
CCT motif family protein Biological process [14,24,25] Missense

variant

Glyma.20g085700 Unknown protein NA [15] Stop gain

S × I qPSD20-2

Glyma.20g081500 Lipase containing protein Lipid catabolic
process

Missense
variant

Glyma.20g082450 Ammonium transporter 1 Ammonium
transport [15] Missense

variant

Glyma.20g082700 Sugar efflux transporter
SWEET52

Carbohydrate
transport [42,43] Missense

variant

Glyma.20g084000 Small nuclear
ribonucleoprotein F

Spliceosomal
snRNP assembly [15] Missense

variant

Glyma.20g084051 Far1-relate Regulation of
transcription [15] Missense

variant

Glyma.20G084500 WD40 repeat protein Innate immune
response [15] Missense

variant

Glyma.20g085100 POWR1
CCT motif family protein Biological process [14,24,25] Missense

variant

The soybean reference genome (Glycine max Wm82.a4.v1) was used to annotate genes.

3. Discussion

This study aimed to discover new genes associated with the protein content in soy-
beans using two RIL populations derived from soybean cultivars with contrasting protein
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contents. Among the three parental lines, SD—developed in 2010 as a high-protein cultivar
(48.2%) in South Korea—is widely recommended for soybean foods, such as tofu and
soybean paste [44]. Here, the average protein content measured in SD over three years
was 53.1% (Supplementary Table S1), whereas the average protein content of cultivated
soybeans is approximately 40% [45]. A high broad-sense heritability for protein content was
observed in average years 0.84 and 0.86 in the YS and SI populations, respectively (Supple-
mentary Table S1), suggesting a highly significant (p < 0.001) influence of genotype × year
interaction on the traits. These results suggest that SD is a suitable candidate for con-
ducting QTL analyses to map the genetic intervals associated with a high protein content
in soybeans.

Since the first study on the QTLs associated with protein content—which identified
cqProt-001 and cpProt-003 on chromosomes 15 and 20, respectively [16]—several studies
have confirmed the involvement of these QTLs in regulating the protein content in soy-
beans [33]. Additionally, other QTLs have also been identified in soybeans. A QTL related
to a high protein and low oil content contributed by PI407788A, a high protein cultivar, was
identified on chromosome 15 [17]. The QTL, cqSeed protein-003, located on chromosome 20,
is associated with protein and amino acid content and derived from another high-protein
cultivar, Danbaekkong [20,35]. Bandillo et al. [46] used SoySNP50K data to explore the
connection between genetic variations and protein content across more than 12,000 G. max
accessions [47].

This study detected a high LOD value, PVE, and stability of the major QTLs qPSD20-1
in the YS population and qPSD20-2 in the SI population. The major seed protein con-
tent QTLs on chromosome 20, commonly referred to as the repeat overlapping interval,
have been identified in numerous studies [14,15,19,24,25,41]. In other RIL populations
derived using SD as a parental line, qHPO20—associated with seed protein and oil content,
and mapped to a wide region (4.8–34.3 Mbp) on chromosome 20—was stably detected
in three years [19]. Our study located qPSD20-1 and qPSD20-2 to narrower intervals
(31.7–31.9 and 30.3–31.7 Mbp, respectively; Table 1) than those in previously reported
studies. Concordant with our study, previous studies have identified major protein- and oil
content-related QTLs and confirmed the association of genes with the traits on chromosome
20 [11,12,14,15,17,19,20,24,41]. Our stable and major QTLs on chromosome 20 identified
here harbored eight genes in the YS and SI populations. In particular, Glyma.20g085100 is
an SNP found commonly in both populations. Another study identified Glyma.20g085100,
underlying the major QTL located on chromosome 20, related to soybean seed protein
and oil, harboring tandem repeats. This gene encodes the CCT domain [14,24,25]. The
CCT-domain gene, POWR1, likely related to lipid metabolism and nutrient transport, plays
a pleiotropic role in regulating soybean seed quality and yield [25]. The insertion of a
transposable element into the CCT domain of POWR1 led to an increased seed weight and
oil content but decreased protein content. Conversely, the overexpression of POWR1 in
transgenic plants improved protein content but reduced seed weight and oil content [25].
Among these, one gene exhibited a stop-gain, and another showed a missense variant in
the YS population, whereas seven genes displayed a missense variant in the SI population.
(Table 3). Glyma.20g081500 (lipase-containing protein) and Glyma. 20g082700 (sugar efflux
transporter SWEET52) are presumed to be involved in protein, carbohydrate, and lipid
metabolism during soybean seed development. These studies have shown that these genes
would affect protein content after seed maturity [38,42,43,48,49]. However, there are few
specifically studied and identified genes within this interval. These genes have not been
characterized in previous studies; therefore, understanding their role in regulating soybean
protein content warrants further research.

The QTL qPSD18-1 on chromosome 18 in the YS population was detected at 46.9–47.5 Mbp
intervals in 2022 (Table 1 and Supplement Table S6). Among the genes underlying
these QTLs, two displayed stop-gains, five showed frameshift variants, and three ex-
hibited missense variants. Glyma.18g193600 (fructose-1,6-bishosphatase) is thought to
be related to seed sucrose development (Table 3). A recent GWAS study reported that
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Glyma.18g193600 is likely to play a role in the interconnected process of sucrose biosyn-
thesis in edamame beans [38]. Among the potential candidate genes identified here,
Glyma.18g195700, Glyma.18g195900, and Glyma.18g196000 (fatty acid biosynthesis) might
be related to soybean storage proteins [39,40]. In soybean seeds, storage proteins— es-
sential nutritional components—are initially synthesized as precursors in sucrose and
oil [38,39,49].

The QTL qPSD15-1 on chromosome 15 in the YS population, as a novel QTL, was
detected at 7.9–8.6 Mbp intervals in 2020 and 2021 (Table 1 and Supplement Table S6).
Among this QTL, three displayed stop-gains and seven exhibited frameshift variants.
Glyma.15g108000 (the starch/carbohydrate-binding module) and Glyma.15g108900 (carbo-
hydrate metabolic process) are involved in carbohydrate biosynthesis, and related genes
are being published in chromosome 15 (Table 3). Recently, Glyma.15g049200 was identified
as one of the candidate genes through fine mapping within the QTL regions simultaneously
associated with soybean seed weight, protein content, and oil content [26,31]. Moreover,
the QTLs on chromosome 15 exhibit pleiotropic effects on soybean seed protein and oil con-
tent. Certain sugar transporters, such as GmSWEET10a, GmSWEET39 (Glyma.15g049200),
and GmSWEET10b (Glyma.8g183500) have been identified in these regions [31,35]. Dur-
ing soybean domestication, the SWEET paralogs GmSWEET10a and GmSWEET10b went
through stepwise selection, influencing seed size, oil, and protein levels by regulating the
sugar distribution from the seed coat to the embryo [31,33]. In addition to the major QTL,
the minor QTLs on chromosome 15 with overlapping positions, as detected in previous
studies [50], may also contribute to seed protein and oil content.

During soybean seed development, storage proteins are transported for carbohydrate
and lipid synthesis [4,32]. The genes Glyma.15g108000, Glyma.15g108900, Gylma.18g193600,
and Glyma.20g082700 (related to starch and carbohydrates synthesis during seed devel-
opment), Glyma.18g195700, Glyma.18g195900, Glyma.18g196000 (associated with fatty acid
biosynthesis), and Glyma.20g081500 (related to lipid catabolic processes during seed devel-
opment) are likely to regulate protein accumulation. These candidate genes may regulate
protein accumulation by influencing the sugar delivery from the seed coat integument
to the embryo [38,40,43]. Several studies on soybean RIL populations have reported that
seed protein, sucrose, and oil content show negative correlations [4,19,25,27,28,32,51]. Most
candidate genes identified in this study have not been previously reported to be associated
with soy protein. Therefore, further studies are required to gain valuable insights for
soybean protein research.

QTLs related to seed protein content have been extensively studied using GWAS,
QTL analyses, fine mapping, and haplotype mapping [11,12,14,15,19,20,24,25,46]. Here,
we identified novel regions on chromosomes 15, 18, and 20, which showed consistent
associations with soybean protein contents. These findings suggest that the newly identified
QTLs, along with previously recognized ones, are likely to further elucidate the genetic
factors associated with protein-related traits. However, it remains difficult to identify genes
that are directly involved in regulating protein traits, warranting further studies using
genetic resources with a high protein content.

4. Materials and Methods
4.1. Plant Materials

Two RIL populations involving three parental lines: SD (high-seed protein culti-
var) [44], YS2035 (low-seed protein line), and IM (low-seed protein cultivar) [52], were used
here. The YS (YS2035 × SD) and SI (SD × IM) mapping populations were developed using
the single-seed descent method from the F2 to the F5:10 and F5:7 generations, respectively.
The YS and SD mapping populations, comprising 237 and 189 RILs, respectively, and the
parental lines were cultivated under experimental field conditions at the Miryang farm in
South Korea (35◦29′46.5′′ N 128◦44′29.9′′ E) in 2020, 2021, and 2022. The populations were
planted in rows measuring 4 m in length, with spacings of 70 cm between each row and
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15 cm between individual plants. Fertilizers and pesticides were administered following
established cultivation methods in South Korea [53].

4.2. Analysis of Crude Seed Protein Concentrations

The protein content was measured using 15 mg of seed powder in both mapping
populations, comprising 426 RILs, and assessed each year using the Dumas method [54]
with a Rapid N Cube (Elementar Analysen System, Hanau, Germany), following the man-
ufacturer’s instructions [55]. The protein analysis of each individual RIL was performed
three times per year.

4.3. Genomic DNA Extraction and Genotyping

Genomic DNA was extracted from dry seeds of each line of the mapping populations
and the three parental lines using a Maxwell RSC 48 instrument (Promega Madison, WI,
USA), following the manufacturer’s instructions. The DNA quality was assessed using a
NanoDrop ND-2000 (Thermo Fisher Scientific, Waltham, MA, USA), and each DNA sample
was diluted to a concentration of 10 ng/µL for genotyping. The mapping populations and
the parental lines were genotyped using the 180K Axiom SoyaSNP array [56].

4.4. Genetic Linkage Map Construction and QTL Analysis

The SNP markers showing polymorphism between the parental lines were identified
from the Axiom 180 K SoyaSNP array genotyping data to construct the genetic linkage map.
The genetic linkage maps of the two mapping populations were constructed using the QTL
IciMapping software version 4.2 [57]. The grouping threshold was set at a 3.0 logarithm of
odds (LOD), nnTwoOpt was used as the ordering algorithm, and the sum of the adjacent
recombination fractions was used for rippling, following the methodology described
in a previous study [37]. Missing data with >5% were used to remove the redundant
markers. The mapping of each linkage group was performed using Kosambi’s mapping
function. The association between each trait and the SNP markers was assessed using the
inclusive composite interval mapping (IciM) function of the IciMapping software, with a
1000 permutation test. The QTLs were named by combining abbreviated letters q for QTL,
P for seed protein, and SD for the parent Saedanbaek (SD), followed by the chromosome
name and nth QTL on the chromosome. For instance, qPSD15-2 represents the second QTL
identified on chromosome 15.

4.5. Prediction of Novel Candidate QTL and Genes

Firstly, the QTLs detected for more than two years were selected. Statistically signifi-
cant QTLs associated with soybean seed protein content were identified by examining the
genotypes within the QTL regions using SNP markers. We performed the genome sequenc-
ing of SD, YS2035, and IM using the Illumina Hiseq X sequencing platform (Illumina, San
Diego, CA, USA). Reads were mapped using Bowtie 2 (v2.2.4) and variants were called with
Freebayes (v1.3.4). After verifying tri-parent SNP selection based on the soybean reference
genome, only genes that exhibited differences from SD were screened for SNPs in YS2035
and IM. The QTL regions were further investigated using SoyBase (www.soybase.org
(accessed on 5 September 2023)) to identify the candidate genes. Annotated information
on the candidate genes was obtained from the soybean reference genome (Wm82. a4. v1).
The candidate genes were presented based on their gene descriptions and SNP variations
within the QTL regions.

4.6. Statistical Analysis

To assess the phenotypic variations in protein within the populations, various statis-
tical tests were performed, including an analysis of variance (ANOVA), Student’s t-test,
and Duncan’s multiple range test (DMRT). The statistical analyses were conducted using
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R V3.6.3 software [58]. The broad-sense heritability (H2) for the mean values in each
environment was calculated using an equation with some modifications [59].

H2 = σ2
G/(σ2

G+ σ2
GY/Y + σ2

e/rY) (1)

where σ2
GY and σ2

e are the components of genotype× year and error variances, respectively.
The component of genotype × year variance (σ2

GY) and the mean square of error (σ2
e) was

estimated with reference [60].

5. Conclusions

We conducted a three-year field study using two RIL populations derived from a
cross between the elite cultivar SD and either YS2035 or IM and identified several QTLs on
chromosomes 15, 18, and 20. In all three experimental years, qPSD20-1 and qPSD20-2 were
consistently identified in the overlapping genomic region in the YS and SI populations.
These QTLs have been previously reported in various studies related to soybean protein
content, whereas the other identified QTLs are novel. This suggests that the regulation
of protein content in soybean seed may be influenced by sucrose and oil biosynthesis.
Therefore, the potential utility of the results from this study for protein in soybean seed is
expected to increase.
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Abstract: Soybean seed sugars are among the most abundant beneficial compounds for human and
animal consumption in soybean seeds. Higher seed sugars such as sucrose are desirable as they
contribute to taste and flavor in soy-based food. Therefore, the objectives of this study were to use the
‘Forrest’ by ‘Williams 82’ (F ×W82) recombinant inbred line (RIL) soybean population (n = 309) to
identify quantitative trait loci (QTLs) and candidate genes that control seed sugar (sucrose, stachyose,
and raffinose) contents in two environments (North Carolina and Illinois) over two years (2018 and
2020). A total of 26 QTLs that control seed sugar contents were identified and mapped on 16 soybean
chromosomes (chrs.). Interestingly, five QTL regions were identified in both locations, Illinois and
North Carolina, in this study on chrs. 2, 5, 13, 17, and 20. Amongst 57 candidate genes identified
in this study, 16 were located within 10 Megabase (MB) of the identified QTLs. Amongst them, a
cluster of four genes involved in the sugars’ pathway was collocated within 6 MB of two QTLs that
were detected in this study on chr. 17. Further functional validation of the identified genes could
be beneficial in breeding programs to produce soybean lines with high beneficial sucrose and low
raffinose family oligosaccharides.

Keywords: soybean; RIL; Forrest; Williams 82; linkage map; RFOs; sucrose; raffinose; stachyose; SNPs

1. Introduction

Sugars, including sucrose, stachyose, glucose, raffinose, galactose, fructose, rhamnose,
and starch, play a major role in seed and fruit development and seed desiccation tolerance
(DT) [1–4]. Sucrose and raffinosaccharides (raffinose and stachyose), also called raffinose
family oligosaccharides (RFOs), make up 5–7%, 1%, and 3–4% of total carbohydrates,
respectively, of soybean seed dry weights [5]. RFOs are synthesized from sucrose through a
series of additions of galactinol units and are involved in DT, freezing, stress tolerance, and
seed longevity [6–9]. Galactinol synthase (GolS) is the key enzyme in the RFO biosynthetic
pathway converting galactinol and myo-inositol as the main precursors to form RFOs.
Galactinol synthase (GolS) converts myo-inositol and UDP-galactose into galactinol, while
sucrose and galactinol are converted into raffinose by raffinose synthase [9,10]. In addition
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to being involved in stress tolerance, RFOs are reported to play a role in several signal
transduction pathways [11], exports of specific mRNAs [12], and trafficking of certain
vesicle membranes [13].

Like most seed components, seed sugars [4] are influenced by many factors, including
abiotic and biotic stresses, and environmental factors, such as temperature, soil moisture,
freezing, seed maturity, and growth conditions [1,14–19]. It was shown that stachyose
contents increased drastically in drying seeds but not in seeds kept at high humidity levels,
which reveals the critical role of stachyose in DT [1]. The effect of water deficit (WD) on
enzymes involved in sugar biosynthetic pathways in soybean nodules was investigated.
Sucrose synthase activity declined drastically with increased WD while sucrose content
increased [14]. Other studies showed that WD impacts negatively on sucrose biosynthesis
and translocation from sources to sinks more than other sugars’ (raffinose and stachyose)
biosynthesis [16,19]. Investigating ‘Clark’ and ‘Harosoy’ near-isogenic lines (NILs) revealed
that Clark’s sugar contents decreased with increased days of maturity for both cultivars
while both positive and negative effects were observed concerning the effects of temperature
in two different years (2004 and 2005) [15]. In 2004, seed sugar contents increased with
temperature increase, while the contents decreased with increased temperatures in 2005 [15].
The effect of WD on several seed components, including sugars, was investigated in several
susceptible and resistant Phomopsis soybean cultivars. Sugar (sucrose, raffinose, and
stachyose) contents were higher in seeds of resistant maturity group III cultivars than their
susceptible counterparts [16]. A recent study investigated the effect of soil moisture on
seed sugars (sucrose, raffinose, stachyose) and starch contents among other compounds in
two soybean cultivars in maturity group V (Asgrow, AG6332, and Progeny 5333RY) and
showed that sucrose, stachyose, and raffinose contents, in addition to the mineral nutrient
(N, P, K, and Ca) contents, decreased with increased soil moisture in both cultivars [17].

During recent decades, more than 53 QTLs that control seed sucrose and RFOs, other
sugars (glucose, galactose, fructose, fucose, rhamnose), and starch contents have been re-
ported using different biparental and natural populations and mapping methods including
single marker analysis, interval mapping (IM), composite interval mapping (CIM), and
genome-wide association studies (GWASs) [18,20]. However, to our knowledge, only a
few of these studies identified candidate genes within these QTL regions, as summarized
in [18]. There is Glyma.01g127600, which encodes for a protein phosphatase on chr. 1;
Glyma.03g019300, which encodes for a MADS-box protein; Glyma.03g064700, which en-
codes for a phosphatidylinositol monophosphate-5-kinase on chr. 3; and Glyma.06g194200,
which encodes for a gibberellin-regulated protein on chr. 6 [18,21].

To improve seed quality, several attempts to manipulate seed sugars, phytic acid, and
the contents of other beneficial compounds have been made in recent years [22–24]. Mono-
gastric animals (such as poultry and pigs) and humans do not produce α-galactosidase
and cannot digest RFOs, which reduces gastrointestinal performance, flatulence, and diar-
rhea. Therefore, reducing raffinose and stachyose and increasing sucrose in soybean seed
contents are desirable and the main goals in breeding programs [22–27]. The objective of
this study was to genetically map QTLs for seed sucrose, raffinose, and stachyose contents
using the ‘Forrest’ by ‘Williams 82’ RIL population, in addition to identifying candidate
genes involved in soybean seed sugar biosynthesis.

2. Materials and Methods
2.1. Plant Materials

The ‘Forrest’ × ‘Williams 82’ RIL population (F × W82, n = 309) was previously
studied and described in detail in our previous research [28,29]. The parents and RILs were
evaluated in two locations: Spring Lake, NC (35.17◦ N, 78.97◦ W, 2018) and Carbondale, IL
(37◦ N, 89◦ W, 2020). Briefly, seed parents and RIL seeds were grown in a randomized block
design with 25 cm row spaces and three replicates. More details about growth conditions,
crop management, and seed harvesting were described earlier [28,29].
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2.2. Seed Sugar Quantification

RILs, parents (Forrest and Williams 82), and soybean germplasm seeds were harvested
at maturity, and sugar (sucrose, raffinose, and stachyose) contents (%) were quantified using
near-infrared reflectance (NIR) with an AD 7200 array feed analyzer (Perten, Springfield,
IL, USA) as described earlier [15,30].

2.3. DNA Isolation, SNP Genotyping, and Genetic Map Construction

Parents’ and RILs’ genomic DNA was extracted using the cetyltrimethylammonium
bromide (CTAB) method as previously described [31]. A NanoDrop spectrophotometer
(NanoDrop Technologies Inc., Centreville, DE, USA) was used to quantify DNA sam-
ples (50 ng/µL), and genotyping was performed using the Illumina Infinium SoySNP6K
BeadChips (Illumina, Inc., San Diego, CA, USA) as described earlier [15] at the Soybean
Genomics and Improvement Laboratory (USDA-ARS, Beltsville, MD, USA). The F ×W82
genetic linkage map was constructed using JoinMap 4.0 [28,32] as previously described to
detect QTLs for seed isoflavones [28] and seed tocopherol contents [29].

2.4. Sugar QTL Detection

WinQTL Cartographer [33] interval mapping (IM) and composite interval mapping
(CIM) methods were used to identify QTLs that control seed sugar (sucrose, stachyose, and
raffinose) contents in this RIL population. The following parameters were used: Model 6,
1 cM step size, 10 cM window size, 5 control markers, and 1000 permutations. Furthermore,
chromosomes were drawn using MapChart 2.2 [34].

2.5. Sugars Biosynthesis Candidate Genes’ Identification

The Glyma numbers of the sucrose and RFO biosynthesis genes were obtained via
reverse BLAST of the genes underlying the RFO pathway in Arabidopsis using the available
data in SoyBase. The sequences of the Arabidopsis genes were obtained from the Phytozome
database (https://phytozome-next.jgi.doe.gov; accessed on 15 August 2023). These se-
quences were used for Blast in SoyBase. The obtained genes that control the RFO pathway
were mapped to the identified sugars’ QTLs.

2.6. Expression Analysis

The expression analysis of the identified candidate genes was performed using the
publicly available data from SoyBase [20] to produce the expression profiles of these
candidate genes in the soybean reference genome Williams 82 in the Glyma1.0 Gene
Models version.

2.7. Comparison of the Williams 82 and Forrest Sequences

Sequences of Forrest and Williams 82 cv. were obtained from the variant calling and
haplotyping analysis, which was performed using 108 soybean germplasm sequenced lines
as described previously [35].

3. Results
3.1. Sugar Frequency Distribution

The frequency distributions among sucrose, raffinose, and stachyose contents were
quite different in the F × W82 RIL population based on the Shapiro–Wilk method for
the normality test. Raffinose (2018), stachyose (2018), and sucrose (2020) were normally
distributed. Only positive or negative skewness were identified in the RIL population, and
all kurtosis values of these variables were positive (Table 1; Figure 1). In terms of coefficient
of variation (CV), the value of sucrose 2018 showed the highest percentage of variation
(62.86%) compared to other assessed traits, and the rest of the CVs appeared to be less
varied within these two years. The histogram of sucrose 2018 was extremely skewed, and
the other traits evaluated were normally distributed.
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Table 1. Seed sugar contents’ means, ranges, CVs, skewness, and kurtosis in the F × W82 RIL
population evaluated in Spring Lake, NC (2018) and Carbondale, IL (2020). Mean and range values
are expressed in µg/g of seed weight. ** p < 0.01, *** p < 0.001.

Year Sugar Mean Range CV (%) SE Skewness Kurtosis W Value (p < 0.05)

2018
Sucrose 2.58 22.7 62.86 0.12 12.2 161.38 0.22 ***

Raffinose 0.67 0.26 9.16 0.01 0.18 3.26 0.99
Stachyose 2.23 2.55 21.74 0.03 −0.07 2.85 0.99

2020
Sucrose 4.92 4.98 17.2 0.05 −0.13 3.15 0.99

Raffinose 0.83 0.41 7.28 0.01 0.65 4.83 0.97 ***
Stachyose 3.61 2.15 9.06 0.02 −0.48 3.8 0.98 **
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The broad-sense heritability (h2
b) of seed sugar weight for sucrose, raffinose, and

stachyose contents across two different environments appeared quite different. Stachyose
had the highest heritability (92%), and the h2

b for sucrose was 36.8% (Table 2). However, no
negative h2

b values for sugar contents were observed. The RIL–year interactions still played
a significant role in the molecular formation among the three sugar contents in soybean
seeds. The Sum Sq and Mean Sq to determine σG

2 and σGE
2 for each trait (Table 2) using

the type I sum of squares (ANOVA (model)) function in the R program were implemented.
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Table 2. Two-way ANOVA of seed sugar (sucrose, stachyose, and raffinose) contents in the F ×W82
RIL population evaluated in Spring Lake, NC (2018) and Carbondale, IL (2020).

Response: Sucrose

Df Sum Sq Mean Seq H2

Line 369 1134.22 3.0738 0.378
Year 1 5.6 5.5975
Line × Year 2 3.82 1.9108
Residuals 0 0 NA

Response: Raffinose

Df Sum Sq Mean Seq H2

Line 369 3.4552 0.0093891 0.739
Year 1 0.0253 0.0253139
Line × Year 2 0.0048 0.0023972
Residuals 0 0 NA

Response: Stachyose

Df Sum Sq Mean Seq H2

Line 369 246.73 0.66865 0.92
Year 1 1.611 1.61115
Line × Year 2 0.106 0.05307
Residuals 0 0 NA

3.2. Sugars Contents’ QTLs

IM and CIM were used to identify QTLs for seed sugar contents in this F ×W82 RIL
population; however, only QTLs identified by CIM are presented here. The QTLs identified
with the IM method are reported in Tables S1 and S2. A total of 26 QTLs that control seed
sugar contents were identified in both NC-2018 (19 QTLs) and IL-2020 (7 QTLs) via CIM
(Tables 3 and 4; Figure S1).

Table 3. Quantitative trait loci (QTLs) that control sugar (sucrose, stachyose, and raffinose) contents
in F ×W82 RIL population in Spring Lake, NC in 2018. These QTLs were identified via CIM method.
* Indicates novel QTL.

Sugar QTL Chr. Marker/Interval Position (cM) LOD R2 Add. Eff.

Sucrose

qSUC-1 1 Gm01_3504836-Gm01_3466825 0.01–12.1 39.19 20.46 −3.05
qSUC-2 2 Gm02_5155733-Gm02_9925870 128.5–142.2 42.77 47.90 4.42
qSUC-3 3 Gm03_4595422-Gm03_4113546 39.2–39.8 32.62 20.50 3.05

qSUC-4 * 4 Gm04_7672403 6.5–16.5 54.35 37.50 4.62
qSUC-5 5 Gm05_3867435-Gm05_3273418 31.5–37.01 20.65 17.51 2.60
qSUC-6 6 Gm06_1737718-Gm06_5014399 48.5–52.4 5.36 10.50 −1.37
qSUC-7 9 Gm09_1888876 173.9–178.1 32.62 20.50 3.05

qSUC-8 * 10 Gm10_621706 214.01–216.01 34.25 19.10 −4.48
qSUC-9 13 Gm13_3891723-Gm13_3524828 0.2–58.2 19.12 17.51 2.60

qSUC-10 17 Gm17_4967175-Gm17_5294475 0.4–1.0 33.22 20.50 3.05
qSUC-11 * 18 Gm18_1620585-Gm18_2020823 94.7–96.5 20.10 17.51 2.60
qSUC-12 20 Gm19_2552468 172.11 6.98 9.10 1.41

Stachyose

qSTA-1 13 Gm13_3524828 96.2–98.2 2.52 14.8 0.19
qSTA-2 13 Gm13_3884070-Gm13_3803273 121.8–123.2 2.60 5.2 0.11
qSTA-3 19 Gm19_3789399-Gm19_4362616 98.01–124.1 4.21 8.5 −0.16
qSTA-4 19 Gm19_4946208-Gm19_5032228 184.1–186.1 2.53 5.3 0.11

Raffinose
qRAF-1 9 Gm09_4024436-Gm09_4082234 108.01–110.9 2.26 4.6 −0.01
qRAF-2 9 Gm09_1888876 173.9–178.1 2.47 7.6 0.08
qRAF-3 12 Gm12_6023395-Gm12_2379195 114.6–118.6 2.15 4.7 −0.01
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Table 4. Quantitative trait loci (QTLs) that control sugar (sucrose, stachyose, and raffinose) contents
in F ×W82 RIL population in Carbondale, IL in 2020. These QTLs were identified via CIM method.

Sugar QTL Chr. Marker Position (cM) LOD R2 Add. Eff.

Sucrose
qSUC-1 2 Gm02_1199805-Gm02_1373746 196.4–205.6 2.63 3.60 −0.16
qSUC-2 5 Gm05_3803682-Gm05_3748078 18.01–22.1 2.10 0.03 −0.14
qSUC-3 8 Gm08_5960619-Gm08_8268861 47.1–55.9 2.37 0.04 0.16

Stachyose

qSTA-1 13 Gm13_2748576 0.5–4.5 2.03 0.09 0.21
qSTA-2 16 Gm16_3183754-Gm16_3010888 81.6–94.7 2.85 3.92 0.10
qSTA-3 17 Gm17_8449684-Gm17_8352493 136.5–136.7 2.37 3.00 −0.08
qSTA-4 20 Gm20_294157-Gm20_1133712 145.4–148.5 3.59 4.50 −0.12

In Spring Lake, NC in 2018 (NC-2018), 12 QTLs that control seed sucrose content
(qSUC-1–qSUC-12) were identified and mapped on Chrs. 1, 2, 3, 4, 5, 6, 9, 10, 13, 17, 18,
and 19; 4 QTLs that control seed stachyose content (qSTA-1–qSTA-4) were identified and
mapped on Chrs. 13 and 19; and 3 QTLs that control seed raffinose content (qRAF-1–qRAF-
3) were identified and mapped on Chr. 9 and 12 (Tables 3 and 5; Figure S1). Likewise,
in Carbondale, IL in 2020 (IL-2020), 3 QTLs that control seed sucrose content (qSUC-1–
qSUC-3) were identified and mapped on Chrs. 2, 5, and 8; and 4 QTLs that control seed
stachyose content (qSTA-1–qSTA-4) were identified and mapped on Chrs. 13, 16, 17, and 20
(Tables 4 and 6; Figure S1). No QTL that controls seed raffinose content was identified in
this location.
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No QTL for seed sugar contents was identified in other studies within the QTL regions
on chr. 4 (qSUC-4-NC-2018, 6.5–16.5 cM), chr. 10 (qSUC-8-NC-2018, 214.1–216.1 cM), or chr.
18 (qSUC-11-NC-2018, 20.1–17.5 cM), which indicates they are novel QTL regions.

3.3. In Silico Sucrose, Raffinose, and Stachyose Biosynthetic Pathway Genes in Soybean

In the literature, the sugar (sucrose, raffinose, and stachyose) biosynthetic pathway
was studied in many plants, including the plant model Arabidopsis thaliana [36,37] and
the leguminous model Medicago sativa L. [38]. A reverse BLAST of the genes identified in
Arabidopsis thaliana was conducted using SoyBase [20] to reconstruct the sugar (sucrose,
raffinose, and stachyose) biosynthetic pathway in soybean (Figure 2).
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candidate genes in soybean. The genes are in Wm82.a2.v1 annotation.

A total of fifty-seven candidate genes were identified to underly the sugar (sucrose, raf-
finose, and stachyose) biosynthetic pathway (Figure 2). In this pathway, twelve candidate
genes were identified for invertase: Glyma.05G185500, Glyma.20G177200, Glyma.08G043800,
Glyma.10G214700, Glyma.08G143500, Glyma.05G236600, Glyma.17G037400, Glyma.10G145600,
Glyma.20G095200, Glyma.07G236000, Glyma.02G016700, and Glyma.10G017300. Twelve can-
didate genes were identified for sucrose synthase: Glyma.02G240400, Glyma.03G216300,
Glyma.09G073600, Glyma.09G167000, Glyma.13G114000, Glyma.14G209900, Glyma.15G151000,
Glyma.16G217200, Glyma.17G045800, Glyma.19G212800, Glyma.11G212700, and Glyma.15G18
2600. Twelve candidate genes were identified for UDP-D-Glucose-4-Epimerase: Glyma.08G0
23100, Glyma.01G225800, Glyma.05G204700, Glyma.05G217100, Glyma.07G237700, Glyma.07G
271200, Glyma.08G011800, Glyma.11G017100, Glyma.12G162600, Glyma.17G035800, Glyma.18
G145700, and Glyma.18G211700. For galactinol synthase, six candidate genes were identi-
fied: Glyma.03G222000, Glyma.03G229800, Glyma.10G145300, Glyma.19G219100, Glyma.19G2
27800, and Glyma.20G094500. Fourteen candidate genes were identified for raffinose syn-
thase: Glyma.03G137900, Glyma.04G145800, Glyma.19G140700, Glyma.04G190000, Glyma.02G
303300, Glyma.05G003900, Glyma.06G175500, Glyma.09G016600, Glyma.13G160100, Glyma.14
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G010500, Glyma.17G111400, Glyma.19G004400, Glyma.05G040300, and Glyma.06G179200.
For stachyose synthase, only one candidate gene was identified: Glyma.19G217700 (Figure 2).

3.4. Association between the Identified Sugar (Sucrose, Raffinose, and Stachyose) Biosynthetic
Pathway Candidate Genes and Reported QTLs

The identified genes for sugar (sucrose, raffinose, and stachyose) biosynthesis in
soybean were mapped to the identified QTLs. Amongst fifty-seven candidate genes, sixteen
were located less than 10 MB from the identified QTLs on chrs. 2, 5, 6, 8, 9, 10, 17, and 19
(Tables 3–6).

The sucrose synthase candidate gene Glyma.09G073600 and the raffinose synthase
candidate gene Glyma.09G016600 are positioned close to qSUC-7-IL-2018, qRAF-1-IL-2018,
and qRAF-2-IL-2018 on Chr.9 (Tables 3–6). The invertase candidate gene Glyma.02G016700
is located 3.6 and 0.2 MB away from qSUC-1-IL-2018 and qSUC-1-NC-2020, respectively,
on Chr. 2 (Tables 3–6). The raffinose synthase candidate genes Glyma.05G003900 and
Glyma.05G040300 are located close to qSUC-5-IL-2018 and qSUC-2-NC-2020 on Chr. 5
(Tables 3–6). On chr. 6, the raffinose synthase candidate gene Glyma.06G175500 is located
close to qSUC-6-IL-2018 (Tables 3–6). The invertase candidate genes Glyma.08G043800 and
Glyma.08G143500, and the UDP-D-Glucose-4-Epimerase candidate genes Glyma.08G011800
and Glyma.08G023100 on chr. 8 are located close to qSUC-3-NC-2020 (Tables 3–6, S3 and S4).
On chr. 10, the invertase candidate gene Glyma.10G017300 is located close to qSUC-8-IL-2018
(Tables 3–6). On Chr. 17, a cluster of four genes involved in the sugar pathway is collocated
within 6 MB of two QTLs (qSUC-10-NC-2018 and qSTA-3-IL-2020) that were identified in
this study. These genes are Glyma.17G037400 encoding for an invertase, Glyma.17G045800
encoding for sucrose synthase, Glyma.17G111400 encoding for raffinose synthase, and
Glyma.17G035800 encoding for UDP-D-glucose-4-epimerase (Tables 3–6, Figure S3). The
raffinose synthase candidate gene Glyma.19G004400 is positioned close to qSTA-3-IL-2018
and qSTA-4-IL-2018 (Tables 3–6), as well as qRAF-8-IL-2018 and qRAF-9-IL-2018 identified
using the IM method (Tables 3 and 4).

3.5. Association between the Identified Candidate Genes and the Previously Reported QTLs

Several studies have identified and mapped QTLs underlying the seed sugar content
using different populations and mapping methods [39–42], as summarized in [18].

The identified genes have been mapped to the previously reported QTL regions
associated with the seed sugar content using data from SoyBase [18,20,43]. In this study,
6 candidate genes were located within the identified seed sugar QTLs and 18 were located
<9 MB away from these regions (Table 7). Among them is the invertase candidate gene
Glyma.08G143500, which is located within the seed sucrose 1-2 QTL on Chr. 8 [20,39]. Also,
the galactinol-sucrose galactosyl-transferase 6-related candidate gene Glyma.13G160100 is
situated within the seed sucrose 1-5 QTL [20,39] (Table 7). Likewise, the raffinose synthase
candidate gene Glyma.19G140700 is collocated within the seed sucrose 1-8 QTL [20,39], less
than <0.5 MB away from seed sucrose 2-11 and seed sucrose 2-10 [20,41], and 1.9 MB from
seed oligosaccharide 2-7 [20,40].
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Table 7. Candidate genes controlling sugar (sucrose, stachyose, and raffinose) contents associated
with previously reported QTLs.

Gene ID Start End QTL QTL Start QTL End Reference

Glyma.02G240400 42892680 42898279
Seed sucrose 2-2 39547350 41441274 [41]

Seed oligosaccharide 1-1 39547350 41441274 [41]

Glyma.05G236600 41293446 41294570 Seed sucrose 1-1 3924139 4279362 [39]

Glyma.08G043800 3450235 3451725 Seed sucrose 1-3 7892162 8937354 [39]

Glyma.08G143500 10949673 10956219 Seed sucrose 1-2 10865328 13126779 [39]

Glyma.09G073600 7809852 7816248 Seed sucrose 4-2 2973041 5901485 [44]

Glyma.13G114000 22767704 22773231 Seed sucrose 1-5 26196486 28912864 [39]

Glyma.14G209900 47515899 47521687
Seed sucrose 3-1 38859467 40060720 [40]

Seed oligosaccharide 2-1 38859467 40060720 [40]

Glyma.15G151000 12497113 12508050
Seed sucrose 3-3 13755345 17021739 [40]

Seed oligosaccharide 2-3 13755345 17021739 [40]

Glyma.19G140700 40199041 40201038
Seed sucrose 1-8 40205349 40265091 [39]

Seed oligosaccharide 2-7 42119600 43329204 [40]

Glyma.19G212800 46633685 46639818
Seed oligosaccharide 2-7 42119600 43329204 [40]

qSU1901 45311975 45464136 [43]

Glyma.19G217700 47033812 47037286
Seed oligosaccharide 2-7 42119600 43329204 [40]

qSU1901 45311975 45464136 [43]

Glyma.20G095200 33827363 33831352 Seed sucrose 1-4 2716974 25498552 [39]

Glyma.08G011800 942037 944988
Seed sucrose 1-3 7892162 8937354 [39]

Seed sucrose 1-13 8283676 9192408 [39]

Glyma.08G023100 1852651 1856671
Seed sucrose 1-3 7892162 8937354 [39]

Seed sucrose 1-13 8283676 9192408 [39]

Glyma.19G219100 47148224 47150373

Seed sucrose 1-8 40205349 40265091 [39]

Seed sucrose 2-10 40637071 41616190 [41]

Seed sucrose 2-11 40637071 41616190 [41]

Seed oligosaccharide 2-7 42119600 43329204 [40]

Glyma.19G227800 47911129 47914214

Seed sucrose 1-8 40205349 40265091 [39]

Seed sucrose 2-10 40637071 41616190 [41]

Seed sucrose 2-11 40637071 41616190 [41]

Seed oligosaccharide 2-7 42119600 43329204 [40]

Glyma.20G094500 33759416 33761555 Seed sucrose 1-4 2716974 25498552 [39]

Glyma.20G177200 41446962 41451980 qSU2002 40523599 41882459 [43]

Glyma.15G182600 17910130 17916426
Seed sucrose 3-3 13755345 17021739 [40]

Seed oligosaccharide 2-3 13755345 17021739 [40]

Glyma.05G003900 307460 312091 Seed sucrose 1-1 3924139 4279362 [39]

Glyma.09G016600 1285132 1290884 Seed sucrose 4-2 2973041 5901485 [44]

Glyma.17G111400 8744555 8747526
qSS1701 7470395 10014816 [43]

qSS1702 7969537 10599548 [43]

Glyma.13G160100 27576191 27579282 Seed sucrose 1-5 26196486 28912864 [39]

Glyma.19G004400 359933 363588

Seed sucrose 2-3 4244065 12744826 [41]

Seed oligosaccharide 1-2 4244065 12744826 [41]

Seed sucrose 2-6 9284015 34059981 [41]

Seed oligosaccharide 1-5 9284015 34059981 [41]
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The sucrose synthase candidate gene Glyma.02G240400 was located close (<1.5 MB)
to two QTLs controlling seed sugar contents, the seed sucrose 2-2 and seed oligosaccha-
ride 1-1 [20,41]. Moreover, the raffinose synthase candidate gene Glyma.05G003900 is
located less than <4 MB away from the seed sucrose 1-1 [20,39]. The raffinose synthase
candidate gene Glyma.19G004400 is located less than 9 MB away from four QTLs control-
ling the sugar contents, namely seed sucrose 2-3, seed oligosaccharide 1-2, seed sucrose
2-6, and seed oligosaccharide 1-5 [20,41] (Table 7). On chr. 8, the seed sucrose 1-3 and
seed sucrose 1-13 are located close to the invertase candidate genes Glyma.08G043800, and
Glyma.08G143500, as well as UDP-D-glucose-4-epimerase candidate genes Glyma.08G011800
and Glyma.08G023100 [20,39] (Table 7). The sucrose synthase candidate gene Glyma.09G073600
and the raffinose candidate gene Glyma.09G016600 are positioned less than <2 MB away
from the seed sucrose 4-2 [20,44] (Table 7). Interestingly, the sucrose synthase candidate
genes Glyma.15G182600 and Glyma.15G151000 are located less than <1.25 MB from the seed
sucrose 3-3 and seed oligosaccharide 2-3 [20,40].

3.6. Organ-Specific Expression of the Identified Candidate Genes

The expression pattern of the identified candidate genes was investigated in Williams
82 cv. using the RNA-seq data available in SoyBase [20]. The dataset includes several plant
tissues, including leaves, nodules, roots, pods, and seeds (Figures 3A,B and S2). Four of the
fifty-seven identified candidate genes have no available RNA-seq data, including the sucrose
synthase candidate genes Glyma.03G216300, Glyma.17G045800, and Glyma.19G212800, as well
as the UDP-D-glucose-4-epimerase candidate gene Glyma.18G211700 (Figure S2). The raffi-
nose synthase candidate gene Glyma.04G145800 was not expressed in any of the analyzed
tissues, whilst the rest of the identified genes showed different expression patterns.

The sucrose synthase candidate genes Glyma.09G073600 and Glyma.13G114000 pre-
sented a high expression profile in all the analyzed tissues except for the young leaves,
while the raffinose synthase candidate gene Glyma.17G111400 was abundantly expressed in
all the analyzed tissues except for the seeds and nodules. Interestingly, the sucrose synthase
candidate gene Glyma.15G182600 was highly expressed in all the tissues excluding the
young leaves and the nodules. The raffinose synthase candidate gene Glyma.03G137900
was abundantly expressed in flowers, nodules, and roots. The raffinose synthase candidate
gene Glyma.14G010500 and the invertase candidate gene Glyma.05G236600 were highly
expressed in the flowers and pods. Also, the UDP-D-glucose-4-epimerase candidate gene
Glyma.05G204700 was abundantly expressed in the flowers and seeds. While the invertase
candidate gene Glyma.20G177200 was highly expressed in nodules and roots, the raffinose
synthase candidate gene Glyma.06G179200 was found to be highly expressed in seeds
(Figures 3A and S2).

Seventeen of the identified candidate genes were situated less than 10 MB away
from the identified QTL regions. Glyma.09G073600 was highly expressed in seeds in
Williams 82 cv., followed by Glyma.17G111400, Glyma.17G035800, and Glyma.08G043800
with a moderated expression profile. The remaining genes had lower expression patterns,
excluding the Glyma.02G016700, Glyma.06G175500, Glyma.09G016600, Glyma.10G017300,
and Glyma.19G004400 genes, which were not expressed in seeds in Williams 82 cv.
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HeatMap of the identified candidate genes located within 10 MB of the identified sugar QTL regions
in Williams 82 (RPKM) were retrieved from publicly available RNA-seq data from the Soybase
database [20]. RNA-seq data are not available in Soybase for the Glyma.17G045800 candidate gene.

4. Comparison of the Williams 82 and Forrest Sequences

The sequences of the candidate genes located less than 10 MB from the identified QTLs
were compared. The results showed that six of them had SNPs and InDels between the
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Forrest and Williams 82 sequences: Glyma.09G073600, Glyma.08G143500, Glyma.05G003900,
Glyma.17G035800, Glyma.17G111400, and Glyma.09G016600 (Table S4, Figure 4).
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In the gene model diagram, the light blue/light green boxes represent exons, blue/green bars rep-
resent introns, and dark blue/dark green boxes represent 3′UTR or 5′UTR. SNPs were positioned
relative to the genomic position in the genome version W82.a2.

The sucrose synthase Glyma.09G073600 had in total 28 SNPs and 7 InDels; three of
these SNPs were located upstream of the 5′UTR, two are downstream of the 3′UTR, and
seven were located in the exons (Table S4, Figure 4). For the invertase candidate gene
Glyma.08G143500, there were 20 SNPs and 5 InDels. One of these SNPs was located in
exon 7, causing a missense mutation, and two SNPs were located upstream of the 5′UTR
(Table S4, Figure 4). The raffinose synthase candidate gene Glyma.05G003900 had nine
SNPs and one InDel; four of those SNPs were in the exons, from which two SNPs resulted
in missense mutations (Table S4, Figure 4). Likewise, the raffinose synthase candidate
gene Glyma.09G016600 possessed 12 SNPs and 2 InDels. Amongst these SNPs, there were
two located in exons, which resulted in missense mutations, in addition to the two InDels
located in the exons (Table S4, Figure 4). For the raffinose candidate gene Glyma.17G111400,
eight SNPs were found, of which one was located upstream of the 5′ UTR, another one was
downstream of the 3′UTR, and the last six were in exons causing silent mutations (Table S4,
Figure 4). Finally, the UDP-D-Glucose-4-Epimerase candidate gene Glyma.17G035800 had
two SNPs that were positioned in introns (Table S4).

5. Discussion

Soybean seed sugars play a major role in seed and fruit development. Recently, soy
products became very popular as a result of a growing demand for vegan diets [45]. The
quality and taste of these products are determined by the soybean seed sugar content [39].
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These sugars include sucrose, raffinose, and stachyose which make up 5–7%, 1%, and 3–4%
of total carbohydrates, respectively [5]. However, the raffinose and stachyose fermentation
by human and monogastric animal intestine microbes leads to a reduced gastrointesti-
nal performance, flatulence, and diarrhea. Thus, reducing raffinose and stachyose and
increasing sucrose in soybean seed content are desirable [22,27].

Given the importance of the soybean seed sucrose content for the quality of soybean-
based products for food and feed, breeding programs are focused on developing soybean
seeds with a high sucrose content and low RFO content [43,46]. Thus, soybean varieties
with a high sucrose content are valuable for soybean food and feed products [47].

The identification of QTLs associated with sugar components using different types of
molecular markers is one of the breeding-process approaches that researchers use to breed
for a high-sucrose soybean. In soybean and other crops, it is well established that seed
sugar contents are complex polygenic traits, and many studies including this study have
mapped QTLs for sugar contents using various mapping populations including biparental
populations where parents may not necessarily have contrasting amounts of sugar contents,
such as in the “MD96-5722” by “Spencer” RIL population [30].

In the current study, all seed sugar (sucrose, raffinose, and stachyose) phenotypic
data, except one (sucrose, 2018), exhibited normal distributions in all environments studied
(years and locations), showing that these traits are polygenic and complex, as shown
previously [21,39–41,44,47–53].

The SNP-based genetic linkage map facilitated the identification of several QTLs
including QTLs for seed isoflavone contents [28], seed tocopherol contents [29], and seed
sugar (sucrose, stachyose, and raffinose) contents, as reported in the current study.

The heritability (H2) of sucrose, stachyose, and raffinose was estimated to be 37.5%,
73.9%, and 92%, respectively. There is no doubt that the environment and the interactions
of genotype and environment play a major role in the heritability of traits [28,29,43,54,55].
A trait biosynthesis that involves several genes is expected to have a lower heritability than
a trait biosynthesis that involves fewer genes. Figure 2 shows the number of potential genes
that are involved in sucrose biosynthesis versus those involved in raffinose and stachyose;
it seems like there is a correlation between the heritability values and the number of genes
involved in the biosynthesis pathway.

Among the identified sugar QTLs, there are novel QTL regions (qSUC-4, qSUC-8, and
qSUC-11). All the other QTLs have been located within or very close to the previously
reported sugar QTLs [30,39–41,44], as summarized in [18]. Five other genomic regions
on chrs. 2, 6, 12, 16, and 19 harboring sugar QTLs either from this study or from other
studies are of particular interest. On chr. 2, qSUC-2-NC-2018 may correspond to suc 1-1
identified previously [39]. This QTL region contains the Glyma.02G016700 candidate gene
that encodes for invertase.

Interestingly, several QTLs have been identified previously, including a QTL that
controls seed raffinose content within the qSUC-1-NC-2018 region (chr. 1) [30], two QTLs
(suc 2-2 and suc 3-2) that control seed sucrose content within the qSUC-2-NC-2018 region
(chr. 2) [20,40,41], a QTL that controls seed sucrose content (suc-001) within the qSUC-3-
NC-2018 region (chr. 3), [30], 2 QTLs that control seed sucrose (suc 1-1 and suc 4-1) content
within the qSUC-5-NC-2018 region (chr. 5) [39,44], a QTL that controls seed raffinose
content (raf003 and raf004) within the qSUC-6-NC-2018 and qSUC-7-NC-2018 regions (chrs.
6 and 9) [30], a QTL that controls seed sucrose (suc 1-5) content within the qSUC-9-NC-2018
region (chr. 13) [39], and a QTL that controls seed sucrose (suc 1-4) content within the
qSUC-12-NC-2018 region (chr. 20) [39].

Likewise, several other QTLs have been identified previously: a QTL that controls
seed sucrose (suc 2-2, 3-2) content within the qSUC-1-IL-2020 region (chr. 2) [40,41], a QTL
that control seed sucrose (suc 1-1, 4-1) content within the qSUC-2-IL-2020 (chr. 5) [39,44]
and qSUC-3-IL-2020 (chr. 8) regions, and a QTL that control seed sucrose (suc 1-2, 1-3, 1-13)
content within the qSUC-3-IL-2020 region (chr. 8) [39]. Within the QTL regions that were
found to control seed stachyose contents (qSTA-1-IL-2020, qSTA-2-IL-2020, and qSTA-4-IL-
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2020) reported in the current study on chrs. 13, 16, and 19, several QTLs that control seed
sucrose (suc 1-4, 1-5, 3-5, 3-6) and seed raffinose (raff007) contents have been identified
previously [39–41].

On chr. 6, qSUC-6-NC-2018 most likely corresponds to suc 2-2 [41] and raffinose (raf003)
QTL regions identified previously [30,39]. The QTL region contains the Glyma.06G175500
candidate gene encoding for raffinose synthase. Interestingly, the genomic region on chr.
19 comprising a cluster of sucrose QTLs (suc 1-6 to 1-8, 2-3 to 2-11) [39,41] also contains
two stachyose QTLs identified in this study (qSTA-3-NC-2018 and qSTA-4-NC-2018). The
candidate gene Glyma.19G004400, which also encodes for raffinose synthase, was identified
within this QTL region.

No candidate genes have been identified on chrs. 12 (qRAF-3-NC-2018), 16 (qSTA-2-
NC-2018), or 20 (qSTA-4-NC-2018).

Remarkably, within the novel QTL regions reported here on chrs. 4, 10, and 18, seven
candidate genes were identified, including the Glyma.18G145700 encoding for UDP-D-
glucose-4-epimerase on chr. 18 (Tables 5 and 6, and Figure 2).

Interestingly, five QTL regions were detected in both locations, IL and NC. The first
QTL region contains qSUC-5-NC-2018 and qSUC-2-IL-2020, which were detected in the
same location on chr. 5. Additionally, qSUC-9-NC-2018, qSTA-1-NC-2018, and qSTA-2-NC-
2018 were located only 1 MB away from qSTA-1-IL-2020 on chr.13. Moreover, qSUC-12-NC-
2018 was 1.3 MB away from qSTA-4-IL-2020 on chr. 20. Furthermore, qSUC-10-NC-2018
and qSTA-3-IL-2020 were positioned 3.1 MB away from each other on chr. 17. Additionally,
qSUC-2-NC-2018 and qSUC-1-IL-2020 were located ~4 MB away on chr. 2. The QTL regions
that were not detected in both locations may be affected by environmental conditions.

In a previous study [54], 31,245 SNPs and 323 soybean germplasm accessions grown
in three different environments were used to identify 72 QTLs associated with individual
sugars and 14 associated with total sugar [54]. In addition, ten candidate genes that are
within the 100 Kb flanking regions of the lead SNPs in six chromosomes were signifi-
cantly associated with sugar content in soybean, eight of which are involved in the sugar
metabolism in soybean [54]. Amongst these candidate genes, the raffinose synthase gene
Glyma.05G003900 was also reported in this study.

A recent study used an RIL population from a cross of ZD27 by HF25 to identify
16 QTLs controlling seed sucrose and soluble sugar contents in soybean [43]. Amongst these
QTLs, qSU1701 [43] with an LOD = 7.61 and phenotypic variation explained (PVE) = 16.8%
was identified on chr. 17 to be associated with the seed sucrose content. This QTL region
is collocated with qSUC-10-NC-2018 identified in this study for the same trait with an
LOD = 33.2 and an R2 = 20.5. On the same chr., qSS1701 [43] and qSS1702, identified to be
associated with the seed soluble sugar content, are collocated with qSTA-3-IL-2020. These
QTLs are positioned less than 8 MB away from a cluster of four genes involved in the
sugars’ pathway, including Glyma.17G037400 encoding for invertase, Glyma.17G045800
encoding for sucrose synthase, Glyma.17G111400 encoding for raffinose synthase (showing
7 SNP variations in exons) (Figure 4), and Glyma.17G035800 encoding for UDP-D-glucose-
4-epimerase. Our results confirm that this region on chr. 17 is a major QTL associated with
seed sugar contents in soybean. In the same study [43], qSU2001 identified on chr. 20 with
LOD = 3.38 and PVE = 5.6% was collocated with qSUC-12-NC-2018, and it was 0.3 MB away
from qSTA-4-IL-2020. The invertase candidate gene Glyma.20G177200 is positioned within
qSU2002 [43] identified on chr. 20 with LOD = 7.9 and PVE = 14.4%. These results confirm
that this region on chr. 20 is involved in soybean seed sugar contents. On chr. 3, qSS0301
was previously identified [43] to be associated with soluble sugar contents in soybean with
an LOD = 5.2 and PVE = 11.8. This QTL is located 1.4 MB away from qSUC-3-NC-2018.

The sucrose synthase gene Glyma.09G073600 was highly expressed in seeds, followed
by Glyma.17G111400, Glyma.17G035800, and Glyma.08G043800 with moderated expression
patterns in seeds. Glyma.09G073600 and Glyma.09G016600 are located close to qSUC-7-IL-
2018, qRAF-1-IL-2018, and qRAF-2-IL-2018 on chr. 9. Glyma.08G143500 is located close to
qSUC-3-NC-2020, and Glyma.05G003900 is positioned close to qSUC-5-IL-2018 and qSUC-
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2-NC-2020 on chr. 5. These genes could be useful in gene editing technology or breeding
programs to develop soybean cultivars with reduced amounts of RFOs and high amounts
of sucrose, which is beneficial for human consumption and animal feed.

Further studies are needed to characterize these genes, identify their enzymes and
protein products, and understand their roles in the sugar biosynthetic pathway in soybean.

6. Conclusions

In summary, we have identified 26 QTLs associated with the seed sugar contents and
57 candidate genes involved in the sucrose, raffinose, and stachyose biosynthetic pathway.
Amongst these candidate genes, 16 were located less than 10 MB away from the QTL
regions identified in this study.

On chr. 17, a cluster of four genes controlling the sugar pathway is collocated within
6 MB of two QTLs (qSUC-10-NC-2018 and qSTA-3-IL-2020) that were identified in this study.
Moreover, the raffinose synthase candidate gene Glyma.06G175500 is 9.7MB away from
qSUC-6-NC-2018 QTL on chr. 6. The invertase candidate gene Glyma.02G016700 is located
3.6 and 0.2 MB away from qSUC-1-NC-2018 (R2 = 47.9) and qSUC-1-IL-2020 (R2 = 3.6),
respectively, on chr. 2. Moreover, the sucrose synthase candidate gene Glyma.09G073600
and the raffinose synthase candidate gene Glyma.09G016600 were found close to qSUC-7-
IL-2018, qRAF-1-IL-2018, qRAF-2-IL-2018, and qRAF-1-IL-2018 on chr. 9.

Five QTL regions were commonly identified in the two environments, NC and IL,
on chrs. 2, 5, 13, 17 and 20 ((qSUC-5-NC-2018 and qSUC-2-IL-2020), (qSUC-9-NC-2018,
qSTA-1-NC-2018, and qSTA-1-IL-2020), (qSUC-12-NC-2018 and qSTA-4-IL-2020), (qSUC-10-
NC-2018 and qSTA-3-IL-2020), and (qSUC-2-NC-2018 and qSUC-1-IL-2020)).

Five genes (Glyma.09G073600, Glyma.08G143500, Glyma.17G111400, Glyma.05G003900,
and Glyma.09G016600) have SNPs and InDels between the Forrest and Williams 82 se-
quences. These SNPs could potentially explain the difference in sugar content between
Forrest and Williams 82 cultivars.

Further studies are required to functionally characterize these genes so we can under-
stand and validate their roles in the sugar biosynthetic pathway in soybean before they
are used in breeding programs to produce soybean lines with high beneficial sucrose and
low RFOs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12193498/s1, Table S1: Quantitative trait loci (QTL) that
control sugars (sucrose, stachyose, and raffinose) contents in F × W82 RIL population in Spring
Lake, NC in 2018; Table S2: Quantitative trait loci (QTL) that control sugars (sucrose, stachyose, and
raffinose) contents in F ×W82 RIL population in Carbondale, IL in 2020; Table S3: Comparison of the
Williams 82 and Forrest cv. Sequences of the Glyma.09G073600, Glyma.08G143500, Glyma.17G111400,
Glyma.17G035800, Glyma.09G016600 and Glyma.05G003900 candidate genes; Figure S1: Positions
of QTL that control seed sucrose (qSUC), stachyose (qSTA), and raffinose (qRAF) contents on Chrs;
Figure S2: Expression profiles of the sugars (sucrose, raffinose, and stachyose) pathway candidate
genes in soybean based on RNAseq data available from RNAsequencing data; Figure S3. Physical
positions corresponding to the Glyma.17G037400 encoding for an invertase, Glyma.17G045800 encod-
ing for sucrose synthase, Glyma.17G111400 encoding for raffinose synthase, and Glyma.17G035800
encoding for UDP-D-glucose-4-epimerase, and the identified seed sugars QTL identified in this study
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Author Contributions: Conceptualization, K.M. and M.A.K.; methodology, D.K., J.Y., T.V., N.L., A.M.,
E.A., N.B. and M.E.; validation, M.A.K., K.M. and H.T.N.; formal analysis, D.K., J.Y. and N.B.; investi-
gation, K.M. and M.A.K.; resources and data curation, K.M., M.A.K. and H.T.N.; writing—original
draft preparation, D.K., M.A.K. and K.M.; review and editing, D.K., J.Y., N.B., N.L., T.V., M.A.K., K.M.
and H.T.N.; supervision, M.A.K. and K.M.; project administration, M.A.K., K.M., and H.T.N. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the U.S. Department of Agriculture, Agricultural
Research Service Project 6066-21220-014-000D. This project was also partially funded by the United
Soybean Board, project # 2220-152-0104, and Southern Illinois University at Carbondale.

35



Plants 2023, 12, 3498

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Acknowledgments: Technical support provided by Sandra Mosley is appreciated. Mention of trade
names or commercial products in this publication is solely for the purpose of providing specific
information and does not imply recommendation or endorsement by the United States Department
of Agriculture (USDA). The USDA is an equal opportunity provider and employer.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Blackman, S.A.; Obendorf, R.L.; Leopold, A.C. Maturation Proteins and Sugars in Desiccation Tolerance of Developing Soybean

Seeds. Plant Physiol. 1992, 100, 225–230. [CrossRef] [PubMed]
2. Hitz, W.D.; Carlson, T.J.; Kerr, P.S.; Sebastian, S.A. Biochemical and Molecular Characterization of a Mutation That Confers

a Decreased Raffinosaccharide and Phytic Acid Phenotype on Soybean Seeds. Plant Physiol. 2002, 128, 650–660. [CrossRef]
[PubMed]

3. Koch, K. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin.
Plant Biol. 2004, 7, 235–246. [CrossRef] [PubMed]

4. Redekar, N.R.; Glover, N.M.; Biyashev, R.M.; Ha, B.-K.; Raboy, V.; Maroof, M.A.S. Genetic interactions regulating seed phytate
and oligosaccharides in soybean (Glycine max L.). PLoS ONE 2020, 15, e0235120. [CrossRef]

5. Skoneczka, J.A.; Maroof, M.A.S.; Shang, C.; Buss, G.R. Identification of Candidate Gene Mutation Associated With Low Stachyose
Phenotype in Soybean Line PI200508. Crop Sci. 2009, 49, 247–255. [CrossRef]

6. Horbowicz, M.; Obendorf, R.L. Seed desiccation tolerance and storability: Dependence on flatulence-producing oligosaccharides
and cyclitols—Review and survey. Seed Sci. Res. 1994, 4, 385–405.

7. Sprenger, R.; Schlagenhaufer, R.; Kerb, R.; Bruhn, C.; Brockmöller, J.; Roots, I.; Brinkmann, U. Characterization of the glutathione
S-transferase GSTT1 deletion: Discrimination of all genotypes by polymerase chain reaction indicates a trimodular genotype–
phenotype correlation. Pharmacogenet. Genom. 2000, 10, 557–565. [CrossRef]

8. Pennycooke, J.C.; Jones, M.L.; Stushnoff, C. Down-regulating α-galactosidase enhances freezing tolerance in transgenic petunia.
Plant Physiol. 2003, 133, 901–909.

9. ElSayed, A.I.; Rafudeen, M.S.; Golldack, D. Physiological aspects of raffinose family oligosaccharides in plants: Protection against
abiotic stress. Plant Biol. 2014, 16, 1–8.

10. Keller, F.; Pharr, D.M. Metabolism of carbohydrates in sinks and sources: Galactosyl-sucrose oligosaccharides. In Photoassimilate
Distribution in Plants and Crops; Routledge: London, UK, 1996; pp. 157–183.

11. Xue, H.; Chen, X.; Li, G. Involvement of phospholipid signaling in plant growth and hormone effects. Curr. Opin. Plant Biol. 2007,
10, 483–489. [CrossRef]

12. Okada, M.; Ye, K. Nuclear phosphoinositide signaling regulates messenger RNA export. RNA Biol. 2009, 6, 12–16. [PubMed]
13. Thole, J.M.; Nielsen, E. Phosphoinositides in plants: Novel functions in membrane trafficking. Curr. Opin. Plant Biol. 2008, 11,

620–631. [PubMed]
14. González, E.M.; Gordon, A.J.; James, C.L.; Arrese-lgor, C. The role of sucrose synthase in the response of soybean nodules to

drought. J. Exp. Bot. 1995, 46, 1515–1523. [CrossRef]
15. Bellaloui, N.; Smith, J.R.; Gillen, A.M.; Ray, J.D. Effect of Maturity on Seed Sugars as Measured on Near-Isogenic Soybean (Glycine

max) Lines. Crop Sci. 2010, 50, 1978–1987. [CrossRef]
16. Bellaloui, N.; Mengistu, A.; Fisher, D.K.; Abel, C.A. Soybean Seed Composition Constituents as Affected by Drought and

Phomopsis in Phomopsis Susceptible and Resistant Genotypes. J. Crop Improv. 2012, 26, 428–453. [CrossRef]
17. Wijewardana, C.; Reddy, K.R.; Bellaloui, N. Soybean seed physiology, quality, and chemical composition under soil moisture

stress. Food Chem. 2019, 278, 92–100. [CrossRef]
18. Kassem, M.A. Soybean Seed Composition: Protein, Oil, Fatty Acids, Amino Acids, Sugars, Mineral Nutrients, Tocopherols, and Isoflavones;

Springer Nature: Berlin/Heidelberg, Germany, 2021.
19. Taiz, L. Mineral Nutrition, Plant Physiology ed.; Sinauer Associates Inc.: Sunderland, MA, USA, 1998.
20. Brown, A.V.; Conners, S.I.; Huang, W.; Wilkey, A.P.; Grant, D.; Weeks, N.T.; Cannon, S.B.; Graham, M.A.; Nelson, R.T. A

new decade and new data at SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res. 2021, 49,
D1496–D1501. [CrossRef]

21. Salari, M.W.; Ongom, P.O.; Thapa, R.; Nguyen, H.T.; Vuong, T.D.; Rainey, K.M. Mapping QTL controlling soybean seed sucrose
and oligosaccharides in a single family of soybean nested association mapping (SoyNAM) population. Plant Breed. 2021, 140,
110–122. [CrossRef]

22. Wang, T.L.; Domoney, C.; Hedley, C.L.; Casey, R.; Grusak, M.A. Can we improve the nutritional quality of legume seeds? Plant
Physiol. 2003, 131, 886–891.

23. Arendt, E.K.; Zannini, E. Cereal Grains for the Food and Beverage Industries; Elsevier: Amsterdam, The Netherlands, 2013.
24. Avilés-Gaxiola, S.; Chuck-Hernández, C.; Serna Saldívar, S.O. Inactivation methods of trypsin inhibitor in legumes: A review. J.

Food Sci. 2018, 83, 17–29.

36



Plants 2023, 12, 3498

25. Kerr, P.S.; Pearlstein, R.W.; Schweiger, B.J.; Becker-Manley, M.F.; Pierce, J.W. Nucleotide Sequences of Galactinol Synthase from
Zucchini and Soybean. U.S. Patent US5648210A, 15 July 1997.

26. Frías, J.; Bakhsh, A.; Jones, D.; Arthur, A.; Vidal-Valverde, C.; Rhodes, M.; Hedley, C.L. Genetic analysis of the raffinose
oligosaccharide pathway in lentil seeds. J. Exp. Bot. 1999, 50, 469–476. [CrossRef]

27. Hedley, C.L. Carbohydrates in Grain Legume Seeds: Improving Nutritional Quality and Agronomic Characteristics; CABI: Wallingford,
UK, 2001.

28. Knizia, D.; Yuan, J.; Bellaloui, N.; Vuong, T.; Usovsky, M.; Song, Q.; Betts, F.; Register, T.; Williams, E.; Lakhssassi, N. The Soybean
High Density ‘Forrest’by ‘Williams 82’ SNP-Based Genetic Linkage Map Identifies QTL and Candidate Genes for Seed Isoflavone
Content. Plants 2021, 10, 2029. [CrossRef] [PubMed]

29. Knizia, D.; Yuan, J.; Lakhssassi, N.; El Baze, A.; Cullen, M.; Vuong, T.; Mazouz, H.; Nguyen, H.; Kassem, M.A.; Meksem, K. QTL
and Candidate Genes for Seed Tocopherol Content in ‘Forrest’by ‘Williams 82’ Recombinant Inbred Line (RIL) Population of
Soybean. Plants 2022, 11, 1258. [CrossRef] [PubMed]

30. Akond, M.; Liu, S.; Kantartzi, S.K.; Meksem, K.; Bellaloui, N.; Lightfoot, D.A.; Kassem, M.A. Quantitative trait loci underlying
seed sugars content in “MD96-5722” by “Spencer” recombinant inbred line population of soybean. Food Nutr. Sci. 2015, 6, 964.
[CrossRef]

31. Allen, G.C.; Flores-Vergara, M.; Krasynanski, S.; Kumar, S.; Thompson, W. A modified protocol for rapid DNA isolation from
plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 2006, 1, 2320–2325.

32. Wu, X.; Vuong, T.D.; Leroy, J.A.; Grover Shannon, J.; Sleper, D.A.; Nguyen, H.T. Selection of a core set of RILs from Forrest×
Williams 82 to develop a framework map in soybean. Theor. Appl. Genet. 2011, 122, 1179–1187. [CrossRef]

33. Wang, S.; Basten, C.; Zeng, Z. Windows QTL Cartographer 2.5_011. Department of Statistics, North Carolina State University:
Raleigh, NC, USA, 2012. Available online: http://statgen.ncsu.edu/qtlcart/WQTLCart.htm (accessed on 28 August 2023).

34. Voorrips, R. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [CrossRef]
35. Patil, G.B.; Lakhssassi, N.; Wan, J.; Song, L.; Zhou, Z.; Klepadlo, M.; Vuong, T.D.; Stec, A.O.; Kahil, S.S.; Colantonio, V.; et al.

Whole-genome re-sequencing reveals the impact of the interaction of copy number variants of the rhg1 and Rhg4 genes on
broad-based resistance to soybean cyst nematode. Plant Biotechnol. J. 2019, 17, 1595–1611. [CrossRef]

36. Iftime, D.; Hannah, M.A.; Peterbauer, T.; Heyer, A.G. Stachyose in the cytosol does not influence freezing tolerance of transgenic
Arabidopsis expressing stachyose synthase from adzuki bean. Plant Sci. 2011, 180, 24–30. [CrossRef]

37. González-Morales, S.I.; Chávez-Montes, R.A.; Hayano-Kanashiro, C.; Alejo-Jacuinde, G.; Rico-Cambron, T.Y.; de Folter, S.;
Herrera-Estrella, L. Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana.
Proc. Natl. Acad. Sci. USA 2016, 113, E5232–E5241. [CrossRef]

38. Blöchl, A.; March, G.G.-d.; Sourdioux, M.; Peterbauer, T.; Richter, A. Induction of raffinose oligosaccharide biosynthesis by
abscisic acid in somatic embryos of alfalfa (Medicago sativa L.). Plant Sci. 2005, 168, 1075–1082. [CrossRef]

39. Maughan, P.; Maroof, M.; Buss, G. Identification of quantitative trait loci controlling sucrose content in soybean (Glycine max).
Mol. Breed. 2000, 6, 105–111. [CrossRef]

40. Kim, H.K.; Kang, S.T.; Oh, K.W. Mapping of putative quantitative trait loci controlling the total oligosaccharide and sucrose
content of Glycine max seeds. J. Plant Res. 2006, 119, 533–538. [CrossRef] [PubMed]

41. Kim, H.-K.; Kang, S.-T.; Cho, J.-H.; Choung, M.-G.; Suh, D.-Y. Quantitative trait loci associated with oligosaccharide and sucrose
contents in soybean (Glycine max L.). J. Plant Biol. 2005, 48, 106–112.

42. Mainali, H.R.; Vadivel, A.K.A.; Li, X.; Gijzen, M.; Dhaubhadel, S. Soybean cyclophilin GmCYP1 interacts with an isoflavonoid
regulator GmMYB176. Sci. Rep. 2017, 7, 39550.

43. Liu, C.; Chen, H.; Yu, Q.; Gu, H.; Li, Y.; Tu, B.; Zhang, H.; Zhang, Q.; Liu, X. Identification of quantitative trait loci (QTLs) and
candidate genes for seed sucrose and soluble sugar concentrations in soybean. Crop Sci. 2023, 63, 2976–2992. [CrossRef]

44. Zeng, A.; Chen, P.; Shi, A.; Wang, D.; Zhang, B.; Orazaly, M.; Florez-Palacios, L.; Brye, K.; Song, Q.; Cregan, P. Identification of
quantitative trait loci for sucrose content in soybean seed. Crop Sci. 2014, 54, 554–564.

45. Cai, J.-S.; Feng, J.-Y.; Ni, Z.-J.; Ma, R.-H.; Thakur, K.; Wang, S.; Hu, F.; Zhang, J.-G.; Wei, Z.-J. An update on the nutritional,
functional, sensory characteristics of soy products, and applications of new processing strategies. Trends Food Sci. Technol. 2021,
112, 676–689.

46. Sui, M.; Wang, Y.; Bao, Y.; Wang, X.; Li, R.; Lv, Y.; Yan, M.; Quan, C.; Li, C.; Teng, W. Genome-wide association analysis of sucrose
concentration in soybean (Glycine max L.) seed based on high-throughput sequencing. Plant Genome 2020, 13, e20059.

47. Lee, J.S.; Kim, S.-M.; Kang, S. Fine mapping of quantitative trait loci for sucrose and oligosaccharide contents in soybean [Glycine
max (L.) Merr.] using 180 K Axiom® SoyaSNP genotyping platform. Euphytica 2016, 208, 195–203.

48. Stombaugh, S.; Orf, J.H.; Jung, H.; Chase, K.; Lark, K.; Somers, D. Quantitative trait loci associated with cell wall polysaccharides
in soybean seed. Crop Sci. 2004, 44, 2101–2106. [CrossRef]

49. Feng, C.; Morsy, M.; Giannoccaro, E.; Zhang, B.; Chen, P. Soybean seed sugar content and quantitative trait loci mapping. In
Plant Nutrition for Food Security, Human Health and Environmental Protection; Fifteenth International Plant Nutrition Colloquium;
Tsinghua University Press: Beijing, China, 2005.

50. Jaureguy, L.M. Identification of Molecular Markers Associated with Seed Size, Protein and Sugar Content in Soybean; University of
Arkansas: Fayetteville, Arkansas, 2009.

37



Plants 2023, 12, 3498

51. Wang, X.; Jiang, G.-L.; Green, M.; Scott, R.A.; Song, Q.; Hyten, D.L.; Cregan, P.B. Identification and validation of quantitative trait
loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean. Mol. Genet. Genom. 2014, 289,
935–949.

52. Dhungana, S.K.; Kulkarni, K.P.; Park, C.W.; Jo, H.; Song, J.T.; Shin, D.H.; Lee, J.D. Mapping quantitative trait loci controlling
soybean seed starch content in an interspecific cross of ‘Williams 82’ (Glycine max) and ‘PI 366121’ (Glycine soja). Plant Breed. 2017,
136, 379–385.

53. Patil, G.; Vuong, T.D.; Kale, S.; Valliyodan, B.; Deshmukh, R.; Zhu, C.; Wu, X.; Bai, Y.; Yungbluth, D.; Lu, F. Dissecting genomic
hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density
linkage mapping. Plant Biotechnol. J. 2018, 16, 1939–1953. [PubMed]

54. Hu, L.; Wang, X.; Zhang, J.; Florez-Palacios, L.; Song, Q.; Jiang, G.-L. Genome-Wide Detection of Quantitative Trait Loci and
Prediction of Candidate Genes for Seed Sugar Composition in Early Mature Soybean. Int. J. Mol. Sci. 2023, 24, 3167.

55. Silva, L.C.C.; da Matta, L.B.; Pereira, G.R.; Bueno, R.D.; Piovesan, N.D.; Cardinal, A.J.; God, P.I.V.G.; Ribeiro, C.; Dal-Bianco, M.
Association studies and QTL mapping for soybean oil content and composition. Euphytica 2021, 217, 24. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

38



Citation: Bolouri, P.; Haliloğlu, K.;
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İlhan, E.; Niedbała, G.; Szulc, P.;

Niazian, M. Identification of Novel

QTLs Associated with Frost

Tolerance in Winter Wheat (Triticum

aestivum L.). Plants 2023, 12, 1641.

https://doi.org/10.3390/

plants12081641

Academic Editor: Abdelmajid

Kassem

Received: 12 February 2023

Revised: 5 April 2023

Accepted: 7 April 2023

Published: 13 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Article

Identification of Novel QTLs Associated with Frost Tolerance in
Winter Wheat (Triticum aestivum L.)
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Abstract: Low temperature (cold) and freezing stress is a major problem during winter wheat growth.
Low temperature tolerance (LT) is an important agronomic trait in winter wheat and determines
the plants’ ability to cope with below-freezing temperatures; thus, the development of cold-tolerant
cultivars has become a major goal of breeding in various regions of the world. In this study, we
sought to identify quantitative trait loci (QTL) using molecular markers related to freezing tolerance in
winter. Thirty-four polymorphic markers among 425 SSR markers were obtained for the population,
including 180 inbred lines of F12 generation wheat, derived from crosses (Norstar × Zagros) after
testing with parents. LT50 is used as an effective selection criterion for identifying frost-tolerance
genotypes. The progeny of individual F12 plants were used to evaluate LT50. Several QTLs related
to wheat yield, including heading time period, 1000-seed weight, and number of surviving plants
after overwintering, were identified. Single-marker analysis illustrated that four SSR markers with
a total of 25% phenotypic variance determination were linked to LT50. Related QTLs were located
on chromosomes 4A, 2B, and 3B. Common QTLs identified in two cropping seasons based on
agronomical traits were two QTLs for heading time period, one QTL for 1000-seed weight, and six
QTLs for number of surviving plants after overwintering. The four markers identified linked to LT50

significantly affected both LT50 and yield-related traits simultaneously. This is the first report to
identify a major-effect QTL related to frost tolerance on chromosome 4A by the marker XGWM160.
It is possible that some QTLs are closely related to pleiotropic effects that control two or more
traits simultaneously, and this feature can be used as a factor to select frost-resistant lines in plant
breeding programs.

Keywords: winter wheat; frost tolerance; LT50; chromosome 4A; SSR marker; yield-related traits

1. Introduction

Winter wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is a naturally formed
allohexaploid species with seven groups of homoeologous chromosomes [1]. In Turkey,
49.37% of the total seed cultivated is wheat. As seed farming is relatively easy and suitable
for mechanization, farmers often choose to cultivate these crops. According to TUIK data,
Turkey’s wheat cultivation area constitutes 3.2% of the world wheat cultivation area as of
the 2019–2020 production season [2]. Temperature is an important environmental factor that
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affects wheat production [1]. Cold temperatures and frost are fundamental non-biological
factors that reduce wheat production worldwide. Cold tolerance is a complex trait in wheat
and includes morphological, physiological, biological, and hereditary elements [3]. Such
stressors are frequent during the life of the plant and can reduce the yield of agricultural
products [4,5].

The most important stage of plant development is the flowering induction stage,
which occurs in many plant species based on the response to seasonal changes caused
by the surrounding environment. The mechanism of cold tolerance in winter wheat has
a fundamental relationship with the need for vernalization, which causes a delay in the
transition from the vegetative to the reproductive stage; the result is cold tolerance [5].

Abiotic stresses such as frost stress are complex quantitative traits, where numerous
stress-responsive genes take part to ensure the survival of plants [4]. It is possible that
in a wide range of plant species, such responses are controlled by quantitative trait loci
(QTL) [6]. The ability of plants to survive frost temperatures is critical for long-term
survival. Although field survival is the ultimate measure of winter hardiness of a variety,
field survival as a selection tool is unreliable because of variable levels of winter severity
on different winter crops [7]. Recently, analyses of plants grown in fields and natural
environments have revealed that most frost-responsive genes detected in the laboratory are
also responsive to frost stress in these environments [8].

LT50, the temperature predicted to be fatal to 50% of the plants, is typically used to
quantify the frost tolerance of winter wheat cultivars. The way in which LT50 is measured
varies among researchers [9]. Livingston [10] studied frost tolerance in different plant
species (rye, wheat, barley, oat) and tested the plants after freezing. For this purpose, the
frost-tolerance genotypes of barley and oats were subjected to −4, −7, −9, and −12 ◦C, and
the more tolerant genotypes to −14, −16, and −18 ◦C. Plants were kept at each temperature
for 2 h. Mahfoozi et al. [11] illustrated that the level of expression as well as the number of
expressed proteins in plants grown in field conditions that experience cold acclimatization
periods at sub-zero temperatures show much higher tolerance than plants acclimated to
cold at low but above-zero temperatures (in controlled conditions).

To study different winter wheat cultivars, several biochemical, physiological, and
morphological traits, such as plant height, heading time period, nutrient content, sucrose,
glucose, raffinose, total sugar content, and the relationship between frost resistance genes,
were investigated [12]. Studies have been conducted on protein factors such as transcription
factors and protein kinases, which play a role in stress response and further regulation of
gene expression [13]. Moreover, phenological, molecular, and metabolic analyses during
vernalization have shown that there is a close relationship between the completion time
of vernalization, the reduction of accumulation of metabolites, and the expression of
frost-induced proteins [14].

The relationship between cold adaptation (acclimation) and other physiological events
is important as cereals become tolerant to colder temperatures as a result of acclimatizing
to cold exposure. In addition, adaptation activates different gene expression pathways [15].
Cold-activated genes may also be present in more than one gene locus. Response of
plants to abiotic stress occurs via signal transduction [16]. Hannah et al. [17] reported that
cold adaptation is the result of an increase or decrease in the expression of many genes.
Thus, the controlling factor for frost tolerance depends on genetic (evolutionary) changes
between vegetative and reproductive growth periods [18]. Therefore, the reaction of plants
to low temperatures is primarily through activating metabolic pathways, followed by cell
recognition (detection) and activation of genes that react to frost stress [19].

Wheat has both winter and spring growth phases, which are determined via vernal-
ization (VRN) genes [20]. The genes involved in vernalization are located on the fifth
chromosome and include homologous Vrn-A1, Vrn-A2, and Vrn-A3 genes [21]. The domi-
nant or recessive alleles per locus lead to tolerance to frost or low temperatures in wheat
with a winter growth type [18]. Freezing tolerance (Fr), which is linked to Vrn alleles, is
an effective factor in gene stability. Fr-A11, also known as Fr loci, are located on group
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5 chromosomes in the loci of Fr-B1 and Fr-D1 [22,23]. Another locus, Fr-A2, is located
approximately 30 to 40 centimorgan (cM) to the vernalization locus Vrn-A1 [24,25] and is
also located on the fifth chromosome of T. monococcum [26]. According to Baga et al. [24]
and Börner et al. [27], genetic mapping studies have shown which Fr and VRN genes are
autonomous loci, and these loci are the main sources of variations observed in freezing
tolerance [21,23]. Recent research has shown that allelic variations in the Vrn-A1 locus
significantly affect freezing tolerance. This QTL region associated with Fr-A1 for freezing
tolerance is due to the pleiotropic effect of Vrn-A1 rather than being entirely dependent on
the Fr-A1 gene [19,28] and is located on the group 5 chromosomes [18]. Shindo et al. [29]
also observed the importance of multiple locations on chromosome 2B, which controls
heading time in wheat. In addition to the importance of chromosomes of the B genome
in terms of frost tolerance, several studies related to the association mapping of wheat
indicated that there were significant relationships between genetic markers and other agro-
nomic traits, such as heading time, on the chromosomes of the B genome. Chromosome
4A is significantly associated with plant height, heading time, number of seeds per spike,
spike length, spikelet number, and 1000-seed weight [24,30,31].

The selection of complex genetic traits, such as frost tolerance, can be simplified in
plant breeding programs when associated markers are identified [32]. QTL and DNA
markers, which are complex properties, can be used for indirect selection in selection
programs with the aid of a marker [33]. Most phenotypes are quantitative in nature,
and thus, significant variation for a trait of interest may be assigned to one or more loci
(QTL). Identification and validation of QTLs requires associating them with one or more
molecular markers. Knowing the location and the number of loci-wrapped traits, such as
frost tolerance, increases the efficiency of selection of such agronomic traits. In recent years,
molecular markers have been used as a useful complement to classical breeding techniques
in the selection of quantitative traits, such as freezing tolerance in wheat. The aim of the
present study is to identify gene or gene regions (QTLs) related to frost tolerance by SSR
markers. QTLs linked to frost tolerance traits can be used in plant breeding programs for
winter wheat.

2. Results
2.1. Evaluation of Yield-Related Traits

The mean time period from planting to 50% heading time in Zagros and Norstar was
181 and 195 days, respectively. For the F12 population, it was 185 days. The mean 1000-seed
weight in Zagros and Norstar was 40.34 and 40.73 g, respectively. For the F12 population,
the mean was 40.16 ± 0.28 g. The number of surviving plants after overwintering in
Zagros and Norstar was 37.25 and 46.75 seedlings, respectively. The mean number of
surviving plants after overwintering for the F12 population was 44.85 seedlings. Statistically
significant correlations between frost tolerance (LT50) were observed with heading time
period (r = 0.154 *) and number of surviving plants after winter (r = 0.66). In addition,
significant negative correlations were observed between winter survival and heading time
period (r = −0.13) and 1000-seed weight (r = −0.223) (Table 1).

Table 1. Correlation between studied agronomic traits.

Heading Time
Period (HT)

1000-Seed Weight
(1000—SW)

Number of Surviving
Plants after Winter (WS) LT50

HT 1
1000—SW −0.097 1

WS −0.130 −0.223 **1 1
LT50 0.154 *2 0.084 0.66 * 1

1,2 Significant at ** p = 0.01 and * p = 0.05 levels, respectively.
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2.2. Evaluation of LT50 Values

The F12 population and their parents were examined using the freezing test, and LT50
values of the population varied in thermal range of −3 ◦C to −25 ◦C (ST1). The LT50
values of Zagros (Z) and Norstar (N) parents were determined as −4.5 ◦C and −24.34 ◦C,
respectively. The Norstar variety showed maximum frost tolerance, with an LT50 value
at −24.34 ◦C. The mean LT50 value for the F12 population showed a distribution close
to the frost-sensitive Zagros parent; the mean LT50 value for the F12 population was
−8.94 ◦C (Table 2) and was considered as the frost tolerance standard. In general, in the RIL
population, 82 (45.5%) lines showed high tolerance, and 98 lines (54.44%) were susceptible
to frost.

Table 2. The mean LT50 values in the recombinant lines (RILs) derived from Norstar × Zagros
wheat cross.

LT50 (◦C) −1.5 −4.5 −7.5 −10.5 −13.5 −16.5 −19.5 −24.34

Genotype number 5 51 43 40 25 15 2 1
1,2 Significant at ** p = 0.01 and * p = 0.05 levels, respectively.

2.3. Molecular Evaluation (Single Marker Analysis)

Thirty-four SSR markers were identified to be polymorphic between parents and thus
were used for single-marker analysis [34]. Four QTL regions were found for the LT50
value (Table 3). The QTL regions were associated with XBarc101, XGWM340, XGWM160,
and XGWM493 markers. In terms of variation related to the LT50 value, XGWM160 had
the highest phenotypic variation (12%), located on chromosome 4A and linked to LT50.
The other three QTL regions expressed phenotypic variation from 2% to 7% (Table 3).
These QTL regions were also located on chromosomes 2B and 3B, which were linked to
LT50. Additionally, QTL analysis (SMA) for yield-related traits showed that two marker loci
(XGWM413 and XGWM165) were located on 1B and 5AL-12-~10 chromosomes, respectively,
which were related to the heading time period. One marker locus (XGWM160) on 4A was
associated with the 1000-seed weight. Six marker loci (XGWM340 on 3B, XBarc 154 on
7A, XBarc100 on 5AL-12-~10, XGWM501 on 2B, XGWM160 on 4A, and XWMC765 on 5D
chromosomes) were associated with number of surviving plants after overwintering in the
F12 population (Table 4).

Table 3. QTL analyses of SSR markers for LT50 in the recombinant lines (RILs) derived from Norstar ×
Zagros wheat cross.

Characteristic Marker Location * %PV % p-Value

LT50

XBarc 101 2BL 7 0.002

XGWM340 3B 2 0.036

XGWM160 4A 12 0.000

XGWM493 3B 4 0.004
* % PV: Phenotypic Variation.

Table 4. QTL analyses for the number of yield-related traits in the recombinant lines (RILs) derived
from Norstar × Zagros wheat cross.

Characteristic Marker Location % Phenotypic
Variation (PV) % p-Value

Heading time period XBarc165
XGWM413

5AL-12~10
1B

2
6

0.032
0.000

1000-seed weight XGWM160 4A 16 0.000
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Table 4. Cont.

Characteristic Marker Location % Phenotypic
Variation (PV) % p-Value

Number of
surviving plants

after winter

XBarc 154
XBarc100

XGWM501
XGWM340
XGWM160
XWMC765

7A, D
5AL-12~1

2B
3B
4A
5D

5
2
3
9

12
5

0.011
0.033
0.022
0.000
0.000
0.003

3. Discussion

Considering that low-temperature stress in late spring is a serious threat to winter
wheat production, frost tolerance is one of the most important traits for wheat breeding
programs. This trait is complex and controlled by QTLs. Although challenging, identifica-
tion of these QTLs will greatly benefit agricultural development. Therefore, considering the
importance of yield-related traits in winter wheat, such as heading time period, 1000-seed
weight, and number of surviving plants after overwintering, as well as their effect on
yield, many studies have focused on identifying the QTLs associated with these traits and
characterizing the molecular control of these traits and their role in frost tolerance.

Different organs of winter wheat are different in terms of resistance to low-temperature
stress, among which the leaves are the most sensitive to low-temperature stress. Although
low-temperature stress during elongation and booting stages causes great damage to the
young ear, reduces the number of distinct florets, and accelerates the degeneration of florets,
it seems that genotypes with a longer heading time period are less damaged by frost stress.
Because the biomass transferred to the sink organ decreases less in these genotypes, as a
result, it does not reduce the grain yield [32,35–38]. Our studies revealed that there is a
significant correlation between frost tolerance (LT50) and heading time period in the F12
population (r = 0.154 *). However, significant positive correlations (p < 0.05) were exhibited
between heading time period and LT50, indicating a high response to selection of these traits
(Table 1). Therefore, lines with a larger heading time period were also more tolerant to low
temperatures and frost. Several QTLs with pleiotropic effects are involved in controlling this
trait. There may be genetic linkage between frost tolerance and late maturity (winter growth
habit) [32,35–38]. Our results indicate that with an increasing period of heading time, the
expression of genes related to frost tolerance strongly increases. Heo et al. [39] reported that
transcription factors are better expressed with extended periods of heading time and could
be promising candidates for identifying the molecular mechanisms and fitness of freezing
tolerance. In addition, the shortening of the day length in autumn leads to the induction of
the FT1/VRN3 gene upstream of the key gene of springing VRN1 [40]. Downregulation
of Cor/Lea (cold-responsive or cold-regulated/Late-embryogenesis-abundant) genes and
frost tolerance under controlled conditions was reported by Fowler et al. [9]. There is strong
evidence that the Cor/Lea gene can contribute to freezing tolerance [41].

Low temperature (LT) represents a critical environmental factor in determining winter
survival (WS) of winter wheat species. This means that during the acclimation process,
highly tolerant varieties accumulate dehydrin proteins and transcripts earlier and at a
higher level than less tolerant varieties.

We identified four QTL linked to LT50 that controlled frost tolerance on three wheat
chromosomes (B3, 2BL, and 4A), which described a total of 25% of phenotypic variation
for LT50. In addition, a QTL identified on chromosome 4A had a major effect on LT50, and
this accounted for 12% of the total phenotypic variance. For this purpose, it is possible
to use QTLs with major effects linked to LT50 with a p-Value close to zero for selection in
breeding programs. The segregation ratio of the percentage of tolerant F12 lines in the
population shows that the resistance may be conditioned by more than one gene. Baga
et al. [24] reported the importance of QTL regions on chromosomes 1D, 2A, 2B, 6D, and
7B in frost tolerance. However, the results of other studies indicate the existence of QTLs
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linked to frost resistance on chromosomes 5B, 5D, 5A, 2D, 2A, and 4B [40,42,43]. A previous
study conducted by Sutka [44] emphasized the importance of QTLs linked to frost tolerance
on chromosome 2B, which is consistent with our results. Traits related to yield, such as the
number of surviving plants and frost resistance, were identified in chromosome 2B in our
results. On the other hand, Kruse et al. [45] identified one QTL on chromosomes 5A and 4B
associated with freezing tolerance by using 155 recombinant inbred lines with 663 molecular
markers in F2:5 lines in bread wheat. Numerous studies have indicated the location of
the freezing tolerance genes mapped to homologous 5th group chromosomes [23,32,44],
showing the importance of chromosome 5A in frost tolerance [22,32,44,46]. Previously, the
study by Ballesta et al. [47] found that at least one of the 175 SNP markers was related
to the drought tolerance index, which explained up to 6% of the phenotypic changes.
Forty-five SNPs were associated with more than one tolerance index (up to four agronomic
traits). Most linkages were located on chromosome 4A, supporting the hypothesis that
this chromosome plays a key role in drought tolerance and should be used for wheat
improvement. In the present study, our results show for first time that among QTLs linked
to frost tolerance, a major effect QTL (12%) was identified with the aid of GWM 160 SSR
marker on chromosome 4A, which indicates the importance of this locus on chromosome
4A. QTL have been verified by genome-wide association studies using a diverse panel of
276 winter wheat genotypes of one QTL on chromosomes 3A, 3D, 4A, and 7D [48]. Although
Galiba et al. [49] and Juhasz et al. [50] emphasized that genes controlling osmotic regulation
and proline content are mainly located on chromosomes 5D and 5A, the contribution of
other chromosomes, especially 4A in frost tolerance, cannot be ignored. Based on our
results, a major QTL on chromosome 4A is linked with both frost resistance and number of
surviving plants after overwintering. This indicates the importance of chromosome 4A in
frost tolerance in winter wheat. Single marker analysis was preferred due to its simplicity
and specific conditions to determine QTLs.

4. Materials and Methods
4.1. Plant Material and Mapping Population

The Norstar variety is a cold-tolerant (LT50 −22.25 ◦C) variety developed in Saskatchewan,
Canada, in the 1980s and was used as the maternal parent. The other parent, Zagros, is
an early and summer wheat variety that was developed by the International Agricultural
Research Center for Dry Areas (ICARDA) as highly sensitive to cold (LT50 −3.5 ◦C) [36].
The mapping population consisted of 182 recombinant inbred lines (RILs) (F12), derived
from a cross between Norstar and Zagros; two parental lines were used as genetic material.

The F12 generation seeds were planted in a greenhouse with temperature conditions
of 20 ◦C and a 10/14 h (D/N) photoperiod. After 5 weeks, when the growing seedlings
reached the 3- to 4-leaf stage [51], the plants were transplanted to a freezing chamber for
vernalizing at 2 ± 0.5 ◦C for 6 weeks. The vernalized seedlings were then prepared for a
freezing test.

4.2. Freezing Tolerance Screening

Freezing tolerance was evaluated from −3 ◦C to −25 ◦C at −2 ◦C increments in
12 test ranges after cold acclimation according to Fowler et al. [12] and Mahfoozi et al. [51]
(Figure 1) (ST1). Vernalized seedlings of the genotypes were placed in plastic pots and
wetted and kept at 2–4 ◦C for 2 days for the adaptation assay freezing test. At the end of
this period, seedlings were transferred to a programmable freezer for array freezing tests
(Figure 1C,D) [32,52] and kept for 1 h at each temperature point. After the freezing test
stage, samples (pots) were kept in a growth chamber with a 10/14 h (D/N) photoperiod at
4 ◦C for 24 h. Samples were then allowed to regrow in the greenhouse with a 10/14 h (D/N)
photoperiod at 20 ◦C for 3 weeks, and LT50 was recorded for the entire population. The final
LT50 was calculated after probity transformation. Accordingly, if at least 5 out of 10 plants
survived, the degree of frost tolerance was considered for that genotype (LT50 value).
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Figure 1. Stages of freezing test; (A) Cultivation of genotypes in the greenhouse, (B) Preparing
seedlings for frost exposure (freezing test), (C) Preparing seedlings for transfer to the freezing test
machine, (D) Freezing test machine.

4.3. Field Experiment

The F12 RILs were planted at the Research Farm of Ataturk University for 2 years
(2014–2016) in a randomized complete design (RCBD) with two replications. Thereafter, the
following yield-related parameters were determined: heading time, time period between
the sowing date and the time when almost half of the spikes of each row of plants emerged
from the flag leaf sheath, 1000-seed weight, number of surviving plants after winter,
number of plants that emerged after winter. This experiment was performed to identify
any probable correlation between these traits and LT50 and any possible common QTL
governing both traits.

4.4. Genotyping

Nuclear DNA was extracted from young leaves of wheat plants of individual F12
ten-day seedlings germinated from seeds of each genotype, as previously described [53].
DNA samples were examined with 0.8% agarose gel electrophoresis for quality and then
quantified by a Nanodrop device. DNA samples were diluted to 20 ng/µL concentration.
A set of 425 SSRs from the Wheat database (XBARC, XCFA, XCFD, XGWM, XWMC, and
XWMS) involve the 21 chromosomes of wheat. Wheat microsatellites (SSR) were chosen
from http://www.graingenes.org (accessed on 5 January 2022). For molecular analysis,
parental-line polymorphisms were assessed by 425 SSR primer pairs distributed on all
wheat chromosomes (ST2). Thirty-four polymorphic SSR primer pairs were used for
genotyping the F12 population. QTL mapping was performed based on single mapping.
PCR was performed to amplify the sequence in the SSR molecular markers (94 ◦C for 1 min
(one cycle); 94 ◦C for 20 s, 50–62 ◦C for 35 s, 72 ◦C for 45 s (35–38 cycles), and final extension
at 72 ◦C for 45 s (one cycle, then hold at 4 ◦C indefinitely) [54]. The PCR products were then
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loaded onto 6% polyacrylamide gels. Bands were separated by electrophoresis at 100 V
containing 0.5 µg/mL ethidium bromide for approximately 2 h using 0.5 × TBE buffer,
along with a DNA ladder, and examined under ultraviolet light. Finally, the gels were
photographed using a digital camera (Model Nikon Coolpix500, Nikon, Japan) under UV
light [55,56].

4.5. Data Analysis

Before analyzing the obtained phenotypic data, a normality test was performed with
the SPSS program and the Shapiro–Wilk method was used for non-parametric analysis. The
SAS program (SAS Institute, Inc, NC, USA. http://www.sas.com (accessed on 5 January
2022)) was used for variation analysis. LT50 values were determined by probit regression
analysis from the SAS program [57]. QTL analysis was performed to identify the QTL associ-
ated with frost tolerance in winter wheat using 182 plants of an F12 population derived from
crosses between two bread wheat genotypes using the MAPMANAGER-QTX20 program
based on the values of Single Marker Analysis (SMA) [32]. The percentage of phenotypic
variation explained by markers was calculated based on R-square regression analysis based
on SMA using MAPMANAGER-QTX20 software [32]. Due to fewer polymorphic markers,
no maps were constructed, and the QTL analysis used the SMA method.

5. Conclusions

Wheat culture is strongly affected by types of stress, such as cold and freezing. There-
fore, the generation of cold-tolerant cultivars is one of the essential challenges to genetics
and breeders. SSR markers, due to high efficiency, are useful for the detection of QTLs
related to abiotic stress, such as cold. In this study, some primers were also linked to
yield-related traits, such as number of plants surviving after overwintering, 1000-seed
weight in field conditions, and frost tolerance, which suggests pleiotropic effects. Therefore,
in a genotype with greater 1000-seed weight and a greater number of plants surviving
after overwintering, the activity of frost tolerance genes is prolonged, and the expression
of these structural genes is increased. In addition, QTL-rich regions on chromosome 4A
were detected, supporting the hypothesis that this chromosome has a key role to play in
frost tolerance and should be exploited for wheat improvement. In addition, the traits
LT50, 1000-seed weight, and number of surviving plants after winter were located in the
4A genome and have been associated with frost tolerance. This suggests that a set of gene
loci on a set of wheat chromosomes plays a role in the degree of frost tolerance. Other SSR
markers and gene expression mechanisms should be investigated.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12081641/s1, Table S1: Freezing test LT50 values. Table S2:
425- SSR primers for QTL analysis among RIL accessions.
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Abstract: Seed longevity is the most important trait in the genebank management system. No
seed can remain infinitely viable. There are 1241 accessions of Capsicum annuum L. available at the
German Federal ex situ genebank at IPK Gatersleben. C. annuum (Capsicum) is the most economically
important species of the genus Capsicum. So far, there is no report that has addressed the genetic
basis of seed longevity in Capsicum. Here, we convened a total of 1152 Capsicum accessions that
were deposited in Gatersleben over forty years (from 1976 to 2017) and assessed their longevity by
analyzing the standard germination percentage after 5–40 years of storage at −15/−18 ◦C. These
data were used to determine the genetic causes of seed longevity, along with 23,462 single nucleotide
polymorphism (SNP) markers covering all of the 12 Capsicum chromosomes. Using the association-
mapping approach, we identified a total of 224 marker trait associations (MTAs) (34, 25, 31, 35, 39, 7,
21 and 32 MTAs after 5-, 10-, 15-, 20-, 25-, 30-, 35- and 40-year storage intervals) on all the Capsicum
chromosomes. Several candidate genes were identified using the blast analysis of SNPs, and these
candidate genes are discussed.

Keywords: genetics; candidate genes; GWAS; Capsicum; genebanks; seed longevity; cold storage

1. Introduction

Seeds are considered the building blocks of genebanks, which came in to being to
preserve plant genetic resources and avoid the risk of extinction and of genetic erosion [1].
Seed storage in the genebanks also ensures the preservation of allelic (or genic) com-
binations in germplasm collections [2], thus serving as the raw material to breed new
cultivars [3]. The success of plant genetic resources stored in genebanks was recently
realized for wheat [4] when several genebank lines of wheat from Mexican genebank were
crossed with several elite cultivars developed at CIMMYT [4] to produce a large number
of different pre-breeding germplasm sets and were distributed to resource-poor countries
including India and Pakistan. The resultant germplasm revealed considerable success in
providing favorable alleles for disease resistance [5], salinity tolerance [6], nitrogen-use
efficiency [7], nematode resistance [8], Karnal bunt resistance [9] and drought tolerance [10].
More recent evaluations of Mexican wheat landraces coupled with genetic mapping have
also revealed their latent potential toward food security in the upcoming decades [11].

Global food supply relies on the availability of viable seeds [12]. To maintain their
germinability, the genetic resources stored in the form of seeds need to be regularly eval-
uated [13]. A drop in their germination beyond a certain threshold indicates that regen-
eration is required [14]. This renders “seed longevity” the single most important trait in
the genebank management system [15]. Seed longevity refers to the time period during
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which a seed remains viable and capable of producing healthy seedlings [16,17]. Research
on seed longevity is of extreme significance to genebank management [12]. No seed can
remain infinitely viable. Conditions during seed production, crop harvesting, post-harvest
conditions and, later, the storage conditions determine seed viability [18]. Seed viability,
however, is also variable among species and even between varieties, indicating that the
genetic component also plays an important role in determining seed longevity [3].

Vegetable seeds constitute ~19,000 accessions of the IPK germplasm collection [19]. Ac-
cording to the genebank information system (GBIS) of the IPK (https://gbis.ipk-gatersleben.
de/gbis2i/faces/index.jsf, accessed on 20 October 2022), there were 1241 accessions of
Capsicum annuum L. available. C. annuum is the most economically important species of
the genus Capsicum [20]. A recent report has shed considerable light on its evolution and
trade history in addition to mapping genes related to its plant architecture, fruit quality
and flower-related traits [21]. Genetic analyses of seed longevity, however, in Capsicum are
non-existent. Recently, however, the molecular mechanisms involved in seed longevity
in different Capsicum species and varieties were illustrated. Less domesticated species (C.
chinense and C. frutescens) exhibited higher germination rates and longevity after AA. Dif-
ferential gene expression analyses exhibited that aspartic protease in guard cell 1 (ASPG1) and
homeobox protein 25 (HB25) expression were higher in long-lived accessions. In addition, a
positive correlation between the amount of lignin and seed viability was demonstrated [20].

Among the two most common techniques to investigate the genetic components
of a trait, association mapping (AM) is advantageous to conventional linkage mapping
technique because AM does not require the generation of a defined “population”. AM
utilizes unrelated accessions or collections of germplasm [3]. AM has been performed on
a range of crop species with respect to seed longevity analysis, including Arabidopsis [22],
rice [23], barley [24] and wheat [14]. Most of the studies that analyzed seed longevity
involved the lab-based AA or CD tests, the results of which in major crop plants such as
wheat have remained under debate in comparison to long-term cold-storage aging [14].
Moreover, seed longevity assessment under lab conditions is costly due to the growing
of a plant for one complete season, harvesting it and subsequently storing it, followed
by experimental protocols that involve seed aging at high temperatures and high relative
humidity [15]. Here, we report on the molecular genetic analyses of seed longevity in
Capsicum annuum L. by using the genebank germination data generated over a period of
40 years and employing the AM protocol.

2. Results
2.1. Standard Germination after Various Storage Periods

The standard germination percentage after various storage periods varied consider-
ably. For example, the germination % after 1–5 years of storage was considerably high
with a mean value (±standard deviation) of 86.08 ± 14.82%, whereas the germination
% after 36–40 years of storage was 64.49 ± 23.87% (Figure 1). The germination % after
6–10 years dropped sharply to 71.63 ± 26.84%. However, mean germination % after 11–15
and 16–20 years of storage remained 80.33 ± 18.15% and 80.09 ± 21.14%, respectively.
Likewise, germination % during the periods of 21–25 and 26–30 years of storage dropped
minimally, with mean values of 77.64 ± 18.30% and 77.73 ± 15.92%, respectively. After-
ward, there was some decline in survival after 31–35 years of storage when germination%
was 70.06 ± 18.28%.
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Figure 1. Mean (±standard deviation) germination percentages (seed survival) after various years of
storage in Capsicum, where N = sample size.

2.2. Genome-Wide Association (GWA) Mapping

Association mapping was carried out separately for each storage interval. We identi-
fied a total of 34 significant maker trait associations (MTAs) (including 10 highly significant
MTAs) for the longevity of Capsicum seeds stored from 1 to 5 years (Table S1, Figure 2).
These MTAs were located on chromosomes 1 (6 MTAs), 2 (2 MTAs), 4 (2 MTAs), 5 (3 MTAs),
6 (2 MTAs), 7 (4 MTAs), 9 (4 MTAs), 10 (6 MTAs), 11 (3 MTAs) and 12 (2 MTAs), which
explained 1.6–7.6% phenotypic variance. For the storage period of 6–10 years, 25 significant
MTAs were detected on chromosomes 1 (1 MTA), 2 (3 MTAs), 3 (2 MTAs), 4 (1 MTA), 5
(2 MTAs), 6 (2 MTAs), 7 (3 MTAs), 8 (1 MTA), 9 (8 MTAs), 10 (1 MTA) and 12 (1 MTA).
These MTAs explained 3.3 to 6.6% phenotypic variance. Likewise, 31 significant MTAs
(including 1 highly significant MTA) were detected for germination after the storage period
of 11–15 years, and these MTAs were located on chromosomes 1 (5 MTAs), 2 (1 MTA),
3 (2 MTAs), 4 (4 MTAs), 5 (1 MTA), 6 (1 MTA), 7 (1 MTA), 8 (2 MTAs), 9 (2 MTAs), 10
(7 MTAs), 11 (4 MTAs) and 12 (2 MTAs). These MTAs were responsible for 3.0 to 8.0%
phenotypic variation.

52



Plants 2023, 12, 1321Plants 2023, 12, x FOR PEER REVIEW 4 of 16 
 

 

 
Figure 2. The plot of a genome-wide scan (GWA analysis) of SNP markers associated with seed 
longevity over various periods of storage ((a) after 1–5 years of storage, (b) after 6–10 years of 
storage, (c) after 11–15 years of storage, (d) after 16–20 years of storage, (e) after 21–25 years of 
storage, (f) after 26–30 years of storage, (g) after 31–35 years of storage and (h) after 6–10 years of 
storage) in Capsicum accessions. The chromosomes are shown on the x-axis, the genome-wide scan 
−log10 (p values) is shown on the y-axis, and the significantly associated SNPs are highlighted in 
pink. 

For the longevity after 16–20 years of storage, another 35 significant MTAs (includ-
ing 2 highly significant MTAs) were found. These were exhibited on chromosomes 1 (2 
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cluding 5 highly significant MTAs) for longevity were detected after 21–25 years of stor-
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MTA), and the variation explained was 9.7–23.9%. On the contrary, the least number of 
MTAs (7 significant MTAs including 2 highly significant MTAs) were detected for the 

Figure 2. The plot of a genome-wide scan (GWA analysis) of SNP markers associated with seed
longevity over various periods of storage ((a) after 1–5 years of storage, (b) after 6–10 years of storage,
(c) after 11–15 years of storage, (d) after 16–20 years of storage, (e) after 21–25 years of storage, (f) after
26–30 years of storage, (g) after 31–35 years of storage and (h) after 6–10 years of storage) in Capsicum
accessions. The chromosomes are shown on the x-axis, the genome-wide scan −log10 (p values) is
shown on the y-axis, and the significantly associated SNPs are highlighted in pink.

For the longevity after 16–20 years of storage, another 35 significant MTAs (including
2 highly significant MTAs) were found. These were exhibited on chromosomes 1 (2 MTAs),
2 (3 MTA), 3 (2 MTAs), 4 (5 MTAs), 5 (2 MTAs), 6 (5 MTAs), 7 (3 MTAs), 8 (1 MTA),
9 (7 MTAs), 10 (2 MTAs), 11 (1 MTA) and 12 (1 MTA), which explained between 2.3
and 4.5% differences in longevity. The highest number of MTAs (39 significant MTAs
including 5 highly significant MTAs) for longevity were detected after 21–25 years of
storage. Here, the chromosomes involved were 1 (2 MTAs), 2 (4 MTA), 3 (1 MTA), 4
(3 MTAs), 5 (4 MTAs), 6 (2 MTAs), 7 (6 MTAs), 9 (3 MTAs), 10 (5 MTAs), 11 (8 MTAs) and
12 (1 MTA), and the variation explained was 9.7–23.9%. On the contrary, the least number
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of MTAs (7 significant MTAs including 2 highly significant MTAs) were detected for the
storage period of 26–30 years. These were located on chromosomes 2 (3 MTAs), 4 (1 MTA),
6 (1 MTA), 7 (1 MTA) and 10 (1 MTA). The phenotypic variance explained, however, was
8.0–14.3%.

In the case of storage for 31–35 years, 8 different chromosomes [chromosome 2
(2 MTAs), 3 (1 MTA), 4 (2 MTAs), 6 (2 MTAs), 7 (2 MTAs), 9 (9 MTAs), 10 (2 MTAs)
and 11 (1 MTA)] carried 21 significant MTAs, and the variance explained was 1.8–3.9%. Fi-
nally, another 32 MTAs (including 2 highly significant MTAs) were discovered for longevity
after storage for 36–40 years, which involved all the Capsicum chromosomes except chro-
mosome 8. These MTAs were located on chromosomes 1 (3 MTAs), 2 (1 MTA), 3 (2 MTAs),
4 (5 MTAs), 5 (1 MTA), 6 (4 MTAs), 7 (1 MTA), 9 (5 MTAs), 10 (3 MTAs), 11 (2 MTAs)
and 12 (6 MTAs), which were responsible for a 8.6–30.2% difference in longevity. Thus,
224 MTAs (including 22 highly significant MTAs) collectively were detected on all the
Capsicum chromosomes for longevity after various years of storage.

3. Discussion
3.1. Variation in Germination over Various Periods of Storage

Seed deterioration depends on many factors encompassing the environmental and
genetic components [14]. This was exhibited in wheat when seeds from the multiplication
year of 1974 were stored and tested 34 years later, and germination % varied from 0 to
100%. Likewise, a huge variation in seed survival was witnessed albeit after storage below
freezing temperatures (−15/−18 ◦C) in Capsicum. A direct comparison among the results of
different intervals is not possible because of the involvement of dissimilar accessions tested
during each interval. However, some accessions were found to be common across different
intervals. For example, there were 171, 261, 419, 163, 108, 318 and 54 accessions from 1-
to 5-year intervals that were common in the 6–10-year, 11–15-year, 16–20-year, 21–25-year,
26–30-year, 31–35-year and 36–40-year intervals, respectively. ANOVA results indicated
that germination % among common accessions was significantly different in all such cases
(data not shown). No reports exist in which such comparisons were made in any crop. It
is, however, known that different factors are involved in different aging procedures such
as accelerated aging (AA) and controlled deterioration (CD) methods [3]. A comparison
between natural aging (seeds stored at 0 ± 1 ◦C at constant moisture contents of 8 ± 2%)
and the deterioration of fresh seeds after AA and CD yielded different results in wheat [14].

3.2. GWA Analyses and Candidate Genes

The seed lots were handled in the same way (from seed sowing to harvest and post-
harvest treatments) and were maintained at the IPK genebank since then. The differential
behavior in the investigated material was thought to be due to differences in the genetic
build of these accessions. Our analyses identified a total of 224 MTAs for 8 different years
of storage periods in which chromosome 9 carried the highest number of MTAs (38 MTAs),
followed by chromosome 10 (27 MTAs), followed by chromosome 4 (23 MTAs) (Table S2).
Chromosome 7 carried 21 MTAs, whereas chromosomes 1, 6 and 11 carried 19 MTAs
each. On the other hand, chromosome 2 carried 16 MTAs, and 13 MTAs were located
on each of chromosomes 3 and 5. Finally, 12 and 4 MTAs were located on chromosomes
12 and 8, respectively. Thus, this is the very first report of the GWA of seed longevity in
Capsicum; no comparison with previous studies can be made. Blast analyses of the reported
SNPs identified several candidate genes for longevity (Table S3). Of the 220 associated
SNPs, 167 SNPs successfully provided hits with certain candidate genes. These 167 SNPs
could further be divided into 5 groups based on the function they perform (Figure 3,
Table S3). The first group included ten genes which were involved mainly in growth- and
development-related processes. The other group constituted 72 genes which were mainly
enzymes that were either specifically produced under (both biotic and abiotic) stress or
produced under normal conditions. The third group constituted 10 genes that were mainly
transcription factors. The fourth group included 18 genes that were mainly transporter
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genes, whereas the fifth group constituted 48 genes that were mainly uncharacterized
and/or hypothetical proteins.
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Figure 3. Types of candidate genes linked with the longevity-associated SNPs.

In the following, we provide some details (chromosome by chromosome) for the
candidate genes (Table S4) that are linked with SNPs that explain >4% phenotypic variation
or are reported to be associated with longevity in other crops.

On chromosome 1, we identified subtilisin-like protease 4 (associated with SNP
S1_7853500), 3-oxoacyl-[acyl-carrier-protein] (ACPs) synthase I (associated with SNPs
S1_1430591 and S1_1435099), phosphatidylinositol 4-kinase gamma 2 (associated with SNP
S1_1921287) and B3-domain-containing transcription factor NGA1 isoform X2 (associated
with SNP S1_133318). Subtilisin-like proteases (subtilases) are serine proteases that play
specific roles in plant development and signaling cascades. Several subtilases are specifi-
cally induced following pathogen infection or under stress [25]. They are also identified as
the S-nitrosylation target in potato S-nitrosylation candidates in the potato–Phytophthora
infestans system [26]. On the other hand, ACPs are a central cofactor for de novo fatty acid
synthesis, acyl chain modification and chain-length termination during lipid biosynthesis
in living organisms. Different ACP isoforms have been found to be responsible for the
biosynthesis of fatty acids and lipids for specific purposes in plants [27]. In addition, ACP
has also been identified as a candidate gene for resistance against different insects [thrips,
orange (OWBM) and yellow (YWBM) wheat blossom midges] in wheat [28]. Similarly,
phosphatidylinositol 4-kinase gamma 2 is known to play a role in the phosphorylation of
phosphatidylinositol (PI) to PI 4-phosphate, which is one of the key reactions in the produc-
tion of phosphoinositides, which are lipid regulators of several cellular functions [29]. NGA
transcription factors are involved mainly in developing pistils; they are also involved in
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regulating the shape and size of lateral organs such as leaves and petals and the regulation
of seed size [30].

On chromosome 2, the candidate genes causing significant variation toward seed
survival include putative leucine-rich repeat receptor-like protein kinase (associated with SNP
S2_59895267), putative uroporphyrinogen decarboxylase, chloroplastic-like (associated with
SNP S2_117264835), putative aspartic proteinase nepenthesin-2-like (associated with SNP
S2_157010230) and THO complex subunit 2-like (associated with SNP sS2_165845447 and
S2_165845425). Aspartic proteinase nepenthesin-2-like was reported during the periods of
11–15 years and 20–25 years of storage. The nepenthesin aspartic proteases, which are
produced by specialized cells in the lower part of the pitchers, are aimed primarily at the
digestion of prey trapped by the plant [31]. Aspartic protease in guard cell 1 has recently
been reported as a candidate gene for longevity in Capsicum [20]. Aspartic proteases mo-
bilize seed-storage proteins and play a crucial role in the germination process and seed
longevity [32]. Likewise, the THO complex that is encoded by THO complex subunit 2-like
is a key component in the co-transcriptional formation of messenger ribonucleo-particles
that are competent to be exported from the nucleus (unknown precise function). The THO
complex is also involved in mRNA processing and its transport from the nucleus. It also
plays a role in small interfering RNA-dependent processes in plants [33,34]. The importance
of the THO complex subunit 2-like is also evident from the fact that it was identified as a
candidate gene for longevity during the periods of 1–5 years and 21–25 years of storage
and on multiple chromosomes (chromosome 2 and 11).

The candidate genes for longevity on chromosome 3 include mitochondrial NADH
dehydrogenase (ubiquinone) flavoprotein 2 (associated with SNP S3_145194851), chal-
cone synthase 1B (associated with SNP S3_7697933) and ethylene-responsive transcription
factor 4 (associated with SNP S3_12004386). Both NADH dehydrogenase and ethylene-
responsive transcription factor have previously been reported as candidate genes for seed
dormancy/pre-harvest sprouting (PHS) (in wheat) [35] and longevity (in wheat and bar-
ley) [13,36], respectively. Chalcone synthase (CHS) is a crucial rate-limiting enzyme in the
flavonoid biosynthetic pathway that catalyzes the condensation of malonyl-CoA and ρ-
coumaroyl-CoA to produce naringenin chalcone, which serves as the precursor of a variety
of flavonoid derivatives. These flavonoids are involved in the response to and protection of
plants from abiotic and biotic stress, including ultraviolet radiation, temperature, humidity
and pathogenic attack [37,38]

The most important candidate genes on chromosome 4 include early nodulin-93 iso-
form X2 (associated with SNP S4_15009085), transcription factor TGA7 (associated with
SNP S4_209765879), 3-ketoacyl-CoA synthase 19 (associated with SNP S4_124426) and vac-
uolar protein-sorting-associated protein 8 homolog (associated with SNPs S4_28351186 and
S4_28351189). Early nodulin has been identified as a candidate gene for longevity, dor-
mancy and PHS in wheat [3,35]. The 3-ketoacyl-CoA synthase is involved in lateral organ
development and cuticular wax synthesis in Medicago truncatula [39]. The TGA family of
transcription factors plays important roles in the systemic acquired resistance (SAR) in
plants. However, despite its important roles in plant immunity, the molecular mechanism
for the DNA binding of TGA7 remains unclear [40]. Vacuolar protein-sorting-associated
proteins (Vps) are part of the Endosomal Sorting Complex Required for Transport (ESCRT),
which performs the topologically unique membrane bending and scission reaction away
from the cytoplasm [41].

Scarecrow-like protein 30 (associated with SNP S5_226924789), ankyrin repeat-contain
ing protein 2A and ITN1 (associated with SNPs S5_238134029 and S5_237978262, respectively),
protein ACCELERATED CELL DEATH 6 (ACD6) (associated with SNP S5_237978236), GRF1-
interacting factor 1 (associated with SNP S5_26823246), histone acetyltransferase HAC1-like
(associated with SNP S5_14262255) and putative LRR receptor-like serine/threonine-protein
kinase-like (associated with SNP S5_24462479) were among the candidate genes on chro-
mosome 5. Scarecrow-like protein is a transcription factor belonging to the GRAS family.
It regulates root growth and the cell cycle and also mediates resistance to environmental
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stresses [42]. Recently, 85 ankyrin repeat-containing protein (ANK) genes in C. annuum
were identified. Our ANK loci on chromosome 5 (SNPs: S5_237978262 and S5_238134029)
could correspond to any of the CaANK35-CaANK51 genes mapped at the distal end of
chromosome 5 on the C. annuum L. genome [43]. ANKs have also been identified as
candidate genes against insect (OWBM and YWBM) resistance in wheat [28]. ACD6 is
a multipass membrane protein with an ankyrin domain that acts in a positive feedback
loop with the defense signal salicylic acid (SA) [44]. GRFs are a class of plant-specific
proteins involved in the regulation of stem and leaf development that act mainly as positive
regulators of cell proliferation [45]. Histone acetyltransferase HAC1-like encode for histone
acetyltransferases that play a crucial role in the control of cell fate and influence cell cycle
progression, plant responses to environmental conditions, and gene interactions [46,47].
LRR receptor-like serine/threonine-protein kinase-like was also reported for the longevity-
associated SNP (S2_59895267) on chromosome 2 and functions in protein phosphorylation
and the transmembrane receptor protein tyrosine kinase signaling pathway. It is an integral
component of the plasma membrane, where it functions as an ATP-binding site and is
expressed in the flowering stage and plant embryo stage in flowers or seeds [48]. It has
also been detected as a candidate for seed longevity in wheat [13].

Among the candidate genes on chromosome 6, the most important were ribose-
phosphate pyrophosphokinase 1-like (associated with SNP S6_196787696), 11S globulin seed
storage protein (associated with SNP S6_1150637), beta-galactosidase (associated with SNP
S6_213563914) and putative ATP synthase subunit O, mitochondrial-like (associated with SNP
S6_182246997). ATP synthase subunit O, mitochondrial-like was also associated with SNPs on
chromosomes 7 (SNP: S7_157986416) and 9 (SNP: S9_35876497). Ribose-phosphate pyrophos-
phokinase, which is also known as phosphoribosyldiphosphate synthetase (PRPP), catalyzes the
biosynthesis of PRPP. PRPP is a precursor for the synthesis of pyrimidine, purine, pyridine
nucleotides, tryptophan and histidine [49]. Plant seed storage proteins function as the major
nitrogen source for the developing plant. The 11S-type globulins are non-glycosylated
proteins which form hexameric structures. They are the proteins required for the develop-
ment or growth of seeds [50]. Beta-galactosidase is considered to be an important regulator
involved in fruit ripening in Capsicum [51]. The reduced form of the mitochondrial ATP
synthase holoenzyme leads to wide-ranging defects in energy-demanding cellular processes.
Hence, it is required to protect plants from various stresses such as heat [52].

Important genes on chromosome 7 include pentatricopeptide repeat-containing protein-
mitochondrial-like (associated with SNP S7_42146593), NADP-dependent glyceraldehyde-
3-phosphate dehydrogenase (associated with SNP S7_8830422), COP9 signalosome complex
(CSN) subunit 8-like (associated with SNP S7_244455030), 1-acyl-sn-glycerol-3-phosphate
acyltransferase (associated with SNP S7_245349068) and protein phosphatase 2C 27 (as-
sociated with SNP S7_13703435). Here, pentatricopeptide repeat-containing protein was
associated with longevity after 11–15 years, 21–25 years and 26–30 years of storage. Pen-
tatricopeptide repeat-containing protein [members of the pentatricopeptide repeat (PPR)
protein] family are sequence-specific RNA-binding proteins that play crucial roles in or-
ganelle RNA metabolism [53]. In addition, PPR is also involved in YBWM resistance in
wheat [28]. PPRs have also been identified as candidate genes that are involved in seed
vigor under low-temperature conditions in rapeseed [54]. Glyceraldehyde-3-phosphate de-
hydrogenase is used in a variant of glycolysis that conserves energy as NADPH rather than
as ATP [55]. CSN is an evolutionarily conserved multiprotein complex that regulates many
aspects of plant development [56]. In addition, the glycerol-3-phosphate acyltransferase
gene plays a pivotal role in cold resistance in a variety of plant species [57], whereas a Type
2C protein phosphatase, CaADIP1 (Capsicum annuum ABA and Drought-Induced Protein
phosphatase 1), is known to be expressed on leaves on treatment with ABA, drought and
NaCl treatments [58].

Putative cysteine synthase (associated with SNP S8_140480324) and syntaxin-32-like
(associated with SNP S8_119314147) were the candidate genes on chromosome 8. The
former is an enzyme responsible for the formation of cysteine from O-acetyl-serine and
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hydrogen sulfide with the concomitant release of acetic acid [59], and the latter is reported
to be involved in host defense responses against pathogen attack [60].

The most important candidate genes on chromosome 9 include salicylate O-methyltran
sferase-like (SAMT) (associated with SNPs S9_91765981 and S9_91766032), solute carrier
family 35 member F1-like (associated with SNP S9_649935), cell division cycle protein
48-like protein (associated with SNP S9_5554728), superoxide dismutase (associated with
SNP S9_93034919) and eukaryotic translation initiation factor isoform 4G-1-like isoform
1 (associated with SNP S9_270289444). SAMT regulates the SA signaling pathway and
catalyzes the methylation of SA with S-adenosyl-L-methionine as the methyl donor to form
methyl salicylate. SAMT appears to play an important role in plant response to drought
stress by modulating the SA-signaling pathway [61]. Solute carrier family 35 member F1-
like is akin to osmotin-like protein (OSML81). OSMLs belong to the thumatin-like protein
family and are known to play a role in seed longevity in wheat and barley [35,36]. Cell
division cycle proteins are known to be involved in cell division, growth processes and seed
longevity [13]. Likewise, superoxide dismutase and eukaryotic translation initiation factor
isoform 4G-1-like isoform 1 are also reported to be candidate genes for seed longevity [14]
and PHS [35] in wheat.

On chromosome 10, the most important candidate genes include putative histone H3.3-
like (associated with SNP S10_374592 and multiple seed storage durations) and high mobility
group B protein 6 (associated with SNP S10_16302829). Histone H3.3-like is a candidate gene
for longevity in wheat [3], whereas the gene encoding the “high-mobility group B protein 6”
is a WRKY transcription factor involved in the nucleosome/chromatin assembly [62].

Chromosome 11 carries longevity genes such as putative flavin-containing monooxy-
genase 1-like (FMO) (associated with SNP S11_152967951), protein YAE1 isoform X3 (as-
sociated with SNP S11_257151051) and putative F-box protein-like (associated with SNP
S11_257213134). FMOs are oxidoreductases and possess remarkable diversity and func-
tionality in the oxygenation reactions, which are crucial steps within hormone metabolism,
pathogen resistance, signaling and chemical defense [63]. YAE1 proteins are essential for
growth under aerobic conditions and may provide protection from damage due to reactive
oxygen species [64]. CaF-box is known to be expressed mainly in stems and seeds, and
the transcript is markedly up-regulated in response to cold stress, ABA and SA) treatment,
and down-regulated under osmotic and heavy metal stress [65]. However, its role in seed
longevity is unknown. Finally, on chromosome 12, the most important candidate gene was
tonoplast dicarboxylate transporter (associated with SNPs S12_2792525, S12_2792536 and
S12_2792561), and it is known to play an important role in malate and citrate transport
(organic acid metabolism) [66].

4. Materials and Methods
4.1. Materials

A total of 1152 Capsicum accessions was convened in this investigation. These were
deposited in the IPK-Gatersleben over a number of years (from 1976 to 2017) (Table S5)
and kept in glass containers (Figure 4). A large proportion of them, however, were de-
posited during the years 1976 (165 accessions), 1977 (130 accessions) and 1978 (115 ac-
cessions). Of these accessions, 1137 were of Capsicum annuum L., 14 were C. annuum var.
glabriusculum, and 1 was C. frutescens. These accessions were stored at below-freezing
temperatures (1976–2010 −15◦C; since 2011 −18 ◦C). Their details can be accessed through
the Gatersleben genebank information system by providing the ID (identity number) of
the accessions.
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Figure 4. Storage of various Capsicum accessions [CAP1104, CAP1106, CAP1108, CAP1164, CAP1165,
CAP1168, CAP1188, CAP1189 and CAP1190 (for details see Table S5) using the genebank ID number]
in glass containers kept at below-freezing temperatures in the IPK genebank.

4.2. Standard Germination Tests

We performed 3103 germination assays on 1152 Capsicum accessions from 1990 to
2022. Not all accessions were assessed after each year. For easy understanding, we
divided the germination assays into 8 intervals: (1) germination assays performed between
1 and 5 years of storage (812 tests), (2) germination assays performed between 6 and
10 years of storage (320 tests), (3) germinations assays performed between 11 and 15 years
of storage (389 tests), (4) germinations assays performed between 16 and 20 years of
storage (506 tests), (5) germination assays performed between 21and 25 years of storage
(163 tests), (6) germination assays performed between 26 and 30 years of storage (169 tests),
(7) germination assays performed between 31 and 35 years of storage (604 tests) and
(8) germinations assays performed between 36 and 40 years of storage (140 tests) (Table S6).
Stored seeds in genebanks over many years are precious materials, and hence, only a
limited quantity could be made available for research. Because of that, one single replicate
of 50 seeds of each accession was retrieved from the glass containers and germinated on
round filter paper with glass covers on Jacobsen Apparatus at 25 ± 2 ◦C and 23 ± 2 ◦C
during the day and night, respectively. The germination percentages were recorded on the
eighth day according to International Seed Testing Association (ISTA) protocols.

4.3. Genotyping

For the purpose of genotyping, 100 mg fresh leaf tissue that was collected from in-
dividual plants upon germination was used for DNA extraction. DNeasy Plant Mini Kit
(QIAGEN, Düsseldorf, Germany) or the Sbeadex maxi plant kit (LGC Genomics, London,
UK) was used to extract the highest-quality DNA, the quantity and quality parameters of
which were determined using both spectrometry (ND-1000; NanoDrop, ThermoScientific,
Wlatham, MA, USA) and fluorometry (Qubit 2.0 Fluorometer, Invitrogen, Carlsbad, CA,
USA) methods. Samples with 260/280 and 230/260 ratios ranging between 1.8 to 2.2 and
1.8 to 2.0, respectively, and with a less-than-twofold deviation between fluorimetric and
spectrophotometric readings were subjected to genotyping-by-sequencing (GBS). Genotyp-
ing was carried out using an Illumina HiSeq2500 platform generating 1× 107-bp single-end
reads version 3 chemistry (Illumina, San Diego, CA, USA), which resulted in the generation
of 23,462 single nucleotide polymorphism (SNP) markers covering all the 12 Capsicum
chromosomes. Other relevant details including the details of bioinformatics techniques
and tools are available from Tripodi et al. [21].
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4.4. Genome-Wide Association (GWA) Analyses

We performed the GWA analyses by utilizing the data of 23,462 high-quality SNP
markers [21] and the data of standard germination tests that were obtained as mentioned
above. The MLM (mixed linear model) option implemented in the TASSEL v5.2.43 [67]
software was used. A pre-requisite of this model is the provision of the population structure
(Q-matrix) or principal component analysis (PCA) matrix and a kinship (K-matrix) matrix.
These matrices are used as covariates in the MLM model to avoid false positives during
analyses. The PCA matrix and the K-matrix could be generated through TASSEL v5.2.43.
We ran each of the analyses using the PC = 3, PC = 4 and PC = 5 options for correct estimates.
We found that 3, 4 or 5 PCs yielded 90–95% similar marker trait association with slight
variation in the p-values of the associated SNPs. Thus, we kept PC = 5 for the final analysis.
We claimed the SNPs in significant association with longevity that gave a p-value of 0.001
(−log10 value of 3). In addition, highly significant p-values were calculated by taking the
reciprocal of the number of markers [13]. Thus, SNPs with p-values of 4.26 × 10−5 were
considered to be highly significantly associated.

4.5. Blast Analysis

In order to look for the candidate genes linked with the associated SNPs, sequence
retrieval of each significant or highly significant SNP was performed. This was achieved
by retrieving a raw sequence of 301 nucleotides considering 150 bases upstream and
150 bases downstream of each candidate SNP. The sequence was generated from the
reference genome C. annuum CM334 [68] version 1.6 using samtools faidx [69] via a blast
analysis of all the retrieved sequences of associated SNPs. These sequences were used as a
query in the NCBI BLASTX (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastx&
PAGE_TYPE=BlastSearch&LINK_LOC=blasthome, accessed on 3 January 2023) research
tool database for functional gene annotations. The topmost hits with the smallest E-value
and a high percentage of query coverage were reported as potential candidate genes.

5. Conclusions

To conclude, we presented the very first comprehensive genetic analyses of seed
longevity in Capsicum using the real-time data after long-term cold storage and the un-
tapped natural genetic diversity. Several candidate genes have been reported for seed
longevity in Capsicum. Some of them have already been reported for longevity in wheat,
barley or other crops, whereas others are novel. Our findings lay the foundation for the
comprehensive future studies of seed longevity in Capsicum.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12061321/s1, Table S1: SNPs significantly associated with
seed longevity after various years of storage (Gr5, Gr10, Gr15, Gr20, Gr25, Gr30, Gr35 and Gr40 =
germination after 1–5, 6–10, 11–15, 16–20,21–25, 26–30, 31–35 and 36–40 years of storage, respectively).
Highly significantly associated SNPs are highlighted in yellow. Table S2: Total SNPs significantly or
highly significantly associated SNPs (in brackets) after various years of storage. Table S3: Blast hit
results with SNPs (including chromosome and position of the SNP), types of genes based on function
with candidate gene annotations. Table S4: Blast hit results with SNPs (including chromosome and
position of the SNP), candidate gene annotations, probable function and/or association with any
other trait (where known). Duplicate genes are highlighted. Table S5: Genebank codes, origin (where
known) and initial year of deposit in IPK genebank of the 1152 Capsicum accessions used. Table S6:
Total number of germination assays performed after various years of storage. References [70–113] are
cited in the supplementary materials.
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30. Salava, H.; Thula, S.; Sánchez, A.S.; Nodzyński, T.; Maghuly, F. Genome Wide Identification and Annotation of NGATHA
Transcription Factor Family in Crop Plants. Int. J. Mol. Sci. 2022, 23, 7063. [CrossRef]

31. Kadek, A.; Mrazek, H.; Halada, P.; Rey, M.; Schriemer, D.C.; Man, P. Aspartic protease nepenthesin-1 as a tool for digestion in
hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 2014, 86, 4287–4294. [CrossRef]

32. Shen, W.; Yao, X.; Ye, T.; Ma, S.; Liu, X.; Yin, X.; Wu, Y. Arabidopsis aspartic protease ASPG1 affects seed dormancy, seed longevity
and seed germination. Plant Cell Physiol. 2018, 59, 1415–1431. [CrossRef]

33. Jimeno, S.; Aguilera, A. The THO complex as a key mRNP biogenesis factor in development and cell differentiation. J. Biol. 2010,
9, 6. [CrossRef]

34. Francisco-Mangilet, A.G.; Karlsson, P.; Kim, M.H.; Eo, H.J.; Oh, S.A.; Kim, J.H.; Kulcheski, F.R.; Park, S.K.; Manavella, P.A. THO 2,
a core member of the THO/TREX complex, is required for micro RNA production in Arabidopsis. Plant J. 2015, 82, 1018–1029.
[CrossRef] [PubMed]

35. Arif, M.R.; Neumann, K.; Nagel, M.; Kobiljski, B.; Lohwasser, U.; Börner, A. An association mapping analysis of dormancy and
pre-harvest sprouting in wheat. Euphytica 2012, 188, 409–417. [CrossRef]

36. Nagel, M.; Vogel, H.; Landjeva, S.; Buck-Sorlin, G.; Lohwasser, U.; Scholz, U.; Börner, A. Seed conservation in ex situ genebanks—
Genetic studies on longevity in barley. Euphytica 2009, 170, 5–14. [CrossRef]

37. Hou, Q.; Li, S.; Shang, C.; Wen, Z.; Cai, X.; Hong, Y.; Qiao, G. Genome-wide characterisation of chalcone synthase genes in
Chinese cherry and functional characterisation of CpCHS1 under drought stress. Front. Plant Sci. 2022, 3054.

38. Fini, A.; Brunetti, C.; di Ferdinando, M.; Ferrini, F.; Tattini, M. Stress-induced flavonoid biosynthesis and the antioxidant
machinery of plants. Plant Signal. Behav. 2011, 6, 709–711. [CrossRef]

39. Yang, T.; Li, Y.; Liu, Y.; He, L.; Liu, A.; Wen, J.; Mysore, K.S.; Tadege, M.; Chen, J. The 3-ketoacyl-CoA synthase WFL is involved in
lateral organ development and cuticular wax synthesis in Medicago truncatula. Plant Mol. Biol. 2021, 105, 193–204. [CrossRef]

40. Shi, X.; Che, Z.; Xu, G.; Ming, Z. Crystal structure of transcription factor TGA7 from Arabidopsis. Biochem. Biophys. Res. Commun.
2022, 637, 322–330. [CrossRef]

41. Schmidt, O.; Teis, D. The ESCRT machinery. Curr. Biol. 2012, 22, R116–R120. [CrossRef]
42. Wang, X.; Luo, Y.; Shi, L.; Pang, P.; Gao, G. Analysis of expression characteristics of scarecrow-like gene Stsl-1 elicited by

exogenous hormone and Ralstonia solanacearum infection in potato. Int. J. Agric. Biol. 2019, 22, 201–208.
43. Lopez-Ortiz, C.; Peña-Garcia, Y.; Natarajan, P.; Bhandari, M.; Abburi, V.; Dutta, S.K.; Yadav, L.; Stommel, J.; Nimmakayala, P.;

Reddy, U.K. The ankyrin repeat gene family in Capsicum spp: Genome-wide survey, characterization and gene expression profile.
Sci. Rep. 2020, 10, 4044. [CrossRef] [PubMed]

44. Zhang, Z.; Shrestha, J.; Tateda, C.; Greenberg, J.T. Salicylic acid signaling controls the maturation and localization of the
Arabidopsis defense protein ACCELERATED CELL DEATH6. Mol. Plant 2014, 7, 1365–1383. [CrossRef] [PubMed]

45. Omidbakhshfard, M.A.; Proost, S.; Fujikura, U.; Mueller-Roeber, B. Growth-regulating factors (GRFs): A small transcription factor
family with important functions in plant biology. Mol. Plant 2015, 8, 998–1010. [CrossRef] [PubMed]

46. Friedmann, D.R.; Marmorstein, R. Structure and mechanism of non-histone protein acetyltransferase enzymes. FEBS J. 2013, 280,
5570–5581. [CrossRef] [PubMed]

47. Dekker, F.J.; van den Bosch, T.; Martin, N.I. Small molecule inhibitors of histone acetyltransferases and deacetylases are potential
drugs for inflammatory diseases. Drug Discov. Today 2014, 19, 654–660. [CrossRef]

48. Hanada, K.; Sawada, Y.; Kuromori, T.; Klausnitzer, R.; Saito, K.; Toyoda, T.; Shinozaki, K.; Li, W.-H.; Hirai, M.Y. Functional
compensation of primary and secondary metabolites by duplicate genes in Arabidopsis thaliana. Mol. Biol. Evol. 2011, 28, 377–382.
[CrossRef]

49. Hove-Jensen, B.; Andersen, K.R.; Kilstrup, M.; Martinussen, J.; Switzer, R.L.; Willemoës, M. Phosphoribosyl diphosphate (PRPP):
Biosynthesis, enzymology, utilization, and metabolic significance. Microbiol. Mol. Biol. Rev. 2017, 81, e00040-16. [CrossRef]

50. Hayashi, M.; Mori, H.; Nishimura, M.; Akazawa, T.; Hara-Nishimura, I. Nucleotide sequence of cloned cDNA coding for pumpkin
11-S globulin β subunit. Eur. J. Biochem. 1988, 172, 627–632. [CrossRef]

51. Ogasawara, S.; Abe, K.; Nakajima, T. Pepper β-galactosidase 1 (PBG1) plays a significant role in fruit ripening in bell pepper
(Capsicum annuum). Biosci. Biotechnol. Biochem. 2007, 71, 309–322. [CrossRef]

62



Plants 2023, 12, 1321

52. Liu, T.; Arsenault, J.; Vierling, E.; Kim, M. Mitochondrial ATP synthase subunit d, a component of the peripheral stalk, is essential
for growth and heat stress tolerance in Arabidopsis thaliana. Plant J. 2021, 107, 713–726. [CrossRef]

53. Yan, J.; Yao, Y.; Hong, S.; Yang, Y.; Shen, C.; Zhang, Q.; Zhang, D.; Zou, T.; Yin, P. Delineation of pentatricopeptide repeat codes for
target RNA prediction. Nucleic Acids Res. 2019, 47, 3728–3738. [CrossRef] [PubMed]

54. Luo, T.; Zhang, Y.; Zhang, C.; Nelson, M.N.; Yuan, J.; Guo, L.; Xu, Z. Genome-wide association mapping unravels the genetic
control of seed vigor under low-temperature conditions in rapeseed (Brassica napus L.). Plants 2021, 10, 426. [CrossRef]

55. Rosenberg, L.L.; Arnon, D.I. The preparation and properties of a new glyceraldehyde-3-phosphate dehydrogenase from photo-
synthetic tissues. J. Biol. Chem. 1955, 217, 361–371. [CrossRef]

56. Pacurar, D.I.; Pacurar, M.L.; Lakehal, A.; Pacurar, A.M.; Ranjan, A.; Bellini, C. The Arabidopsis Cop9 signalosome subunit 4
(CSN4) is involved in adventitious root formation. Sci. Rep. 2017, 7, 628. [CrossRef] [PubMed]

57. Li, X.; Liu, P.; Yang, P.; Fan, C.; Sun, X. Characterization of the glycerol-3-phosphate acyltransferase gene and its real-time
expression under cold stress in Paeonia lactiflora Pall. PLoS ONE 2018, 13, e0202168. [CrossRef] [PubMed]

58. Lim, C.W.; Lee, S.C. Pepper protein phosphatase type 2C, CaADIP1 and its interacting partner CaRLP1 antagonistically regulate
ABA signalling and drought response. Plant Cell Environ. 2016, 39, 1559–1575. [CrossRef]

59. Hatzfeld, Y.; Maruyama, A.; Schmidt, A.; Noji, M.; Ishizawa, K.; Saito, K. β-Cyanoalanine synthase is a mitochondrial cysteine
synthase-like protein in spinach and Arabidopsis. Plant Physiol. 2000, 123, 1163–1172. [CrossRef]

60. Rabuma, T.; Gupta, O.P.; Yadav, M.; Chhokar, V. Integrative RNA-Seq analysis of Capsicum annuum L.-Phytophthora capsici L.
pathosystem reveals molecular cross-talk and activation of host defence response. Physiol. Mol. Biol. Plants 2022, 28, 171–188.
[CrossRef]

61. Wang, G.; Li, Q.; Wang, C.; Jin, C.; Ji, J.; Guan, C. A salicylic acid carboxyl methyltransferase-like gene LcSAMT from Lycium
chinense, negatively regulates the drought response in transgenic tobacco. Environ. Exp. Bot. 2019, 167, 103833. [CrossRef]

62. Sgarbi, C.; Malbrán, I.; Saldúa, L.; Lori, G.A.; Lohwasser, U.; Arif, M.A.R.; Börner, A.; Yanniccari, M.; Castro, A.M. Mapping
Resistance to Argentinean Fusarium (Graminearum) Head Blight Isolates in Wheat. Int. J. Mol. Sci. 2021, 22, 13653. [CrossRef]

63. Thodberg, S.; Jakobsen Neilson, E.H. The “green” FMOs: Diversity, functionality and application of plant flavoproteins. Catalysts
2020, 10, 329. [CrossRef]

64. Paul, V.D.; Mühlenhoff, U.; Stümpfig, M.; Seebacher, J.; Kugler, K.G.; Renicke, C.; Taxis, C.; Gavin, A.-C.; Pierik, A.J.; Lill, R. The
deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion. eLife 2015,
4, e08231. [CrossRef] [PubMed]

65. Chen, R.; Guo, W.; Yin, Y.; Gong, Z.-H. A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic
stress in pepper (Capsicum annuum L.). Int. J. Mol. Sci. 2014, 15, 2413–2430. [CrossRef] [PubMed]

66. Liu, R.; Li, B.; Qin, G.; Zhang, Z.; Tian, S. Identification and functional characterization of a tonoplast dicarboxylate transporter in
tomato (Solanum lycopersicum). Front. Plant Sci. 2017, 8, 186. [CrossRef]

67. Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of
complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [CrossRef]

68. Kim, S.; Park, J.; Yeom, S.-I.; Kim, Y.-M.; Seo, E.; Kim, K.-T.; Kim, M.-S.; Lee, J.M.; Cheong, K.; Shin, H.-S. New reference genome
sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol. 2017,
18, 210. [CrossRef]

69. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence align-
ment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [CrossRef]

70. Driesen, E.; Van den Ende, W.; De Proft, M.; Saeys, W. Influence of Environmental Factors Light, CO2, Temperature, and Relative
Humidity on Stomatal Opening and Development: A Review. Agronomy 2020, 10, 1975. [CrossRef]

71. Zhou, Y.; Mumtaz, M.A.; Zhang, Y.; Shu, H.; Hao, Y.; Lu, X.; Cheng, S.; Zhu, G.; Wang, Z. Response of Anthocyanin Accumulation
in Pepper (Capsicum annuum) Fruit to Light Days. Int. J. Mol. Sci. 2022, 23, 8357. [CrossRef]

72. Afzal, A.J.; Wood, A.J.; Lightfoot, D.A. Plant receptor-like serine threonine kinases: Roles in signaling and plant defense. Mol.
Plant Microbe Interact. 2008, 21, 507–517. [CrossRef]

73. Mayorga-Gómez, A.; Nambeesan, S.U. Temporal expression patterns of fruit-specific α-EXPANSINS during cell expansion in bell
pepper (Capsicum annuum L.). BMC Plant Biol. 2020, 20, 241. [CrossRef] [PubMed]

74. Elder, G.H.; Roberts, A.G. Uroporphyrinogen decarboxylase. J. Bioenerg. Biomembr. 1995, 27, 207–214. [CrossRef] [PubMed]
75. Kang, H.; Hwang, I. Vacuolar Sorting Receptor-Mediated Trafficking of Soluble Vacuolar Proteins in Plant Cells. Plants 2014, 3,

392–408. [CrossRef] [PubMed]
76. Wang, J.-P.; Xu, Y.-P.; Munyampundu, J.-P.; Liu, T.-Y.; Cai, X.-Z. Calcium-dependent protein kinase (CDPK) and CDPK-related

kinase (CRK) gene families in tomato: Genome-wide identification and functional analyses in disease resistance. Mol. Genet.
Genom. 2015, 291, 661–676. [CrossRef]

77. Iyamu, I.; Al-Hamashi, A.; Huang, R. A Pan-Inhibitor for Protein Arginine Methyltransferase Family Enzymes. Biomolecules 2021,
11, 854. [CrossRef]

78. Manohar, M.; Shigaki, T.; Hirschi, K.D. Plant cation/H+ exchangers (CAXs): Biological functions and genetic manipulations.
Plant Biol. 2011, 13, 561–569. [CrossRef]

63



Plants 2023, 12, 1321

79. Aitouguinane, M.; El Alaoui-Talibi, Z.; Rchid, H.; Fendri, I.; Abdelkafi, S.; El-Hadj, M.D.O.; Boual, Z.; Dubessay, P.; Michaud,
P.; Le Cerf, D.; et al. A Novel Sulfated Glycoprotein Elicitor Extracted from the Moroccan Green Seaweed Codium decorticatum
Induces Natural Defenses in Tomato. Appl. Sci. 2022, 12, 3643. [CrossRef]

80. Jin, J.F.; He, Q.Y.; Li, P.F.; Lou, H.Q.; Chen, W.W.; Yang, J.L. Genome-Wide Identification and Gene Expression Analysis of Acyl-
Activating Enzymes Superfamily in Tomato (Solanum lycopersicum) under Aluminum Stress. Front. Plant Sci. 2021, 12, 754147.
[CrossRef]

81. Bick, J.A.; Setterdahl, A.T.; Knaff, D.B.; Chen, Y.; Pitcher, L.H.; Zilinskas, B.A.; Leustek, T. Regulation of the plant-type 5′-adenylyl
sulfate reductase by oxidative stress. Biochemistry 2001, 40, 9040–9048. [CrossRef]

82. Yang, S.; Huang, L.; Song, J.; Liu, L.; Bian, Y.; Jia, B.; Wu, L.; Xin, Y.; Wu, M.; Zhang, J.; et al. Genome-Wide Analysis of DA1-Like
Genes in Gossypium and Functional Characterization of GhDA1-1A Controlling Seed Size. Front. Plant Sci. 2021, 12, 647091.
[CrossRef]

83. Kim, J.H.; Tsukaya, H. Regulation of plant growth and development by the growth-regulating factor and grf-interacting factor
duo. J. Exp. Bot. 2015, 66, 6093–6107. [CrossRef] [PubMed]

84. Hahn, A.; Vonck, J.; Mills, D.J.; Meier, T.; Kühlbrandt, W. Structure, mechanism, and regulation of the chloroplast ATP synthase.
Science 2018, 360, eaat4318. [CrossRef] [PubMed]

85. Su, H.-G.; Zhang, X.-H.; Wang, T.-T.; Wei, W.-L.; Wang, Y.-X.; Chen, J.; Zhou, Y.-B.; Chen, M.; Ma, Y.-Z.; Xu, Z.-S.; et al. Genome-
Wide Identification, Evolution, and Expression of GDSL-Type Esterase/Lipase Gene Family in Soybean. Front. Plant Sci. 2020,
11, 726. [CrossRef] [PubMed]

86. Ruegger, M.; Dewey, E.; Gray, W.M.; Hobbie, L.; Turner, J.; Estelle, M. The TIR1 protein of Arabidopsis functions in auxin response
and is related to human SKP2 and yeast Grr1p. Genes Dev. 1998, 12, 198–207. [CrossRef]

87. Nick, P.; Heuing, A.; Ehmann, B. Plant chaperonins: A role in microtubule-dependent wall formation? Protoplasma 2000, 211,
234–244. [CrossRef]

88. Sarnowski, T.J.; Ríos, G.; Jásik, J.; Swiezewski, S.; Kaczanowski, S.; Li, Y.; Kwiatkowska, A.; Pawlikowska, K.; Kozbiał, M.;
Kozbiał, P.; et al. SWI3 Subunits of Putative SWI/SNF Chromatin-Remodeling Complexes Play Distinct Roles during Arabidopsis
Development. Plant Cell 2005, 17, 2454–2472. [CrossRef]

89. Hove-Jensen, B. Mutation in the phosphoribosylpyrophosphate synthetase gene (prs) that results in simultaneous requirements
for purine and pyrimidine nucleosides, nicotinamide nucleotide, histidine, and tryptophan in Escherichia coli. J. Bacteriol. 1988,
170, 1148–1152. [CrossRef]

90. Guo, C.; Guo, L.; Li, X.; Gu, J.; Zhao, M.; Duan, W.; Ma, C.; Lu, W.; Xiao, K. TaPT2, a high-affinity phosphate transporter gene in
wheat (Triticum aestivum L.), is crucial in plant Pi uptake under phosphorus deprivation. Acta Physiol. Plant. 2014, 36, 1373–1384.
[CrossRef]

91. Curien, G.; Giustini, C.; Montillet, J.-L.; Mas-Y-Mas, S.; Cobessi, D.; Ferrer, J.-L.; Matringe, M.; Grechkin, A.; Rolland, N. The
chloroplast membrane associated ceQORH putative quinone oxidoreductase reduces long-chain, stress-related oxidized lipids.
Phytochemistry 2016, 122, 45–55. [CrossRef]

92. Kaczmarska, A.; Pieczywek, P.M.; Cybulska, J.; Zdunek, A. Structure and functionality of Rhamnogalacturonan I in the cell wall
and in solution: A review. Carbohydr. Polym. 2021, 278, 118909. [CrossRef]

93. Hayama, R.; Yang, P.; Valverde, F.; Mizoguchi, T.; Furutani-Hayama, I.; Vierstra, R.D.; Coupland, G. Ubiquitin carboxyl-terminal
hydrolases are required for period maintenance of the circadian clock at high temperature in Arabidopsis. Sci. Rep. 2019, 9, 17030.
[CrossRef] [PubMed]

94. Garcıa-Pineda, E.; Castro-Mercado, E.; Lozoya-Gloria, E. Gene expression and enzyme activity of pepper (Capsicum annuum L.)
ascorbate oxidase during elicitor and wounding stress. Plant Sci. 2004, 166, 237–243. [CrossRef]

95. Oomen, R.J.; Doeswijk-Voragen, C.H.; Bush, M.S.; Vincken, J.P.; Borkhardt, B.; Van Den Broek, L.A.; Visser, R.G. In muro
fragmentation of the rhamnogalacturonan I backbone in potato (Solanum tuberosum L.) results in a reduction and altered location
of the galactan and arabinan side-chains and abnormal periderm development. Plant J. 2002, 30, 403–413. [CrossRef] [PubMed]

96. Vogel, G.; Fiehn, O.; Jean-Richard-Dit-Bressel, L.; Boller, T.; Wiemken, A.; Aeschbacher, R.A.; Wingler, A. Trehalose metabolism in
Arabidopsis: Occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues.
J. Exp. Bot. 2001, 52, 1817–1826. [CrossRef] [PubMed]

97. Bonner, E.R.; Cahoon, R.E.; Knapke, S.M.; Jez, J.M. Molecular basis of cysteine biosynthesis in plants: Structural and functional
analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana. J. Biol. Chem. 2005, 280, 38803–38813. [CrossRef]

98. Sanders, S.L.; Weil, P. Identification of Two Novel TAF Subunits of the Yeast Saccharomyces cerevisiae TFIID Complex. J. Biol. Chem.
2000, 275, 13895–13900. [CrossRef]

99. Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends
Plant Sci. 2010, 15, 573–581. [CrossRef]

100. Baek, H.J.; Kang, Y.K.; Roeder, R.G. Human Mediator Enhances Basal Transcription by Facilitating Recruitment of Transcription
Factor IIB during Preinitiation Complex Assembly. J. Biol. Chem. 2006, 281, 15172–15181. [CrossRef]

101. Lopez-Ortiz, C.; Dutta, S.K.; Natarajan, P.; Peña-Garcia, Y.; Abburi, V.; Saminathan, T.; Nimmakayala, P.; Reddy, U.K. Genome-
wide identification and gene expression pattern of ABC transporter gene family in Capsicum spp. PLoS ONE 2019, 14, e0215901.
[CrossRef]

64



Plants 2023, 12, 1321

102. Sun, X.-L.; Yu, Q.-Y.; Tang, L.-L.; Ji, W.; Bai, X.; Cai, H.; Liu, X.-F.; Ding, X.-D.; Zhu, Y.-M. GsSRK, a G-type lectin S-receptor-like
serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress. J. Plant Physiol. 2012, 170, 505–515.
[CrossRef]

103. Bonza, M.C.; Morandini, P.; Luoni, L. At-ACA8 encodes a plasma membrane-localized calcium-ATPase of Arabidopsis with a
calmodulin-binding domain at the N terminus. Plant Physiol. 2000, 123, 1495–14506. [CrossRef] [PubMed]

104. Bar, M.; Aharon, M.; Benjamin, S.; Rotblat, B.; Horowitz, M.; Avni, A. AtEHDs, novel Arabidopsis EH-domain-containing proteins
involved in endocytosis. Plant J. 2008, 55, 1025–1038. [CrossRef]

105. Cross, R.L.; Müller, V. The evolution of A-, F-, and V-type ATP synthases and ATPases: Reversals in function and changes in the
H+/ATP coupling ratio. FEBS Lett. 2004, 576, 1–4. [CrossRef] [PubMed]

106. Martínez, O.; Arce-Rodríguez, M.; Hernández-Godínez, F.; Escoto-Sandoval, C.; Cervantes-Hernández, F.; Hayano-Kanashiro, C.;
Ordaz-Ortiz, J.; Reyes-Valdés, M.; Razo-Mendivil, F.; Garcés-Claver, A.; et al. Transcriptome Analyses Throughout Chili Pepper
Fruit Development Reveal Novel Insights into the Domestication Process. Plants 2021, 10, 585. [CrossRef] [PubMed]

107. Wang, J.; Sun, D.; Wang, M.; Cheng, A.; Zhu, Y.; Mao, S.; Ou, X.; Zhao, X.; Huang, J.; Gao, Q.; et al. Multiple functions of
heterogeneous nuclear ribonucleoproteins in the positive single-stranded RNA virus life cycle. Front. Immunol. 2022, 13, 989298.
[CrossRef] [PubMed]
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Abstract: The size, shape, and color of wheat seeds are important traits that are associated with
yield and flour quality (size, shape), nutritional value, and pre-harvest sprouting (coat color). These
traits are under multigenic control, and to dissect their molecular and genetic basis, quantitative trait
loci (QTL) analysis is used. We evaluated 114 recombinant inbred lines (RILs) in a bi-parental RIL
mapping population (the International Triticeae Mapping Initiative, ITMI/MP) grown in 2014 season.
We used digital image analysis for seed phenotyping and obtained data for seven traits describing
seed size and shape and 48 traits of seed coat color. We identified 212 additive and 34 pairs of epistatic
QTLs on all the chromosomes of wheat genome except chromosomes 1A and 5D. Many QTLs were
overlapping. We demonstrated that the overlap between QTL regions was low for seed size/shape
traits and high for coat color traits. Using the literature and KEGG data, we identified sets of genes in
Arabidopsis and rice from the networks controlling seed size and color. Further, we identified 29 and
14 candidate genes for seed size-related loci and for loci associated with seed coat color, respectively.

Keywords: wheat; seed size; seed shape; seed coat color; phenotyping; candidate genes; QTLs

1. Introduction

Bread wheat (Triticum aestivum L.) is a major staple crop. Millions of people depend on
its production (https://www.fao.org/faostat/en/#data, accessed on 20 January 2022). This
has led to an ongoing search for and study of genes that control wheat yield traits. Some of
them are the characteristics of wheat seeds (size and shape) which have been shown to be
related to seed weight [1–4]. Seed size and shape have also been shown to be related to
flour quality and composition: small kernels can contribute to enhancing the bread-making
quality of flour while having a detrimental effect on the milling yield [5]. To find genes
that control these traits in wheat, QTL analysis is used. This analysis makes it possible to
identify sets of markers that are associated with seed size or shape traits. Studies have
shown that seed size and shape in wheat are controlled by a large number of loci located
on almost all chromosomes [6–13]. Identification of these loci combined with molecular
analysis can identify genes that are involved in controlling seed weight or size [14–19].
Based on genetic and molecular studies in both the model organism Arabidopsis thaliana and
cereals, it is now established that seed weight is affected by multiple molecular and genetic
aspects that lead to dynamic changes in cell division, expansion, and differentiation during
seed development. Several important biological pathways contribute to seed weight, such
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as ubiquitination, phytohormones, G-proteins, photosynthesis, epigenetic modifications,
and microRNAs [20,21]. Knowledge of the pathways controlling seed development in
well-studied organisms allows the prioritization of candidate genes controlling these traits
in wheat as well for their further study by molecular methods [15].

Another important characteristic of wheat seeds is the color of the shell. It characterizes
the pigments and metabolites it contains. Purple and blue coloring of seeds is determined by
the presence of anthocyanins. A yellowish color may be due to the presence of carotenoids.
A reddish brown or dark brown coloration of the seeds is due to the presence of flavonoids
such as proanthocyanidins and phlobaphenes [22]. Genetic control of color formation in
both seeds and other plant organs is carried out by genes encoding the enzymes involved
in pigment biosynthesis as well as regulatory genes [23]. For a number of pigments, these
genes have been well studied; however, for some pigments, the molecular mechanisms of
biosynthesis are still poorly understood [24].

The presence of pigments in the seed coat affects various technological properties of
the seed [25] and is associated with antioxidant properties [26]. Therefore, varieties and
lines with diverse seed coloration are of active interest in the food industry [27,28]. Seed
shell color in wheat is also associated with important characteristics such as germination
ability and pre-harvest sprouting (PHS). Red seeds are less susceptible to PHS [29]. QTL
searches for seed color and PHS resistance are often simultaneously performed [30,31].

Recently, genotyping technologies have made great progress and include diversity
array technology, genotyping-by-sequencing [32], and SNPs [33,34]. High-throughput
genotyping can achieve high-density marker mapping [35]. This allows more QTLs to be
obtained and, as a result, more accurately establish the molecular mechanisms controlling
important plant phenotypic traits [8,32,33,36,37].

In the present work, we performed a SNP-based QTL search for seven traits of seed
size/shape and 48 traits of shell color evaluated on the basis of digital image analysis on a
set of 114 recombinant inbred lines (RILs) of the “International Triticeae Mapping Initiative”
mapping population (ITMI/MP) and their parental plants.

2. Results
2.1. Analysis of the Seed Traits in ITMI Population

Figure 1 shows the distribution of six of the fifty-five seed characteristics in the ITMI
population. Three of them characterize size (sL, sW, sA), and three characterize color
(Lab_mL, Lab_ma, Lab_mb). The distributions were bell-shaped, and the hypothesis of
normality was not rejected for the characteristics of seed length and area (Shapiro–Wilks
test, p < 0.05), but for the width and color characteristics (Figure 1). Overall, the hypothesis
of normality was not rejected based on this test for 22 of the 55 traits.

In order to visualize the distribution of genotypes in the space of the considered traits,
we performed principal component analysis for the traits of shape/size (all seven traits)
(Figure 2), color (12 traits of average values of color components in four-color spaces) of
seeds independently (Figure 3) and all these 19 traits simultaneously (Figure S1). From
the diagram of the principal components in the size/shape feature space, we see that the
first component characterizes the roundness of the seeds and is correlated with circularity.
The second component characterizes seed size (most related to width and area). The most
characteristic genotypes are ITMI_082 (the most rounded seeds), ITMI_075 (large area),
ITMI_048 (small area), and ITMI_111 and Synthetic_W7984 (most elongated). The second
parental genotype is located in this diagram on the far-right side of the diagram, close to the
X-axis, i.e., it has a rounded seed shape. It is difficult to distinguish any noticeable clusters
in this diagram: it is a cloud with some distant genotypes. Notably, this cloud is more
sparce in the upper half-plane (PC2 > 0) and compact in the lower half-plane (PC2 < 0).
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Figure 1. Distribution of six characteristics of seed size and color. The X-axis is the value of the 
characteristic, and the Y-axis is the frequency in the sample. (a) seed length, sL; (b) seed width, sW; 
(c) area of seed projection in the image, sA; (d) intensity of component L of Lab color space (light-
ness); (e) intensity of component a of Lab color space (redness); (f) intensity of component b of Lab 
color space (yellowness). The arrows show the characteristic values for the parental genotypes 
Opata (O) and Synthetic (S). 

Figure 1. Distribution of six characteristics of seed size and color. The X-axis is the value of the
characteristic, and the Y-axis is the frequency in the sample. (a) seed length, sL; (b) seed width, sW;
(c) area of seed projection in the image, sA; (d) intensity of component L of Lab color space (lightness);
(e) intensity of component a of Lab color space (redness); (f) intensity of component b of Lab color
space (yellowness). The arrows show the characteristic values for the parental genotypes Opata (O)
and Synthetic (S).
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shown by green (Synthetic_W7984) and red (Opata) dots. PC1, PC2 axes denote principal compo-
nents 1 and 2, percentage of variance explained shown in parentheses. 
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1 and 2, percentage of variance explained shown in parentheses.
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Figure 3. PCA biplot of seed coat color of ITMI/MP performed using seed coat traits (mean values
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The diagram of the principal components in the color feature space shows that the
first component primarily characterizes the lightness of the shell (correlates with Lab_mL
and YCrCb_mY). The second component characterizes seed color saturation and reddish
shade (positively correlates with HSV_mS, RGB_mR, and Lab_ma characteristics). The
most characteristic genotypes are ITMI_2 (the lightest shell), ITMI_042 (the most saturated
color), ITMI_088 (the palest shell hue), and ITMI_021 and ITMI_087 (the darkest shell hue).
Three clusters can be distinguished on the plot (Figure 3). Seeds from plants of the first
cluster have a lighter color (large values of PC1), with a large part of them having a more
reddish color (positive values of PC2). Seeds from plants of the second cluster have darker
(negative values of PC1) and more reddish color (positive values of PC2). Seeds from
plants of the second cluster have less reddish color (positive values of PC2 and PC1 values
dispersed about 0 value). Interestingly, parent genotypes Synthetic_W7984 and Opata fall
into distinct clusters on the plot (Cluster 2 and 3, respectively).

The diagram of the principal components in the seven size/shape and 12 color feature
space (Figure S1) shows that the first component characterizes the color of the seed shell:
the negative values are characteristics of reddish color (PC1 positively correlates with
Lab_mb and negatively correlates with Lab_ma). The second component characterizes seed
size/shape (positively correlated with roundness, sRo, and circularity, sCi and negatively
correlates with area, sA, and length, sL). No clear clusters were detected in this plot
for genotypes.
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2.2. QTL Analysis

Genetic analysis of the three characteristics of seed size (sL, sW, and sA), four charac-
teristics of shape (sCi, sRo, sRu, and sSo), and 48 characteristics of color (12 characteristics
each of RGB, HSV, L *a *b, and YCrCb) revealed a total of 20, 22 and 170 QTLs (212 in total)
(Figure 4, Table S1), correspondingly, on all the chromosomes of wheat genome except
chromosomes 1A and 5D. The number of QTLs varied from one (characteristics: HSV_mS,
HSV_dCH_2, HSV_dCS_2, and HSV_dCV_2) to ten (characteristic: sA) for one single trait.
The majority of the traits yielded three (13 characters) to four QTLs (19 characters).
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Among chromosomes, the highest number of QTLs was observed on chromosome
3B (46 QTLs), followed by chromosomes 3D and 6B with 34 and 27 QTLs, correspond-
ingly. Chromosome 5B carried 15 QTLs, and the chromosome 2B carried 14 QTLs, whereas
chromosome 7A carried 12 QTLs. This was followed by chromosome 1D with 11 QTLs.
Chromosomes 3A and 7D carried nine QTLs each, and chromosome 6A carried seven QTLs.
Chromosomes 6A and 2D carried seven and six QTLs, respectively. Five QTLs resided on
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each of chromosomes 2A and 4B, whereas four QTLs resided on each of chromosomes 5A
and 7B. On the other hand, two QTLs were detected on each of chromosomes 1B and 6D.
Finally, chromosomes 4A and 4D carried one QTL each. In terms of groups, group 3 chro-
mosomes carried the highest number of QTLs (89), whereas group 4 chromosomes carried
the least number of QTLs (five). Group 6 chromosomes carried 36 QTLs, whereas each of
group 2 and 7 chromosomes carried 25 QTLs. On the other hand, group 5 chromosomes
carried 19 QTLs, and group 1 chromosomes carried 13 QTLs.

Additionally, we were able to detect 34 pairs of epistatic QTLs controlling at least
22 characters in our RILs, with five characters under the influences of more than one pair of
epistatic QTLs (Figure 5, Table S2). These QTLs involved all the wheat chromosomes except
chromosomes 1A, 4A, 4B, and 6A. The most frequently involved chromosome was 3D
(12 times), followed by chromosomes 3A (11 times), and 3B (nine times). Chromosome 2D
was involved six times, whereas chromosomes 5B and 5D were involved four times each.
Chromosomes 1D, 2B, and 7A were involved three times each. Two times involvement was
observed for chromosomes 1B, 2A, 4D, 6B, and 6D, whereas the chromosomes 5A, 7B, and
7D were only involved one time.
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Figure 5. Epistasis QTL network in the ITMI/MP. Outer circular plot represents the hexaploid
genome arranged in chromosomes (chrs) 1–21 (1A–7D) in clockwise direction. Numbers on colored
outer circle represents cM on respective chrs. Blue-colored connections represent epistasis QTLs
controlling different traits. For details, see Table S2.
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2.3. Analysis of the Similarity of Traits by QTL Location

We observed remarkable overlap between QTL locations for different traits. For
example, two QTLs related to seed shape, Q.sCi-2B c (circularity) and Q.sSo-2B c (solidity),
were located in the same position 129 of chromosome 2B. The 3B chromosome has loci with
multiple traits associations: position 39.179 (two traits of size), position 298.179 (seven color
traits), position 299.179 (twelve color traits), position 300.179 (two color traits), position
306.179 (ten color traits), position 308.179 (two color traits), position 311.179 (two color
traits and one shape trait, rugosity), and position 324.179 (three color traits). This is not
surprising because our parameters estimated from images represent various quantifications
of the same biological seed property (i.e., seed weight, pigment concentrations in the coat,
etc.). This suggests that the set of our characteristics is degenerating and that many of them,
in fact, are controlled by the same genes.

To evaluate the similarity of various traits under analysis, we hierarchically clustered
them by the degree of the overlap of QTL locations (Figure 6). The tree diagram demon-
strates several interesting features. Firstly, size/shape characteristics (right part of the tree)
are clearly separated from the color traits (with the exception of rugosity, sRu). Secondly,
some traits with a small QTL number (one to two) are also separated from other traits.
Thirdly, a remarkable number of traits related to yellowness form a large cluster. Finally,
traits related to the seed lightness (Lab_mL, HSV_mV, and YCrCb_mY) fall in the same
cluster, and their QTLs are highly overlapped. Other color traits are irregularly dispersed
on the tree within the large cluster of color traits.
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Figure 6. The similarity tree for seed traits obtained by the degree of the overlap between their QTL
locations. The vertical axis represents the similarity measure based on the Ochiai index (Y-axis).
Leaves correspond to seed traits described in [1] ( for trait abbreviation, see Section 4.2. Quantitative
Characteristics of Seed Shape, Size and Color). Groups of traits with strong overlapping of the QTL
locations are shown by curly brackets.
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2.4. Gene Prioritization

A search for orthologous groups for the eight pathways of pigment biosynthesis and
their precursors identified 307 KEGG orthologs involved in these processes (Table S3). A
review of the literature [18,19,38] identified 155 Arabidopsis and 42 rice genes involved in
the molecular processes of seed development (Table S3). Of these genes, 193 were found
to have sequence identifiers in the KEGG database, and 109 of them were associated with
KEGG orthologous groups (Table S4).

For prioritization of genes, we used 48 highly significant QTLs with LOD > 3 for
which marker positions were identified in the wheat genomic sequence (Table S5). On
this basis, we identified 2787 unique genes localized to marker-limited sites. Of these,
1422 genes associated with seed size/shape, and 1365 genes associated with seed color.
After filtering by expression level, 823 genes associated with seed color remained (Table S6).
For these sets of genes, we performed KEGG orthogroup assignment using BlastKOALA
and KofamKOALA services. For 464 genes associated with size trait loci and 321 genes
associated with color traits, such orthogroups were found.

For 29 genes from the seed size-related loci, we found a match within the orthogroup
list obtained based on the analysis of the literature data (Table 1). Eleven genes identified
in this way belong to regulatory proteins (transcription factors EREBP, HD-ZIP, and MYBP;
loci on chromosomes 3A, 2B, 2D, and 7D). Six genes belong to translation initiation factors
(ELF2C; loci on chromosomes 2B and 7D). Five genes relate to enzymes associated with
ubiquitination processes (loci on chromosomes 2D). Four genes have chitinase activity
(locus on chromosome 7D), two genes with cytokin dehydrogenase activity (chromosomes
3A and 7D), and one aarF domain-containing kinase gene (chromosome 7D).

Table 1. List of candidate genes from QTLs associated with seed size/shape. Columns of the table
contain QTL name (QTL), chromosome and position in cm (Chr/Pos), gene ID, KEGG orthogroup ID,
KEGG orthogroup description, and EC number, if provided.

QTL Chr/Pos Gene ID KO ID Description EC

Q.sA-3A 3A/155

TraesCS3A03G0787100 K09286 EREBP; EREBP-like factor -

TraesCS3A03G0782400 K09338 HD-ZIP; homeobox-leucine zipper protein -

TraesCS3A03G0763900 K00279 CKX; cytokinin dehydrogenase EC:1.5.99.12

Q.sSo-4A 4A/305 TraesCS4A03G1100100 K19045 BB; E3 ubiquitin-protein ligase BIG BROTHER
and related proteins EC:2.3.2.27

Q.sA-2B.2 2B/208 TraesCS2B03G0313000 K09286 EREBP; EREBP-like factor -

Q.sCi-2B c; sSo-2B c 2B/129

TraesCS2B03G1115600 K11593 ELF2C, AGO; eukaryotic translation initiation
factor 2C -

TraesCS2B03G1114800 K11593 ELF2C, AGO; eukaryotic translation initiation
factor 2C -

TraesCS2B03G1105600 K09422 MYBP; transcription factor MYB, plant -

TraesCS2B03G1109700 K09286 EREBP; EREBP-like factor -

TraesCS2B03G1116700 K11593 ELF2C, AGO; eukaryotic translation initiation
factor 2C -

TraesCS2B03G1104200 K11593 ELF2C, AGO; eukaryotic translation initiation
factor 2C -

TraesCS2B03G1109900 K09286 EREBP; EREBP-like factor -

TraesCS2B03G1106500 K09338 HD-ZIP; homeobox-leucine zipper protein -

Q.sW-2D 2D/74

TraesCS2D03G0133000 K09422 MYBP; transcription factor MYB, plant -

TraesCS2D03G0143000 K09602 OTUB1; ubiquitin thioesterase protein OTUB1 EC:3.4.19.12

TraesCS2D03G0143400 K09602 OTUB1; ubiquitin thioesterase protein OTUB1 EC:3.4.19.12
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Table 1. Cont.

QTL Chr/Pos Gene ID KO ID Description EC

Q.sCi-2D g; Q.sRo-2D g 2D/58
TraesCS2D03G0107400 K09602 ubiquitin thioesterase protein OTUB1 EC:3.4.19.12

TraesCS2D03G0107900 K09602 ubiquitin thioesterase protein OTUB1 EC:3.4.19.12

sSo-7D.2 7D/141

TraesCS7D03G1008800 K09286 EREBP; EREBP-like factor -

TraesCS7D03G0987700 K09338 HD-ZIP; homeobox-leucine zipper protein -

TraesCS7D03G0983800 K09286 EREBP; EREBP-like factor -

TraesCS7D03G0972400 K08869 ADCK, ABC1; aarF domain-containing kinase -

TraesCS3A03G0763900 K00279 CKX; cytokinin dehydrogenase EC:1.5.99.12

sL-7D bb; sRo-7D bb 7D/287

TraesCS7D03G1260500 K20547 CHIB; basic endochitinase B EC:3.2.1.14

TraesCS7D03G1260300 K20547 CHIB; basic endochitinase B EC:3.2.1.14

TraesCS7D03G1260400 K20547 CHIB; basic endochitinase B EC:3.2.1.14

TraesCS7D03G1286900 K11593 ELF2C, AGO; eukaryotic translation initiation
factor 2C -

TraesCS7D03G1260600 K20547 CHIB; basic endochitinase B EC:3.2.1.14

TraesCS7D03G1287400 K11593 ELF2C, AGO; eukaryotic translation initiation
factor 2C -

For genes from the loci associated with seed coat color, 14 found a match with the
orthogroups of the metabolic pathways of the KEGG database related to pigment biosyn-
thesis (Table 2). Eight genes were involved in the phenylpropanoid biosynthesis (loci on
chromosomes 3A, 3B, 6A, and 6B). Two genes were involved in the carotenoid biosynthesis
pathway (loci on chromosomes 2A and 6A), and one gene each was involved in flavone
and flavonol biosynthesis, flavonoid biosynthesis, tryptophan metabolism, and terpenoid
backbone biosynthesis.

Table 2. List of candidate genes from QTLs associated with seed shell color. Columns of the table
contain QTL name (QTL), chromosome and position in cm (Chr/Pos), gene ID, KEGG orthogroup ID,
KEGG orthogroup description, EC number, KEGG pathway ID and description.

Trait Chr/Pos Gene ID KO ID KO Description EC KEGG
Pathway ID

KEGG
Pathway Description

Q.YCrCb_dCCr_1-2A.3 2A/196

TraesCS6A03G0725700 K09840 NCED; 9-cis-
epoxycarotenoid dioxygenase EC:1.13.11.51 map00906 Carotenoid

biosynthesis

TraesCS2A03G0158600 K22772
FG2;

flavonol-3-O-glucoside
L-rhamnosyltransferase

EC:2.4.1.159 map00944
Flavone and

flavonol
biosynthesis

TraesCS6A03G0953500 K13065 HCT; shikimate O-
hydroxycinnamoyltransferase EC:2.3.1.133 map00941 Flavonoid

biosynthesis

TraesCS2A03G0099800 K13066

COMT; caffeic acid
3-O-methyltransferase/

acetylserotonin
O-methyltransferase

EC:2.1.1.68;
2.1.1.4 map00380 Tryptophan

metabolism

Q.Lab_dCb_3-3A i* 3A/195

TraesCS3A03G0925800 K01904 4CL;
4-coumarate–CoA ligase EC:6.2.1.12 map00940 Phenylpropanoid

biosynthesis

TraesCS3A03G0925900 K01904 4CL;
4-coumarate–CoA ligase EC:6.2.1.12 map00940 Phenylpropanoid

biosynthesis

Q.RGB_dCB_1-3B.1 3B/269.179 TraesCS3B03G1115600 K12355 REF1; coniferyl-
aldehyde dehydrogenase EC:1.2.1.68 map00940 Phenylpropanoid

biosynthesis

HSV_dCH_1-3B m** 306.179 TraesCS3B03G1278200 K01904 4CL;
4-coumarate–CoA ligase EC:6.2.1.12 map00940 Phenylpropanoid

biosynthesis
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Table 2. Cont.

Trait Chr/Pos Gene ID KO ID KO Description EC KEGG
Pathway ID

KEGG
Pathway Description

HSV_dCH_3-6A t*** 6A/246

TraesCS6A03G0725000 K09843 CYP707A; (+)-abscisic
acid 8’-hydroxylase EC:1.14.14.137 map00906 Carotenoid

biosynthesis

TraesCS6A03G0741000 K00021

HMGCR;
hydroxymethylglutaryl-

CoA
reductase (NADPH)

EC:1.1.1.34 map00900
Terpenoid
backbone

biosynthesis

Q.YCrCb_dCCr_1-6A 6A/340

TraesCS6A03G0953500 K13065 HCT; shikimate O-
hydroxycinnamoyltransferase EC:2.3.1.133 map00940 Phenylpropanoid

biosynthesis

TraesCS2A03G0163500 K00430 peroxidase EC:1.11.1.7 map00940 Phenylpropanoid
biosynthesis

TraesCS2A03G0164200 K00430 peroxidase EC:1.11.1.7 map00940 Phenylpropanoid
biosynthesis

Lab_dCL_2-6B x,**** 6B/220 TraesCS6B03G0367700 K00430 peroxidase EC:1.11.1.7 map00940 Phenylpropanoid
biosynthesis

* Co-located QTL: Q.YCrCb_dCCb_3-3A i. ** Co-located QTLs: HSV_dCH_3-3B m; HSV_dCS_1-3B m; HSV_dCV_1-
3B m; HSV_dCV_3-3B m; Lab_dCb_1-3B m; Lab_dCb_2-3B m; Lab_mb-3B m; RGB_dCR_2-3B m; YCrCb_dCCb_1-
3B m; YCrCb_dCCb_2-3B m; YCrCb_dCCr_1-3B m; YCrCb_mCb-3B m. *** Co-located QTL: HSV_dCV_3-6A t;
Lab_ma-6A t. **** Co-located QTLs: Lab_dCL_3-6B x; Lab_mb-6B x; RGB_dCG_2-6B x; RGB_dCR_2-6B x;
YCrCb_dCCb_2-6B x; YCrCb_dCY_2-6B x; YCrCb_dCY_3-6B x.

3. Discussion
3.1. Using Digital Image Analysis for QTL Identification

Based on the analysis of digital images, we identified QTLs associated with quan-
titative seed characteristics in wheat. With the development of modern phenotyping
technologies [39,40], such approaches are increasingly being used [7–11,41]. Modern digital
cameras and image processing algorithms have made great progress; they allow us to
estimate even small differences in the color characteristics of seeds, their shape and size
with high accuracy. In addition, these approaches have one interesting feature: the use of
a large number of quantitative characteristics that are essentially derived from the same
biological trait of the plant. For example, seed shape and size could be described as the sets
of elliptic Fourier components [41] or virtual curves [42,43]. Components of various digital
spaces [44,45] represent seed coat color. In the case when quantitative traits are derived
from the same biological trait, we can assume that they will be associated with the same loci.
Williams and Sorrels [11] used QTL for a set of seed size and shape characteristics derived
from the developed seed image in two projections (elliptic Fourier components) as well as
length, width, and thousand-kernel weight (TKW). They studied two populations, one of
which, SynOpDH, was derived from crosses of the same parents used to obtain the ITMI
population, and the other Cayuga× Caledonia was a doubled-haploid mapping population
(C × C). Thirty-one loci were identified for the SynOpDH population which controlled
from one to four traits per locus. Thirty loci were identified for the C × C population which
also controlled from one to four traits per locus.

From our results (Figure 6), it is apparent that many color trait loci overlap between
each other but not with the QTLs of size/shape (Table S1; chromosomes 3B, 3D, and
6B). The exception is rugosity which reflects the roughness of the shell and is probably
associated with color distortions at the seed boundary on the image background. On the
one hand, these features reflect the degeneracy of the evaluated traits which indicates their
redundancy. On the other hand, the location of several loci related to color traits in the
same region may indicate a more reliable identification of the association of the locus with
a particular trait. Using many digital representations of the same trait looks redundant and
confusing. The reasonable step would be to select a single or a few numerical characteristics
that are most efficient in the identification of QTLs. We believe that various numerical
representations of the same biological trait are useful and allow the evaluation of its subtle
details. Many traits with QTL in the same locus can support its significance.
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3.2. Identification of QTLs Associated with Seed Features

Our analysis allowed us to identify a number of QTLs associated with wheat seed char-
acteristics, shape/size, and shell color. Such analyses have long been intensively conducted
based on both QTL and GWAS investigations [8,11,41,46,47]. Reference [11] investigated
three-dimensional characteristics of seed size and shape based on the analysis of images of
seed obtained in two projections and the use of Fourier analysis-based descriptors using
two populations, one of which was SynOpDH. They found a QTL that affects a number of
shape characteristics. For seed length, eight QTLs were found for chromosomes 2A, 2D, 4B,
5A, 5B, 6A, 7A, and 7D. In our work, we detected a smaller number of QTLs for this trait
located on the chromosomes 2A, 2D, 3B, 5B (2 QTLS) and 7D. For seed width, three QTLs
on chromosomes 2A, 5A and 6A were detected by [11], whereas we detected four QTLs for
this trait located on the chromosomes 1D, 2D, 3B, and 4D. This anomaly could be due to
the use of data from several different environments in many years by reference [11].

Reference [47] previously analyzed 92 accessions from the ITMI population for a large
number of traits, including such traits as TKW and kernel color (KC), in different locations
and years. We did not find any overlap of QTL for TKW with the traits characterizing seed
size and shape in our work. For seed color, 15 QTLs were reported by [47]. A comparison
of our results with those from this work showed that of the 15 QTLs, one exactly matched
the one found in our work. This is Q.KC_Pu07-3B [47] bounded by markers AX-94979462
and IAAV6088 and located in our work on chromosome 3B at position 306.179 (Table S1).
In our work, several QTLs associated with seed shell color characteristics correspond
to this locus (see marker HSV_dCH_1-3Bm (Table S1) and also listed in Table 2.) It is
also interesting to note the QTLs Q.KC_Mo07-3D and Q. KC_Mo08-3D [47] bounded by
markers D_GDS7LZN02IJRXZ_309 on the left and CAP12_c2615_128 on the right located
on chromosome 3D at 76 cM. In our work, we found a series of color-related QTL localized
on chromosome 3D at position 100–102, bounded by markers CAP12_c2615_128 on the left
and BS00067163_51 on the right. Thus, the QTLs from our work and that of reference [47]
are in the vicinity on the chromosome. For the other QTLs associated with color, we found
no coincidence. For example, reference [47] identified five QTLs associated with shell
color on chromosome 5A. However, in our work, only two loci at other positions on this
chromosome were associated with color.

Among the loci associated with color, the site on chromosome 3D (ar 100 cM) bounded
by the markers CAP12_c2615_128 and BS00067163_51 is perhaps the most interesting. As
indicated above, it is located next to the color QTL identified in [47]. In our work, 34 differ-
ent traits characterizing seed color are associated with it. All of them are color parameters
in various color spaces. Our analysis allowed us to localize the physical coordinates of
this site on chromosome 3D: 573.6–580.8 Mbp according to IWGS v2.0 genome annotation
(Table S5). Interestingly, reference [48] recently performed the analysis of the PHS-3D
QTL associated with seed resistance to pre-harvest sprouting for a population of synthetic
hexaploid wheat [49]. It turned out that on the physical map this region is located on
chromosome 3D at positions 571.9–574.3 Mbp which overlaps with the physical localization
of the QTL we identified. Reference [48] also showed that plant genotypes susceptible
to pre-harvest sprouting are characterized by a ~2.4 Mbp deletion involving 20 genes in
this region of the genome. It turned out that the gene encoding the transcription factor
Myb10-D, which confers resistance to pre-harvest sprouting by activation of flavonoid
and abscisic acid biosynthesis pathways, was located in this region. Note that plants that
do not contain deletions in this region and are resistant to pre-harvest sprouting have
reddish/brown coloring of the seed shell.

3.3. Epistatic QTLs

In our work, we identified several QTLs whose contribution to the trait are non-additive.
Currently, there are only a few examples of epistatic QTLs analysis in wheat [46,50–52]. We
found 34 QTL pairs exhibiting epistatic interactions. Our results show a predominance of
epistatic QTLs for color features (30 pairs of QTLs). One pair of QTL each was identified
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for the area, width, rugosity, and solidity of seed. These results demonstrate a possible
interaction of genes located at different loci in the formation of color traits.

Epistatic QTLs for yield, flour color, and seed weight traits were investigated for the
RIL population of durum wheat [51]. QTL epistatic interactions on chromosomes 1A and
1B and chromosomes 5B and 7B were determined for thousand-seed weight. Reference [46]
analyzed yield traits including 1000-seed weight, seed length, and seed width of bread
wheat in the RIL Chuannong18× T1208 population. Epistatic QTLs were found for 114 QTL
pairs, including 10 for seed length, 17 for seed width, and seven for 1000-seed weight.
The authors noted the complex nature of the effect of epistatic interactions on the seed
properties. Thus, more epistatic pairs for geometric seed traits were identified in these
works compared to ours. However, in our work, the most intense epistatic interactions
were shown for seed shell color, a trait not reported in [46]. Interestingly, QTL pairs
that are localized on chromosomes 3B (position 306) and 3D (position 100), which are
also characterized by a large number of additive QTLs, are often represented. This again
indicates the importance of these regions for the formation of seed shell color in wheat.

3.4. Gene Prioritization

Our analysis allowed us to identify a number of candidate genes associated with seed
size/shape and their color, based on bioinformatics analysis and annotation of genes accord-
ing to data in the literature and the KEGG database. We identified eight loci associated in
the genome with seed size/shape traits for which we found 28 orthologous genes involved
in gene networks controlling these traits. Some of genes are transcription factors (EREBP,
HD-ZIP, and MYB) that may be involved in the regulation of seed growth and development.
In particular, transcription factors associated with the response to ethylene (EREBP) are
known to be involved in the determination of seed size, seed weight, and accumulation of
seed oil and protein in A. thaliana [53]. Reference [54] identified two transcription factors
from the AP2/EREBP family, TaPARG, located on 2A and 2D chromosomes of wheat which
regulate several yield-related traits, including seed weight.

Several genes represent families of enzymes related to ubiquitin modification (E3
ubiquitin–protein ligase, ubiquitin thioesterase protein OTUB1). Ubiquitins and related
enzymes are known to play an important role in seed development by controlling cell
proliferation [55]. For example, genes of the E3 ligase family are involved in amylose
biosynthesis in wheat [56]. The TaGW2-6A gene from this family is shown to control seed
size [57].

Another type of enzyme that was frequently found among the candidates we identified
are endochitinases. These are enzymes involved in defense against pathogens such as
bacteria or fungi in seeds [58,59]. However, this is not their only role in seed formation
and function. It has been shown from proteomic data in rice that chitinase 14 interacts
with the GW2 (RING-type E3 ubiquitin ligase) gene. It was also shown that GW2 controls
seed size through the regulation of chitinase 14 and phosphoglycerate kinase levels or
activities [60]. Other genes that we detected (cytokinin dehydrogenase, aarF domain-
containing kinase, and eukaryotic translation initiation factor 2C) may also be associated
with seed development in wheat [20].

For QTLs associated with seed color, we also found a number of possible candidates
among genes encoding enzymes of plant pigment biosynthesis pathways. On chromosome
2A, we found several genes that are involved in plant pigment biosynthesis. Among them,
one gene, which we annotated as NCED, is involved in the carotenoid biosynthesis pathway.
In rice, mutants of this gene lead to changes in pericarp seed coloration [61]. The expression
of this enzyme is controlled by abscisic acid [62], and NCED is also involved in ABA
biosynthesis [48]. The functions of this gene in seed development are well known [63]: it is
an important regulator in seed development, in the zygotic embryogenesis, and dormancy.
Another gene related to carotenoid biosynthesis that we found among the primate genes is
CYP707A ((+)-abscisic acid 8’-hydroxylase) (Table 2). Its functions are closely related to the
NCED gene, and its participation in the same processes related to seed development has
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been shown [63]. Interestingly, two of these genes are located near loci associated with seed
coat redness (Q.YCrCb_dCCr_1-2A.3 and HSV_dCH_3-6At/Lab_ma-6At).

We found two genes that are involved in the flavonoid biosynthesis pathway (Table 2)
that provide different coloration of seeds in cereals [64,65]. These include the homologue
FG2 (flavonol-3-O-glucoside L-rhamnosyltransferase), for which mutations result in a phe-
notype with seed color change in soybean [66]. Shikimate O-hydroxycinnamoyltransferase
has been shown to be elevated in expression in wheat plants with high seed antioxidant
activity [67].

In the QTL region of Q.Lab_dCb_3-3Ai, we found two genes involved in phenyl-
propanoid biosynthesis. They both encode 4-coumarate–CoA ligase. This enzyme catalyzes
the conversion of p-coumaric acid to p-coumaroyl CoA, which further serves as a source
of biosynthesis of both lignin (a structural component of the seed shell) and flavonoids.
In transcriptome-wide association studies in Brassica napus, 4CL expression during seed
development was shown to positively correlate with seed coat content, i.e., the fraction of
seed mass attributable to the coat [68]. Interestingly, in gene expression analysis in B. napus
plants with brown seed coloration, the expression level of genes encoding this enzyme was
higher than in plants with yellow coloration [69].

Modern genomics advances in wheat genome sequencing and genetic marker tech-
nologies allow QTLs to be linked to the physical coordinates of the wheat genome. Such
analysis is now an important complement to QTL identification [70–72]. The genes we
have identified as possible candidates associated with seed size/shape and color formation
in the ITMI/MP can be further investigated in more detail using genetic and molecular
methods to establish the mechanisms controlling these important traits.

4. Materials and Methods
4.1. Materials

We studied seeds from 114 accessions of the well-known ITMI/MP of bread wheat
(T. aestivum L.). The ITMI mapping population was obtained by pollination of the T. aestivum
(var. Opata 85) flower with the pollen of the synthetic hexaploid spring wheat W7984 [47].
Plants of each genotype were grown in season in 2014 on the experimental fields of IPK in
Gatersleben, Germany.

4.2. Seed Imaging Protocol and Image Processing

Seeds were imaged in March 2020. We supposed that the storage time affected seed
traits for different genotypes in the same manner. The imaging of seeds was performed
according to the protocol described earlier [1]: seeds were scattered in an amount of up to
20 pieces on the table on a white sheet of A4 paper. A ColorChecker color calibration card
(x-rite ColorChecker® Classic Mini, X-Rite, Grand Rapids, MI, USA, https://xritephoto.
com/camera; accessed on 20 January 2022) was placed in the image area and used for
color correction and obtaining image scale. The lighting was adjusted to avoid shadows.
Images were taken with a digital camera Canon EOS 600D equipped with a Canon EF
100 mm f/2.8 Macro USM lens and saved in files in JPG or PNG format. Examples of images
are shown in Figure S2. Digital image processing was performed using the SeedCounter
application for desktop PC [73] with color analysis capabilities [1]. We used two images
per genotype for our analysis: 15 and 5 seeds. Splitting was initially used to check for
reproducibility of the evaluated trait values. No significant differences between mean
values of the seed traits were observed between these replicates according to an F-test
(results not shown). Therefore, we used the average values of the images of 20 seeds from
two replicates as input for QTL analysis.

4.3. Quantitative Characteristics of Seed Shape, Size, and Color

The analysis of digital images for each seed yielded a set of 55 quantitative characteris-
tics described earlier [1]. Size was defined by seed length (sL), width (sW), and projected
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area (sA). Seed shape characteristics included circularity (sCi), roundness (sRo), rugosity
(sRg), and solidity (sSo).

The circularity and roundness indices reflect how close the shape of a contour is to a
circle but are calculated differently. Circularity is a measure of the similarity of a 2D figure
to a circle [43]. For objects with rugged contours, the closeness of the shape to a circle is
more correctly described by the roundness parameter since this value does not depend
on the roughness of the contour line. This index is calculated as the ratio of the area of
the shape (area) to the square of the length of the major axis [40]. For a shape other than
a circle, the index takes values less than unity. The rugosity index (sRg) is defined as the
ratio of the contour perimeter to the convex perimeter [43]. The index of solidity (sSo) is
the ratio of the contour area to the area of its convex hull [74].

To describe the color characteristics of the seeds, we used a color representation
in the form of four-color spaces: RGB, HSV, Lab, and YCrCb [44,75,76]. Each of them
represents color as three components. The component values of one space can be obtained
by transforming the component values of the other. The color features included two types
of descriptors, which were independently calculated for each color space.

The first type of descriptors: mean values of component intensities for seed pixels.
To calculate them, the mean and standard deviations of intensities for each of the color
component channels were first estimated, then the pixels whose intensities differ from
the mean by more than three standard deviations were excluded from the analysis. The
mean value was calculated for the remaining pixels and used further. The descriptors of
the average component values are indicated by a small letter m. For example, for the RGB
color space, these are the three parameters: RGB_mR, RGB_mG, and RGB_mB. For other
spaces, the indications are similar.

The second type of descriptors are dominant seed colors. These descriptors provide an
illustration of representative colors in an image or its region [77]. To determine dominant
colors, all seed pixels were grouped by color similarity into three clusters. The clusters
were ranked by the number of pixels they contained. In each of the three clusters, the
values of the three color components for the centroid were determined. This procedure was
performed for each color space and resulted, respectively, in nine color descriptors. For
example, for the RGB space, these are RGB_dCj_i parameters, where j = 1,2,3 is the color
component designation, and i = 1,2,3 is the number of the dominant cluster. For example,
the RGB_dCR_1 parameter is the R component for the first dominant color in the RGB
space. The use of three dominant colors allows for a more accurate estimation of the shades
of seed coloration.

As a result, three size characteristics, four shape characteristics, and 48 color character-
istics were determined for each seed. Characteristics were calculated for each seed of the
114 wheat genotypes. The mean values for the genotype were estimated and used in the
QTL analysis.

4.4. Statistical Analysis

To get an idea of the similarity of genotypes in the space of seed traits, we used the
principal component method implemented in the PAST program [78].

4.5. Genotyping and QTL Analysis

Fresh flag leaves were used for the DNA extraction for the purpose of genotyping
which was performed using Illumina (San Diego, CA, USA) Infinium technology. An
optimized array (wheat 20K Infinium SNP array) was used. This array is the refined
version of the 15K chip [79] of 90K iSELECT SNP-chip as previously reported [80]. To
make it more informative, 5385 markers from the 35K Wheat Breeders Array [81] were also
added. All sequences of the markers, a complete genetic map and the list of 92 RILs with
genotypic data are available in reference [47].

To capture the variance explained by the molecular markers such as SNPs mapped
to any genome, different methods were proposed (such as single marker analyses, inter-
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val mapping, and composite interval mapping) and implemented in different computer
programs (Qgene, QTL Cartographer and PLABQTL) [82] which have successfully been
used to detected QTLs for various traits in wheat including seed-related traits such as
seed longevity [37,83,84]. In light of the limitations of the above-mentioned methods, a
more refined method known as “inclusive composite interval mapping” was proposed and
implemented in the QTLIciMapping 4.2.53 (http://www.isbreeding.net/ (latest released
in September 2019, accessed on 2 February 2022) which is considered as the most modern
method of QTL detection [47]. We have recently detected several QTLs for Fusarium head
blight [85] and seed longevity [50] in wheat and germination-related traits in tobacco [86]
by applying the QTLIciMapping tool. Therefore, we convened the IciMapping 4.2.53 to
detect the putative additive QTLs of the traits under consideration by applying the inclu-
sive composite interval mapping (ICIM) command where 1.0 cM was the walking speed.
An LOD score of >2.0 ≤3 was applied to detect QTLs as significant and >3.0 as highly
significant [87].

In order to discover digenic epistasis QTLs to find clues for latent variation, the ICIM-
EPI command was used where LOD was kept at 5.0 cM. Here, the epistasis QTLs with
LOD ≥5 and explaining ≥5% phenotypic variance were reported. All QTLs were assigned
names according to the rules set out in the Catalog of Gene Symbols [88]. All additive and
epistasis QTLs were visualized using the “circlize” package in R [89].

4.6. Seed Traits Similarity by QTL Location

Preliminary analysis of QTLs demonstrated that loci for several traits often overlap.
In particular, the same locus may associate with several characteristics of the seed shell
color. In this regard, we decided to analyze the similarity of traits by their localization in
the genome. To do this, we compiled a list of loci with which they were associated for each
of the 55 features. Based on the overlap of the list of these loci, we calculated the Ochiai
index [90] for each pair of features. This index was suggested for ecological studies to
estimate associations between species and groups of sites representing habitat types. In
our work, the index reflects the degree of overlap of the lists of loci between two traits.
The greater the similarity between sets of loci for two traits, the greater the index value. It
equals 1 when loci are identical and 0 when there is no loci overlap. Based on this measure,
we performed clustering of features in the PAST [78] package and built a tree of the trait
similarity.

4.7. QTL Gene Prioritization

In order to identify possible candidate genes associated with seed traits, we prioritized
them based on several conditions and using the gene annotation provided in the KEGG
database [91]. The analysis included loci for which the LOD value exceeded three and
consisted of several steps.

In the first step of the analysis, we determined the physical localization of the markers
by aligning their sequences to the IWGS 2.1 wheat genome assembly sequence [92]. Genome
sequence and annotation data were obtained from URGI (https://urgi.versailles.inra.fr/
download/iwgsc/IWGSC_RefSeq_Assemblies/v2.1; accessed on 10 January 2022). We
considered “high confidence” gene annotations only. Marker sequences were obtained from
reference [80] and the Gramene marker database (https://archive.gramene.org/markers/;
accessed on 10 January 2022) [93]. Marker sequences were aligned using BLASTn of the
BLAST+ package [94] using e-value = 1 × 10−17 (other parameters were set by default).
This allowed us to search similar sequences with length above 50 nt and avoid noise. Thus,
for each of our selected QTLs, we obtained a list of IWGS 2.1 wheat genome annotation
genes. Note that it was not possible to determine the physical boundaries of the QTLs
for several loci because, for one of the sequences, the alignment did not occur on the
chromosome corresponding to the marker.

Since plant pigments can be synthesized in various tissues and organs, when priori-
tizing genes for seed color QTL, we additionally filtered genes by expression level in the
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seed. For this purpose, we used the expression data presented for wheat in the expVIP
database [95]. Data in text format were downloaded from URGI (https://urgi.versailles.inra.
fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.1/iwgsc_refseqv1.1_rnaseq_mapping_
2017July20.zip; accessed on 10 January 2022). We used data from RNA-seq experiments in
which the column “High level tissue” contains “seed”. We selected genes as expressed if
their TPM ≥ 1 in these experiments. To perform filtering, we developed scripts in Python,
taking into consideration the Gene ID conversion between annotation ver. 2.1 (genome)
and 1.2 (transcriptome).

In the second stage of analysis, we generated a list of orthologous protein groups from
the KEGG database [91], which are associated with the formation of the traits of seed size
and color. It is well known that the color of the seed shell is determined by the presence of
specific plant pigments in it [22]. Therefore, we selected orthogroups involved in KEGG
pathways of the biosynthesis of these pigments and a number of their precursors. The
list of such pathways includes tryptophan metabolism (map00380), terpenoid backbone
biosynthesis (map00900), carotenoid biosynthesis (map00906), phenylpropanoid biosynthe-
sis (map00940), flavonoid biosynthesis (map00941), anthocyanin biosynthesis (map00942),
isoflavonoid biosynthesis (map00943), and flavone and flavonol biosynthesis (map00944).
We obtained 307 KEGG orthogroups for these pathways.

Seed size depends on a multitude of biological processes occurring at the molecular
level, including protein ubiquitination, response to hormonal signals, protein biosynthesis
and transport, etc. Therefore, it was not possible to isolate the pathways corresponding to
these processes based only on their description in the KEGG database. However, the genes
involved in seed development have been fairly well experimentally studied in A. thaliana
and rice (Oryza sativa). Therefore, we used three recent literature reviews describing the
molecular processes of seed development in Arabidopsis and rice [20,21,38]. We combined
set of genes from three papers and removed duplicated IDs. During compilation, we
converted gene IDs from reference [20] from RAP to MSU format using the “ID converter”
tool at the website of the OryzaExpress database ([96]; http://bioinf.mind.meiji.ac.jp/
OryzaExpress/ID_converter.php; accessed on 20 January 2022). We identified KEGG
orthogroups for the selected genes and used them for our analysis.

The assignment of KEGG orthologous groups to wheat genes by their sequence was
performed using BlastKOALA [97] and KofamKOALA [98] tools. The orthogroups were
assigned to genes by at least one of the methods. We prioritized genes whose orthogroups
were in the lists associated with traits of seed coat color and size.

5. Conclusions

A QTL search for seven traits of seed size/shape and 48 traits of coat color evaluated
on the basis of digital image analysis of the ITMI/MP identified 212 additive and 34 pairs
of epistatic QTLs on all the chromosomes of wheat genome except chromosomes 1A and
5D. The number of QTLs varied from one to ten for one single trait. The majority of the
traits yielded three to four QTLs. We demonstrated that one locus could control dozens
of seed characteristics. Analysis of the loci overlap showed that this is typical for color
traits and rarely occurred for seed size/shape traits. For a number of highly significant
QTLs, we identified the physical location of their markers on the wheat chromosomes.
Additionally, we demonstrated that the overlap between QTL regions was low for seed
size/shape traits and high for coat color traits. Using the literature and KEGG data, we
identified sets of genes in Arabidopsis and rice from the networks controlling seed size and
color. This information along with the coordinates of the markers in the wheat genome was
used for the prioritization of wheat genes within QTL regions. We identified 29 candidate
genes from the seed size-related loci and 14 for genes from the loci associated with seed coat
color. The genes we have identified as possible candidates associated with seed size/shape
and color formation in the ITMI/MP can be further investigated in more detail using
genetic and molecular methods to establish the mechanisms controlling these important
traits. Our results demonstrate the complex nature of the genetic control of the wheat seed

81



Plants 2022, 11, 2105

traits and the efficiency of the image analysis methods for obtaining novel QTLs for seed
characteristics.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/plants11162105/s1: Figure S1: PCA biplot of seed size/shape
and color traits of ITMI/MP performed using seed coat traits (mean seven values for seed size/shape
and 12 values for color components of four-color spaces); Figure S2: Examples of seed images used for
digital phenotyping; Table S1: Complete list of QTLs identified through composite interval mapping.
Left and right flanking markers linked to QTL are also provided along with LOD, PVE%, and additive
effect (+ = provided by Opata and -= provided by W7984 parent). Similar asterisks (also highlighted
in similar color) indicate likely identical loci. Markers highlighted in red are involved in multiple
QTLs. Table S2: Pairs of epistatic quantitative trait loci detected in the ITMI/MP. Table S3: List of
197 (42 from rice and 155 from Arabidopsis) genes involved in molecular processes of the grain
development. Input Gene ID = Gene ID from review papers; KEGG Gene ID = GID for gene in KEGG
database; NA: not found in KEGG; KEGG Gene Name = Gene name in KEGG database and KEGG
Orthology ID = Orthogroup ID in KEGG database. Table S4: Pathway ID and KEGG orthologous
groups. Pathway KEGG = pathway ID and KEGG orthology group = Orthogroup ID in KEGG
database. Table S5: List of QTLs used in gene prioritization. Table S6: List of 823 genes associated
with grain color.
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Abstract: Soybean seeds are rich in secondary metabolites which are beneficial for human health,
including tocopherols. Tocopherols play an important role in human and animal nutrition thanks to
their antioxidant activity. In this study, the ‘Forrest’ by ‘Williams 82’ (F×W82) recombinant inbred
line (RIL) population (n = 306) was used to map quantitative trait loci (QTL) for seed α-tocopherol,
β-tocopherol, δ -tocopherol, γ-tocopherol, and total tocopherol contents in Carbondale, IL over two
years. Also, the identification of the candidate genes involved in soybean tocopherols biosynthetic
pathway was performed. A total of 32 QTL controlling various seed tocopherol contents have been
identified and mapped on Chrs. 1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 16, 17, and 20. One major and novel
QTL was identified on Chr. 6 with an R2 of 27.8, 9.9, and 6.9 for δ-tocopherol, α-tocopherol, and
total tocopherol content, respectively. Reverse BLAST analysis of the genes that were identified in
Arabidopsis allowed the identification of 37 genes involved in soybean tocopherol pathway, among
which 11 were located close to the identified QTLs. The tocopherol cyclase gene (TC) Glyma.06G084100
is located close to the QTLs controlling δ-tocopherol (R2 = 27.8), α-tocopherol (R2 = 9.96), and total-
tocopherol (R2 = 6.95). The geranylgeranyl diphosphate reductase (GGDR) Glyma.05G026200 gene
is located close to a QTL controlling total tocopherol content in soybean (R2 = 4.42). The two
methylphytylbenzoquinol methyltransferase (MPBQ-MT) candidate genes Glyma.02G002000 and
Glyma.02G143700 are located close to a QTL controlling δ-tocopherol content (R2 = 3.57). The two
γ-tocopherol methyltransferase (γ-TMT) genes, Glyma.12G014200 and Glyma.12G014300, are located
close to QTLs controlling (γ+ß) tocopherol content (R2 = 8.86) and total tocopherol (R2 = 5.94). The
identified tocopherol seed QTLs and candidate genes will be beneficial in breeding programs to
develop soybean cultivars with high tocopherol contents.

Keywords: soybean; RIL; forrest; Williams 82; linkage map; tocopherol; SNP

1. Introduction

Tocopherols and tocotrienols collectively constitute the tocochromanols family, known
as Vitamin E. Tocochromanols are fat-soluble phenolic compounds, synthesized by photo-
synthetic organisms. In soybean, vitamin E is present almost exclusively as tocopherols. To-
copherols exist in four isoforms, α-tocopherol, γ-tocopherol, β-tocopherol, and δ-tocopherol
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which differ from each other by the number and the location of the methyl groups. α-
tocopherol possesses three methyl groups, followed by γ-tocopherol and β-tocopherol that
have two methyl groups, and finally δ-tocopherol with only one methyl group [1].

Tocopherols have an important role in human and animal nutrition thanks to their
vitamin E activity. However, from a nutritional perspective among the four tocopherol
isoforms, α-tocopherol is the most important due to the high vitamin E activity [2]. It also
has been reported to play a role in the prevention of cardiovascular diseases and cancer [3,4].
In the human body, α-tocopherol is preferentially accumulated due to its affinity with the
liver α-tocopherol transfer protein (α-TTP), which enriches plasma with α-tocopherol [5].

Soybean (Glycine max Merr.) is not only one of the main sources of vegetable oil and
animal feed worldwide, but also used for production of biofuel, aquaculture feed, and
as source of protein for the human diet due to a high protein (40–42%) and oil contents
(18–22%) [6], which make it an important crop worldwide.

Soybean seeds are rich in secondary metabolites beneficial for human health including
tocopherols. Total tocopherol content is relatively high in soybean seeds compared to other
oilseeds crops, and γ-tocopherol is the predominant form, while α-tocopherol content is
less than 10% of the total tocopherol content [3,4,7].

Since soybean oil provides 30% of the total worldwide oil consumption and ~70% of
the vitamin E in the American diet comes from soybean oil, developing soybean cultivars
with high seed α-tocopherol contents could have tremendous positive effects on the health
benefits associated with eating soybeans and their market value.

In soybean, tocopherol seed content and composition vary from one cultivar to another,
being controlled by several genetic and environmental factors. These factor make it one of
the most complex quantitative traits [8] and many studies have focused on investigating
the genetic and molecular factors underlying this trait [9–12].

A ‘TK780’ by ‘B04009’ RIL population (n = 94) was used to identified six QTLs involved
in α-tocopherol biosynthesis on Chr. 9, 11 and 12 [7]. Also, using a ‘OAC Bayfield’ × ‘OAC
Shire’ RIL population across three locations over 2 years, and 151 SSR markers, 26 SSR
markers linked to QTLs with individual and total tocopherol content across 17 chromo-
somes were identified [13]. Likewise, using a ‘Beifeng 9’ by ‘Freeborn’ RIL population in
six environments, 18, 13, 11, and 13 QTLs associated with seed α-tocopherol, γ-tocopherol,
δ-tocopherol, and total tocopherol contents were identified respectively [14].

Tocopherol biosynthesis takes place at the plastid’s envelope, where a combination of
two precursors derived from different pathways occurs. The homogentisic acid (HGA), a
product of the cytosolic shikimate pathway, is used to form the aromatic ring of tocopherols,
while phytyl diphosphate (PDP), a product of either the methylerytrithol phosphate (MEP)
pathway or the phytol recycling pathway [15], forms the prenyl tail. The condensation of
these two precursors is catalyzed by the homogentisate phytyl transferase (HPT) and creates
2-methyl-6- phytyl-1,4-benzoquinol (MPBQ), which can be further methylated by MPBQ
methyltransferase (MPBQ-MT) to 2,3-dimethyl-6-phytyl-1,4-benzoquinone (DMPBQ). The
cyclization of the MPBQ and DMPBQ by the tocopherol cyclase produces γ-tocopherol
and δ-tocopherol, respectively. The conversion of γ-tocopherol and δ-tocopherol to α-
tocopherol and β-tocopherol is catalyzed by the γ-tocopherol methyltransferase (γ-TMT)
and it represents the last step of the tocopherol biosynthesis pathway.

Many studies have elucidated the genes involved in tocopherol pathway in Arabidopsis.
The tyrosine produced by the shikimate pathway is catalyzed by Tyrosine Aminotransferase
(TAT) resulting in the formation of P-hydroxy Phenyl Pyruvate (HPP). The HPP will be
catalyzed by p-hydroxyphenylpyruvate dioxygenase (HPPD) to produce the homogentisic
acid, this enzyme is controlled by PDS1. In A. thaliana, mutants of pds1 have shown a lack of
tocopherols and plastoquinone with a lethal photobleached phenotype, this result showed
the importance of PDS1 in the tocopherol biosynthesis pathway [16]. The overexpression
of the PDS1 gene in tobacco leaves or in A. thaliana seeds only gave moderately increased
tocopherol concentrations [17,18]. The phytyl diphosphate (PDP) can be derived, either
from the MEP pathway after reduction of geranylgeranyl diphosphate (GGDP) by the
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Geranylgeranyl Diphosphate Reductase (GGDR) enzyme, or from the phytol recycling
pathway. Many studies have investigated the phytol recycling pathway and have shown
that mutants of vte5-1 are devoid of phytol kinase. Also, vte5-1 mutants have shown a
reduction in total tocopherol content in seeds and leaves with 80% and 65% respectively,
compared to the wild type [19]. The VTE5 gene controls the phytol kinase that catalyzes
the phytol phosphorylation producing Phytolmonophosphate which is catalyzed by Phy-
tolphosphate kinase VTE6 leading to phytyl diphosphate (PDP) formation. Arabidopsis
vte6 mutants have shown tocopherol deficiency in leaves and a reduction in plant growth
and seed longevity. The overexpression of the VTE6 gene resulted in a two-fold increase
in PDP that resulted in higher γ-tocopherol accumulation in seeds [20]. Homogentisate
phytyl transferase (HPT) catalyzes the condensation of HGA and PDP to produce 2-methyl-
6-phytyl-1,4- benzoquinone (MPBQ). In Arabidopsis, the HPT enzyme is encoded by the
VTE2 gene [21,22].

The Arabidopsis devoid of VTE2 have shown a complete deficiency in all tocopherol
derivatives and all pathway precursors, which means that this is a crucial step in the
tocopherol biosynthetic pathway [23]. The MPBQ-MT enzyme is encoded by the VTE3 gene,
which is a limiting step in producing α- and γ-tocopherol. In Arabidopsis, vte3-2 mutants
were lacking in α- and γ-tocopherol and exhibited a pale green phenotype, abnormal
chloroplasts and did not survive beyond the seedling stage [24,25].

The VTE1 gene catalyzes the conversion of 2-methyl-6-phytyl-1,4- benzoquinone
(MPBQ) and 2,3-dimethyl-5-phytyl-1,4-benzoquinone (DMPBQ) to δ-tocopherol and γ-
tocopherol, respectively. vte1 mutants have a nonfunctional tocopherol cyclase enzyme (TC)
and are totally devoid of all tocopherol forms, and accumulate DMPBQ, the γ-tocopherol
precursor [26]. The overexpression of the VTE1 gene in Arabidopsis plants showed an
improvement in total tocopherol by 7-fold in leaves, as well as a major shift from α- to
γ-tocopherol [27].

The VTE4 gene encodes the γ-tocopherol methyltransferase (γ-TMT) that catalyzes
the methylation of the γ-tocopherol and δ-tocopherol to produce α-tocopherol and β-
tocopherol, respectively. The co-expression of both At-VTE3 and At-VTE4 in soybean
showed an accumulation of >95% of α-tocopherol, in addition to a 5-fold increase of seed
vitamin E activity [28].

In soybean, few genes have been reported to play a role in seed tocopherol content.
These genes are γ-TMT1, γ-TMT2, and γ-TMT3 mainly [29]. Also, the Di-glucose binding
protein with Leucine-rich repeat domain gene (Glyma.02G099800); Eukaryotic aspartyl
protease family protein gene (Glyma.02G100800); Cytochrome b561/ferric reductase trans-
membrane protein family gene (Glyma.02G101300); Transmembrane amino acid transporter
family protein gene (Glyma.02G098200); and plant U-box 26 gene (Glyma.02G102900) were
identified and determined to be significantly associated with α-tocopherol, γ-tocopherol,
δ-tocopherol and total tocopherol in soybean seeds [30].

In this study, the genetic factors associated with tocopherol content in soybean were
investigated, QTL for seed α-tocopherol, β-tocopherol, δ-tocopherol, γ-tocopherol, and total
tocopherol contents were mapped, the link between the biosynthesis genes for tocopherol
and soybean seed tocopherol content was studied, and the in-Silico tocopherol biosynthetic
pathway in soybean was reconstructed.

2. Results
2.1. The SNP-Based Genetic Map

The SNP-Based genetic map used in this study was described previously and identified
QTLs that control seed isoflavone contents [31]. The map which covered 4029.9 cM, was
composed of 2075 SNP markers, and was based on 306 RILs of F ×W82 [31].

2.2. Tocopherol Contents Frequency Distribution, Heritability, and Correlation

The frequency distributions among different tocopherol contents were not always
normal in the FxW82 RIL population based on Shapiro–Wilk’s method for normality test.
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Only total-tocopherol 2017 (T-Toc-2017) and δ-tocopherol 2020 (δ-Toc-2020) were normally
distributed. The positive or negative skewness and kurtosis value (>3) were also identified
in the RIL population (Table 1; Figure 1).

Table 1. Mean, range, CV (%), skewness, kurtosis, and value of Shapiro-Wilk normality test (W value)
for seed tocopherol content of the RILs in Carbondale, IL. SE: Standard error.

Year Trait Mean
(µg/g)

Range
(µg/g) CV (%) SE Skewness Kurtosis W Value

(p < 0.05)

2017

δ-tocopherol17 95.86 94 19.73 1.09 0.01 2.21 0.98 **
γ+β-tocopherol17 172.44 97.1 9.78 0.97 0.48 3.18 0.98 **
α-tocopherol17 4.94 40.7 83.64 0.24 4.46 32.89 0.52 ***

Total-tocopherol17 271.5 150.7 8.97 1.41 0.25 2.9 0.99

2020

δ-tocopherol20 94.5 76 14.67 0.81 0.2 3.1 0.99
γ+β-tocopherol20 180.67 149.2 10.06 1.06 −0.36 5.59 0.97 ***
α-tocopherol20 5.13 25.7 55.49 0.16 3.13 21.28 0.71 ***

Total-tocopherol20 279.44 206.4 9.13 1.48 0.16 4.32 0.98 **

** p < 0.01, *** p < 0.001.

Each tocopherol component also showed a different degree of variation in the pa-
rameters of traits, and the variability appeared to not be greatly impacted by different
environments. α-tocopherol 2017 (α-Toc-2017), displayed the highest coefficient of vari-
ation (CV) value (83.64%); however, the CV of (α-Toc-2020) was 55.49% indicating that
phenotypic variability among tocopherol contents was constant year over these 2 years.

The broad sense heritability (h2) of (µg/g of dry seed weight) for seed α-tocopherol (α-
Toc), δ-tocopherol (δ-Toc), γ+β-tocopherol ((γ+β)-Toc), and total tocopherol (T-Toc) contents
(in µg/g of dry seed weight) across two different years appeared to be quite diverse. δ-Toc
had the highest heritability (71%) and the h2 for T-Toc was 41% (Table 2). However, the h2

values for (γ+β)-Toc and α-Toc were negative (−41% and −61%, respectively) implying
that there was biologically meaningful phenotypic repulsion among these traits. The high
heritability of seed δ-Toc contents suggested that a large portion of phenotypic variation
could be detected in the mapped QTL. The RILs-Year interactions still played a significant
role in the molecular formation among tocopherols in soybean seeds based on our two-way
ANOVA analysis because the σGE2 is relatively high (data not shown). It should be used
as a parameter for trait improvement.

Due to cost effect of this undergraduate student-centered project, only technical repli-
cates could be applied, and F value and probability could not be generated from the dataset
(Table 2). Hence, we only calculated the Sum Sq and Mean Sq to determine σG2 and σGE2

for each trait (Table 2) using type I sum of squares (ANOVA (model)) function in R program
but not σe2 due to limited replicates.

2.3. Seed Tocopherol Contents QTL

We used both the interval mapping (IM) and composite interval mapping (CIM)
methods of WinQTL Cartographer 2.5 [32] to identify QTLs that control seed α-Toc, δ-Toc,
(γ+β)-Toc, and T-Toc contents; however, only QTLs identified by CIM method with LOD
scores >2.5 are reported here. A total of 32 QTL that control these seed tocopherols contents
have been identified and mapped on Chr. 1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 16, 17, and 20 in this
RIL population grown in both years (2017 and 2020) (Table 3, Figures S1 and S2).
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Figure 1. The distribution of seed tocopherol contents (µg/g of seed weight) in the FxW82 RIL
population. The seed α-Tocopherol (α-Toc), δ-Tocopherol (δ-Toc), (γ+β)-Tocopherol ((γ+β)-Toc), and
Total-Tocopherols (T-Toc) contents were tested in the RILs harvested in Carbondale, IL 2017 and
2020, respectively.

Table 2. The broad sense heritability (h2) of tocopherol traits (δ-tocopherol, (γ+β)-tocopherol, α-
tocopherol, and total-tocopherol) from the seeds harvested at Carbondale, IL in 2017 and 2020.

Response: δ-tocopherol

Df Sum Sq Mean Seq H2

Line 592 163,429 276.06 0.71
Year 1 391 391.28
Line:Year 1 81 80.65
Residuals 0 0 NA
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Table 2. Cont.

Response: γ+β-tocopherol

Df Sum Sq Mean Seq H2

Line 592 191,945 324.23 -0.41
Year 1 6 6.13
Line:Year 1 457 456
Residuals 0 0 NA

Response: α-tocopherol

Df Sum Sq Mean Seq H2

Line 592 7479.9 12.635 −0.61
Year 1 20 20.041
Line:Year 1 20 20.41
Residuals 0 0 NA

Response: Total-tocopherol

Df Sum Sq Mean Seq H2

Line 592 377,872 638.3 0.47
Year 1 205 205.28
Line:Year 1 338 337.55
Residuals 0 0 NA

Table 3. QTLs that control seed α-Tocopherol (α-Toc), δ-Tocopherol (δ-Toc), (α+ß)-Tocopherol ((α+ß)-
Toc), and Total-Tocopherols (T-Toc) contents in two environments over two years (A. 2017 and B.
2020). The two environments are in Carbondale, IL (2017) (A) and (2020) (B). Only solid QTL with
LOD scores >2.5 and identified by CIM are reported.

A. QTL that Control Seed Tocopherols Contents in Carbondale, IL (2017)

Trait QTL Chr. Marker/Interval Position (cM) LOD R2 Additive Environment

α-Tocopherol
qα-Toc-1 6 Gm06_1537675-

Gm06_1570293 173.7–178.7 6.1 9.96 1.648195 Carbondale, IL

qα-Toc-2 6 Gm06_1858327-
Gm06_2048675 192.6–197.6 6.77 9.95 1.477826 Carbondale, IL

δ-Tocopherol

qδ-Toc-1 1 Gm01_1887205-
Gm01_1653315 174.2–179.2 3.06 3.1 −3.30536 Carbondale, IL

qδ-Toc-2 2 Gm02_1481798-
Gm02_9925870 133.5–140.2 3.4 3.57 5.481172 Carbondale, IL

qδ-Toc-3 6 Gm06_1674534-
Gm06_4447485 183.8–207 23.01 27.9 10.14229 Carbondale, IL

γ+ß-Tocopherol

qγ+ß-Toc-1 6 Gm06_1674534-
Gm06_4368839 185.8–203.2 5.13 6.16 4.161084 Carbondale, IL

qγ+ß-Toc-2 8 Gm08_3018731-
Gm08_4266625 17.8–31.2 3.02 3.78 −3.23578 Carbondale, IL

qγ+ß-Toc-3 12 Gm12_3820261-
Gm12_3818392 0.5–1 4.14 5.23 3.852091 Carbondale, IL

qγ+ß-Toc-4 12 Gm12_3805393-
Gm12_3696093 2.5–18.5 7.18 8.86 5.050705 Carbondale, IL

qγ+ß-Toc-5 13 Gm13_2587196-
Gm13_2048499 189.1–210.7 3.79 5.43 3.906039 Carbondale, IL

Total-
Tocopherols

qTotal-Toc-1 5 Gm05_3674925-
Gm05_3256515 29.4–32.2 3.63 4.42 8.695197 Carbondale, IL

qTotal-Toc-2 6 Gm06_1739930-
Gm06_2073990 188.9–197.6 4.07 5.05 −5.69939 Carbondale, IL

qTotal-Toc-3 6 Gm06_3849946-
Gm06_4447485 200.1–207 5.67 6.95 −6.57105 Carbondale, IL

qTotal-Toc-4 7 Gm07_3635708-
Gm07_1829304 81.4–88.9 2.88 3.46 −5.31938 Carbondale, IL

qTotal-Toc-5 9 Gm09_3483063-
Gm09_3544488 74.8–78 3.13 3.78 −4.56753 Carbondale, IL

qTotal-Toc-6 12 Gm12_3820261-
Gm12_3696093 2.5–18.5 4.84 5.94 4.753021 Carbondale, IL
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Table 3. Cont.

B. QTLs that control seed tocopherols contents in Carbondale, IL (2020)

Trait QTL Chr. Marker Position (cM) LOD R2 Additive Envt.

α-Tocopherol

qα-Toc-1 1 Gm01_3466825-
Gm01_5255151 4.1–10.1 5.81 0.35 2.35 Carbondale, IL

qα-Toc-2 2 Gm02_5141136-
Gm02_1020061 137.1–139.8 2.9 0.04 0.82 Carbondale, IL

qα-Toc-3 6 Gm06_1954068-
Gm06_2015292 195–197 2.01 0.03 0.5 Carbondale, IL

δ-Tocopherol

qδ-Toc-1 1 Gm01_4912170-
Gm01_4852475 91.6–93.6 2.57 0.04 −2.66 Carbondale, IL

qδ-Toc-2 8 Gm08_1810148-
Gm08_2201336 125.7–130.8 2.42 0.04 2.86 Carbondale, IL

qδ-Toc-3 10 Gm10_3943637-
Gm10_3935014 79.2–81.4 2.4 0.03 −2.53 Carbondale, IL

qδ-Toc-4 16 Gm16_1079308-
Gm16_3673245 0.5–12.5 3.71 0.05 −6.65 Carbondale, IL

qδ-Toc-5 20 Gm20_3665142-
Gm20_1046460 174.9–176.9 2.68 0.04 −5.95 Carbondale, IL

(γ+ß)-
Tocopherol

q(γ+ß)-Toc-2 2 Gm02_5155733-
Gm02_4311734 130.5–132.5 2.15 0.04 −9.75 Carbondale, IL

q(γ+ß)-Toc-1 16 Gm16_1079308-
Gm16_3673245 2.5–18.5 2.87 0.23 −10.56 Carbondale, IL

Total-
Toopherol

qT-Toc-1 1 Gm01_3504836-
Gm01_5566630 0.1–1.7 4.52 0.08 −14.62 Carbondale, IL

qT-Toc-2 8 Gm08_2622664-
Gm08_2852874 12.9–13.3 2.11 0.03 −4.44 Carbondale, IL

qT-Toc-3 10 Gm10_3935014-
Gm10_3890052 79.4–84.4 2 0.03 −4.27 Carbondale, IL

qT-Toc-4 16 Gm16_1079308-
Gm16_3673245 0.5–18.5 3.1 0.18 −13.92 Carbondale, IL

qT-Toc-5 17 Gm17_3916734-
Gm17_3929518 6.2–48.7 3.07 0.18 −11.81 Carbondale, IL

qT-Toc-6 20 Gm20_3665142-
Gm20_1046460 174.9–176.9 2.51 0.03 −10.65 Carbondale, IL

Five QTLs controlling α-tocopherol content in soybean were identified on Chrs. 6, 1
and 2 (Table 3, Figures S1 and S2). The qα-Toc-2-IL-2017 (192.6–197.6 cM) and qα-Toc-3-
IL-2020 (195–197 cM) were collocated on Chr. 06. Additionolly, eight QTLs underlying
δ-tocopherol content were identified on Chrs. 1,2,6,8,16,20. The qδ-Toc-3-IL-2017 located on
Chr.6 explains 27.9% of the phenotype (Table 3, Figures S1 and S2). For the γ+β tocopherol
content, ten QTLs were identified on Chrs. 2,6,8,12,13, and 16 (Table 3, Figures S1 and S2).
Twelve QTLs controlling total tocopherol content were identified and mapped on Chrs. 1,
5, 6, 7, 8, 9, 10, 12, 16, 17, 20 (Table 3, Figures S1 and S2).

2.4. In Silico Reconstruction of the Tocopherol Biosynthetic Pathway in Soybean

The tocopherol biosynthetic pathway has been investigated in the model plant Ara-
bidopsis thaliana. The genes and compounds involved in that pathway were previously
reported [33]. To reconstruct the tocopherol biosynthesis pathway in soybean, the reverse
BLAST of these genes was conducted using SoyBase.

Thirty-seven candidate genes underlying the soybean’s tocopherol pathway were iden-
tified (Figure 2). In the Shikimat pathway five candidate genes were identified for Tyrosine
Aminotransferase (TAT) including Glyma.06g235500, Glyma.06g235900, Glyma.12g161500,
Glyma.12g205900, and Glyma.13g295000. Two candidate genes were identified for hydrox-
yphenylpyruvate dioxygenase (HPPD) (PDS1), Glyma.14G030400, and Glyma.02G284600.
In the last step of the MEP pathway three candidate genes underlying the geranylger-
anyl diphosphate reductase (GGDR) that catalyzes the production of phytyl diphos-
phate (PDP) from geranylgeranyl diphosphate (GGDP), were identified, Glyma.02G273800,
Glyma.05G026200, and Glyma.17G100700 (Figure 2).
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Figure 2. Tocopherol metabolic pathway [15] with identified candidate genes in soybean. TAT:
Tyrosine Aminotransferase; HPPD: Hydroxyphenylpyruvate Dioxygenase; GGDR: Geranylgeranyl
Diphosphate Reductase; HPT: Homogentisate Phytyl Transferase; MPBQ-MT: methylphytylbenzo-
quinol methyltransferase; TC: tocopherol cyclase; γ-TMT: gamma tocopherol methyltransferase. MEP
Pathway: methylerythritol 4-phosphate pathway.

For the phytol recycling pathway, one candidate gene was identified to be the phytol
kinase (VTE5) Glyma.20G190100, and two candidate genes were identified to be the phytol-
phosphate kinase (VTE6) Glyma.13G265200, and Glyma.12G233800 (Figure 2).

In the core tocopherol pathway, twelve candidate genes were identified for the
HPT (VTE2), Glyma.17G061900, Glyma.13G097800, Glyma.03G033100, Glyma.10G070100,
Glyma.01G134600, Glyma.10G295300, Glyma.20G245100, Glyma.08G274800, Glyma.10G070300,
Glyma.13G152814, Glyma.13G152780, and Glyma.13G152746, four were identified for the
TC (VTE1), Glyma.04G082500, Glyma.06G084100, Glyma.04G082300, and Glyma.04G082400.
Five candidate genes were identified for the MPBQ-MT (VTE3), Glyma.02G143700,
Glyma.10G030600, Glyma.02G002000, Glyma.20G211500, and Glyma.10G178600, in addition
to three for the γ-TMT (VTE4), Glyma.09G222800, Glyma.12G014200, and Glyma.12G014300
(Figure 2).

2.5. The Association between the Identified Tocopherol Pathway Candidate Genes and the Identified
Tocopherol QTL

Among the identified candidate genes, 11 were located close to the identified QTLs on
Chrs. 2, 5, 6, 10, 12, and 17 (Table 4, Figure 2). These candidate genes include the tocopherol
cyclase candidate (TC) gene Glyma.06G084100 that is located close to seven seed tocopherol
QTLs controlling δ-tocopherol, α-tocopherol, and total tocopherol on Chr. 6 (Table 4).

On Chr. 2, the MPBQ-MT candidate genes Glyma.02G002000 and Glyma.02G143700 are
located close to qδ-Toc-2-(2017). The Glyma.02G002000 candidate gene is also located close
to qα-Toc-2-(2020) and q(γ+ß)-Toc-1-(2020) (Table 4, Figure 2). The γ-TMT candidate genes
Glyma.12G014200 and Glyma.12G014300 are positioned near to QTLs controlling γ+ß toco-
pherol and total tocopherol (Table 4, Figure 2). The HPT candidate gene Glyma.17G061900,
and the GGDR candidate gene Glyma.17G100700 are located close to QTLs controlling total
tocopherol on Chr. 17 (Table 4, Figure 2). Glyma.05G026200 is a GGDR candidate gene that
is positioned near to a QTL underlying total tocopherol on Chr. 5 (Table 4, Figure 2).
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Table 4. Tocopherol candidate genes located within or close to the tocopherol QTL identified in the
FxW82 RIL population grown in Carbondale, IL over two years A. 2017 and B. 2020.

A. QTLs that Control Seed Tocopherols Contents in Carbondale, IL (2017)

Trait QTL Wm82.a4. v1 Gene Models Glyma1.0 Gene Models

Gene ID Start End Gene ID Start End Dist. (Mbp)

α-Tocopherol
qα-Toc-1 Glyma.06G084100 6,435,516 6,441,328 Glyma06g08850 6,460,802 6,466,636 4.8
qα-Toc-2 Glyma.06G084100 6,435,516 6,441,328 Glyma06g08850 6,460,802 6,466,636 4.4

δ-Tocopherol

qδ-Toc-1

qδ-Toc-2 Glyma.02G002000 237,750 243,006 Glyma02g00440 237,612 245,017 1.2
Glyma.02G143700 15,253,811 15,256,708 Glyma02g16210 14,623,815 14,626,862 4.6

qδ-Toc-3 Glyma.06G084100 6,435,516 6,441,328 Glyma06g08850 6,460,802 6,466,636 2.01

(γ+ß)-
Tocopherol

q(γ+ß)-Toc-1 Glyma.06G084100 6,435,516 6,441,328 Glyma06g08850 6,460,802 6,466,636 2.09
q(γ+ß)-Toc-2

q(γ+ß)-Toc-3 Glyma.12G014200 1,020,484 1,023,995 Glyma12g01680 1,020,554 1,024,132 2.7
Glyma.12G014300 1,028,051 1,031,954 Glyma12g01690 1,028,132 1,032,092 2.7

q(γ+ß)-Toc-4 Glyma.12G014200 1,020,484 1,023,995 Glyma12g01680 1,020,554 1,024,132 2.6
Glyma.12G014300 1,028,051 1,031,954 Glyma12g01690 1,028,132 1,032,092 2.6

q(γ+ß)-Toc-5

Total-
Tocopherols

qT-Toc-1 Glyma.05G026200 2,284,067 2,286,242 Glyma05g01000 606,481 608,812 2.6
qT-Toc-2 Glyma.06G084100 6,435,516 6,441,328 Glyma06g08850 6,460,802 6,466,636 4.3
qT-Toc-3 Glyma.06G084100 6,435,516 6,441,328 Glyma06g08850 6,460,802 6,466,636 2.3
qT-Toc-4
qT-Toc-5

qT-Toc-6 Glyma.12G014200 1,020,484 1,023,995 Glyma12g01680 1,020,554 1,024,132 2.6
Glyma.12G014300 1,028,051 1,031,954 Glyma12g01690 1,028,132 1,032,092 2.6

B. QTLs that control seed tocopherols contents in Carbondale, IL (2020)

Trait QTL Wm82.a4. v1 Gene Models Glyma1.0 Gene Models

Gene ID Start End Gene ID Start End Dist. (Mbp)

α-Tocopherol
qα-Toc-1
qα-Toc-2 Glyma.02G002000 237,689 243,112 Glyma02g00440 237,612 245,017 0.7
qα-Toc-3 Glyma.06G084100 6,466,090 6,471,839 Glyma06g08850 6,460,802 6,466,636 4.5

δ-Tocopherol

qδ-Toc-1
qδ-Toc-2

qδ-Toc-3
Glyma.10G030600 2,658,064 2,661,302 Glyma10g03590 2,650,012 2,653,309 1.28
Glyma.10G070100 6,923,409 6,931,780 Glyma10g08080 6,888,551 6,893,731 2.95
Glyma.10G070300 7,023,173 7,029,710 Glyma10g08150 6,986,426 6,992,505 3.04

qδ-Toc-4
qδ-Toc-5

(γ+ß)-
Tocopherol

q(γ+ß)-Toc-2 Glyma.02G002000 237,689 243,112 Glyma02g00440 237,612 245,017 4.06
q(γ+ß)-Toc-1

Total-
Tocopherol

qT-Toc-1
qT-Toc-2

qT-Toc-3
Glyma.10G030600 2,658,064 2,661,302 Glyma10g03590 2,650,012 2,653,309 1.23
Glyma.10G070100 6,923,409 6,931,780 Glyma10g08080 6,888,551 6,893,731 2.95
Glyma.10G070300 7,023,173 7,029,710 Glyma10g08150 6,986,426 6,992,505 3.05

qT-Toc-4

qT-Toc-5 Glyma.17G061900 4,728,685 4,734,790 Glyma17g06940 4,998,801 5,004,742 1.06
Glyma.17G100700 7,920,291 7,923,450 Glyma17g10890 8,190,830 8,194,219 4.2

qT-Toc-6

2.6. Association between the Identified Candidate Genes and the Previously Reported QTL

Mapping the identified genes to the previously reported QTL regions associated
with soybean seeds tocopherols was done using data from SoyBase and previous studies
describing the QTL underlying tocopherol contents in soybean [7,13,34,35]. Six candidate
genes were located within the identified seed tocopherol QTLs and ten were very close to
some of these regions (Table 5).

Among these QTLs, qαTC-9 QTL was collocated with theγ-TMT3 (Glyma.09G222800) [7].
Also, γ-TMT2 (Glyma.12G014300) and γ -TMT1 (Glyma.12G014200) are located 703 kb and
711 kb, respectively, apart from qαTC-12 QTL associated with α-tocopherol content [7].
Whereas the fourth tocopherol candidate gene (Glyma.06G084100) was located 9.7 Mbp
from the QTVEC2_2 QTL underlying total seed tocopherol content identified earlier [34].
The HPT gene (Glyma.17G061900) is located 4 Mbp apart from qαγR-17 QTL associated
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with seed α-tocopherol content [7]. Moreover, Glyma.04G082500, Glyma.04G082300, and
Glyma.04G082400, the tocophetol cyclase candidate genes, were located within qδTC-
4 QTL associated with δ-tocopherol [7]. The MPBQ-MT genes Glyma.02G002000 and
Glyma.02G143700 were located within two QTL controlling the seed γ-tocopherol con-
tent. The first one is the seed tocopherol, γ-1-5 QTL [34] (https://soybase.org/; ac-
cessed on 3 April 2022) and the second one is the seed tocopherol, γ-2-5 [35] (https:
//soybase.org/; accessed on 3 April 2022). The two HPT candidate genes Glyma.10G070100
and Glyma.10G070300 and the MPBQ-MT candidate gene Glyma.10G030600 are located 3.3,
3.18, and 7.6 Mbp, respectively from the seed total tocopherol, T-Toc 2-2 QTL [35] (https:
//soybase.org/; accessed on 3 April 2022). The MPBQ-MT candidate gene Glyma.20G211500
and the HPT candidate gene (Glyma.20G245100) were located 0.22 and 0.9 Mbp apart from
the seed tocopherol, QTVEC2_2 QTL controlling total tocopherol content [35] (Table 5).

Table 5. Tocopherol candidate genes associated to the previously reported QTLs.

Gene ID Start End QTL QTL Start QTL End Parents Number Loci
Tested

Lod
Score

Interval
Length Reference

Glyma.09G222800 44,341,974 44,346,311 qαTC-9 43,927,286 44,366,371 TK780 X
B04009 ND 13.1 ND [7]

Glyma.12G014200 1,026,615 1,029,095 qαTC-12 1,507,927 1,790,872 TK780 X
B04009 ND 7.8 ND [7]

Glyma.12G014300 1,033,151 1,037,054 qαTC-12 1,507,927 1,790,872 TK780 X
B04009 ND 7.8 ND [7]

Glyma.04G082500 6,948,445 6,954,177 qδTC-4 6,780,105 7,188,146 TK780 X
B04009 ND 5.5 ND [7]

Glyma.04G082400 6,946,447 6,947,480 qδTC-4 6,780,105 7,188,146 TK780 X
B04009 ND 5.5 ND [7]

Glyma.04G082300 6,945,685 6,946,469 qδTC-4 6,780,105 7,188,146 TK780 X
B04009 ND 5.5 ND [7]

Glyma.06G084100 6,466,090 6,471,839
Seed

tocopherol,
alpha 1-2

16,106,296 16,256,544
OAC

Bayfield X
Hefeng 25

107 ND ND [35]

Glyma.14G030400 2,204,142 2,206,424
Seed

tocopherol,
alpha 2-1

675,214 2204,996
Hefeng 25

X OAC
Bayfield

606 ND ND [34]

Glyma.02G143700 14,826,295 14,829,286

Seed
tocopherol,
gamma 1-5

13,316,369 37,285,448
OAC

Bayfield X
Hefeng 25

107 ND ND [35]

Seed
tocopherol,
gamma 2-5

14,288,241 45,267,040
Hefeng 25

X OAC
Bayfield

606 ND 56.73 [34]

Glyma.02G002000 237,689 243,112

Seed
tocopherol,
gamma 1-5

13,316,369 37,285,448
OAC

Bayfield X
Hefeng 25

107 ND ND [35]

Seed
tocopherol,
gamma 2-5

14,288,241 45,267,040
Hefeng 25

X OAC
Bayfield

606 ND 56.73 [34]

Glyma.13G097800 21,299,008 21,305,797
Seed

tocopherol,
delta 1-3

15,248,933 15,306,234
OAC

Bayfield X
Hefeng 25

107 ND ND [35]

Glyma.17G061900 4,728,685 4,734,790 qαγR-17 8,786,113 9,025,866 TK780 X
B04009 ND 4.1 ND [7]

Glyma.17G100700 792,0291 7,923,450
Seed

tocopherol,
gamma 3-6

5,891,979 36,718,722
OAC

Bayfield X
OAC Shire

550 2.6 67.66 [13]

Glyma.12g161500 30,805,424 30,815,155
Seed

tocopherol,
total 3-5

24,129,662 37,556,592
OAC

Bayfield X
OAC Shire

550 3.4 29.62 [13]

Glyma.12g205900 38,082,220 38,086,113

Seed
tocopherol,
alpha 3-3

24,129,662 37,556,592
OAC

Bayfield X
OAC Shire

550 3.5 29.62 [13]

Seed
tocopherol,

total 3-5
24,129,662 37,556,592

OAC
Bayfield X
OAC Shire

550 3.4 29.62 [13]

Glyma.13g295000 38,800,738 38,805,839

Seed
tocopherol,

delta 3-2
37,603,911 40,131,770

OAC
Bayfield X
OAC Shire

550 2.6 17.11 [13]

Seed
tocopherol,

delta 3-3
31,449,060 43,325,731

OAC
Bayfield X
OAC Shire

550 3.8 52.94 [13]

2.7. Organ-Specific Expression of the Identified Candidate Genes

To investigate the role of the identified 37 candidate genes, the expression analysis
of these genes was performed in Williams 82 cv. using the publicly available RNA-seq
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database at SoyBase (https://soybase.org/; accessed on 3 April 2022). The tissues that were
included in this dataset were leaves, nodules, roots, pods, and seeds. Amongst the 37 candi-
date genes, no RNAseq data was available for the TC candidate gene Glyma.04G082400, the
HPT candidate gene Glyma.08G274800, and the MPBQ-MT candidate gene Glyma.10G178600.
The rest of the tocopherol candidate genes presented different gene expression patterns.
Most of the identified candidate genes were expressed in all the analyzed tissues except for
the HTP candidate gene, Glyma.03G033100, that was not expressed in any of the tissues.
While the two GGDR candidate genes, Glyma.05G026200 and Glyma.17G100700, the HPT
candidate gene, Glyma.13G097800, and the MPBQ-MT candidate gene, Glyma.02G143700,
were highly expressed in flowers. The two GGDR candidate genes Glyma.05G026200 and
Glyma.17G100700, the MPBQ-MT candidate genes Glyma.02G143700, Glyma.02G002000,
and Glyma.10G030600, the TC candidate gene Glyma.06G084100, and the γ-TMT candi-
date gene Glyma.12G014300 were abundantly expressed in leaves. The GGDR candi-
date genes Glyma.05G026200, Glyma.02G273800 and Glyma.17G100700, and the TAT can-
didate gene Glyma.12G161500 were highly expressed in seeds. The TAT candidate genes
Glyma.06G235900 and Glyma.12G205900, the two GGDR candidate genes Glyma.05G026200
and Glyma.17G100700, and the MPBQ-MT candidate genes Glyma.02G143700 and
Glyma.10G030600 were highly expressed in pods. The γ-TMT candidate gene
Glyma.09G222800, the GGDR candidate genes Glyma.05G026200 and Glyma.02G273800
were highly expressed in roots. Whereas the TAT candidate genes Glyma.12G161500 and
Glyma.13G295000, the GGDR candidate genes Glyma.05G026200 and Glyma.02G273800, and
the MPBQ-MT candidate gene Glyma.10G030600 were highly expressed in the nodules
(Figure 3A, Table S1).
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Figure 3. (A). Tissue specific expression of the identified tocopherol candidate genes. (B). Expression
pattern of the 11 tocopherol candidate genes located within tocopherol QTL in Williams 82 (RPKM)
were retrieved from publicly available RNA-seq data from Soybase database (http://www.soybase.
org/soyseq; accessed on 3 April 2022).

Amongst the identified candidate genes, eleven were located close to the tocopherol
seed QTLs identified in FxW82 RIL population, in tocopherol seed content in soybean.
Glyma.05G026200 and Glyma.17G100700 are highly expressed in seeds in Williams 82 cv.,
followed by Glyma.02G002000, Glyma.02G143700, Glyma.10G030600, Glyma.12G014300, and
Glyma.06G084100 that have moderate expression profiles in seeds. The rest of the genes
have a low expression profile in seeds except for Glyma.10G070100 and Glyma.10G070300
that have a limited expression profile, with very low to no expression in seeds (Figure 3B).

3. Discussion

Tocopherols are lipophilic antioxidants that are important for human health due to
their ability to prevent the oxidation of unsaturated fatty acids by scavenging the free
radicals and prevent cell membrane damage [13]. Soybean seeds contain the highest
tocopherol concentrations among all legume species [36]. The dominant tocopherol isoform
in soybean seeds is γ-tocopherol with amounts reaching up to 70% of the total tocopherol
content, while α-tocopherol isoform has a lower concentration of about 10% of the total
tocopherol content. The α-tocopherol isoform has the highest vitamin E activity [4] and
has the highest affinity with the hepatic tocopherol transfer protein. Therefore, improving
soybean seed tocopherol composition and content is crucial.

Several studies have revealed the genetic and molecular bases underlying tocopherol
content in soybean [7,13,14,29,30,34,35] as summarized recently in [37].

Among the QTLs identified in these studies, qαTC-9 QTL was collocated with the
γ-TMT3 Glyma.09G222800; [7], however, the QTL identified in this study on Chr. 9 was
more than 40 Mbp apart from this gene. Also, γ-TMT2 (Glyma.12G014300) and γ -TMT1
(Glyma.12G014200) are located 703 kb and 711 kb, respectively, apart from the qαTC-12 QTL
associated with α-tocopherol content [7]. Similarly, in this study, these candidate genes
are located 2.7, 2.6 and 2.6 Mbp apart from q(γ+ß)-Toc-3-(2017), q(γ+ß)-Toc-4-(2017), and
qT-Toc-6-(2017), respectively, on Chr. 12 (Table 4, Figures S1 and S2). Also, the TC candidate
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gene (Glyma.06G084100) was located 9.7 Mbp from the QTVEC2_2 QTL underlying the
total tocopherol identified earlier [34]. Likewise, this gene is located close to seven seed
tocopherol QTL, 2 Mbp from the qδ-Toc-3-(2017) (R2 = 27.8), 4.8 and 4.4 Mbp from qα-
Toc-1-(2017) and qα-Toc-2-(2017), respectively, 4.3 and 2.3 Mbp from qT-Toc-2-(2017) and
qT-Toc-3-(2017), respectively, 2.09 Mbp from q(γ+ß)-Toc-1-(2017), and 4.5 Mbp from qα-Toc-2-
(2020) on Chr. 6 (Table 4, Figures S1 and S2). On Chr. 2, the MPBQ-MT candidate genes
Glyma.02G002000 and Glyma.02G143700 are located 1.2 and 4.6 Mbp, respectively from
qδ-Toc-2-(2017). Also, the Glyma.02G002000 candidate gene is located 0.7 and 4.06 Mbp apart
from qα-Toc-2-(2020) and q(γ+ß)-Toc-1-(2020), respectively (Table 4, Figures S1 and S2). This
is coherent with previous studies [34,35], where these two candidate genes were located
within seed tocopherol, gamma 1-5 [35] (https://soybase.org/; accessed on 3 April 2022)
and seed tocopherol, gamma 2-5 [34] (https://soybase.org/; accessed on 3 April 2022).

The QTL associate with δ-tocopherol explains 27.87% of the phenotype, and the one as-
sociated with α-tocopherol explains only 9.96% of the phenotype. A TC (Glyma.06G084100)
gene was identified close to these QTLs, the TC enzyme is involved directly in the conver-
sion of MPBQ to δ-tocopherol, and indirectly in the conversion to α-tocopherol (Table 4,
Figure 2). α-tocopherol is the most known potent fat-soluble antioxidant, it is preferentially
absorbed and accumulated in humans [38], its activity has been demonstrated in the preven-
tion and treatment of heart disease, cancer and Alzheimer’s disease [39]. Alpha-tocopherol
has been designated as the most beneficial tocopherol compound among health profes-
sionals. Unfortunately, this compound is present in small amount in soybean oil when
compared to sunflower, canola or corn oil [40]. Therefore, improving α-tocopherol content
in soybean is a priority for the soy-industry, the identification in the two years data of the
qα-Toc-2-IL-2017 (192.6–197.6 cM) and qα-Toc-3-IL-2020 (195–197 cM) that were collocated
on Chr. 06 will provide an opportunity for breeding lines with high α-tocopherol.

Interestingly, the HPT candidate gene (Glyma.17G061900) is located 4 Mbp apart from
qαγR-17 QTL associated with α-tocopherol [7]. Similarly, this candidate gene is located
1.06 Mbp apart from qT-Toc-5-(2020) identified here on Chr. 17 (Table 4, Figures S1 and S2).
The two HPT candidate genes Glyma.10G070100 and Glyma.10G070300 and the MPBQ-MT
candidate gene Glyma.10G030600 are located 3.3, 3.18, and 7.6 Mbp, respectively from the
seed tocopherol, total 2-2 QTL [34,35] (https://soybase.org/; accessed on 3 April 2022).
Likewise, in this study these genes are located 2.95, 3.04 and 1.28, respectively from qδ-
Toc-2-(2020), and qT-Toc-3-(2020) on Chr. 10 (Table 4, Figures S1 and S2). The MPBQ-MT
candidate gene Glyma.20G211500 and the HPT candidate gene (Glyma.20G245100) were
located 0.22 and 0.9 Mbp apart from seed tocopherol, QTVEC2_2 QTL controlling total
tocopherol content identified earlier [34], however, the QTL identified in this study on Chr.
20 was located more than 40 Mbp apart from these genes. Moreover, Glyma.04G082500,
Glyma.04G082300, and Glyma.04G082400 tocopherol cyclase candidate genes were located
within qδTC-4 QTL associated with δ-tocopherol and identified earlier [7].

Although previous studies have reported some soybean genes as candidates for the
tocopherol biosynthesis pathway [41], the present study shows the most comprehensive
analysis of the whole soybean genome, showing the potential candidate genes for the
tocopherol biosynthetic pathway in soybean.

Most QTL regions that were identified in 2017 were not found in 2020 except the qα-
Toc-2-IL-2017 (192.6–197.6 cM) and qα-Toc-3-IL-2020 (195–197 cM) that were collocated on
Chr. 06. This could be explained by the difference in weather conditions between 2017 and
2020. In August 2017 the temperature ranged between 8 and 33.3 ◦C, while in August 2020
the temperature ranged between 13.3 and 32.8 ◦C (https://www.extremeweatherwatch.
com/; accessed on 3 April 2022). It has been proven that temperature stress during all
stages of development affect soybean seed tocopherol concentrations [42].

The QTL region identified on Chr.7, qTotal-Toc-4-IL-2017 (81.4–88.9 cM), is 7.6 cM
from a QTL region previously identified [7]. Likewise, the QTL region identified on Chr. 20
is 61.21 cM away from a QTL region identified in previous studies [34,35]. Interestingly, the
QTL region identified on Chr.12 qγ+ß-Toc-3-IL-2017, qγ+ß-Toc-4-IL-2017, qTotal-Toc-6-IL-

99



Plants 2022, 11, 1258

2017 (0.5–18.5 cM) and Chr.8 qγ+ß-Toc-2-IL-2017 and qT-Toc-2-IL-2020 (12.9–31.2 cM) were
reported in previous studies [7,34]. Which make them important regions to investigate
further for candidate genes. The rest of the QTLs are novel (Table 4, Figures S1 and S2).

Although previous studies identified QTL regions for soybean seed tocopherol con-
tent on Chr.6, all the identified QTLs map to the region between 74.5 and 118.5 cM
(Table S2) [7,34,35]. The QTL regions identified in this study on Chr.6 clusters between
173.7 and 207 cM, which is the region that encompass an important gene in the tocopherol
biosynthesis pathway, namely the tocopherol cyclase candidate gene, Glyma.06G084100.
This QTL on Chr.6 is responsible for 27.8% of δ-tocopherol, 9.96% of α-tocopherol, 6.16% of
γ+ß-tocopherol, and 6.95% of total tocopherol content

4. Materials and Methods
4.1. Plant Materials

The F6:13 ‘Forrest’ × ‘Williams 82’ RIL population (n = 306) described previously was
used in this study [30,43]. The parents and RILs were grown in Carbondale, southern
Illinois in 2017 and 2020, and seeds were harvested at maturity of all RILs and parents.

4.2. Tocopherols Quantification

At maturity, seeds of the parents and RILs were harvested and analyzed for α-
Tocopherol (α-Toc), δ-Tocopherol (δ-Toc), α+ß-Tocopherol ((γ+ß)-Toc), and total-Tocopherols
(T-Toc) using a protocol developed and validated in the Nguyen Lab, the University of
Missouri. Briefly, approx. 1gr. of soybean seeds were ground to fine powders with a
Thomas Wiley Mini-Mill, followed by lyophilizing for 48 hrs. Approx. 200mg of powder
were mixed with 2mL 200-proof ethanol and vortexed, followed by an incubation with
agitation at 75 ◦C for 2 hrs. The products were then filtered into HPLC vials for analysis
along with standard solutions of tocopherols. Quantification of tocopherols was performed
by employing an external calibration curve method, in which each curve was created with
the six standard solutions of 0.62, 1.25, 2.5, 5, 10, and 20 µg/mL.

4.3. DNA Isolation, SNP Genotyping, and Genetic Map Construction

DNA Isolation, SNP Genotyping, and the construction of the F×W82 genetic linkage
map have been described earlier [30]. Briefly, SNP genotyping was performed with Illumina
Infinium SoySNP6K BeadChips (Illumina, Inc. San Diego, CA, USA) and the genetic map
was constructed with JoinMap 4.0 software with a LOD score of 3.0 and maximum distance
of 50 cM as described earlier [30].

4.4. Seed Tocopherols QTL Detection

We used WinQTL Cartographer 2.5 [31] and both interval mapping (IM) and composite
interval mapping (CIM) methods to identify QTL that control seed α-Toc, δ-Toc, γ+ß-Toc,
and T-Toc in this RIL population; however, only QTL detected with CIM are reported
here. QTL identified via IM are reported in the supplementary data section (Table S4A,B).
MapChart 2.2 [32] was used to draw chromosomes with CIM tocopherols QTL locations.

4.5. Tocopherols Candidate Genes Identification

The reverse blast of the genes underlying the tocopherol pathway in Arabidopsis was
conducted using the available data at SoyBase (https://soybase.org/; accessed on 3 April
2022). The sequences of the Arabidopsis genes were obtained from the Phytozome database
(https://phytozome-next.jgi.doe.gov; accessed on 3 April 2022), these sequences were used
for Blast in SoyBase. The obtained genes that control the tocopherol biosynthetic pathway
were mapped to the identified tocopherol QTL.

4.6. Expression Analysis

The expression analysis of the identified tocopherol candidate genes that are located
within or close the identified seed tocopherol QTLs was performed using the publicly
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available data from SoyBase (https://soybase.org/; accessed on 3 April 2022) to produce
the expression profiles of these candidate genes in the soybean reference genome Williams
82 in Glyma1.0 Gene Models version.

5. Conclusions

In conclusion, 32 QTL controlling seed tocopherol contents on Chr. 1, 2, 5, 6, 7, 8,
9, 10, 12, 13, 16, 17, and 20 were identified. 37 candidate genes involved in soybean to-
copherol biosynthetic pathway have also been identified among which 11 were located
close to the QTL regions identified in this study. Two of these candidate genes were highly
expressed in seeds Glyma.05G026200 and Glyma.17G100700, followed by Glyma.06G084100,
Glyma.02G002000, Glyma.02G143700, Glyma.10G030600, and Glyma.12G014300 with moder-
ate expression profiles in seeds (Figure 3B).

Forrest and Williams 82 sequences of the eleven candidate genes located close to
the identified QTLs were compared, and the results have shown that three of them have
SNPs between the Forrest and Williams 82 sequences, Glyma.06G084100, Glyma.17G061900
and Glyma.17G100700 (Figure 4). The TC candidate gene Glyma.06G084100 has 5 SNPs
in the coding sequence, one of them caused a missense mutation (T379A) (Figure 4) in
addition to 12 SNPs and 2 InDels in the 5′UTR region (Table S3). The HPT candidate
gene, Glyma.17G061900, has only one SNP located in the coding sequence that caused a
missense mutation (G326A) (Figure 4). For the GGDR candidate gene, Glyma.17G100700,
there is also only one SNP that caused a silent mutation (Figure 4). These SNPs could play
a role in the difference of tocopherol content between Forrest and Williams 82 cultivars.
Glyma.06G084100 is associated with the qδ-Toc-3-(2017) (R2 = 27.8), qα-Toc-1-(2017), qα-Toc-
2-(2017), qT-Toc-2-(2017), qT-Toc-3-(2017), q(γ+ß)-Toc-1-(2017), and qα-Toc-2-(2020) on Chr.
6 (Table 3, Figures S1 and S2). While Glyma.17G061900 and Glyma.17G100700 are associated
to qT-Toc-5-(2020) on Chr. 17 (Table 2, Figures S1 and S2). These genes could be used in
breeding programs or gene editing technology to develop soybean lines and cultivars that
produce high amounts of the beneficial tocopherols (vitamin E) for human consumption.
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6. Patents

Patent resulting from this work is under submission.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11091258/s1, Table S1. Expression profiles of the tocopherol
biosynthesis candidate genes in soybean based on RNAseq data available from RNAsequencing
data (http://www.soybase.org/soyseq; accessed on 3 April 2022). Table S2. QTLs identified in
previous studies on Chr. 6. Table S3. Positions of SNPs between Forrest and Williams 82 cultivars
in the promoter of the tocopherol cyclase candidate gene (GmTC06, Glyma.06G084100). Table S4.
A. QTLs controlling seed tocopherols contents in Carbondale, IL (2017)—Identified by Interval
Mapping Method. B. QTLs controlling seed tocopherols contents in Carbondale, IL (2020)—Identified
by Interval Mapping Method. Figure S1. Positions of QTL that control seed α-Tocopherol (α-
Toc), δ-Tocopherol (δ-Toc), (γ+β)-Tocopherol ((γ+β)-Toc), and Total-Tocopherols (T-Toc) contents on
chromosomes 1, 2, 5, 6, 7, 8, 9, 10, 12, 13, 16, 17, and 20. The QTL have been identified in F×W82 grown
in two environments in Carbondale, IL over two years (2017 and 2020). Legend: (γ + β) = (G + β)
and (Carb-IL) = Carbondale, IL. Figure S2. QTL that control seed α-Tocopherol (α-Toc), δ-Tocopherol
(δ-Toc), (γ+β)-Tocopherol ((γ+β)-Toc), and Total-Tocopherols (T-Toc) contents identified by IM and
CIM methods in the F×W82 RIL population grown in two environments in Carbondale, IL over two
years (2017 and 2020).
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Abstract: Glucosinolates (GSLs) are sulphur- and nitrogen-containing secondary metabolites im-
plicated in the fitness of Brassicaceae and appreciated for their pungency and health-conferring
properties. In Indian mustard (Brassica juncea L.), GSL content and composition are seed-quality-
determining traits affecting its economic value. Depending on the end use, i.e., condiment or oil,
different GSL levels constitute breeding targets. The genetic control of GSL accumulation in Indian
mustard, however, is poorly understood, and current knowledge of GSL biosynthesis and regulation
is largely based on Arabidopsis thaliana. A genome-wide association study was carried out to dissect
the genetic architecture of total GSL content and the content of two major GSLs, sinigrin and glu-
conapin, in a diverse panel of 158 Indian mustard lines, which broadly grouped into a South Asia
cluster and outside-South-Asia cluster. Using 14,125 single-nucleotide polymorphisms (SNPs) as
genotyping input, seven distinct significant associations were discovered for total GSL content, eight
associations for sinigrin content and 19 for gluconapin. Close homologues of known GSL structural
and regulatory genes were identified as candidate genes in proximity to peak SNPs. Our results
provide a comprehensive map of the genetic control of GLS biosynthesis in Indian mustard, including
priority targets for further investigation and molecular marker development.

Keywords: Brassica juncea; genome-wide association studies; glucosinolates (GSL); seed quality

1. Introduction

Glucosinolates (GSLs) are a class of well-studied sulphur (S)- and nitrogen (N)- con-
taining secondary metabolites almost exclusively found in Brassicaceae, which include the
economically and nutritionally important crops B. napus (canola and rapeseed), B. juncea
(Indian mustard), B. oleracea (cabbage) and B. rapa (Chinese cabbage, turnip) [1–3]. Most
of our knowledge on GSL biosynthesis, its regulation and its links to other metabolic
pathways is based on the closely related model plant, Arabidopsis thaliana [1,4,5]. GSLs
are categorised into three major classes, depending on the amino acid they are derived
from: (i) aliphatic GSLs, predominantly derived from methionine and, to a lesser extent,
from leucine, isoleucine and valine; (ii) aromatic GSLs, mostly derived from phenylala-
nine or tyrosine and (iii) indolic GSLs, derived from tryptophan. The synthesis of GSLs
proceeds in three major steps: (i) chain elongation of precursor amino acids (only for
methionine and phenylalanine), (ii) GSL core structure formation and (iii) GSL side chain
modification. A recent comprehensive inventory from the literature and pathway databases
(KNApSAcK, KEGG and AraCyc) listed as many as 113 genes associated with GSLs in
Arabidopsis that were identified and characterised over the last two decades [4]. This in-
cludes 53 biosynthetic genes found in the KEGG or AraCyc databases, 32 experimentally
confirmed biosynthetic genes, 23 transcriptional components and five transporters. While
the GSL biosynthetic pathways are well understood in Arabidopsis, the respective regulatory
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and metabolic networks in the allotetraploid Brassica crops (B. napus and B. juncea) are
suggested to be much more complex due to their intricate evolutionary history [6].

Indian mustard is an economically important Brassica, cultivated for two distinct
markets. In India, Bangladesh, China and the Ukraine, and more recently in Canada and
Australia, it is grown as an oilseed crop [7]. On the other hand, in Europe, North America,
Argentina and China, it is primarily grown for condiment production (e.g., mustard and
“wasabi” paste). Both end uses rely on GSL content as a trait to be selected either for or
against during varietal improvement. “Canola” is a trademark term of the Canadian Canola
Association used to describe rape or oilseed cultivars with “double low” GSLs (<30 µmol/g
in defatted seed meal) and less than 2% erucic acid [8]. In B. juncea grown as a canola-type
oilseed crop, GSLs have largely been selected against, which enables seed meal to be used
for animal feed after oil extraction. Breeding for low-GSL B. juncea was spearheaded by
Canadian breeders through the introgression of low-GSL “Bronowski” alleles from canola
B. napus into an Indian high-GSL B. juncea line [9]. The resulting donor genotype for the
low-GSL trait has been extensively used in breeding for low GSLs in Canadian and Aus-
tralian germplasm [10]. As such, canola-quality B. juncea has become a viable alternative
oil crop [11–13]. For the condiment market, high GSL levels, high sinigrin in particular, are
desirable [14]. Sinigrin, when hydrolysed, produces allyl-isothiocyante (AITCs), including
sulphoraphane, responsible for the pungency of mustard and demonstrated to possess tu-
mour suppression properties [15,16]. Notably, Indian mustard predominantly accumulates
the aliphatic GSLs 2-propenyl-GSL (sinigrin) and 3-butenyl-GSL (gluconapin), and, to a
lesser extent, 2-hydroxy-3-butenyl-GSL (progoitrin) [14,17,18].

Enhancing the health-beneficial GSL levels in varieties aimed for vegetable or condi-
ment use and reducing the overall GSL and erucic acid levels, while increasing desirable
fatty acids in oilseed cultivars, remain among the key seed quality traits for B. juncea
variety improvement [17]. A better understanding of the genetic bases of trait variation and
corresponding beneficial alleles would aid in the development of molecular markers for
varietal improvement and an accelerated rate of genetic gain [19,20]. Earlier, classical QTL
mapping deciphered beneficial allelic variations for seed quality traits in B. juncea [21–23].
Recently, genome-wide association study (GWAS) has become the more popular choice
to dissect the genetic basis of these complex traits. Compared with classical quantitative
trait locus (QTL) mapping, which is generally confined to alleles and novel recombina-
tion within a bi-parental population, GWAS is able to tap into the allelic pool of broader
populations that have undergone natural and artifical selection throughout domestication
history. Since GWAS utilises a broader allelic pool, more variation is investigated. Fur-
thermore, actual causal variants tend to be much closer to detected associated markers in
GWAS, owing to the longer recombination history than in the case of a bi-parental popu-
lation. As a result, GWAS offers a higher mapping resolution of the underlying genomic
regions associated with the trait of interest. In Brassica crops, GWAS has been successfully
employed for dissecting the genetic architecture of seed quality traits such as GSL accumu-
lation, fatty acid composition and shattering resistance [24–28]. In B. juncea, high-density
single-nucleotide polymorphisms (SNPs) were identified through different strategies, in-
cluding double-digest restriction-associated DNA (dd-RAD) [29], RNA sequencing [30],
specific-locus amplified fragment sequencing (SLAF-seq) [31], genotyping-by-sequencing
(GBS) [29] and resequencing [17]. With these, GWAS has been utilised to investigate seed
GSL content using high-density SNPs [17,32]. Akhatar et al., 2020, employed GWAS for
seed quality traits including GSL content at varying nitrogen levels under field conditions,
while Yang et al., 2021, performed GWAS on a set of vegetable and oilseed B. juncea, in
conjunction with deploying two new genome sequences representing vegetable and oilseed
varieties. Among the candidate genes proposed in these studies, only a MYB28, a major
regulatory gene for aliphatic GSL biosynthesis, could be linked to the current inventory [4]
of GSL genes in Arabidopsis. This suggests that a large number of possible genetic mecha-
nisms may yet be uncovered through GWAS. Thus, the aim of this study was to perform
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GWAS on a set of oilseed Indian mustard to further elucidate the genetic basis and add to
the current understanding of seed GSL accumulation in Indian mustard.

2. Results
2.1. Genotype Data

A total of 69,594 SNP sites, with 61,931 (89%) anchored onto chromosomes, was
obtained from the variant calling. An initial filtering for SNPs anchored onto chromosomes
for 60% call rate, non-maf (minor allele frequency) filtered and 10% maximum marker
heterozygosity resulted in 15,263 SNPs (26% overall with missing SNP calls), and missing
states were imputed. Following imputation, a final set of 14,125 SNPs resulted from filtering
for 5% minor allele frequency and 20% maximum heterozygosity and was used for GWAS.

2.2. Cluster, Population Structure and Principal Component Analyses of B. juncea Diverse Panel

The diversity panel consisted of 158 accessions from 28 countries, representing South
Asia (53%, mostly from India and Pakistan), Asia (13%, other than South Asia), Europe (11%),
North America (6%), Australia (6%), Africa (6%) and unknown origin (8%) (Table S1). Three
approaches—(i) hierarchical clustering, (ii) population structure and (iii) PCA—revealed a
genetic structure composed of two population clusters broadly reflecting geographical origin.
UPGMA-based hierarchical clustering revealed one major cluster comprising accessions from
the South Asian countries of India and Pakistan (blue-coloured branches), while the other
major cluster contained accessions from outside of South Asia (green-coloured branches)
(Figure 1a). Not all lines, however, matched this trend, including a few accessions from India,
Nepal, Afghanistan and Bangladesh that located within the outside-South-Asia cluster and
a few entries from Europe, Zimbabwe and China that fell within the South Asia cluster. A
third minor cluster was largely composed of accessions from China and a few from Bhutan.
ADMIXTURE suggested a similar structure as UPGMA (Figure 1b). At K = 2, cluster 1 was
composed of accessions from India and Pakistan, while cluster 2 was mostly composed of
accessions from outside India and Pakistan, a trend consistent with a previous report [20].
Using a 70% membership probability cut-off at K = 2, 46% of accessions fell into cluster 1
while 37% of accessions fell into cluster 2, and the remaining 17% were classified as admixed
samples. The admixed samples comprised 13 South Asian (India, Bangladesh, Afghanistan,
Nepal and Bhutan) accessions and 14 accessions from outside South Asia. With increasing K
until K = 4, geographical origin was still traceable to clustering. At K = 3, accessions from India
and Pakistan were dispersed into clusters 1 and 2, while accessions from outside India and
Pakistan mostly constituted cluster 3. This was similar at K = 4, with further sub-structuring
of accessions from outside India and Pakistan comprising clusters 3 and 4. A ten-fold cross
validation error plot of ADMIXTURE runs using K = 1 to 12 (Figure 1c) showed that the error
started to plateau at K = 4, suggesting this as a sensible K choice, while the lowest error was
observed at K = 8. A PC plot reflecting the K = 2 assignment of ADMIXTURE clearly separated
the two clusters at PC1 with admix samples interspersed between the clusters (Figure 1d).
Further, only 18.7% of variation was explained by PC1, with succeeding PCs explaining less
than 5% of variation.

2.3. Variance Components, Basic Descriptive Statistics and Correlations between Total GSLs,
Sinigrin and Gluconapin

Residual distribution showed an approximately normal distribution with a mean of
zero for total GSLs, sinigrin and gluconapin (Figure S1). Sinigrin and gluconapin com-
bined accounted for ~95–99% of the total GSLs for nearly all samples in the diverse panel
(Supplemental File S1). Nearly the entire proportion of variation for total GSLs, sinigrin
and gluconapin concentrations was accounted for by the samples, based on variance com-
ponents analysis using Restricted Maximum Likelihood (REML) (Table S2). This was
further reflected by high broad heritability values of ~98% for the single major GLSs sin-
igrin and gluconapin, and a slightly lower value of ~88% for the total GSLs. Sinigrin
had a higher range of concentrations (1.61–225.09 µmol/g−1) compared to gluconapin
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(0.01–174.57 µmol/g−1). However, the gluconapin concentration was more variable, with
a coefficient of variation (CV) of 108% compared to sinigrin concentrations with a CV of
79.61%. Figure 2 reflects the distribution of raw values of total GSLs (Figure 2a), gluconapin
(Figure 2b) and sinigrin (Figure 2c) concentrations matched with the cluster assignment
from ADMIXTURE. Notably, accessions in different clusters accumulated different single
major GSLs (Figure 2b,c). As reflected in the distributions, cluster 1 and a few admixed
samples predominantly accumulated gluconapin, while the majority of cluster 2 and ad-
mixed samples lacked gluconapin. Contrastingly, cluster 2 and the majority of admixed
samples predominantly accumulated sinigrin, while most of cluster 1 still accumulated
sinigrin at the lower ranges (Figure 2c). Given this finding, we compared the correlations
of sinigrin and gluconapin with total GSLs in the full panel and within the clusters in
which it predominantly accumulated (Figure 2d–g). Gluconapin had a weak correlation
(r = 0.08, non-significant) with total GSLs in the full panel (Figure 2d) and a moderately
positive correlation (r = 0.56) in cluster 1 (Figure 2f). A few outlier points in cluster 1
(Figure 2f) accumulated high sinigrin as their major GSL. While there was only a moderate
correlation (r = 0.51) between sinigrin and total GSLs in the full panel (Figure 2e), a near
perfect positive correlation (r = 0.99) was observed in cluster 2 (Figure 2g). The five outlier
samples in cluster 2 (Figure 2g) comprised four accessions accumulating lower sinigrin
concentrations, although it was still their major GSL, and one accession that accumulated
high gluconapin as its major GSL. There were non-significant weak correlations of sinigrin
and gluconapin with total GSLs within the clusters where they were not predominantly
accumulated (Figure S2a,b). Sinigrin and gluconapin had significant negative correlations,
having the strongest negative value (r = −0.64) in the full panel and a weak (r = −0.37) to
moderate (r = −0.37) value within clusters 1 and 2, respectively (Figure S2c–e).

2.4. GWAS Using Multiple Models

Four GWAS models were tested and resulting q-q plots in each traits (Figure S3) were
compared to assess which models best limited spurious associations, due to structure and
relatedness. BLINK and FarmCPU returned a better correlation between observed and
expected −log10 p-values in the lower range and returned a limited number of deviations
at high log10 p-values. SUPER returned highly inflated −log10 p-values even in the lower
ranges, suggestive that many detected loci were from spurious associations, which might
also explain the exceptionally high number of significant SNPs detected under this model
(Supplemental File S2). MLMM, despite detecting the lowest number of associations, also
showed p-value inflation to some degree. The Manhattan plots from BLINK and FarmCPU
(Figure 3) displayed a number of single SNPs associated above the Bonferroni threshold for
total GSLs (Figure 3a), sinigrin (Figure 3b) and gluconapin (Figure 3c). BLINK detected
four associated SNPs with the total GSL concentration, two on A02 and one each on A10
and B06, while FarmCPU detected four, one each on chromosomes A02, B01 and B02 and
two on B08 (Figure 3a). One association at SNP A02_11235033 was detected in all four
models (−log10 (p) = 6.09–10.39). The association at B02_725738 from FarmCPU was the
strongest association (−log10 (p) = 9.38) for total GSLs considering only the BLINK and
FarmCPU models. For sinigrin concentration, five SNPs were associated in BLINK, one
SNP each on chromosomes A01, B01 and B08 and two on B04 (Figure 3b). FarmCPU also
detected five associated SNPs, one each on chromosomes A03, B01 and B06 and two on
B08 (Figure 3b). Two associations, at SNP B01_43311767 (−log10 (p) = 7.51–10.34) and at
SNP B08_24075810 (−log10 (p) = 6.02–7.68), were commonly detected by both models. The
strongest association (−log10 (p) = 10.34) was at SNP B01_43311767 in BLINK. Compared
to total GSLs and sinigrin, more SNPs were found to be significantly associated with
gluconapin concentration. BLINK detected a total of 14 associated SNPs, comprising one
SNP each on chromosomes A03, A06, A08, A10, B02, B03, B04 and B05, two on B01 and four
on A02. FarmCPU returned six associated SNPs on chromosomes A02, A06, A08, B02, B03
and B05. These associations were distinct, although the association at SNP B02_48309648 in
BLINK and SNP B02_48309753 in FarmCPU were only 105 bp apart. SNP B02_48309648
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in BLINK represented the strongest association (−log10 (p) = 17.47). FarmCPU appeared
the most suitable model for total GSLs and sinigrin with respect to the control of spurious
associations as most observed p-values correlated with expected p-values, with only a few
p-values deviating sharply at the tail end (Figure S2a,b). For gluconapin, BLINK associated
a higher number of SNPs, while controlling best for spurious associations (Figure S2c).
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Figure 1. (a) Cluster analysis based on genetic distance using an UPGMA tree with branches coloured
based on geographical origin: India and Pakistan and rest of South Asia (blue), rest of Asia, Europe,
North America, Africa and Australia (green) and unknown origin (yellow). (b) Population structure
as depicted by a sorted bar plot of ancestry proportions for K = 2–4, inferred with ADMIXTURE.
(c) Ten-fold cross-validation error of ADMIXTURE analyses of K = 1 to 12. (d) Principal component
analysis (PCA) coloured based on cluster assignment (threshold of 70% membership probability) at
K = 2 in ADMIXTURE. Orange triangles used for cluster 1, purple squares for cluster 2 and green
dots for admixture cluster.

2.5. Significant GWAS Hits Had Known and Potential GSL Genes in Their Vicinity

The LD decay plot based on 14,125 SNPs suggested no effective LD (threshold of
r2 = 0.1) at distances above 500 kb (Figure S4); hence, the search for potential candidate
genes (using the B. juncea var. tumida V1.5 annotation) proximal to the trait-associated
SNPs was limited to 250 kb upstream and downstream of the SNP position. Based on
their homology with Arabidopsis genes and respective annotation, candidate genes were
classified as known or potential GSL genes (Table 1).
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R = 0.56 , p = 2.5x 10-7R = 0.084, p = 0.29

R = 0.51, p = 1.3 x 10-11 R = 0.99, p < 2.2 x 10-16

Figure 2. Distribution of raw mean values of (a) total GSLs, (b) gluconapin and (c) sinigrin, reflecting
the ADMIXTURE cluster assignment at K = 2 of each accession (orange for cluster 1, purple for cluster
2 and green for admixture cluster). Correlations using log-transformed values of (d) gluconapin
and total GSLs and (e) sinigrin and total GSLs in the full diversity panel. Correlation using log-
transformed values of (f) gluconapin and total GSLs in cluster 1 and (g) sinigrin and total GSLs
in cluster 2. Orange used triangles for cluster 1, purple squares for cluster 2 and green dots for
admixture cluster.

For total GSLs, homologues of two known GSL genes were identified near SNP
A02_3567961, a significant SNP detected in BLINK and explaining around 7% of the ob-
served trait variation (phenotypic variation explained—PVE). These were GSTF11 [33–35]
at 39.61 kb upstream and SCPL17 [36] at 68.54 kb downstream. SNP A02_11235033, the
most reliable association detected in all four models and accounting for 6% PVE, was
located 128.81 kb upstream of a homologue of OBP2, encoding a known regulator of GSL
biosynthesis [37]. SNP B02_7295738, which was detected in both FarmCPU and SUPER
with 11% PVE, was found located near two potential GSL genes. Homologues to the poten-
tial GSL gene amino acid permease 4 (AAP4) at 213.38 kb upstream and SAL1 at 246.34 kb
were found. SNP B08_66155255, detected only in FarmCPU, albeit at 37% PVE, was a
genic SNP within a potential GSL gene, a putative CYP18-3. Moreover, at 17.56 kb, another
potential GSL gene, a putative 2-oxoglutarate-dependent dioxygenase gene was found.

For sinigrin, SNP A03_27702263 with 4% PVE, detected by FarmCPU and SUPER,
had homologues of several known GSL regulatory genes in proximity. These included a
putative MYB28 [38,39] at 118.32 kb upstream, as well as a putative MYB34 [40,41] and
a MAM1 [42,43] homologue at 115.48 kb and 160.65 kb downstream. SNP B04_9016612
with 7% PVE, significant in BLINK, was found close to a homologue of the known GSL
gene FMOGS-OX5 [44,45] at 1.51 kb upstream. B04_17138489 with 12% PVE, which was
significantly associated only in BLINK, was flanked by a potential GSL gene homologous
to phosphoserine aminotransferase 1 (PSAT1) at 12.75 kb.
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For gluconapin, SNP A02_34185026, detected by BLINK at 11% PVE, was found to
be flanking an LSU2 homologue, a potential GSL gene, at 5.75 kb downstream. SNP
A02_34995417 with 1% PVE, detected in BLINK, was found to be located near additional
homologues of MYB28 and MYB34 at 81.62 kb and 96.36 kb downstream, respectively. SNP
A10_999168, solely detected by BLINK, was flanked by potential GSL genes monothiol
glutaredoxin S11 (GRXS11) at 105.45 kb upstream and a UDP-glycosyltransferase 71C3
(UGT71C3) at 115.13 kb downstream. Variation within these two potential GSL genes may
have contributed to the 11% PVE of this SNP. With 7% PVE, SNP B01_44925254, detected
in BLINK and SUPER, was located near potential GSL genes RETICULATA-RELATED 3
(RER3) at 105.45 kb upstream and a Cysteine Synthase D1 (CYSD1) at 213.34 kb upstream.
The strongest association from both BLINK and FarmCPU was only 105 bp apart and was
considered the same association, SNP B02_48309648-753 with 3% PVE. This association was
180 kb upstream of a HY5 homologue, encoding a known regulator of GSL biosynthesis [46].
SNP B03_474869, detected in FarmCPU with 6% PVE, was located near a potential GSL
gene, SULPHUR DEFICIENCY-INDUCED 2 (SDI2), at 23.76 kb. On the other hand, SNP
B03_7408562, detected in BLINK and MLMM, was found to be near a potential GSL gene,
aldehyde dehydrogenase family 2 member B7 (ALDH2B7), located at 135.05 kb downstream.
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3. Discussion
3.1. Population Structure

The population structure of a diversity panel can confound GWA analysis through
spurious associations [47]. Population clustering based on the UPGMA tree and ADMIX-
TURE (at K = 2) reflected a broad grouping based on geographical origin, with one group
composed mainly of genotypes from South Asia (India and Pakistan) and another group
from outside of South Asia (Figure 1a,b). Recent studies on population structure in Indian
mustard reported a similar trend, with optimal Ks in the range of K = 2–3 [20,48]. In our
study, ADMIXTURE K = 2 split the panel based on geographical origin (Figure 1b), with
further sub-structuring of the two broad clusters until K = 4, a sensible K choice based
on the cross-validation error (Figure 1c). The admixed samples may have resulted from
interbreeding of the two population groups in variety improvement efforts. PCA was also
concordant with the other methods (Figure 1d). The distribution of total GSLs, sinigrin
and gluconapin in our diversity panel resembled that of a different panel of 190 accessions
of diverse geographical origin, quantified for the same chemical traits [14] (Figure 2a–c).
ADMIXTURE clustering reflected in the distribution of sinigrin and gluconapin confirmed
previous reports on the correlations of GSL profiles with origin. Accessions from South
Asian countries India and Pakistan (cluster 1) contained mostly gluconapin and lower levels
of sinigrin, while accessions from outside of South Asia (cluster 2) mostly contained sini-
grin in seeds [49–52]. This structure depicts crop divergence leading to these two varietal
subgroups based on different end uses [18,53]. A strong selection for the health-beneficial
GSL in East-European-type mustard for leafy vegetable and condiment cultivation was
attributed to a predominant accumulation of sinigrin in samples originating from outside
of South Asia. On the other hand, in India, cultivation was geared towards edible oil
use, with yield and increasing the oil content as the main focus of selection for varietal
improvement and not for a specific GSL type [18,51]. Thus, accessions from the Indian
subcontinent, though predominantly accumulating gluconapin, also accumulated a lower
proportion of sinigrin in our panel, consistent with earlier reports [9,50,51]. As such, the
individual correlations of sinigrin and gluconapin with total GSLs were reflected more
accurately at subgroup level than in the full panel (Figure 2f,g). In cluster 1, a weaker
correlation between gluconapin and total GSLs reflected the presence of other GSLs in
the total GSLs in these accessions. Conversely, in cluster 2, an almost perfect correlation
was observed between sinigrin and total GSLs, attributed to higher homogeneity of the
GSL profile. While this structure and the inter-trait correlations might have confounding
effects on the GWAS, the resulting q-q plots for the two selected models suggested that
these covariates were well accounted for and corrected in our analysis.

3.2. Candidate Genes Identified in the Vicinity of Associated SNPs

With the development of newer models with improved statistical power, GWAS
recently incorporated multiple model approaches to maximise the power of QTL detec-
tion [25,54–56]. FarmCPU and BLINK are two of the newest models, with demonstrated
superiority in statistical power compared to earlier GWAS methods [57,58]. The single SNP
peaks observed from our GWAS using BLINK and FarmCPU were characteristic results for
these models. Compared with other earlier models that display large peaks with multiple
SNPs characteristic of “Manhattan” plots, these models highlight only the most significant
marker in each association [54,57,58]. We located several strong homologues of known
Arabidopsis GSL biosynthetic and regulatory genes, as well as potential GSL genes, in the
vicinity of most of the significantly associated SNPs (Table 1). The majority of SNPs showed
minor effects of around 10% PVE or less, as expected for a complex quantitative trait. An
exception was SNP B08_66155255, with 37.03% PVE for total GSLs. These known and po-
tential GSL genes were annotated as such in SuCCombase (https://plant-scc.org, accessed
on 7 September 2021) [59], a curated repository of genes involved in the metabolism of
sulphur-containing compounds including GSLs. While the “known” genes were listed in
the inventory of GSL biosynthetic pathways in Arabidopsis [4,5], the “potential GSL genes”
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were identified from published co-expression data, which pinpoint genes that might be
involved in GSL biosynthesis, yet lack experimental support.

Of the seven listed candidate genes for total GSL concentration, three were found
on chromosome A02, two on B02 and two on B08 (Table 1). BjuA041358 and BjuA041338
were homologues of two GSL structural genes, GSTF11 and SCPL17, respectively, and were
linked to SNP A02_3567961. GSTF11 encodes glutathione S-transferase F11, responsible for
converting the intermediate derivative aci-nitro compounds to reduced glutathione (GSH)
conjugates during aliphatic GSL core structure synthesis [33–35], making BjuA041358 the
stronger candidate. SCPL17, on the other hand, is involved in the production of benzoyloxy
GSLs in Arabidopsis [36], making BjuA041338 a less likely candidate. SNP A02_11235033
was a high-confidence association, considering that it was detected in all four models. The
only candidate gene in this region was BjuA045411, a homologue of OBP2 encoding a
DNA-binding-with-one-finger (DOF) transcription factor [60], demonstrated to regulate
indolic GSL in Arabidopsis [37]. Since nearly all GSLs in B. juncea are aliphatic, however,
this OBP2 homologue would need to have a divergent role to account for the total GSL
variation. The association at SNP B02_7295738, the SNP with the second highest PVE
(11%) for total GSLs, was linked to two potential GSL genes: BjuB047551, a homologue
of AAP4 encoding an amino acid permease 4, and BjuB047557, a homologue of SAL1
encoding an inositol polyphosphate 1-phosphatase [59]. Given the high predicted peptide
sequence similarity (94%), the AAP4 homologue was likely the better candidate gene
compared to the SAL1 homologue at 65% similarity. Despite an exceptionally high PVE
of 37.03% for total GSLs, no homologues to known GSL genes were found in the vicinity
of SNP B08_66155255. However, SNP B08_66155255 was located within the gene model
of BjuB019211, a homologue of CYP18-3, a putative peptidyl-prolyl cis-trans isomerase
potentially involved in GSL metabolism, as suggested by co-expression with known GSL
genes [59]. Furthermore, around 18 kb upstream, a probable 2-oxoglutarate-dependent
dioxygenase encoding gene was located. Known GSL genes AOP2 and AOP3 similarly
encode 2-oxoglutarate-dependent dioxygenases, which catalyse the side-chain oxygenation
in the aliphatic GSL core synthesis [61,62]. The high PVE of SNP B08_66155255 merits
further investigation.

Of the five candidate genes associated with sinigrin, homologues of three known GSL
regulatory genes were found in the vicinity of SNP A03_27702263. BjuA042263, BjuA042229
and BjuA042223 were homologues of MYB28, MYB34 and MAM1, respectively. MYB28, also
known as HAG1 (HIGH ALIPHATIC GLUCOSINOLATE 1), positively regulates aliphatic
GSLs [38,39], with gain-of-function and knock-down mutants showing contrasting levels
of aliphatic GSLs and transcript levels of corresponding biosynthetic genes [38]. MYB28
was further identified and validated through combined multi-omics approaches, including
GWAS, as the major gene controlling leaf and seed GSL content in B. napus [25], suggesting
that natural variation at this locus drives phenotypic variation. In oilseed B. juncea, tar-
geted silencing of a MYB28 orthologue led to the down-regulation of GSL biosynthesis [6],
making BjuA042263 a very strong candidate for this QTL region and a high priority for
our further validation efforts. On the other hand, MYB34 mainly exerts its role in the
roots to regulate indolic GSL synthesis [40,41] and MAM1 is a methylthioalkylmalate syn-
thase involved in the GSL side-chain elongation of short-chained aliphatic GSLs [42,43],
suggesting their respective B. juncea homologues to be less likely causal for the effects
associated with SNP A03_27702263. SNP B04_9016612, with 7% PVE, was a genic SNP
within BjuB028146, a homologue of FMOGS-OX5 encoding a flavin-containing monooxyge-
nase. FMOGS-OX5 functions in aliphatic GSL side-chain modification by S-oxygenation of
the basic aliphatic GSL derivatives [44,45], making BjuB028146 a high-priority candidate
gene. BjuB028703, homologous to the potential GSL gene PSAT1, was located near SNP
B04_17138489, with 12% PVE. PSAT encodes a putative phosphoserine aminotransferase
in the serine biosynthetic pathway [63]. Although this locus had a high PVE, PSAT1 has
not been directly associated with aliphatic GSL metabolism. However, serine is a substrate
for tryptophan biosynthesis, which in turn is a precursor for the production of indolic
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GSLs [64]. Furthermore, in Arabidopsis, it is regulated by MYB34 and MYB51, two activators
of indolic GSL biosynthesis [63].

Ten candidate genes, three known and seven potential GSL genes, can be speculated
to contribute to gluconapin variation. Among these, BjuA033112 a homologue of LSU2
(RESPONSE TO LOW SULPHUR 2), was found less than 6 kb from SNP A02_34185026.
While LSU proteins are of unknown function, they were demonstrated to be important
stress-related hubs [65] and considered marker genes of sulphur metabolism [66], making
BjuA033112 a good candidate to account for the considerable 11% PVE of this locus. Interest-
ingly, MYB28 and MYB34 homologues, additional copies of which were already implicated
in the variation in sinigrin concentration on chromosome A03, were found in the vicinity
of SNP A02_34995417, although this SNP contributed little to the observed gluconapin
variation. BjuA002140 was a homologue of MYB28, while BjuA001524 was a homologue of
MYB34. Copy number variation (CNV) of MYB28 homologues on different chromosomes
might have led to the divergence that specifically accounts for sinigrin and gluconapin
accumulation in different genetic backgrounds. Recently, CNV was uncovered on MYB28
loci through pairwise sequencing of a vegetable variety, T84-66, and an Australian oilseed
variety, AU213 [17]. Among the associations with high PVE (11%) was SNP A10_999168,
located near homologues of two potential GSL genes. BjuA037341 was a homologue of
UGT71C3 encoding an UDP-glycosyltransferase, and BjuA037371 a homologue of GRXS11
encoding monothiol glutaredoxin, implicated in nitrogen signalling [67]. The direct in-
volvement of UDP-glycosyltransferase UGT74B1 [68] and of UGT74C1 in aliphatic GSL
core synthesis [69] suggests that BjuA037341 is the higher-confidence candidate for this
association. Having been detected in BLINK and SUPER, SNP B01_44925254 was a reliable
and strong association (−log10 (p) = 16.86) for gluconapin. However, homologues of only
two potential GSL genes were found in proximity. These were BjuB006588, homologous
to RER3 encoding RETICULATA-RELATED 3, and BjuB006607, homologous to CYSD1, a
cysteine synthase and a member of the O-acetylserine(thiol)lyase (OASTL) gene family.
OASTLs include OASA1, an S assimilation pathway gene that catalyses the biosynthesis of
cysteine and a precursor for GSL formation [70].

A LONG HYPOCOTYL 5 (HY5) homologue, BjuB009816, was located near the high-
confidence gluconapin associations SNP B02_48309748-53 at a PVE of 3%. HY5, a tran-
scription regulator, was shown to partly control the light regulation of GSL biosynthetic
genes, as well as many genes in the sulphate assimilation pathway [46]. Additionally, hy5
Arabidopsis mutants showed altered expression of GSL biosynthetic genes and MYB TFs as-
sociated with aliphatic GSL regulation [46]. BjuB005751, a homologue of another potential
GSL gene, SDI2 encoding SULPHUR DEFICIENCY-INDUCED 2, was located near SNP
B03_474869. Under sulphur-limiting conditions in Arabidopsis, SDI2 acts as a repressor of
aliphatic GSL biosynthesis at transcript and metabolite levels [71]. Despite being detected
under non-limiting sulphur conditions, this B. juncea SDI2 homologue could affect GSL
composition. Lastly, BjuB003011 a homologue of a potential GSL gene ALDH2B7 encoding
an aldehyde dehydrogenase family 2 protein, was located near SNP B03_7408562. While
two models detected this association for gluconapin, no literature support was found for
the involvement of ALDH2B7 in GSL biosynthesis, aside from it being listed as a potential
GSL gene in SuCCombase [4,59].

We found no overlap in proposed candidate genes with the GWAS study by Akhatar
et al., 2020, probably owing to different aims, translating to differences in panel composition,
different methods of GSL quantification and differences in cultivation. Furthermore, they
limited the candidate gene search to a narrow window of 25 kb upstream and downstream
of peak SNPs. The Akhatar et al., 2020, study was conducted under field conditions, with
the aim to study the effects of various nitrogen levels. They used only 92 accessions, which
were phenotyped for GSL content using Near-Infrared Reflectance Spectroscopy (NIRS) on
intact seeds to predict total GSLs. In contrast, we phenotyped a larger, more diverse panel
grown under controlled conditions, using quantitative approaches for several specific GSLs.
Their study detected associations using a relaxed −log10 (p) ≥ 3 threshold and proposed
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proximate candidate genes encoding for shikimate kinases (chromosome A04), chorismate
mutase (chromosomes A06 and B04), jasmonate O-methyltransferase (chromosome B03),
branched-chain-amino-acid transaminase (chromosome B06), cytochrome P450 enzyme
CYP81G1 (chromosome B06) and MYB44 transcription factor (chromosome B06). Of these
candidates, only the CYP81G1 was listed as a potential GSL potential gene in SuCCombase
and no genes had homologues of known and validated function in GSL biosynthesis or
regulation. In contrast, our GWAS study used a controlled-environment growing condition,
coupled with HPLC-MS-based analysis for the accurate quantification of individual GSLs,
and applied a stringent Bonferroni threshold for the detection of associations. Yang et al.,
2021, identified only two major control loci in a panel of 183 mixed vegetable and oilseed
accessions phenotyped for individual GSLs using HPLC and genotyped at a density of
689,411 SNPs. MYB28 (chromosome A02 and A09) was highlighted as a priority candidate
gene, supporting the role of MYB28 as a key regulator of GSL accumulation in B. juncea.
Thus, our findings add value to previous studies and provide an exceptional resource
of novel candidate gene homologues to known structural and regulatory genes of GSL
metabolism. Further validation through allele mining and gene expression profiling is
warranted, especially for associations explaining high levels of phenotypic variation and
detected in multiple models.

4. Materials and Methods
4.1. Plant Materials and Growing Conditions

A diversity panel of 158 Indian mustard accessions from 28 countries, which had under-
gone two rounds of single seed descent (SSD) (Table S1), were grown in a CONVIRON® plant
growth chamber (model: PGCFLEX, Winnipeg, MB, Canada) at Southern Cross University
Lismore, New South Wales (28.8◦ S, 153.3◦ E), from March to mid-May 2020. Several seeds per
accession were sown at 5 mm depth in a 10-cm-diameter free-draining plastic pot filled with
commercial potting soil and thinned to one plant per pot two weeks after emergence. Each
accession was grown in triplicate in a complete randomised block design. Three-week-old
seedlings were supplied with 25 mL of diluted to half strength liquid fertiliser Canna A + B
(CANNA Australasia, Subiaco Western Australia, delivered through syringe plunger, per
pot. The growing conditions were set at 16 h of artificial lighting at 22 ◦C and eight hours of
dark at 16 ◦C. Harvesting was done when all siliques were dried, and harvested siliques were
further air-dried at 40 ◦C for 72 h before threshing.

4.2. Glucosinolate Analysis

In total, three biological replicates per accession (consisting of two individual seeds
each) were used for quantifying GSL concentrations, following the method by Borpa-
tragohain et al., 2019 [72]. In brief, two seeds per sample were placed in an Eppendorf
safe-lock tube, to which 1.5 mL of 70% methanol and a 5 mm stainless-steel bead was
added. The samples were then homogenised using a Qiagen Retsch MM 301 TissueLyser II
(Qiagen Retsch, Hilden, Germany)) at 30 Hz for 45 s. Next, the samples were centrifuged
for 15 min at 15,000 rpm at 7 ◦C using a Sigma laboratory tabletop centrifuge (Osterode
am Harz Germany). An aliquot of 200 µL was transferred from the supernatant solution
after centrifugation to a 2 mL Agilent HPLC screw-cap vial. The samples were then dried
down using Martin Christ Alpha RVC (Osterode am Harz Germany) at successively re-
duced pressure of 180, 120, 80, 50, 20 and 5 mbar each at one-hour intervals, while 5 mbar
was kept overnight. The dried samples were resuspended in 1.5 mL water containing
1.17 µmol mL−1 glucotropaeolin (a GSL not found in Brassicas) as internal standard. The
tubes were mixed by inverting several times. Eight individual GSLs were quantified, includ-
ing sinigrin (SIN), gluconapin (GNP), progroitrin (PGT), epi-pogroitrin (EPI), glucoiberin
(GIB), glucoraphanin (GRF), glucobrassicin (GBS) and gluconarturtiin (GNT), using an
Agilent 1260 Infinity II High Performance LC-MS instrument (Agilent Technologies, Palo
Alto, CA, USA). HPLC-MS parameters used are detailed in Supplemental File S3. Total
GSLs is the sum of the eight GSLs measured.
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4.3. Bioinformatic Analyses and Data Processing

Illumina’s FastQ sequence outputs were demultiplexed using Axe [73]. Both reads
from the paired-end data were aligned against the B. juncea var. tumida T84-66 V1.5 genome
reference (http://39.100.233.196:82/download_genome/Brassica_Genome_data/Braju_
tum_V1.5, accessed on 15 January 2022) [53]. SNP calling was carried out using the Stacks
pipeline [74], using default parameters and a low-level filter by looking for a minimum
allele frequency of 5% for an SNP to be considered. Among the duplicated samples, the
sample with the lower call rate was removed. Filtering of the resulting variant table for
SNPs with a 60% call rate, non-minor allele frequency filtered and 10% maximum marker
heterozygosity was done using TASSEL 5.2.73 [75]. Missing marker states for all remaining
unique genotypes were imputed using Beagle 5.2 [76] with default parameters and the
effective population size (Ne) set to 500,000.

4.4. Statistical Analysis

Residual distribution and quantile–quantile plots were visualised using Genstat 64-bit
Release 18.1 (VSN International Ltd., Hemel Hempstead, England UK) to assess the nor-
mality and homoscedasticity of the phenotype data. Data were log10 (x + 0.01) transformed
for subsequent estimation of the variance components and heritability values using REML
Restricted Maximum Likelihood (REML) implemented in Genstat 64, as well as input for
GWA. Best Linear Unbiased Predictions (BLUPs), calculated using genotype and replicate
effects in REML, were used as phenotype input in GWAS. Correlations among GSL traits
using raw mean values were computed using the ‘ggpubr’ package [77], implemented in
the R environment.

4.5. Genome-Wide Association Analysis

Marker–trait association was performed using the Genome Association and Prediction
Integrated Tool (GAPIT Version 3) [78,79]. To select the best models, an initial analysis using
the four most recommended models as discussed in the GAPIT manual based on statistical
power was conducted [79]. These were multiple locus mixed linear model (MLMM) [80],
Settlement of MLM Under Progressively Exclusive Relationship (SUPER) [81], Fixed and
random model circulating probability unification (FarmCPU) [57], Bayesian-information
and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) [58]. The best models were
selected based on the resulting q-q plots, which reflected how well each model accounted
for population structure and familial relatedness. Manhattan plots were visualised using R
package ‘CMplot’ [82].

4.6. Cluster, Population Structure and Principal Components Analysis

A separate set of 1174 higher-confidence SNPs imputed and filtered for >80% call rate,
5% minor allele frequency (maf) and 10% maximum heterozygosity, covering pseudochro-
mosomes, and linkage-disequilibrium (LD) pruned, was used for cluster, population and
principal components analyses. LD pruning was done using Plink [83] (version 1.07) with
the following parameters: window of 50 SNPs, step size of five markers and an r2 threshold
of 0.4 [84]. An UPGMA (unweighted pair group method with arithmetic mean) tree was
built for cluster analysis of all 158 lines. The genetic distance input for tree building was
simple matching coefficients calculated in TASSEL (version 5.2.72) [75] and UPGMA was
visualised using ITOLv6 (https://itol.embl.de/, accessed on 3 September 2021). A maxi-
mum likelihood estimate for population structure was carried out in ADMIXTURE [85] and
barplots for Q matrix (probability of group membership) were visualised using package
‘pophelper’ [86] implemented in the R environment. The analysis was done for K = 1 to
K = 10, and a ten-fold cross-validation procedure was used to determine the “best” K. PCA
was conducted in TASSEL (version 5.2.72) and plotted using the ‘ggplot2′ [87] R package.
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4.7. Candidate Genes within Significant SNPs

Predicted candidate genes within 250 kb upstream and downstream of each signif-
icantly associated SNP were identified using the B. juncea BRAD v.1.5 annotation. The
BRAD V1.5 genes were annotated for putative function by alignment to the Arabidopsis
TAIR10 release using NCBI BLASTP [88,89], integrated into the in-house SCPS Galaxy
(http://lr-scps5-rh7v.scps.scu.edu.au:8080, accessed on 9 September 2021), and associating
the annotation of the Arabidopsis genes in the top-scoring hits. All these annotations and
genome information were integrated into the SCPS Galaxy. Next, we matched the Arabidop-
sis locus identifiers from our BLAST+ list and that of “known” and “potential GSL genes”
curated in SuCCombase (https://plant-scc.org, accessed on 7 September 2021) for listing
our candidate genes. Top hits identified as either “known” or “potential GSL genes” based
on SuCCombase were prioritised as candidate genes. In a few cases, we chose the “known”
or “potential GSL gene” even if they ranked second to third in BLASTP, provided that the
percent identity was more than 60% across more than 50% of the total length alignment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11030364/s1, Supplemental File S1. Glucosinolate mea-
surements of the accessions in the diversity panel; Table S1. List of accessions and country of origin
in the diversity panel; Figure S1. Residual distribution and normal plots for total GSLs, sinigrin and
gluconapin; Table S2. Variance components analysis and descriptive statistics for total GSLs, sinigrin
and gluconapin evaluated in 158 diverse B. juncea L. accessions; Figure S2. Correlations of major
GSLs, sinigrin and gluconapin, and total GSLs in ADMIXTURE clusters; Figure S3. Quantile–quantile
plots reflecting correspondence between observed and expected −log10 (p) values from association
analyses using four models (SUPER, MLMM, FarmCPU, BLINK) for total GSLs, sinigrin and glu-
conapin; Supplemental File S2. List of SNPs passing the Bonferroni threshold from four models;
Figure S4. Linkage disequilibrium (LD) depicted based on squared correlation coefficient of pairwise
markers in a sliding window of 100 SNP markers; Supplemental File S3. HPLC-MS parameters used
for glucosinolate analysis.
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Portuguese Common Bean Natural Variation Helps to Clarify
the Genetic Architecture of the Legume’s Nutritional
Composition and Protein Quality
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Abstract: Common bean is a nutritious food legume widely appreciated by consumers worldwide. It is
a staple food in Latin America, and a component of the Mediterranean diet, being an affordable source of
protein with high potential as a gourmet food. Breeding for nutritional quality, including both macro and
micronutrients, and meeting organoleptic consumers’ preferences is a difficult task which is facilitated
by uncovering the genetic basis of related traits. This study explored the diversity of 106 Portuguese
common bean accessions, under two contrasting environments, to gain insight into the genetic basis of
nutritional composition (ash, carbohydrates, fat, fiber, moisture, protein, and resistant starch contents)
and protein quality (amino acid contents and trypsin inhibitor activity) traits through a genome-wide
association study. Single-nucleotide polymorphism-trait associations were tested using linear mixed
models accounting for the accessions’ genetic relatedness. Mapping resolution to the gene level was
achieved in 56% of the cases, with 102 candidate genes proposed for 136 genomic regions associated
with trait variation. Only one marker-trait association was stable across environments, highlighting the
associations’ environment-specific nature and the importance of genotype × environment interaction
for crops’ local adaptation and quality. This study provides novel information to better understand the
molecular mechanisms regulating the nutritional quality in common bean and promising molecular
tools to aid future breeding efforts to answer consumers’ concerns.

Keywords: ash; amino acids; carbohydrates; fat; fiber; GWAS; nutritional quality; Phaseolus vulgaris;
resistant starch; trypsin inhibitor

1. Introduction

Consumers are increasingly more health-conscious and striving to have greater diver-
sity and healthier foods in their diets [1]. Common bean, or bean (Phaseolus vulgaris L.),
is an important and affordable source of protein, dietary fiber, essential vitamins, and
minerals [2]. It is one of the most important food legumes cultivated and consumed world-
wide [3], being a staple food in Eastern Africa and Latin America [4], and a component of the
Mediterranean diet [5]. Consequently, bean is an important crop to fight malnourishment,
particularly protein malnutrition [3], as well as an important food for the prevention of a
variety of non-communicable diseases due to its diversity of health-promoting compounds,
such as resistant starch and dietary fiber (reviewed in [6]). In addition to its nutritive
composition, common bean can be consumed in a variety of culinary forms and specific
high-quality landraces can attract high market prices (gourmet foods) [7].
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Despite its compositional richness, common bean production and consumption have
been declining in Europe. Several factors contributed to this, such as low productivity,
changes in consumers’ preferences, and little investment in breeding and food innova-
tion [8]. Nevertheless, breeding programs could be instrumental to reverse this decline
through the development of bean varieties, first with higher and stable yields, increasing
the attractiveness of this crop to farmers, but also with higher nutritional quality, more
adapted to present consumers’ demands [8]. Although particularly important to increase
bean consumption and market demand, the traits related to nutritional quality, like the
contents of particular compounds, are normally complex, controlled by many genes with
small effects, and highly influenced by environmental factors [9]. Consequently, nutritional
quality is hard to handle by conventional plant breeding.

The complexity of food nutritional quality breeding comes also from potential hid-
den interactions among the quality-related compounds. In particular, legumes possess
bioactive compounds which can act simultaneously as health-promoting compounds and
anti-nutritional factors, impairing nutrients’ bioavailability, and influencing both taste
and consumers’ food acceptability [10]. Protease inhibitors are among these bioactive
compounds, as they are anti-inflammatory and anti-carcinogenic compounds, and si-
multaneously interfere with digestion through the irreversible inhibition of trypsin and
chymotrypsin (reviewed in [6]). Trypsin inhibitors interfere for instance with protein
digestibility, reducing protein quality, a nutritional quality-related trait that has gained
importance in recent years [11]. Protein quality is also evaluated in terms of amino acid
composition. Although considered valuable sources of protein, the nutritional quality of
legumes protein is often lower than that of animal protein, due to their reduced content
on sulfur amino acids (methionine and cysteine) [12]. Nevertheless, variation exists in
nature or may be generated, and higher protein quality in terms of improved amino acid
composition and digestibility is presently regarded as an important target for legume
breeding [13].

A common aspect of the mentioned nutritional quality-related targets is that many
of these nutritional compounds’ contents are laborious and expensive to measure and so
difficult to routinely implement in breeding programs. However, the use of genomics-
assisted breeding allows a considerable time and cost reduction in the development of crop
varieties with improved nutritional contents as compared to conventional breeding [9].
Nevertheless, genomics-assisted breeding requires the clarification of the genetic basis
of the target traits to be applied. Until now, studies on the genetic control of common
bean seed composition have mainly focused on specific minerals such as iron and zinc.
These studies used linkage mapping approaches, resorting to segregating populations from
controlled crosses (e.g., [14,15]), or genome-wide association study (GWAS) approaches
(e.g., [16,17]) to understand the genetic basis of these traits. However, only a reduced
number of linkage and association mapping studies focused on macronutrients and protein
quality. Examples are the study of Casañas et al. [18] on the genetic basis of ash, dietary fiber,
starch, and protein among other traits, using a recombinant inbred line (RIL) population to
perform a linkage mapping approach, or the Katuuramu et al. [19] study, on the genetic
basis of protein and mineral contents using an association mapping approach.

Genome-wide association studies (GWAS) using populations of unrelated individuals
to examine associations between genotypic polymorphisms and phenotypes are presently
regarded as a good alternative to linkage mapping approaches to identify quantitative
trait loci (QTL) responsible for complex traits variation [20]. Coupled with other recent
advancements, such as the sequencing of reference genomes (e.g., the common bean
genome [21]) or high-throughput next-generation sequencing (NGS) approaches, GWAS
uncovers functional loci/genes underlying the genetic variation of complex traits with
higher mapping resolution and broader genetic basis [22].

More than five centuries of bean cultivation in Portugal have produced a very diverse
germplasm. Indeed, Portugal is considered a secondary center of origin of common
bean diversity [23]. This germplasm diversity is expressed at agronomic, nutritional,
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and molecular levels [24,25] and proofed ideal for association genetic studies such as the
identification of fusarium wilt resistance-associated candidate genes, and the identification
of SNP alleles and candidate genes affecting photosynthesis under contrasting water
regimes [26,27].

The present study aims to identify the genomic regions and/or candidate genes asso-
ciated with common bean nutritional composition (ash, carbohydrates, fat, fiber, moisture,
protein, and resistant starch contents) and protein quality (amino acid contents and trypsin
inhibitor activity) within a diverse Portuguese germplasm collection, using a GWAS ap-
proach. We will test SNP-trait associations using linear mixed models accounting for the
genetic relatedness between accessions and compare the SNP-traits association profile
under two contrasting environments. By incorporating a heat stress environment in the
study, we will be able to assess QTL stability under an expected climate change scenario
for future exploitation of potential genotype × environment (G × E) for local adaptation.
This study will also be useful for the development of molecular tools to facilitate routine
evaluations on nutritional composition and protein quality, increasing the efficiency of
common bean breeding for improved nutritional quality.

2. Results

The present study was carried out to clarify the genetic architecture of nutritional
composition and protein quality-related traits in common beans by making use of the
Portuguese germplasm natural variation. For that, previously collected data [25] on the
nutritional composition and protein quality of a diverse collection of 106 Portuguese
common bean accessions, cropped in two contrasting environments (Cabrela, central
Portugal, with a mild climate, and Córdoba, southern Spain, a heat stress prone region),
was complemented with the resistant starch quantification of the same samples prior to a
genetic analysis through a genome-wide association study.

The total phenotypic data analyzed included nutritional composition related traits
such as macronutrient contents (protein, carbohydrates (CH), fat, fiber, ash, moisture, and
resistant starch (RS)), and protein quality-related traits such as amino acids contents (Ala-
alanine; Arg-arginine; Asp-aspartic acid; Glu-glutamic acid; Gly-glycine; His-histidine; Ile-
isoleucine; Leu-leucine; Lys-lysine; Met-methionine; Phe-phenylalanine; Pro-proline; Ser-
serine; Thr-threonine; Tyr-tyrosine; Val-valine), and trypsin inhibitor activity (TIA). Traits
regarding nutritional composition were measured in the two contrasting environments,
whereas protein quality-related traits were only measured in the samples harvested in the
most stressed environment, Córdoba.

This phenotypic data was then integrated with previously obtained single-nucleotide
polymorphism (SNP)-based genotypic data (16,689 SNPs before quality control), screened
through Illumina Infinium BARCBean6k_3 BeadChipTM assay and DArTseqTM analysis [26].
Genomic regions associated with the traits were highlighted, through GWAS, taking into
consideration the population structure.

2.1. Phenotypic Trait Variation

Most nutritional composition-related traits showed a similar range of phenotypic
variation between environments (Figure S1). Nevertheless, for all these traits, apart from
fat, significant differences were detected between the two environments, and most traits
showed higher coefficients of variation, or variability, in Córdoba than in Cabrela (Table 1).
Fat and resistant starch showed the highest variability among the nutritional composition-
related traits, in both environments.

125



Plants 2022, 11, 26

Table 1. Average ± standard deviation (and coefficient of variation (%)) of ash, fat, fiber, carbo-
hydrates (CH), protein, moisture, and resistant starch (RS) contents (g/100 g) in a collection of
106 Portuguese common bean accessions grown in two contrasting environments (Cabrela with a
mild climate, and Córdoba, a heat stress prone region). Data calculated from best linear unbiased
estimators (BLUEs). In each column different letters indicate significant differences (p < 0.05).

Ash Fat Fiber CH Moisture Protein RS

Cabrela 3.16 ± 0.08 a

(2.6)
1.44 ± 0.24 a

(16.4)
5.75 ± 0.45 a

(7.8)
60.57 ± 1.53 a

(2.5)
13.55 ± 0.47 a

(3.5)
21.28 ± 1.44 a

(6.8)
30.74 ± 3.49 a

(11.4)

Córdoba 3.25 ± 0.13 b

(4.1)
1.49 ± 0.32 a

(21.7)
6.77 ± 0.72 b

(10.7)
56.65 ± 1.75 b

(3.1)
14.48 ± 0.51 b

(3.5)
24.14 ± 1.66 b

(6.9)
45.23 ± 11.36 b

(25.1)

Of the traits measured only in Córdoba, trypsin inhibitor activity showed the highest
variability (29.6%). Among the amino acid contents, Methionine stood out showing the
highest variability (21.2%). The remaining amino acid contents had all very similar coeffi-
cients of variation. The amino acid present, on average, in lower amounts was Methionine
(1.06 g/100 g) and the one present in higher amounts was Glutamic acid (20.44 g/100 g)
(Table S1).

Variance components were estimated for the nutritional composition-related data
obtained from the Córdoba and Cabrela trials taken together. A high influence of the
environment (E) was observed for the majority of the traits (Figure 1). The effect of E
ranged from 0 to 70.4% and the effect of G×E ranged from 12.8% to 60%. From the seven
analyzed traits, ash and fat were the only ones that did not have the environment as the
largest variance component. The biggest variance component for ash was G×E (60%),
followed by E (20.3%), whereas the biggest variance component for fat was the genotype
(G) (51%), followed by G×E (39.7%). Fat was thus an exception as the remaining six traits
had variance components values inferior to 9% for G. Since the G×E effect was generally
larger than G effects on the phenotypic variability, subsequent analyses were performed
separately for the two contrasting environments with the exception of fat.

Figure 1. Variance components for the nutritional composition related traits measured in a collection of
106 Portuguese common bean accessions grown in two contrasting environments (Cabrela with a mild
climate, and Córdoba, a heat stress prone region). The “-t” after the trait’s name indicates that data
was transformed following a Box-Cox transformation. Genotype (G), environment (E), genotype by
environment interaction (G×E), block, and residual (error), carbohydrates (CH), resistant starch (RS).
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Traits’ broad-sense heritabilities (Tables S2–S4) were, in general high, with values
between 53% and 98%. The nutritional composition-related traits and trypsin inhibitor
activity showed, in general, higher heritabilities than the amino acid contents. Also, the
nutritional composition-related traits showed higher heritabilities for Córdoba than for
Cabrela environment. Wald tests (Tables S2 and S3) indicated that there were significant
differences among genotypes and no block effects for most of the measured traits. Wald
test for fat (Table S4), calculated with genotype and environment terms fixed, indicated
that there were significant differences among genotypes but not between environments.

A strong negative correlation between carbohydrates and protein (Pearson correlation
coefficient, r = −0.97, Cabrela; r = −0.95, Córdoba; Figures S2 and S3), and a moderately
strong negative correlation between carbohydrates and ash (r = −0.51, Cabrela; r = −0.63,
Córdoba), were observed. Considerable positive correlations were identified between
protein and ash (r = 0.62, Cabrela; r = 0.74 Córdoba) and between moisture and ash
(r = 0.56, Cabrela; r = 0.40 Córdoba). There were strong positive correlations among the
different amino acid contents, but only small correlations between these and the trypsin
inhibitor activity. The correlations between protein quality-related traits and nutritional
composition-related traits were, overall, small (Figure S2).

With the best linear unbiased estimators (BLUEs or adjusted means), two principal
component analyses (PCAs) were computed: one with the nutritional composition data
from both environments, and another with the nutritional composition and protein quality
data measured only at Córdoba environment.

The PCA with nutritional composition data collected in Cabrela and Córdoba environ-
ments (Figure 2A) depicted the impact of the environment on common beans’ nutritional
composition as well as highlighted interesting quality accessions considering the measured
traits. The two first principal components explained 70.79% of the total variability. The
biplot demonstrates a clear separation of environments, with accessions collected in Córdoba
showing higher variability and, in general, higher contents of ash, protein, moisture, fiber,
and resistant starch. Examples of bean accessions grown in Córdoba with high contents of ash
and protein are accessions 1636 and 1644. Complementing these, accessions 587, 1952, 4049,
4073, 5367, and 5370 showed some of the highest contents of protein and fiber in Córdoba
but also high contents of ash and resistant starch in the same environment. Accession 4100
showed one of the highest values of fat, the highest value of carbohydrates in Córdoba, and
one of the lowest values for protein, ash, fiber, and moisture. Interestingly, despite having the
highest content of fiber among samples grown in Córdoba and one of the highest contents
of protein, accession 5370 showed the opposite phenotype in the samples grown in Cabrela
where it had one of the highest contents of carbohydrates. On the other hand, accessions
4049 and 5367 showed some of the highest contents of ash, protein, and fiber in Cabrela,
maintaining a similar nutritional composition in Córdoba. Accessions 600, 1631, 4081, 4100,
and 5381, grown in Cabrela, showed the highest contents of carbohydrates overall.

The second PCA (Figure 2B) included protein quality-related traits in addition to the
nutritional composition traits measured in common bean accessions grown in the heat
stress environment (Córdoba). The first two principal components explained 64.94% of
the total variability, with the first principal component explaining most of the variability
(51.91%). This PCA showed that accession 5370 was among the accessions with the highest
protein contents and with the highest content of the various amino acids. On the other
hand, accession 5371 had even higher amino acid contents, but only average contents of
protein and remaining nutritional composition-related traits.
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Figure 2. Principal component analysis based on BLUEs of nutritional composition and protein quality-related traits 
measured in a collection of 106 Portuguese common bean accessions. (A) Biplot representing accessions grown in Cabrela 
(purple) and accessions grown in Córdoba (orange). Trait loading vectors of the seven nutritional composition-related 
traits are represented by arrows. Relevant accessions are identified by their accession numbers followed by 1 or 2 according 
to the corresponding environment: 1-Cabrela; 2-Córdoba. (B) Biplot representing accessions grown in Córdoba (orange). 
Trait loading vectors of the 24 nutritional composition and protein quality-related traits are represented by arrows. CH-
carbohydrates; RS-resistant starch; Ala-alanine; Arg-arginine; Asp-aspartic acid; Glu-glutamic acid; Gly-glycine; His-
histidine; Ile-isoleucine; Leu-leucine; Lys-lysine; Met-methionine; Phe-phenylalanine; Pro-proline; Ser-serine; Thr-
threonine; Tyr-tyrosine; Val-valine; TIA-trypsin inhibitor activity. The “-t” after the trait’s name indicates that data was 
transformed following a Box-Cox transformation. 

2.2. SNP-Trait Associations 
Accessions adjusted means for each trait were tested for association with SNP data 

taking population structure or familial relatedness into consideration. Manhattan plots 
depicting GWAS results for protein are shown in Figure 3, all the remaining traits’ 
Manhattan plots are shown in Figures S4–S6. For most traits, the best model for 
association analysis, with an inflation factor closer to 1 (Table S5) and Q–Q plots showing 
fewer P-values deviating from the expected uniform distribution that holds under the null 
hypothesis (Figure S7), was the model using a different kinship matrix per chromosome. 
For His, Lys, Phe, Ser, and Thr a model using 15 principal components to control for 
population structure was used.  

Figure 2. Principal component analysis based on BLUEs of nutritional composition and protein
quality-related traits measured in a collection of 106 Portuguese common bean accessions. (A) Biplot
representing accessions grown in Cabrela (purple) and accessions grown in Córdoba (orange). Trait
loading vectors of the seven nutritional composition-related traits are represented by arrows. Rel-
evant accessions are identified by their accession numbers followed by 1 or 2 according to the
corresponding environment: 1-Cabrela; 2-Córdoba. (B) Biplot representing accessions grown in
Córdoba (orange). Trait loading vectors of the 24 nutritional composition and protein quality-related
traits are represented by arrows. CH-carbohydrates; RS-resistant starch; Ala-alanine; Arg-arginine;
Asp-aspartic acid; Glu-glutamic acid; Gly-glycine; His-histidine; Ile-isoleucine; Leu-leucine; Lys-
lysine; Met-methionine; Phe-phenylalanine; Pro-proline; Ser-serine; Thr-threonine; Tyr-tyrosine;
Val-valine; TIA-trypsin inhibitor activity. The “-t” after the trait’s name indicates that data was
transformed following a Box-Cox transformation.

2.2. SNP-Trait Associations

Accessions adjusted means for each trait were tested for association with SNP data
taking population structure or familial relatedness into consideration. Manhattan plots
depicting GWAS results for protein are shown in Figure 3, all the remaining traits’ Manhattan
plots are shown in Figures S4–S6. For most traits, the best model for association analysis,
with an inflation factor closer to 1 (Table S5) and Q–Q plots showing fewer P-values deviating
from the expected uniform distribution that holds under the null hypothesis (Figure S7),
was the model using a different kinship matrix per chromosome. For His, Lys, Phe, Ser, and
Thr a model using 15 principal components to control for population structure was used.
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Figure 3. Manhattan plot depicting the genome-wide association results for protein content in com-
mon bean using 78 Portuguese accessions grown in the Cabrela environment (left) and 94 Portuguese
accessions grown in the Córdoba environment (right). The y-axis represents the −log10 (p-value) of
9601 SNPs and the x-axis shows their chromosomal positions across the common bean genome. The
horizontal red line indicates the significance threshold (p-value = 10−3).

A total of 224 marker-trait associations were identified for the 24 nutritional composition-
and protein quality-related traits studied, with the defined threshold −log10 (p-value) = 3.
The conservative Benjamini-Yekutieli p-value adjustment supported the significance of 151
(67%) of these associations (Table S6). Marker-trait associations were found for all traits
except for Glu, Gly, His, Ile, Leu, Met, Pro, and Thr. A total of 181 unique SNPs was
responsible for the 224 marker-trait detected associations, indicating that some of the SNPs
were associated with more than one trait. The 181 associated SNPs were organized in
136 unique genomic regions, each genomic region englobing the markers within a linkage
disequilibrium (LD) block. One hundred and five SNP markers were significantly associated
with the nutritional composition traits measured in Cabrela and 37 in Córdoba, being one
SNP marker (DART03724) commonly associated with the same trait (moisture) in both
environments. Moisture was the trait with the biggest number of associations detected in
one environment (62 in Cabrela but only 6 in Córdoba). However, a significant portion of the
SNPs associated with moisture in Cabrela was located within the same LD blocks (62 SNPs
were located within 36 genomic regions). Among protein quality-related traits, Arg content
had the biggest number of associations detected (32). However, similarly to moisture, a
large portion of these SNPs was within the same LD blocks (32 SNPs were located within
13 genomic regions). The association of the same SNP with different traits occurred mainly
among amino acid content traits, being eight markers associated with more than one trait.
SNP04308 and SNP09201 were the markers associated with the highest number of traits,
each associated with four different amino acid contents. Except for Arg, out of the eight
amino acid traits with associated markers, all shared markers with another trait.

Marker-trait associations were identified across all the common bean chromosomes.
Amino acid contents, in particular, were mostly associated with markers belonging either
to chromosome Pv02 or Pv09.

Most marker-trait associations explained only a small percentage of the observed
phenotypic variance, with an average of 16.2%. Moisture (measured in Cabrela) was an
exception to this, with markers explaining up to 70.6% (DART04597) of the observed
phenotypic variance. Other SNPs explaining larger proportions of variance, besides the
previously referred, were SNP01084 (45.6%; resistant starch, Cabrela), DART02462 (31.3%;
fat, both environments), SNP01413 (29.7%; ash, Cabrela) DART11240 (24.0%; carbohydrates,
Cabrela), and SNP00787 (24.1%; Arg, Córdoba) (Table S6). The variant allele for 64% of the
associated SNP markers had a positive effect on the trait in this association panel.

2.3. Candidate Gene Identification

A gene was considered a putative candidate for the phenotypic trait under analysis if it
contained an associated SNP or was in linkage disequilibrium (LD) with an SNP associated
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with the trait, observing a strict LD-decay threshold (r2 > 0.2). This was investigated using
the JBrowse tool in Phaseolus vulgaris v2.1 genome in Phytozome v12 portal. One hundred
and two different candidate genes were identified within 136 genomic regions responsible
for trait variation.

The gene-trait network (Figure 4) established for the 102 identified candidate genes
showed a clear separation between groups of traits and environments. Candidate genes for
protein quality-related traits did not connect to candidate genes for nutritional composition-
related traits. Similarly, with one exception, candidate genes for traits measured in Cabrela
did not connect to candidate genes for traits measured in Córdoba. The exception to this was
gene Phvul.004G045900, encoding for a galacturonosyltransferase 9, which linked moisture
measured in Córdoba to moisture, protein, and carbohydrates measured in Cabrela. Most
connections of the same gene to various traits occurred among amino acids, with four
different genes connecting three different amino acids. There were also various genes
connected to both carbohydrates and protein, in both environments.

Figure 4. Network analysis of the candidate genes proposed for the nutritional quality traits using
106 Portuguese common bean accessions grown in two contrasting environments (Cabrela and
Córdoba), using Cytoscape software. Traits represented as rectangles; genes represented as diamonds.
Genes identified by green diamonds correspond to candidate genes for the SNP markers associated
with the highest P-value for each trait. Traits are identified as: 2014-Cabrela; 2015-Córdoba; 2014–
2015 — both environments; “-t” — trait data transformed following a Box-Cox transformation.
CH-carbohydrates; RS-resistant starch; Ala-alanine; Arg-arginine; Asp-aspartic acid; Lys-lysine;
Phe-phenylalanine; Tyr-tyrosine; Val−valine; TIA-trypsin inhibitor activity.

Functional categorization of the candidate genes was obtained using MapMan (Mer-
cator) web tools to better understand the involvement of the candidate genes in different
metabolic pathways. From the candidate genes identified, 41.7% had a functional category
assigned (Figure 5, Table S7). The assigned categories showed some diversity within each
trait and a high diversity overall, with 15 different categories assigned to the 102 candidate
genes. The most common functional categories attributed by MapMan across all traits were
“enzyme classification” (12%), “RNA biosynthesis” (4.6%), “RNA processing” (3.7%), and
“vesicle trafficking” (2.8%).
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Figure 5. MapMan functional categories of the candidate genes associated with the nutritional
composition and protein quality-related traits in 106 Portuguese common bean accessions grown in
two contrasting environments. Candidate genes for amino acid contents were pooled together. The
nine bar charts represent the number of candidate genes of a given functional category associated
with ash, fat, fiber, carbohydrate, moisture, protein, resistant starch (RS), trypsin inhibitor activity
(TIA), and amino acid contents.

In the frame of this work, it was not possible to highlight all candidate genes located
within the associated genomic regions in detail. We, therefore, restrict ourselves to highlight
those that were (1) located within regions associated with multiple quality-related traits, and
with (2) a biological annotation related to the studied trait. The candidate gene associated
with the biggest number of quality related-traits, which also had a biological annotation
related to the traits, was Phvul004G045900, encoding a galacturonosyltransferase 9, which
was associated with carbohydrates, protein, and moisture (in both environments). Another
candidate gene highlighted due to its association with more than one quality-related trait
was Phvul010G13440, encoding a hydroxyproline-rich glycoprotein family protein, which
was associated with protein and carbohydrate contents. Finally, the genes highlighted
due to their biological annotation were Phvul004G056800, encoding an ankyrin repeat
family protein, Phvul009G061400, encoding a cytochrome P450, family 82, subfamily C,
polypeptide 4, and Phvul002G113000, encoding a transmembrane amino acid transporter
family protein, respectively associated with resistant starch, ash, and Arg.

3. Discussion

This study explored the natural variation of 106 accessions from the highly diverse and
underused Portuguese common bean germplasm grown under contrasting environments
(traditional and heat stress), using a GWAS approach to unveil the genetic architecture of
24 nutritional compositions and protein quality-related traits. The generated knowledge
will allow a better understanding of the molecular mechanisms and pathways regulating
the nutritional composition and protein quality in common beans. Further, it will assist
the development of promising molecular tools to help breeders answer consumers’ diet
concerns and to support farmers to better exploit G×E quality interactions under future
climate constraints. A total of 136 common bean genomic regions controlling the natural
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variation of the analyzed traits were identified in this association panel. Additionally,
102 putative candidate genes for the trait-associated regions were proposed.

3.1. Genomic Regions and Candidate Genes Associated with Common Bean Nutritional
Composition and Protein Quality-Related Traits

SNP marker-trait associations were identified for all the nutritional composition and
protein quality-related traits analyzed except for Glu, Gly, His, Ile, Leu, Met, Pro, and Thr.
A mean of 9.5 marker-trait associations was identified per trait, each SNP explaining, on
average, a small percentage of the phenotypic variation (around 16%). Mapping resolution
to the gene level was achieved in 55.9% of the cases (LD blocks where a single gene was
identified), demonstrating the complex genetic nature of common bean nutritional quality-
related traits and validating the use of GWAS to harness the diversity of this Portuguese
common bean germplasm.

The protein content is one of the most relevant food grain legume traits for breeding,
as the interest in plant-based protein increases in developed countries to provide healthier
diets, and the need for cheap protein sources to fight malnourishment in developing
countries remains [28,29]. Previous studies identified Quantitative Trait Loci (QTL) for seed
protein content on common bean chromosomes Pv05 and Pv07 using a Xana×Cornell 49242
RIL population, with parental lines belonging to the Andean and Mesoamerican gene pools,
respectively [18], and on Pv03, Pv06, and Pv07 using a subset of the Andean Diversity
Panel [19]. Our study identified significant marker-trait associations for protein content
on chromosomes Pv02, Pv04, Pv07, Pv09, Pv10, and Pv11. The LD blocks around the five
associated markers identified in Pv07 (DART06714, DART06845, DART06856, DART03216,
and DART03273) were such that each marker was located in an independent genomic
region. Of these five marker-trait associations one was at 23Mb, three between 32 and
33 Mb, and the fifth at 37 Mb. The QTL identified on Pv07 by Casañas et al. [18] was located
5Mb away from the QTL identified by Katuuramu et al. [19] which was located at 7.6 Mb.
Therefore, both previously identified QTLs were located more than 10 Mb away from the
presently identified QTLs, and therefore out of our LD windows. This suggests that in
common bean several regions control seed protein concentration on chromosome Pv07.
The different genotypic resources used between these three genetic studies may probably
explain these findings. The use of association mapping populations, such as the one used
in the present study, characterized by unrelated accessions of Andean, Mesoamerican,
and of admixed genetic origin, or of Andean origin as in Katuuramu et al. [19], allows
the exploration of a larger allelic diversity (broader genetic basis), with higher mapping
resolution. This contrasts with the use of bi-parental linkage mapping populations which
have a narrower genetic basis, resulting in a smaller potential identification of genomic
regions associated with the trait of interest [22]. This might explain the smaller amount of
genomic regions associated with protein content identified by Casañas et al. [18] using a
RILs population developed from the cross of only two parental lines although from the
different Andean and Mesoamerican gene pools.

Several of the markers associated with protein content were simultaneously associated
with carbohydrate content (in both environments) but with contrasting effects on trait
variation, reflecting the expected strong negative correlation between these related traits.
One of these markers was SNP04726, which was the second most significantly associated
with protein content (explaining 9.4% of the variability) and was also associated with
carbohydrates content, explaining 10.8% of its variability (data from Cabrela field trial).
A candidate gene including this marker sequence was Phvul.010G134400, which encodes
a hydroxyproline-rich glycoprotein family protein (HRGP). HRGPs are known to accu-
mulate in cell walls as a general response of dicotyledons to infection by biotrophic and
necrotrophic fungi, bacteria, and viruses [30]. In particular, this reaction was described in
common beans as a response to infection by the causal agent of anthracnose [31]. Selecting
for this marker/gene candidate could allow an increase in protein content to the detriment
of the carbohydrate content in new bean varieties. Nevertheless, several of the other mark-
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ers associated with these traits in the present study were only associated with either protein
or carbohydrate contents. Therefore, selecting for those markers could allow an increase or
decrease of the contents of either trait (protein and carbohydrates) independently of the
other trait.

Apart from the genes associated with both protein and carbohydrates contents, very
few other SNPs/candidate genes related to nutritional composition were connected to more
than one trait, reflecting the small correlations among most nutritional composition-related
traits. Indeed, most SNPs and subsequent candidate genes for all the studied nutritional
quality-related traits were only associated with one trait, as can be seen in the network
analysis of candidate genes (Figure 4).

Of note, among the genes connected to more than one trait, is Phvul.004G045900, which
encodes a galacturonosyltransferase 9. Two markers led to the identification of this gene,
DART03724 which was associated with carbohydrate contents measured in seeds from
Cabrela and moisture contents measured in both environments, and DART06845 which was
associated with protein content measured in seeds from Cabrela. This gene was the only
identified candidate associated with more than three traits, the only gene connected to the
same trait in both environments, and with a corresponding variant allele responsible for
the largest effect on trait variability for carbohydrates, protein, and moisture (data from
Córdoba). Galacturonosyltransferases are required for the synthesis of pectin, a family of
complex polysaccharides present in the cell walls of all land plants [32]. Moreover, pectin is
involved in the regulation of ion transport and porosity of cell walls and is consequently
involved in the control of cell wall permeability and determination of water holding capac-
ity [33]. Therefore, galacturonosyltransferase 9 seems to be an interesting candidate for the
variation of both carbohydrate and moisture contents in common bean seeds.

Moisture measured in seeds from Cabrela showed the biggest number of marker-trait
associations detected (62) and the largest percentage of variation explained by a marker
(70.6%). However, a significant portion of the associated SNPs was located within the same
LD blocks, as 62 SNPs were located within 36 genomic regions. Two chromosomes, Pv07
and Pv03, are of particular interest and could be responsible for most of the observed varia-
tion. Pv07 contains one genomic region which includes the marker responsible for 70.6%
of the moisture phenotypic variation. Pv03 contains most of the markers associated with
moisture (43) as well as the marker associated with this trait at the highest statistical signifi-
cance. Most of the associated markers within this chromosome (37) were enclosed within a
relatively small section of the chromosome (3Mb) and were thus relatively close physically.
Despite the physical closeness, 25 genomic regions (LD blocks) were still detected within
this section of the chromosome suggesting that various QTL may be responsible for the
phenotypic variation of moisture within this chromosomal region. Moisture from Cabrela
contrasted with most other traits in the amount of explained variability per QTL, including
moisture measured in seeds from Córdoba. In the Córdoba environment, moisture was
associated with six markers, each explaining less than 9% of the phenotypic variance. The
difference in the proportion of variance explained between environments was mainly due
to higher effects of each marker on the phenotypic variation in Cabrela (up to 0.7) than in
Córdoba (up to 0.3). This difference might indicate some inflation of the effect attributed to
each marker. This inflation could be explained by the relatively small mapping population
used since smaller populations lead to inflated QTL effects [34].

QTLs for ash, fiber, and starch in common bean were also identified through linkage
mapping in the previously mentioned study of Casañas et al. [18]. In that study, QTLs
for ash were identified on chromosomes Pv01 and Pv07, for fiber on Pv06 and Pv07, and
for starch on Pv01, Pv02, Pv04, and Pv07. Similarly, our study identified a marker-trait
association for ash on chromosome Pv01, and for resistant starch on Pv01 and Pv04. A can-
didate gene for DART03741, associated with resistant starch on Pv04, is Phvul.004G056800,
encoding an Ankyrin repeat family protein. This family of proteins includes members
implicated in carbohydrate allocation and has been associated with reduced starch in
tobacco transformants carrying a specific ankyrin repeat family gene [35].
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Also associated with ash content was the SNP03984 in Pv09. A candidate gene for
this associated SNP is Phvul.009G061400 which encodes a cytochrome 450, family 82,
subfamily C, polypeptide 4 (CYP82C4). CYP82C4 is a heme-containing enzyme that is
strongly correlated with genes involved in metal uptake/transport and is possibly involved
in the early iron deficiency responses in Arabidopsis thaliana, as was proposed by Murgia
et al. [36]. The involvement of this gene in the uptake/transport of iron becomes particularly
interesting when considering that iron deficiency is the most common and widespread
nutritional disorder in the world [36].

The strong correlations among amino acid contents were reflected by the association of
several SNPs to more than one of these traits. As an example, four molecular markers and
the respective candidate genes were associated with three different amino acid contents:
DART01478, SNP00739, SNP00741 were associated with Asp, Phe and Tyr; and SNP04308
was associated with Ala, Lys, and Val contents. Interestingly, Arg was the only amino acid
content that did not share SNPs and subsequently candidate genes with other amino acid
contents. Of the several SNP markers associated with Arg, the one within the candidate
gene Phvul.002G113000 was the most strongly associated and the one that explained the
highest proportion of variance (20.2%). This gene encodes a protein of the transmembrane
amino acid transporter superfamily. These are integral membrane proteins involved in the
absorption of amino acids from the soil, load and transport of amino acids in the phloem,
absorption of amino acids in seeds, and long-distance transport and distribution of amino
acids in seeds [37]. Functional analysis of this gene would be relevant to understand the
usefulness of this gene and whether the content of Arg is the only affected by this variant
allele, as the marker has not been considered as associated with the other amino acid
contents due to the chosen −log10 (P) threshold.

3.2. Portuguese Common Bean Germplasm Nutritional Quality Richness and the Influence
of Environment

As has been previously shown, the environment, in particular heat and drought stress,
influence the maturing process of seeds, affecting various nutritional quality traits in the
process (reviewed in [38]). Accordingly, environment and G×E had large effects on the
nutritional quality traits variation observed in the Portuguese common bean germplasm
collection and scored across field trials. Common bean accessions grown in Córdoba (heat
stress environment) showed higher variability, as well as higher average contents of ash,
fiber, moisture, protein, and resistant starch than accessions grown in Cabrela (milder
environment). On the other hand, carbohydrates and moisture contents were on average
lower in Córdoba than in Cabrela. As discussed by Mecha et al. [25], despite the general
connection between reduced yield and heat stress [39], no differences in yield were observed
in the two environments used in this study, likely due to the presence of artificial irrigation.
Therefore, the differences in nutritional composition observed between environments were
likely due to heat stress. In particular, heat stress has been associated with alterations in
carbohydrate metabolism, affecting synthesis but also the accumulation of carbohydrates
during seed filling [38,40], which could explain the reduction of carbohydrate contents in
the seeds grown in Córdoba. Unlike the remaining nutritional composition traits, fat was
the only trait with a reduced effect of the environment on trait variability.

In addition, G×E was also significant on the traits analysed in both environments,
particularly for ash and fat contents. G×E occurs when genotypes differ in their relative
performance across environments and corresponds to the presence of genetic factors with
environment-specific effects [41]. The magnitude of G×E varies among traits and accessions
and in some cases can lead to crossover interactions as can be seen in the present study
with accession 5370, for example, which showed one of the highest contents of protein
when grown in Córdoba and one of the lowest contents of protein when grown in Cabrela.
Another example is accession 1636, which showed one of the highest contents of fat when
grown in Cabrela and lowest contents of fat in Córdoba, and the opposite concerning ash
(one of the highest contents of ash in Córdoba and one of the lowest in Cabrela). In other
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cases, crossover interactions do not occur, and the relative performance of the genotypes is
maintained across environments, as can be seen with accession 4049, for example, which
showed one of the highest contents of protein, ash, and fiber in both environments.

As previously stated, DART03724 with Phvul.004G045900 as a putative candidate
gene, was the only molecular marker/gene associated with the same trait (moisture) in both
environments. The lack of more markers stably associated with traits across environments
is a consequence of the environment-specific nature of the genomic regions associated with
the studied traits. Constitutive QTLs, which show consistent effects across environments,
are the main targets for breeding programs as they can improve crop performance across
various regions where the crop can be grown. Nevertheless, it is possible to take advantage
of significant G×E by breeding for local adaptation [41] and also increase the efficiency of
this selection using the specifically associated molecular markers instead of performing
time-consuming and expensive phenotyping. Examples of promising associated markers
explaining considerable amounts of trait variability are DART11240 for carbohydrates
content (in Cabrela) and SNP00732 for Arg (in Córdoba) that explained 24.0% and 20.2% of
these traits’ phenotypic variation. The fact that the great majority of the presently identified
QTLs are environment-specific indicates that breeding efforts for nutritional quality traits
in the Portuguese common bean collection should focus on developing varieties adapted
to location-specific growing conditions, as proposed by Vaz Patto and Araújo [8]. The
higher variability within traits observed in the stressed environment of Córdoba highlights
the genetic richness of the Portuguese germplasm collection and its potential for location-
specific breeding, namely for production under heat stress conditions.

Under these more stressful conditions, particular Portuguese accessions stood out as
promising sources of protein quality-related traits. Traits such as bioactive compounds
that influence protein digestibility and limiting amino acids are factors used to determine
protein quality [42]. Limiting amino acids are the essential amino acids, or the amino acids
that must necessarily be provided by the diet, that are in shortest supply [6]. As expected in
a legume species, Met was the limiting amino acid (1.06 g/100 g) in the Portuguese common
bean accessions analyzed. Pearson correlations showed that amino acid contents were
strongly correlated among themselves and weakly correlated with TIA and the nutritional
composition traits. As a consequence of the strong correlation among amino acids contents,
targeted conventional breeding for increased Met should not be feasible. This can be
explained by the low Met content of phaseolin, the main storage protein of common bean
(40–50% of the total protein content), which despite being deficient in Met is still the major
source of this amino acid [43]. Montoya et al. [43] proposed instead the exploration of
the natural variability of phaseolin in terms of their protein digestibility, to increase the
availability of Met and improve the protein quality of common bean. Although highly
reduced by the processing, namely boiling (reviewed in [42,44]), the presence of trypsin
inhibitors compromises protein digestibility and amino acid absorption, thus affecting
protein quality (reviewed in [6]). In general, the accessions that showed in the present
study the highest contents of protein and amino acids were also the accessions with the
highest TIA. For example, accession 5371 displayed one of the highest contents of amino
acids but also high contents of TIA. However, the reduced correlation of TIA with the
remaining protein quality-related traits at the genetic level (different genomic regions
involved in their control) suggests the possibility of altering the contents of amino acids
and TIA independently through conventional breeding, which is especially facilitated by
the help of the detected associated molecular markers.

Due to the detailed and expensive nature of the analysis developed to measure some
of the nutritional quality traits, the size of the population and the number of tested en-
vironments had to be restricted in the present study. Smaller populations lead to lower
QTL detection power as well as inflated estimates of QTL effects [34]. Nevertheless, the
relatively high heritability observed in the analyzed traits compensates for the small pop-
ulation size to some extent, as the power for detecting QTLs is a function of population
size x heritability of the trait [34]. Nevertheless, we were able to detect the most relevant
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QTL for breeding in this association panel, as QTL with minor effects are the ones harder to
detect [34]. Additionally, due to the previously referred constraints, protein quality-related
traits were only measured in one of the environments. This decision was based on the
higher variability observed in that environment but allowed us also to collect phenotypic
data in the heat stress environment mimicking future climate changes expected in the
Mediterranean region.

In conclusion, this study further characterized the Portuguese common bean germplasm
through the clarification of its genetic architecture of nutritional quality traits. The func-
tional categorization of the proposed 102 candidate genes for 24 nutritional composition
and protein quality-related traits demonstrated the involvement of a variety of metabolic
pathways in the determination of common bean nutritional quality, corroborating the
genetic complexity of these traits. Additionally, this study provided a unique resource of
molecular markers associated with common bean nutritional and protein quality traits,
which will help to answer consumers’ nutritional demands as well as broader vs. local
adaptation on future breeding efforts. In particular, the inclusion of data from Córdoba, a
heat stress environment, allowed the identification of markers relevant for quality breeding
in a context of climate change with increasing temperature scenarios, such as the one being
experienced in the Mediterranean area.

4. Materials and Methods
4.1. Plant Material and Growing Conditions

A collection of 106 common bean accessions, from the Portuguese plant germplasm
bank (BPGV, INIAV, Braga, Portugal) was used for the present genetic study. This collection
was the same as described by Leitão et al. [26,27] to identify genomic regions controlling
fusarium wilt resistance and photosynthetic efficiency-related traits in common bean.
Based on genotypic data, it is known that this collection is mainly composed of accessions
belonging to the Andean gene pool and a smaller proportion to the Mesoamerican gene
pool. Additionally, one-third of the accessions have an admixed origin and might represent
putative hybrids between the Andean and Mesoamerican gene pools [24].

Seeds from the bean accessions were sown in two different environments following a
randomized complete block design, with two replicates at each environment, as described
by Mecha et al. [25]. The field trials were developed in two different years and locations.
The first field trial took place from May to September 2014 in Cabrela, Portugal, and the
second from March to July 2015 in Córdoba, Spain. Cabrela represents a standard common
bean production area in Portugal, characterized by temperature average ranges of 18–21 ◦C
and 66–80% of relative humidity during the growing season, whereas Córdoba represents a
heat stress prone area, characterized by temperature average ranges of 15–32 ◦C and 31–63%
of relative humidity during the growing season. The two field trials were established under
artificial irrigation. Mature dried seeds were collected from a total of 106 accessions, 66 in
both environments, 12 exclusively in Cabrela (environment with a total of 78 accessions)
and 28 exclusively in Córdoba (environment with a total of 94 accessions). The mature dried
seeds were milled to a particle size of 0.8 mm and stored at −20 ◦C until chemical analysis.

4.2. Phenotypic Data Acquisition

Twenty-three traits related to nutritional composition and protein quality were mea-
sured in the common bean harvested from the two field trials as described by Mecha
et al. [25] and retrieved for the present genetic association study. Total protein, total car-
bohydrates (CH), fat, fiber, moisture and ash contents, were measured in the samples
from Córdoba and Cabrela, and the contents of 16 different amino acids (Ala-alanine;
Arg-arginine; Asp-spartic acid; Glu-glutamic acid; Gly-glycine; His-histidine; Ile-isoleucine;
Leu-leucine; Lys-lysine; Met-methionine; Phe-phenylalanine; Pro-proline; Ser-serine; Thr-
threonine; Tyr-tyrosine; Val-valine) and trypsin inhibitor activity (TIA), were measured
only in the samples from the most stressful environment (Córdoba). In addition, in the
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present study, resistant starch (RS) content was measured in all the harvested samples,
completing a total of 24 traits analyzed.

Briefly, Mecha et al. [25] determined total protein, fat, fiber, moisture and ash (%)
content using a near-infrared (NIR) analyzer (MPA; Bruker, Billerica, MA, USA). Total
carbohydrates were calculated following Equation (1):

total carbohydrates = 100 − (total protein + total fat + moisture + ash). (1)

A LC-MS/MS system Waters Alliance 2695 HPLC system coupled to a triple quadrupole
mass spectrometer, Micromass®Quattro micro API (Micromass, Waters, Milford, MA, USA),
equipped with an electrospray ionization source (ESI) was used to determine the content of
the 16 amino acids [25]. Protein was hydrolyzed using a solution of HCL 6 M with 0.1% of
phenol and the final amino acid extract resulted from the resuspension of the hydrolysates
in HCL 0.1M after the evaporation to dryness of the initial solution.

The chromatographic separation was performed in a Mediterranean Sea 18, 5 µm
20 × 0.21 cm, 1.8 µm, (Teknokroma®, Barcelona, Spain) column. The amino acids were
analyzed by multiple reaction monitoring (MRM) mode, using an ESI source operating
in ion positive mode. Amino acids were identified by comparison with the amino acids’
standard retention time and corresponding m/z values.

Trypsin inhibitors were extracted from 0.5 g of common bean flour to which 25 mL of
NaOH 0.01M were added, and the pH was adjusted to 9.5 ± 0.1. Inhibition percentage and
trypsin inhibitor activity were calculated according to Mecha et al. [25]. Resistant starch
was quantified following the methods AACC 32-40.01 [45] and AOAC 2002.02 [46]. The
method was performed using a Resistant Starch Assay Kit (K-RSTAR, Megazyme, Bray,
Ireland). A buffer solution of sodium maleate (pH 6.0), containing pancreatic α-amylase
and amyloglucosidase, was added to the thawed samples of common bean flour. The
samples were incubated in a water bath with horizontal agitation (100 rpm) at 37 ◦C for
36 h. The reaction was interrupted with the addition of ethanol (99%). The solution was
centrifuged at 3000 rpm for 10 min, and the pellet, containing resistant starch, was washed
two additional times with ethanol (50%) followed by centrifugation. The resulting pellet
was resuspended in potassium hydroxide (2M) under continuous agitation in an ice and
water bath for 20 min. The solution was then neutralized with a buffer solution of sodium
acetate (pH 3.8). The existing starch was hydrolyzed to glucose through the action of the
amyloglucosidase in a water bath at 50 ◦C for 30 min. The samples were centrifugated,
and two 0.1 mL aliquots were collected from the liquid phase. Simultaneously, a blank
sample was prepared with 0.1 mL of sodium acetate 0.1 M (pH 4.5) as well as four standard
glucose solutions with 0.1 mL of glucose solution (1 mg/mL). For glucose quantification,
through spectrophotometry, 3 mL of glucose oxidase/peroxidase reagent were added to
each tube, followed by a 50 ◦C incubation for 20 min. The absorbance of the samples was
evaluated at 510 nm against the blank sample. The average glucose content of each sample
was compared to the absorbance values of the standard glucose solutions to obtain the
concentration of resistant starch.

4.3. Phenotypic Data Analysis

Quality control of phenotypic data was performed separately for each environment.
Technical repetitions were averaged for each accession to minimize technical error. A
descriptive statistical analysis was performed using the summary statistics option of Gen-
stat®software, 21st edition [47]. Histograms and boxplots were generated per trait to
analyze data distribution and to identify outliers. The normality of residuals was assessed
for each trait using the Shapiro-Wilk test. A Box-Cox transformation was applied when
needed to meet normality assumptions.

A linear mixed model was fitted per trait as trait = genotype + block + error for the
analysis of traits measured in a single environment and as trait = genotype + environment
+ genotype x environment + block + error for the analysis of traits measured in both envi-
ronments using the restricted maximum likelihood (REML) variance component analysis
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framework of Genstat software, where environment identifies the two field trials and block
identifies the two plot replicates within each trial.

Models were initially fitted with all terms as random to obtain the best linear unbiased
predictors (BLUPs), estimate variance components, broad-sense heritability and Pearson
correlation coefficients between traits. In a second step, genotype and block were fitted
as fixed terms to obtain the best linear unbiased estimates (BLUEs), for each trait and
accession. BLUEs were determined for fat with genotype and environment fitted as fixed
terms. Wald tests for the significance of fixed effects were performed. BLUEs were used for
principal component analysis (PCA) and as input phenotypic data for GWAS.

To estimate how much of the variation of accessions’ nutritional composition could
be explained by the environment or the interaction with the environment, the previously
defined model was fitted considering environment and genotype × environment as fixed
terms, and a Wald test was performed to test for the significance of the fixed effects.

4.4. Genotypic Data
4.4.1. Association-Mapping Analysis

Genome-wide association studies were conducted for all the 24 traits using the QTL
library procedures from Genstat software. Adjusted means (BLUEs) for each trait were tested
for association with a previously collected genotypic dataset [26] retrieved for the present
study. This genotypic dataset was constituted of 9601 single nucleotide polymorphisms
(SNPs) after quality control (removal of SNP markers and accessions with >25% missing data,
as well as SNPs with a minor allele frequency <0.01 from the 16,689 SNPs originally screened)
and was obtained through two different approaches, the Illumina Infinium BARCBean6k_3
BeadChipTM assay and DArTseqTM analysis [26]. SNPs called heterozygous were set as
missing data. Furthermore, some accessions were not phenotyped for some of the traits.
Thus, association mapping was performed using 72 accessions for the amino acid contents
and trypsin inhibitor activity and 94 accessions for the remaining traits measured in seeds
from Córdoba; and for 78 accessions for all the traits measured in Cabrela.

GWAS was performed separately for Cabrela and Córdoba environments for the traits
that showed a higher variance component of genotype by environment (GxE) interaction
than of genotype (G). Otherwise, the association study was performed with data from both
environments together. GWAS was performed in the mixed model framework of Genstat soft-
ware, fitting SNP as fixed and genotype as random terms using REML [48]. Four models were
tested to detect significant marker-trait association: a null model [Phenotype = SNP + Error],
which does not account for any population structure or familial relatedness; a model ac-
counting for population structure (Q) [Phenotype = Q + SNP + Error], using 15 principal
components from the principal component analysis (PCA); and two models accounting for
familial relatedness (K) [Phenotype = SNP + genotype + Error], one with genotype random
effects structured following a kinship matrix K [48,49]; and another using a different kinship
matrix calculated for each chromosome using only the SNPs located on the remaining
10 chromosomes, as proposed by Cheng et al. [50]. The kinship matrices to account for
familial relatedness per chromosome among genotypes were previously calculated by
Leitão et al. [26] and retrieved to perform the present association studies. Inflation factor
values near 1 and quantile-quantile (Q–Q) plots of the respective p-values with lower
deviations from the expected uniform distribution under the null hypothesis were the
considered parameters to select the best model accounting for genetic structure/relatedness
among genotypes.

The observed −log10 (p-value) of each SNP was plotted against its chromosomal
position to produce a Manhattan plot. Significant SNP-trait associations were detected at
a threshold of −log10 (p-value) = 3. This threshold was set taking into consideration two
aspects: the size of the association panel used and the background noise of the obtained
Manhattan plots. Similar criteria were already described in other works with comparable
panel sizes and a similar number of markers, focusing on resistance/tolerance traits [26] to
avoid losing potentially interesting regions while applying a conservative type of adjustment
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such as Bonferroni correction. However, as a “conservative” guidance, adjusted p-values
following the Benjamini and Yekutieli (BY) false discovery rate (FDR) method [51] were
calculated, with α = 0.2 and k = 520 (the effective number of independent tests was set as the
number of LD blocks per chromosome [52]), to control type I errors due to multiple testing.

For every SNP significantly associated with a trait, the effect of the minor-frequency
SNP variant was calculated. The proportion of variance explained by each SNP-trait associ-
ation was estimated using the formula VQTL/Vpheno, where VQTL = 2freq(1-freq)effect2 and
Vpheno is the phenotypic variance of the adjusted means of each trait [53].

4.4.2. Candidate Gene Identification

A gene was considered a putative candidate for the phenotypic trait under analysis if
it contained an associated SNP or was in linkage disequilibrium (LD) with an associated
SNP observing a strict LD-decay threshold (r2 > 0.2). LD was previously calculated for each
common bean chromosome using the squared coefficient of the correlation between marker
pairs r2 [26], and retrieved for the present study. Neighbouring SNPs showing r2 > 0.2
in relation to the associated SNPs were considered to be within the same LD block or
genomic region. Putative candidate genes were searched for using the JBrowse tool in the
Phaseolus vulgaris v2.1 genome (DOE-JGI and USDA-NIFA, http://phytozome.jgi.doe.gov/,
accessed on 16 December 2021), available at the Phytozome v12 portal [54]. The annotation
of the candidate genes was obtained from the file “Pvulgaris_442_v2.1.annotation_info.txt”,
available in the previously referred portal.

Candidate genes were also assigned to MapMan bins, which described biological
contexts/concepts, using Mercator4 V2.0 [55]. Cytoscape software [56], version 3.8.2, was
used to visualize the candidate genes associated with each trait as a network.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants11010026/s1, Figure S1: Histograms of the 24 nutritional composition and protein quality
traits measured in a collection of 106 Portuguese common bean accessions. Figure S2: Pearson’s
correlations between the 24 nutritional composition and protein quality traits measured in the seeds
of a collection of 72 Portuguese common bean accessions grown in the Córdoba environment. Figure
S3: Pearson’s correlations between the seven nutritional composition traits measured in the seeds of
a collection of 78 Portuguese common bean accessions grown in the Cabrela environment. Figure
S4: Manhattan plot depicting the genome-wide association results for ash, fiber, carbohydrates,
moisture, and resistant starch content in common bean using 78 Portuguese accessions grown in
the Cabrela environment. Figure S5: Manhattan plot depicting the genome-wide association results
for ash, fiber, carbohydrates, moisture, protein, resistant starch, Alanine, Arginine, Aspartic acid,
Glutamic acid, Glycine, Histidine, Isoleucine, Leucine, Lysine, Methionine, Phenylalanine, Proline,
Serine, Threonine, Tyrosine, Valine and Trypsin inhibitor activity content in common bean using
94 Portuguese accessions grown in the Córdoba environment. Figure S6: Manhattan plot depicting
the genome-wide association results for fat content in common bean using 106 Portuguese accessions
grown in the Cabrela and Córdoba environments. Figure S7: Quantile-quantile (Q-Q) plots for the
SNP-trait associations of the 24 nutritional composition and protein quality-related traits measured
in Cabrela, Córdoba, or both environments. Table S1: Average, standard deviation, and coefficient
of variation (%) of 16 amino acids and trypsin inhibitor activity (g/100 g) measured in the seeds of
72 Portuguese common bean accessions grown in Córdoba. Table S2: Wald test statistics and broad-
sense heritability for several nutritional composition traits measured in the seeds of 78 Portuguese
common bean accessions grown in the Cabrela environment. Table S3: Wald test statistics and broad
sense heritability for several nutritional composition and protein quality traits measured in the seed
of 94 Portuguese common bean accessions grown in the Córdoba environment. Table S4: Wald
test statistics and broad sense heritability for fat measured in the seed of 106 Portuguese common
bean accessions grown in two contrasting environments. Table S5: Inflation factors for the linear
mixed models tested for genome-wide association of 24 nutritional composition and protein quality-
related traits measured in common bean seeds collected in Cabrela and Córdoba. Table S6: SNP
associations (−log10 (p-value) ≥ 3) with 24 nutritional composition and protein quality traits under
two contrasting environments (Cabrela and Córdoba), marker position within chromosomes, allelic
reference and allelic variant for the associated SNP, minor allele frequency, the effect of the allelic
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variant (rare allele), and the proportion of phenotypic variance explained by each associated SNP
detected using a panel of 106 Portuguese common bean accessions. Table S7: Putative candidate
genes for the 16 nutritional composition and protein quality traits for the significant (−log10 (p-value)
≥ 3) SNP-trait associations under two contrasting environments (Cabrela and Córdoba).
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Abstract: Seeds, especially those of certain grasses and legumes, provide the majority of the protein
and carbohydrates for much of the world’s population. Therefore, improvements in seed qual-
ity and yield are important drivers for the development of new crop varieties to feed a growing
population. Quantitative Trait Loci (QTL) have been identified for many biologically interesting
and agronomically important traits, including many seed quality traits. QTL can help explain the
genetic architecture of the traits and can also be used to incorporate traits into new crop cultivars
during breeding. Despite the important contributions that QTL have made to basic studies and plant
breeding, knowing the exact gene(s) conditioning each QTL would greatly improve our ability to
study the underlying genetics, biochemistry and regulatory networks. The data sets needed for
identifying these genes are increasingly available and often housed in species- or clade-specific
genetics and genomics databases. In this demonstration, we present a generalized walkthrough of
how such databases can be used in these studies using SoyBase, the USDA soybean Genetics and
Genomics Database, as an example.

Keywords: QTL; GWAS; candidate gene; genomics; genetics; database; SoyBase

1. Introduction

Since the introduction of bi-parental QTL analysis in plants [1] in the early 1980s,
QTL regions have been described in both plant and animal species [2]. In early QTL
analyses, the number of markers used and the limited number of progeny examined meant
that the genetic regions encompassed by a QTL were usually large. These regions could
include dozens, if not hundreds of genes, making candidate gene identification for the trait
measured tedious, if not impossible (reviewed in [3]). Fine mapping with more markers
is necessary to further limit the genetic region containing the gene conditioning the trait.
This process would be aided if a naturally occurring or synthetic mutant in the gene
conditioning the trait existed [4].

In previous years, fine-mapping was both a time consuming and expensive process
that was not routinely performed to identify candidate genes. More recently, with the drop
in sequencing costs, identification of vast numbers of single nucleotide polymorphisms
(SNPs) and relatively inexpensive analysis technologies, it has become feasible to both
identify smaller QTL regions and generate sequence information for those regions [5].
Additionally, Genome-Wide Association Studies (GWAS) utilizing SNP allele information
have been employed to identify sequence regions associated with phenotypic traits and
tools have been developed to integrate GWAS studies with QTL data such as QTLtools [6].

As more genomic data become easily accessible by quick and easy data sharing [7],
some clade and species genome databases are now actively curating both bi-parental QTL
and GWAS QTL information. This information can be used to identify candidate regions,
although these regions typically contain many candidate genes. The list of candidate genes
can often be reduced by considering molecular function annotations and tissue expression
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patterns. To illustrate this process, we will use, as an example, the information curated in
the species database SoyBase [8].

SoyBase is the United States Department of Agriculture, Agricultural Research Service
(USDA-ARS) soybean genetics and genomics database [8] and has been actively curated
since its inception in the early 1990s. In 2010, the first assembly of a soybean genome
(CV. Williams 82) was released [9]. Since then, SoyBase has been curating genomic in-
formation and presenting these data in the context of the original genetic data. We will
demonstrate how genetic and genomic data can be used in silico to help identify candidate
gene(s) that might condition a phenotype of interest. This process has often been referred
to as phenotype to genotype (P2G) or field to genes (F2G).

2. Example Walkthrough

This demonstration on using a genomic/genetic database in P2G research was de-
veloped using SoyBase. Although the specific examples presented are for soybean, most
species- or clade-specific databases will have somewhat equivalent data; however, the
tools to display that data vary. In this demonstration, we present a series of steps that
demonstrate how the various data types in SoyBase can be used together to identify a
candidate gene controlling a trait. We do not intend to imply that the path through the
database we present is the only one that would accomplish this, only that this is one way
of solving the problem that highlights some of the important data sets available.

Seed oil is a major product extracted from soybeans, and seed oil composition is a
significant factor in determining the price of oil paid by processors. Oil that contains
reduced linolenic content is more stable during storage [10] and as a frying oil [11]. Thus,
determining the genes and regulatory networks of linolenic synthesis is an important step
in developing improved varieties, and this will be the trait used in this demonstration.
The first step in identification of the gene(s) controlling seed linolenic acid content is to
identify QTL for this trait, i.e., region(s) of the genetic map that have been associated with
the phenotype.

In this example, we will use the SoyBase Search function to obtain a list of QTL for the
search term “linolenic”. SoyBase contains information for 68 bi-parental QTL related to
seed linolenic acid content that have been reported in 14 papers. Further examination of
these results shows that there is a region on molecular linkage group B2 (chromosome 14)
that has a large number of bi-parental QTL for seed oil traits, including several for seed
linolenic acid content (Figure 1).

The SoyBase genetic map viewer is composed of two panes (Figure 1). The left shows
a representation of the soybean physical or sequence map based on the Williams 82 genome
sequence. This view of the chromosome shows the positions of molecular markers, the
gene models (Glyma.14gxxxxxx) and the GWAS QTL identified in soybean. On the right
is the soybean Composite Genetic Map, which shows the genetically mapped molecular
markers along with the QTL identified in soybean.

The hand-curated Composite Genetic Map is based on the reported QTL mapping
studies in soybean and allows QTL from different publications to be displayed using a
common coordinate system. Markers present on both the genetic and sequence maps are
connected by a blue line. These two views of a chromosome allow the easy identification of
regions with relatively high or low recombination as well as where the genetic and sequence
maps are not congruent. In addition, comparing the locations of the bi-parental and GWAS
QTL can provide information that is not available if used individually. Note that these two
views of a chromosome have an important difference: coordinates on the sequence map
are in base pairs (bp, left) while those on the genetic map are in centi-Morgans (cM, right).

We will use Seed linolenic 11-2 as the QTL of interest in this example (Figure 2). Along
with information about the cross used to identify this QTL and other related information, the
QTL page for Seed linolenic 11-2 provides links to the QTL on the SoyBase Genetic Map and to
the approximate region containing this QTL in the SoyBase Genome Sequence Browser. Seed
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linolenic 11-2 was originally identified as a bi-parental QTL where the inheritance of the trait
was genetically associated with the molecular marker Satt063 (Figure 3).
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For clarity, in this example, only seed related QTL are shown. Comparison of the
physical and genetic maps indicates that not only have there been many seed oil and
linolenic content bi-parental QTL identified in the region but also that a number of GWAS
QTL for seed oil content, linolenic acid and long-chain fatty acids are present in the
corresponding region of the physical map. As this region contains many genes, a useful
first step to identifying potential candidate genes is to view this region of the chromosome
in the SoyBase Sequence Browser where a short annotation is provided for each gene.

This region can be viewed by selecting the closest flanking markers around the QTL
(BARC-013273-00464 and Sat_424, shown in red text) and showing this region in the
Sequence Browser (Figure 4A, flanking markers highlighted in orange). This figure also
includes tracks for the related GWAS QTL and genes. Zooming into this view shows the
short annotations for each gene (Figure 4B). In this view, a track showing gene expression
as revealed by RNA-seq has been added.
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example) and other QTLs for the trait identified in the study (Other Related QTLs). The map and location of the QTL is 
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Figure 2. QTL report page for Seed linolenic 11-2. The QTL report for Seed linolenic 11-2 provides details on the QTL such
as its heritability, parents and parental phenotype. It also lists any other phenotypes measured in the study (none in this
example) and other QTLs for the trait identified in the study (Other Related QTLs). The map and location of the QTL is
presented in the section “Maps containing Seed linolenic 11-2”. Clicking on the link “See this QTL region in Sequence
Browser” will take the user to the sequence browser view of the approximate QTL on the sequence map to allow browsing
of the gene model annotations. Genetic loci that are associated with the QTL are listed in the “Loci positively associated
with the QTL” section along with association values for the loci.

Figure 4B shows several lines of evidence that point to Glyma.14g194300 (highlighted
in yellow) as a candidate for the gene conditioning seed linolenic content:

- Located physically close to Satt063 (highlighted in red), the molecular marker most
associated with Seed linolenic 11-2.

- Located within the region of GWAS QTL Seed alpha-linolenic acid 1-g2 (highlighted
in orange).

- Annotated as a Fatty Acid Desaturase.
- Preferentially expressed in developing seeds.
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The information page for Glyma.14g194300 provides more information for this gene,
parts of which are shown in Figure 5. Panel 5A gives the annotations from a number
of sources for Glyma.14g194300. Panel 5B shows that the gene model is associated with
the gene FAD3A, which is known to carry out a major step in linolenate biosynthesis
and seed linolenic acid content [12]. Panel 5C presents a pictorial representation of the
gene’s expression in different tissues and steps in development [13]. Glyma.14g194300
has relatively high expression during seed development, which supports the conclusion
above that it is a candidate gene for the Seed linolenic 11-2 and Seed alpha-linolenic acid
1-g2 QTL.
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Figure 4. Identification of a candidate gene using the SoyBase Genome Browser. The region of the soybean physical map
around Seed linolenic 11-2. (A) Magnification of the genomic region around Satt063. Molecular markers that flank Seed
linolenic 11-2 are highlighted in orange. Tracks are also shown for GWAS QTL and genes. Larger version (B) Magnification of
the chromosomal region in Panel A showing the short functional annotation for genes. The candidate gene Glyma.14g134300
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expression patterns indicating that the highlighted gene is preferentially expressed in seed tissue derived from RNA-seq are
shown in the bottom track. Larger version.
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Glyma.14g194300. (A) Functional and biochemical pathway annotation of the candidate indicates that it is a fatty acid 
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Figure 5. Detailed gene report for Glyma.14g194300. Details of the SoyBase gene report for the candidate gene Glyma.14g194300.
(A) Functional and biochemical pathway annotation of the candidate indicates that it is a fatty acid desaturase and functions
in the α-linolenate biosynthesis I pathway of plants and algae. Evidence codes are described at the GO evidence code page.
(B) The protein product of this gene has been identified as FAD3A, a microsomalω-3-fatty acid desaturase gene known to be
involved in seed linolenic acid biosynthesis in soybean. (C) Expression of this gene measured by RNAseq is elevated in seed
and shoot apical meristem tissue.
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In this example, there is a gene previously shown to be involved in the seed linolenic
content phenotype. In cases where there is no obvious candidate gene in the region, other
sources of information will be necessary to identify a strong candidate gene. Such supple-
mentary information includes gene function (geneontology.org, accessed on 12 Novem-
ber 2021), protein structure (pfam.xfam.org, accessed on 12 November 2021), orthology
(pantherdb.org, plants.ensembl.org, accessed on 12 November 2021), participation in bi-
ological pathways (plantreactome.gramene.org, plantcyc.org, accessed on 12 November
2021) and protein–protein interactions (string-db.org, accessed on 12 November 2021),
which can be found in the respective databases.

Additionally, information regarding gene function can often be inferred from or to
other species based on orthology or sequence similarity. Orthologs of Glyma.14g194300 in
other species can identify genes that may also condition the seed linolenic content in those
species. Orthologous genes in other species can be viewed by clicking the “View Gene
Family” button on the Glyma.14g194300 report page. This will present a sequence similarity
or ontology tree from the Legume Information System (LIS, legumeinfo.org, accessed on
12 November 2021) (Figure 6). It is often the case that other well-characterized species may
appear in the tree. These can then be used as an additional source of information when
inferring a candidate gene’s function.
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Figure 6. Orthologs of Glyma.14g194300. The phylogram derived from the Legume Information Service’s Phylotree viewer.
Sequences with high sequence similarity to Glyma.14g194300 (highlighted in yellow) are from Common Bean (phavu),
Cowpean (vigun), Adzuki Bean (vigan) and Mung Bean (vigra). Larger version.

As an extra set of conformation of QTL, a new tool called the Genotype Comparison Vi-
sualization Tool (GCViT) [14], available on Github (https://github.com/LegumeFederation/
gcvit, accessed on 12 November 2021) and SoyBase, can be of use. GCViT is a tool that
can be used with any species and will plot SNPs from multiple accessions and display
where the differences in alleles are. Therefore, we can confirm/and or identify new regions
for linolenic QTL by comparing lines with high linolenics to lines with low linolenics.
Another tool that can be used to confirm QTL locations are ZBrowse [15] and ZZBrowse
(https://zzbrowse.legumeinfo.org/, accessed on 12 November 2021) [16]. ZBrowse is an
interactive tool for the visualization of GWAS data across experiments within a single
species, while ZZBrowse is an interactive web tool for the comparative analysis of GWAS
and QTL between species [16].

3. Conclusions

In this exercise, we demonstrated how a genetics/genomics database can be used as a
tool to help identify the gene(s) conditioning a QTL. Although we used SoyBase in this
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exercise, other species- or clade-specific databases may contain equivalent data and tools
that can be used in concert to accomplish a similar investigation. While other databases
may collect similar data, they are not focused on the same user experience that SoyBase
tools are. Thus, the path a user takes to identify candidate genes is unique to each database.

A common theme of these databases is that they strive to collect what is known
about a species’ genetics, genomics, phenotypes, biochemistry and other data into a single
repository that allows users to quickly identify the information relevant to the question
of interest. The reader will still have to consult some of the external databases referred to
above and to other primary literature to manually identify candidate genes as no single
species or clade database can assemble all relevant data for a single gene.
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Abstract: Isoflavones are secondary metabolites that are abundant in soybean and other legume
seeds providing health and nutrition benefits for both humans and animals. The objectives of this
study were to construct a single nucleotide polymorphism (SNP)-based genetic linkage map using
the ‘Forrest’ by ‘Williams 82’ (F×W82) recombinant inbred line (RIL) population (n = 306); map
quantitative trait loci (QTL) for seed daidzein, genistein, glycitein, and total isoflavone contents in
two environments over two years (NC-2018 and IL-2020); identify candidate genes for seed isoflavone.
The FXW82 SNP-based map was composed of 2075 SNPs and covered 4029.9 cM. A total of 27 QTL
that control various seed isoflavone traits have been identified and mapped on chromosomes (Chrs.)
2, 4, 5, 6, 10, 12, 15, 19, and 20 in both NC-2018 (13 QTL) and IL-2020 (14 QTL). The six QTL regions
on Chrs. 2, 4, 5, 12, 15, and 19 are novel regions while the other 21 QTL have been identified by other
studies using different biparental mapping populations or genome-wide association studies (GWAS).
A total of 130 candidate genes involved in isoflavone biosynthetic pathways have been identified
on all 20 Chrs. And among them 16 have been identified and located within or close to the QTL
identified in this study. Moreover, transcripts from four genes (Glyma.10G058200, Glyma.06G143000,
Glyma.06G137100, and Glyma.06G137300) were highly abundant in Forrest and Williams 82 seeds.
The identified QTL and four candidate genes will be useful in breeding programs to develop soybean
cultivars with high beneficial isoflavone contents.

Keywords: soybean; RIL; Forrest; Williams 82; linkage map; isoflavone; daidzein; genistein; glycitein; SNP

1. Introduction

Soybean seeds are rich in secondary metabolites beneficial for human and animal
consumption including tocopherols, phenolic compounds, saponins, and isoflavones such
as genistein, daidzein, and glycitein that showed beneficial health and nutrition effects
in animals and humans [1–3]. It is well established that isoflavones reduce menopausal
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symptoms, low density lipoprotein (LDL) cholesterol levels, breast and prostate cancers
risks, improve the immune system [4–11], and play an important role in nitrogen fixation
and defense against pathogens [12].

Due to these benefits and others, isoflavones, especially genistein, daidzein, and
glycitein, have been widely studied during the past decades [13,14] and many studies
tried to genetically map quantitative trait loci (QTL) that control seed genistein, daidzein,
glycitein, and total isoflavone content as well as their precursors such as daidzin, glycitin,
genistin, malonyldaidzin, malonylglycitin, malonylgenistin, etc., using different molecular
markers such as AFLPs, RFLPs, SSRs, SNPs [15–27]. For example, using the ‘Essex’ by
‘Forrest’ recombinant inbred line (RIL) population (n = 100) and 250+ simple sequence
repeat (SSR) markers, 11 QTL that control genistein, daidzein, glycitein, and total isoflavone
contents have been identified on Chrs. 1, 3, 7, 8, 11, and 18 [15,16]. Likewise, Liang et al.
(2010) used the ‘Jindou 23’ by ‘Huibuzhi’ RIL population (n = 474) and identified six QTL
that control isoflavone contents and mapped them on soybean Chrs. 3, 16, 17, and 18 [18].
In another study, Smallwood et al. (2014) identified 3, 5, 7, and 6 QTL that control seed
glycitein, daidzein, genistein, and total isoflavone contents, respectively [20]. Using the
‘Zhongdou 27’ by ‘Jiunong 20’ RIL population (n = 130) and 194 SSR markers, Han et al.
(2015), identified 6, 5, 3, and 7 QTL that control seed glycitein, daidzein, genistein, and
total isoflavone contents, respectively [24]. Akond et al. (2015) used the ‘Hamilton’ by
‘Spencer’ RIL population (n = 93), genotyped it with 1502 SNPs, and identified a major
QTL that controls both seed daidzein and total isoflavone contents on Chr. 6 and a minor
QTL that controls seed glycitein content on Chr. 18 [22]. Recently, the authors of [23]
used ‘Aokimame’ by ‘Fukuyutaka’ and ‘Kumaji-1’ by ‘Fukuyutaka’ RIL populations and
identified one QTL that controls malonylgenistin on Chr. 12 and two QTL that control
malonylglycitin on Chrs. 11 and 15 [23]. Besides using biparental mapping populations,
other researchers used natural populations and genome wide association studies (GWAS)
to map QTL that control seed isoflavone contents and identified candidate genes within
these QTL regions [28–32].

The objectives of this study were to construct a SNP-based genetic linkage map using
the F×W82 RIL population (n = 306); map quantitative trait loci (QTL) for seed daidzein,
genistein, glycitein, and total isoflavone contents in two environments over two years;
identify candidate genes involved in soybean seed isoflavone biosynthesis.

2. Results and Discussion
2.1. The SNP-Based Genetic Map

A total of 5405 SNP markers were generated from the Infinium SNP6K BeadChips-
based genotyping among 306 RILs, from which 2075 polymorphic SNPs were mapped
on the 20 soybean chromosomes (Table 1, Figure 1). The F×W82 genetic map covered
4029.9 cM with an average marker density of 1.94 cM (Table 1). The genetic length ranged
from 153.7 cM for Chr. 18 to 308.3 cM for Chr. 2 (Table 1). The polymorphism of SNPs in
this RIL population (38.4%), number of linked SNPs, and map coverage were comparable to
other reported SNP-based genetic linkage maps of soybean [33,34]. For example, in Akond
et al. (2013) [33], only 27.33% of SNPs (1465/5361 × 100) have been used to construct
the genetic map based on excluding missing data (~20%) and heterozygosity (3.99%).
Polymorphic markers between parents (MD96-5722 and Spencer) among the 1465 SNPs
used was 44.8% (657/1465 × 100) [33]. Likewise, in Kassem et al. (2012) [34], polymorphic
markers between parents (PI 438489B and Hamilton) among the 1465 SNPs used was 44.2%
(657/1465 × 100) [34].
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Table 1. Distribution of SNP markers and their properties on the Chrs. Of Forrest by Williams 82
recombinant inbred line (RIL) population (n = 306).

Chr. No. of SNP
Markers Length (cM) Average Marker

Density (cM)
Maximum Gap

(cM)

1 110 190.1 1.73 48.7
2 161 308.3 1.91 59.0
3 92 173.9 1.89 22.9
4 71 214.9 3.03 57.4
5 138 167.2 1.21 38.1
6 114 253.7 2.23 43.4
7 117 224.0 1.91 18.4
8 71 211.1 2.97 45.3
9 109 179.2 1.64 62.6
10 100 216.5 2.17 48.5
11 95 168.9 1.78 41.3
12 73 192.6 2.64 31.5
13 156 265.7 1.70 57.7
14 50 158.9 3.18 25.8
15 94 219.1 2.33 68.4
16 95 169.0 1.78 46.7
17 79 185.4 2.35 46.5
18 144 153.7 1.07 23.1
19 125 190.4 1.52 53.3
20 81 187.3 2.31 25.7

Totals 2075 4029.9 Av. = 1.94 Av. = 43.2

Figure 1. Frequency distribution of seed isoflavone contents (µg/g of seed weight) in the FxW82 RIL population. The seed
daidzein, genistein, and glycitein contents were assessed in the RILs harvested in Spring Lake, NC (2018) and Carbondale,
IL (2020).

2.2. Isoflavone Contents Frequency Distribution, Heritability, and Correlation

The seed isoflavone contents were normally distributed in the FxW82 RIL population
based on Shapiro–Wilk’s method for normality test, even though the positive or negative
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skewness and kurtosis value (>3) were observed in the RIL population (Table 2; Figure 1).
The individual component of isoflavone also displayed small ranges of phenotypic varia-
tions in the seeds obtained from two geographically diverse field trials (Table 2, Figure 2).
Daidzein 2018 in Spring Lake, NC had the highest coefficients of variation (CV) value
(19.37%); however, the CV of this trait in Carbondale, IL (2020) was only 12.59% sug-
gesting that phenotypic variability among isoflavone contents was impacted by different
environmental conditions.

Table 2. Seed isoflavone means, ranges, CVs, skewness, and kurtosis in the FxW82 RIL population
evaluated in Spring Lake, NC (2018) and Carbondale, IL (2020). Mean and range values are expressed
in µg/g of seed weight.

Trait Mean Range CV SE Skewness Kurtosis p Value
(p > 0.05)

Daidzein 2018 303.22 171 10.11 2.23 0.26 3.11 0.99
Glycitein2018 490.47 610 19.37 7.01 0.29 3.65 0.98
Genistein2018 391 348 15.47 4.4 0.3 3.04 0.99
Daidzein 2020 14.48 8.08 13.72 0.42 −0.08 3.17 0.99
Glycitein2020 71.79 46 12.59 0.53 0.178 2.94 0.99
Genistein2020 584.88 383 10.94 3.73 −0.02 3.31 0.99

Figure 2. Correlations between daidzein, glycitein, and genistein in the two locations and years: Spring Lake, NC (2018)
and Carbondale, IL (2020). (A). Unassorted correlogram, (B). Assorted correlogram. Significance level: * p < 0.05, ** p < 0.01,
*** p < 0.001.

Azam et al. (2020) [35] reported that the total isoflavones ranged from 745 to 5253.98µg/g,
with highest mean of 2689.27 µg/g observed in some regions and up to 2518.91 and
1942.78 µg/g in others due to climatic conditions. Similar results have been reported by
other studies [25–27,36–38]. Our results showed over 1000 µg/g and in some cases over
1100 µg/g. Therefore, the total concentrations of isoflavones are in the expected range
of soybean seed. In addition, there is no premium to be given to growers for soybean
seed isoflavone content and no docking is done at the grain elevator for seed isoflavone.
Isoflavone concentrations vary depending on the year and environmental growing condi-
tions. Although isoflavones are genetically controlled, environmental conditions including
temperature, drought, absence or presence of diseases each year, many other biotic and
abiotic factors can significantly affect the contents (by increasing or decreasing) and profile
of isoflavone.

The broad sense heritability of percentage dry weight for daidzein, glycitein, and
genistein across two different environments over two years appeared to be quite differ-
ent. Glycitein had the highest heritability (72.4%) and the values for both daidzein and
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genistein were 42.8% and 42.5%, respectively, which displayed a similar fashion. The lower
heritability of daidzein and genistein contents suggested that some portion of phenotypic
variation was still not detected by the mapped QTL due to the complexity of these traits.
The genotype–environment interactions still played a significant role in the molecular
formation of daidzein and genistein molecules in soybean seeds based on our two-way
ANOVA analysis because the σGE2 is relatively high compared to that of glycitein (data not
shown). It will certainly impact future breeding strategies for trait improvement based on
the data we presented on these traits.

We used type I sum of squares (ANOVA (model)) function in R program to obtain the
Sum Sq and Mean Sq and calculated σG

2 and σGE
2 for each trait (Table 3). However, σe

2

was 0 due to limited replicates. In this study, we only had three technical replicates due to
cost effect of this student-centered project, but these replicates could only be considered as
one biological replicate and hence, F value and probability could not be generated (Table 3).
The FxW82 RIL population derived from two parental cultivars with different maturity
groups (MGs). Forrest belongs to MG5-6 and Williams 82 to MG2-3 suggesting that the
locations may play an important role on major agronomic traits including seed isoflavone.
Based on our data (Figure 2), glycitein showed less correlation with daidzein and genistein
which may indicate that its production may be less impacted by environment. Furthermore,
Fayetteville, NC is a subtropic favorable weather for MG6-7 soybeans while Carbondale,
IL is the favorable weather for MG 4-5. Therefore, further studies of the seed isoflavone in
the FxW82 RIL population in different environments would be beneficial.

Table 3. Two-way ANOVA results for daidzein, genistein, and glycitein.

Response: Daidzein

Df Sum Sq Mean Seq H2

Line 301 541,800 1800 0.428
Year 1 974,711 974,711

Line: Year 181 186,226 1029
Residuals 0 0 NA

Response: Glycitein

Df Sum Sq Mean Seq H2

Line 301 5,086,274 16,898 0.724
Year 1 16,033,506 16,033,506

Line: Year 181 843,473 4660
Residuals 0 0 NA

Response: Genistein

Df Sum Sq Mean Seq H2

Line 301 1,922,339 6387 0.425
Year 1 3,630,207 3,630,207

Line: Year 181 668,735 3695
Residuals 0 0 NA

The correlogram demonstrates a novel correlation among these assessed traits (Figure 2).
Based on the unassorted data (all lines were included), each of the isoflavone components
was positively correlated with the other sister isoflavones (p < 0.001) from the same geo-
graphical location but negatively correlated with the isoflavones from the other location
inferring that the production of these isoflavones has been strongly impacted both by
genotype and environmental conditions. The assorted data (lines tested in both locations)
showed similar positivity, but the level of negative correlation was low (Figure 2). To the
best of our knowledge, this observation has not been described in other studies.
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2.3. Seed Isoflavone Contents QTL

Both interval mapping (IM) and composite interval mapping (CIM) methods of Win-
QTL Cartographer 2.5 [39] were used to identify QTL for seed daidzein, genistein, glycitein,
and total isoflavone contents in the present RIL population. A total of 27 QTL that control
seed isoflavone contents have been identified in this population in both NC-2018 (13 QTL)
and IL-2020 (14 QTL) (Table 4, Figure 3 and Figure S1).

Table 4. QTL that control seed isoflavone (daidzein, genistein, and glycitein) contents in two environments over two years
(2A. 2018 and 2B. 2020). The two environments are Spring Lake, NC (2018) (2A) and Carbondale, IL (2020) (2B). Only QTL
with LOD scores > 2.0 and identified by composite interval mapping (CIM) method of QTL Cartographer (Wang et al., 2012)
are reported.

2A. QTL Identified in Spring Lake, NC (2018)

Trait QTL Chr. Marker Interval
(cM) LOD R2 (%)

Additive
Effect Environment

Daidzein qDAID01 5 Gm05_1705841 160.41 2.01 6.07 −7.61 Spring Lake, NC
Daidzein 5 Gm05_9012813 166.51 2.12 4.18 −6.35 Spring Lake, NC
Daidzein 5 Gm05_9097414 166.71 2.19 4.32 −6.46 Spring Lake, NC
Daidzein 5 Gm05_8916450 166.81 2.11 4.16 −6.34 Spring Lake, NC
Genistein qGEN03 5 Gm05_1705841 152.41 2.06 9.37 −18.72 Spring Lake, NC
Genistein 5 Gm05_9012813 166.51 2.27 4.22 −12.53 Spring Lake, NC
Genistein 5 Gm05_9097414 166.71 2.36 4.39 −12.79 Spring Lake, NC
Genistein 5 Gm05_8916450 166.81 2.28 4.25 −12.57 Spring Lake, NC
Glycitein qGLY02 5 Gm05_1705841 146.41 2.01 9.07 −29.89 Spring Lake, NC
Genistein qGEN01 6 Gm06_5014399 64.41 2.58 8.52 21.15 Spring Lake, NC
Daidzein qDAID02 6 Gm06_5014399 62.41 2.06 7.55 10.35 Spring Lake, NC
Daidzein 6 Gm06_3941524 78.21 2.02 7.24 8.67 Spring Lake, NC
Genistein qGEN04 6 Gm06_5014399 60.41 2.26 9.06 22.94 Spring Lake, NC
Genistein 6 Gm06_3941524 70.21 2.11 3.98 13.86 Spring Lake, NC
Genistein qGEN02 12 Gm12_915327 179.21 2.56 4.8 −16.87 Spring Lake, NC
Genistein 12 Gm12_1064727 179.41 2.58 4.85 −16.93 Spring Lake, NC
Genistein 12 Gm12_1229101 179.71 2.95 5.51 −17.79 Spring Lake, NC
Genistein 12 Gm12_1374970 179.91 2.95 5.5 −17.78 Spring Lake, NC
Genistein 12 Gm12_1433336 180.61 2.85 5.33 −17.4 Spring Lake, NC
Glycitein qGLY01 12 Gm12_553862 177.31 2.76 5.82 −26.95 Spring Lake, NC
Glycitein 12 Gm12_915327 179.21 2.58 4.79 −27.05 Spring Lake, NC
Glycitein 12 Gm12_1064727 179.41 2.59 4.82 −27.12 Spring Lake, NC
Glycitein 12 Gm12_1229101 179.71 2.83 5.23 −27.76 Spring Lake, NC
Glycitein 12 Gm12_1374970 179.91 2.83 5.23 −27.76 Spring Lake, NC
Glycitein 12 Gm12_1433336 180.61 2.7 5.02 −27.03 Spring Lake, NC
Genistein qGEN05 12 Gm12_553862 171.31 2.03 5.74 −15.18 Spring Lake, NC
Genistein 12 Gm12_975837 178.71 2.47 4.64 −16.47 Spring Lake, NC
Genistein 12 Gm12_1632399 181.31 2.32 4.38 −15.76 Spring Lake, NC
Glycitein qGLY03 12 Gm12_553862 169.31 2.22 5.63 −23.71 Spring Lake, NC
Glycitein 12 Gm12_975837 178.71 2.46 4.58 −26.29 Spring Lake, NC
Glycitein 12 Gm12_1632399 181.31 2.2 4.1 −24.52 Spring Lake, NC
Daidzein qDAID03 19 Gm19_4552537 109.51 2.14 4.17 6.92 Spring Lake, NC
Glycitein qGLY04 19 Gm19_3010363 35.31 2.04 3.83 19.46 Spring Lake, NC
Genistein qGEN06 20 Gm20_4657454 0.01 2.03 3.75 11.84 Spring Lake, NC
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Table 4. Cont.

2B. QTL Identified in Carbondale, IL (2020)

Trait QTL Chr. Marker Interval
(cM) LOD R2 (%) Additive

Effect Environment

Daidzein qDAID03 2 Gm02_2282900 24.01 2.01 10.61 −11.55 Carbondale, IL
Genistein qGEN04 4 Gm04_4461164 190.31 2.26 3.96 −12.97 Carbondale, IL
Genistein qGEN01 10 Gm10_4670275 130.81 2.6 3.52 −12.38 Carbondale, IL
Genistein 10 Gm10_4035277 130.91 2.61 3.53 −12.39 Carbondale, IL
Daidzein qDAID04 10 Gm10_4670275 130.81 2.18 2.97 −6.11 Carbondale, IL
Daidzein 10 Gm10_4035277 130.91 2.19 2.97 −6.12 Carbondale, IL
Genistein qGEN05 10 Gm10_4670275 128.81 2.15 3.2 −11.75 Carbondale, IL
Genistein 10 Gm10_4035277 132.91 2.37 3.39 −12.11 Carbondale, IL
Daidzein qDAID01 12 Gm12_9193994 53.21 2.56 4.07 7.18 Carbondale, IL
Daidzein 12 Gm12_1430950 61.71 3.99 5.61 8.49 Carbondale, IL
Daidzein 12 Gm12_1423120 62.31 4.12 5.78 8.62 Carbondale, IL
Daidzein 12 Gm12_1539402 63.01 4.53 6.34 9.01 Carbondale, IL
Daidzein 12 Gm12_1678702 63.11 4.59 6.45 9.1 Carbondale, IL
Daidzein 12 Gm12_3052701 64.11 4.89 6.82 9.42 Carbondale, IL
Daidzein 12 Gm12_2097199 64.41 4.4 6.18 8.97 Carbondale, IL
Daidzein 12 Gm12_2432082 65.31 4.26 5.97 8.77 Carbondale, IL
Daidzein 12 Gm12_1547239 65.51 3.77 5.31 8.27 Carbondale, IL
Daidzein 12 Gm12_1428801 65.91 3.36 4.75 7.87 Carbondale, IL
Genistein qGEN02 12 Gm12_9193994 55.21 2.5 4.24 13.58 Carbondale, IL
Genistein 12 Gm12_1430950 61.71 3.78 5.28 15.31 Carbondale, IL
Genistein 12 Gm12_1423120 62.31 3.76 5.25 15.2 Carbondale, IL
Genistein 12 Gm12_1539402 63.01 4.39 6.1 16.4 Carbondale, IL
Genistein 12 Gm12_1678702 63.11 4.38 6.1 16.4 Carbondale, IL
Genistein 12 Gm12_3052701 64.11 4.66 6.46 16.99 Carbondale, IL
Genistein 12 Gm12_2097199 64.41 4.05 5.65 15.64 Carbondale, IL
Genistein 12 Gm12_2432082 65.31 3.83 5.35 15.25 Carbondale, IL
Genistein 12 Gm12_1547239 65.51 3.38 4.74 14.39 Carbondale, IL
Genistein 12 Gm12_1428801 65.91 3.16 4.44 13.96 Carbondale, IL
Daidzein qDAID05 12 Gm12_9193994 51.21 2.03 2.91 6.05 Carbondale, IL
Daidzein 12 Gm12_1428801 73.91 2.31 4.8 7.83 Carbondale, IL
Genistein qGEN06 12 Gm12_1428801 71.91 2.37 4.4 13.77 Carbondale, IL
Glycitein qGLY01 15 Gm15_756303 212.31 2.07 2.86 −1.53 Carbondale, IL
Glycitein 15 Gm15_2072075 218.41 2.24 3.1 −1.6 Carbondale, IL
Glycitein 15 Gm15_2021199 218.81 2.06 2.84 −1.53 Carbondale, IL
Daidzein qDAID02 20 Gm20_3804081 70.31 2.55 6.13 −8.81 Carbondale, IL
Genistein qGEN03 20 Gm20_3804081 68.31 2.65 6.72 −16.81 Carbondale, IL
Daidzein qDAID06 20 Gm20_3804081 66.31 2.22 5.58 −8.41 Carbondale, IL
Genistein qGEN07 20 Gm20_3804081 64.31 2 5.08 −14.62 Carbondale, IL
Genistein 20 Gm20_3424023 80.01 2.44 3.3 −11.8 Carbondale, IL
Genistein 20 Gm20_3418121 80.51 2.1 2.85 −10.96 Carbondale, IL
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Figure 3. Positions of QTL that control seed genistein (qGEN), daidzein (qDAID), and glycitein (qGLY) contents on Chrs. 2,
4, 5, 6, 10, 12, 15, 19, and 20. QTL names are followed by a number, location, and year in which they are identified. For
example, qGEN01-(NC-2018). The full SNP-based genetic linkage map of Forrest by Williams 82 recombinant inbred line
(RIL) population (n = 306) of soybean is shown in Figure S2.
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In Carbondale, IL (IL-2020), one QTL that controls seed daidzein content (qDAID03)
has been identified and mapped on Chr. 2 and one QTL that controls seed genistein content
(qGEN04) has been identified and mapped on Chr. 4 (Table 4, Figure 3 and Figure S1).
One QTL that controls seed daidzein content (qDAID04) and two QTL that control seed
genistein content (qGEN01 and qGEN05) have been identified and mapped on Chr. 10.
Two QTL that control each of seed daidzein (qDAID01 and qDAID05) and seed genistein
contents (qGEN02 and qGEN06) have been identified and mapped on Chr. 12 (Table 4,
Figure 3 and Figure S1). One QTL that controls seed glycitein (qGLY01) has been identified
and mapped on Chr. 15 (Table 4, Figure 3 and Figure S1). Two QTL that control each of
seed daidzein (qDAID02 and qDAID06) and genistein contents (qGEN03 and qGEN07) have
been identified and mapped on Chr. 20 (Table 4, Figure 3 and Figure S1).

In Spring Lake, NC (NC-2020), one QTL that controls each of seed daidzein (qDAID01),
genistein (qGEN03), and glycitein contents (qGLY02) have been identified and mapped
on Chr. 5 (Table 4, Figure 3 and Figure S1). Two QTL that control seed genistein content
(qGEN01 and qGEN04) and one QTL that controls seed daidzein content (qDAID02) have
been identified and mapped on Chr. 6 (Table 4, Figure 3 and Figure S1). Two QTL that
control each of seed genistein (qGEN02 and qGEN05) and glycitein contents (qGLY01 and
qGLY03) have been identified and mapped on Chr. 12 (Table 4, Figure 3 and Figure S1).
One QTL that controls each of seed daidzein (qDAID03) and glycitein contents (qGLY04)
have been identified and mapped on Chr. 19 (Table 4, Figure 3 and Figure S1). One QTL
that controls seed genistein content (qGEN06) has been identified and mapped on Chr. 20
(Table 4, Figure 3 and Figure S1). No QTL that controls total seed isoflavone contents has
been identified in both years and locations.

No previous studies identified QTL that control seed isoflavone contents in the QTL
region identified on Chr. 2 (qDAID03-(IL-2020), 23–25 cM), indicating that this is a novel
QTL region; however, other studies identified QTL that control seed calcium content,
plant height, and few other traits [40,41]. Likewise, no other studies identified QTL that
control seed isoflavone contents in the QTL region identified on Chr. 4 (qGEN04-(IL-2020),
189.3–191.3 cM) which indicates that it is also a novel QTL region. The length of Chr. 4 in
the soybean consensus map is only 136 cM [29,31]. Additionally, no other studies identified
QTL that control seed isoflavone contents in the QTL region identified on Chr. 5 (qDAID01-
(NC-2018), qGEN03-(NC-2018), and qGLY02-(NC-2018), 152.4–166.4 cM) which indicates
the discovery of a novel QTL region. The length of Chr. 5 in the soybean consensus
map is only 104 cM [29,31]. Interestingly, within the same QTL region that controls seed
genistein and daidzein contents on Chr. 6 (q-GEN01-(NC-2018), qGEN04-(NC-2018), and
qDAID02-(NC-2018), other studies identified QTL that control seed genistein, daidzein,
glycitein, and total isoflavone contents (see a summary in [30]) which is coherent with
our results making it an important genomic region to further investigate for candidate
genes. Other studies identified QTL that control seed protein, oil, γ–tocopherol, and amino
acids contents, and few other traits [29,31]. Interestingly, within the same QTL region that
controls seed genistein and daidzein contents on Chr. 10 (q-GEN01-(IL-2020), qGEN05-(IL-
2020), and qDAID04-(IL-2020), 128.8–132.9 cM), another study identified QTL that control
seed isoflavone content [41,42] which is consistent with our data making it an important
genomic region for gene discovery. In fact, two candidate genes have been previously
identified in this region [42,43]. Two QTL regions have been identified on Chr. 12. The
first region containing QTL that control seed genistein and daidzein contents (qGEN02-
(IL-2020), qGEN06-(IL-2020), and qDAID05-(IL-2020), 51.2–71.9 cM). Interestingly, other
studies identified QTL that control seed daidzein, genistein, glycitein, and total isoflavone
contents in the same QTL region (see a summary in [30]) which makes it an important
genomic region for discovering novel candidate genes. The second region contained QTL
that control seed genistein, and glycitein contents (qGEN02-(NC-2018), qGEN05-(NC-2018),
qGLY01-(NC-2018), and qGLY03-(NC-2018), 169.3–181.3 cM). No other studies identified
QTL that control seed isoflavone contents in this second QTL region which indicates that it
is also a novel QTL region. The length of Chr. 12 in the soybean consensus map is only

165



Plants 2021, 10, 2029

125 cM and the second QTL region identified here falls outside of its current limit [29,31].
No previous studies identified QTL that control seed isoflavone contents in the QTL region
identified on Chr. 15 (qGLY01-(IL-2020), 212.3–218.8 cM) which indicates that it is a novel
QTL region. The length of Chr. 15 in the soybean consensus map is only 85 cM and
the QTL region identified here falls outside of its current limit [29,31]. Two QTL regions
have been identified on Chr. 19. The first region contains QTL that control seed glycitein
content (qGLY04-(NC-2018), 34.3–36.3 cM). Interestingly, other studies identified QTL that
control seed genistein, daidzein, and isoflavone content within the same QTL region (see
a summary in [30]). Previous studies identified also QTL for seed protein content (see a
summary in [44]). The second region contained QTL that control (qDAID03-(NC-2018),
108.5–110.5 cM). No other studies identified QTL that control seed isoflavone contents in
this QTL region, making it a novel QTL region. Two QTL regions have been identified
on Chr. 20. Within the first region containing QTL that control seed glycitein content
(qGEN05-(NC-2018), 0–2 cM), other studies identified QTL that control seed daidzein
(qD20), genistein (qG20), malonyldaidzein (qMD20), malonylgenistein (qMG20), and total
isoflavone content (qTIF20) [41,44] which makes it an important region to investigate further
for candidate genes. In addition, other studies identified QTL for seed calcium [30,44]
and sucrose contents within this QTL region as well (see a summary in [44]). Within the
second region containing QTL that control seed daidzein and genistein contents (qDAID02-
(IL-2020), qDAID06-(IL-2020), qGEN03-(IL-2020), and qGEN07-(IL-2020), 64.3–80.5 cM),
other studies identified QTL that control seed genistein content (qGEN20, [17]) and seed
daidzein and glycitein contents (qGC|proI_1 and qDZ|proI_2, [39,41] which makes it another
important region to investigate further for candidate genes. In addition, other studies
identified QTL that control seed phytate, stearic acid, calcium, alpha-tocopherol, and few
amino acids [44].

2.4. Seed Isoflavone Candidate Genes

A total of 130 candidate genes involved in soybean isoflavone biosynthetic pathway
have been identified in all 20 soybean Chrs. (Table S1); however, 16 candidate genes have
been identified within or close to the seed isoflavone QTL identified in this study on Chrs.
2, 6, 10, 12, 15, 19, and 20 (Figure 4, Table 5).

Among them, the 4′-methoxyisoflavone 2-hydroxylase gene (Glyma.02G067900) and
the chalcone synthase gene (Glyma.02G130400) are located at 3.7 and 11.11 cM, respectively,
from qDAID03-(NC-2018) on Chr. 2 (Figure 4, Table 5 and Table S1). Glyma.06G128200
is a flavonol synthase gene located at 5.52 cM from qGEN01-(NC-2018), qDAID02-(NC-
2018), and qGEN04-(NC-2018) on Chr. 6. The flavonol 3-O-methyltransferase genes
(Glyma.06G137100 and Glyma.06G137300) as well as the chalcone-flavonone isomerase
gene (Glyma.06G143000) are located at 6 cM from qGEN01-(NC-2018) on Chr. 6 (Figure 4,
Table 5 and Table S1). Glyma.10G058200 is a phenylalanine ammonia-lyase gene that is
located 0.6 cM from qGEN01-(IL-2020), qDAID04-(IL-2020) and qGEN05-(IL-2020) on Chr.
10 (Figure 4, Table 4 and Table S1). Glyma.12G067000 and Glyma.12G067100 are located
within qDAID01-(IL-2020), qGEN02-(IL-2020) and qDAID05-(IL-2020) on Chr. 12 and near
to (<4 cM) qGEN02-(NC-2018), qGLY01-(NC-2018), qGEN05-(NC-2018), qGEN06-(IL-2020)
and qGLY03-(NC-2018) on Chr. 12 (Figure 4, Table 5 and Table S1). Both genes are Cy-
tochrome P450 CYP2 subfamily genes; Glyma.12G067000 was classified as an isoflavone
synthase II gene and Glyma.12G067100 as its duplicate with 95% identical nucleotide posi-
tions in the protein coding sequence ([42] Fliegmann et al., 2010). The trans-feruloyl-CoA
synthase gene Glyma.15G001700 is located at 0.56 cM from qGLY01-(IL-2020) on Chr. 15. The
Isoflavone 3′-hydroxylase gene Glyma.15G156300 and the Isoflavone 2′-hydroxylase gene
Glyma.15G156100 are located at about 11 cM from qGLY01-(IL-2020) on Chr. 15 (Figure 4,
Table 5 and Table S1). Glyma.20G027800 is an isoflavone reductase gene that is located
within qDAID06-(IL-2020) and at 0.62 cM from qDAID02-(IL-2020), qGEN03-(IL-2020),
and qGEN06-(NC-2018) and 2.44 cM from qGEN07-(IL-2020) on Chr. 20 (Figure 4, Table 5
and Table S1). Three genes Glyma.19G030500, Glyma.19G030700, and Glyma.19G030800
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encoding for an isoflavone 7-O-glucoside-6”-O-malonyltransferase gene family are located
at less than 1 cM from qDAID03-(NC-2018) and qGLY04-(NC-2018) on Chr. 19 (Figure 4,
Table 5 and Table S1). Interestingly, Wu et al. (2020) identified seven candidate genes
including the mitogen-activated protein kinase (MPK) gene (Glyma.08G309500) within the
seed isoflavone QTL identified on Chr. 8 [29,31]. A summary of seed isoflavone QTL and
corresponding candidate genes for over two decades of research (1999–2020) can be found
in Kassem [30]. Recently, Yang et al. (2021) [32] identified four candidate genes including
GSTT1a (Glyma.05G206900), GSTT1b (Glyma.05G207000), and the transcription factor (TF)
GL3 (Glyma.05G208300) on Chr. 5, and GSTL3 (Glyma.13G135600) on Chr. 13 [32].

Figure 4. Seed isoflavone metabolic pathway in soybean with identified candidate genes (Vadivel et al., 2010). PAL,
phenylalanine ammonia lyase; C4H, cinnamate 4-hydroxylate; 4CL, 4-coumarate-CoA ligase; CHS, chalcone synthase;
CHR, chalcone reductase; CHI, chalcone isomerase; IFS, 2-hydroxyisoflavanone synthase; 2HID, 2-hydroxyisoflavanone
dehydratase; IOMT, isoflavone O-methyltransferase; UGT, uridine diphosphate glycosyltransferase; MT, malonyltransferase;
I2′H, Isoflavone 2′-hydroxylase; 2HDR, 2′-hydroxydaidzein reductase; F3H, flavanone-3-hydroxylase; F3′5′H, flavonoid 3′5′-
hydroxylase; DHM, dihydromyricetin; PTS, pterocarpan synthase; 3,9 DPO, 3,9-dihydroxypterocarpan 6a-monooxygenase;
G4DT, glycinol 4-dimethylallyltransferase; G2DT, glycinol 2-dimethylallyltransferase; GS, glyceollin synthase.
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Table 5. Isoflavone candidate genes located within or close to the isoflavone QTL identified in the FxW82 RIL population
two environments over two years (A. Spring Lake, NC (2018) and B. Carbondale, IL (2020)).

(A).

Environment Trait QTL Chr. Gene Start End Distance (cM)

2018 CIM QTL with LOD Scores > 2.5

Spring Lake, NC Genistein qGEN01 6

Glyma.06G128200 10,543,911 10,545,747 5.52 cM
Glyma.06G137100 11,225,188 11,228,664 6.21 cM
Glyma.06G137300 11,237,072 11,239,469 6.22 cM
Glyma.06G143000 11,642,031 11,644,022 6.62 cM

Spring Lake, NC Genistein qGEN02 12
Glyma.12G067000 4,909,073 4,911,905 3.47 cM
Glyma.12G067100 4,919,960 4,922,998 3.48 cM

Spring Lake, NC Glycitein qGLY01 12
Glyma.12G067000 4,909,073 4,911,905 3.47 cM
Glyma.12G067100 4,919,960 4,922,998 3.48 cM

2018 CIM QTL with LOD Scores 2.0 < LOD < 2.5
Spring Lake, NC Daidzein qDAID01 5 - - - -
Spring Lake, NC Daidzein qDAID02 6 Glyma.06G128200 10,543,911 10,545,747 5.52 cM

Spring Lake, NC Daidzein qDAID03 19
Glyma.19G030500 3,779,017 3,781,453 0.77 cM
Glyma.19G030700 3,794,404 3,796,426 0.75 cM
Glyma.19G030800 3,799,941 3,801,335 0.75 cM

Spring Lake, NC Genistein qGEN03 5 -
Spring Lake, NC Genistein qGEN04 6 Glyma.06G128200 10,543,911 10,545,747 5.52 cM

Spring Lake, NC Genistein qGEN05 12
Glyma.12G067000 4,909,073 4,911,905 3.27 cM
Glyma.12G067100 4,919,960 4,922,998 3.28 Cm

Spring Lake, NC Genistein qGEN06 20 Glyma.20G027800 3,179,955 3,183,453 1.47 cM
Spring Lake, NC Glycitein qGLY02 5 - - - -

Spring Lake, NC Glycitein qGLY03 12
Glyma.12G067000 4,909,073 4,911,905 3.27 cM
Glyma.12G067100 4,919,960 4,922,998 3.28 Cm

Spring Lake, NC Glycitein qGLY04 19
Glyma.19G030500 3,779,017 3,781,453 0.76 cM
Glyma.19G030700 3,794,404 3,796,426 0.78 cM
Glyma.19G030800 3,799,941 3,801,335 0.78 cM

(B).

Environment Trait QTL Chr. Gene Start End Distance (cM)

2020 CIM QTL with LOD Scores > 2.5

Carbondale, IL Daidzein qDAID01 12
Glyma.12G067000 4,909,073 4,911,905 -
Glyma.12G067100 4,919,960 4,922,998 -

Carbondale, IL Daidzein qDAID02 20 Glyma.20G027800 3,179,955 3,183,453 0.62 cM
Carbondale, IL Genistein qGEN01 10 Glyma.10G058200 5,328,963 5,333,501 0.6 cM

Carbondale, IL Genistein qGEN02 12
Glyma.12G067000 4,909,073 4,911,905 -
Glyma.12G067100 4,919,960 4,922,998 -

Carbondale, IL Genistein qGEN03 20 Glyma.20G027800 3,179,955 3,183,453 2.44 cM
2020 CIM QTL with LOD Scores 2.0 < LOD < 2.5

Carbondale, IL Daidzein qDAID03 2
Glyma.02G067900 5,986,285 5,987,684 3.70 cM
Glyma.02G130400 13,399,253 13,401,493 11.11 cM

Carbondale, IL Daidzein qDAID04 10 Glyma.10G058200 5,328,963 5,333,501 0.6 cM

Carbondale, IL Daidzein qDAID05 12
Glyma.12G067000 4,909,073 4,911,905 -
Glyma.12G067100 4,919,960 4,922,998 -

Carbondale, IL Daidzein qDAID06 20 Glyma.20G027800 3,179,955 3,183,453 -
Carbondale, IL Genistein qGEN04 4 - - - -
Carbondale, IL Genistein qGEN05 10 Glyma.10G058200 5,328,963 5,333,501 0.6 cM

Carbondale, IL Genistein qGEN06 12
Glyma.12G067000 4,909,073 4,911,905 3.48 cM
Glyma.12G067100 4,919,960 4,922,998 3.49 cM

Carbondale, IL Genistein qGEN07 20 Glyma.20G027800 3,179,955 3,183,453 2.44 cM

Carbondale, IL Glycitein qGLY01 15
Glyma.15G001700 190,985 194,451 0.56 cM
Glyma.15G156300 13,098,492 13,100,036 11.02 cM
Glyma.15G156100 13,076,997 13,079,333 11 cM
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2.5. Expression Analysis

To gain insight into the role of isoflavone genes in soybean seeds, RNA-Seq anal-
ysis was conducted to check the expression levels of the 16 candidate genes that are
located within or near the isoflavone QTL identified in FxW82 RIL population. Expression
analysis of these genes showed that four genes, Glyma.10G058200, Glyma.06G143000,
Glyma.06G137100, and Glyma.06G137300, are highly expressed in seeds of both Forrest
and Williams 82 cultivars. Whereas, Glyma.19G030800 is highly expressed in Williams 82
and have a low expression in Forrest cv.; the rest of the 16 genes showed lower expressions;
whereas Glyma.02G067900 and Glyma.15G156300 were not expressed neither in Forrest
nor in Williams 82 cultivars (Figure 5).

Figure 5. Expression pattern of isoflavone genes in soybean seeds. (A) Expression of the 16 isoflavone genes located within
isoflavone QTL in Williams 82 (FPKM) were retrieved from publicly available RNA-seq data from Phytozome database [45],
in addition to (B) the RNAseq data from the cultivar ‘Forrest’ (FPKM).

Surprisingly, Glyma.10G058200 expression in Forrest cv. is higher than its expression
in Williams 82. This could explain the presence of RILs from the FxWI cross that showed
higher daidzein, glycitein or genistein content than the parent Williams 82 (parent with the
high isoflavones content), these lines inherited most likely the beneficial alleles from both
parents Forrest and Williams 82.
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2.6. Conclusions

In conclusion, we constructed the FxW82 dense SNP-based genetic linkage map
(2075 SNPs and 4029.9 cM covered) and identified 27 QTL that control soybean seed
isoflavone contents and 16 candidate genes involved in soybean isoflavone biosynthetic
pathways among which four candidate genes are highly expressed in seeds of both Forrest
and Williams 82, in addition to Glyma.19G030800 that has a higher expression profile in
Williams 82 compared to its expression in Forrest cv. (Figure 5).

A comparison of the Forrest and Williams 82 sequences of these four genes has
shown that two of these genes have SNPs between Forrest and Williams 82 sequences,
Glyma.10G058200 and Glyma.06G143000. Glyma.10G058200 has ten SNPs, one SNP is
upstream 5′ UTR, four SNPs are located at the intron, two SNPs are at the exon 1, one
of them caused a missense mutation (A127G) and the other one caused a silent mutation
(A32A). The last three are in the 3′ UTR downstream region. For Glyma.06G143000,
there is only one SNP located in the 5‘UTR upstream region (Figure 6). These SNPs
could potentially play a role in the difference of isoflavones content between Forrest and
Williams 82 cultivars. Moreover, Glyma.10G058200 and Glyma.06G143000 are highly
expressed in the seed tissue of both Forrest and Williams 82 (Figure 5). Glyma.10G058200
is associated with qGEN01-(IL-2020) QTL, qDAID04-(IL-2020) QTL and qGEN05-(IL-2020)
QTL. Additionally, Glyma.06G143000 is associated with qGEN01-(NC-2018) QTL. The two
genes could be useful for breeding for increased isoflavones content in soybeans.

Figure 6. Positions of SNPs between Forrest and Williams 82 cultivars in Glyma.10G058200 and Glyma.06G143000 genes.

3. Materials and Methods
3.1. Plant Material and Growth Conditions

In this study, we used ‘Forrest’ × ‘Williams 82’ RIL population (n = 306). The culti-
var ‘Forrest’ was derived from the cross of ‘Dyer’ and ‘Bragg’ developed by USDA [46].
The cultivar ‘Williams 82’ was derived from the cross of ‘Williams’ and ‘Kingwa’ [47].
The genomes of soybean cultivars including Forrest and Williams 82 genomes are dupli-
cated polyploid genomes with highly conserved gene-rich regions [48]. Originally, the
‘Forrest’ × ‘Williams 82’ RIL population was developed with more than 1000 RILs [49].
The genetic map used in this study was based on 306 RILs and 2075 SNP markers; however,
QTL data analysis in Spring Lake, NC-2018 was based on 190 RILs.
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The RIL population was evaluated in a farm in Spring Lake, NC (35.17◦ N, 78.97◦ W)
in 2018 and in a farm in Carbondale, IL (37◦ N, 89◦ W) in 2020. Seeds of parents (Forrest
and Williams 82) were sown directly in the field in a randomized complete block design
(RCB) and 75 cm row spacing between seeds with three replicates. The plants were watered
by drip irrigation and kept in the field until maturity. No pesticide, herbicide, or fertilizer
were applied. In September 2018, hurricane Florence hit NC and its winds of 90+ mph
damaged the fence in the farm in Spring Lake, NC and the deer damaged about 119 RILs;
therefore, QTL data analysis for this location involved 187 RILs (n = 187). The plants grown
in Carbondale, IL (n = 306) were not damaged.

In Spring Lake, NC (2018) during the growing season (May–Sept.), the temperatures
ranged from 7.2 to 35 ◦C, it was partly (40%) to mostly cloudy (80%), wind speeds ranging
from 55 to 90+ mph (hurricane Florence), and humidity comfort level ranged from com-
fortable to miserable [50]. The soil type in this location is mainly sandy (NC Sandhills).
In Carbondale, IL (2020), the temperatures ranged from 7.2 to 29.4 ◦C, it was mostly clear
(25%) to mostly cloudy (80%), wind speeds ranging from 30 to 38 mph, and humidity
comfort level ranged from comfortable to miserable (weatherspark.com). The field was
treated first using Firestorm (contains Paraquat dichloride) to control annual grass and
broad-leaved weeds. As pre-emergent herbicide, Dual II Magnum Herbicide with long-
lasting control of most annual grasses and small-seeded broadleaf weeds was used to
eliminate early-season weed competition. As post-emergent herbicide, Round Up Pro
Concentrate (50.2% Glyphosate) was used/sprayed between the rows to control emerging
weed. Weed grown inside the plastic mulch very close to the soybeans were removed
manually. The soil type in this location is mainly silty clay loam (Southern IL).

3.2. Isoflavone Quantification

Mature seeds of parents Forrest and Williams 82, and the 190 RILs were analyzed for
the concentrations aglycones daidzein, genistein, and glycitein. Approximately 25 g of
mature seeds from each plot were ground using a Laboratory Mill 3600 (Perten, Springfield,
IL, USA). Concentrations of daidzein, genistein, and glycitein were analyzed using a near-
infrared reflectance (NIR) diode array feed analyzer (Perten, Spring Field, IL, USA). The
calibration equation has been updated every 6 months to 1 year and developed using
the Thermo Galactic Grams PLS IQ software developed by Perten Company (Perten,
Springfield, IL, USA). Thermo Galactic Grams PLS IQ from Perten (Perten) was used to
develop the calibration equations, which was initially developed by the University of
Minnesota. Descriptions of quantifying daidzein, genistein, glycitein and total isoflavone
contents was reported by others (Akond et al., 2015 [22]; Bellaloui et al., 2012 [51]; Wang
et al., 2019 [38]). The calibration equation development and updating for isoflavones was
based on standard laboratory analytical methods (AOAC 2002) using High Performance
Liquid Chromatography (HPLC) and use of adequate number of samples, providing
sufficiently accurate estimations of isoflavones concentrations. The produced calibration
equation was characterized by high correlation, indicating the accuracy of the method. The
concentrations were calculated on a seed dry matter basis.

3.3. DNA Isolation, SNP Genotyping, and Genetic Map Construction

Genomic DNA of the RIL population and the parents were extracted using a standard
cetyltrimethyl ammonium bromide (CTAB) method with minor modifications as previously
described [52]. DNA concentration was quantified with a spectrophotometer (NanoDrop
Technologies Inc., Centreville, DE, USA) and then normalized at 50 ng/µL for genotyping.
SNP genotyping was performed in the Soybean Genomics and Improvement Laboratory,
USDA-ARS, Beltsville, MD, USA, using the Illumina Infinium SoySNP6K BeadChips
(Illumina, Inc. San Diego, CA, USA) as previously described [53]. Subsequently, SNP
alleles were called using GenomeStudio Genotyping Module 2.0 (Illumina, Inc. San Diego,
CA, USA).
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JoinMap 4.0 [54] was used to construct the genetic linkage map with a LOD score
threshold of 3.0 and a maximum genetic distance of 50 cM to group markers. The link-
age groups were assigned to corresponding soybean chromosomes as described in Soy-
Base [29,31].

3.4. Isoflavone QTL Detection and Statistical Analysis

The broad sense (mean based) heritability analysis from two-way ANOVA was con-
ducted using the following equation: h2 = σG

2/[σG
2 + (σGE

2/e) + (σe
2/re)] where σG

2

(variance of genetic factor), σGE
2 (variance of genotype-environment interactions), and

σe
2 (variance of random effect) were calculated with e (number of environment) and r

(number of replicates) normalization [55]. R [56] was employed in the statistical analysis
including agronomic traits, histogram of trait distribution, two-way ANOVA, and broad
sense heritability using its native packages. The significant level of the assessed traits was
showed using R package car (type II Wald chi-square tests) [56].

Both interval mapping (IM) and composite interval mapping (CIM) methods of Win-
QTL Cartographer 2.5 [39] were used to identify QTL for seed genistein, daidzein, glycitein,
and total isoflavone contents in this RIL population. The default parameters of WinQTL Car-
tographer were chosen (Model 6, 1 cM step size, 10 cM window size, 5 control markers, and
1,000 permutations threshold) [39]. Chromosomes were drawn using MapChart 2.2 [57].

3.5. Isoflavone Candidate Genes Identification

The Glyma numbers of the isoflavone genes were obtained by searching the available
data at the SoyBase [29,31] and Phytozome database [45]. The name of the isoflavone
pathway enzymes (Figure 5) were used as a query in a search of the Glycine max reference
genome, version Williams 82. The obtained isoflavone genes were mapped to the identified
isoflavone QTL.

3.6. Expression Analysis

The expression analysis of the genes that are located within or near the isoflavone QTL
was conducted using the publicly available soybean expression database from Phytozome
database [45] to infer expression profiles of isoflavone genes in the soybean reference
genome Williams 82. Gene expression was estimated in FPKM (Fragments Per Kilobase of
transcript per Million mapped reads).

For the Forrest cv., RNA-seq library was prepared by using four plant soybean tissues
including seed, leaf, root, flower and pods as shown earlier [58]. From 100 mg of frozen
grounded samples, total RNA was extracted using RNeasy QIAGEN Kit (Qiagen, Hilden,
Germany). The DNase I (Invitrogen, Carlsbad, CA, USA) was used to treat the total
RNA. Using Illumina NovaSeq 6000, RNA-seq libraries preparation and sequencing were
performed at Novogene INC. Multiplexing and sequencing of the four libraries were
done in two different lanes generating 20 million raw pair end reads per sample (150 bp).
Quality of sequenced reads was assessed using fastqc, version 0.11.9. [59]. The low-quality
reads and adapters were removed with trimmomatic, version V0.39, the remaining high-
quality reads were mapped to the soybean reference genome Wm82.a2.v1 using STAR,
version v2.7.9 [60,61]. Uniquely mapped reads were counted using Python package HTseq
v0.13.5. [62]. Read count normalization and differential gene expression analysis were
conducted using the Deseq2 package v1.30.1 [63] integrated in the OmicsBox platform
from BioBam (Valencia, Spain) [58,64].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10102029/s1, Figure S1: Positions of major QTL (LOD > 2.5) that control seed genistein
(qGEN), daidzein (qDAID), and glycitein (qGLY) contents identified in the FXW82 RIL population.
(A) QTL identified in Spring Lake, NC (2018) and (B) QTL identified in Carbondale, IL (2020);
Figure S2. The SNP-based genetic linkage map of Forrest by Williams 82 recombinant inbred
line (RIL) population (n = 306) of soybean. Chrs. were drawn using MapChart 2.2 (Voorrips,
2002 [57]). Positions of QTL that control seed genistein (qGEN), daidzein (qDAID), and glycitein
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(qGLY) contents are indicated with black bars on Chrs. 2, 4, 5, 6, 10, 12, 15, 19, and 20. QTL names are
followed by a number, location, and year in which they are identified. For example, qGEN01-(NC-
2018); Table S1: Candidate genes involved in soybean isoflavone biosynthetic pathways and their
Phytozome annotation. These 130 candidate genes are identified in all 20 Chrs.
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Abstract: Plant height is significantly correlated with grain traits, which is a component of wheat yield.
The purpose of this study is to investigate the main quantitative trait loci (QTLs) that control plant
height and grain-related traits in multiple environments. In this study, we constructed a high-density
genetic linkage map using the Wheat50K SNP Array to map QTLs for these traits in 198 recombinant
inbred lines (RILs). The two ends of the chromosome were identified as recombination-rich areas
in all chromosomes except chromosome 1B. Both the genetic map and the physical map showed a
significant correlation, with a correlation coefficient between 0.63 and 0.99. However, there was almost
no recombination between 1RS and 1BS. In terms of plant height, 1RS contributed to the reduction
of plant height by 3.43 cm. In terms of grain length, 1RS contributed to the elongation of grain by
0.11 mm. A total of 43 QTLs were identified, including eight QTLs for plant height (PH), 11 QTLs for
thousand grain weight (TGW), 15 QTLs for grain length (GL), and nine QTLs for grain width (GW),
which explained 1.36–33.08% of the phenotypic variation. Seven were environment-stable QTLs,
including two loci (Qph.nwafu-4B and Qph.nwafu-4D) that determined plant height. The explanation
rates of phenotypic variation were 7.39–12.26% and 20.11–27.08%, respectively. One QTL, Qtgw.nwafu-
4B, which influenced TGW, showed an explanation rate of 3.43–6.85% for phenotypic variation.
Two co-segregating KASP markers were developed, and the physical locations corresponding to
KASP_AX-109316968 and KASP_AX-109519968 were 25.888344 MB and 25.847691 MB, respectively.
Qph.nwafu-4B, controlling plant height, and Qtgw.nwafu-4B, controlling TGW, had an obvious linkage
relationship, with a distance of 7–8 cM. Breeding is based on molecular markers that control plant
height and thousand-grain weight by selecting strains with low plant height and large grain weight.
Another QTL, Qgw.nwafu-4D, which determined grain width, had an explanation rate of 3.43–6.85%.
Three loci that affected grain length were Qgl.nwafu-5A, Qgl.nwafu-5D.2, and Qgl.nwafu-6B, illustrating
the explanation rates of phenotypic variation as 6.72–9.59%, 5.62–7.75%, and 6.68–10.73%, respectively.
Two QTL clusters were identified on chromosomes 4B and 4D.

Keywords: wheat; plant height; grain traits; Wheat50K; genetic map; QTL

1. Introduction

Wheat (Triticum aestivum L.) is a major food crop globally, providing carbohydrates and
protein for 35% of the global population. It is estimated that wheat production will increase
by more than 70% in the next 30 years to meet the needs of the growing population [1]. To
ensure global food security, genetic improvement of food production will be one of the
main goals of wheat breeding programs [2–4].

Plants 2021, 10, 1167. https://doi.org/10.3390/plants10061167 https://www.mdpi.com/journal/plants176
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Both 1000-grain weight (TGW) and the genetic improvement of related traits, which
play a vital role in wheat yield, are applicable to increasing wheat yield. TGW is mainly
affected by grain morphological parameters, such as grain length and grain width [4–6].
TGW-related genes, including sucrose synthase genes, encode cell wall invertase and
cytokinin oxidase/dehydrogenase. The sucrose synthase genes TaSus1-7A, -7B and TaSus2-
2A, -2B determine TGW and grain size [7,8], TaGW2-6A, -6B the grain width [9,10], and
TaGS-D1 the grain size [11]. TaCwi-A1 encodes cell wall invertase [12], TaCKX6-D1 encodes
cytokinin oxidase/dehydrogenase [13], and TaGASR-A1 is a putative Snakin/GASA protein
associated with grain length (GL) (Dong et al., 2014). The inheritance of grain traits is
relatively stable, forming a higher heritability than overall yield [14]. The method is suitable
for QTL analysis of wheat samples planted and collected from different places and years,
and a stable QTL can be retrieved and detected. Over the past 20 years, more than 150 QTLs
related to TGW, grain length, and grain width have been identified, which are distributed
on 21 chromosomes of wheat [5,15–45]. Some studies have shown that there is a significant
positive correlation between plant height and TGW [19,32,33,39,46,47]. The application
of Rht1 (RHT-B1b) and Rht2 (RHT-D1b) in the 1960s set off a green revolution in wheat
breeding. So far, 25 Rht genes have been identified in wheat [48,49]. Amongst these 25
genes, Rht1 and Rht2 are dwarfing genes that show insensitivity to gibberellins located
on chromosomes 4BS and 4DS, respectively [13]. The wild alleles Rht-B1a and Rht-D1a
also have a significant positive correlation with TGW [32,50]. Another gene, called Rht8, is
sensitive to gibberellins for reducing plant height and is located on the 2DS chromosome.
Rht8 is another widely applied dwarfing gene that has no obvious negative effect on TGW,
but affects panicle length. Thus, Rht8 is a typical pleiotropism gene [6,51]. The genetic
relationship can be investigated by targeting gene loci related to TGW and plant height,
obtained by QTL mapping [30,52].

QTL genetic mapping is a crucial means to analyze functional loci [28]. Constructing
a saturated genetic map is the key to QTL mapping, and molecular markers are the
genetic map carrier. Triticum aestivum L. is a typical allohexaploid (AABBDD) composed
of three subunits, and it represents the largest crop genome. Moreover, it is also the
genome with the highest proportion of repetitive sequences such as transposable elements
(84.7%) (IWGSC2018). Multitudes of SNP markers bear abundant polymorphism [53], and
mapping results are quite advantageous in terms of accuracy and precision, especially
for QTL mapping of quantitative traits [53,54]. By constructing a high-density genetic
map to target the SNPs’ genetic and physical loction, collinearity analysis is performed,
and then the recombination rate in different regions of the chromosome can be judged.
After comparing the genetic and physical distances between adjacent markers, the relative
changes of recombination rates in each chromosome can be further investigated and
analyzed. The range of the mating population required for a recombination event in a
specific region can be estimated. Scientific and accurate estimation for breaking the chain of
specific target areas can be provided, and accurate judgments for evaluating genetic linkage
drag, together with guidance for improving breeding efficiency, can be achieved [54,55].

Until now, couples of common wheat SNP microarrays, including Wheat9K [56],
Wheat90K [37,57,58], Wheat820K [59], Wheat660K (http://bioservices.capitalbio.com/
index.shtml) [37,57,58], and the Wheat55K SNP array, have been developed based on the
660K SNP array [60–65].The Wheat50K SNP array is a high-efficiency genotyping technol-
ogy completed by the Institute of Crop Science of the Chinese Academy of Agricultural
Sciences and Affymetrix. The technology was developed using high-quality SNP mark-
ers selected from Wheat90K SNP arrays, 660K SNP arrays, and 35K SNP arrays. In the
50K SNP array, there are 135 functional markers and 700 SNP markers closely linked to
known QTLs [66]. The functional markers covering ten TGW-related genes and two plant
height-related genes are shown in Table S1.

In this study, a Kompetitive allele-specific PCR (KASP) marker was used, which is a
polymerase chain reaction-based (PCR) technology using fluorescence for single nucleotide
polymorphism (SNP) and small insertion and deletion (InDel). KASP markers have the
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advantage of a low error rate and a relatively low cost compared to other SNP genotyping
platforms such as TaqMan systems. According to the method of Ma et al. [63], SNPs located
in the main QTL interval were selected to develop KASP markers.

This project aims to determine the chromosome recombination rates in different
regions using collinearity analysis of the genetic positions and physical locations of the
SNP markers. By mapping the environment-stable QTL region of grain-related traits,
whether corresponding loci are located in the recombination-rich or recombination-barren
area can be confirmed, and a reasonable judgment for further fine mapping can be fulfilled.
By traits and linkage analysis of the relationship between plant height and grain traits,
useful insights for the next steps of molecular breeding can also be provided.

2. Results
2.1. Agronomic Traits Analysis

As was shown in Table 1, significant differences when p = 0.01 in the four environments
appeared in relation to the plant height, TGW, grain length, and grain width of the two-
parent materials. In Table 1 and Figure S1, we can see that fluctuations occurred in the same
traits in different environments, indicating that these four traits were easily affected by
the environment. The agronomic traits failed to accord with a strictly normal distribution
(p < 0.05). The trait heritability values of plant height, TGW, grain length, and grain width
were 0.73, 0.62, 0.61, and 0.72, respectively. As can be seen, those of plant height and grain
width were relatively high.

Table 1. Statistical analysis of parent and RIL lines for traits.

Traits Environment Xinong1376 Xiaoyan81 Mean ± SD Minimum Maximum p-Value Heritability

Plant
height 19NY 65.25 77.75 ** 67.08 ± 13.78 32.2 96.8 2.19 × 10−3 0.73

20NY 68.24 81.22 ** 80.03 ± 14.43 40.2 109.8 5.66 × 10−6

19YL 68.36 78.23 ** 65.78 ± 12.78 34.6 90.9 6.14 × 10−4

20YL 72.33 83.25 ** 72.24 ± 15.08 38.3 109.2 3.82 × 10−2

Thousand
Grain

Weight
19NY 41.35 ** 36.23 40.72 ± 4.37 27.81 52.19 1.12 × 10−1 0.62

20NY 42.13 ** 39.48 42.62 ± 4.51 26.28 51.76 1.24 × 10−3

19YL 44.32 ** 41.75 45.32 ± 4.41 34.22 55.05 2.80 × 10−2

20YL 46.23 ** 42.32 45.21 ± 4.40 29.5 54.83 3.68 × 10−1

Grain
length 19NY 7.12 ** 6.87 7.23 ± 0.37 6.27 8.04 3.93 × 10−2 0.61

20NY 7.32 ** 6.75 7.14 ± 0.35 6.34 8.03 6.79 × 10−2

19YL 7.51 ** 7.24 7.44 ± 0.34 6.68 8.23 1.81 × 10−2

20YL 7.36 ** 7.14 7.51 ± 0.38 6.67 8.51 1.96 × 10−1

Grain
width 19NY 3.31 3.21 3.37 ± 0.15 2.88 3.69 1.45 × 10−3 0.72

20NY 3.88 ** 3.62 3.45 ± 0.18 2.81 3.83 2.18 × 10−3

19YL 3.51 ** 3.28 3.60 ± 0.16 3.11 3.9 1.38 × 10−2

20YL 3.66 ** 3.42 3.60 ± 0.16 3.16 3.95 3.02 × 10−3

Note: ** represents a significant difference between the two parents when p = 0.01.

As was shown in Figure S1, there was a significant positive correlation between the
same traits and different environments when p = 0.001. The correlation between different
years in the same place was higher than that in other combinations, indicating that a
high degree of environmental similarity was present in the same place but in different
years. The correlation between plant height and grain length was negative, but there was
a significant positive correlation between TGW and grain width. TGW had a significant
positive correlation with the other three traits, and a higher correlation with grain width
than that with other traits. The correlation between grain length and grain width was
different in different environments.
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2.2. Construction of a Genetic Map
2.2.1. Description and Illustration of a Genetic Map

66,832 markers were subject to polymorphism analysis of population genotype by
50K gene microarray. A total of 19,601 SNP markers with differences were screened in
the derived RIL populations of Xinong1376 and Xiaoyan81, while the remaining 15,822
markers were filtered by Chi-square test, and redundant markers were eliminated using
the bin function of IciMapping. A total of 3136 bin markers, including 15,576 SNP markers,
were eventually anchored to the genetic map. In addition, the genotyping, polymorphism
marker, data filtering, physical map, genetic map, and bin map are all shown and illustrated
in Table S2. Based on the 660K chip labeling, the SNP markers that differed between the
two parents were detected and stored in Figure S2. The total length of the linkage map was
4512.79 cM, the average map distance was 1.44 cM, and the maximum gap was 26.86 cM,
which covered 21 wheat chromosomes. According to linkage lengths in the homologous
groups, their sequence in descending order was the fifth, the seventh, the third, the second,
the fourth, the sixth, and the first. The linkage lengths were 813.14 cM, 794.35 cM, 703.96
cM, 631.98 cM, 563.99 cM, 537.27 cM, and 468.12 cM, and the numbers of bin markers
were 621 (2947 SNP markers included), 549 (2193 SNP markers included), 524 (2846 SNP
markers included), 327 (1865 SNP markers included), 393 (2002 SNP markers included),
372 (1865 SNP markers included), and 272 (2016 SNP markers included), respectively.

The numbers of bin markers located in wheat A, B, and D chromosome groups were
1231, 1197, and 708, respectively. The linkage lengths were 1703.69 cM, 1298.23 cM and
1510.87 cM, and the average map distances were 1.38 cM, 1.08 cM, and 2.13 cM, respectively.
Molecular markers in the D genome were no more than those in the other two subgroups.
In addition, the longest linkage group corresponding to chromosome 3A was 312.11 cM,
and the shortest corresponding to chromosome 1D was 130.85 cM. The maps of each
linkage group were shown and illustrated in Table 2 and Figure S2.

2.2.2. Collinearity Analysis of the Genetic Map

In this research, the genetic map and the collinearity map of the reference genome were
analyzed as follows: The whole chromosome was included in the genetic map, the genetic
map and the physical map were collinear, and the linkage map and the physical map
were not linearly related. The recombination exchange on chromosomes was unbalanced,
and the collinear diagrams of other chromosomes except for chromosome 1B appeared
by and large S-shaped. The genetic positions of chromosomes increased linearly with the
increase in physical locations, and the rest of the genetic positions aligned constantly with
the increase in physical locations. This indicated that the two ends of the chromosome
were recombination-rich areas and that the middle region was a recombination-barren
area. A significant correlation of the genetic map and the physical one appeared when p =
0.001, the correlation coefficient ranged from 0.63 to 0.99, and the correlation coefficient of
chromosome 1B was 0.63. The distribution presentation of bin markers on the reference
genome showed that the number of bin markers on both ends of the chromosome was
significantly higher than that of the middle region. The recombination rate of the two sides
with a U-shaped distribution was significantly higher than that of the middle region, which
confirmed that the ends of the chromosome were recombination-rich areas and the middle
was the recombination-barren area. The reason for these findings was the inhibitory effect
of centromere recombination.

No markers could be detected in the middle regions (more than 200 MB) of chromo-
somes 1D, 5A, and 6A. However, the linkage group was not divided into two parts in these
regions, which were supposed to be recombination-barren regions. For nine chromosomes
(2D, 3D, 5A, 5B, 5D, 6A, 6D, 7A and 7D), each chromosome included two linkage groups.
For different linkage groups corresponding to the same chromosome, the grouping regions
all appeared at both ends of the chromosome as the recombination-rich area, and the
physical distance between the markers was less than 30 MB.
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The collinearity map of chromosome 1B from 0 to 480 MB presented as an L-type
curve. Although the gradual numerical values of physical location increased, the genetic
distances were almost unchanged, and thus homologous recombination hardly occurred
in the region. Xinong1376 belonged to 1BL/1RS translocation line, 1RS and 1BS hardly
recombined, and the centromere’s inhibition of recombination happened in the middle
region, making the collinearity map L-shaped.

Table 2. Single-nucleotide polymorphism (SNP) marker statistics about distribution and density on 21 wheat chromosomes
derived from crossing between Xinong1376 and Xiaoyan81.

Chromosome Linkage
Group Length(cM) Maker

Numbers
Bin

Number
Insinuation

Markers
Maximum
Clearance

Average
Bin

Bin
Density

1A LG1A 192.66 1064 112 1045 25.68 1.72 0.58
1B LG1B 144.61 558 118 447 26.86 1.23 0.82
1D LG1D 130.85 394 42 336 18.01 3.12 0.32
2A LG2A 215.97 951 140 940 23.46 1.54 0.65
2B LG2B 244.43 676 173 597 25.44 1.41 0.71
2D LG2D.1 132.89 161 48 154 25.42 2.77 0.36

LG2D.2 38.69 77 11 75 10.06 3.52 0.28
3A LG3A 311.23 1322 285 1301 16.8 1.09 0.92
3B LG3B 160.61 487 144 458 12.59 1.12 0.9
3D LG3D.1 17.46 38 8 36 13.71 2.18 0.46

LG3D.2 214.66 999 87 1026 22.84 2.47 0.41
4A LG4A 228.42 614 123 592 24.85 1.86 0.54
4B LG4B 169.56 1185 193 1156 8.57 0.88 1.14
4D LG4D 166.01 203 77 199 16.52 2.16 0.46
5A LG5A.1 234.18 969 169 963 16.26 1.39 0.72

LG5A.2 52.94 139 39 134 9.87 1.36 0.74
5B LG5B.1 68.44 682 88 675 8.09 0.78 1.29

LG5B.2 172.4 538 164 529 15.43 1.05 0.95
5D LG5D.1 223.58 192 119 171 13.69 1.88 0.53

LG5D.2 61.6 427 42 415 8.03 1.47 0.68
6A LG6A.1 112.71 154 50 137 20.91 2.25 0.44

LG6A.2 54.95 161 36 151 17.46 1.53 0.66
6B LG6B 167.65 852 188 783 7.7 0.89 1.12
6D LG6D.1 31.08 34 7 34 10.4 4.44 0.23

LG6D.2 170.88 506 124 497 12.41 1.38 0.73
7A LG7A.1 75.25 194 76 176 14.91 0.99 1.01

LG7A.2 225.38 647 201 633 18.9 1.12 0.89
7B LG7B 170.54 882 129 845 18.19 1.32 0.76
7D LG7D.1 237.8 453 130 446 15.51 1.83 0.55

LG7D.2 85.38 17 13 16 24.96 6.57 0.15
1st homologous 3 468.12 2016 272 1828 26.86 1.72 0.58
2nd homologous 4 631.98 1865 372 1766 25.44 1.7 0.59
3rd homologous 4 703.96 2846 524 2821 22.84 1.34 0.74
4th homologous 3 563.99 2002 393 1947 24.85 1.44 0.7
5th homologous 6 813.14 2947 621 2887 15.43 1.31 0.76
6th homologous 4 537.27 1707 405 1602 20.91 1.33 0.75
7th homologous 5 794.35 2193 549 2116 24.96 1.45 0.69

A genome 10 1703.69 6215 1231 6072 25.68 1.38 0.72
B genome 8 1298.23 5860 1197 5490 26.86 1.08 0.92
D genome 12 1510.87 3501 708 3405 25.44 2.13 0.47

TOTAL 30 4512.79 15576 3136 14967 26.44 1.44 0.69

2.2.3. Effects of 1B/1R on Traits Related to Plant Height and TGW

1RS specific marker was used to detect the population, the strains containing 1RS
and 1BS were 51 and 147, respectively, and the p value of the chi-square test was 8.95
× 10−12, which proved to be a severely segregated marker that couldn’t be linked to
the linkage group. According to the typing of the specific markers, the unpaired data
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T test was performed on the traits related to plant height and TGW, and there was no
significant difference between 1RS and 1BS. According to the typing of specific markers, a
two-factor analysis of variance was performed on the agronomic traits, and the TGW and
grain width were not affected by the genotype. According to the results of the variance
analysis, Duncan’s new multiple range test comparison of plant height and grain length
was conducted. In terms of plant height, 1RS contributed to the reduction of plant height
by 3.43cm. In terms of grain length, 1RS contributed to the elongation of grain by 0.11mm
(shown in Table S3 and Figure S3).

2.3. QTL Mapping Analysis

A total of 43 QTLs for PH, TGW, GL, and GW were identified by QTL mapping
analysis (Table 3 and Figure S4). These QTLs with LOD values ranging from 2.51 to
53.34 were distributed on 15 chromosomes and explained 1.36–33.08% of the phenotypic
variation (Table 3 and Figure S4). There were 8, 11, 15, and 9 QTLs detected for PH, TGW,
GL, and GW, respectively (Table 3 and Figure S4).

Inclusive composite interval mapping (ICIM) for PH identified a total of eight QTLs,
which were located on six different chromosomes (Table 3 and Figure S4): 2D(2), 4B, 4D,
5B, 5D, and 6B(2). The QTL on 4B, Qph.nwafu-4B, was detected in four environments.
Qph.nwafu-4B was thus treated as a major QTL, which explained 9.32–13.76% of phenotypic
variance with LOD values ranging from 7.93 to 26.85. As was expected, the positive allele
of Qph.nwafu-4B was contributed by Xiaoyan81 (Table 3 and Figure S4). The QTL on 4D,
Qph.nwafu-4D, was detected in each of four environments. Qph.nwafu-4D was thus treated
as a major QTL, which explained 20.11–27.09% of phenotypic variance with LOD values
ranging from 16.78 to 42.21. As we expected, the positive allele of Qph.nwafu-4D was
contributed by Xinong1376 (Table 3 and Figure S4).

One QTL, Qph.nwafu-2D.1, for PH was detected in two environments, which explained
3.3–3.73% of phenotypic variance. The remaining QTLs were detected only in a single
environment (Table 3 and Figure S4).

ICIM for TGW identified a total of eleven QTLs, which were located on eight different
chromosomes (shown in Table 3 and Figure S4): 2A, 2B, 3A, 4B, 4D(2), 5A, 5D(3), and 6A.
The QTL on 4B, Qtgw.nwafu-4B, was detected in three environments. Qtgw.nwafu-4B was
thus treated as a stable QTL, which explained 3.43–6.85% of phenotypic variance with LOD
values ranging from 2.85 to 4.37. As was expected, the positive allele of Qtgw.nwafu-4B
was contributed by Xinong1376 (shown in Table 3 and Figure S4). Based on the initial QTL
mapping results, we developed two KASP markers, KASP_AX-109316968 and KASP_AX-
109333198, and integrated them into the genetic map. When remapping with this integrated
KASP marker, it was indicated that Qtgw.nwafu-4B was located in a 5 cM interval on
chromosome arm 4BS, between the markers of AX-111494900 and AX-94438527, containing
the newly developed KASP markers, including KASP_AX-109316968 and KASP_AX-
109333198 (Figure S5 and Table S3).Three QTLs, Qtgw.nwafu-4D.1, Qtgw.nwafu-5A, and
Qtgw.nwafu-5D.1, for TGW were detected in each of two environments, which explained
2.85–14.79% of phenotypic variance. The remaining QTLs were detected only in a single
environment (Table 3).
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ICIM for GL identified a total of fifteen QTLs, which were located on ten different
chromosomes (Table 3 and Figure S4): 1A, 1B(2), 3A, 4A, 4B(2), 4D, 5A, 5B, 5D(4), and 6B.
The QTL on 6B, Qgl.nwafu-6B, was detected in four environments. Qgl.nwafu-6B was thus
treated as a major QTL, which explained 6.68–10.73% of phenotypic variance with LOD
values ranging from 3.35 to 8.79. As was expected, the positive allele of Qgl.nwafu-6B was
contributed by Xinong1376 (Table 3). The QTL on 5A, Qgl.nwafu-5A, was detected in in
three environments. Qgl.nwafu-5A was thus treated as a stable QTL, which explained 6.72–
9.59% of phenotypic variance with LOD values ranging from 5.8 to 6.93. As we expected,
the positive allele of Qgl.nwafu-5A was contributed by Xinong1376 (Table 3 and Figure
S4). The QTL on 5D, Qgl.nwafu-5D.2, was detected in three environments. Qgl.nwafu-5D.2
was thus treated as a stable QTL, which explained 5.62–7.75% of phenotypic variance with
LOD values ranging from 4.36 to 6.13. As was expected, the positive allele of Qgl.nwafu-
5D.2 was contributed by Xinong1376 (Table 3 and Figure S4). Four QTLs, Qgl.nwafu-1B.2,
Qgl.nwafu-3A, Qgl.nwafu-4A, and Qgl.nwafu-4B.2, for GL were detected in two environments,
explaining 3.51–6.13% of phenotypic variance. The remaining QTLs were detected only in
a single environment (Table 3 and Figure S4).

ICIM for GW identified a total of nine QTLs, which were located on seven different
chromosomes (Table 3, Figure S4): 2B, 2D, 3A, 4B(3), 4D, 5D, and 6D. The QTL on 4D,
Qgw.nwafu-4D, was detected in each of the four environments. Qgw.nwafu-4D was thus
treated as a major QTL, which explained 6.32–12.12% of phenotypic variance with LOD
values ranging from 3.2 to 7.93. As we expected, the positive allele of Qgw.nwafu-4D was
contributed by Xinong1376 (Table 3). One QTL, Qgw.nwafu-4B.1, for GW was detected in
two environments, which explained 6.85–6.95% of phenotypic variance. The remaining
QTLs were detected only in a single environment (shown in Table 3 and Figure S4).

Two QTL clusters were identified on chromosomes 4B and 4D (Table 3 and Figure S4).
For the QTL cluster on chromosome 4B, Qtgw.nwafu-4B for TGW was co-localized with
Qgl.nwafu-4B.1 for GL, and Qph.nwafu-4B and Qgl.nwafu-4B.2 for GL were co-localized with
Qgl.nwafu-4B.2 and Qgl.nwafu-4B.3 for GL in a region ranging from 51 cM to 77 cM. On
chromosome 4D, Qph.nwafu-4D for PH was clustered with Qtgw.nwafu-4D.1 for TGW, and
Qgw.nwafu-4D for GW was clustered with with the alleles from Xiaoyan81 increasing PH,
TGW and GW.

3. Discussion
3.1. The Impact of Linkage Map on QTL Mapping

In this research, a linkage map, based on 50K microarray markers, was constructed
from 198 F8 RIL lines derived from the combination of two parents, Xinong1376 and
Xiaoyan81. The linkage map had a total length of 4512.79 cM, covering 21 chromosomes of
wheat. The reason why no marks could be targeted in the regions of more than 200 MB in the
middle of the four chromosomes 1D, 5A, and 6A was that a recombination-barren area near
the centromere appeared in the above regions, as was shown in Figure 1. Both parents were
derived from the backbone parent Xiaoyan6, and a region with the same haplotype was
formed rapidly [68], so that the two parents had no markers with polymorphic differences
in the above regions. There was a long, excellent haplotype segment on chromosome
6A [60,69].
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In this study, 43 QTLs were located. The genetic distance confidence interval was
0.5–12.5 cM, and the physical distance of the markers on both sides was 0.0201 MB–
414.88328 MB. As was shown in Table 2, the genetic distance confidence interval was
not proportional to the physical distance, which reflected the imbalance of the recombina-
tion exchange on the chromosomes.

By combining Figure S4 and Figure 1, it appeared that there were 5 QTLs located in
the recombination-barren region of the reference genome, and more than 20 MB QTLs
were distributed in this candidate region. The linkage interval of Qgl.nwafu-1B.1 was
0–0.5 cM, while the physical interval was 59.47117 MB–94.978091 MB and the interval
physical distance was 35.506914 MB. The reason was that Xinong1376 belonged to the
1BL/1RS translocation line, and there was almost no recombination or recombination
disorder between 1RS and 1BS [6,38,70,71]. Although the genetic distance of the confidence
interval was short, the corresponding physical distance of it was far. As was shown in
Figure S4, the linkage region of Qtgw.nwafu-2B was 95.5 cM–106.5 cM, and no marks could
be targeted in this region. This area belongs to the reorganization cold spot area, and the
corresponding physical distance was 153.585606 MB–568.468886 MB. The linkage regions
of Qtgw/gl.nwafu-3A, Qgl.nwafu-4A, and Qgw.nwafu-4B.2 were 132.5 cM–134.5 cM, 46.5 cM–
53.5 cM, and 67.5 cM–69.5 cM, respectively, and the corresponding regions were 457.796943
MB–431.074614 MB, 407.389107 MB–129.089816 MB, and 114.952789 MB–161.548436 MB,
respectively. As was shown in Table 2, the above three QTLs all fell in the recombination-
barren region of linkage groups with a large physical interval. The confidence interval of
Qgw.nwafu-6D, which was the largest, was 0 cM–12.5 cM, but the corresponding physical
region was 12.650045 MB–8.255713 MB, and the interval was only 4.4 MB. Qgw.nwafu-6D
was located at the top of the chromosome, and belonged to the recombination-rich region,
with a big genetic distance but a short corresponding physical distance.

3.2. Comparison with Previous Research Results

Two loci as environment-stable QTLs, targeted in three or four kinds of environments,
were Qph.nwafu-4B and Qph.nwafu-4D, which control plant height. In the confidence
interval, the function markers including Rht-1 and Rht-2 were AX-179477460 and AX-
86170701, respectively. According to the additive effect, the effect of the Qph.nwafu-4D
mutant in lowering plant height was stronger than that of the Qph.nwafu-4B mutant, which
was consistent with the results of Zhai et al. [6] The locus, Qgl.nwafu-5A, which controlled
the grain length, corresponded to the physical location of 698.508129 MB–700.34701 MB,
which was located at the end of the chromosome. Compared with the results of previous
studies [23,29–42], Qgl.nwafu-5A was a new QTL. The location of Qgl.nwafu-5D.2 which
controlled the length of the grain corresponded to the physical location of 370.135626 MB-
386.126855 MB. Based on previous research [22,24,35,42,43], Qgl.nwafu-5D.2 was defined as
a new QTL as well. The location of Qgl.nwafu-6B, which controls grain length, corresponded
to the physical location of 704.884934 MB–718.376276 MB. Compared with the results of
previous studies [35], the physical location marked by IWB2746 was 701.387367 MB. As was
shown in Figure S4, the collinearity between the linkage group and the physical position
was relatively disordered at the end of chromosome 6B, and it was not clear whether they
were the same QTL.

Qph.nwafu-4B (controlling plant height) and Qtgw.nwafu-4B (controlling TGW) had an
obvious linkage relationship, with a distance of 7–8 cM. The physical location correspond-
ing to this location of Qph.nwafu-4B was 30.805339 MB–32.961929 MB, and the physical
position corresponding to the location of Qtgw.nwafu-4B was 25.847125 MB–26.491497
MB. Guan’s QTL mapping results were marked as BS00084904_51 and BS00011338_51
on both sides, and the physical location was 28.954526 MB–66.811785 MB [30]. Cui Fa’s
QTL mapping results were marked as Rht-B1 and Xmag2055 on both sides, and the physi-
cal location was 30.860778 MB–20.741542 MB [70]. Quarrie’s QTL mapping results were
marked as Rht-B1 and gwm165.1 on both sides, and the physical location was 30.860778
MB–269.948831 MB [42] (The results of previous studies on chromosome 4B and the specific
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QTL information related to TGW are shown and illustrated in Table S4). From the QTL
mapping results in this study and the above three research results, it was suggested that
the confidence interval had this overlap while the confidence interval of this study was the
shortest. Based on heredity Doumai/Shi 41875, Li mapped the plant height and TGW. The
physical location on chromosome 4B was 46.621203 MB [35], which was not the same QTL.
The confidence intervals of Qph.nwafu-4D, Qtgw.nwafu-4D.1, and Qgw.nwafu-4D had clear
overlaps and were stably expressed in multiple environments. The mutant at this locus
lowered plant height while also decreasing TGW and grain width. Rht2 had a significant
effect on TGW, as previously shown by Mohler et al. [32]. There was a significant overlap
in the confidence interval of Qph.nwafu-5D controlling plant height and Qgl.nwafu-5D.3
controlling grain length, with a typical pleiotropism. This locus’s physical position was
466.230408 MB–469.357817 MB, and its additive effect was opposite, so physiological an-
tagonism occurred. The location of wmc215 targeted by Hai et al. was 472.369175 MB, and
that of gwm212 targeted by Quarrie was 472.630187 MB, which was in line with previous
localization results [42,43]. The difference in physical location was 3 MB. Since subgroup
D had a large linkage disequilibrium [72], it was impossible to determine whether these
loci were the same one. Qtgw.nwafu-5D.1 controlling TGW and Qgl.nwafu-5D.1 controlling
grain length were located in the region from 38.070293 MB–41.294446 MB, neither of which
belonged to the same region of the 5D chromosome, compared with the results of previous
studies [35,42,43,73].

3.3. Qtgw.Nwafu-4B Molecular Marker Development

Based on the confidence interval of the parental 660K chip marker, two co-segregating
KASP markers were developed. Two KASP molecular markers were inserted into the
original genetic map, and the genetic map of chromosome 4B maintained a high degree of
collinearity. Two KASP molecular markers were inserted into the original genetic map, and
the genetic map of chromosome 4B maintained a high degree of collinearity. The primer
sequences and typing information of the two molecular markers of KASP_AX-109316968
and KASP_AX-109333198 are shown in Figure S5 and Table S5. Qph.nwafu-4B (controlling
plant height) and Qtgw.nwafu-4B (controlling TGW) had an obvious linkage relationship,
with a distance of 7–8 cM. Breeding is based on molecular markers that control plant height
and thousand-grain weight to select strains with low plant height and large grain weight.

4. Materials and Methods
4.1. Plant Materials, Experimental Design, and Investigation of Agronomic Traits

Xinong 1376 is the female parent and Xiaoyan 81 is the male parent. Based on the
single-grain transmission method, 198 RIL lines were generated. There were planted in
Yangling, Shaanxi province and Nanyang, Henan province, from October 2018 to June 2019
and from October 2019 to June 2020, respectively. A randomized block design (repeated
five times, with two rows of districts, 2 m row length, 70 plants per row, and 0.3 m row
spacing) was adopted in each experimental site. The other field managements were subject
to the same treatment as the local. During the wax maturity period of wheat, five individual
plants were sampled in sequence from the fifth plant of each family. Plant height, TGW,
grain length and grain width were also measured. By R/lme4 [73], each environment’s
agronomic traits were obtained for W-test, and then multiple comparisons of parental
traits and calculation of heritability were completed. The heritability of the two traits was
calculated by using the formula as follows:

H2 = VG/(VG + VGY/y + VGE/e + VE/nr) × 100%

where y is the number of years, e is the number of environments, and n is the number of
repetitions.

The pedigrees of Xinong1376 and Xiaoyan81 are illustrated in Figure S2.
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4.2. Construction and Evaluation of Genetic Maps

The wheat genomic DNA, with tender wheat leaves as the plant material, was ex-
tracted by CTAB, and the quality and quantity of DNA were detected and confirmed.
Meanwhile, the DNA of each line was hybridized on the wheat 50K SNP array containing
66,832 markers using Burdock Biotechnology (Beijing, China).

The course of constructing the map was conducted as follows: The BIN function of
IciMapping 4.1 [70] was utilized to analyze the markers, and the markers with partial sepa-
ration rate (p < 0.001) and missing rate (>15%) were removed. The Kosambi function with
LOD ≥ 5 was applied to group the combined marker groups in JoinMap 4.0; Kosambi map-
ping of MSTmap [74], according to the clustering results, was used in the markers’ ordina-
tion. The flanking sequences of SNPs were BLAST aligned with the genome of IWGSC Ref-
Seq v1.0 (http://www.wheatgenome.org/News/Latest-news/All-IWGSC-data-related-to-
the-reference-sequence-of-bread-wheat-IWGSC-RefSeq-v1.0-publicly-available-at-URGI)
to obtain their physical locations. The version of BLAST used was 2.2.31 –outfmt 3–
num_alignments 5.

4.3. Identification of 1BL/1RS Translocation

1RS, applied to identify parents and populations as x-sec-p1/x-sec-p2, respectively,
was a specific marker [75]. Xinong1376 was identified as a 1BS/1RS translocation line.
1B/1R genotyping and traits data were stored in Table S4 and Figure S3. Analysis of
variance and Duncan’s new multiple range test comparisons based on genotype and trait
were conducted.

4.4. Detection of Quantitative Loci

IciMapping 4.2 based on the biparental population (BIP) module with the inclu-
sive composite interval mapping (ICIM, http://www.isbreeding.net/software/?type=
detail&id=28) was used for QTL mapping on data obtained from different environments.
QTL mapping of the phenotypic values in the four environments was carried out. The
LOD value was determined in 1000 permutation tests with a = 0.05 (Type I Error) as
the parameter, and the background was set and controlled by the positive and nega-
tive stepwise regression, with the step width set to 1cM. QTLs were named based on
the International Rules of Genetic Nomenclature (http://whea.pw.usda.gov/ggpages/
wgc/98/Intro.htm). Mapchart2.3 (https://www.wur.nl/en/Research-Results/Research-
Institutes/plant-research/Biometris-1/SoftwareService/Download-MapChart.htm) was
used for the drawing of the genetic and QTL mapping. The collinearity drawing of ge-
netic and physical maps, and the calculation of correlation coefficient were conducted by
package plotrix (https://cran.r-project.org/src/contrib/Archive/plotrix/) and package
(https://github.com/braverock/PerformanceAnalytics) of R software.

4.5. Breeding Molecular Marker Development

After obtaining the preliminary QTL mapping results, we anchored the flanking
markers to the physical map. In order to develop a competitive allele-specific PCR (KASP)
marker that can be used to track stable TGW QTLs, we used the Wheat660K SNP array to
further genotype the parents of the Xinong1376/Xiaoyan81 population [63,71]. According
to the method of Ma et al. [63], SNPs located in the main QTL interval were selected to
develop KASP markers. The developed integrated genetic map of KASP markers was
applied to relocate the target QTL.

5. Conclusions

In this research, a genetic map covering the entire wheat genome was constructed,
with a total of 3136 bin markers, including 15576 SNP markers, and the total length of the
linkage map was 4512.79 cM. Except for chromosome 1B, the ends of chromosomes were
identified as recombination-rich areas, while the middle areas were recombination-barren.
Both the genetic map and the physical map showed a significant correlation when p = 0.001.
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The correlation coefficient ranged from 0.63 to 0.99. There was almost no recombination
between 1RS and 1BS. Among 43 QTLs indirectly compared by reference genome, only
13 QTLs were consistent with previous mapping results, and 30 QTLs were defined as
new QTLs. Seven environment-stable QTLs were detected in this population, including
Qph.nwafu-4B, Qtgw.nwafu-4B, Qgw.nwafu-4D, Qph.nwafu-4D, Qgl.nwafu-5A, Qgl.nwafu-5D.2,
and Qgl.nwafu-6B. Qtgw.nwafu-4B, which influenced TGW, showed an explanation rate of
3.43–6.85% for phenotypic variation, with two co-segregating KASP markers developed,
and the physical locations corresponding to KASP_AX-109316968 and KASP_AX-109519968
were 25.888344 MB and 25.847691 MB, respectively, for details, see Figure 2. Qph.nwafu-4B
(controlling plant height) and Qtgw.nwafu-4B (controlling TGW) had an obvious linkage
relationship, with a distance of 7–8 cM. The physical location corresponding to this location
of Qph.nwafu-4B was 30.805339 MB–32.961929 MB, and the physical position corresponding
to this location of Qtgw.nwafu-4B was 25.847125 MB–26.491497 MB. There is a functional
marker (AX-179477460) for the control value of plant height in the Qph.nwafu-4B confidence
interval, and this locus can be determined to be Rht-B1. The physical locations of Qph.nwafu-
4B, Qph.nwafu-4D, and Qgw.nwafu-4D were consistent with previous mapping results. For
Qgl.nwafu-6B, it couldn’t be accurately determined whether it was a new QTL or not. Two
QTL clusters were identified on chromosomes 4B and 4D (Table 3 and Figure S4).
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10.3390/plants10061167/s1, Table S1. Statistical analysis of parent and RIL lines for traits, Table S2.
Single-nucleotide polymorphism (SNP) marker statistics about distribution and density on 21 wheat
chromosomes derived from crossing between Xinong1376 and Xiaoyan81, Table S3. Full genomic
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QTL mapping results of plant height and grain related traits in the F8 RIL lines between Xinong1376
and Xiaoyan81, Figure S1. Collinearity analysis of genetic map and reference genome, Figure S2. The
linkage group corresponding to chromosome 4B.
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