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Preface

The main objective of radar signal recognition and identification is to identify distinctive signal

patterns and establish methods for distinguishing them. In the literature, a concept widely used to

describe pattern recognition and classification is source emission pattern-separating surfaces in the

measurable feature space. Because radar emitter recognition and classification are based on defining

the location of an emission source from said separating surfaces, it is essential to highlight a very

significant fact: radar metrics need to be defined in the measurable feature space of a signal, and the

specific features of a radar signal must be extracted in order to establish a distinctive radar signal

pattern.

Recently, there have been rapid developments in electronic warfare systems. Different methods

of electromagnetic environment observation have been used to analyze radar signatures; these

methods increase the quality of algorithms that can recognize objects and targets automatically.

The first paper in this Special Issue is titled ”Intra-Pulse Modulation Recognition of Radar Signals

Based on Efficient Cross-Scale Aware Network”; radar signal intra-pulse modulation recognition

can be achieved through convolutional neural networks (CNNs) and time–frequency images. The

author proposes a lightweight CNN known as a cross-scale aware network (CSANet) to recognize

intra-pulse modulation based on three types of time-frequency images. The cross-scale aware (CSA)

module, designed as a residual and parallel architecture, comprises a depthwise dilated convolution

group (DDConv Group), a cross-channel interaction (CCI) mechanism, and spatial information focus

(SIF). The DDConv Group produces multiple-scale features with a dynamic receptive field, while CCI

fuses the features and mitigates noise in multiple channels, and SIF has awareness of the cross-scale

details of TFI structures. Furthermore, by employing image preprocessing techniques, i.e., adaptive

binarization, morphological processing, and feature fusion, a novel time–frequency fusion (TFF)

feature based on three types of TFI is developed.

In the field of electronic warfare, noise radars are examples of LPI and LPE systems that

have gained substantial prominence in the past decade despite exhibiting a common drawback

of limited Doppler tolerance. The prevalence of Low Probability of Interception (LPI) and Low

Probability of Exploitation (LPE) radars presents an ongoing challenge for defense mechanisms,

necessitating constant progress in establishing protective strategies. The sophisticated Electronic

Intelligence (ELINT) systems that employ Time Frequency Analysis (TFA) and image processing

methods may intercept APCN and estimate important parameters of APCN waveforms, such as

bandwidth, operating frequency, time duration, and pulse repetition interval, as shown in the article

entitled ”On a Closer Look of a Doppler Tolerant Noise Radar Waveform in Surveillance Applications

”. The contributions to this work offer enhancements to noise radar capabilities while facilitating

improvements in ESM systems.

In recent years, radar emitter signal recognition has enjoyed a wide range of applications

in electronic support measure systems and communication security. An increasing number of

deep learning algorithms have been used to improve the recognition accuracy of radar emitter

signals. However, complex deep learning algorithms and data preprocessing operations have a huge

demand for computing power, which cannot meet the requirements of low power consumption

and high real-time processing scenarios. To solve this problem, the authors ”Efficient FPGA

Implementation of Convolutional Neural Networks and Long Short-Term Memory for Radar Emitter

Signal Recognition” propose a resource reuse computing acceleration platform based on field

programmable gate arrays (FPGAs) and implement a one-dimensional convolutional neural network

ix



(CNN) and long short-term memory neural network model for radar emitter signal recognition. As

the research conducted shows, the energy efficiency ratio and real-time performance of the radar

emitter recognition system is showing significant improvement.

Another featured paper, ”An Application of Analytic Wavelet Transform and Convolutional

Neural Network for Radar Intrapulse Modulation Recognition”, analyzes the possibility of using

Analytic Wavelet Transform and Convolutional Neural Networks for the purpose of recognizing

the intra-pulse modulation of radar signals. This article considers selected types of intra-pulse

modulation, namely linear frequency modulation (LFM) and the following phase-coded waveform

(PCW) types: Frank, Barker, P1, P2, and Px. The authors of this article also consider the possibility of

using other time–frequency transformations, such as Short-Time Fourier Transform or Wigner–Ville

Distribution. Finally, the results of the simulation tests carried out in the Matlab environment are

presented.

Developments in radio detection and radar technology have made hand gesture recognition

possible. In heat map-based gesture recognition, feature images are large and require complex

neural networks to extract information. Machine learning methods typically require large amounts

of data; hand gestures recognition achieved with radar is time- and energy-consuming. Thus, the

paper ”Low Complexity Radar Gesture Recognition Using Synthetic Training Data” proposes a low

computational complexity algorithm for hand gesture recognition based on a frequency-modulated

continuous-wave radar and a synthetic hand gesture feature generator. The experimental results

demonstrate that the average recognition accuracy of the model on the test set can reach a high level

when the synthetic data are used as the training set and the real data are used as the test set. This

indicates that the generation of synthetic data can make a meaningful contribution to the pre-training

phase.

In the paper entitled ”Recognition of Targets in SAR Images Based on a WVV Feature Using

a Subset of Scattering Centers”, a robust method for feature-based matching with potential for

application in synthetic aperture radar (SAR) automatic target recognition (ATR) is proposed. The

scarcity of measured SAR data available for training classification algorithms leads to the replacement

of such data with synthetic data. As attributed scattering centers (ASCs) extracted from the SAR

image reflect the electromagnetic phenomenon of the SAR target, this is effective for classifying

targets. Experiments on synthetic and measured paired labeled experiment datasets, which are

publicly available, are conducted to verify the effectiveness and robustness of the proposed method.

The proposed method can be used in practical SAR ATR systems trained using simulated images.

In the next article of this Special Issue, titled “Estimation and Classification of NLFM Signals

Based on the Time–Chirp Representation”, a new approach to the estimation and classification of

nonlinear frequency modulated (NLFM) signals is presented. These problems are crucial in electronic

reconnaissance systems, whose role is to indicate what signals are being received and recognized by

the intercepting receiver. The methods presented in the paper belong to the time–chirp domain, which

is relatively rarely cited in the literature. The author proposes using polynomial approximations of

nonlinear frequency and phase functions describing signals. This allows the cubic phase function to

be applied as an estimator of phase polynomial coefficients. The proposed classification method was

examined for three standard NLFM signals and one LFM signal. The results of the simulation research

revealed good estimation performance and error-free classification for the SNR range encountered in

practical applications.

Further, the article “Radar Detection-Inspired Signal Retrieval from the Short-Time Fourier

Transform” presents a novel adaptive algorithm for multicomponent signal decomposition using

the Short-Time Fourier Transform. The proposed algorithm enhances signal retrieval by adaptively

x



identifying and clustering high-magnitude regions in the time-frequency (TF) domain. Through these

clusters, the algorithm creates TF masks that focus on relevant signal modes, effectively reducing

noise and interference across a range of waveform types. Unlike traditional techniques, which may

suffer from interference or lose components in the TF domain, this method offers an improved

reconstruction quality, even for complex, non-stationary signals.

One contribution, “Multi-Sensory Data Fusion in Terms of UAV Detection in 3D Space”, focuses

on the problem of detecting unmanned aerial vehicles that violate restricted airspace. The main

purpose of the research is to develop an algorithm that enables the detection, identification, and

recognition in 3D space of a UAV violating restricted airspace, which is of great importance today both

in civilian and military contexts. The proposed method consists of multi-sensor data fusion and is

based on conditional complementary filtration and multi-stage clustering. Based on the review of the

available UAV detection technologies, three sensory systems classified into the groups of passive and

active methods are selected. The UAV detection algorithm is developed on the basis of data collected

during field tests under real conditions from three sensors: a radio system, an ADS-B transponder,

and a radar equipped with four antenna arrays. The efficiency of the proposed solution was tested on

the basis of rapid prototyping in the MATLAB simulation environment with the use of data from the

real sensory system obtained during controlled UAV flights. The results of UAV detections confirmed

the effectiveness of the proposed method and the theoretical expectations. The proposed solution has

huge potential and is suitable for use in defense-drone systems.

In the article ”Pedestrian and Animal Recognition Using Doppler Radar Signature and Deep

Learning”, the authors used radar technology to identify pedestrians. When distinct parts of an

object move in front of a radar, micro-Doppler signals are produced that may be utilized to identify

the object. As the authors claim, using a deep-learning network and time–frequency analysis,

a method for classifying pedestrians and animals based on their micro-Doppler radar signature

features is possible. The proposed approach was evaluated on the MAFAT Radar Challenge dataset.

Encouraging results were obtained, with a high Area Under the Curve value achieved for the public

and the private test sets. The proposed DNN architecture, in contrast with more common shallow

CNN architectures, is one of the first attempts to use such an approach in the domain of radar data.

As is well-known, technological advancement in battlefield and surveillance applications switch

radar investigators to increase efficacy. There are also many common theories and models known

to improve the process of target detection in Doppler-tolerant radar. However, more effort is still

needed to minimize the noise below the radar threshold limit to accurately detect the target. In

the paper entitled ”Multi-Criteria Decision Making to Detect Multiple Moving Targets in Radar

Using Digital Codes”, a digital coding technique is discussed to mitigate noise and to create clear

windows for desired target detection. Moreover, digital code combination criteria are developed

using discrete mathematics, and all designed codes have been tested to investigate various target

detection properties such as the autocorrelation, cross-correlation properties, and ambiguity function

using mat-lab to optimize and enhance static and moving targets in the presence of the Doppler in a

multi-target environment.

The authors of ”An X-Band CMOS Digital Phased Array Radar from Hardware to Software”

propose an X-band element-level digital phased array radar utilizing fully integrated complementary

metal-oxide-semiconductor transceivers. This approach is proposed to achieve a low-cost and

compact-size digital beamforming system. A radar demonstrator with scalable subarray modules

simultaneously realizes range sensing and azimuth recognition for pulsed radar configurations.

Phased array technology features rapid and directional scanning and has become a promising

approach for remote sensing and wireless communication. In addition, element-level digitization
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has increased the feasibility of complicated signal processing and simultaneous multi-beamforming

processes.

Janusz Dudczyk and Piotr Samczyński

Guest Editors
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Abstract: Radar signal intra-pulse modulation recognition can be addressed with convolutional
neural networks (CNNs) and time–frequency images (TFIs). However, current CNNs have high
computational complexity and do not perform well in low-signal-to-noise ratio (SNR) scenarios. In
this paper, we propose a lightweight CNN known as the cross-scale aware network (CSANet) to
recognize intra-pulse modulation based on three types of TFIs. The cross-scale aware (CSA) module,
designed as a residual and parallel architecture, comprises a depthwise dilated convolution group
(DDConv Group), a cross-channel interaction (CCI) mechanism, and spatial information focus (SIF).
DDConv Group produces multiple-scale features with a dynamic receptive field, CCI fuses the
features and mitigates noise in multiple channels, and SIF is aware of the cross-scale details of TFI
structures. Furthermore, we develop a novel time–frequency fusion (TFF) feature based on three types
of TFIs by employing image preprocessing techniques, i.e., adaptive binarization, morphological
processing, and feature fusion. Experiments demonstrate that CSANet achieves higher accuracy
with our TFF compared to other TFIs. Meanwhile, CSANet outperforms cutting-edge networks
across twelve radar signal datasets, providing an efficient solution for high-precision recognition in
low-SNR scenarios.

Keywords: intra-pulse modulation recognition; convolutional neural network (CNN); time–frequency
images (TFIs); cross-scale aware (CSA)

1. Introduction

Radar signal modulation recognition can be classified into two categories: inter-pulse
modulation recognition and intra-pulse modulation recognition [1]. Early studies focused
on inter-pulse characteristics for signal recognition [2–5]. With the advancement of radar
technology and the increasing complexity of radar systems, traditional inter-pulse feature
analysis becomes insufficient [6]. In recent years, intra-pulse feature analysis has attracted
growing attention and has become a valuable tool in the field of radar signal recognition,
offering significant advantages in terms of recognition efficiency and accuracy [7].

The traditional way of intra-pulse modulation recognition is based on manual feature
design and pattern matching. This approach has some shortcomings, e.g., the complexity
of feature extraction, the limitation to single signal recognition, the inadequacy in terms of
efficiency, and the poor performance under low-SNR conditions [8]. With the advancement
of deep learning (DL), signal recognition based on neural networks has become a promising
solution for intra-pulse modulation recognition, as it offers the potential for intelligently
recognizing complex, multi-class radar signals [9–13].

Generally, intra-pulse modulation recognition based on DL uses either the signal
sequences or the signal time–frequency images (TFIs) as its input. Employing the signal
sequence as input means extracting the intra-pulse characteristics using the designed
network. For instance, ref. [14] proposes a modified convolutional neural network that uses

Sensors 2024, 24, 5344. https://doi.org/10.3390/s24165344 https://www.mdpi.com/journal/sensors1
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the signal sequence as input. Ref. [15] designs its algorithm by combining a convolutional
neural network (CNN) with a long short-term memory (LSTM) network, which also adopts
signal sequences as input. In [16], an omni-dimensional dynamic-convolution-layer-based
network (OD-CNN) with a focal loss function is designed and applied to classify radar
intra-pulse modulations based on signal sequences.

In contrast, using the TFIs as input implies the signal is preprocessed before the
network. In [17], the Choi–Williams distribution (CWD) is employed as an input to an
improved deep residual network (ResNet). Ref. [18] transforms the radar signal’s bicubic
interpolation Wigner–Ville distribution (WVD) matrix into a square matrix. This matrix is
then utilized to train a CNN for signal recognition.

However, there are two primary challenges to improving the performance of intra-
pulse modulation recognition using TFIs and CNNs. The first challenge is the severe
contamination of TFIs at low SNRs. Reference [19] employs an improved convolutional
denoising autoencoder (CDAE) to de-noise TFIs and then utilizes a CNN to identify
10 radar signals at a −6 dB SNR, achieving a recognition rate exceeding 88%. However,
this approach requires an additional noise estimation network and does not extend its
application to lower-SNR scenarios.

The second challenge lies in the limitations of CNNs to effectively extract features [20],
particularly due to the local characteristics of convolutional layers, which makes it difficult
for them to capture global information [21]. To overcome this, some researchers have
proposed increasing the number of layers within CNNs, allowing for the extraction of
more complex features [22]. However, adding more layers introduces redundancy into the
network and, consequently, increases computational time and complexity.

This paper proposes to design a lightweight CNN that makes use of multiple TFIs
jointly. The key challenge is how to extract signal features comprehensively under low
SNRs, since the contextual information carried by the TFIs differs in amount, range, etc.,
for various modulation types of radar signals. A transformer is able to address contextual
information, but it generally requires a large number of network parameters [23]. In this
paper, to solve this problem, we use a combination of three different types of TFIs. They
have more nonchiasmatic information, which complements the defects between them.
A series of meticulous preprocessing techniques are used for noise reduction and image
sizing. Then, channel fusion technology is utilized to fuse TFIs to form a time–frequency
fusion feature (TFF) as the object of deep neural network learning.

In this paper, we propose a lightweight cross-scale aware network (CSANet) to recog-
nize the modes of intra-pulse modulation based on TFIs; it consists of cross-scale aware
(CSA) modules, convolution layers, and fully connected layers. The CSA module employs
spatial and channel attention mechanisms on feature blocks across different scales and has
a residual structure to avoid the problems of exploding and vanishing gradients. Fur-
thermore, to ensure the network remains lightweight and computationally efficient, we
consider multiple aspects to design the CSA module, including depthwise convolution, a
parallel branch architecture, and channel size adjustment. Experiments demonstrate that
the CSA module can direct the attention of the CNN towards global features while also
recognizing the time–frequency structure of radar signals.

2. Signal Model and System Overview

2.1. Signal Model

Intra-pulse modulation modes of radar signals mainly include frequency modulation,
phase modulation, combined modulation, etc. [24]. Table 1 shows the 12 typical modulation
modes of radar signals that are used in this paper, where A, T, and fc denote the amplitude,
pulse width, and carrier frequency, respectively, B is the bandwidth, k is the slope of
the frequency modulation, ϕ is the primary phase, Δ f denotes the frequency interval,
c is a random code that controls the frequency modulation, N is the number of codes,
Ts is the width of a code, and M is the count of sub-pulses within one group. Further,
gT(t) = 1/

√
Trec(t/T), where the rectangular function rec(t′) = 1, and t′ ∈ [0, 1].

2
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Considering a noisy environment, we model the received signal as

y(t) = x(t) + n(t) (1)

where y(t) is the received signal, x(t) is the radar signal, and n(t) is the additive noise,
which is usually considered as white Gaussian noise.

Table 1. The formulas of typical radar signals.

Modulation Formula

CW (Continuous Wave) x(t) = Arec(t/T)ej2π fc t

LFM (Linear Frequency Modulation) x(t) = Arec(t/T)ej[2π( fc t+πkt2+ϕ)]

NLFM (Nonlinear Frequency Modulation) x(t) = Arec(t/T)ej2π
∫ t

0− T−1( f )dt

T( f ) = T
∫ f
−∞ W(u)du/

∫ B/2
−B/2 W(v)dv,

W( f ) = 0.63 + 0.46 cos(2π f /B), f ∈ [− B
2 , B

2 ]

BPSK (Binary Phase Shift Keying) x(t) = A ∑N
i=1 ej(2π fc t+ϕ)gTs (t − iTs)

ϕ = 0, π

QPSK (Quadrature Phase Shift Keying) x(t) = A ∑N
i=1 ej(2π fc t+ϕ)gTs (t − iTs)

ϕ = 0, 1π
2 , π, 3π

2

FSK (Frequency Shift Keying) x(t) = A ∑N
i=1 ej2π( fc+cΔ f )tgTs (t − iTs)

c = 0, 1

4FSK (Four-Frequency Shift Keying) x(t) = A ∑N
i=1 ej2π( fc+cΔ f )tgTs (t − iTs)

c = 0, 1, 2, 3

FRANK x(t) = A ∑N
i=1 ej(2π fc t+ϕi,j)gTs (t − iTs)

ϕi,j =
2π
M (i − 1)(j − 1), i, j = 1, 2, . . . , M

P1 x(t) = A ∑N
i=1 ej(2π fc t+ϕi,j)gTs (t − iTs)

ϕi,j =
−π
M [M − (2i − 1)][(j − 1)M + (j − 1)]

i, j = 1, 2, . . . , M

P2 x(t) = A ∑N
i=1 ej(2π fc t+ϕi,j)gTs (t − iTs)

ϕi,j =
π

2M [M + 1 − 2i)][M + 1 − 2j)]
i, j = 1, 2, . . . , M

P3 x(t) = A ∑N
i=1 ej(2π fc t+ϕi)gTs (t − iTs)

ϕi =
π
M (i − 1)2, i = 1, 2, . . . , M

P4 x(t) = A ∑N
i=1 ej(2π fc t+ϕi)gTs (t − iTs)

ϕi =
π
M (i − 1)2 − π(i − 1), i = 1, 2, . . . , M

2.2. System Overview

In this paper, we design an intra-pulse modulation recognition system for radar signals
that consists of feature extraction and a CSANet classifier, as illustrated in Figure 1. Our
system contains three primary steps:

(1) Time–frequency analysis: Initially, we apply time–frequency analysis techniques to
the radar signals to obtain the TFIs. Specifically, this paper utilizes three distinct types of
time–frequency features: FSST (Fourier synchrosqueezed transform) [25], SPWVD (smoothed
pseudo Wigner–Ville distribution) [26], and HHT (Hilbert–Huang transform) [27].
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(2) Image preprocessing: Subsequently, image preprocessing approaches, including
binarization and cubic interpolation clipping, are conducted on the TFIs. Then, the obtained
time–frequency features are fused into the TFF feature.

(3) Feature fusion and model training: Finally, we construct TFF feature datasets from
various signals and scenarios, which are divided into training and test sets for the CSANet.
The CSANet is applied to recognize the 12 types of radar signals.

In the following, Section 3 presents time–frequency analysis and the feature extraction
process, and Section 4 details the architecture of our CSANet.

Figure 1. Structure diagram of the recognition system.

3. Time–Frequency Analysis and Feature Extraction

This section discusses time–frequency analysis techniques and the feature extraction
process. Sections 3.1–3.3 introduce three time–frequency analysis techniques, respectively.
Section 3.4 presents the methods of TFI preprocessing and TFI fusion.

3.1. Cohen Class Time–Frequency Distribution

As a typical case of a quadratic time–frequency distribution, a Cohen class time–
frequency distribution typically employs a kernel function to smooth the quadratic function
of signals [28]. This process requires a balance between time–frequency resolution and a
cross-term. The Cohen class time–frequency distribution can be formulated as

C(t, f ) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
x
(

u +
τ

2

)
x∗

(
u − τ

2

)
φ(τ, v)e−j2π(tv−uv+ f τ) dudτdv (2)

where t, f , τ, v, and u denote the time, frequency, time delay, frequency shift, and center of
the correlation function, respectively, and φ(τ, v) represents the kernel function. Different
kernel functions lead to different kinds of Cohen class time–frequency distributions.

The Cohen class time–frequency distribution is equivalent to the Wigner–Ville distri-
bution (WVD) when φ(τ, v) = 1. The WVD is characterized by its high time–frequency
resolution. However, when the signal comprises multiple components, the WVD can
produce cross-terms. Interference among the signal’s components can result in the mix-
ing of their characteristics, potentially obscuring the distinct features of the individual
components [29].

A smoothed pseudo-Wigner–Ville distribution (SPWVD) suppresses the cross-term
interference by smoothing the WVD with two window functions. One window function
operates in the time domain, while the other is applied in the frequency domain. A SPWVD
can be formulated as

SPWVD(t, f ) =
∫ +∞

−∞
h(τ)

∫ +∞

−∞
g(u − τ)x(u +

τ

2
)x∗(u − τ

2
)e−j2πtdudτ (3)

where h(τ) and g(u) are the smoothing window functions.
The SPWVD effectively seeks a balance between the high time–frequency resolution

and the suppression of cross-term interference. Figure 2 shows the SPWVD of radar signals
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with various modulation modes when SNR = 10 dB. As can be seen, each modulation mode
exhibits distinctive behavior.

Figure 2. SPWVD of various radar signals for SNR = 10 dB.

3.2. Fourier Synchrosqueezed Transform (FSST)

The short-time Fourier transform (STFT) is formulated as

STFT(t, f ) =
∫ +∞

−∞
x(τ)η∗(τ − t)e−j2π f τdτ (4)

where (·)∗ denotes the conjugate of a complex number, and η denotes the window function.
Based on the STFT, the FSST is formed by a synchronous compression transform, defined as

Tf (t, ω) =
1

η∗(0)

∫ +∞

−∞
STFT(t, f )δ[ω − ω̂ f (t, f )]d f (5)

where ω represents the frequency of the correction function, and δ is the impulse response.
The term ω̂ f (t, f ) is the local instantaneous frequency, given by

ω̂ f (t, f ) = Re
(

1
j2π

∂tSTFT(t, f )
STFT(t, f )

)
(6)

where ∂t denotes the partial derivative, and Re(·) denotes the real part. FSST compresses
the time–frequency curve along the frequency dimension, thereby concentrating the signal
energy in the time–frequency domain. This concentration effectively minimizes the noise’s
impact. One example is presented in Figure 3.

Figure 3. FSSTs of various radar signals for SNR = 10 dB.

3.3. Hilbert–Huang Transform (HHT)

HHT combines the Hilbert transform and adaptive signal decomposition to form a
time–frequency feature. For instance, the empirical mode decomposition (EMD) or the
variational mode decomposition (VMD) is employed to decompose radar signals into a
collection of sub-signals, i.e., intrinsic mode functions (IMFs) [30]. Subsequently, the Hilbert
method is utilized to derive time–frequency characteristics. Unlike EMD, VMD is a non-
iterative signal processing technique. By iteratively searching for the optimal solution of
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the variational modes, VMD refines the optimal central frequencies and bandwidths of
the IMFs adaptively. Therefore, VMD is much more robust to sampling and noise than
EMD [31].

VMD processing includes two steps. Firstly, based on the input signal x(t), the set of
IMFs uk is calculated by the decomposition algorithms [32]. Then, for each IMF, its Hilbert
transform is calculated as

di(t) =
1
π

∫ +∞

−∞

ui(τ)

t − τ
dτ. (7)

Hence, the instantaneous frequency is

ωi(t) = d
(

di(t)
ui(t)

)
/dt. (8)

Figure 4 shows one example of an HHT.

Figure 4. HHTs of various radar signals for SNR = 10 dB.

3.4. Time–Frequency Feature Preprocessing and Fusion

Using the FSST, SPWVD, and HHT methods, we obtain three types of time–frequency
images. It is necessary to preprocess these images for more accurate identification. At present,
there are two types of methods: image reconstruction based on neural networks and denoising
based on traditional signal processing technology. However, some methods may not perform
well under low-SNR conditions. For example, we employ CDAE to process SPWVD, and we
use different noise variances to train the CDAE to reconstruct images [19]. The results are
shown in Figure 5.

Figure 5. SPWVD of NLFM signal reconstructed based on CDAE; SNR = −8 dB.

We introduce an image preprocessing step designed to reduce the impact of noise
and the computational complexity for deep neural networks. As depicted in Figure 6,
the preprocessing process encompasses the following steps: (a) converting the original
TFIs to grayscale, (b) applying adaptive threshold binarization [33], (c) employing mor-
phological operations to fill in missing points and remove noise-induced outliers, and
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(d) employing bicubic interpolation to resize the images to 256 × 256 pixels to make them
suitable for input into the CSANet mode. This series of preprocessing filters out a lot of
noise and mainly preserves the outline of the time–frequency ridge, which is the key to
radar signal recognition [34].

Figure 6. SPWVD image preprocessing of the NLFM signal for SNR = −8 dB.

Given that SPWVD, FSST, and HHT are based on different principles and show differ-
ent time–frequency distributions, the use of feature fusion to enhance feature extraction
performance, especially at low SNRs, is a promising approach. SPWVD belongs to the
Cohen class of time–frequency distributions and is a quadratic, nonlinear time–frequency
distribution with high time–frequency resolution, but it is susceptible to the influence of
cross-terms. FSST is a linear time–frequency distribution based on the time window, which
enhances the time–frequency concentration of STFT through the synchronous compression
operator. However, due to the fixed window and basis function in the analysis, it performs
poorly in matching multi-component and time-varying signals. HHT consists of two steps:
variational mode decomposition (VMD) and Hilbert amplitude spectrum analysis (HAS).
It is fully adaptive and is capable of processing nonlinear and non-stationary data, but it
suffers from the issue of mode aliasing. These three types of time–frequency distributions
each have their advantages and belong to different categories, possessing non-cross infor-
mation. Therefore, combining these three types of time–frequency analyses can enhance
the robustness of the integrated features.

After the preprocessing of three classes of time–frequency images, we construct the
TFF as a multi-channel two-dimensional image by concatenating the images along the
channel dimension. Although image fusion increases the computational load for both
the time–frequency analysis and the initial layer of the neural network, the TFF has been
demonstrated to effectively enhance recognition performance.

4. Cross-Scale Aware Network (CSANet)

After feature extraction, we need to design a network to recognize the type of radar
signal modulation. CNN, as a classical type of neural network proposed by Yann Le-
Cun [35], has been widely used for radar signal modulation recognition. To improve the
accuracy of signal modulation recognition under low SNRs, complex deep CNNs have
been employed in recent years. For instance, ResNet, which uses the residual structure
and easily constructs networks with dozens or even hundreds of layers [36], performs
well in recognizing radar signals. However, there is a need for further improvement in
recognition accuracy. Additionally, complex networks often face difficulties when applied
to lightweight platforms due to their computational demands.

In this paper, we design CSANet, which offers high recognition accuracy and low
computational complexity. The CSANet architecture is presented in Figure 7a. CSANet
extracts the TFF image features using four convolution (Conv) layers, two maximum
pooling (MP) layers, and three CSA modules. Then, the extracted features are flattened and
connected to a linear layer, and classification results are obtained. The CSA module is an
essential component of the proposed CSANet. The following details the operation process
of the CSA module and its constituent components.

7



Sensors 2024, 24, 5344

(a)

(b) (c)

(d) (e) (f)

Figure 7. The overall architecture of CSANet: (a) CSANet. (b) CSA modules. (c) DDConv Group
module. (d) CCI module. (e) SIF module. (f) GFU module. Multi-scale features are extracted from
CSA by DDConv Group, then channel attention is applied by CCI and spatial attention is applied by
SIF, and finally, fusion is performed by GFU.

4.1. CSA Module

Figure 7b depicts the operation process of the CSA module. As can be seen, the CSA
module employs residual connections and conducts multi-branch feature extraction using
the DDConv Group with a parallel structure. It then fuses multiple time–frequency dis-
tributions through a cross-channel interaction (CCI) and recognizes the time–frequency
structural characteristics of radar signals by spatial information focus (SIF). Finally, it
integrates the information through a nonlinear gated fusion unit (GFU).

4.2. Depthwise Dilated Convolution Group (DDConv Group)

Figure 7c shows the structure of the DDConv Group, where DDC represents the
depthwise dilated convolution. The expansion rates of the four branches are 1, 3, 5 and
8, respectively. The DDConv Group is used to extract multi-scale features. Instead of the

8



Sensors 2024, 24, 5344

commonly used depthwise separable convolution, we utilize a 3 × 3 depthwise convolution;
each channel operates with an independent convolution kernel, which significantly reduces
the computational requirements. The 1 × 1 convolution in the depthwise separable convo-
lution can reduce the dimensions and carryout channel flow, but dimensionality reduction
is not conducive to feature retention. Therefore, we complete the work of channel flow by
our designed CCI. Meanwhile, through different receptive fields, SIF can capture the global
dependence in the feature information and has advantages over modulated signals with
complex time–frequency energy distributions, e.g., polyphase coding and multi-frequency
coding signals.

4.3. Cross-Channel Interaction (CCI)

Channel attention is one of the attention mechanism types. An example of channel
attention is the squeeze-and-excitation network (SENet) [37]. Generally, channel attention
compresses the input feature map from the channel direction, generating weights for each
channel to represent the importance of the current channel. In this way, the model can
focus on the more important channels, thereby improving performance.

Our designed CCI module aims to strength the integration of TFF characteristics,
extract non-overlapping information from three time–frequency distributions, and suppress
the noisy channels. CCI applies the channel attention mechanism to each scale of the feature
branch. For the DDConv Group, it provides the multi-scale feature X i ∈ RC×H×W to the
CCI, where i = [0, 1, 2, 3] denote different scale feature blocks.

Figure 7d depicts the operation process of the CCI. First, a global feature representation
is obtained through a spatial global average pooling (SGAP), which works by averaging
the two-dimensional feature map of each channel. Then, 1 × 1 convolution (Conv) is used
to model the inter-channel relationships. The sigmoid activation function is employed
to generate the channel descriptor, and the softmax function is utilized to obtain the
representation weight, which is given by

W i,CH = softmax{sigmoid[Conv(SGAP(X i))]} ∈ RC×1×1 (9)

where softmax{sigmoid[Conv(SGAP(·))]} is defined as F1(·). By performing element-
wise multiplication of the weights and descriptors, we have the multi-scale fusion feature
YCH ∈ RC×H×W as

YCH =
3

∑
i=0

W i,CH � X i (10)

where � denotes the Hadamard product.

4.4. Spatial Information Focus (SIF)

Channel attention focuses on the differences in features in different channels, while
spatial attention emphasizes the information in different locations of the image [38]. Ba-
sically, spatial attention learns a spatial transformation matrix that is used to transform
the input feature map into a new feature map wherein key information is highlighted and
irrelevant information is suppressed. This mechanism helps the model to focus more on
important spatial locations within the image, thereby enhancing the performance of the
network model.

In this paper, SIF is designed as a parallel branch to CCI. While CCI pools spatial
information at different scales to compute the channel attention descriptor, SIF requires
pooling in the channel dimension. Therefore, to avoid losing information, SIF fuses the
multi-scale features X i ∈ RC×H×W in the channel dimension and then outputs [XF ∈
R4C×H×W ]. Figure 7e shows the operation process of SIF.

Considering that the channel dimension is a one-dimensional feature and has fewer
parameters during global pooling, we design SIF with CGAP (channel global average
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pooling) and CGMP (channel global maximum pooling) to obtain global features and then
fuse them in the channel dimension, given by

X A= CGAP(XF) ∈ R1×H×W ,
X M= CGMP(XF) ∈ R1×H×W ,
X AM = Cat(X A, X M) ∈ R2×H×W

(11)

where Cat(·) denotes the feature map fusion in the channel dimension. A 7 × 7 convolution
is used to map the dual-channel X AM into four channels, corresponding to the four scales
of the input. The sigmoid activation function is employed to generate the spatial weight
representation:

WSP = sigmoid(Conv(X AM)) ∈ R4×H×W (12)

where sigmoid(Conv(·)) is defined as F2(·). Then, the weights W i,SP ∈ R1×H×W are
from WSP ∈ R4×H×W and are used to compute the multi-scale spatially fused feature
YSP ∈ RC×H×W , given by

YSP =
3

∑
i=0

W i,SP � X i. (13)

4.5. Gated Fusion Unit (GFU)

The gated fusion unit (GFU), as depicted in Figure 7f, generates adaptive weights
to fuse the outputs of the CCI and SIF branches by the Sigmoid activation function in
order to restore the original scale size and improve the feature representation. Given
YCH ∈ RC×H×W and YSP ∈ RC×H×W , the representative weights Z ∈ RC×H×W are
calculated as

Z = sigmoid(YCHW1 + YSPW2) (14)

where W1, W2 ∈ RC×C are the learnable parameters during CSANet training. Then,
the cross-scale aware feature is achieved by

YCSA = Z � YCH + (1 − Z)� YSP. (15)

5. Experimental Results

The dataset simulates 12 modulation types of radar signals, as shown in Table 1.
The parameters of the signals are set as in Table 2. The sampling frequency is 200 MHz, and
the signal length is 10 μs. The SNR is set as [−14,−12, · · · , 8] dB. Therefore, for every type
of modulation at each SNR point, we construct 350 training samples, 150 validation samples,
and 150 test samples. Moreover, our dataset contains 54,600, 23,400, and 23,400 samples for
training, validating, and testing, respectively. The experiments are performed using the
PyTorch 2.2.1 framework and an NVIDIA GeForce RTX 4060 laptop GPU.

Table 2. Simulation parameters for radar signals in Table 1.

Modulation Parameters and Their Ranges

CW fc ∈ [45, 55] MHz
LFM fc ∈ [45, 55] MHz, B ∈ [15, 25] MHz

NLFM fc ∈ [45, 55] MHz, B ∈ [15, 25] MHz
BPSK fc ∈ [45, 55] MHz, N = 13
QPSK fc ∈ [45, 55] MHz, N = 28
FSK fc ∈ [45, 55] MHz, Δ f ∈ [10, 20], N = 13

4FSK fc ∈ [45, 55] MHz, Δ f ∈ [5, 15], N = 16
FRANK fc ∈ [45, 55] MHz, N = 50, M = 7

P1 fc ∈ [45, 55] MHz, N = 50, M = 7
P2 fc ∈ [45, 55] MHz, N = 50, M = 7
P3 fc ∈ [45, 55] MHz, N = 50, M = 50
P4 fc ∈ [45, 55] MHz, N = 50, M = 50
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In addition, in order to ensure the comparability and statistical significance of the
experimental results, the experimental parameters are uniformly set as follows: the initial
learning rate is 0.01, the batch size is 50, the optimization algorithm is stochastic gradient
descent, the number of epochs is 50, and the loss function is cross-entropy loss. Through
careful adjustment of datasets and parameters, the loss value of each network can reach the
convergence state after 50 rounds of training so as to ensure the correct evaluation of the
performance of the proposed algorithm under different SNR and parameter conditions.

5.1. Accuracy Analysis of CSANet and Other Networks

First, we evaluate the recognition performance of CSANet. For comparison, we simu-
late five algorithms that are based on the TFIs-CNN methodology, including CNNQu [39],
CNNHuang [32], ResNet50 [36], MobileNetV3 [40], and ShuffleNetV2 [41]. To demonstrate
the effectiveness of the TFF, we also generate TFIs, i.e., SPWVD, FSST, or HHT, as the input
of networks. The experimental results are shown in Figure 8.

(a) (b) (c)

(d) (e) (f)

Figure 8. Accuracy evaluation: (a) CNNQu, (b) CNNHuang, (c) ResNet50, (d) MobileNetV3, (e) Shuf-
fleNetV2 (b), and (f) CSANet.

As can be seen, the accuracy of ResNet50, MobileNetV3, ShuffleNetV2, and CSANet
is higher when TFF is used as the learning object, while for CNNQu and CNNHuang,
the accuracy is higher by inputting FSST. This demonstrates that TFF is superior to the
time–frequency enhancement methods [25–27].

Overall, CSANet-TFF consistently achieves the highest accuracy across all SNR levels.
Notably, at a low SNR of −14 dB, CSANet-TFF attains the highest accuracy of 83.62%,
which exceeds the second-highest accuracy of ResNet50-TFF by 8.74%. At SNR = −12 dB,
the accuracy of CSANet-TFF is 93.27%, outperforming other networks. Generally, CSANet-
TFF excels in low-SNR scenarios. Moreover, CSANet consistently achieves the highest
accuracy with SPWVD, FSST, HHT, or TFF as inputs, demonstrating that it outperforms
existing advanced methods [32,36,39–41]. This superiority is attributed to CSANet’s abil-
ity to perceive the time–frequency structures of radar signals through the CSA module.
The DDConv Group and SIF mechanisms within the module are specifically designed
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to identify time–frequency ridge features, while CCI is designed to suppress redundant
channels caused by noise, particularly in low-SNR conditions.

Furthermore, we compare the network across several metrics, including spatial com-
plexity, computational complexity, and actual running time. These comparisons are based
on parameters (Params), floating-point operations (FLOPs), and network inference time
(Runtime), with the results presented in Table 3. As can be seen, CNNQu and CNNHuang
exhibit lower FLOPs but higher Params compared to CSANet. However, as illustrated
in Figure 8, their accuracy is significantly lower than that of CSANet, particularly at low
SNRs. CSANet has a more lightweight architecture, with reduced FLOPs and Params
compared to ResNet50. Moreover, CSANet’s Params are approximately 1/10 of those
of MobileNetV3 and ShuffleNetV2. Therefore, our proposed CSANet is proven to be a
lightweight network with high accuracy. The inference time of the network is often affected
by the hardware resources. Here, we calculate the time for different networks to classify
a single sample, which provides a reference for the actual deployment of the network.
Experimental results show that CSANet can achieve a shorter time than [36,40,41], which
has practical application significance.

Table 3. Computational complexity analysis.

Network CNNQu CNNHuang ResNet50 MobileNetV3 ShuffleNetV2 CSANet

FLOPs/G 0.0334 0.0371 4.1317 0.3118 0.4034 0.3386
Params/M 2.5539 21.0068 23.5326 4.2200 2.4930 0.2152

Runtime/ms 4.8750 5.0065 35.6344 18.1344 10.1563 7.6219

5.2. Ablation Study

This paper designs the CSA module that enables the CSANet to recognize intra-pulse
modulation of radar signals. Here, we conduct an ablation study by adding the CSA
modules one by one into the CSANet. When one CSA module is added, we employ
3 × 3 convolutions with a stride of two for further feature mapping and downsampling so
as to minimize the data redundancy and forge an efficient architecture for CSANet. When
the number of CSA modules grows, CSANet keeps its overall structure and adjusts the
parameter number of the “Linear” layer accordingly. Furthermore, ablation experiments are
carried out on the internal modules. SIF and GFU are removed, and the remaining modules
are named D-CCI. CCI and GFU are removed, and the remaining modules are named
D-SIF. We use D-CCI and D-SIF to replace three CSA modules in CSANet. In addition, we
contrast CBAM [42], which has a dual-channel and spatial attention mechanism, with some
similarities to CSA. In the experiment, we use a CBAM module to replace three CSA
modules in CSANet. Using the TFF features as learning objects, the results of the ablation
experiments are illustrated in Table 4.

Table 4. Accuracies of different CSANet architectures.

Network SNR = −14 dB SNR = −12 dB SNR = −10 dB FLOPs

D-SIF 60.79% 84.53% 94.21% 0.2142 G
D-CCI 76.91% 90.96% 95.40% 0.2546 G
CBAM 57.73% 83.48% 92.91% 0.1823 G

CSA = 1 66.90% 87.11% 97.25% 0.2127 G
CSA = 2 77.14% 92.04% 97.24% 0.3134 G
CSA = 3 83.62% 93.99% 98.23% 0.3386 G
CSA = 4 75.91% 92.38% 96.94% 0.3449 G

CBAM is less effective although it exerts both spatial and channel attention, reflecting
the importance of multi-scale features. At the same time, D-SIF and D-CCI also have
lower recognition accuracies than the CSA = 3 architectures, but they require slightly less
computational effort. D-CCI demonstrates superior performance due to the utilization of
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integrated features, which encompass comprehensive and even redundant information.
Therefore, the suppression of channel redundancy is critical. CSANet’s accuracy increases
when the CSA number grows from one to three, but it declines when the CSA number
reaches four. Due to the deployment of convolutional layers for downsampling following
each CSA to enhance network efficiency, an increased number of CSA modules may lead to
greater information loss. When the number of CSA modules is less than three, the informa-
tion loss predominantly consists of redundant data caused by noise. Conversely, when the
number of CSA modules exceeds four, there is a consequential loss of useful information.

5.3. Signal Confusion Analysis

This section analyzes the confusion matrix of the CSANet results in order to provide
insights into the model’s performance on different modulation types. Figure 9 depicts
the confusion matrices of CSANet based on three methods: SPWVD, FSST, and TFF at
SNR = −12 dB. HHT is ignored since its performance is the worst.

In Figure 9, the vertical axis lists the true labels, while the horizontal axis lists the
predicted labels. The diagonal elements represent the number of samples correctly pre-
dicted, the other elements represent the number of samples incorrectly classified, and
the darker the color, the more samples. In Figure 9, three time–frequency features and
twelve modulation types show excellent discrimination. It is relatively easy to confuse
BPSK versus CW and FRANK versus P3. In addition, at very low SNRs, most of the sig-
nals are misinterpreted as 4FSK signals because their time–frequency graphs are irregular
and scattered.

(a) CSANet-SPWVD (b) CSANet-FSST (c) CSANet-TFF

Figure 9. CSANet confusion matrix for SNR = −12 dB: (a) SPWVD. (b) FSST. (c) TFF.

Figure 10 shows the accuracy of CSANet for the recognition of twelve modulations
based on SPWVD, FSST, and TFF. As can be seen, the FSST’s accuracy varies significantly
across different signal types. The FSST performs well in recognizing LFM, NLFM, FSK,
and P4, but it performs poorly in recognizing FRANK, P3, and FSK4, even for high SNRs.
Hence, the FSST’s performance is sensitive to the modulation type. SPWVD and TFF are
robust in recognition of various signals. The recognition accuracies of NLFM, LFM, P4,
and P2 are generally higher, and the time–frequency ridges of NLFM and LFM are simpler.
P2 and P4 have two ridges at the edges of their time–frequency maps, as shown in Figure 2.
Moreover, P2 has phase mutations and P4 does not, and they are also distinguished from
each other. Specifically, CSANet-TFF achieves over 94.73% accuracy at SNR = −10 dB for
every signal.
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(a) CSANet-SPWVD (b) CSANet-FSST (c) CSANet-TFF

Figure 10. Accuracy of each signal: (a) SPWVD. (b) FSST. (c) TFF. The figure illustrates the accuracy
of CSANet in identifying signal types using three different sets of time–frequency features to compare
the classification effect.

5.4. Class Activation Mapping (CAM) Analysis

CAM is widely used for explaining the predictions of DL models [43]. CAM helps
researchers understand how a DL model can choose the predicted class by mapping the
class activation back to the significant region of the image. Figure 11 shows the CAM
analysis results of CSANet and ResNet50 with TFF features, where the brighter regions are
more important. The CAM analysis aids in understanding the adaptive receptive field of
CSANet. We extract the feature maps before the Linear layer for visualization analysis.

As can be seen from Figure 11, the receptive field of CSANet shows a higher degree
of concentration than that of ResNet50. For CSANet, the focus area adaptively adjusts in
size, shape, and position, corresponding to the characteristics of varying signals, which
is due to the DDConv Group and the SIF modules. Combined with the DDConv Group,
which employs convolution kernels of varying dilation ratios, SIF can extract features with
different ranges and precision.

Figure 11. CAMs of CSANet and ResNet50 (SNR = −6 dB).
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6. Conclusions

In this paper, we propose CSANet, a lightweight and accurate model for recognizing
intra-pulse modulation in radar signals. We design TFF using three types of TFIs, i.e.,
SPWVD, FSST, and HHT. In our experiments with 12 radar signal types, CSANet using TFF
achieves accuracies of 83.62%, 93.99%, and 98.23% at SNR levels of −14, −12, and −10 dB,
respectively.

CSANet’s high precision is mainly attributed to the CSA module, which is specifically
designed to effectively address the characteristics of time–frequency ridges, including large
spans, narrow curves, and sharp changes. Our solution is to develop a cross-scale strategy
that correlates information across different scales and benefits the identification of key
features. In the CSA module, the DDConv Group employs multiple dilated convolutions to
extract multi-scale feature blocks. Two parallel branches are developed by jointly employing
the channel and spatial attention mechanisms to highlight discriminative features and
mitigate channel redundancies across various scales.

In terms of network complexity, we employ depthwise dilated convolutions to make
the CSA lightweight. Compared to [32] with 21.01 M Params and [39] with 2.55 M Params,
CSANet has only 0.22 M Params. Therefore, CSANet is a promising tool for accurate
recognition of radar signals, especially in low-SNR conditions.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional neural network
TFIs Ttime–frequency images
SNR Signal-to-noise ratio
CSANet Cross-scale aware network
CSA Cross-scale aware
TFF Ttime–frequency fusion
WVD Wigner–Ville distribution
MFRMF Multi-feature random matching fusion
OD-CNN Omni-dimensional dynamic convolution
CW Continuous wave
LFM Linear frequency modulation
NLFM Nonlinear frequency modulation
BPSK Binary phase shift keying
QPSK Quadrature phase shift keying
FSK Frequency shift keying
4FSK Four-frequency shift keying
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FSST Fourier synchrosqueezed transform
SPWVD Smoothed pseudo-Wigner–Ville distribution
HHT Hilbert–Huang transform
CWD Choi–Williams distribution
STFT Short-time Fourier transform
EMD Empirical mode decomposition
IMFs Intrinsic mode functions
VMD Variational mode decomposition
ResNet Residual network
DDConv Group Depthwise dilated convolution group
CCI Cross-channel interaction
SIF Spatial information focus
GFU Gated fusion unit
Conv Convolution
MP Maximum pooling
AP Average pooling
GMP Global maximum pooling
GAP Global average pooling
CAM Class activation mapping
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Abstract: The prevalence of Low Probability of Interception (LPI) and Low Probability of Exploitation
(LPE) radars in contemporary Electronic Warfare (EW) presents an ongoing challenge to defense
mechanisms, compelling constant advances in protective strategies. Noise radars are examples of
LPI and LPE systems that gained substantial prominence in the past decade despite exhibiting a
common drawback of limited Doppler tolerance. The Advanced Pulse Compression Noise (APCN)
waveform is a stochastic radar signal proposed to amalgamate the LPI and LPE attributes of a random
waveform with the Doppler tolerance feature inherent to a linear frequency modulation. In the
present work, we derive closed-form expressions describing the APCN signal’s ambiguity function
and spectral containment that allow for a proper analysis of its detection performance and ability to
remove range ambiguities as a function of its stochastic parameters. This paper also presents a more
detailed address of the LPI/LPE characteristic of APCN signals claimed in previous works. We show
that sophisticated Electronic Intelligence (ELINT) systems that employ Time Frequency Analysis
(TFA) and image processing methods may intercept APCN and estimate important parameters of
APCN waveforms, such as bandwidth, operating frequency, time duration, and pulse repetition
interval. We also present a method designed to intercept and exploit the unique characteristics
of the APCN waveform. Its performance is evaluated based on the probability of such an ELINT
system detecting an APCN radar signal as a function of the Signal-to-Noise Ratio (SNR) in the ELINT
system. We evaluated the accuracy and precision of the random variables characterizing the proposed
estimators as a function of the SNR. Results indicate a probability of detection close to 1 and show
good performance, even for scenarios with a SNR slightly less than −10 dB. The contributions in this
work offer enhancements to noise radar capabilities while facilitating improvements in ESM systems.

Keywords: noise radar; APCN; electronic support measures; time-frequency analysis

1. Introduction

Electronic Intelligence systems for Electronic Warfare rely on the detection, identifi-
cation, and further processing of radar signals [1]. The advances in the semiconductor
industry over the last decade enabled huge breakthroughs in ELINT systems. Indeed,
modern equipment can implement high-frequency, high-bandwidth digital receivers with
complex signal processing algorithms. An example is jammers capable of reproducing
radar signal characteristics after extracting them. The design of Low Probability of Inter-
ception and Low Probability of Exploitation radars has attracted significant attention in
the current technological race. As a result, the transmission of random or pseudo-random
signals has gained considerable notoriety within the radar system community over the
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last few years [2–10]. Commonly known as “noise radars”, they manage to achieve LPI
by employing pulse compression in the reception, along with a proper choice of transmit-
ted waveform stochastic properties [2,11], LPE [9,12,13], and low sidelobe levels, while
suppressing range ambiguity.

Many different approaches have been proposed in the literature to generate wave-
forms characterized by stochastic processes that better fulfill these radar system require-
ments [5,14–18]. Still, they all suffer from low Doppler tolerance [19], an inherent charac-
teristic of traditional noise radars that hinders their use in several applications, including
surveillance. Researchers have proposed alternative approaches to bypass such a weakness
while preserving the LPI and the LPE properties of random waveforms. Included in this
group is the so-called Advanced Pulse Compression Noise (APCN) waveform [3,20,21],
which combines a random signal with a Doppler-tolerant Linear Frequency Modulation
(LFM) waveform. The random signal may consist of amplitude terms, phase terms, or both.

In [22], we expanded the discussion over the performance of APCN waveforms. We
derived closed-form expressions to characterize the APCN’s narrowband ambiguity func-
tion, the power spectral density, and the spectral containment, thus accounting for random
components in the amplitude and phase of the transmitted signal. Furthermore, we iden-
tified and addressed a significant drawback in employing the APCN signal for detecting
slow-moving targets. In the present work, we extend the results and findings of [22] by
investigating the same properties for APCN signals with Phase-Only random components.
Furthermore, we examine APCN’s exploitation of power transmission through the Peak-to-
Average Power Ratio, its ability to mitigate range ambiguities, detect uncooperative targets,
and determine their range and radial velocity in real-time. These factors are crucial in radar
waveform design, particularly in surveillance applications.

From the perspective of an ESM system, as discussed in [20], employing an APCN
signal with a particular level of phase randomness and constant amplitude introduces a
challenge in accurately discerning the waveform characteristics for an intercept-receiver
system. However, owing to significant recent advancements in emitter detection and
exploitation techniques, modern ESM systems and traditional spectral analysis methods
can generate Time-Frequency Analysis maps, as mentioned in [6,11,23]. As a result, it has
become feasible to ascertain the waveform characteristics of deterministic LPI/LPE radar
signal modulations.

References [24–28] introduce techniques for conducting TFA and extracting modula-
tion parameters from deterministic signals assumed LPI/LPE. However, these techniques
have a drawback: the extraction process relies exclusively on visual analysis. This depen-
dency on human interpretation of TFA results hampers the effectiveness of non-real-time
EW receivers. In contrast, the works in [29–31] propose autonomous extraction methods,
albeit still primarily designed for deterministic signals. Nonetheless, a significant con-
tribution of these works is in developing a technique that leverages image processing
methodologies to autonomously extract characteristics of a noise radar that employs APCN,
allegedly LPI, as discussed in [3,20]. Our analysis, however, considers varied signal-to-noise
ratio levels in an ESM receiver chain to ensure robust and satisfactory results. In addition,
it examines APCN waveforms featuring phase and amplitude random components, in
contrast to the approach in [3] that focuses exclusively on phase randomness. Indeed,
the extended configuration augments the level of randomness in APCN waveforms and
enhances their LPI and LPE characteristics, as corroborated by the authors of the present
work in [22].

The rest of this paper unfolds as follows. Section 2 explores noise radar operations
focusing on the APCN waveform as the transmitting signal in surveillance applications.
Section 3 delves into the modeling of an ESM digital system, offering an in-depth analysis of
the APCN radar waveform from the perspective of an intercept–receiver system. Moreover,
the section introduces a methodology designed to detect and extract the distinctive charac-
teristics of APCN signals. It also includes a comprehensive discussion of the performance
evaluations of this methodology, laying out the grounds for conclusions regarding the

19



Sensors 2024, 24, 2532

LPI and LPE potential of the APCN waveform in an EW scenario. Section 4 presents the
conclusions and summarizes the key findings and insights in this paper.

2. Advanced Pulse Compression Noise Radars

In traditional noise radar systems, the transmit signal is characterized by a stochastic
process, s(t) [2]. Consequently, the corresponding matched filter outputs, relative to
the pulse compression architectures, are all characterized by complex random processes.
Therefore, a proper analysis of noise radars must rely on probabilistic tools. That is the case
of the narrowband ambiguity function of a random signal, given as [32]

χs̃(τ, fD) =
∫ ∞

−∞
s̃(t) s̃∗(t − τ) e−j2π fDtdt, (1)

where s̃(t) is the complex envelope of s(t), fD is the Doppler frequency, and τ is the time
delay. Assuming s̃(t) to be Wide-Sense Stationary (WSS) and time-limited with duration τs,
and that fD is deterministic, the expected value of the ambiguity function of Equation (1)
simplifies to [5,19]

E[χs̃(τ, fD)] = τs Rs̃(τ) sinc( fDτs); −τs ≤ τ ≤ τs, (2)

where Rs̃(τ) = E[s̃(t) s̃∗(t − τ)] is the autocorrelation function of the complex stochastic
process s̃(t) [33].

The near thumbtack format depicted in Equation (2) shows that the expected range
and Doppler profiles in noise radar systems are independent functions; therefore, no
range-Doppler coupling is expected in noise radars, inhibiting their usage in surveillance
applications, for example [34].

To overcome the no range-Doppler coupling limitation while preserving the random
nature of the transmit signal, the authors in [3,20,21] proposed the Advanced Pulse Com-
pression Noise (APCN) radar architecture. APCN waveforms combine a deterministic
Linear Frequency Modulation signal with a stochastic component. Its complex envelope is
given by [20,22]

s̃(t) =
√

P a(t) ej[θ(t)+κ φ(t)], (3)

where the samples of the random process a(t) have a Rayleigh distribution, i.e., p(a) =
(a/α2) e−a2/α2

, with a ≥ 0 and α being the scale parameter. Moreover, φ(t) is uniformly
distributed in the interval (0, 2π] and θ(t) represents the LFM deterministic component.
The signal’s complex envelope mean power, P, is assumed, with no loss of generality, to
be unitary throughout the present work. We can rewrite Equation (3) as s̃(t) = s̃r(t) s̃c(t),
where s̃r(t) = a(t) ejκφ(t) is the transmit signal random component, with 0 ≤ κ ≤ 1, and
s̃c(t) = ejθ(t) is the LFM waveform envelope, with bandwidth βs̃c .

In modern radar systems, the matched filter is implemented digitally. Therefore, we
consider the discrete-time case in our analysis and define

s̃(n) = s̃(t)|t=nT
,

where n is the discrete-time index and T = 1/ fs, with fs being the sampling frequency.
We also assume that τ = τ̄T, where τ̄ corresponds to the discrete-time delay in samples.
Moreover, τs = τ̄sT, with τ̄s being the number of samples in a pulse signal with duration τs.

We show in [22] that the APCN narrowband ambiguity function is such that

E[χs̃(τ̄, fD)] = Rs̃r (τ̄) χs̃c(τ̄, fD); τ̄ ≤ |τ̄s|, (4)

where Rs̃r (τ̄) is the autocorrelation sequence of the transmit signal random component
given as

Rs̃r (τ̄) = α2
(

1 − cos 2κπ

4κ2π

)
+

[
2α2 − α2

(
1 − cos 2κπ

4κ2π

)]
δ(τ̄), (5)
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where δ(τ̄) is the Dirac delta sequence and χs̃c(τ̄, fD) in (4) is the ambiguity function of
s̃c(t) defined as

χs̃c(τ̄, fD) =

(
1 − |τ̄|

τ̄s

)∣∣∣∣∣∣
sin

[
π
(

fD
fs
+ μ

f 2
s

τ̄
)
(τ̄s − |τ̄|)

]
π
(

fD
fs
+ μ

f 2
s

τ̄
)
(τ̄s − |τ̄|)

∣∣∣∣∣∣, τ̄ ≤ |τ̄s| , (6)

wherein μ = βs̃c /τs.
Figure 1a illustrates the range profile for different values of Doppler shifts, namely

fD = 0, fD = 0.55/τs, fD = 0.7/τs, and fD = 1.2/τs, of an APCN normalized ambiguity
function, with κ = 0.5 and α = 1, and considering βs̃c = 30 MHz and τs = 50 μs. The
sampling frequency was assumed to be fs = 1 GHz. Figure 1b shows the zero-delay cut
behavior (Doppler profile).

Figure 1. Normalized ambiguity function (in dB) considering a single pulse realization of an APCN
waveform (κ = 0.5 and α = 1): (a) range profile (Doppler cuts); (b) Doppler profile (zero-delay cut).

Despite being Doppler tolerant, APCN waveforms exhibit an anomaly at zero delays,
potentially impairing radar performance in the presence of slow-moving targets. A closer
inspection of Equations (4)–(6) evidences the presence of a sinc function at the pulse
compression output whose maximum peak exists at fD/ f s + μ τ̄/ f 2

s = 0. The sinc function
is attenuated by a factor L = H (1 − fD/βs̃c), for τ̄ 	= 0, and amplified by A = 2α2, for
τ̄ = 0, with H = α2[1 − cos (2κπ)]/4κ2π, as a result of Equation (5). Additionally, and
analogously to the LFM case, it presents a range measurement error εR = −c fD τs/2βs̃c ,
that can be eliminated [34].

Figure 2 illustrates one realization of the APCN random component autocorrelation
sequence (see Equation (5)), considering a signal s̃r(n) composed of a random amplitude
with scale parameter α = 1 and a random phase uniformly distributed in the interval
(0, 2κπ], for different values of κ. Here, we can see that the attenuation on the APCN
range profile increases with κ for τ̄ 	= 0. The implication is that when a target exhibits
a Doppler shift the peak of the range profile shifts away from the origin because of the
Doppler-tolerant behavior of the LFM component, making it susceptible to attenuation.
Indeed, this behavior reduces the SNR, diminishing the system’s Probability of Detection.

The Dirac delta component in Equation (5) is always present for τ̄ = 0. For slow-
moving targets, i.e., those that give rise to a Doppler shift above a threshold greater than
0.55/τs, in this specific case, the spike falls outside the range resolution, given by the sinc
function main lobe’s 3 dB width, but still exhibits enough power to pose as another target’s
response. Thus, the contribution of the noisy component to the matched filter output can
lead to target misdetection or false alarms due to misinterpretations.
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Figure 2. Autocorrelation sequence of the APCN complex random component for different values of
κ, considering α = 1.

In [22], the authors proposed a method to eliminate the spike at τ̄ = 0 by correlating the
received signal with the deterministic component of the APCN waveform instead of using the
transmit signal’s replica in a pulse compression architecture. Figure 3 presents a simplified block
diagram of the proposed system implemented in a digital receiver signal processing chain.
This modification makes it possible to eliminate the impulse anomaly at τ̄ = 0, leaving only
the deterministic component attenuation (1 − fD/βs̃c) due to the Doppler mismatch. In
this diagram, index “i” represents the i-th generated sample function of a stochastic process
in the transmission of the i-th pulse, and ωD = 2π fD/ fs is the digital Doppler frequency.
We adopted the Hann window to weigh the replica due to its demonstrated advantages in
minimizing the integrated side-lobe ratio, which favors range resolution [21].

Figure 3. Proposed simplified radar block diagram to obtain the matched filter output pulse-by-pulse,
where (*) is the complex conjugate operation.

In light of the physics governing the phenomenon, for simplification and without
sacrificing generality, let us consider a received signal r̃(t) = s̃(t− T0)e−j2π fDt from a scatter
located at R0 = c/2T0, with c being the vacuum light speed. The expected value of the
pulse compression output resulting from the proposed architecture [22] (see Figure 3) is
thus given by

E[ỹ(τ)] = E
[∫ ∞

−∞

[
s̃r(t − T0)s̃c(t − T0) e−j2π fDt

]
s̃∗c (t − τ)dt

]
. (7)
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Since a(t) and φ(t) are WSS and independent process [20], Equation (7) can then be
written as [33]

E[ỹ(τ)] = E[a(t)]E
[
ejκφ(t)

]
χs̃c(τ − T0, fD); T0 − τs ≤ τ ≤ T0 + τs, (8)

which, in turn, can be shown to reduce to

E[ỹ(τ)] = α

√
π

2

(
sin κπ

κπ

)
χs̃c(τ − T0, fD); T0 − τs ≤ τ ≤ T0 + τs. (9)

As stated in Equation (9), the output of our proposed architecture [22] presents the
shape of the sinc function relative to the LFM matched filter component, attenuated by a

factor B = α
√

π
2
( sin κπ

κπ

)
. Therefore, the pulse compression gain is compromised, and the

proposed technique becomes effective only when the chosen APCN random component
parameters are such that B is not so high as to start jeopardizing the SNR at the detector.
Figure 4a, illustrates the normalized matched filter output of a conventional pulse compres-
sion radar architecture based on filtering the received APCN signal (α = 1 and κ = 0.5)
with a transmit replica (proposed in [21]). Note the attenuation of the normalized sinc
main lobe, given by L + A, for τ̄ 	= 0, as derived previously. Note further that, since the
attenuation is near the same for all τ̄ 	= 0, the peak side-lobe (PSL) ratio achieved with the
LFM signal is preserved and remains close to 13 dB [34]. These observations demonstrate
that APCN signals do not present a PSL ratio close to the well-known time-bandwidth
product inherent to traditional noise radar waveforms.

Figure 4b illustrates the normalized pulse compression output of our proposed archi-
tecture, considering targets with the same Doppler shifts as in Figure 4a. Note that the
anomaly was eliminated for all analyzed Doppler shifts, minimizing the possibility of false
targets. The PSL ratio also remained close to 13 dB.

(a) (b)
Figure 4. Pulse compression output for targets with different Doppler shifts: (a) considering the
receiver system configuration based on filtering the received APCN signal with a transmit replica;
(b) considering the receiver system using our proposal configuration.

The stochastic component a(t) in Equation (3) increases the transmit signal’s degree of
randomness, potentially enhancing its LPI and LPE properties. Nevertheless, it introduces
a significant drawback to the system related to the limited exploitation of the power
transmitter. Such a drawback is evident in the reduction in the the Peak-to-Average Power
Ratio (PAPR) of the system, given by [6,35]

PAPR =
max{n} |s̃(n)|2

1
τ̄s

τ̄s
∑

n=1
|s̃(n)|2

. (10)

Signals characterized by a consistent amplitude envelope exhibit a PAPR of 1, ren-
dering them highly power-efficient. These signals enable the driving of power amplifiers
close to saturation, maximizing power utilization during transmission. Any departure
from the unity amplitude level results in an energy loss within the correlation main lobe,
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ultimately reducing the peak response level. The energy loss can be interpreted as an
SNR degradation, leading to a decline in detection performance. Define the unavoidable
decrease in performance as [6,13]

SNRLoss = −10 log10(PAPR). (11)

As an alternative to amplitude modulation, the community has devoted significant
effort to deriving closed-form expressions of random frequency-modulated signals for
radar applications better suited for systems requiring high power efficiency. Assuming
s̃PO

r (t) = ejκφ(t), the autocorrelation sequence of the random component of the transmit
Phase-Only (PO) APCN signal is given by [22]

Rs̃PO
r
(τ̄) =

1 − cos 2κπ

2κ2π2 +

(
1 − 1 − cos 2κπ

2κ2π2

)
δ(τ̄). (12)

Analogously to Figure 1a, Figure 5a illustrates the Phase-Only APCN normalized range
profile, considering different values of Doppler shifts ( fD = 0, fD = 0.55/τs, fD = 0.7/τs,
and fD = 1.2/τs), κ = 0.5, βs̃c = 30 MHz, and τs = 50μs. The sampling frequency was also
assumed to be fs = 1 GHz. Figure 5b shows the zero-delay cut behavior, nearly the same
as in Figure 1b.

Figure 5. Normalized ambiguity (in dB) function considering a single pulse realization of a Phase-Only
APCN waveform (κ = 0.5): (a) range profile (Doppler cuts); (b) Doppler profile (zero-delay cut).

In Figure 5a, it is noteworthy that the power level difference between the zero-delay
(τ = 0 μs) spike and the main lobe of the sync function is reduced by a factor of π/4 compared
to Figure 1a. When converted to dB, this difference becomes 20 log10(π/4) = 2.0982 dB. The
reduction helps mitigate the adverse effects of such anomalies on the system’s detection perfor-
mance. Additionally, Figure 6 illustrates the relationship between SNRLoss and various PAPR
values, considering different scale parameters α associated with randomness in amplitude. A
value of κ = 0.5 is assumed. Notably, the Phase-Only (constant amplitude) APCN waveform
achieves a PAPR < 2, which is acceptable in noise radar applications without substantial
degradation in detection performance (SNRLoss < 3 dB) [6]. Furthermore, according to [13],
when the random amplitude is employed, the resultant noisy waveform has a PAPR of around
10 (or greater), with reduced transmitted energy.
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Figure 6. SNR loss versus PAPR assuming κ = 0.5 and different scale parameters α.

Another property that we evaluated in dealing with random transmit signals is related
to its spectral containment, which usually is not efficient. The analysis of the transmit
signal’s Power Spectral Density (PSD), Γs̃(ω), given by the Discrete-Time Fourier Transform
(DTFT) of its autocorrelation sequence, Rs̃(τ̄) = E[χs̃(τ̄, 0)] [33,36], allows for the evaluation
of its spectral containment and the derivation of closed-form expressions describing its
bandwidth. Considering Equation (5), the APCN PSD is given by

Γs̃(ω) = F{H χs̃c(τ̄, 0)}+ (2α2 − H)F{δ(τ̄)} ∗ Γs̃c(ω), (13)

where ∗ and F{·} are, respectively, the convolution and DTFT operators, H = α2[1 −
cos (2κπ)]/4κ2π, as previously defined, and Γs̃c(ω) is the PSD of Rs̃c(τ̄) = χs̃c(τ̄, 0).

Expanding Equation (13) and knowing that F{δ(n)} = 1 yields

Γs̃(ω) = H Γs̃c(ω) + (2α2 − H)
1

2π

π∫
−π

Γs̃c(ς) dς

︸ ︷︷ ︸
1

. (14)

Note that the integral on the right-hand side represents, in the digital frequency
domain (−π ≤ ω ≤ π), the periodic sum of the samples of a complex envelope linear chirp
signal with unitary power. Consequently, according to Parseval’s Theorem [36], it evaluates
to one. Finally, Equation (14) becomes

Γs̃(ω) = H Γs̃c(ω) + (2α2 − H), |ω| ≤ π. (15)

From the closed-form transmits signal’s PSD in (15), there are two widespread ap-
proaches to define a signal’s bandwidth: the 3 dB bandwidth (β3dB) and the portion of the
spectrum where p% of the total power is concentrated (βp%) [5]. Concerning the former
and according to Equation (15), β3dB can be considered the same βs̃c of the APCN signal
deterministic LFM component [3]. Nevertheless, the percentage of the total power within
βs̃c reduces as κ increases, leading to the rise of βp%, which can compromise the APCN
waveform’s performance in practical applications.

The percentage of total power within βs̃ is given by the integral of Γs̃(ω) in Equation (15)
over the interval [−πβs̃c / fs, πβs̃c / fs]; hence

%Pβs̃ =

πβs̃c / fs∫
−πβs̃c / fs

[
H Γs̃c(ω) + (2α2 − H)

]
dω

= H

⎡⎢⎣ πβs̃c / fs∫
−πβs̃c / fs

Γs̃c(ω) dω

⎤⎥⎦+ (2α2 − H)
2πβs̃c

fs
.

(16)
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Practical situations require a higher βs̃c τs product to well-define the spectrum of an
LFM waveform [34]. Owing to the maximum total power contained within a rectangular
bandwidth shape, there is minimal spreading of the LFM spectrum. Consequently, the
integral in Equation (16) can be approximated as one, simplifying to

%Pβs̃ = H + 2π(2α2 − H)
βs̃c

fs
. (17)

In turn, βp% can be shown as in

βp% =
(p − H) fs

2π(2α2 − H)
, (18)

where p is the desired percentage power within βs̃.
A similar derivation applies to the Phase-Only APCN waveform. Analogously to the

previous formulation, one can show that the percentage of total power within βs̃ when the
APCN signal’s amplitude is constant is given by

%PPO
βs̃

= D + 2π(1 − D)
βs̃c

fs
, (19)

where D = [1 − cos (2κπ)]/2κ2π2. Thus, it be shown that βp% becomes

βPO
p% =

(p − D) fs

2π(1 − D)
, (20)

where p is the desired percentage power within βs̃.
Figure 7 presents the behavior of %Pβs̃ for different values of κ, assuming constant

and random discrete amplitude a(n). Note that the variability in phase randomness
directly impacts the mean power of the APCN transmitted signal within the desired
bandwidth. Moreover, introducing randomness in amplitude creates a greater challenge in
maintaining the transmit waveform spectral confinement. Consequently, the RF transmitter,
receiver, and the entire signal processing chain must account for these effects to prevent
signal distortions or a misformulation of the radar range equation, ultimately leading to a
degradation in detection performance.

Figure 7. Relationship between % of total power in bandwidth and κ, assuming constant and random
amplitude (α = 1) modulation.

As a rule of thumb, radar system design good practice recommends that the percentage
of power within the designated bandwidth should be close to 90% [5]. Nevertheless, this
criterion is met only for low values of κ regardless of whether or not one considers random
amplitude. On the other hand, the value of κ directly influences the APCN signal’s degree
of randomness and, consequently, its LPI/LPE performance [20] as well. Specifically, the
greater the value of κ, the more random the resultant APCN signal should be. Therefore,
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one must evaluate the LPI/LPE performance as a function of the stochastic component
parameters of APCN waveforms to establish proper trade-offs during design.

The noise radar system LPI/LPE characteristics are twofold. Firstly, these systems can
effectively mimic thermal noise, rendering them indistinguishable from less sophisticated ELINT
systems and ensuring covert operation. Secondly, they can produce varied sample functions from
the same stochastic process. This capability diminishes the effectiveness of deception systems that
do not operate in real time. Many works in the literature, e.g., [4–6,9,13], attempt to define proper
metrics to evaluate a system’s LPI/LPE characteristic properly. Despite the different approaches,
a common sense within the community is that these features relate to the transmitted waveform
degree of randomness.

In [4,5,9,13], for instance, the authors propose the analysis of the transmitted signal’s
Spectral Flatness Measure (SFM) and Mutual Information Rate (MIR) as measures of its
information increase with time. For Gaussian processes [37], the SFM is directly related to
the MIR and is defined as the ratio of the geometric mean to the arithmetic mean of the
signal’s PSD, given by [37]

SFM =

exp

[
1

2π

π∫
−π

ln (Γs̃(ω)) dω

]
1

2π

π∫
−π

Γs̃(ω) dω

. (21)

From Figure 8, it is possible to observe that the SFM (calculated as the average of
100 independent trials) increases as κ increases, reaching an upper bound value when
the phase factor is κ = 0.8. Note also that the SFM average exhibits a similar behavior,
assuming either random or constant amplitude. This observation suggests that the random
phase contributes more significantly to the LPI/LPE characteristics.

Figure 8. SFM average of APCN (κ ≥ 0.5) waveforms: assuming Phase-Only randomness (constant
amplitude) and random amplitude modulation (α = 1).

The degree of randomness in a given stochastic waveform introduces an additional
advantage to pulsed noise radars. Random signals are expected to present a low cross-
correlation between pulses transmitted at different times. This feature enables the elimina-
tion of range ambiguities in pulse compression architectures.

A short-integration-time pulsed noise radar emits a train of noise-modulated electro-
magnetic pulses toward the target [2], specifically Np time-limited signals, separated in
time by the Pulse Repetition Interval (PRI). When we assume the presence of a single non-
fluctuating scattering point moving at a range of R0, at the time it starts being illuminated
by the radar, we can express the complex envelope of the i-th received signal as [38]

r̃i(t) = Ge−j4π
(

R0+vTi
λ

)
e−j2π fDt s̃i

(
t − T0 − 2v

c
Ti

)
, (22)
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where G is a term that reflects the backscattering effects, channel fading, and the gains and
distortions introduced by the receiver RF chain (assumed to be constant over the coherent
processing interval), λ is the operating wavelength, and v is the target’s radial velocity, also
assumed constant. Finally, T0 in Equation (22) represents the time spent by the echo signal
to return to the radar, which is given by T0 = 2R0/c and Ti = (i − 1)PRI .

Range ambiguity arises when the scatter is far enough so that the i-th echo, relative to
the reflection of the i-th transmitted pulse, arrives at the receptor after the transmission of
the subsequent signal, si+1(t), and, considering the pulse compression gain, has enough
power to be detected. Let us again consider the simplified received signal model [21] for
simplification and no loss of generality r̃i(t) = s̃(t − T0)e−j2π fDt, then, the expected value
of the pulse compression output when range ambiguity is present is given by

E[ỹ(τ)RA] = E
[∫ ∞

−∞

[
s̃ri (t − T0)s̃ci (t − T0) e−j2π fDt

]
s̃∗ri+1

(t − τ)s̃∗ci+1
(t − τ)dt

]
. (23)

The stochastic nature of pure noise radar waveforms may contribute to the suppression
of range ambiguities in target detection [39]. The cross-correlation process between the
i-th replica and the j-th received pulse, where i 	= j, plays a crucial role in radar systems
employing random signals. The elimination of range ambiguity is directly contingent upon
this process. It is no different for APCN signals. One can also evaluate range ambiguity
suppression using the cross-correlation between the i-th and the j-th, transmitted pulses,
i 	= j, since it is possible to rewrite Equation (23) as

E[ỹRA(τ)] = E[ai(t)ai+1(t − τ)]E
[
ejκφi(t)ejκφi+1(t−τ)

]
χs̃c(τ − T0, fD), (24)

with (T0 − τs ≤ τ ≤ T0 + τs) and considering that s̃ci (t) = s̃ci+1(t).
Finally, after some mathematical manipulations, it can be shown that

E[ỹRA(τ)] =
(

α2 π

2

)(1 − cos 2κπ

2κ2π2

)
χs̃c(τ − T0, fD); T0 − τs ≤ τ ≤ T0 + τs. (25)

The attenuation in the pulse compression output of APCN signals introduced by the
presence of the random component s̃r(t), when range ambiguous targets are present, is
given by H = α2[1 − cos (2κπ)]/4κ2π, the same introduced as an effect of the Doppler
mismatch of moving targets (see Equation (5)). The same analysis can be performed for the
Phase-Only APCN waveform, leading to

E
[
ỹPO

RA(τ)
]
=

(
1 − cos 2κπ

2κ2π2

)
χs̃c(τ − T0, fD); T0 − τs ≤ τ ≤ T0 + τs, (26)

with an attenuation given by D = [1 − cos (2κπ)]/2κ2π2.
The primary objective of the radar system in surveillance applications is to provide the

user with situational awareness of the operational scenario. That entails detecting uncoop-
erative targets and determining their range and radial velocity in real-time. Contemporary
digital systems utilize the Pulse Doppler technique, separable two-dimensional processing
in the fast and slow-time dimensions, for that purpose [34].

In the fast-time dimension, the i-th single-pulse matched filter, denoted as ỹi(n) =
ỹi(t)|t=n/ fs

(see Figure 3) is performed. Next, the k-points Discrete Fourier Transform
(DFT) of the slow-time data sequence is employed in each range bin [38]. The result is
the well-known range-Doppler matrix, used as the input for the subsequent step of the
detection process.

In the present analysis, we chose the Cell-Averaging (CA) CFAR detection technique
to investigate the performance of APCN signals. We assume a single Signal of Interest
(SOI) scenario and consider the predominant interference in the radar reception chain
from thermal noise origin. Furthermore, employing a quadratic law detector, we set the
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probability of false alarm to 10−5. This detection process is first applied to the echo of the
APCN waveform using the receiver system configuration detailed in [21]. Therefore, one
must derive the matched filter output by correlating the receiver echo with the transmitted
stochastic signal. Subsequently, the detection process assesses the corresponding filter
output, as determined by Figure 3. Given the time and frequency sampling, we incorporate
two “guard cells” on each side of the “cell under test”. We take this precaution to account
for the potential occurrence of “straddle range-Doppler cells” [34].

Next, we discuss an experiment assuming a digital radar receiver. Below is an outline
of the main parameters employed in the simulation for this experiment:

• Waveform wavelength: 0.0321 m;
• Waveform bandwidth: βs = 30 MHz;
• Waveform pulse width: τs = 50μs;
• Waveform pulse repetition interval: τs = 500μs;
• Fast-time sampling frequency : fs = 125 MHz;
• Pulse Repetition Frequency: PRF = 2 kHz;
• Slow-time sampling frequency: 2 kHz;
• Number of received pulses: Np = 27;
• Number of DFT Doppler domain points: N = 64;
• Target’s Doppler shift: fD = 700 Hz;
• Target’s range: R0 = 50 km;
• Maximum radar unambiguous range: Runammax = 75 km.

Figure 9 displays the results of the detection process with the receiver system configu-
ration detailed in [21]. In addition to successfully detecting the SOI highlighted in green,
the five false targets depicted in red were also identified in a scenario with an SNR as low
as −15 dB.

Figure 9. Detection process output considering the CA-CFAR technique implemented on the digital
radar receiver proposed in [21].

Figure 10 shows the detected SOI when the configuration outlined in Figure 3 is
employed. Note that this detection procedure eliminates false targets.

Figure 10. Detection process output considering the CA-CFAR technique applied to our
proposed architecture.
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To demonstrate and validate the improvement in performance in detecting and esti-
mating range and radial velocity, we conducted an experiment that consists of transmitting
different APCN signals with randomness in amplitude (scale parameter α = 1) and varied
randomness in phase (scale parameter κ). The results illustrated in Figure 8 corroborate
that phase randomness impacts the increase in APCN LPI/LPE characteristics most sig-
nificantly. After applying the Pulse-Doppler processing, we generated a range-Doppler
matrix, assuming a low SNR of −15 dB on the receiver’s end of the radar chain. Next, we
applied the CA-CFAR detection technique to this dataset and calculated the average num-
ber of false targets. We conducted this analysis using Monte Carlo simulations comprising
100 independent trials. The procedure adheres to the recommended receiver configuration
of [21] and the receiver configuration specifications provided in Figure 3.

Figure 11 illustrates the results of an experiment in which we increased the waveform
randomness while maintaining the SNR level low in the radar receiver chain. Notably, using
the configuration detailed in [21] resulted in a substantial increase in the average count of
false targets. Therefore, this configuration significantly compromises the radar’s detection
and estimation capabilities despite enhancing its LPI/LPE characteristics. Specifically,
when the variable κ reaches a value of 0.8, the average count of false alarms escalates to
eight. This elevated count remains consistent regardless of increments in the value of κ.
This behavior relates to the maximum value of the SFM average observed in Figure 8,
which reaches an upper bound when the phase factor is κ = 0.8.

Figure 11. APCN waveform (κ ≥ 0.5 and α = 1) detection performance: average number of false
targets.

However, when we applied our proposed architecture detailed in Figure 3, it main-
tained the crucial LPI/LPE capability by preserving the transmission waveform. Moreover,
as we explored phase scale factors up to κ = 0.95, we eliminated false target occurrences, re-
ducing them notably to zero, as visually indicated by the black arrow in Figure 11. However,
the waveform lost its Doppler tolerance capacity at the uppermost limit of randomness,
namely κ = 1. Consequently, correlating the received echo from the APCN waveform with
its deterministic component became unfeasible.

It is clear from the previous derivations and analysis that proper selection of the
parameters governing the random components of the APCN transmitted signal is relevant
for the overall system performance. The greater the value of κ, the more random the
waveform. That leads to a higher Spectral Flatness Measure, improving its range ambiguity
suppression. On the other hand, high values of κ lead to a waveform with less spectral
efficiency (low power within the desired bandwidth) and less Doppler tolerance. Using a
stochastic signal to modulate the transmit waveform in amplitude also increases its degree
of randomness, which enhances the trade-offs discussed above. Additionally, the random
component in amplitude also deteriorates the system performance concerning power
efficiency, increasing the transmit signal’s PAPR. That needs to be considered, especially in
long-range applications.

In Section 3, we examine APCN waveforms from the point of view of a passive
intercept-receiver system and propose, analyze, and discuss a methodology to detect and
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extract the characteristics of this noisy waveform automatically. These waveforms are
recognized for their LPI/LPE attributes as detailed in [3,20].

3. The Proposed Metodology for Identifying APCN Signals

In this section, we investigate the performance of the APCN waveform in an electronic
warfare context. We first address the modeling of a digital superheterodyne ESM receiver
system. We consider interception, A/D conversion, and digital processing operations
performed on the analog SOI. We introduce a specific time-frequency transform technique
to analyze radar signals deemed as LPI/LPE [11,23]. Then, we outline techniques used to
extract signal characteristics and evaluate the performance of the proposed methodology
in estimating the radar parameters of the SOI in an EW scenario.

The primary objective of an ESM system is to identify emitting sources. The ESM
system’s digital processing chain extracts intrapulse and interpulse parameters from the
intercepted waveform. Examples of intrapulse parameters are pulse width (τs), operating
frequency ( f0), and bandwidth (βs), whereas for interpulse we have the Pulse Repetition
Interval (PRI). The way to determine the Pulse Repetition Interval is by estimating the
arrival time (Te) between successive intercepted pulses [40]. This information is intrinsic
to the signal’s identity. As for the amplitude of the received signal, it relies, in part, on
the distance between the radar and the ESM system since measuring the amplitude is
challenging due to deleterious effects, such as multipath that may lead to constructive
interference within pulses [40].

Commonly, an ESM system has a listening time (Δt) longer than the radar’s pulse
repetition interval, enabling parameter estimation based on multiple intercepted pulses.
Thus, the intercepted RF signal can be expressed as

rRF
e (t)=

Npe

∑
i = 1

Q sRF
i (t − Te − (i − 1)PRI), (27)

where sRF
i (t) is the i-th transmitted pulse one-way Doppler shifted by the radial relative

velocity. Moreover, Q accounts for gains and attenuation, and Npe is the number of
intercepted pulses.

Typically, six pulses are needed to allow parameter extraction [40]. The received signal
is routed to the RF chain and contaminated with thermal noise w(t). Therefore, the actual
signal at the output of the RF module is given by

x(t) = re(t) + w(t) =
Npe

∑
i=1

V si(t − Te − (i − 1)PRI) + w(t), (28)

where si(t), in noise radars, are sample functions of the stochastic process that characterizes
the transmitted random signal assumed to be statistically independent of the thermal noise.
Moreover, V accounts for gains and attenuation introduced by the RF chain cascaded to the
gains and attenuation of the intercepted signal. We assume real-valued and time-invariant
quantities throughout this work.

Since we employ discrete-time analysis, we denote x(n) = x(t)|t=n/ f se , assuming a
digital ESM system sampling frequency of fse . Additionally, the TFA of the intercepted
radar signal adopts its analytical form [11] and is given by

x̃(n)= x(n) + jH{x(n)}, (29)

where H denotes the Hilbert transform. Figure 12 illustrates the simplified diagram of
an ESM superheterodyne digital receiver [11], outlining the process that starts with the
reception of the analog signal up to the display of the extracted information in a Human–
Machine Interface (HMI). The diagram excludes the pulse deinterleaving step, focusing the
analysis on individual waveforms.
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Figure 12. ESM superheterodyne receiver: simplified block diagram incorporating digital technology.

In numerous EW scenarios, the nature of a received radar signal often deals with time
and frequency information and, therefore, requires time-frequency analysis techniques to
effectively characterize the non-stationary behavior exhibited by the signal [23,41]. Several
variations of these techniques are available in the literature. We use the Short-Time Fourier
Transform (STFT) in this work, with no loss of generality.

The discrete version of the STFT of signal x̃(n) is defined as

SF(k, m) =
Ne−1

∑
n= 0

x̃(n + m R) g(n) e−j( 2πk
Ne )n; 0 ≤ k ≤ Ne − 1, (30)

where 2πk/Ne is the k-th discrete frequency bin, m represents the m-th discrete tile in time,
Ne is the number of points of the FFT, equal to the window size, and R is the hop size (with
an overlapping of Ne − R samples in this case). Moreover, g(n) is a window of size Ne, that
is, g(n) = 0 outside the interval 0 ≤ n ≤ Ne − 1. In this work, we chose the Hamming
window, widely used in EW systems [11,34,41]. In most applications that involve STFT, the
interest is in the magnitude response, with a focus on the short-time quadratic magnitude
|SF(k, m)|2, representing the short-time energy spectral density, and usually displayed as a
function of time and frequency in the form of a spectrogram [42].

From the computational implementation of Equation (30), we obtain the Ne × M
matrix E of time-frequency distribution, given by

E =

⎡⎢⎢⎣
...

...
...

|SF(k, 1)|2 · · · |SF(k, M)|2
...

...
...

⎤⎥⎥⎦
Ne×M

, (31)

where k corresponds to k-th frequency bin, Ne is the total number of bins, and M is the
total number of tiles in time. The determination of overlap, crucial for achieving resolution
between fixed tile and frequency bin quantities, is computed according to [43]

L =

⌈
MNe − Ns

M − 1

⌉
, (32)

where “
 �” is the round-to-nearest integer operator and Ns is the number of samples.
Displayed in Figure 13 are the time “(a)” and time-frequency “(b)” representations of

an intercepted signal, derived from six pulses of an APCN waveform (κ = 0.5 and α = 1).
It is important to note that while representation “(a)” highlights time-related features, the
time-frequency display in “(b)” provides valuable insights into the energy carried by the
SOI. These depictions assume an SNR of −10 dB at the passive intercept-receiver input.
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Figure 13. Intercepted signal x(t): (a) time representation; (b) time-frequency representation. In this
figure, the x-axis is represented by “Time (μs)” and the y-axis is represented by “Frequency (MHz)”.

The subsequent stage after the TFA in the block diagram depicted in Figure 12 involves
parameter extraction. Matrix E described by Equation (31) furnishes details regarding the
energy the intercepted signal carries, enabling us to visualize the time-frequency plane as a
2D image. Consequently, it is feasible and natural to use image processing techniques to
extract parameters related to the SOI. In the present work, we use the Hough transform for
detecting geometric shapes such as lines in a binary image [44]. The way to represent a line
equation in the Hough space is as follows [45]:

ρ = x cos(ψ) + y sin(ψ), (33)

where ρ is the distance between the line and the origin of the Cartesian system and ψ is the
angle between the axis x and the segment perpendicular to the line.

Figure 14 illustrates the process of estimating a line in Cartesian space (a) from the
Hough space (b), with the parameters ψ′ and ρ′ determined by the intersection of the two
sinusoids within the Hough space.

Figure 14. Representation of a line: (a) Cartesian space; (b) Hough space.

The computational implementation of the Hough transform [46] yields a structured
array represented as [H; ψ; ρ], where H denotes the histogram amplitude matrix, with each
of its elements standing for the number of increments within each cell of the quantized
Hough space. Additionally, ψ represents the slopes vector, while ρ is the distance vector.

The peaks in H are then obtained and stored in a matrix P of order np × 2 whose form
is given by

P = [ρ∗ ψ∗] =

⎡⎢⎢⎢⎣
ρ1 ψ1
ρ2 ψ2
...

...
ρnp ψnp

⎤⎥⎥⎥⎦, (34)

where np represents the desired number of peak estimates, assumed to be the minimum
number of pulses Npe required to enable the parameter extraction output. Finally, the
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detection of lines in the image space (matrix BW) is performed, leading to L, a restructured
array of the form [L1; L2] where

L1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1|P1 y1|P1
...

...
x1|Pi y1|Pi

...
...

x1|PNpe
y1|PNpe

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (35)

with x1|Pi and y1|Pi being the i-th ordered pair matrix referring to the beginning of the i-th
detect line, and

L2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x2|P1 y2|P1
...

...
x2|Pi y2|Pi

...
...

x2|PNpe
y2|PNpe

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (36)

is the matrix representing the ordered pairs at the end of the i-th detected line.
The intrapulse and interpulse parameters of the SOI are then estimated, with the

estimated bandwidth given by

β̂s =
1

Npe

[Npe

∑
i=1

(
y2|Pi − y1|Pi

) fse

2Ne

]
. (37)

The SOI operating frequency ( f0) can be estimated as

f̂c =
1

Npe

[Npe

∑
i=1

(
y1|Pi + 0.5

(
y2|Pi − y1|Pi

)) fse

2Ne

]
. (38)

Therefore, f̂0 = f̂c + fLO, where fLO is the ESM system Local-Oscillator (LO) frequency.
The estimated intercepted signal time duration is calculated as

τ̂s =
1

Npe

[Npe

∑
i=1

(
x2|Pi − x1|Pi

)Δt
M

]
. (39)

Finally, to estimate the radar PRI , it is necessary to measure the difference between the
arrival times of Npe successive pulses in such a way that

P̂RI =
PRI |P(21)

+ PRI |P(32)
+ · · ·+ PRI |P(i(i−1))

+ · · ·+ PRI |P(Npe (Npe−1))

Npe − 1
, (40)

where PRI |P(i(i−1))
=

(
x1|Pi − x1|P(i−1))

)
Δt
M is the i-th measure pulse repetition interval be-

tween two successive lines detected.
The block diagram in Figure 15 illustrates the methodology proposed in this study

for parameters extraction from the APCN noise radar waveform. In this diagram, solid
black lines represent the input and output of the block diagram, while dashed black lines
indicate intermediate inputs and outputs necessary for preprocessing.

In the final stage of the architecture outlined in Figure 12, emphasis is placed on iden-
tifying the source emitter. In the digital processing realm of an ESM system, a predefined
set of mean parameters [β̂s f̂0 τ̂s P̂RI ]

T, referred to as a fingerprint, can aid in the identifica-
tion phase of the radar model [1,11,40]. These parameters offer a degree of tolerance and
facilitate the identification of the emitting source. In cases where the intercepted signal
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fails to correlate with an existing emitter in the EW database, we add the new signal to the
database for future recognition.

Subsequent sections delve into the proposed methodology, utilizing a numerical example
to detail the process of extracting signal information to construct a waveform fingerprint.

Figure 15. Block diagram showing the approach for extracting parameters from the APCN noise
radar waveform.

3.1. Numerical Example

The block diagram of Figure 16 outlines the proposed methodology. It is designed to aid
in identifying APCN signals through image processing, thereby enabling the identification
of emitting sources transmitting this type of waveform in an EW scenario. The synthesized
scenario is based on Figure 12 and the main parameters used in the simulations are:

• Waveform bandwidth: βs = 30 MHz;
• Waveform pulse width: τs = 50μs;
• Waveform pulse repetition interval: PRI = 500μs;
• ESM system sampling Frequency: fse = 500 MHz;
• ESM system listening time: Δt = 3000μs;
• ESM system local oscillator frequency: fLO = 9.2 GHz;
• Number of pulses intercepted by the ESM system: Npe = 6;
• Radar center frequency: fc = 160 MHz.

Figure 16. Block diagram illustrating a proposed methodology utilizing image processing tech-
niques. Parameters to be extracted include bandwidth, operating frequency, pulse width, and pulse
repetition interval.
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It is noteworthy to emphasize that, in [20], the utilization of an APCN waveform
with specific parameters (κ = 0.5 and α = 1) and a designed bandwidth of 30 MHz was
identified as potentially posing challenges to the intercept–receiver system in a commu-
nication channel where thermal noise was present. Acknowledging this insight from the
referenced work, our investigation aligns with this perspective, thus adopting a bandwidth
of βs = 30 MHz for our analysis.

The proposed methodology to analyze this noise radar signal comprises four steps (as
seen in Figure 16) and are described in the following.

1. In Step 1, time-frequency (T-F) transformation, we obtain matrix E using Equation (31).
To address the uncertainty principle [42], we use a window g(n) of size Ne = 1024 sam-
ples, corresponding to 2.048 μs. This choice aims to balance local signal analysis and
stationary conditions, facilitating FFT applications while ensuring an adequate bal-
ance of time and frequency resolutions. The analytical nature of signal x̃(n) allows
for 512 frequency bins within the range 0 ≤ f ≤ fse /2, corresponding to the positive
half of the spectrum 0 ≤ ω ≤ π, given the window size. Simultaneously, we set the
number of STFT tiles to M = 1024, with an overlap of 536 samples at each hop. As
illustrated in Figure 16, this transformation showcases the signal’s shift from the time
domain to its time-frequency representation. Although the radar signal’s intent is dis-
cernible amidst system thermal noise, preprocessing remains necessary for automatic
and accurate characteristic extraction.

2. Step 2 performs detection in the T-F plane. For this purpose, we define a threshold η as

η = −
[
e ln(Pf a)

]
, (41)

with

e =
[

E f (: , 1) E f (: , 2) · · · E f (: , M)
]T

︸ ︷︷ ︸
Mean vector in matrix rows

and e =
1
M

M

∑
m=1

E f (: , m) , (42)

where the desired probability of false alarm is Pf a = 10−5. After the detection process,
matrix Ed

f is obtained as the output, as illustrated in Figure 16.

3. Conversion from grayscale (C) to black-white (BW): Ed
f is converted from grayscale to

black-and-white [47] to obtain the matrix BW, and the signal’s amplitude information
is encoded into binary values.

4. Parameter extraction step: as previously mentioned, the proposed approach for
extracting information from the APCN waveform relies on the Hough transform.
Due to its deterministic component, and according to [3,22], the bandwidth βs can
be considered the same as that of its linear chirp component, i.e., βsc . The number of
input peaks, assumed to be the minimum number of pulses to allow for parameter
extraction, was considered np = 6 [40]. Moreover, we fixed the threshold tH at
0.5 max[H], which is the default minimum value for identifying a peak.

By defining a threshold tH and applying it to the Hough space matrix H, along with
knowing the desired minimum number of peaks np, we can obtain the matrix P as denoted
by Equation (34). Figure 17 illustrates the detected peaks stored in P. Subsequently, using
P = [ρ∗ ψ∗], the conversion from Hough space to Cartesian space [45] was performed
based on the parameter relationship in Equation (33), resulting in the detection of lines
[L1; L2]. Figure 18b illustrates some of the lines detected in Cartesian space.
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Figure 17. Peaks detected from Hough’s histogram [H].

Finally, the intrapulse and interpulse parameters are estimated as depicted in the
detailed extraction block diagram (Figure 15). This process establishes a connection between
the desired information illustrated in Figure 18a and the information obtained in the
Cartesian space through the Hough space (Figure 18b).
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Figure 18. Detected lines. For better observation, the image has been zoomed in on the first two
intercepted pulses (a) desired parameters estimation; (b) Cartesian lines detected. In both figures “#”
stands for the number of the Bin or Tile, respectively.

3.2. Performance Assessment

Several studies in the literature aim to establish performance benchmarks for ESM
systems [29,48,49], yet a universally accepted standard for ESM development remains
elusive [30]. As previously mentioned, tolerances may correlate a particular set of estimated
parameters to a specific emitter, and their significance in the overall ESM performance
is crucial [40]. For instance, in [29], the assumed tolerances are ±1 MHz for operating
frequency and bandwidth and ±1 μs for the modulation period. From this perspective,
one presumes that the probability of an ESM detecting a radar signal (Pde ) is directly
linked to the accuracy/precision of its parameter estimation by such a system, making it
an evaluation metric. As an alternative, the authors in [23,29,31] consider the percentage
relative error to evaluate the efficiency of their proposed methodologies for radar parameter
extraction of deterministic radar signals considered LPI/LPE.

In this assessment, we start with Pde of the ESM system employing the proposed
methodology to identify APCN signals through a Monte Carlo simulation, assuming
100 independent trials. For this purpose, we record a detection when the tolerance between
the actual and estimated parameters falls below a certain threshold: ±2 MHz for βs,
±5 MHz for f0, ±5 μs for τs and ±25 μs for PRI . These tolerances were derived from the
information in [29,40]. Figure 19 presents the obtained ESM probability of detection, Pde ,
of an APCN signal. One can see that the detection performance remains above 99% for
SNR levels considered low [23,29–31], i.e., less than −10 dB, for both intrapulse as well as
interpulse radar parameters. Performance is degraded for SNR less than −11 dB.
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Figure 19. Probability of detection APCN waveform parameters (κ = 0.5 and α = 1) considering
100 independents trials.

We also evaluated the accuracy and precision of the random variables characterizing
the proposed estimators. Accuracy, represented by the bias of an estimator Θ̂ for a parame-
ter Θ [11,34], is defined as the expected value of the difference between the mean of the
estimate and the actual parameter value

BΘ̂(Θ) = E
[
Θ̂
]− Θ. (43)

Precision, on the other hand, is the standard deviation of the estimate

σΘ̂(Θ) = E
[√

(Θ̂ − E[Θ̂])2
]

. (44)

Figure 20a and Figure 20b, respectively, depict the precision and accuracy of the pro-
posed estimators across varying SNR levels in an ESM system employing the methodology
to identify APCN signals. The estimators exhibit high precision, implied by the low stan-
dard deviation of the random variables, up to an SNR of −12 dB. However, beyond this
threshold, a notable decline in precision is observed. Additionally, while the proposed f0
estimator maintains high accuracy up to an SNR of −12 dB before exhibiting bias, the pro-
posed bandwidth estimator displays a slight bias (approximately 1 MHz) independent of
the SNR in the passive intercept–receiver chain. Nonetheless, the estimators for intrapulse
and interpulse temporal parameters demonstrate high accuracy up to an SNR of −12 dB
before showing signs of bias.

(a) (b)
Figure 20. APCN (κ = 0.5 and α = 1) waveform parameters estimation performance: (a) Precision as
a function of the SNR; (b) Accuracy as a function of the SNR.

Thus, from the analyzed perspectives, a digital intercept receiver that employs the
automatic parameter extraction approach proposed in the present work can detect the
APCN noise radar signal, with κ = 0.5 and α = 1, and explore it, inhibiting this waveform
from being claimed as either LPI or LPE.

Lastly, Figure 21 presents the assessment metric based on percentage error, defined as

e(%) =

∣∣∣∣actual value − estimated value
actual value

∣∣∣∣× 100, (45)
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wherein the mean percentage relative error e(%)ensemble is derived for observation in the
experiment ensemble. As per [1,31,50], a margin of up to 10% in parameter estimation error
can be deemed acceptable in the context of ESM equipment.

Figure 21. APCN parameter intrapulse and interpulse estimation with different values of κ, consider-
ing α = 1.

We have used that metric to evaluate the performance of the proposed methodology
for APCN signals generated with different values of κ, assuming α = 1. Moreover, we
have considered a fixed SNR of −3 dB in the receiver chain. As we can see, the proposed
methodology managed to estimate all parameters within an acceptable error limit for
APCN waveforms that employ κ < 0.7 when the signal becomes too noisy, at the expense
of spectral confinement and Doppler tolerance, as previously mentioned.

4. Conclusions

This paper investigated the performance of the Doppler-tolerant Advanced Pulse
Compression Noise waveform radar in surveillance applications. We analyzed its perfor-
mance as an LPI/LPE signal under the framework of a proposed detection/information
extraction method. From the perspective of a radar system, we showed an expression of
the narrowband ambiguity function to assess its Doppler tolerance capacity. The analysis
revealed an anomaly inherent to the waveform that can jeopardize detecting slow-moving
targets in surveillance applications. Thus, we proposed a novel configuration for a digital
radar receiver to address this issue. The proposed solution involves correlating the received
signal with the deterministic component of the APCN waveform instead of relying on the
transmit signal’s replica in a pulse compression architecture. This approach eliminates the
anomaly and improves the accuracy and reliability of slow-moving target detection within
noisy environments at the expense of an additional attenuation of the resulting signal.
Closed-form expressions characterizing the pulse compression output in such architecture
were also derived.

Moreover, we showed that the meticulous selection of parameters governing the
random components in the APCN transmit signal emerges as a pivotal factor influencing
overall system performance. In particular, the scale parameter associated with phase ran-
domness assumes a critical role: larger values yield a more random waveform characterized
by a higher Spectral Flatness Measure, thereby enhancing range ambiguity suppression.
However, this improvement is offset by reduced spectral efficiency, as higher scale parame-
ters lead to lower power within the desired bandwidth and decreased Doppler tolerance.
Furthermore, introducing a stochastic signal to modulate the transmit waveform’s ampli-
tude intensifies its randomness, exacerbating these trade-offs. Additionally, the inclusion
of a random component in amplitude results in a deterioration in system performance con-
cerning power efficiency, as evidenced by the increased Peak-to-Average Power Ratio in the
transmit signal. These considerations are particularly pertinent in long-range applications
and necessitate careful deliberation in designing and optimizing APCN-based systems.

Regarding an intercept–receiver system point of view, a system with digital processing
was modeled assuming a plausible number of intercepted pulses, according to the recent
literature. We then proposed a candidate method to use in an ESM system for APCN
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noise waveform detection and parameter extraction. We employed a time-frequency
transform to accurately extract the radar parameters since interception and exploitation of
signals considered LPI/LPE requires sophisticated receivers that use time-frequency signal
processing. The transformation made it possible to detect the radar signal immersed in
thermal noise. We assumed the nonexistence of any replica of the intercepted signal, as
the sample functions of noise radar are theoretically uncorrelated with each other, and the
incoming signal parameters are unknown.

The proposed methodology parameter extraction was based on image processing
techniques generated by the time-frequency transform. We described each step of the
developed methodology to finally generate a fingerprint to assist in identifying the emitting
source. We evaluated the intercept receiver performance based on the probability of such an
ELINT system detecting an APCN radar signal, considering LPI/LPE as a function of the
signal-to-noise ratio of the ELINT system. Results showed a probability of detection close
to 1 for SNRs less than −10 dB. We also evaluated the accuracy and precision of the random
variables characterizing the APCN estimated parameters (bandwidth, operating frequency,
time duration, and pulse repetition interval) as a function of the SNR. Results also showed
that the proposed ELINT system performed well in estimating such parameters in scenarios
with SNR less than −10 dB. Finally, we concluded that defining a radar as LPI and LPE, or
either, necessarily involves defining the corresponding intercept–receiver system.
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Abstract: In recent years, radar emitter signal recognition has enjoyed a wide range of applications
in electronic support measure systems and communication security. More and more deep learning
algorithms have been used to improve the recognition accuracy of radar emitter signals. However,
complex deep learning algorithms and data preprocessing operations have a huge demand for
computing power, which cannot meet the requirements of low power consumption and high real-
time processing scenarios. Therefore, many research works have remained in the experimental stage
and cannot be actually implemented. To tackle this problem, this paper proposes a resource reuse
computing acceleration platform based on field programmable gate arrays (FPGA), and implements
a one-dimensional (1D) convolutional neural network (CNN) and long short-term memory (LSTM)
neural network (NN) model for radar emitter signal recognition, directly targeting the intermediate
frequency (IF) data of radar emitter signal for classification and recognition. The implementation of
the 1D-CNN-LSTM neural network on FPGA is realized by multiplexing the same systolic array to
accomplish the parallel acceleration of 1D convolution and matrix vector multiplication operations.
We implemented our network on Xilinx XCKU040 to evaluate the effectiveness of our proposed
solution. Our experiments show that the system can achieve 7.34 giga operations per second (GOPS)
data throughput with only 5.022 W power consumption when the radar emitter signal recognition
rate is 96.53%, which greatly improves the energy efficiency ratio and real-time performance of the
radar emitter recognition system.

Keywords: convolutional neural network (CNN); field programmable gate array (FPGA); hardware
accelerators; long short-term memory (LSTM); radar emitter signal recognition

1. Introduction

Most of the traditional radar emitter signal (RES) identification methods are based
on the RES parameters, such as carrier frequency, signal pulse width, signal amplitude,
direction of arrival (DOA), and signal time of arrival (TOA). However, with the RES system
and the modern electromagnetic environment becoming more complicated, the traditional
identification method based on parameters cannot meet the requirements of RES identifica-
tion requirements. In addition, whether in the field of electronic support measure systems
or communications, RESs always need to be intentionally or unintentionally modulated
before being radiated into space [1]. In recent years, according to this RES characteristic,
there has been significant research on modulation type recognition, behavior recognition,
and even specific RES identification using the methods of artificial intelligence and machine
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learning [2]. Compared with the traditional methods, recognition algorithms based on
deep learning are widely used because of their powerful feature extraction ability, which
greatly improves the RES recognition rate.

However, many recognition algorithms based on deep learning require complex RES
preprocessing to complete the recognition task. For example, the RES is transformed into
the frequency domain, time–frequency domain, or other transform domains, and then
these features or images are classified and recognized after obtaining the transform domain
features. In [3], the Hilbert transform and bispectrum of the RES are combined to form a
signal image, which is fed into a convolutional neural network (CNN) to realize individual
RES recognition. There are also other approaches to directly classify and identify RES inter-
mediate frequency (IF) data using deep learning networks with complex structures, such
as residual networks, attention mechanisms or hybrid neural network (NN) [4–7]. In [8],
a combination of NN with an inception mechanism and long short-term memory (LSTM)
neural networks was used to achieve individual identification of five universal software
radio peripheral (USRP) communication emitter signal devices. Although such methods
have high RES identification accuracy, the complex preprocessing process and algorithm
model will inevitably lead to an increase in computing complexity and system latency,
especially for power-limited computing devices, such as spaceborne devices or portable
terminals, where most of the complex deep learning algorithms cannot be implemented.
Therefore, in the design process of RES identification algorithms, more attention should be
paid to the balance between signal recognition rate and algorithm complexity, and the im-
plementation ability of an RES identification algorithm in engineering applications should
not be ignored.

The rapid development of deep learning cannot be achieved without its powerful
computing power, which is usually accelerated by parallel processors such as a graphics
processing unit (GPU). Although a GPU can provide powerful computational support for
deep learning algorithms, the huge power consumption of GPUs limits their application
in low-power scenarios. An application-specific integrated circuit (ASIC) [9] can provide
high-performance and low-power computational support for deep learning algorithms,
but its high cost and long-term development process have been major deterrents. Hence,
programmable logic gate arrays (FPGAs) have received increasing attention due to their re-
programmable, low power consumption, and abundant computational resources, and many
FPGA-based computational acceleration schemes for deep learning algorithms have been
proposed in recent years. A method to automatically deploy CNNs on on-board FPGAs
was proposed in [10], which achieved 23.06 GOPS and 22.17 GOPS throughput rates for
the simplified VGG16 network and YOLOv2 network deployed on a Xilinx AC701. In [11],
the FPGA implementation of CNNs for radar signal processing was carefully optimized
for better performance and energy efficiency. The authors of [12] achieved substantial
improvements in computational speed and energy efficiency ratio of the LSTM network
acceleration engine implemented on an FPGA compared to CPU and GPU using fixed-point
parameters, systolic arrays, and nonlinear function lookup tables. In [13], an architecture for
CNN implementation in FPGAs using the Winograd algorithm was proposed to reduce the
complexity of convolutional operations and accelerate the computational process. In [14],
a CNN acceleration was implemented specifically using deep separable convolution.

However, most of the current research on FPGA-based deep learning computational
acceleration only focuses on the computational acceleration of one of the NN models, CNNs
or RNNs [15], and cannot support the computation of C-RNN models combining a CNN
and an RNN, and most of the related research focuses on the processing of two-dimensional
image data.

Based on the above discussion, we constructed a one-dimensional (1D) CNN-LSTM
model for RES classification and identification, considering the characteristics that the
actual signal duration varies randomly and the information among sampling points is
correlated in the time dimension. We exploited the different advantages of CNNs for
reducing frequency variation, LSTM for temporal modeling, and deep NNs for mapping
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features to a more separable space [16], and designed an FPGA-based resource multiplexing
computing acceleration platform as shown in Figure 1. The deployment of the CNN-LSTM
algorithm model on FPGAs was realized, which enables the deep learning-based RES
identification algorithm to be truly implemented in low-power and stringent real-time
scenarios. The main contributions of this paper are summarized as follows:

1. We constructed a 1D-CNN-LSTM model for RES recognition, which can directly
process IF data and guarantee high recognition accuracy with a simple structure that
is more convenient for FPGA hardware implementation. Compared with a single
CNN, the network model has no uniform requirement on the length of the input
signal and is more suitable for processing pulse RESs with randomly varying length.

2. We designed an FPGA-based resource multiplexing computational acceleration plat-
form for the 1D-CNN-LSTM model constructed in this paper, which achieves parallel
acceleration of both 1D convolution and matrix multiplication operations by multi-
plexing the same systolic array, reducing the processing delay while greatly improving
the utilization of FPGA computational resources.

3. For the different operation characteristics of CNNs and LSTM, a special instruction
set of the FPGA acceleration platform was developed, which can realize rapid re-
deployment by adjusting instructions during the change of NN model structure or
algorithm iteration.

4. On the Xilinx XKU040 FPGA development board, we have implemented a 1D-CNN-
LSTM RES recognition system. The experimental results show that the system achieves
a data throughput rate of up to 7.34 GOPS with a power consumption of only 5.022 W
with a recognition rate of 97.53% for RES recognition, which is suitable for the scenario
of low-power requirements for RES recognition while guaranteeing high computing
performance. This ensures both efficient resource utilization and optimal system
performance for RES recognition.

Figure 1. Resource multiplexing computational accelerator architecture.

The rest of this paper is organized as follows: Section 2 introduces RESs, the opera-
tional properties of CNNs and RNNs, and the 1D-CNN-LSTM algorithm constructed in
this paper for RES identification. Section 3 introduces the design ideas and methods of the
FPGA-based resource multiplexed computing acceleration platform. Section 4 presents
the related experimental results. Section 5 is the discussion of the results, and Section 6
concludes this paper.
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2. Related Works

2.1. Radar Emitter Signal Recognition

Early radar signals were single-carrier pulses without intra-pulse modulation, but with
the advancement of radar technology, various modulations of radar signals began to be
performed to improve the radar range of action and Doppler resolution. The five parameters
(carrier frequency, amplitude, pulse width, direction of arrival, and signal time of arrival)
of the conventional pulse description word (PDW) can no longer fully characterize the
state information of the radar pulse. The RES intra-pulse modulation characteristics have
consequently become an important parameter to describe the characteristics of the radar
pulse. The main radar signal intra-pulse modulation methods are frequency modulation
and phase modulation, which can be divided into continuous frequency modulation and
discrete frequency modulation. Phase modulation mainly has two-phase coding, four-phase
coding, and multi-phase coding [17].

Regardless of the modulation method, the modulation information is contained in the
time domain signal or transform domain characteristics of the pulse. Traditional CNNs
require uniformity in the dimensionality of the input time domain signal or transform
domain features for RES identification. However, the pulse width, carrier frequency, am-
plitude, and signal bandwidth of the RESs are parameters that can change randomly; this
requires that the algorithm model used for recognition must set redundancy according to
the range of parameters required by the system and, thus, improve the applicability of the
algorithm [18]. For example, the radar IF signal pulse width varies from a few microsec-
onds to several tens of microseconds, and for some special functions of the radar signal,
the signal pulse width may even reach the millisecond level. The carrier frequency ranges
are generally in the 30 to 500 MHz range. Even without considering special requirements,
if the signal is sampled for signal processing with a sampling rate that meets the bandwidth,
the data length of the signal varies from several hundred to several tens of thousands of
points. Whether the signal dimension is unified by using time domain or transform domain
redundancy, it will inevitably result in wasted computational resources.

2.2. Convolutional Neural Networks

A typical 1D-CNN algorithm model [19] is shown in Figure 2, which generally consists
of an input layer, convolutional layer, pooling layer, fully connected layer, and output layer.
In the actual algorithmic model, the convolutional and pooling layers are generally used
alternately several times to form the depth structure.

Figure 2. A typical 1D-CNN algorithm model.

Among them, the convolutional layer extracts the abstract features of the input data
by convolutional operations, which are defined as follows:

xl
j = f ( ∑

i∈M
xl−1

i ⊗ kl
ji + bl

j), (1)
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where xl
j denotes the channel output of the j channel of the l convolutional layer, f (•)

denotes the activation function, M denotes the number of channels of the input data, xl−1
i

denotes the i channel of the input data, ⊗ denotes the sequence convolution, kl
ji denotes

the i channel of the j convolutional kernel of the l layer, and bl
j denotes the bias parameter

of the j convolutional kernel of the l layer.
For the RES, if the quadrature dual-channel sampled IF data is used as the input of

the convolution operation, the number of channels of the input data is fixed to 2, but the
pulse length of the RES generally varies randomly. Therefore, using a fixed number of
convolution kernels, the abstract features of the RES with randomly varying length and
fixed number of output channels can be extracted by the convolution operation [20].

The main role of the pooling layer in a CNN is to obtain key features and achieve in-
formation dimensionality reduction. The pooling methods used (down-sampling methods)
are generally average pooling and maximum pooling, where average pooling takes the
average value of the features in the pooling window as the output, and maximum pooling
takes the maximum value of the features in the pooling window as the output. The pooling
operation is defined as follows:

x̂l
j = D(xl

j), (2)

where x̂l
j denotes the pooled output of the j channel of the l layer, D(•) denotes the down-

sampling function, and xl
j denotes the pooled input of the j channel of the l layer. From the

definition of the pooling operation, it can be seen that the number of channels and the
length of the output features of the pooling layer depend on the dimensionality of the input
features. Therefore, the abstract features of the RES extracted by the convolutional layer are
still abstract feature data with randomly varying lengths and a fixed number of channels
after down-sampling by the pooling layer.

The fully connected layer is used to map the feature information extracted from the
convolutional and pooling layers to a more separable space for the final classification
output [21], and the fully connected operation is defined as follows:

(y1, y2, . . . , ym)
T =Wmj

(
x̂l

1, x̂l
2, . . . , x̂l

j

)T

+ (b1, b2, . . . , bm)
T ,

(3)

where (y1, y2, . . . , ym)
T is the output of the fully connected operation, Wmj is the weight ma-

trix, Wmj

(
x̂l

1, x̂l
2, . . . , x̂l

j

)T
is the expanded feature vector as the input to the fully connected

operation, and (b1, b2, . . . , bm)
T is the bias vector. From the definition of the fully connected

operation, it is clear that once the dimensionality of the weight matrix is determined, the di-
mensionality of the input features must be determined, which obviously cannot be adapted
to the operation of data with random length radiation source signal features.

The above analysis leads to the following conclusion: the convolution and pooling op-
eration layers of the 1D-CNN have no requirement on the length of the input signal, under
the condition that the number of input data channels is determined. Since the convolutional
computation uses weight sharing to extract data features, the change in the input data
length does not affect the properties of the output features. Although the fully-connected
layer can map the feature data to a separable space for classification and recognition, it can-
not adapt to changes in the dimensionality of the input features. Therefore, when using a
CNN to solve the problem of inconsistent input data dimensions, a redundancy mechanism
must be used to unify the signal dimensions before they are fed into the algorithm model
for processing. This will inevitably lead to a waste of computational resources. To solve
this problem, we discuss the LSTM in the next section.
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2.3. Long Short-Term Memory

An RNN generally consists of an input layer, hidden layer and output layer [21],
whose operations are expanded in the time dimension in Figure 3. RNN operations are
defined as follows:

st = [W, U](st−1, xt)
T , (4)

ot = V(st), (5)

where W and U are the weight matrices of st−1 and xt, respectively, and V(•) is the
activation function. The output ot of the RNN at time t depends on the state st of the
network at the current time, which is related not only to the current input xt, but also to
the network state st−1 at the time t − 1 of the network. The network records the hidden
state st at time t and passes it to time t + 1 until the last iteration, and the output of the
network contains the state information of all historical moments, which enables the RNN to
capture the order-dependent features such as location or time in the input data. Meanwhile,
the cyclic structure of the RNN network itself determines its ability to adapt to random
variations in the input sequence length.

Figure 3. Recurrent neural network.

ft = sigmoid(w f · [ht−1, xt] + b f ); (6a)

it = sigmoid(wi · [ht−1, xt] + bi); (6b)

ot = sigmoid(wo · [ht−1, xt] + bo); (6c)

ĉt = tanh(wc · [ht−1, xt] + bc); (6d)

Ct = ft ∗ Ct−1 + it ∗ ĉt; (6e)

ht = ot ∗ Ct (6f)

However, the simple RNN network structure often suffers from the problem of gradi-
ent dispersion and gradient explosion during the training process [22], which makes the
network parameters fail to converge for a long time during the training process. The author
proposed the LSTM [23], which solves this problem to a certain extent. The structure of
the LSTM NN is shown in Figure 4, which introduces the concept of gate in the traditional
RNN to control the opening of an information flow in the network cycle by simulating the
characteristics of human memory to achieve the goal of local key information filtering and
long-time-span feature synthesis. In (6), the relevant definitions of Figure 4 are explained.
The three gates in the LSTM are the forget gate ft, the input gate it, and the output gate
ot. All three gates are composed of sigmoid cells controlled by the current input xt and the
previous time output ht−1. The forget gate controls the opening of the historical state Ct−1
into the current state Ct, the input gate controls the opening of xt and ht−1 into Ct, and the
output gate controls the opening of Ct into the current output ht.
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Figure 4. Structure of an LSTM neural network.

The LSTM not only increases the gating structure compared with the simple RNN,
which improves the network trainability and sequence feature synthesis ability, but also
inherits the characteristics of the simple RNN to adapt to the indefinitely long input. This
makes the LSTM more suitable for synthesizing the information from the local radiation
source signal features extracted by the convolution operation. The reason why the LSTM
network is not used directly for signal feature extraction is that its structure determines that
it can only be executed sequentially in the time dimension and is not suitable for parallel
computing, and the parallelism of the algorithm is especially important for processing RESs
with sequence lengths in the thousands [23].

2.4. 1D-CNN-LSTM

We combined the characteristics of RESs with a large variation range of parameters,
strong randomness, and 1D time domain sequence, using the good local feature extraction
ability of CNNs. The LSTM is good at capturing time series information and can adapt
to the random variation of the input data length and the fully connected network can
map the features to the separable space. The 1D-CNN-LSTM model is constructed as
shown in Figure 5; “n” represents the length of the RES with variable length. The network
model directly processes the IF data of the RES, and completes the classification and
identification of six different modulation types of RES, which include continuous wave
(CW), binary frequency shift keying (BFSK) signals, binary phase-shift keying (BPSK)
signals, quadrature phase-shift keying (QPSK) signals, linear frequency modulation (LFM)
signals, and nonlinear frequency modulation (NLFM) signals [24].

Figure 5. 1D-CNN- LSTM neural network model.

The NN model consists of four convolutional layers, one LSTM layer, and two fully
connected layers. The number of input channels of each convolutional layer is 2, 4, 8, and 16,
the number of output channels is 4, 8, 16, and 32, and the length of the convolutional kernel
is 15. Each convolutional layer uses a maximum pooling method with a pooling kernel
length of 2 to reduce the dimensionality of the feature data, and the linear rectification
function ReLU is used as the activation function. The input dimension of the LSTM layer is
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32, and the size of the hidden layer of the LSTM is 32. The input of the first fully connected
layer is the last updated hidden layer state vector of the LSTM, and the output dimension
is 32 × 1. The input dimension of the second fully connected layer is the same as the
output dimension of the first convolutional layer, and the output dimension is 6 × 1, which
corresponds to six different modulation types of source signals. However, this process
can be omitted when deploying the inference network on FPGAs, and the classification
results can be derived from the numerical magnitude of the output of the fully-connected
layer alone.

3. System Design and Structure

In this section, the design ideas and methods of the FPGA-based resource multiplexing
computing acceleration platform will be presented, and the 1D-CNN-LSTM algorithm
constructed in this paper for RES identification will be implemented, as shown in Figure 1.

3.1. One-Dimensional Discrete Convolution and Matrix–Vector Multiplication

The 1D discrete convolution operation is an operation that computes the output feature
sequence y(k) by sliding multiplication and accumulation of a fixed-length weight kernel
w(m) with the input sequence x(n), as shown in Figure 6.

Figure 6. One-dimensional discrete convolution operation process. ∗ represents the inner product
operation.

The calculation process shows that each result y(k) of the convolution calculation can
be viewed as the inner product of vector (wm, wm−1, · · · , w1) and vector (xk, xk+1, · · · , xk+m).
Similarly, when multiple convolution kernels are convolved with the input sequence at
the same time, multiple output sequences can be obtained. For example, if the kernel size
is 3, the operation process is shown in Figure 6. It can be seen that the result (y1, y2, y3)
obtained from each sliding calculation of the convolution kernel is actually the result of
multiplying the weight matrix and the vector (xk, xk+1, · · · , xk+m) formed by w.

Through the above analysis, it is easy to find that the convolution operation of a
multicore is actually composed of multiple matrix–vector multiplication operations. This
makes it theoretically feasible to reuse FPGA hardware computing resources to achieve
parallel acceleration of both convolutions in 1D-CNN and matrix–vector multiplications
in LSTM [22]. However, the input data for the convolution operation in 1D-CNN is not
a single channel, but the number of channels of input data increases as the number of
convolution layers increases. Corresponding to the number of channels of input data,
the dimension of convolution kernel increases, and the convolution result becomes the sum
of the convolution results of each channel. The operation process in the actual 1D-CNN is
shown in Figure 7.
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Figure 7. The actual operation process of 1D-CNN. Taking the 1D convolution operation with multi-
channel input and multi-channel output with the number of input channels of 4 and a convolution
kernel size of 3 as an example.

3.2. Design of Systolic Array Structures

A systolic array [25] is a pipeline structure that can do multiple computations per
memory access and consists of a set of interconnected elementary operators, each of which
is capable of performing some simple operations. Because simple, regular communica-
tion and control structures have significant design and implementation advantages over
complex ones, they can accelerate the execution of edge computing problems without
increasing I/O requests [26]. First, 1D convolution and matrix vector multiplication opera-
tions are typically computationally constrained computations because the total number
of computation operations is greater than the total number of input and output elements,
and are well suited for parallel computation acceleration using systolic arrays. Secondly,
because the structure of each processing element (PE) in the systolic array structure is rela-
tively independent, it is less likely to cause wiring congestion when deployed on FPGAs,
which helps to increase the operating frequency of the system.

Based on the above advantages of systolic arrays, the systolic array structure shown in
Figure 8 is designed to perform parallel acceleration of 1D convolutional and matrix vector
multiplication operations in the CNN-LSTM. According to the 1D-CNN-LSTM structure
constructed in this paper, the size of the systolic array is designed to be 32 × 64, which can
support the parallel computation of 1D single-channel convolution with the length of the
convolution kernel not larger than 64 and the number of kernels not larger than 32, or the
parallel computation of matrix vector multiplication with the size of the weight matrix not
larger than 32 × 64.

Figure 8. Systolic array structure and PE.
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The structure of each PE of the systolic array is shown in Figure 8, including a bias
input port yin, a data input port xin, a weight input port win, a weight cache unit, and a
result output port yout. Among them, the weight cache unit is composed of four registers
with 16-bit width to store four different weight parameters, and the value in one of the
registers is selected as a valid parameter to be used during the calculation as needed. In this
paper, all the data involved in the operation are 16-bit fixed-point numbers, including 1-bit
sign bits, 4-bit integer bits and 11-bit fractional bits. The basic operations performed by
each PE in each clock cycle is:

yout = xin ∗ win + yin (7)

The weight matrices of the four gating coefficients are loaded into the weight cache
unit at the same time during the iterative process of the LSTM loop, thus avoiding the
system time delay caused by the update of the weight matrix at each loop and effectively
improving the data throughput rate of the whole systolic array.

To compute multi-channel 1D convolution, the cache structure of the systolic array
computation results is designed in this paper as shown in Figure 9.

Figure 9. The cache structure of the systolic array computation results.

When computing multi-channel convolution, the result of the previous channel is read
from the corresponding address of the result cache RAM, added to the result of the current
channel, and then stored back to the original address. The summation result can also be
activated by the maximum pooling and linear rectification operations as needed before
storing it back to the source address. The operation is defined as follows:

P/R(yk, yk+1, · · · , yk+l−1)

=

{
max(yk, yk+1, · · · , yk+l−1) acten = 0

max(yk, yk+1, · · · , yk+l−1, 0) acten = 1
(8)

where yk denotes the k pooling result, l denotes the pooling kernel size, and acten denotes
whether to activate the result of the operation or not.

For CNNs, the operation input of an intermediate layer is the operation result of the
previous layer, and the operation output of that layer is the operation input of the next layer.
Therefore, a single structure of systolic result cache is not enough to support multi-layer
CNN operations. To solve this problem, we design a direct memory access (DMA) [27]
double buffer to achieve the systolic operation result reuse seen in Figure 10.

The result cache array consists of two sets of 32 channels of RAM with the same
structure, BUF0 and BUF1. When one of the BUF is used as the input source for the
systolic operation, the other is used as the result cache. Of course, both of them support
both single-channel row outputs and multi-channel column outputs, where the multi-
channel column output function is used to realize the last convolutional layer operation
result as the input of LSTM and the reuse of matrix vector multiplication results.
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Figure 10. DMA double buffer.

3.3. LSTM Neural Network State Update

To cooperate with the systolic array to complete the whole LSTM operation process,
we design the operation module shown in Figure 11 to complete the state update, according
to the LSTM operation definition.

Figure 11. The state update of LSTM neural network.

The module reads the CNN result xt from the result cache of the pulsating array,
and then loads it into the pulsating array for matrix–vector multiplication after forming
the [ht−1, xt] vector with the LSTM output ht−1 at the previous time. Then, it reads the
result from the result cache of the pulsating array and sends it to the sigmoid or tanh
activation unit.

The two nonlinear activation units, sigmoid and tanh, are implemented using a table
lookup. The values of the two functions are quantized and stored in the ROM in advance,
and when the nonlinear activation of the matrix vector multiplication results is required,
they are first converted to the corresponding ROM addresses and then read directly from
the ROM to obtain the function values. We use 16-bit fixed-points to quantize the nonlinear
functions. The quantization process intercepts the part of the independent variables of
sigmoid and tanh in [−4, 4) for sampling, and the part of the independent variables beyond
the sampling range is taken as the boundary point in Figure 12.
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(a) (b)
Figure 12. Quantization process of two nonlinear activation units. (a) Sigmoid nonlinear activation
units. (b) Tanh nonlinear activation units.

3.4. Acceleration of the Overall Architecture of the Platform

Combined with the designed systolic array and the LSTM state update circuit, we
designed a 1D-CNN-LSTM resource multiplexing computational accelerator using a het-
erogeneous computational architecture of a Von Neumann-like system [28], as shown in
Figure 13.

Figure 13. 1D-CNN-LSTM resource multiplexing computational accelerator framework.

The accelerator consists of two parts: a general-purpose CPU and an FPGA, which
realize data interaction through a peripheral component interconnect express (PCIE) bus.
The general-purpose CPU is used to analyze the NN structure, generate corresponding
operation instructions, and load them into the instruction memory on the FPGA side. Then,
the RES data to be identified is loaded into the FPGA data memory, and the identification
results are read out from the memory after the operation is completed. The FPGA includes
five modules: instruction memory, data memory, result memory, controller, and operator.
The controller module reads the operation instructions from the instruction memory, which,
in turn, controls the operator module to complete the corresponding calculation, and writes
the final operation results to the result memory for the CPU to read.

For the computational acceleration platform designed in this paper, a dedicated
instruction set with a 64-bit bit width was developed to support 1D convolution, matrix
multiplication, LSTM operations, and data read/write functions, as shown in Table 1.
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Table 1. Instruction examples from the hardware instruction set.

Instruction ID Function Code Operand Length Source Address

63:60 59:36 35:18 17:01 1

1 Numbers indicate the start and end positions of the instructions.

The instruction content is divided into four parts: instruction ID, function code,
operand length, and data source start address. The instruction ID field, as a unique code for
each instruction, is used to distinguish different operations. The function code field is used
to control some optional functions during the instruction execution. The operand length
field is used to specify the total amount of data for an instruction operation. The source
address field is used to specify the starting address of the operand. The entire instruc-
tion set is divided into four types: systolic array parameter loading instruction, systolic
array data loading instruction, LSTM operation instruction, and data moving instruction.
Among them, the systolic array parameter loading instructions include two instructions:
weight parameter loading and bias parameter loading. The systolic array data load in-
structions include five instructions: loading from data memory, loading from BUF0 row,
loading from BUF1 row, loading from BUF0/BUF1 column, and loading from LSTM out-
put. With LSTM operation instructions and data moving instructions, the entire acceleration
platform-specific instruction set consists of nine instructions.

When the hyperparameters of the NN model, such as the number of convolutional
layers and size of the convolutional kernel, or the model parameters need to be adjusted,
the computational acceleration platform designed in this paper does not need to redesign
the accelerator hardware logic. It only needs to make adjustments to the instruction
content according to complete the rapid deployment of the new algorithm model, greatly
improving the radar emitter source identification system. This is particularly important for
deep learning algorithms to adapt to the rapidly changing electromagnetic environment.

4. Experiments

In this section, the 1D-CNN-LSTM model and its experiments based on FPGA deploy-
ment are presented. The details of the experiments are explained, the experimental results
and performance analysis are shown, and a comparison of different works is performed to
evaluate the performance of our approach.

In the experiment, a computer with Intel i7-10700@2.9GHz CPU and the PyTorch deep
learning framework was used. We used Vivado 2018.3 development tool to implement and
deploy the algorithm on Xilinx XCKU040-ffva1156-2-i for the 1D-CNN-LSTM acceleration
designed in this paper. The entire FPGA accelerator system computing unit frequency was
120 MHz. In the comparative experiment, NVIDIA GPU RTX 3090 was used.

4.1. Dataset

To demonstrate the effectiveness of our designed RES identification system, RESs
were are generated according to Table 2. We randomly generated six modulation types by
simulation, with 3000 sample signals for each type of RES. We divided the 18,000 signals
into two parts—the training set and the test set—according to the ratio of 5:1, for the
training and generalization performance testing of constructing a 1D-CNN-LSTM model.
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Table 2. Specific parameters of the radar emitter signals.

Type CW BFSK BPSK QPSK LFM NLFM

Carrier Frequency 100–400 MHz

Pulse Width 1–5 μs

Band Width – 5–50 MHz – – 5–50 MHz 5–50 MHz

Code – 13-digit Barker code 13-digit Barker code 16-digit frank code – –

Frequency of Sample 500 MHz

Signal to Noise Ratio 5–15 dB

4.2. Result

The physical object of the designed FPGA acceleration for RES identification is shown
in Figure 14. In the Vivado 2018.3 development environment, the detailed FPGA hardware
design part of the acceleration is shown in Figure 15.

Figure 14. FPGA Experiment platform, connected to CPU by PCIE bus.

Figure 15. FPGA hardware design schematic.

We used the the Pytorch deep learning framework to train the constructed 1D-CNN-
LSTM model. The normalized recognition accuracy and loss values of the algorithm model
for the training and test sets during 500 iterations of the training set are shown in Figure 16.
At the end of the training, the recognition accuracy of the model for the training and test
sets reached 100% and 97.27%, respectively. To demonstrate the identification of the various
categories, we present the confusion matrix in Figure 17. We found that between LFM and
NLFM, BPSK and QPSK were more difficult to identify. Other types were better identified,
and the identification results were relatively evenly distributed.
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(a) (b)
Figure 16. (a) Normalized recognition accuracy and loss values for training sets; (b) normalized
recognition accuracy and loss values for testing sets.

Figure 17. Confusion matrix for each type of recognition result.

The above experiments were all completed under the random SNR of 5–15 dB for
recognition. To identify the RESs for different SNR, the SNR of the test set data samples was
reset, and the recognition experiments were conducted between 1–15 dB, and the results
are shown in Figure 18.

Figure 18. Recognition results with different SNR.

It can be seen that the recognition rate of the algorithm exceeded 80% when the SNR
was higher than 5 dB, recovered to the level after the end of training, and the lowest still had
an 82.7% accuracy in the case of a low SNR of 3 dB. This indicates that the 1D-CNN-LSTM
network has better adaptability in completing the RES recognition under different SNRs.
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The trained algorithm model was coded and the parameters quantized, and then
deployed on the computational acceleration platform designed in this paper for testing.
For the training and test sets constructed in this paper, the processing performance of a total
of 18,000 signals was tested with the Pytorch deep learning framework on the CPU and the
FPGA computing acceleration platform designed in this paper as acceleration devices to
run the same models. The comparison of recognition accuracy is shown in Table 3.

Table 3. Comparison of recognition accuracy in different environments.

Inference Environment Training Set Testing Set

Pytorch deep learning framework 100% 97.27%

FPGA acceleration platform 99.54% 96.53%

The experimental results show that the recognition rate of the NN deployed on the
FPGA computing platform for the training and test set signals was reduced by 0.46%
and 0.74%, respectively, compared to that under the Pytorch deep learning framework.
The recognition rate decreased due to the quantization error of both parameters and signals.
When implemented on FPGAs, we quantized to 16 bits to reduce the computation and
design complexity for hardware implementation. Moreover, the acceleration platform
designed in this paper needs to adapt to the inference computation of different structural
NN models. Hence, the quantization of NN models was performed with 16-bit fixed-
point arithmetic considering the quantization accuracy and model adaptation capability.
For our 1D-CNN-LSTM model, the recognition accuracy is considerably high, indicating
that the algorithm can be implemented on the FPGA accelerated platform to perform
RES recognition.

5. Discussion

5.1. Adaptability for Varying Pulse Width

To demonstrate the adaptability of the 1D-CNN-LSTM model in processing RESs with
randomly varying pulse widths, we uses nine sets of RES samples with the same range of
other parameters as the training set and pulse widths distributed between 1 μs and 10 μs
for recognition accuracy testing.

The test results in Figure 19 show that, regardless of the inference environment,
the recognition accuracy of the model started to show a decreasing trend after the signal
pulse width exceeded the distribution of the training set parameters. However, the recog-
nition rate of the model remained at a high level when the pulse width reached twice
the distribution of the training set. Due to the training set with pulses of 1–5 μs RES, it
inevitably led to a decrease in recognition rate when the training set range was exceeded.
However, recognition could still be performed with increasing variation in pulse length,
and even 9–10 μs could reach more than 55%. It is worth noting that the CNN-LSTM has
the advantage of being adaptable to pulse widths beyond the training set distribution,
which is not achieved by a single CNN.

Figure 19. Recognition accuracy for different pulse widths.
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5.2. Efficiency Analysis of Acceleration

To evaluate FPGA acceleration performance, the processing performance was tested
on the CPU, GPU, and the FPGA computing acceleration platform designed in this pa-
per. On the test set, we ran the same model separately to process the same calculation
for inference.

As shown in the test results of Table 4, the processing speed and data throughput
of the FPGA acceleration platform were 4.16 times higher than that of the CPU. When in
the GPU environment, the Pytorch deep learning framework could take full advantage
of the GPU’s multi-core parallel processing, which greatly improved the system’s data
throughput rate to 16.73 GOPS, which was about 2.3 times higher than that of the FPGA
compute acceleration platform, but the system power consumption also increased. In terms
of energy efficiency, the FPGA computing acceleration platform designed in this paper
improved 73 times and 9.125 times compared to the CPU and GPU, respectively. Our
FPGA implementation showed much higher energy efficiency when still meeting the data
processing requirement.

Table 4. CPU, GPU, and FPGA computing acceleration platform processing performance.

Platform Calculation Processing Time (s) Throughput (GOPS) Consumption (W)
Energy Efficiency

(GOPS/W)

CPU 108.28 G 61.36 1.76 81.19 0.02

GPU 108.28 G 6.47 16.73 102.5 0.16

FPGA 108.28 G 14.75 7.34 5.022 1.46

5.3. Resource Utilization

To represent the advantages of the acceleration performance proposed in this paper,
the following resource utilization analysis was performed after using measures such as
fixed-point and systolic array structures. The FPGA hardware resource consumption is
shown in Table 5.

Table 5. FPGA resource utilization

Logic LUT FF BRAM DSP

Results 171,497 (71%) 188,405 (39%) 472.0 (79%) 1920 (100%)

The FPGA chip used in this paper has a total of 1920 DSP hardware computing
resources, and the systolic array was used in the acceleration optimization with a scale of
32 × 64. If calculated according to the consumption of one DSP resource per PE, the entire
on-chip resources are far from sufficient, but other logic resources can be fully used. For
example, through Vivado, we obtained LUT usage of 71%, FF usage of 39%, BRAM usage
of 79%, and DPS usage of 100%. These resources can also be integrated to complete the
multiplication and addition operations to satisfy the requirements. It also demonstrates one
of the major advantages of FPGAs in the design process of large-scale integrated circuits.

5.4. Comparison with Other FPGA Implementations

The proposed implementation in this paper was compared with some existing FPGAs
and the results are shown in Table 6.

For FPGA designs, resource consumption varies across architectures. The excellent
throughput performance achieved in hardware may be mainly due to the heavy use
of hardware resources. Compared to other work, our acceleration in inference phase
achieved 95.5% of RES recognition and had a more reasonable relationship between power
consumption, resource consumption, and throughput, thus enabling real-time processing.
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Table 6. Performance comparison of our work with other accelerators.

Our Work [10] [11] [29] [30]

Platform Xilinx XCKU040 Xilinx AC701 Xilinx ZCU102 Xilinx ZCU102 Artix7 TSBG484

Frequency (MHz) 120 200 153.9 300 100

Throughput (GOPS) 7.34 23.06 - 102 22

Power (W) 5.022 3.407 4.7 11.8 7.53

Energy efficiency (GOPS/W) 1.46 6.77 3.49 8.64 2.92

6. Conclusions

In this paper, we constructed a 1D-CNN-LSTM model, which can be deployed on an
FPGA-based resource multiplexing computing acceleration platform while ensuring high
RES recognition accuracy. The experimental results show that the model is highly adaptable
for the recognition of RES pulses with randomly varying lengths. For the computational
acceleration platform, we designed the pulsed array to realize the parallel acceleration
of both 1D convolution and vector matrix multiplication operations, which reduced the
processing latency of the RES identification system and improved the utilization of FPGA
computational resources at the same time. Further experiments and correlation analysis
illustrate the contribution of each of our improvements and demonstrate their effectiveness.
Deploying the system on a Xilinx XCKU040 FPGA development board achieved a data
throughput rate of up to 7.34 GOPS with a power consumption of 5.022 W at a recognition
rate of 97.53% for the RES modulation method. In conclusion, our experimental results
demonstrate that the FPGA-based CNN-LSTM RES recognition system effectively meets
the requirements of low-power RES scenarios while maintaining computational accuracy.
With these features, our solution holds significant potential for RES recognition.

In the future, we will continue to improve our models in terms of recognition algo-
rithms to improve the accuracy of RES recognition. Additionally, we will keep optimizing
our FPGA-based hardware acceleration platform for more NN models and accelerated
computation for low-power implementation.
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Abstract: This article analyses the possibility of using the Analytic Wavelet Transform (AWT) and the
Convolutional Neural Network (CNN) for the purpose of recognizing the intrapulse modulation of
radar signals. Firstly, the possibilities of using AWT by the algorithms of automatic signal recognition
are discussed. Then, the research focuses on the influence of the parameters of the generalized
Morse wavelet on the classification accuracy. The paper’s novelty is also related to the use of the
generalized Morse wavelet (GMW) as a superfamily of analytical wavelets with a Convolutional
Neural Network (CNN) as classifier applied for intrapulse recognition purposes. GWT is used to
obtain time–frequency images (TFI), and SqueezeNet was chosen as the CNN classifier. The article
takes into account selected types of intrapulse modulation, namely linear frequency modulation
(LFM) and the following types of phase-coded waveform (PCW): Frank, Barker, P1, P2, and Px.
The authors also consider the possibility of using other time–frequency transformations such as
Short-Time Fourier Transform(STFT) or Wigner–Ville Distribution (WVD). Finally, authors present
the results of the simulation tests carried out in the Matlab environment, taking into account the
signal-to-noise ratio (SNR) in the range from −6 to 0 dB.

Keywords: radar signal recognition; artificial neural network (ANN); continuous wavelet transform
(CWT); analytic wavelet transform (AWT); analytic Morse wavelet; intrapulse modulation recognition;
feature extraction; phase-coded waveforms

1. Introduction

Nowadays, Electronic Warfare (EW) is an important element of battlefields. Informa-
tion about the location of hostile emission sources allows for effective mission planning
and ensuring the safety of one’s own resources. At the same time, an increasing number
of emissions and extensive research on the implementation of new types of radar wave-
form [1,2] reflect the complexity of the source identification problem and require the use of
flexible solutions allowing for adaptation to changing conditions. For this reason, Artificial
Intelligence (AI) algorithms, and in particular Machine Learning (ML) methods, which
can be trained with new data appearing during the operations, seem to be an inseparable
element of a modern EW system. However, in order for the application of ML to be effec-
tive, appropriate analyses and research works related to signal processing and the feature
extraction process should be carried out. Recently, the use of TFI obtained with STFT, WVD
or continuous wavelet transform (CWT) is often considered [3–6]. The proposal for a radar
signal recognition method based on TFI and high-order spectra analysis is presented in [7].

A very important aspect that should be considered when using TFI for signal recogni-
tion algorithms is the analysis of the influence of the type, shape, and length of the window,
in the cases of STFT or WVD, or the type and parameters of wavelet in the case of CWT,
specifically AWT. Transformation parameters, when selected incorrectly, may significantly
affect the classification capabilities. For this reason, in this article, the authors presented
their simulation studies related to the influence of generalized Morse wavelet (GMW)
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parameters on the classification accuracy of the proposed method. This allows to obtain
comparable or even higher accuracy than when using WVD, which is currently considered
very effective in this respect [6]. At the same time, the use of GWT is characterized by much
lower computational complexity, resulting in a reduction in time in both the classification
process and the network learning. It is worth noticing that all the simulation tests have
been carried out using smoothed pseudo-WVD (SPWVD) with a Kaiser window of various
shape parameters (α).

The number of algorithms based on TFIs and deep learning proposed in the literature,
e.g., [8–10] has been dynamically increasing in recent years. However, there is a visible
lack of analysis in the field of parameters values selection for proposed time–frequency
transforms. The type of applied atom (such as wavelet) or smoothing window used in
energy distributions determines the possibility of adjusting to certain characteristics of the
signal or the required level of interference reduction. For different parameter values, the
same differences are observed in recognition ability for selected waveform types, so it is
considered by authors using a set of networks trained with different wavelet types and
parameter values and/or adding other methods used for signal recognition purposes and
then applying data fusion methods. The problem of intrapulse modulation recognition
with a fusion network is presented in [4]. Data fusion techniques are successfully used in
areas such as tracking systems [11] or multisensory systems for unnamed aerial vehicles
(UAV) detection [12].

An integral part of the EW system is signal intelligence (SIGINT). In the case of
communications intelligence (COMINT) systems, the key information is the type and
level of the modulation system used by the enemy. Intercepting this information not only
enables to identify the source but also facilitates demodulation, decoding, and decryption
of the transmitted signal. Typically, the ability to recognize common modulation types
such as Phase Shift Keying (PSK), Frequency Shift Keying (FSK), Amplitude Shift Keying
(ASK) or Quadrature Amplitude Modulation (QAM) is considered [13,14]. There are also
studies taking into account the possibility of detection of OFDM transmission, among other
communication signals [15,16]. In the case of electronic intelligence (ELINT), the main task
of the system is to detect, classify, and determine the location of the emission sources other
than communication. Therefore, these are particularly radars. The structure and parameters
of the radar signals depend primarily on their intended use, no matter if they are early
warning radars, short-, medium-, and long-range missile systems radars, as well as aircraft
radars, jamming systems, or any other. Typical radar waveforms considered in most studies
are continuous wave (CW) or pulses with LFM, stepped frequency modulation (SFM), and
phase coding (PC) or traditional pulses with no intrapulse modulation applied. However,
more complex types of waveform such as those with nonlinear frequency modulation or
mixed signals are increasingly being considered [2,16,17].

In ELINT systems, many emission source parameters, such as radio frequency (RF),
direction of arrival (DOA), time of arrival (TOA), pulse width (PW), pulse repetition
frequency (PRF), intrapulse modulation, etc., are determined. These parameters are stored
in the database and constitute the basis of the process of recognizing the emissions detected
by the EW system. In order to determine the basic parameters of radar signals, it is
necessary to perform signal processing and the selection of features allowing for effective
classification. This issue is a dynamically developing area of research [18–22], while
measuring the parameters of specific radar signals in real time still remains a challenge.

The radar emission identification process is usually carried out using a knowledge-
based approach. In [18], methods for determining specific radar signal parameters (sig-
natures) are discussed. In [20], the authors analyze the role of estimation accuracy of the
arrival time of each step of the pulse. As it turns out, it may affect the determination
correctness of such parameters as PW and PRF. Moreover, the application of the wavelet
transform (WT) as well as Haar wavelet as tools for sorting radar signals has also been
proposed. Compared with the traditional pulse repetition interval algorithm based on a
statistics histogram, the method based on WT is characterized by the high accuracy of the
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arrival time. In [19], three characteristic parameters, namely CWT eigenvalue, frequency
domain moment kurtosis coefficient, and frequency domain moment skewness coefficient,
have been used in order to recognize the radar signal. The following signals have been
considered: polynomial phase signal, pseudocode phase modulation and sinusoidal fre-
quency modulation, product composite of pseudocode phase modulation and LFM, and
convolution composite of pseudocode phase modulation and LFM. For a signal-to-noise
ratio (SNR) higher then 0 dB, the probability of signal recognition is claimed to be greater
then 98%.

The aim of this article is to present an algorithm for automatic intrapulse modulation
recognition with use of an AWT and CNN. The proposed solution is based on the use of
generalized Morse wavelet (GMW) as a superfamily of analytic wavelets. The properties of
the GMW are described in Section 2.3. A significant advantage of using CWT for signal
recognition purposes is the possibility of using CWT coefficients at individual stages
of signal analysis, e.g., to estimate selected parameters of a radar signal. The CWT is
successfully used in algorithms for sorting radar pulses and determining parameters such
as pulse repetition time (PRT), pulse width (PW) or time of arrival (TOA) [20].

The research presented in the paper brings a new contribution to the area of radar
signal recognition techniques with the use of TFI. In particular, the authors consider:

• Using AWT (with GMW applied) for radar intrapulse recognition purposes instead of
popular WVD, SPWVD or STFT;

• Performance metrics comparing methods with AWT and SPWVD used as TFI;
• The influence of GMW parameters values on classification accuracy;
• Applying SqueezeNet as a CNN classifier.

A significant part of the conducted simulation works has been focused on the study of
the influence of generalized Morse wavelet parameters on the properties of the analyzed
method. The simulation results are presented in Section 3. The usefulness of AWT is
mainly due to the ability to observe the instantaneous amplitude, phase, and frequency of
signals simultaneously. The appropriate selection of the wavelet parameters allows, in turn,
to obtain the required resolution in frequency and to emphasize specific features of the
analyzed signals. The simulations, necessary to test the proposed method and confirm its
potential effectiveness, were carried out in the Matlab environment.

The use of TFI enables the simultaneous observation of signal features corresponding
to the nature of changes in amplitude, frequency or phase over time. This allows for the com-
plete or partial replacement of traditionally used features, calculated usually with the use
of FFT, higher-order statistics, instantaneous amplitude, frequency and phase parameters,
cepstral analysis, phase constellation, frequency histogram, etc. Moreover, the algorithms
of time–frequency signal decompositions with lower computational complexity and lower
memory requirements are presented in the literature [23,24]. The computational com-
plexity of time–frequency distributions is presented in [25]. CNNs, on the other hand,
are successfully used in image recognition. This is the main motivation for authors to
use one of them as the classifier. According to the authors’ knowledge, at present, there
are CNN implementations with a significantly reduced structure. An example of such a
CNN is SqueezeNet, the implementation of which is available in the Matlab environment.
The primary advantages of SqueezeNet, according to [26], are, e.g.,:

• More efficient distributed training;
• Feasible FPGA and embedded deployment;
• Less overhead when exporting new models to clients.

The SqueezeNet structure implementation in Matlab is 18 layers deep. The network
has an image input size of 227 by 227, so TFIs rescaling must be applied. A comparison of
classification accuracy using TFI with other CNN-type structures is presented in [8].
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2. Materials and Methods

The number of studies related to the possibility of using ML for signal recognition
for electronic warfare and, e.g., cognitive radio, has significantly increased in recent years.
When analyzing the literature on signal analysis for ELINT systems, one can see the
division of the proposed algorithms into two areas of application. The first one focuses
on the analysis of signals, with their duration covering a certain number of symbols or
a sequence of radar pulses, and determining their characteristic parameters such as PRI,
PW, TOA, etc. [18,20–22,27,28]. The second concerns the problem of recognizing intrapulse
modulation, which is another important parameter characterizing the [5,29,30] emission
source. In both cases, the usefulness of using AI algorithms is emphasized.

There are propositions of algorithms using CWT and ML for recognizing modulations
of typical signals used in communications such as ASK, PSK, FSK or QAM [13,14,31–34].
Moreover, in the field of ELINT, more and more papers are published related to the application
of AI for the purpose of recognizing selected types of radar waveforms [3,6,9,10,28,29,35].

Of particular interest is the application of CNNs, where TFIs obtained using STFT,
WVD or CWT are fed to the network input. In this context, an important problem that
requires special attention is the appropriate selection of the type of transformation and
its parameters, so that the input data in the form of TFIs contain features that ensure the
required classification accuracy of selected signals. The following subsections present
issues related to the usefulness of using CWT to generate TFI and CNN as an classifier of
selected pulsed radar signals, with particular emphasis on the influence of the parameters
of the generalized Morse wavelet on the classification accuracy.

2.1. Radar Waveforms

Applying the pulse compression technology has resulted in a significant increase in
the number of signals used in radar technology. Currently, there is a noticeable increase
in the number of research works devoted to specific forms of radar signals [1,2], i.e., more
and more complex types of radar waveforms ensuring the best possible resolution in time
(range) and Doppler frequency (velocity), as well as a high compression ratio. This involves,
among other things, the analysis of the ambiguity function, which is also a very useful way
of analyzing signal properties in the time–frequency space.

The general division of radar waveforms most often taken into account in the research
area for automatic recognition of radar signals is presented in Figure 1. Traditional pulsed
radar waveforms include rectangular pulses (RP) with continuous wave (CW), LFM, and
phase-coded waveforms (PCW). Other types of often considered radar waveforms are
NLFM and SFM.

Figure 1. General division of radar waveforms.

To an NLFM group of signals, authors also assigned quadratic frequency modulation
(QFM), sinusoidal frequency modulation (SiFM), etc. There are also works [15] considering
the application of OFDM signals for radar purposes. In [2], there is an algorithm for
identifying so-called exotic modulations, which include signals modeled as a combination
of LFM and Biphase modulation (BPM). In [30], there is also recognition of the same hybrid
waveforms as LFM-BPSK and FSK-BPSK. An analysis of combined signals is also presented
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in [1], in which authors took into account a group called “mixed”, which includes hybrid
modulation types (Figure 1). All listed waveforms can be considered in continuous or
pulsed form.

For the purpose of this article, the following types of signals were taken into account
for simulation: LFM, RP, and PC waveform. In the studies carried out so far, presented
in [31], a significant problem was distinguishing between the different types of signals
with phase modulation (PM). In most of the presented research results, the classification
accuracy in this group of signals is much worse for both COMINT (M-ary PSK and M-QAM
signals) [36] and ELINT (PCW) [37]. In order to emphasize the effectiveness of the proposed
method, the following types of codes were included in the phase-coded waveform (PCW)
group: Barker, Frank, P1, P2, and Px. According to [38], the complex envelope of the PC
pulse, with duration T and M bits in the pulse, is given by equation:

x(t) =
1√
T

M

∑
m=1

xmrect
[

t − (m − 1)tb
tb

]
(1)

where M is called “chip”, tb = T
M is chip number, xm = exp(jφm), the set of M phases

[φ1, φ2, . . . , φM] is the phase code associated with x(t), and rect() is a rectangular function.
The first family of phase codes taken into account in our research is Barker. There were
N = 13 lengths of code chosen for simulations, witch ensures the lowest level of ambiguity
function side-lobes ( 1

N ) in this code family. There are no longer Barker codes found [39].
The choice of polyphase codes used for simulations (Frank, P1, P2, and Px) is motivated by
the fact that difficulties in separating them were expected. The P1, P2, and Px codes are
derived from the Frank code [38,39], and they are considered by authors as one family.

The elements of the polyphase codes can be complex depending on the value φm.
For Frank polyphase codes, witch have a length that is perfect square (M = L2, where L is
integer), the definition of its elements sm(1 ≤ m ≤ M) according to [37,38] is

s(n−1)L+k = exp(jφn,k) (2)

where 1 ≤ n ≤ L, 1 ≤ k ≤ L and:

φn,k = 2π(n − 1)(k − 1)/L (3)

According to Equation (2), for L = 4, we have phase values:[
0 0 0 0 0 π

2 π 3π
2 0 π 0 π 0 3π

2 π π
2

]
The Frank, P1, P2, and Px codes are applicable only for perfect square length (M = L2).

The phase of P1, P2, and Px is given by [37,38]:

P1 : φn,k =
2π

L
[(L + 1)/2 − n][(n − 1)L + (k − 1)] (4)

P2 : φn,k =
2π

L
[(L + 1)/2 − k][(L + 1)2 − n] (5)

only for even L, and:

Px : φn,k =

{
2π
L [(L + 1)/2 − k][(L + 1)2 − n], L even

2π
L [L/2 − k][(L + 1)2 − n], L odd

(6)

It should be noted that in the case of the Px code for even L, φn,k takes the values as for
the P2 code. For this reason, the simulation parameters should be carefully selected to avoid
problems with distinguishing the above codes. For the same reason, the classification was
carried out only taking into account the Px code for odd L. It was show in [37], where for
radar waveform recognition purposes Choi–Williams Distribution (CWD) was considered,

67



Sensors 2023, 23, 1986

that P1 and P2 codes get confused with each other. A similar problem was observed
in studies where individual levels of PSK were classified for the communication system
recognition algorithm [31]. Similarly, it is expected that, in noisy conditions, the differences
in this group of phase codes can be blurred.

2.2. The Time–Frequency Transforms in Signal Analysis

Time–frequency (or decomposition) transforms are a very convenient way to present
features of different types of waveforms simultaneously in time and frequency domains.
The increase in interest in CNNs, particularly observable in the recent years, has made TFIs
more and more frequently used schemes in solving the problem of signal classification [3,6].
However, not enough attention is always paid to the influence of the chosen transform
parameters on the possibility of enhancing the characteristic features of the signals. This,
in turn, may lead to the loss of valuable information and, as a consequence, affect the
classification process efficiency. Similarly to the classic approach, the stage of feature
extraction determines the effectiveness of the recognition algorithm.

Some of the most popular transforms such as STFT, WVD, and CWT are presented
in [40,41]. We can divide them in two classes of solutions: atomic decompositions and
energy distributions. The first class includes STFT and CWT, while the second one includes
WVD, pseudo-WVD, and SPWVD.

STFT according to [42] is defined as

STFTx(t, v) =
∫ ∞

−∞
x(u)h∗(u − t)e−j2πvudu (7)

where h(t) is a short time analysis window localized around t = 0 and v = 0. The multipli-
cation by the relatively short window h∗(u − t) effectively suppresses the signal outside
a neighborhood of time point u = t, so the STFT is a “local” spectrum of the signal x(u)
around t. The time resolution of the STFT is proportional to the effective duration of the
analysis window h. In turn, the resolution of the STFT in the frequency is proportional to
the effective bandwidth of the analysis window h. According to the above, using the STFT
cannot achieve good resolution in time and frequency simultaneously. A good time resolu-
tion requires a short window h(t), and a good frequency resolution requires a narrow-band
filter, and so a long window h(t).

The CWT of a signal x(t) is defined as [42,43]

CWT(t, a) =
∫ ∞

−∞
x(u)ψ∗

t,a(u)du =
1√|a|

∫ ∞

−∞
x(u)ψ∗

(
u − t

a

)
du (8)

where the ψ(u) is called mother wavelet and a is the scaling constant. ψ∗
t,a is called baby

wavelet and is the translated and scaled version of ψ(u).
CWT projects a signal x(t) on a family of zero-mean functions, called the wavelets,

which are translated and dilated versions of the elementary function, called the mother
wavelet. When the scale factor is being modified, the duration and the bandwidth of the
wavelet are both changed, but its shape remains the same. In contrast to the STFT, which
uses a single analysis window, the CWT uses short windows at high frequencies and long
windows at low frequencies. This partially overcomes the resolution limitation of the STFT.
STFT and CWT are linear transforms of the signal. Another way of signal analysis consists
in distributing the energy of the signal along the two variables of time and frequency. This
leads to energy time–frequency distributions, which are naturally quadratic transforms of
time and frequency. For STFT, we have a spectral energy density of the locally windowed
signal x(u)h ∗ (u − t), defined as [42,43]

Sx(t, v) = |STFTx(t, v)|2 (9)
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According to Equation (5) spectrogram is a real-valued and non-negative distribution
and satisfies the global energy distribution property:∫ ∞

−∞

∫ ∞

−∞
Sx(t, v)dtdv = Ex (10)

In the CWT case, the scalogram can be defined [44]:

Tx(t, a) = |CWT(t, a)|2 (11)

CWT also preserves energy:∫ ∞

−∞

∫ ∞

−∞
Tx(t, a)dt

da
a2 = Ex (12)

An example of scalograms for selected waveforms are presented on Figures 2–4.

Figure 2. Scalogram for (a) rectangular pulse and (b) LFM.

Figure 3. Scalogram for (a) pulses with Barker code and (b) pulses with Frank code.
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Figure 4. Scalogram for pulses with (a) P1 code, (b) P2 code, and (c) Px code.

The second class of time–frequency representations is energy distributions. Some of
the most commonly used energy distributions for signal recognition are WVD and CWD.
The WVD is defined as [42]

WV(t, v) =
∫ ∞

−∞
x(t +

τ

2
)x∗(t − τ

2
)e−jvτdτ (13)

and is a nonlinear decomposition, so the spectrum of two combined signals is not the sum
of their spectra but includes so-called cross-spectrum:

WVx+y(t, v) = WVx(t, v) + WVy(t, v) + 2WVx,y(t, v) (14)

where:
WVx,y(t, v) =

∫ ∞

−∞
x(t +

τ

2
)y∗(t − τ

2
)e−jvτdτ (15)

The WVD interference terms will be nonzero regardless of the time–frequency distance
between the two signal terms [42]. This could be troublesome and make it difficult to
visually interpret the WVD image. A common way to reduce interferences is to use anew
distribution, called pseudo-WV, defined as:

PWV(t, v) =
∫ ∞

−∞
h(τ)x(t +

τ

2
)x∗(t − τ

2
)e−jvτdτ (16)

where h(t) is regular window. The windowing operation is equivalent to frequency smooth-
ing. Another modification of WVD is the smoothed pseudo-Wigner–Ville Distribution
(SPWVD), defined as

SPWV(t, v) =
∫ ∞

−∞
h(τ)

∫ ∞

−∞
g(s − t)x(s +

τ

2
)x∗(s − τ

2
)ds e−jvτdτ (17)

According to [42], the compromise of the spectrogram between time and frequency
resolutions is in case of SPWVD being replaced by a compromise between the joint time–
frequency resolution and the level of the interference terms. Stronger smoothing in time
and/or frequency runs into poorer resolution in time and/or frequency.

The examples of TFI images for selected radar waveforms obtained with WVD are
presented in Figures 5–7.
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Figure 5. WVD for (a) rectangular pulse; (b) LFM.

Figure 6. WVD for (a) pulse with Barker code; (b) pulses with Frank code.

Figure 7. WVD for pulses with (a) P1 code, (b) P2 code, and (c) Px code.
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2.3. The Analytic Wavelet Transform (AWT) and Generalized Morse Wavelet (GMW)

The continuous wavelet transform (CWT) enables extraction of transient information
associated with amplitude/frequency changes and phase shifts, which are characteristics
of modulated signals. According to [45,46], it is generally the most useful to describe
oscillatory signals and time-localized events in noisy environment, where 1/s normalization
is more appropriate. Taking the above into account, the definition of the CWT of a signal
x(t) takes the form:

CWT(τ, a) =
1
a

∫ ∞

−∞
x(t)ψ∗

(
t − τ

a

)
dt (18)

where the ψ(t) is called mother wavelet and a is the scaling constant. ψ∗
a is called baby

wavelet and is the translated and scaled version of ψ(t). In this case, rescaling time in the
input signal as x( t

ρ ) rescales both the time and the scale of CWT but without changing
its magnitude. For analytic wavelets considered in [45–47], we have ψ(ω) = 0 for ω < 0,
which means that wavelets vanish for negative frequencies. The AWT is represented in the
frequency domain as

CWT(τ, a) =
1

2π

∫ ∞

0
Ψ∗(aω)X(ω)ejωτdω (19)

For the analytic wavelet Ψ(ω), maximum amplitude occurs in the frequency domain at
ω = ωψ, which is called the peak frequency. In the case of using an analytic wavelet, such
as GMW, there is AWT term used. According to [45], if the value of the wavelet in the
peak frequency is set to Ψ(ωψ) = 2, then for signal x(t) = a0cos(ωt), we obtain result
|Wψ(t, ωψ/ω0)| = |a0|.

During the simulation studies, the generalized Morse wavelet was taken into account.
According to [45,47,48], the Morse wavelet is defined as follows:

ψβ,γ(ω) = U(ω)aβ,γωβe−ωγ
(20)

where aβ,γ is a normalization constant, U(ω) is the unit step function, and β and γ are
parameters controlling the wavelet form. The normalization constant is defined in [47] as

aβ,γ ≡ 2(
eγ

β
)

β
γ (21)

It follows from the analysis presented in [48] that, by varying the β and γ parameters,
the generalized Morse wavelets can take a wide variety of forms. For example, the γ = 1
family corresponds to the Cauchy (or Paul) wavelet, the γ = 2 correspond to analytic
Derivative of Gaussian wavelets, and γ = 3 corresponds to Airy wavelets family [47].

On Figures 8 and 9 are presented the TFIs of radar signal with Frank code (N = 16),
obtained with AWT and Morse wavelet for different values of γ and β and two values for
SNR. There is a significant impact of the parameters of the Morse wavelet on the form of
CWT and on the way in which TFI is affected by the increased level of noise. On this basis,
it can be assumed that a higher accuracy of the classification can be obtained for selected
parameters γ and β. The simulation results described in the following subsections confirm
the above statement.

In Matlab Wavelet Toolbox parameters for parameterized analytic Morse wavelet are
defined as γ and the time–bandwidth product P2 = βγ, and they correspond to the analysis
in [45,47,48].
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Figure 8. Scalogram for the pulse with Frank code for SNR = 20 dB.

Figure 9. Scalogram for the pulse with Frank code for SNR = 0 dB.

3. Results

In order to carry out the research works, the following equipment (hardware and
software) was used:

• Dell Precision 3561, i7-1180H, 32GB RAM, NVidia T600, Win11, manufacturer: Dell,
Warsaw, Poland;

• MATLAB Version: 9.12.0.2039608 (R2022a) Update 5 with Toolboxes, manufacturer:
MathWorks, Inc., Natick, MA, USA.

The simulations were performed for recognition between continuous wave (CW),
LFM, and phase-coded waveforms. For signals with phase coding, the same number of
chips in one pulse was selected for the Frank, P1, P2 code. Due to the fact that in the Px
code for even values of L the phase φn,k takes the same values as in P2 code, the L was set
to the odd one. The simulation parameters of phase-coded waveforms are listed in Table 1.

Table 1. Phase-coded waveform parameters.

Code Name Chip Number

Barker 13
Frank 16

P1 16
P2 16
Px 9

The conducted research was based on AWT and the use of the Morse wavelet. The au-
thors focused on the analysis of the impact of the wavelet parameters on the obtained
classification accuracy. The general simulation parameters are presented in Table 2.
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Table 2. General simulation parameters.

Parameter Name Parameter Value

Carrier frequency Fc 16.7 MHz to 20 MHz
Sample frequency Fs 100 MHz

Bandwidth (for LFM Waveforms) from 5 to 6.25 MHz
SNR from −6 to 0 [dB]

Rician Channel Parameters PathDelays [0 1.8 3.4]/Fs, AveragePathGains [0–2–10]
Number of pulses in signal 1–2

Number of samples (in observation window) 1024
Number of each type of signal 3000

Number of cycles per phase code (in one Chip) [7, 8] for Barker, Px, [4, 5] for Frank, P1, P2
Wavelet type Morse

The simulation tests were carried out taking into account selected values of the γ
parameter, and for each of them, the β parameter was changed in the loop. Two parameters
per set were considered. The first one was with the analogy with Morse wavelet parameters
presented in [45,47,48] and listed in Table 3. Additionally, β = 40 was applied. The view
of the wavelets corresponding to the parameters γ and β from Table 3 is shown in the
Figure A1 in Appendix A.

Table 3. The γ and β values taken into account in simulation.

γ P2 = γβ (β)

3 9 (3), 27 (9), 81 (27), 120 (40)

9 27 (3), 81 (9), 243 (27), 360 (40)

27 81 (3), 243 (9), 729 (27), 1080 (40)

The second wavelet parameters set is presented in Table 4. The number of oscillations
and duration of wavelets was increased (according to change in γ and β) to find out if they
could better match the recognized waveform. However, there was no significant increase
in classification accuracy noticed.

Table 4. Additional γ and β values taken into account in simulation.

γ P2 = γβ (β)

9 81 (9), 99 (11), 117 (13), 135 (15), 153 (17), 171 (19), 189 (21), 207 (23), 225 (25), 243 (27), 261
(29), 279 (31), 297 (33), 315 (35), 333 (37), 351 (39)

27 728 (27), 783 (29), 831 (31), 891 (33), 945 (35), 999 (37), 1053 (39)

50 1500 (30), 1550 (31), 1600 (32), 1650 (33), 1700 (34), 1750 (35), 1800 (36), 1850 (37), 1900 (38),
1900 (39), 1950 (40)

Only for γ = 50 and β = 37, the same small increase in classification accuracy was
observed. Lower classification correctness also occurred for the same types of PCW: P1 and
P2 codes. Generally, classification accuracy remained at the level of about 85–95% (Table 5).

Table 5. Total accuracy for parameters corresponding to Table 3.

Parameter Value β = 3 β = 9 β = 27 β = 40

γ = 3 83.7% 90.1% 93.6% 96.4%

γ = 9 86.6% 94.8% 98.2% 97.3%

γ = 27 86.1% 91.7% 93.8% 91.9%
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In spite of the lack of significant improvement, it is worth noticing that frequency
resolution is much better for higher wavelet parameters values. This can be useful for
frequency-modulated waveform recognition and methods for optimal scale selection for
emitter parameters estimation e.g., pulse duration (PD), sweep frequency, pulse repetition
interval (PRI), time of arrival (TOA), and others.

The confusion matrix for parameters with the highest total accuracy corresponding
to Table 3 is presented in Figure 10. The overall classification accuracy for γ = 9, β = 27
was 98.2%.

Figure 10. Confusion matrix for AWT with Morse wavelet parameters: γ = 9, β = 27.

Additionally, in Figure 11, receiver operating characteristic (ROC) curves for the
method with AWT applied (with Morse wavelet parameters: γ = 9, β = 27) are presented.

The shape of the one-versus-all ROC curve for Barker confirms that their classifier
for high-value true positives gives a significant level of false positives, which corresponds
to the confusion matrix presented in Figure 10. In the case of Frank, P1, and P2 signals,
the one-versus-all ROC curves indicate slightly better performance.

For comparative purposes, the classification process was carried out with SPWVD
as TFI and with the Kaiser window with the same parameter values for the smoothing
window in frequency and time: window length L = 101 and shape factor N with the selected
values. The classification accuracy obtained for each value of N is presented in Table 6.

Table 6. Total accuracy for parameters for selected values of shape factor N.

Shape Factor N 0.5 1 1.5 2 3 4 5

Accuracy [%] 95.9% 96.3% 94.4% 95.6% 94.4% 94.9% 88.9%

A similar correctness of the classification was obtained for shape factor N = 1, and
the confusion matrix is shown in Figure 12. The overall classification accuracy for shape
factor N was 96.3%. Lower classification accuracy occurred for P1 and P2 codes, as well
as some problems with distinguishing the waveform with the Barker and Frank code. This
is a similar situation as for the method with AWT applied.

Figure 13 presents ROC curves for the method with SPWVD applied. Similarly, as for
the method with AWT applied, there are observable levels of false positives for Barker.
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In the case of Frank, P1, and P2 signals, the one-versus-all ROC curves indicate slightly
worse classification possibilities, almost the same as for the method with AWT applied.

Figure 11. One-versus-all ROC curves for each class for the method with AWT with Morse wavelet
parameters: γ = 9, β = 27.

Figure 12. Confusion matrix for WVD with Kaiser window parameters L = 101, α = 1.

Tables 7 and 8 list the metrics obtained for both methods, with AWT and SPWVD
applied for TFI calculation. Consequently, it is noticeable that the classifier has the ideal
ability to distinguish LFM and typical rectangular radar signals (F1-score is equal 1).

Table 7. Classification report of the model with AWT applied (Precision, Recall, and F1-Score).

Signal Type Barker Frank LFM P1 P2 Px Rect

Precision 0.9412 1 1 0.9800 0.9622 1 1
Recall 1 0.9373 1 1 0.9796 0.9615 1

F1-Score 0.9697 0.9677 1 0.9899 0.9708 0.9804 1
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Figure 13. One-versus-all ROC curves for each class for the method with SPWVD with Kaiser window
and α = 1.

Table 8. Classification report of the model with SPWVD applied (Precision, Recall, and F1-Score).

Signal Type Barker Frank LFM P1 P2 Px Rect

Precision 0.8992 1 1 0.9186 0.9596 1 1
Recall 1 0.8850 1 1 0.9143 0.9615 1

F1-Score 0.9469 0.9390 1 0.9575 0.9364 0.9804 1

4. Conclusions

The actual direction of the research works presented in this paper was drawn in one
of our previous works [49]. The method of feature extraction based of AWT seems to be
very versatile. The results presented in [31] show that using CWT and artificial neural
networks (ANN) performs as an effective way to recognize communication signals such
as ASK, PSK, FSK, and QAM. The usefulness of the wavelet transform in signal analysis
and the more and more commonly used TFI prompted the authors to verify the possibility
of using AWT (with parameterized GMW) in combination with a reduced CNN structure
(SqueezeNet). Thus, the conducted research works were focused on the influence of the
GMW parameters on classification accuracy. The obtained results confirm the satisfactory
effectiveness of the proposed algorithm for SNR in the range from −6 to 0 dB. The highest
obtained classification accuracy is 98.2% for γ = 9 and β = 27.

For comparative purposes, the classification process with TFIs based on SPWVD was
conducted. It was observed that both algorithms allow for approximate classification
accuracy. The advantage of CWT over SPWVD resides in the ability to use a filter bank to
improve the efficiency of calculations. On the other hand, for SPWVD, the use of smoothing
windows improves the readability of TFI but requires additional time, which was noticed
during the simulation tests.

Future work will include the application of a wider range of selected signals with
specific parameters such as pulse width, pulse envelope, pulse repetition time, intrapulse
modulation, phase coding types, etc. It seems to be reasonable to consider applying adap-
tive algorithms for wavelet (in CWT/AWT) or smoothing window parameters selection.
Another important problem is selecting the type of classifier. Neural network training is a
time-consuming process. In the EW systems domain, there is a continuous need for fast
methods. Therefore, faster adaptive methods, such as the one presented in [50], even if
with relatively lower classification accuracy, are preferable over those that are slower with
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higher classification rates. Moreover, an interesting alternative worthy of consideration
is information fusion methods, referred to in [11], which, apart from the neural-network-
based solutions, deliver analytical methods. This may be particularly attractive due to the
mentioned speed requirement assessed on the optimizing methods.

Summarizing the presented considerations, the method based on AWT, applied for TFI
calculation with the reduced CNN structure (e.g., SqueezeNet), would be more appropriate
for hardware implementations then those with STFT or WVD (SPWVD) applied for TFI
calculation and with other types of CNN (ResNet, ALexNet, etc.) as classifiers.

Furthermore, by selecting the appropriate wavelet parameters’ values, it is possible
to achieve comparable or even better performance test results than those presented in
the references.
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Figure A1. Morse wavelets corresponding to parameters from Table 3 for selected wavelet
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Received: 24 October 2022

Revised: 19 December 2022

Accepted: 25 December 2022

Published: 28 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Low Complexity Radar Gesture Recognition Using Synthetic
Training Data

Yanhua Zhao 1,2,*, Vladica Sark 1, Milos Krstic 1,3 and Eckhard Grass 1,2

1 IHP—Leibniz-Institut für Innovative Mikroelektronik, 15236 Frankfurt, Germany
2 Institute of Computer Science, Humboldt University of Berlin, Rudower Chaussee 25, 12489 Berlin, Germany
3 Design and Test Methodology, University of Potsdam, August-Bebel-Straße 89, 14482 Potsdam, Germany
* Correspondence: zhao@ihp-microelectronics.com

Abstract: Developments in radio detection and ranging (radar) technology have made hand gesture
recognition feasible. In heat map-based gesture recognition, feature images have a large size and
require complex neural networks to extract information. Machine learning methods typically re-
quire large amounts of data and collecting hand gestures with radar is time- and energy-consuming.
Therefore, a low computational complexity algorithm for hand gesture recognition based on a
frequency-modulated continuous-wave (FMCW) radar and a synthetic hand gesture feature gener-
ator are proposed. In the low computational complexity algorithm, two-dimensional Fast Fourier
Transform is implemented on the radar raw data to generate a range-Doppler matrix. After that,
background modelling is applied to separate the dynamic object and the static background. Then a
bin with the highest magnitude in the range-Doppler matrix is selected to locate the target and obtain
its range and velocity. The bins at this location along the dimension of the antenna can be utilised to
calculate the angle of the target using Fourier beam steering. In the synthetic generator, the Blender
software is used to generate different hand gestures and trajectories and then the range, velocity and
angle of targets are extracted directly from the trajectory. The experimental results demonstrate that
the average recognition accuracy of the model on the test set can reach 89.13% when the synthetic
data are used as the training set and the real data are used as the test set. This indicates that the
generation of synthetic data can make a meaningful contribution in the pre-training phase.

Keywords: FMCW radar; gesture sensing; machine learning; mmWave; synthetic features

1. Introduction

Low-cost, miniaturised radars have become increasingly popular in recent years. This
has led to a large number of radar-based applications. For example, automotive radar can
play an important role in collision avoidance systems. In addition to this, the potential of
the radar in the field of medical applications is also being investigated. Applications such
as weather radar and ground-penetrating radar reveal a need for such applications and
research on radar technology and algorithms is highly desirable.

Traditional human–computer interaction mediums such as buttons, mice and key-
boards are not always convenient in certain situations, such as operations in clean rooms.
Contactless human–computer interaction requires less touching and is more hygienic. It
can also further enhance the user experience. Hand gestures are an important medium for
contactless human–computer interaction [1].

The outstanding privacy-protecting character of radar makes it preferable over cam-
eras and its ability to be unaffected by light conditions is again preferable to LIDAR.
The frequency-modulated continuous-wave (FMCW) radar is able to detect the distance,
velocity and angle of several objects at the same time; hence, it is employed for hand gesture
recognition in our work. FMCW radars can suffer from mutual interference. If there are
other radars as sources of interferences, the methods in [2] for finding the range, velocity
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and angle of the target can be referred to. In this paper, only one radar is employed and
interference from other radars is not considered.

Hand gesture recognition based on FMCW radar can be grouped into two categories.
The first is based on raw data, meaning that the raw data are fed directly into a neural
network to classify the hand gestures. The second is based on features, such as range, ve-
locity and angle. These three features are obtained by certain data pre-processing methods
and then combined with machine learning methods to achieve hand gesture classification.
In this work, feature-based hand gesture recognition will be considered since the size of the
radar raw data is large and will increase the training complexity of the neural network.

1.1. Related Work of Heat Map-Based Recognition

The features of a hand gesture can be represented in the form of a heat map. Many
researchers have made various contributions to the field of heat map-based hand gesture
recognition. Heat map-based gesture recognition is a relatively common approach and
in [3–11] all authors use heat map-based recognition.

In [3], the authors conducted an experiment on gesture sensing using an FMCW radar
with a centre frequency of 25 GHz, without considering the recognition of gestures. Later
in [4], the authors collected 1714 gesture samples using FMCW radar, which contains ten
types of gesture. Then they extracted time-Doppler heat maps from the radar raw data and
trained a deep convolutional neural network model. An average recognition rate of 89.1%
was achieved. Deep convolutional networks can be very challenging to implement at the
hardware level. This is because they have a large number of weights and although it is
possible to remove some of the unimportant weights, by pruning and other methods, it
does require a lot of computational resources.

In [5], Lien et al. developed a small, low-power radar with a center frequency of
60 GHz. In contrast to [4], a time-Doppler heat map and a time-range heat map were
extracted. With a classical random forest classifier, the average recognition accuracy of the
four micro-hand gestures was up to 92.10%.

From the raw data of the FMCW radar not only time-distance and time-Doppler heat
maps can be extracted, but also a time–angle heat maps. These three types of heat maps are
employed as the basis for hand gesture recognition in [9]. The authors adopted background
modelling to separate the static background and the moving target so that the feature heat
maps were cleaned efficiently. The average recognition rate of six gestures was over 98.93%.
The authors employed a pre-trained model, but a large number of weights of the model
made implementation on an FPGA problematic.

Similarly, the authors used the multi-stream convolutional neural network (MS CNN)
model in [11] to learn features of the dataset for on-air writing recognition. Although the
accuracy achieved was very impressive, the drawback, as before, was that the MS CNN
would require a lot of hardware resources.

Given the above references, we can state that heat map-based hand gesture recognition
can achieve encouraging results, but its disadvantages should not be ignored. Firstly,
the process of constructing a heat map is relatively complex and time-consuming. A hand
gesture is made up of several frames of data, each of which will form one or more heat
maps depending on the combination of features selected. A single hand gesture sample
can produce a large number of heat maps, which leads to complex processing. In addition,
the hand gesture features in the form of heat maps need to be further fed into a deep
convolutional network to extract features, which requires even more computational efforts.

1.2. Motivation for Synthetic Data Generation and Related Work

Machine learning-based hand gesture recognition faces data scarcity issues and only a
few open radar datasets are available. Many scientists spend a lot of effort and time collect-
ing data. In Google’s Soli project [5], its team collected 5000 samples with 5 participants.
For [10], 7200 gesture samples were collected from 20 people. The authors of [6] collected
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2750 samples, which involved 11 participants. A total of 1500 and 1200 gesture samples
were collected in [9] and [8], respectively.

In [12], the authors utilised a sparse point cloud extraction method and a Message
Passing Neural Network (MPNN)-based graphical convolution method for real-time ges-
ture recognition. Despite the reduced computational complexity, all datasets were collected
by other teams manually, which involved a lot of time and effort.

Collecting gesture samples with radar is very challenging. It is needed to perform spe-
cific hand gestures repetitively, which is time-consuming and labour-intensive. An efficient
gesture feature synthesiser would be highly beneficial.

Human motion simulation is a good start for synthetic gestures. Some researchers
have already combined human motion simulation with radar sensors. The authors have
developed a human walking model in [13]. Afterwards, in [14], this model was employed
to construct micro-Doppler spectrograms for gait analysis.

Reference [15] proposed a radar data synthesis process for four hand gestures. The au-
thors used the 3D computer graphics software Blender [16] to build a simple human hand
animation that captured the motion trajectories of the hand gestures. The motion trajec-
tories were then utilised to synthesise radar data. The drawback of this work is that only
micro-Doppler spectrograms were considered and the model was not tested with real data.

In [17], the authors proposed a radar data synthesis flow for macro-gestures. Seven
gestures were simulated as a training set, which was used to train the Multi-Layer Percep-
tron model and the real data were employed to test the model with an average recognition
accuracy of 84.2%. The drawback is that the ranges and angles of the gestures were not
taken into account.

A human target model for the flexible simulation of various modalities of gesture was
constructed in [18]. It covered the main parts of the body. In a similar way to the work
in [17], only the Doppler spectrum was simulated. A CNN model was applied to classify
eight macro-gestures with an accuracy of 80.4%.

The authors in [19] converted video footage of human activity into realistic, synthetic
Doppler radar data by means of a cross-domain conversion approach to achieve the goal of
synthesising radar training data for human activity. Other features such as range and angle
were not synthesised.

In view of this, the gesture synthetic training data generator proposed by the authors
in [20] can generate range–time heat maps, velocity–time heat maps and angle–time heat
maps. Six gestures were synthesised and real data were also employed to test their validity.
The authors used the VGG19 [21] pre-trained model to extract the features from heat maps.
After that, the XGBoost [22] and Random Forest [23] classifiers were employed to recognise
the hand gestures. The achieved average accuracy was 84.93% and 87.53%, respectively.

1.3. Contributions

To reduce the complexity of processing and tackle data scarcity, the main contributions
of this paper are as follows.

• A simplified gesture recognition algorithm is proposed. The features of the gestures
are represented as one-dimensional vectors instead of images.

• A simplified synthetic hand gesture feature generator is presented. As the hand gesture
features extracted from the real data are simplified to one dimension, the synthesis
processes from [15,17–20] are no longer needed. In our simplified synthetic hand
gesture feature generator, the generation of radar raw data is skipped.

• The impact of range, velocity and angle features, extracted from a real data set, on the
accuracy of gesture recognition is analysed. The experimental results reveal that all
three features have a positive effect on gesture recognition. For the evaluation scenarios
with a single feature, the average recognition rate based on the velocity feature alone
achieves the highest recognition rate on the test set, with a support vector machine
(SVM) classifier, which is 87.59%. For the different feature combination evaluation
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scenarios, the average recognition rate based on the three features yields the best result
with an average recognition rate of 98.48%.

• The impacts of the synthetic data set on the recognition accuracy of the real gesture
data set are investigated. The SVM classifier trained with the synthetic data has an
average recognition accuracy of 89.13% on the real data.

The remainder of the paper is organised as follows: Section 2 describes the FMCW
radar system. Section 3 introduces low computational complexity algorithms for extracting
features from radar raw data and Section 4 presents a synthetic hand gesture feature
generator. Section 5 presents the experiments and results. The conclusions are given in
Section 6.

2. FMCW Radar System

The system architecture of the FMCW radar is illustrated in Figure 1.

Figure 1. FMCW radar system.

The classical waveforms of FMCW radar are rectangular, upward sawtooth, triangular
and staircase voltage waves. Since the hand gesture speed is not as high as an aircraft’s,
the upward sawtooth waveform is used in our radar. Firstly, the waveform generator
generates an upward sawtooth wave as depicted in Figure 2. The bandwidth of the
waveform is B. The solid blue line represents the transmitted wave and the dashed black
line is the received wave. The frequency slope of the waveform is:

s =
B
Tc

. (1)

Figure 2. FMCW waveform.

The signal is emitted into space by the transmitter via the transmitting antennas.
Our radar has two transmitting and four receiving antennas. The distance between the
transmitting antennas is two wavelengths and the distance between the receiving antennas
is half a wavelength. A transmitted wave can also be referred to as a chirp. The equation of
the transmit chirp is given in (2):

Tx(t) = A exp (j(2π fct + πst2)). (2)
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where the amplitude of the chirp is denoted as A and the starting frequency is represented
by fc. Tc is the duration of the chirp.

When a wave encounters any object in space, it will be reflected back to the receiver.
The object could be our target or any other irrelevant object. The distance between the
target and the radar is assumed as r0, then the time delay td between the received and
transmitted waves can be represented as:

td =
2r0

c
. (3)

where c is the velocity of light.
As the waveform loses energy as it travels through the air and is bounced by objects,

there is an amplitude attenuation μ and phase shift in the received waveform. The received
wave is defined as follows:

Rx(t) = μA exp (j(2π fc(t − 2r0

c
) + πs(t − 2r0

c
)2)). (4)

In the next step, the received and transmitted waves will be mixed in a mixer and
passed through a low-pass filter to remove the high-frequency components and preserve
the low-frequency signal. The remaining signal at this stage is known as the intermediate
frequency signal or beat signal. As shown in Figure 2, the slope and time delay of the
waveform are s and td, respectively, and the frequency of that beat signal can then be given
as fb:

fb = std =
2Br0

cTc
. (5)

The beat signal can be defined as follows:

B(t) = μA2 exp (j(2π fc
2r0

c
+ πs

4r0

c
t − πs(

2r0

c
)2))

= μA2 exp j(πs
4r0

c
t + 2π fc

2r0

c
− πs(

2r0

c
)2)

= μA2 exp (j(2πstdt + 2π fc
2r0

c
− πs(

2r0

c
)2︸ ︷︷ ︸

φ(t)

))

= μA2 exp (j(2π fbt + φ(t)))

= μA2 exp (j(
4πBr0

cTc
t + φ(t))).

(6)

In the final step, the beat signal is digitalised by an analogue-to-digital converter (ADC).

3. Feature Extraction from Radar Raw Data

In this section, the process of extracting gesture features from the radar raw data
is presented.

3.1. Range and Velocity Extraction

As illustrated in Figure 3, the structure of a frame of radar raw data has three dimen-
sions, namely range, chirps and antennas. There are eight virtual antenna channels in one
frame of the data. Each antenna channel has M chirps and each chirp has N range bins.
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Figure 3. Processing chain for feature extraction from radar raw data.

To derive range and velocity information, a Fast Fourier Transform (FFT) is applied to
the range and chirp dimensions. As depicted in Figure 3, after the range FFT, the range
information of the target is highlighted. Then after the Doppler FFT, the range-Doppler
(RD) matrix is formulated and the velocity information of the target is enhanced.

FMCW radar detects not only dynamic objects but also static ones. The radar data
contain static clutter and static backgrounds, which can be disruptive to gesture recognition.
Therefore, it is mandatory to take measures to combat irrelevant noise and static background.

Background modelling based on the Greedy bilateral smoothing (GreBsmo) [24] is
employed to remove static clutter and static background objects, while the dynamic objects
are retained. The data X can be decomposed to the background L, clean data S and noise G.

X = L + S + G. (7)

After obtaining the RD matrices, the RD matrix for the first antenna channel is selected
and saved in the data container. After executing the data for a whole hand gesture,
the background modelling is carried out. The two heat maps in Figure 3 indicate the
contribution of background modelling. After background modelling, the RD heat map
becomes clean and only the target object remains. Thus the range and velocity of the target
can be located more accurately in the RD matrix. It is assumed that the moving target in
the data set has only one hand and is the main component. The index of that best bin can
be derived by finding the maximum value in the RD matrix. Once the index is found, it is
possible to calculate the range and velocity of the target.

3.2. Angle Extraction

The target bin is defined as the index of the RD matrix where the target is located.
The best bin is searched along the antenna index. The bins being extracted are a 1 × 8 vector,
denoted by e.

By performing Fourier beam steering (FB) [25,26] on e, angle information is derived.
The virtual beam steering matrix is represented as:

V(Θ, q) = exp (j2π(−Q − 1
2

+ q)
Δd
λ

sin (
π

180
Θ)). (8)

where Q is the total number of virtual antennas, q ∈ {1, 2, 3, . . . , 8}. λ stands for the
wavelength. Δd is the spacing distance between the receiving antennas and its value is 1

2 λ.
The scanning scope of the angle Θ is [−90, 90] and the step size is 1.

I = V · eT . (9)
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It is assumed that there is only one target and therefore the angle corresponds to the
maximum value in I, as depicted in Figure 4.

Figure 4. Fourier beam steering.

The processing sequence of our approach makes the angle estimation more stable and
accurate. By selecting the best bins in the RD matrices, the angle information of irrelevant
objects will be excluded. This is exactly the opposite of the processing order of unmanned
aerial vehicle (UAV) swarms detection using the radar in [27,28]. In contrast to UAV swarm
detection, only one target is taken into account in gesture recognition and a linear array of
antennas is used in the radar.

In contrast to heat map-based gesture recognition, a gesture sample has 32 frames
only, leading to a 1 × 96 feature vector. The features of a sample are shown in Figure 5.
The overall process of extracting features from the radar raw data is shown in Algorithm 1.

Algorithm 1: Feature extraction from radar raw data.
Data: Radar raw data: Data
Result: Range, velocity and angle feature vectors
initialisation;
for f rame_counter = 1, 2, . . . , 32 do

Perform range FFT to the Data;
Perform Doppler FFT to the Data;
Data_container(:,:, f rame_counter) = Data (:,:,1);

end

Perform background modelling ;
for f rame_counter = 1, 2, . . . , 32 do

Locate the peak in the clean RD matrix, compute range and velocity;
Extract bins along antenna dimension;
Perform Fourier beam steering;
Locate the peak, compute the angle;

end

Figure 5. An example of gesture “push pull”.
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4. Synthetic Feature Generator

To match the gesture features with the real data, a synthetic generator of hand gestures
is adapted. In this section, the workflow of the gesture feature synthesiser is proposed as
illustrated in Figure 6a.

4.1. Generator Architecture

Our work uses Blender to animate hands. Blender provides the armature API and
Python scripting. Python scripts make it easier to produce a large number of hand gestures.
In Blender, the skeletal structure and joints of the hand are constructed, as depicted in
Figure 6b.

(a) (b)
Figure 6. (a) The workflow of the gesture feature synthesiser; (b) an example of hand animation.

Human hands vary in size and have different habits of movement. Therefore, the sim-
ulator can reproduce different joint types and the hand can be simulated with varying
velocities, angles and start–stop positions. The trajectories are fed into Matlab to calculate
the features of the hand movement, namely range, velocity and angle.

4.2. Feature Extraction

The process of extracting features from a trajectory is illustrated in Algorithm 2.
Figure 7 displays the radar and hand in the 3D space. The orange dot represents the radar
with the location represented as (xr, yr, zr). The position of one joint is denoted as (xi, yi, zi).
The distance between these two points in space is calculated by (10):

d =
√
(xi − xr)2 + (yi − yr)

2 + (zi − zr)2. (10)

Figure 7. Target and radar in the coordinate system.
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The distance from each joint of the simulated hand to the radar is calculated according
to (10) and averaged as the distance between the hand and the radar for one frame.

For velocity, the initial value of velocity is set to 0. The formula for the calculation
is given in (11). dk is the distance between the radar and the hand in the current frame.
dk−1 is the distance in the previous frame while Tm represents the duration of a frame.
The difference between the distances of adjacent frames divided by the frame duration
gives the hand velocity in the current frame.

v =
dk − dk−1

Tm
, k ∈ {2, 3, . . . , 32}. (11)

Algorithm 2: Synthetic feature extraction.
Data: Trajectories: Target_pos
Result: Range, velocity and angle feature vectors
initialisation;
for f rame_counter = 1, 2, . . . , 32 do

if f rame_counter == 1 then

v(1) = 0;
d( f rame_counter) = Euclidean distance(Target_pos( f rame_counter,:),
Rad_pos);

θ( f rame_counter) = 180
π arctan ( Target_pos( f rame_counter,1)

Target_pos( f rame_counter,2) ).;

else
d( f rame_counter) = Euclidean distance(Target_pos( f rame_counter,:),
Rad_pos);

v( f rame_counter) = d( f rame_counter)−d( f rame_counter−1)
Tm

;

θ( f rame_counter) = 180
π arctan ( Target_pos( f rame_counter,1)

Target_pos( f rame_counter,2) ).;

end

end

Our radar can only detect the azimuth of the object. In Figure 7, the radar and the hand
are projected onto the same plane. The grey dot is the projection of the hand. The projection
of the radar is then at the origin of the coordinate system and the azimuth angle θ between
radar and a joint is derived by (12). The angle between the hand and the radar is averaged
over all joints of the hand.

θ =
180
π

arctan(
xi

yi
). (12)

To make the synthesised hand gesture features more realistic, random noise is added
to the extracted features.

4.3. Recognition Pipeline

The features of the hand gestures are fed directly into the support vector machine
(SVM) [29] after they have been extracted based on the approach described previously.
The support vector machine algorithm is particularly efficient in terms of memory and it
performs better if there is a significant margin of separation between hand gestures.

5. Experiment and Evaluation

5.1. Radar Settings

The radar used for the experiments is a Texas Instruments (TI) AWR1642 [30], which
operates at a starting frequency of 77 GHz and a maximum bandwidth of 4 GHz. It has two
transmitting and four receiving antennas. The specific parameters used for the experiments
are listed in Table 1. This radar also needs a raw data acquisition board. For this reason, we
use TI DCA1000EVM [31].
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5.2. Dataset

Two datasets are collected in this study, a real dataset based on AWR1642 and a
synthetic dataset synthesised by the gesture feature simulator. There are six hand gestures
in the dataset as shown in Figure 8: “grab”, “to left”, “to right”, “move close”, “move
away” and “push pull”. These are gestures that are commonly used in daily life. The real
data set contains 250 samples of each gesture gathered from two participants in an indoor
environment. Our low computational complexity approach takes an average of 0.0157 s to
extract features from the raw data of each sample. The synthetic data set has 2700 samples
per gesture.

Table 1. Radar parameters.

Parameter Value

Starting frequency 77 GHz
Transmitting antennas 2
Receiving antennas 4
Number of range bins 64
Number of chirps per frame 255
Bandwidth 3.8 GHz
Chirp duration 38 μs
Frequency slope 100 MHz/μs
Frame duration 71 ms
Number of frames per gesture 32

(a) Grab. (b) To left.

(c) To right. (d) Move close.

(e) Move away. (f) Push pull.

Figure 8. Hand gesture type.

5.3. Feature Comparison

Next, features from the real dataset and synthetic features are analysed and compared.
The features of the hand gestures are illustrated in a 3D scatter plot. For readability, only
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five samples of each gesture are displayed. A gradient colour has been used for the feature
scatter plot, from dark to light. The starting frame of the feature for each sample is the
darkest colour and the last frame is the lightest colour.

Figure 9a,b indicate the features of the real “grab” and the synthetic “grab”. This
gesture does not change much in terms of range, velocity and angle and that is because the
grabbing, with the fingers slowly closing together, does not change much in motion.

(a) Real “grab”. (b) Synthetic “grab”.

(c) Real “to left”. (d) Synthetic “to left”.

(e) Real “to right”. (f) Synthetic “to right”.

Figure 9. Comparison of “grab”, “to left” and “to right”.

“To left” gesture is compared in Figure 9c,d. The real “to left” and the synthetic “to left”
both have a drastic change in the dimension of the angle. A trend from larger to smaller
angles can be seen on both figures. The hand moves from right to left and there will surely
be a changing of angle relative to the radar. In contrast, there is not a lot of variation but
a small decreasing and increasing trend in the range. This comes from the fact that the
midpoint of the gesture is closer to the radar than the start and end points. Some small
variation is expected because human movements are not perfectly aligned with the radar.
The same is true for the velocity because only movements towards or away from the radar
will influence the measured velocity.
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The change in angle features for “to right” is the opposite of “to left” in Figure 9e,f.
The real “to right” angle changes from a negative to a positive value. The other features of
the gesture are identical to the “to left” gesture.

Figure 10a,b present the 3D features of the real “move close” and the synthetic “move
close”. The characteristic element of this gesture is the change of the range from larger to
smaller values. This is because the hand is gradually moving closer to the radar. The ve-
locity changes from zero to a negative value and then back to zero when the movement is
finished. There is almost no change in angle. Some variation can be observed because the
target is not perfectly positioned to move directly towards the radar.

(a) Real “Move close”. (b) Synthetic “Move close”.

(c) Real “Move away”. (d) Synthetic “Move away”.

(e) Real “Push pull”. (f) Synthetic “Push pull”.

Figure 10. Comparison of “move close”, “move away” and “push pull”.

For the “move away” gesture, the range between the hand and radar gradually
increases as the hand moves in Figure 10c,d. In addition, the trend of the velocity is the
opposite of that of “move close”. The angle does not have much variation and the little
variation observed behaves in the opposite manner of “move close”.

“Push pull” is a combination of “move close” and “move away”. The hand first
approaches the radar and then moves away. The distance decreases and then increases.
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The corresponding velocity changes towards positive and negative values. The angle does
not change obviously. The feature of “push pull” in Figure 10e,f is in the form of a closed
circle. There is a high similarity between the real and synthetic features.

5.4. Feature Distribution

To show the distribution of features for one gesture from the entire data set, the distri-
bution of features for the gesture “push pull” is illustrated in Figure 11.

(a) Range of real “push pull”. (b) Range of synthetic “push pull”.

(c) Velocity of real “push pull”. (d) Velocity of synthetic “push pull”.

(e) Angle of real “push pull”. (f) Angle of synthetic “push pull”.

Figure 11. Box-plot for feature distribution of real and synthetic “push pull”.

This “push pull” distribution is based on 250 samples in the real data set and 2700 sam-
ples in the synthetic data set. It can be concluded from Figure 11a,b that the distribution
zone of the range features for most of the “push pull” samples first decreases and then
increases over time. The distribution of synthetic range features is relatively wider; this
is due to the richness of the hand start and end position variations during the simulation
of the trajectory. The synthetic data are purposefully created with as much variation as
possible while still performing the hand gesture. The goal of this is to represent as many
different ways to perform this gesture as possible. The speed of the real gestures seems to
be higher than most of the synthetic data but the velocity of the real gesture is still included
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in the synthetic data. The velocity pattern for this gesture can be seen in both data sets.
For the angle, the synthetic data cover a wider range of values; this will lead to a better
classification performance if the gesture is performed from different angles. The overall
pattern is similar to the real data. It can be seen that the real gesture was usually measured
directly from the front. The synthetic data also cover the gesture if it is performed at
an angle.

5.5. Feature Impact Analysis

From the radar raw data, three features have been extracted, namely range, velocity
and angle. In this subsection, the effect of feature combinations on the accuracy of gesture
recognition will be analysed. To analyse the impact of one type of feature, a data set
containing a single feature is fed into the SVM for training and testing. A total of 50% of
the real data set was randomly selected as the training set and the other 50% as the test set.

The experiment is repeated ten times and the recognition rates for the test set are
summarised in Figure 12 and Table 2. As can be seen in the figure, velocity plays a
significant role. For velocity alone, the average recognition accuracy in the test set was as
high as 87.59%.

Figure 12. Accuracies based on single feature.

Table 2. Comparison of accuracy based on a single feature.

Feature Type Average Accuracy Standard Deviation

Only range 70.69% 1.59%
Only velocity 87.59% 1.23%
Only Angle 69.28% 0.78%

Furthermore, the combination of features is evaluated. The results based on the
combination of different features are illustrated in Figure 13 and Table 3. Recognition rates
based on multiple features are higher compared to a single feature. The average accuracy
based on the three features is as high as 98.48%. The combination of velocity and angle can
achieve accuracies of up to 98.15% on the test set.

From the outcomes, it can be derived that the velocity is more recognisable among the
three features. However, based on velocity alone, the recognition rate of gestures is below
90%. When range and angle are also taken into account, the recognition accuracy on the
test set is improved considerably.
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Figure 13. Accuracies based on multi features.

Table 3. Comparison of accuracy based on feature combination.

Feature Combination Average Accuracy Standard Deviation

Range + velocity 89.43% 0.76%
Velocity + angle 98.15% 0.42%
Range + angle 91.37% 0.87%

Range + velocity + angle 98.48% 0.52%

5.6. Synthetic Feature Impact Analysis

Three evaluation scenarios are defined. Scenario I is a random selection of 2% of the
real data as the training set and the rest of the real data are used as the test set. Scenario II
uses the synthetic data set as the training set and the entire real data set as the test set.
Scenario III takes 2% of the real data and the entire synthetic data set as the training set and
the remaining 98% of the real data set as the test set.

The recognition accuracy of the SVM on the test set is given in Figure 14 and Table 4.
The experiment is repeated ten times.

Figure 14. Accuracy of test set.

Table 4. Comparison of accuracy.

Scenarios Average Accuracy Standard Deviation

Scenario I: 2% real data 89.21% 4.43%
Scenario II: Synthetic data 89.13% 0.00%

Scenario III: Mixed 94.43% 0.82%
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The red line represents the accuracy of scenario I on the test set. It can be seen that
the high fluctuation is due to a low amount of real data and the quality of the selected
data varies. If the 2% randomly selected real samples from the real data set cover a large
variation and have a high quality, then it is likely to yield good results on the test set. If the
randomly selected samples have low quality or little variation, there is a chance that worse
results can be obtained on the test set. The results for scenario II are indicated by the blue
line. The blue line is stable because the test set and training set have not changed. The green
line represents the result of scenario III. These results are the best among the scenarios.
This shows that the synthetic data are able to enhance data sets of real data to achieve a
performance that is higher than the individual data sets.

The average accuracy of ten attempts for the three scenarios is given in Table 4. When
the SVM classifier uses only the synthetic data set as the training set, the model has an
average accuracy of 89.13% on the test set. When the synthetic data set is combined with a
small amount of real data, better performance can be obtained, with an average recognition
rate of 94.43%.

One more advantage of synthetic data is that they cover a wider range of possible
gestures. The training and test sets are very similar, so a small amount of real data can lead
to high performance in the test set. A test set that differs in these features but still includes
valid gestures may result in poorer performance for a model trained on real data. Synthetic
data has a wider range of feature values, so it is able to generalise better and cover different
test sets in a better way.

5.7. Comparison with Other Works on Synthetic Feature Generators

In Table 5, a comparison with other works is summarised. Previous work such
as [17] combined animation modelling in Blender with a simulated FMCW radar sensor
to simulate velocity–time heatmap features for seven types of macro-gesture. In [18],
the human model was constructed and Doppler spectrograms for eight macro-gestures
were simulated. The authors synthesised six activities in [19] by transforming the data from
the camera into Doppler heat maps. The number of samples in their test set is 720.

Table 5. Comparison with other works.

Ref. Sample Size Real Samples Testset Average Accuracy

[17] - 1050 84.2%
[18] - 3354 80.4%
[19] - 720 81.4%
[20] 8–12 KB 1500 87.53%

This work 1 KB 1500 89.13%

Reference [20] simulated range–time, velocity–time and angle–time heatmap features
for six types of hand gestures by combining gestures constructed in Blender and a simulated
FMCW radar. For both, the classifiers were trained with synthetic data sets and the models
were tested with real data sets. However, this does not suit our features extracted from the
radar raw data.

The features of our sample are saved in a csv [32] file. In Table 5, it can be observed
that the features extracted from a sample of [20] are 8 to 12 times larger than the features
extracted by our new approach. Compared to [17–20], the average recognition accuracy on
the real data set is higher, which indicates the strength of this work. In addition to this, our
synthetic feature generator does not contain radar signal simulation, which reduces the
computational effort significantly. More importantly, the dataset extracted by our method
does not need to be fed further into the machine learning algorithm for feature extraction.
This will help to save hardware resources significantly.
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6. Conclusions and Future Work

In this work, a low computational complexity hand gesture feature extraction method-
ology based on FMCW radar and a synthetic hand gesture feature generator are proposed.

The impact of range, velocity and angle on the accuracy of gesture recognition is
analysed. The combination of the three features leads to the highest accuracy.

Compared to other works, our synthetic gesture feature process avoids the generation
of radar raw data and is more straightforward. In contrast to heat map-based recognition,
additional feature extraction can be skipped in the training phase.

The synthetic data set is used to train a SVM classifier to recognise six different
hand gestures in the real data set, which are acquired with an AWR1642 FMCW radar.
The algorithm achieves an average recognition accuracy of 89.13% on the real data set.
By combining a small amount of the real data set with the synthetic data set, an average
recognition accuracy of 94.43% is obtained on the real data set. Thus, we demonstrate the
effectiveness of our raw data pre-processing approach and feature synthetisation process.

In the future, more gesture types, different frequency bands and cross-platform gesture
recognition should be investigated. We would like to verify the performance of our selected
models in different aspects in future work, for example, by adding more datasets with
different characteristics.
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Abstract: This paper proposes a robust method for feature-based matching with potential for applica-
tion to synthetic aperture radar (SAR) automatic target recognition (ATR). The scarcity of measured
SAR data available for training classification algorithms leads to the replacement of such data with
synthetic data. As attributed scattering centers (ASCs) extracted from the SAR image reflect the
electromagnetic phenomenon of the SAR target, this is effective for classifying targets when purely
synthetic SAR images are used as the template. In the classification stage, following preparation of
the extracted template ASC dataset, some of the template ASCs were subsampled by the amplitude
and the neighbor matching algorithm to focus on the related points of the test ASCs. Then, the subset
of ASCs were reconstructed to the world view vector feature set, considering the point similarity and
structure similarity simultaneously. Finally, the matching scores between the two sets were calcu-
lated using weighted bipartite graph matching and then combined with several weights for overall
similarity. Experiments on synthetic and measured paired labeled experiment datasets, which are
publicly available, were conducted to verify the effectiveness and robustness of the proposed method.
The proposed method can be used in practical SAR ATR systems trained using simulated images.

Keywords: synthetic aperture radar; scattering center; world view vector; recognition; SAMPLE

1. Introduction

Over the last few years, automatic target recognition using synthetic aperture radar
(SAR ATR) has increasingly become important as a crucial means of surveillance [1–4]. SAR
images can be obtained in most weather types, day and night, and at a high resolution [5–8].
Based on these characteristics, SAR ATR algorithms have been evaluated on several targets,
including ground-based vehicles, aircrafts, and vessels, which are challenging for military
operations [9]. However, the sensitivity of SAR to sensor parameters, target configurations,
and environmental conditions make it challenging to implement SAR ATR [10–12].

SAR ATR algorithms can be divided into three basic steps: detection, discrimination,
and classification [13,14]. The first two steps are intended to extract potential target areas
and remove false alarms [15]. The purpose of target classification is to automatically classify
each input target image obtained by target detection and discrimination [16]. A large
number of efforts have been made to achieve robust SAR ATR. However, the classification
performances under extended operating conditions (EOCs) are insufficient for practical
applications. In real-world cases, most targets are likely to be camouflaged or blocked by
surrounding obstacles [11,17]. To improve the performance under EOCs within a SAR ATR
system, this paper focused on the classification stage.

Target classification methods are mainly divided into model-based and feature-based
methods [5]. Feature-based methods involve pattern recognition and rely solely on features
to represent the target, with many SAR target templates stored in advance. Once the
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features of the input target are extracted, the test target is classified as the category of the
matched template.

One of the promising features, attributed scattering center (ASC), provides a physically
relevant description of the target [4,18–21]. According to electromagnetic theory, the high
frequency scattering response of the target can be approximated by a sum of responses
from multiple ASCs [22]. The classification method based on ASCs reflects the specific
scattering structure of the target. In Refs. [16,23], an ASC-based model was proposed for
target classification, and they achieved higher accuracy than when not using the ASC
model. It has also been proven that the local descriptions contained in ASCs are beneficial
for reasoning under EOCs [19,24]. However, there are some problems associated with
point-pattern matching between test ASCs and template ASCs. Two ASC sets, even in the
same class, can have different numbers of points and subtly different positions according
to the SAR sensor operating conditions [25]. Therefore, one-to-one correspondence is
impractical, and similarity measurements of the two point sets are highly complex.

To solve these problems, several researchers have attempted to design optimal ASC-
based methods. In Ref. [26], the researchers introduced the world view vector (WVV) to
reconstruct the ASC features, then the weighted bipartite graph model (WBGM) was used.
As the WVV provides a robust description of the point location and spatial relationship
between the two sets, each weight on the line was allocated by computing the WVV-based
similarity of the two ASC sets. Therefore, the direct one-to-one matching problem was
solved. In Ref. [24], a similarity evaluation method for two ASC sets was introduced by
exploiting the structural information contained in the ASC set. Once ASC matching was
conducted using the Hungarian algorithm, point similarity and structure similarity were
fused to evaluate the overall similarity of the two ASC sets based on the Dempster–Shafer
theory of evidence. Meanwhile, a target reconstruction based on ASC was employed to
avoid precise one-to-one correspondence and complex similarity measures [19,27]. Using
the neighbor matching algorithm, only the template ASCs related to the test ASCs were
selected to reconstruct the template image, whereas all the test ASCs were used to recon-
struct the test image. Then, image correlation was employed to effectively measure the
similarity between the two ASC sets.

As a dataset for experiments, moving and stationary target acquisition and recognition
(MSTAR), which consists of a collection of one-foot-resolution SAR images, has been
widely used in the past two decades [5,9,22,28–30]. Unfortunately, the amount of measured
data needed to build a SAR ATR system is insufficient because of practical limitations in
operating sensors and targets [31]. Furthermore, measured data typically represent limited
environmental conditions, with very few articulation, configuration, and clutter changes,
along with few sensor collection geometry variations [8,32]. In this regard, computer-
generated synthetic data could serve as a valuable tool in the development of SAR ATR
systems, leading to training and testing using only synthetic data and measured data,
respectively [31,33]. Synthetic data are created using electromagnetic prediction software
involving a computer-aided design (CAD) model of the MSTAR. By replacing measured
data with synthetic data, many EOCs can be considered close to representing the real world,
which is necessary to enhance classification performance.

However, an apparent distribution gap between synthetic and measured distributions
exists due to differences in the CAD model and the real model, or the type of simulator used.
Despite effort to decrease the gap [33], some parts of the target that did not appear in the
measured data tend to be visible in the corresponding synthetic data (Figure 1). This could
be regarded as a target occlusion situation if we only considered the target appearance of
the image, which commonly happens in the real world [17,34]. Target occlusion inevitably
occurs due to radar sensor operation and the external environment, such as artificial or
natural objects, which make it difficult to classify the target using the traditional feature-
based method. Comprehensively, a similarity measurement method where the unique
features of the target can be captured is highly recommended for robustness to target
occlusion in practical SAR ATR.
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Figure 1. Examples of real and synthetic SAR images in SAMPLE, demonstrating substantial target
differences located in the middle of the images.

The previously proposed WVV-based method has a robust ATR capability using all
extracted ASCs [35]. The WVV is insensitive to translation, rescaling, random perturbation,
and random addition and deletion of points. However, the method is sensitive to partial
differences that may arise due to simulation limitations. Further, local feature matching
under imbalance from two sets is still a challenging and important point for classification
problems [36,37]. It is necessary to design a classification method that is less sensitive to the
partial difference between real and synthetic images. Therefore, we propose an improved
WVV-based ATR method using a subset of ASCs instead of using all ASCs to focus on
local similarity.

2. Target Classification with a WVV-Based Feature Set

To classify the target in SAR images, we designed the classification algorithm in terms
of local features matching. The ASCs were used as the unique features of the target in
the SAR image. Figure 2 illustrates a flowchart of the proposed method. The flowchart is
divided into five main steps: extraction of the scattering centers, sub-sampling of scatter
centers based on amplitude, neighbor matching, WVV-based feature reconstruction, and
similarity measurement. The ASCs of the template dataset extracted from each template
image were prepared offline in advance. The value of T in Figure 2 is the number of template
samples. In the classification algorithm, the extraction of scattering center from a test image
was first employed. To analyze the local similarity and the imbalance problem in two
ASC sets, some of the template ASCs were then selected by amplitude-based subsampling,
where the number of test ASCs was exploited to adjusting the number of template ASCs.
Afterwards, neighbor matching was applied to partially concentrate on the related points
between the test ASCs and template ASCs. The subset of ASCs was used to reconstruct the
world view vector feature set, thus considering the point similarity and structure similarity
simultaneously. Later, the matching scores between the two ASC sets were calculated using
weighted bipartite graph matching and then combined with several weights for overall
similarity. Regarding the WVV-based similarity as the weight of bipartite graph matching,
we found the optimal matching between the two sets. Finally, the overall similarity was
determined to recognize the target by combining the matching score with several weights
related to the matched/unmatched number of ASCs and selected/unselected number
of ASCs, which could not be exclusively applied to the WVV-based similarity only. By
repeating the process T times, the test image was consequently classified.
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Figure 2. Flowchart of the proposed method.

2.1. Extraction of Scattering Centers

Several algorithms are available for extracting scatter centers in the image domain [38,39].
CLEAN is one of the most used algorithms for extracting scatter centers from SAR im-
ages [16,17,19,24,26,27,40–43]. The CLEAN algorithm employs a filter derived from the
point spread function (PSF), which is given by:

PSF(x, y) =
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where (x, y) denotes the position of the scattering center; c is the speed of light; fc is the
center frequency; θc is the center azimuth; B is the frequency bandwidth of the radar; and
Ω is the azimuth aperture. To extract the scattering centers properly, the filter used in the
CLEAN algorithm has to incorporate the same smoothing window ω(x, y) used during
image formation, resulting in:

h(x, y) = psf(x, y)ω(x, y) (2)

This work used a −35 dB Taylor Window that was employed by the SAMPLE
dataset [31].

The CLEAN algorithm searches for the highest-amplitude pixel in the SAR image and
records its amplitude Ai and its image coordinates (xi, yi). Then, the filter h(x, y) shifts to
the center of the pixel location and is multiplied by Ai. Assuming a point spread function
(PSF) with a corresponding amplitude, the response of the imaging system is removed from
the complex image [44]. In general, the iterative process is repeated with the residual image
until a predetermined number of ASCs are extracted, or the amplitude of the extracted
scattering point is less than the threshold value.

In this study, we extracted scattering centers located in a target region if its amplitude
was greater than or equal to a threshold, which was intended to limit the number of ASCs.
The target region and shadow of a SAR image can be separated by some conventional
segmentation algorithms, including the K-means, the Otsu’s method, and the iterated
conditional modes (ICM). In this experiment, the ICM in Ref. [45] was used, but the ICM
processing speed was improved by using the initial segmented image by the K-means,
instead of the SAR image, as the input data of the ICM. Figure 3 shows the results of our
scattering-center extraction task using CLEAN. The reconstructed SAR image, using a total
of N scattering centers, shown in Figure 3b, was very similar to the real SAR image. The
segmentation results and the extracted scattering centers located only inside the target
region are shown in Figure 3c. At the end of the extraction process, the scattering centers
were stored in an N × 3 matrix, {Ai, xi, yi | i = 1, 2, . . . , N}. For the extracted scattering
centers, the coordinates of the range (in other words, the slant range) were converted to the
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ground range to facilitate the matching analysis of scattering centers between SAR images
taken from different depression angles, as follows:

xg
i = xi/cos

(
θdepression

)
(3)

where θdepression denotes the depression angle. Hereafter, xi is referred to as ground range
coordinated, xg

i .

Figure 3. Examples of scattering centers extracted using CLEAN: (a) SAR image, (b) reconstructed
SAR image, and (c) extracted scattering centers with the segmentation results.

In this paper, we used the ASC location (xi, yi) and normalized amplitude (
∣∣ANorm

i

∣∣) for
the SAR ATR. The locations describe the spatial distribution of ASCs, and the normalized
amplitudes reflect the relative intensities of different ASCs. Therefore, the direct relevance
to the target physical structures benefits the ATR performance. The N-scattering center
feature set G was defined as follows [26]:

G =
{(

xi, yi,
∣∣∣ANorm

i

∣∣∣) | i = 1, 2, . . . , N
}

(4)

2.2. Amplitude-Based Selection

The apparent distribution difference between the amplitude distributions of synthetic
and real SAR images is a challenge in training synthetic data. The statistical differences
between the synthetic and measured data of SAMPLE were investigated by Ref. [33] to
plot histograms of the image means and variances. The synthetic data tended to have
a lower mean and variance than the measured data. The mean image difference was
approximately 0.1 when we extracted scattering centers from real and synthetic images.
There was a difference in the number of SCs extracted between the synthetic and real
images. This could be due to the clear differences in the overall structure of the targets,
as well as fine differences in the target details. However, it could also be due to the use
of unequal minimum amplitudes to alleviate the difference in amplitude values. Before
neighbor matching, a subset of the scatter points in the template image was selected in the
order of their amplitude values.

The number of scatter points in subset M′ was equal to the number of scatter points
in the test image. However, the amplitude of the scattering points extracted from SAR
images varied depending on subtle changes in the target’s pose and imaging geometry (e.g.,
depression angle), and it is desirable to extract the points with a small buffer according to
Aratio as follows:

M′ = min(M, N × Aratio) (5)

where N and M are the numbers of scatter points in the test and template images, re-
spectively. More ASCs in the template (synthetic) image can be expected (i.e., Aratio > 1),
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considering the possible partial and random occlusion of the test image and the full set of
scattering centers of the synthetic image (at least no occlusion). In addition, a maximum
value should be set to control the imbalance of extracted ASC numbers between the real
and synthetic images. In our experiments, the best results were achieved when the Aratio
was around 1.3, which was used in the following analysis.

2.3. Neighbor Matching

As shown in Figure 1, scattering centers with strong amplitudes in synthetic images
are often invisible in real SAR images. In addition, the scattering centers of a part of the
target may not appear in the real image because of the occlusion of the target. Therefore,
considering the above reasons (difference from synthetic images and target occlusion),
we focused on local similarity rather than identification using all scattering centers. For
local similarity, the WVV descriptor should be reconstructed using scattering centers in
the target overlap area (i.e., adjacent scattering centers). In this study, after selecting only
the adjacent points between two sets of scattering centers through the neighbor-matching
algorithm, we evaluated the similarity. First, the positions of the test ASCs were taken
as the centers to form a binary region combined by all circles. When the template ASC
was in the constructed binary region, it was selected; otherwise, it was discarded. The
positions of the template ASCs were then reversed. The radius set for neighbor matching
was chosen to be {0.3, 0.4, and 0.5 m} based on the resolution of MSTAR images, as well as
the experimental observations [19,27].

Figure 4 presents an illustration of neighbor matching when the radius was set to
0.5 m. Neighbor matching was first conducted on the test ASCs (Figure 3a) and then
on the template ASCs (Figure 3b). The corresponding matching results are shown in
Figure 3a,b. Matched template ASCs, unmatched template ASCs, matched test ASCs, and
unmatched test ASCs are represented by different markers. As shown in Figure 3c, the ratio
of unmatched to matched points can be used to distinguish different targets. It is clear that
the selected number of ASCs in the template was smaller when the type was not similar.
Therefore, the matching results can provide discriminability for correct target recognition.

Figure 4. Example of neighbor matching: (a,b) neighbor matching based on the coordinates of the
test ASC and template ASC, respectively. (c) Result of neighbor matching.
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2.4. WVV-Based Feature Reconstruction

To solve the difficulties of similarity calculation, as mentioned before, the correspon-
dence was established based on the existing feature descriptor, the WVV [26]. Test ASCs
and matched template ASCs were used to construct each WVV-based feature set. The de-
tailed procedure of the WVV-based feature reconstruction is illustrated in Algorithm 1 [26].
First, WVV establishes a polar coordinate system, taking the ith scattering center as the
origin. The location of i is represented by the polar radii and polar angles of the remaining
SCs. Next, the WVVi is defined by sorting the polar radii according to their polar angles,
and the radii are linearly interpolated at 1◦ intervals. The WVV is mapped into a vector
of length 360. Finally, to avoid sensitivity to rescaling, the elements in the interpolated
WVV are normalized by the maximum element. After iteration as the number of scattering
centers, the scattering center feature set will consequently be the WVV-based feature set.

Algorithm 1: WVV-based scattering center feature reconstruction

Input: Scattering center feature set G =
{(

xi, yi,
∣∣ANorm

i
∣∣)∣∣i = 1, 2, . . . , N

}
.

For i = 1:N
1. Establish a polar coordinate system with the origin at ith point.
2. Compute the polar radii rik and the polar angles θik (k = 1, . . . , N, k 	= i) of the rest N − 1
points.
3. Sort the polar radii rik corresponding to their polar angles θik and define ith WVV as
WVVi = {rik|k = 1, . . . , N; k 	= i; θik ≤ θik+1}.
4. Interpolate linearly the polar radii.
5. Construct the interpolated WVV, WVVinterp

i which consists of rij (j = 1, . . . , 360).

6. Normalize the rij by the maximum element, rNorm
ij = rij/ max

k=1,...,360

{
rij

}
.

WVVinterp
i ={rNorm

ij |j = 1, . . . , 360}.
End

Output: WVV-based feature set, G′ =
{(

WVVinterp
i ,

∣∣ANorm
i

∣∣) ∣∣∣ i = 1, 2, . . . N
}

Figure 5 shows an example of WVV-based feature reconstruction using 2S1 ASCs
from the SAMPLE dataset. Figure 5a,b show the 56-ASC set and interpolated 23rd WVV,
respectively. In Figure 5b, the blue point at the origin is the 23rd ASC. At this point, the
WVV23 comprises the polar radii of the remaining points. Subsequently, the WVV23 was
linearly interpolated at 1◦ intervals, and the elements were normalized by the maximum
element. After iterations, the WVV-based feature set will have 56 interpolated WVV sets
and normalized amplitudes. When some ASCs are randomly removed, the WVV-based
features, consisting of the remaining ASCs, can maintain their spatial structures. Therefore,
the proposed method is not sensitive to random noise removal.

Figure 5. Example of WVV-based feature reconstruction using ASCs: (a) 56-ASC set and (b) interpo-
lated 23rd WVV.
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2.5. Similarity Calculation

In ATR, it is important to design a similarity measurement between the input test image
and archive templates. The structural similarity between two sets of scattering centers is
obtained through WVV reconstruction of the scattering centers, and several weights related
to the number of scattering centers and the number of matches are proposed.

2.5.1. Matching Score

After the WVV-based feature reconstruction, target classification based on point match-
ing was conducted. The WVV provides a robust description of scattering centers. The
Euclidean distance between the locations of the scattering centers is generally used when
evaluating the point-to-point similarity between two sets of SCs. Meanwhile, spatial
structure relationships were characterized by WVV-based features.

Comparing G′
test, the WVV-based feature set of the test, and template dataset{

B′
k

∣∣k = 1, . . . T
}

with Equation (4) S(G′
test, B′

k) below, the most similar template was selected.

S(G′
test, B′

k) = ∑ s
(

g′l , b′l
)
, l = 1, . . . , min(M, N) (6)

where g′l ∈ G′
test and b′l ∈ B′

k are the matching pairs and N and M are the number of SCs in
the test and k-th template, respectively.

There was no strict one-to-one correspondence between the two sets. We needed to
find an optimal assignment to maximize S between the two point sets. Based on weighted
bipartite graph matching (WBGM), the similarity of the matching pairs was calculated as

s
(

g′i , b′j
)
= F

(
g′i , b′j

)(
360− ‖ WVVinterp

g′i
− WVVinterp

b′j
‖ 2

)
/(360)/(1 + D) (7)

F
(

g′i , b′j
)
=

{
1, D

(
g′i , b′j

)
≤ R

0, otherwise
(8)

where D
(

g′i , b′j
)

are the Euclidean distances between the test ASC and template ASC. If
D is greater than R, which is the distance (meter) for neighbor matching, 0 is assigned
to s

(
g′i , b′j

)
to prevent matching between points that are too far away. Accordingly, the

number of matched pairs, Kmatch was applied to normalize the similarity measurement.

SNorm
(
G′

test, B′
k
)
=

S
(
G′

test, B′
k
)

Kmatch
(9)

2.5.2. Weight Design

The previously obtained WVV-based matching score did not consider the difference
in the number of scattering centers that occurs when the types of targets are different.
Therefore, it was necessary to properly design the weights based on the number of matches
and the number of points that were not matched, and reflect them in the overall degree
of similarity.

Although the type was different from the test, if the template points around the test
point were gathered, the WVV-based similarity was calculated to be high by neighbor
matching (Figure 6a). The WVV-based matching score is higher in Figure 6a than that
in Figure 6b, but in Figure 6a, the difference between the number of test and template
scattering centers is substantial. Because the number of points in the template will be
similar for targets of the same type, it is necessary to consider the difference in the number
of points between the test and the template.
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Figure 6. WVV-based similarity matching results between two sets of scattering centers. (a) Different
types of test and template SCs, (b) same target type of test and template SCs.

Unmatched test scattering centers (MA: Missing Alarm) and unmatched template
scattering centers (FA, False Alarm) were considered in the matching score. Here, we used
the following quadratic weights presented by Ref. [24]:

wa = 1 −
(

s + q
N + m

)2
(10)

where s and q represent the number of MA and FA, respectively, and s + q can be calculated
as N + m − 2 × Kmatch, where m is the number of matched template ASCs by the neighbor
matching algorithm. Because of noise and extraction errors, it is common to observe the
appearance of a few MAs and FAs. As the proportion of MAs and FAs increases, the weight
wa decreases more quickly.

In addition, when the test and template are of the same type, the number of scattering
centers within the radius tends to be large during neighbor matching. Therefore, along
with SNorm and wa, the ratio of the number of selected points to the total number of points
was used as a weight. The overall matching score adopted in this study was defined as:

MS = SNorm(G′
test, B′

k) × Wa × n/N × m/M (11)

In Equation (11), n/N is the ratio of the number of scattering centers extracted from
the test image to the test ASCs adjacent to the template ASCs, and m/M is the ratio of the
number of template ASCs to the number of neighboring ASCs to the number of test ASCs.

The procedure for the proposed target WVV-based matching method is shown in
Figure 2. The entire algorithm was programmed in MATLAB® R2021a (9.10), employing
Matlab’s Parallel Computing Toolbox. First, because it is impossible to define a one-to-one
correspondence between the test and template, subsampling based on amplitude and
neighbor matching was conducted to reduce the imbalance. The similarity matrix of the
WVV sets was obtained using Equation (7) s

(
g′i , b′j

)
, and then all the similarities were
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employed as weights for the WBGM. By repeating the above process based on the number
of template databases, the type of test target could be determined as a category according
to the template with the maximum matching score.

3. Experiments

3.1. Experimental Settings

To evaluate the classification performance of the proposed method, experiments were
conducted on SAMPLE datasets under standard operation conditions (SOC) and EOC,
including random and partial occlusions. The SAMPLE dataset consisted of real and
synthetic SAR images using CAD models of 10-class MSTAR targets, which are listed in
Table 1 [31]. Furthermore, the optical images of 10-class targets are shown in Figure 7; they
are ground vehicles, carriers, and trucks (you can see more targets in SAR images and types
of targets in Refs. [46–49]). The data had a spatial resolution of one foot. Unfortunately,
only some parts of the SAMPLE dataset are publicly available, which is appropriate for
small-scale operations. They were collected at azimuth angles of 10–80◦ with depression
angles from 14–17◦. To validate the proposed method for 10 targets, we used target chips
with depression angles of 16◦ and 17◦. In Table 1, the number of SAMPLE datasets for each
target class is listed according to the depression angle.

Table 1. Number of SAR images in the test and training sets of the SAMPLE dataset.

Type 2S1 BMP2 BTR70 M1 M2 M35 M60 M548 T72 ZSU23

Test set (real 16◦)
Train set (syn 16◦) 50 55 43 52 52 52 52 51 56 50

Test set (real 17◦)
Train set (syn 17◦) 58 52 49 51 53 53 53 60 52 58

Figure 7. Examples of optical images of SAMPLE dataset targets.

When using CLEAN, scattering centers with a minimum amplitude or higher were
extracted. The distribution between the amplitude in the clutter around the target and that
of the target may be considered when selecting the threshold value for the extraction of scat-
tering centers. Because a difference in amplitude exists between real and synthetic images,
scattering centers with an amplitude of 0.25 or higher for real and 0.14 or more for synthetic
images were extracted considering the difference in amplitude between synthetic and real
data of SAMPLE [33,50]. The statistical values of the number of extracted scattering centers
are shown in Figure 8; evidently, the number of scattering centers extracted by CLEAN was
different for each target. BMP2 and BTR70 had an average of 30–50 scattering centers, which
was less than that in the other targets. Meanwhile, M548 and M60 had numerous scattering
centers. Thus, this imbalance in the number of scattering centers caused matching to be
challenging, although valuable information was obtained for target identification.
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Figure 8. Box plot of the number of scattering centers. (a) Real SAR image (16◦, 17◦) and (b) synthetic
SAR image (16◦, 17◦).

For neighbor matching, the radius must be determined. Although the WVV descriptor
is not affected by the translation of the scattering point, translation may affect the identifica-
tion performance because only a part of the template remains based on the test point after
neighbor matching. In Refs. [17,24], the researchers applied several different radii (e.g.,
0.3, 0.4, and 0.5) for neighbor matching, and then the averages of all the similarities were
employed to determine the final similarity between the test and its corresponding template.

In the experiment of this study, when the number of extracted scattering centers was
small, the identification rate increased when a high value of 0.5 was used, rather than a low
value of 0.3 m. Conversely, when a high value of 0.5 was used, there was no change in the
identification rate, even when the number of scattering centers was large. We may need to
consider the possibility of a translation transformation between the target and template
before applying the neighbor-matching algorithm. Therefore, we used a single value of 0.5
so that the effect of the centering error of the test image could be mitigated.

Figure 9 shows an example of the processing according to the proposed algorithm
(Figure 2), in which the test image BTR 70 was well recognized in the ambiguous template
images (BTR 70 and ZSU23). First, the scattering points of each template image were
selected in order of amplitude so that the number of scattering points of the test image
did not exceed 48 × 1.3 (=62.4), where the parameter 1.3 means Aratio, as mentioned in
Section 2.2. Consequently, all 46 scattering points extracted from template BTR70 were
selected, and only 62 of the 69 scattering points of template ZSU23 were selected. The
point ratio selected by neighbor matching had a lower value for template ZSU23 than
BTR70. The test ASCs and matched template ASCs were used to reconstruct the WVV
set, and the similarity between the test and template WVV sets was measured. The
WVV-based similarity (SNorm) of template ZSU23 was higher than that of template BTR70.
Contrastingly, the number of pairs matched by the WBGM of template ZSU23 was smaller
than that of template BTR70; therefore, the Wa of ZSU23 was lower. Finally, after WBGM,
the matching score was calculated using Equation (9), giving a value of 0.63 for the template
image of BTR70 and 0.59 for ZSU23. Although the WVV-based similarity alone did not
show good recognition results, the performance was considerably improved using the
proposed weights.
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Figure 9. Example of recognition results obtained using the proposed algorithm.

3.2. Standard Operating Condition

The proposed method was first evaluated under SOC on 10 classes of targets for
overall classification accuracy. An actual image was used as the test target chip and a
simulated image was used as the template. In the identification performance experiment
using a synthetic image as a template, a simulated image can be used under the same
observation conditions (depression angle) as the real image. However, owing to the
characteristics of the SAR image, the distribution of scattering centers may vary depending
on the imaging parameters, such as the depression angle or subtle changes in the pose of
the target. In addition, because there is a difference between synthetic and real images, it
is more advantageous for target identification to use not only the same observation angle
data, but also adjacent observation angle data, as the template image. The merged training
data were generated by combining the synthetic data with depression angles of 16◦ and
17◦ for 1052 chips.

Tables 2 and 3 show the confusion matrix of the proposed method using a real 17◦
and 16◦ as the test image and a synthetic 16◦/17◦ as the template. The performance was
expressed by the percentage of correct classifications (PCCs). The average PCCs of all
10 targets in Table 2 were 90.7%, whereas the M2 target was recognized with PCCs under
80%, and the remaining targets were over 86%. For the result of real 16◦ data (Table 3), not
only M2 but also BMP2 and M548 showed PCCs under 80%. Meanwhile, T72 and ZSU23
showed higher PCCs than the real 17◦ data. For real 16◦ and 17◦ data identifications, when
only synthetic 16◦ and 17◦ data corresponding to each other were used as template data,
the recognition rates were 87.0% and 88.0%, respectively. When synthetic 16◦/17◦ data
were used to identify real 16◦ and 17◦ data, the identification rates were improved to 87.3%
and 90.7%, respectively. With the merged data from synthetic 16◦ and 17◦ angles, the real
17◦ data improved the recognition performance by 2.7%, while the real 16◦ data improved
by only 0.3%.
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Table 2. Recognition results obtained using the proposed method within 10 target classification tests
(test image: real 17◦, template image: synthetic 16◦/17◦).

Type 2S1 BMP2 BTR70 M1 M2 M35 M548 M60 T72 ZSU23
PCC
(%)

2S1 54 0 1 0 1 0 0 0 0 2 93.10
BMP2 4 47 1 0 0 0 0 0 0 0 90.38
BTR70 2 0 47 0 0 0 0 0 0 0 95.92

M1 0 0 0 50 1 0 0 0 0 0 98.04
M2 4 4 0 0 41 0 0 0 1 3 77.36

M35 0 0 0 0 0 52 1 0 0 0 98.11
M548 0 0 0 0 0 3 49 0 0 1 92.45
M60 3 0 0 4 0 0 0 52 1 0 86.67
T72 1 3 0 0 1 0 0 2 45 0 86.54

ZSU23 6 0 0 0 1 0 0 0 0 51 87.93
Average 90.65

Table 3. Recognition results obtained using the proposed method within 10 target classification tests
(test image: real 16◦; template image: synthetic 16◦/17◦).

Type 2S1 BMP2 BTR70 M1 M2 M35 M548 M60 T72 ZSU23
PCC
(%)

2S1 44 0 2 0 0 0 0 0 0 4 88.00
BMP2 10 42 1 0 2 0 0 0 0 0 76.36
BTR70 0 0 41 0 1 0 0 0 0 1 95.35

M1 0 0 0 52 0 0 0 0 0 0 100.00
M2 4 3 0 0 40 0 0 0 1 4 76.92

M35 0 0 7 0 0 43 0 0 0 2 82.69
M548 0 0 7 0 0 2 41 0 0 2 78.85
M60 3 0 0 5 0 0 0 42 1 0 82.35
T72 0 0 0 0 0 0 0 1 55 0 98.21

ZSU23 2 0 1 0 0 0 0 0 0 47 94.00
Average 87.27

We attempted to prove the effectiveness of our proposed method using a subset of
ASCs. There are three types of ASCs: ASCall means that all the test and template ASCs are
used in WVV-based feature reconstruction as in Ref. [26], ASCsubset(neighbor) indicates that
the subset of ASCs is selected by neighbor matching, and ASCsubset(amp,neighbor) indicates
that the subset of ASCs is selected by amplitude-based sub-sampling followed by neighbor
matching. Figure 10 shows the recognition rate of the 10 targets according to the ASC types
used for classification. As described above, the merged data from synthetic 16◦ and 17◦ an-
gles were used as a single template. This is the result of averaging the respective recognition
performance obtained by using real 16◦ and 17◦ data as the test images. The overall perfor-
mance of ASCall using all extracted ASCs suggested by Ref. [26] was lower than the results
achieved by our proposed methods. When using the ASCall , the recognition rate of BMP2
was very low, at about 70%. The ASCsubset(amp,neighbor) showed a high recognition rate of
about 85% or more in all targets except M2, and the performance variance for the 10 targets
was the smallest among the three types of ASC. The results of ASCsubset(amp,neighbor) were
appropriate for the 10-class target classification, and in particular, the recognition rate of
BMP2, BTR70, and T72 was greatly improved, by more than 5% compared to ASCall .
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Figure 10. Recognition rate of each target according to different sets of scattering centers.

3.3. Occlusion and Random Missed Pixels

In the real world, the occlusion of a target by the external environment, such as ar-
tificial or natural objects, can always occur. The performance of the proposed method
was investigated using directional occlusions. Similarly, the test samples in Table 1 were
simulated to obtain samples with different levels of directional occlusion for classification.
Figure 11 shows the recognition rate for each method with varying levels of directional
occlusions. When the target was partially occluded, only part of the local structure was dis-
criminative for the target. The WVV-based reconstruction with ASCs selected by neighbor
matching made it possible to consider the local similarity between the test and the template.

Figure 11. Performance comparison of different subsets by the degree of partial occlusion.

When the test was occluded randomly from different directions, the performance of
the proposed method, ASCsubset(amp,neighbor), remained at a high level of over 70% until
the occlusion level was 20%. Compared to the overall recognition rate of ASCall , it was
improved by 1–4%. When the WVV was reconstructed with a part selected as a neighbor
rather than the entire scattering center, better results were obtained with less than 20%
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occlusion. In addition, the method applying ASCsubset(amp,neighbor) was maintained at
approximately 3% higher than the neighbor subset, although there was no considerable
difference in value. However, when >25% occlusion occurred, it was better to use ASCall .
In the case of occlusion of 20% or more, the average recognition rate was lowered to 70% or
less. That is, the overall reliability of the performance was too low to be used in practice.
Therefore, it is better to use a subset instead of all ASCs, assuming a low occlusion rate, for
a high recognition rate.

The ASCs could be interrupted by noise and differences in image resolution. A
sensitivity analysis for randomly missed points was also performed. We randomly removed
them according to the percentage of missed points. The remaining SCs were used to
reconstruct WVV-based features that were matched with the templates. The percentage of
missed points varied from 0 to 50%, and 10 Monte Carlo simulations were conducted for
each percentage.

As shown in Figure 12, ASCsubset(neighbor) always showed a higher recognition rate
than ASCall , verifying its robustness to random occlusion. The high performance of over
80% in ASCsubset(neighbor) was maintained until a removal level of 45%. On the other
hand, ASCsubset(amp,neighbor) showed better results than ASCall only up to 15% random
occlusion. This is because the ASCs in the test image were randomly removed, while
the ASCs in the template image were removed based on the amplitude of ASCs, so the
relevance between the remaining pixels decreased significantly as the percentage of random
occlusion increased.

Figure 12. Performance comparison of the subsets by randomly missed points.

We achieved high performances using the SAMPLE dataset, with 100% synthetic data
in the training set. When the experiments were conducted by changing the types of ASCs
used, the overall recognition rate under SOC (no occlusion and no random missed pixels)
was improved about 4% compared to ASCall . Additionally, the proposed method was less
sensitive to a small amount of partial occlusion and random pixel removal.

We compared the proposed method with existing methods [39] to illustrate its perfor-
mance. The experimental results, where the average recognition rate was 24.97% when
solely synthetic data were used in the training batch, were initially presented by Ref. [31],
the creators of the SAMPLE dataset. Their algorithm was based on a convolutional neural
network (CNN). They then achieved average accuracies of 51.58% by training DenseNet
with the assistance of a generative adversarial network (GAN) in their most recent work [25].
Their deep learning-based performances seem to be superior to our proposed method in
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Refs. [51,52]. However, the accuracy dropped notably below 85% when they used 100%
synthetic data in training. Consequently, our proposed method had a higher performance,
which was also more stable when using 100% synthetic data as the training dataset.

In terms of the validity under EOCs, our performances were also compared to other
previous works where they used the SAMPLE dataset for experiments, but the organization
of data setting (number of classes, depression angle, etc.) was not same as our dataset. For
example, the target recognition rate decreased by 30% during 50% random occlusion in
Ref. [17], when they use a measured dataset (MSTAR) for both testing and training, but
only by 10.6% in our study using ASCsubset(neighbor). This was the best performance under
random occlusion among the previous works. Compared to the results of other methods,
our similarity measure can effectively overcome the recognition difficulties caused by
random occlusion when ASCsubset(neighbor) is used, though the same condition with our
dataset was not applied in the methods. We believe that the advantage of the proposed
algorithm is that it mostly focuses on the local features related to the intersected target
parts to improve the feasibility of the SAR ATR system in response to a realistic scenario.
However, there are several limitations resulting from human intervention. One is the
existence of an empirical threshold for amplitude-based subsampling, and the need to set a
specific radius in neighbor matching, which can cause significant performance degradation
in our algorithm when most parts of the target are occluded. To resolve these limitations,
we will also consider how to integrate global similarities with the proposed method in the
case of target occlusion.

4. Conclusions

A robust algorithm is required to identify partial differences between real and synthetic
images to perform target identification based on a dataset of synthetic images, such as
SAMPLE. We proposed an improved WVV-based ATR method using a subset of the
template’s ASCs, using the ASCs’ amplitude and the proximity of the scattering center
location, which is less susceptible to the partial differences between two ASC sets. The
SAMPLE dataset, with 10 classes of military targets, was used in the experiments. With the
merged template of synthetic 16◦/17◦ images, the recognition rates were 87.3% for the 16◦
real images and 90.7% for the 17◦ real images. The performance with occlusion remained
above 70% until the occlusion level reached 20%. In addition, the subset of ASCs selected
by neighbor matching achieved recognition rates great than 80% until the proportion of
randomly missed points reached 45%. Therefore, we expect that the proposed method will
be useful in practical SAR ATR systems using synthetic images with partial and random
differences in ASCs due to occlusion.
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Abstract: A new approach to the estimation and classification of nonlinear frequency modulated
(NLFM) signals is presented in the paper. These problems are crucial in electronic reconnaissance
systems whose role is to indicate what signals are being received and recognized by the intercepting
receiver. NLFM signals offer a variety of useful properties not available for signals with linear
frequency modulation (LFM). In particular, NLFM signals can ensure the desired reduction of side-
lobes of an autocorrelation (AC) function and desired power spectral density (PSD); therefore, such
signals are more frequently used in modern radar and echolocation systems. Due to their nonlinear
properties, the discussed signals are difficult to recognize and therefore require sophisticated methods
of analysis, estimation and classification. NLFM signals with frequency content varying with time
are mainly analyzed by time–frequency algorithms. However, the methods presented in the paper
belong to time–chirp domain, which is relatively rarely cited in the literature. It is proposed to use
polynomial approximations of nonlinear frequency and phase functions describing signals. This
allows for applying the cubic phase function (CPF) as an estimator of phase polynomial coefficients.
Originally, the CPF involved only third-order nonlinearities of the phase function. The extension of
the CPF using nonuniform sampling is used to analyse the higher order polynomial phase. In this
paper, a sixth order polynomial is considered. It is proposed to estimate the instantaneous frequency
using a polynomial with coefficients calculated from the coefficients of the phase polynomial obtained
by CPF. The determined coefficients also constitute the set of distinctive features for a classification
task. The proposed CPF-based classification method was examined for three common NLFM signals
and one LFM signal. Two types of neural network classifiers: learning vector quantization (LVQ) and
multilayer perceptron (MLP) are considered for such defined classification problem. The performance
of both the estimation and classification processes was analyzed using Monte Carlo simulation studies
for different SNRs. The results of the simulation research revealed good estimation performance and
error-free classification for the SNR range encountered in practical applications.

Keywords: NLFM signal classification; NLFM signal estimation; cubic phase function; multiclass
classification; instantaneous frequency rate

1. Introduction

In this paper, an approach based on the time–chirp (T − Ω) transform used for the
estimation and classification of signals with nonlinear frequency modulation (NLFM)
has been presented. The chirp rate (Ω), also called the instantaneous frequency rate
(IFR), is the signal phase acceleration and can be calculated as the time derivative of a
frequency function. The analysis and processing of NLFM signals are exploited in a wide
range of applications for example in Electronic Support Measures/Electronic Intelligence
(ESM/ELINT), Electronic Warfare (EW), Electronic Reconnaissance (ER) systems, as well as
in passive bistatic radar (PBR) [1]. Modern electronic intelligence and electronic support
are designed to automatically distinguish the modulation type of an intercepted radar
signal, which can be utilized in early warning systems or give more information about
hostile radars [2–7]. Passive bistatic radar uses emissions from communications, broadcast,
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or radionavigation transmitters instead of dedicated, cooperative radar transmitters. The
transmitted waveforms are not explicitly designed for passive radar purposes. Therefore,
knowledge about the received signal is crucial in the ability of waveform recognition and
reconstruction. New sources of target illumination in passive radars are constantly being
searched. Solutions with using the 5G cellular network as a source of illumination in
a passive radar system have recently appeared [8]. The NLFM waveform for synthetic
aperture radar (SAR) applications is important for improving spaceborne SAR image
quality and reducing system costs [9,10]. The NLFM waveform was also proposed for
active sonars [11].

The NLFM signal can be synthesized in different ways in order to obtain desired
properties by shaping the power spectral density (PSD). Due to nonlinear frequency modu-
lation, such signals can achieve the desired PSD and desired autocorrelation function with
reduced sidelobes compared to LFM signals [12–14]. In the case of narrowband signals,
the Doppler offset may be miscalculated in the narrowband ambiguity function [15,16].
The potential advantage of NLFM is its Doppler shift tolerance. These properties make
NLFM signals very attractive especially for radar applications. Generally, synthesis of
signals with limitation of the required level of AC-sidelobes and desired power spectral
density is a great challenge. These conditions require multi-objective optimization ap-
proach with strong constraints and high computational load and may result in inconsistent
requirements [11,15,17–20]. Appropriate NLFM chirps achieving the desired shape of the
power spectrum have been suggested as a solution to this problem. Signals for which
parameterized nonlinear frequency modulations satisfy the desired spectral properties,
achieving low level sidelobes, have been proposed by a lot of authors. Signal models
presented by Collins and Atkins [11], Pirce [21] or Yue and Zhang [22] are very popular
and are also the subject of analysis in this paper.

A special class of NLFM signals, which enables the shaping of the PSD and obtains
the desired AC function, is polynomial phased signals (PPS). This kind of nonlinear signal
plays a significant role in modern radar systems, including SAR, ISAR and OTHR systems,
as well as in sonars, biomedicine, machine engine testing, etc., especially in the ISAR, where
due to target movement or extreme target maneuvers, the radar returns contain mainly PPS
components, possibly with high-order phase terms [23,24]. The simplest type of a signal
with a polynomial phase is a signal with linear frequency modulation. Unfortunately, the
PSD of an LFM signal is approximately rectangular and after matched filtering (MF) the
peak-to-sidelobe ratio (PSLR) is rather low, reaching about 13.3 [dB]. Therefore, NLFM
signals are considered to be a good alternative to LFM signals.

Modern radar systems, especially surveillance systems, can emit a pulse train with
inter-pulse and intra-pulse complex modulation, including both linear and nonlinear
frequency modulation. If such radars operate in the dense, hostile electromagnetic environ-
ment, intercepted signals should be recognized or classified by means of spectrum-sensing
systems such as ELINT, ER and EW. The main problem of recognition and estimation of
intercepted signals is the determination of the modulation type and its parameters. If
any information is not available, it is reasonable to assume a phase polynomial for such
signals with a sufficiently high order of polynomial nonlinearity. Even parameterized
nonlinearities, which usually have a complex analytical description, can be approximated
by polynomial form with a sufficiently high order to obtain a simpler description for fur-
ther analysis. In this paper, the polynomial approximation of the NLFM models has been
evaluated for estimation and classification purposes. The set of selected coefficients of
polynomial approximation is suggested as distinctive features allowing the identification of
a type of unknown emission by means of classification. This approach requires a database
containing a set of nonlinearity types. In this paper, the estimation of the PPS parameters
as well as identification by classification of other type of nonlinearities are considered.

The general description of nonstationary signals embedded in noise can be presented
as follows:

s(t) = A(t)ejφ(t) + sn(t) (1)

118



Sensors 2022, 22, 8104

where φ(t) is the phase of the signal, A(t) is the amplitude of the signal and sn(t) is white
Gaussian noise.

There is an unambiguous relationship between frequency function f (t) (the instanta-
neous frequency (IF)) and the instantaneous phase function φ(t) of a nonstationary signal
s(t) through the differentiation operation:

f (t) =
1

2π

dφ(t)
dt

(2)

Knowledge of the IF function automatically determines the phase function and vice
versa. It seems natural to use time–frequency (T-F) distributions for IF analysis and estima-
tion of NLFM signals. However, the most known quadratic T-F distributions, such as the
pseudo Wigner–Ville distribution and the Choi–Williams distribution, contain cross-term
components, and the estimation of the instantaneous frequency modulation is performed
with unacceptable accuracy. Therefore, they are practically useless [2]. For analysis of the
PPS, the high order ambiguity function (HAF) or the product HAF (PHAF) seems to be
attractive. In these distributions, the phase-differentiation (PD) operation is repeated many
times until a single complex sinusoidal signal is obtained [25,26]. The frequency of the
obtained sinusoidal signal indicates the highest order PPS coefficient. Next, the original
signal is dechirped with the use of this PPS coefficient. The remaining parameters are
estimated by repeating the same procedure. Although these methods provide good accu-
racy, they suffer from high computational burden and error propagation during dechirping
operations. Therefore, they seem to be useless for NLFM.

This paper deals with the effective estimation of the PPS of higher order. The pro-
posed method is based on the concept of nonlinear sampling and the cubic phase function
distribution (CPF) developed on the time–chirp (T − Ω) plane [27]. The CPF distribution
turned out to be effective in parameter estimation of the quadratic frequency modulation
signals [28]. In this paper, the CPF is proposed to extract distinctive features of parameter-
ized nonlinearities approximated by a polynomial useful in classification. Nonlinearities
within the paper are replaced by the polynomial form containing sufficient information to
classify NLFM signals. Although the CPF was originally designed for the estimation of the
third order PPS, in this paper, the CPF method is used for estimation of the sixth order PPS.

The classification of NLFM using the set of distinctive properties obtained from the
CPF method on the (T − Ω) plane is presented in the next part of the paper. The classifi-
cation process comprises three types of nonlinearities typical for radar applications. The
classification of NLFM signals is not trivial, especially for signals with abrupt frequency
changes, and requires advanced systems such as neural networks to achieve high classi-
fication efficiency [29–32]. Generally, due to the ability of self-learning and adaptability,
neural networks can outperform other classification approaches. Two neural classifiers
based on learning vector quantization (LVQ) and multilayer perceptron (MLP) networks
have been used and compared. Other concepts of LFM and NLFM classification based on
neural networks can be found in [33–35]. The neural network classification, considered in
this paper, also takes into account the classification between NLFM and LFM signals [36].

The paper is organized as follows: Section 2 presents selected NLFM signals used
in radar and sonar and discusses the use of their polynomial approximations. Section 3
discusses various methods of IF estimation and describes the proposed IF estimator based
on the cubic phase function, while Section 4 presents the results of simulation studies on the
quality of the proposed IF estimator. Section 5 proposes the use of the CPF-based estimator
of phase polynomial coefficients in the classification of the NLFM signals and presents the
results of simulation tests. Section 6 presents the conclusions.

2. Nlfm Signals and Their Polynomial Approximations

In this section, some selected examples of nonlinear functions used for the generation
of NLFM signals for radar and echolocation systems are presented. Then, using the Taylor
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expansion of these functions, some aspects related to the accuracy of the polynomial
approximation are illustrated and discussed.

Currently, NLFM signals are mainly developed for use in radar and sonar technolo-
gies. To present the proposed estimation and classification methods, three representative
NLFM functions have been selected and presented by Formulas (3)–(7). The functions
and their parameters were designed by their authors to minimize the sidelobes of the
autocorrelation function.

The NLFM signal developed by Collins and Atkins [11] consists of a linear and
nonlinear part. The nonlinearity impact is determined by two parameters α and γ:

f1(t, α, γ) =
B
2

[
α tan(2γt/T)

tan(γ)
+

2(1 − α)t
T

]
; −T

2
≤ t ≤ T

2
(3)

where B is the signal bandwidth, T is the time duration of the pulse, and α is the parameter
that defines the weight between the linear and nonlinear part, while the parameter γ affects
the intensity of the nonlinear part.

Parameter values that minimize the sidelobes of the autocorrelation function are
α = 0.52 and γ = 1.47 [11].

The NLFM signal proposed by Price [21] also consists of a linear part represented by
the BL parameter and a nonlinear part controlled by BC:

f2(t, BL, BC) =
t
T

(
BL +

BC√
1 − 4t2/T2

)
. (4)

In the paper, the following form of Formula (4), explicitly showing the signal band-
width B [12], is used:

f2(t, Bl , Bc) = B
t
T

(
Bl +

Bc√
1 − 4t2/T2

)
, (5)

where the parameters: Bl = BL/B and Bc = BC/B, with values Bl = 0.561105 and
Bc = 0.23799 minimizing sidelobes [12], and the time interval −0.45T ≤ t ≤ 0.45T covering
bandwidth B.

The NLFM signal proposed by Yue and Zhang [22] is given by the formula:

f3(t, k1, k2) = Bk1 tan
(

k2
t
T

)
; −T

2
≤ t ≤ T

2
. (6)

where the parameters k1 and k2 that minimize the sidelobes take values: k1 = 0.1171 and
k2 = 2.607.

In the presented analyses, the LFM signal is also used. It has the same bandwidth B
and the pulse duration T as NLFM signals. The frequency of the LFM signal is described
by the following formula:

fLFM(t) =
B
T

t; −T
2
≤ t ≤ T

2
. (7)

Nonlinear, continuous functions f1(t, α, γ), f2(t, Bl , Bc), f3(t, k1, k2) determined on the
closed interval:− T

2 ≤ t ≤ T
2 , according to the Weierstrass approximation theorem, can

be approximated with desired accuracy using polynomial functions of a sufficiently high
order. The approximation error for a particular nonlinear function depends on the order of
the polynomial.

The proposed estimation and classification method is based on simplified polynomial
models of nonlinear functions that describe the frequency and phase of the NLFM signals.
An important issue is the selection of the order of the approximating polynomial. In the
paper, this issue is analyzed using the Taylor series approximation, which makes it possible
to obtain an analytical description of the signal frequency and phase as a function of time.
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Examples of the approximation of the nonlinear functions f1(t, α, γ), f2(t, Bl , Bc),
f3(t, k1, k2) are presented by (8)–(10). Polynomials of the fifth order were calculated using
the Taylor expansion around the time point t = 0:

f Ta
1 (t, α, γ) =

B
T

(
1 − α +

αγ

tan(γ)

)
t +

4Bαγ3

3T3tan(γ)
t3 +

32Bαγ5

15T5tan(γ)
t5 + R f 1(t, α, γ) (8)

f Ta
2 (t, Bl , Bc) =

B(Bc + Bl)

T
t +

2BBc

T3 t3 +
6BBc

T5 t5 + R f 2(t, Bc, Bl) (9)

f Ta
3 (t, k1, k2) =

Bk1k2

T
t +

Bk1k2
3

3T3 t3 +
2Bk1k2

5

15T5 t5 + R f 3(t, k1, k2) (10)

where R f 1(t, α, γ), R f 2(t, Bc, Bl) and R f 3(t, k1, k2) are reminder terms.
Figure 1 illustrates a change in the accuracy of f Ta

1 (t, α, γ) approximation depend-
ing on the polynomial order. Figure 1a shows the function f1(t, α, γ) and its polyno-
mial approximations of order M ∈ {5, 9, 13}. Figure 1b shows the error Δ f1(t, α, γ) of
these approximations.

Δ f1(t, α, γ) = f1(t, α, γ)− f Ta
1 (t, α, γ) (11)
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Figure 1. The accuracyof nonlinear frequency approximations, (a) the function f1(t, α, γ) and its
Taylor polynomial approximations of the order M ∈ {5, 9, 13}, (b) the error of approximations.

As can be seen from the analysis of the results presented in Figure 1, the error of
polynomial approximation for the order M > 5 slowly decreases. Similar results are
obtained for the approximation of the functions f2(t, Bl , Bc) and f3(t, k1, k2).

Based on the relationship (2), it is possible to calculate the analytical functions (12)–(15)
that describe the instantaneous phase of the NLFM and LFM signals:

φ1(t, α, γ) = πB

[
αT ln(tan(2γt/T)2 + 1)

4γ tan(γ)
+

(1 − α)t2

T

]
+ φ0

1, (12)

φ2(t, Bl , Bc) =
π

2
B
(

2Bl
T

t2 − Bc
√

T2 − 4t2
)
+ φ0

2, (13)

φ3(t, k1, k2) =
πBTk1

k2
ln

(
tan(k2

t
T
)

2
+ 1

)
+ φ0

3, (14)

φLFM(t) =
πB
T

t2 + φ0, (15)

where φ0
1, φ0

2, φ0
3, φ0 are initial phase values, while the time interval is is − T

2 ≤ t ≤ T
2 .
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The Taylor polynomial approximation is calculated around the time moment t = 0 nd
phase value: φ(0), as the phase function is symmetrical with respect to this point. Taylor
approximations of the phase with polynomials of the sixth order are presented by (16)–(18).

φTa
1 (t, α, γ) =

πB
T

(
1 − α +

αγ

tan(γ)

)
t2 +

2πBαγ3

3T3tan(γ)
t4 +

32πBαγ5

45T5tan(γ)
t6 + Rφ1(t, α, γ) (16)

φTa
2 (t, Bl , Bc) = −π

2
BBcT +

πB(Bc + Bl)

T
t2 +

πBBc

T3 t4 +
2πBBc

T5 t6 + Rφ2(t, Bc, Bl) (17)

φTa
3 (t, k1, k2) =

πBk1k2

T
t2 +

πBk1k2
3

6T3 t4 +
2πBk1k2

5

45T5 t6 + Rφ3(t, k1, k2) (18)

where Rφ1(t, α, γ), Rφ2(t, Bc, Bl), Rφ3(t, k1, k2) are reminder terms.
The influence of polynomial order on the accuracy of the polynomial approximation

of the phase function φ1(t, α, γ) is presented in Figure 2. Figure 2a shows the function
φ1(t, α, γ), and its polynomial approximations of order M ∈ {6, 10, 14}. Figure 2b shows
the error Δφ1(t, α, γ) of these approximations:

Δφ1(t, α, γ) = φ1(t, α, γ)− φTa
1 (t, α, γ) (19)
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Figure 2. The accuracyof phase function approximations, (a) the function φ1(t, α, γ) and its Taylor
polynomial approximations of order M ∈ {6, 10, 14}; (b) the error of approximations.

As can be seen from the analysis of the results presented in Figure 2, the error of poly-
nomial approximation of phase function is quite small compared to phase value. Similar
results are obtained for the approximation of the functions φ2(t, Bl , Bc) and φ3(t, k1, k2).

In the paper, the polynomial approximation of a phase function has been analyzed
to classify NLFM signals. The nonlinear change in the frequency of analyzed signals is
described by the odd function, which results in an odd order of approximating polynomial.
Taking into account this feature and the relationship (2), the polynomial approximation
of the phase function is of an even order. In our case, after preliminary investigation,
we decided that the order of the polynomial approximation of the phase function can be
limited to M = 6. The set of selected coefficients of the approximating polynomial is chosen
as a set of distinctive features in the proposed method of classification of NLFM signals.
The sixth order of the approximating polynomial seems sufficient to constitute a set of
distinctive features. Although the selected order of the approximating polynomial does
not guarantee a perfect polynomial fitting, especially on signal parts with abrupt nonlinear
changes, it allows for effective classification with the low computational load.

3. The CPF-Based Estimator of the IFR

The recognition of signals with nonlinear frequency modulation is usually performed
with the use of estimation of the instantaneous frequency of the signal. There are many
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methods for analyzing nonlinear frequency functions, including all distributions of the
group belonging to the Cohen class. These are, among others, time–frequency distributions
such as the Wigner–Ville distribution, the Choi–Wiliams distribution and the short-time
Fourier transform (STFT). A large group of signals with a nonlinear frequency are PPS.
Very good estimation results of the higher order PPS are obtained by the quasi-maximum
likelihood (QML) method, which is an extended version of the STFT transformation [37–39].
Estimation of the IF is performed by the STFT. Coefficients of the PPS are obtained from
the IF estimates using the classical polynomial regression. The QML method requires an
additional refining procedure to improve the quality of coarse estimates of polynomial
coefficients. The refining process consists of four steps: dechirping the received signal using
coarse initial estimates of the polynomial phase parameters provided by the STFT, filtering
through an M-point moving average (MA) filter combined with an M-fold decimation,
polynomial phase estimation of the obtained signal by phase unwrapping and least squares
estimation. The final estimates are calculated as a combination of estimates obtained in step
3 with the initial coarse estimates [40]. In the last step of the QML method, the optimal STFT
window is searched by maximizing the quasi-ML function. Rather than directly searching
through all parameters of phase polynomial, the maximum QML function is calculated for
the estimates provided by STFT and polynomial regression. The QML is computationally
exhaustive for higher order PPS because it requires multiple STFT calculations and multiple
polynomial regression calculations, which are slow but precise processes. Therefore, it is
desirable to search for a new transform with results comparable to the QML transform, but
with less computational effort. A proposed alternative method of estimating the parameters
of approximating polynomials is the CPF distribution defined for discrete signals.

Discrete signals of interest (i.e., PPS) zr(n) are characterized by a constant amplitude
b0 and phase φ(n) and are defined as:

zr(n) = zs(n) + zw(n) = b0ejφ(n) + zw(n), −N − 1
2

≤ n ≤ N − 1
2

, (20)

where the phase function φ(n) is described by the M− th order polynomial with coefficients
am and zw(n) is Gaussian white noise with variance σ2. The discrete phase function is
specified by the following formula:

φ(n) =
M

∑
m=0

aφmnm (21)

The CPF is defined as follows:

CPFzr (n, Ω) =

N−1
2

∑
m=0

zr(n + m)zr(n − m)e−jΩm2
(22)

where Ω is the frequency rate.
The discrete time tn = nTs resulting from sampling with the period Ts and the discrete

frequency rate Ω define a discrete grid on the time—frequency rate plane (n, Ω). Therefore,
the discrete results of the estimation of phase polynomial coefficients may differ from the
continuous case if the discrete grid is sparse. The estimate of IFR [28,41] for each point in
time is obtained as follows:

ÎFR(n) = argmax
Ω

CPFzr (n, Ω) (23)

The CPF presented in the literature is mainly used to estimate the parameters of
a signal phase polynomial up to the third order [28,41,42]. However, according to the
analysis presented in Section 2, the proposed classification approach requires estimation
of the coefficients of the sixth order phase polynomial. In this paper, the extension of
the CPF to analysis of a sixth order polynomial is considered. The proposed approach
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assumes that only one run of the CPF-based method is used to estimate coefficients of the
phase polynomial of the required order. Having had the set of estimated phase polynomial
coefficients, the set of frequency polynomial coefficients can also be calculated according to
the relationship (2). The proposed method based on the CPF has a lower computational
load than the QML and other commonly known methods dedicated to the analysis of
signals in the frequency or time–frequency domains.

NLFM signals are most often defined by frequency functions, such as functions
f1(t, α, γ), f2(t, BL, BC) and f3(t, k1, k2) given in Section 2 described by (3)–(6). Gener-
ating signals by means of Equation (1) requires the knowledge of the corresponding phase
functions, which for the analyzed signals are represented by the functions φ1(t, α, γ),
φ2(t, BL, BC) and φ3(t, k1, k2) described by (12)–(14). The CPF algorithm, which processes
the received noise-disturbed signal (20), estimates the coefficients of the discrete phase
polynomial model. In the proposed classification method, these coefficients of the phase
polynomial are used as a set of distinctive features. Classification methods are described
in more detail in Section 5. Moreover, the estimation of the instantaneous frequency with
the use of a discrete polynomial approximating the continuous frequency function is pro-
posed. The coefficients of the approximating frequency polynomial are calculated from the
coefficients of the phase polynomial obtained using CPF.

The proposed M − th order polynomial approximating frequency function f (n) is of
the form:

f̂ (n) =
M

∑
m=0

a f mnm, (24)

where a f m are the coefficients of the frequency polynomial.
The coefficients of the frequency polynomial (24) can be obtained from phase polyno-

mial coefficients using relationships (2) and take the following value:

a f m =
(m + 1)aφm+1

2πTs
(25)

where the coefficients aφm of the phase polynomial are obtained by the CPF.
Modification of the kernel of the classical CPF distribution (22) with the use of nonuni-

form sampling allows for higher order PPS decomposition. By sampling the signal at
nonuniformly spaced time moments, the order of the PPS estimator can be lowered [43].
The kernel of the original CPF distribution (22) is as follows:

K(zr, n) = zr(n − m)zr(n + m) (26)

and the modified kernel takes the following form:

K(zr, n) = zr

(
n −

√
Cm

)
zr

(
n +

√
Cm

)
, m = 0, 1, . . . ,

N − 2
2

− |n| (27)

where
√

Cm defines the nonlinear sampling [44].
The proposed sampling allows the calculation of the CPF using the FFT method, which

results in a significant reduction of the computational load.
If we consider the modified kernel for n = 0 and the signal model (2) processed by this

kernel, a third order polynomial form is obtained with only even coefficients from the set
of all coefficients of the sixth order phase polynomial, which is proposed as a polynomial
approximation of considered nonlinearities:

K(zr, 0) = zr1(m) = ej2(Ca2m+C2a4m+C3a6m3) (28)

where the parameter C = (N − 1)/2 controls the sampling process, and a2, a4, a6 are
polynomial parameters related to phase polynomial coefficients from (21).
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The kernel K(zr, 0) creates the signal with the polynomial phase of the 3rd order. Coef-
ficients of such a polynomial can be efficiently computed using the CPF distribution (22).
Parameters 2Ca2, 2C2a4 and 2C3a6 are related to aφ2, aφ4, aφ6, respectively. Therefore, the
estimation of the polynomial parameters can be performed directly by the CPF procedure:

Ω̂1 = arg max
Ω

CPFzr (n1, Ω) (29)

Ω̂2 = arg max
Ω

CPFzr (n2, Ω) (30)

It is natural to assume the parameter n1 = 0, but parameter n2 should be chosen to
obtain a statistically optimal estimate of parameters. It strongly depends on the properties
of analyzed signals. The Ω̂1 and Ω̂2 allow for calculating âφ4 and âφ6 according to Equations
(31) and (32) [28]:

âφ4 =
Ω1n2 − Ω2n1

4C2(n2 − n1)
(31)

âφ6 =
Ω2 − Ω1

12C3(n2 − n1)
(32)

An estimate of a2 from (28) is obtained by dechirping and finding the Fourier transform
peak and âφ2 can be calculated as follows:

âφ2 =
â2

2C
(33)

The kernel (28) is independent of the remaining parameters aφ1, aφ3, aφ5 of the phase
polynomial. The accuracy of the estimation process depends on the SNR, and operations
above a certain SNR threshold are performed with acceptable accuracy.

The estimated parameters aφ2, aφ4 and aφ6 are used for the estimation of the nonlinear
frequency function and the signal classification process. The proposed method including
estimation and classification is summarized in the flow diagram presented in Figure 3.

Acquisition of signal zr(n)

Calculation of kernel K(zr, n) (according to (27)

Calculation of Ω̂1, Ω̂2 with using CPF (according to (29), (30))

Calculation of âφ4, âφ6 (according to (31), (32))

Calculation of âφ2 (according to (33))

Passing âφ2, âφ4 and âφ6
to estimation and classification procedures

NLFM IF estimation
(according to (27)–(33))

Section 4

NLFM signals classification
(using LVQ, MLP classifiers)

Section 5

Figure 3. Flow diagram of the proposed method including estimation and classification.

125



Sensors 2022, 22, 8104

4. Frequency Estimation of NLFM Signals Based on CPF

Simulation investigations of the proposed algorithms were carried out for three
waveforms NLFM and one LFM waveforms. The NLFM functions, marked as f1(t, α, γ),
f2(t, BL, BC) and f3(t, k1, k2), are presented in Section 2 and are described by (3)–(6). Their
specific parameters ensuring minimal sidelobes are presented there. The up-chirp LFM
waveform fLFM(t) is described by Formula (15). The following time and bandwidth pa-
rameters for all signals were assumed: pulse duration T = 20 · 10−6 s. (with time frame:
−T/2 ≤ t ≤ T/2); sampling frequency fs = 100 MHz; signal bandwidth B = 5 MHz. The
signal noise was assumed to be complex Gaussian with variance depending on the SNR.
To evaluate the proposed methods, Nsr = 500 Monte Carlo simulations were carried out
for each case.

For assumed sixth order phase polynomial and odd frequency functions, the estima-
tion function takes the form:

f̂ (n) = a f 1n + a f 3n3 + a f 5n5, (34)

where a f 1, a f 3 and a f 5 are polynomial coefficients that can be calculated as follows:

a f 1 =
aφ2

πTs
(35)

a f 3 =
aφ4

πTs
(36)

a f 5 =
aφ6

πTs
(37)

where aφ2, aφ4 and aφ6 are the coefficients of the polynomial approximating phase obtained
from the CPF.

The quality of the estimation of the instantaneous frequency of the signal can be
assessed by the root mean square error (RMSE) determined according to the relationship:

RMSE(k) =

√√√√ 1
Nsr

[
Nsr

∑
n=1

(
f̂n(k)− fNLFM(k)

)2
]

(38)

where Nsr is the number of simulation runs.
Figures 4 and 5 show the RMSE of the estimation of the instantaneous value of

the frequency of NLFM signals obtained using the proposed CPF-based method. For
comparison, Figure 5b shows the RMSE for the LFM signal.
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Figure 4. The RMSEof estimation of the instantaneous value of the frequency: (a) f1(t, α, γ),
(b) f2(t, Bl , Bc).
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Figure 5. The RMSEof estimation of the instantaneous value of the frequency: (a) f3(t, k1, k2);
(b) fLFM(t).

The analysis of RMSE presented in Figures 4 and 5 shows that the estimation error
level is mainly around 0.5% of the bandwidth B, except for the edges where it increases
to 5%.

Then, the mean square error (MSE) dependence on the SNR was determined for the
estimates of the individual NLFM and LFM signals. The MSE was defined as follows:

MSE(SNR) = log10
1

Nsr

1
Nsl

Nsr

∑
n=1

Nsr

∑
n=1

(
f̂n(k)− fNLFM(k)

)2
(39)

where Nsr is the number of simulation runs, and Nsl is the number of signal samples
(signal length).

The MSE defined in this way allows for determining the estimation error for the entire
signal (the entire pulse) and enabling the comparison of the obtained results with the
results presented in the publication [2]. Figure 6 presents the MSE of estimation of the
instantaneous frequency in various SNR conditions.
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Figure 6. The MSEof estimation of the instantaneous frequency under various SNR conditions.

The analysis of the MSE of NLFM signals estimation presented in Figure 6 shows
that the estimation error level of the NLFM signal depends on its type. The error remains
constant at SNR ≥ 0 dB and increases slightly for SNR = −1 dB. However, in the case of
SNR ≤ −2 dB, the MSE increases significantly. On the other hand, the MSE for LFM is much
lower than for NLFM, and the error decreases as the noise level decreases. Compared to
other methods of estimation of the IF, the method based on CPF shows a similar estimation
quality. For example, comparing the obtained results with those presented in [2], it can be
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noticed that, for LFM, the MSE obtained using the CPF method for SNR ≥ 2 dB is smaller
than for the QML method, which, according to [2], shows lower estimation errors than
methods such as the backward finite difference (BFD) method, central finite difference
(CFD) estimator, Kay estimator, estimators based on the Choi–Williams distribution (CWD)
and pseudo-Wigner distribution (PWD). However, for a higher noise level, QML provides
better results. In the case of the estimation of NLFM signals, the QML method comes up
with a slightly lower MSE than the CPF method over the entire SNR range.

The complexity of the QML algorithm, in terms of the number of operations per-
formed, depends on the assumed instantaneous frequency (IF) resolution in the procedure
of searching the STFT maximum. Similarly, the complexity of the CPF algorithm strongly
depends on the instantaneous frequency rate (IFR) resolution in the procedure of searching
for the CPF maximum. These maximization operations are performed on two different
planes i.e., time–frequency (T-F) and time–chirp rate (T-FR). This imposes different res-
olution requirements that must be applied when we calculate the maximum points for
the STFT and the CPF in successive identical time moments. This affects the accuracy of
the estimation, as well as the execution time of the algorithms. In the comparison, the
experiments with the typical values of the procedure parameters in both algorithms showed
the lower computational load for the CPF algorithm compared to the QML method several
dozen times.

Despite the slightly lower quality of the estimation, considering the much lower
computational load of the CPF method compared to the QML, it can be concluded that the
CPF may be preferred in real-time applications.

5. Classification of Signals Based on Phase Polynomial Coefficiencies Obtained
from CPF

The classification procedure presented in this paper concerns the problem of recog-
nizing signal types with nonlinear frequency modulation. The main problem is to find a
set of distinctive features that allow the received signals to be distinguished and classified
into a class related to a specific emitter. Generally, three kinds of classification tasks are
mainly used:

1. Binary classification—in this case, there are only two classes;
2. Multiclass classification—in this case, there are more than two classes, and the classi-

fier can only report one of them as output;
3. Multilabel classification—in this case, the classifier is allowed to choose many answers.

This type of classification can be simply considered as a combination of multiple
independent binary classifiers.

The classification task considered in the paper can be associated with a multiclass
classification, in which the class is defined by a specific type of nonlinearity of the frequency
function. Therefore, it is the type of classification indicated in item 2 of the above three-
point list.

Many different modifications of the multiclass classification method have been pro-
posed in the literature [45–47]. The proposed method uses multiclass classification with a
vector of features. The classification between three types of NLFM signals and one LFM
signal described in Section 2 is considered. The feature vector is formed by aggregation
of selected CPF coefficients describing the polynomial approximation of the considered
phase functions.

The extracted features are processed by the classifier to select the most probable class.
A supervised classification is considered, where the classes are known in advance and
samples of the features describing each class are available. The feature vectors for individual
nonlinearities can be treated as a pattern in the feature space. Therefore, classification
carried out, especially by a neural network, is a problem of recognizing patterns [33,34].
In this paper, two types of neural network classifiers: learning vector quantization (LVQ)
and multilayer perceptron (MLP) are considered. The LVQ neural network has been
chosen because of its high ability to learn data classification, where similar input vectors
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are grouped into a region represented by the so-called coded vector (CV). LVQ can be
applied directly to multiclass classification problems. LVQ is a supervised version of
vector quantization. LVQ uses known target output classifications for each input pattern
in supervised learning of the neural network. The input space of samples is covered by
the “codebook vectors” (CVs) determined during the neural network learning stage. The
LVQ neural network is built as a feedforward net with one hidden layer of neurons (the
Kohonen layer), fully connected with the input layer and one output layer. During the
training stage, the values of weights used to form the coded vectors are adjusted, according
to the previously predefined input patterns. The distance di of an input vector signed x
to the weight vector wi of each node in the Kohonen layer is computed. The node of a
particular class, which has the smallest distance to the presented input vector (for example
the Euclidean distance), is declared to be the winner:

di = ‖wi − x‖ =

√√√√ M

∑
j=1

(wij − xj)2 (40)

The weights will be moved closer to that class, which is expected as the winning
class. Otherwise, they will be moved away. The classification after learning is relied on
finding a Voronoi cell, specified by the CV with the smallest distance to the input vector
and assigning it to a particular class.

The designed LVQ classifier contains 4N competing neurons with the logistic sigmoid
function as an activation function, where N is the number of classes. The MLP is a
fundamental type of neural network architecture with the ability to learn nonlinear models.
The multi-layer perceptron (MLP) is a type of artificial neural network organized in several
layers in which the flow of information takes place from the input layer to the output
layer; therefore, it is a feedforward network. Each layer is made up of a variable number
of neurons, and the neurons of the last layer (called the “output”) are the outputs of the
entire system. A network of such perceptrons is termed a neural network of perceptrons.
A perceptron with only an input and output layer is called a simple perceptron. A single
layer feed-forward network consists of one or more output neurons o, each of which is
connected with a weighting factor wio to all of the inputs i. The input of the neuron is the
weighted sum of the inputs plus the bias term θ. A example of a single layer network with
n inputs and one output is shown in Figure 7.

x1

x2

xn

+1

...

w1
w2

wn

θ

y

Figure 7. Single layer network with one output and n inputs.

The output of the network is formed by the activation of the output neuron, which is
some function of inputs:

y = f

(
N

∑
i=1

wixi + θ

)
(41)

The training of a neural network is the procedure of setting its weights. If there is
one hidden layer, this one is a two layer perceptron. The aim of the supervised MLP
network training is to achieve an appropriately small mean square error obtained in the
Levenberg–Marquardt backpropagation procedure by adjusting weights. The complexity
of the neural network classifier strongly depends on a number of neurons, which require an
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adjustment of their weighs at the learning stage. Therefore, the neural architecture should
be as simple as possible.

For the assumed classification task, a simple single hidden layer MLP classifier with
the number of neurons equal to 2N has been chosen.

Evaluation of the classification process requires appropriate quality criteria. The
classification performance is usually visualized using the confusion matrix, which is a table
summarizing true and false decisions. The matrix compares the actual types of objects with
those predicted by the classifier. This issue can be easily presented on the example of binary
classification. In this case, the 2 × 2 confusion matrix is formulated as shown in Figure 8.
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Figure 8. Interpretation of the binary confusion matrix.

The abbreviations TP, TN, FP and FN shown in Figure 8 denote:

• true positives (TP): the actual value is positive and the prediction is also positive;
• true negatives (TN): the actual value is negative and the prediction is also negative;
• false positives (FP): the actual value is negative, but the prediction is positive (type

I error);
• false negatives (FN): the actual value is positive, but the prediction is negative (type

II error).

It is difficult to compare the properties of different classifiers based on the confu-
sion matrix alone. Therefore, a simpler description of the classification can be obtained
using metrics calculated on the basis of data from the confusion matrix. Some common
metrics [48] can be calculated as follows:

1. Accuracy (ACC)

ACC =
TP + TN

TP + TN + FP + FN
(42)

2. Precision also known as positive predictive value (PPV)

PPV =
TP

TP + FP
(43)

3. Sensitivity also known as recall, hit rate or true positive rate (TPR)

TPR =
TP

TP + FN
(44)

The above metrics are defined similarly for multiclass classifiers. To evaluate the perfor-
mance of the proposed multiclass model, the N × N confusion matrix is used, where N is
the number of classes that describe the NLFM or LFM signals. The quality of the selected
classifiers can be assessed by comparing the metrics calculated from their confusion matrix.

The performance of the proposed method was evaluated with the use of the simulation
experiment. The proposed CPF-based classification method was tested for three NLFM
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( f1(t, α, γ), f2(t, Bl , Bl), f3(t, k1, k2)) and one LFM ( fLFM(t)) signal. Their specific parame-
ters are presented in Section 2. The simulation parameters were assumed to be the same as
in the case of simulation presented in Section 4, namely: pulse duration T = 20 · 10−6 s.;
sampling frequency fs = 100 MHz; signal bandwidth B = 5 MHz and Gaussian noise with
variance depending on SNR. Thus, having four signals to recognize, the problem of 4-class
classification is studied. The feature vector used in the classification process was formed by
the coefficients (aφ2, aφ4, aφ6) of the polynomial which is an approximate signal phase. The
coefficients are determined by the proposed CPF method. Figure 9 shows an example of
the realizations of the coefficients aφ2, aφ4 and aφ6 obtained by CPF for four signal classes
in the case of SNR = 5 dB, SNR = 1 dB, SNR = −1 dB and SNR = −5 dB. Each signal
is marked with a different colour. The points in the figure represent the estimates of the
coefficients aφ2, aφ4 and aφ6 obtained in Nsr = 500 realizations of individual signals.
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Figure 9. Example ofthe realizations of the coefficients aφ2, aφ4 and aφ6 obtained by CPF for four signal
classes in the case of (a) SNR = 5 dB; (b) SNR = 1 dB; (c) SNR = −1 dB; and (d) SNR = −5 dB.

The analysis of the spatial position of the coefficients aφ2, aφ4 and aφ6 shown in Figure 9
shows that, in the case of SNR = 5 dB and SNR = 1 dB, the constellations of points
corresponding to individual signals are well separable, which should result in the effective
operation of classification algorithms. In the case of SNR = −1 dB, a significant relocation
of several points can be observed, which may cause deterioration of the separation and
thus of the quality of the classification. For SNR = −5 dB, the spaces of the individual
coefficients overlap, which may result in the incorrect classification.

The classification task was addressed using LVQ and MLP neural networks. The
tests were carried out at different SNRs. In each case, Nsr = 500 Monte Carlo simulations
were carried out for each signal. The Nl = 1400 realizations constituted a training set and
the remaining Nt = 600 realizations were used to test the classifiers. Figures 10 and 11
show the confusion matrices for MLP and LVQ classifiers obtained for SNR = −1 dB and
SNR = −5 dB, respectively.

According to the analysis of the confusion matrix presented in Figure 10, for SNR = −1
dB, the classification is correct in the case of the MLP classifier and slightly worse for
the LVQ. This means that even the significant relocation of points corresponding to the

131



Sensors 2022, 22, 8104

individual signals, which is visible in Figure 9, does not affect the proper classification
performed by classifiers. However, as it results from the analysis of the confusion matrix
shown in Figure 11, in the case of SNR = −5 dB, the classification is not correct for both
MLP and LVQ. This result corresponds to the results shown in Figure 9, where for this SNR
the constellations of points overlap.
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Figure 10. Confusion matrices for the LVQ (a) and MLP (b) classifiers obtained for SNR = −1 dB.
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Figure 11. Confusion matrices for the LVQ (a) and MLP (b) classifiers obtained for SNR = −5 dB.

The quality of the MLP and LVQ classifiers was also analyzed with the use of ACC
metrics. The results for −5 dB≤ SNR ≤ 5 dB are shown in Figure 12.
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Figure 12. Accuracy (42) metrics of MLP and LVQ classifiers.

As can be seen in Figure 12, both classifiers for SNR ≥ −1 dB provide almost 100%
correct identifications of signals. In the case of SNR = −2 dB, the classification accuracy
slightly decreases, with MLP being a more effective classifier. For SNR below −2 dB, the
classification quality for the MLP algorithm gradually decreases, while in the case of LVQ,
the decisions are made completely randomly.

The ACC metrics assess the overall quality of classification without being able to
evaluate the identification ability of each class. In this case, PPV and TPR metrics can be
used. For multiclass classification, the PPV for each class is the ratio of a correctly predicted
class to all predicted classes, while TPR is defined as the ratio of a correctly predicted class
to all true class values. Figures 13 and 14 show the PPV and TPR metrics for four classes
for MLP and LVQ classifiers. When analyzing the results of the PPV metrics, it should be
kept in mind that, in case of the absence of recognition of a given class (both TP and FP),
according to definition (43), the PPV value is undefined, and therefore there are missing
points in the figure.
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Figure 13. PPV (a) and TPR (b) metrics of the LVQ classifier.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

SNR [dB]

PP
V

(a) PPV - MLP

f1(t, α, γ)

f2(t, Bl , Bc)

f3(t, k1, k2)

fLFM(t)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

SNR [dB]

TP
R

(b) TPR - MLP

f1(t, α, γ)

f2(t, Bl , Bc)

f3(t, k1, k2)

fLFM(t)

Figure 14. PPV (a) and TPR (b) metrics of the MLP classifier.
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The analysis of Figures 13 and 14 allows for assessing the quality of the MLP and
LVQ classifiers. The quality of the classifier is indicated by the combined analysis of PPV
and TPR values. As can be seen in these figures, in the case of SNR ≥ −1 dB, both
PPV and TPR for all classes take values approximately equal to one, which means that
errors of type I and type II are at a minimum level. This means that the identification
of each class for SNR ≥ −1 dB is very good for both MLP and LVQ classifiers. As can
be seen in the figures, for the SNR = −2 dB, the classifiers’ performance breaks down.
In this case, for the MLP classifier, the PPV and TPR metrics take values in the range of
< 0.937, 1 > while for LVQ slightly less, i.e., < 0.84, 0.947 >. This means a slight decrease
in the quality of the classification, while the MLP classifier is slightly better. In the case of
SNR ≤ −3 dB, the quality of both classifiers is slightly degraded. In this case, as can be
seen in Figure 8 for the LVQ classifier, there is a significant dispersion of type I and type II
errors, which means favoring certain classes. However, in the case of MLP (Figure 14), type
I and type II errors are at a similar level, and the predictions of classes are more uniform.
The incorrect classification results from errors in the estimation of parameters aφ2, aφ4 and
aφ6 the determination of which depends on the accuracy of the IFR estimation (23). Due to
noise, the location of the maximum CPF obtained for IFR0 for noiseless NLFM is shifted to
a new random location:

ÎFR = IFR0 + δIFR (45)

It should be emphasized that, for SNR ≥ −1 dB, which is important for practical
applications, the classification is error-free for the analyzed classifiers. Classification errors
appear for SNR ≤ −2 dB. Due to the gradual shifting and overlapping of the aφ2, aφ4 and
aφ6 parameter space, visible in Figure 9, classification becomes problematic. An additional
source of error is the use of the polynomial approximation of the NLFM functions proposed
for classification, as discussed in Section 3.

6. Conclusions

In this paper, estimation and classification of NLFM signals based on the time–chirp
representation have been presented. The majority of useful nonlinearities can be defined or
successfully approximated by the polynomial form. However, NLFM radar signals, with
the desired PSD and desired AC, require a sufficiently high order of the polynomial for
representation of phase and frequency functions. Simulation experiments have shown that
CPF is an efficient method of obtaining a polynomial approximation of a phase function.

Having had the coefficients of the phase polynomial from the CPF, the coefficients of
the frequency polynomial can be calculated. Based on this relation, the IF estimation of
considered NLFM signals is proposed. The simulation results revealed a slightly higher
estimation MSE for the proposed CPF-based compared to the QML for NLFM signals. Due
to much lower computational load of the proposed approach, the CPF-based method might
be preferred in real-time applications.

The promising idea for classification of signals with nonlinear frequency modulations
is to use the CPF distribution for the extraction of distinctive features. The modification
of the CPF algorithm based on the nonuniform sampling is used for estimation of phase
polynomial coefficients for a polynomial of the sixth order. Such calculated coefficients
constitute distinctive features for classification.

The classification process has been successfully performed by the LVQ and MLP
classifiers, which have the ability to process nonlinear models. Simulations were carried
out for different SNRs. The training and classification tasks were performed without the
preliminary noise reduction process. This means that classifiers were trained on data with
noise that significantly distorted a classified signal, especially for SNR < −1. This results
in an unacceptable decrease in the effectiveness of the classification. PPV and TPR measures
were successfully used to assess classification results. The results of the research showed
that the proposed approach allows for classifying four classes: three considered NLFM
signals and an LFM signal. It should be emphasized that, for SNR ≥ −1 dB, which is
important for practical applications, the obtained classification is error-free for the analyzed
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classifiers. The proposed classification process can be easily extended to more than four
classes.

Author Contributions: Conceptualization, E.S., D.J. and K.K.; methodology, E.S., D.J. and K.K.;
software, E.S. and D.J.; validation, E.S., D.J. and K.K.; formal analysis, E.S., D.J. and K.K.; investigation,
E.S. and D.J.; data curation, E.S. and D.J.; writing—original draft preparation, E.S., D.J. and K.K.;
writing—review and editing, E.S., D.J. and K.K.; visualization, E.S., D.J. and K.K.; supervision, E.S.
All authors have read and agreed to the published version of the manuscript.

Funding: The researchwas conducted at a Bialystok University of Technology within the project
WZ/WE-IA/1/2020, financially supported by the Polish Ministry of Science and Higher Education.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Samczynski, P.; Krysik, P.; Kulpa, K. Passive radars utilizing pulse radars as illuminators of opportunity. In Proceedings of the
2015 IEEE Radar Conference, Johannesburg, South Africa, 27–30 October 2015; pp. 168–173. [CrossRef]
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Abstract: This paper presents a novel adaptive algorithm for multicomponent signal decomposition
from the time–frequency (TF) plane using the short-time Fourier transform (STFT). The approach
is inspired by a common technique used within radar detection called constant false alarm rate
(CFAR). The areas with the strongest magnitude are detected and clustered, allowing for TF mask
creation and filtering only those signal modes that contribute the most. As a result, one can extract a
particular component void of noise and interference regardless of the signal character. The superiority
understood as an improved reconstructed waveform quality of the proposed method is shown using
both simulated and real-life radar signals.

Keywords: signal extraction; radar signal processing; time–frequency analysis

1. Introduction

Non-stationary and multicomponent signals are present in a variety of applications
such as radar [1,2], sonar [3], biomedical engineering [4], and others [5–8]. In all practical
cases, signals are corrupted by noise, interference, disturbances, and multipath propaga-
tion (the latter is meaningfully observable for wireless systems, radar, and sonar) [9,10].
The difficulties in analysis resulting from signal quality degradation are challenging since
particular component extraction is not trivial. The problem with multicomponent signal
decomposition stems from several issues. Firstly, the noise is a common problem preventing
unequivocal signal analysis and spoils the properties of many techniques for mode extrac-
tion. Secondly, real-life signals may have components of a different nature, e.g., harmonic
terms, pulse-shape transients, amplitude and frequency modulation (AM-FM), and many
others. Thirdly, common relations between terms can also be obstructed, e.g., components
can be entangled or occupy the same bandwidth, time frame, or both simultaneously.

A typical approach to component extracting is the TF processing due to the infor-
mative character of the result, the possibility to distinguish particular signal terms, and
invertibility [11]. In the literature, several attempts in signal retrieval from different TF
distributions can be identified concerning the STFT [12–15], but also other techniques such
as the wavelet transform [16], empirical mode decomposition [17,18], and the Wigner–Ville
distribution [19]. In the considered problem, the main goal is to detect the component and
create a mask around it. After that, a given component can be retrieved using an inverse
transformation. However, one cannot extract and reconstruct the component without any
information about the signal character, location on a time–frequency plane, and duration.
One of the most popular approaches is signal decomposition using vertical synchrosqueez-
ing (VSS), which is based on relocating transform values along the frequency axes to the
local instantaneous frequency ridge [20,21]. As a result, one can obtain a sharp and concen-
trated distribution, facilitating dominant component extraction. However, the principle
of the VSS operation relies on shifting the transform values vertically; hence, impulsive
signals and spikes are poorly concentrated or even smeared over the plane. The problem
was addressed in [22], where the classical, non-concentrated spectrogram was used. In this
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approach, the idea was to connect spectrogram zeros using Delaunay triangulation. Then,
only those triangles were used in signal decomposition whose edge length was in a given
range. On this basis, the mask around the detected component was created. The advantage
of the method was the possibility of extracting both vertical and horizontal components,
which is superior to VSS. However, the triangulation-based approach works moderately
with amplitude modulation in low noise levels. In practice, the edge length of the triangle,
including a valid signal, can vary; hence, its discrimination based on a strict length range is
insufficient [21,23].

This paper uses the 2D CFAR algorithm to adaptively detect TF distribution local max-
ima. The proposed approach is similar to that presented in [24], where the CFAR algorithm
was also used. However, the components were extracted after parametric morphological
operations, which may deteriorate the quality of the reconstruction due to noise extraction
or the removal of a fragment of the useful signal. The optimal morphological operation type
and the structuring element size may have a crucial influence on the reconstructed signal
quality and depend on the propagation environment and the signal itself. Therefore, the
processing may need to tune the algorithm to a specific scenario to detect the signal under
interest. In the proposed approach, detected regions are grouped using the density-based
spatial clustering of applications with noise (DBSCAN), allowing the TF mask to be defined.
In order to extract the entire signal content, the mask is modified regarding surrounding
spectrogram zeros, which ensures precise signal reconstruction for any waveform character
and local disturbances.

The paper has the following structure: Section 2 presents the proposed algorithm.
In Section 3, the method is validated using numerical experiments and compared to two
techniques known from the literature: VSS [21] and the triangulation-based method [22].
Section 4 presents the application of the real-life radar pulse filtering, and Section 5 con-
cludes the presented findings.

2. Algorithm Description

For the complex and continuous signal x(t) and the even and real Gaussian window

h(t) = 1√
2πσ

e−
t2

2σ2 with a standard deviation σ, the STFT is defined as follows:

Fh
x (t, ω) =

∫
R

x(τ)h(τ − t)e−jωτdτ, (1)

where j =
√−1. The energy distribution, referred to as a spectrogram, is given as

Sh
x(t, ω) = |Fh

x (t, ω)|2. (2)

In the discrete-time domain, the complex signal is defined as x[n] = x
( n

N
)

with
n = 0, ..., N − 1, and the Gaussian window h[n] is truncated to be supported on [−M, ..., M]
and obeys 2M + 1 = K, where K is the number of frequency bins. This work assumes that
the window length equals the Fourier transform size. For the Gaussian window, which
theoretically has an infinite length, the assumption amounts to elongation of the window
with samples very close to 0, which can be regarded as zero-padding. The discrete STFT
variant of (1) is given as [25]

Fh
x [m, k] = ∑

n∈Z
x[n]h[n − m]e−j2π

k(n−m)
N , (3)

where k = 0, ..., K − 1, and m = 0, ..., N − 1. The analogous distribution for (2) follows as

Sh
x[m, k] = |Fh

x [m, k]|2. (4)

In this paper, the TF distribution obtained using (1) is processed in the same way as
in radar. In short, a radar system is a device that sends an electromagnetic signal into
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space and then receives signal reflections from obstacles. The transmitted and received
signals are compared, which allows the radar to estimate a target’s range (comprising the
delay between the transmitted and received signal) and its radial velocity (by analyzing the
Doppler shift presentin the received signal). A simplified diagram of the radar operation is
shown in Figure 1.

Figure 1. A simplified idea of the radar system. Solid arrow—transmitted signal, dotted arrow—
reflected signal.

In practice, the receiver gathers multiple reflections not only from the target, but
also from stationary objects such as buildings, trees, etc. Thus, spikes resulting from
signal reflection from moving targets in the presence of noise are extracted using the
CFAR algorithm, allowing an adaptive threshold to be obtained [26,27], and then, a binary
decision is made [26]. The main advantage of the CFAR algorithm is the ability to adapt
the threshold level to different kinds of noise, such as Gaussian and alpha stable, among
others [28]. For the distribution X(t), one may write the detection condition as

D(|X(t)|) =
{

1 if |X(t)| ≥ T,
0 otherwise,

(5)

where T is the regularized threshold governed by

T = RC, (6)

where C is the noise estimate depending on the CFAR algorithm variant (in the literature,
one can find a wide range of descriptions of different CFAR techniques [26,27], and for
the sake of clarity and consistency, they are not duplicated in this work). R is the factor
manipulated by the probability of false alarm Pf , so that

R = NT

(
P
− 1

NT
f − 1

)
, (7)

where NT is the number of points used to estimate the clutter level. An example of adaptive
target detection in a real-life radar is shown in Figure 2. The way in which the CFAR
algorithm was applied is typical in radar; namely, after the so-called range compression,
the target echo can be extracted from the noise. The result shows a one-dimensional
CFAR detection performance to demonstrate its main properties. The principle is the same
for a bivariate case; however, it would be much more difficult to illustrate. As can be
observed, the threshold is adaptively adjusted based on the local noise estimate. The
threshold rapidly grows and then drops for the apparent target around the 900 range bin,
which yields the target detection. The same procedure is applied to the spectrogram in the
proposed algorithm.
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Figure 2. An example of a CFAR detection result using a real-life radar signal after range compression.

Since the spectrogram is a two-dimensional distribution, the CFAR algorithm is two-
dimensional as well. In this work, vertical and horizontal training cells are denoted as NV

T
and NH

T , respectively, NT = NV
T + NH

T , and vertical and horizontal guard cells are given by
NV

G and NH
G , respectively. The idea behind the CFAR algorithm is illustrated in Figure 3.

Threshold
computation

∑

|Fh
x [m, k]| ≥ T

Binary decision

Training
cells

Guard
cells

Cell under
test

|Fh
x [m, k]|

T

C

Figure 3. The principle of the CFAR algorithm’s operation.

In this paper, for the STFT analysis, two sets are created around each point of the
|Fh

x [m, k]| distribution (yellow cell under test). The first one is composed of so-called guard
cells marked in the diagram in red. They are not considered during processing since they
may influence noise estimates when the strong component occurs. The second group
(in green) is built of the training cells. They are used for noise level estimation, usually by
averaging or statistical operations. The process is carried out for each [m, k] of the STFT, and
as a result, a binary detection map for the whole distribution is obtained according to (5). In
this work, the greatest of cell averaging (GOCA) CFAR is used due to its better properties
with heterogeneous distributions [26]. However, any other detector can be applied.

Detected points are clustered using the DBSCAN method. In short, this is an efficient,
non-parametric technique of grouping points that are closely located and labeling as
outliers those groups that lie outside [29]. The algorithm divides points (in this work,
points resulting from the CFAR detection) into three sets: core point (which the clustering
process starts with); border point (when no more points can be grouped into it); noise
point (does not belong to any cluster and two other groups). STFT regions where any
coherent structure occurs provide closely packaged points after CFAR detection that can be
easily clustered using the DBSCAN algorithm. Detected regions (sub-domains) are sorted
concerning the signal energy on the spectrogram. In the CFAR algorithm, Pf selection
comprises a trade-off between weak signal extraction and incorrect detection and is usually
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in the range of Pf ∈ (10−6, 10−3). Thanks to signal clustering using the DBSAN method,
false detections are not destructive for component retrieval. Since component energy is
taken into account when sorting, all modes stronger than the noise appear higher than
the clutter in the sorted list of sub-domains. To ensure a component’s extraction, Pf can
be greater than in radar, which is a meaningful advantage and results in robustness when
joined with the DBSCAN method. The selection of appropriate processing parameters
(e.g., the number of guard and training cells, the probability of false alarm) depends on the
application, the number of time and frequency bins of the STFT, and the noise level.

The selected sub-domains allow TF masks to be created. As mentioned in this section,
the CFAR algorithm assumes a given regularized threshold to detect the spikes. On the
other hand, a part of the signal below the threshold is pruned off. Thus, some part of
the signal information is lost, since, in practice, the threshold is non-zero. The problem
does not matter in radar since the precise signal reconstruction is not needed in most
situations, and only the target range and/or velocity are estimated. In signal extraction
from the TF plane, the cut-off part of the distribution results in imprecise reconstruction
due to the energy pruning. However, as shown in [22,30], the STFT is fully characterized
by spectrogram zeros. Following the idea Flandrin and Bardent et al., the STFT given by (1)
can be expressed as

Fh
x (t, ω) = e−

|z|2
4 Fx(z), (8)

where
Fx(z) =

∫
R

A(z, u)x(u)du, (9)

is the Bargmann transform [31], whose kernel takes on the following form:

A(z, u) = π− 1
4 e−

u
2 −juz+ z2

4 . (10)

Equation (9) is a function of positive order and admits the Weierstrass–Hadamard
factorization:

Fx(z) ∝
∞

∏
n=1

(
1 − z

zn

)
e

z
zn +

1
2 (

z
zn )

2
, (11)

where zn = ωn + jtn are zeros of the Bargmann transform (9). These properties were used
for component retrieval through the connection of spectrogram zeros using the Delaunay
triangulation. However, sensitivity to noise, clutter, and amplitude disturbances make the
approach difficult to apply in, e.g., radar systems [21,23]. However, a zero distribution is
used in this work to spread the TF mask and extract the entire signal from the STFT. Doing
so for the detected signal component clustered using the DBSCAN method, one has to find
surrounding spectrogram zeros and extend the mask in order to precisely distinguish the
specific signal mode. After that, the STFT can be multiplied by the mask, and the inverse
STFT can be applied, obtaining a precise signal reconstruction.

The proposed algorithm can be divided into the following steps:

1. Compute the STFT Fh
x [m, k].

2. Detect protruding regions (sub-domains) from |Fh
x [m, k]| using the adaptive

CFAR thresholding.
3. Group the detected points into clusters using the DBSCAN algorithm.
4. Sort clusters comprising their energy.
5. For each desired component, spread the mask to the nearest zeros of the spectrogram

Sh
x[m, k].

6. Apply the STFT masking.
7. Retrieve the signal back in the time domain using the inverse STFT.

The outcomes for the exemplified multicomponent signal with vertical, horizontal ,
and amplitude-modulated terms are presented in Figure 4. In Figure 4a, the spectrogram is
illustrated. Three entirely different modes contaminated by noise are apparent. After the
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adaptive thresholding, detected points are presented as black regions in Figure 4b. Next,
they are clustered as shown in Figure 4c, where a different color specifies each sub-domain.
Next, the masks are spread to their adjacent spectrogram zeros for a defined number
of components. The masks (in black) with detected zeros (green points) are shown in
Figure 4d, and their final form is depicted in Figure 4e. The spectrogram after applying the
mask looks like the one shown in Figure 4f, and the real and imaginary part of the retrieved
components is shown in Figure 4g and 4h, respectively. As shown, the method allows for
precise signal retrieval from the TF plane regardless of its character. A typical problem
known in the literature is extracting various types of signals, e.g., horizontal, vertical, and
mixed terms. In the proposed approach, the signal character does not matter, and the
extracted signal can be of any nature, e.g., impulsive spike, chirp, harmonic term, or any
non-defined TF structure such as a telecommunication signal. The main limitation is the
difficulty of separating the intersecting components, and such signals are not analyzed in
this work. The issue requires further in-depth analysis. In the next section, the method is
compared to the techniques known from the literature.

Component 2

Component 3

Component 1

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Simulation results for the multicomponent amplitude- and frequency-modulated signal.
(a) Simulated signal; (b) Detected components; (c) Clustered components; (d) Initial masks with zeros;
(e) Spectrogram after masking; (f) Final TF masks; (g) Extracted modes (real part); (h) Extracted
modes (imaginary part).

3. Simulations

The proposed method was compared to two other well-defined techniques in the
literature. The first is the one proposed by Flandrin [22] with a default range of the
triangle edge length for noise el ∈ [0.2, 2.2]. The second one was VSS, whose definition is as
follows [20]:

Sh
x(t, ω) =

∫
R

Fh
x (t, Ω)δ(ω − ω̂x(t, Ω))dΩ, (12)

where ω̂x(t, ω) is the frequency reassignment operator. In this work, one of the most precise
and efficient approaches to VSS was used, namely the technique called the enhanced first-
order VSS (EVSS1) proposed in [21]. For mode extraction from the synchrosqueezed STFT,
the technique initially proposed in [32] and implemented in [33] was applied. The approach
is based on the local minimum computation of the formula:

Ex(ψ1, ..., ψK) =
K

∑
k=1

−
∫
R
|TFx(t, ψk(t)|2 + λψ′

k(t)
2 + εψ′′

k (t)
2dt, (13)
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where K stands for the known number of components ψk(t) extracted from the distribution
TFx. According to [34], λ and ε were set to 0 in the analysis due to their irrelevant influence
on ridge detection. Additionally, in all analyzed cases (simulated and real-life) and for all
methods in question, the width of the analysis window was selected to minimize the Rényi
entropy [35] or, for signals with several completely different modes, to ensure a relatively
constant resolution for all components. Furthermore, in all experiments, the sliding step of
the window was assumed to be unitary since it streamlines the inverse STFT computation;
however, this value is not fixed and can be easily manipulated.

A comparison of the results for the known techniques and the proposed algorithm
is shown in Figure 5. As can be seen, none of the techniques from the literature allow
for extracting all components sufficiently from the spectrogram depicted in Figure 5a.
For example, vertical synchrosqueezing (Figure 5b) concentrated the harmonic term and
sinusoidal chirp well. However, the pulse at the beginning was smeared, and its reconstruc-
tion is impossible. Known algorithms are unable to distinguish incorrectly concentrated
components. Thus, the common techniques are of limited usability. The vertical component
was not even detected for the approach based on spectrogram zero triangulation, as shown
in Figure 5c, where different colors represent detected signal modes. As presented in
Figure 5d, the proposed method can precisely retrieve all of these components, which is
the superiority among the methods known in the literature. As already mentioned, the
proposed technique does not assume a signal model; thus, any structure can be extracted
regardless of its nature.

(a) (b)

(c) (d)

Figure 5. Comparison of different methods for signal retrieval from the time–frequency distribution.
For vertical synchrosqueezing and the triangulation-based method, lines and regions with different
colors express detected components. (a) Spectrogram; (b) Vertical synchrosqueezing; (c) Triangulation;
(d) Proposed method.

To assess the proposed method’s usability quantitatively, let us consider a nonlinear
chirp with sharp nonlinearity at its ends. Such a kind of signal is commonly used in military
and civilian radar systems, e.g., air traffic control (ATC) [21]. The simulated signal x[n] of a
length N and sampled with a rate fs = 12.5 MSa/s is defined as

x[n] = Ax exp

(
j2π

[
α
(n − N

2 )
2

2
+ γ

(n − N
2 )

10

10

])
+ w[n], (14)
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where n ∈ [0, ..., N − 1], α = 1.5 · 1011 Hz
s and γ = 2 · 1050 Hz

s9 are the chirp rate and the
nonlinear frequency modulation term, respectively, Ax is the unitary amplitude, and w[n]
is the additive white Gaussian noise. The pulse was multiplied by the Tukey window to
simulate a non-zero duration of the rising and falling edges at the beginning and the end of
the waveform (amplitude modulation), and after this operation, the signal duration was
T = 30 μs.

In order to define the reconstructed signal quality, the reconstruction quality factor
(RQF) was used for all considered methods [23]:

RQF = 10 log10
∑N−1

n=0 |x[n]|2
∑N−1

n=0 |x[n]− x̂[n]|2 , (15)

where x[n] is the known and pure waveform and x̂[n] is its retrieved form. The calculations
were carried out for six signal-to-noise ratio (SNR) values SNR = {5, 10, 15, 20, 25, 30} dB
and averaged over 100 Monte Carlo simulations for each method. The STFT was computed
using the fast Fourier transform algorithm with 512 points and the Gaussian window with
a normalized standard deviation σ = 8. In this case, Pf = 0.4 results in noise detection,
but allows for the extraction of amplitude-varying and weak components’ extraction. The
remaining parameters are as follows: training cells NV

T = 16, NH
T = 16, guard cells NV

G = 16,
NH

G = 16.
Figure 6 presents an example of a spectrogram and the results of signal retrieval. As

shown, the proposed algorithm allows for the best signal reconstruction over the vali-
dated techniques. One can even extract vertical components thanks to operating on a
non-concentrated distribution. Furthermore, the independence of the length between
spectrogram zeros makes the introduced technique efficient and robust in noise and ampli-
tude modulation. The RQF is higher even by 15 dB compared to the triangulation-based
approach and 10 dB compared to VSS (differences for SNR = 30 dB). The signal recon-
struction results were improved mainly thanks to the non-parametric analysis of the signal
distribution on the TF plane. Therefore, the signal model is not used in the extraction
process, as is usually the case with methods from the literature. In the proposed solution,
the signal may contain any component, and the proposed technique does not assume a
specific function defining the phase.

(a) (b)

Figure 6. Simulation results for the nonlinear chirp signal. (a) Spectrogram; (b) RQF.

4. Real-Life Signal Analysis

Signal decomposition is an issue in various applications, and the proposed algorithm
can be used widely. As a representative example, frequency-modulated radar chirps
were considered. The main goal was to extract only the direct pulse, whilst maintaining
amplitude, phase, and frequency dependencies unaltered. In this case, a simple inverse
STFT is useless. As a result, one would obtain the unmodified signal (the signal was
recorded in the time-domain so that the inverse STFTwill result in the same signal). Thus,
the proposed algorithm can be practically used in such an application.
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4.1. Nonlinear Frequency Modulated Pulse

The first signal originates from the ATC radar system located at Warsaw’s Chopin
Airport, Poland. The sampling rate during the data collection was fs = 40 MHz; then,
the signal was downsampled so that the final fs = 5 MHz. The selected pulse (shown
in Figure 7a) was processed in the same way as during the simulations. The window
standard deviation, in this case, was σ = 10, and the processing was carried out for
512 points of the FFT. In this case, the CFAR parameters were as follows: Pf = 0.4, NV

T = 12,
NH

T = 8, NV
G = 24, and NH

G = 16. Since the transmitting radar was non-cooperative and
the waveform signature is unknown, the RQF cannot be computed in this case. The signal
under consideration and the processing outcomes are presented in Figure 7.

(a) (b)

(c) (d)

Figure 7. Input real-life radar pulse and the retrieval results for three methods under consideration.
(a) Input signal; (b) Proposed method; (c) Vertical synchrosqueezing; (d) Triangulation method.

The results clearly show differences between the retrieved pulses. After processing
using the method proposed in this work, the entire waveform was extracted, including its
linear and nonlinear terms, as shown in Figure 7b. With the VSS-based approach, vertical
components (transitions and highly modulated terms) are lost because they cannot be
concentrated, and therefore, energy is spread across the plane instead of being focused
on the instantaneous frequency ridge. Therefore, the major part of the reconstructed
pulse consists of the linear chirp, and the whole signal information was not captured. A
similar outcome was achieved for the spectrogram zero triangulation method. In this case,
pruning of the pulse ends results from the assumption on the triangle edge length. As can
be observed, the edge length for noise el ∈ [0.2, 2.2] does not allow for dealing with all
components, especially those with rapid frequency and amplitude modulation.

The reconstructed pulse can be used in a passive radar that uses another active radar
as a source of illumination [36] or for specific emitter identification in electronic warfare.
The quality and correlation properties of the pulse have a key influence on the radar’s
detection capability. The better the reconstruction quality, the greater the radar’s ability to
detect the target. The results of the auto-correlation of the reconstructed pulses are shown
in Figure 8.
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Figure 8. Auto-correlation of the reconstructed NLFM pulses.

As can be seen, the best capabilities were obtained for the proposed method since the
side-lobes have the lowest value, while the peak is high and narrow. The main factor influ-
encing the quality of the recovered pulse is the possibility of extracting vertical components
at the ends of the transmitted signal. Only the proposed method allows complete pulse
extraction, including the part with linear and nonlinear frequency modulation. Further-
more, resistance to local amplitude variation is achievable with the proposed approach. It
should be noted that local amplitude deviations resulting from various factors such as the
nonlinearity of the radio frequency chain, noise, and multipath propagation influence the
amplitude distribution on the spectrogram. That has a crucial impact on the efficiency of
methods known from the literature [21,22], which are characterized by inferior properties
to those of the presented algorithm. This shows the effectiveness of the proposed method
and the possibility of its use in practical systems.

4.2. Linear Frequency-Modulated Pulse with Strong Multipath Interference

The second signal was transmitted by the medium-range radar and recorded with
a similar setup as in the NLFM case. The results are illustrated in Figure 9. Apart from
the strong direct signal in Figure 9a, delayed copies of the pulse are also apparent in the
receiver. For the proposed method, the entire pulse was correctly retrieved with preserved
amplitude, phase, and frequency. For the VSS-based approach, the pulse was recovered, but
the surrounding noise disturbed its quality. In addition, the component extraction method
contributed to the extraction of a certain amount of noise across the entire time axis. The
result is shown in Figure 9c. In the method using the triangulation of spectrogram zeros,
the results of which are presented in Figure 9d, the reconstruction is also worse than for
the proposed method. The impulse was shortened, and some multipath disturbances were
also extracted. The best result was obtained for the new method presented in this article,
as shown in Figure 9b, where the precisely retrieved signal is shown. It is worth noting
that the precise pulse extraction was achievable thanks to the use of the CFAR algorithm,
which estimates the noise level and defines the threshold adaptively. The nature of the
disturbance may have a different distribution than Gaussian for the multipath effect just
after the direct pulse. As can be seen, the CFAR algorithm correctly assessed its level giving
a correct threshold value. For the proposed algorithm, the normalized standard deviation
of the window was σ = 10, and the processing was performed for 512 points of the FFT and
the following CFAR parameters Pf = 0.4, NV

T = 8, NH
T = 8, NV

G = 8, and NH
G = 8. As in

the previous case, the pure waveform character was unknown to the author; thus, the RQF
cannot be calculated. Therefore, the auto-correlation function was computed and is shown
in Figure 10. It is clear that the pulse retrieved for the proposed technique is characterized
by the best performance from the radar point of view. Apart from the lowest side-lobe
level, the peak is the narrowest, allowing target detection.
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(a) (b)

(c) (d)

Figure 9. Results for the second signal. (a) Input signal; (b) Proposed method; (c) Vertical syn-
chrosqueezing; (d) Triangulation method.

Figure 10. Auto-correlation of the reconstructed LFM pulses.

5. Conclusions

This paper presented a novel signal decomposition approach to component retrieval
from the STFT with examples supporting its effectiveness. The superiority of the presented
finding relies on the unsupervised ability to extract differently oriented waveforms, e.g.,
bursts, transient, nonlinear chirps, harmonic terms, and signals with amplitude modulation.
The proposed approach’s properties were confirmed by thorough numerical experiments
using simulated signals and real-life radar pulses. Future research should cover the pro-
posed algorithm’s extension to the analysis of multicomponent signals with crossing modes
and rapidly oscillating instantaneous frequency. In another direction, work should involve
CFAR algorithm parametrization comprising signal and processing parameters.
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Abstract: The paper focuses on the problem of detecting unmanned aerial vehicles that violate
restricted airspace. The main purpose of the research is to develop an algorithm that enables the
detection, identification and recognition in 3D space of a UAV violating restricted airspace. The
proposed method consists of multi-sensory data fusion and is based on conditional complementary
filtration and multi-stage clustering. On the basis of the review of the available UAV detection
technologies, three sensory systems classified into the groups of passive and active methods are
selected. The UAV detection algorithm is developed on the basis of data collected during field
tests under real conditions, from three sensors: a radio system, an ADS-B transponder and a radar
equipped with four antenna arrays. The efficiency of the proposed solution was tested on the basis of
rapid prototyping in the MATLAB simulation environment with the use of data from the real sensory
system obtained during controlled UAV flights. The obtained results of UAV detections confirmed
the effectiveness of the proposed method and theoretical expectations.

Keywords: UAV; anti-drone system; data fusion; drone detection; identification; recognition; sensing
technologies; tracking algorithm

1. Introduction

During the last two decades, unmanned aerial vehicles have experienced enormous
development [1,2]. Since unmanned aerial vehicles (UAVs) were released for general civil
use, the number of incidents involving them have been constantly increasing. Unfortunately,
the threats they pose may endanger public and personal safety.

This article comprehensively raises the issue of anti-drone systems technology. The
current state of knowledge in this area is presented, as well as an overview of the existing
market solutions in the field of anti-drone systems that enable counteracting UAVs [3–7].
Radar, visual, acoustic and radio technologies that are used for UAV detection are charac-
terised. The fundamental research problem raised in the article concerns the data fusion
from the AeroScope radio system, EchoGuard radar equipped with four antenna sets and
ADS-B in order to develop a UAV detection algorithm in 3D space. The article elaborates
on the process of pre-processing data from the afore-mentioned sensors, the data synchro-
nisation process and radar data fusions in order to develop a drone detection algorithm.
The algorithm was tested on actual data.

In general, the main goal of the paper was to develop an algorithm based on the data
fusion from various sensors, enabling the detection, identification and recognition in 3D
space of a UAV violating restricted airspace.

The structure of the paper is as follows. First, a brief review of anti-drone systems
and a wide range of UAV detection technologies is provided. Then, the concept of the test
procedure in real-word conditions, in the presence of both single and multiple drones, is
presented. Section 5 contains a description of selected sensors along with data analysis,
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which has a significant impact on the choice of data fusion method and the development
of an algorithm. Section 6 presents the data fusion algorithm along with a description
of the individual stages of system design. Finally, Section 7 presents the results of UAVs
detection, performed on the data of the actual experiment. The conclusions are discussed
in the last section.

2. Review of Anti-Drone Systems

Currently, there are numerous solutions in the field of anti-drone systems available on
the market. Their main task is to counteract UAVs by detecting and combating them using
kinetic methods or energy directed at the UAV in the form of an electromagnetic pulse [8,9].
The most advanced technical solutions use full azimuth coverage of 360◦ and hemispherical
elevation coverage in the range of −45◦ to 225◦. The accuracy of computing the azimuth
resolution for these types of systems can even reach the value of ±0.5◦, and the accuracy of
computing the elevation is ±0.7◦. Other competitive systems of this type are available on
the market, most often used for limited spatial coverage, both in azimuth and elevation.
An example is the AARONIA system based on the AARTOS detector (RF detector), which
provides an elevation coverage of 10◦, and the SpotterRF system (3D-500 Radar), which
provides an elevation coverage of 90◦. In addition to the above-mentioned systems that are
approved for operation in urban areas, there are also systems that, due to their emission
parameters, are not approved for urban usage. These include the Blighter (A400 Radar),
ROBIN (ELVIRA), ELTA (ELM2026) and Echodyne (EchoGuard) systems, which not only
are not approved for urban usage, but also allow you to only cover the space of: 180◦ in
azimuth and 20◦ in elevation, 360◦ in azimuth and 60◦ in elevation, 90◦ in azimuth and 60◦
in elevation and 120◦ in azimuth and 80◦ in elevation, respectively. In the latest technical
solutions, a single radar sensor is able to provide complete hemispherical spatial coverage
and semi-spherical elevation coverage, so there is no need to integrate several RF sensors.
This approach minimises mutual electromagnetic interference and at the same time enables
the efficient use of the allocated spectrum resources. Furthermore, due to the use of a
single radar sensor, the weight of the anti-drone system is significantly minimised. An
example is the RS800 solution (by ARTsys360), the weight of which is approx. 5 kg, which
is incomparably smaller than other systems operating in urban areas, such as SpotterRF
or AARONIA, whose weights are approx. 6 kg and 30 kg, respectively. A highly crucial
parameter of anti-drone systems is the detection range. This parameter largely depends
on the radar cross section (RCS) of the UAV and the speed at which the recognised UAV
is moving. Furthermore, a UAV radar cross-section signature may be a highly efficient
distinguishing feature in the process of drone detection and classification as shown in [10].
On average, the detection range of drones for this type of systems ranges from 800 m
to 3500 m, moving at a speed of approx. 40 m/s. The exemplary EchoGuard radar by
Echodyne is able to detect drones at a distance of 900 m, people at a distance of 2200 m
and vehicles at a distance of 3500 m. The accuracy of detection is also a crucial parameter
of anti-drone systems, the value of which should be as high as possible, especially when
detecting and tracking quickly manoeuvring objects in low-altitude urban areas [11]. In
addition to technical parameters, it is also worth mentioning the functional parameters of
anti-drone systems, such as software-defined functionality or sensory multi-functionality.
The software-defined functionality enables additional functions of the anti-drone system,
such as automatic self-calibration, dynamic detection and frequency allocation, dynamic
disturbance detection, the automatic launch of anti-disturbance modes, remote system
operation and configuration and software updates [12]. The sensory multi-functionality
of anti-drone systems is based on the application of multisensory sensor fusion (radar,
optical, thermal imaging) enabling the detection and tracking of various types of objects,
i.e., drones, people and vehicles in full azimuth and hemispheric coverage, and feature
extraction for the classification process of detected objects [13].

For this reason, the data fusion process is a relevant technical and functional parameter
that directly affects the effectiveness of UAV detection, recognition and identification by the
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anti-drone system. Therefore, a modern anti-drone system is a heterogeneous platform on
which various sensors and effectors are installed. Only in this way is a modern anti-drone
system able to effectively detect, recognise, classify and incapacitate UAVs. Commercial
anti-drone systems on the market feature minimal sensory fusion. The mentioned systems
are not optimised in terms of the integration of radar, optical or thermal imaging sensors
on one platform. This leads to their functional degradation and selective use in the object
detection process, while minimising the effectiveness and probability of object detection.
At the moment, the analysed systems presented in Section 2 do not have the characteristics
of the so-called ‘data fusion’. Also, commercial solutions do not provide these features,
contrary to the method proposed by the authors of this article. To conclude, it can be
said that most of the anti-drone systems are dedicated to single purposes that prevent the
fusion of many different sensors. By optimising the transmitted waveform and automatic
frequency allocation to avoid mutual interference, the ability to transmit detected objects in
order to increase the probability of detection and minimise false alarms and the possibility
of fusing several sensors on a single display in the GUI, the synergistic coexistence of the
anti-drone system is ensured.

3. UAV Detection Technologies

The methods of detecting unmanned aerial vehicle (UAV) interference can essentially
be divided into passive and active methods. In [14], the authors present a comprehensive
survey on anti-drone systems and anti-drone system analysis, investigating a wide range of
anti-drone technologies and deriving proper system models for reliable drone defence. Each
of these methods has its own typical advantages and disadvantages. The most relevant
methods and their features are characterised below.

The main advantage of all passive methods is their undetectability by an intruder. This
is highly important if you plan to detect and monitor the activity of an intruder in order to
identify his intentions. Most passive methods are usually less capable of detecting threats,
although this is not always the case. Passive methods are based on receiving signals sent by
the drone in different frequency bands (it can be a radio, acoustic or optical signal). There
are also methods of detecting magnetic anomalies caused by a moving unmanned vehicle,
which by its nature causes a local disturbance of the magnetic field. Observation with the
application of an optical camera system using visible light technology or thermal imaging
is also a highly effective method. In general, optical observation systems are capable of
detecting UAVs at a certain distance. This task is performed with the use of specialised
imaging cameras and a mount that allows you to observe the entire protected area. As
far as the automatic observation method is concerned, it most often uses image analysis
algorithms that are based on the changes in the observed image. This allows moving
objects to be distinguished in relation to the stationary background. Initial detection is
followed by classification based on matching the observed image to the image pattern. This
method requires using very high-resolution cameras to ensure that the image is scanned at
a distance of several hundred metres from the camera. The required resolution increases
with the square of the distance. In [15], the authors show how the performance of a UAV
detection and tracking concept based on acousto-optical technology can be powerfully
increased through active imaging. Of course, high resolution requires enormous computing
power of the image analyser in order to be able to detect, classify and possibly identify
the object in real time. In case of performing in the dark, a system of thermal imaging
cameras is used. The advantage of this solution is the fact that the drone usually leaves a
noticeable thermal trace during the flight due to the high power generated by its automation.
In [16], the authors examined the CNN model that is suitable for visible camera-based
drone identification. One of the passive methods of UAV detection is the acoustic method,
which relies on tracking the object through listening and sensing and then analysing the
sound. This method has been known practically since the beginning of aviation and was
already used during World Wars I and II. Using a multi-microphone system, it is possible to
pinpoint the direction with an accuracy of several dozen degrees. By using signal analysis
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with the application of appropriate patterns, it is possible to identify, with high probability,
the sound emitted by the drone, which is quite distinctive. A significant drawback of the
mentioned method is the influence of ambient sounds (the so-called acoustic background),
which has a negative impact on the detection, classification and identification of UAVs. In
addition, the strength and direction of the wind have a highly crucial bearing on the range
of the acoustic method. Due to the highly limited range resulting from the high attenuation
of the acoustic wave in the space of its propagation, acoustic waves are used sporadically
for UAV detection. Another passive method is radio-electronic spectrum monitoring, which
allows the source of the radio signal to be detected and located. When using this method to
detect UAVs, it is necessary to know the radio band that is used to communicate with the
drone and the signal structure, allowing for the approximate identification and possible
exclusion of irrelevant signal sources. An antenna system with a dedicated receiver is
required to detect such a radio-electronic signal. To determine the direction from which
the signal is transmitted, it is necessary to provide a directional antenna or an array of
antennas providing information to the multi-channel data analyser. This method can be
used to determine the direction from which the signal is transmitted, but to pinpoint a
specific position (dislocation), at least two such tracking units are required to pinpoint the
position of the source by using the triangulation method [17]. Another desirable feature
is the ability to identify the radio signal sent both by the drone and the operator itself in
order to locate the position of said operator of the unmanned aerial vehicle. The ability to
read the transmitted information allows you to obtain telemetry data, for instance, the data
about the GPS position. This is possible with standard drones purchased on the market that
do not use special encryption. A potential disadvantage of the system is the problem of the
identification and interception of radio data in the case of specially developed non-standard
structures, other than the so-called ‘off-the-shelf technology’ (COTS—commercial off-the-
shelf). Another problem is the use of the drone structure for the so-called ‘silent flight’. In
this mode, the UAV turns off the two-way radio communication immediately after take-off
and can only receive the signal from the operator (uplink). Then it is impossible to detect it
in the standard radio band, and the drone flies along the programmed route and lands at a
predetermined location.

Active methods use the signal they send to detect and locate unmanned aerial vehicles.
Most often it is a radio (or radar) signal in the form of a directional electromagnetic beam.
The afore-mentioned signal reflecting off the surface of an object or target is detected [18].
Knowing the delay of the reflected signal, the distance can be determined. The method is
effective for purposes several times greater than the wavelength used in the device. Due to
the fact that most often they are centimetre waves or shorter, it is possible to detect drone-
type objects. The disadvantage of active methods is the easy detection of the ‘pinpoint’
attempt. In terms of operational activities, this enables an intruder to attempt to withdraw
from the intended activities or to hide. Active UAV detection systems operating in the
radio band are not dependent on the time of the day or weather conditions. They are
widely used for detecting and locating sources of electromagnetic waves, and in case of an
active radar beam, they are able to detect even a small object in the protected zone. In [19],
the authors design a drone detection mechanism using the RF control signal exchanged
between the drone and its remote controller. Fundamental techniques based on radar
detection work very well, but they may often be insufficient when confronted with very
small UAVs [20]. There are several studies on the analysis of radio signals emitted by
UAVs and their controllers. The authors of [21] examine the distinctive features of the
radio spectrum for some of the most popular UAV systems and propose an algorithm for
detecting the presence of UAVs in the analysed radio spectrum. In [22], the authors propose
a per-drone iterated algorithm that optimises drone-cell deployments for different drone-
cell numbers and prevents the drawbacks of the pure particle swarm optimisation-based
algorithm. The commercial UAV market is developing in an extremely swift manner and
new models are based on newer and newer technologies. Therefore, it is vital to update
the signature databases for given models, regardless of the selected detection method.
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Nevertheless, the radio analysis approach seems to have the lowest variability. Currently,
the most popular and the most flexible tool for radio spectrum analysis is software defined
radio (SDR) platforms. These are software-tunable radio system platforms that allow for
signal processing in digital form. This process is mainly based on the conversion of the
recording of the radio signal from the time domain to the frequency domain by means of
the Fourier transform and its appropriate analysis [23,24].

Active Methods of Disrupting and Directly Interfering with the UAV

Another way to prevent the drone from undesirable trespassing directly into the safety
zone is active interference. This can be executed by disrupting the GPS signal that is
necessary for the aircraft positioning and navigation, and also by disrupting or preventing
the signal transmission between the operator and the aircraft. Jammers are used for this
purpose. They can operate in the band of a specific device or system (e.g., GPS signal) or
in a wideband, e.g., to interfere with data transmission. This type of device is most often
equipped with a directional antenna that sends a beam aimed at the UAV that needs to be
disabled. Sector or omnidirectional antennas are also used to operate in all directions. This
solution is used in the defence of a large sector, when it is difficult to locate the target of
the attack and precisely pinpoint the direction the UAV is attacking from. The methods
of direct interference include active defence through the so-called ‘kinetic’ attack, which
may take the form of firing dismantling missiles at the UAV (whose individual parts, after
dismantling, hang on Kevlar lines and get entangled with the UAV rotors) or throwing a
neutralising net at the hostile UAV. These types of methods can only be used to a limited
extent due to the safety of the people in the vicinity. All the detection methods used, along
with the sensors and the entire measurement infrastructure, must be connected to an IT
system that supervises all activities. It is necessary to secure and organise the work of
security services [25]. The structure of the system must enable data to be received from all
sensors and security systems, archived and presented in order for appropriate actions to be
taken by the system staff. In the case of large objects, it will usually be a distributed multi-
station system with several levels of decision-making, both in the context of extracting the
signatures of processed signals and building constant vectors (patterns) in the database for
further recognition and identification [26].

In the next part of the paper, we will focus on the detection of UAVs that violate the
restricted airspace, and not on methods of disrupting and directly interfering with UAVs.
Our considerations concern the development of multisensory data fusion, which allows for
the precise detection, identification and recognition in 3D space of UAVs or UAV formations
with the distinction of individual platforms. Therefore, the review of anti-drone systems
presented in Section 2 made it possible to assess the current state of the art in the studied
area, while the available UAV detection technologies presented in Section 3, in particular in
the field of sensory systems, allowed for the selection of specific sensors that are the subject
of research in the next part of the paper.

4. Data Acquisition during Operational Activities

The main purpose of this operational procedure is to acquire data from a real sensory
system operating in real conditions similar to the future operation of the system. In order to
recreate the scenario of a monitored airspace violation, archiving necessary data is required,
such as:

• Test start time;
• UAV take-off time;
• Time of violation of the observed airspace;
• Flight path (spatial coordinates associated with recording time);
• Flight parameters.

Figure 1 illustrates the concept of the test procedure. The flight scenario was defined
so that the flight trajectory was inside the observation zone.
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Figure 1. The concept of the system’s tests in realistic conditions.

The data acquisition process took place in real conditions during operational activities
under the supervision of qualified operators using unmanned aerial vehicles:

• DJI Matrice 600 with an ADS-B transponder on board;
• DJI Mavic 2.

On the basis of the review of the available UAV detection technologies carried out in
the previous section, three sensory systems classified into the group of passive and active
methods were selected. At this stage, a holistic approach was applied and the sensors
were selected in order to obtain complementarity of the data. At the sensor selection stage,
the acoustic method based on tracking and analysing the sound trace emitted by a flying
object was abandoned. A significant disadvantage of the method mentioned above is the
influence of ambient sounds (the so-called acoustic background), which has a negative
impact on the detection, classification and identification of UAVs. Another disadvantage is
the strength and direction of the wind, which have a significant impact on the range of the
acoustic method.

Therefore, taking into account the above, the following sensors were selected, from
which data were collected during the tests:

• ADS-B transponder;
• DJI AeroScope (the notation ‘AEROSCOPE’ and ‘AeroScope’ will be used interchange-

ably hereafter) radio system for tracking radio communication between the UAV and
the operator;

• EchoGuard radar equipped with four antenna arrays covering a full angle of 360◦
horizontally and ±40◦ elevation (will be referred to as ‘radar’ hereafter).

As a result of the tests performed, three data sets were obtained each time, respectively,
for each of the sensors. Further on in the paper, the symbols used in the results tables will
be explained and the time plots of selected quantities will be presented in a graphical form.

5. Sensory Data Analysis

The sensors used in the system under construction determine the use of the follow-
ing methods to develop effective data fusion algorithms ensuring UAV detection in a
controlled airspace:

• Methods based on the ADS-B system;
• Passive radiolocation methods (RF—radio frequency);
• Active radiolocation methods (radars).

5.1. ADS-B Transponder

According to the amendment to the aviation law from 31 December 2020, each UAV
should be equipped with an ADS-B transponder. The purpose of such an operation is
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to integrate the UAV with the controlled airspace in which no aircraft can move freely
without being visible on the radar by flight controllers and other aircraft, e.g., a passenger
equipped with a TCAS (Traffic Alert and Collision Avoidance System)—a collision warning
and avoidance system that responds to signals from ADS-B transponders.

The system is event-based and provides data of all the aircraft currently in the airspace
and within the range of the ADS-B receiver. Data are contained in an array of 39 columns.
Data logged by ADS-B receiver indicate the presence of various aircraft types, classified
according to the ICAO classification (International Civil Aviation Organization):

• 0 = unidentified (no information on aircraft type);
• 2 = small aircraft (from 15,500 to 75,000 lb);
• 3 = large aircraft (from 75,000 to 300,000 lb);
• 5 = heavy > 300,000 lb;
• 14 = UAV (unmanned aerial vehicle).

Therefore, data analysis requires a preliminary filtration, narrowing down further
considerations to unmanned aerial vehicles only. For the purposes of sensory information
analysis and the synthesis of the data fusion algorithm, the following vector of measurement
values describing the current state of the system was adopted:

X1 =
[

ICAO, lat1, long1, h, y, Vxy, Vz, ET
]

(1)

where:
ICAO is the aircraft type code;
lat1 is the latitude;
long1 is the longitude;
h is the altitude;
y is the heading;
Vxy is the horizontal velocity;
Vz is the vertical velocity;
ET is the category of the aircraft emitting the signal.
The data obtained from the ADS-B transponder are reliable on the condition that

the UAV is equipped with such a device. However, the problem is the mass of the ADS-
B transponder. Even miniaturised devices are not light enough to be lifted by drones
weighing less than 2 kg, and these currently fly the most in the airspace. Accordingly, as of
today, there is no guarantee that all drones will be equipped with an ADS-B transponder,
so this article proposes a fusion of data from several different sensors.

5.2. AeroScope Radio System

The essence of the method is the detection of the RF radio communication signal
between the UAV and the ground operator. The flying platform communicates with the
controller in a specified frequency band. Once this frequency band has been identified,
there is a high probability that a UAV is within the detection range.

The system is event-based and provides pre-processed data in the form of a table with
19 columns, each of which contains temporal data of a specific physical quantity. For the
purposes of further analysis of the sensory information and the synthesis of the data fusion
algorithm, the following vector of measurement quantities describing the current state of
the system has been assumed:

X2 = [V, lat2, long2, d, h, y, DT, Did] (2)

where:
V is the flight velocity;
lat2 is the latitude;
long2 is the longitude;
d is the distance of the UAV from the sensory system;
h is the altitude;
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y is the heading;
DT is the UAV type;
Did is the UAV identifier.
Based on the obtained flight logs, the time diagrams of basic physical quantities and

the reconstructed UAV flight altitude are presented below.
On the graph showing the changes in the distance of the UAV in relation to the

AeroScope receiver (Figure 2) and the graph showing the flight altitude (Figure 3), there are
noticeable disturbances in the form of large deviations from the regular flight path. Near
the 100th and 175th sample, there are visible abrupt changes in distances of a large value,
which are not realistic to achieve during the flight with a standard UAV. It can be concluded
that these are disturbances that need to be filtered in the step of signal processing. The
solution to this problem has been widely discussed in [27].

Figure 2. Distance to the UAV measured by AeroScope system.

Figure 3. UAV flight altitude broadcasted by AeroScope.

5.3. EchoGuard Radar

The radar system is equipped with four antenna assemblies. The scanning range
of a single radar/antenna is 120◦ in azimuth (±60◦) and 80◦ in elevation (±40◦). The
antennas are placed every 90◦ covering the entire area of 360◦ in azimuth. Taking into
account the scanning range of a single antenna of 120◦, common scanning areas for adjacent
antennas appear.
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The system provides data in the form of a table containing 24 columns, each of which
is the time data of individual state variables. For the purposes of further analysis of the
sensory information and the synthesis of the data fusion algorithm, the following vector of
measurement quantities describing the current state of the system has been assumed:

X3 =
[

PUAV, CL, RCS, az, el, R, x, y, z, Vx, Vy, Vz
]

(3)

where:
PUAV is the probability of UAV detection;
CL is the confidence level;
RCS is the radar cross-section;
az is the estimated azimuth;
el is the estimated elevation;
R is the estimated distance between the UAV and radar;
x, y and z are the estimated UAV coordinates relative to the radar (in the Cartesian

coordinate system);
Vx, Vy and Vz are the velocity components of the UAV in the x, y and z axes, respectively.
Based on the flight logs stored, the time graphs of two indicators that will be used in

the multisensory data fusion process are presented below: the probability of UAV detection
(Figure 4) and the detection confidence level (Figure 5).

Figure 4. Probability of UAV detection plot.

Figure 5. Radar detection confidence level plot.

Information from several indicators, such as the detection probability (Figure 4) and
the confidence level (Figure 5), may indicate detections classified with high probability as
the UAV.
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6. Sensory Fusion Concept

The flight logs contain information acquired by three types of sensors. Each of them
has a different operating principle, and thus is a source of broad-spectrum data that
complement each other. Moreover, each aforementioned information source bears some
uncertainty and inaccuracy; therefore, the fusion of the information provided by all these
sources makes it possible to improve the certainty of detection. There are several known
data fusion methods based on, e.g., the Kalman filter, complementary filter, weighted
function or prediction methods. The most common method of multisource data fusion is
based on the Kalman filter concept [28]. Such an approach fits well in the situations when
the dynamics of individual data sources vary significantly, which is not the issue of the
study presented. The performed in-depth data analysis focused our investigation on data
fusion through their conditional complementarity depending on the current conditions,
imposed by the type of the identified UAV and its equipment (e.g., the presence of the
ADS-B system). Moreover, data selected to be fused are the result of multistage analysis
and extraction. For this reason, the application of the Kalman filter-based approach, which
was nevertheless considered, was ultimately abandoned at the early stage of the project
development. The conditional complementary filtration, which is the second reasonable
methodology for multi-source data fusion, was used instead. The data analysis carried out
in the previous section allowed for the formulation of several observations:

• Each sensor works asynchronously in an event-based way;
• Data provided by the AeroScope and EchoGuard radar systems contain interference

in the form of short duration pulses of high amplitude;
• The ADS-B system provides information about all the aircrafts in the airspace which

are within the range of the ADS-B receiver, both manned and unmanned;
• None of these sensors allows a complete detection, recognition and identification procedure;
• The desired effect can be achieved by fusing data from several sensors on the basis of

intelligent information complementarity.

Figure 6 illustrates the concept of the data fusion process. As can be seen, this pro-
cess is performed sequentially, through three stages. There are six independent informa-
tion sources at the process input: ADS-B and AEROSCOPE transponders as well as four
ECHOGUARD radar antennas. Since the data coming from transponders have different
features than those provided by radar, they are processed independently. At the first
pre-processing stage, outliers are detected and removed from the data sets. In the next
phase, the data are synchronized in relation to the system initialization moment, with the
given sampling period.

 

Figure 6. Diagram illustrating sensory fusion concept.

159



Sensors 2022, 22, 4323

In the last stage synchronized data are fused in two steps. In the first one, indepen-
dently, detections registered by transponders are merged using an averaging operation,
while detections recorded by the four radar antennas are fused with the complementary
filter. After this, these two independent channels are combined by the conditional merging.

6.1. Data Pre-Processing

Since it is much easier to analyse and process distance-based indices in the Cartesian
space, all data on the location of detected objects are converted to the common Cartesian
coordinate system, fixed to the centre of the radar station and oriented as follows: North-
East-Up. Transponder data are converted from geographical coordinate space (lon-lat-alt).
Radar readings are measured in a Cartesian frame fixed to individual radar antennas, and
these data also have to be converted into the common coordinates frame.

As was mentioned above, the first step of the procedure consists of removing bad
samples which are not going to be used in the fusion process. Since the data packages
emitted by transponders have a relatively long spatial range, the receivers which are part of
the system described can record information coming from many, often very distant, flying
objects. So, the first operation which has to be performed is removing these detections
using the distance-based thresholding. The ADS-B sensor can receive data broadcast by
large aircrafts which are out of the scope of the system described. Therefore, in the first
stage of signal processing, AV emitter type filtration was used. This means that from
among all the aircraft identified by the system, only the data related to unmanned aerial
vehicles (UAVs) should be extracted. In this case, a dedicated conditional filtering was
used in which the ‘PingDetectionemitterType = 14’ parameter was used to extract the UAV.
This parameter defines the category of the aircraft, and the value of ‘14’ unambiguously
determines the unmanned aerial vehicle.

Taking into account the radar, the distance-based thresholding is also the first reason-
able criterion of removing outlying detections. However, the radar software algorithms
mark each detection with two additional tags which are useful in further data analysis. The
first one, which is named UAV Probability, ranges from 0 to 1 and describes the certainty that
the object detected belongs to the UAV class. The second one is the Confidence Level, which
takes the values from the range of [0–100] and reflects the confidence that this detection is
not measurement noise. In the pre-processing, high values of these tags are used to narrow
down the set of analysed data.

6.2. Data Synchronisation

The multi-sensory fusion method outlined so far is based on the assumption that all
data provided by particular sensors of the system are synchronous. Such an assumption
is necessary to analyse spatial relations between detected objects. This means that for
each instance n of discrete time, data sets determining detections collected at the same
time can be distinguished: Sk(n), k = 1, . . . , K, where n is the index of the given sensor.
In real systems, such as the system described in this paper, both moments of detections
and moments of recording them are event-related. This means that after classifying the
given measurement (reading) as a detection of a UAV by the sensor algorithm, it is stored
in the log-register with the time-stamp of the given sensor. The time-stamp is related
to the particular sensor’s clock. Therefore, the first stage of the data fusion process is
data synchronisation. For each instance n of discrete time, the following mapping has to
be made:

Lk(i) → Sk(n) (4)

where i denotes the detection index recorded in the log-register of the kth sensor, whereas n
defines subsequent moments in time, tn = nΔt, n = 1, 2, . . ., discretised with the sampling
period Δt. It is performed by labelling elements of original sets Lk with indices belong-
ing to the given set Sk(n). Each set contains detections acquired in the period of time
tε< (n − 1)Δt, nΔt >. In particular, these sets may be empty, which means there was not
any detection in the given time interval. Each record of data provided by individual sensors
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is given a unique identification number. In each sample period n, multiple detections of the
same ID can be registered. During the process of synchronising, these detections have to be
merged into a single one. This operation can be performed by using various operators. In
the case of this work, the averaging operation was applied.

6.3. ADS-B and AEROSCOPE Data Fusion

The idea of a complementary filter is well known from inertial measurement units
IMU, the task of which is to estimate the orientation of the UAV based on measurements
from independent sensors, characterised by the complementation of information in the
frequency domain [29–34]. While analysing the sensory data acquired by the system, it was
noticed that within some areas, the detections provided by multiple sensors complement
each other. Detections of the ADS-B and AeroScope systems are very similar, provided that
the observed UAV is a DJI platform. In cases where the observed area is violated by a UAV
of another manufacturer, then the ADS-B system detections will complement the radar
indications. Taking into account the above observations, a data fusion based on conditional
complementarity was proposed (Figure 7).

 
Figure 7. Transponders data fusion idea.

Considering the filter’s activity in the assumed time interval, it checks first whether
the ADS-B and AeroScope systems have detected the presence of the UAV. If both sensors
registered detections, then these detections are averaged in the considered time interval. If
the detection appeared only in the data doming from the ADS-B, it means that the detected
UAV is not a DJI drone, and in this case, detections provided by the ADS-B are taken as the
result of the fusion. However, when the ADS-B and AEROSCOPE systems do not show
UAV activity, and the detections appear only in the radar readings, then most likely there is
a UAV of a different manufacturer than DJI in the observed area, with neither an ADS-B
nor an AEROSCOPE transponder installed. Therefore, the output data of this part of the
system take the form of a conditional sum:

T(n) = S5(n) ∪ S6(n) ∪ S5,6(n) (5)

where S5,6(n) is the average of the elements of data sets S5 and S6.

6.4. Radar Data Fusion

Radar enables detection, localisation and motion parameter measurements of an object
moving within its range. The detection range of a radar is dependent on its sensitivity and
the spatial configuration of its antennas. Also, environmental conditions taken together
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with the aforementioned factors imply that the same object tracked by multiple antennas
may be detected with different accuracy and certainty. For example, the certainty of an
object detection moving at the limit of the sensor’s range is usually lower than the object
localised in the center of the detection area.

So, having information about detections coming from multiple radar antennas moni-
toring the same observation area, it is usually possible to improve detection accuracy and
certainty. Figure 8 gives an interpretation of this case. There is a moving object within the
range of two antennas of the radar station (S1 and S2; their detection areas are plotted with
red and blue colors). The real localisation of the object in subsequent moments in time is
marked with black circles, while its current location in the nth moment is marked with a
blue circle. Detections of this object registered by antennas S1 and S2 are marked with the
red circle and the blue star, respectively. The result of the fusion of information provided
by these two sensors is plotted with the black circle.

 

Figure 8. Geometrical interpretation of the case of multiple radar detection of the same object.

In the case of multiple detections, the problem is determining which of the detections
represent the same object, then how to make their fusion. In this paper, we applied the
distance-based clustering and complementary filtration with weighting factors calculated
as functions of the certainty factor.

Let us assume that the given area is monitored by four radar antennas of different
spatial configurations. Let us also assume that M unidentified objects are moving within
this area. The set of detections captured by the kth antenna in the time n is denoted as

Sk(n) =
{

dk
i

}
, i = 1, 2, . . . , M, k = 1 . . . 4 (6)

where
dk

i =
(

Pk
i , ck

i

)
, ck

i ∈ [0, 1] (7)

The Pk
i denotes the ith detection of the kth antenna described in Cartesian spatial

coordinates, while ck
i is the detection certainty factor estimated by the internal algorithm of

the radar system.
The first stage of the fusion procedure is identifying the given object among all

detections captured by particular antennas. It is performed by determining the similarity
(in the sense of the metric used) of elements belonging to the sets S1 . . . S4. The similarity is
related to the spatial proximity of the elements; therefore, the most convenient and intuitive
metric is the Euclidean one, which was used in the described approach.
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Two elements captured by different sensors at the same moment n in time are consid-
ered to be similar if the distance between them is smaller than some threshold value:∣∣∣dk

i − dl
j

∣∣∣ < THR, k, l = 1, 2, . . . , 4, i ∈ [1, Mk], j ∈ [
1, Mj

]
(8)

This threshold depends on many issues, such as the spatial resolution of the sen-
sors, and is tuned experimentally. The result of the similarity checking process is the
similarity matrix:

As = {an,m}, n ∈ [0, Ns], m ∈ [1, 4] (9)

where m is equal to the number of sensors and n is the number of pairs of elements classified
as similar, respectively. For example, the matrix row of elements [1 0 2 0] means that the
first element of the set S1 is similar to the second element of the set S3, which in turn implies
that antennas 1 and 3 detected the same physical object.

The next step of the data aggregation procedure is merging the detections of the same
object captured by multiple radar antennas, indicated by the similarity matrix. Each row of
this matrix indicates a pair of detections which are close enough in the sense of the threshold
applied. In the approach presented, the complementary weighted average was used for
merging the similar detections. The weighting factors are computed the way providing
that the detection captured with a higher certainty factor also has a higher influence on the
fusion result. Let us assume two detections classified as similar are given by

dk
i =

(
Pk

i , ck
i

)
and dl

j =
(

Pl
j , cl

j

)
(10)

The fusion
(

P̃, c̃
)

of these two elements is calculated as

P̃ = w1Pk
i + w2Pl

j (11)

c̃ = max
(

Pk
i , Pl

j

)
(12)

The weighting factors are computed complementarily as the functions of certainty factors:⎧⎪⎪⎪⎨⎪⎪⎪⎩
w1 = 0.5

(
1 + 1

1+e−α(ck
i −THR)

)
, w2 = 1 − w1 f or ck

i > cl
j

w1 = 0.5

(
1 + 1

1+e
−α(cl

j−THR)

)
, w2 = 1 − w1 f or ck

i ≤ cl
j

(13)

After this stage of the fusion process, for the nth moment in time, the following vector
of detections is obtained:

R(n) =
[
d̃1(n), d̃2(n), . . . , d̃Mn(n)

]
, Mn ≤ M (14)

6.5. Final Fusion

At this stage of the process, detections coming from two separate information channels
(transponders and radar) have to be merged into one. Let us denote the set containing
fused readings coming from transponders ADS-B and AeroScope, recorded in the sampling
period n as T(n). On the other hand, there is a set of radar detections fused recorded in the
same sampling period—R(n). The fusion of these stets is performed using the following
conditional scheme:

F(n) =

⎧⎨⎩
T(n) i f T(n) 	= ∅ ∩ R(n) = ∅

R(n) i f T(n) = ∅ ∩ R (n) 	= ∅

F̃(n) otherwise
(15)
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The first two cases of this scheme are obvious and will not be commented upon. Let us
take a closer look at the third one, describing the situation where both the transponders and
the radar registered detections. In such a case, there is a need to distinguish two cases. First,
when readings coming from the transponders and the radar refer to the same object, they
have to be merged. Second, when detections registered by the radar and the transponder
receivers are disjointed, both detections are stored in the files of the system records. Hence,
the following conditional procedure is performed:

F̃(n) =
{

Ti(n) ∪ Rj(n) i f
∣∣Ti(n)− Rj(n)

∣∣ > THR
Ti(n) i f

∣∣Ti(n)− Rj(n)
∣∣ ≤ THR

(16)

So, if the distance between detections Ti(n) and Rj(n) is greater than the assumed
threshold THR, both detections are saved in the records. Otherwise, there is a high possibil-
ity that two detections refer to the same object. In this case, detection Ti(n) coming from
the transponder is kept, since it is more reliable.

6.6. Detection Identification and Tracking

At the last stage of the process of retrieving information upon violation of the observed
airspace, identification of the detection and tracking the identified object must be provided.
This is the most important information from the end user perspective, and performing these
operations simultaneously is highly complex. Of course, all the preceding data processing
is absolutely necessary to perform the last stage, and this must be highlighted. The
identification of the objects detected by individual radar antennas is based on signatures
given to them by the radar software algorithms. Similarly, data sent by transponders
contain their own signatures identifying the objects. Further, while merging the detections,
this information is lost. Therefore, it is very important to combine new incoming detections
with those previously registered. In other words, the following similarity must be found:

Fi(n) ∼ Fj(n − 1), i = 1, 2, . . . ,
=
F(n), j = 1, 2, . . . ,

=
F(n − 1), (17)

where the time index n denotes the current detection while n – 1 is the previously ob-
tained one.

One of the possible solutions to the aforementioned problem is using the predictive
approach. The method proposed consists of comparing the detection’s prediction to the
current detection, using the Euclidean metric:

Fi(n) ∼ F̂j(n), i = 1, 2, . . . ,
=
F(n), j = 1, 2, . . . ,

=
F(n − 1), (18)

where F̂j(n) denotes the detected objects’s location prediction calculated for the current
moment n. The prediction is the function of the past readings:

F̂j(n) = f
(

Fj(n), Fj(n − 1), . . . , Fj(n − H)
)
, (19)

where H is the number of past readings taken for calculating the prediction. Another
option that allows the location prediction of the considered object to be obtained is using
information on its velocity. Since the radar provides estimates of the detection’s velocities
measured in relation to three axes, it is easy to find the prediction of the object location
using these data:

F̂j(n) = f
(

Fj(n − 1), vx,j(n − 1), vy,j(n − 1), vz,j(n − 1)
)

(20)

One more possibility of finding similarity between current and past detections is
comparing them directly using the Euclidean metric.

In all the aforementioned options, if the distance between the current and previous
detection are recognized as similar, the current detection is given to the identifier of the
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previous one. Otherwise, the current one is treated as a new detection and is given a
new ID.

7. Results

The purpose of the task was to validate by simulation the algorithm developed for
detecting single, as well as multiple, UAVs. As part of this task, the results generated by the
algorithm implemented were verified by comparing them to the data obtained as a result
of the planned experiment. Before commencing validation tests, measurement data were
acquired by the sensory system during test flights. The tests covered:

• Single UAV flight—DJI Matrice 600;
• Simultaneous flight of two UAVs—DJI Matrice 600 and DJI Mavic 2.

In the case of using the DJI Matrice 600 platform, a full set of measurement data was
provided, which includes ADS-B, AeroScope and radar (four sector antennas). In turn,
using the DJI Mavic platform, AeroScope and radar data were provided.

7.1. Single UAV Detection

The first test consisted of performing an operator-controlled flight of the UAV of type
DJI Matrice 600 within the monitored area of restricted airspace. As was mentioned before,
this drone was equipped with both ADS-B and AREOSCOPE transponders. The radar
antennas were mounted on the 8 m high mast. During the experiment, data coming from
all sensors were saved. After the flight, the data acquired were post-processed. Time
synchronisation with the sampling period equal to 1 [s] was forced. Figure 9 shows the
result of the fusion procedure described in the previous section, presented using a 3D graph.
Detections registered by the radar system, after filtering and merging data coming from
four antennas, are marked with the blue crosses. In the case of radar data fusion, additional
detections appeared, clearly visible on the 2D projection of the flight trajectory (Figure 10),
which were the result of the assumed threshold values of complementary filtration. The
threshold values used in the filtration process were: PUAV = 0.7 and CL = 80%.

Figure 9. UAV flight path registered by various sensors after the information fusion.
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Figure 10. UAV flight path presented in 2D geographical coordinates (a) and its enlarged part (b).

On the other hand, the UAV flight path registered by transponder systems ADS-B and
AREOSCOPE after the fusion process is plotted with a red circle. As one can notice by
looking at this picture, there is a slight offset between the transponders’ and radar’s data
regarding the flight altitude measurements. This phenomenon is illustrated more precisely
in Figure 11. The reason for such a discrepancy in the presented results comes from the
fact that the assembly offsets of the radar antennas were not measured precisely enough.
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Finally, a complete fusion of the transponder and radar data are presented in Figure 9 with
green stars. As was explained in the previous section, data coming from transponders,
registered by a GPS system, are considered as more reliable than radar measurements.
Therefore, in cases where there are both radar and transponder data in the given sampling
period, the fusion results in neglecting the radar readings.

Figure 11. UAV flight altitude plot.

Figure 10 shows the 2D interpretation of the aforementioned fusion aspects: the entire
flight path (a) and the enlarged part of the flight path for the time interval of 200–300 [s].

7.2. Multiple UAV Detection

System tests were performed comprehensively and followed the system integration
stage. At this stage of the project, the end-to-end test was performed. The test scenario
assumed the simultaneous flights of two drones—the Mavic 2 and Matrice 600 Pro. The
flight altitude of the first one was about 50 [m], whereas the second drone was flying at
the altitude of 30 [m]. The radar antennas assembly configuration was the same as in the
experiment described in Section 7.1. Also, the notation used for marking individual stages
of data processing is the same. Again, as in the previous scenario, data acquired from
transponders were used as the reference to the radar measurements. This time, let us start
the results analysis from observing the recorded altitude data, presented in Figure 12.

Let us consider the flight of the M600 drone. Analysing the AREOSCOPE data, we
can see an almost flat, very precise record of the flight altitude at the level of 32 [m]. Taking
into account the ADS-B readings, also mounted onboard the M600, the readings are not
so accurate and oscillations of the amplitude of about 10 [m] can be observed. As for the
radar detections of this object, a slight offset of about −5 [m] can be seen. Finally, after the
fusion of data from these three sources, the M600 flight altitude path was extracted (black
line). On the other hand, analysing the Mavic 2 drone flight, we can conclude that the data
describing the altitude registered by radar and AEROSCOPE are more similar to each other.
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As in the first case, the fusion procedure gave a quite reliable flight path identification
(red line).

Figure 13 shows detected objects on the longitude–latitude plane. Readings from
transponders are marked as explained by the picture legend. As mentioned before, they are
considered as a reference to the data fusion results. We can observe a slight offset between
the ADS-B and AEROSCOPE data identifying the M600 drone. Looking at the radar fusion
results, it can be noticed that both drones were detected, identified and tracked.

Figure 12. Multiple UAV flight altitudes–indirect detections and identifications.

Figure 13. Flight trajectory in 2D space—indirect detections and identifications.

Finally, the fusion of all informational channels results in registering precise tracks
of objects violating the observation area. This is shown even better in the last figure as a
3D plot (Figure 14). Since transponders’ data contain information about the type of the
UAV, these objects were identified as two drones: M600 and Mavic2. Of course, due to only
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having radar readings, it is not possible to perform high level identification. Nevertheless,
as is shown in Figure 13, the radar was able to identify two separate tracks of UAVs flying
within the monitored space.

Figure 14. Flight trajectory in 3D space−final result of data fusion.

8. Conclusions

This paper concerned the problem of the detection of unmanned aerial vehicles vi-
olating restricted airspace. At the outset, the review of available market solutions in the
field of anti-drone systems and existing detection technologies made the reader aware of
the possibilities of counteracting unmanned aerial vehicles. The performed analysis also
showed the shortcomings of the existing anti-drone systems and indicated new research
directions. In the next stage, the data provided by the sensory system during field tests in
real conditions was analysed. The algorithm of fusing data acquired by multiple sensors,
enabling the UAV detection, identification and recognition in 3D space, was proposed. The
developed detection system includes the following three subsystems: pre-processing, time
synchronisation and data fusion, which is based on complementary conditional filtering.
The efficiency of the proposed solution was tested on the basis of rapid prototyping in the
MATLAB simulation environment using data from the real sensory system obtained during
controlled UAV flights.

It must be concluded that if a UAV entering the range of the monitoring system is
equipped with an ADS-B or AEROSCOPE transponder, there is no problem with detecting
and identifying the aerial vehicle. Unfortunately, the most likely scenario is that the UAV
violating the restricted airspace will intentionally not be equipped with such devices. Then,
the system detection abilities are based on radar readings. The radar used in this project is
very sensitive and is able to detect small objects—either miniature drones or other objects.
This property of the sensor raises further problems with data interpretation. Usually, the
radar captures many more objects than the ones being subject to the observation. In this
paper, we proposed multistage filtration to reject the false detections. The efficiency of the
proposed approach was proved by multiple tests. The next crucial problem addressed in
this paper was the data fusion of detections registered by multiple radar antennas with
overlapping fields of view. The complementary filter-based fusion, presented in Section 6.3,
solved this problem in a satisfactory way. The next issue is the identification and tracking
of the detected object using radar readings. In the fusion process, unique signatures of
detections given to the objects by the radar software disappear and new identifications have
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to be given to the fused data. In the next phases of the system operation, this identification
must be tracked to provide continuous observation of the identified object. This problem
was solved in this project by using the predictive clustering method. In this case, satisfactory
results were obtained as well. However, though the operational abilities of the monitoring
system based on the presented methodology were in general satisfactory, further works
on improving its efficiency are required. The most crucial issues that must be revisited are
the radar data fusion in terms of overlapping observation areas and the detection tracking.
Applying more sophisticated methods of providing a more reliable prediction of the tracked
object seems to be a favourable starting point for the method’s improvement.
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Glossary

ICAO aircraft type code
lati latitude indicated by the ith sensor
longi longitude indicated by the ith sensor
h altitude
y heading
V flight velocity
Vxy horizontal velocity
Vz vertical velocity
ET category of the aircraft emitting the signal
d distance of the UAV from the sensory system
DT UAV type
Did UAV identifier
PUAV probability of UAV detection
CL confidence level
RCS radar track RCS (radar cross-section)
az estimated azimuth
el estimated elevation
R estimated distance between UAV and radar
x, y, z estimated UAV coordinates relative to the radar (in Cartesian coordinate system)
Vx, Vy, Vz velocity components of UAV in the x, y and z axes, respectively
Sk(n) data sets determining detections collected in the same time
k sensor index
n subsequent moments in time tn = nΔt, n = 1, 2, . . .
Δt sampling period
Lk(i) mapped detection set
i detection index recorded in the log-register
T(n) set of fused detections from ADS-B and AREOSCOPE
Pk

i ith detection of kth antena
ck

i detection certainty factor
As detection similarity matrix
R(n) set of fused radar detections
F(n) fusion of T(n) and R(n) sets
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Received: 16 February 2022

Accepted: 19 April 2022

Published: 1 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Pedestrian and Animal Recognition Using Doppler Radar
Signature and Deep Learning

Danny Buchman 1,*, Michail Drozdov 2, Tomas Krilavičius 1, Rytis Maskeliūnas 1 and Robertas Damaševičius 1
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Abstract: Pedestrian occurrences in images and videos must be accurately recognized in a number
of applications that may improve the quality of human life. Radar can be used to identify pedestrians.
When distinct portions of an object move in front of a radar, micro-Doppler signals are produced
that may be utilized to identify the object. Using a deep-learning network and time–frequency
analysis, we offer a method for classifying pedestrians and animals based on their micro-Doppler
radar signature features. Based on these signatures, we employed a convolutional neural network
(CNN) to recognize pedestrians and animals. The proposed approach was evaluated on the MAFAT
Radar Challenge dataset. Encouraging results were obtained, with an AUC (Area Under Curve)
value of 0.95 on the public test set and over 0.85 on the final (private) test set. The proposed DNN
architecture, in contrast to more common shallow CNN architectures, is one of the first attempts to
use such an approach in the domain of radar data. The use of the synthetic radar data, which greatly
improved the final result, is the other novel aspect of our work.

Keywords: doppler radar; micro-Doppler signature; pedestrian recognition; animal recognition;
deep learning

1. Introduction

Artificial intelligence (AI), pattern recognition, machine learning (ML), and deep
learning (DL) have recently gained popularity in a variety of domains of application,
including autonomous driving [1], Internet-of-Things (IoT) [2], robots [3], smart mobility [4],
etc. These applications collect data from their surroundings by sensing it; then they
analyze the collected data, making choices and taking actions depending on the analysis [5].
Furthermore, computational intelligence methods and inference techniques based on deep
learning are being intensively explored to improve the accuracy of computer vision systems.

One of the most significant challenges in computer vision is object tracking [6,7]. It
offers a wide range of real-world applications, including robotics, medical imaging, traffic
monitoring, autonomous vehicle tracking, surveillance [8], etc. Despite the obstacles of
visual tracking, researchers are encouraged to develop quicker and better approaches,
including resilience to strong occlusions, extreme size shift, discontinuities, precise local-
ization, multi-object tracking, and failure recovery [9]. Despite achievements in resolving
multiple obstacles under a variety of conditions, the basic issues remain complicated and
difficult [10]. Because of its widespread applications in domains, such as gesture recogni-
tion [11], driver tracking [12], human action recognition [13], sports analysis [14], industrial
work activity [15], monitoring the condition of industrial machinery [16], visual surveil-
lance [17], and healthcare and rehabilitation [18], visual object tracking (VOT) is an active
research issue in computer vision and machine learning. However, tracking is complicated
by features such as partial or full occlusion, backdrop clutter, light change, deformation,
and other environmental factors [19].
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Pedestrian detection is a critical problem in many intelligent video surveillance sys-
tems because it offers critical information for semantic comprehension of video [20]. Accu-
rate recognition of individual pedestrian occurrences in images and videos is critical in a
variety of applications that might improve the quality of human existence. This pedestrian
detection can be performed using radar [21–24].

Today, radar has multiple applications—from homeland security, through local radar
for automotive [25], city surveillance [26], military [27] and even for healthcare [28] pur-
poses. For example, a radar sensor can be capable of detecting the presence of a worker’s
activity and highlighting movements away from the workstation [29]. Target categorization
is a critical radar activity in a wide range of security and military applications. Some appli-
cations, such as video surveillance [30], make use of electro-optical (EO) sensors. Radar
offers substantial advantages over EO sensors in terms of resistance to harsh weather and
poor illumination conditions, low cost, and durability, according to [31].

The micro-Doppler signature created by a subject reacting to an active emitter, for
example, a radar, laser, or even acoustic emitters can be used to monitor the subject’s
minuscule micromotions, or even only sections of a subject. The micro-Doppler signatures
are generated by the kinematic parameters of the object’s motion and may be used to
acquire the prominent elements of the object’s motion and, in certain cases, to identify the
object [32]. The target classification using the radar data traditionally uses one or several of
the approaches highlighted in [33]:

1. Classification based on target radar cross-section (RCS) estimates.
2. Classification based on target RCS ratios.
3. Classification based on target RCS distributions.
4. Classification based on target modulation signatures.
5. Classification based on the target polarization scattering matrix.
6. Classification based on other scattering mechanisms.
7. Classification based on target kinematics.

Although many of these methods are more useful while dealing with man-made
objects such as planes, [34], ships [35], drones [36], helicopters, [37] and other vehicles [38],
there are some common problems with a classification of a walking person, an animal,
a cyclist, or a group or its moving patterns [39,40]. The major problem while using any
radar cross-section-based (RCS) approach is the calibration procedures of the radar. The
result of RCS estimation is highly sensitive to the range of the target, the material, and the
aspect angle.

For a long time, the most promising approaches to target classification were based on
the decomposition of manually specified feature vectors using one or the other of several
decomposition techniques [41–43]. The most widely used decomposition methods are
principal component analysis (PCA) [42,43] and singular value decomposition (SVD) [41].
However, recently, deep-learning methods such as deep convolutional neural networks
(DCNNs) have been adopted for radar-based target detection and recognition tasks [44–46].
DCNNs have been used to process several forms of millimeter-wave radar data [47] as well
as light detection and ranging (LiDAR) data [48].

The MAFAT radar challenge [49] is a perfect opportunity to test different approaches
to target classification without investing a huge effort in data acquisition, annotation, and
other required steps before the data can be used for the analysis. The contributions of this
study are as follows: a novel custom deep-learning architecture for solving the animal
and pedestrian recognition problem, which has not been used before. To the best of our
knowledge, the suggested deep neural network (DNN) architecture is one of the first
attempts to employ such a method in the domain of radar data as opposed to more usual
shallow convolutional neural network (CNN) designs. The other innovative component of
our study is the use of synthetic radar data, which enhanced the final outcome considerably.
Our competition technique might be utilized as a foundation for future implementations of
radar classification based on CNN.
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The paper is arranged as explained further. Section 2 analyzes state-of-the-art work.
The problem of the MAFAT radar challenge, the data pipeline, and the proposed deep
neural architecture are described in Section 3. The dataset used in this study and the
experimental results are presented and analyzed in Section 4. Finally, the results of this
study are discussed in Section 5.

2. Related Work

Some examples of using neural networks as the main classification module can be
found as early as 1996 [50]. More recent related results include [51,52]. The common trend
in this research is that very small data samples are used (tens or hundreds) and networks
are very shallow (3–4 layers).

Gadde et al. [53] proposed strategies for analyzing radar data and using them to
detect geriatric falls. The disparity in radar signal returns and the Doppler shift are caused
by human motor activity. Because the signals were not stationary, therefore, the time–
frequency analysis was critical in detecting movement, such as a fall. The article used
real fall data to demonstrate the efficacy of preexisting models. The initial fall data also
aided in revealing some of the difficulties encountered by technology improvements for
fall detection.

Ma et al. [54] proposed MHT-PCD-Speed, a revolutionary model-free detection-based
tracking technique for identifying and following moving objects in Doppler LiDAR scans.
According to the findings, using Doppler radar images can improve tracking reliability and
raise the precision of dynamic state estimates.

In [55] Han et al. were using shallow (two and six layers) convolutional neural
networks (CNNs) to classify objects based on their radar returns. Authors performed their
analysis using around 4000 samples of signals reflected from unmanned aerial vehicles
(UAVs), people, cars, and other objects and achieved a modest total classification accuracy
of around 0.48 using an augmented version of their dataset.

In yet another example [56] of using CNN architecture for the radar target classification,
Stadelmayer et al. proposed constrained CCNs. Parameters of convolutional filters used
in the first layer of such networks were learned during the process of training. Reported
accuracy of the classification of different human activities (walking, idle, arm movements,
etc.) in a controlled experimental environment were above 0.99 which is above other
state-of-the-art methods mentioned in the publication.

Wan et al. in [57] solved the plane classification and outlier rejection problems using
high-resolution radar (HRR) data and CNN architecture consisting of the classification
part and the decoder part (for the target rejection). The authors were able to show the
classification accuracy dependencies on the network architecture, the amount of training
data, and hyper-parameters, but in all the cases it was well above 0.9. The number of
samples used during the training was of the order of 100,000 which is much more than in
other discussed publications.

Dadon et al. [58] presented a deep-learning-based technique for classifying ground-
moving radar objects. The proposed technique learns the micro-Doppler signatures of
radar objects in the 2D radar echoes domain. This study demonstrated that a CNN model
can do well in classification. It also demonstrated that efficient data augmentation and
regularization increase classification performance and decrease overfitting.

Tiwari et al. [59] developed a unique concatenated CNN model that takes the geoloca-
tion type and the radar signal data as input and conducts a binary classification to identify
animals and persons. The suggested model has an AUC of 99%.

A common step in the data processing in the aforementioned publications is a rep-
resentation of the radar data as a spectrogram over a slow time which we also use in
our approach.
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3. Methods

3.1. Problem Definition

This section describes the radar target classification problem. Moving targets lit by a
radar system exhibit frequency modulation as a result of the time-varying delay between
the target and the sensor. As follows from the Doppler effect, the major bulk translation of
the object toward or away from the sensor causes a Doppler shift of the echo. The target
velocities are estimated by:

fd ≈ 2ν
ft

c
(1)

where fd is Doppler frequency, ft is the carrier frequency, ν is target radial velocity, and c is
the speed of light.

The target, on the other hand, may have sections with extra motions. These can add
frequency modulations around the main Doppler shift, i.e., micro-Doppler modulations.
Chen [60,61] simulated radar micro-Doppler signatures for a variety of objects, including
revolving cylinders, vibrating scatterers, and people targets. The scientists also demon-
strated that time–frequency analysis of the received signal is a viable method for extracting
the micro-Doppler signature, yielding additional information on the target that can be
utilized for classification and recognition. Micro-Doppler may be thought of as a unique
signature of the target that gives extra information about the target in addition to current
methods for target recognition.

3.2. MAFAT Radar Challenge

The goal of the MAFAT radar challenge participants is to classify segments of human
or animal radar tracks using an I/Q signal matrix as input (Figure 1). The proposed task
is a binary classification task; tracked objects are people or animals. The data is real data
collected from different geographical locations, with different time, sensors and quality
(i.e., signal to noise ratio (SNR)).

The competition is divided into two parts with different conditions: a public phase
with an unlimited number of applications, evaluated on a subset of the public test suite; a
private stage where teams are limited to two entries, and where models are evaluated on
completely new and unseen data.

The goal of the competition is to classify radar segment data as humans or animals,
using ROC AUC as the metric.

Figure 1. Explanation of MAFAT data.

176



Sensors 2022, 22, 3456

3.2.1. Data

The dataset consists of signals recorded by ground Doppler-pulse radar. Each radar
“stares” at a fixed, wide area of interest. Whenever an animal or a human moves within the
radar’s covered area, it is detected and tracked. The dataset contains records of those tracks.
The tracks in the dataset are split into 32 time-unit segments. Each record in the dataset
represents a single segment. The dataset is split to training and test sets; the training set
contains the actual labels (humans or animals).

A segment consists of a matrix with I/Q values and metadata. The matrix of each
segment has a size of 32 × 128. The X-axis represents the pulse transmission time, also
known as “slow-time”. The Y-axis represents the reception time of signals with respect to
pulse transmission time divided into 128 equal sized bins, also known as “fast-time”. The
Y-axis is usually referred to as “range” or “velocity” as wave propagation depends on the
speed of light. For example, for pulse repetition interval (PRI) of 128 ms, each Y-axis is a
bin of 1 ms. For pulse sent in t(n) and a signal received in t(n+m), where 0 < m <= 128, the
signal is set in the “m” bin of pulse n (the numbers are not the real numbers and are given
only for the sake of the example).

The radar’s raw, original received signal is a wave defined by amplitude, frequency,
and phase. Frequency and phase are treated as a single-phase parameter. Amplitude
and phase are represented in polar coordinates relative to the transmitted burst/wave.
Polar coordinate calculations require frequent sine operations, making calculations time-
consuming. Therefore, upon reception, the raw data are converted to Cartesian coordinates,
i.e., I/Q values. The values in the matrix are complex numbers: I represents the real part,
and Q represents the imaginary part.

The I/Q matrices that are supplied to participants have been standardized, but they
have not been transformed or processed in any other way. Therefore, the data represent
the raw signal. Different preprocessing and transformation methods, such as Fourier
transform, can and should be used to model the data and extract meaningful features. For
more information, see “Signal Processing” methods or view the links at the bottom for
more information.

The metadata of a segment includes track id, location id, location type, day index,
sensor id, and the SNR level. The segments were collected from several different geographic
locations, and a unique id was given per location. Each location consists of one or more
sensors; a sensor belongs to a single location. A unique id was given per sensor. Each
sensor has been used in one or more days, and each day is represented by an index. A
single track appears in a single location, sensor, and day. The segments were taken from
longer tracks, and each track was given a unique id.

The task of classifying signals to humans and animals is difficult, and it is more
challenging in short segments and low SNR signals. One way to view the data is to
visualize the signals as a spectrogram. A spectrogram is depicted as a heat map with
intensity shown by a color palette.

To generate a spectogram, the I/Q matrix was transformed and processed using Hann
windowing and FFT (fast Fourier transform) and calculating the median. We then set as
the minimum value of the I/Q matrix and at the end pseudo-coloring.

The images shown in Figure 2 are spectrograms of low and high SNR segments of
animals and humans. The white dots are the Doppler burst vector which mark the target’s
center-of-mass.
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Figure 2. Examples of spectograms.

3.2.2. Generalization Considerations

Adjacent segments that can be combined to a whole track can be found in the training
and auxiliary datasets but not in the test set. The participants’ goal is to classify every
tracked object correctly based on a single segment and not to use the correlation that exists
between multiple segments in a track for the classification task. Therefore, most of the
records in the test set are single segments that were randomly selected from a full track. In
cases where the track was long enough, more than one segment of the same track may be
in the test set. Note that they will not be sequential.

The classification should be performed on a single segment level, i.e., the trained
models should receive a single segment as input and predict the class of this segment as an
output. The class of every segment should be inferred separately based on the features that
are extracted only from this specific segment, regardless of any other segment in the test
set. The prediction should also be stable, given that the same segment and the same output
are expected.

Generalizing to new, unseen, geographic locations such as positioning a radar in a
new location changes many things. The terrain, the weather, the objects in the location, and
reflections—all these factors may vary from one location to another. The ability to classify
a tracked object correctly should be impervious to the changes involved in positioning
a radar in new locations. The trained models will be challenged to classify humans or
animals on radar tracks that were captured in new location sites, unrepresented in the
training set.

The training and test sets contain the following:

• A total of 1510 tracks in the training set;
• A total of 106 segments in the public test set and 6656 segments in the training set;
• In total, there are 566 high SNR tracks and 1144 low SNR tracks in the training set;

*200 tracks are high SNR in one part and low SNR in the other;
• In total, there are 2465 high SNR segments and 4191 low SNR segments in the train-

ing set;
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• Segments are taken from multiple locations. A location is not guaranteed to be a single
dataset, but since the goal is to train models that can generalize well to new, unseen,
locations—several locations are in the training or the test datasets only;

• It should be mentioned that the data in the training set and in the test set do not
necessarily come from the same distribution. Participants are encouraged to split the
training set into training and validation sets (via cross-validation or other methods) in
such way that the validation set will resemble the test set.

3.3. Data Pipeline

The goal of the developed classification module is to classify the already tracked object
from the Doppler velocity graphs of this target. The classification module should be able to
distinguish between the person and animal while using just Doppler velocities graphs.

Because of their Doppler resemblance, it is difficult to distinguish between people and
animals. However, because they are nonrigid entities, changing movements of their sections
cause extra modulations in the radar echoes [60]. These micro-Doppler modulations
were used for radar target categorization [62]. The categorization of objects using feature
extraction by CNNs has received a great deal of attention in the literature [63,64]. It was
demonstrated that CNN trained on visual data may exceed human classification capabilities
when subjected to visual distortions [63,65–67].

Some additional complications that are not present in other datasets collected to test a spe-
cific method include the low signal-to-noise ratio, targets that have unexpected/uncontrolled
behavior, different sensors used, and other measurement conditions which should not be
used while classifying.

3.4. Neural Network Design

We investigated the impact of the CNN architecture and data augmentation on the
radar target classification performance. Efficient CNN training requires a large, diverse,
and well-balanced dataset [68]. The dataset in [49] is small and highly imbalanced.

We studied the effect of the CNN architecture and data augmentation on the classifica-
tion performance of radar targets. Efficient CNN training necessitates a large, diversified,
and well-balanced training dataset, according to [68]. The MAFAT data set [49] is severely
unbalanced and tiny. As a result, simple DL algorithms are prone to overfitting. We
demonstrated how the proper configuration of well-known regularization approaches may
enhance model performance under the ROC-AUC criterion. [69]. We reviewed different
CNNs and achieved height performance results in competition by mixing and training
different types of CNNs and modifying network layers, selection and training methods,
and data balancing techniques to prevent overfitting

Our high-level approach to the competition could be summarized as applying image
classification techniques to the preprocessed radar raw data (Figure 3). Some preliminary
testing has shown that most simple methods traditionally used for the classification such
as logistic regression, linear regression, random forest, and decision tree did not reach the
result of the baseline model. The development was focused on data selection, the CNN
architecture, and various methods of addressing the overfitting and data leakage which
were obvious from the difference between the validation ROC–AUC and the one of the
public test set.

We applied 82 times to MAFAT [49] for comparing our tests results with the public test
set, as it was not available for training or testing, and we only received information about
ACU of the applied model. In the final solution, an ensemble of two models was used to
improve the accuracy of classification. One architecture is a deep neural network inspired
by the ResNet [70]. The complete architecture description is provided in Figures 4–6.

179



Sensors 2022, 22, 3456

Figure 3. Basic process structure of the radar data classification model training.
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Figure 4. The architecture of the main classification model.
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Figure 5. The convolution residual block used in the main classification model.

Figure 6. The convolution identity block used in the main classification model.

A shallower network was used as a secondary classification model and improved the
total accuracy and especially the accuracy of true negatives (animal class). This architecture
is shown in Figure 7. All convolution layers use ReLU activations. Both networks split
into convolution stages which contain two to four convolution layers followed by the
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batch normalization and max pooling layers. Inside the stage, convolutions use the “same”
padding method, which keeps the original size of inputs. Each stage increases the number
of filters used but reduces each dimension two times. The weight regularization is used
extensively in the secondary network: the L2 norm with weight decay of 0.001 is used in
layers before each max pooling and the L1 norm in the final convolutional layer. The L2
norm with the same decay value is used in the fully connected layer of the main network.

Figure 7. The architecture of the secondary classification model.

4. Experiments and Results

4.1. Data Set

Data were obtained from different locations and using different radar models during
different times of the day. The raw data were I/Q signals grouped into matrices of 32 by
128. The first dimension is the pulse transmission time or the slow time, while the second
dimension represents the reception time with respect to the single transmission time or the
fast time. The result of the FFT along the second dimension would produce the Doppler
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velocity graph. No description was given to establish the exact ranges for each of the
dimensions, but it was assured that the entire dataset was normalized.

Each 32 × 128 matrix is called a segment. The complete object-tracking event is called
a track, and it could take a much longer time than the one during which 32 pulses are
transmitted. As a consequence, a single track can have one or more segments that are more
or less informative for the task of classification. Although the training dataset contained all
the data necessary to construct complete tracks from separate segments, the classification
module should classify the object using a single segment without using remaining segments
of the same track.

The high imbalance of the data with regard to class of the object was observed. There
were many more segments containing animal data than those containing person data (ratio
of approximately 5 to 1). Some measurement locations were heavily underrepresented—out
of seven different locations, the data were collected in more than half of samples came
from the third location. Understanding this, the organizers provided so-called auxiliary
experiment data—the data collected at the same locations while performing controlled
experiments. In these experiments, much more data of people tracking were obtained.
It was not clear at the start, however, if the synthetic data would provide any benefit to
the solution.

Finally, some additional data (such as background data for different locations and data
with synthetically added noise) were provided.

4.2. Data Presprocessing

Some of the most common preprocessing steps, such as loading the data, splitting into
training and validation, the FFT, and converting to the logarithmic scale, were provided by
the MAFAT radar challenge organizers.

The preprocessing stage was kept from the baseline implementation although different
options (such as working with the original I/Q data) were possible. A first Hann window-
ing function was used to suppress sidelobes resulting after the FFT characteristics. Then,
FFT followed and an absolute of the resulting spectrum was taken. Lastly, a logarithm of
each value was calculated and result was normalized.

4.3. Image Augmentation

Image augmentations is one of the options to reduce overfitting. In the final solution,
a very conservative set of augmentations was used:

1. Cyclic width shift of 0.25;
2. Height shift of 0.05;
3. Vertical and horizontal flips of the data.

These augmentations proved to work well while evaluating on the public test set, but
the reduced performance on the private test set showed that more image augmentation
could be used to reduce the overfitting. The strategy of creating new segments from joined
tracks by shifting the sampling of segments from the track in the slow time dimension was
considered and tested but did not show meaningful improvement.

At the data exploration step it was quickly observed that adding positive samples
from the auxiliary synthetic data not only made the training set more balanced but greatly
improved the public test score. Aside from the main training data additional chunk of
7000 segments was loaded from this set in the final solution. Approximately 15,800 total
segments were, used for the training 8400 of which were of person class.

4.4. Model Hyperparameters

The model was compiled with an Adam [71] optimizer which is currently the default
choice for the training of convolutional neural networks. Binary cross entropy loss function
was used while training.

The learning rate was scheduled to increase and drop cyclically (the cyclic learning [72])
which allows it to avoid the weights state staying in a local minima of the multidimensional
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loss. This proved to be one of the main sources of the score increase. The learning rate
started at 0.003 then dropped to 0.00005 at the end of each cycle. CLR implementation
for Keras was taken from [73]. The learning process consisting of two to five cycles was
tested with the duration of a single cycle between 20 and 45 epochs. A typical learning rate
schedule produced by the library is shown in Figure 8. Some typical examples of various
metrics obtained in the process of K-fold validation are shown in Figure 9a–c.

Figure 8. Test run of the learning rate schedule with five cycles produced by a software tool available
from [73].

4.5. Neural Network Training

The splitting into training and validation sets proved to be one of the biggest challenges.
The baseline splitting was defined as using three first segments of tracks measured in
locations different than those of the training set. The validation set would contain similar
numbers of positive and negative examples. After few submissions, it became clear that
this validation set does not correlate to the public test—improving ROC AUC from 0.94 to
0.98 would not improve the public test score. To minimize overfitting for the public test, we
had to switch to the K-fold validation at some stage of the method development. Special
care was taken to avoid the obvious source of the data leakage while evaluating—no two
segments of the same track could be used in different folds (Table 1).

Table 1. Experimental results with different K-folds.

K-Fold Experiments Results

K-Fold 7 5 10

Accuracy 94.035 (±0.5777) 89.708 (±0.5129) 91.855 (±3.0449)
ROC AUC 98.347 (±0.2502) 97.181 (±0.1869) 98.510 (±0.6938)
Loss 0.1776 0.3074 0.2828

The important aspect of the training procedure is that after each cycle, network weights
are saved. In the competition, this allowed us to improve the final result by ensembling
the same network architecture using different sets (obtained at the end of each cycle)
of weights. Although this is impractical while deploying any real-world system, the
knowledge distillation could have been implemented to reduce the memory footprint and
the processing cost while keeping relatively good performing weights.
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(a)

(b)

(c)

Figure 9. Training performance: (a) loss; (b) ROC AUC; (c) accuracy.

5. Discussion and Conclusions

This study presented a CNN-based technique for exploiting micro-Doppler signals to
classify people and animals using radar. Encouraging results were achieved during the
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competition—AUC of the ROC around 0.95 on the public test set and above 0.85 on the final
(private) test set. Problems of an unbalanced dataset and out-of-sample testing data were
the main hurdles while optimizing our processing pipeline. Final results demonstrated a
missed opportunity of improving the generalization ability of our networks—an obvious
example of overfitting to the public test set was observed. On the other hand, all techniques
we employed were a focused effort in this regard, and only the lack of the clear improvement
criteria stopped us from achieving even better results.

The proposed DNN architecture, in contrast to more common shallow CNN architec-
tures, is one of the first attempts to use such an approach in the domain of radar data. The
usage of the synthetic radar data, which greatly improved the final result, is the other novel
aspect of our work. Our solution in the competition could be used as a building block to
future implementation of radar classification based on CNN.

During evaluation, we noticed that different network structures perform differently
on animal and human recognition, and that is the main reason to use two networks for
recognition of humans and animals. Combining the results helps to prevent fouls defections,
where there is no target in image, but the network still recognizes one.

Future work is required to optimize the implementation to be able to run calcification
in real-time directly since it now requires high resource usage. Exploring competitors,
work [58,74] will also improve the solution.

Alternatively, the knowledge distillation technique would be a promising way to
reduce the amount of processing and improve the decision latency. Another possible way
of improvement is based on the fact that each foster network predicts another object, and
if we add more information (data), it will be possible to perform transfer learning and
strengthen the accuracy of the model to provide the an option to build an independent
system that works in parallel (using Kubernetes).
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target tracking in remote sensing image monitoring. Sensors 2019, 19, 4855. [CrossRef]

10. Kalake, L.; Wan, W.; Hou, L. Analysis Based on Recent Deep Learning Approaches Applied in Real-Time Multi-Object Tracking:
A Review. IEEE Access 2021, 9, 32650–32671. [CrossRef]

11. Mujahid, A.; Awan, M.J.; Yasin, A.; Mohammed, M.A.; Damaševičius, R.; Maskeliūnas, R.; Abdulkareem, K.H. Real-time hand
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key performance indicators of physical training. Hum.-Centric Comput. Inf. Sci. 2020, 10, 4733. [CrossRef]

19. Mondal, A. Occluded object tracking using object-background prototypes and particle filter. Appl Intell 2021, 51, 5259–5279.
[CrossRef]

20. Heikkilä, J.; Silvén, O. A real-time system for monitoring of cyclists and pedestrians. Image Vis. Comput. 2004, 22, 563–570.
[CrossRef]

21. Peng, X.; Shan, J. Detection and tracking of pedestrians using doppler lidar. Remote Sens. 2021, 13, 2952. [CrossRef]
22. Held, P.; Steinhauser, D.; Koch, A.; Brandmeier, T.; Schwarz, U.T. A Novel Approach for Model-Based Pedestrian Tracking Using

Automotive Radar. IEEE Trans. Intell. Transp. Syst. 2021, 1–14. [CrossRef]
23. Severino, J.V.B.; Zimmer, A.; Brandmeier, T.; Freire, R.Z. Pedestrian recognition using micro Doppler effects of radar signals based

on machine learning and multi-objective optimization. Expert Syst. Appl. 2019, 136, 304–315. [CrossRef]
24. Ninos, A.; Hasch, J.; Heizmann, M.; Zwick, T. Radar-Based Robust People Tracking and Consumer Applications. IEEE Sens. J.

2022, 22, 3726–3735. [CrossRef]
25. Gao, X.; Xing, G.; Roy, S.; Liu, H. RAMP-CNN: A Novel Neural Network for Enhanced Automotive Radar Object Recognition.

IEEE Sens. J. 2021, 21, 5119–5132. [CrossRef]
26. Wang, Z.; Miao, X.; Huang, Z.; Luo, H. Research of target detection and classification techniques using millimeter-wave radar

and vision sensors. Remote Sens. 2021, 13, 1064. [CrossRef]
27. Dudczyk, J. A method of feature selection in the aspect of specific identification of radar signals. Bull. Pol. Acad. Sci. Tech. Sci.

2017, 65, 113–119. [CrossRef]
28. Pisa, S.; Pittella, E.; Piuzzi, E. A survey of radar systems for medical applications. IEEE Aerosp. Electron. Syst. Mag. 2016, 31, 64–81.

[CrossRef]
29. Cardillo, E.; Caddemi, A. Feasibility Study to Preserve the Health of an Industry 4.0 Worker: A Radar System for Monitoring the

Sitting-Time. In Proceedings of the 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT), Naples, Italy,
4–6 June 2019. [CrossRef]

30. Prasad, D.K.; Rajan, D.; Rachmawati, L.; Rajabally, E.; Quek, C. Video processing from electro-optical sensors for object detection
and tracking in a maritime environment: A survey. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1993–2016. [CrossRef]

31. Mishra, A.; Li, C. A review: Recent progress in the design and development of nonlinear radars. Remote Sens. 2021, 13, 4982.
[CrossRef]

32. Tahmoush, D. Review of micro-Doppler signatures. IET Radar Sonar Navig. 2015, 9, 1140–1146. [CrossRef]
33. Anderson, S. Target Classification, Recognition and Identification with HF Radar. In Proceedings of the NATO Research and

Technology Agency, Sensors and Electronics Technology Panel Symposium SET–080/RSY17/RFT: Target Identification and
Recognition Using RF Systems, Oslo, Norway, 11–13 October 2004; p. 18.

34. Perl, E. Review of airport surface movement radar technology. IEEE Aerosp. Electron. Syst. Mag. 2006, 21, 24–27. [CrossRef]
35. Le Caillec, J.; Gorski, T.; Sicot, G.; Kawalec, A. Theoretical Performance of Space-Time Adaptive Processing for Ship Detection by

High-Frequency Surface Wave Radars. IEEE J. Ocean. Eng. 2018, 43, 238–257. [CrossRef]
36. Coluccia, A.; Parisi, G.; Fascista, A. Detection and classification of multirotor drones in radar sensor networks: A review. Sensors

2020, 20, 4172. [CrossRef] [PubMed]

188



Sensors 2022, 22, 3456
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Abstract: Technological advancement in battlefield and surveillance applications switch the radar
investigators to put more effort into it, numerous theories and models have been proposed to improve
the process of target detection in Doppler tolerant radar. However, still, more effort is needed towards
the minimization of the noise below the radar threshold limit to accurately detect the target. In this
paper, a digital coding technique is being discussed to mitigate the noise and to create clear windows
for desired target detection. Moreover, multi-criteria of digital code combinations are developed
using discrete mathematics and all designed codes have been tested to investigate various target
detection properties such as the auto-correlation, cross-correlation properties, and ambiguity function
using mat-lab to optimize and enhance the static and moving target in presence of the Doppler in a
multi-target environment.

Keywords: Doppler radar; target detection; digital codes; windows; mat-lab

1. Introduction

To keep an eye on objects (static or moving), a radar system is an alone equipment
to investigate the characteristics of the object for position and velocity. The radar system
broadcasts electromagnetic waves in the direction of the target and takes the wave echo
by the target to observe the different parameters such as range, the velocity of the desired
target. The present-day radar system exploits many aerial fundamentals to transmit and
receive the echoes to increase the probability of target detection. In the addition phase, array
radars broadcast entirely consistent waveforms (probably scaled with the help of a complex
constant). These waveforms are produced from their ‘M’ dissimilar broadcast antenna
fundamentals to form a powerful transmitted signal in the favored path. Formation of
the beam is performed merely by the receiving antenna array to guess the parameters of
the radar to estimate the current position of the target. Therefore the broadcast degrees
of freedom are restricted to one and the receiver’s degrees of freedom are more than
one (simply we can say ‘n’). But multiple input and multiple output radars transmit
unstable signals, these signal waveforms are obtained from their dissimilar broadcasting
aerial fundamentals and use combined processing of the acknowledged signals from the
dissimilar receiver array fundamentals. Though phase array radars make use of the only
spatial variety, multiple input and multiple output radars utilize together spatial and
signal waveform variety to get better results of the performance of the system. MIMO
radars can be extensively spaced or collocated antennas [1,2]. Whereas the former design
enhances the selection of the target detection to get better results. This pattern of target
detection improves the resolution of the target and intervention refusal ability. However,
the signal waveforms for MIMO radars affect the range. Whereas the signal waveform
for single input single output (SISO) radar is considered for desired Doppler and delay
resolution properties. The signal waveforms selected for MIMO radars be supposed to have
desirable uncertainty in the delay. The resolution characteristics of the broadcast signal
waveforms are considered with the help of the uncertainty function [3]. The uncertainty
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function of a broadcast signal waveform presents the matched filter output in the existence
of Doppler and delay variance. If the delay (90 ms) and Doppler resolution are high
(80–100 kHz), the uncertainty function is supposed to resemble a “thumbtack”. The idea
of the uncertainty function is to complete the MIMO system proposed by Antonio and
Robey [4]. Chun and Vaidyanathan [5] have proved the characteristics of multiple input
uncertainties function and further extended the MIMO uncertainty function for frequency
hopping signal waveforms. The Phase coded pulse waveforms are frequently used for
radar applications because they are having a high bandwidth-time product (500–100).
Numerous phase-coded signal waveforms are presented formerly [6–9] having better
cross-correlation and autocorrelation properties. Such signal waveforms are intended for
high-quality Doppler and delay resolution properties. On the other hand, manipulating
the phase-coded signal waveforms by optimizing the MIMO uncertainty function modifies
the Doppler, delay and also improves the spatial resolution characteristics.

The existing approaches in radar employ optimization algorithms with a huge number
of iterations which may increase the delay, to obtain the codes with good auto or cross-
correlation and mitigate the noise in the detection of static targets. Doppler tolerant digital
codes are also implemented by the state of the art researchers to detect the moving targets.
But these codes may not have good auto and cross-correlation properties. In this paper, an
approach is presented in which various multi-criteria of digital codes have been generated
with optimal auto and cross-correlation properties to mitigate the noise and the same code
is tested for Doppler tolerance to detect static and multi moving targets by creating a huge
number of clear windows within the threshold limit of radar detection. Each of the codes
performs better for all three parameters; it is the optimization of all the three functions to
efficiently detect the desired object. The binary sequences with different bit lengths in this
approach are generated by using discrete mathematical operations to the digital sequence.

The rest of the paper is organized as follows. In Section 2 we present the related work,
Section 3 presents our proposed approach, in Section 4 discussion about the proposed
approach is presented and the paper is concluded in Section 5.

2. Related Work

Lewis and Kretschmer [10,11] presented two different approaches in which they
recommended extra codes called P3 and P4 codes and are created from LFMWT. Moreover,
these codes are used to improve the Doppler tolerance, in particular when compared to
P1 and P2 codes. In addition peak side lobes of P3 and P4 codes are enhanced further to
overcome the gaps that existed in polyphase codes. But the performance of these codes
corrupts a smaller amount with an increase in Doppler frequency. Lewis [12] proposed
a method based on windowing mode to diminish the range versus time effects of side
lobes in polyphase codes considerably. However, this technique simply decreases the
peak sidelobe and an ingredient amount irrespective of the successful pulse compression
ratio. Kretschmer and Welch [13] projected a method in which they demonstrated that
the autocorrelation function of polyphase codes is having undesired range side lobes.
Hence cannot be suitable to detect multi-target detection. This approach also discussed
the effect of Sidelobe reduction with the help of amplitude weighting function (AWF) of
polyphase codes in the receiver filter. Even though weighed windows whenever used
in source and destination (i.e., Transmitter and Receiver), provides improved results. In
this approach author also proved that the weight on the sender (Receiver) is more ideal
as the weight on destination (transmit) results in power loss because the existing source
(transmitter) power cannot be entirely utilized. Luszczyk and Mucha [14] proposed a model
to reduce the effect of the range side lobe. In this approach, they used the Kaiser-Bessel
weighing function of the p4 pulse compression signal waveform to reduce the range side
lobes of P4. However, whenever a high Doppler occurs, the performance of this approach
shows a poor response. Ajit Kumar Sahoo and Ganapati Panda [15] anticipated a firmness
windowing method to minimize the consequences of side lobes in Doppler tolerant radars.
However, the presented technique experiences a delay and cannot produce bigger windows
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or enhance the count of windows to sense numerous moving objects correctly. Sharma
and Rajeswari [16] proposed a model to represent optimization for multiple input multiple
output radar ambiguities. However due to huge mathematical complexity delay increases,
also this approach has not had a large window so the probability of missing the target is
more. Reddy and Anuradha [17] presented an approach, to improve the Signal to noise
ratio of Mesosphere- Stratosphere-Troposphere (MST) with the help of Kaiser hamming
and cosh hamming window function. Also, this approach increases the energy of the
main lobe to amplify the merit factor; however, this approach fails to remove the effect
of side lobes. Because the Doppler change continuously. Therefore cannot be suitable
to detect multiple moving targets. Lewis and Kretschmer [18] proposed an approach in
which they proved that one can use polyphase codes instead of using bi-phase codes, as
the polyphase codes are also referred to compress the pulse of the given signal waveform
to attain enhanced PSR and can be used to avoid the security problem. This method is very
accurate to cause P1 and P2 polyphase codes. These polyphase codes are generated from
the step estimation by the use of a modulation technique called linear frequency modulated
waveform technique (LFMWT). Such polyphase codes have an additional tolerance to the
restriction of the receiver side bandwidth.

Sindhura et al. [19] proposed a model, based on a wavelet, in this paper the authors
compare the signal to noise ratio enhancement for Lower Atmospheric Signals. This
approach is used to calculate the wind performance in the atmospheric boundary layer
(ABL) and minor troposphere. SakhaWat et al. [20] presented an approach in which the
author gets the information of GPS signals and can be used to present a novel use to remote-
sensing since they are capable of providing valuable information concerning the reflecting
face. However, this technique puts much attention towards image arrangement that too
of fixed (static) targets only, hence cannot have an optimal use in moving target detection.
Syed and Venay [21] projected a technique in which the main focus was to improve signal
loss. Here they use p1, p3 codes, and hyperbolic frequency modulation (HFM) polyphase
codes are used to increase the signal-to-noise ratio of the acknowledged signal. However,
this approach has an adverse effect of delay, therefore not suitable to detect the multiple
moving targets. Singh et al. [22,23] projected two different coding techniques to minimize
the noise. No doubt the authors improved the count of the windows which can enhance the
probability of target detection. However, these methods are limited to finding stationary
and slow-moving objects only, since the period of the designed code vector is not as much
of which minimizes the merit factor (MF) of the received echo signal and has noise in
the region of the zero Doppler. In [24,25] two coding techniques have been presented to
enhance the target detection in Doppler tolerant radar. Though, both techniques exploit
the mathematical involvedness and maximize the delay parameter, which decreases the
probability of target detection and could not be the optimum method to find -moving
targets. Alotaibi [26] presented a technique of target detection using linear block coding, in
which the author generates the code using well-known (6,3) block code and then inserts the
odd and even parity to change the present position of the code word to achieve the result.
However the presented approach uses more number of gates to complement the existing
code to increase the length of the codeword which increases the hardware and delay
therefore, may not be optimum to detect multi-moving targets in Doppler tolerant radar.
The digital code techniques [24–26] are only concentrating on the Doppler but not on the
auto and cross-correlation properties of the sequences which are considered to be important
to detect the desired target in a multi-target environment. In [27] the authors designed
the digital sequences with optimal properties to detect the static and moving targets. But
the side noise in this method is more when compared to the presented approach (refer to
Section 4 as comparative analysis of the existing approach and the proposed approach is
depicted in the same section).

In this paper, an approach is being presented to optimize the interference to detect
static and moving objects. The presented approach helps to detect multiple moving targets
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efficiently as the sequences obtained are tested for auto and cross-correlation along with
the Doppler tolerant frequencies.

3. Proposed Approach

Initially, a concatenation series of decimal numbers having the equal number of zeros
and ones when represented in hex code (i.e., from 0 to 15) are considered. This series is
termed binary hex equal-weighted codes (BHEWC) and can be represented as

ICW= ∏4
p=1 3p, 1 ≤ p ≤ 4 (1)

where ‘ICW ’ is concatenation series of BHEWC.
The concatenation series then will be 3, 6, 9, and 12; the same series in binary hex

value can be represented as ‘0011011010011100’. The MSB bit of the initially designed
code is zero and it doesn’t satisfy the cyclic division rule (as the cyclic division process
is used to generate the codes) so the hex value of the first decimal number is given one
bit left shift (i.e., 0011 = 1001), and thus the concatenation series can now be represented
as 1001011010011100. The remaining decimal numbers having equal weight (i.e., missed
numbers in Equation (1)) can be formulated as

MB1 =
ITS + LTS

ITS
(2)

MB2 = 2 MB1 (3)

‘ITS’ is the first decimal value of ‘ICW ’ and
‘LTS’ is the last decimal value of ‘ICW ’
Now from Equations (2) and (3) MB1 = 3+12

3 = 5 (Binary hex value 0101) and
MB2 = 2 × 5 = 10 (Binary hex value 1010) are the missing decimal numbers of ‘ICW ’.
Later cyclic redundancy method is used to improve the target detection and minimize the
noise near-zero Doppler, in which the generator codeword can be represented by ‘GCW ’
and the Radar codeword generation using cyclic process can be characterized as

(RCW)CP=
ICW pi

GCW
, i = 1, 2 (4)

where ‘ICW pi ’ is the code after appending ‘p1(q)’ or ‘p2(q)’ zeros

p1(q) = p2(q) = −1 (5)

where r is the hex code length of MB1 or MB2 (as they are of the same length).
Therefore, the length is 4 bits for both the cases, thus 4 − 1 = 3 zeros need to append

to ‘ICW ’ to get ICWi codes that are employed in the cyclic process to get the initial radar
codes to test the target. In this approach, modulo 2 additions are employed to generate the
codeword. However, the code sequence that is exploited to generate the initial codeword
to detect the targets in Doppler tolerant radar can be represented as

R1CW= rcp1 ⊕ ICW p1 (6)

R2CW= rcp2 ⊕ ICW p2 (7)

where ‘rcp1’, ‘rcp2’ are the remainders when ‘MB1’ and ‘MB2’ are the divisors of Equation (4)
respectively, However as the MSB (most significant bit) of MB1 is ‘0’, therefore to satisfy
the cyclic process one bit left shift has given to ‘MB1’. Hence the generated divisor can
be represented as ‘1100’ and the two initial code words that are used to generate the final
radar target detection code words can be represented in Tables 1 and 2 respectively.
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Table 1. Binary representation of R1CW .

R1CW
b1 b2 b3 bn

1 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0

b1, b2, b3, . . . . . . , bn bit positions of code R1CW .

Table 2. Binary representation of R2CW .

R2CW
c1 c2 c3 cn

1 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 0 1 0

c1, c2, c3, . . . . . . , cn bit positions of code R2CW .

The final codeword matrix is formulated and can be represented in Table 3 whose first
row is ‘R1CW ’and first column is ‘R2CW ’

Table 3. Final codewords using matrices.

r11 r12 - - - - - - - - - - - - - - - r1n
- -
- -
- -

rn1 rn2 - - - - - - - - - - - - - - - rnn

The remaining elements of the matrices are formulated by modulo two operations of
row and Column and can be represented as

r11= b1, r12= b2, . . . . . . r1n= bn (8)

r21= c2, r31= c3, . . . . . . rn1= cn (9)

r12= b2 ⊕ c2, rn2= b2 ⊕ cn, rnn= bn ⊕ cn (10)

The matrix formed is represented in Figure 1. From the figure, 19 × 19 matrix without
considering the initial codes R1CW (first row) and R2CW (first column) is obtained.

 

Figure 1. Binary code matrix.

195



Sensors 2022, 22, 3176

To design the codes which are Doppler tolerant and with optimal autocorrelation
and cross-correlation properties can be generated by performing various mathematical
operations on the matrix such as

a. Concatenation of rows,
b. complement operation is performed on even terms,
c. if continuous series of three 1’s and 0’s occur in the sequence then the middle term is

complemented and

The bits which are at the position of the sum of the power of 2 are complemented
(i.e., multi-criteria creation of digital codes to test the target).

Note that one need not perform all the operations to obtain the sequence with good
properties. The sequence obtained after performing each operation is tested and the
sequence with the best properties (maybe after performing one operation, two operations,
all the operations, or no operation) is selected. Figure 2 shows the flow diagram of the
proposed approach. The codes of different lengths (here 19-bit, 95-bit, and 190-bit codes) are
generated from the above operations. The ambiguity, auto-correlation, and cross-correlation
which are the optimal characteristic properties of static and moving target detection in a
multi-target environment are observed using the mat-lab tool. For testing the sequence for
auto and cross-correlation properties the 0’s of the sequence is replaced by −1 to obtain the
actual length of the sequence and for the ambiguity function, this change is not necessary.
The simulation parameters are shown in Table 4.

Figure 2. Flow diagram of the proposed approach.
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Table 4. Simulation Parameters.

Transmitter

Power of pulse 470 kW

Frequency 2800 MHz to 3100 MHz

RF duty cycle Max 0.004

Width of the pulse 1.55 μs and 4.50 μs

Receiver

Intermediate frequency 55.5 MHz

Range (dynamic) 95 dB

noise power of the system –112 dBm

Target (in σ meter square )

Man 0.14 to 1.05

Aircraft C-54 10 to 1000

A free electron 8 × 10−30

Birds 10−3

The 19-bit code R1CW and R2CW are directly tested (without performing any mathe-
matical operation) for the above properties and R2CW shows better response, unlike R1CW .
Figures 3–5 depict the auto-correlation, cross-correlation, and Doppler tolerance of the
code R2CW .

Figure 3. Auto-Correlation property of R2CW .
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Figure 4. Cross-Correlation property of R2CW .

 

Figure 5. Ambiguity-Function of R2CW .

From the graph, the side noise amplitude has the amplitude of 2 and the reduction
ratio of peak to side-lobe SR in dB can be calculated as [27].

SR= 20log10 (
amplitude o f side noise which is maximum

amplitude o f main lobe
)= 20log10 (

2
19

) = −19.56 (approx) dB (11)

From Figure 3 the maximum lobe for cross-correlation is 4, and Figure 4 shows the
ambiguity function of R2CW code. It is observed that there are no clear windows below
0.2 (normalized amplitude which is considered as standard threshold value), the clear
windows are present above 0.3 normalized value.

4. Generation of 95-Bit and 190-Bit Sequence

The 190-bit and 95-bit code is generated from the matrix of Figure 1. Initially, the first
row (R1CW) is eliminated to get the matrix of 19 × 20, however one can eliminate the first
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column (R2CW) to get 20 × 19 and test the codes. The codes of length 190-bit and 95-bit are
generated as represented in Figures 6 and 7 respectively. The arrow in Figure 6 represents
the matrix division vertically into two parts termed the first half (FH) and the second half
(SH) respectively to obtain the desired length of codes.

Figure 6. Generation of 190-bit code.

Figure 7. Generation of 95-bit code.

The sequence of 190-bit is obtained by concatenation of FH (refer to Figure 5). The
mathematical operations performed on this 190-bit sequence respectively are (i) comple-
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menting even terms, (ii) complementing the middle bit if three continuous 0’s or 1’s occurs,
and lastly (iii) complementing the bits present at the power of 2 positions. After performing
all these operations the final code (F1) obtained can be represented as

F1 = 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1
0 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0
1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 1 0 1 0 1
0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 1 0 1 0.

The code obtained by concatenation of FH performs better than the codes obtained by
concatenation of SH .

The sequence of 95-bit length is generated by horizontally dividing the first half (FH)
of the matrix equally as represented in Figure 7. Let the two equal parts be FH1 and
FH2 respectively.

Figure 8 shows the auto-correlation property of code F1 and the maximum noise lobe
is 30 the SR value is −16.03. Figures 9 and 10 represent the cross-correlation and Doppler
tolerance of sequence F1. The noise in Figure 10 is below 0.2 (normalized amplitude) and
after 24 kHz frequency, the noise is almost zero.

Figure 8. Auto-Correlation property of F1.

Figure 9. Cross-Correlation property of F1.
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Figure 10. Ambiguity-Function of F1.

From Figure 7 the generation of 95-bits is shown (concatenation of FH1 and FH2), as
the concatenation of FH2 generates better properties than FH1. The 95-bit sequence (F2)
tested in this paper is obtained by complementing the even terms of the code generated by
concatenation of FH2.

(F2) = 0 0 1 1 1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 0 0 0 1 1 1
0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1

Figures 11–13 depict the auto-correlation, cross-correlation, and ambiguity of sequence
F2. The value of SR for F2 is −15.48. In Figure 13 the noise amplitude is 0.2 at three fre-
quencies and less than it for other frequencies with clear windows at 3–14 kHz, 16–21 kHz,
and 24–38 kHz.

Figure 11. Auto-Correlation property of F2.
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Figure 12. Cross-Correlation property of F2.

Figure 13. Ambiguity-Function of F2.

Figure 14 represents the noise peak (NP) versus the Doppler graph. It presents the
comparative analysis of various existing approaches [26,27] with the proposed approach
and it has been observed from the figure that the presented approach shows better perfor-
mance with minimal side noise peaks when compared with the existing approaches as the
presented approach obtained the digital codes with clear windows to detect the desired
target in a multi-target environment.
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Nyoman Approach Ishrath Approach

Anshul Approach Alotaibi Approach

Golay Approach Proposed Approach

Figure 14. Noise peaks Vs Doppler.

Table 5 represents the length of the sequence and parameters achieved in terms of
peak to side-lobe noise amplitude SR in dB, cross-correlation noise amplitude, and clear
windows at different Doppler’s.

Table 5. Parameters of the obtained sequences.

Sequence Length SR in dB
Max. Noise Amplitude

(Cross-Correlation)
Clear Windows of Ambiguity Figure

19 −19.56 4 above 0.3 normalized amplitude

95 −15.48 8 3–14 kHz, 16–21 kHz, and 24–38 kHz.

190 −16.03 9 0–40 Hz

5. Discussion

The designed sequences can be used to detect the static as well as moving targets
in multi-target ambiance. From the simulated results it has been shown that the auto-
correlation, cross-correlation, and Doppler tolerance properties of the designed codes are
better in comparison with the existing approaches [28–30], as they are of a limited length
and used for only static target detection. The Auto, cross-correlation and Doppler tolerance
properties of the proposed approach adhere that the presented approach finds an extensive
use to find the desired target in presence of Doppler. The proposed approach is simple as it
generates the digital code sequences with different lengths. There is no limitation to the
length of the sequences as one can design the codes of any length using any mathematical
operations. The codes are cost-effective as they are obtained without employing any extra
costly hardware components. As the presented digital codes are achieved from a single
basic code i.e., binary hex equal-weighted code, by revising these codes using fundamental
laws of mathematics and communication code theory, the stage of range gate in the phase
of target detection is reduced which decreases the cost and hardware and minimizes the
delay. Therefore can be employed to see the fast and multiple moving targets above MAC-3
i.e., latest generation combatant crafts by opting for a suitable code length with optimal
properties to reduce all the noise amplitude peaks lower than 0.2 dB (normalized amplitude)
which is the standard threshold value [23].

6. Conclusions

Radar systems utilize two or more antennas to detect the target in a multi-target
environment. Hence, the interference of the sequence with itself and with other sequences
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should be optimal for static target detection and the sequences should be Doppler tolerant
for the detection of moving targets. The clear windows obtained in Figures 9 and 12 are
used to detect the moving targets at desire Doppler. Hence, the codes obtained in this paper
can be used to detect the static and moving targets accurately with optimal interference
and improvised range and resolution.
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Abstract: Phased array technology features rapid and directional scanning and has become a promis-
ing approach for remote sensing and wireless communication. In addition, element-level digitization
has increased the feasibility of complicated signal processing and simultaneous multi-beamforming
processes. However, the high cost and bulky characteristics of beam-steering systems have prevented
their extensive application. In this paper, an X-band element-level digital phased array radar utiliz-
ing fully integrated complementary metal-oxide-semiconductor (CMOS) transceivers is proposed
for achieving a low-cost and compact-size digital beamforming system. An 8–10 GHz transceiver
system-on-chip (SoC) fabricated in 65 nm CMOS technology offers baseband filtering, frequency
translation, and global clock synchronization through the proposed periodic pulse injection tech-
nique. A 16-element subarray module with an SoC integration, antenna-in-package, and tile array
configuration achieves digital beamforming, back-end computing, and dc–dc conversion with a size
of 317 × 149 × 74.6 mm3. A radar demonstrator with scalable subarray modules simultaneously
realizes range sensing and azimuth recognition for pulsed radar configurations. Captured by the
suggested software-defined pulsed radar, a complete range–azimuth figure with a 1 km maximum
observation range can be displayed within 150 ms under the current implementation.

Keywords: antenna-in-package (AiP); complementary metal-oxide-semiconductor (CMOS); digital
beamforming (DBF); digital array radar; phased array; pulsed radar; radar signal detection; system-
on-chip (SoC); transceiver; X-band

1. Introduction

Phased array technology has evolved over the past few decades. Categorized into
analog, subarray digital, and element-level digital topologies [1], phased array systems
accomplish spatial filtering and power combination through the synchronous excitation of
each radiating element. In particular, element-level digitization provides opportunities for
sophisticated signal processing and simultaneous reception of multiple beams, which are
absent in both analog and subarray digital topologies [2–8]. Directional and fast-scanning
characteristics render phased arrays an attractive approach for various applications, in-
cluding field surveillance, wireless communication, and electronic warfare [9]. However,
the price and occupied volume of beamforming systems limit their ubiquity [10]. From pio-
neering studies, potential methods of achieving low-cost compact-size element-level digital
phased arrays can be classified into three categories: system-on-chip (SoC) integration,
advanced packaging, and subarray module miniaturization.

First, advancements in semiconductor technology have enabled the integration of
radio frequency (RF) front-end, baseband filtering, and data conversion systems on a

Sensors 2021, 21, 7382. https://doi.org/10.3390/s21217382 https://www.mdpi.com/journal/sensors206
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single chip at competitive prices and reasonable performance levels [11,12]. Researchers
developed a complementary metal-oxide-semiconductor (CMOS) Ku-band transceiver
for frequency-modulated continuous-wave (FMCW) radar imaging [13,14], and in an-
other study, they proposed an X-band CMOS four-channel phased array transceiver for
synthetic aperture radar (SAR) imaging [15]. Through the use of RF phase-shifting and
active switches, an eight-channel silicon-germanium (SiGe) receiver can configure the total
number of simultaneous beams for a 2–16 GHz operating frequency [16]. From another per-
spective, an X-band CMOS FMCW radar transceiver including an on-chip quasi-circulator
offers a single-antenna interface to reduce the system form factor [17,18].

Second, advanced packaging methods can enable the integration of active integrated
circuits (ICs), passive filtering components, and embedded antennas into a limited space.
Under the antenna-in-package scheme, a study presented an X-band active antenna mod-
ule [19] with a commercial gallium arsenide (GaAs) transceiver, and other studies reported
a 64-element phased array module for 5G wireless communication [20]. Another 3-D
stacked packaging technique with a thermal-conductive aluminum substrate was devel-
oped for producing a high-power X-band T/R module and achieved a compact size of
20 × 20 × 3.7 mm3 [21].

Finally, because of the repetitive arrangement in phased array systems, subarray
module miniaturization is a good approach for reducing the overall occupied volume.
Although the dimensions of an antenna are fundamentally associated with operating
frequency and available bandwidth, the use of embedded planar antennas in the tile
array configuration can reduce the system form factor [22–25]. For example, studies have
reported that incorporating a SiGe transceiver, a CMOS data converter, and a commercial
digital processor can produce a compact subarray module tile for a digital beamforming
system [26–28]. From another perspective, a study reported a Ku-band multiple-input
multiple-output FMCW radar that enables a reduction in the total number of installed
antennas through virtual array synthesis and demonstrates high-resolution 3-D imaging
capability [29].

Studying essential considerations for realizing phased array hardware can facilitate
the development of a low-cost compact-size digital beamforming system; additionally,
the design methodology for signal processing back-end systems can be explored. Al-
though element-level digitization enables the development of software-defined phased
array radars, extremely high input/output (I/O) bandwidths are occupied by digitized T/R
waveforms; consequently, powerful signal processors are required for real-time computing.
Benefiting considerably from the shrinking CMOS technology node, field-programmable
gate arrays (FPGAs) are equipped with excellent performance per watt, high-speed inter-
faces, and parallel computing capabilities at reasonable costs and time to market [30,31].
With features of low latency and reduced data throughput, a hierarchical digital beam-
forming topology [2,9,10,32] has been implemented in FPGAs and employed for real-time
radar imaging.

With element-level digitization, digital beamformers can calibrate deterministic phase
errors due to unbalanced routing length but still leave random phase fluctuations derived
from the system-level clock distribution network. To further improve overall sidelobe
rejection, we propose a novel periodic pulse injection circuit embedded in the CMOS
transceiver to solve random phase fluctuations. Using this technique, we accomplished
clock synchronization with non-overlapping frequency in our radar system using only two
RF reference signals. This paper presents the design and implementation of an X-band
element-level digital phased array radar utilizing fully integrated CMOS transceivers. We
co-designed the radar system and the full-custom CMOS transceiver chips to optimize
overall imaging performance. An 8–10 GHz transceiver SoC fabricated in 65 nm CMOS
technology offers baseband filtering, frequency translation, and global clock synchro-
nization through the proposed periodic pulse injection technique. Through CMOS SoC
integration, antenna-in-package design, and tile array configuration, phased array systems
can be miniaturized, and the reduced form factor can bypass volume limitations for various
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scenarios. The implemented 16-element subarray module with a 1 × 16 configuration
accomplishes digital beamforming, back-end computing, and dc–dc conversion with a
317 × 149 × 74.6 mm3 size. The subarray modules provide scalability to create a large-
scale software-defined beam-steering system through the suggested hierarchical back-end
topology, which supports a maximum of 256 radiating elements in the current design.

This paper is an extension of a conference paper that has been accepted [33]. In this
paper, beyond the circuit implementation of a fully integrated CMOS transceiver, an ad-
ditional 16-element radar demonstrator with board-level-integrated front-end amplifiers
is proposed, and the results of implementation and verification are presented. The rest
of this paper is organized as follows. Section 2 describes the system architecture of the
proposed digital phased array radar. Section 3 presents the detailed design methodology
of the X-band CMOS transceiver. System integration of the suggested digital phased array
radar is explained in Section 4. The experimental results of the CMOS transceiver SoC and
radar demonstrator are reported in Section 5, including a performance comparison with
other state-of-the-art works. Finally, the study conclusion is provided in Section 6.

2. System Architecture of the Proposed Radar

Figure 1 depicts the system architecture of the proposed element-level digital phased
array radar. Consisting of two 16-element subarray modules and a hierarchical digital
back-end, the radar demonstrator generates constructive interference at expected beam-
steering directions and achieves range sensing under pulsed radar configuration. One of
the subarray modules is operated in transmitting (TX) mode, and the other is operated
in receiving (RX) mode. The TX subarray module comprises 16 linear-polarized patch
antennas, 16 off-the-shelf front-end GaN power amplifiers, and 16 CMOS transceiver
chips in a QFN package. The RX subarray module comprises 16 linear-polarized patch
antennas, 16 commercial GaAs low-noise amplifiers, and 16 CMOS transceiver chips in
a QFN package. The Qorvo TGA2598-SM GaN driver amplifier [34] and TGA2512-SM
GaAs low-noise amplifier [35] are integrated into the RF signal path for the transmitting
and receiving subarray module, respectively. Baseband filtering, frequency translation,
and global clock synchronization are provided by 8–10 GHz transceiver SoCs through the
proposed periodic pulse injection technique. In the transmitting (TX) subarray module,
16 CMOS transceiver chips are only operated in transmitting mode; in the receiving
(RX) subarray module, 16 CMOS transceiver chips are only operated in receiving mode.
On-chip 10-bit 100 MS/s analog-to-digital converters (ADCs) and 10-bit 100 MS/s digital-
to-analog converters (DACs) are responsible for the quadrature-phased baseband signal
digitization. The first-hierarchy FPGA is responsible for T/R module control, transmitted
waveform excitation, received data acquisition, and digital signal processing (DSP). Digital
beamformers implemented in first-hierarchy FPGAs collect relative magnitude and phase
information from each array element and calculate essential complex-valued coefficients
for the desired beamforming orientation. The second-hierarchy FPGA communicates with
the computer through Ethernet and manages data transfer across the array hierarchy over
SerDes interfaces. The Analog Devices’ EVAL-ADF5355 PLL evaluation kit [36] is used
to generate the necessary local oscillator (LO) reference signals at frequencies of f0/8 and
2 f0; f0 represents the carrier frequency of each array element and was set to 8.5 GHz in
this study for the proposed demonstrator. Moreover, FPGAs administer global timing
regulation through a 100 MHz global clock and a global trigger. Four reference signals
are distributed from the module input to each array element using active clock trees;
system-level synchronization can be realized through these reference signals.
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Figure 1. System architecture of the proposed digital phased array radar demonstrator.

3. Circuit Implementation of X-Band Transceiver

The proposed X-band CMOS transceiver serves as a hardware interface between the
radiating antenna and back-end digital processor and provides analog signal processing
and baseband-to-RF frequency translation. This section describes the circuit design and
implementation of the transceiver SoC. We designed and simulated the CMOS circuits
with the help of Cadence Virtuoso Analog Design Environment. Figure 2 illustrates a
simplified block diagram of the CMOS transceiver circuitry, including the transmitter,
receiver, local oscillator (LO) distribution, and quadrature clock generation. Packaging
procedures for the reported CMOS chips are introduced in Section 4.1, and experimental
results are summarized in Section 5.

3.1. Transmitter Design

As depicted in Figure 2, the implemented transmitter comprises baseband circuitry,
a quadrature clock generator, a single-sideband (SSB) mixer, and a power amplifier. Off-
chip signal processors deliver digitized data to on-chip 10-bit 100 MS/s current-steering
DACs for in-phase and quadrature channels, the circuit schematic of which is presented
in Figure 3. Incoming quadrature baseband signals undergo analog filtering and single-
sideband modulation through the second-order low-pass filter and the SSB mixer. Subse-
quently, the power amplifier drives upconverted single-sideband signals to the external
50 Ω load. Quadrature clock generation circuitry executes frequency division and provides
orthogonal LO signals at a frequency of f0 to mixer switching pairs through 2 f0 and f0/8
reference signals; f0 denotes the carrier frequency of each transceiver SoC and ranges from
8 to 10 GHz. The design process of the clock generator is reported in Section 3.3.
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Figure 2. Simplified block diagram of the X-band CMOS transceiver.

The complete circuit schematic of an active single-sideband mixer is introduced in
Figure 4. Differential baseband signals derived from the preceding low-pass filter are
commuted in the form of current by the operational transconductance amplifier; a resistive
source degeneration technique is employed to improve amplifier linearity, and shunt ca-
pacitors at the output nodes suppress LO feedthrough caused by mixer switching. Two
current-driven double-balanced mixer pairs upconvert incoming baseband signals and
achieve single-sideband modulation through the combination of quadrature RF currents;
a resonant tank is applied to absorb the capacitive load of subsequent circuits. The sub-
sequent power amplifier is driven by the current-mode logic (CML) buffer for SSB mixer
differential outputs.

The integrated class-AB power amplifier boosts the single-sideband signal and delivers
necessary RF power to the off-chip 50 Ω load, the circuit schematic of which is presented
in Figure 5. A cascaded two-stage topology [37] that consists of a driver stage and power
stage is adopted in the power amplifier design. Both the driver stage and power stage
are implemented in the cascode common-source configuration to strengthen the available
voltage swings associated with transistor breakdown voltage. The input matching network
and the intermediate matching network apply resonant circuits to suppress out-of-band
aggressors and absorb the transistor parasitic capacitors with compact areas. The power
stage amplifier tolerates much higher voltage swing through the use of thick-gate-oxide
common-gate devices and a 2.5 V drain bias voltage; subsequently, the transformer-based
output network executes power combination and impedance conversion. The implemented
power amplifier was determined to achieve a simulated drain efficiency of 18% and an
output power of 18.3 dBm at 10 GHz.
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Figure 3. Circuit schematic of the digital-to-analog converter.

Figure 4. Circuit schematic of the single-sideband mixer.

Figure 5. Circuit schematic of the class-AB power amplifier.

3.2. Receiver Design

As shown in Figure 2, the implemented direct-conversion quadrature receiver com-
prises a mixer-first RF front-end, a quadrature clock generator, and baseband circuitry. The
incoming RF input signal undergoes frequency translation and analog signal processing;
subsequently, the downconverted quadrature baseband signals are distributed to the off-
chip signal processor through the digital interface. Both the transmitter and receiver are
equipped with separate quadrature clock generation circuits to perform frequency division.
The design is described in detail in Section 3.3.
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The circuit schematic of the mixer-first RF front-end is illustrated in Figure 6. A
transformer-based input matching network is adopted for single-ended-to-differential
(S2D) conversion and dc current isolation. Current-driven passive mixers downconvert
received RF signals and can tolerate simultaneous transmitter leakage. The transimpedance
amplifiers (TIAs) provide current-to-voltage conversion for downconverted waveforms
and drive subsequent baseband circuitry activity. However, in the absence of a low-noise
amplifier, the input impedance of the TIAs is upconverted by a bidirectional passive mixer
and can be directly observed at the receiver RF input port. Analyses of the impedance
transparency feature in a mixer-first architecture are presented in [38,39]. Through the
reported analysis procedures, the design of impedance matching and baseband load
entails making tradeoffs among conversion gain, noise figure, and mixer LO driver power
dissipation to achieve the desired 8–10 GHz operating frequency.

Figure 7 depicts the baseband circuitry [18]. Downconverted received signals undergo
amplification and filtering through the programmable gain amplifier (PGA) and low-
pass filter. With dc offset cancellation and feedback resistor control, a three-stage PGA
accomplishes a simulated 60 dB gain tuning range and 1 dB gain tuning step, followed
by a second-order multiple feedback low-pass filter with digital-controlled reconfigurable
feedback resistors and capacitors. The overall filtering bandwidth is either 20 MHz or
40 MHz. Off-chip signal processors use sampled data from on-chip 10-bit 100 MS/s
nonbinary redundant successive approximation register analog-to-digital converters (SAR
ADCs) for in-phase and quadrature channels, the circuit schematic of which is presented in
Figure 8.

Figure 6. Circuit schematic of the mixer-first receiver front-end.

Figure 7. Circuit schematic of the baseband circuitry.
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Figure 8. Circuit schematic of the analog-to-digital converter.

3.3. LO Distribution and Quadrature Clock Generation

In this study, two synchronized external LO signals at frequencies of 2 f0 and f0/8 were
delivered to both the transmitter and receiver equipped with quadrature clock generation
circuitry; f0 denotes the carrier frequency of each transceiver SoC and ranges from 8 to
10 GHz. Clock generation circuits execute frequency division and provide orthogonal LO
signals at a frequency of f0 to the in-phase and quadrature (I/Q) mixers. Element-level
digitization can calibrate deterministic phase errors while leaving random uncertainties,
which are partially derived from temperature-induced phase fluctuations in the active LO
distribution network and 180◦ phase uncertainty in the frequency division process. These
problems can be solved by applying bandgap reference voltage biasing and the proposed
periodic pulse injection technique. Detailed design processes are described as follows.

Figure 9a,b depict the circuit implementation of the LO distribution network com-
posed of a 2 f0 buffer chain and f0/8 buffer chain. An on-chip bandgap reference circuit
provides temperature-insensitive biasing voltages to CML buffers. Moreover, an inductive
gain-peaking technique [40] is also introduced to compensate for power loss derived from
signal routings. Conversely, with a relatively low frequency, the f0/8 buffer chain applies a
CML-based active S2D circuit and 50 Ω load CML buffers directly. Figure 10a,b present
the simulated relationship between the relative phase and environment temperature for
16–20 GHz LO signals. In the 25–125 ◦C operating temperature range, the CML buffer
chain exhibits 13.7◦ and 4.4◦ maximum phase deviations under activating and deactivat-
ing bandgap reference biasing configurations, respectively. Applying bandgap reference
biasing to CML buffers is confirmed to reduce temperature-induced phase fluctuation in
the LO path.

The 2 f0 fed signal, along with the frequency division process, prevents substantial LO
leakage at transceiver RF ports. However, the divide-by-2 process introduces 180◦ phase
uncertainty to quadrature clock signals and causes difficulty in array element synchroniza-
tion; that is, the output signals of the two synchronized CMOS SoCs may be either in phase
or out of phase once the CMOS transceivers restart. Consequently, beamforming fails to
operate because of arbitrary constructive or destructive interference. To solve the 180◦
phase ambiguity, our study proposes a quadrature clock generation circuit with a periodic
pulse injection technique. A simplified block diagram is presented in Figure 11, where
signals are presented in a single-ended form for clarity. A CML quadrature divider accom-
plishes frequency division and orthogonal clock generation from the buffered 2 f0 signal
delivered by the LO distribution network. Programmable CML delay lines drive either
the transmitter or receiver mixers and enable I/Q phase imbalance calibration by altering
the relative delay between I/Q clocks. Similarly, the CML circuits employ proportional-to-
absolute-temperature biasing voltages to avoid temperature-induced phase fluctuation in
the LO path.
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Figure 9. Circuit schematic of the clock distribution network composed of (a) 2 f0 LO buffer chain
and (b) f0/8 LO buffer chain.

An additional f0/8 path is introduced to eliminate phase uncertainty. Initially,
the buffered f0/8 signal undergoes a retiming process by the 2 f0 signal for clock edge
alignment. Subsequently, a periodic pulse signal with an adjustable duty cycle and delay is
produced by the pulse generator circuit from the f0/8 retiming clocks and is fed into the
CML quadrature divider, as depicted in Figure 12. Finally, the pulse signal turns on a pMOS
device and injects current into the divider output node periodically. The injected current
increases the output voltage, consequently affecting the absolute phase of the quadrature
signals, depending on the selected injection point. Simulated 10 GHz LO waveforms along
with a 1.25 GHz pulse signal are depicted in Figure 13. Comparing the activating injecting
case with the deactivating injecting case reveals a 180◦ phase difference after the pulse
signal triggers the divider circuitry. Thus, the proposed quadrature divider can regulate
absolute phases of output clocks through a chosen injection point (i.e., the relative delay
between the f0/8 retiming clock and generated pulse), and a well-defined relative phase
relationship between any two transceiver chips is achievable. Furthermore, to prevent
metastability in the retiming process, the proposed quadrature clock generation circuitry
adopts an additional path to monitor the clock edge relationship between the 2 f0 and
f0/8 signals.
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Figure 10. Simulated relationship between the relative phase of LO signal and environment tempera-
ture under (a) activating and (b) deactivating bandgap reference voltage biasing.

Figure 11. Simplified block diagram of the proposed quadrature clock generation circuit.
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Figure 12. Circuit schematic of the CML quadrature divider with periodic pulse injection.

Figure 13. Simulated 10 GHz LO waveforms under deactivating and activating 1.25 GHz pulse injection.

4. System Integration of the Proposed Radar

This section describes the system integration of the proposed element-level digital
phased array radar, which incorporates radiating element packaging and subarray module
assembly. The corresponding experimental results are summarized in Section 5.

4.1. Array Element Packaging

An array element is the basic functional unit in a beamforming system and is respon-
sible for transmitting or receiving expected signals through an embedded antenna. Each
array element comprises a T/R module and the corresponding part of the interposer board
on which the T/R module is mounted.

Our previous work [33] reported the antenna-in-package (AiP) method for T/R mod-
ule packaging. The integration of the compact AiP module and high-performance front-end
amplifiers can further improve the radiation power and noise figure at the cost of increased
heat density. For example, the expected power density of the Qorvo TGA2598-SM GaN
driver amplifier [34] is 0.48 W/mm2. Because the top layer is occupied by a patch antenna
and the bottom layer is epoxy encapsulated, external heat sinks are unavailable on the
surface of the AiP module [33]; consequently, the heat generated by the active compo-
nents spreads to the poor-thermal-conductivity ceramic substrate and the interposer board
through solder balls. Additional off-chip front-end amplifiers increase the difficulty of
heat dissipation in an ultrathin tile array. An alternative method for board-level integra-
tion of the CMOS T/R quad flat no-lead (QFN) module, off-the-shelf front-end amplifier,
and linear-polarized patch antenna was adopted in this study and is explained as follows.

To ensure expedited shipping and preliminary verification processes on a limited
budget, only an FR4 substrate was chosen for the QFN module and the front-end in-
terposer board. As shown in Figure 14, the T/R QFN module includes a wire-bonded
CMOS transceiver SoC and surrounding filtering capacitors; power rails, digital interfaces,
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baseband analog signals, and RF LO signals come into contact with the interposer board
through bonding pads. On-chip 10-bit 100 MS/s ADCs and 10-bit 100 MS/s DACs are
responsible for the baseband signal digitization. Under epoxy encapsulation, a packaged
QFN module is 9.35 × 7.75 × 1.39 mm3 in size. Figure 15a,b depict the side view and
top view of a 1 × 16 front-end interposer board including 16 array elements. Each array
element is composed of the T/R QFN module, commercial front-end amplifier, and re-
designed linear-polarized patch antenna. The edge-to-edge dimension of embedded patch
antennas is set to 17.6 mm to avoid a grating lobe at 8.5 GHz operating frequency. The
ground layer in the middle of the FR4 substrate serves as an antenna ground and pro-
vides electromagnetic interference shielding for RF signals. Due to limited resources, only
one-layer Rogers RO4350B is embedded into the front-end interposer board to improve
insertion loss between the commercial front-end amplifier and the patch antenna.

Figure 14. Top view of a CMOS T/R QFN module.

Detailed antenna dimensions are presented in Figure 16. Moreover, Figure 17 depicts
the simulated input reflection coefficient and radiation efficiency of the patch antenna
incorporating a vertical via and horizontal microstrip feed line. We designed and simu-
lated the antenna with the help of Keysight Advanced Design System (ADS). Occupying a
7.8–9.9 GHz bandwidth, the implemented patch antenna achieves 78.4% and 52.2% radia-
tion efficiency at the 8.5 GHz and 9.9 GHz operating frequencies, respectively. Figure 18a,b
illustrate the far-field cut of the simulated radiation pattern for the E-plane and H-plane,
respectively. Equipped with a maximum antenna gain of 4.741 dBi and 3.737 dBi for the
E-plane and H-plane, the patch antenna accomplishes a half-power beamwidth (HPBW)
of 78◦ for the E-plane and an HPBW of 120◦ for the H-plane. Furthermore, we simulated
the radiation pattern of the implemented patch antenna array and present the simulation
results of the 16-element antenna array at the 8.5 GHz center frequency. Figure 18c,d
depict the simulated E-plane and H-plane radiation patterns for the 16-element antenna
array under rectangular window extraction and 0◦ beamforming angle. For the E-plane
cut, the 16-element antenna array achieved a maximum gain of 16.873 dBi and HPBW of
78◦; for the H-plane cut, that is to say, our desired beamforming direction, the 16-element
antenna array achieved a maximum gain of 15.879 dBi, HPBW of 6◦, a peak sidelobe ratio
of −14.52 dB, and a 12.142 dB gain improvement due to beamforming.
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Figure 15. (a) Side view and (b) top view of a 1 × 16 interposer board.

Figure 16. Dimensions for the patch antenna.

218



Sensors 2021, 21, 7382

Figure 17. Simulated input reflection coefficient and radiation efficiency of the patch antenna.

Figure 18. Simulated (a) E-plane and (b) H-plane radiation pattern for the single patch antenna;
simulated (c) E-plane and (d) H-plane radiation pattern for the 16-element patch antenna array.

4.2. Assembly of 1 × 16 Subarray Module

Figure 19a,b depict the implemented 1 × 16 subarray module. The 1 × 16 subarray
module comprises a front-end interposer board, a signal processor board, and two power
module boards. In contrast to the 4 × 4 configuration [33], the 1 × 16 system replaces the
T/R AiP module with the combination of the T/R QFN module, off-the-shelf front-end
amplifier, and redesigned patch antenna for each radiating element. Sixteen equally spaced
radiating elements execute baseband-to-RF frequency translation and produce constructive
interference at the expected beam-steering directions. The signal processor, Xilinx FPGA
SoC, communicates with radiating elements through physical routings in the interposer
board and executes cross-hierarchy data transfer over the SerDes interface. Moreover,
as mentioned in Section 3.3, each CMOS transceiver requires two external LO signals
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at frequencies of f0/8 and 2 f0 to eliminate phase uncertainty and generate quadrature
clocks; the FPGAs also administer global timing regulation through a 100 MHz global
clock and a global trigger. Four reference signals are distributed from the module input to
each array element using active clock trees; system-level synchronization can be realized
through these reference signals. Additionally, two customized power module boards
generate essential supply voltages from a single 28 V dc input rail with high-efficiency
dc–dc conversion. In our current implementation, the 1 × 16 subarray module achieves a
size of 317 × 149 × 74.6 mm3, including a heat sink mounted on the interposer board for
convection cooling. An improved thermal management system incorporating heat pipes
and heat sinks may help further reduce the module volume.

Figure 19. (a) Top view and (b) side view of a 1 × 16 subarray module.

5. Experimental Results

This section presents experimental results, including the circuit performance of the
X-band CMOS transceiver and functional verification of the 1 × 16 subarray modules,
for the proposed element-level digital phased array radar. After fabricating the transceiver
SoCs, wafer-level measurements were performed to evaluate circuit specifications, and
then qualified chips were packaged according to the assembly procedures detailed in
Section 4. Subsequently, a finished radar demonstrator composed of two 1 × 16 subarray
modules was subjected to power-on calibration, antenna pattern measurement, and range
sensing experimentation.

5.1. CMOS Transceiver

This paper presents a fully integrated X-band transceiver SoC fabricated using 65 nm
CMOS technology. Figure 20 presents a micrograph of the implemented chip. Occupying
a chip area of 2.4 × 2 mm2, the CMOS transceiver consumes a total power of 1.45 W in
transmitting mode and 1.41 W in receiving mode on 1.2, 1.8, and 2.5 V dc power rails. The
power consumption of key transmitting and receiving blocks is illustrated in Figure 21a,b.
The substantial power dissipation is mainly derived from power-hungry CML circuits
and on-chip low-dropout regulators (LDOs), which are employed to reduce temperature-
induced phase fluctuations and eliminate system-level switching power supply noise,
respectively.
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Figure 20. Micrograph of the implemented CMOS transceiver chip.

Figure 21. Power consumption of the CMOS transceiver operated in (a) transmitting mode and
(b) receiving mode.

Circuit measurement specifications of the CMOS transceiver SoC under the wafer
probing scheme are summarized as follows. By utilizing the mixer-first RF front-end, the re-
ceiver chain suppresses out-of-band interference through narrow-band noise performance
and input matching; band switching operation is realized by controlling the reference
frequency of the external LO signal. Figure 22a depicts the input reflection coefficient of the
implemented receiver with a 50 Ω source impedance at LO frequencies ranging between
16 and 20 GHz; a Keysight E8257D analog signal generator provides −10 dBm RF power at
the given LO frequencies. The minimum input reflection coefficient is achievable with a
frequency that is near the given carrier frequency (i.e., half of the LO frequency), and the
magnitude of the reflection coefficient increases as the measured frequency moves away
from the selected operation band. The double-sideband (DSB) noise figure and conversion
gain are illustrated in Figure 22b,c. The implemented receiver chain achieves a 14.6 dB DSB
noise figure and maximum DSB conversion gain of 57.2 dB within the 40 MHz baseband
bandwidth at a 20 GHz LO frequency. For linearity measurements, single-tone tests were
performed at an 18 MHz baseband frequency and different LO frequencies. Figure 23a,b
display measurement results of the receiver 1 dB compression point (P1dB) under the lowest
conversion gain of 3.8 dB and highest conversion gain of 57.2 dB. The input P1dB reaches
−14 and −66 dBm at an 18 GHz LO frequency for the lowest gain and highest gain cases,
respectively. Moreover, two-tone tests were conducted at baseband frequencies of 18 and
20 MHz. The input third-order intercept points (I IP3) of the implemented receiver are
presented in Figure 24a,b, including those for both the lowest conversion gain and highest
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conversion gain cases. I IP3 reaches −5.9 dBm for the lowest conversion gain case and
−57.2 dBm for the highest conversion gain case at the 18 GHz LO frequency.

Figure 22. Circuit performance of the implemented receiver, including (a) input reflection coefficient,
(b) noise figure, and (c) conversion gain.
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Figure 23. The 1 dB compression point (P1dB) of the implemented receiver for (a) lowest conversion
gain and (b) highest conversion gain.
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Figure 24. Third-order intercept point (IP3) of the implemented receiver for (a) lowest conversion
gain and (b) highest conversion gain.

The performance of the transmitter incorporating a spurious level, carrier leakage,
saturated output power, and pulse-mode operation capability was examined. Figure 25a
shows the output spectrum of the transmitter at 19 GHz LO and 5 MHz baseband input
frequencies; lower-sideband (LSB) upconversion was demonstrated in the experiment. The
implemented transmitter achieves a spurious level of −30.35 dBc and a carrier leakage
of −33.95 dBc. The measured and simulated saturated output power among 8–10 GHz
are presented in Figure 25b. In an 8–10 GHz operating frequency range, the CMOS power
amplifier exhibits a peak saturated output power of 17.96 dBm and a peak drain efficiency
of 11.9% at 8.5 GHz.
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Figure 25. Circuit performance of the implemented transmitter, including (a) output spectrum at 19
GHz LO and 5 MHz baseband input frequencies, (b) saturated output power.

5.2. Radar Demonstrator with 1 × 16 Subarray Modules

This paper presents a 16-element radar demonstrator incorporating a hierarchical
digital back-end and two 1 × 16 subarray modules with board-level integrated RF front-
end amplifiers. As depicted in Figure 1, one of the 1 × 16 subarray modules is oper-
ated in transmitting mode, and the other is operated in receiving mode. Additionally,
the module operated in transmitting mode is vertically arranged for elevation recognition,
whereas that operating in receiving mode is horizontally configured for azimuth recogni-
tion through simultaneous multiangle scanning [41]. Digital beamformers implemented in
the first-hierarchy FPGA are responsible for phase shifting and magnitude amplification,
depending on the beam-steering orientation. After the successful execution of power-on
calibrations [33], the performance of the digital beamformer was evaluated through the
verification of antenna patterns. The measured E-plane antenna patterns for the demon-
strator operating in receiving mode are presented in Figure 26, with the mainlobe being
steered from −45◦ to 45◦ at 15◦ steps. By applying the kaiser window with a shape factor
of 3, this study determined that the digital beamformer achieved an average sidelobe
level of −25.64 dB and a half-power beamwidth of 8.06◦ at a 0◦ beamforming angle; ad-
ditionally, at the same angle, an average sidelobe level of −13.11 dB and a half-power
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beamwidth of 6.27◦ were achieved without tapering. Benefiting from the digital beamform-
ing scheme, the proposed 16-element demonstrator supports pulsed radar configuration;
the corresponding experimental results are reported as follows.

Figure 26. Measured antenna patterns for 16-element demonstrator operated in receiving mode.

A pulsed radar evaluates the target distance according to the time of flight between
the radar-transmitted signal and target-reflected signal. The maximum unambiguous range
of the pulsed radar can be expressed as follows. fPRF and c represent the pulse repetition
frequency and the speed of light, respectively.

Maximum unambiguous range =
c

2 · fPRF
(1)

An up-chirp signal with a duration of 320 ns and sweep bandwidth of 20 MHz is
employed for the transmitted pulse, and a 7.68 μs pulse repetition period and a 4.17%
duty cycle are adopted for the radar demonstrator. Theoretically, a 1152 m maximum
unambiguous range and 7.5 m range resolution can be achieved with the current system
specifications. Because the transmitter and receiver are not simultaneously activated,
the CMOS receiver avoids transmitter-induced baseband saturation and can increase the
PGA gain for long-distance target sensing. Initially, each array element delivers digitized
echo signals to the digital back-end. The DSP functional block implemented in the first-
hierarchy FPGA executes waveform averaging for pulsed radar operation. Subsequently,
processed data are delivered to MATLAB through an Ethernet interface. Matched filtering
and digital beamforming are realized in MATLAB for time-of-flight calculation and spatial
filtering with acceptable latency. Finally, the captured range–azimuth information for the
given scene is displayed on the screen.

The 16-element radar demonstrator was placed on the seventh floor; the field of
view seen by the demonstrator is depicted in Figure 27a, in which the target buildings
and corresponding distance are labeled. An experiment was performed for functional
verification of the pulsed radar, and the downconverted received waveform for a single
pulse repetition period is displayed in Figure 27b. Once the radar demonstrator activates
the receiver modules, the dc offset cancellation circuitry implemented in the CMOS PGA
chain is triggered to update the bias point through analog feedback loops. During the
settling process of the feedback loop, the receiver provides relatively little conversion gain;
the blind range of the pulse radar demonstrator is broadened due to this effect.

Isometric and side views of the captured range–azimuth plot for labeled target build-
ings are presented in Figure 28a,b; the colored z-axis in the figure indicates the relative
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signal magnitude on a linear scale, and its value is normalized to the maximum receiving
signal strength.

Figure 27. (a) Snapshot of target buildings. (b) Downconverted received waveform with pulse
repetition period of 7.68 μs.

The target locations evaluated by the proposed radar demonstrator were confirmed to
match the labeled buildings illustrated on the map. A 1000.5 m maximum observation range
was accomplished for stationary buildings. To generate a complete pulsed radar image,
the average latency between the user request and radar image display is 150 ms for the
current hardware implementation, consisting of 2 ms for 256 consecutive measurements,
13 ms for data transfer through SerDes and Ethernet interfaces, and 135 ms for data
processing in MATLAB. Further acceleration can be achieved by realizing the matched
filtering and radar imaging algorithms in FPGAs. A comparison of the performance of the
developed radar transceiver with other state-of-the-art works is summarized and reported
in Table 1. Although the power consumption is not superior to that reported in prior
studies, the performance of the proposed transceiver in terms of the spurious level and
available conversion gain is comparable to that achieved in the state-of-the-art circuits. In
addition, the radar demonstrator with scalable subarray modules simultaneously realizes
range sensing and azimuth recognition for real-time pulsed radar imaging. Captured by a
software-defined pulsed radar, a complete range–azimuth figure with a 1 km maximum
observation range can be obtained within 150 ms under the current implementation. Users
can construct a large-scale phased array radar with the presented topology of the array
element and digital back-end system.
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Figure 28. (a) Isometric view and (b) side view of the captured range–azimuth plot by using 16-
element radar demonstrator.

Table 1. Performance comparison with state-of-the-art fully customized radar transceivers.

TMTT2018
[18]

ISSCC2018
[15]

TMTT2017
[14]

TMTT2016
[16]

TMTT2016
[42]

This Work

Frequency Band 9.8–10.2 GHz 9.5–10.5 GHz 14.26–15.74 GHz 2–16 GHz 9–11 GHz 8–10 GHz

Technology 65 nm CMOS 65 nm CMOS 65 nm CMOS 0.13 μm SiGe
BiCMOS

0.13 μm SiGe
BiCMOS

65 nm CMOS

Die Size 1.9 × 2 mm2 2 × 3.9 mm2 1.4 × 2.9 mm2 2.5 × 5 mm2 3 × 5.2 mm2 2 × 2.4 mm2

SoC Integration 1TX + 1RX 4TX + 4RX 1TX + 1RX 8RX 1TX + 1RX 1TX + 1RX

TX Output Power 10.5 dBm 14.7 dBm 13.3 dBm - 29.2 dBm 17.96 dBm

TX Spurious Level - - - - - −30.35 dBc

RX Conversion
Gain 5–72 dB Front-end: 15.3–28.6 dB

Baseband: 0–60 dB
Front-end: 23.5 dB
Baseband: 3–58 dB

6–11 dB 25 dB 3.8–57.2 dB

RX Noise Figure 16.5–18 dB 5.7–6.5 dB 5.6–6.3 dB 11.5–12.3 dB 3 dB 13.9–14.6 dB

RX Front-End
Input P1dB

2 dBm at 5 dB Gain
−27 dBm at 32 dB Gain

−37 dBm −33 dBm −14 dBm −18 dBm −14 dBm

RX Front-End
IIP3

7 dBm at 5 dB Gain - - - - −5.9 dBm
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Table 1. Cont.

TMTT2018
[18]

ISSCC2018
[15]

TMTT2017
[14]

TMTT2016
[16]

TMTT2016
[42]

This Work

RX Baseband
Bandwidth

2 MHz 60–280 MHz 0.68–9.8 MHz - - 20 or 40 MHz

Power
Consumption 147 mW 179 mW per TX

74 mW per RX
259.4 mW 250 mW per RX 4.128 W per TX

352 mW per RX
1.45 W per TX
1.41 W per RX

Number of Elements in
the Demonstrator

- 4TX + 4RX - 8RX 1TX + 1RX 16TX + 16RX

Beamforming
Scheme - TX: RF Phase-Shifting,

RX: Digital Beamforming
- RF Phase-Shifting,

Digital Beamforming
RF

Phase-Shifting Digital Beamforming

Modulation Type Triangular Chirp Pulsed Chirp Sawtooth Chirp - - Pulsed Chirp

Modulation
Bandwidth 400 MHz (4%) 1 GHz (10%) 1.48 GHz (9.9%) - - Programmable,

20 MHz for Pulsed Radar

Multibeamforming
Capability

- Yes
(4 beams)

- Yes
(1, 2, or 4 beams)

- Yes
(16 beams)

Beam Steering
Range - ±60◦ - - - E-plane: ±45◦

Peak Sidelobe Ratio
(PSLR)

- −12.9 dB
w/o tapering

−12.7 dB
w/o tapering

- - −13.1 dB w/o tapering
−25.6 dB w/i tapering

Radar Imaging
Latency

- off-line - - - 150 ms per
pulsed radar image

6. Conclusions

This paper describes the design and implementation of an X-band element-level digital
phased array radar with fully integrated CMOS transceivers. Fabricated using 65 nm
CMOS technology, an 8–10 GHz transceiver SoC provides analog signal processing, RF
frequency translation, and global clock synchronization when the proposed periodic pulse
injection technique is applied. Moreover, the scalable subarray module realizes system-level
synchronization through four global reference signals and enhances the overall form factor
through the use of vertically stacked printed circuit boards in a tile array configuration.
Element-level digitization not only offers arbitrary weighting but also eliminates the
deterministic magnitude and phase error of each radiating element. In summary, CMOS
SoC integration, advanced packaging, and subarray module miniaturization result in a
low-cost compact-size phased array system, and the proposed 1 × 16 subarray module
accomplishes digital beamforming, back-end signal processing, and dc–dc conversion
within dimensions of 317 × 149 × 74.6 mm3. Board-level integration of off-the-shelf
front-end amplifiers further improves the performance of the 1 × 16 subarray module.
Software-defined phased array radar demonstrators composed of the described subarray
modules simultaneously fulfill range sensing and azimuth recognition for pulsed radar
operation. A complete range–azimuth figure with a 1 km maximum distance can be
captured within 150 ms by the pulsed radar demonstrator under the reported hardware
implementation. In this study, waveform averaging was employed to reduce the data
rate and improve the signal-to-noise ratio (SNR) for a stationary target and uncorrelated
noise. The digital back-end averages out consecutively received waveforms and only
delivers processed data to users. However, this technique fails to address the sensing of
moving targets as a result of the time-variant relative phase in successive reflected signals.
Additional hardware experiments and software algorithms should be developed for such
scenarios in the future.
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