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Editorial

Editorial for the Special Issue of Journal of Risk and Financial
Management: Featured Papers in Mathematics and Finance

Svetlozar (Zari) T. Rachev * and W. Brent Lindquist

Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA;
brent.lindquist@ttu.edu
* Correspondence: zari.rachev@ttu.edu

We are privileged to present this Special Issue of the Journal of Risk and Financial
Management (JRFM), focused on the intersection of mathematics and finance. The 27 contri-
butions to this issue explore theoretical advancements and practical applications in financial
risk management, asset pricing, and portfolio optimization. These papers collectively em-
phasize the ongoing synergy between mathematical rigor and financial innovation.

Key Highlights of the Issue

This Special Issue encompasses a variety of topics, reflecting the extensive research at
the intersection of mathematics and finance:

1. Asset Pricing and Portfolio Optimization: Several papers tackle challenges in pricing
and managing portfolios, including enhancements to classical models, such as CAPM
and the Fama–French three-factor model, and new approaches utilizing entropy
and Bayesian analysis. One notable work introduces a novel metric for analyzing
downside risks in portfolio selection.

2. Green Finance and ESG: The growing importance of sustainability is evident, with
studies investigating the resilience of green investments amid policy uncertainties
and ESG reporting’s influence on financial performance.

3. Advanced Statistical and Econometric Techniques: Innovations in econometrics are
represented by studies on multivariate GARCH models, penalized regression, and
improved methods for estimating implied volatility. These papers highlight how
refined mathematical tools can better capture market dynamics and dependencies.

4. Cryptocurrency and Financial Technology: Several contributions delve into cryptocur-
rency markets, examining interconnected risks, uncertainty indices, and volatility
spillovers. These studies showcase the evolving challenges digital assets pose and
their integration into traditional finance.

5. Risk Measures and Financial Stability: Papers on value at risk (VaR) and conditional
VaR (CVaR) offer insights into managing extreme financial risks. Additionally, the
stability of banking systems and non-performing loans under fiscal constraints is
rigorously analyzed.

6. Financial Engineering: Advanced derivative pricing models, including those for
path-dependent and step barrier options, demonstrate the application of complex
mathematical frameworks to real-world financial instruments.

7. Macro-Financial Linkages: Studies exploring the interaction of monetary policy, cli-
mate change, and energy uncertainty on financial markets underline the importance
of integrating macroeconomic considerations into financial modeling.

J. Risk Financial Manag. 2025, 18, 43 https://doi.org/10.3390/jrfm18010043
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Implications for Research and Practice

This collection underscores the indispensable role of mathematical modeling in ad-
dressing contemporary financial challenges. From enhancing portfolio optimization to
managing risks in volatile markets, these studies provide actionable insights for academics
and practitioners alike. They also highlight emerging areas of inquiry, such as integrating
sustainability metrics and quantifying systemic risks in interconnected markets.

Acknowledgments: We thank all contributing authors for their rigorous research and the anonymous
reviewers for their invaluable feedback. Special thanks go to the Editorial team at JRFM for their
unwavering support in bringing this Special Issue to fruition. As mathematics and finance continue
to evolve, we hope this Special Issue inspires further research and collaboration, bridging theoretical
advancements with practical applications.

Conflicts of Interest: The authors declare no conflict of interest.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

2



Citation: Jondeau, Eric, and

Alexandre Pauli. 2024. Large

Drawdowns and Long-Term Asset

Management. Journal of Risk and

Financial Management 17: 552.

https://doi.org/10.3390/

jrfm17120552

Academic Editors: W. Brent

Lindquist and Svetlozar (Zari)

Rachev

Received: 22 October 2024

Revised: 1 December 2024

Accepted: 3 December 2024

Published: 10 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Large Drawdowns and Long-Term Asset Management

Eric Jondeau 1,*,† and Alexandre Pauli 2,†

1 Faculty of Business and Economics (HEC Lausanne), Swiss Finance Institute and CEPR,
University of Lausanne, CH 1015 Lausanne, Switzerland

2 Ecole Polytechnique Fédérale de Lausanne, Route Cantonale, CH 1015 Lausanne, Switzerland;
alexandre.pauli@epfl.ch

* Correspondence: eric.jondeau@unil.ch
† The authors contributed equally to this work.

Abstract: Long-term investors are often hesitant to invest in assets or strategies prone to signifi-
cant drawdowns, primarily due to the challenge of predicting these drawdowns. This study presents a
multivariate Markov-switching model for small- and large-cap returns in the U.S. equity mar-
kets, demonstrating that three distinct regimes are necessary to capture the negative trends in expected
returns during financial crises. Our findings indicate that this framework enhances the prediction
of conditional drawdowns compared to standard alternative models of financial returns. Further-
more, out-of-sample analysis shows that investment strategies based on these predictions outperform
those relying on models with one or two regimes.

Keywords: large drawdowns; stock-market returns; Markov-switching model; portfolio allocation model

1. Introduction

In recent decades, the recurrence of disasters has raised the issue of protecting in-
vestors’ portfolios from large market drawdowns.1 In the first quarter of 2020, the U.S.
equity market experienced a 36% decline—one of the five largest one-quarter drawdowns
in the last century. Such substantial drawdowns are particularly significant for long-term
asset managers, including insurers, pension funds, and sovereign wealth funds, as these
losses can not only impact annual portfolio performance but may also threaten the survival
of the fund. To mitigate these losses, some managers incorporate drawdown objectives into
their portfolio optimization processes. However, modeling and predicting the temporal evo-
lution of large drawdowns remains a considerable challenge, particularly as these events
often unfold over extended periods (e.g., a quarter or a year), a time scale inconsistent with
most conventional financial econometric models.

In this paper, we address both modeling and prediction challenges related to market
drawdowns. We introduce a model for daily financial returns based on regime switches,
which facilitates the prediction of significant market drawdowns. Our findings demonstrate
that three distinct regimes are necessary to capture the long-term dynamics of U.S. stock
market returns. Leveraging this model, we design an investment strategy aimed at mini-
mizing the expected value of a large drawdown measure, possibly subject to an expected
return target. We then evaluate this strategy out of sample over the last 30 years, provid-
ing evidence that investing according to this approach effectively allows investors to reduce
their losses due to large market downturns, outperforming standard alternative models
such as GARCH-type models.

Most of the literature exploring the prediction of large drawdowns relies on some form
of historical simulation. For instance, Chekhlov et al. (2005) simulate scenarios based on
historical data to predict next-period drawdowns. This approach is likely to work well in-
sample but may not perform well when market conditions vary over time, possibly due to
climate change. A key challenge in using parametric models to predict large drawdowns is

J. Risk Financial Manag. 2024, 17, 552. https://doi.org/10.3390/jrfm17120552 https://www.mdpi.com/journal/jrfm
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that most models fail to capture large losses accumulating over relatively extended periods.
In particular, standard GARCH models, even with nonnormal distributions, are not able to
generate the negative trend that we observe during financial market crises. Consequently,
reproducing large drawdowns similar to those observed in the 1999 dotcom crisis, the 2008
subprime crisis, or the 2020 COVID-19 pandemic becomes highly challenging with these
models. In contrast, Markov-Switching (MS) models can generate large losses associated
with a crisis because they allow for different drifts in market returns across regimes.
Therefore, when a given return process enters a bear regime, it can accumulate negative
values for relatively long periods of time. Papers describing these models for financial
returns often overlook this long-term property because their main focus is on other features
of the returns’ data generating process. In particular, Ang and Bekaert (2002), Ang and Chen
(2002), and Guidolin and Timmermann (2004, 2007, 2008) used MS models to capture the
nonnormality or the asymmetric correlation of returns. More recently, similar approaches
were adopted to analyze the consequences in financial markets of disasters arising from
climate change (Karydas and Xepapadeas 2019, and Barnett et al. 2020) or from the COVID-
19 pandemic (Pagano et al. 2023). For shorter prediction horizons (e.g., 10 days), Peng et al.
(2022) find that an MS model with two regimes is sufficient for measuring large drawdowns.
For longer horizons, we provide evidence that three regimes are necessary to capture the
occurrence of financial crises and subsequent drawdowns effectively.

The literature defines several concepts of large drawdowns. One widely accepted
measure is the period maximum drawdown (MDD), which corresponds to the largest loss
from peak to trough over a given period. Investment strategies based on MDD are analyzed
by Grossman and Zhou (1993) in a continuous-time framework or by Reveiz and Leon
(2008) in discrete time. Chekhlov et al. (2005) define the concept of conditional drawdown
(CDD), which corresponds to an average of the largest drawdowns in a given period, with
the average drawdown (ADD) and the MDD as limiting cases. More recently, Goldberg and
Mahmoud (2016) define the conditional expected drawdown (CED), which corresponds to
an average of the largest period MDD values over a long sample. These measures have
interesting properties, as CDD and CED are convex measures of risk and as such can be
reduced by portfolio diversification.

In this paper, we first evaluate the number of regimes necessary to predict large
drawdowns. We perform this analysis using a long sample of daily returns for both small-
and large-cap stocks, covering nearly 100 years, with the last 30 years used for out-of-
sample evaluation.2 Given that small caps are more vulnerable to drawdowns than large
caps, we assess whether a strategy focused on minimizing an expected large drawdown
measure produces optimal weights that differ from those minimizing the portfolio variance.
We estimate multivariate MS-GARCH models with one to four regimes and different
distributions for the innovation process. We empirically demonstrate that three regimes are
statistically necessary to fit the data while four regimes would not provide any additional
information. In the three-regime model, one of the regimes has large negative expected
returns, which allows us to generate large windfalls consistent with actual crises. In
contrast, standard GARCH models fail to generate such extensive drawdowns.

We proceed by running an out-of-sample investment exercise. Using a rolling win-
dow, we estimate the various models and allocate the portfolio for the subsequent pe-
riod. Although this experiment is time-consuming, it effectively mimics an investor’s
real-time allocation process, penalizes overparameterized models, and helps mitigate the
winner’s curse problem (Hansen 2009). We find that models with three regimes provide the
best predictions of large drawdowns in this experiment. When allocating investor wealth
by minimizing the predicted large drawdown measure for the upcoming period, the ex post
drawdown of the portfolio is consistently lower with the three-regime model compared to
the GARCH model or the two-regime model. Investors using the three-regime model tend
to allocate long positions in large caps and short positions in small caps—an allocation that
proves effective in mitigating large drawdowns.
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Finally, we consider an investor aiming to maximize an expected return—large draw-
down criterion, which also takes into account the model’s ability to predict expected returns.
The out-of-sample results again demonstrate that one- and two-regime models are nearly
always dominated by the three-regime models, particularly for extreme drawdowns.

2. Materials and Methods

2.1. Definitions and Measurement

The maximum drawdown is the most widely used concept of large drawdowns. It
represents the maximum loss from peak to trough over a given time period. As MDD
increases for longer time series, it is customary to measure MDD over a given fixed time
period of one quarter or one year, for example. This section defines the notations and the
various concepts of large drawdowns that we will analyze in the remainder of the paper.

Let pt = (pt,1, · · · , pt,H) be a sample path associated with the stochastic process P
with a continuous and strictly increasing distribution, where pt,h denotes the log-price on
day h in period t (e.g., a given quarter or year).3 The drawdown within this period on day
h corresponds to the return loss between the last peak and the current price:

DDt,h = max
1≤j≤h

pt,j − pt,h.

We denote the drawdowns within the period as DDt = (DDt,1, · · · , DDt,H)
′. The maxi-

mum drawdown is defined as the largest drawdown of the period:

MDDt = max
1≤h≤H

DDt,h.

Chekhlov et al. (2003, 2005) define the conditional drawdown (CDD) as the average of
the largest drawdowns in a given period exceeding a quantile of the drawdown distribution,
which mitigates the impact of outliers. For a probability θ, CDD is given by the average
of the worst (1 − θ)× 100% drawdowns. Formally, we define the drawdown threshold
Thθ(DDt) as the θ-quantile of the drawdown distribution: Thθ(DDt) = inf{s | Pr(DDt >
s) ≤ 1 − θ}. CDD corresponds to the tail conditional expectation of the drawdown
distribution, i.e., the average of the drawdowns above the threshold:

CDDθ,t = Et[DDt | DDt > Thθ(DDt)], (1)

where the expectation is applicable over the sample path. When θ = 0, CDDθ,t is equal
to the average drawdown, ADDt = Et[DDt]. When θ → 1, CDDθ,t coincides with MDDt.
For a given sample path pt, we have ADDt ≤ CDDθ,t ≤ MDDt.

Finally, Goldberg and Mahmoud (2015, 2016) introduce the concept of conditional
expected drawdown (CED) as the average of the MDD values exceeding a quantile of
the MDD distribution. For a probability θ̃, CEDθ̃ corresponds to the average of the
worst (1 − θ̃)× 100% maximum drawdowns. Consequently, the threshold Thθ̃(MDD) is
determined by the θ̃-quantile of the MDD distribution: Thθ̃(MDD) = inf{s | Pr(MDD >
s) ≤ 1 − θ̃} and the CEDθ̃ is therefore given by:

CEDθ̃ = E[MDD | MDD > Thθ̃(MDD)], (2)

where the expectation is taken over the full sample. When θ̃ = 0, CEDθ̃ is equal to the
sample average period MDD, i.e., E[MDD].

Similar to the well-known expected shortfall, which measures the tail conditional
expectation of the return distribution, CDD and CED correspond to the tail conditional
expectation of the drawdown distribution and the tail conditional expectation of the
maximum drawdown distribution, respectively. Importantly, as shown by Chekhlov et al.
(2005) and Goldberg and Mahmoud (2015), MDD, CDD, and CED satisfy the properties
of deviation measures, i.e., nonnegativity, shift invariance, positive homogeneity, and
convexity. Convexity of a measure of risk implies that this measure can be reduced by

5
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diversification and used in quantitative optimization. As a consequence, if an investor
minimizes this measure, the minimum, if it exists, is a global minimum.

Our subsequent analysis will focus on the three large drawdown measures: CDD,
MDD, and CED. An essential feature of these measures is that drawdowns can develop
over different time frames.4 To cope with this feature, we consider three different horizons
H, corresponding to one quarter, two quarters, and four quarters.

2.2. Empirical Measures of Large Drawdowns

We now briefly describe how to measure the ex post drawdown of an asset or a
portfolio of assets. We match the horizon of the drawdown measures to a long-term
investor’s horizon H. For instance, an asset manager rebalancing the portfolio every quarter
wants to control for large drawdowns occurring throughout the quarter. Therefore, the
full sample is divided into T nonoverlapping subsamples of length H, with the sequence
of log-prices in subsample t given by pt = (pt,1, · · · , pt,H) for t = 1, · · · , T. For each
subsample, the vector of drawdowns is denoted by DDt = (DDt,1, · · · , DDt,H), with
DDt,h = max1≤j≤h pt,j − pt,h, as before.

We obtain the drawdown-based measures for each subsample as follows. The period
ADD is simply given by the sample mean of the drawdowns, ADDt = 1

H ∑H
h=1 DDt,h;

the period MDD is given by the maximum drawdown of the subsample, MDDt =
max1≤h≤H DDt,h; and the period CDD is calculated as the average of the drawdowns
over the θ-quantile:

CDDθ,t =
1

(1 − θ)H

H

∑
h=1

DDt,h I(DDt,h>Thθ,t)
, (3)

where Ix = 1 if x is true and 0 otherwise, and Thθ,t = inf{s | 1
H ∑H

h=1 I(DDt,h>s) ≤ 1 − θ}.
Finally, CED is based on the distribution of the period MDD measures over the full

sample: we collect the MDD values over all the subsamples MDD = (MDD1, · · · , MDDT)
and the sample CED corresponds to the average of the worst (1 − θ̃)× 100% MDD values
over the full sample:

CEDθ̃ =
1

(1 − θ̃)T

T

∑
t=1

MDDt I(MDDt>Thθ̃)
, (4)

where Thθ̃ = inf{s | 1
T ∑T

t=1 I(MDDt>s) ≤ 1 − θ̃}.

2.3. Investor’s Problem

We now consider the investment strategy of a long-term investor with investment
horizon H. At the end of period t, n risky assets are available. We denote by ri,t+1,h the
log-return of asset i on day h of the period t + 1. The vector of cumulated log-returns over h
days is denoted by Rt+1,h = {Ri,t+1,h}n

i=1, where Ri,t+1,h = ∑h
j=1 ri,t+1,j. Portfolio weights,

determined at the end of period t, are denoted by αt = (α1,t, · · · , αn,t) with ∑n
i=1 αi,t = 1.

The (unknown) value of the portfolio at the end of period t + 1 is Pt+1(αt) = α′t exp(Rt+1,H)
in the absence of rebalancing during period t + 1. The sequence of daily log-values of
the portfolio in period t + 1 is given by: pt+1(αt) = (pt+1,1(αt), · · · , pt+1,H(αt)), where
pt+1,h(αt) = log Pt+1,h(αt) and Pt+1,h(αt) = α′t exp(Rt+1,h).

For a given weight vector αt, we compute daily log-values in period t + 1 and obtain
large drawdown measures as described in Section 2.2.5 The investment criterion consists of
minimizing the expected value of one of the large drawdown measures for the next invest-
ment period (period CDD, MDD, or CED), which we denote generically as XDDt+1(αt).
The optimal weight is:

α∗t ∈ arg min
{αt}

Et[XDDt+1(αt)]. (5)

6
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We also consider a criterion based on the trade-off between the expected return and the risk
of a large drawdown:

α∗t ∈ arg max
{αt}

Et[Rp,t+1(αt)]− λ

2
Et[XDDt+1(αt)], (6)

where λ denotes the aversion for large drawdowns.
The minimization problem (5) corresponds to the case where the aversion for large

drawdowns λ goes to infinity. Although the optimization problem (6) may be more
attractive for an investor willing to combine risk and return, problem (5) allows us to
investigate more specifically the ability of the various models to predict large drawdowns.
In Section 3.4, we will focus our comments on the results based on problem (5) and briefly
discuss problem (6).

To obtain predictions of portfolio large drawdown measures, i.e., Et[XDDt+1(α
∗
t )], we

proceed as follows: First, we assume a multivariate MS-GARCH model to describe the data
generating process (DGP) for daily log-returns and endogenize the path dependence of the
return process. Two-regime and three-regime models would capture the drawdown trend
if switching probabilities are sufficiently low. Using this DGP, we simulate assets’ daily
returns for the next investment period. Second, for a given portfolio weight vector, we
obtain simulated paths of the portfolio return from which we deduce the large drawdown
measures. This approach provides us with predictions of the large drawdown measures
for the next investment period as a function of the weight vector, thereby enabling us
to pinpoint the optimal weight that minimizes the objective function (Equation (5)). The
details of our approach are the subject of the next section.

2.4. Methodology
2.4.1. Multivariate MS-GARCH Model

To capture the possible impact of a large drawdown on the performance of the long-
term portfolio, we assume a multivariate MS-GARCH model for the return process. The
vector of daily log-returns for the n assets is denoted by r̃d+1 = (r̃1,d+1, · · · , r̃n,d+1). The
temporal index d = 1, · · · , D, represents days and runs over the full sample.6

The model is written as follows:

r̃d+1 = μd+1(Sd+1) + εd+1,

where μd+1(Sd+1) is the vector of expected returns, conditional on state Sd+1, and εd+1 is
the vector of unexpected returns. It is defined as:

εd+1 = Ωd+1(Sd+1)
1/2zd+1,

where Ωd+1(Sd+1) denotes the (n × n) covariance matrix of unexpected returns and zd+1
is a sequence of iid innovations with distribution D(0, In) with zero mean and identity
covariance matrix.

States are defined by the Markov chain {Sd+1} with K regimes and transition matrix
P = (pkk′)k,k′=1,··· ,K, where transition probabilities are pkk′ = Pr(Sd+1 = k′|Sd = k),
k, k′ ∈ {1, · · · , K}.

Expected returns are constant within each state: μd+1(Sd+1) = μ(k) when Sd+1 = k.7

The covariance matrix Ωd+1(Sd+1) is time- and state-dependent. In a given state k, it is
driven by a multivariate GARCH process with state-dependent conditional correlation
matrix, as in Pelletier (2006) or Haas and Liu (2018). The conditional variance of asset i in
state k is defined as a standard univariate GARCH(1,1) process:8

σ
(k)2
i,d+1 = ω

(k)
i + α

(k)
i (r̃i,d − μ

(k)
i )2 + β

(k)
i σ

(k)2
i,d ,

with different parameters for each state, as in Haas et al. (2004).

7
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The (n × n) correlation matrix is constant in a given state: Γ(k) =
(

ρ
(k)
ij

)
i,j=1,··· ,n

, so

that the covariance matrix Ωd+1(Sd+1) = Ω(k)
d+1 in state k is:

Ω(k)
d+1 = (D(k)

d+1)
1/2 Γ(k) (D(k)

d+1)
1/2,

where D(k)
d+1 is the diagonal matrix with

(
σ
(k)2
i,d+1

)
i=1,··· ,n

on the diagonal.

We consider two types of multivariate distributions for innovations zd+1: A Gaussian
distribution N(0, In) and a standardized Student’s t distribution t(0, In, ν), where ν denotes
the degree of freedom. The choice of the innovation distribution may matter for two
reasons. First, for investors who care about higher moments, the investment criterion might
involve metrics, such as large drawdowns, that depend on the properties of the innovation
distribution. Second, in our model, large drawdowns can be captured in principle by a
higher probability of being in a bear market or by negative expected returns in the bear
regime. However, a lower degree of freedom of the Student’s t distribution can also affect
the dynamics of regime shifts and possibly result in lower returns.9

To make inferences about the regimes, we calculate the probability of being in each
regime. We denote by f (r̃d+1 | r̃d, θ) the distribution of the daily log-return process con-
ditional upon past log-returns, with r̃d = {r̃d, r̃d−1, · · · } and θ denoting the vector of
unknown parameters. Parameters include expected returns (μ(k)), volatility parameters
(ω(k), α(k), β(k)), correlations (Γ(k)), probabilities (pkk′ ), and the degree of freedom (ν). Using
Hamilton (1989)’s filter, we obtain the predicted probabilities πk,d+1 = Pr[Sd+1 = k | r̃d]
and the filtered probabilities φk,d+1 = Pr[Sd+1 = k | r̃d+1] as:

πd+1 = P φd+1 and φd+1 =
πd+1 � ld+1

e′(πd+1 � ld+1)
,

with ld+1 =

⎡⎢⎣ f (r̃d+1 | r̃d, Sd+1 = 1; θ)
...

f (r̃d+1 | r̃d, Sd+1 = K; θ)

⎤⎥⎦ and e = (1, · · · , 1)′.

The estimation of the model is based on standard likelihood maximization, where the log-
likelihood is defined as: log LD(θ) = ∑D−1

d=1 f (r̃d+1 | r̃d, θ) = ∑D−1
d=1 log

(
∑K

k=1 πd+1 � ld+1

)
.

We impose stationarity conditions as described by Haas et al. (2004) and Abramson and Cohen
(2007) in the univariate case and Haas and Liu (2018) in the multivariate case.10

While MS-GARCH models are valuable tools, they have certain limitations. To avoid
overfitting, it is essential to carefully determine the number of regimes and ensure the
model accurately captures the key patterns in the data. Estimating these models can be
computationally demanding, especially because large datasets are needed for reliable
results. This makes them less practical for systems with many variables or a high number
of regimes. Additionally, the regimes must correspond to clear economic or financial
conditions to make their interpretation meaningful. In our analysis, we address these
challenges by using a simple model with only two processes, a long dataset, and by
rigorously checking how well the model fits the data.

2.4.2. Minimizing the Expected Large Drawdown of a Portfolio

In some specifications of the multivariate MS model, analytical formulas for port-
folio characteristics are available. For instance, Guidolin and Timmermann (2004, 2008)
provide formulas for the high-order moments in a model with regime-dependent (but
time-independent) means and variances. Other nonlinear characteristics, such as the VaR or
the expected shortfall of the portfolio return distribution, cannot be computed analytically,
even in this simple model (Guidolin and Timmermann 2004). Additionally, in models such
as MS-GARCH, analytical expressions are usually not available because variances are path
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dependent. For this reason, we compute expected large drawdowns with Monte Carlo
simulations.

For ease of exposition, we again assume a quarterly investment horizon, with H
representing the number of days in a quarter. We solve the allocation problem (Equation (5))
at the end of quarter t through the following steps:

1. We estimate the parameters of the MS-GARCH model using daily log-returns available
in quarters 1, · · · , t. The last day of the estimation period is denoted by d = t × H.
The next quarter, t + 1, contains days d + 1, · · · , d + H.

2. For a given estimated model, we simulate Q samples of length H of daily log-returns

for the n assets: {r(q)t+1,h}H
h=1, q = 1, · · · , Q. As the probability of being in state k

at the end of period t is given by predicted probabilities {π
(k)
d+1}K

k=1, we simulate

a fraction π
(k)
d+1 of the draws using Ω(k)

d+1 as an initial condition for the covariance
matrix in period t + 1. From the simulated daily log-returns, we compute cumulative
log-returns in quarter t + 1 as: R(q)

t+1,h = ∑h
j=1 r(q)t+1,j for h = 1, · · · , H.

3. For a portfolio weight vector αt, we obtain daily log-values of the portfolio: p(q)t+1(αt) =

(p(q)t+1,1(αt), · · · , p(q)t+1,H(αt)), where p(q)t+1,h(αt) = log(α′t exp(R(q)
t+1,h)).

4. We predict the risk measures with simulated daily log-prices of the portfolio. For
each simulation q, we compute the drawdown measures using the definitions given in
Section 2.2, yielding XDD(q)

t+1(αt). The predictions of the drawdown measures are then

given by the average over the Q simulations: XD̂Dt+1(αt) = 1
Q ∑Q

q=1 XDD(q)
t+1(αt),

except for CED. To generate CED predictions, we rely on the MDD values obtained
over all simulations MDDt+1(αt) = (MDD(1)

t+1(αt), · · · , MDD(Q)
t+1(αt)) and take the

average of the worst (1 − θ̃)× 100% MDD values as in Equation (4).
5. We iterate points 3 and 4 over αt until the optimal portfolio weight vector α∗t is found

for the investment problem (5). To solve investment problem (6), we also predict
the expected return of the portfolio for the next quarter t + 1 as Et[Rp,t+1(αt)] =
1
Q ∑Q

q=1

[
exp

(
p(q)t+1,H(αt)− p(q)t,H(αt)

)
− 1

]
.

To obtain accurate estimates of the optimal weights, we simulate a large number of
draws (Q = 50, 000).

3. Results

3.1. Data

Our empirical application is based on two size portfolios constructed using the Fama
and French (1993) methodology. Small caps include the firms with the lowest market
capitalization (bottom 30%), while large caps consist of the firms with the largest market
capitalization (top 30%).11 The portfolios comprise all NYSE, AMEX, and NASDAQ stocks
for which market equity data are available. The sample spans from July 1926 to December
2020, encompassing a total of 24, 896 daily returns.12

Size portfolios offer several advantages for analyzing the construction of a portfolio in
the context of large drawdowns. First, data on these portfolios is available over an extensive
period (nearly 100 years). Second, size portfolios have been the focus of large attention
for decades, making their properties relatively well understood, particularly in terms of
their risk and return characteristics. Third, numerous studies have examined small-cap and
large-cap stocks due to their distinct behaviors during crises and varying market conditions,
such as bull and bear markets. Perez-Quiros and Timmermann (2000) provide evidence
that small caps exhibit a high degree of asymmetry between recessionary and expansionary
states. During recessions, small caps are more strongly impacted than large caps by
deteriorating credit market conditions. Ang and Chen (2002) and Patton (2004) investigate
the dependence between small and large caps, focusing on their asymmetric behavior
during bull and bear markets. Huang et al. (2012) report that small firms are more exposed
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to extreme downside risks, and that the higher average returns of small caps actually
compensate investors for the occurrence of larger drawdowns. The COVID-19 market
crash illustrates this phenomenon: in the first quarter of 2020, small caps experienced a 45%
decline, whereas large caps decreased by only 33%. From this perspective, we compare the
optimal weights allocated to size portfolios based on the minimization of large drawdowns
and the minimization of standard portfolio variance.

Table 1 reports statistics on small and large caps. Panel A corresponds to the full
sample (1926–2020, 378 quarters), while Panel B focuses on the out-of-sample period that
we used for the investment analysis (1990–2020, 124 quarters). The first part of the table
displays descriptive statistics and standard risk measures. Small caps exhibit higher annual
return and higher volatility on average. The Value-at-Risk (VaR) and expected shortfall (ES)
measures demonstrate that small caps are more prone to large adverse shocks. The overall
MDD is equal to 92% for small caps and 86.5% for large caps, corresponding in both cases
to the stock market crash of 1929–1932.

The second part of the table reports the four sample measures of large drawdowns
described in Section 2.2, for horizons of one quarter, two quarters, and four quarters. We
compute CDD for a probability θ = 0.8, i.e., we consider the average of the worst 20%
drawdowns in a given subsample (e.g., the worst 12 drawdowns in a given quarter) (see
Chekhlov et al. 2005). We compute CED with a probability θ̃ = 0.9, which corresponds to
the worst 10% of MDD values in the sample (the worst 12 MDD values in the out-of-sample
period) (see Goldberg and Mahmoud 2016). By examining the four period drawdown
measures, we find that they also are all greater for small caps than large caps. On average,
the one-quarter MDD on small caps is larger by approximately 2.3% and the two-quarter
MDD is larger by 4%. ADD and CDD exhibit similar patterns. CED is also substantially
higher for small caps than for large caps (by roughly 8% over one quarter and 11% over
one year). This evidence suggests that, despite higher expected returns for small caps,
investors may be reluctant to invest in small caps because they are more exposed to extreme
downside risk, particularly over the long term, as suggested by Ang and Chen (2002) and
Huang et al. (2012).

The table also reports relatively high first-order autocorrelation coefficients in ADD,
CDD, and MDD measures in the full sample. The four-quarter MDD has AR(1) parameters
equal to 48% for small caps and 45% for large caps. In the out-of-sample period (Panel B:
1990–2020), large drawdowns are much less persistent. The AR(1) parameter is usually low
and close to 0 for small caps at all horizons, although it remains slightly higher for large
caps. For the four-quarter MDD, the AR(1) parameters are equal to 11% for small caps and
38% for large caps.

Figure 1 presents the temporal evolution of the large drawdown measures. As ex-
pected, it reveals that, over the last century, four periods have been accompanied by large
drawdowns: the Great Depression (1929–1933), the oil crisis (1973–1979), the subprime
crisis (2008–2012), and the COVID-19 downturn (2020). The figure also displays the 10%
CED for each horizon over the full sample (horizontal lines on the right-hand side plots).
With the four-quarter CED as a threshold, we identify only two exceptional drawdowns
(the Great Depression and the subprime crisis episodes), whereas with the two-quarter
CED we would also include the COVID-19 downturn as an exceptional event.

3.2. Full-Sample Model Estimation

In this section, we evaluate the ability of MS-GARCH models to predict large draw-
downs over the full sample (1926–2020). This unique estimation helps interpret the param-
eter estimates and formally test the number of regimes and the choice of the innovation
distribution. Tables 2 and 3 report parameter estimates for the models with one, two, and
three regimes, with normal and Student’s t innovations. Table 4 reports likelihood ratio (LR)
test statistics, which we use to identify the model that best reproduces the data properties.
We first consider the one-regime model, i.e., the standard multivariate GARCH model with
constant conditional correlation. Parameter estimates of expected returns, volatility dynam-
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ics, and their correlation are fairly standard and similar for both innovation distributions.
The degree of freedom of the Student’s t distribution is equal to 5.68, which suggests that
innovations have relatively heavy tails. The LR test rejects the null hypothesis that the
distribution is normal.

The properties of the models with two regimes are very different depending on the
distribution assumed. With normal innovations, the second regime has large negative
expected returns for both assets. Two distinct regimes are clearly identified: the first regime
pertains to normal conditions and the second regime corresponds to the bear state, possibly
associated with market downturns. Our estimates are consistent with the high degree of
asymmetry of small caps highlighted by Perez-Quiros and Timmermann (2000): In the
bear market, expected returns are much lower for small caps than for large caps, probably
reflecting tighter credit market conditions. The probability of remaining in the bear state is
relatively low (p22 = 68.3%), with a stationary probability equal to 22%.13

Table 1. Summary statistics on daily returns and period drawdowns for small caps and large caps.

Panel A: 1926–2020 Panel B: 1990–2020
Small Caps Large Caps Small Caps Large Caps

Daily returns Stat. Stat. Stat. Stat.

Annualized Mean 10.63 8.99 10.38 9.88
Annualized Std dev. 19.50 17.15 20.36 18.06
Skewness −0.39 −0.48 −0.81 −0.40
Kurtosis 23.61 21.83 13.40 14.03
Maximum 20.42 14.15 8.02 11.16
Minimum −16.75 −20.94 −14.26 −12.57

VaR (0.1%) 8.53 6.86 9.01 7.56
VaR (1%) 3.70 3.11 3.72 3.26
VaR (5%) 1.82 1.56 1.97 1.74

ES (0.1%) 10.76 9.16 11.24 9.32
ES (1%) 5.55 4.64 5.50 4.76
ES (5%) 3.09 2.62 3.17 2.77

Overall MDD 92.02 86.54 67.13 58.29

Period drawdowns Stat. AR(1) Stat. AR(1) Stat. AR(1) Stat. AR(1)

ADD - 1Q 3.84 0.15 2.78 0.20 3.65 0.12 2.47 0.25
ADD - 2Q 5.62 0.29 3.85 0.42 5.19 0.00 3.30 0.35
ADD - 4Q 7.52 0.46 4.82 0.42 6.16 −0.10 3.83 0.35

20% CDD - 1Q 7.75 0.25 5.76 0.28 7.28 0.12 5.27 0.23
20% CDD - 2Q 11.80 0.41 8.20 0.46 10.81 0.05 7.14 0.30
20% CDD - 4Q 16.65 0.45 10.96 0.43 13.99 0.01 8.87 0.33

MDD - 1Q 9.87 0.33 7.55 0.34 9.34 0.17 7.10 0.26
MDD - 2Q 15.05 0.44 10.93 0.47 13.99 0.06 9.93 0.28
MDD - 4Q 21.52 0.48 15.23 0.45 18.67 0.11 13.08 0.38

10% CED - 1Q 31.22 22.84 25.97 20.60
10% CED - 2Q 41.97 31.35 35.40 25.41
10% CED - 4Q 51.37 40.25 38.36 31.19

Note: This table reports statistics (in percentage) on daily returns for small caps and large caps. Panel A covers the
period from 1926 to 2020. Panel B covers the period from 1990 to 2020. VaR(α) and ES(α) denote the Value-at-Risk
and Expected Shortfall computed for probability α. “XDD - nQ” means that the XDD measure is computed over n
quarters. “20% CDD” means that the CDD measure is computed for probability θ = 20%. “10% CED” means that
the CED measure is computed for probability θ̃ = 10%.
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Figure 1. Evolution of ADD, CDD, and MDD over non-overlapping subsamples. The figure displays
the evolution in percentage of ADD, 20% CDD, and MDD over various non-overlapping subsamples
(from one to four quarters) between 1926 and 2020. The straight line on right plots corresponds to
10% CED. The black lines correspond to the small caps, the red dashed lines to the large caps. CED
is computed with 376, 188, and 94 observations for the one-quarter, two-quarter, and four-quarter
horizons, respectively.

In contrast, with Student’s t innovations, the expected returns in Regime 2 are close to
0. The probability of remaining in the low regime is the same as the probability of remaining
in the high regime (p11 = 96.3% and p22 = 96.7%), so that the stationary probability of
being in Regime 2 is as high as π∞,2 = 53%. As a consequence, Regime 2 cannot be
interpreted as a pure bear state. These results suggest that, in this model, the occurrence
of large drawdowns is not captured by large negative expected returns but instead by the
heavy-tailed nature of the Student’s t innovations.14

For the three-regime models, expected returns, volatility dynamics, and the correlation
are similar for both innovation distributions. The results align with our expectations:
Regime 1 captures the long periods during which the stocks are in a bull market (with
high expected returns). Regime 2 corresponds to the slow growth or recovery regime, with
intermediate expected returns. Regime 3 accounts for bear market conditions. As in the
two-regime case, small caps have much higher expected returns than large caps in Regime
1 and much lower expected returns than large caps in Regime 3. Regime 3 also exhibits a
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higher correlation than Regime 1, reflecting the asymmetry in dependence found by Ang
and Chen (2002).

Table 2. Parameter estimates for one-regime and two-regime models.

One regime—Normal distribution One regime—Student’s t distribution
Small caps Large caps Small caps Large caps

param. std err. param. std err. param. std err. param. std err.

Expected returns
μ (×100) 0.0679 (0.006) 0.0588 (0.005) 0.0865 (0.004) 0.0687 (0.004)

Volatility dynamics
ω (×100) 1.4840 (0.201) 0.9667 (0.122) 0.9902 (0.093) 0.7532 (0.071)
α 0.1298 (0.008) 0.0984 (0.006) 0.1220 (0.007) 0.0970 (0.004)
β 0.8654 (0.008) 0.8962 (0.006) 0.8764 (0.006) 0.9010 (0.004)

Correlation
ρ 0.8291 (0.003) 0.8212 (0.002)

Degree of freedom
ν – 5.6810 (0.154)

Log-lik. −48,291.3 −46,183.1
BIC 96.6736 92.4674

Two regimes—Normal distribution Two regimes—Student’s t distribution
Small caps Large caps Small caps Large caps

param. std err. param. std err. param. std err. param. std err.

Expected returns
μ(1) (×100) 0.1265 (0.007) 0.0965 (0.006) 0.2093 (0.035) 0.1155 (0.012)
μ(2) (×100) −0.2706 (0.043) −0.1771 (0.030) −0.0276 (0.016) 0.0207 (0.010)

Volatility dynamics
ω(1) (×100) 0.2974 (0.052) 0.3132 (0.049) 1.2510 (0.293) 0.8278 (0.140)
α(1) 0.0418 (0.005) 0.0417 (0.004) 0.2055 (0.021) 0.1309 (0.017)
β(1) 0.9209 (0.008) 0.9289 (0.006) 0.7968 (0.020) 0.8663 (0.019)

ω(2) (×100) 0.1550 (0.380) 0.5501 (0.279) 0.1576 (0.169) 0.2482 (0.195)
α(2) 0.1868 (0.024) 0.1463 (0.019) 0.0411 (0.023) 0.0422 (0.021)
β(2) 0.9173 (0.011) 0.9291 (0.008) 0.9563 (0.023) 0.9565 (0.022)

Correlation
ρ(1) 0.8179 (0.004) 0.7450 (0.014)
ρ(2) 0.8334 (0.006) 0.8884 (0.010)

Transition probabilities
p11 0.9081 (0.009) 0.9626 (0.024)
p22 0.6828 (0.027) 0.9669 (0.019)

Degree of freedom
ν – 6.2260 (0.252)

Log-lik. −45,974.7 −45,420.1
BIC 92.1478 91.0507

Note: See Table 3 for details.

The degree of freedom of the Student’s t distribution is equal to 7.8, suggesting
relatively thin tails compared to the two-regime model. Similar to the two-regime models,
the Student’s t innovation partly captures the occurrence of large negative returns, as
expected returns in Regime 3 are higher with Student’s t innovations. As a result, the
stationary probability of being in Regime 3 is higher than in the model with normal
innovations (30.4% versus 19.5%).
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Table 3. Parameter estimates for three-regime model.

Three Regimes—Normal Distribution Three Regimes—Student’s t Distribution
Small Caps Large Caps Small Caps Large Caps

param. std err. param. std err. param. std err. param. std err.

Expected returns
μ(1) (×100) 0.3304 (0.022) 0.1174 (0.011) 0.3194 (0.017) 0.1251 (0.011)
μ(2) (×100) 0.0754 (0.008) 0.0966 (0.007) 0.1193 (0.008) 0.1133 (0.008)
μ(3) (×100) −0.3451 (0.024) −0.1897 (0.024) −0.2316 (0.017) −0.1049 (0.020)

Volatility dynamics
ω(1) (×100) 0.0001 (0.191) 0.1797 (0.108) 0.5529 (0.205) 0.4921 (0.141)
α(1) 0.0403 (0.019) 0.0325 (0.009) 0.1303 (0.022) 0.0927 (0.013)
β(1) 0.9480 (0.022) 0.9534 (0.012) 0.8585 (0.022) 0.8945 (0.013)

ω(2) (×100) 0.2705 (0.046) 0.3461 (0.060) 0.0201 (0.200) 0.0858 (0.040)
α(2) 0.0401 (0.005) 0.0439 (0.004) 0.0122 (0.003) 0.0177 (0.003)
β(2) 0.9180 (0.008) 0.9233 (0.006) 0.9739 (0.006) 0.9691 (0.006)

ω(3) (×100) 0.0001 (0.640) 0.8492 (0.405) 0.1357 (0.310) 0.6340 (0.358)
α(3) 0.2262 (0.033) 0.1655 (0.022) 0.1328 (0.031) 0.1050 (0.022)
β(3) 0.9005 (0.018) 0.9246 (0.011) 0.9145 (0.022) 0.9306 (0.017)

Correlation
ρ(1) 0.7814 (0.025) 0.7300 (0.016)
ρ(2) 0.8487 (0.006) 0.8465 (0.009)
ρ(3) 0.8462 (0.008) 0.8764 (0.007)

Transition matrix
P1,: 0.9206 0.0169 0.0453 0.9402 0.0170 0.0266

(0.015) (0.003) (0.018) (0.009) (0.004) (0.007)
P2,: 0.0350 0.8954 0.2663 0.0165 0.9116 0.1139

(0.016) (0.008) (0.026) (0.007) (0.011) (0.013)
P3,: 0.0445 0.0877 0.6884 0.0433 0.0715 0.8595

(0.008) (0.006) (0.021) (0.008) (0.009) (0.014)

Degree of freedom
ν – 7.7750 (0.399)

Log-lik. −45,282.0 −44,852.6
BIC 90.9244 90.0753

Note: Tables 2 and 3 report parameter estimates for the models with daily returns on small caps and large caps. Table 2
reports estimates of the one-regime and two-regime models. Table 3 reports estimates of the three-regime models.
The estimation is based on the period spanning from 1926 to 2020. BIC denotes the Bayesian Information Criterion.

A formal test of the number of regimes can be performed using the Likelihood-Ratio
(LR) test but the usual asymptotic distribution of the test statistic does not hold. The
reason is that, in the test of the null hypothesis that n − 1 regimes are sufficient against
the alternative of n regimes, parameters associated with the n-th regime are not identified
under the null hypothesis and the regularity conditions justifying the χ2 approximation to
the LR test do not hold. Hansen (1992, 1996) proposed an LR test procedure that addresses
this problem (see also Garcia 1998). Specifically, we adopt the strategy proposed by Ang
and Bekaert (2002), which is based on Monte-Carlo simulations to obtain the finite-sample
distribution of the LR test statistic.15 We implement this approach for all tests of the number
of regimes from 1 to 3 (see Table 4). For 1 and 2 regimes, we reject the null hypothesis, with
p-values all below 0.5%, whatever the distribution of the innovation process. These tests
indicate that the one-regime model should be rejected against the two-regime model and
the two-regime model should be rejected against the three-regime model.

We also estimate four-regime models (with normal and Student’s t innovations) with
our data and test whether 3 regimes are sufficient to match the data. Compared to three
regimes, the gain in likelihood with four regimes is relatively large, but using the simulation-
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based LR distribution, we do not reject the null hypothesis of three regimes against four
regimes, with a p-value equal to 20.2% with the normal distribution and to 19% with the
Student’s t distribution.16

Table 4. Likelihood ratio tests.

Null Hypothesis Alternative Hypothesis dof LR Stat. p-Value

H0(N1): 1 regime—normal Ha(N1): 1 regime—Student’s t 1 4216.3 <0.5%
H0(NR1): 1 regime—normal Ha(NR1): 2 regimes—normal 11 4637.0 <0.5%
H0(TR1): 1 regime—Student’s t Ha(TR1): 2 regimes—Student’s t 11 1528.0 <0.5%

H0(N2): 2 regimes—normal Ha(N2): 2 regimes—Student’s t 1 1107.3 <0.5%
H0(NR2): 2 regimes—normal Ha(NR2): 3 regimes—normal 13 1385.3 <0.5%
H0(NT2): 2 regimes—Student’s t Ha(NT2): 3 regimes—Student’s t 13 1137.2 <0.5%

H0(N3): 3 regimes—normal Ha(N3): 3 regimes—Student’s t 1 859.2 <0.5%
H0(NR3): 3 regimes—normal Ha(NR3): 4 regimes—normal 15 924.0 20.2%
H0(NT3): 3 regimes—Student’s t Ha(NT3): 4 regimes—Student’s t 15 772.0 19.0%

Note: The table reports the likelihood ratio test statistics for various tests of interest. The first two columns indicate
the null and alternative hypotheses. The third column reports the degree of freedom (dof) of the test (number of
restrictions under the null hypothesis). The fourth column reports the LR test statistics. As explained in the main
text, the p-values in the fifth column are based on the asymptotic χ2 distribution for the test of the null hypothesis
of the normal distribution (N1, N2, and N3) and on simulations of the finite-sample distribution for the test of the
null of n − 1 regimes against n regimes.

In Figure 2, we represent the filtered probability of being in the low regime for the
two-regime and three-regime models. First, we note that the two-regime/Student’s t
model produces a high filtered probability (on average above 50%), suggesting that this
regime actually does not capture bear markets. Second, the filtered probabilities in the
two-regime and three-regime models with normal innovations exhibit similar temporal
evolution. Peaks occur at the same times with similar probabilities. However, these peaks
do not always coincide with actual market downturns. The first peak occurs in June
1932, after the Wall Street crash of October 1929. The second peak corresponds to the oil
crash in mid-1973. The third peak in May 1984 could not be associated with any market
downturn. The fourth peak, which occurred in October 1999, corresponds to the dotcom
crash. The last peak in September 2014 again does not correspond to any large market
decline. Consequently, models with normally distributed innovations do not accurately
capture observed market downturns.

In the three-regime model with Student’s t innovations, most peaks in the filtered
probability actually correspond to market events associated with a long-lasting bear market.
We can identify three main episodes: The first one corresponds to the bear market at the
beginning of the period (with peaks in the second half of 1929 and at the end of 1937,
associated with the Wall Street crash and the economic recession, respectively). The second
episode corresponds to the inflationary bear market of the seventies (with peaks at the end
of 1969 and mid-1973).17 The third episode is associated with the market crashes at the turn
of the new century (Russian crisis in 1998, dotcom crash in 2001 and financial crisis in 2008).
In the more recent period, the filtered probability also increased in mid-2015 (associated
with the stock market sell-off following the ending of quantitative easing by the Federal
Reserve) and at the beginning of 2020 (associated with the COVID-19 market crash).18

The analysis of filtered probabilities clearly suggests that the three-regime/Student’s
t model provides a better description of the market downturns observed in the sample
period than the other competing models.
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Figure 2. Filtered Probability of Being in the Bear State. The figure displays the filtered probability
φd+1 of being in the low expected return regime (bear state), for the two-regime and three-regime
models. The horizontal blue line corresponds to the stationary probability of being in the bear state
πb,∞ = Pr[Sd+1 = kb], where kb denotes the bear state.

Another related interesting feature of MS models is that they can generate asymmetry
in the distribution of returns even if the volatility dynamics and the innovation distribution
are symmetric. The reason for this property is the possible shift from one regime to another,
which generates relatively large (positive or negative) events. To assess whether the various
models are able to generate the asymmetry that we observe in the data (see Table 1), we
simulate long trajectories of the small caps and large caps daily returns and compute the
skewness of the simulated series. As reported in Table 5, the one-regime models do not
generate any asymmetry because this property is absent from the model. Two-regime
models are able to produce some asymmetry but it is clearly insufficient to match the data.
For instance, in the normal distribution case, the skewness measures of the small caps and
large caps returns are equal to −0.19 and −0.16, respectively. This is well above the sample
skewness that we obtained over the full sample (−0.39 for small caps and −0.48 for large
caps, respectively). In contrast, three-regime models produce skewness measures that are
in the ball park of the sample measures. In the normal model, the skewness estimates are
equal to −0.8 and −0.5 for small caps and large caps, respectively. In the Student’s t model,
the values are equal to −0.5 and −0.3. Again, this analysis suggests that three regimes are
necessary to match the extreme behavior of actual returns.

The table also reports predictions of the large drawdown measures for the three hori-
zons. Again, one-regime models and the two-regime/Student’s t model fail at capturing
the magnitude of large drawdown measures obtained with the data, by substantially under-
estimating drawdowns. The two-regime/normal model is able to capture the magnitude of
drawdowns on average but fail at generating the asymmetry observed between small caps
and large caps. The drawdowns are usually similar for both size portfolios. In contrast,
three-regime models are able to generate this asymmetry, although it is often not as large
as with the observed data.
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Table 5. Predictions of Moments and Drawdown Measures.

Sample Data 1-Regime 1-Regime 2-Regime 2-Regime 3-Regime 3-Regime
(1926–2020) Normal Student t Normal Student t Normal Student t

Small Large Small Large Small Large Small Large Small Large Small Large Small Large

Skewnness −0.39 −0.48 0.01 0.00 0.00 0.00 −0.19 −0.17 0.17 0.01 −0.84 −0.47 −0.50 −0.26
Kurtosis 23.92 21.98 16.65 10.73 42.01 36.66 13.43 13.32 72.30 28.86 14.70 14.07 14.04 13.88

ADD
1 quarter 3.84 2.78 2.55 2.32 2.16 2.13 3.76 3.43 2.40 2.21 3.66 3.29 3.42 2.91
2 quarters 5.62 3.85 3.42 3.11 2.68 2.75 5.62 5.36 3.14 2.91 5.34 4.92 5.33 4.74
4 quarters 7.52 4.82 4.53 4.08 3.22 3.46 7.88 7.68 3.86 3.66 7.31 6.85 7.69 7.18

20% CDD
1 quarter 7.75 5.76 5.41 4.95 4.72 4.62 7.93 7.40 5.20 4.79 7.74 7.11 7.58 6.47
2 quarters 11.80 8.20 7.35 6.70 6.02 6.06 11.65 11.25 6.95 6.39 11.25 10.41 11.78 10.57
4 quarters 16.65 10.96 10.05 9.01 7.71 7.94 16.14 15.80 8.84 8.27 15.41 14.40 16.83 15.68

MDD
1 quarter 9.87 7.55 7.05 6.44 6.22 6.05 10.20 9.62 6.80 6.25 9.94 9.25 10.04 8.67
2 quarters 15.05 10.93 9.84 8.92 8.27 8.18 14.86 14.41 9.25 8.51 14.38 13.46 15.49 14.13
4 quarters 21.52 15.23 13.96 12.41 11.26 11.23 20.54 20.15 12.17 11.43 19.78 18.63 21.98 20.68

10% CED
1 quarter 31.22 22.84 12.02 10.63 11.25 10.37 20.59 19.29 12.14 10.64 20.74 19.10 20.85 17.48
2 quarters 41.97 31.35 17.22 15.06 15.87 14.74 27.90 26.86 16.81 14.83 27.82 25.75 29.74 26.97
4 quarters 51.37 40.25 20.59 17.89 17.73 17.16 31.19 30.59 18.40 16.89 30.64 28.55 33.57 31.51

Note: This table reports predictions of some statistics on interest based on simulations of the various models. The
statistics the skewness, the kurtosis, the ADD, the 20% CDD, the MDD, and the 10% CED. For large drawdown
measures, we consider three investment horizons: one quarter, two quarters, and four quarters. The simulations
are based on the parameter estimates obtained over the full sample (1926–2020). Statistics are computed using
1000 draws.

3.3. Rolling-Window Model Estimation and Adequacy Tests

To implement the out-of-sample allocation strategy, we use a rolling window to
estimate the parameters of the MS-GARCH models over subsample periods. For each
model, the first set of parameters is estimated over the sample of daily returns from
January 1927 to December 1989, while the last window covers the sample from January
1958 to December 2020. These parameter estimates will be used to simulate paths of daily
log-returns of length H and predict next-period drawdown measures.

The temporal evolution of parameter estimates for the competing models is displayed
in Appendix A. Comparison with the full sample estimates in Tables 2 and 3 reveals a
remarkable match between the two sets of estimates on average. The figures demonstrate
that parameter estimates are usually rather stable over time, although a few parameters
exhibit trends. In particular, the correlation between small and large caps tends to decrease
in Regimes 1 and 3 in the three-regime model. The degree of freedom of the Student’s t
distribution tends to increase in the two-regime and three-regime models.

We assess the adequacy of out-of-sample estimation of our models with respect to
returns for small and large caps by backtesting predicted ˆCDDθ,t and ˆMDDt obtained
through simulations.19 To perform these tests, we adopt the approach proposed by Acerbi
and Szekely (2014) for testing expected shortfall estimates. We adjust their testing frame-
work for the unconditional coverage of the CDD measure.

The methodology and the main results are reported in Appendix B. In a nutshell, our
adequacy tests reveal that one- and two-regime models inaccurately predict drawdown mea-
sures for both small and large caps. Specifically, the one-regime and two-regime/Student’s
t models underestimate drawdown measures, while the two-regime/normal and three-
regime/normal models overestimate realized CDD and MDD for large caps. The one-
regime and two-regime/Student’s t models systematically underestimate drawdown mea-
sures for both small and large caps. The only model that perform relatively well for both
small and large caps is the three-regime/Student’s t model, with the expected number
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of exceedances and average drawdown above the threshold being close to the numbers
observed in the data.

3.4. Out-of-Sample Analysis

We now consider investors who allocate their wealth in real time period by period,
with an investment horizon from one quarter to one year between 1990 and 2020. The out-
of-sample strategy is implemented as follows. We use the rolling-window estimation of the
models to predict next-period drawdown measures. With these predictions, we determine
the optimal portfolio weight that minimizes the expected drawdown measures. Next, we
roll the window by one period (H days) and proceed in the same way until we reach the
last subsample (ending in September 2020). This out-of-sample analysis corresponds to
124 nonoverlapping quarterly allocations and 31 nonoverlapping annual allocations.

Figure 3 displays the evolution of the optimal small-cap weights obtained by mini-
mizing large drawdown measures based on the various models for a two-quarter horizon.
As illustrated, the evolution of optimal weights exhibits notable differences across the
approaches used for prediction. For the one-regime models and the two-regime/Student’s
t model, the optimal small-cap weights are all positive, regardless of the targeted large
drawdown measure. This finding implies that a diversified portfolio, with weights close
to 50%, could provide effective diversification against large drawdowns. This result indi-
cates that these models do not effectively generate the large drawdowns observed in the
small-cap portfolio. Conversely, the two-regime/normal and three-regime/normal models
display similar patterns, with optimal small-cap weights close to 0. This suggests that the
innovation process plays a critical role in generating sufficiently large drawdowns for small
caps, potentially resulting in negative weights.

The three-regime model/Student’s t model displays optimal weights that are usually
negative. This finding can be explained by the ability of the three-regime/Student’s t model
to generate large and negative expected returns in a relatively long-lasting Regime 3, which
allows large drawdowns in small caps to develop and therefore to identify that holding
small caps implies higher tail risk. As a consequence, this model produces large negative
weights for most allocation criteria and investment horizons.20

In general, the optimal weights are ordered in the same way for the various investment
criteria: the weight of small caps is higher for CDD, then for MDD, and finally for CED.
We compare these weights with those resulting from the minimization of the portfolio
variance. Minimum variance (MV) portfolio weights are obtained using the same sim-
ulation approach. Results indicate that, for all investment horizons, the optimal weight
of the MV portfolio is always negative, in the range [−40%;−20%] for the two-regime
and three-regime models. Figure 3 also demonstrates that the weight of small caps is
systematically lower for the MV criterion than for criteria based on large drawdowns.21

These patterns suggest that investors targeting large drawdowns tend to be even more
cautious in their allocation than MV investors, as they are reluctant to take substantial short
positions in small caps.

Table 6 reports results for the out-of-sample allocation when the investor minimizes
the expected value of large drawdowns. We compare the performance of the allocation
based on the various parametric models. The standard (one-regime) multivariate GARCH
models (with normal and Student’s t distributions) and the two-regime/Student’s t models
fail at capturing that the risk of large drawdowns is higher for small caps. Therefore, these
models generate a large weight on average for small caps, for all investment horizons. As
small caps experienced larger drawdowns than large caps in our sample, strategies based
on these models tend to underperform and suffer from much higher ex post drawdowns
on average. For instance, for the two-quarter CDD, strategies based on these models
have average small caps weights equal to 0.46, 0.63, and 0.39, respectively. Their ex post
two-quarter CDD values are equal to 8.47%, 9.16%, and 8.30% on average. In contrast,
the two-regime/normal model and the three-regime models (with normal and Student’s t
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distributions) tend to have negative small cap weights on average, with substantially lower
ex post two-quarter CDD values, equal to 7.23%, 7.26%, and 7.15%, respectively.

Figure 3. Out-of-Sample Optimal Weights—Two-quarter Horizon (1990–2020). The figure displays
the temporal evolution of the optimal weight of small caps for the 20% CDD, MDD, 10% CED,
and MV portfolios over the two-quarter horizon, when predictions are based on the one-regime,
two-regime, and three-regime models.

It is worth emphasizing that, in all cases, the strategies based on the standard multi-
variate GARCH models result in much larger drawdown measures than strategies based
on three-regime models. The gap is economically substantial for the three measures
CDD, MDD, and CED. The ex post four-quarter CDD of the one-regime/normal model
is 2.1 points higher that the same measure of the three-regime/Student’s t model. The
difference is equal to 2.3 points for the four-quarter MDD and 1.7 points for the four-quarter
CED. The gaps are less severe for the two-regime/normal model but they remain large
for long horizons. They are equal to 2.4 points for the four-quarter CDD, 0.6 point for the
four-quarter MDD, 0.4 point for the four-quarter CED.
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Overall, the three-regime/normal model performs well for the one-quarter horizon, while
the three-regime/Student’s t model performs the best for the two- and four-quarter horizons.
In all cases, the best models generate an optimal weight that is negative or close to 0.

Table 6. Out-of-Sample Allocation: Minimization of Large Drawdowns.

Horizon Statistics
1-Regime 1-Regime 2-Regime 2-Regime 3-Regime 3-Regime

Normal Student t Normal Student t Normal Student t

Panel A: Minimization of CDD

1 quarter Weight 0.44 0.54 −0.11 0.41 −0.17 0.07

20% CDD 5.75 5.90 5.24 5.66 5.23 5.27

2 quarters Weight 0.46 0.63 −0.06 0.39 0.02 −0.18

20% CDD 8.47 9.16 7.23 8.30 7.26 7.15

4 quarters Weight 0.51 0.67 0.42 0.47 0.87 −0.07

20% CDD 11.36 12.66 11.62 11.34 14.28 9.22

Panel B: Minimization of MDD

1 quarter Weight 0.43 0.53 −0.12 0.39 −0.17 0.05

MDD 7.56 7.71 7.04 7.40 7.10 7.02

2 quarters Weight 0.44 0.59 −0.08 0.39 0.00 −0.21

MDD 11.31 11.95 10.10 11.14 10.06 9.92

4 quarters Weight 0.48 0.64 0.09 0.49 0.18 −0.10

MDD 16.08 17.15 14.42 16.16 14.80 13.82

Panel C: Minimization of CED

1 quarter Weight 0.37 0.44 −0.16 0.26 −0.21 −0.14

10% CED 22.25 22.53 20.69 21.43 20.30 20.53

2 quarters Weight 0.37 0.47 −0.06 0.30 0.03 −0.25

10% CED 29.24 30.03 25.26 28.80 25.56 24.84

4 quarters Weight 0.41 0.52 0.02 0.43 0.00 −0.06

10% CED 35.22 36.40 33.96 36.51 33.96 33.56

Note: This table reports the optimal weight of small caps (α∗) and the value of the objective function at the
optimum, when the investor minimizes 20% CDD, the MDD, and 10% CED (Panels A to C, respectively). We
consider three investment horizons: one quarter, two quarters, and four quarters. These results are based on the
simulation of the model estimated over subsamples between 1990 and 2020. Numbers in bold correspond to the
smallest values of the large drawdown measures.

We also consider an investor maximizing the expected return—large drawdown
criterion (Equation (6)), which also accounts for the ability of the models to predict expected
returns. Results are reported in Table 7 with a degree of aversion for large drawdowns
equal to λ = 5. Optimal weights for small caps are usually higher, reflecting the higher
expected return of small caps. For the one-regime models and the two-regime/Student’s
t model, small caps weights are even often larger than one, indicating the large caps are
shorted in these allocations. Turning to the two-regime/normal model and three-regime
models, we find that weights are also higher than in the case of the minimization of large
drawdowns but to a lesser extent. For the MDD and CED targets, small caps weights are
negative for a short horizon but close to 50% for two-quarter and four-quarter horizons.
These results indicate that investors also targeting the expected return would invest more
in small caps because of their higher return on average.
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Table 7. Out-of-Sample Allocation: Maximization of Expected Return—Large Drawdown Criterion.

Horizon Statistics
1-Regime 1-Regime 2-Regime 2-Regime 3-Regime 3-Regime

Normal Student t Normal Student t Normal Student t

Panel A: Expected Return—CDD criterion

1 quarter Weight 0.47 0.59 0.12 1.10 0.17 0.62

Criterion −0.020 −0.059 0.015 −0.037 0.029 −0.004

Opp. cost (%) 4.87 8.76 1.43 6.62 0.00 3.32

2 quarters Weight 0.48 0.64 0.56 1.40 0.62 0.29

Criterion −0.070 −0.161 −0.026 −0.119 −0.031 −0.004

Opp. cost (%) 6.63 15.70 2.23 11.53 2.73 0.00

4 quarters Weight 0.54 0.73 0.48 1.83 0.50 0.65

Criterion −0.175 −0.323 −0.055 −0.293 −0.058 −0.075

Opp. cost (%) 11.66 26.43 −0.30 23.50 0.00 1.68

Panel B: Expected Return—MDD criterion

1 quarter Weight 0.62 0.85 −0.02 0.85 −0.03 0.31

Criterion −0.091 −0.111 −0.076 −0.113 −0.067 −0.074

Opp. cost (%) 2.36 4.40 0.94 4.57 0.00 0.67

2 quarters Weight 0.68 1.01 0.43 1.01 0.60 −0.01

Criterion −0.203 −0.258 −0.181 −0.254 −0.203 −0.147

Opp. cost (%) 5.57 11.07 3.42 10.71 5.64 0.00

4 quarters Weight 0.78 1.28 0.49 1.42 0.51 0.50

Criterion −0.319 −0.442 −0.281 −0.478 −0.284 −0.277

Opp. cost (%) 4.23 16.49 0.45 20.14 0.70 0.00

Panel C: Expected Return—CED criterion

1 quarter Weight 0.89 1.33 −0.11 0.50 −0.15 −0.03

Criterion −0.463 −0.481 −0.424 −0.460 −0.406 −0.409

Opp. cost (%) 5.66 7.48 1.78 5.41 0.00 0.28

2 quarters Weight 1.05 1.73 0.45 0.57 0.69 −0.16

Criterion −0.648 −0.684 −0.616 −0.665 −0.681 −0.526

Opp. cost (%) 12.21 15.87 9.03 13.95 15.49 0.00

4 quarters Weight 1.28 1.97 0.50 0.78 0.51 0.48

Criterion −0.788 −0.850 −0.762 −0.889 −0.762 −0.789

Opp. cost (%) 2.59 8.86 0.03 12.73 0.00 2.78
Note: This table reports the optimal weight of small caps (α∗), the value of the objective function at the optimum,
and the opportunity cost (ξ(sub)) relative to the optimal model, when the investor maximizes the expected return—
large drawdown criterion, with 20% CDD, the MDD, and 10% CED (Panels A to C, respectively). The degree
of aversion for large drawdowns is equal to λ = 5. We consider three investment horizons: one quarter, two
quarters, and four quarters. These results are based on the simulation of the model estimated over subsamples
between 1990 and 2020.

Regarding the performance of the strategies, we obtain essentially the same conclu-
sions as before. One-regime models are always dominated by models with at least two
regimes. In addition, three-regime models usually outperform other models, in particular
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for extreme drawdowns (MDD and CED). To illustrate the gain of using a three-regime
model to predict large drawdowns, we compute the opportunity cost of using a one-regime
or two-regime model, using the relation:

Et[Rp,t+1(α
(sub)
t )− ξ(sub)]− λ

2
Et[XDDt+1(α

(sub)
t )] = Et[Rp,t+1(α

(opt)
t )]− λ

2
Et[XDDt+1(α

(opt)
t )],

where α
(sub)
t and α

(opt)
t denote the vector of weights obtained using the suboptimal model

and the optimal model, respectively. The opportunity cost ξ(sub) is defined as the fraction
of the expected return that an investor using the suboptimal strategy is ready to pay to get
access to the optimal strategy.

The estimates of the opportunity cost are also reported in the table. For the one-quarter
investment horizon, the best strategy is the one based on the three-regime/normal model.
In this case, an investor using the two-regime/normal model would be ready to pay 1% if
the objective function is targeting the MDD and 1.8% if the objective function is targeting
the CED. For the two-quarter investment horizon, the best strategy is the one based on the
three-regime/Student’s t model. In this case, an investor using the two-regime/normal
model would be ready to pay 3.4% if the objective function is targeting the MDD and up
to 9% if the objective function is targeting the CED. As these estimates illustrate, the gain
of using a three-regime model is economically substantial for investors targeting large
drawdown measures.

This out-of-sample analysis demonstrates that three regimes are necessary in the
multivariate MS-GARCH model to produce large and negative weights for small caps.
Student’s t innovations also help generate a longer-lasting bear state and therefore to pro-
duce more drawdowns for small caps. Importantly, as the allocation exercise is performed
in a fully out-of-sample fashion, we account for the risk of over-parameterization of the
three-regime models.

4. Conclusions

This paper addresses the modeling and prediction of large drawdowns in financial
markets. Given that the standard GARCH model struggles to capture prolonged market
declines, we explore multivariate MS-GARCH models, which can generate regimes char-
acterized by both positive and negative market trends. Provided that the probability of
remaining in a bear regime is sufficiently high, these models are capable of reproducing
significant drawdown properties. Specifically, our findings show that in three-regime
models, one regime is marked by substantial negative expected returns (representing a
bear market) and the capacity to generate large windfalls.

In the out-of-sample investment analysis, as changes in the distribution of drawdowns
are updated, three-regime models prove to be superior tools for predicting expected
drawdowns by imposing restrictions that align well with the observed data. These models
consistently outperform other parametric models featuring one regime (such as standard
multivariate GARCH models) or two regimes.

To assess the predictive power of MS-GARCH models for large drawdowns, we
intentionally keep our model specification straightforward within a well-established frame-
work, ensuring robust results. Notably, we do not attempt to identify factors influencing the
dynamics of state probabilities, which may be affected by variables related to government
or monetary policies, geopolitical issues, or climate change, among others.22 Exploring
these factors represents an important avenue for future research.
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Appendix A. Evolution of Model Parameters

Panel A: Normal distribution

Panel B: Student’s t distribution

Figure A1. Model Parameters: One-regime Models.
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Panel A: Normal distribution

Panel B: Student’s t distribution

Figure A2. Model Parameters: Two-regime Models.
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Panel A: Normal distribution

Panel B: Student’s t distribution

Figure A3. Model Parameters: Three-regime Models.
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Appendix B. Adequacy Tests

Our predictions of the large drawdown risk measures, generically defined as ˆXDDt,
are obtained by simulations from the models. Therefore, by backtesting ˆXDDt, we assess
whether the model underlying a particular prediction is adequate. To backtest our predicted
risk measures, we rely on the second test by Acerbi and Szekely (2014). Note that Acerbi and
Szekely (2017) propose a more robust approach for backtesting a risk measure that depends
on another statistic, such as ES or CDD, which depend on a threshold. The proposed
ridge backtest accounts for the sensitivity of the statistic to the threshold estimation by
penalizing errors in estimation. However, this test is only relevant for validating a model
from a prudential perspective, that is, testing that the model does not underestimate the
risk measure. Therefore, this procedure is not suitable for testing the CDD. As we want to
assess if a model tends to overestimate or underestimate the CDD, we do not pursue with
this test. The backtest for ˆMDDt does not suffer from the sensitivity to the threshold.

Appendix B.1. Logic of the Adequacy Test

The logic of the test is the following: For a given risk measure, we define a Z statistic
that is equal to zero under the null hypothesis that the model correctly predicts this risk
measure:

EH0 [ZXDD( ˆXDD, DD)] = 0,

where DD is a random variable representing drawdowns. Then, from the sequence of risk
measure predictions and drawdowns realizations, we compute the realized Z statistic over
the out-of-sample period:

zXDD =
1
T

T

∑
t=1

ZXDD( ˆXDDt, DDt),

where DDt is the vector of observed drawdowns defined in Section 2.2.
Finally, we test the adequacy of a given model by comparing the realized Z statistic

obtained from this model to the distribution of the Z statistics under the null hypothesis.
This distribution is obtained by computing Z statistics from simulations of the model over
the out-of-sample period.23

Appendix B.2. Adequacy Test Statistics

For ease of exposition, we assume that the distribution is continuous and strictly
increasing, as in Section 2.1.

For CDD, we build the Z statistic from the fact that CDDθ,t = Et[DDt I(DDt>Thθ,t)
],

where Thθ,t = inf{s | 1
H ∑H

h=1 I(DDt,h>s) ≤ 1 − θ}, with Et[Thθ,t] = (1 − θ)H. The test
statistic is defined as (see Equation (3)):

zCDD =
1
T

T

∑
t=1

H

∑
h=1

DDt,h I(DDt,h>T̂hθ,t)

(1 − θ) H ˆCDDθ,t
− 1,

where ˆCDDθ,t and T̂hθ,t are predictions of CDDθ,t and Thθ,t based on simulations of the
model estimated using data until quarter t− 1, and T corresponds to the number of quarters
in the out-of-sample period.

The hypotheses for this test are as follows:

H0 : CDDθ,t − ˆCDDθ,t = 0 for all t

H1 : |CDDθ,t − ˆCDDθ,t| > 0 for some t.

Under the null hypothesis, we have EH0 [ZCDD( ˆCDD, DD)] = 0. Under the alternative
hypothesis, if the model underestimates the CDD, we have EH1 [ZCDD( ˆCDD, DD)] > 0,
and if the model overestimates the CDD, we have EH1 [ZCDD( ˆCDD, DD)] < 0. The test
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actually jointly evaluates the frequency and the magnitude of the tail events because the
test statistics do not impose that ∑H

h=1 I(DDt>T̂hθ,t)
= (1 − θ)H, i.e., the frequency is correct.

Therefore, the test statistic will be close to 0 if both the predicted threshold is close to the
realized threshold and the predicted CDD is close to the realized CDD.

For MDD, we simply define the Z statistic as:

zMDD =
1
T

T

∑
t=1

MDDt
ˆMDDt

− 1,

where ˆMDDt =
1
Q ∑Q

q=1 MDD(q)
t is the prediction of MDDt based on model’s simulations.

The hypotheses of this test are:

H0 : MDDt − ˆMDDt = 0 for all t

H1 : |MDDt − ˆMDDt| > 0 for some t.

It follows that EH0 [ZMDD( ˆMDD, DD)] = 0 under the null hypothesis that the model correctly
describes the realized MDD. When the model underestimates (overestimates) the risk measure,
the Z statistic takes a positive (negative) value, i.e., EH1 [ZMDD( ˆMDD, DD)] ≷ 0.

Appendix B.3. Adequacy Test Significance

To find the test significance, we generate Z statistics under the null hypothesis by
simulating the model for which we test the adequacy. Then, by comparing the realized Z
statistic to the simulated Z statistic under H0, we evaluate the p-value, i.e., the probability to
obtain the realized Z statistic from the model underlying the null hypothesis. We proceed
as follows:

1. Using the model under H0, we simulate Q samples of log-returns for all quarters of

the backtesting period: {r(q)t }H
h=1, t = 1, · · · , T and q = 1, · · · , Q. The simulations are

generated as in Section 2.4.2.
2. We calculate the vectors of drawdowns for each simulation, DD(q)

t , t = 1, · · · , T.

Then, we compute Z statistic for each simulation, z
(q)
XDD = zXDD( ˆXDD, DD(q)), q =

1, · · · , Q. They represent the distribution of the Z statistic under the null hypothesis.
3. We compute the realized Z statistic on the drawdowns z

(q)
XDD = zXDD( ˆXDD, DD).

4. We estimate the significance by comparing the realized Z statistic to the distribu-
tion of the simulated Z statistics and compute the p-value of the bilateral test as:
p-val = 1 − 1

Q ∑Q
q=1(|z(q)XDD| < |zXDD|).

Appendix B.4. Adequacy Test Results

Results of the adequacy tests are reported in Table A1. The statistics are based on
50,000 simulations of the estimated models. The table indicates that most models fail to
capture the time-series properties of large drawdown statistics. The one-regime models and
the two-regime/Student’s t model systematically underestimate the drawdown measures
for both small and large caps. For CDD, the expected number of exceedances is equal to
1562 (i.e., 20% of the total number of daily observations in the out-of-sample period). The
one-quarter number of exceedances for the two-regimes/Student’s t model is equal to 2666
and 1961 for small caps and large caps, respectively, meaning that the estimated threshold
is too low. As a consequence, the estimated CDD is too small, resulting in high values of the
test statistic ZCDD(DD). For all three models and all three investment horizons, p-values
for the CDD and MDD tests are below 1.5%. The reason for this failure is that these models
do not allow for a negative trend in expected returns, and therefore, they cannot reproduce
long-lasting market declines.

The two-regime/normal model and the three-regime/normal model provide a good
description of the CDD and MDD of small caps, with p-values above 5% for all three
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horizons. However, both models fail at correctly predicting the drawdown measures of
large caps. They systematically overestimate the realized CDD and MDD for large caps.
For large caps, the one-quarter number of exceedances is close to 1000 for both models,
while the expected number is equal to 1562.

The only model that performs relatively well for small caps and large caps is the
three-regime/Student’s t model. For CDD, it produces a number of exceedances and an
average drawdown above the threshold, which is close to the numbers observed in the
data. For the one-quarter horizon, the numbers of exceedances equal 1800 and 1412 for the
small caps and large caps, respectively, while the expected number is 1562. The p-value of
the test statistic is equal to 2.8% for small caps and to 66.7% for large caps, suggesting that
the 20% threshold on drawdowns is slightly too small for small firms. Similarly, this model
performs relatively well for the two-quarter horizon, with a number of exceedances and an
average drawdown above the threshold, which is in line with the data.

Table A1. Adequacy Tests for Out-of-sample Predictions (1990–2020).

1-Regime 1-Regime 2-Regime 2-Regime 3-Regime 3-Regime
Normal Student t Normal Student t Normal Student t

Small Large Small Large Small Large Small Large Small Large Small Large

Panel A: 20% CDD
1 quarter
Nb exc. 2597 1781 2961 1964 1490 1015 2666 1961 1512 1082 1800 1412
Stat. 1.693 0.653 2.310 0.876 0.052 −0.307 1.693 0.829 0.039 −0.282 0.308 0.055
p-val. (0.000) (0.000) (0.000) (0.000) (0.666) (0.007) (0.000) (0.000) (0.762) (0.018) (0.028) (0.667)

2 quarters
Nb exc. 2930 1938 3443 2221 1168 697 2967 2173 1278 784 1442 1124
Stat. 2.165 0.687 3.134 0.987 −0.134 −0.545 2.167 0.891 −0.063 −0.484 0.037 -0.266
p-val. (0.000) (0.000) (0.000) (0.000) (0.210) (0.000) (0.000) (0.000) (0.367) (0.001) (0.396) (0.033)

4 quarters
Nb exc. 3163 1728 3863 2117 1037 510 3243 2037 1244 613 1193 683
Stat. 2.061 0.449 3.285 0.794 −0.328 −0.649 2.237 0.662 −0.186 −0.567 −0.238 −0.545
p-val. (0.000) (0.015) (0.000) (0.001) (0.066) (0.000) (0.000) (0.003) (0.218) (0.002) (0.138) (0.002)

Panel B: MDD
1 quarter
Stat. 0.622 0.266 0.885 0.377 −0.047 −0.202 0.739 0.363 −0.033 −0.192 0.078 −0.009
p-val. (0.000) (0.000) (0.000) (0.000) (0.327) (0.000) (0.000) (0.000) (0.538) (0.000) (0.176) (0.852)

2 quarters
Stat. 0.802 0.284 1.168 0.423 −0.057 −0.285 0.919 0.383 −0.010 −0.237 −0.033 −0.188
p-val. (0.000) (0.000) (0.000) (0.000) (0.305) (0.000) (0.000) (0.000) (0.862) (0.000) (0.595) (0.002)

4 quarters
Stat. 0.873 0.290 1.286 0.435 −0.045 −0.299 1.017 0.363 0.021 −0.232 -0.059 −0.269
p-val. (0.000) (0.000) (0.000) (0.000) (0.503) (0.000) (0.000) (0.000) (0.773) (0.001) (0.404) (0.000)

Note: This table reports the test statistics and the p-value for 20% CDD and MDD. For CDD, the table also reports
the number of exceedances, with an expected number equal to 1562. We consider three investment horizons: one
quarter, two quarters, and four quarters. These results are based on the predictions of the models between 1990
and 2020.

Notes

1 Disasters may include severe macroeconomic and financial crises, pandemics, wars, or extreme weather and climate conditions.
2 We use a large sample to estimate model’s parameters accurately and perform the out-of-sample analysis over a long period of

time. Such a long sample would not be necessary in practice to estimate MS models and to predict subsequent large drawdowns.
3 For simplicity, we assume here a fixed number of days H per period. In the empirical analysis, we will use the actual number of

days per period.
4 A drawdown may span over a short period (as for the COVID-19 crisis, with a 36% drawdown in 24 days) or over a window of

more than a year (as for the subprime crisis, with a 60% drawdown in 355 days).

28



J. Risk Financial Manag. 2024, 17, 552

5 We note that the knowledge of the cumulated log-return at the end of the period is not sufficient to infer the large drawdown
measures, as peaks and troughs are likely to occur on random days within the period.

6 The model is estimated over a long sample of daily returns, (r̃1, · · · , r̃D), where D is the number of days in the full sample.
In contrast, large drawdown measures are computed over relatively short subsamples (e.g., one quarter or one year) with H
days, which we have denoted by rt = (rt,1, · · · , rt,H), t = 1, · · · , T in Section 2. Since we use nonoverlapping subsamples, both
notations define the same sample: (r̃1, · · · , r̃D) = (r1, · · · , rT), where D = H × T.

7 Assuming an autoregressive process would have a very limited effect for a long-term investment objective because the autocorre-
lation of daily returns is low. The first-order autocorrelation of the market return is equal to 0.05 over the 1926–2020 period and
equal to −0.06 over the 1990–2020 period.

8 In this expression, we follow the suggestion of Klaassen (2002) and Haas et al. (2004) and define shocks with respect to a given

state using the conditional mean μ
(k)
i instead of the unconditional mean μi adopted by Gray (1996).

9 In Section 3.2, we use simulations to demonstrate that a three-regime model with a (symmetric) Student’s t innovations can
generate some asymmetry in large drawdowns, as observed in the data.

10 We note that stationarity conditions apply to the complete distribution and not regime by regime. As a consequence, usual
stationarity conditions in a GARCH model might not be satisfied for some regimes. In particular, global stationarity can be

obtained even when α
(k)
i + β

(k)
i ≥ 1 for some asset i and regime k.

11 We have also analyzed the cases of firms in the bottom and top 20% and 10% market capitalization, with limited impact on the
main results. The data are available on the website of Kenneth French at (https://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html, accessed on 2 December 2024). Other long-sample portfolios, such as value versus growth or losers
versus winners portfolios, are also available.

12 Our sample ends in December 2020, slightly after the end of the COVID-19 market crash. Therefore, the impact of this episode on
the financial performance of our investment strategies is reflected in the out-of-sample analysis discussed in Section 3.4.

13 Stationary (or steady-state) probabilities are defined as: π∞ = P π∞. In the two-regime case, this relation boils down to
π∞,2 = Pr[St = 2] = (1 − p11)/(1 − p11 − p22).

14 This conclusion appears very robust and not driven by the choice of starting values. We experimented with several sets of starting
parameter values and obtained the same parameter estimates for both models. A similar phenomenon—where the probability
of remaining in the bear state is lower with normal innovations than with Student’s t innovations—was reported by Haas and
Paolella (2012) and Haas and Liu (2018).

15 The finite-sample distribution of the LR statistic is obtained by simulating many samples of returns, using the estimated
parameters of the (n − 1)-regime model and estimating, for each simulated samples, the (n − 1)-regime model and the n-regime
model, from which we compute the LR test statistics. The finite-sample distribution of the LR test statistic is computed from the
empirical distribution of the LR statistics based on the simulated samples.

16 Guidolin and Timmermann (2007) estimate MS model for U.S. small caps, large caps, and long-term bonds. In a specification
with within-regime constant expected returns, volatilities, and correlations, they find that four regimes are necessary to match the
data. In their model, the intermediate regime is further decomposed into a slow growth regime and a recovery regime.

17 The largest spike in the filtered probability of being in the bear state is associated with the 1973 oil crisis. The drawdown actually
started in January 1973, accelerated in October with the surge in oil price and lasted until December 1974, with a drawdown of
48% over this period. A major feature of this 1973–1974 drawdown is its duration. From peak to through, the downturn lasted for
almost 2 years, while the subprime crisis was associated with a 60% drawdown in slightly more than 1 year.

18 As in the models with normal innovations, one of the peaks in the filtered probability, in mid-1984, could not be associated with
any particular stock market event.

19 Although we developed a similar test for CED, the number of observations was insufficient for robust conclusions.
20 We note that, even with our preferred model, i.e., the three-regime model with Student’s t distribution, the relationship between

the probability of being in the bear regime (Figure 2) and the optimal small-cap weight (Figure 3) is far from perfect. The reason
is that the probability of being in the bear regime predicts the state for the next day, whereas the portfolio is allocated for a long
horizon (from 1 quarter to 1 year) and the regime is likely to change over this period.

21 This result of a lower small-cap weights for the MV criterion does not seem to be driven by a theoretical relation between the
variance and large drawdown measures but more likely by the properties of our data.

22 For instance, Gray (1996) allows state probabilities to depend on lagged interest rates in an MS-GARCH model for short-term
interest rates.

23 Note that Acerbi and Szekely (2014) assume a one-sided test in line with Basel VaR tests, which are designed to detect excesses of
VaR exceptions. In our case, we assume a two-sided test, as we test whether a given model correctly predicts large drawdown
measures.
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Abstract: This paper proposes and implements a methodology to fit a seven-parameter Generalized
Tempered Stable (GTS) distribution to financial data. The nonexistence of the mathematical expression
of the GTS probability density function makes maximum-likelihood estimation (MLE) inadequate
for providing parameter estimations. Based on the function characteristic and the fractional Fourier
transform (FRFT), we provide a comprehensive approach to circumvent the problem and yield
a good parameter estimation of the GTS probability. The methodology was applied to fit two
heavy-tailed data (Bitcoin and Ethereum returns) and two peaked data (S&P 500 and SPY ETF
returns). For each historical data, the estimation results show that six-parameter estimations are
statistically significant except for the local parameter, μ. The goodness of fit was assessed through
Kolmogorov–Smirnov, Anderson–Darling, and Pearson’s chi-squared statistics. While the two-
parameter geometric Brownian motion (GBM) hypothesis is always rejected, the GTS distribution fits
significantly with a very high p-value and outperforms the Kobol, Carr–Geman–Madan–Yor, and
bilateral Gamma distributions.

Keywords: Generalized Tempered Stable (GTS); fractional Fourier transform (FRFT); function
characteristic; Kolmogorov–Smirnov (K-S); maximum-likelihood estimation (MLE)

1. Introduction

Modeling high-frequency asset return with the normal distribution is the underlying
assumption in many financial tools, such as the Black–Scholes–Merton option pricing
model and the risk metric variance–covariance technique for value at risk (VAR). However,
substantial empirical evidence rejects the normal distribution for various asset classes
and financial markets. The symmetric and rapidly decreasing tail properties of the nor-
mal distribution cannot describe the skewed and fat-tailed properties of the asset return
distribution.

The α-stable distribution has been proposed (Nolan 2020; Sato 1999) as an alternative to
the normal distribution for modeling asset return and many types of physical and economic
systems. The theoretical and empirical argument is that the stable distribution generalizes
the Central Limit Theorem regardless of the variance nature (finite or infinite) (Nzokem
2024; Rachev et al. 2011). There are two major drawbacks (Borak et al. 2005; Nolan 2020):
firstly, the lack of closed formulas for densities and distribution functions, except for the
normal distribution (α = 2), Cauchy distribution (α = 1), and Lévy distribution (α = 1

2 )
(Tsallis 1997); secondly, most of the moments of the stable distribution are infinite. An
infinite variance of asset return leads to an infinite price for derivative instruments such
as options.

The Generalized Tempered Stable (GTS) distribution was developed to overcome the
shortcomings of the two distributions, and the tails of the GTS distribution are heavier than
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the normal distribution but thinner than the stable distribution (Grabchak and Samorodnit-
sky 2010; Kim et al. 2009). The general form of the GTS distribution can be defined by the
following Lévy measure (V(dx)) (1):

V(dx) =

(
α+e−λ+x

x1+β+
1x>0 +

α−e−λ−|x|

|x|1+β−
1x<0

)
dx (1)

where 0 ≤ β+ ≤ 1, 0 ≤ β− ≤ 1, α+ ≥ 0, α− ≥ 0, λ+ ≥ 0, and λ− ≥ 0. More details on the
Tempered Stable distribution are provided in (Küchler and Tappe 2013; Rachev et al. 2011).

The rich class of the GTS distribution (1) has a myriad of applications ranging from
financial to mathematical physics and economic systems. However, few studies (Fallahgoul
and Loeper 2021; Massing 2024; Nzokem and Montshiwa 2022) have covered the methods
and techniques to estimate the parameters of the GTS distribution. This study aims to
contribute to the literature by providing a methodology for fitting the seven-parameter GTS
distribution. As illustrations, the study used four historical prices: two heavy-tailed data
(Bitcoin and Ethereum returns) and two peaked data (S&P 500 and SPY ETF returns). The
GTS distribution is fitted to the underlying distribution of each data index and goodness-
of-fit analysis is carried out. The main disadvantage of the GTS distribution is the lack of
the closed forms of the density, cumulative, and derivative functions. We use a computa-
tional algorithm, called the enhanced fast FRFT scheme (Nzokem 2023a), to circumvent
the problem.

The rest of the paper is organized as follows: Section 2 provides some theoretical
framework of the GTS distribution. Section 3 presents the multivariate maximum-likelihood
(ML) method and the analytic version of the two-parameter normal distribution. Section 4
presents the results of the GTS parameter estimations, along with the associated statistical
tests for the heavy-tailed Bitcoin and Ethereum returns. Section 5 fits the GTS distribution
to the traditional indices S&P 500 and SPY ETF returns, while Section 6 presents the results
of the goodness-of-fit test. Section 7 provides the concluding remarks.

2. Generalized Tempered Stable (GTS) Distribution

The Lévy measure of the GTS distribution (V(dx)) is defined in (2) as a product of a
tempering function q(x) and a Lévy measure of the α-stable distribution Vstable(dx):

q(x) = e−λ+x1x>0 + e−λ−|x|1x<0

Vstable(dx) =
(

α+
1

x1+β+
1x>0 + α−

1
|x|1+β−

1x<0

)
dx

V(dx) = q(x)Vstable(dx) =

(
α+

e−λ+x

x1+β+
1x>0 + α−

e−λ−|x|

|x|1+β−
1x<0

)
dx

(2)

where 0 ≤ β+ ≤ 1, 0 ≤ β− ≤ 1, α+ ≥ 0, α− ≥ 0, λ+ ≥ 0 and λ− ≥ 0.
The six parameters that appear have important interpretations. β+ and β− are the

indexes of stability bounded below by 0 and above by 2 (Borak et al. 2005). They capture
the peakedness of the distribution similarly to the β-stable distribution, but the distribution
tails are tempered. If β increases (decreases), then the peakedness decreases (increases). α+
and α− are the scale parameters, also called the process intensity (Boyarchenko and Leven-
dorskii 2002); they determine the arrival rate of jumps for a given size. λ+ and λ− control
the decay rate on the positive and negative tails. Additionally, λ+ and λ− are also skewness
parameters. If λ+ > λ− (λ+ < λ−), then the distribution is skewed to the left (right), and if
λ+ = λ−, then it is symmetric (Fallahgoul et al. 2019; Rachev et al. 2011). α and λ are related
to the degree of peakedness and thickness of the distribution. If α increases (decreases),
the peakedness and the thickness decrease (increase). Similarly, if λ increases (decreases),
then the peakedness increases (decreases) and the thickness decreases (increases) (Bianchi
et al. 2019). For more details on the tempering function and Lévy measure of the tempered
stable distribution, refer to (Küchler and Tappe 2013; Rachev et al. 2011).
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The activity process of the GTS distribution can be studied from the integral (3) of the
Lévy measure (2):

∫ +∞

−∞
V(dx) =

{
+∞ if 0 ≤ β+ < 1 ∧ 0 ≤ β− < 1
α+λ+

β+Γ(−β+) + α−λ−β−Γ(−β−) if β+ < 0 ∧ β− < 0.
(3)

As shown in (3), if β+ < 0 and β− < 0, GTS(β+, β−, α+, α−, λ+, λ−) is of a finite ac-
tivity process and can be written as a compound Poisson (Barndorff-Nielsen and Shephard
2002). When 0 ≤ β+ < 1 and 0 ≤ β− < 1, this Lévy density (V(dx)) is not integrable as it
goes off to infinity too rapidly as x goes to zero (Barndorff-Nielsen and Shephard 2002),
which means in practice that there will be a large number of very small jumps. As shown
in (3), GTS(β+, β−, α+, α−, λ+, λ−) is an infinite activity process with infinite jumps in any
given time interval.

In addition to the infinite activities process, the variation in the process can be studied
through the following integral:

∫ 1

−1
|x|V(dx) =

∫ 0

−1
|x|V(dx) +

∫ 1

0
|x|V(dx)

= α−λ
β−−1
− γ(1 − β−, λ−) + α+λ

β+−1
+ γ(1 − β+, λ+)

where γ(s, x) =
∫ x

0 ys−1e−ydy is the lower incomplete gamma function.
And we have:∫ 1

−1
|x|V(dx) < +∞ if 0 < β− ≤ 1 & 0 < β+ ≤ 1. (4)

As shown in (4), GTS(β+, β−, α+, α−, λ+, λ−) generates a finite variance process,
which is contrary to the Brownian motion process. GTS(β+, β−, α+, α−, λ+, λ−) generates
a type B Lévy process (Ken-Iti 2001), which is a purely non-Gaussian infinite activity Lévy
process of finite variation whose sample paths have an infinite number of small jumps and
a finite number of large jumps in any finite time interval.

The GTS distribution can be denoted by X ∼ GTS(β+, β−, α+, α−, λ+, λ−) and X =
X+ − X− with X+ ≥ 0, X− ≥ 0. X+ ∼ TS(β+, α+, λ+) and X− ∼ TS(β−, α−, λ−). By
adding the location parameter, the GTS distribution becomes GTS(μ, β+, β−, α+, α−, λ+, λ−),
and we have (5):

Y = μ + X = μ + X+ − X−, Y ∼ GTS(μ, β+, β−, α+, α−, λ+, λ−). (5)

2.1. GTS Distribution and Characteristic Exponent

Theorem 1. Consider a variable Y ∼ GTS(μ, β+, β−, α+, α−, λ+, λ−). The characteristic expo-
nent can be written as:

Ψ(ξ) = μξi + α+Γ(−β+)
(
(λ+ − iξ)β+ − λ+

β+

)
+ α−Γ(−β−)

(
(λ− + iξ)β− − λ−β−

)
. (6)

Proof. V(dx) in (2) is a Lévy measure. The following relation is satisfied from (4):∫ +∞

−∞
Min(1, |x|)V(dx) < +∞.

More details on the proof are provided in (Nzokem and Maposa 2024).
The Lévy–Khintchine representation (Barndorff-Nielsen and Shephard 2002) for non-

negative Lévy process is applied on Y. Y = μ + X = μ + X+ − X− and we have:
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Ψ(ξ) = Log
(

EeiYξ
)
= iμξ + Log

(
EeiX+ξ

)
+ Log

(
Ee−iX−ξ

)
= iμξ +

∫ +∞

0

(
eiyξ − 1

)α+e−λ+y

y1+β+
dy +

∫ +∞

0

(
e−iyξ − 1

)α−e−λ−y

y1+β−
dy,

(7)

∫ +∞

0

(
eiyξ − 1

)α+e−λ+y

y1+β+
dy = α+λ

β+
+ Γ(−β+)

+∞

∑
k=1

Γ(k − β+)

Γ(−β+)k!
(

iξ
λ+

)k

= α+λ
β+
+ Γ(−β+)

+∞

∑
k=1

(
β+

k

)
(− iξ

λ+
)k

= α+Γ(−β+)
(
(λ+ − iξ)β+ − λ

β+
+

)
.

(8)

Similarly, we have :

∫ +∞

0

(
e−iyξ − 1

)α−e−λ−y

y1+β−
dy = α−Γ(−β−)

(
(λ− + iξ)β− − λ

β−
−

)
. (9)

The expression in (7) becomes:

Ψ(ξ) = iμξ + α+Γ(−β+)
(
(λ+ − iξ)β+ − λ

β+
+

)
+ α−Γ(−β−)

(
(λ− + iξ)β− − λ

β−
−

)
.

Theorem 2. Consider a variable Y ∼ GTS(μ, β+, β−, α+, α−, λ+, λ−).
If (β−, β+) → (0, 0), GTS becomes a bilateral Gamma distribution with the following

characteristic exponent:

Ψ(ξ) = μξi − α+ log
(

1 − 1
λ+

iξ
)
− α− log

(
1 +

1
λ−

iξ
)

. (10)

In addition to (β−, β+) → (0, 0), if α− = α+ = α, GTS becomes a Variance-Gamma (VG)
distribution with parameter (μ, δ, σ, α, θ)

δ = λ− − λ+ σ = 1 α = α− = α+ θ =
1

λ−λ+

and the following characteristic exponent:

Ψ(ξ) = μξi − α log
(

1 − λ− − λ+

λ+λ−
iξ +

1
λ+λ−

ξ2
)

. (11)

Proof.

Γ(−β+) = −Γ(1 − β+)

β+

lim
β+→0

Γ(−β+)
(
(λ+ − iξ)β+ − λ

β+
+

)
= − log

(
1 − 1

λ+
iξ
)

.
(12)

Similarly, (12) works for β− → 0, and we have the characteristic exponent (10).
In addition, if α− = α+ = α, from (10), the characteristic exponent becomes:

Ψ(ξ) = μξi − α log
(

1 − λ− − λ+

λ+λ−
iξ +

1
λ+λ−

ξ2
)

,

which is a Variance-Gamma (VG) distribution with parameter (μ, λ− − λ+, 1, α, 1
λ−λ+

). For
more details on the VG model, refer to (Madan et al. 1998; Nzokem 2023c).
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Theorem 3 (Cumulants κk). Consider a variable Y ∼ GTS(μ, β+, β−, α+, α−, λ+, λ−). The
cumulants κk of the GTS distribution are defined as follows:

κ0 = 0

κ1 = μ + α+
Γ(1 − β+)

λ
1−β+
+

− α−
Γ(1 − β−)

λ
1−β−
−

κk = α+
Γ(k − β+)

λ
k−β+
+

+ (−1)kα−
Γ(k − β−)

λ
k−β−
−

∀k ∈ N \ {0, 1}.

(13)

Proof. We reconsider the characteristic exponent Ψ(ξ) in (7):

Ψ(ξ) = iμξ +
∫ +∞

0

(
eiyξ − 1

)α+e−λ+y

y1+β+
dy +

∫ +∞

0

(
e−iyξ − 1

)α−eλ−y

y1+β−
dy

= iμξ + α+
+∞

∑
k=1

Γ(k − β+)

λ
k−β+
+

(iξ)k

k!
+ α−

+∞

∑
k=1

Γ(k − β−)
λ

k−β−
−

(−iξ)k

k!

= iμξ +
+∞

∑
k=1

1
k!

(
α+

Γ(k − β+)

λ
k−β+
+

+ α−
Γ(k − β−)

λ
k−β−
−

(−1)k

)
(iξ)k

=
+∞

∑
k=0

κk
k!
(iξ)k.

(14)

Hence, the k-th order cumulant κk is given by comparing the coefficients of both
polynomial functions in iξ. For more details on the relationship between the characteristic
exponent and cumulant functions, refer to (Feller 1971; Kendall 1945).

2.2. GTS Distribution and Lévy Process

Corollary 1. Let Y = (Yt) be a Lévy process onR+ generated by GTS(μ, β+, β−, α+, α−, λ+, λ−),
and then

Yt ∼ GTS(tμ, β+, β−, tα+, tα−, λ+, λ−) ∀t ∈ R+. (15)

Proof. Let Ψ(ξ, t) be the characteristic exponent of the Lévy process Y = (Yt). By applying
the infinitely divisible property, we have:

Ψ(ξ, t) = Log
(

EeiYtξ
)
= tLog

(
EeiXξ

)
= tμξi + tα+Γ(−β+)

(
(λ+ − iξ)β+ − λ

β+
+

)
+ tα−Γ(−β−)

(
(λ− + iξ)β− − λ

β−
−

)
and we deduce that Yt ∼ GTS(tμ, β+, β−, tα+, tα−, λ+, λ−).

Theorem 4 (Asymptotic distribution of Generalized Tempered Stable distribution process).
Let Y = Yt be a Lévy process on R generated by GTS(μ, β+, β−, α+, α−, λ+, λ−). Then, Yt
converges in distribution to a Lévy process driving by a normal distribution with mean κ1 and
variance κ2

Yt
d→ N(tκ1, tκ2) as t → +∞ (16)

where

κ1 = μ + α+
Γ(1 − β+)

λ
1−β+
+

− α−
Γ(1 − β−)

λ
1−β−
−

κ2 = α+
Γ(2 − β+)

λ
2−β+
+

+ α−
Γ(2 − β−)

λ
2−β−
−

.
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Proof. The proof relies on the cumulant-generating function. As in (14), the characteristic
exponent (Ψ(ξ)) can be written as follows:

Ψ(ξ) = Log
(

EeiYξ
)
=

+∞

∑
j=0

κj
(iξ)j

j!
. (17)

Let φ(ξ, t) be the characteristic function of the stochastic process Yt−tκ1√
tκ2

and we have:

φ(ξ, t) = E

(
e

i Yt−tκ1√
tκ2

ξ
)

= e
−i tκ1√

tκ2
ξ
E

(
e

i ξ√
tκ2

Yt

)

= e
−i tκ1√

tκ2
ξ
e

tΨ( ξ√
tκ2

)
= e

−i tκ1√
tκ2

ξ
e

∑+∞
j=0

tκj
j! (i

ξ√
tκ2

)j

= e
− ξ2

2 +∑+∞
j=3

tκj
j! (i

ξ√
tκ2

)j

,

(18)

lim
t→+∞

+∞

∑
j=3

tκj

j!
(i

ξ√
tκ2

)j = 0 lim
t→+∞

φ(ξ, t) = lim
t→+∞

e
− ξ2

2 +∑+∞
j=3

tκj
j! (i

ξ√
tκ2

)j

= e−
1
2 ξ2

.

(19)

3. Multivariate Maximum-Likelihood Method

3.1. Maximum-Likelihood Method: Numerical Approach

From a probability density function f (x, V)with parameter V = (μ, β+, β−, α+, α−, λ+, λ−)
and sample data x =

(
xj
)

1≤j≤m, we define the likelihood function and its first and second
derivatives as follows:

Lm(x, V) =
m

∏
j=1

f (xj, V), lm(x, V) =
m

∑
j=1

log( f (xj, V))

dlm(x, V)

dVj
=

m

∑
i=1

d f (xi ,V)
dVj

f (xi, V)

d2lm(x, V)

dVkdVj
=

m

∑
i=1

⎛⎜⎝ d2 f (xi ,V)
dVkdVj

f (xi, V)
−

d f (xi ,V)
dVk

f (xi, V)

d f (xi ,V)
dVj

f (xi, V)

⎞⎟⎠.

(20)

To perform the maximum of the likelihood function (Lm(x, V)), we need the gradient of
the likelihood function ( dlm(x,V)

dV ), also known as the score function, and the Hessian matrix

( d2lm(x,V)
dVdV′ ), which is the variance–covariance matrix generated by the likelihood function.

Given the parameters V = (μ, β+, β−, α+, α−, λ+, λ−) and the sample data set X, we
have the following quantities (21) from the previous development:

I′m(X, V) =

(
dlm(x, V)

dVj

)
1≤j≤p

, I′′m(X, V) =

(
d2lm(x, V)

dVkdVj

)
1≤k≤p
1≤j≤p

. (21)

We use a computational algorithm built as a composite of a standard FRFT to compute
the likelihood function and its derivatives (20) in the optimization process. More details on
applying the composite of FRFTs for parameter estimations are provided in (Nzokem 2021b,
2021c; Nzokem and Montshiwa 2022, 2023); for other computations (such as probability
density and cumulative functions), see (Cherubini et al. 2010; Eberlein 2014; Eberlein et al.
2010; Nzokem 2023b; Nzokem and Maposa 2024).
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The computational algorithm yields a local solution, V, and a negative semi-definite
matrix, I′′m(x, V), when the following two conditions are satisfied:

I′m(x, V) = 0, UTI′′m(X, V)U ≤ 0 , ∀U ∈ Rp. (22)

The solutions, V, in (22) are provided by the Newton–Raphson iteration algorithm
Formula (23):

Vn+1 = Vn − (
I′′m(x, Vn)

)−1 I′m(x, Vn). (23)

More details on the maximum-likelihood and Newton–Raphson iteration procedures
are provided in (Giudici et al. 2013).

3.2. Asymptotic Distribution of the Maximum-Likelihood Estimator (MLE)

Theorem 5 (Cramer-Rao). Let T = T(X1, . . . , Xm) be a statistic and write E[T] = k(θ). Then,
under suitable (smoothness) assumptions,

Var[T] ≥ ( dE[T]
dθ )2

mI(θ)
. (24)

For the proof of Theorem 5, refer to (Casella and Berger 2024; Van den Bos 2007).

Theorem 6 (Consistency Estimator). Let X1, . . . , Xm be independent and identically distributed
(i.i.d) random variables with density f (x|θ) satisfying some regularity conditions (Lehmann 1999).
Let θ be the true parameter; then, there exists a sequence θ̂m = θm(X1, . . . , Xm) of local maxima of
the likelihood function Lm(θ) which is consistent, that is, which satisfies

θ̂m
a.s.→ θ as m → +∞. (25)

More details on the proof of Theorem 6 are provided in (Casella and Berger 2024;
Lehmann 1999).

Theorem 7 (Asymptotic Efficiency and Normality). Let X1, . . . , Xm be independent and identi-
cally distributed (i.i.d) random variables with density f (x|θ) satisfying some regularity conditions
in (Lehmann 1999). There exists a solution θ̂m = θm(X1, . . . , Xm) of the likelihood equations which
is consistent, and any such solution satisfies:

θ̂m − θ
d→ N

(
0, I−1

m (θ)
)

as m → +∞, (26)

where θ = (θ1, . . . , θk) is the actual parameter and Im(θ) is the Fisher information matrix.

More details on the proof of Theorem 7 are provided in (Hall and Oakes 2023; Lehmann
1999; Olive 2014).

Theorem 8 (Likelihood Ratio Test). Suppose the assumptions of Theorem 7 hold and that
(θ̂1n, . . . , θ̂kn) are consistent roots of the likelihood equations for θ = (θ1, . . . , θk) . In addition,
suppose that the corresponding assumptions hold for the parameter vector (θr+1, . . . , θk) when
r < k and that ˆ̂θr+1,n, . . . , ˆ̂θkn are consistent roots of the likelihood equations for (θr+1, . . . , θk)
under the null hypothesis. We consider the likelihood ratio statistic

lm(x, θ̂)

lm(x, ˆ̂θ)
(27)
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where ˆ̂θ = (θ1, . . . , θr, ˆ̂θr+1,n, . . . , ˆ̂θkn). Then under the null hypothesis H0, if

Δn = lm(x, θ̂)− lm(x, ˆ̂θ), (28)

the statistic 2Δn has a limiting χ2
r distribution.

More details on the proof of Theorem 8 are provided in (Lehmann 1999; Vuong 1989).

3.3. Asymptotic Test and Confidence Interval

The above results allow us to construct an asymptotically efficient estimator θ̂m =
(θ̂1m, . . . , θ̂km) of θ = (θ1, . . . , θk) such that

(θ̂1m − θ1, . . . , θ̂km − θk) (29)

has a joint multivariate limit distribution with mean (0, . . . , 0) and covariance matrix
I−1
m (θ) = (Jij). In particular, we have:

θ̂jm − θj
d→ N(0, Jjj) as m → +∞. (30)

One approach to constructing an asymptotically valid confidence interval for the
parameters is via the asymptotic distribution of the ML estimator (27). An approximate
(1 − α

2 ) confidence interval for θ̂jm can be written as follows:

θ̂jm ± z(
α

2
) ∗

√
Jjj as m → +∞, (31)

where z( α
2 ) is the α

2 quantile of the standard normal distribution.

3.4. Applications of the Log-Likelihood Estimator to the Normal Distribution

We suppose the sample data x =
(
xj
)

1≤j≤m are independent observations and have

a normal distribution (Mensah et al. 2023) with parameter V(μ, σ2), that is, y ∼ N (μ, σ2);
then, the density is

f (y|V) = (2πσ2)−
1
2 exp

(
− (y − μ)2

2σ2

)
. (32)

The log-likelihood function in (20) becomes

lm(x|V) =
m

∑
j=1

log( f (xj|V)) = −m
2

log(2πσ2)− 1
2σ2

m

∑
j=1

(xj − μ)2. (33)

The first-order derivatives of the log-likelihood function with respect to μ and σ2

in (20) become

I′m(X, V) =

( dlm(x,V)
dμ

dlm(x,V)
dσ2

)
=

(
1

σ2 ∑m
j=1(xj − μ)

1
2σ4 ∑m

j=1(xj − μ)2 − m
2σ2 .

)
(34)

By setting I′m(X, V) = 0, we have

μ̂ =
1
m

m

∑
j=1

xj σ̂2 =
1
m

m

∑
j=1

(xj − μ̂)2. (35)

The second-order derivative of the log-likelihood function with respect to μ and σ2

in (20) becomes
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I′′m(X, V) =

⎛⎝ d2lm(x,V)
dμ2

dlm(x,V)
dμdσ2

dlm(x,V)
dσ2dμ

d2lm(x,V)
(dσ2)2

⎞⎠
=

⎛⎝ − m
σ2 −∑m

j=1(xj−μ)

σ4

−∑m
j=1(xj−μ)

2σ4 − 1
σ6 ∑m

j=1(xj − μ)2 + m
2σ4 .

⎞⎠ (36)

Refer to (Casella and Berger 2024) for more details.
We have the Fisher information matrix and the inverse:

Im(V) = −E
(

I′′m(X, V)
)
=

(
m
σ2 0
0 m

2σ4 ,

)
I−1
m (V) =

(
σ2

m 0
0 2σ4

m

)
. (37)

Corollary 2. The limiting distribution of the MLE is given by:(
μ̂
σ̂2

)
d→ N

((
μ
σ2

)
,

(
σ2

m 0
0 2σ4

m

))
, as m → +∞. (38)

The proof of Corollary 2 comes from Theorem 7, Equation (26).

4. Fitting Tempered Stable Distribution to Cryptocurrencies: Bitcoin (BTC)
and Ethereum

4.1. Data Summaries

Bitcoin was the first cryptocurrency created in 2009 by Satoshi Nakamoto. The idea
behind Bitcoin was to create a peer-to-peer electronic payment system that allows online
payments to be sent directly from one party to another without going through a financial
institution (Nakamoto 2008). Since its inception, Bitcoin has grown in popularity and
adoption and is now viewed as a viable legal tender in some countries. Bitcoin is currently
used more as an investment tool, a risk-diversified tool, and less as a medium of exchange,
a store of value, or a unit of account (Nzokem and Maposa 2024).

Bitcoin (BTC) and Ethereum (ETH) prices were extracted from CoinMarketCap. The
period spans from 28 April 2013 to 4 July 2024 for Bitcoin and from 7 August 2015 to 4 July
2024 for Ethereum.

The daily price dynamics are provided in Figure 1. The prices have an increasing
trend, even after having major significant increases and decreases over the studied pe-
riod. Figure 1a,b show that Bitcoin outperforms Ethereum, which is the second-largest
cryptocurrency by market capitalization after Bitcoin.

(a) Bitcoin (BTC) daily price (b) Ethereum (ETH) daily price

Figure 1. Daily price.

Let m be the number of observations and Sj be the daily observed price on the day tj
with j = 1, . . . , m. The daily return (yj) is computed as follows:
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yj = log(Sj/Sj−1) j = 2, . . . , m. (39)

As shown in Figure 2a,b, the daily return reaches the lowest level (−46% for Bitcoin
and −55% for Ethereum) in the first quarter of 2020 amid the coronavirus pandemic and
massive disruptions in the global economy. Nine values were identified as outliers and
removed from the dataset to avoid a negative impact on the GTS model estimation and the
empirical statistics.

(a) Daily Bitcoin return (b) Daily Ethereum return

Figure 2. Daily return.

4.2. Multidimensional Estimation Results for Cryptocurrencies

The results of the GTS parameter estimation are summarized in Table 1 for Bitcoin
and Table 2 for Ethereum data. The brackets are the asymptotic standard errors computed
using the inverse of the Hessian matrix built in (20). The ML estimate of μ is negative
for both Bitcoin and Ethereum, while others are positive, as expected in the literature.
The asymptotic standard error for μ is quite large and suggests that μ is not statistically
significant at 5%.

Table 1. Maximum-likelihood GTS parameter estimation for Bitcoin.

Model Parameter Estimate Std Err z Pr(Z > |z|) [95% Conf.Interval]

GTS

μ −0.121571 (0.375) −0.32 7.5 × 10−01 −0.856 0.613
β+ 0.315548 (0.136) 2.33 2.0 × 10−02 0.050 0.581
β− 0.406563 (0.117) 3.48 4.9 × 10−04 0.178 0.635
α+ 0.747714 (0.047) 15.76 6.2 × 10−56 0.655 0.841
α− 0.544565 (0.037) 14.56 4.8 × 10−48 0.471 0.618
λ+ 0.246530 (0.036) 6.91 4.9 × 10−12 0.177 0.316
λ− 0.174772 (0.026) 6.69 2.2 × 10−11 0.124 0.226

Log(ML) −10,606
AIC 21,227
BIK 21,271

GBM

μ 0.151997 (0.060) 2.51 1.2 × 10−02 0.033 0.271
σ 3.865132 (0.330) 11.69 7.2 × 10−32 3.217 4.513

Log(ML) −11,313
AIC 22,630
BIK 22,638

The log-likelihood, Akaike’s information Criteria (AIC), and Bayesian information
criteria (BIK) statistics show that the GTS distribution with seven parameters performs
better than the two-parameter normal distribution (GBM). A comprehensive and detailed
examination of the statistical significance of the results will be carried out in Section 6.

Table 1 summarizes the estimation results for Bitcoin returns. The skewness parame-
ters (λ+, λ−) are statistically significant at 5%. The difference is positive and statistically
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significant, which proves that the Bitcoin return is asymmetric and skewed to the left.
The process intensity parameters (α+, α−) are statistically significant at 5%. Similarly, the
difference is positive and statistically significant, showing that the Bitcoin is more likely
to produce positive returns than negative ones. The index of stability parameters (β+,
β−) are both statistically significant at 5%. However, the difference is positive but not
statistically significant.

The GTS distribution with β = β+ = β−, called the Kobol distribution, was fitted
to the Bitcoin data as well, and the estimation results are presented in Appendix B.1. As
shown in Table A6, all the parameters are statistically significant at 5%, and have the
expected positive sign. However, the likelihood ratio test in Table 6 shows that the GTS
distribution in Table 1 is not significantly different from the Kobol distribution as the
p-value (69.6%) is large. Refer to (Boyarchenko and Levendorskii 2002) for more details on
the Kobol distribution.

As shown in Table 2, the parameters for Ethereum returns data are statistically sig-
nificant at 5%, except μ and β−. The difference (λ+ − λ−) in skewness parameters is
negative and not statistically significant, showing that the Ethereum return is asymmetric
and skewed to the right. Similarly, the difference (α+ − α−) in the intensity parameters is
positive and not statistically significant, as shown the confidence interval. Contrary to the
Bitcoin return, the Ethereum return has a larger process intensity, which provides evidence
that Ethereum has a lower level of peakedness and a higher level of thickness.

Table 2. Maximum-likelihood GTS parameter estimation for Ethereum.

Model Param Estimate Std Err z Pr(Z > |z|) [95% Conf.Interval]

GTS

μ −0.4854 (1.008) −0.48 6.3 × 10−01 −2.461 1.491
β+ 0.3904 (0.164) 2.38 1.7 × 10−02 0.069 0.712
β− 0.4045 (0.210) 1.93 5.4 × 10−02 −0.007 0.816
α+ 0.9582 (0.106) 9.01 1.1 × 10−19 0.750 1.167
α− 0.8005 (0.110) 7.25 4.2 × 10−13 0.584 1.017
λ+ 0.1667 (0.029) 5.72 1.1 × 10−08 0.110 0.224
λ− 0.1708 (0.036) 4.71 2.5 × 10−06 0.110 0.242

Log(ML) −9552
AIC 19,119
BIK 19,162

GBM

μ 0.267284 (0.091) 2.93 3.4 × 10−03 0.088 0.446
σ 5.205539 (0.672) 7.74 1.0 × 10−14 3.887 6.524

Log(ML) −9960
AIC 19,925
BIK 19,933

We consider the following constraints λ = λ+ = λ− and β = β+ = β−, which are
the Carr–Geman–Madan–Yor (CGMY) distribution, also called the Classical Tempered
Stable Distribution. The CGMY distribution was fitted as well, and the estimation results
are presented in Appendix B.2. As shown in Table A8, all the parameters are statistically
significant at 5%, and have the expected positive sign. However, the likelihood ratio test in
Table 6 shows, with a high p-value (35.3%), that the GTS distribution is not significantly
different from the CGMY distribution, and the null hypothesis cannot be rejected. Refer to
(Carr et al. 2003; Rachev et al. 2011) for more details on the CGMY distribution.

Tables 1 and 2 summarize the last row of Tables A1 and A2, respectively, in Appendix A.1,
which describes the convergence process of the GTS parameter for Bitcoin and Ethereum
data. The convergence process was obtained using the Newton–Raphson iteration al-
gorithm (23). Each row has eleven columns made of the iteration number, the seven
parameters μ, β+, β−, α+, α−, λ+, λ−, and three statistical indicators, the log-likelihood
(Log(ML)), the norm of the partial derivatives (|| dLog(ML)

dV ||), and the maximum value of
the eigenvalues (MaxEigenValue). The statistical indicators aim at checking if the two
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necessary and sufficient conditions described in (22) are all met. Log(ML) displays the
value of the Naperian logarithm of the likelihood function L(x, V), as described in (20);
|| dLog(ML)

dV || displays the value of the norm of the first derivatives ( dl(x,V)
dVj

) described in (21);
and MaxEigenValue displays the maximum value of the seven eigenvalues generated by

the Hessian matrix ( d2l(x,V)
dVkdVj

), as described in (21).
Similarly, Tables A7 and A9 describe the convergence process of the Kobol distribution

parameter for Bitcoin returns and the CGMY distribution parameter for Ethereum returns.
GTS parameter estimations in Tables 1 and 2 are used to evaluate the impact of each

parameter on the GTS probability density function. As shown in Figures 3 and 4, the effect
of the GTS parameters on the probability density function has the same patterns on Bitcoin
and Ethereum returns. However, the magnitudes are different. As shown in Figure 3a,b,
β− (α−) has a higher effect on the probability density function (pdf) than β+ (α+). However,
λ− and λ+ in both graphs seem symmetric and have the same impact.

(a) Vj = β+, Vj = β− (b) Vj = α+, Vj = α− (c) Vj = λ+, Vj = λ−

Figure 3.

d f (x,V)
dVj

f (x,V)
: Effect of parameters on the GTS probability density (Bitcoin returns).

(a) Vj = β+, Vj = β− (b) Vj = α+, Vj = α− (c) Vj = λ+, Vj = λ−

Figure 4.

d f (x,V)
dVj

f (x,V)
: Effect of parameters on the GTS probability density (Ethereum returns).

4.3. Evaluation of the Method of Moments

The method of moments estimates the parameters of the GTS distribution by equating
empirical moments and the theoretical moments of the GTS distribution. We empirically
estimate the kth moments (mk = E(xk)), based on sample data x =

(
xj
)

1≤j≤m as follows:

m̂k =
1
M

m

∑
j=1

xk
j for k = 1, . . . , 7. (40)

On the other side, the cumulants (κk) in Theorem 4 can be related to the moment of the
GTS distribution by the following relationship (Poloskov 2021; Rota and Shen 2000; Smith 1995):
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mk = E(xk) =
k−1

∑
j=1

(
k − 1
j − 1

)
κjmk−j + κk for k = 1, . . . , 7. (41)

The method of moments estimator for V = (μ, β+, β−, α+, α−, λ+, λ−) is defined as
the solution to the following system of equations:

m̂k = mk for k = 1, . . . , 7. (42)

The system of Equation (42) is often not analytically solvable. For the conditions of
existence and uniqueness of the solution, refer to (Küchler and Tappe 2013).

The maximum-likelihood GTS parameter estimations in Tables 1 and 2 are used to
evaluate the system of equations in (42). As shown in Table 3, the solution of the maximum-
likelihood method satisfies to a certain extent the equations for the first four moments: m̂1,
m̂2, m̂3, m̂4 in the system (42). The seventh-moment equation has the highest relative error:
89.9% for Bitcoin (BTC) and 68.3% for Ethereum. Therefore, the maximum likelihood GTS
parameter estimation is not the same as the GTS parameter estimation from the method
of moments.

In addition to the method of moments estimations, the lower relative errors in Table 3
show that empirical and theoretical standard deviation (σ), skewness, and kurtosis seem
to be consistent for Bitcoin and Ethereum. The empirical and theoretical statistics show
that the average Ethereum daily return is greater and more volatile than the Bitcoin daily
returns. Both assets are thicker than the normal distribution. However, the daily return of
Bitcoin is skewed to the left, whereas the daily return of Ethereum is skewed to the right.

Table 3. Evaluation of the method of moments.

Bitcoin BTC Ethereum

Empirical(1) Theoretical(2) (1)−(2)
2

Empirical(1) Theoretical(2) (1)−(2)
2

Sample size 4083 3246
m̂1 0.152 0.152 0.0% 0.267 0.267 0.0%
m̂2 14.960 15.020 0.4% 27.161 27.388 0.8%
m̂3 −11.320 −15.640 27.6% 55.363 57.867 4.3%
m̂4 2033 2256 9.8% 5267 6307 16.5%
m̂5 −5823 −15,480 62.3% 22,368 32518 31.2%
m̂6 670,695 1,123,215 40.2% 2,114,788 4,361,562 51.5%
m̂7 −1,997,196 −19,777,988 89.9% 12,411,809 39,253,001 68.3%
Standard deviation 1 3.865 3.873 0.2% 5.206 5.226 0.4%
Skewness 2 −0.314 −0.387 18.8% 0.238 0.252 5.2%
Kurtosis 3 9.154 10.082 9.2% 7.112 8.385 15.2%
Max value 28.052 29.013
Min value −26.620 −29.174
1 σ =

√
κ2; 2 Skewness is estimated as κ3

κ3/2
2

; 3 Kurtosis is estimated as 3 + κ4
κ2

2
; κ1, κ2 and κ2 are defined in (13).

5. Fitting Tempered Stable Distribution to Traditional Indices: S&P 500 and SPY EFT

5.1. Data Summaries

The Standard & Poor’s 500 Composite Stock Price Index, also known as the S&P 500,
is a stock index that tracks the share prices of 500 of the largest public companies with
stocks listed on the New York Stock Exchange (NYSE) and the Nasdaq in the United States.
It was introduced in 1957 and is often treated as a proxy for describing the overall health of
the stock market or the United States (US) economy. The SPDR S&P 500 ETF (SPY), also
known as the SPY ETF, is an Exchange-Traded Fund (ETF) that tracks the performance of
the S&P 500. SPY ETF provides a mutual fund’s diversification, the stock’s flexibility, and
lower trading fees. The data were extracted from Yahoo Finance. The historical prices span
from 4 January 2010 to 22 July 2024 and were adjusted for splits and dividends.

The daily price dynamics are provided in Figure 5. Prices have an increasing trend,
even after being temporally disrupted in the first quarter of 2020 by the coronavirus
pandemic. The S&P 500 is priced in thousands of US dollars, whereas the SPY ETF is in
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hundreds of US dollars. The SPY ETF is cheaper and provides all the attributes of the S&P
500 index, as shown in Figure 5a,b.

(a) S&P 500 Daily Price (b) SPY EFT Daily Price
Figure 5. Daily price.

Let the number of observations be m and the daily observed price be Sj on day tj with
j = 1, . . . , m; t1 is the first observation date (04 January 2010) and tm is the last observation
date (22 July 2024). The daily return, yj, is computed as in (43):

yj = log(Sj/Sj−1) j = 2, . . . , m. (43)

The SPY ETF aims to mirror the performance of the S&P 500. Figure 6a,b look similar,
which is consistent with the goal of the SPY ETF. As shown in Figure 6a,b, the daily return
reaches the lowest level (−12.7% for the S&P 500 and −11.5% for the SPY ETF) in the first
quarter of 2020 amid the coronavirus pandemic and massive disruptions in the global
economy. Nine values were identified as outliers and removed from the dataset to avoid a
negative impact on GTS model estimation and the empirical statistics.

(a) Daily S&P500 return (b) Daily SPY ETF return
Figure 6. Daily return.

5.2. Multidimensional Estimation Results for Traditional Indices

The estimation results are provided in Table 4 for S&P 500 return data and Table 5
for SPY EFT return data. As previously, the log-likelihood, AIC, and BIK statistics suggest
that the GTS distribution with seven parameters performs better than the two-parameter
normal distribution (GBM).

As shown in both Tables 4 and 5, the ML estimate of μ is negative, while the others are
positive, as expected in the literature. The asymptotic standard error for μ, β+ and β− are
pretty large and result in μ, β+ and β− not being significantly different from zero.
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Table 4. Maximum-likelihood GTS parameter estimation for S&P 500 index.

Model Param Estimate Std Err z Pr(Z > |z|) [95% Conf.Interval]

GTS

μ −0.249408 (0.208) −1.20 2.3 × 10−01 −0.658 0.159
β+ 0.328624 (0.308) 1.07 2.9 × 10−01 −0.275 0.932
β− 0.088640 (0.176) 0.50 6.1 × 10−01 −0.256 0.433
α+ 0.792426 (0.350) 2.26 2.4 × 10−02 0.106 1.479
α− 0.542250 (0.107) 5.09 3.6 × 10−07 0.333 0.751
λ+ 1.279743 (0.348) 3.68 2.4 × 10−04 0.597 1.962
λ− 0.937133 (0.144) 6.50 8.0 × 10−11 0.655 1.220

Log(ML) −4920
AIC 9851
BIK 9898

GBM

μ 0.044875 (0.018) 2.51 1.2 × 10−02 0.010 0.080
σ 1.081676 (0.027) 39.53 0.000 1.028 1.135

Log(ML) −5330
AIC 10,665
BIK 10,677

However, other parameters have larger t-statistics (|z| > 2) and are statistically signifi-
cant at 5%. Except for the index of stability parameters (β+, β−), the estimation results for
the S&P 500 and SPY ETF indexes show that the difference in skewness parameters (λ+,
λ−) and intensity parameters (α+, α−) are positive but are not statistically significant.

The hypothesis with β+ = β− = 0 was considered by fitting the S&P 500 and SPY
ETF indexes to the bilateral Gamma distribution. The estimation results are summarized
in Appendices C.1 and C.2. As shown in Tables A10 and A12, the skewness parameters
(λ+, λ−) are positive and statistically significant, and the difference (λ+ − λ−) is also
positive and statistically significant, which proves that the S&P 500 and SPY ETF returns
are skewed to the left. We have the same statistical features for the intensity parameters
(α+, α−), and both indexes are more likely to produce positive returns than negative
returns. Refer to (Küchler and Tappe 2008; Nzokem 2021a) for more details on the bilateral
Gamma distribution.

Table 5. Maximum-likelihood GTS parameter estimation for SPY EFT data.

Model Param Estimate Std Err z Pr(Z > |z|) [95% Conf.Interval]

GTS

μ −0.260643 (0.135) −1.94 5.3 × 10−02 −0.524 0.003
β+ 0.340880 (0.189) 1.80 7.1 × 10−02 −0.030 0.711
β− 0.022212 (0.212) 0.10 9.2 × 10−01 −0.393 0.437
α+ 0.787757 (0.225) 3.50 4.6 × 10−04 0.347 1.229
α− 0.597110 (0.141) 4.22 2.4 × 10−05 0.320 0.874
λ+ 1.288555 (0.226) 5.70 1.2 × 10−08 0.846 1.731
λ− 1.014353 (0.177) 5.74 9.4 × 10−09 0.668 1.361

Log(ML) −4893
AIC 9800
BIK 9843

GBM

μ 0.054344 (0.017) 3.13 1.8 × 10−03 0.020 0.088
σ 1.050217 (0.026) 40.71 0.000 1.000 1.101

Log(ML) −54,275
AIC 10,554
BIK 10,566

The likelihood ratio test in Table 6 shows that, even with non-statistically significant
parameters, the GTS distribution fits significantly better than the bilateral Gamma distri-
bution for both the S&P 500 and SPY ETF indexes. Contrary to the AIC statistics, the BIK
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statistics do not provide the same information. A comprehensive and detailed examination
of the statistical significance of the results is carried out in Section 6.

Tables 4 and 5 summarize the last row of Tables A3 and A4, respectively, in Appendix A.1,
which describes the convergence process of the GTS parameter for S&P 500 index, and
SPY ETF return data. The convergence process was obtained using the Newton–Raphson
iteration algorithm (23). Each row has eleven columns made of the iteration number;
the seven parameters μ, β+, β−, α+, α−, λ+, λ−; and three statistical indicators, the log-
likelihood (Log(ML)), the norm of the partial derivatives (|| dLog(ML)

dV ||), and the maximum
value of the eigenvalues (MaxEigenValue). The statistical indicators aim at checking if the
two necessary and sufficient conditions described in (22) are all met. Log(ML) displays
the value of the Naperian logarithm of the likelihood function L(x, V), as described in
(20); || dLog(ML)

dV || displays the value of the norm of the first derivatives ( dl(x,V)
dVj

) described in
Equation (21); and MaxEigenValue displays the maximum value of the seven eigenvalues

generated by the Hessian matrix ( d2l(x,V)
dVkdVj

), as described in (21).
Similarly, Tables A11 and A13 describe the convergence process of the bilateral Gamma

distribution parameter for S&P 500 index and SPY ETF return data.
The GTS parameter estimations in Tables 4 and 5 were used to evaluate the impact of

the parameters on the GTS probability density function. As shown in Figures 7 and 8, the
effect of the GTS parameters on the probability density function generated by the S&P 500
and SPY ETF have the same patterns. However, the magnitudes are different. As shown
in Figure 7a,b on the S&P 500 return data, β+ (α+) has a higher effect on the probability
density function than β− (α−). However, λ− and λ+ in Figure 7c are symmetric and have
the same impact.

(a) Vj = β+, Vj = β− (b) Vj = α+, Vj = α− (c) Vj = λ+, Vj = λ−

Figure 7.

d f (x,V)
dVj

f (x,V)
: Effect of parameters on the GTS probability density (S&P 500 index).

(a) Vj = β+, Vj = β− (b) Vj = α+, Vj = α− (c) Vj = λ+, Vj = λ−

Figure 8.

d f (x,V)
dVj

f (x,V)
: Effect of parameters on the GTS probability density (SPY EFT).
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Table 6. Likelihood ratio test statistic and p-value.

GTS GTS Variants χ2-Value df p-Value

Log(ML) −10,606.73 −10,606.81 0.1525 1 0.6962
Bitcoin AIC 21,227.47 21,225.62

BIK 21,271.67 21,263.51

Log(ML) −9552.86 −9553.90 2.0810 2 0.3533
Ethereum AIC 19,119.72 19,117.81

BIK 19,162.32 19,148.23

Log(ML) −4920.52 −4924.62 8.1828 2 0.0167
S&P 500 AIC 9851.06 9859.24

BIK 9898.49 9890.26

Log(ML) −4893.21 −4898.67 10.9234 2 0.0042
SPY ETF AIC 9800.42 9807.34

BIK 9843.84 9838.36

5.3. Evaluation of the Methods of Moments

The maximum-likelihood GTS parameter estimations in Tables 4 and 5 are used to
evaluate the system of equations in (42). As shown in Table 7, the solution of the maximum-
likelihood method satisfies to a certain extent the equations (42) for the following first four
moments: m̂1, m̂2, m̂4, m̂5. As for Bitcoin and Ethereum, the seventh-moment equation has
the highest relative error: 53.3% for S&P 500 index and −85.9% for SPY ETF. Therefore, the
maximum-likelihood GTS parameter estimation is not the GTS parameter estimation from
the method of moments.

In addition to the moment estimations in Table 7, the empirical and theoretical standard
deviation (σ), skewness, and kurtosis are consistent with lower relative errors for both S&P
500 and SPY ETF. The empirical and theoretical statistics show that both assets are skewed
to the left and also thicker than the normal distribution.

Table 7. Evaluation of the methods of moments.

S&P 500 Index SPY ETF

Empirical(1) Theoretical(2) (1)−(2)
2

Empirical(1) Theoretical(2) (1)−(2)
2

Sample size 3656 3655
m̂1 0.045 0.045 −0.5% 0.054 0.054 0.0%
m̂2 1.069 1.083 −1.3% 1.053 1.044 0.8%
m̂3 −0.447 −0.341 31.2% −0.214 −0.351 −39.0%
m̂4 8.371 9.764 −14.3% 8.197 7.691 6.6%
m̂5 −16.386 −11.128 47.3% −3.969 −12.717 −68.8%
m̂6 193.563 247.811 −21.9% 157.645 162.048 −2.7%
m̂7 −840.097 −547.882 53.3% −85.003 −602.447 −85.9%
Standard deviation 1 1.082 1.033 4.7% 1.050 1.021 2.9%
Skewness 2 −0.432 −0.535 −19.2% −0.358 −0.490 −26.9%
Kurtosis 3 8.413 7.435 13.1% 7.495 7.177 4.4%
Max value 6.797 6.501
Min value −7.901 −6.734
1 σ =

√
κ2; 2 Skewness is estimated as κ3

κ3/2
2

; 3 Kurtosis is estimated as 3 + κ4
κ2

2
; κ1, κ2 and κ2 are defined in (13).

6. Goodness-of-Fit Analysis

6.1. Kolmogorov–Smirnov (KS) Analysis

Given the sample of daily return {y1, y2 . . . ym} of size m and the empirical cumu-
lative distribution function, Fm(x), for each index, the Kolmogorov–Smirnov (KS) test is
performed under the null hypothesis, H0, that the sample {y1, y2 . . . ym} comes from the
GTS distribution, F(x). The cumulative distribution function of the theoretical distribution,
F(x), needs to be computed. The density function, f (x), does not have a closed form, the
same for the cumulative function, F(x), in (45). However, we know the closed form of
the Fourier of the density function, F [ f ], and the relationship in (46) provides the Fourier
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of the cumulative distribution function, F [F]. The GTS distribution function, F(x), was
computed from the inverse of the Fourier of the cumulative distribution, F [F], in (47):

Y ∼ GTS(μ, β+, β−, α+, α−, λ+, f λ−) (44)

F(x) =
∫ x

−∞
f (t)dt f is the density function of Y (45)

F [F](x) =
F [ f ](x)

ix
+ πF [ f ](0)δ(x) (46)

F(x) =
1

2π

∫ +∞

−∞

F [ f ](y)
iy

eixy dy +
1
2

(47)

See Appendix A in (Nzokem 2021a) for (46) proof.
The two-sided KS goodness-of-fit statistic (Dm) is defined as follows:

Dm = sup
x

|F(x)− Fm(x)|, (48)

where m is the sample size, Fm(x) denotes the empirical cumulative distribution of {y1, y2 . . . ym}.
The distribution of Kolmogorov’s goodness-of-fit measure Dm has been studied exten-

sively in the literature. It was shown (Massey 1951) that the Dm distribution is independent
of the theoretical distribution, F(x), under the null hypothesis, H0. The discrete, mixed,
and discontinuous distributions case has also been studied (Dimitrova et al. 2020). Under
the null hypothesis, H0, that the sample {y1, y2 . . . ym} of size m comes from the hypothe-
sized continuous distribution, it was shown (An 1933) that the asymptotic statistic

√
nDn

converges to the Kolmogorov distribution.
The limiting form for the distribution function of Kolmogorov’s goodness-of-fit mea-

sure Dm is

lim
m→+∞

Pr(
√

mDm ≤ x) = 1 − 2
+∞

∑
k=1

(−1)k−1e−2k2x2
=

√
2π

x

+∞

∑
k=1

e−
(2k−1)2π2

8x2 . (49)

The first representation was given in (An 1933), and the second came from a standard
relation for theta functions (Marsaglia et al. 2003).

As shown in Figure 9, the asymptotic statistic,
√

nDn, is a positively skewed distribu-
tion with a mean and a standard deviation (Marsaglia et al. 2003) as follows.

μ =

√
π

2
log(2) ∼ 0.8687, σ =

√
π2

12
− μ2 ∼ 0.2603. (50)

Figure 9. Asymptotic statistic (
√

mDm) probability density function (PDF).
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At a 5% risk level, the risk threshold is d = 1.3581 and represents the area in the
shaded area under the probability density function.

The p-value of the test statistic, Dm, is computed based on (49) as follows:

p_value = Pr(Dm > D̂m|H0) = 1 − Pr(
√

mDm ≤ √
mD̂m). (51)

A p-value is defined as the probability that values are even more extreme or more in
the tail than our test statistic. A small p-value leads to a rejection of the null hypothesis, H0,
because the test statistic, Dm, is already extreme. We reject the hypothesis if the p-value is
less than our level of significance, which we take to be equal to 0.05.

D̂m is a realization value of the KS estimator Dm computed from the sample {y1, y2 . . . ym}.
D̂m is estimated (Krysicki et al. 1999) as follows:

D̂m = Max( sup
0≤j≤P

|F(xj)− Fm(xj)|, sup
1≤j≤P

|F(xj)− Fm(xj−1)|). (52)

The following computations were performed for Bitcoin (BTC) data, and the quantity
D̂m was obtained:

sup
0≤j≤P

|F(xj)− Fm(xj)| = 0.01300

sup
1≤j≤P

|F(xj)− Fm(xj−1)| = 0.00538

D̂m = 0.01300

p_value = prob(
√

mDm > 0.6903|H0) = 49.48%.

(53)

For each index, KS statistics (D̂m) and associated p-values were computed and sum-
marized in Table 8, along with the index sample size, m.

Table 8. Kolmogorov–Smirnov statistics and p-values.

GTS GBN GTS Variants Sample Size

Index D̂m
√

mD̂m p-Value D̂m
√

mD̂m p-Value D̂m
√

mD̂m p-Value m

Bicoin BTC 0.013 0.830 0.494 0.106 6.803 0.000 0.014 1 0.863 0.445 4083
Ethereum 0.012 0.721 0.674 0.092 5.249 0.000 0.013 2 0.749 0.627 3246
S&P 500 0.012 0.750 0.627 0.091 5.550 0.000 0.014 3 0.897 0.395 3656
SPY ETF 0.014 0.869 0.436 0.089 5.438 0.000 0.016 3 1.010 0.258 3655

1 Kobol distribution (β = β− = β+); 2 Carr–Geman–Madan–Yor (CGMY) distributions (β = β− = β+;
α = α− = α+); 3 bilateral Gamma distribution (β− = β+ = 0).

The asymptotic statistics,
√

nDn, produced from the two-parameter geometric Brow-
nian motion (GBM) hypothesis, have high values and show that the GBM hypothesis is
always rejected. On the other hand, the high p-values generated by the asymptotic statistics
suggest insufficient evidence to reject the assumption that the data were randomly sampled
from a GTS. The same observations work for the GTS variants: the Kobol, CGMY, and
bilateral Gamma distributions. In addition, as shown the p-value indicator in Table 8, the
GTS distribution outperforms the bilateral Gamma distribution for the S&P 500 and SPY
ETF indexes. However, the Kobol and CGMY distributions, respectively, for Bitcoin and
Ethereum have almost the same performance as the GTS distribution.

6.2. Anderson–Darling Test Analysis

The Anderson–Darling test (Anderson 2008) is a goodness-of-fit test that allows the
control of the hypothesis that the distribution of a random variable observed in a sample
follows a certain theoretical distribution. The Anderson–Darling statistic belongs to the
class of quadratic EDF statistics (Stephens 1974) based on the empirical distribution function.
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The quadratic EDF statistics measure the distance between the hypothesized distribution
(F(x)) and empirical distribution. It is defined as

m
∫ +∞

−∞
(Fm(x)− F(x))2w(x) dFx, (54)

where m is the number of elements in the sample, w(x) is a weighting function, and Fm(x)
is the empirical distribution function defined on the sample of size m.

When the weighting function is w(x) = 1, the statistic (54) is the Cramér—Von
Mises statistic, while the Anderson–Darling statistic is obtained by choosing the weighting
function w(x) = F(x)(1 − F(x)). Compared with the Cramér–Von Mises statistic, the
Anderson–Darling statistic places more weight on the tails of the distribution.

The Anderson–Darling statistic is

A2
m = m

∫ +∞

−∞

(Fm(x)− F(x))
F(x)(1 − F(x))

dF(x). (55)

It can be shown that the asymptotic distribution of the Anderson–Darling statistic, A2
m,

is independent of the theoretical distribution under the null hypothesis. The asymptotic
distribution (Lewis 1961; Marsaglia and Marsaglia 2004) is defined as follows:

G(x) = lim
m→∞

Pr
[

A2
m < x

]
=

+∞

∑
j=0

aj(xbj)
− 1

2 exp(− bj

x
)
∫ +∞

0
f j(y)exp(−y2)dy

fj(y) = exp

(
1
8

xbj

y2x + bj

)
, aj =

(−1)j(2)
1
2 (4j + 1)Γ(j + 1

2 )

j!

bj =
1
2
(4j + 1)2π2.

(56)

As shown in Figure 10, the asymptotic distribution of the Anderson–Darling statistic (A2
m)

is a positively skewed distribution with a mean and a standard deviation (Anderson 2011) as
follows

μ = 1, σ =

√
2
3
(π2 − 9) ∼ 0.761. (57)

Figure 10. Asymptotic Anderson–Darling statistic (A2
m) probability density function (PDF).
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At a 5% risk level, the risk threshold is d = 2.4941 and represents the area in the
shaded area under the probability density function.

The p-value of the test statistic, A2
m, is defined as follows:

p-value = prob(A2
m > Â2

m|H0) = 1 − G(Â2
m). (58)

In order to compute the Anderson–Darling statistic, A2
m, in (55), the sample of daily

return {y1, y2 . . . ym} of size m is arranged in ascending order: y(1) < y(2) < · · · < y(m).
The Anderson–Darling statistic (Lewis 1961) then becomes

A2
m = −m − 1

m

m

∑
j=1

[
(2j − 1)log(F(y(j))) + (2(n − j) + 1)log(F(y(j)))

]
. (59)

For each index, the Anderson–Darling statistic (59) is computed, along with the p-
value statistic. Table 9 shows the KS statistics (A2

m) and p-values for the GTS, GBM, and
GTS variant distributions. While the two-parameter GBM hypothesis is always rejected,
the GTS hypothesis is accepted and yields a very high p-value.

Table 9. Anderson–Darling statistics and p-values.

GTS GBN GTS Variants Sample Size

Index Â2
m p-Value Â2

m p-Value Â2
m p-Value m

Bicoin BTC 0.1098 0.9999 99.706 0.0000 0.1105 1 0.9999 4083
Ethereum 0.1018 0.9999 59.157 0.0001 0.2123 2 0.9866 3246
S&P 500 0.3007 0.9376 54.304 0.0001 0.5010 3 0.7458 3656
SPY ETF 0.3017 0.9368 51.516 0.0001 0.6684 3 0.5857 3655

1 Kobol distribution (β = β− = β+); 2 Carr–Geman–Madan–Yor (CGMY) distributions (β = β− = β+;
α = α− = α+); 3 bilateral Gamma distribution (β− = β+ = 0).

In addition, as shown by the p-value indicator in Table 9, the GTS distribution outper-
forms the bilateral Gamma distribution for the S&P 500 and SPY ETF indexes. However,
the Kobol and CGMY distributions for Bitcoin and Ethereum, respectively, have almost the
same performance as the GTS distribution.

6.3. Pearson’s Chi-Squared Test Analysis

Pearson’s chi-squared test (Schoutens 2003) counts the number of sample points
falling into certain intervals and compares them with the expected number under the null
hypothesis. Under the null hypothesis, H0, a random sample {y1, y2 . . . ym} comes from
the GTS distribution, which has seven parameters estimated in Section 5. Suppose that
m observations in the sample from a population are classified into K mutually exclusive
classes with respective observed numbers of observations Nj (for j = 1, 2, . . . , K), and a null
hypothesis gives the probability Πj = F(xj)− F(xj−1) (47) that an observation falls into
the jth class.

The following Pearson statistic calculates the value of the chi-squared goodness-of-
fit test:

χ2(K − 1 − p) =
K

∑
j=1

(
Nj − mΠj

)2

mΠj
. (60)

Under the null hypothesis assumption, as m goes to +∞, the limiting distribution
(Schoutens 2003) of the Pearson statistic (60) follows the χ2(K − 1 − p) distribution with
K − 1 − p degrees of freedom, and p is the number of estimated parameters.

Table 10 shows the Pearson chi-squared statistics (χ̂2(K − 1 − p)), p-values, and class
number for the GTS, GBM, and GTS variant distributions. While the two-parameter GBM
hypothesis is always rejected, the GTS hypothesis is accepted and yields a high p-value.

52



J. Risk Financial Manag. 2024, 17, 531

Table 10. Pearson statistics and p-values.

GTS GBN GTS Variants Class Number

Index χ̂2(K − 8) p-Value χ̂2(K − 3) p-Value χ̂2(K − p − 1) p p-Value K

Bicoin BTC 12.234 0.508 1375 0.000 12.549 1 6 0.562 21
Ethereum 6.910 0.863 805 0.000 8.618 2 5 0.854 20
S&P 500 9.886 0.703 574 0.000 12.844 3 5 0.614 21
SPY ETF 13.955 0.377 605 0.000 18.228 3 5 0.251 21

1 Kobol distribution (β = β− = β+); 2 Carr–Geman–Madan–Yor (CGMY) distributions (β = β− = β+;
α = α− = α+); 3 bilateral Gamma distribution (β− = β+ = 0).

In addition, as shown by the p-value indicator in Table 10, the GTS distribution
outperforms the bilateral Gamma distribution for the S&P 500 and SPY ETF indexes.
However, the Kobol and CGMY distributions for Bitcoin and Ethereum, respectively, have
almost the same performance as the GTS distribution. For more details on the estimation of
the Pearson statistic inputs under the GTS distribution, refer to Table A5 in Appendix A.2.

7. Conclusions

This study provides a methodology for fitting the rich class of the seven-parameter GTS
distribution to financial data. Four historical prices were considered in the methodology
application: two heavy-tailed data (Bitcoin and Ethereum returns) and two peaked data
(S&P 500 and SPY ETF returns). The study used each historical data to fit the seven-
parameter GTS distribution to the underlying data return distribution. The advanced
fast FRFT scheme, based on the classic fast FRFT algorithm and the 11-point composite
Newton–Cotes rule, was used to perform the maximum-likelihood estimation of seven
parameters of the GTS distribution. The maximum likelihood estimate results show that,
for each index, the location parameter, μ, is negative, while the others are positive, as
expected in the literature. The statistical significance of the parameters was analyzed.
The non-statistical significance of the index of stability parameters (β+, β−) has led to the
fitting of the Kobol, CGMY, and bilateral Gamma distributions. The goodness of fit was
assessed through Kolmogorov–Smirnov, Anderson–Darling, and Pearson’s chi-squared
statistics. While the two-parameter GBM hypothesis is always rejected, the goodness-of-fit
analysis shows that the GTS distribution fits significantly the four historical data with a
very high p-value.

As a main limitation of the study, the applied methodology is computation-intensive,
and the researchers need good skills in computer programming. In future work, the
estimated parameter of the GTS distribution will be used in the Ornstein–Uhlenbeck-type
process to simulate the daily cumulative returns of financial assets.
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Appendix A

Appendix A.1. Iterative Maximum-Likelihood Estimation (MLE) Procedure

Table A1. Convergence of the GTS parameter for Bitcoin return data.

Iterations μ β+ β− α+ α− λ+ λ− Log(ML) || dLog(ML)
dV || MaxEigenValue

1 −0.7369246 0.4613783 0.2671787 0.8100173 0.5173470 0.2156289 0.1919378 −10609.058 282.6765666 3.6240151
2 −0.7977019 0.4654390 0.2169392 0.7846817 0.4905332 0.2164395 0.2049523 −10607.253 26.7522215 −1.6194299
3 −0.4455841 0.3884721 0.3213867 0.7758150 0.5193395 0.2340187 0.1883953 −10607.001 50.1355291 3.0916011
4 −0.7634445 0.4521878 0.2217702 0.7935129 0.4959371 0.2218253 0.2055181 −10607.210 4.8235882 −2.6390063
5 −0.4906746 0.4146531 0.3404176 0.7722729 0.5222110 0.2269202 0.1846457 −10607.059 67.6646338 9.0971871
6 −0.5515834 0.4434827 0.3335905 0.7724484 0.5190619 0.2197566 0.1853686 −10607.022 17.4476962 −0.4021102
7 −0.4914586 0.4327714 0.3503012 0.7686883 0.5235361 0.2216450 0.1826269 −10606.991 16.2838831 −0.1781480
8 −0.2900908 0.3885350 0.3956186 0.7563357 0.5370260 0.2300772 0.1754994 −10606.864 12.0116477 −2.4090216
9 −0.2752698 0.3832660 0.3969704 0.7555456 0.5377367 0.2312224 0.1753571 −10606.847 11.4457840 −2.5487401

10 −0.2609339 0.3780400 0.3982456 0.7547812 0.5384209 0.2323632 0.1752258 −10606.832 10.8628213 −2.6874876
11 −0.2085409 0.3576927 0.4025762 0.7519966 0.5408864 0.2368544 0.1748113 −10606.782 8.3600783 −3.4356438
12 −0.1970109 0.3528575 0.4034002 0.7513923 0.5414138 0.2379362 0.1747455 −10606.772 7.6818408 −3.6954428
13 −0.1761733 0.3436416 0.4046818 0.7503191 0.5423414 0.2400174 0.1746675 −10606.756 6.2516380 −4.2766527
14 −0.1668421 0.3392794 0.4051522 0.7498492 0.5427438 0.2410120 0.1746529 −10606.750 5.5002876 −4.5807361
15 −0.1581860 0.3350854 0.4055256 0.7494209 0.5431090 0.2419740 0.1746517 −10606.745 4.7262048 −4.8824015
16 −0.1501600 0.3310612 0.4058166 0.7490311 0.5434404 0.2429024 0.1746615 −10606.741 3.9306487 −5.1742197
17 −0.1209376 0.3159301 0.4066945 0.7476393 0.5446224 0.2464122 0.1747326 −10606.734 2.8592342 −6.2251311
18 −0.1216487 0.3155707 0.4064438 0.7477179 0.5445608 0.2465247 0.1747753 −10606.734 0.0014787 −6.2014232
19 −0.1215714 0.3155483 0.4064635 0.7477142 0.5445652 0.2465296 0.1747719 −10606.734 1.82 × 10−06 −6.2026532
20 −0.1215714 0.3155483 0.4064635 0.7477142 0.5445652 0.2465296 0.1747719 −10606.734 9.80 × 10−10 −6.2026530

Table A2. Convergence of the GTS parameter for Ethereum return data.

Iterations μ β+ β− α+ α− λ+ λ− Log(ML) || dLog(ML)
dV || MaxEigenValue

1 −0.1215714 0.3155483 0.4064635 0.7477142 0.5445652 0.2465296 0.1747719 −9745.171 2673.428257 206.013602
2 −0.1724835 0.3319505 0.4091022 0.7364129 0.5479934 0.2227870 0.1684568 −9700.715 2388.609394 180.884105
3 −0.2041418 0.3384742 0.4118929 0.7338794 0.5531083 0.2083203 0.1632896 −9669.986 2139.267660 157.699659
4 −0.4006157 0.3530035 0.4393474 0.7513784 0.6172425 0.1135743 0.1221930 −9586.115 1471.570475 32.410140
5 −0.6485551 0.4493817 0.4404508 0.9247887 0.7210031 0.1412949 0.1482307 −9556.026 380.605737 56.584055
6 −0.6290525 0.4371402 0.4359516 0.9780784 0.7824777 0.1582340 0.1608694 −9553.005 24.905322 −0.719221
7 −0.5545412 0.3994778 0.3918188 0.9627486 0.7936571 0.1652438 0.1724287 −9552.866 5.834338 −0.847574
8 −0.4744837 0.3913982 0.4093404 0.9582366 0.8022858 0.1665103 0.1699928 −9552.862 2.963350 −0.933466
9 −0.4825586 0.3902160 0.4051365 0.9580755 0.8007651 0.1667400 0.1706850 −9552.862 0.214871 −0.931142

10 −0.4853678 0.3904369 0.4044899 0.9582486 0.8004799 0.1667119 0.1707853 −9552.862 0.004754 −0.931872
11 −0.4853800 0.3904362 0.4044846 0.9582487 0.8004779 0.1667121 0.1707862 −9552.862 2.96 × 10−07 −0.931836
12 −0.4853800 0.3904362 0.4044846 0.9582487 0.8004779 0.1667121 0.1707862 −9552.862 1.18 × 10−10 −0.931836
13 −0.4853800 0.3904362 0.4044846 0.9582487 0.8004779 0.1667121 0.1707862 −9552.862 1.27 × 10−11 −0.931836

Table A3. Convergence of the GTS parameter for S&P 500 return data.

Iterations μ β+ β− α+ α− λ+ λ− Log(ML) || dLog(ML)
dV || MaxEigenValue

1 −0.2606426 0.34087979 0.02221141 0.78775729 0.59711061 1.28855513 1.01435308 −4921.0858 147.214541 −0.476265
2 −0.2747887 0.37848567 0.02517846 0.72538248 0.594628 1.22107935 1.01081205 −4920.9765 107.910271 −12.169518
3 −0.2852743 0.34562742 0.01628972 0.78353361 0.58024658 1.27423544 0.9888729 −4920.6236 23.70873 11.9588258
4 −0.2971254 0.37985815 0.05392593 0.74068472 0.55972179 1.22737986 0.96278568 −4920.5493 4.21443356 0.29705471
5 −0.3415082 0.42600675 0.0432239 0.69783497 0.56106365 1.18286494 0.966753 −4920.5722 37.0642417 −1.7903876
6 −0.2995817 0.40315129 0.12236507 0.7168274 0.522172 1.20383351 0.9117451 −4920.574 3.07232514 −0.7101089
7 −0.2944623 0.3977257 0.12218751 0.72174351 0.52260032 1.20899714 0.9121201 −4920.5701 2.63567879 −1.0187469
8 −0.2767429 0.37561063 0.11561097 0.7427615 0.52696799 1.23067384 0.91742165 −4920.5511 1.83311761 −2.1103436
9 −0.274204 0.37177939 0.11355883 0.74659763 0.52814335 1.2345524 0.91893546 −4920.5477 1.75839181 −2.177405

10 −0.2559812 0.34147926 0.09643312 0.77815581 0.53784221 1.26594249 0.93144448 −4920.5308 1.33811298 −2.6954121
11 −0.2496977 0.32954013 0.08928069 0.79125494 0.54186044 1.27868642 0.93662846 −4920.5291 0.79520373 −2.8166517
12 −0.2494237 0.32866495 0.08869445 0.79238161 0.54221561 1.27970094 0.93708759 −4920.5291 0.00166731 −2.6765739
13 −0.2494072 0.32862462 0.08864569 0.79242579 0.54224632 1.27974278 0.93712865 −4920.5291 0.00013552 −2.6768326
14 −0.2494082 0.32862428 0.08864047 0.79242619 0.54224944 1.27974312 0.93713293 −4920.5291 1.47 × 10−05 −2.6766945
15 −0.2494083 0.32862424 0.08863992 0.79242624 0.54224977 1.27974315 0.93713338 −4920.5291 1.57 × 10−06 −2.67668
16 −0.2494083 0.32862424 0.08863985 0.79242624 0.54224981 1.27974316 0.93713344 −4920.5291 1.89 × 10−09 −2.6766783
17 −0.2494083 0.32862424 0.08863985 0.79242624 0.54224981 1.27974316 0.93713344 −4920.5291 2.09 × 10−10 −2.6766783
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Table A4. Convergence of the GTS parameter for SPY EFT return data.

Iterations μ β+ β− α+ α− λ+ λ− Log(ML) || dLog(ML)
dV || MaxEigenValue

1 −0.0518661 0.1161846 0.2186548 1.04269292 0.52712574 1.52244991 0.91168779 −4894.2279 14.7801725 −6.5141947
2 −0.1102477 0.18491276 0.17478472 0.94756655 0.52844271 1.4399315 0.91415148 −4893.8278 29.8166141 −1.9290981
3 −0.2094204 0.29377592 0.0891446 0.84029122 0.56054563 1.34797271 0.96500981 −4893.3554 16.9940095 4.33892902
4 −0.1985564 0.29758208 0.13230013 0.83156167 0.53656079 1.33833078 0.93230856 −4893.4206 10.9048744 1.04588745
5 −0.078883 0.25939922 0.39611543 0.84865673 0.40365522 1.35595932 0.7410936 −4895.8806 241.028178 94.6293224
6 −0.0753571 0.26704857 0.33754158 0.84120908 0.45446164 1.3452823 0.80751063 −4894.3899 25.1995505 −2.805571
7 −0.196642 0.31624372 0.20068543 0.80509106 0.50322368 1.30837612 0.88967028 −4893.888 140.257551 34.770691
8 −0.1898283 0.3045047 0.15900291 0.81380451 0.52672075 1.31341912 0.91775259 −4893.4694 6.29433991 −4.6080872
9 −0.2275214 0.32940996 0.10770535 0.79340215 0.55020025 1.29360449 0.95260474 −4893.3049 7.34361008 −8.1891832

10 −0.2726283 0.34972465 0.01601222 0.78061523 0.59736004 1.28153304 1.01757433 −4893.2192 14.0784211 −3.6408772
11 −0.2499816 0.32645286 0.01851524 0.80217301 0.60018154 1.30243672 1.01792703 −4893.2125 6.27794755 −4.6455546
12 −0.2575953 0.33832596 0.02643321 0.79008383 0.59450637 1.29085215 1.01101001 −4893.208 1.23298227 −6.8035318
13 −0.2607071 0.34052644 0.02075252 0.78817075 0.59805376 1.28895161 1.01555438 −4893.2076 0.07363298 −6.71708
14 −0.2606368 0.34088815 0.02227012 0.78774693 0.59707082 1.28854532 1.01430383 −4893.2076 0.00156771 −6.6908109
15 −0.2606432 0.34087911 0.02220633 0.78775813 0.59711397 1.28855593 1.01435731 −4893.2076 0.00010164 −6.6915902
16 −0.2606426 0.34087985 0.02221188 0.78775721 0.5971103 1.28855506 1.01435268 −4893.2076 8.45 × 10−06 −6.6915177
17 −0.2606426 0.34087979 0.02221141 0.78775729 0.59711061 1.28855513 1.01435308 −4893.2076 7.21 × 10−07 −6.6915239

Appendix A.2. Pearson Statistic Inputs

Table A5. Observed versus expected statistics under GTS distribution.

Bitcoin Ethereum sp500 SPY EFT

k x(k) n*Πk n(k) x(k) n*Πk n(k) x(k) n*Πk n(k) x(k) n*Πk n(k)

1 −18.988 7.512 8 −20.861 7.531 6 −4.341 10.264 12 −4.405 8.327 11

2 −17.080 4.144 7 −18.321 5.583 6 −3.935 5.456 5 −4.007 4.562 3

3 −15.172 6.603 7 −15.781 10.018 15 −3.529 8.442 7 −3.608 7.116 7

4 −13.264 10.678 9 −13.241 18.331 20 −3.123 13.138 15 −3.210 11.144 12

5 −11.356 17.586 13 −10.700 34.424 29 −2.717 20.588 20 −2.811 17.538 18

6 −9.448 29.661 32 −8.160 66.980 68 −2.311 32.543 30 −2.413 27.775 27

7 −7.540 51.657 47 −5.620 137.268 134 −1.905 52.023 48 −2.015 44.350 41

8 −5.632 94.188 107 −3.080 305.591 305 −1.499 84.479 89 −1.616 71.617 73

9 −3.724 184.486 168 −0.540 769.951 769 −1.093 140.406 147 −1.218 117.552 122

10 −1.816 411.503 419 2.000 965.210 966 −0.687 242.564 244 −0.819 198.101 186

11 0.092 1195.725 1186 4.540 458.955 466 −0.281 455.971 456 −0.421 351.660 348

12 2.000 1150.470 1159 7.080 219.873 222 0.126 896.809 896 −0.023 725.476 730

13 3.908 473.177 469 9.620 111.760 101 0.532 749.106 733 0.376 867.735 867

14 5.816 217.783 227 12.160 59.253 60 0.938 430.841 426 0.774 541.022 522

15 7.724 107.387 102 14.700 32.379 32 1.344 234.692 260 1.173 300.464 325

16 9.632 55.272 51 17.241 18.099 21 1.750 126.820 137 1.571 163.491 189

17 11.540 29.294 39 19.781 10.296 12 2.156 68.688 57 1.969 88.862 82

18 13.448 15.861 14 22.321 5.939 5 2.562 37.387 33 2.368 48.491 36

19 15.356 8.729 9 24.861 3.465 5 2.968 20.460 15 2.766 26.600 23

20 17.264 4.866 4 5.091 4 3.374 11.256 12 3.165 14.669 13

21 6.419 6 14.067 14 18.450 20

Appendix B

Appendix B.1. Bitcoin BTC: Kobol Distribution (β = β− = β+)

V(dx) =

(
α+

e−λ+x

x1+β
1x>0 + α−

e−λ−|x|

|x|1+β
1x<0

)
dx (A1)
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Ψ(ξ) = μξi + Γ(−β)
[
α+((λ+ − iξ)β − λ+

β) + α−((λ− + iξ)β − λ−β)
]

(A2)

Table A6. Kobol maximum-likelihood estimation for Bitcoin return data.

Model Parameter Estimate Std Err z Pr(Z > |z|) [95% Conf.Interval]

GTS

μ −0.292833 (0.126) −2.32 2.1 × 10−02 −0.541 −0.045
β 0.367074 (0.086) 4.27 1.9 × 10−05 0.199 0.535

α+ 0.755914 (0.047) 16.02 4.7 × 10−58 0.663 0.848
α− 0.535121 (0.034) 15.68 9.6 × 10−56 0.468 0.602
λ+ 0.235266 (0.027) 8.87 3.6 × 10−19 0.183 0.287
λ− 0.181602 (0.023) 7.94 9.8 × 10−16 0.137 0.226

Log(ML) −10,607
AIC 21,226
BIK 21,264

Table A7. Convergence of the Kobol parameter for Bitcoin return data.

Iterations μ β α+ α− λ+ λ− Log(ML) || dLog(ML)
dV || MaxEigenValue

1 −0.1215714 0.3155483 0.7477142 0.5445652 0.2465296 0.17477186 −10614.93879 450.0556974 25.6678081
2 −0.255172 0.36516958 0.73215119 0.53194253 0.22955186 0.17909072 −10607.01058 51.74982347 −46.893383
3 −0.2912276 0.37096854 0.75410108 0.53529439 0.23387716 0.18070591 −10606.81236 1.484798964 −53.728563
4 −0.2922408 0.36574333 0.7559582 0.53508403 0.23560819 0.18189913 −10606.81041 0.258928464 −53.391237
5 −0.2928641 0.36714311 0.75591147 0.53512239 0.23524801 0.18158588 −10606.81025 0.01286122 −53.406734
6 −0.292837 0.36708319 0.75591382 0.53512107 0.23526357 0.18159941 −10606.81025 0.00174219 −53.40643
7 −0.2928328 0.36707373 0.75591419 0.53512086 0.23526603 0.18160154 −10606.81025 1.18 × 10−05 −53.406384
8 −0.2928328 0.36707379 0.75591419 0.53512086 0.23526602 0.18160153 −10606.81025 1.60 × 10−06 −53.406384
9 −0.2928328 0.36707379 0.75591419 0.53512086 0.23526601 0.18160153 −10606.81025 2.18 × 10−07 −53.406384
10 −0.2928328 0.36707379 0.75591419 0.53512086 0.23526601 0.18160153 −10606.81025 1.09 × 10−08 −53.406384

Appendix B.2. Ethereum: Carr–Geman–Madan–Yor (CGMY) Distributions

V(dx) =

(
α

e−λ+x

x1+β
1x>0 + α

e−λ−|x|

|x|1+β
1x<0

)
dx (A3)

Ψ(ξ) = μξi + αΓ(−β)
[
((λ+ − iξ)β − λ+

β) + ((λ− + iξ)β − λ−β)
]

(A4)

Table A8. CGMY maximum-likelihood estimation for Ethereum return data.

Model Parameter Estimate Std Err z Pr(Z > |z|) [95% Conf.Interval]

GTS

μ −0.147089 (0.079) −1.86 6.3 × 10−02 −0.302 −0.008
β 0.398418 (0.127) 3.12 1.8 × 10−03 0.148 0.649
α 0.887161 (0.058) 15.22 1.2 × 10−52 0.773 1.001

λ+ 0.155369 (0.023) 6.56 5.2 × 10−11 0.109 0.202
λ− 0.185991 (0.025) 7.29 2.9 × 10−13 0.136 0.236

Log(ML) −9554
AIC 19,118
BIK 19,149
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Table A9. Convergence of the CGMY parameter for Ethereum return data.

Iterations μ β α λ+ λ− Log(ML) || dLog(ML)
dV || MaxEigenValue

1 −0.48538 0.39043616 0.95824875 0.16671208 0.17078617 −9596.2658 1653.57149 −140.21456
2 −0.0545131 0.40148247 0.88205674 0.15875317 0.18060554 −9554.6834 80.0921993 −19.637869
3 −0.1479632 0.39049434 0.88271998 0.15631408 0.18704084 −9553.9065 3.84112398 −44.76325
4 −0.1465893 0.40345482 0.88868927 0.15450383 0.18507239 −9553.9036 0.4436942 −55.029934
5 −0.1472464 0.39683622 0.88667597 0.15564017 0.18628001 −9553.9026 0.14094418 −51.274906
6 −0.1470247 0.39907668 0.88736036 0.15525581 0.18587143 −9553.9025 0.05563606 −52.523819
7 −0.1471148 0.39816841 0.88708569 0.15541227 0.18603772 −9553.9025 0.02143506 −52.017698
8 −0.1470898 0.39842098 0.88716234 0.15536883 0.18599155 −9553.9025 0.00019543 −52.158334
9 −0.14709 0.39841855 0.88716161 0.15536924 0.18599199 −9553.9025 1.16 × 10−05 −52.156981
10 −0.14709 0.39841867 0.88716164 0.15536922 0.18599197 −9553.9025 1.78 × 10−06 −52.157046
11 −0.14709 0.39841869 0.88716165 0.15536922 0.18599197 −9553.9025 2.71 × 10−07 −52.157055
12 −0.14709 0.39841869 0.88716165 0.15536922 0.18599197 −9553.9025 4.14 × 10−08 −52.157057

Appendix C

Appendix C.1. S&P 500 Index: Bilateral Gamma (BG) Distribution (β− = β+ = 0)

V(dx) =

(
α+

e−λ+x

x
1x>0 + α−

e−λ−|x|

|x| 1x<0

)
dx (A5)

Ψ(ξ) = μξi − α+ log
(

1 − 1
λ+

iξ
)
− α− log

(
1 +

1
λ−

iξ
)

(A6)

Table A10. BG maximum-likelihood estimation for S&P 500 return data.

Model Parameter Estimate Std Err z Pr(Z > |z|) [95% Conf.Interval]

GTS

μ −0.031467 (0.010) −3.07 2.1 × 10−03 −0.052 −0.011
α+ 1.092741 (0.058) 18.98 2.6 × 10−80 0.980 1.206
α− 0.701784 (0.042) 16.80 2.3 × 10−63 0.620 0.784
λ+ 1.539690 (0.064) 22.82 3.1 × 10−115 1.407 1.672
λ− 1.110737 (0.050) 22.07 6.6 × 10−108 1.012 1.209

Log(ML) −4925
AIC 9859
BIK 9890

Table A11. Convergence of the BG parameter for S&P 500 return data.

Iterations μ α+ α− λ+ λ− Log(ML) || dLog(ML)
dV || MaxEigenValue

1 0 0.79242624 0.54224981 1.27974316 0.93713344 −4951.1439 1138.53458 −265.251
2 −0.0038447 0.93153413 0.64461254 1.41132138 1.05504868 −4931.7583 549.025405 −171.22804
3 −0.0103214 1.03062846 0.70198868 1.49426667 1.10555794 −4926.8412 286.215345 −126.18156
4 −0.0186317 1.07922912 0.71421996 1.53377391 1.11392285 −4925.393 135.694287 −113.12071
5 −0.0279475 1.09450205 0.70493092 1.54418172 1.10795103 −4924.7065 38.0551545 −116.58686
6 −0.0313951 1.09325663 0.70162581 1.54038766 1.10996346 −4924.621 1.54417452 −120.06271
7 −0.0314671 1.09274119 0.70178365 1.53969027 1.11073682 −4924.6205 0.02788236 −120.35435
8 −0.0314664 1.09276971 0.70182788 1.53971127 1.11079928 −4924.6205 0.00198685 −120.34482
9 −0.0314663 1.09277213 0.70183158 1.5397131 1.11080431 −4924.6205 0.00016039 −120.34394
10 −0.0314662 1.09277232 0.70183188 1.53971325 1.11080472 −4924.6205 1.29 × 10−05 −120.34387
11 −0.0314662 1.09277234 0.7018319 1.53971326 1.11080475 −4924.6205 1.04 × 10−06 −120.34387
12 −0.0314662 1.09277234 0.7018319 1.53971326 1.11080476 −4924.6205 8.43 × 10−08 −120.34387
13 −0.0314662 1.09277234 0.7018319 1.53971326 1.11080476 −4924.6205 6.80 × 10−09 −120.34387
14 −0.0314662 1.09277234 0.7018319 1.53971326 1.11080476 −4924.6205 5.63 × 10−10 −120.34387
15 −0.0314662 1.09277234 0.7018319 1.53971326 1.11080476 −4924.6205 5.73 × 10−11 −120.34387

Appendix C.2. SPY ETF: Bilateral Gamma (BG) Distribution (β− = β+ = 0)

V(dx) =

(
α+

e−λ+x

x
1x>0 + α−

e−λ−|x|

|x| 1x<0

)
dx (A7)
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Ψ(ξ) = μξi − α+ log
(

1 − 1
λ+

iξ
)
− α− log

(
1 +

1
λ−

iξ
)

(A8)

Table A12. BG maximum-likelihood estimation for SPY EFT return data.

Model Parameter Estimate Std Err z Pr(Z > |z|) [95% Conf.Interval]

GTS

μ 0.015048 (0.012) 1.28 2.0 × 10−01 −0.008 0.038
α+ 1.068239 (0.067) 16.02 8.6 × 10−58 0.938 1.199
α− 0.764449 (0.044) 17.33 3.0 × 10−67 0.678 0.851
λ+ 1.525718 (0.073) 20.98 1.1 × 10−97 1.383 1.668
λ− 1.156439 (0.052) 22.15 1.1 × 10−108 1.054 1.259

Log(ML) −4899
AIC 9807
BIK 9838

Table A13. Convergence of the BG parameter for SPY EFT return data

Iterations μ α+ α− λ+ λ− Log(ML) || dLog(ML)
dV || MaxEigenValue

1 0 0.78775729 0.59711061 1.28855513 1.01435308 −4918.7331 406.35365 −252.28104
2 0.02867773 0.97562263 0.67572827 1.46822249 0.97596762 −4908.5992 226.190986 −116.11753
3 0.02727407 1.05127517 0.78618306 1.51846501 1.17883595 −4899.0798 45.2281041 −96.788275
4 0.00834089 1.07692251 0.75226045 1.5348003 1.14577232 −4898.9955 131.637516 −107.77617
5 0.01126962 1.07242358 0.7568497 1.53011913 1.1494212 −4898.751 48.0005418 −103.03258
6 0.01386478 1.06933921 0.76167668 1.52688303 1.15363987 −4898.6763 11.3246873 −100.1483
7 0.01492745 1.06823047 0.76397541 1.52573245 1.15588409 −4898.6693 0.98802026 −99.171136
8 0.01504464 1.06821119 0.76439389 1.52569528 1.15636567 −4898.6693 0.02529683 −99.040575
9 0.01504742 1.06823539 0.76444163 1.5257152 1.15642976 −4898.6693 0.00300624 −99.030178
10 0.01504762 1.06823881 0.76444764 1.52571803 1.15643796 −4898.6693 0.00038489 −99.028926
11 0.01504764 1.06823925 0.76444841 1.52571839 1.15643901 −4898.6693 4.92 × 10−05 −99.028765
12 0.01504765 1.06823931 0.76444851 1.52571844 1.15643915 −4898.6693 6.30 × 10−06 −99.028745
13 0.01504765 1.06823932 0.76444852 1.52571845 1.15643917 −4898.6693 1.32 × 10−08 −99.028742
14 0.01504765 1.06823932 0.76444852 1.52571845 1.15643917 −4898.6693 1.69 × 10−09 −99.028742
15 0.01504765 1.06823932 0.76444852 1.52571845 1.15643917 −4898.6693 2.23 × 10−10 −99.028742
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Abstract: Optimizing resource allocation often requires a trade-off between multiple objectives. Since
projects must be fully implemented or not at all, this issue is modeled as an integer programming
problem, precisely a knapsack-type problem, where decision variables are binary (1 or 0). Projects
may be complementary/supplementary and competitive/conflicting, meaning some are prerequi-
sites for others, while some prevent others from being implemented. In this paper, a two-objective
optimization model in the energy sector is developed, and the Non-dominated Sorting Genetic
Algorithm III (NSGA III) is adopted to solve it because the NSGA-III method is capable of handling
problems with non-linear characteristics as well as having multiple objectives. The objective is to
maximize the overall portfolio’s EVA (Economic Value Added). EVA is different from traditional
performance measures and is more appropriate because it incorporates the objectives of all stakehold-
ers in a business. Furthermore, because each project generates different kilowatts, maximizing the
total production of the portfolio is appropriate. Data from the Greek energy market show optimal
solutions on the Pareto efficiency front ranging from (14.7%, 38,000) to (11.91%, 40,750). This paper
offers a transparent resource allocation process for similar issues in other sectors.

Keywords: portfolio management; mathematic programming; finance; decision-making; multi-
objective optimization; mathematics of quantitative finance; mathematical models in optimal portfo-
lio theory

1. Introduction

The rational allocation of resources is vital in both public and private sectors. A
significant subset of the above is the problem of where to implement any project; the whole
project must be completed rather than part of it. In this paper, we focus on the knapsack
problem type according to Dantzig (1957). Particularly in Greece, due to the decade-long
economic crisis and the coronavirus crisis, it is appropriate to allocate the limited budget
as rationally and optimally as possible. The knapsack problem is a subclass of integer
programming, achieving the optimal solution. Much scientific research has dealt with this
issue, but it has yet to receive the appropriate attention in Greece.

We focus on the energy sector in Greece, which is developing rapidly and is attracting
increasing interest in investment. In recent years, due to climate change, there has been an
urgent need for conversion to alternative energy sources in line with the European policy
objective of substantially increasing the share of renewable energy sources in electricity
generation and more excellent absorption of funds from the European Recovery Fund.

In Greece, this interest is particularly evident in the case of the exploitation of wind
energy due to the favorable legislative framework and the significant wind potential
that exists in several Greek regions. Private investors are strongly motivated towards
the exploitation of wind energy, mainly because the associated investment costs are not
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prohibitive, and a somewhat favorable legislative framework ensures satisfactory rates
of return (Mavrotas et al. 2003). Consequently, composing a portfolio with an optimal
allocation of resources and an excellent strategic alignment based on future returns is crucial
for companies to avoid fines and comply with legislation, as well as to develop scientific
and technological capabilities that can help them drive innovation and gain competitive
advantage (Bin et al. 2015).

The energy sector satisfies the knapsack problem’s conditions and attracts attention
to these problems. The challenges of traditional methods, including many runs, can be
overcome using evolutionary strategies. In addition to guiding the search towards the
Pareto optimal front, the goal of the multi-objective optimization technique is to main-
tain population diversity within a collection of non-dominated solutions. Among the
most significant multi-objective optimization algorithms available today, the NSGA-III
(Deb and Jain 2013; Jain and Deb 2013) is a potent strategy to overcome the shortcomings
of NSGA-II, including its lack of uniform diversity and lateral diversity preserving operator.
NSGA-III is selected among these algorithms because of its uniform diversity in obtaining
the Pareto optimal front from a group of non-dominated solutions and its relatively greater
capacity to handle many objectives.

Our approach takes into account the fact that some projects depend on others for im-
plementation, such as an intermediate power station, while others cannot proceed without
certain prerequisites being met. We categorize these dependencies into two matrices of
complementary and conflicting investment projects and then use integer programming
to identify the best investment option. Our approach differs from previous research as
we utilize the EVA (Economic Value Added) index as an optimization goal. Typically, it is
possible to select some investments with negative EVA if necessary to achieve maximum
Eva for the portfolio as Sharma and Kumar (2010) found. When projects have different
rates of return, cost and production must be considered during the maximization process.
Each project’s different production in megawatts results from different guaranteed price
contracts (feed-in tariffs) or the exchange market, which varies over time.

Our model is further differentiated and idealized as an additional target of total
portfolio energy production is added. This helps both to cover the investor in the event
of a price decline and simultaneously meet each region’s energy needs in the context of
sustainable development. Our article first contributes to the debate on the use of EVA
against revenue and the use of suitable data in a unique knapsack model for the energy
sector of Greece that professionals and academics use. We attempt to use data from the
Greek energy market that would be implemented in other countries’ energy markets. The
literature review and the main features of the energy sector selection are then presented, as
well as the conclusions and discussion.

In the Section 2, we analyze the literature review relevant to the problem we consider.
In the Section 3, we present the main research question. In the Section 4, we provide our
data and the specific form of our model. In the Section 5, we provide the estimates and
results. In the Section 6, we summarize all the above with our evaluation and attempt to
find the rational answer to the main question.

2. Literature Review

Most research on knapsack problems has dealt with the version with a single con-
straint, e.g., Balas and Zemel (1980), Horowitz and Sahni (1974), Salkin and Kluyver (1975).
Although the single-constraint version of this problem has received a lot of attention, the
multi-constraint knapsack problem has not received proper attention in the Greek context
(Jaszkiewicz 2004; Erlebach et al. 2002; Zitzler and Thiele 1999; Klamroth and Wiecek 2000).
One of the first references to the multiple-constraint knapsack problem is by
Lorie and Savage (1955) and Manne and Markowitz (1957) as a capital budgeting model.
In Greece, a related study is provided by Florios et al. (2010).

The first accurate algorithms for the multi-constraint knapsack problem started in
the 1960s. Gilmore and Gomory (1966) described a dynamic programming algorithm.
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Later, Shih (1979) presented a branching and bounding algorithm for the multidimensional
knapsack problem (MKP). In recent years, with the development of artificial intelligence,
genetic algorithms can solve knapsack-type problems much faster with equally good results
as the traditional methods (Kellerer et al. 2004; Khuri et al. 1994).

This paper divides the constraints into two categories: complementary and disjunctive.
We use the negative disjunctive constraint as a particular case of a disjunctive constraint
(Pferschy and Schauer 2017). Some papers dealing with the disjunctive constraint are
Yamada et al. (2002), where a branch-and-bound algorithm is presented, and more recent
exact computation algorithms are presented in Hifi and Otmani (2012) and Hifi et al. (2014).
The 0-1 knapsack problem can be applied to various financial planning and portfolio
management models. It determines which subset of assets provides the highest return
under a given budget. The knapsack problem is a well-known combinatorial optimization
problem with a wide range of business applications in capital budgeting (Bas 2011) and
production planning (Camargo et al. 2012), among others.

Recent advancements in multi-objective optimization for the knapsack problem, par-
ticularly in energy portfolios, have introduced innovative methodologies. Notably, the
Factored NSGA-II framework enhances exploration through overlapping subpopulations,
effectively addressing multiple objectives such as profit maximization and weight min-
imization (Peerlinck and Sheppard 2022). Additionally, robust optimization algorithms
have emerged, focusing on solutions resilient to variable changes, thereby broadening the
solution space compared to traditional methods (Miyamoto and Fujiwara 2022).

The integration of quantum computing via the Quantum Approximate Optimization
Algorithm (QAOA) presents a novel approach, demonstrating significant improvements
in asset allocation within financial portfolios, which can be analogous to energy portfolio
optimization (Huot et al. 2024), a great improvement on the previous topic provided by
Awasthi et al. (2023). These methods collectively enhance the efficiency and effectiveness
of solving complex multi-objective knapsack problems in energy contexts.

Faia et al. (2018) propose a portfolio optimization model using particle swarm opti-
mization. This model addresses multi-objective challenges in energy markets by balancing
risk and profit in energy portfolio decisions.

The hybrid algorithm combines k-nearest neighbor with quantum cuckoo search
to enhance resource allocation solutions for the multidimensional knapsack problem,
outperforming state-of-the-art algorithms in most instances (García and Maureira 2021).

The Harmony Search (HS) algorithm is a prominent heuristic for solving both single-
and multi-objective 0-1 knapsack problems (KPs) and effectively solves single and multi-
objective 0-1 knapsack problems (Adamuthe et al. 2020). Furthermore, innovations like
the hybrid HS with distribution estimation have been proposed to avoid local optima,
improving the algorithm’s global search capabilities (Liu et al. 2022).

Dynamic Evolutionary Optimization (DEO) is increasingly applied to the multi-objective
knapsack problem (MKP), addressing the complexities of real-world scenarios where objec-
tives and constraints can change over time (de Queiroz Lafetá and Oliveira 2020).

Cacchiani et al. (2022) provide an excellent overview of solving techniques for the
knapsack problem, especially the quadratic form. A novel optimization algorithm is de-
signed to tackle the multidimensional knapsack problem (MKP), classified as NP-hard. This
algorithm is an enhancement of the traditional moth search algorithm (MS), incorporating
self-learning mechanisms to improve its efficiency and effectiveness (Feng and Wang 2022).

Lin et al. (2022) propose a single-preference-conditioned model to directly generate
approximate Pareto solutions for any trade-off preference and design an efficient multi-
objective reinforcement learning algorithm to train this model. Sur et al. (2022) adopted
a deep reinforcement learning (DRL)-based approach; the experimental results indicate
that the proposed method outperforms the random and greedy methods, particularly
when the profits and weights of items have a non-linear relationship, such as quadratic
forms. Nomer et al. (2020) introduce a heuristic solver based on neural networks and deep
learning for the knapsack problem.
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Olivas et al. (2021) conclude that incorporating fuzzy logic into hyperheuristics
provides a robust mechanism for improving solutions to the knapsack problem. This
approach enhances adaptability and results in better performance across various instances
of the problem.

A new class of optimization problems called Mixed Pareto-Lexicographic Multi-
objective Optimization Problems (MPL-MOPs) provides a suitable model for scenarios
where some objectives have priority over others (Lai et al. 2020).

In the investment area, financial ratios such as the internal rate of return (IRR) and
the Weighted Average Cost of Capital (WACC) play a vital role in the selection process of
available investments (Kos et al. 2009). The financial measure IRR (internal rate of return) is
widely applied in the financial and investment sector and, in many cases, is preferred to the
NPV (Net Present Value), although NPV provides the highest accuracy. In this paper, we
prefer IRR to reduce the computational cost to produce EVA, a critical investment indicator.
EVA is a reliable way to evaluate whether some investments should be completed; it is
possible to select some investments with a negative EVA if necessary to achieve maximum
EVA for the portfolio (Sharma and Kumar 2010).

By integrating data science and advanced management strategies, organizations can
optimize their portfolios to enhance profitability while minimizing environmental impacts.
In recent years, scholars have been increasingly focused on EVA in relation to other methods
of evaluating business performance. EVA has grown at a CAGR of 9.60%, compared to
other business performance evaluation methods, which have only grown at a CAGR of
5.67%, as per publications in Scopus-listed journals (Tripathi et al. 2022).

In general, there are conflicting studies on EVA as a financial metric;
(Faiteh and Mohammed 2023) state that EVA demonstrates superiority over traditional met-
rics for listed companies and can be adapted for unlisted firms using accounting beta, making
it a versatile financial metric for value creation. According to Dobrowolski et al. (2022), on
the other hand, EVA is not a universal financial metric; it fails to accurately reflect conditions
in unstable markets, leading to potential mismanagement and limited shareholder value.

Chen et al. (2023b) found that EVA-related metrics naturally induce long-term, strate-
gic and sustainable decision-making without limiting executives to overly focus on short-
term profitability or develop a pseudo environment to illustrate EVA’s managerial benefits
and potential to cultivate sustainable growth.

A recent study relates to developing a mixed integer non-linear programming (MINLP)
model that incorporates financial risk metrics into a robust closed-loop supply chain design,
considering the unpredictability of final product demand to maximize EVA (Polo et al. 2019).
Multi-objective optimization methods significantly impact optimization outcomes.

One well-known way to deal with this is the Weighted Sum Method. The objectives
are often combined into a single objective, and conventional optimization procedures are
employed to find the best solution. In this strategy, decision-makers must determine the
weights. This method requires correct objective function weights and may not be suitable
for nonconvex issues. Di Somma et al. (2018) suggested a stochastic integer programming
model that converts the minimization of total energy costs and carbon dioxide emissions
into a single objective using the weighted sum approach; then, they employed the branch-
and-cut method to solve the researched issue.

In multi-objective evolutionary algorithms, a set of potential non-dominated solutions
must be generated first, and the decision-maker selects from these solutions. There have
been several reviews on the methods and application of multi-objective optimization
(MOO). One of the most used methods is the Pareto method (Ehrgott 2005). The Pareto
method is based on the principle of dominance where a dominated and a non-dominated
solution emerges constantly from a continuously updated algorithm. The solution using
the Pareto method generates a Pareto optimal front where it reflects the amount that must
be sacrificed from the optimal solution of one objective to improve another objective.

In finance (Tapia and Coello 2007), to identify critical technical analysis patterns in
financial time series, the niched-Pareto genetic algorithm (NPGA) is used. An alternative
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method is the e-constraint method (Haimes et al. 1971) where all constraints are trans-
formed into equality by adding or removing the appropriate constant (Mavrotas 2009;
Mavrotas and Florios 2013). Mesquita-Cunha et al. (2023) developed a recent improve-
ment of this algorithm for integer programming problems for knapsack-type resource
allocation problems.

Genetic algorithms can also be applied to portfolio management (Metawa et al. 2016;
Liu and Xiao 2021; Krink and Paterlini 2011). Giagkiozis and Fleming (2015) and
Gunantara (2018) provide two comprehensive literature reviews of multi-objective op-
timization methods.

In the energy sector, optimizing portfolios is a critical concern, as it involves balancing
various factors such as cost, risk, and renewable energy integration (Schönberger 2016).
One approach to address this challenge is the use of the knapsack problem, a well-known
optimization problem in the field of operations research (Ioannou et al. 2017)

The most common type of MOEA mentioned in the literature is dominance-based
algorithms, specifically NSGA-II. Li and Qiu (2016) used an improved version of the
NSGA-II to optimize a hydro-photovoltaic power system model, considering both power
output smoothness and annual power generation. Noorollahi et al. (2017) created NSGA-II
to solve a multi-objective problem. Indicator-based algorithms use indicator functions
to assess population quality in MOEAs. Keshavarzzadeh and Ahmadi (2019) compared
various strategies for optimizing a multi-objective model, including NSGA-II, generalized
differential evaluation, indicator-based evolutionary algorithms, speed-constrained multi-
objective algorithm, and strength Pareto algorithms.

The population quality in MOEAs is measured using indicator functions on indicator-
based algorithms. Keshavarzzadeh and Ahmadi (2019) optimized a well-known multi-
objective model using a variety of techniques, including NSGA-II, generalized differential
evaluation, an indicator-based evolutionary algorithm, a speed-constrained multi-objective
algorithm, and strong Pareto evolutionary algorithms. They then compared the outcomes
of these algorithms.

Zhou et al. (2024) addresses the critical need for effective planning in integrated
energy systems (IESs) to support energy revolution and sustainability goals. The authors
propose a novel planning framework that integrates multi-objective optimization with
fuzzy multi-criteria decision-making (MCDM). This framework is designed to tackle the
complexities of IES planning by modeling it as a multi-objective optimization problem. The
optimization problem is solved using a multi-objective state transition algorithm based on
decomposition (MOSTA/D). This method generates a Pareto set that allows for trade-offs
among conflicting objectives, which is a common challenge in multi-objective optimization.

The knapsack problem involves selecting a subset of items from a given set, where
each item has a weight and a value, and the goal is to maximize the total value while
staying within a weight constraint (Göteman et al. 2020).

Recent research has shown a significant increase in the application of optimization
techniques, including the knapsack problem, to address energy-related challenges. For
example, goal programming has been used to balance the trade-off between the cost per
kWh of an electricity generation portfolio and the total risk for an investor-owned utility
(Ioannou et al. 2017).

Chen et al. (2023a) reviewed multi-objective optimization in long-term energy systems,
emphasizing the need to consider economic, environmental, and energy security objectives
to address complex energy demands.

Recent advanced studies have used machine learning or reinforcement learning in
portfolio management. Vaish et al. (2024) introduce the use of the Random Forest (RF)
model, a popular machine learning algorithm, for optimizing microgrid configurations. The
paper compares the RF model’s performance with other methodologies, such as particle
swarm optimization (PSO) and artificial neural networks (ANNs), indicating a growing
trend in applying machine learning techniques to energy optimization problems.
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A comprehensive overview of new machine learning techniques in the field of the
energy sector is provided by Alazemi et al. (2024).

An alternative approach is the RNN for asset allocation management
(Giacomazzi Dantas 2021; Milhomem and Dantas 2021; Tao et al. 2021). deLlano-Paz et al. (2017)
provide a comprehensive literature survey on applying Modern Portfolio Theory (MPT) in
energy planning.

The model proposed by Roques et al. (2010) seeks to identify the portfolio consisting of
those European plants (inter-State12) that minimize the variability of the wind production
output for a specific production level as an objective function. They propose an alternative
definition for return, referring to it as the mean capacity factor for the different locations.
Risk is defined as the hourly variability of production (Rombauts et al. 2011).

Overall, the literature review highlights the growing importance of the knapsack
problem in optimizing energy portfolios, as it provides a valuable tool for balancing
various objectives and constraints in the energy sector.

3. The Main Question from a Theoretical Point of View—Methodology

Our main question is, “Is there a rational and efficient way to allocate a given amount
of budget to a set of projects among alternatives to achieve maximum profitability?”. Our
variables are Boolean for selected and unselected projects. In this way, the problem is
treated as a budget problem (knapsack). A project is selected to be covered by the budget if
the total profitability of the selected projects is maximum. We develop our model to solve
this problem by answering the main question.

We consider the classical 0-1 knapsack problem, where a subset of n data projects must
be allocated to a knapsack of capacity c. Each project has a profit rj and a weight wj, and
the goal is to select a fraction of projects that maximize the total profit without exceeding
the available budget. A binary variable Xj = 0 or 1 is defined because each project must
be implemented as a whole or not at all. Several variations of the knapsack problem have
been proposed to help organizations make sound project selection decisions in different
sectors (Martello and Toth 1990).

We use an integer programming formulation (0-1) where there is a binary decision
variable for each alternative, and these take values of 0 (alternative not selected) or 1
(alternative selected). In the case of a target, an integer programming (IP) formulation is
usually preferred, particularly the knapsack formulation. We construct the model using
linear algebra to achieve a practical way to implement several subproblems with different
efficiency rates. Another subproblem arises among projects: One project is independent of
another; one project is complementary to another; one project is disjoint-conflicting. Thus,
the model is defined for the three categories of constraints as follows:

Matrix of Decision Variables X

X1×n = [xi] = [x1,x2, x3, . . . .xn] ∀i = 1, 2 . . . n projects (1)

where xi is the binary variable 1 or 0 if the project i is implemented or not.
Matrix cost of projects C

C1×n = [ci] = [c1,c2, c3, . . . .cn] ∀i = 1, 2 . . . n projects (2)

where ci is the specific cost for each project construction.
Matrix of Production of Projects

P1×n = [pi] =
[
p1,p2, p3, . . . .pn

]
∀i = 1, 2 . . . n projects (3)

where pi is the specific production for each project at Megawatts (MW).
Matrix of Return of Projects

R1×n = [ri] = [r1,r2, r3, . . . .rn] ∀i = 1, 2 . . . n projects (4)
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where ri is the specific return for each project as a percentage of the cost.
Matrix ROICC= Return − OPPEX

R′
1×n =

[
r′i
]
=

[
r′1,r′2, r′3, . . . .r′n

] ∀i = 1, 2 . . . n projects (5)

WACC = is
E

E + DTE ∗ E
+ (1 −ϕ)iD

DTE ∗ E
E + DTE ∗ E

(6)

Objective Function (O.F)

Max O.F 1 X1×n × (ROICC − WACC) ∀i = 1, 2 . . . n projects (7)

Max O.F 2 X1×n × P1×n
T ∀i = 1, 2 . . . n projects (8)

Constraints:

Budget restriction

KNAPSACK X1×n × CT
1×n = KNAPSACK1×1 ∀i = 1, 2 . . . n projects (9)

Nowadays, particularly in Greece because of the prolonged recession after the eco-
nomic crisis of 2008 and the current coronavirus pandemic, it is imperative to use the
available budget in the best possible way. To achieve this, the key role is in the conversion
of traditional investments to alternative and modern investments such as renewable sources
of energy. In this area, another critical issue emerges, which is the complementarity and
competitiveness of projects.

Complementarity is very important because it indicates that implementation of a
project is impossible and unprofitable without another project being completed first. This
second point reveals a precise need for further research on the subject. It is possible that
a project is not only necessary for the realization of an investment but may also meet the
needs of other investments that can be carried out with the remaining available budget.
A feature example is an energy station that meets the energy needs of multiple energy
investments, such as photovoltaics or windmills.

On the other hand, competitiveness means that if an investment is made, one or more
available investments cannot be created. It is very important that the available budget
is not wasted and that the selection of investments is carried out objectively so that the
plurality of all types of investments in the portfolio is appropriate. In the energy sector,
this is achieved by not allowing several investments of one type to be made at the same
time and by not making more investments in an area where the availability of energy
needs is met.

Conflict projects A

An×k = [a ij

]
where i = projects and j = group of conflict projects

So i = n and j = k, aij = [1, 0] where 1 means projects are conflicting and zero in any
other cases.

X1×n × An×k ≤ 11×k ∀i = 1, 2 . . . n projects (10)

Complementary projects S

Sn×m = [b ij

]
where i = projects and j = group of projects in combination.

So i = n and j = m, bij = [1,−1, 0] where 1 and −1, respectively, mean projects are in
combination, and 0 in any other cases.

X1×n × Sn×m ≤ 01×m ∀i = 1, 2 . . . n projects (11)

To reduce the dimension of the table: If there are z projects in combination with
another project, respectively, the table of complementary projects is transformed.
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i = n and j = m, bij = [1,−z, 0] where 1 is if the project is combined with another and
-z indicates an energy station project to be created if any of the above is carried out, and 0
for all other cases.

X1×n × Sn×m ≤ 01×m ∀i = 1, 2 . . . n projects (12)

With the last two equations from the financial position, we ensure that the concentra-
tion risk in our portfolio is kept low, and from the ethical point of view, we avoid a biased
position in a particular type of investment.

WACC = is × S
D + S

+ iD × (1 −ϕ)× D
D + S

(13)

According to the INTERNATIONAL VALUATION STANDARDS COUNCIL (IVSC)
each investor requires a different rate of return (is) depending on the type of investment
(photovoltaics or windmill). Similarly, banks vary the mortgage rate (iD) according to the
type of investment and, in addition, the creditworthiness of the investor. For this reason, in
our model, each project has a different rate of return. Another important measure is the
ratio of investors’ capital S/(D + S) and banks’ D/(D + S) achieved through the leverage,
processing the essential capital to maximize profit, and ϕ represents tax rate.

The Weighted Average Cost of Capital (WACC) represents the average rate of return a
company must pay to finance its assets, calculated as a weighted sum of the costs of equity
and debt. It reflects the minimum return required by investors and is crucial for evaluating
investment decisions, as it serves as the discount rate in capital budgeting and valuation
models. WACC incorporates the firm’s capital structure and market risk to provide a
comprehensive financing cost.

Another question that arises about the profitability of this project is as follows: We
first assume that profitability is equal to the NPV of each project. If the profitability of the
rate of return is IRR, then we lose the upper part of our profit using the discount factor
of the NPV of each project if we replace the rate of return with the Average Return on
Invested Capital (AROIC) of each project. The ROIC substitution must be calculated using
present values to turn our problem into a linear algebra problem where a matrix R or X or
C must be diagonal, and we choose C because the investment amount of each project cost
is not involved with complementarity and discrimination-conflict constraints. Based on
Liapis (2010), we would also like to produce an EVA vector of each project (Stewart 2009).
The reason for all this transformation is to introduce the EVA theory into the problem.

Economic Value Added (EVA) is a performance measurement tool used to assess a
company’s ability to generate value beyond the required return on its invested capital. It is
calculated by subtracting the cost of capital from the firm’s net operating profit after taxes
(NOPAT). EVA emphasizes the importance of creating shareholder wealth by ensuring
returns exceed the opportunity cost of capital employed.

Subtracting (12) by (5), the O.F gives the following:

X1×n × CD
n×n × R′T

n×1 −
X1×n × CD

n×n × WACCn×1 ⇔
X1×n × CD

n×n ×
[
R′T −WACC]n×1 ⇔

X1×n × CD
n×n × EVAn×1 = Profit1×1 ∀i = 1, 2 . . . n projects

(14)

With the abovementioned approach, an EVA vector is critical for knapsack fulfillment.
All the above transformations give the value of a different approach to decision-making for
the multiple-investment problem under knapsack constraints.

Many projects may have negative EVA in addition to our constraints so a new filter
should be imposed as follows: Eva ≥ 0 or Ri ≥ WACC

C × Xi could be a stepwise product, but for EVA to be accurate for each project, WACC
should be a vector with the same number of elements.
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Another issue concerning WACC is the combination of different types of capital
reflected through leverage, which can vary from project to project. Using the preferred
capital, competitiveness and complementarity between projects, in addition to technical
and economic reasons, depends on environmental and socio-regulatory factors.

We selected the NSGA III algorithm to address the given problem as the Pareto front
(trade-off) between objectives is nonconvex and because the problem has complex non-
linear characteristics.

1. NSGA-III is designed to handle more difficult computations and constraints, especially
in cases with many decision variables. The algorithm manages to simultaneously
optimize multiple dimensions without degrading the quality of solutions and offers
better allocation in problems with complex solution sets.

2. In problems with many iterations (looping structures) and complex constraints, NSGA-
III can handle complexity better because it searches in multidimensional space and
uses reference points to find solutions in each part of the objective space. The con-
straints are considered through the non-dominated classification process and the
distance strategy from the reference points.

3. NSGA-III is known for its ability to explore the multidimensional solution space more
fully through the Niche Preservation process and the way it manages benchmarks.
This allows it to find solutions that may not be easily identified by NSGA-II. In NSGA-
II, solutions close to the Pareto front can be clustered in specific regions, leaving other
regions empty. NSGA-III, however, uses a strategy that ensures that solutions are
evenly distributed along the Pareto front.

4. A better advantage of NSGA-III is that it does not require additional parameters
compared to NSGA-II.

The Non-dominated Sorting Genetic Algorithm III (NSGA-III) is a powerful multi-
objective optimization technique designed to handle problems involving many objectives.
It extends the concepts of NSGA-II by introducing a reference-point-based approach to
maintain a well-distributed set of Pareto optimal solutions. Unlike NSGA-II, which uses
crowding distance to promote diversity, NSGA-III uses predefined reference points to guide
the search process toward a more uniform spread across the objective space. This makes
it particularly useful in high-dimensional objective spaces, where maintaining diversity
becomes challenging.

NSGA-III begins by generating an initial population, evaluating it based on the objec-
tives, and sorting individuals into different Pareto fronts. It then associates each solution
with the nearest reference point, preserving niche diversity by selecting one solution per
reference point. The population evolves through evolutionary operators such as selection,
crossover, and mutation, iteratively refining the Pareto front. The algorithm continues until
a stopping criterion is met, such as a maximum number of generations or a convergence
criterion where the solutions do not significantly improve. NSGA-III’s ability to produce
diverse solutions makes it suitable for complex, real-world applications with multiple
conflicting objectives.

Step-by-step representation of NSGA III pseudo code is shown in Appendix A.
An overview of this paper is shown in Figure 1.
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Figure 1. Flow chart of process (Source: Author’s calculations).

4. Data and Model

We use data from the Greek green energy market; we have fifteen alternative invest-
ment types of projects: four windmills, thirteen photovoltaics, and three power stations.
A budget volume analysis is conducted of the windmills, photovoltaics and mandatory
connection infrastructure. These types of projects have a mean rate of return, and the
infrastructure has returns derived from other projects. Our specific model and data tables
are provided below. The budget volume is allocated between equity or equity capital and
debt capital using a leverage ratio, a financial metric that measures the proportion of a
company’s capital that comes from debt. The energy station is expressed at 0.2€ and a return
of 6%, which is identical to the WACC because the energy station does not individually
generate ROIC but is suitable to generate another project.
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Objective Function:

O.F1 = ∑20
i=1 [Xi ×

(ROICCi − WACCi)]
∀ i = 1, 2 . . . n projects (15)

O.F2 = ∑20
i=1 [Xi × (Pi

T)] ∀ i = 1, 2 . . . n projects (16)
EVAT = [EVAi] =
[EVA1, EVA2, . . . EVA20]

∀ i = 1, 2 . . . n projects (17)

EVAi = r′ i − wacci ∀ i = 1, 2 . . . n projects (18)
r′ i =ROIC of each project ∀ i = 1, 2 . . . n projects

Budget = 15 million €
WACC: A table of WACC for each project

is = 15%, id = 6%, ϕ = 22%

P8, P13, and P15 represent the energy plants where they do not provide a profit on their
own but are necessary for the operation of the other types of investments, and therefore,
EVA = 0.

Restrictions:
P1 or P3 or P14 (19)
P12 and P5 and P16 then P8 (20)
P11 and P4 then P15 (21)
P7 or P9 (22)
X12 × P12 + X5 × P5 + X16 × P16 ≥ 14000 (23)
X11 × P11 + X4 × P4 ≥ 3000 (24)
∑20

i=1 Xi × Ci ≤ Budget ∀ i = 1, 2 . . . n projects (25)

Explanations of the restrictions:

Only one of the investments P1, P2, and P14 can be implemented according to

x1 + x3 + x14 ≤ 1. (26)

P8 represents a power station, and P4, P5, and P17 are photovoltaic investments that
will be built in the same area. If at least one of the three is implemented, it is appropriate to
create P8 because it will meet the energy needs of all 3. The equation that represents this is

x12 + x5 + x16 − 3x8 ≤ 0. (27)

P15 represents a power station, and P11 and P6 are photovoltaic investments that will
be created in the same area. If at least one of the two is implemented, P15 is appropriate to
be created because it will meet the energy needs of both. The equation representing this is

x11 + x4 − 2x15 ≤ 0. (28)

Only one of P4 and P6 can be implemented according to the following equation:

x7 + x9 ≤ 1. (29)

Projects under constraint 2 must, if an energy station is built, cover the minimum
energy needs of the region.

Projects falling under restriction 3 must, if an energy station is built, cover at least the
minimum energy needs of the area.

The total cost must not exceed the available budget:

Budget ≤ 15000000 € (30)

In Table 1, the cost and ROIC of available investment projects and power plants
provide information on the investment projects.
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Table 1. Data on investment projects.

Cost Production Price Revenue Type DTE

P1 5.00 € 18,000 50 € 0.9 € Windmill 4

P2 3.00 € 9750 40 € 0.39 € Windmill 2

P3 4.00 € 10,000 60 € 0.6 € Windmill 3

P4 1.00 € 2300 65 € 0.15 € Photovoltaics 4

P5 0.75 € 1200 68 € 0.081 € Photovoltaics 2

P6 1.50 € 2800 70 € 0.196 € Photovoltaics 3

P7 0.60 € 1250 72 € 0.09 € Photovoltaics 4

P8 0.20 € Electric Station

P9 0.40 € 850 75 € 0.063 € Photovoltaics 4

P10 0.50 € 750 66 € 0.049 € Photovoltaics 2

P11 1.00 € 1500 74 € 0.111 € Photovoltaics 2

P12 0.50 € 700 65 € 0.045 € Photovoltaics 2

P13 0.20 € Electric Station

P14 4.00 € 14,000 45 € 0.63 € Windmill 4

P15 0.20 € Electric Station

P16 5.00 € 13,500 63 € 0.85 € Photovoltaics 4

P17 0.70 € 830 67 € 0.055 € Photovoltaics 2

P18 0.80 € 770 70 € 0.053 € Photovoltaics 2

P19 2.00 € 4750 63 € 0.299 € Photovoltaics 4

P20 1.45 € 2230 65 € 0.15 € Photovoltaics 2
Source: Data from the Greek energy market.

5. Estimations and Results

Using the NSGA III algorithm and matrix calculations, our findings are provided below:
In Table 2, the appropriate formulation gives the table for constraint Equations (26)–(29)

according to a general form of Equations (10)–(12) (e.g., if project 1 and project 2 are
conflicting, then the equation representing them is x7 + x9 ≤ 1. If projects 3 and 4 are
complementary to project 5 of the energy station, then the corresponding equation is
x11 + x4 − 2 × x15 ≤ 0).

Table 2. Matrixes of complementary and conflict projects.

Conflict Complementary

X1 1 0 0 0

X2 0 0 0 0

X3 1 0 0 0

X4 0 0 0 1

X5 0 0 1 0

X6 0 0 0 0

X7 0 1 0 0

X8 0 0 −3 0

X9 0 1 0 0

X10 0 0 0 0
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Table 2. Cont.

Conflict Complementary

X11 0 0 0 1

X12 0 0 1 0

X13 0 0 0 0

X14 1 0 0 0

X15 0 0 0 −2

X16 0 0 1 0

X17 0 0 0 0

X18 0 0 0 0

X19 0 0 0 0

X20 0 0 0 0

RESTRICTIONS RESTRICTIONS

X × A 1 0 X × S −1 0

≤ ≤
LIMIT OF RESTRICTIONS LIMIT OF RESTRICTIONS

1 1 0 0
Source: Author’s calculations.

In Table 3, the appropriate formulation gives the table for constraint
Equations (23) and (24).

Table 3. Matrixes of complementary and conflict projects.

Production Conflict

X1 18,000 0 0

X2 9750 0 0

X3 10,000 0 0

X4 2300 0

X5 1200 0 0

X6 2800 0 0

X7 1250 0 1

X8 0

X9 850 0 1

X10 750 0 0

X11 1500 0

X12 700 700 0

X13 0 0

X14 14,000 0 0

X15 0 0

X16 13,500 13,500 0

X17 830 0 0

X18 770 0 0
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Table 3. Cont.

Production Conflict

X19 4750 0 0

X20 2230 0 0

RESTRICTIONS

X × PT 14,200 38,000

≥
LIMIT OF RESTRICTIONS

14,000 30,000

Table 4 presents the details of each eligible or ineligible project.

Table 4. Structure of an optimal portfolio.

EVA = ROIC − WACC ROIC WACC COST D X SELECTED PROJECTS

X1 6% 13% 6.7% 5.00 € 0 WINDMILL

X2 0% 8% 8.1% 3.00 € 1 -

X3 3% 10% 7.3% 4.00 € 0 -

X4 3% 10% 6.7% 1.00 € 1 -

X5 −2% 6% 8.1% 0.75 € 0 PHOTOVOLTAICS

X6 1% 8% 7.3% 1.50 € 0 PHOTOVOLTAICS

X7 3% 10% 6.7% 0.60 € 0 -

X8 0% 0% 0% 0.20 € 1 ENERGY STATION

X9 4% 11% 6.7% 0.40 € 0 -

X10 −3% 5% 8.1% 0.50 € 0 -

X11 −2% 6% 8.1% 1.00 € 1 PHOTOVOLTAICS

X12 −4% 4% 8.1% 0.50 € 1 PHOTOVOLTAICS

X13 0% 0% 0% 0.20 € 0 -

X14 4% 11% 6.7% 4.00 € 1 WINDMILL

X15 0% 0% 0% 0.20 € 1 ENERGY STATION

X16 5% 12% 6.7% 5.00 € 1 PHOTOVOLTAICS

X17 −5% 3% 8.1% 0.70 € 0 -

X18 −4% 4% 8.1% 0.80 € 0 -

X19 0% 3% 6.7% 2.00 € 0 -

X20 1% −3% 8.1% 1.45 € 0 -

Source: Author’s calculations. D referred to diagonal matrix.

The EVA of power stations is 0% because they do not generate a profit, but they are
suitable for the creation of another project.

Table 5 presents an estimation of the Objective Functions (OFs)—total EVA or PROFIT,
total production, and total budget,
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Table 5. Optimal portfolio OF.

MAX EVA OF KNAPSACK 11.91%

FULFIL OF KNAPSACK = X × C 14.9 €

MAX PRODUCTION 40,750

Source: Author’s calculations.

Figure 2 reflects the Pareto efficient front, and the optimal solutions (Max EVA, Max
Production) range from 14.7% (38,000) to 11.91% (40,750).

 

Figure 2. Pareto front (Source: Author’s calculations).

Data from any project similar to the data we used from the Greek Green Energy Market,
which are taken from a case study, can be used.

From the above estimation, it is concluded that the optimal portfolio structure is
as follows:

1. Fulfilling the knapsack—budget: In our example, the optimal budget to be consumed
is 14.9 M€.

2. Selection of projects xi: Our optimal portfolio structure includes projects P1, P4, P11,
P12 and P19, P16 and power plants P8 and P15.

3. OF 1: The optimal profit is 11.91%.
4. OF 2: Optimal production 40,750.

6. Discussions and Conclusions

6.1. Discussions and Key Findings

The paper aims to extend the existing literature on portfolio optimization in the energy
market. From the overall analysis carried out in this case study, its contribution to the
optimal allocation of budget resources lies in constructing a specialized model for energy
projects based on the data of the Greek energy market.

The paper presents a novel optimization approach to resource allocation in the en-
ergy sector, employing a combination of Economic Value Added (EVA) and the knapsack
problem. The authors developed a double optimization model within a knapsack-type
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framework using the NSGA III algorithm. The research focuses on maximizing EVA along-
side production levels to enhance decision-making in the energy sector, particularly in
Greece. Applying the model to the Greek energy market offers valuable insights, espe-
cially in balancing investments in renewable energy, such as wind power, against overall
portfolio returns.

This study has several findings.
First, complementarity and competitiveness between projects are key issues addressed

in this paper. Its contribution to this issue is that the creation of alternative constraints
to the primary Boolean type of problem of the variable to perform or not to perform a
project is always an integer, which does not allow continuous mathematical approximations
(Pferschy and Schauer 2017).

Second, in this paper, financial science enters the problem, and mainly the objective
function, by maximizing the Economic Value Added (EVA) in the optimal projects for the
part of the Economic Value Added that constitutes the knapsack budget
(Dluhopolskyi et al. 2021). In this way, the optimal projects that constitute the portfolio
knapsack are decided by the firm’s management, not by the shareholders or banks.

Third, maximizing EVA while maximizing production using the NSGA III algorithm
(Eftekharian et al. 2017) that we carried out in our paper is an innovation that focuses
on decision-making according to the objectives of the company’s management while
meeting the energy needs of the region through maximizing production, ensuring that in a
period of price decrease, there will not be a significant impact on the EVA of the portfolio
(Vazhayil and Balasubramanian 2014).

Fourth, introducing the constant WACC vector per project allows the introduction of
leverage per project and the differentiation of the cost of each project while differentiating
the cost of capital per project type in energy from the IVSC studies. Finally, for a given
budget, it seems that if you want to increase production, the increase in production must
“sacrifice” some of the EVA. This is because elective projects are likely to have higher costs.

The strength of the paper lies in its straightforward methodological approach and the
innovative use of EVA as a financial metric alongside a traditional knapsack problem to
address the complexities of energy portfolio management. The authors differentiate their
approach from previous work by introducing a constant WACC vector per project and
incorporating the concept of sacrificing some EVA for production maximization, offering a
fresh perspective in multi-objective optimization.

6.2. Theoretical Implication and Practical Implication

This study enriches the theoretical research of optimal allocation and portfolio opti-
mization approach in the energy market. The originality lies in the contribution of a specific
methodology to decision-making for selecting specific projects in the energy sector instead
of the simple and project-specific financial methods, NPV–IRR. The theoretical implication
of the article contributes to the academic debate on whether the EVA index can offer better
results than traditional indicators, especially in the energy sector (Dobrowolski et al. 2022).

Also, following the multi-objective optimization approach, it tries to find the balance
between the optimization of the financial objective (EVA), ensuring that in a period of price
decrease, there will not be a significant impact on the EVA of the portfolio. The second
objective is to maximize the production of the portfolio covering, in addition to the above
objective, the objective of sustainable development meeting the energy needs of each region.
The practical application depends on the fact that the model we develop is not a theoretical
model but a model of operational research for market practitioners. Each investor can
adjust the model to his needs depending on the specific characteristics of the projects they
have to choose from and the regions where they are located. Data from the Greek energy
market were used to further enrich scientific approaches in the professional field, helping
qualified executives make more rational decisions.

76



J. Risk Financial Manag. 2024, 17, 498

6.3. Restrictions and Future Work

Although this study provides valuable insights, there are some restrictions. First, the
data on the Greek energy market we used are limited. A second observation is that the
decline in portfolio EVA is disproportionate to the increase in the output provided by this
“sacrifice”. This is probably due to the specific projects to be selected. Third, the optimal
solution to the problem is reached relatively quickly, which explains why the Pareto front
of this form is, as in Figure 1, influenced by the above two factors.

The next stage of the research will be to expand the available projects for selection
and to see if this problem has been eliminated. However, as these projects belong to
the photovoltaic sector, the result is expected to stay the same. A large part of the cost
comes from creating energy plants, a sufficient and necessary condition that increases costs
without producing a direct economic benefit. The restriction to cover the energy needs of
each region has also been introduced, which ‘sacrifices’ part of the purely financial objective
for the benefit of society.

An extension of our research would be the introduction of the theory of representation
and the constraints it defines between the management–shareholder–banking relations.
According to agent theory and Stewart’s EVA, it seeks to build a portfolio that satisfies all
three parties (banks, shareholders, and managers) because investors handle money from
funds and form portfolios from managers, so it is more appropriate to choose the EVA
which managers use to secure their fees, and when EVA is positive, both managers and
creditors are satisfied. The specific data refer to Greece; any international investor can use
the model by importing data from another economy.

Future research should consider networks’ availability regarding loads at different
times and other technical specifications. Network inefficiencies, which result from losses for
both the type of project and the area of implementation, affect both production and price.
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Appendix A

Algorithm A1: Generation t of NSGA-III Procedure

Input: H structured reference points Z* or supplied aspiration points Z*, parent population Pt
Output: Pt + 1
1. St = ∅
2. Qt = Recombination + Mutation (Pt)
3. Rt = Pt ∪ Qt
4. (F1, F2, ...) = Non-dominated-sort (Rt)
5. repeat
6. St = St ∪ Fi and i = i + 1
7. until |St| ≥ N
8. Last front to be included: Fl = Fi
9. if |St| = N then
10. Pt + 1 = St, break
11. else
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Algorithm A1: Cont.

12. Pt+1 =
l−1⋃
j=1

Fj

13. Point to chosen from Fl: K = N − |Pt + 1|
14. Normalize objectives and create reference set Z*:
Normalize (fn, St, Zr, Zs, Za )
15. Associate each member s of St with a reference point:
[π(s),d(s)] = Associate (St, Z*)
16. Compute niche count of reference point
j ∈ Z*: ρj = ∑

s∈st/Fi

((π(s) = j)?1 : 0)

17. Choose K members one at a time from Fl to construct Pt + 1:
Niching(K, ρj, π, d, Zr, Fl, Pt + 1)
18. end if

Step-1 Normalize fn, St, Zr, Zs/Za) procedure
Input: St, Zs (structured points) or Za (supplied points)
Output: fn, Zr (reference points on normalized hyper-plane)
1. for j = 1 to M do
2. Compute ideal point: zj

min = mins ∈ St fj(s)
3. Translate objectives: fj’(s) = fj(s) − zj

min ∀s ∈ St
4. Compute extreme points: zjmax = s:
argmins ∈ St ASF(s, wj) = (ε, ..., ε)T),
ε = 10-6 and wi

j = 1
5. end for
6. Compute intercepts aj for j= 1, M
7. Normalize objectives (fn) using

fi
n(X) = f ′ i(X)

ai−Zi
min , for i = 1, 2, ..., M

8. if Za is given then
9. Map each (aspiration) point on normalized hyper-plane
and save the points in the set Z’
10. else
11. Zr = Zs

12. end if

Step-2 Associate (St, Zr) procedure
Input: St, Zr

Output: π (s ∈ St), d(s ∈ St)
1. for each reference point Z ∈ Zr do
2. Compute reference line w = z
3. end for
4. for each (s ∈ St) do
5. for each w ∈ Zr do
6. Compute d⊥(s, w) = s − wTs / ||w||
7. end for
8. Assign π(s) = w: argmin w ∈ Z

r d⊥(s, w)
9. Assign d(s) = d⊥(s, π(s))
10. end for

Step-3 Niching (K, ρj, π, d, Zr, Fl, Pt + 1) procedure
Input: K, ρj, π(s ∈ St), d(s ∈ St), Zr, Fl
Output: Pt + 1
1. k = 1
2. while k ≤ K do
3. Jmin = {j: argmin j ∈ Zr ρj}
4. J = random (jmin)
5. Ij = {s: π(s) = j, s ∈ Fl}
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Algorithm A1: Cont.

6. if IJ �= ∅ then
7. if ρj = 0 then
8. Pt + 1 = Pt + 1 ∪ {s: argmin s ∈ IJ ds}
9. else
10. Pt + 1 = Pt + 1 ∪ random

(
IJ )

11. end if
12. ρj = ρj + 1, Fl = Fl/s
13. k = k + 1
14. else
15. Zr = Zr/{J}
16. end if
17. end while
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Abstract: This article provides exact analytical formulae for various kinds of rainbow step barrier
options. These are highly flexible and sophisticated multi-asset barrier options based on the following
principle: the option life is divided into several time intervals on which different barriers are moni-
tored w.r.t. different underlying assets. From a mathematical point of view, new results are provided
for the first passage time of a multidimensional geometric Brownian motion to a boundary defined as
a step function. The article shows how to implement the obtained option valuation formulae in a
simple and very efficient manner. Numerical results highlight a strong sensitivity of rainbow step
barrier options to the correlations between the underlying assets.

Keywords: rainbow step barrier option; rainbow option; step barrier option; barrier option; multias-
set option; multiasset barrier option; first passage time; boundary crossing probability; multidimen-
sional Brownian motion

1. Introduction

Barrier options are characterised by the introduction in the option contract of a pa-
rameter called the “barrier”, which, in the most standard form, is a predefined reference
value of the underlying asset S that may be located above the spot value of the underlying
(upward barrier or “up-barrier”) or below it (downward barrier or “down-barrier”). The
barrier may be of a “knock-out” type, i.e., the option expires worthless if the barrier is hit
by S at any time during the option life (in which case the barrier is called “continuous”) or
at one or a few predefined times (in which case the barrier is called “discrete”). The first
passage time of an underlying to a knock-out barrier, before the option expiry, triggers the
“deactivation” of the option. Alternatively, the barrier may be of a “knock-in” type, i.e., the
option expires worthless unless the barrier has been hit at least once before expiry, an event
called “activation”.

Barrier options are the oldest and the most widely traded non-vanilla options. They
are embedded in a lot of popular structured derivatives in stock and interest rate markets
(see, e.g., Bouzoubaa and Osseiran 2010). They are also extensively used as analytical
tools in financial modelling, for instance, in the so-called “structural models” of default
risk (see, e.g., Bielecki and Rutkowski 2004) or in the valuation of investments (theory of
“real options”). Since their first appearance in the financial markets during the 1970s, there
have been a huge number of variations in their original payoff, leading to an extraordinary
variety of non-standard barrier options. Among the most well-known of them are the
step barrier options, which divide the option lifetime into several time intervals on which
the barrier takes on different values. In its standard form, a step barrier option features a
piecewise constant barrier, i.e., a barrier defined as a step function. This allows modulation
of the barrier level during the option life, thus offering increased flexibility and enhanced
risk management capabilities, relative to a traditional barrier option. For instance, up-and-
out barrier levels can be raised and down-and-out barrier levels can be lowered during
time intervals when more protection is required, thus reducing the risk of deactivation.
Likewise, up-and-in barrier levels can be lowered and down-and-in barrier levels can be
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raised in time intervals during which the implicit volatility of the underlying rises, thus,
increasing the chances of activation.

The exact analytical valuation of step barrier functions was first achieved by
Guillaume (2001). Further mathematical details on how closed-form valuation can
be achieved, as well as exact results for more general deterministic step barriers, are
provided in Guillaume (2015, 2016). In the last couple of years, there has been a renewed
interest in step barrier options, as they stand out as an essential component of innovative
forms of investment, such as autocallable structured products and other equity-linked
products. This has led to a new series of academic contributions, such as Lee et al. (2019a,
2019b), Lee et al. (2021), Lee et al. (2022). Unlike previously cited references, these
articles do not provide explicit formulae, except for a few simple and already known
cases, nor do they handle outside step barriers as in Guillaume (2001), alternatively
upward and downward steps as in Guillaume (2015) and exponentially moving step
barriers as in Guillaume (2016). These recent contributions ignore previous results given
in references they do not cite, such as Guillaume (2001), that actually solve the problems
they discuss. They also claim to be able to analytically value a step barrier option with an
arbitrary number of steps, but without explaining how they intend to solve the difficult
problem known in numerical integration as the “curse of dimensionality”, nor even
beginning to discuss the numerical implementation of their approach, which constitutes
the main issue, though.

There are still a number of unsolved problems related to the valuation of step barrier
options. In particular, multi-asset step barrier options are barely touched upon in the
existing literature, apart from an isolated formula for an “outside” step barrier option given
in Guillaume (2001), also called an “external” step barrier option, featuring one underlying
asset w.r.t. which barrier crossing is monitored and another underlying asset w.r.t. which
the moneyness of the option is measured at expiry (the reader may refer to Heynen and
Kat 1994, or to Kwok et al. 1998, for background on outside barrier options in general). Yet,
multi-asset contracts with step barriers are actively traded in today’s financial markets,
as they allow investors to benefit from the advantages of diversification in terms of risk
control and expansion of investment opportunities. A particularly important subset of these
contracts is the so-called “rainbow” step barrier option. Broadly speaking, in the literature
on options, the denomination “rainbow” applies to payoffs linked to the performances
of two or more underlying assets (Chang et al. 2005; Gao and Wu 2022); metaphorically,
each underlying represents a different color, so that the association of all of these factors
makes up a rainbow. In the realm of barrier options, the rainbow step barrier option is
characterised by the property that, at each time interval, the barrier is monitored w.r.t.
a different underlying asset. A contract featuring a number n ∈ N of underlying assets
associated with n time intervals [t0 = 0, t1], . . ., [tn−1, tn], on which n steps of a piecewise
constant barrier are monitored, is called an n−the colour rainbow barrier option. Each time
interval is matched with a specific step of the barrier and a specific underlying asset. In
the standard form of the contract, it is the n−th asset associated with the n−th last step
of the barrier that is used to determine the moneyness of the contract at expiry. Rainbow
step barrier options are typically priced by Monte Carlo simulation, even in a standard
Black–Scholes model, because of the difficulties of the entailed analytical calculations and
also because the dimension of the valuation problem quickly increases with the number of
“colors”, leading to non-trivial issues of numerical evaluation of high-dimensional integrals.
Due to these obstacles, the present article is restricted to two-colour rainbow step barrier
options. Closed-form valuation is achieved not only for standard two-colour contracts but
also for two-colour outside step barrier options involving a third correlated asset at expiry,
and for two-colour contracts featuring a two-sided barrier (also known as a double barrier),
i.e., both an upward and a downward barrier on each time interval. Numerical evaluation
of the obtained analytical solutions is dealt with so that the valuation formulae derived
in this paper can be immediately implemented and yield extremely accurate results in a
few tenths of one second. Numerical results are provided, which reveal a strong and stable
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dependency of rainbow step barrier options on the correlations between the underlying
assets, as well as the importance of the volatility of the asset used to measure moneyness
when dealing with rainbow outside step barrier options. These findings suggest clear
application ideas to traders and investors, whether for a hedging or speculative purposes.
They highlight the specificity of rainbow step barrier options as instruments highly sensitive
to correlation, in contrast to standard step barrier options, which are sensitive to volatility
but, by constuction, cannot be sensitive to correlation.

This article is organised as follows: Section 2 states the main analytical results, provides
numerical results, and discusses their implications; Section 3 gives the mathematical proofs
of the analytical results presented in Section 2.

2. Formulae and Numerical Results

Let us begin with a few definitions. Let S1 and S2 be two GBMs (geometric Brownian
motions) modelling two asset prices, whose differentials, under a given probability measure
P, are given by:

dS1(t) = v1S1(t)dt + σ1S1(t)dB1(t) (1)

dS2(t) = v2S2(t)dt + σ2S2(t)dB2(t) (2)

where v1, v2 ∈ R, σ1, σ2 ∈ R+, and B1 and B2 are two standard Brownian motions whose
correlation coefficient is denoted by ρ1.2.

The measure P is characterised by the pair (v1, v2) or, equivalently, by the pair:(
μ1 = v1 − σ2

1 /2, μ2 = v2 − σ2
2 /2

)
(3)

If we refer to the log-return processes Xi(t) = ln(Si(t)/Si(0)), i ∈ {1, 2}, whose differen-
tials under P are given by:

dXi(t) = μidt + σidBi(t) (4)

Let H1, H2, K1, K2, K3 be positive real numbers. The numbers H1, H2 are the values of
two knock-out continuous barriers. H1 is monitored w.r.t. S1 on a time interval [t0 = 0, t1],
while H2 is monitored w.r.t. S2 on a time interval [t1, t2]. The numbers K1, K2, K3 are the
values of three discrete knock-out barriers; K1 is monitored w.r.t. S1 at time t1, while K2
and K3 are monitored w.r.t. S2 at times t1 and t2, respectively.

We can now begin to value two-colour step barrier options in the following order:

- both steps either upward or downward (Section 2.1);
- one upward step and one downward step (Section 2.2);
- reverse-type contract (Section 2.3);
- outside or external two-colour step barrier (Section 2.4);
- two-colour step double barrier (Section 2.5).

2.1. Valuation of Two-Colour Step Barrier Options When the Steps of the Barrier Are on the Same
Side in Each Time Interval

Section 2.1 deals with the valuation of two-colour step barrier options when the steps
of the barrier are either both upward or both downward. Our objective is to find the value
of the joint cumulative distribution function P[RUU](μ1, μ2) defined by:

P[RUU](μ1, μ2) � P

(
sup

0≤t≤t1

S1(t) ≤ H1, S1(t1) ≤ K1, S2(t1) ≤ K2, sup
t1≤t≤t2

S2(t) ≤ H2, S2(t2) ≤ K3

)
(5)

where the acronym “[RUU]” stands for “Rainbow Up and Up”.
The main result of Section 2.1 is given by the following Proposition 1.

Proposition 1. The exact value of P[RUU](μ1, μ2) is given by:
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P[RUU](μ1, μ2) = N3

[
min(k1, h1)− μ1t1

σ1
√

t1
,

min(k2, h2)− μ2t1

σ2
√

t1
,

min(k3, h2)− μ2t2

σ2
√

t2
; θ1.2, θ1.3, θ2.3

]
(6)

− exp
(

2μ1h1
σ2

1

)
×N3

[
min(k1,h1)−2h1−μ1t1

σ1
√

t1
, min(k2,h2)−μ2t1

σ2
√

t1
− 2θ1.2h1

σ1
√

t1
, min(k3,h2)−μ2t2

σ2
√

t2
− 2θ1.2h1

σ1
√

t2
;

θ1.2, θ1.3, θ2.3

] (7)

− exp
(

2μ2h2
σ2

2

)
×N3

[
min(k1,h1)−μ1t1

σ1
√

t1
+ 2θ1.2μ2

√
t1

σ2
, min(k2,h2)+μ2t1

σ2
√

t1
, min(k3,h2)−2h2−μ2t2

σ2
√

t2
;

θ1.2,−θ1.3,−θ2.3

] (8)

+ exp
((

2μ1
σ2

1
− 4μ2θ1.2

σ1σ2

)
h1 +

2μ2h2
σ2

2

)
×N3

⎡⎣ min(k1,h1)−2h1−μ1t1
σ1
√

t1
+ 2θ1.2μ2

√
t1

σ2
, min(k2,h2)+μ2t1

σ2
√

t1
− 2θ1.2h1

σ1
√

t1
,

min(k3,h2)−2h2−μ2t2
σ2
√

t2
+ 2θ1.2h1

σ1
√

t2
; θ1.2,−θ1.3,−θ2.3

⎤⎦ (9)

where the μi′s are given by (3) and:

- N3[b1, b2, b3; c12, c13, c23] is the trivariate standard normal cumulative distribution function
with correlation coefficients c12, c13, c23

h1 = ln
(

H1

S1(0)

)
, h2 = ln

(
H2

S2(0)

)
, k1 = ln

(
K1

S1(0)

)
, k2 = ln

(
K2

S2(0)

)
, k3 = ln

(
K3

S2(0)

)
(10)

θ1.2 = ρ1.2, θ1.3 =

√
t1

t2
ρ1.2, θ2.3 =

√
t1

t2
(11)

Corollary 1. It suffices to multiply by (−1) all the first three arguments of each N3[., ., .; ., ., .]
function and to substitute each min operator by a max operator in Proposition 1 to obtain an exact
formula for P[RDD](μ1, μ2) defined as:

P[RDD](μ1, μ2) � P
(

inf
0≤t≤t1

S1(t) ≥ H1, S1(t1) ≥ K1, S2(t1) ≥ K2, inf
t1≤t≤t2

S2(t) ≥ H2, S2(t2) ≥ K3

)
(12)

where the acronym “[RDD]” stands for “Rainbow Down and Down”.

Corollary 2. The term numbered (9) in Proposition 1 gives the value of the corrresponding
knock-in probability denoted by P(I)

[RUU]
(μ1, μ2) and defined by:

P(I)
[RUU]

(μ1, μ2) � P

(
sup

0≤t≤t1

S1(t) ≥ H1, S1(t1) ≤ K1, S2(t1) ≤ K2, sup
t1≤t≤t2

S2(t) ≥ H2, S2(t2) ≤ K3

)
(13)

Corollary 3. It suffices to substitute each argument θ2.3 in each N3[., ., .; ., ., .] function of Proposi-

tion 1 by
√

t2
t3

, ∀t3 ≥ t2, to obtain an exact formula for the early-ending variant P[EERUU](μ1, μ2)

defined by:

P[EERUU](μ1, μ2) � P

(
sup

0≤t≤t1

S1(t) ≤ H1, S1(t1) ≤ K1, S2(t1) ≤ K2, sup
t1≤t≤t2

S2(t) ≤ H2, S2(t3) ≤ K3

)
(14)
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Corollary 4. Let p̂ be the value of P[RUU](μ1, μ2) when the value of K3 becomes “very high”, i.e.,
high enough for the probability P(S2(t2) ≤ K3) to tend to zero; then, the difference
p̂ − P[RUU](μ1, μ2) provides the value of the following minor variant:

p̂ − P[RUU](μ1, μ2) = P

(
sup

0≤t≤t1

S1(t) ≤ H1, S1(t1) ≤ K1, S2(t1) ≤ K2, sup
t1≤t≤t2

S2(t) ≤ H2, S2(t2) > K3

)
(15)

End of Proposition 1.

Equipped with Proposition 1, one can value in closed form a two-colour step barrier
option with two successive upward or two successive downward steps. Applying the
theory of non-arbitrage pricing in a complete market (Harrison and Kreps 1979; Harrison
and Pliska 1981), the value of a two-colour up-and-up knock-out put, denoted by V[RUU], is
given by:

V[RUU] = e−rt2
(

EQ

[
K31{A} − S2(t2)1{A}

])
(16)

where r is the riskless interest rate assumed to be constant, 1{.} is the indicator function
and A is the set constructed by the intersection of elements of the σ−algebra generated by
the pair of processes (S1(t), S2(t)) that characterises the probability P[RUU](μ1, μ2) as given
by the arguments of the probability operator in (5).

A simple application of the Cameron–Martin–Girsanov theorem yields:

V[RUU] = e−rt2 K3P[RUU]

(
μ
(Q)
1 , μ

(Q)
2

)
− S2(0)P[RUU]

(
μ
(P2)
1 , μ

(P2)
2

)
(17)

where

μ
(Q)
i = r − σ2

i
2

, μ
(P2)
1 = r − σ2

1
2

+ σ1σ2ρ1.2, μ
(P2)
2 = r +

σ2
2

2
, (18)

Q is the measure under which
{

Bi(t) +
μi−r

σi
t, t ≥ 0

}
is a standard Brownian motion (the

classical so-called risk-neutral measure), while P2 is the measure under which

{B1(t)− σ2ρ1.2t, t ≥ 0} and
{

B2(t)− σ2

√
1 − ρ2

1.2t, t ≥ 0
}

are two independent standard
Brownian motions.

To factor in a continuous dividend rate δi associated with each asset Si, simply replace
r by r − δi.

All the other two-colour rainbow barrier options subsequently mentioned in
Sections 2.1 and 2.2, whether they be knock-in or feature a mixture of a downward and an
upward barrier, are identically valued, by taking the relevant P[.] probability along with

the pairs
(

μ
(Q)
1 , μ

(Q)
2

)
and

(
μ
(P2)
1 , μ

(P2)
2

)
.

The numerical implementation of Proposition 1 is easy. Using Genz’s (2004) algorithm
to evaluate the trivariate standard normal cumulative distribution function, the accuracy
and efficiency required for all practical purposes can be achieved in computational times in
the order of 0.1 s. Table 1 provides the prices of a few two-colour up-and-up knock-out put
options, for various levels of the volatility and correlation parameters of the underlying
assets S1 and S2, and different values of the knock-out barriers. All the initial values of the
underlying assets Si(0) and the strike prices Ki are set at 100. Expiry is 1 year. The two time
intervals [t0, t1] and [t1, t2] have equal length, i.e., t1 =6 months, but unequal time lengths
can be handled just as well by the formulae. The riskless interest rate is assumed to be 2.5%.

In each cell, four prices are reported: the first one is the exact analytical value as
obtained by implementing Proposition 1, while the prices in brackets are three successive
approximations obtained by performing increasingly large Monte Carlo simulations. More
specifically, these approximations rely on the conditional Monte Carlo method, which is
well known for its accuracy and efficiency (Glasserman 2003). The number of simulations
performed is 500,000 for the first approximation, 2,000,000 for the second approximation,
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and 10,000,000 for the third approximation. The pseudo-random numbers are drawn from
the reliable Mersenne Twister generator (Matsumoto and Nishimura 1998).

Table 1. Two-colour up-and-up knock-out put.

ρ1.2 = −0.6 ρ1.2 = −0.2 ρ1.2 = 0.2 ρ1.2 = 0.6

σ1 = σ2 = 20%
H1 = H2 = 115

1.189
(1.123,1.168,

1.182)

2.163
(2.237, 2.141,

2.161)

3.134
(3.082, 3.116,

3.132)

4.141
(4.174, 4.127,

4.140)

σ1 = σ2 = 60%
H1 = H2 = 125

4.065
(4.109, 4.072,

4.061)

6.440
(6.392, 6.449,

6.442)

8.769
(8.734, 8.755,

8.763)

11.213
(11.278, 11.196,

11.218)

σ1 = 20%, σ2 = 60%
H1 = 115, H2 = 125

4.454
(4.411, 4.443,

4.454)

7.260
(7.355, 7.301,

7.264)

9.979
(9.912, 9.101,

9.975)

12.844
(12.957, 12.892,

12.848)

σ1 = 60%, σ2 = 20%
H1 = 125, H2 = 115

1.096
(1.082, 1.108,

1.091)

1.921
(1.107, 1.953,

1.928)

2.753
(2.796, 2.745,

2.752)

3.617
(3.692, 3.599,

3.614)

In purely numerical terms, it can be clearly observed that the conditional Monte Carlo
approximations gradually converge to the analytical values as more and more simulations
are performed. A minimum of 10,000,000 simulations are necessary to guarantee a modest
10−3 convergence. This requires a computational time of approximately 35 s on a computer
equipped with a Core i7 CPU. Much more accurate values can be obtained by means of
Proposition 1 in only two-tenths of a second. This gap in accuracy and efficiency makes a
particularly valuable difference when pricing large portfolios of options.

From a financial point of view, the most striking phenomenon observed in Table 1 is
that the option price regularly and significantly increases with the value of the correlation
coefficient between assets S1 and S2, whatever the volatilities and the levels of the barriers.
Roughly speaking, the price of an at-the-money two-colour up-and-up knock-out put
option when ρ1.2 = 0.6 is three times greater than when ρ1.2 = −0.6. This property can be
exploited by traders who take positions on correlation, as the prices of these options will
substantially increase if implicit correlation turns out to be underestimated by the markets.
This property can also be harnessed by traders to construct hedges on sold derivatives
that are sensitive to pairwise correlation. From an investor’s perspective, the observed
phenomenon allows to define effective strategies to reduce the cost of hedging by tapping
into negative correlation. Such a significant functional relation w.r.t. correlation is a major
attraction of rainbow step barrier options relative to non-rainbow step barrier options, as
the latter can only handle volatility effects.

Another noticeable fact in Table 1 is that lowering the up-and-out barriers seems much
more effective in reducing the option’s price than lowering the volatilities of assets S1 and
S2, regardless of the sign and the magnitude of correlation. Indeed, looking at row 1 in
Table 1, one can see that the options are relatively cheap, although the volatilities of both
assets S1 and S2 are low, because the knock-out barriers are located quite near the spot
prices of the underlying assets; and looking at row 2 in Table 1, one can see that the options
are relatively expensive, although the volatilities of both assets S1 and S2 are high because
the knock-out barriers are more distant. This shows that the barrier effect, which drives
prices down as up-and-out barriers become lower and conversely drives prices up as the
up-and-out barrier becomes higher, and prevails over the volatility effect, which exerts its
influence in the opposite direction, i.e., a lower volatility pushes prices up by decreasing
the probability of knocking out before expiry and a higher volatility pushes prices down
by increasing the latter probability. This phenomenon can be explained by the ambivalent
nature of volatility: on the one hand, less volatility means less risk of being deactivated
before expiry, but on the other hand, it also means fewer chances of ending in-the-money
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at expiry; whichever of this positive and this negative effect weighs more on the option
price depends on the relative values of barrier, strike, volatility and expiry parameters in a
complex manner.

2.2. Valuation of Two-Colour Step Barrier Options Involving One Upward Step and One
Downward Step

Section 2.2 deals with the case when the steps of the barrier are not on the same
side in each time interval, i.e., either first downward, then upward, or first upward, then
downward.

The main result of Section 2.2 is given by the following Proposition 2.

Proposition 2. Let P[RUD](μ1, μ2) denote the joint cumulative distribution function defined by:

P[RUD](μ1, μ2) � P

(
sup

0≤t≤t1

S1(t) ≤ H1, S1(t1) ≤ K1, S2(t1) ≥ K2, inf
t1≤t≤t2

S2(t) ≥ H2, S2(t2) ≥ K3

)
(19)

where the acronym “[RUD]” stands for “Rainbow Up and Down”.

Then, the exact value of P[RUD](μ1, μ2) is given by:

P[RUD](μ1, μ2)

= N3

[
min(k1,h1)−μ1t1

σ1
√

t1
, −max(k2,h2)+μ2t1

σ2
√

t1
, −max(k3,h2)+μ2t2

σ2
√

t2
;−θ1.2,−θ1.3, θ2.3

] (20)

− exp
(

2μ1h1
σ2

1

)
×N3

⎡⎣ min(k1,h1)−2h1−μ1t1
σ1
√

t1
, −max(k2,h2)+μ2t1

σ2
√

t1
+ 2θ1.2h1

σ1
√

t1
,

−max(k3,h2)+μ2t2
σ2
√

t2
+ 2θ1.2h1

σ1
√

t2
;−θ1.2,−θ1.3, θ2.3

⎤⎦ (21)

− exp
(

2μ2h2
σ2

2

)
×N3

[
min(k1,h1)−μ1t1

σ1
√

t1
+ 2θ1.2μ2

√
t1

σ2
, −max(k2,h2)−μ2t1

σ2
√

t1
, −max(k3,h2)+2h2+μ2t2

σ2
√

t2
;

−θ1.2, θ1.3,−θ2.3

] (22)

+ exp
((

2μ1
σ2

1
− 4μ2θ1.2

σ1σ2

)
h1 +

2μ2h2
σ2

2

)
×N3

⎡⎣ min(k1,h1)−2h1−μ1t1
σ1
√

t1
+ 2θ1.2μ2

√
t1

σ2
, −max(k2,h2)−μ2t1

σ2
√

t1
+ 2θ1.2h1

σ1
√

t1
,

−max(k3,h2)+2h2+μ2t2
σ2
√

t2
− 2θ1.2h1

σ1
√

t2
; θ1.2,−θ1.3,−θ2.3

⎤⎦ (23)

where all the notations are identical, as in Proposition 1.

Corollary 1. It suffices to multiply by (−1) all the first three arguments of each N3[., ., .; ., ., .]
function and substitute each min operator by a max operator as well as each max operator by a
min operator in Proposition 2 to obtain an exact formula for P[RDU](μ1, μ2) defined as:

P[RDU](μ1, μ2) � P

(
inf

0≤t≤t1
S1(t) ≥ H1, S1(t1) ≥ K1, S2(t1) ≤ K2, sup

t1≤t≤t2

S2(t) ≤ H2, S2(t2) ≤ K3

)
(24)

Corollary 2. The term numbered (23) in Proposition 2 provides the value of the corrresponding
up-and-in, then down-and-in probability, denoted as P(I)

[RUD]
(μ1, μ2) and defined by:

P(I)
[RUD]

(μ1, μ2) � P

(
sup

0≤t≤t1

S1(t) ≥ H1, S1(t1) ≤ K1, S2(t1) ≥ K2, inf
t1≤t≤t2

S2(t) ≤ H2, S2(t2) ≥ K3

)
(25)

End of Proposition 2.
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Equipped with Proposition 2, one can value in closed form a two-colour step barrier
option with one upward step and one downward step, by taking the relevant P[.] or P(I)

[.]

probability along with the pairs
(

μ
(Q)
1 , μ

(Q)
2

)
and

(
μ
(P2)
1 , μ

(P2)
2

)
defined in (18), as explained

in Section 2.1. Table 2 reports the prices of a few down-and-up two-colour knock-out put
options by implementing Proposition 2 to obtain exact analytical values and by computing
three successive conditional Monte Carlo approximations in the same way, as in Table 1.

Table 2. Two-colour down-and-up knock-out put.

ρ1.2 = −0.6 ρ1.2 = −0.2 ρ1.2 = 0.2 ρ1.2 = 0.6

σ1 = σ2 = 20%
H1 = 85, H2 = 115

4.299
(4.287, 4.305,

4.297)

3.293
(3.318, 3.286,

3.292)

2.307
(2.282, 2.298,

2.305)

1.303
(1.284, 1.309,

1.304)

σ1 = σ2 = 60%
H1 = 75, H2 = 125

10.221
(10.142, 10.228,

10.224)

7.610
(7.563, 7.597,

7.612)

5.212
(5.255, 5.204,

5.214)

2.862
(2.834, 2.854,

2.865)

σ1 = 20%, σ2 = 60%
H1 = 85, H2 = 125

13.377
(13.385, 13.391,

13.376)

10.496
(10.472, 10.482,

10.948)

7.735
(7.783, 7.717,

7.731)

4.857
(4.894, 4.866,

4.857)

σ1 = 60%, σ2 = 20%
H1 = 75, H2 = 115

3.344
(3.387, 3.358,

3.346)

2.401
(2.383, 2.413,

2.402)

1.545
(1.596, 1.530,

1.542)

0.748
(0.884, 0.787,

0.752)

In Table 2, the most salient feature is still the functional dependency of the option’s
price on the correlation between assets S1 and S2, but, this time, the direction is opposite to
that in Table 1, i.e., the two-colour down-and-up knock-out put prices steadily decrease as
ρ1.2 goes from −60% to 60%. In a trader’s perspective, one could sum up the argument by
saying that two-colour rainbow barrier options are a bet on a positive correlation when both
barriers are on the same side (upward or downward), while they are a bet on a negative
correlation when the barriers stand on opposite sides (up-and-down or down-and-up).

The barrier effect also prevails over the volatility effect in Table 2. Overall, two-
colour down-and-up knock-out puts display maximum values that are a little higher, and
minimum values that are a little lower than two-colour up-and-up knock-out puts, although
up-and-out barriers and down-and-out barriers are designed with the exact same distance
to the spot prices of S1 and S2.

2.3. Valuation of Reverse Two-Colour Step Barrier Options

A two-colour rainbow barrier option is said to be reverse when the moneyness of the
option is defined w.r.t. the first and former “colour” (i.e., asset S1) instead of the second
and last one (asset S2): the option, so to speak, reverts back to asset one at expiry, hence
the denomination. From a computational standpoint, this is not a trivial difference since it
adds an additional dimension to the integral formulation of the problem. Let us define as
P[RRUU](μ1, μ2) the following cumulative joint distribution at the core of reverse rainbow
option valuation:

P(Rev)
[RRUU]

(μ1, μ2) = P

(
sup

0≤t≤t1

S1(t) ≤ H1, S1(t1) ≤ K1, S2(t1) ≤ K2, sup
t1≤t≤t2

S2(t) ≤ H2, S1(t2) ≤ K3

)
(26)

where the acronym “[RRUU]” stands for “Reverse Rainbow Up and Up”.
Then, Proposition 3 provides the exact value of P[RRUU](μ1, μ2) in the form of a

triple integral.

Proposition 3.
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P[RRUU](μ1, μ2) =
1

(2π)3/2σ2|1σ3|1.2σ2
1 σ2t1

√
t2

min(k1,h1)∫
−∞

h2∫
−∞

min(k2,h2)∫
−∞

ϕ2(x1)ϕ3(x2, x3) (27)

e
− 1

2 (
x1−μ1t1
σ1
√

t1
)

2− 1
2σ2

2|1
(

x2−μ2t1
σ2
√

t1
−θ1.2(

x1−μ1t1
σ1
√

t1
))

2− 1
2σ2

3|1.2
(

x3−μ2t2
σ2
√

t2
−θ1.3(

x1−μ1t1
σ1
√

t1
)− θ2.3|1

σ2|1 (
x2−μ2t1
σ2
√

t1
−θ1.2(

x1−μ1t1
σ1
√

t1
)))

2

N

⎡⎣ 1
σ4|1.2.3

⎛⎝ k3−μ1t2
σ1
√

t2
− θ1.4

x1−μ1t1
σ1
√

t1
− θ2.4|1

σ2|1

(
x2−μ2t1

σ2
√

t1
− θ1.2

x1−μ1t1
σ1
√

t1

)
− θ3.4|1.2

σ3|1.2

(
x3−μ2t2

σ2
√

t2
− θ1.3

x1−μ1t1
σ1
√

t1
− θ2.3|1

σ2|1

(
x2−μ2t1

σ2
√

t1
− θ1.2

x1−μ1t1
σ1
√

t1

))
⎞⎠⎤⎦dx3dx2dx1

where:

θ2.4|1 =
θ2.4 − θ1.2θ1.4√

1 − θ2
1.2

, θ3.4|1.2 =
θ3.4 − θ1.3θ1.4 − θ2.3|1θ2.4|1

σ3|1.2
, σ4|1.2.3 =

√
1 − θ2

1.4 − θ2
2.4|1 − θ2

3.4|1.2 (28)

- N[.] is the univariate standard normal cumulative distribution function;
- the functions ϕ2 and ϕ3 are defined by (80) and (81) in Section 3.

All the other notations in Proposition 3 have been previously defined.

Remark 1. Other types of reverse two-colour knock-out or knock-in barrier probability distributions
are handled similarly by modifying the upper bounds of the integral and, possibly, the ϕi functions,
according to the considered combination of events.

Remark 2. θ2.4|1 is the partial correlation between X2(t1) and X1(t2) conditional on X1(t1), while
θ3.4|1.2 is the partial correlation between X2(t2) and X1(t2) conditional on X1(t1) and X2(t1), and
σ4|1.2.3 is the conditional standard deviation of X1(t2) given X1(t1), X2(t1) and X2(t2).

End of Proposition 3.

The application of Proposition 3 to value a reverse two-colour step barrier option
is now discussed. The no-arbitrage price of a reverse two-colour rainbow up-and-up
knock-out put, denoted by V[RRUU], is given by:

V(R)
[RRUU]

= e−rt2
(

EQ

[
K31{A} − S1(t2)1{A}

])
= e−rt2 K3P(R)

[RRUU]

(
μ
(Q)
1 , μ

(Q)
2

)
− S2(0)P

(R)
[RRUU]

(
μ
(P1)
1 , μ

(P1)
2

)
(29)

where

μ
(P1)
1 = r +

σ2
1

2
, μ

(P1)
2 = r − σ2

2
2

+ σ1σ2ρ1.2 (30)

- A is the set constructed by the intersection of elements of the σ−algebra generated by
the pair of processes (S1(t), S2(t)) that characterises the probability P[RRUU](μ1, μ2) as
given by the arguments of the probability operator in (26);

- P1 is the measure under which B1(t)− σ1t is a standard Brownian motion.

However, it is less easy to evaluate Proposition 3 than to evaluate Proposition 1
and Proposition 2. The problem at hand has two “nice” features from the standpoint of
numerical integration: first, the dimension, equal to 3, is moderate; second, the integrand
is continuous. The snag is the large number of parameters in each evaluation of the
integrand in a quadrature process, especially the various conditional standard deviations
at the denominators of the fractions, that may hinder fast convergence when they take on
absolute values that become smaller and smaller. That is why it is recommended to use
a subregion adaptive algorithm of numerical integration, as explained by Berntsen et al.
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(1991), that adapts the number of integrand evaluations in each subregion according to the
rate of change of the integrand. Although more time-consuming than a fixed degree rule, it
is more accurate to control the approximation error, as the subdivision of the integration
domain stops only when the sum of the local error deterministic estimates becomes smaller
than some prespecified requested accuracy. Adaptive integration can be enhanced by a
Kronrod rule to reduce the number of required iterations (see, e.g., Davis and Rabinowitz
2007). These techniques are widely used in numerical integration, and it is easy to find
available code or built-in functions in the usual scientific computing software.

2.4. Valuation of Two-Colour Outside Step Barrier Options

In this section, a third correlated asset S3 is introduced, w.r.t. which the option’s
moneyness is measured at expiry, while the assets S1 and S2 serve exclusively as the
underlyings w.r.t. which barrier crossing is monitored. This is an important extension,
as outside barrier options allow to manage volatility more consistently than standard
(non-outside) barrier options, as explained, e.g., by Das (2006).

Let us consider a third asset S3 with the following differential:

dS3(t) = v3S3(t)dt + σ3S3(t)dB3(t) (31)

The instantaneous pairwise correlations between the Brownian motions B′
i s are de-

noted as ρi.j.
The objective is to compute the probabilities pm(μ1, μ2, μ3), m ∈ {1, 2, 3, 4} defined by:

p1(μ1, μ2, μ3) = P

⎛⎜⎝ sup
0≤t≤t1

S1(t) ≤ H1, S1(t1) ≤ K1, S2(t1) ≤ H2,

sup
t1≤t≤t2

S2(t) ≤ H2, S2(t2) ≤ K2, S3(t2) ≤ K3

⎞⎟⎠ (32)

p2(μ1, μ2, μ3) = P

⎛⎝ inf
0≤t≤t1

S1(t) ≥ H1, S1(t1) ≥ K1, S2(t1) ≥ H2,

inf
t1≤t≤t2

S2(t) ≥ H2, S2(t2) ≥ K2, S3(t2) ≥ K3

⎞⎠ (33)

p3(μ1, μ2, μ3) = P

⎛⎝ sup
0≤t≤t1

S1(t) ≤ H1, S1(t1) ≤ K1, S2(t1) ≥ H2,

inf
t1≤t≤t2

S2(t) ≥ H2, S2(t2) ≥ K2, S3(t2) ≥ K3

⎞⎠ (34)

p4(μ1, μ2, μ3) = P

⎛⎝ inf
0≤t≤t1

S1(t) ≥ H1, S1(t1) ≥ K1, S2(t1) ≤ H2,

sup
t1≤t≤t2

S2(t) ≤ H2, S2(t2) ≤ K2, S3(t2) ≤ K3

⎞⎠ (35)

Let x = [c1, c2, c3, c4, c5] be a vector of five coordinates where each ci ∈ ]−1, 1[,
∀i ∈ {1, . . . , 5}.

Let the function Ψ4[b1, b2, b3, b4; x], ∀b1, b2, b3, b4 ∈ R, be defined by:

Ψ4[b1, b2, b3, b4; x]

=

b1∫
x1=−∞

b2 − c1x1√
1 − c2

1∫
x2=−∞

b3 − c4x2

√
1 − c2

1 − c4c1x1√
1 − c2

2∫
x3=−∞

1

(2π)3/2 exp

(
− x2

1
2

− x2
2

2
− x2

3
2

)
(36)
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N

⎡⎢⎢⎢⎢⎣
b4 − c5−c2c3

1−c2
2

(
x3

√
1 − c2

4 + x2c4

√
1 − c2

1

)
− x1

(
c3 +

c5−c2c3
1−c2

2
(c1c4 − c2)

)
√

1 − c2
3 −

(
c5−c2c3

1−c2
2

)2

⎤⎥⎥⎥⎥⎦dx3dx2dx1

The following Proposition 4 combines all the probabilities defined in (32)–(35) into a
single formula.

Proposition 4. The exact values of the probabilities pm(μ1, μ2, μ3), m ∈ {1, 2, 3, 4}, written in
shorter notation as pm, are given by:

pm = Ψ4

[
δ1

(
G1(k1, h1)− μ1t1

σ1
√

t1

)
, δ2

(
h2 − μ2t1

σ2
√

t1

)
, δ2

(
G2(k2, h2)− μ2t2

σ2
√

t2

)
, δ2

(
k3 − μ3t2

σ3
√

t2

)
; x1

]
(37)

− exp

(
2μ1h1

σ2
1

)
× Ψ4

⎡⎢⎢⎢⎣
δ1

(
G1(k1,h1)−2h1−μ1t1

σ1
√

t1

)
, δ2

(
h2−μ2t1

σ2
√

t1
− θ1.2

2h1
σ1
√

t1

)
,

δ2

(
G2(k2,h2)−μ2t2

σ2
√

t2
− θ1.2

2h1
σ1
√

t2

)
,

δ2

(
k3−μ3t2
σ3
√

t2
− θ1.4

2h1
σ1
√

t1
− θ3.4|1

(
θ1.2

2h1
σ1
√

t2
− θ1.3

2h1
σ1
√

t1

))
; x1

⎤⎥⎥⎥⎦ (38)

− exp

(
2μ2h2

σ2
2

)
× Ψ4

⎡⎢⎢⎢⎣
δ1

(
G1(k1,h1)−μ1t1

σ1
√

t1
+ θ1.2

2μ2t1
σ2
√

t1

)
, δ2

(
h2+μ2t1

σ2
√

t1

)
,

δ2

(
G2(k2,h2)−2h2−μ2t2

σ2
√

t2

)
,

δ2

(
k3−μ3t2
σ3
√

t2
− θ3.4|1

(
2h2

σ2
√

t2
+ θ1.2θ1.3

2μ2t1
σ2
√

t1

)
+ θ1.2θ1.4

2μ2t1
σ2
√

t1

)
; x2

⎤⎥⎥⎥⎦ (39)

+ exp
((

2μ1
σ2

1
− 4μ2ρ1.2

σ1σ2

)
h1 +

2μ2h2
σ2

2

)

×Ψ4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1

(
G1(k1,h1)−2h1−μ1t1

σ1
√

t1
+ θ1.2

2μ2t1
σ2
√

t1

)
,

δ2

(
h2+μ2t1

σ2
√

t1
− θ1.2

2h1
σ1
√

t1

)
,

δ2

(
G2(k2,h2)−2h2−μ2t2

σ2
√

t2
+ θ1.2

2h1
σ1
√

t2

)
,

δ2

⎛⎝ k3−μ3t2
σ3
√

t2
+ θ1.4

(
θ1.2

2μ2
√

t1
σ2

− 2h1
σ1
√

t1

)
−θ3.4|1

(
2h2

σ2
√

t2
− θ1.2

2h1
σ1
√

t2
+ θ1.3

(
θ1.2

2μ2
√

t1
σ2

− 2h1
σ1
√

t1

)) ⎞⎠; x2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(40)

where k1, k2, h1, h2 are as in Proposition 2, k3 = ln
(

K3
S3(0)

)
, and we have:

θ1.2 = ρ1.2, θ1.3 =

√
t1

t2
ρ1.2, θ1.4 =

√
t1

t2
ρ1.3, θ2.3 =

√
t1

t2
, θ3.4 = ρ2.3, θ3.4|1 =

θ3.4 − θ1.3θ1.4√
1 − θ2

1.3

(41)

δ1 =

{
1 if pm = p1 or pm = p3
−1 if pm = p2 or pm = p4

, δ2 =

{
1 if pm = p1 or pm = p4
−1 if pm = p2 or pm = p3

(42)

G1(., .) =
{

min(., .) if pm = p1 or pm = p3
max(., .) if pm = p2 or pm = p4

, G2(., .) =
{

max(., .) if pm = p1 or pm = p3
min(., .) if pm = p2 or pm = p4

(43)

x1 =

{
[θ1.2, θ1.3, θ1.4, θ2.3, θ3.4] if pm = p1 or pm = p2
[−θ1.2,−θ1.3,−θ1.4, θ2.3, θ3.4] if pm = p3 or pm = p4

(44)

x2 =

{
[θ1.2, θ1.3, θ1.4,−θ2.3, θ3.4] if pm = p1 or pm = p2
[−θ1.2,−θ1.3,−θ1.4,−θ2.3, θ3.4] if pm = p3 or pm = p4

(45)
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Corollary 1. The corresponding knock-in probabilities can be inferred in the same way as in
Proposition 1 and Proposition 2. Let the probabilities p(I)

m (μ1, μ2, μ3), m ∈ {1, 2, 3, 4} be defined by:

p(I)
1 (μ1, μ2, μ3) = P

⎛⎜⎝ sup
0≤t≤t1

S1(t) ≥ H1, S1(t1) ≤ K1, S2(t1) ≤ H2,

sup
t1≤t≤t2

S2(t) ≥ H2, S2(t2) ≤ K2, S3(t2) ≤ K3

⎞⎟⎠ (46)

p(I)
2 (μ1, μ2, μ3) = P

⎛⎝ inf
0≤t≤t1

S1(t) ≤ H1, S1(t1) ≥ K1, S2(t1) ≥ H2,

inf
t1≤t≤t2

S2(t) ≤ H2, S2(t2) ≥ K2, S3(t2) ≥ K3

⎞⎠ (47)

p(I)
3 (μ1, μ2, μ3) = P

⎛⎝ sup
0≤t≤t1

S1(t) ≥ H1, S1(t1) ≤ K1, S2(t1) ≥ H2,

inf
t1≤t≤t2

S2(t) ≤ H2, S2(t2) ≥ K2, S3(t2) ≥ K3

⎞⎠ (48)

p(I)
4 (μ1, μ2, μ3) = P

⎛⎝ inf
0≤t≤t1

S1(t) ≤ H1, S1(t1) ≥ K1, S2(t1) ≤ H2,

sup
t1≤t≤t2

S2(t) ≥ H2, S2(t2) ≤ K2, S3(t2) ≤ K3

⎞⎠ (49)

Then, p(I)
m (μ1, μ2, μ3) is given by (40).

Corollary 2. It suffices to substitute each argument θ3.4 in each Ψ4[., ., ., .; ., ., ., ., .] function of

Proposition 4 by ρ2.3

√
t2
t3

, ∀t3 ≥ t2, to obtain an exact formula for the early-ending variant of
pm(μ1, μ2, μ3).

End of Proposition 4.

Equipped with Proposition 4, one can value in closed form a two-colour outside step
barrier option. More precisely, the value of a two-colour outside up-and-out put, denoted
by V[ORUU], is given by:

V[ORUU] = e−rt2
(

EQ

[
K31{A} − S3(t2)1{A}

])
(50)

where A is the set constructed by the intersection of elements of the σ−algebra generated
by the pair of processes (S1(t), S2(t)) that characterises the probability p1(μ1, μ2) as given
by the arguments of the probability operator in (32), and the acronym “[ORUU]” stands for
“Outside Rainbow Up and Up”.

Using the following orthogonal decomposition of Brownian motion B3(t):

B3(t) = ρ1.3W1(t) + ρ2.3|1W2(t) + σ3|1.2W3(t) (51)

where:
ρ2.3|1 =

ρ2.3 − ρ1.2ρ1.3√
1 − ρ2

1.2

, σ3|1.2 =
√

1 − ρ2
1.3 − ρ2

2.3|1 (52)

and (W1(t), W2(t), W3(t)) is a basis of three independent Brownian motions (Guillaume
2018), the multidimensional Cameron-Martin-Girsanov theorem yields:

V[ORUU] = e−rt2 K3 p1

(
μ
(Q)
1 , μ

(Q)
2 , μ

(Q)
3

)
− S3(0)p1

(
μ
(P3)
1 , μ

(P3)
2 , μ

(P3)
3

)
(53)

where:

μ
(P3)
1 = r − σ2

1
2

+ σ1σ3ρ1.3, μ
(P3)
2 = r − σ2

2
2

+ σ2σ3ρ2.3, μ
(P3)
3 = r +

σ2
3

2
(54)

The measure P3 is the measure under which B1(t) − σ3ρ1.3t, B2(t) − σ3ρ2.3|1t and
B3(t)− σ3σ3|1.2t are three independent standard Brownian motions.
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A simple and robust numerical evaluation of the function Ψ4 consists in selecting an
appropriate cutoff value for the negative infinity lower bounds and then applying a fixed-
degree quadrature rule. Given the smoothness of the integrand, even a low-degree rule
will perform well. Table 3 provides the prices of a few two-colour outside up-and-down
knock-out call options for various levels of the volatility and correlation parameters of
the underlying assets S1, S2, and S3, and different values of the knock-out barriers. The
parameters Si(0), Ki, t1, t2, and r are identical as those as in Tables 1 and 2. In each cell, the
first reported value is the exact analytical price, as obtained by implementing Proposition 4
by means of a classical 16-point Gauss–Legendre quadrature, while the numbers in the
brackets are three successive Monte Carlo approximations, as explained in Section 2.1.

From a purely numerical standpoint, the pattern of convergence of conditional Monte
Carlo approximations to the analytical values is as clear in Table 3 as in Tables 1 and 2. This
illustrates the robustness of our numerical integration scheme for the Ψ4 function. The
efficiency gap between Monte Carlo pricing and analytical pricing is even more pronounced
than for non-outside rainbow step barrier options due to the presence of an additional
stochastic process to simulate: the average computational time required by simulation is
42 s, whereas the evaluation of the analytical formula based on Proposition 4 only takes a
few tenths of a second.

Table 3. Outside two-colour up-and-down knock-out call.

ρ1.2 = −0.6,
ρ1.3 = ρ2.3
= −0.4

ρ1.2 = −0.6,
ρ1.3 = ρ2.3

= 0.4

ρ1.2 = 0.6
ρ1.3 = ρ2.3

= 0.4

ρ1.2 = 0.6
ρ1.3 = ρ2.3
= −0.4

σ1 = σ2 = 20%
σ3 = 20%

H1 = 115, H2 = 85

2.378
(2.452, 2.361,

2.375)

2.772
(2.914, 2.812,

2.779)

1.717
(1.585, 1.731,

1.720)

1.182
(1.193, 1.178,

1.180)

σ1 = σ2 = 20%
σ3 = 60%

H1 = 115, H2 = 85

5.769
(5.728, 5.781,

5.764)

7.053
(7.137, 7.036,

7.054)

4.522
(4.534, 4.541,

4.524)

2.897
(2.852, 2.923,

2.893)

σ1 = σ2 = 60%
σ3 = 20%

H1 = 125, H2 = 75

1.627
(1.592, 1.614,

1.628)

2.783
(2.848, 2.767,

2.788)

1.351
(1.320, 1.365,

1.353)

0.849
(0.915, 0.828,

0.842)

σ1 = σ2 = 60%
σ3 = 60%

H1 = 125, H2 = 75

3.864
(3.814, 3.872,

3.865)

7.554
(7.518, 7.535,

7.558)

3.823
(3.856, 3.829,

3.827)

2.076
(2.011, 2.091, 2.072)

σ1 = 20%, σ2 = 60%
σ3 = 20%

H1 = 115, H2 = 75

1.534
(1.502, 1.526,

1.535)

2.573
(2.495, 2.556,

2.577)

1.188
(1.207, 1.179,

1.185)

0.621
(0.774, 0.684,

0.613)

σ1 = 20%, σ2 = 60%
σ3 = 60%

H1 = 115, H2 = 75

3.629
(3.787, 3.662,

3.621)

6.697
(6.724, 6.684,

6.692)

3.217
(3.051, 3.252,

3.221)

1.518
(1.586, 1.476,

1.511)

σ1 = 60%, σ2 = 20%
σ3 = 20%

H1 = 125, H2 = 85

2.572
(2.734, 2.548,

2.567)

2.989
(3.125, 3.016,

2.994)

1.931
(2.071, 1.965,

1.938)

1.496
(1.634, 1.454,

1.489)

σ1 = 60%, σ2 = 20%
σ3 = 60%

H1 = 125, H2 = 85

6.248
(6.304, 6.237,

6.241)

7.953
(8.060, 7.984,

7.961)

5.323
(5.212, 5.348,

5.324)

3.707
(3.569, 3.726,

3.702)

From a financial point of view, the prices in Table 3 display a very different pattern
from those in Tables 1 and 2. With regard to correlation, the highest option values attained
are when the correlation between S1 and S2 is negative and the correlation between S3
and both S1 and S2 is positive. The lowest option values are when the correlation between
S1 and S2 is positive and the correlation between S3 and both S1 and S2 is negative. On
average across all volatilities and barrier levels in Table 3, options are approximately three
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times more expensive under the former correlation structure than under the latter one. In
terms of volatility, the highest option values attained are when the volatility of asset S3
is high. This remains true under very different combinations of values for all the other
parameters (volatilities of S1 and S2, barrier levels and correlation structure). Such an
observation highlights the prominent role of the volatility of the asset chosen to determine
the moneyness of the option at expiry. In particular, the value of a rainbow outside step
barrier option is a monotonically increasing function of σ3, whereas the value of a rainbow
step barrier option is not a monotonically increasing function of σ2, just like the value
of a reverse rainbow step barrier option is not a monotonically increasing function of σ1.
This is because a rainbow outside step barrier option allows to make a clear distinction
between the functions of each underlying asset: two of them, S1 and S2, are only concerned
with barrier crossing during the option life, and the third one, S3, is only concerned with
moneyness testing at the option expiry. That distinction is impossible to make when it
comes to non-outside rainbow step barrier options, so that the impact of volatility becomes
ambiguous and difficult to handle. It should be emphasised that, for the vast majority of
parameters, the sensitivities of the rainbow outside step knock-out barrier options to σ1
and σ2 is negative, reflecting an increased risk of being deactivated before expiry. Only
for quite specific correlation structures between the underlying assets and quite specific
combinations of barrier values can these sensitivities be positive. A major advantage of
closed form formulae such as those derived in this article is precisely to allow measurement
of such sensitivities with high precision by mere differentiation of the formulae w.r.t. the
relevant parameters.

One more noticeable difference in the reported numerical results between outside and
non-outside rainbow step barrier options is that the volatility effect prevails over the barrier
effect in Table 3, in contrast to Tables 1 and 2. Indeed, in row 2 of Table 3, tight barrier levels
do not preclude relatively high option prices thanks to the volatility of asset S3 set at 60%.
Likewise, in row 3 of Table 3, wider barrier levels do not preclude relatively low option
prices due to the volatility of asset S3 set at only 20%.

2.5. Valuation of Two-Sided, Two-Colour Step Barrier Options

In this section, a two-sided barrier is introduced in each time interval, i.e., the valuation
of rainbow step double barrier options is handled.

Let H1 and H2 denote an upward and a downward barrier, respectively, on the time
interval [t0 = 0, t1]. Similarly, H3 and H4 represent an upward and a downward barrier,
respectively, on the time interval [t1, t2]. As in the previous sections, barrier crossing
is monitored w.r.t. process S1 following Equation (1) on [t0 = 0, t1] and w.r.t. process
S2 following Equation (2) on [t1, t2]. Our objective now is to find the value of the joint
cumulative distribution function P[RDKO](μ1, μ2) defined by:

P[RDKO](μ1, μ2) (55)

= P

⎛⎜⎝ sup
0≤t≤t1

S1(t) ≤ H1, inf
0≤t≤t1

S1(t) ≥ H2, S1(t1) ≤ min(K1, H1),

sup
t1≤t≤t2

S2(t) ≤ H3, inf
t1≤t≤t2

S2(t) ≥ H4, S2(t2) ≤ min(H3, K2)

⎞⎟⎠
where the acronym “[RDKO]” stands for “Rainbow Double Knock Out”.

The main result of Section 2.5 is given by the following Proposition 5.
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Proposition 5. The exact value of P[RDKO](μ1, μ2) is given by:

P[RDKO](μ1, μ2) =
∞
∑

n1=−∞

∞
∑

n2=−∞
exp

(
2μ1

σ2
1

n1a1 +
2μ2

σ2
2

n2a2

)
{N3[A1(min(k1, h1)), A2(h3), A3(min(h3, k2)); x1] − N3

[
A1(h2), A2(h3),
A3(min(h3, k2)); x1

]
−N3[A1(min(k1, h1)), A2(h4), A3(min(h3, k2)); x1] + N3

[
A1(h2), A2(h4),
A3(min(h3, k2)); x1

]
−N3[A1(min(k1, h1)), A2(h3), A3(h4); x1] + N3[A1(h2), A2(h3), A3(h4); x1]
+N3[A1(min(k1, h1)), A2(h4), A3(h4); x1]− N3[A1(h2), A2(h4), A3(h4); x1]}

(56)

− ∞
∑

n1=−∞

∞
∑

n2=−∞
exp

(
n1a1

(
2μ1

σ2
1

− 4ρ1.2μ2

σ1σ2

)
+

2μ2

σ2
2
(h4 − n2a2)

)
{N3[A4(min(k1, h1)), A5(h3), A6(min(h3, k2)); x2] − N3

[
A4(h2), A5(h3),
A6(min(h3, k2)); x2

]
−N3[A4(min(k1, h1)), A5(h4), A6(min(h3, k2)); x2] + N3

[
A4(h2), A5(h4),
A6(min(h3, k2)); x2

]
−N3[A4(min(k1, h1)), A5(h3), A6(h4); x2] + N3[A4(h2), A5(h3), A6(h4); x2]
+N3[A4(min(k1, h1)), A5(h4), A6(h4); x2]− N3[A4(h2), A5(h4), A6(h4); x2]}

(57)

− ∞
∑

n1=−∞

∞
∑

n2=−∞
exp

(
2μ1

σ2
1
(h2 − n1a1) +

2μ2

σ2
2

n2(h3 − a2)

)
{N3[A7(min(k1, h1)), A8(h3), A9(min(h3, k2)); x1] − N3

[
A7(h2), A8(h3),
A9(min(h3, k2)); x1

]
−N3[A7(min(k1, h1)), A8(h4), A9(min(h3, k2)); x1] + N3

[
A7(h2), A8(h4),
A9(min(h3, k2)); x1

]
−N3[A7(min(k1, h1)), A8(h3), A9(h4); x1] + N3[A7(h2), A8(h3), A9(h4); x1]
+N3[A7(min(k1, h1)), A8(h4), A9(d2); x1]− N3[A7(h2), A8(h4), A9(d2); x1]}

(58)

+
∞
∑

n1=−∞

∞
∑

n2=−∞
exp

(
(h2 − n1a1)

(
2μ1

σ2
1

− 4ρ1.2μ2

σ1σ2

)
+

2μ2

σ2
2
(h4 − n2a2)

)
{N3[A10(min(k1, h1)), A11(h3), A12(min(h3, k2)); x2] − N3

[
A10(h2), A11(h3),
A12(min(h3, k2)); x2

]
−N3[A10(min(k1, h1)), A11(h4), A12(min(h3, k2)); x2] + N3

[
A10(h2), A11(h4),
A12(min(h3, k2)); x2

]
−N3[A10(min(k1, h1)), A11(h3), A12(h4); x2] + N3[A10(h2), A11(h3), A3(h4); x2]
+N3[A10(min(k1, h1)), A11(h4), A12(h4); x2]− N3[A10(h2), A11(h4), A12(h4); x2]}

(59)

where:

− h1 = ln
(

H1

S1(0)

)
> 0, h2 = ln

(
H2

S1(0)

)
< 0, h3 = ln

(
H3

S2(0)

)
, h4 = ln

(
H4

S2(0)

)
(60)

− a1 = h1 − h2, a2 = h3 − h4 (61)

− A1(x) =
x − 2n1a1 − μ1t1

σ1
√

t1
, A2(x) =

x − μ2t1

σ2
√

t1
− 2ρ1.2n1a1

σ1
√

t1
(62)

− A3(x) =
x − 2n2a2 − μ2t2

σ2
√

t2
− 2ρ1.2n1a1

σ1
√

t2
(63)
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− A4(x) = A1(x)− 2ρ1.2μ2
√

t1

σ2
, A5(x) =

x + μ2t1

σ2
√

t1
− 2ρ1.2n1a1

σ1
√

t1
(64)

− A6(x) =
x − 2h4 + 2n2a2 − μ2t2

σ2
√

t2
+

2ρ1.2n1a1

σ1
√

t2
(65)

− A7(x) =
x − 2h2 + 2n1a1 − μ1t1

σ1
√

t1
, A8(x) =

x − μ2t1

σ2
√

t1
− 2ρ1.2(h2 − n1a1)

σ1
√

t1
(66)

− A9(x) =
x − 2n2a2 − μ2t2

σ2
√

t2
− 2ρ1.2(h2 − n1a1)

σ1
√

t2
(67)

− A10(x) = A7(x)− 2ρ1.2μ2
√

t1

σ2
, A11(x) =

x + μ2t1

σ2
√

t1
− 2ρ1.2(h2 − n1a1)

σ1
√

t1
(68)

− A12(x) =
x − 2h4 + 2n2a2 − μ2t2

σ2
√

t2
+

2ρ1.2(h2 − n1a1)

σ1
√

t2
(69)

− x1 =

{
ρ1.2, ρ1.2

√
t1

t2
,
√

t1

t2

}
, x2 =

{
ρ1.2,−ρ1.2

√
t1

t2
,−

√
t1

t2

}
(70)

All other notations have been defined in the previous sections.
End of Proposition 5.

Pricing two-colour double knock-out barrier options can be achieved through the
same changes of probability measures as those applicable to two-colour single knock-out
barrier options, i.e., the value of a two-colour double knock-out put, denoted as V[RDKO], is
given by:

V[RDKO] = e−rt2 K3P[RDKO]

(
μ
(Q)
1 , μ

(Q)
2

)
− S2(0)P[RDKO]

(
μ
(P2)
1 , μ

(P2)
2

)
(71)

where the parameters μ
(Q)
i and μ

(P2)
i are given by Equation (18).

Table 4 provides the prices of a few two-colour knock-out double barrier puts for
various levels of the volatility and correlation parameters of the underlying assets S1 and
S2, and different values of the knock-out barriers. Expiry is 6 months and t1 is one quarter
of a year. The parameters Si(0), Ki, and r are identical to those in Tables 1–3. In each cell,
the first number is the exact analytical value as derived from (71), while the numbers in the
brackets are three successive Monte Carlo approximations, as explained in Section 2.1.

Table 4. Two-colour rainbow double knock-out put.

ρ1.2 = −0.6 ρ1.2 = −0.2 ρ1.2 = 0.2 ρ1.2 = 0.6

σ1 = σ2 = 15%
H1 = H3 = 120
H2 = H4 = 80

2.919
(2.985, 2.956,

2.916)

2.938
(2.792, 2.883,

2.932)

2.936
(2.974, 2.918,

2.931)

3.027
(3.191, 3.088,

3.032)

σ1 = σ2 = 30%
H1 = H3 = 130
H2 = H4 = 70

4.370
(4.529, 4.281,

4.365)

5.791
(5.978, 5.697,

5.786)

4.427
(4.196, 4.443,

4.426)

5.175
(5.329, 5.092,

5.158)

σ1 = 15%, σ2 = 30%
H1 = 120, H3 = 130

H2 = 80, H4 = 70

4.726
(4.594, 4.752,

4.728)

4.744
(4.868, 4.785,

4.749)

4.724
(4.574, 4.771,

4.728)

5.042
(5.226, 5.018,

5.045)

σ1 = 30%, σ2 = 15%
H1 = 130, H3 = 120

H2 = 70, H4 = 80

2.614
(2.429, 2.576,

2.610)

2.683
(2.872, 2.612,

2.679)

2.771
(2.602, 2.742,

2.773)

2.942
(3.165, 3.036,

2.953)
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Thanks to the rapidly decaying exponential functions in the integrands, a level of 10−7

convergence is attained by stopping at 8, the number of iterations controlled by the absolute
values of n1 and n2 in the double sum operators, which results in a total computational
time of less than 1 s. For higher values of the volatility parameters than those in Table 4,
however, the uniform convergence of the double sums in (56)–(59) may require a greater
number of iterations and thus take more time. The implementation of Proposition 5 using
the Φ3 function introduced in Section 3 is slightly faster than the one using the trivariate
standard normal cumulative distribution function N3, although the difference is relatively
negligible for most practical purposes. Both methods of implementation yield prices equal
to at least 4 decimals.

From a financial standpoint, a striking contrast between the numerical results in Table 4
and those of the previous sections is the much weaker dependency of the option value on
the correlation structure, as illustrated by the smaller differences between the four option
prices associated with each combination of volatility and barrier parameters. It seems
that, the more volatility, the more dependency on the correlation structure, as suggested
by the comparison between row 1 and row 2. Another noticeable difference is that the
functional relation with the correlation structure is not monotonic. This is particularly clear
in row 2 where a relatively significant increase in value from ρ1.2 = −0.6 to ρ1.2 = −0.2 is
followed by a relatively significant decrease in value from ρ1.2 = −0.2 to ρ1.2 = 0.2, before
a new increase in value from ρ1.2 = 0.2 to ρ1.2 = 0.6. This more complex and unstable
dependency on correlation structure suggests that two-colour knock-out double barrier
options are a less suitable instrument for correlation trading than two-colour knock-out
single barrier options. However, one should remain wary of drawing hasty conclusions
from the comparison of the results in Table 4 and those in the previous sections, as the
option parameters are not identical, especially regarding volatility and expiry.

3. Proofs of Formulae

The proofs of Propositions 2 and 3 are only outlined as they essentially follow the
same steps as the proof of Proposition 1.

Proof of Proposition 1. Since the log function is strictly increasing, we have:

P[RUU](μ1, μ2) = P

(
sup

0≤t≤t1

X1(t) ≤ h1, X1(t1) ≤ k1, X2(t1) ≤ k2, sup
t1≤t≤t2

X2(t) ≤ h2, X2(t2) ≤ k3

)
(72)

Next, it can be noticed that, despite the non-zero correlation between X1(t) and X2(t),
the law of sup

0≤t≤t1

X1(t) conditional on X1(t1) and X2(t1) is equal to the law of sup
0≤t≤t1

X1(t1)

conditional on X1(t1).
Indeed, denoting the density function operator as f (.) and making use of the Markov

property of X2(t) we have:

f

(
sup

0≤t≤t1

X1(t)|X1(t1), X2(t1)

)
=

f

(
X2(t1)

∣∣∣∣∣ sup
0≤t≤t1

X1(t), X1(t1)

)
f

(
sup

0≤t≤t1

X1(t), X1(t1)

)
f (X1(t1), X2(t1))

(73)

=

f (X2(t1)|X1(t1) ) f

(
sup

0≤t≤t1

X1(t), X1(t1)

)
f (X1(t1), X2(t1))

=
f (X1(t1), X2(t1))

f (X1(t1))

f

(
sup

0≤t≤t1

X1(t), X1(t1)

)
f (X1(t1), X2(t1))

(74)

=

f

(
sup

0≤t≤t1

X1(t), X1(t1)

)
f (X1(t1))

= f

(
sup

0≤t≤t1

X1(t)|X1(t1)

)
(75)
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A translation from the time interval [t0 = 0, t1] to the time interval [t1, t2], through the
substitution of X1(0) with X2(t1), of X1(t1) with X2(t2) and of X2(t1) with X1(t2), shows
similarly that the law of sup

t1≤t≤t2

X2(t) conditional on X2(t1), X2(t2) and X1(t2) is equal to

the law of sup
t1≤t≤t2

X2(t) conditional on X2(t1) and X2(t2).

Thus, by conditioning w.r.t. the absolutely continuous random variables X1(t1), X2(t1)
and X2(t2), we can express the problem as the following integral:

P[RUU](μ1, μ2)

=
min(k1,h1)∫

−∞

min(k2,h2)∫
−∞

min(k3,h2)∫
−∞

ϕ1(x1, x2, x3)ϕ2(x1)ϕ3(x2, x3)dx3dx2dx1
(76)

where

ϕ1(x1, x2, x3) = P(X1(t1) ∈ dx1, X2(t1) ∈ dx2, X2(t2) ∈ dx3)dx3dx2dx1 (77)

ϕ2(x1) = P

(
sup

0≤t≤t1

X1(t) ≤ h1|X1(t1) ∈ dx1

)
dx1 (78)

ϕ3(x2, x3) = P

(
sup

t1≤t≤t2

X2(t) ≤ h2|X2(t1) ∈ dx2, X2(t2) ∈ dx3

)
dx2dx3 (79)

The functions ϕ2 and ϕ3 in (78) and (79) can be expanded by applying known formulae
that can be found in Wang and Pötzelberger (1997):

ϕ2(x1) = 1 − exp

(
2h1(x1 − h1)

σ2
1 t1

)
(80)

ϕ3(x2, x3) = 1 − exp

(
2(h2 − x2)(x3 − h2)

σ2
2 (t2 − t1)

)
(81)

The function ϕ1 derives from the trivariate normality of the triple (X1(t1), X2(t1), X2(t2)).
It is elementary to obtain the marginal distributions:

X1(t1) ∼ N
(

μ1t1, σ2
1 t1

)
, X2(t1) ∼ N

(
μ2t1, σ2

2 t1

)
, X2(t2) ∼ N

(
μ2t1, σ2

2 t1

)
(82)

where N (
a, b2) refers to the normal distribution with expectation a and variance b2.

Denoting by Z1, Z2, Z3 three independent standard normal random variables, the
pairwise covariances can be written as follows:

cov[X1(t1), X2(t1)] = cov
[

μ1t1 + σ1
√

t1Z1, μ2t1 + σ2
√

t1

(
ρ1.2Z1 +

√
1 − ρ2

1.2Z2

)]
= σ1σ2ρ1.2t1 (83)

cov[X2(t1), X2(t2)] = cov

⎡⎣ μ2t1 + σ2
√

t1

(
ρ1.2Z1 +

√
1 − ρ2

1.2Z2

)
,

μ2t2 + σ2
√

t1

(
ρ1.2Z1 +

√
1 − ρ2

1.2Z2

)
+ σ2

√
t2 − t1Z3

⎤⎦ = σ2
2 t1 (84)

cov[X1(t1), X2(t2)] = cov
[
μ1t1 + σ1

√
t1Z1, μ2t2 + σ2

√
t1

(
ρ1.2Z1 +

√
1 − ρ2

1.2Z2

)
+ σ2

√
t2 − t1Z3

]
= σ1σ2ρ1.2t1

(85)

where we have applied the bilinearity of the covariance operator, the independence of
increments of Brownian motion, and the orthogonal decomposition of two-dimensional
correlated Brownian motion. The correlation coefficients θ1.2, θ1.3, θ2.3 in Proposition 1
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ensue. Expanding the trivariate normal density function ϕ1(x1, x2, x3) as a product of
normal conditional densities (Guillaume 2018), we obtain:

ϕ1(x1, x2, x3)

= e
− 1

2 (
x1−μ1t1
σ1
√

t1
)
2
− 1

2σ2
2|1

(
x2−μ2t1
σ2
√

t1
−θ1.2(

x1−μ1t1
σ1
√

t1
))

2
− 1

2σ2
3|1.2

(
x3−μ2t2
σ2
√

t2
−θ1.3(

x1−μ1t1
σ1
√

t1
)−

θ2.3|1
σ2|1 (

x2−μ2t1
σ2
√

t1
−θ1.2(

x1−μ1t1
σ1
√

t1
)))

2

(2π)3/2σ2|1σ3|1.2σ2
2 σ1t1

√
t2

(86)

where:
σ2|1 =

√
1 − θ2

1.2, θ2.3|1 =
θ2.3 − θ1.2θ1.3√

1 − θ2
1.2

, σ3|1.2 =
√

1 − θ2
1.3 − θ2

2.3|1 (87)

The terms σ2|1, θ2.3|1 and σ3|1.2 have the following precise meanings:

- σ2|1 is the conditional standard deviation of X2(t1) given X1(t1);
- θ2.3|1 is the conditional correlation between X2(t1) and X2(t2) given X1(t1);
- σ3|1.2 is the conditional standard deviation of X2(t2) given X1(t1) and X2(t1).

The rest of the proof, whose cumbersome details are omitted, then consists in solving
the four integrals implied by (76). The final result takes the form of the linear combination
of four N3 functions written in Proposition 1.

Corollary 1 comes from the property of symmetry of Brownian paths.
Corollary 2 is a consequence of the fact that:

P(I)
[RUU]

(μ1, μ2)

=
min(k1,h1)∫

−∞

min(k2,h2)∫
−∞

min(k3,h2)∫
−∞

ϕ1(x1, x2, x3) exp

(
2h1(x1 − h1)

σ2
1 t1

)
exp

(
2(h2 − x1)(x2 − h2)

σ2
2 (t2 − t1)

)
dx3dx2dx1

(88)

Corollary 3 comes from the fact that the correlation coefficient between the random

variables S2(t2) and S2(t3) is equal to
√

t2
t3

.
Corollary 4 is a straightforward application of the law of total probability. �

Proof of Proposition 2. Using similar steps as in the proof of Proposition 1, one can express
the problem at hand as the following integral:

P[RUD](μ1, μ2) =

min(k1,h1)∫
−∞

∞∫
max(k2,h2)

∞∫
max(k3,h2)

ϕ1(x1, x2, x3)ϕ2(x1)ϕ4(x2, x3)dx3dx2dx1 (89)

where the functions ϕ1 and ϕ2 are given by (86) and (80), respectively, and:

ϕ4(x2, x3) = P
(

inf
t1≤t≤t2

X2(t) ≥ h2|X2(t1) ∈ dx2, X2(t2) ∈ dx3

)
dx2dx3 = ϕ3(x2, x3) (90)

where the function ϕ3 is given by (81).
Performing the necessary calculations, one can obtain the linear combination of four

N3 functions given in Proposition 2.
As in Proposition 1, Corollary 1 comes from the property of symmetry of Brownian paths.
Corollary 2 is a consequence of the fact that:

P(I)
[RUD]

(μ1, μ2)

=
min(k1,h1)∫

−∞

∞∫
max(k2,h2)

∞∫
max(k3,h2)

ϕ1(x1, x2, x3)e

2μ1

σ2
1

h1 e
− 1

2
(
x1 − 2h1 − μ1t1

σ1
√

t1
)

2

σ1
√

2πt1
e

2μ2

σ2
2

(h2−x2) e
− 1

2
(
−x3 − x2 + 2h2 + μ2(t2 − t1)

σ2
√

t2 − t1
)

2

σ2
√

2π(t2 − t1)
dx1dx2dx3

(91)

�
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Proof of Proposition 3. One can express the problem at hand as the following integral:

P[RRUU](μ1, μ2)

=
min(k1,h1)∫

−∞

h2∫
−∞

min(k2,h2)∫
−∞

k3∫
−∞

ϕ2(x1)ϕ3(x2, x3)ϕ5(x1, x2, x3, x4)dx4dx3dx2dx1
(92)

where

ϕ5(x1, x2, x3, x4) = P(X1(t1) ∈ dx1, X2(t1) ∈ dx2, X2(t2) ∈ dx3, X1(t2) ∈ dx4)dx4dx3dx2dx1 (93)

Plugging the quadrivariate normal joint density function of the set of random variables
X1(t1), X2(t1), X1(t2) and X2(t2), as a product of conditional density functions as explained
in Guillaume (2018), and then factoring in the conditional cumulative distribution function
of X1(t2) given the triple (X1(t1), X2(t1), X2(t2)), Proposition 3 ensues. �

Proof of Proposition 4. Proof is given only for p1(μ1, μ2, μ3) and p3(μ1, μ2, μ3), as p2(μ1, μ2, μ3)
and p4(μ1, μ2, μ3) can then be deduced by the same symmetry argument as that already
used in Corollary 1 of Proposition 1.

Following steps similar to the beginning of the proof of Proposition 1, one can express
the problem at hand as the following two integrals:

p1(μ1, μ2, μ3)

=
min(k1,h1)∫
x1=−∞

min(k2,h2)∫
x2=−∞

min(k3,h2)∫
x3=−∞

k4∫
x4=−∞

ϕ6(x1)ϕ7(x1, x2)ϕ8(x2, x3)ϕ9(x1, x3, x4)dx4dx3dx2dx1
(94)

p3(μ1, μ2, μ3)

=
min(k1,h1)∫
x1=−∞

∞∫
x2=max(k2,h2)

∞∫
x3=max(k3,h2)

∞∫
x4=k4

ϕ6(x1)ϕ7(x1, x2)ϕ10(x2, x3)ϕ9(x1, x3, x4)dx4dx3dx2dx1
(95)

where

ϕ6(x1) = P

(
sup

0≤t≤t1

X1(t) ≤ h1, X1(t1) ∈ dx1

)
dx1 (96)

ϕ7(x1, x2) = P(X2(t1) ∈ dx2|X1(t1) ∈ dx1 )dx1dx2 (97)

ϕ8(x2, x3) = P

(
sup

t1≤t≤t2

X2(t) ≤ h2, X2(t2) ∈ dx3|X2(t1) ∈ dx2

)
dx2dx3 (98)

ϕ10(x2, x3) = P
(

inf
t1≤t≤t2

X2(t) ≥ h2, X2(t2) ∈ dx3|X2(t1) ∈ dx2

)
dx2dx3 (99)

ϕ9(x1, x3, x4) = P(X3(t2) ∈ dx4|X2(t2) ∈ dx3, X1(t1) ∈ dx1 ) (100)

The function ϕ6 is obtained by differentiating the classical formula for the joint cumu-
lative distribution of the maximum of a Brownian motion with drift and its endpoint over
a closed time interval (see, e.g., Karatzas and Shreve 2000):

ϕ6(x1) =
e
− 1

2 (
x1−μ1t1
σ1
√

t1
)

2

σ1
√

2πt1
− e

2μ1
σ2

1
h1 e

− 1
2 (

x1−2h1−μ1t1
σ1
√

t1
)

2

σ1
√

2πt1
dx1 (101)

The function ϕ7 is easily derived from the bivariate normality of the pair (X1(t1), X2(t1)):

ϕ7(x1, x2) =
e
− 1

2(1−ρ2
1.2)

(
x2−μ2t1
σ2
√

t1
−ρ1.2

x1−μ1t1
σ1
√

t1
)

2

σ2

√
2πt1

(
1 − ρ2

1.2
) dx1dx2 (102)

102



J. Risk Financial Manag. 2024, 17, 356

To handle the function ϕ8, we notice that, by conditioning w.r.t. the filtration at time t1
the same classical formula as the one used to derive ϕ6, we can obtain:

P

(
sup

t1≤t≤t2

S2(t) ≤ H2, S2(t2) ≤ S2(0)ex3 |S2(t1) = S2(0)ex2

)

= N

⎡⎣ ln
(

S2(0)ex3

S2(0)ex2

)
− μ2(t2 − t1)

σ2
√

t2 − t1

⎤⎦−
(

H2

S2(0)ex2

) 2μ2
σ2

2 N

⎡⎢⎢⎢⎢⎣
ln
(

S2(0)ex3

S2(0)ex2

)
− 2 ln

(
H2

S2(0)ex2

)
−μ2(t2 − t1)

σ2
√

t2 − t1

⎤⎥⎥⎥⎥⎦ (103)

for any given (x2, x3) ∈ R2 and H2 > S2(0)ex3 .
Equation (103) can be rewritten as follows:

P

(
sup

t1≤t≤t2

X2(t) ≤ h2, X2(t2) ≤ x3|X2(t1) ∈ dx2

)
(104)

= N
[

x3 − x2 − μ2(t2 − t1)

σ2
√

t2 − t1

]
− exp

(
2μ2

σ2
2
(h2 − x2)

)
N
[

x3 − x2 − 2(h2 − x2)− μ2(t2 − t1)

σ2
√

t2 − t1

]
Therefore, by differentiating (104) w.r.t. x3, we obtain:

ϕ8(x2, x3) =
e
− 1

2 (
x3−x2−μ2(t2−t1)

σ2
√

t2−t1
)

2

σ2
√

2π(t2 − t1)
− e

2μ2
σ2

2
(h2−x2) e

− 1
2 (

x3+x2−2h2−μ2(t2−t1)
σ2
√

t2−t1
)

2

σ2
√

2π(t2 − t1)
dx2dx3 (105)

By the symmetry of paths of Brownian motion, we have:

P
(

inf
t1≤t≤t2

X2(t) ≥ h2, X2(t2) ≥ x3|X2(t1) ∈ dx2

)
(106)

= N
[−x3 + x2 + μ2(t2 − t1)

σ2
√

t2 − t1

]
− exp

(
2μ2

σ2
2
(h2 − x2)

)
N
[−x3 + x2 + 2(h2 − x2) + μ2(t2 − t1)

σ2
√

t2 − t1

]
Hence,

ϕ10(x2, x3) = ϕ8(x2, x3) (107)

The function ϕ9 derives from the joint trivariate normality of the triple (X1(t1), X2(t2),
X3(t2)). The marginal distributions of the elements of this triple come from the known
marginal distributions of S1(t1), S2(t2) and S3(t2). The pairwise correlations, as given by
θ1.3, θ1.4 and θ3.4 in Proposition 4 can be easily determined using the same method as in the
proof of Proposition 3. We obtain:

ϕ9(x1, x3, x4) =
e
− 1

2φ2
4|1.3

(
x4−μ3t2
σ3
√

t2
−θ1.4(

x1−μ1t1
σ1
√

t1
)−θ3.4|1(

x3−μ2t2
σ2
√

t2
−θ1.3(

x1−μ1t1
σ1
√

t1
)))

2

φ4|1.3σ3
√

2πt2
(108)

where σ3|1 =
√

1 − θ2
1.3.

The rest of the proof, whose cumbersome details are omitted, then consists in solving
the integrals implied by (94) and (95). The final result can be expressed as the linear
combination of four Ψ4 functions written in Proposition 4. The origin of the function Ψ4,
which is a special form of quadrivariate normal cumulative distribution, lies in the FDD
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(Finite Dimensional Distribution) of the quadruple [S1(t1), S2(t1), S2(t2), S3(t2)]. Indeed, a
little algebra shows that, ∀D1, D2, D3, D4 ∈ R+, we have:

P(S1(t1) ≤ D1, S2(t1) ≤ D2, S2(t2) ≤ D3, S3(t2) ≤ D4)

= Ψ4

⎡⎣ ln
(

D1
S1(0)

)
−μ1t1

σ1
√

t1
,

ln
(

D2
S2(0)

)
−μ2t1

σ2
√

t1
,

ln
(

D3
S2(0)

)
−μ2t2

σ2
√

t2
,

ln
(

D4
S3(0)

)
−μ3t2

σ3
√

t2
;

θ1.2, θ1.3, θ1.4, θ2.3, θ3.4

⎤⎦ (109)

Corollary 1 is a consequence of the fact that:

p(I)
1 (μ1, μ2) =

min(k1,h1)∫
x1=−∞

min(k2,h2)∫
x2=−∞

min(k3,h2)∫
x3=−∞

k4∫
x4=−∞

e

2μ1

σ2
1

h1 e
−1

2
(
x1 − 2h1 − μ1t1

σ1
√

t1
)

2

σ1
√

2πt1
ϕ7(x1, x2)

e

2μ2

σ2
2

(h2−x2) e
−1

2
(
x3 + x2 − 2h2 − μ2(t2 − t1)

σ2
√

t2 − t1
)

2

σ2
√

2π(t2 − t1)
ϕ9(x1, x3, x4)dx4dx3dx2dx1

(110)

and:

p(I)
3 (μ1, μ2) =

min(k1,h1)∫
x1=−∞

∞∫
x2=max(k2,h2)

∞∫
x3=max(k3,h2)

k4∫
x4=−∞

e

2μ1

σ2
1

h1 e
−1

2
(
x1 − 2h1 − μ1t1

σ1
√

t1
)

2

σ1
√

2πt1
ϕ7(x1, x2)

e

2μ2

σ2
2

(h2−x2) e
−1

2
(
−x3 − x2 + 2h2 + μ2(t2 − t1)

σ2
√

t2 − t1
)

2

σ2
√

2π(t2 − t1)
ϕ9(x1, x3, x4)dx4dx3dx2dx1

(111)

Corollary 2 comes from the fact that the correlation coefficient between the random

variables S2(t2) and S3(t3) is equal to ρ2.3

√
t2
t3

. �

Proof of Proposition 5. Following steps similar to the beginnings of the previous proofs,
one can express the problem at hand as the following integral:

P[RDKO](μ1, μ2) (112)

=

min(k1,h1)∫
x1=h2

h3∫
x2=h4

min(k2,h3)∫
x3=h4

ϕ1(x1, x2, x3)ϕ11(x1, x2)ϕ12(x2, x3)dx3dx2dx1

where the function ϕ1 is given by Equation (86) and:

ϕ11(x1, x2) = P

(
sup

0≤t≤t1

X1(t) ≤ h1, inf
0≤t≤t1

X1(t) ≥ h2|X1(t1) ∈ dx1

)
dx2dx1 (113)

ϕ12(x2, x3) (114)

= P

(
sup

t1≤t≤t2

X2(t) ≤ h3, inf
t1≤t≤t2

X2(t) ≥ h4|X2(t1) ∈ dx2, X2(t2) ∈ dx3

)
dx3dx2

From Pötzelberger and Wang (2001), one can plug:

ϕ11(x1, x2) =
∞

∑
n=−∞

e

2na1(x1 − na1)

σ2
1 t1 − e

2(h1 − na1)(x1 − h1 + na1)

σ2
1 t1 (115)
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ϕ12(x2, x3) =
∞

∑
n=−∞

e

2na2(x3 − x2 − na2)

σ2
2 (t2 − t1) − e

2(h3 − x2 − na2)(x3 − h3 + na2)

σ2
2 (t2 − t1) (116)

The bulk of the proof, whose cumbersome details are omitted, then consists of solv-
ing the sixteen integrals implied by (112). The final result takes the form of the linear
combinations of double sums of N3 functions in Proposition 5.

An elementary adjustment identical to the one in Corollary 3 of Proposition 1 allows
to value an early-ending variant of P[RDKO](μ1, μ2).

Alternatively, one can also expand the problem as the following integral:

P[RDKO](μ1, μ2) =

min(k1,h1)∫
x1=h2

h3∫
x2=h4

min(k2,h3)∫
x3=h4

ϕ13(x1)ϕ7(x1, x2)ϕ14(x2, x3)dx3dx2dx1 (117)

where the function ϕ7 is given by Equation (102) and:

ϕ13(x1) = P

(
sup

0≤t≤t1

X1(t) ≤ h1, inf
0≤t≤t1

X1(t) ≥ h2, X1(t1) ∈ dx1

)
dx1 (118)

ϕ14(x2, x3) (119)

= P

(
sup

t1≤t≤t2

X2(t) ≤ h3, inf
t1≤t≤t2

X2(t) ≥ h4, X2(t2) ∈ dx3|X2(t1) ∈ dx2

)
dx3dx2

According to the classical formula for the distribution of the maximum, the minimum
and the endpoint of a Brownian motion with drift over a closed time interval, which can be
traced back to Anderson (1960), we have:

P

(
sup

0≤t≤t1

S1(t) < H1, inf
0≤t≤t1

S1(t) > H2, S1(t1) < S1(0)ex1 |S1(0)

)

=
∞

∑
n1=−∞

exp

(
2μ1

σ2
1

n1a1

){
N
[

x1 − 2n1a1 − μ1t1

σ1
√

t1

]
− N

[
h2 − 2n1a1 − μ1t1

σ1
√

t1

]}
(120)

−
∞

∑
n1=−∞

exp

(
2μ1

σ2
1
(h2 − n1a1)

){
N
[

x1 − 2h2 + 2n1a1 − μ1t1

σ1
√

t1

]
− N

[−h2 + 2n1a1 − μ1t1

σ1
√

t1

]}
for a given x1 ∈ R, and ∀H1 > S1(0)ex1 .

Mere differentiation of (120) w.r.t. x1 yields the function ϕ13:

ϕ13(x1) =
∞

∑
n1=−∞

e

2μ1

σ2
1

n1a1−
1

2σ2t1
(x1−μ1t1−2n1a1)

2

σ1
√

2πt1
−

∞

∑
n1=−∞

e

2μ

σ2
1
(h2−n1a1)−

1
2σ2

1 t1
(x1−2h2−μ1t1+2n1a1)

2

σ1
√

2πt1
(121)

To handle the function ϕ14, we notice that, by conditioning w.r.t. the filtration at time
t1 the same classical formula as the one used to derive ϕ13, we can obtain:

P

(
sup

t1≤t≤t2

S2(t) < H3, inf
t1≤t≤t2

S2(t) > H4, S2(t2) ≤ S2(0)ex3 |S2(t1) = S2(0)ex2

)
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=
∞

∑
n2=−∞

exp

(
2μ2

σ2
2

n2a2

)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N

⎡⎢⎢⎣ ln
(

S2(0)ex3

S2(0)ex2

)
− 2n2a2 − μ2(t2 − t1)

σ2
√

t2 − t1

⎤⎥⎥⎦
−N

⎡⎢⎢⎣ ln
(

H4

S2(0)ex2

)
− 2n2a2 − μ2(t2 − t1)

σ2
√

t2 − t1

⎤⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(122)

− ∞
∑

n2=−∞
exp

(
2μ2

σ2
2

(
ln
(

H4

S2(0)ex2

)
− n2a2

))
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N

⎡⎢⎢⎣ ln
(

S2(0)ex3

S2(0)ex2

)
− 2 ln

(
H4

S2(0)ex2

)
+ 2n2a2 − μ2(t2 − t1)

σ2
√

t2 − t1

⎤⎥⎥⎦
−N

⎡⎢⎢⎣− ln
(

H4

S2(0)ex2

)
+ 2n2a2 − μ2(t2 − t1)

σ2
√

t2 − t1

⎤⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(123)

for any given (x2, x3) ∈ R2 and H3 > S2(0)ex3 .
Equations (122) and (123) can be rewritten as follows:

P

(
sup

t1≤t≤t2

X2(t) < h3, inf
t1≤t≤t2

X2(t) > h4, X2(t2) ≤ x3|X2(t1) ∈ dx2

)

=
∞

∑
n2=−∞

exp

(
2μ2

σ2
2

n2a2

)⎧⎪⎪⎨⎪⎪⎩
N
[

x3 − x2 − 2n2a2 − μ2(t2 − t1)

σ2
√

t2 − t1

]
−N

[
h4 − x2 − 2n2a2 − μ2(t2 − t1)

σ2
√

t2 − t1

]
⎫⎪⎪⎬⎪⎪⎭ (124)

−
∞

∑
n2=−∞

exp

(
2μ2

σ2
2
((h4 − x2)− n2a2)

)⎧⎪⎪⎨⎪⎪⎩
N
[

x3 − x2 − 2(h4 − x2) + 2n2a2 − μ2(t2 − t1)

σ2
√

t2 − t1

]
−N

[−(h4 − x2) + 2n2a2 − μ2(t2 − t1)

σ2
√

t2 − t1

]
⎫⎪⎪⎬⎪⎪⎭ (125)

Therefore, by differentiating (124) and (125) w.r.t. x3, we obtain:

ϕ14(x2, x3) =
∞

∑
n2=−∞

e
(
2μ2

σ2
2

n2a2) e
− 1

2σ2
2 (t2 − t1)

(x3−x2−2n2a2−μ2(t2−t1))
2

σ2
√

2π(t2 − t1)
(126)

−
∞

∑
n2=−∞

e

2μ2

σ2
2

(h4−x2−n2a2) e
− 1

2σ2
2 (t2 − t1)

(x3+x2−2h4+2n2a2−μ2(t2−t1))
2

σ2
√

2π(t2 − t1)
(127)

This second formulation leads to a formula identical to Proposition 5 except for the
fact that the N3 functions are replaced by Φ3 functions defined as follows:

Φ3[b1, b2, b3; x] =
b2∫

x=−∞

exp
(−x2/2

)
√

2π
N

⎡⎣ b1 − c1x√
1 − c2

1

⎤⎦ N

⎡⎣ b3 − c2x√
1 − c2

2

⎤⎦dx (128)

where (b1, b2, b3) ∈ R3 and x is a vector with two real coordinates c1, c2 ∈ ]−1, 1[.
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The vectors of correlation coefficients x1 and x2 become:

x1 =

{
ρ1.2,

√
t1

t2

}
, x2 =

{
ρ1.2,−

√
t1

t2

}
(129)

The origin of the function Φ3, which is a special form of trivariate normal cumulative
distribution, lies in the FDD (finite dimensional distribution) of the triple [S1(t1), S2(t1), S2(t2)].
Indeed, a little algebra shows that, ∀D1, D2, D3 ∈ R+, we have:

P(S1(t1) ≤ D1, S2(t1) ≤ D2, S2(t2) ≤ D3)

= Φ3

⎡⎣ ln
(

D1
S1(0)

)
− μ1t1

σ1
√

t1
,

ln
(

D2
S2(0)

)
− μ2t1

σ2
√

t1
,

ln
(

D3
S2(0)

)
− μ2t2

σ2
√

t2
; ρ1.2,

√
t1

t2

⎤⎦ (130)

Notice that the two-colour probability distributions of Sections 2.1 and 2.2 can also be
written as linear combinations of functions Φ3. �

4. Conclusions

This article has shown how to value in closed form an important kind of multi-asset
step barrier option known as a rainbow step barrier option, under the condition that the
number of “colours” is restricted to two, along with widespread variants such as a two-
colour outside step barrier and a two-colour step double barrier. It may be feasible, albeit
tedious, to find an analytical solution to an extended valuation problem with three or four
colours, but the expected benefits, compared with a conditional Monte Carlo approximation
method, would greatly depend on the degree of the quadrature required to numerically
evaluate the resulting multidimensional integrals. It should be emphasised that, even if
more sophisticated models (allowing, e.g., for stochastic volatility) or a greater number
of underlying assets are needed, closed form solutions obtained in a low-dimensional
Black–Scholes framework remain useful as fast and accurate benchmarks that can: (i) serve
as control variates in a simulation; (ii) speed up the calibration process; (iii) facilitate the
analysis and the understanding of the interactions between the variables, as well as of
the sensitivities of the option value w.r.t. its main parameters, which is instrumental in
devising appropriate hedging techniques or trading strategies.
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Abstract: Recently, there has been an increased focus on enhancing the accuracy of machine learning
techniques. However, there is the possibility to improve it by selecting the optimal tuning parameters,
especially when data heterogeneity and multicollinearity exist. Therefore, this study proposed a
statistical model to study the importance of changing the crude oil prices in the European Union, in
which it should meet state-of-the-art developments on economic, political, environmental, and social
challenges. The proposed model is Elastic-net quantile regression, which provides more accurate
estimations to tackle multicollinearity, heavy-tailed distributions, heterogeneity, and selecting the
most significant variables. The performance has been verified by several statistical criteria. The
main findings of numerical simulation and real data application confirm the superiority of the
proposed Elastic-net quantile regression at the optimal tuning parameters, as it provided significant
information in detecting changes in oil prices. Accordingly, based on the significant selected variables;
the exchange rate has the highest influence on oil price changes at high frequencies, followed by
retail trade, interest rates, and the consumer price index. The importance of this research is that
policymakers take advantage of the vital importance of developing energy policies and decisions in
their planning.

Keywords: quantile regression; tuning parameters; penalized regression; multicollinearity;
heterogeneity; cross-validation; crude oil price

1. Introduction

In most research fields that have large time series data, like environmental, medical,
marketing, etc., the data have great importance as information that need a development
tool to reach the right decision. To detect more information around these data like patterns
and trends, advanced machine learning (ML) has been used. ML is classified into two
parts, namely supervised and unsupervised methods. Supervised ML algorithms build
mathematical models to predict outcomes in the future. One of the main applications of
supervised ML is regression analysis (Kassambara 2018; Ray 2019).

Regression analysis faces several challenges and affect prediction accuracy. For exam-
ple, heterogeneity and the multicollinearity problem exist among the predictor variables;
consequently, such a model is difficult to interpret (Qin et al. 2016; Alsayed et al. 2018;
Al-Jawarneh et al. 2022). Many researchers continue to develop hybrid regression models to
deal with these issues by improving the ordinary least squares method (OLS) method, such
as the penalized regularization method; namely, Ridge regression (RR) and the least absolute
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shrinkage and selection operator (LASSO) method. However, the RR method still cannot
deal with the reduction of the predictor numbers; hence, the unnecessary predictor variables
will still exist in the final model (Tibshirani 1996; Zou and Hastie 2005). Meanwhile, the
LASSO method is inconsistent for variable selection and dealing with multicollinearity (Fan
and Li 2001; Zou and Hastie 2005). Elastic-net (ELNET) methods (Zou and Hastie 2005) were
proposed. This method represents a newly developed penalized regularization method for
improving the model’s interpretability and identifying relevant variables, considering that
the procedures with the initial coefficient estimator used to compute the adaptive weights
need not be consistent. In addition to that, quantile regression (QR) seeks to search for a
model that minimizes the sum of the absolute residuals rather than the sum of the squared
residuals. QR measures the effects of unobserved heterogeneity in the included variables.
If the dependent variable distribution changes together with the independent variables,
then the result is misleading when using the OLS regression, whereas QR shows how such
changes in the independent variables affect the distribution shape of the dependent vari-
able. Therefore, it will provide significant estimators for the changing of the heterogeneous
distribution of the dependent variable (Alsayed et al. 2020). Moreover, there is a study that
proposed the idea of penalized LASSO quantile regression that used the sum of the absolute
values of the coefficients as the penalty (Li and Zhu 2008). In addition, recent research
proposed an elastic net penalized quantile regression model approach that combines the
strengths of the quantile loss and the Elastic net (Su and Wang 2021).

In penalized regression, the tuning parameters play a serious role in improving the
penalty to realize the optimal estimation and consistent selection (Xiao and Sun 2019) when
the tuning parameters have control of the coefficient shrinkage rate. For instance, if λ has
too high a value, which leads to more shrinkage to be a small value or exactly equal zero,
that means the model will be under-fitting (i.e., high bias and low variance). As the tuning
parameter value increases, the bias increases, the variance decreases, and vice versa, in
addition to the choosing of tuning parameter alpha ( α) in the elastic net method which
belongs to a value between zero and one, several of the studies work to fix this value at
alpha equal to 0.5 or 0.75. So, choosing tuning parameter values is a difficult business and
very sensitive (Fan and Tang 2013; Desboulets 2018).

To choose the tuning parameter, the literature advised some frequently used methods.
These include the minimizing information criterion (IC), namely the Akaike information
criterion (AIC) (Akaike et al. 1973), Bayes information criterion (BIC) (Schwarz 1978),
Mallow Cp (Efron et al. 2004), and cross-validation (CV) (Stone 1974). The CV method is
the simplest and most commonly used method in the literature for estimating and choosing
the tuning parameter that has the minimizing CV sum of squared residuals (Chand 2012;
Desboulets 2018), where the principle of the CV method presents a grid of λ values and
computing the CV error for each λ after choosing the optimal λ, which has the smallest CV
error (Gareth et al. 2013).

On the other hand, the importance of predicting and forecasting the energy market
is highly needed to reach the optimal balanced point between energy, economics and
environmental quality. Crude oil is an ingredient for sustainable economic growth, while
the supply and demand are inelastic, and crude oil prices often experience sharp and
sustained fluctuations (Alsayed and Manzi 2019). Therefore, this study examines the
reaction of crude oil prices during the recent period, which has several economic shocks,
particularly in the European Union; these include the global economic crisis in 2008,
COVID-19 in 2020, and the recent wars in 2022–2024, which led to challenges for the global
economy. Several studies have shown interest in examining the crude oil prices with several
global and local factors (Aastveit et al. 2023; He et al. 2021; Kartal 2020; Baumeister and
Kilian 2015; Doğrul and Soytas 2010; Amano and Van Norden 1998).

The significant contribution of this research is twofold: First, on the statistical aspect
to deal with the heterogeneity, and second, to improve the accuracy of model selection
by selecting the predictors that have the most effect on the response variable; the ELNET.
QR regression at τ = 0.25, 0.5, 0.75 will be used based on the D-fold C.V. method to select
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the optimal tuning parameters (αopt and λopt). Then, it is evaluated and compared with
recently developed methods using both simulations and real applications. Additionally,
regarding the novelty of the econometrics aspect, we model and predict the crude oil price
using local and global variables—namely, the exchange rate and retail trade, interest rates,
and consumer price index—to tackle the time series data that suffer from heterogeneity.

The advantage of using this approach is that this model is distinguished by its superior
ability to deal with time series issues compared to the old models used and its ability to
keep pace with developments in time series. However, there is the disadvantage that it
does not have the oracle property, but this can be treated using the adaptive elastic net
method in the future.

This research is organized as follows: Section 1 provides the introduction and literature
review, Section 2 presents the methods, quantile regression, elastic net regression, D-fold
cross-validation, and the proposed method. Section 3 explains the data and variables.
Section 4 presents the empirical findings and discussion, and the Section 5 is the conclusion.

2. Methodology

This section briefly describes the applied methods. The first method is the QR regres-
sion method, which deals with heterogeneity problems. The second method pertains to
the penalized regularization method by the Elastic-net (ELNET) method and D-fold cross-
validation. Finally, this section discusses the proposed method provided, ELNET.QRαopt
regression.

2.1. Quantile Regression

QR regression is broadly applied, covering wide research areas. Koenker suggested a
general approach of QR for longitudinal data (Koenker 2004). QR is used to estimate the
conditional median and any other quantiles of the dependent predictor variables, and it
could tackle the unobserved heterogeneity effects. The QR could describe that relationship
at different points in the conditional median or quantiles distribution of dependent variable
Qy/X(τ), where τ is the quantiles or percentiles and takes value from 0 < τ < 1 (Ambark
et al. 2023). The model structure of the multiple linear regression is

y = XT βτ + ε (1)

where [y]n×1 is a vector of the response variable, [X]n×p is a matrix of the predictor variables,

[βτ ]p×1 is the unknown vector of the regression coefficients associated with the τth quantile,
[ε]n×1 is a vector of the random observation errors that are supposed to be a normal
distribution with zero mean error term and variance E(ε) = σ2 In.

The linear quantile regression model assumes:

Qy/X(τ) = XT βτ ; βτ =
{

βτ
0, βτ

1, . . . , βτ
p

}′
(2)

where βτ is the quantile coefficient. Then, the τth quantile regression estimator minimizes
the objective function βτ (Davino et al. 2013), which is given by:

β̂τ = min
β

∑n
i=1 ρτ

(
yi − xT

i β
)

(3)

where xT
i is the ith row of X and ρτ(v) is a loss function defined as follows:

ρτ(v) = v
(

τ − I{v<0}
))

; 0 < τ < 1 and v ∈ R (4)

To improve quantile regression and regularization, Koenker suggested a penalized
version, as follows:

β̂τ = min
β

∑n
i=1 ρτ

(
yi − xT

i β
)
+ Pλ(β) (5)
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where P(β) is the penalty function and λ is the tuning, which is greater than zero.

2.2. Elastic Net Regression

ELNET regression is proposed to deal with the limitations of LASSO and improve the
interpretability model and accuracy prediction by combining two penalties; namely, L1
penalty (LASSO) and L2 penalty (RR) (Zou and Hastie 2005; Zou and Zhang 2009; Friedman
et al. 2010; Lee et al. 2016). The ELNET estimator is given as follows:

β̂ELNET = min
β

∑n
i=1

(
yi − xT

i β
)
+ λ1‖β‖1 + λ2‖β‖2

2 (6)

where ‖β‖1 = ∑
p
j=1

∣∣β j
∣∣ is L1-norm of β, ‖β‖2

2 = ∑
p
j=1

(
β j

)2 is L2-norm of β, and λ1 and
λ2 are the tuning λ1 , λ2 > 0. These functions control the strength of shrinkage of the
predictor variables. The values of λ1 and λ2 are dependent on the dataset, and they are
automatically selected using CV (Zou and Hastie 2005; Melkumova and Shatskikh 2017;
Masselot et al. 2018; Al-Jawarneh and Ismail 2024). The best values of tuning parameters
λ1 and λ2 can be defined as the minimum mean squared error (MSE) (Friedman et al. 2010;
Lee et al. 2016).

Equation (7) becomes equivalent to the following by denoting λ1 = 2nλα and λ2 =
nλ(1 − α) (Haws et al. 2015; Al-Jawarneh et al. 2022):

β̂ELNET = min
β

∑n
i=1

(
yi − xT

i β
)
+ λ

(
α‖β‖1 +

(1 − α)

2
‖β‖2

2

)
(7)

where α is a regularization parameter between zero and one. The ELNET estimation
undergoes the RR estimator when α = 0, whereas it is subject to the LASSO estimator when
α = 1.

2.3. D-Fold Cross-Validation

The D-fold cross-validation (D-CV) method was proposed by (Geisser 1975). D-CV
idea is to split the dataset into D folds nearly equal in size. After that, the D − 1 folds are
used as the training set for the estimation of the model, while the dth fold is used as a test
set to assess the predictive performance of the model. This process repeats until every D
fold serves as the test set. Then, the mean prediction error over all folds is calculated (van
Houwelingen and Sauerbrei 2013; Gareth et al. 2013). The D-CV algorithm is explained in
Algorithm 1 (Hastie et al. 2009; Melkumova and Shatskikh 2017; Hastie et al. 2015) and is
repeated for each fold as shown in Figure 1.

Figure 1. Diagram of D-fold cross-validation (D-CV).
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Algorithm 1: D-fold Cross-Validation

1- Randomly, split the whole dataset of size n into D folds of roughly equal size.
2- • For a grid of S values of λ: s in 1:S.

• For d in 1:D.

• Consider D − 1 folds as a training set, and dth fold as a test set.
• By the training set, using an estimation method to estimate the regression

coefficient at λs value, and denoted by the fitted function f̂d,λs
(z).

• Calculate the prediction error (PE) on the test set.

PEd,λs =
nd

∑
i=1

(
Vi − f̂d,λs

(zi)
)2

(8)

• End for d.

• Repeat for d = 1, 2, . . . , D
• For each λs overall fold, calculate the average of D prediction errors.

CVλs =
1
D

D

∑
d=1

PEd,λs (9)

• End for s.

• Repeat for s in 1 : S
3- Choose the optimal λ that gives a minimum average CV.

λopt = argmins=1,2,S
{

CVλs

}
End.

Figure 1 describes the process of D-CV where the dataset is split for D folds. Each
row represents one iteration and each column represents one fold. For example, in the first
iteration, the 1st fold represents the test set, whereas the remaining D − 1 folds represent
the training set. In the second iteration, the 2nd fold represents the test set, and the other
folds are the training set. Thus, repeat this until every D fold serves as the test set.

The size of each training set is equal to [(D − 1)n]/D observations, as the D value
increase leads to a decrease in the bias of the fit model, whereas the variance will increase,
as will the correlation among the fitted model because of the overlap among the training
sets (Gareth et al. 2013). Usually, the D value is chosen at 5 or 10, where these values yield
estimates that achieve an intermediate level of bias and are not excessively biased nor from
high variance; Thus, D = 5 or 10 involve the bias-variance trade-off (Gareth et al. 2013;
Kuhn and Johnson 2013; Al-Jawarneh and Ismail 2024).

2.4. Proposed Penalized Quantile Regression Method

The Elastic-net quantile regression method based on D-CV (ELNET.QR) is presented
to explain the significance of the predictor variables on the response variable and enhance
the prediction error of the final model based on the optimal tuning parameters as follows:

1. Apply the QR method at τ = (0.25, 0.50, 0.75) using all the variables:

β̂QR
τ = min

β
∑n

i=1 ρτ

(
yi − xT

i β
)

(10)

2. Using the training set only, select the optimal parameters via the D-CV method at D =
10 as follows:

i. The regularization parameter αopt value of the sequence 0 < α < 1, where αopt
represents the relative contribution of the L1 penalty versus L2 penalty.

αopt = argmink=1:K
{

CVαk

}
; (11)
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CVαk =
1
10

10

∑
d=1

PEαk ; αk ∈ (0, 1)

where k represents the number of α values between one and zero and will be
chosen. In this study, we choose K = 50.

ii. The tuning parameter λopt value is at αopt

λopt = argmins=1:S

{
CVαopt , λs

}
; (12)

CVαopt , λs =
1

10∑10
d=1 MSEαopt , λs

3. Based on the Equations (7) and (10) at αopt and λopt, the ELNET penalized regression
is used as the following formula:

β̂ELNET. QR
τ = min

β
∑n

i=1 ρτ

(
yi − xT

i β
)
+ λopt

(
αopt‖β̂‖1 +

(
1 − αopt

)
2

‖β̂‖2
2

)
; (13)

ρτ(v) = v
(

τ − I{v<0}
)

Finally, a comparison was made between the proposed methods with traditional
methods. The performance of the proposed estimated method has been tested by using
several well-known criteria, namely; Residual Sum of Squares (RSS (Equation (14)), root
mean square error (RMSE; Equation (15)), mean absolute error (MAE; Equation (16)), mean
absolute percentage error (MAPE; Equation (17)), and mean absolute scaled error (MASE;
Equation (18)).

RSS =
n

∑
i=1

(y i − ŷi)
2 (14)

RMSE =

√
1
n∑n

l=1(yl − ŷl)
2 (15)

MAE =
1
n∑n

l=1|yl − ŷl | (16)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (17)

MASE =
1
n

n

∑
l=1

|yl − ŷl |
1

n−1 ∑n
l=2|yl − yl−1|

(18)

3. Application

This section implemented the numerical simulation experiment and a real dataset
application to show the capacity of the proposed methods. The analyses are performed
using open-source R 4.3.1 software by using the hqreg package and our developed code
to calculate the function of obtaining the best tuning parameters value for ELNET.QR
regression.

3.1. Simulation Study

In this section, we present the results of the numerical simulation for the eight methods:
namely; RR.QR, LASSO.QR, ELNET.QR at the best αopt value, ELNET.QR at α = 0.25,
ELNET.QR at α = 0.5, ELNET.QR at α = 0.75, AdLASSO.QR method based on the
minimum MSE (λmin), and minimum MSE with one standard error (λ1se) of weighted
RR. We evaluate and illustrate these eight methods of variable selection and prediction
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performance under a normal distribution. Simulation scenarios considered three QR levels
at τ = 0.25, 0.5, 0.75, a sample size of n = 150, and iteration= 1000. The 10-CV was applied
to select the best tuning parameter values. The simulated data are split into two parts:
70% for training, and 30% for testing the estimated models then evaluated by using the
performance criteria.

3.2. Application Datasets

The European Union (EU) is an economic and political union of 27 countries. It
operates an internal (or single) market, which allows the free movement of goods, capital,
services, and people between member states. In recent years, the European Union has made
significant and noticeable progress in implementing new policies in energy consumption to
shift to low carbon emissions, while crude oil market prices have experienced important
changes and is more volatile than the price of other tradable commodities that have negative
effects on investment.

The dataset of energy oil prices with the relevant affected factors is included to evaluate
the performance of the penalized regression methods. The explanatory variable is crude
oil prices (y) measured by local currency per barrel, while the predictor variables are the
consumer price index, retail trade, the foreign exchange rate (Euro/USD), and interest rates
represented by x1, . . . , x4 respectively. The data are collected on a monthly basis from the
beginning of the year 2000 to the end of the year 2022 to include the highest affected period,
such as the financial crisis in 2008, COVID-19 in 2020, and the Russian-Ukraine war in 2022.
The data for all variables are gathered from Bloomberg (2023). There are several variables
used to examine oil price changes, but we included the variables that are available every
quarter, and those variables have effects on changes in the oil price according to economic
theory, policy, and literature.

Recent literature included those variables as independent variables to measure the
effects on crude oil prices (Kirikkaleli and Doğan 2021; Yılmaz and Altay 2016; Alsayed
2023; Amano and Van Norden 1998). Their findings showed that it significantly affects
oil prices at various levels. Other studies used advanced statistical methods such as a
multivariate adaptive regression splines model to detect the effect of foreign exchange
(USD-TRY), credit default swap spread, global uncertainty, and global volatility on local
currency oil prices at a local economy level in Turkey during the COVID-19 pandemic using
daily data from July 2019 to October 2020 (Kartal 2020). Doğrul and Soytas (2010) detected
the relationship between oil prices, interest rate, economic activity, and unemployment
in Turkey by applying the Toda–Yamamoto technique. Their findings support that the
volatility index is the most important factor influencing crude oil prices.

Descriptive statistics of our dataset are presented in Figure 2a–c. We can observe
that crude oil prices were facing three serious shocks with an exponential increase in 2008,
the spread of the COVID-19 pandemic in 2020, and the recent oil price slump in 2022,
which have substantially raised the economic uncertainty and geopolitical risk levels. The
combination of those economic degradations will likely initiate a long-term economic
downturn and drive the European Union economy into the next recession.

The estimated model consists of four independent variables x1, . . . , x4, and the terms
of interaction between variables are x5, . . . , x10. The dataset is divided into two parts: 70%
(192 cases) which used for the training dataset and the remaining 30% of the dataset (83
cases) is used for testing. The whole dataset has been made stationarity at first difference
and then standardized before doing the analysis. The interested estimated model is as
follows.

yt = αt + β 1tx1 + β2tx2 + β3t x3 + β4t x4+β5tx5 +β6tx6 +β7tx7 +β8tx8 + β9tx9 +β10tx10 + εt

where y represents the oil price at day t in Europe, x1 is the consumer price index, x2 is retail
trade, x3 is exchange rate, x4 is interest rates, x5 = x1x2, x6 = x1x3, x7 = x1x4, x8 =
x2x3, x9 = x2x4, x10 = x3x4 and εt is the error term.
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(a) 

 
(b) 

 
(c) 

Figure 2. (a) The monthly crude oil prices in the European Union. (b) The consumer price index and
retail trade in the European Union. (c) The monthly exchange rate and interest rates in the European
Union.

4. Results and Discussion

In this section, we provide the result of the numerical experiment and the application
based on the real dataset.

4.1. Simulation Results

Table 1 describes the average of the performance criteria in terms of RSS, RMSE,
MAE, MASE, and MAPE for all the regression methods used in this study. In cases of
study at τ = (0.25, 0.50, 0.75), the results show that the proposed regression method
ELNET.QR αopt, λmin (by determining the best optimal α value) has the smallest error value
in these criteria tests. Therefore, ELNET.QR αopt, λmin improves the prediction accuracy by
producing the smallest error values in terms of RSS, RMSE, MAE, MASE, and MAPE.
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Table 1. Performance criteria of the simulation scenarios.

Method λ RSS RMSE MAE MAPE MASE

τ = 0.25

RR.QR
λmin 35.5827 0.88624 0.71977 3.657265 0.794615

λ1se 39.4718 0.93395 0.76183 4.024955 0.841051

LASSO.QR
λmin 14.1830 0.56093 0.40053 1.746325 0.442176

λ1se 15.3082 0.58278 0.43724 1.999109 0.482706

AdLASSO.QR (RR.W. λmin)
λmin 14.5157 0.56762 0.41579 2.082011 0.459031

λ1se 16.0379 0.59633 0.45133 2.030926 0.498263

AdLASSO.QR (RR.W. λ1se)
λmin 14.7190 0.57034 0.41830 2.092005 0.461806

λ1se 16.2224 0.59878 0.45343 2.044566 0.500584

ELNET.QR α = 0.25
λmin 19.0338 0.64701 0.50269 2.272781 0.554958

λ1se 22.9179 0.71031 0.56536 2.504381 0.624143

ELNET.QR α = 0.5
λmin 14.7433 0.57177 0.41665 1.89485 0.459972

λ1se 17.4372 0.62082 0.47837 2.131715 0.528107

ELNET.QR α = 0.75
λmin 14.2895 0.56306 0.40377 1.780631 0.445752

λ1se 15.7379 0.59067 0.44563 2.044958 0.491972

ELNET.QR αopt
λmin 13.9615 0.55671 0.39654 1.776101 0.437778

λ1se 15.7195 0.59049 0.44696 2.020386 0.493431

τ = 0.5

RR.QR
λmin 30.8563 0.82567 0.69494 2.127862 0.76720

λ1se 33.5667 0.86207 0.72893 2.019126 0.80472

LASSO.QR
λmin 11.7178 0.50823 0.39718 2.592074 0.438483

λ1se 13.6771 0.54948 0.45072 2.456135 0.497588

AdLASSO.QR (RR.W. λmin)
λmin 13.385 0.53733 0.44051 2.604391 0.486318

λ1se 14.9137 0.56951 0.46914 2.488478 0.517925

AdLASSO.QR (RR.W. λ1se)
λmin 13.4163 0.53805 0.44168 2.602395 0.487607

λ1se 14.9282 0.56976 0.46944 2.48853 0.518257

ELNET.QR α = 0.25
λmin 16.1670 0.59738 0.48819 2.668777 0.538961

λ1se 19.3541 0.65371 0.53790 2.602162 0.593840

ELNET.QR α = 0.5
λmin 13.1976 0.53957 0.44388 2.665215 0.490041

λ1se 15.5554 0.58596 0.47915 2.659132 0.528980

ELNET.QR α = 0.75
λmin 12.3296 0.52141 0.42639 2.639871 0.470737

λ1se 14.3324 0.56247 0.46268 2.544796 0.510792

ELNET.QR αopt
λmin 10.3090 0.47689 0.37236 2.564913 0.411081

λ1se 13.6800 0.54953 0.45087 2.515077 0.497758

τ = 0.75

RR.QR
λmin 42.7458 0.96993 0.79680 6.288212 0.879659

λ1se 46.8397 1.01652 0.83617 6.47382 0.923126

LASSO.QR
λmin 12.9671 0.53623 0.45390 4.716719 0.501104

λ1se 14.3718 0.5644 0.46955 4.696969 0.518382

AdLASSO.QR (RR.W. λmin)
λmin 14.4291 0.55778 0.47079 4.889332 0.519747

λ1se 15.8043 0.58392 0.48687 4.910642 0.537499
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Table 1. Cont.

Method λ RSS RMSE MAE MAPE MASE

AdLASSO.QR (RR.W. λ1se)
λmin 14.5222 0.55917 0.47169 4.892964 0.520746

λ1se 15.8926 0.58537 0.48803 4.916813 0.538782

ELNET.QR α = 0.25
λmin 20.6517 0.67191 0.55133 5.073862 0.608665

λ1se 23.6645 0.71873 0.58854 5.305833 0.649741

ELNET.QR α = 0.5
λmin 13.7992 0.55295 0.46196 4.620298 0.510000

λ1se 15.1615 0.57941 0.47896 4.653668 0.528763

ELNET.QR α = 0.75
λmin 13.0885 0.53868 0.45467 4.68214 0.501955

λ1se 14.5195 0.56725 0.47102 4.675978 0.520007

ELNET.QR αopt
λmin 12.8468 0.53376 0.45244 4.714046 0.499487

λ1se 14.3309 0.56360 0.46864 4.683324 0.517377

Note: The bold number indicates the lowest values in favor of the superior performance method compared to the
other methods.

4.2. Application Results and Discussion

Figure 3 shows the curve of RSS to choose the optimal alpha ( αopt
)

in three cases of
τ = 0.25, 0.50, 0.75 he y-axis represents the estimation of the RSS and the x-axis represents
the alpha values. At τ = 0.25, the minimum RSS value appears at αopt = 0.38, whereas at
τ = 0.50, 0.75, the minimum RSS values are at 0.02 in two cases. These results indicate that
the optimal alpha can reduce the RSS value more than the traditional methods for chosen
alpha at fixed points like α = 0.25, 0.5, 0.75, or other methods like lasso and ridge methods.

 

Figure 3. 10-CV estimation for choosing the αopt of ELNET.QR (τ = 0.25, 0.50, 0.75).

Figure 4 shows the 10-CV estimate plot of the ELNET.Qr αopt; (αopt = 0.38, 0.02, and 0.02)
and τ = 0.25, 0.50, 0.75, respectively. In each plot, the red dotted line is the mean square
error (MSE) curve with one standard error band along the error bars. The y-axis represents
the MSE and the x-axis denotes the log(λ) function. The upper horizontal line of the plot
represents the numbers of nonzero regression coefficients in the model at log(λ) value. The
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first vertical dotted lines from the right represent the point selected at a minimum of the
MSE (λ min) rule, while the second vertical line denotes the location of the point selected
at a minimum of MSE with the one standard error (λ 1se) rule. These two lines show the
numbers of nonzero regression coefficients selected at λ1se and λmin rules. The increase in
λ value leads to a decrease in the number of non-zero coefficients in the model. Therefore,
the selection of the λ is based on the optimal minimum MSE value.

 

Figure 4. 10-CV estimation of the ELNET.QR αopt at τ = 0.25, 0.50, 0.75.

Figure 5 illustrates the relationship between log(λ) and the selected nonzero coefficient
estimation in the ELNET.QR αopt(0.38, 0.02, and 0.02) at current λ, which represents the
actual degrees of freedom. All methods have regularization and variable selection. In each
one of the figures from right to left, the estimation of the coefficients decreases toward zero
with the increase in the λ value and forces it to become zero for the unnecessary coefficient
estimation (i.e., i f λ → ∞, then the estimated coefficients → 0). For instance, at τ = 0.25,
the ELNET.QR as the αopt = 0.38 method selected eight nonzero coefficients at λmin and
five nonzero coefficients at λ1se with different significant strengths.

Table 2 display the RSS values and the number of variable selections (Num. of V.S.) of
the proposed method compared to those of the previous methods in the testing datasets.
Based on the RSS values, the order of the proposed methods among all used methods
in this study is as follows: The first-order method among all methods is achieved by
ELNET.QR αopt = 0.38, τ = 0.25 (λ min = 0.0787; RSS = 84.426; Num. of V.S. = 8), c,
τ = 0.5 (λ min = 0.3392; RSS = 72.9008; Num. of V.S. = 10). At τ = 0.75 (λ min = 0.2555;
RSS = 97.6474; Num. of V.S. = 9), it has the smallest RSS value.
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Figure 5. Coefficient estimation of the ELNET.QR αopt.
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Table 2. Selected number of variables and RSS error values.

Method λ RSS Num. of V.S. V.S.

RR λmin = 0.041839 109.177 10 x1, . . . , x10

λ1se = 0.74835 77.0141 10 x1, . . . , x10

LASSO λmin = 0.003994 120.091 9 x1, . . . , x4, x6, . . . , x10

λ1se = 0.078399 82.3651 7 x1, . . . , x4, x6, x8, x10

ELNET α = 0.25 λmin = 0.013263 116.129 10 x1, . . . , x10

λ1se = 0.260352 76.9288 7 x1, . . . , x4, x6, x8, x10

ELNET α = 0.5 λmin = 0.007987 117.951 9 x1, . . . , x4, x6, . . . , x10

λ1se = 0.142868 79.5524 7 x1, . . . , x4, x6, x8, x10

ELNET α = 0.75 λmin = 0.005844 118.623 9 x1, . . . , x4, x6, . . . , x10

λ1se = 0.104532 80.8656 7 x1, . . . , x4, x6, x8, x10

τ = 0.25

RR.QR
λmin = 0.1322 103.907 10 x1, . . . , x10

λ1se = 0.5480 92.046 10 x1, . . . , x10

LASSO.QR
λmin = 0.0471 87.492 4 x1, . . . , x4

λ1se = 0.0720 93.659 3 x1, x2, x4

AdLASSO.QR (RR.W. λmin)
λmin = 0.0008 100.139 4 x1, x3, x4, x10

λ1se = 0.0028 100.797 3 x1, x3, x4

AdLASSO.QR (RR.W. λ1se)
λmin = 0.0003 96.542 4 x1, . . . , x4

λ1se = 0.0012 99.369 3 x1, x3, x4

ELNET.QR α = 0.25
λmin = 0.0911 86.377 8 x1, . . . , x6, x8, x10

λ1se = 0.2002 87.614 5 x1, . . . , x4, x10

ELNET.QR α = 0.5
λmin = 0.0317 100.762 9 x1, . . . , x6, x8, x9, x10

λ1se = 0.1275 90.6738 4 x1, . . . , x4

ELNET.QR α = 0.75
λmin = 0.054 87.045 5 x1, . . . , x4, x6

λ1se = 0.0931 92.967 4 x1, . . . , x4

ELNET.QR αopt = 0.38
λmin = 0.0787 84.426 8 x1, . . . , x6, x8, x10

λ1se = 0.1532 89.458 5 x1, . . . , x4, x10

τ = 0.5

RR.QR
λmin = 0.0678 79.0412 10 x1, . . . , x10

λ1se = 0.6563 74.8137 10 x1, . . . , x10

LASSO.QR
λmin = 0.0228 77.2748 8 x1, . . . , x4, x6, x8 . . . , x10

λ1se = 0.0531 75.0064 5 x1, . . . , x4, x8

AdLASSO.QR (RR.W. λmin)
λmin = 0.0006 79.3498 3 x1, x3, x4

λ1se = 0.0035 77.0606 2 x1, x3

AdLASSO.QR (RR.W. λ1se)
λmin = 0.0001 73.2189 5 x1, . . . , x4, x10

λ1se = 0.0009 80.3982 3 x1, x3, x4

ELNET.QR α = 0.25
λmin = 0.0390 76.283 9 x1, . . . , x6, x8, x9, x10

λ1se = 0.1719 74.4287 8 x1, . . . , x4, x6, x8 . . . , x10

ELNET.QR α = 0.5
λmin = 0.0357 77.3792 9 x1, . . . , x6, x8, x9, x10

λ1se = 0.1000 74.9740 6 x1, . . . , x4, x8, x10

ELNET.QR α = 0.75
λmin = 0.0277 77.5181 8 x1, . . . , x4, x6, x8, x9, x10

λ1se = 0.0687 74.9286 6 x1, . . . , x4, x8, x10
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Table 2. Cont.

Method λ RSS Num. of V.S. V.S.

ELNET.QR αopt = 0.02
λmin = 0.3392 72.9008 10 x1, . . . , x10

λ1se = 0.7450 74.9729 9 x1, . . . , x4, x6, x7 . . . , x10

τ = 0.75

RR.QR
λmin = 0.0511 99.8799 10 x1, . . . , x10

λ1se = 0.6298 99.3733 10 x1, . . . , x10

LASSO.QR
λmin = 0.0053 108.9124 8 x1, . . . , x4, x6, x8, . . . , x10

λ1se = 0.0354 101.6289 5 x1, x3, x4, x6, x10

AdLASSO.QR (RR.W. λmin)
λmin = 0.0004 113.2957 5 x1, x3, x4, x6, x10

λ1se = 0.0011 118.7315 4 x1, x3, x6, x10

AdLASSO.QR (RR.W. λ1se)
λmin = 0.0001 100.7581 5 x1, x3, x4, x6, x10

λ1se = 0.0003 105.5192 3 x1, x3, x4

ELNET.QR α = 0.25
λmin = 0.0204 103.2303 8 x1, . . . x4, x6, x8 . . . , x10

λ1se = 0.1334 102.9762 6 x1x3, x4, x6, x8, x10

ELNET.QR α = 0.5
λmin = 0.0102 106.1962 8 x1, . . . x4, x6, x8 . . . , x10

λ1se = 0.0688 101.7987 5 x1x3, x4, x6, x10

ELNET.QR α = 0.75
λmin = 0.0068 107.9645 8 x1, . . . x4, x6, x8 . . . , x10

λ1se = 0.0458 101.4287 5 x1x3, x4, x6, x10

ELNET.QR αopt = 0.02
λmin = 0.2555 97.6474 9 x1, . . . , x6, x8 . . . , x10

λ1se = 0.8571 105.4114 8 x1, . . . x4, x6, x8 . . . , x10

Note: The bold number indicates the lowest values in favor of the superior performance method compared to the
other methods.

Table 3 shows the performance criteria of the prediction accuracy for comparing the
penalized QR regressions methods by using RMSE, MAE, MAPE, and MASE. The proposed
method is ELNET.QR αopt. In three cases of study at τ = 0.25, 0.5, 0.75, it provides the
smallest error value in terms of RMSE, MAE, MASE, and MAPE. For instance, τ = 0.25
at λmin = 0.0787 provides the first-order method with the smallest error value, and it
remains the same for τ = 0.5 at λmin = 0.3392 and τ = 0.75 at λmin = 0.2555. However,
τ = 0.25 and 0.5 provides a different order in terms of MAPE, and at τ = 0.75, it provides a
second order in terms of MAE. Therefore, ELNET.QR αopt improves prediction accuracy
by producing the smallest error values in terms of RSS, RMSE, MAE, and MAPE.

Generally, in this application, the proposed ELNET.QR αopt at τ = 0.25, 0.50, 0.75,
and λmin is better in three cases of τ. Moreover, it proved that these predictors have a great
significance on the response variable. The ELNET.QR αopt method has achieved the best
method for reducing the number of components and selecting predictor variables with
high prediction accuracy. The ELNET.QR αopt method deals with multicollinearity in
three cases of τ by choosing some of these variables and forcing the other to be zero in
the final model, whereas the RR.QR method lost reliability and accuracy for the selection.
This method has been selected for all the predictor variables. The rest of the methods are
LASSO.QR and AdLASSO.QR methods to deal with multicollinearity.

Based on the findings in the previous section, we will rely on the ELNET.QR αopt
estimated coefficients to interpret the oil price model as shown in Table 4, as it is more
consistent in terms of RMSE, MAE, MAPE, and MASE. These results imply that the changes
in the oil prices could be explained with the variables included in the analysis with different
significant strengths, particularly the exchange rate (x3), as it has the highest effect on oil
prices. As expected, there is a positive relationship between crude oil prices and exchange
rate, retail trade, interest rates and the consumer price index. In other words, crude oil
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prices increase when the exchange rate and other variables increase. In addition, the results
reveal that the interaction team has a very important role and a mixed effect on the changes
in oil prices. The results obtained are consistent with the literature. The oil prices in Europe
have an increasing trend during several periods, but are low in comparison during the
COVID-19 pandemic until the period at the start of the Russian-Ukraine war; they have
been quite high since the beginning of the war (Krozer 2013; Borowski 2020; Balashova and
Serletis 2021).

Table 3. Performance criteria.

Method λ RMSE MAE MAPE MASE

RR λmin = 0.041839 1.1469 0.7806 1.7260 0.8729

λ1se = 0.74835 0.9633 0.7105 1.2235 0.7945

LASSO λmin = 0.003994 1.2029 0.8069 1.8265 0.9022

λ1se = 0.078399 0.9962 0.7161 1.3324 0.8008

ELNET α = 0.25 λmin = 0.013263 1.1829 0.7974 1.7923 0.8916

λ1se = 0.260352 0.9627 0.7046 1.2343 0.7879

ELNET α = 0.5 λmin = 0.007987 1.1921 0.8018 1.8080 0.8966

λ1se = 0.142868 0.9790 0.7096 1.2885 0.7935

ELNET α = 0.75 λmin = 0.005844 1.1955 0.8035 1.8136 0.8985

λ1se = 0.104532 0.9871 0.7129 1.3112 0.7972

τ = 0.25

RR.QR
λmin = 0.1322 1.1189 0.8876 2.537 0.9924

λ1se = 0.5480 1.0531 0.8610 2.727 0.9628

LASSO.QR
λmin = 0.0471 1.0267 0.8217 2.514 0.9187

λ1se = 0.0720 1.0623 0.8520 2.571 0.9527

AdLASSO.QR (RR.W. λmin)
λmin = 0.0008 1.0984 0.8644 2.618 0.9667

λ1se = 0.0028 1.1020 0.8742 2.639 0.9776

AdLASSO.QR (RR.W. λ1se)
λmin = 0.0003 1.0785 0.8527 2.704 0.9534

λ1se = 0.0012 1.0942 0.8661 2.671 0.9685

ELNET.QR α = 0.25
λmin = 0.0911 1.0201 0.8259 2.4273 0.9236

λ1se = 0.2002 1.0274 0.8387 2.5879 0.9378

ELNET.QR α = 0.5
λmin = 0.0317 1.1018 0.8779 2.5650 0.9817

λ1se = 0.1275 1.0452 0.8432 2.5592 0.9429

ELNET.QR α = 0.75
λmin = 0.054 1.0241 0.8195 2.5257 0.9164

λ1se = 0.0931 1.0583 0.8500 2.5636 0.9505

ELNET.QR αopt = 0.38
λmin = 0.0787 1.0086 0.8180 2.444 0.9146

λ1se = 0.1532 1.0382 0.8404 2.565 0.9398

τ = 0.5

RR.QR
λmin = 0.0678 0.9759 0.7058 1.6486 0.7893

λ1se = 0.6563 0.9494 0.6876 1.2275 0.7689

LASSO.QR
λmin = 0.0228 0.9649 0.7037 1.6693 0.7869

λ1se = 0.0531 0.9506 0.6907 1.4299 0.7724

AdLASSO.QR (RR.W. λmin)
λmin = 0.0006 0.9778 0.7109 1.7108 0.7949

λ1se = 0.0035 0.9636 0.7151 1.6833 0.7996
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Table 3. Cont.

Method λ RMSE MAE MAPE MASE

AdLASSO.QR (RR.W. λ1se)
λmin = 0.0001 0.9392 0.6872 1.5984 0.7685

λ1se = 0.0009 0.9842 0.7099 1.3913 0.7938

ELNET.QR α = 0.25
λmin = 0.0390 0.9590 0.6993 1.6403 0.7820

λ1se = 0.1719 0.9470 0.6876 1.3001 0.7689

ELNET.QR α = 0.5
λmin = 0.0357 0.9655 0.7031 1.6494 0.7863

λ1se = 0.1000 0.9504 0.6895 1.3276 0.7710

ELNET.QR α = 0.75
λmin = 0.0277 0.9664 0.7040 1.6612 0.7872

λ1se = 0.0687 0.9501 0.6901 1.3927 0.7717

ELNET.QR αopt = 0.02
λmin = 0.3392 0.9372 0.6827 1.3390 0.7634

λ1se = 0.7450 0.9504 0.6914 1.1955 0.7731

τ = 0.75

RR.QR
λmin = 0.0511 1.0970 0.7913 2.9823 0.8848

λ1se = 0.6298 1.0942 0.7899 2.9192 0.8833

LASSO.QR
λmin = 0.0053 1.1455 0.8323 3.1377 0.9307

λ1se = 0.0354 1.1065 0.7785 2.9182 0.8705

AdLASSO.QR (RR.W. λmin)
λmin = 0.0004 1.1683 0.8644 3.1510 0.9665

λ1se = 0.0011 1.1960 0.9016 3.4228 1.0082

AdLASSO.QR (RR.W. λ1se)
λmin = 0.0001 1.1018 0.7837 2.909 0.8764

λ1se = 0.0003 1.1275 0.8137 3.1028 0.9099

ELNET.QR α = 0.25
λmin = 0.0204 1.1152 0.8057 3.0121 0.9010

λ1se = 0.1334 1.1139 0.7947 2.9758 0.8886

ELNET.QR α = 0.5
λmin = 0.0102 1.1311 0.8191 3.0654 0.9159

λ1se = 0.0688 1.1075 0.7847 2.9390 0.8775

ELNET.QR α = 0.75
λmin = 0.0068 1.1405 0.8278 3.1141 0.9256

λ1se = 0.0458 1.1055 0.7801 2.9212 0.8723

ELNET.QR αopt = 0.02
λmin = 0.2555 1.0847 0.7812 2.8845 0.8736

λ1se = 0.8571 1.1270 0.8156 3.0404 0.9120

Note: The bold number indicates the lowest values in favor of the superior performance method compared to the
other methods.

Table 4. Coefficients estimation for the predictor variables by ELNET.QR method.

τ =0.25, αopt= 0.38 τ =0.5, αopt= 0.02 τ =0.75, αopt= 0.02

λmin λ1se λmin λ1se λmin λ1se

β̂1 0.1686 0.1313 0.1545 0.0904 0.1054 0.0548
β̂2 0.1225 0.0415 0.1066 0.0614 0.0306 0.0184
β̂3 0.3038 0.2110 0.2072 0.1061 0.1421 0.0703
β̂4 0.1151 0.0948 0.1360 0.0879 0.0761 0.0487
β̂5 0.0150 0 −0.0172 0 −0.0277 0
β̂6 0.0529 0 0.0413 0.0123 0.0648 0.0158
β̂7 0 0 0.0033 0.0026 0 0
β̂8 0.0037 0 0.0448 0.0128 0.0489 0.0093
β̂9 0 0 0.0133 0.0013 −0.0357 −0.0048
β̂10 0.0802 0.0062 0.0862 0.0531 0.1022 0.0425
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5. Conclusions

In this study, we proposed ELNET.QR based on selecting the best alpha value αopt
using a cross-validation method. The method was used to identify the relationship between
the predictor variables and the response variable to improve the accuracy of model selection
and to deal with heavy-tailed distributions, heterogeneity, and multicollinearity between
the predictor variables by determining the best alpha value. Numerical experiments and
actual time-series datasets were carried out. The results showed that the ELNET.QR αopt
method effectively selected the actual predictor variables that were most significant for the
response variable with a reduced prediction error at τ = 0.25, 0.5, 0.75. The ELNET.QR
αopt method selected the best-fitting model with high prediction accuracy, compared to the

other methods. It also proved that not all of the alpha values can be used to represent the
Elastic net. Thus, the cross-validation represents the best way to choose an alpha value and
use it as the optimal value for building the final model.

This method offers additional insights into the behaviour of crude oil prices, as it
provides evidence of how oil prices have changed by the exchange rate, retail trade, interest
rates, and consumer price index during the economic shocks in the European Union, while
the findings reveal that the exchange rate has the highest effect on changing the crude
oil price. In conclusion, this research indicates that the selected penalized QR method
is well suited for modelling crude oil prices while considering the dynamic effect on the
factors that influence local currency and the global economy in the European Union. By
considering these results, the European Union should make the exchange rate stable so that
the effect of these variables on oil prices are less significant. The main reason behind this
recommendation is the focus on local factors, as it is either mostly or partially under the
control of European policy.
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Abstract: This study investigates the impact of COVID-19 on the non-performing loans (NPLs) in
Europe, distinguishing by European subregion, country-level prosperity, NPL type, and NPL eco-
nomic sector. We utilized panel data analysis covering the period 2015Q1–2021Q4 while controlling
for macro, bank-specific, and regulatory indicators. We derived that the COVID-19 deaths and the
strictness of lockdown measures positively affected the NPLs, while the economic support policies
exerted a negative effect. Profitable, capitalized banks fared better. The strictness of lockdown
measures hindered the ability of SMEs to repay their loans, increasing their NPLs. Sectors involving
physical work-related activities also experienced an increase in their NPLs. We also deduced that
bank securitization and national culture significantly contributed to NPL reduction.

Keywords: non-performing loans; COVID-19; policy responses; European banking system;
cultural dimensions

JEL Classification: G21; G28; I18; C33; E58

1. Introduction

The 21st century has been marked by a series of external shocks (Shehzad et al.
2020), with the COVID-19 pandemic standing out as a health-oriented shock, causing
unprecedented cross-sector variances, rapid dissemination rates, and a high degree of
economic uncertainty (Žunić et al. 2021; Yi et al. 2022). In response to the spread of the
COVID-19 pandemic, nations implemented strict social distancing and lockdown policies
(Yang and Yang 2021), which resulted in sharp declines in economic growth and enterprise
earnings, particularly in the services, travel, and tourism industries (Zheng and Zhang
2021; Ceylan et al. 2020; Bassani 2021).

The economic spillovers of COVID-19 have reverberated globally, significantly impact-
ing businesses, jobs, and incomes (Zheng and Zhang 2021; Banks et al. 2020). The banking
industry, unable to evade the negative financial spillovers (Demir and Danisman 2021;
Foglia et al. 2022; Shehzad et al. 2020), witnessed high levels of debt and economic imbal-
ances, which have reduced the debtors’ ability to repay their loan obligations, resulting in a
potential increase in the banks’ non-performing loans (NPLs) (Ari et al. 2021; Demir and
Danisman 2021; Banks et al. 2020; Park and Shin 2021; Ho et al. 2023).

Preliminary research hinted that the pandemic would resemble the negative repercus-
sions of a banking crisis (Özlem Dursun-de Neef and Schandlbauer 2021; Žunić et al. 2021),
potentially resulting in a significant surge in NPLs (Colak and Öztekin 2021). Businesses
with lower economic turnover were more likely to be affected due to the lockdown and
closure policies, implying a potential surge in the SME NPLs (Cowling et al. 2022; Wellalage
et al. 2022). While there is extensive scientific research on the effects of the COVID-19
pandemic on NPLs, predominantly focusing on the European Union due to its peculiar
reaction to the European sovereign debt crisis (Foglia et al. 2022; Demir and Danisman
2021; Duan et al. 2021; Rizwan et al. 2020; Ari et al. 2020; Ari et al. 2021; Colak and Öztekin
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2021; Park and Shin 2021; Özlem Dursun-de Neef and Schandlbauer 2021; Apergis 2022),
there still exist unexplored avenues in this area of study.

Examining the impact of COVID-19 on NPLs within Europe is of intrinsic significance
due to the continent’s diverse subregions, each with distinct economic structures, levels
of prosperity, and policy responses. These subregional variations suggest that the impact
of COVID-19 on NPLs could differ markedly across Europe, with peripheral economies
experiencing more severe impacts due to their economic vulnerabilities (Foglia et al. 2022;
Apergis 2022). For instance, in 2015, while the average NPL ratio across the Eurozone
was approximately 12%, Germany had an NPL ratio of less than 2%, whereas Greece
faced a staggering 35%, and Italy and Ireland had ratios of around 20% (Rinaldi and
Sanchis-Arellano 2021). This highlights the stark contrast between core economies, such as
Germany, and peripheral economies, such as Greece and Italy (Jameaba 2020). Moreover,
the interconnected economies underscore the potential for cross-border repercussions,
emphasizing the need for a localized study. Europe’s historical responses to crises, such as
the Global Financial Crisis (GFC) of 2008, and unique policy measures ever since, emphasize
the importance of understanding the effects of COVID-19 within this context.

As we delve into the investigation of the impact of COVID-19 on NPLs, it becomes
essential to consider the diverse countries’ cultural backgrounds and policy responses. The
diverse cultural fabric of the European economies influences how bank managers, debtors,
and the nations as a whole perceive and navigate the challenges posed by the pandemic
(Kostis et al. 2018; Petrakis et al. 2015; Petrakis and Kostis 2013; Boubakri et al. 2017; Ashraf
et al. 2016; Gaganis et al. 2020; Giannetti and Yafeh 2012; Boubakri et al. 2023). The cultural
variations of European nations can shape both borrowers’ and banks’ attitudes toward risk
management strategies and financial decisions, consequently impacting loan repayments
and defaults (Kostis et al. 2018; Petrakis et al. 2015; Petrakis and Kostis 2013). For instance,
a culture that highly values tradition and security may lead to more conservative financial
behaviors, thereby reducing the likelihood of loan defaults. Conversely, a culture that
emphasizes innovation and competitiveness might encourage economic activities that
enhance loan repayment capabilities (Kostis et al. 2018; Petrakis et al. 2015). Therefore,
considering the unique cultural values of European economies is pivotal for conducting a
holistic investigation of the pandemic’s impact on NPLs in the European landscape.

Motivated by the work of Ari et al. (2021) on the dynamics of non-performing loans
during banking crises and Duan et al. (2021) on bank systemic risk around COVID-19, this
study examines the influence of COVID-19 on the NPLs of the European Banking System.
Specifically, Ari et al. (2021) utilized data on past banking crises to identify pre-crisis
predictors of NPLs and provide insights into post-COVID-19 NPL vulnerabilities using
the IMF’s GDP growth forecasts. However, they did not consider the pandemic period
or the heterogeneity within European subregions. Furthermore, while Duan et al. (2021)
conducted a comprehensive study on the impact of the pandemic on bank systemic risk,
it focused solely on the effect of initial government policy responses on systemic risk and
did not consider the influence of quantitative easing (QE) policy responses. Although they
employed Hofstede’s five cultural dimensions to assess national culture (Hofstede 2001),
they did not incorporate crucial cultural factors, such as tradition and security, as outlined
by Schwartz (1994). These factors can shape both borrowers’ and banks’ attitudes toward
financial decisions and, consequently, impact loan repayments and defaults. Moreover,
Schwartz’s (1994) cultural dimensions framework also included data obtained from diverse
regions, including socialist countries. Another advantage of Schwartz’s (1994) framework
is that it delves deeper into the intricacies of national culture, allowing us to capture a
broader range of cultural variations that may influence loan defaults.

Utilizing panel data analysis with country-fixed effects, we conducted a comprehen-
sive comparison between the pre-pandemic period (2015Q1–2019Q4), the post-pandemic
period (2020Q1–2021Q4), as well as the entire period of analysis (2015Q1–2021Q4). For this
purpose, we utilized a unique quarterly dataset of aggregated data spanning from 2015
to 2021. We chose to commence our analysis from 2015Q1 due to several considerations.
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First, it allowed us to provide a holistic view of the European banking landscape before the
pandemic, reducing potential biases associated with shorter observation periods. Second,
in 2014, the European Banking Authority (EBA) introduced a harmonized NPL definition of
NPLs across European countries (EBA 2019). We chose to begin our analysis from 2015Q1,
since this period coincides with the harmonized NPL definition introduced by the EBA,
leading to consistent and comparable data and minimizing biases arising from varying
international NPL definitions. We chose to end our analysis in 2021Q4 to focus on the
period during which the pandemic’s effects on NPLs were most pronounced. Additionally,
we chose this period to avoid exogenous disruptions stemming from the war between
Russia and Ukraine and to ensure our results remained specific to the pandemic period.

We formulated several questions to be answered: (1) How did COVID-19 impact the
NPLs of the European economies? (2) Did it differ between core and peripheral economies?
(3) What were the primary factors of COVID-19 that affected the change in NPLs? (4)
Did the government’s economic support policies to mitigate the pandemic manage to
absorb the impact of the pandemic on NPLs? (5) Did central bank QE economic support
measures aid in minimizing the risk of a new wave of NPLs? (6) Did national culture shape
banking institutions and borrowers’ behavior in preventing the rise of NPLs? (7) Did bank
securitization strategies contribute to NPL reduction?

Our research contributes to the existing literature (Ari et al. 2020; Žunić et al. 2021;
Loang et al. 2023; Apergis 2022; Ari et al. 2021; Duan et al. 2021) by being the first to
conduct a comprehensive analysis of the effects of COVID-19 on the European Union’s
NPLs, distinguishing by European subregion and country-level prosperity. Second, our
research also explores the impact of NPL types and sectoral NPLs. Third, it considers the
bank securitization strategies as a means of NPL reduction, emphasizing their effectiveness
in reducing NPLs. By discerning the impact of COVID-19 on NPLs across various sectors
and loan types, we may provide granular insights for effectively managing NPL risks
and promoting economic resilience in the aftermath of the pandemic. While Žunić et al.
(2021) addressed the factors influencing NPLs during the COVID-19 period, providing
useful insights, they lacked a broader European context. Moreover, while Ari et al. (2021)
provided insights regarding NPL vulnerabilities for the post-COVID-19 period, they based
their analysis on past banking crises, lacking the incorporation of actual post-COVID-19
period data. Furthermore, they did not comprehensively explore the pandemic’s impact
on various types of NPLs and sectoral NPLs. While Apergis (2022) provided insights
into the existence of NPL homogeneity amongst EU countries, he did not consider policy
responses, cultural intricacies, or diverse NPLs types/sectoral NPLs in his analysis. Our
study endeavors to fill these unexplored territories by conducting a detailed analysis in
this area, while also encompassing a broader spectrum of dimensions to foster a more
comprehensive understanding.

The remainder of the paper is laid out as follows. In Section 2, we provide the
theoretical and conceptual framework. In Section 3, we provide the literature review. The
data, variables, econometric models, and empirical methodology used are all described in
Section 4. The empirical results and the robustness checks are presented in Sections 5 and 6,
respectively. The conclusions and future research are presented in Section 7.

2. Theoretical and Conceptual Framework

This section aims to identify key theories and elaborate the conceptual model of our in-
vestigation on the impact of the COVID-19 pandemic on NPLs across European economies.
By integrating relevant theoretical perspectives, we provide a holistic framework that
explains how cultural dimensions, economic shocks, and policy responses interact and
influence NPL dynamics. The next paragraph underpins key theoretical perspectives, and
the third paragraph outlines the conceptual framework.

The exploration of the impact of the COVID-19 pandemic on NPLs in European
economies can be rooted in utilizing Schwartz’s (1994) theory of cultural values, Minsky’s
(1992), Kindleberger and Aliber’s (2011) theories on financial stability and banking crises,
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as well as Bernanke’s (2009) theory on policy responses to economic crises. Schwartz
(1994) identified ten universal values, including stimulation, hedonism, achievement, and
benevolence, that shape individual and organizational behavior. Minsky (1992) implied
that financial systems are inherently unstable and prone to cycles of boom and bust, often
triggered by economic shocks. Kindleberger and Aliber (2011) complemented this by
focusing on historical patterns of financial crises, where speculative bubbles and crashes
are central themes. Bernanke (2009) emphasized the importance of proactive monetary and
fiscal policies in mitigating the impacts of economic downturns.

In our conceptual framework, we integrated these theoretical perspectives to provide
a holistic understanding of the dynamics related to the effect of the COVID-19 pandemic
on NPLs. The framework encompasses three key components: (1) cultural values, as
measured by Schwartz’s (1994) framework, which influences borrower behavior and bank
risk management; (2) the economic spillovers of the COVID-19 pandemic, which dis-
rupted economic activities and increased financial uncertainties, in line with the theories of
Minsky’s (1992), Kindleberger and Aliber (2011); (3) government and central bank policy
responses, such as economic support and quantitative easing measures, aimed at stabilizing
the economy and supporting businesses and households, in line with Bernanke (2009).
The significance of this theoretical framework lies in its ability to capture the multifaceted
nature of NPL dynamics in the context of the COVID-19 pandemic. Specifically, it captures
the complex interplay of cultural values, economic shocks, and policy responses. By doing
so, it provides a holistic view of how these factors collectively influenced NPL ratios in the
European economies during the pandemic.

3. Literature Review

This section aims to identify the pre- and post-COVID-19 pandemic literature and to
identify key studies that will aid in our selection of the appropriate candidate predictor
variables for our analysis. The pre-pandemic literature is investigated in Section 3.1 and
the post-pandemic literature is investigated in Section 3.2.

3.1. Pre-COVID-19 Pandemic Literature

The initial scientific literature regarding the impact of COVID-19 on European banks’
NPLs anticipated that the pandemic would lead to a surge of NPLs. This assumption was
primarily based on historical research and speculative reasoning.

Ari et al. (2020) stated that the COVID-19 pandemic would most likely lead to an
increase in NPLs. However, they also mentioned that banks have a modest advantage, as
they had already undertaken initiatives to raise their capital ratios after the GFC. Laeven
and Valencia (2018) agreed, indicating that elevated NPL ratios are a recurrent feature of
banking crises and are often assessed in the aftermath of such events. Brunnermeier and
Krishnamurthy (2020) disagreed, however, stating that the lessened regulatory stance of
the European Central Bank (ECB) and the EBA, along with government loan guarantees,
would assist financial institutions in managing the COVID-19 crisis. Bitar and Tarazi (2022)
also stated that before the pandemic, banks maintained sufficient funds. However, they
also argued that by releasing cash reserves and implementing additional measures, such
as easing the management of NPLs, banks’ earning potential could be jeopardized, poten-
tially leading to a prolonged downturn. From a regulatory standpoint, the EBA and ECB
forecasted a reduction in 2020 and an upsurge in 2021 (Couppey-Soubeyran et al. 2020).

It is clear from the above analysis that in the pre-COVID-19 pandemic literature, there
were contradictions regarding the impact of COVID-19 on NPLs. Although one literature
branch expected a new wave of NPLs, another literature branch expected that banks would
have a modest advantage due to the concentration of capital reserves after the GFC. We
also noticed a third literature branch implying that quantitative easing measures might
mitigate the impact on NPLs.
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3.2. Post-COVID-19 Pandemic Literature

After the COVID-19-related data started to crystallize, scientific studies on the impact
of the COVID-19 pandemic on NPLs revealed additional and unexpected outcomes. In
our research, we identified the most pertinent literature on the relationship between the
COVID-19 pandemic and NPLs.

Sharif et al. (2020) stated that the risk associated with the COVID-19 pandemic is
perceived differently in the short and the long term and may be viewed as an economic
crisis. Rizwan et al. (2020) derived that the COVID-19 pandemic significantly contributes
to a country’s systemic risk, due to successive COVID-19 lockdowns. As systemic risk
increases, NPLs tend to increase as well. Duan et al. (2021) stated that the COVID-19
pandemic exacerbates preexisting financial vulnerabilities. Apergis (2022) added that those
vulnerabilities are not uniform across the EU countries. More specifically, they stated that
banks that are deleveraged, undercapitalized, and have low profitability indices are sus-
ceptible to the pandemic. On the other hand, banks with elevated capital and profitability
indices can withstand the adverse impacts of the pandemic. Dunbar (2022) suggested that
although COVID-19 poses a significant risk to the bank’s financial soundness, the relaxed
regulatory stance of central banks might enable the release of capital buffers, thereby facili-
tating lending and enhancing overall financial stability. According to Kozak (2021), larger
banks, being more profitable, exhibited increased stability during the pandemic, compared
to smaller banks. Xie et al. (2024) emphasized that during the pandemic, financially strong
banks, offering competitive products and services, can play a significant role in facilitating
economic growth. Demir and Danisman (2021) argued that well-capitalized banks that
have low NPL levels and are larger in size are more resilient to the pandemic. They added
that government financial aid initiatives considerably assisted banks in dealing with the
financial and capital losses incurred as a result of the economic spillovers caused by the
pandemic. Ari et al. (2021) added that monetary and prudential policies may mitigate
the rapid credit expansion, leading to a decrease in NPLs. Yi et al. (2022) emphasized the
significance of enhanced regulations in preventing excessive credit expansion.

Foglia et al. (2022) found that the pandemic had a heterogeneous effect on the Eurozone
banking system. However, due to the intricate interconnections among European banks,
the European banking system may be “too interconnected to fail.” This implies that the
higher profitability levels of high-income economies may hinder the ability of banks in
low-income economies to incur losses. Kryzanowski et al. (2022) added that banks with
high-quality capital were more resilient to the crisis and were able to effectively control
their NPL ratios. Mateev et al. (2022) argued that bank performance strongly depends
on both banks’ efficiency and market power. Moreover, Cowling et al. (2022) stated that
small business firms are particularly vulnerable to the economic spillovers stemming from
COVID-19. They added that COVID-19 increases the possibility of SME bankruptcy, which
translates into increased NPL ratios related to those firms. On the other hand, Wellalage
et al. (2022) added that although the adverse effect of COVID-19 is anticipated to inflict
substantial and enduring damage on SMEs, a firm’s access to external finance can mitigate
the negative impacts of the pandemic. This was further supported by Naili and Lahrichi
(2022), who highlighted that the pandemic posed disproportionate effects. Regarding the
impacts of the pandemic on banking performance, Salazar et al. (2023) stated that the
COVID-19 pandemic has introduced high uncertainty and economic downturn, ultimately
affecting banks’ performance. Alnabulsi et al. (2023a) also contributed to this discussion by
underscoring the complex relationships between NPLs and bank performance. In another
study, Alnabulsi et al. (2023b) also emphasized that NPLs can significantly destabilize
banks, particularly in times of economic crisis, stressing the importance of robust risk
management practices to mitigate these effects.

It is clear from the post-COVID-19 pandemic literature that the successive lockdowns
to mitigate the pandemic were expected to affect the banks’ systemic risk and lead to a
rise in NPLs. Additionally, the literature highlighted that the pandemic would worsen
preexisting financial vulnerabilities, with heterogeneous impacts on European economies.
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The literature suggested that SMEs are particularly vulnerable and may experience a rise in
their NPLs. Banks that are financially strong were expected to withstand the adverse effects
of the pandemic. Furthermore, the post-COVID-19 pandemic literature supplements the
pre-COVID-19 pandemic literature, suggesting that government and central bank policy
responses might assist banks in dealing with the economic spillovers of the pandemic.

From the above analysis, we derived several gaps in the existing literature. First,
the impact of cultural dimensions on NPLs was largely overlooked. Second, there was
inadequate attention to the heterogeneous impacts across European subregions. Third,
existing studies often did not comprehensively integrate government and central bank
policies with other economic indicators. Additionally, many studies focused on the im-
mediate impact of the pandemic without extending the analysis to the post-pandemic
period. Our study endeavors to fill these unexplored territories by conducting a de-
tailed analysis, while encompassing a broader spectrum of dimensions to foster a more
comprehensive understanding.

4. Data and Specification Model—Empirical Methodology

This section aims to describe the collection of the data used in this study (Section 4.1)
and define the candidate predictors and their expected impacts on the NPLs (Section 4.2);
furthermore, it outlines the empirical methodology and the empirical models employed
(Section 4.3).

4.1. Data Construction

Our dataset consisted of quarterly aggregate country data spanning from 2015Q1 to
2021Q4 for 28 European economies.1 The final sample consisted of an unbalanced panel
of 28 countries with 784 observations (the distribution of observations by country can be
found in Table A1 of Appendix A).

The primary dependent variable was the ratio of NPLs to total (gross) loans (NPLs),
consisting of 684 observations, while we alternated between various types and sectoral
NPLs. The reduction in the NPL sample size was primarily due to data reporting disparities
and, in some cases, missing or incomplete data in certain quarters or countries. We
deliberately opted not to employ data imputation methods, preserving the data integrity
of the dependent variable. The primary dependent variables’ data were obtained from
the ECB data portal. The data for NPL types and sectoral NPLs were all from the EBA.
We chose our sample period to coincide with the establishment of a harmonized NPL
approach (EBA 2019) to eliminate international NPL definition inconsistencies. Regarding
the candidate predictors, we categorized our data into three variable groups: one group
included the COVID-19 variables, another group included the QE-related variables, and
the third group contained the COVID-19 government response variables. To effectively
capture the impact of our candidate predictors on the NPLs, we incorporated a range of
control factors, such as macroeconomic, bank-specific, regulatory, and national culture-
related factors. All the variables employed in our analysis are expressed at an aggregate
level. We did not need to convert bank-specific variables to the country level by using
standardization strategies since the EBA had already aggregated these variables at the
country level during the data collection process. Notably, the European banks fill out the
required information in the reporting templates following a harmonized methodology
approach. The regulatory authority then compiles and aggregates the data contained
in those templates by using strategies for addressing variations in reporting practices,
ensuring consistency and comparability across European countries.

Ten national cultural dimensions based on Schwartz’s (1994) theory of cultural values
were included, with data collected from the European Social Survey (ESS). Data from
four ESS questionnaires were evaluated: ESS Round 7 (2014), Round 8 (2016), Round 9
(2018), and Round 10 (2020). For each nation, a percentage of positive responses was
calculated, and biennial figures were assigned to quarters according to the questionnaire
timeframes. We imputed the missing data with values corresponding to the nearest pre-
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ceding questionnaire period, assuming that cultural values remained relatively stable in
the short term. The missing values from earlier questionnaire periods were left unaltered.
Following this approach, we ended up with a small number of missing data2, while increas-
ing data accuracy. Principal component analysis (PCA) was applied for dimensionality
reduction. The synthetic “Culture_PCA” variable contained information from the first two
principal components, explaining 73% of the total variation. The generated variable was
primarily and positively driven by the cultural values of IMPTRAD (“Tradition”), IMPENV
(“Universalism”), IPEQOPT (“Benevolence”), and IPRULE (“Power”).

A detailed description of all variables employed, and their respective data sources, is
presented in detail in Tables A2–A4 of Appendix A (although Table A4 lists the cultural
dimensions and the synthetic “CULTURE_PCA” variable, the tests performed, the eigen-
values, as well as the primary drivers of the synthetic variable are not reported due to space
limitations but are available upon request).

4.2. Expected Channels of Impact

Table 1 lists both the candidate predictors and the control variables, along with their
projected relationship to the main dependent variable (NPLs), based on the respective
literature. Table 1 focuses on presenting the projected relationship of candidate predictors
to the output variable NPLs and, therefore, does not include the dependent variables used
in this research. A positive projected relationship is indicated by the ‘+’ sign, while a
negative projected relationship is indicated by the ‘−’ sign. A detailed presentation of the
primary dependent variable and secondary dependent variables is presented in Table A2
of Appendix A.

Table 1. Variables and expected channels of impact.

Variable Group Variable Symbol Parameter Shown Explanation Related Literature Expected Sign

Macroeconomic
Variables

UNEMP Percentage (%) % of unemployment
(Makri et al. 2014;
Ceylan et al. 2020;

Bassani 2021)
(+)

CPI No. Quarterly Consumer Price
Index (Makri et al. 2014) (+)

R_GDP_Q2Q Percentage (%) Quarterly percentage
growth rate of real GDP (Makri et al. 2014) (−)

GDP_MARKET No. Quarterly gross domestic
product at market prices (Makri et al. 2014) (−)

Bank-specific
Variables

NPLS (-1) Percentage (%)
Previous quarter aggregate

non-performing loans to
total gross loans

(Makri et al. 2014) (+)

ROA Percentage (%) Return on assets: profit or
loss for the year/total assets

(Makri et al. 2014;
Colak and Öztekin

2021)
(−)

CAP Percentage (%) Bank capital and reserves to
total assets

(Makri et al. 2014;
Colak and Öztekin

2021; Bitar and Tarazi
2022)

(−)/(+)

LOAN_DISBRS Percentage (%) Loan disbursments to
customers

(Naili and Lahrichi
2022) (+)

FINANCIAL_ASSETS No. Total financial instruments
on the asset side (Alessi et al. 2022) (−)

PROVISIONS Percentage (%) Impairments (credit risk
losses)/equity (Ozili and Outa 2017) (−)

RISK_CAPITAL Percentage (%)

Total risk exposure amount
for position, foreign

exchange, and commodities
risks/total risk exposure

amount

(Bitar and Tarazi
2022) (−)
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Table 1. Cont.

Variable Group Variable Symbol Parameter Shown Explanation Related Literature Expected Sign

Bank-specific
Variables

OPER_RISK No.

Total risk exposure amount
for OpePercentage

(%)ns/total risk exposure
amount

(Bitar and Tarazi
2022) (−)

LIABILITIES No. Total deposits other than
from banks/total liabilities (Ozili and Outa 2017) (−)

CASH_BALANCES Percentage (%) Cash positions/total assets (Alessi et al. 2022) (−)

FINANCIAL_ASSETS No. Total financial instruments
on the asset side (Alessi et al. 2022) (−)

EQUITY Percentage (%) Equity instruments/total
assets

(Durand and Le
Quang 2022) (−)

TOTAL_ASSETS No. Total assets (Alessi et al. 2022) (−)

RETAINED_EARNINGS Percentage (%) Retained earnings/Tier 1
capital volume (Ahmed et al. 2021) (−)

DERIVATIVES Percentage (%) Derivatives/total assets (Mayordomo et al.
2014) (−)

CRED_DEPOSITS Percentage (%) Deposits from credit
institutions/total liabilities (Ozili 2019) (−)

Regulatory
Variables

TIER1_CAP No. Additional Tier 1 capital (Bitar and Tarazi
2022) (−)

COVER_PERCENTAGE
(%) Percentage (%)

Accumulated impairment,
accumulated negative

changes in fair value due to
credit risk for

non-performing loans and
advances/total gross

non-performing loans and
advances

(Bitar and Tarazi
2022; Alessi et al.

2022)
(−)

RWA_VOLUME No. RWA volume (Bitar and Tarazi
2022) (−)

OWN_FUNDS_TIER1 No. Tier 1 capital volume (Bitar and Tarazi
2022) (−)

SECURITIZATION Percentage (%)

Securitization
positions/risk-weighted

exposure amounts for
credit, counterparty credit,
and dilution risks and free

deliveries

(Di Tommaso and
Pacelli 2022) (−)

Quantitative
Easing Variables

PEPP_PURCHASES No. Net purchases at book
value

(Rizwan et al. 2020;
Ari et al. 2021;

(Hoang et al. 2021)
(−)

ASSET_TO_GDP Percentage (%)
Total assets/quarterly gross
domestic product at market

prices

(Rizwan et al. 2020;
Ari et al. 2021; Hoang

et al. 2021)
(−)

QE_ANNOUNCEMENT Binary (1/0)

Quantitative Easing (QE)
Announcement: 1

Corresponding to dates:
18/03/2020 and

04/06/2020.

(Rizwan et al. 2020;
Ari et al. 2021; Hoang

et al. 2021)
(−)

EXP_ASSET_PURC No. Expanded Asset Purchase
Program (APP)

(Rizwan et al. 2020;
Ari et al. 2021; Hoang

et al. 2021)
(−)

BOND_PURC No. Covered bonds purchases
at book value (CBPP3)

(Rizwan et al. 2020;
Ari et al. 2021; Hoang

et al. 2021)
(−)
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Table 1. Cont.

Variable Group Variable Symbol Parameter Shown Explanation Related Literature Expected Sign

COVID-19
Variables

COVID19_DUMMY Binary (1/0) COVID-19 pandemic
existence

(Demir and
Danisman 2021;

Laeven and Valencia
2018; Laeven and

Valencia 2020, 2021)

(+)

COVID19_VACCINATED No. COVID-19 vaccinated

(Demir and
Danisman 2021;

Laeven and Valencia
2018; Laeven and

Valencia 2020, 2021)

(−)

COVID19_DEATHS No. COVID-19 deaths

(Demir and
Danisman 2021;

Laeven and Valencia
2018; Laeven and

Valencia 2020, 2021)

(+)

Cultural
Dimension
Variables

CULTURE_PCA Percentage (%) Cultural identity Author’s
Calculations (−)

COVID-19
Government

Response
Variables

CONTNMN Index Government response
containment index

(Hoang et al. 2021;
Couppey-Soubeyran
et al. 2020; (Bassani

2021)

(+)

GOVT_RESP_STR Index Government response
stringency index

(Hoang et al. 2021;
Couppey-Soubeyran
et al. 2020; Bassani

2021)

(+)

GOVT_ECON_SUP Index Government response
economic support index (Hoang et al. 2021) (−)

A positive projected relationship is indicated by the ‘+’ sign, while a negative projected relationship is indicated
by the ‘−’ sign.

4.3. Methodology and Econometric Models

We investigated the impact of COVID-19 on the NPLs in the European Union (EU28)
during the period 2015–2021. OLS methodology for panel data was utilized to analyze
and quantify the impact of the candidate predictor on the NPLs. Panel data analysis was
conducted by utilizing fixed and random effects. Panel data leverage both the time-series
and cross-sectional dimensions, enabling a comprehensive analysis. Although cointegra-
tion techniques are effective for identifying long-term equilibrium relationships between
variables, we did not employ these methods in our analysis. Our study focused on the
short- to medium-term impacts of COVID-19 on NPLs, making cointegration less relevant
for our research objectives. We performed all the requirements for the whole sample period
and then used the Hausman test to check the suitability of the random effects over the
fixed-effects method. Most of the models developed are estimated using country-fixed
effects, allowing for the management of time-constant unobserved country heterogeneity.
Our research did not delve into company-specific characteristics. Therefore, we opted for
country-fixed effects over individual fixed effects in our analysis, since our study focused
on aggregated data at the country level. Several stationarity tests were performed to eval-
uate if the values were (trend)stationary.3 We transformed the non-stationary variables
to stationary by applying first and second differences accordingly.4 Notably, the primary
dependent variable, NPL, was identified to contain a unit root. To achieve stationarity in
the NPL series, we applied the first differences. This step was essential to avoid producing
biased results. The newly created NPL series effectively captured the variations in the NPL
ratio over time. After differentiating when appropriate, the final dataset consisted only of
stationary variables.5

Next, we also applied the Durbin–Watson statistic to recognize potential autocor-
relation in the residuals. Based on the indication of the Durbin–Watson statistic, we
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incorporated one and two lag periods of the dependent variable into our analysis.6 This
strategic inclusion mitigated the autocorrelation in the residuals, ultimately enhancing
the robustness of our regression estimates. Moreover, we used the Akaike Information
Criterion (AIC) to choose the appropriate lag length. Considering that the dynamic panel
may yield biased results, as stated by Roodman (2009), and that an alternative model,
such as GMM, could more effectively address issues such as reverse causality and omitted
variable bias, we proceeded by comparing the two estimators before continuing with the
analysis. Specifically, based on Bettinger (2010), we employed the Hausman test to compare
the OLS and Generalized Method of Moments (GMM) method for dynamic panels (Hansen
1982). The Hausman test revealed that OLS yielded consistent estimates. Furthermore,
when heteroscedasticity was present, either across cross-sectional units or across time seg-
ments, we applied the white cross-section or white period coefficient covariance method,
respectively. Finally, we included autoregressive (AR) terms where appropriate, to mitigate
potential autocorrelation in the error terms and to capture temporal dependencies between
the data. To validate this choice, we performed additional analysis using both robust
standard errors and AR components. The comparative results yielded that while robust
standard errors adequately addressed autocorrelation, the inclusion of AR terms provided
a more comprehensive model fit, capturing the temporal dynamics inherent in the NPL
data more effectively.

In line with Xie et al. (2024), our strategy involved facilitating a comparative approach.
While Xie et al. (2024) examined the pre- and post-COVID-19 periods, we expanded by
analyzing and comparing three sample periods: (1) one related to the pre-COVID-19 period
(Q1:2015 to Q4:2019), (2) one related to the post-COVID-19 period (Q1:2020 to Q4:2021), and
finally, (3) one related to the entire period of analysis (Q1:2015 to Q4:2021). Both pre- and
post-COVID-19 samples were a byproduct of the total sample period. While we included
relevant COVID-19 variables in the models related to the post-COVID-19 period, data
limitations and their unavailability before the pandemic7 restricted their inclusion in pre-
COVID-19 models. Instead, we incorporated the COVID19_DUMMY variable, a dummy
variable with values 1/0 (1, corresponding to the pandemic’s existence, and 0 otherwise),
in the model related to the entire period of analysis. This variable effectively captures the
pandemic occurrence. This strategy allowed us to assess the impacts of COVID-19 across
the entire period and facilitate comparison, while also acknowledging the data constraints.
While we included the COVID-19 variables in the post-COVID sample period, we included
the COVID19_DUMMY variable only in the sample related to the entire sample period.

Based on the above, we formulated the following baseline estimation models:
Pre-COVID-19 period:

DNPLi,t = β0 + β1 × DNPLi(t−1),1 + β2 × DBit,2 + β3 × DMit,3 + β4 × DRit,4 + β5 × CULTURE_PCAit,5+uit (1)

Post-COVID-19 period:

DNPLi,t = β0 + β1 × DNPLi(t−1),1 + β2 × DBit,2 + β3 × DMit,3 + β4 × DRit,4 + β5 × CULTURE_PCAit,5+

β6 × DQEit,6 + β7 × DGit,7+β8 × DCit,8+uit
(2)

Total period:

DNPLi,t = β0 + β1 × DNPLi(t−1),1 + β2 × DBit,2 + β3 × DMit,3 + β4 × DCOVID19_DUMMYit,4+

β5 × CULTURE_PCAit,5+β6 × DQEit,6+uit
(3)

where DNPLi,t denotes the aggregate non-performing loans to total gross loans, DNPLi(t−1),1
corresponds to the NPLs of the prior quarter, DBit,2 denotes the bank-specific variables,
DMit,3 represents the macroeconomic factors, DRit,4 denotes the regulatory variables, the
DCOVID19_DUMMYit,4 denotes the dummy variable related to COVID-19 existence,8 the
CULTURE_PCAit,5 denotes the control variable representing each nation’s cultural identity,
DQEit,6 denotes the QE policy response variables, DGit,7 denotes the government economic
policy response variables, and finally, DCit,8 denotes the COVID-19-related factors. Note
that i corresponds to the examined country of the sample and t to the year. We used one
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lag for selected bank-specific and macroeconomic regressors to achieve optimum model
fit based on the indication of the Durbin–Watson statistic and to capture the dynamics of
explanatory variables over the previous quarter.

We followed a top-down approach by breaking down further and analyzing each
period into additional subsamples with alternative characteristics. Specifically, we explored
the pandemic’s impact on the European subregion, on country-level prosperity, distinguish-
ing by NPL type and NPL economic sector/activity. We distinguish the core and peripheral
economies based on the Phillips and Sul (2007) approach. Table A1 of Appendix A displays
the classification of countries based on subregions and core/peripheral economies.

To obtain deeper insight into the relevance of the explanatory variables and to account
for multicollinearity, we first controlled only by bank-specific and macro variables. We
then included the regulatory variables, and next we included the government response
variables; finally, we included the QE policy response variables (Table A3 of Appendix A).
Moreover, we regressed by different NPL types and NPL economic sectors, by consecutively
employing the dependent variables presented in Table A2 of Appendix A.

The empirical analysis was divided into baseline and subsample estimations. Al-
though we chose to include the CULTURE_PCA factor in all baseline estimation models
(Section 5.2), in the subsample analysis (Section 5.3), the CULTURE_PCA variable was
included only in the models related to the post-COVID-19 period.

5. Results and Discussion

This section presents the main regression estimates, followed by a relevant discus-
sion. Section 5.1 delves into the results of descriptive statistics and the correlation matrix,
Section 5.2 presents the results of the baseline estimations, and Section 5.3 presents ad-
ditional empirical results distinguishing by European subregion, core and peripheral
European economies, NPL type, and NPL economic sector.

5.1. Descriptive Statistics

Before proceeding with our regression results, we generated descriptive statistics
and correlation matrices. Table 2 depicts the descriptive statistics (individual samples)
of both the primary dependent variable and the candidate predictors employed in the
current research for the period 2015Q1 until 2021Q4 (descriptive statistics of secondary
dependent variables and control variables are not shown due to space constraints). The
fixed-effects method effectively mitigated the influence of high values of both non-normality
distribution, as derived from the Jarque–Bera statistic, as well as kurtosis and skewness.9

Additionally, to deal with highly correlated variables, we incorporated them in alternative
empirical models.
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5.2. Baseline Estimations

Table 3 summarizes the results of the econometric estimation model related to the
three periods of analysis.

Table 3. Main empirical findings.

Empirical Model:
Empirical
Model 1

Empirical
Model 2

Empirical Model 3
Empirical
Model 4

Empirical
Model 5

Empirical
Model 6

Empirical
Model 7

Period Examined: Total
Before

COVID-19
After COVID-19

After
COVID-19

After
COVID-19

After
COVID-19

After
COVID-19

Variable Symbol Dependent Variable: D(NPLS)

D(NPLS(-1)) −0.342359 −0.183453 ** −1.020644 *** −1.206490 *** −1.203173 *** −1.168123 *** −1.145578 ***
D(UNEMP(-1)) −0.035229 *** 0.015602 *** −0.045157 *** −0.019558 −0.023334 −0.028111 −0.026744

D(ROA(-1)) −0.291491 *** −0.109478 −0.175687 −0.170662 −0.216442 −0.206493 −0.204913
D(CPI(-1)) −0.000515 0.002510 −0.001905 −0.005244 *** −0.001308 −0.001966 −0.002714
D(CAP(-1)) 0.149963 −0.254603 *** 0.377711 * 0.318489 0.140830 0.230260 0.263534

D(LOAN_DISBRS(-1)) −0.003586 0.014573 * −0.021015 −0.036377 −0.028291 −0.049109 −0.056952
R_GDP_Q2Q(-1) −0.001371 0.022920 −0.002708 0.002934 0.000898 −0.000133 −0.000636

COVID19_DUMMY 0.032328
COVID19_VACCINATED −33.38 × 10−9 *** −0.036204 *** −0.027599 ** −0.027225 **

GOVT_RESP_STR 0.000140 ** 572.9648 **
CONTNMN 578.1687 **

GOVT_ECON_SUP 0.000058 6.64 × 10−5

D(ASSET_TO_GDP) −0.002029 * −2.775.504
COVID19_DEATHS −3.305.095

C −0.411011 −0.381554 −0.657638 −0.772071 −0.493559 −0.677555 −0.709040

Observations: 402 305 97 90 85 97 90
R-squared: 0.529274 0.656643 0.762686 0.730969 0.745125 0.738525 0.740121
F-statistic: 6.573298 6.731721 8.652614 7.942145 0.637128 0.641406 0.632869

Prob(F-stat): 0.000000 0.000000 0.000000 0.000001 0.000000 0.000000 0.000000

Note(s): (1.) Model 1 refers to the total sample period: 2015Q1–2021Q4, aiming to explore the COVID-19 impact
on the change in NPLs of the European banks. Model 2 refers to the period before the COVID-19 pandemic:
2015Q1–2019Q4, aiming to examine the macro and bank-specific variables’ effect on the change in NPLs. Models
3 to 7 refer to the period after the pandemic: 2020Q1–2021Q4, aiming to examine the effect of both COVID-19 and
policy response variables on the change in NPLs, as well as the effect of the central bank and government policy
support measures. (2.) OLS methodology was employed for the regression model estimation. More specifically,
Fixed Corrected Panel Effects estimations with country-fixed effects were utilized for all models because of the
Hausman test. The table presents the values of the coefficients, while the significance of the p-value is presented
with an asterisk: *** p < 0.01, ** p < 0.05, and * p < 0.1. (3.) NPLS stands for aggregate non-performing loans to total
gross loans; UNEMP represents the % of unemployment; ROA stands for return on assets; CPI stands for quarterly
consumer price index; CAP represents the bank capital and reserves to total assets; LOAN_DISBRS represents
the loan disbursements to customers; R_GDP_Q2Q stands for the quarterly percentage growth rate of the real
GDP; COVID19_DUMMY stands for the COVID-19 pandemic existence; COVID19_VACCINATED represents
the vaccinated population against the COVID-19 pandemic; GOVT_RESP_STR stands for government response
stringency index; CONTNMN stands for government response containment index; GOVT_ECON_SUP represents
the government response economic support index; ASSET_TO_GDP stands for the total assets/quarterly gross
domestic product at market prices; finally, COVID19_DEATHS represents the COVID-19 deaths. (4.) The (-1)
denotes one period lag. This note also applies to Tables 3 and 4. (5.) We opted not to include t-statistics for the
economy of space. Also, the inclusion of coefficient estimates and p-values effectively communicates the statistical
significance of our results. This note also applies to Tables 3 and 4.

Table 4. Main empirical findings with the inclusion of the cultural identity (CULTURE_PCA) control
variable.

Empirical Model:
Empirical
Model 1

Empirical
Model 2

Empirical
Model 3

Empirical
Model 4

Empirical
Model 5

Empirical
Model 6

Empirical
Model 7

Period Examined: Total
Before

COVID-19
After COVID-19

After
COVID-19

After
COVID-19

After
COVID-19

After
COVID-19

Variable Symbol Dependent Variable: D(NPLS)

D(NPLS(-1)) −0.785255 *** −0.019509 −1.704412 *** −2.807484 *** −1.125098 *** −2.606772 *** −2.542010 ***
D(UNEMP(-1)) −0.000233 *** 0.018100 *** −0.135149 *** 0.054589 −0.055827 0.026299 0.048239

D(ROA(-1)) −0.003389 *** 0.005782 −1.482710 ** −1.177897 * −0.529568 −1.178363 −1.486075 *
D(CPI(-1)) −0.000159 *** 0.001973 −0.020326 −0.031509 * 0.001022 −0.033672 −0.039164 *
D(CAP(-1)) 0.304569 *** −0.236408 *** 0.213311 1.441384 *** 0.716930 1.040842 * 1.862165 **

D(LOAN_DISBRS(-1)) −7.51 × 10−5 0.009489 −0.169374 −0.352748 * −0.047177 −0.206157 −0.286899 *
R_GDP_Q2Q(-1) −0.000220 *** 0.016549 −0.024380 −0.041457 * −0.030766 −0.031095 −0.037303
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Table 4. Cont.

Empirical Model:
Empirical
Model 1

Empirical
Model 2

Empirical
Model 3

Empirical
Model 4

Empirical
Model 5

Empirical
Model 6

Empirical
Model 7

Period Examined: Total
Before

COVID-19
After COVID-19

After
COVID-19

After
COVID-19

After
COVID-19

After
COVID-19

Variable Symbol Dependent Variable: D(NPLS)

COVID19_DUMMY 0.005049
COVID19_VACCINATED −2.13 × 10−9 −0.099896 *** 0.025171 0.023815

GOVT_RESP_STR 0.000196 ** 1365.652 ***
CONTNMN −9.796766

GOVT_ECON_SUP 0.000135 −46.53331
D(ASSET_TO_GDP) −84.60416 −13.21214 **
COVID19_DEATHS 11.64699 *

CULTURE_PCA −0.000780 *** 0.007468 −0.169073 *** −0.105757 * −0.412581 *** −0.137801 * −0.114973 *
C −0.001125 −0.353802 −0.693554 −1.527742 −0.259571 −1.184283 −1.366887

Observations: 355 261 94 87 82 94 87
R-squared: 0.993921 0.723856 0.958924 0.976036 0.956702 0.945497 0.978265
F-statistic: 6.799609 8.493018 8.646293 4.329519 9.722032 6.425089 1.166894

Prob(F-stat): 0.000000 0.000000 0.000000 0.000476 0.000000 0.001973 0.001288

Note(s): (1.) Model 1 refers to the total sample period: 2015Q1–2021Q4, aiming to explore the COVID-19
impact on the change in NPLs of the European banks controlling for the cultural identity. Model 2 refers to
the period before the COVID-19 pandemic: 2015Q1–2019Q4, aiming to examine the macro and bank-specific
variables’ effect on the change in NPLs controlling for the cultural identity. Models 3 to 7 refer to the period
after the pandemic: 2020Q1–2021Q4, aiming to examine the effect of both COVID-19 and policy response
variables on the change in NPLs, as well as the effect of the central bank and government policy support
measures controlling for the cultural identity, respectively. The number of observations was adjusted in each
model to account for the inclusion of the CULTURE_PCA variable. (2.) OLS methodology was employed for
the regression model estimation. More specifically, Fixed Corrected Panel Effects estimations with country-
fixed effects were utilized for all models because of the Hausman test. The table presents the values of the
coefficients, while the significance of the p-value is presented with an asterisk: *** p < 0.01, ** p < 0.05, and
* p < 0.1. (3.) NPLS stands for aggregate non-performing loans to total gross loans; UNEMP represents the % of
unemployment; ROA stands for return on assets; CPI stands for quarterly consumer price index; CAP represents
the bank capital and reserves to total assets; LOAN_DISBRS represents the loan disbursements to customers;
R_GDP_Q2Q stands for the quarterly percentage growth rate of the real GDP; COVID19_DUMMY stands for
the COVID-19 pandemic existence; COVID19_VACCINATED represents the vaccinated population against the
COVID-19 pandemic; GOVT_RESP_STR stands for government response stringency index; CONTNMN stands
for government response containment index; GOVT_ECON_SUP represents the government response economic
support index; ASSET_TO_GDP stands for the total assets/quarterly gross domestic product at market prices
(a representative of quantitative easing measures); COVID19_DEATHS represents the COVID-19 deaths; finally,
the variable CULTURE_PCA represents the synthetic cultural identity variable. (3.) The introduction of the
variable CULTURE_PCA in Table 4 led to a reduction in the total number of observations, as evident from the
models presented in Table 4. This decrease in observations was attributed to the presence of missing values for
the newly included variable. It is important to note that the same pattern was observed in Table 5, as the inclusion
of CULTURE_PCA also impacted the overall sample size.

Table 5. Robustness stepwise regression (forward) empirical findings with the inclusion of the
cultural identity (CULTURE_PCA) control variable.

Empirical Model:
Empirical
Model 1

Empirical
Model 2

Empirical
Model 3

Empirical
Model 4

Empirical
Model 5

Empirical
Model 6

Empirical
Model 7

Period Examined: Total
Before

COVID-19
After COVID-19

After
COVID-19

After
COVID-19

After
COVID-19

After
COVID-19

Variable Symbol Dependent Variable: D(NPLS)

D(NPLS(-1)) −0.181402 ** −0.019509 −0.301656 * −0.278239 * −0.498079 ** −0.271632 * −0.270032 *
D(UNEMP(-1)) −0.005908 * 0.003338 * −0.000312 * −0.001151 0.013107 0.000785 0.002276

D(ROA(-1)) −0.298137 * 0.019812 −0.305789 * −0.368425 * −0.318869 −0.279971 −0.281101 *
D(CPI(-1)) −0.000642 * 0.002699 −0.001511 −0.000592 * −0.000191 −0.000225 −0.000689 *
D(CAP(-1)) 0.100329 * −0.144452 * 0.221153 0.248323 * 0.041593 0.137912 * 0.167602 *

D(LOAN_DISBRS(-1)) −0.007724 0.006638 −0.002502 −0.010842 * 0.026314 0.009312 0.004685
R_GDP_Q2Q(-1) −0.000593 ** 0.011218 −0.003963 −0.003617 * −0.002826 −0.002181 −0.002388

COVID19_DUMMY 0.003182
COVID19_VACCINATED −0.030673 *** −0.032643 ** −0.030712 *** −0.030607 ***

GOVT_RESP_STR 180.3136 * 198.7774 *
CONTNMN −179.7631 *

GOVT_ECON_SUP 5.78 × 10−5 4.84 × 10−5

D(ASSET_TO_GDP) −10.65967 −3.051043 *
COVID19_DEATHS 0.410834 *

CULTURE_PCA −0.020594 * −0.015615 −0.002635 ** −0.005780 * −0.013931 ** −0.005301 * −0.011990 *
C −0.025936 −0.042776 −0.131299 −0.008730 −0.165630 −0.063473 −0.034680
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Table 5. Cont.

Empirical Model:
Empirical
Model 1

Empirical
Model 2

Empirical
Model 3

Empirical
Model 4

Empirical
Model 5

Empirical
Model 6

Empirical
Model 7

Period Examined: Total
Before

COVID-19
After COVID-19

After
COVID-19

After
COVID-19

After
COVID-19

After
COVID-19

Variable Symbol Dependent Variable: D(NPLS)

Observations: 355 261 94 87 82 94 87
R-squared: 0.549349 0.587550 0.740867 0.705801 0.762225 0.731266 0.736555
F-statistic: 9.351394 4.843548 16.133090 13.471660 16.768050 16.745510 14.378710

Prob(F-stat): 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001288

Note(s): (1.) Model 1 refers to the total sample period: 2015Q1–2021Q4. Model 2 refers to the pre-pandemic
period: 2015Q1–2019Q4. Models 3 to 7 refer to the post-pandemic period: 2020Q1–2021Q4. (2.) OLS methodology
was employed for the regression model estimation. More specifically, Fixed Corrected Panel Effects estimations
with country-fixed effects were utilized for all models because of the Hausman test. The table presents the values
of the coefficients, while the significance of the p-value is presented with an asterisk: *** p < 0.01, ** p < 0.05, and
* p < 0.1. (3.) NPLS stands for aggregate non-performing loans to total gross loans; UNEMP represents the % of
unemployment; ROA stands for return on assets; CPI stands for quarterly consumer price index; CAP represents
the bank capital and reserves to total assets; LOAN_DISBRS represents the loan disbursements to customers;
R_GDP_Q2Q stands for the quarterly percentage growth rate of the real GDP; COVID19_DUMMY stands for
the COVID-19 pandemic existence; COVID19_VACCINATED represents the vaccinated population against the
COVID-19 pandemic; GOVT_RESP_STR stands for government response stringency index; CONTNMN stands
for government response containment index; GOVT_ECON_SUP represents the government response economic
support index; ASSET_TO_GDP stands for the total assets/quarterly gross domestic product at market prices (a
representative of quantitative easing measures); COVID19_DEATHS represents the COVID-19 deaths; finally, the
variable CULTURE_PCA represents the synthetic cultural identity variable. (3.) The introduction of the variable
CULTURE_PCA in Table 4 led to a reduction in the total number of observations, as evident from the models
presented in Table 4. This decrease in observations was attributed to the presence of missing values for the newly
included variable.

Regarding the results related to the entire analysis period, we observed a statistically
insignificant effect of the pandemic on the change in NPLs (variable COVID19_DUMMY),
whereas bank profitability and unemployment rate had a statistically significant negative
effect on the change in NPLs. The statistically insignificant impact of COVID-19 on the
change in NPLs during the total period indicates that the strong capital accumulation of
banks after the GFC increased bank profitability (ROA), rendering them resilient to the
pandemic’s effect.

Regarding the results related to the pre-COVID-19 period, our regression estimates
showed that loan disbursements exerted a positive and statistically significant effect on
the change in NPLs. This implies that banks should implement new risk auditing policies
when granting loans. We also found that bank capitalization was significant and negatively
affected the change in NPLs. This suggests that more capitalized banks were able to fare
better during the crisis, which aligns with Demir and Danisman’s work (2021). In line with
Makri et al. (2014), we also find that the unemployment rate was statistically significant,
positively affecting the change in NPLs, suggesting that higher unemployment rates were
associated with an increase in the change in NPLs.

Coming to the results related to the post-COVID-19 period, we observed that both bank
capitalization and strictness of lockdown measures were statistically significant factors that
positively affected the change in NPLs. Our findings align with those of Yi et al. (2022) and
Apergis (2022). Additionally, the QE measures assisted borrowers in meeting their regular
loan repayment obligations despite the adverse macroeconomic conditions. We also found
that government economic policies had a statistically insignificant effect on the change in
NPLs. The unpredictability, severity, and scale of the pandemic posed challenges for tailored
government economic policies to effectively address the situation. This result aligns with
the conclusions of Dunbar (2022). Additionally, the effectiveness of these policies may have
been overshadowed by the combined force of significant capital accumulation facilitated by
the banks following the GFC crisis, along with the implementation of QE measures. Similar
to the findings reported by Cowling et al. (2022), as COVID-19 vaccinations increased,
more borrowers were able to generate income, enabling them to meet their loan obligations,
eventually reducing the NPLs. Additionally, the negative sign of the coefficient of the
UNEMP during the post-pandemic period suggests that other mitigating factors, such
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as government support measures and improving economic conditions as vaccinations
increase (Table 3, empirical model 3), outweighed the immediate impact of the increased
unemployment rate.

The results of Table 4 present the regression estimates with the inclusion of the CUL-
TURE_PCA factor.

Regarding the total period of analysis (Table 4, empirical model 1), contrary to Ari
et al. (2021), who anticipated a surge in NPLs, we observed a statistically insignificant effect
of COVID19_DUMMY on the change in NPLs, while national culture was a statistically
significant factor posing a negative effect on the change in NPLs. This implies that cultural-
driven economies support economic growth, enabling debtors to effectively cope with their
debt obligations. Adding to the results of Table 3, regarding the total period of analysis,
debtors have continued to effectively meet their loan obligations, despite the challenges
posed by the pandemic, translating into an outcome where the effect of the pandemic on
bank stability remained statistically insignificant. This finding is consistent with the work
of Demir and Danisman (2021), who stressed the crucial role of strong capital buffers. We
also noticed that incorporating the CULTURE_PCA variable into our analysis reduced
the effect of COVID19_DUMMY on the change in NPLs. This finding underscores the
importance of cultural-driven economies in maintaining financial stability.

Regarding the pre-COVID-19 period, we did not find any statistically significant effect
of national culture on economic growth and the change in NPLs. In the post-COVID-19
period, we observed a positive effect of national culture on bank capital, bank profitability,
and economic growth, implying that borrowers’ commitment to national values resulted in
economic expansion and, consequently, increased bank capital and bank profitability. This
finding aligns with the conclusions of Gaganis et al. (2020), who found that cultural factors
significantly influenced financial stability and economic performance. Better capitalized
banks reporting high profitability ratios could easily absorb the negative spillover effects of
COVID-19 and avert a new wave of NPLs. Additionally, we found that the implementation
of QE measures (differentiated variable: ASSET_TO_GDP) in cultural-driven economies
led to a significant NPL reduction.

The pandemic introduced unparalleled economic uncertainty (Yi et al. 2022). Also, the
pandemic’s impacts, as well as the economic support policies implemented to mitigate the
pandemic’s economic effect, were not uniform across European countries and cultures. This
dynamic interplay caused individuals and businesses to reassess their financial decisions
and, consequently, their attitudes toward NPL repayment activities. Additionally, while in
the pre-COVID-19 period the cultural norms were overshadowed by economic factors and
the regulatory environment, during the lockdown period of COVID-19, debt repayment
was primarily influenced by the inherent cultural values.

5.3. Subsample Analysis

Tables A5–A10 of Appendix A depict the empirical results, distinguishing by European
subregion, core, peripheral European countries, NPL type, and NPL economic sector. While
the baseline estimations yielded encouraging results, the subsample analysis revealed
the specific arrears being affected, ultimately experiencing an increase in their NPLs.
Sections 5.3.1 and 5.3.2 summarize the key findings.10

5.3.1. The Entire Period

From Table A5 (MODELS 1–7), we found that COVID19_DUMMY did not exert
a significant effect on NPLs. Consistent with the findings of Makri et al. (2014), the
unemployment rate was significant and exerted a positive effect on the change in NPLs.
The change in NPLs of the prior period was significant and exerted a positive effect on the
change in NPLs of the current period. The net purchases at book value (PEPP_PURCHASES)
variable was significant and exerted a negative effect on the change in NPLs. This finding
is supported by Yi et al. (2022), who emphasized the positive impact of QE policies on
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financial stability during the pandemic. Bank capital was significant and exerted a positive
effect on the change in NPLs.

5.3.2. Pre-COVID-19 Period

From Panel A (Tables A6–A8) of Appendix A, we observed that South Europe was
the most vulnerable to external macroeconomic forces. Similar to the findings of Demir
and Danisman (2021), we also observed that core European economies with high prof-
itability ratios were more resilient. The mortgage NPLs (NPL_RATIO_MORT), and the
NPLs related to small and medium-sized enterprises (SMEs), non-financial corporations
(NPL_RATIO_NFCs), households (NPL_RATIO_HHs), and commercial real estate (CRE),
were found to be vulnerable to external macroeconomic shocks. Notably, NPL_RATIO_CRE,
NPL_RATIO_SME, and NPL_RATIO_NFCs NPL portfolios are well capitalized, offering
a buffer against potential macroeconomic turbulences. This observation is supported by
Bitar and Tarazi (2022), who emphasized that higher capitalization ratios help banks absorb
economic shocks more effectively.

5.3.3. Post-COVID-19 Period

From Table A5 (Model 7), Panel B (Tables A6–A8), as well as Tables A9 and A10
of Appendix A, we derived that the NPLs were negatively affected by the increase in
COVID-19 deaths (Rizwan et al. 2020). The presence of QE measures enhanced the banks’
capital, preventing a new wave of NPLs, consistent with the observations of Yi et al. (2022).
Core economies fared better in comparison to peripheral economies due to a sounder
financial system (Apergis 2022). The results of Table A8 indicate that the strictness of
lockdown measures hindered the ability, in particular, of SMEs, to repay the loans, unlike
larger firms. This was in line with the findings of Cowling et al. (2022). The findings
presented in Table A9 suggest that sectors that were considered essential and continued
their operations during lockdown periods were not as severely affected, whereas sectors
involving physical work-related activities experienced an increase in their NPLs due to the
strictness of lockdown measures. Those sectors were the following: “agriculture, forestry,
and fishing” (NFCNPL_AGR), “education” (NFCNPL_EDU), “information and commu-
nication” (NFCNPL_INF), “manufacturing” (NFCNPL_MAN), “professional, scientific,
and technical activities” (NFCNPL_PRF), “accommodation and food service activities”
(NFCNPL_ACC), “administrative and support service activities” (NFCNPL_ADM), and
“human health services and social work activities” (NFCNPL_HUM). These findings are in
line with Sharif et al. (2020), who stated that the pandemic may be viewed as an economic
crisis, implying the differential impacts of the pandemic on various economic sectors.
Moreover, from Table A5 (Model 7), we also found that the banks’ securitization strategy
was statistically significant and reduced the NPLs.

Regarding the role of national culture, from Table A10 we deduced that cultural influ-
ences in central European economies exerted a positive impact on borrowers’ willingness
to fulfill their loan commitments, ultimately leading to a decrease in the NPLs. Borrowers
from southern European economies, with strong cultural ties, were more likely to get vacci-
nated against COVID-19, which in turn revitalized the economy and resulted in a decrease
in NPLs. Northern European economies benefited from a strong cultural identity, which
contributed to economic prosperity, bank profitability, and reduced NPLs. Culture had a
significant negative effect, particularly in SME NPL portfolios. There was a statistically
significant relationship between national culture and borrowers’ willingness to receive a
COVID-19 vaccine in various NPL sectors, which implies increased borrower cash flows
and a subsequent reduction in NPLs associated with these sectors. Notably, we deduced a
significant negative effect, particularly in the NPLs of the “electricity, gas, steam, and air
conditioning supply” sector (NFCNPL_ELE).

Based on these findings, we also deduced that in countries where tradition and
benevolence are prevalent, policies that emphasize social responsibility and community
welfare are likely to be more effective. Additionally, banks should incorporate cultural
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assessments into their risk management frameworks, tailoring financial products and
services to align with the cultural values of their customers to enhance borrower loyalty and
reduce default rates. Community-based financial education programs that resonate with
local cultural values can improve financial literacy and behaviors, thereby reducing non-
performing loans (NPLs). Moreover, promotional strategies that emphasize the alignment
of financial products and policies with cultural norms can increase the adoption of financial
products and improve compliance with repayment obligations.

6. Robustness Tests

The results reported in the previous section were based on the application of the
fixed-effects method for the entire sample period. First, regarding the variation in sample
size between the dependent variable (684 observations) and the other variables in our
empirical estimates, we conducted sensitivity analyses to assess the potential impact on
our findings. This involved systematically testing our models with various subsamples
and configurations. These sensitivity tests considered scenarios where we first included
and then excluded certain quarters and countries to gauge the robustness of our results
to changes in sample composition. The sensitivity analyses reaffirmed the stability of our
key findings.

For robustness, we also proceeded by estimating alternative econometric models.
Specifically, we first regressed each independent variable against the dependent variable.
We then proceeded by successively including each independent variable, while regressing
with the change in NPLs. Those models confirmed the subsample analysis, as reported in
Section 5.3. They also provided additional insights and helped mitigate the concerns related
to the smaller sample size in the post-COVID-19 period.11 It was confirmed that banks’
securitization strategy was statistically significant and positively associated with NPL
reduction of all NPL portfolios, except HH NPLs. It was derived that bank risk indicators,
such as risk capital, operational risk, and risk-weighted assets (RWA), were statistically
significant and exerted a positive effect on NPLs. A rise in the NPLs due to the increased
COVID-19 deaths in South Europe was averted due to the government’s financial support.
Additionally, a rise in HH and MORT NPLs was averted due to the government’s financial
aid, which enabled the debtors to continue meeting their loan repayment obligations. On
the other hand, the other NPL types relied on strong capitalization, high profitability, and
QE measures. Although the MORT NPL portfolio was covered with enhanced provisioning,
HH NPLs exhibited increased risk exposure (results available upon request).

We also conducted the same empirical analysis by excluding an important economic
center, the United Kingdom, from the period 2020Q1 to 2021Q4. The analysis revealed
that the magnitude of the coefficients and the significant indicators slightly increased.
This indicates that, even without the United Kingdom, the remaining European countries
had enough financial strength to handle the negative economic spillovers of COVID-19.12

The third robustness test was related to the dependent variable. More specifically, we
conducted a series of empirical estimations using the NPL ratio from the EBA database as
an alternative response variable. The derived results confirmed the findings obtained from
the initial empirical models.13

Additionally, we conducted a series of robustness checks to validate our findings
regarding the effect of national culture on NPLs. We calculated the average of the ten
Schwartz national culture dimensions for each country and period (Schwartz 1994) and
performed the same analysis. We also independently employed each Schwartz cultural
dimension for both the pre- and post-COVID-19 periods. Our robustness checks confirmed
the pre-COVID-19 period results of Table 4. Moreover, in the post-COVID-19 period, all
national cultural values were found to negatively affect the change in NPLs, with tradition
(IMPTRAD), benevolence (IPEQOPT), power (IPRULE), and security (IPSTRGV) showing
the most significant negative effects. This implies that adherence to national traditions,
rules, and feelings of safety and security were associated with lower NPL ratios. Banks
operating in countries with these cultural values could tailor their financial products and
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repayment plans to align with prudence and security, thereby reducing default risks (results
not reported due to space limitations).

As an alternative methodology, we applied stepwise regression (forward). The results
are reported in Table 5. Despite some differences in the magnitude of the coefficients, the
results confirmed the findings of Table 4.

To address the issue of endogeneity in terms of policy responses and confirm the
validity of the baseline estimations, we utilized the Arellano and Bond (1991) difference
GMM method (Hansen 1982) for dynamic panels by employing the dependents’ variable
one lag period as an instrumental variable, since the current NPLs are also a byproduct
of the NPLs of the prior period, making the lagged dependent variable an appropriate
instrument to account for endogeneity. Furthermore, we employed the second lag of control
variables as additional instrumental variables, enhancing the exogenous variation in our
model and the causal relationship between the policy responses and the growth of NPLs.
The empirical results of GMM were reported to be quite similar in terms of the magnitude
and sign of the coefficients to the empirical results reported in Sections 5.2 and 5.3. This
implies that the primary methodology employed was robust and effectively addressed
endogeneity that may arise due to reverse causality and omitted variable bias. GMM
results supported our baseline estimations and highlighted that peripheral economies were
able to withstand the negative economic spillovers of COVID-19 due to the combination
of capital accumulation and government economic support, while core economies were
able to quickly recover from the pandemic due to sounder financial systems, enabling
them to respond with a faster speed and a better solution to COVID-19. To validate the
GMM model’s results, we used the J-Test for over-identification restrictions, which was
found to be valid. As an additional alternative methodology, we also applied Robust Least
Squares (RLS), which yielded similar results to the prior section (the empirical estimates
of GMM and RLS are not reported due to space limitations).14 Furthermore, we included
interaction terms to capture the interplay between ‘bank capital’–‘government economic
support’, ‘bank capital’–‘QE policy measures’, ‘securitization’–‘government economic
support’, and ‘cultural identity’–‘GDP growth’ and the growth of NPLs. The interaction
terms analysis validated our findings that peripheral economies exhibited resilience against
the pandemic’s economic spillovers due to the synergy between capital accumulation and
government economic support. Welch’s t-tests and Kruskal–Wallis tests were conducted to
compare the means of the subsamples analyzed, indicating significant differences between
the means and, therefore, reinforcing our earlier findings related to the combined impact of
securitization, wealth, and government economic support on the growth of NPLs.

Finally, as an alternative research approach, we also followed a difference-in-differences
(DID) research approach to investigate the effects of the COVID-19 pandemic on the change
in NPLs by comparing changes over time between two groups. In this approach, we created
a treatment group representing the post-COVID-19 period and a control group representing
the pre-COVID-19 period. Following this strategy, we derived that in the treatment group,
the change in NPLs continued to decrease, compared to the control group, further strength-
ening the validity of our primary pre- and post-COVID-19 research approach. We also
excluded outlier periods characterized by extreme values in key variables, such as NPLs,
COVID-19 deaths, and government response indices. Specifically, quarters with Z-scores
greater than 3 or less than −3 for these variables were removed from the analysis. After
excluding these outliers, we found that our results remained consistent, suggesting that
our findings were not driven by these extreme values. Lastly, we also performed a rolling
window analysis with an eight-quarter window to observe the stability of our results over
time. The rolling window analysis confirmed that the relationships between COVID-19
measures, economic support policies, and NPLs were stable across different sub-periods,
further validating the robustness of our findings (robustness tests available upon request).
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7. Conclusions and Future Research

This paper examined the effects of the COVID-19 pandemic on the European Union’s
NPLs. This research is the first to analyze this effect by European subregion, on country-
level prosperity, distinguishing NPL type and NPL economic sector.

Our empirical results indicated that the extensive loan disbursements during the
pre-pandemic period contributed to the rise in NPLs. This suggests that European banks
should establish additional risk auditing policies. Despite the adverse economic spillovers
of COVID-19, the accumulation of bank capital after the GFC, along with the government
and central bank economic support provided, resulted in a substantial NPL reduction.
Specifically, we found that peripheral economies were able to withstand the negative
economic spillovers of COVID-19, primarily due to the combination of capital accumulation
and government economic support. On the other hand, core economies were able to quickly
recover due to their robust profitability ratios. The successive lockdowns particularly
affected the NPL growth of SMEs, while larger firms performed better. In line with Dunbar
(2022), households were able to continue meeting their loan repayment obligations due to
the government’s financial support. Additionally, in line with Cowling et al. (2022), physical
work-related activities were severely affected by the successive lockdowns, resulting in
higher NPLs, while vital sectors that continued their normal operations were not affected.
In line with Cicchiello et al. (2022), while vaccinations increased, NPLs decreased, enabling
a functional economy and leading to high loan repayment rates. Additionally, bank
risk indicators increased dramatically during the pandemic, suggesting the need for the
implementation of new and effective risk management practices. Finally, we also concluded
that even during the pandemic, the brutal securitization strategy that banks pursued, along
with the economic support policies, resulted in a substantial decrease in NPLs.

This study was also innovative by being the first to highlight the effect of cultural
values on both borrowers’ and lenders’ behavior. More specifically, borrowers in culturally
driven countries encourage innovation and competitiveness, ultimately boosting the econ-
omy. Despite the increased levels of economic uncertainty, we provided evidence that the
rate of debt repayment increased in conjunction with cultural values, ultimately reducing
the NPLs.

Policymakers and financial institutions can use these insights to mitigate the impact
of future economic shocks by enhancing risk auditing policies, encouraging capital ac-
cumulation, implementing dynamic stress testing, and providing targeted support for
SMEs and vulnerable sectors. By understanding and leveraging cultural factors, financial
policies can be more effectively tailored to promote economic resilience and stability. More-
over, centralized support mechanisms, continuous monitoring and dynamic adaptation
of economic policies, coordination between monetary and fiscal policies, as well as the
implementation of advanced risk management practices, are essential in preparing for
and responding to future crises. These measures, combined with robust securitization
frameworks, can significantly reduce the risk of NPLs and maintain financial stability
during economic downturns.

Future studies could examine the effect of COVID-19 on NPLs utilizing additional
candidate predictors. They could also examine the relationship between environmental
(E), social (S), and governmental (G) factors and NPLs. Moreover, they could extend the
temporal coverage by including recent economic events, such as the geopolitical conflict
between Russia and Ukraine. Finally, they could also examine the effect of the energy crisis
on the NPLs or conduct a county-level analysis, considering the cultural identity.

Finally, this research provided robust results for both scientific and policymaking pur-
poses. This research is also expected to pave the way for a new branch of literature related
to the factors affecting the NPLs, ultimately leading to a revised strategy for resolving
NPLs, not only for Europe but also on a global scale.

Author Contributions: J.H.P.: Conceptualization, Investigation, Writing—Original Draft, Validation,
Visualization. D.K.: Conceptualization, Supervision, Writing—Review and Editing, Validation,

147



J. Risk Financial Manag. 2024, 17, 271

Visualization. G.A.S.: Conceptualization, Investigation. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Country sample.

Country
Observation per

Country
Cumulative

Observation Count
Subregion

Categorization
Core/Periphery
Categorization

Denmark 28 28 Northern Europe Intermediate group
Spain 28 56 Southern Europe Extended Periphery

United Kingdom 28 84 Northern Europe Intermediate group
France 28 112 Southern Europe Hard-Core group
Italy 28 140 Southern Europe Extended Periphery

Ireland 28 168 Northern Europe Extended Periphery
Finland 28 196 Northern Europe Extended Periphery
Portugal 28 224 Southern Europe Extended Periphery
Sweden 28 252 Northern Europe Intermediate group
Greece 28 280 Southern Europe Extended Periphery
Austria 28 308 Central Europe Hard-Core group
Belgium 28 336 Northern Europe Hard-Core group
Germany 28 364 Central Europe Hard-Core group

Netherlands 28 392 Central Europe Hard-Core group
Bulgaria 28 420 Southern Europe Extended Periphery
Croatia 28 448 Southern Europe Extended Periphery

Czech Republic 28 476 Central Europe Intermediate group
Estonia 28 504 Northern Europe Intermediate group

Hungary 28 532 Central Europe Extended Periphery
Latvia 28 560 Northern Europe Intermediate group

Lithuania 28 588 Northern Europe Intermediate group
Luxembourg 28 616 Central Europe Intermediate group

Malta 28 644 Southern Europe Extended Periphery
Poland 28 672 Central Europe Intermediate group

Romania 28 700 Central Europe Extended Periphery
Slovenia 28 728 Southern Europe Intermediate group
Slovakia 28 756 Central Europe Intermediate group
Cyprus 28 784 Southern Europe Extended Periphery

Total 784 784 - -

Notes: (1) This table presents the sample of countries that synthesize the data of our research, the observation dis-
tribution by country, their categorization per subregion, and core/peripheral economies. (2) The core/peripheral
economies are distinguished based on the Phillips and Sul (2007) approach. The total number of country data
points used in our research was 784 country observations.

Table A2. Data sources and description for the dependent variables.

Variable Variable Role Variable Group Explanation Source Parameter Shown

NPLS Main dependent
variable NPL Ratio Aggregate non-performing loans

to total gross loans ECB Percentage (%)

NPL_RATIO_HHS Secondary
Dependent variable NPL Type Aggregate non-performing loans

to total gross loans—Households EBA Percentage (%)

NPL_RATIO_MORT Secondary
Dependent variable NPL Type Aggregate non-performing loans

to total gross loans—Mortgages EBA Percentage (%)
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Table A2. Cont.

Variable Variable Role Variable Group Explanation Source Parameter Shown

NPL_RATIO_NFCS Secondary
Dependent variable NPL Type

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations

EBA Percentage (%)

NPL_RATIO_SME Secondary
Dependent variable NPL Type

Aggregate non-performing loans
to total gross loans—Small and

medium-sized enterprises
EBA Percentage (%)

NPL_RATIO_CRE Secondary
Dependent variable NPL Type

Aggregate non-performing loans
to total gross loans—Commercial

real estate
EBA Percentage (%)

NFCNPL_AGR Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—A: Agriculture,

forestry, and fishing

EBA Percentage (%)

NFCNPL_MIN Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—B: Mining and

quarrying

EBA Percentage (%)

NFCNPL_MAN Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—C: Manufacturing

EBA Percentage (%)

NFCNPL_ELE Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—D: Electricity, gas,

steam, and air conditioning
supply

EBA Percentage (%)

NFCNPL_WAT Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—E: Water supply

EBA Percentage (%)

NFCNPL_CON Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—F: Construction

EBA Percentage (%)

NFCNPL_WRT Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—G: Wholesale and

retail trade

EBA Percentage (%)

NFCNPL_TRA Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—H: Transport and

storage

EBA Percentage (%)

NFCNPL_ACC Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—I: Accommodation

and food service activities

EBA Percentage (%)

NFCNPL_INF Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—J: Information and

communication

EBA Percentage (%)
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Table A2. Cont.

Variable Variable Role Variable Group Explanation Source Parameter Shown

NFCNPL_FIN Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—K: Financial and

insurance activities

EBA Percentage (%)

NFCNPL_REA Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—L: Real estate

activities

EBA Percentage (%)

NFCNPL_PRF Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—M: Professional,

scientific, and technical activities

EBA Percentage (%)

NFCNPL_ADM Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—N: Administrative

and support service activities

EBA Percentage (%)

NFCNPL_PAD Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—O: Public

administration and defense,
compulsory social security

EBA Percentage (%)

NFCNPL_EDU Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—P: Education

EBA Percentage (%)

NFCNPL_HUM Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—Q: Human health

services and social work activities

EBA Percentage (%)

NFCNPL_ART Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—R: Arts,

entertainment, and recreation

EBA Percentage (%)

NFCNPL_OTH Secondary
Dependent variable NPL Economic Sector

Aggregate non-performing loans
to total gross

loans—Non-financial
corporations—S: Other services

EBA Percentage (%)

Notes: (1) This table presents the data, their explanation, as well as the data sources of the dependent variables used
in this research. (2) All variables are depicted at an aggregated country level, whereas before they were employed
for empirical testing, they were all transformed to first or second differences because of unit root testing.

Table A3. Data sources and descriptions of the candidate predictors and the control variables.

Variable Variable Role Variable Group Explanation Source Parameter Shown

UNEMP Control variable Macroeconomic
Variables Percentage (%) of unemployment DataStream Percentage (%)

CPI Control variable Macroeconomic
Variables Quarterly Consumer Price Index DataStream No.

R_GDP_Q2Q Control variable Macroeconomic
Variables

Quarterly percentage growth rate of
real GDP IMF Percentage (%)

GDP_MARKET Control variable Macroeconomic
Variables

Quarterly gross domestic product at
market prices Eurostat No.
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Table A3. Cont.

Variable Variable Role Variable Group Explanation Source Parameter Shown

NPLS (-1) Control variable Bank-specific
Variables

Previous quarter aggregate
non-performing loans to total gross

loans
ECB Percentage (%)

ROA Control variable Bank-specific
Variables

Return on assets: profit or loss for
the year/total assets DataStream Percentage (%)

CAP Control variable Bank-specific
Variables

Bank capital and reserves to total
assets DataStream Percentage (%)

LOAN_DISBRS Control variable Bank-specific
Variables Loan disbursements to customers DataStream Percentage (%)

FINANCIAL_ASSETS Control variable Bank-specific
Variables

Total financial instruments on the
asset side EBA No.

PROVISIONS Control variable Bank-specific
Variables

Impairments (credit risk
losses)/equity EBA Percentage (%)

RISK_CAPITAL Control variable Bank-specific
Variables

Total risk exposure amount for
position, foreign exchange, and

commodities risks/total risk
exposure amount

EBA Percentage (%)

OPER_RISK Control variable Bank-specific
Variables

Total risk exposure amount for
OpePercentage (%) ns/total risk

exposure amount
EBA No.

LIABILITIES Control variable Bank-specific
Variables

Total deposits other than from
banks/total liabilities EBA No.

CASH_BALANCES Control variable Bank-specific
Variables Cash positions/total assets EBA Percentage (%)

FINANCIAL_ASSETS Control variable Bank-specific
Variables

Total financial instruments on the
asset side EBA No.

EQUITY Control variable Bank-specific
Variables Equity instruments/total assets EBA Percentage (%)

TOTAL_ASSETS Control variable Bank-specific
Variables Total assets EBA No.

RETAINED_EARNINGS Control variable Bank-specific
Variables

Retained earnings/Tier 1 capital
volume EBA Percentage (%)

DERIVATIVES Control variable Bank-specific
Variables Derivatives/total assets EBA Percentage (%)

CRED_DEPOSITS Control variable Bank-specific
Variables

Deposits from credit
institutions/total liabilities EBA Percentage (%)

TIER1_CAP Control variable Regulatory Variables Additional Tier 1 capital EBA No.

COVER_Percentage
(%) Control variable Regulatory Variables

Accumulated impairment,
accumulated negative changes in

fair value due to credit risk for
non-performing loans and

advances/total gross
non-performing loans and advances

EBA Percentage (%)

RWA_VOLUME Control variable Regulatory Variables RWA volume EBA No.

OWN_FUNDS_TIER1 Control variable Regulatory Variables Tier 1 capital volume EBA No.

SECURITIZATION Control variable Regulatory Variables

Securitization
positions/risk-weighted exposure
amounts for credit, counterparty
credit, and dilution risks and free

deliveries

EBA Percentage (%)

PEPP_PURCHASES Candidate
predictor

Quantitative Easing
Variables Net purchases at book value ECB No.

ASSET_TO_GDP Candidate
predictor

Quantitative Easing
Variables

Total assets/quarterly gross
domestic product at market prices ECB Percentage (%)
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Table A3. Cont.

Variable Variable Role Variable Group Explanation Source Parameter Shown

QE_ANNOUNCEMENT Candidate
predictor

Quantitative Easing
Variables

Quantitative Easing (QE)
Announcement: 1 Corresponding to

Dates: 18 March 2020 and 4 June
2020.

(Hoang
et al. 2021) Binary (1/0)

EXP_ASSET_PURC Candidate
predictor

Quantitative Easing
Variables

Expanded Asset Purchase Program
(APP) ECB No.

BOND_PURC Candidate
predictor

Quantitative Easing
Variables

Covered bonds purchases at book
value (CBPP3) ECB No.

COVID19_DUMMY Candidate
predictor COVID-19 Variables COVID-19 pandemic existence

Author’s
Calcula-

tions
Binary (1/0)

COVID19_VACCINATED Candidate
predictor COVID-19 Variables COVID-19 vaccinated population DataStream No.

COVID19_DEATHS Candidate
predictor COVID-19 Variables COVID-19 deaths DataStream No.

CONTNMN Candidate
predictor

COVID-19
Government

Response Variables

Government response containment
index DataStream Index

GOVT_RESP_STR Candidate
predictor

COVID-19
Government

Response Variables

Government response stringency
index DataStream Index

GOVT_ECON_SUP Candidate
predictor

COVID-19
Government

Response Variables

Government response economic
support index DataStream Index

Notes: (1) This table presents the data, their explanation, as well as the data sources of the candidate predictors
and the control variables employed. (2) All variables are depicted at the aggregated country level, whereas before
they were employed for empirical testing, they were transformed to first or second differences because of unit
root testing.

Table A4. Data sources and descriptions of the cultural dimensions.

Literature
Variable
Symbol

Cultural
Dimensions

Short Definition
ESS (European Social Survey)

Question
Values/Answer Range from

ESS (European Social Survey)

Schwartz National
Culture Values
(Schwartz 1994)

ipcrtiv Self-direction Independent thought and
action

Important to think new ideas
and be creative Value Category

ipgdtim Stimulation Excitement, novelty, and
challenge in life Important to have a good time 1 Very much like me

ipudrst Hedonism Pleasure or sensuous
gratification for oneself

Important to understand
different people 2 Like me

ipshabt Achievement

Personal success through
demonstrating competence

according to social
standards

Important to show abilities and
be admired 3 Somewhat like me

ipfrule Power Social status, prestige,
control, or dominance

Important to do what is told
and follow rules 4 A little like me

ipstrgv Security
Safety, harmony, and
stability of society, of

relationships, and of self

Important that government is
strong and ensures safety 5 Not like me

ipbhprp Conformity

Restraint of actions,
inclinations, and impulses

likely to upset or harm
others and violate social
expectations or norms

Important to behave properly 6 Not like me at all

imptrad Tradition

Respect, commitment, and
acceptance of the customs

and ideas that one’s
culture or religion provides

Important to follow traditions
and customs 7 Refusal *
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Table A4. Cont.

Literature
Variable
Symbol

Cultural
Dimensions

Short Definition
ESS (European Social Survey)

Question
Values/Answer Range from

ESS (European Social Survey)

Schwartz National
Culture Values
(Schwartz 1994)

ipeqopt Benevolence

Preserving and enhancing
the welfare of those with
whom one is in frequent

personal contact

Important that people are
treated equally and have equal

opportunities
8 Don’t know *

impenv Universalism

Understanding,
appreciation, tolerance,
and protection for the

welfare of all people and
for nature

Important to care for nature
and environment 9 No answer *

Author’s
Calculations

CULTURE_PCA National Cultural
Identity Variable Percentage (%) Cultural Identity

(*)
Missing
Value

Notes: (1.) This table presents the data, their explanation, as well as the data sources of the variables employed.
The variables depicted in this table are related to the Schwartz (1994) cultural dimensions, as derived from the
European Social Survey (ESS). More specifically, the second column refers to the name of the cultural value, the
third column provides a short description of the respective cultural dimension, the fourth column depicts the
ESS question, from which the data for each variable were derived, the fifth column represents the name of the
variable, as depicted in the ESS survey, and finally, the last column depicts the respective questions represented in
the ESS survey for each cultural dimension. (2.) The asterisk * corresponds to missing values in the European
Social survey (ESS). (3.) All variables are depicted at the aggregated country level. No unit root testing was
implemented for those variables since those variables were not directly used in the empirical estimations. Instead,
we proceeded by forming a new cultural dimension variable, by utilizing principal component analysis (PCA)
methodology (=CULTURE_PCA). More specifically, the variable presented in the last row of the above table was
calculated utilizing the PCA and was not derived from the ESS survey. Instead, this variable was the culmination
of the Schwartz (1994) cultural dimensions.

153



J. Risk Financial Manag. 2024, 17, 271

T
a

b
le

A
5

.
R

eg
re

ss
io

n
re

su
lt

s
fo

r
to

ta
ls

am
pl

e.

T
h

is
T

a
b

le
P

re
se

n
ts

th
e

E
m

p
ir

ic
a
l

R
e
su

lt
s

R
e
la

te
d

w
it

h
th

e
T

o
ta

l
S

a
m

p
le

o
f

A
n

a
ly

si
s

(2
0
1
5
Q

1
–
2
0
2
1
Q

4
)

a
s

W
e
ll

a
s

th
e

P
o

st
-C

O
V

ID
-1

9
P

e
ri

o
d

(2
0
2
0
Q

1
–
2
0
2
1
Q

4
)

R
e
g

re
ss

io
n

R
e
su

lt
s—

T
o

ta
l

S
a
m

p
le

a
n

d
P

o
st

-C
O

V
ID

-1
9

P
e
ri

o
d

D
e
p

e
n

d
e
n

t
V

a
ri

a
b

le

T
o

ta
l

P
e
ri

o
d

:
2
0
1
5
Q

1
–
2
0
2
1
Q

4
P

o
st

-C
O

V
ID

-1
9

P
e
ri

o
d

:
2
0
2
0
Q

1
–
2
0
2
1
Q

4

T
o

ta
l

P
e
ri

o
d

A
n

a
ly

si
s

M
O

D
E

L
(1

)
M

O
D

E
L

(2
)

M
O

D
E

L
(3

)
M

O
D

E
L

(4
)

M
O

D
E

L
(5

)
M

O
D

E
L

(6
)

M
O

D
E

L
(7

)

V
a
ri

a
b

le
G

ro
u

p
V

a
ri

a
b

le
S

y
m

b
o

l
D

(N
P

L
_
R

A
T

IO
_
C

R
E

)
D

(N
P

L
_
R

A
T

IO
_
H

H
S

)
D

(N
P

L
_
R

A
T

IO
_
M

O
R

T
)

D
(N

P
L

_
R

A
T

IO
_
N

F
C

S
)

D
(N

P
L

_
R

A
T

IO
_
S

M
E

)
D

(N
P

L
S

)
D

(N
P

L
S

)

M
a
cr

o
e
co

n
o

m
ic

V
a
ri

a
b

le
s

D
(U

N
EM

P(
-1

))
0.

00
11

79
0.

00
05

83
0.

00
05

65
0.

00
09

17
0.

00
09

28
0.

00
23

46
**

*
0.

00
66

01
D

(C
PI

(-
1)

)
−0

.0
00

50
6

−0
.0

01
59

3
R

_G
D

P_
Q

2Q
(-

1)
−0

.0
00

44
4

−0
.0

00
28

8
−0

.0
00

27
2

−0
.0

00
36

8
−0

.0
00

45
0

−0
.0

00
13

5
0.

00
26

76

B
a
n

k
-s

p
e
ci

fi
c

V
a
ri

a
b

le
s

D
(N

PL
S(

-1
))

0.
69

09
26

**
*

−0
.6

74
42

4
**

*
D

(N
PL

_R
A

TI
O

_C
R

E(
-1

))
0.

79
81

20
D

(N
PL

_R
A

TI
O

_H
H

S(
-1

))
0.

83
21

94
D

(N
PL

_R
A

TI
O

_M
O

R
T(

-1
))

0.
83

06
31

D
(N

PL
_R

A
TI

O
_N

FC
S(

-1
))

0.
79

17
45

D
(N

PL
_R

A
TI

O
_S

M
E(

-1
))

0.
81

24
55

D
(O

PE
R

_R
IS

K
,1

)
2.

53
65

35
*

R
IS

K
_C

A
PI

TA
L

−0
.0

00
57

3
2.

77
12

33
*

D
(S

EC
U

R
IT

IZ
A

TI
O

N
,1

)
−0

.0
00

57
3

−2
.8

04
43

5
*

D
(T

IE
R

1_
C

A
P,

2)
−1

.8
55

12
5

**
D

(R
W

A
_V

O
LU

M
E,

1)
0.

00
99

34
*

D
(T

O
TA

L_
A

SS
ET

S,
1)

−0
.0

00
36

0
−0

.0
00

37
7

−0
.0

00
41

8
−0

.0
00

41
0

−0
.0

00
44

5
−0

.0
00

57
3

D
(R

O
A

(-
1)

)
0.

11
18

98
−1

.2
12

90
7

D
(C

A
P(

-1
))

0.
25

17
89

**
*

0.
22

51
63

D
(C

A
P,

2)
0.

00
19

59
0.

00
15

11
0.

00
16

26
0.

00
15

81
0.

00
18

26
0.

00
06

88
D

(L
O

A
N

_D
IS

BR
S(

-1
))

−0
.0

08
18

3
0.

00
24

65

Q
u

a
n

ti
ta

ti
v

e
E

a
si

n
g

V
a
ri

a
b

le
s

PE
PP

_P
U

R
C

H
A

SE
S

−4
.5

9
×

10
−8

−3
.0

7
×

10
−7

−3
.6

8
×

10
−7

−1
.3

4
×

10
−7

−2
.6

1
×

10
−7

−8
.6

7
×

10
−7

**
−7

.4
5
×

10
−2

*

BO
N

D
_P

U
R

C
−5

.0
0
×

10
−5

−2
.7

7
×

10
−5

−2
.5

2
×

10
−5

−4
.0

1
×

10
−5

−4
.5

7
×

10
−5

1.
28

×
10

−6
EX

P_
A

SS
ET

_P
U

R
C

−0
.0

01
09

8
−0

.0
00

69
8

−0
.0

00
64

4
−0

.0
00

91
1

−0
.0

01
09

0
−8

.6
4
×

10
−5

154



J. Risk Financial Manag. 2024, 17, 271

T
a

b
le

A
5

.
C

on
t.

T
h

is
T

a
b

le
P

re
se

n
ts

th
e

E
m

p
ir

ic
a
l

R
e
su

lt
s

R
e
la

te
d

w
it

h
th

e
T

o
ta

l
S

a
m

p
le

o
f

A
n

a
ly

si
s

(2
0
1
5
Q

1
–
2
0
2
1
Q

4
)

a
s

W
e
ll

a
s

th
e

P
o

st
-C

O
V

ID
-1

9
P

e
ri

o
d

(2
0
2
0
Q

1
–
2
0
2
1
Q

4
)

R
e
g

re
ss

io
n

R
e
su

lt
s—

T
o

ta
l

S
a
m

p
le

a
n

d
P

o
st

-C
O

V
ID

-1
9

P
e
ri

o
d

D
e
p

e
n

d
e
n

t
V

a
ri

a
b

le

T
o

ta
l

P
e
ri

o
d

:
2
0
1
5
Q

1
–
2
0
2
1
Q

4
P

o
st

-C
O

V
ID

-1
9

P
e
ri

o
d

:
2
0
2
0
Q

1
–
2
0
2
1
Q

4

T
o

ta
l

P
e
ri

o
d

A
n

a
ly

si
s

M
O

D
E

L
(1

)
M

O
D

E
L

(2
)

M
O

D
E

L
(3

)
M

O
D

E
L

(4
)

M
O

D
E

L
(5

)
M

O
D

E
L

(6
)

M
O

D
E

L
(7

)

V
a
ri

a
b

le
G

ro
u

p
V

a
ri

a
b

le
S

y
m

b
o

l
D

(N
P

L
_
R

A
T

IO
_
C

R
E

)
D

(N
P

L
_
R

A
T

IO
_
H

H
S

)
D

(N
P

L
_
R

A
T

IO
_
M

O
R

T
)

D
(N

P
L

_
R

A
T

IO
_
N

F
C

S
)

D
(N

P
L

_
R

A
T

IO
_
S

M
E

)
D

(N
P

L
S

)
D

(N
P

L
S

)

C
O

V
ID

-1
9

V
a
ri

a
b

le
s

C
O

V
ID

19
_D

EA
TH

S
−4

.6
32

85
6

*
C

O
V

ID
19

_D
U

M
M

Y
−0

.0
12

20
5

−0
.0

07
00

1
−0

.0
11

40
5

−0
.0

09
04

9
−0

.0
07

54
1

0.
04

18
87

R
e
g

re
ss

io
n

M
a
in

S
ta

ti
st

ic
s

R
-s

qu
ar

ed
0.

83
65

37
0.

84
13

55
0.

83
27

40
0.

82
39

83
0.

83
36

29
0.

98
75

45
0.

93
59

43
A

dj
us

te
d

R
-s

qu
ar

ed
0.

69
82

22
0.

70
71

17
0.

69
12

12
0.

67
50

45
0.

69
28

53
0.

97
70

07
0.

82
91

80
F-

st
at

is
ti

c
6.

04
80

53
6.

26
76

37
5.

88
39

21
5.

53
24

07
5.

92
16

88
9.

37
08

78
8.

76
65

96
Pr

ob
(F

-s
ta

ti
st

ic
)

0.
00

15
87

0.
00

13
35

0.
00

18
11

0.
00

24
26

0.
00

17
57

0.
00

00
00

0.
00

00
00

D
ur

bi
n–

W
at

so
n

st
at

1.
96

96
87

1.
97

23
48

1.
97

15
76

1.
97

04
68

1.
97

43
64

1.
93

04
66

2.
85

56
95

N
ot

e(
s)

:(
1.

)
Ta

bl
e

A
5

pr
es

en
ts

th
e

re
gr

es
si

on
re

su
lts

re
la

te
d

to
bo

th
th

e
to

ta
la

nd
po

st
-C

O
V

ID
-1

9
pe

ri
od

s.
M

or
e

sp
ec

ifi
ca

lly
,M

od
el

s
1

to
6

pr
es

en
tt

he
em

pi
ri

ca
l

re
su

lts
re

fe
rr

in
g

to
th

e
to

ta
lp

er
io

d
(2

01
5Q

1–
20

21
Q

4)
,w

hi
le

M
od

el
7

pr
es

en
ts

th
e

em
pi

ri
ca

lr
es

ul
ts

re
fe

rr
in

g
to

th
e

po
st

-C
O

V
ID

-1
9

pe
ri

od
(2

02
0Q

1–
20

21
Q

4)
.(

2.
)

O
L

S
m

et
ho

d
ol

og
y

w
as

em
pl

oy
ed

fo
r

th
e

re
gr

es
si

on
m

od
el

es
ti

m
at

io
n.

M
or

e
sp

ec
ifi

ca
lly

,F
ix

ed
C

or
re

ct
ed

Pa
ne

lE
ff

ec
ts

es
ti

m
at

io
ns

w
it

h
co

un
tr

y-
fix

ed
ef

fe
ct

s
w

er
e

ut
ili

ze
d

fo
r

al
lm

od
el

s
be

ca
us

e
of

th
e

H
au

sm
an

te
st

.T
he

ta
bl

e
pr

es
en

ts
th

e
va

lu
es

of
th

e
co

ef
fic

ie
nt

s,
w

hi
le

th
e

si
gn

ifi
ca

nc
e

of
th

e
p-

va
lu

e
is

pr
es

en
te

d
w

ith
an

as
te

ri
sk

:*
**

p
<

0.
01

,*
*

p
<

0.
05

,a
nd

*
p

<
0.

1.
(3

.)
T

he
(-

1)
d

en
ot

es
on

e
p

er
io

d
la

g.
T

hi
s

no
te

al
so

ap
p

lie
s

to
th

e
su

bs
eq

u
en

tt
ab

le
s.

(4
.)

T
he

va
ri

ab
le

N
P

L
s

st
an

ds
fo

r
th

e
ag

gr
eg

at
e

no
n-

pe
rf

or
m

in
g

lo
an

s
to

to
ta

lg
ro

ss
lo

an
s;

N
PL

_R
A

TI
O

_C
R

E
re

pr
es

en
ts

th
e

co
m

m
er

ci
al

re
al

es
ta

te
N

PL
s

to
to

ta
lg

ro
ss

lo
an

s
(a

gg
re

ga
te

);
N

PL
_R

A
TI

O
_H

H
S

st
an

ds
fo

r
ho

us
eh

ol
d

N
PL

s
to

to
ta

lg
ro

ss
lo

an
s

(a
gg

re
ga

te
);

N
PL

_R
A

TI
O

_M
O

R
T

st
an

ds
fo

r
m

or
tg

ag
e

N
PL

s
to

to
ta

lg
ro

ss
lo

an
s

(a
gg

re
ga

te
);

N
PL

_R
A

TI
O

_N
FC

S
re

pr
es

en
ts

th
e

no
n-

fin
an

ci
al

co
rp

or
at

io
ns

’N
PL

s
to

to
ta

lg
ro

ss
lo

an
s

(a
gg

re
ga

te
);

N
PL

_R
A

TI
O

_S
M

E
re

pr
es

en
ts

th
e

sm
al

la
nd

m
ed

iu
m

-s
iz

ed
en

te
rp

ri
se

s’
N

P
L

s
to

to
ta

lg
ro

ss
lo

an
s

(a
gg

re
ga

te
);

U
N

E
M

P
st

an
d

s
fo

r
%

of
u

ne
m

p
lo

ym
en

t;
C

P
I

st
an

d
s

fo
r

qu
ar

te
rl

y
co

ns
u

m
er

p
ri

ce
in

d
ex

;R
_G

D
P

_Q
2Q

re
p

re
se

nt
s

th
e

qu
ar

te
rl

y
p

er
ce

nt
ag

e
gr

ow
th

ra
te

of
re

al
G

D
P

;O
P

E
R

_R
IS

K
st

an
d

s
fo

r
to

ta
lr

is
k

ex
p

os
u

re
am

ou
nt

fo
r

op
er

at
io

ns
/

to
ta

lr
is

k
ex

p
os

u
re

am
ou

nt
;

R
IS

K
_C

A
PI

TA
L

de
no

te
s

th
e

to
ta

lr
is

k
ex

po
su

re
am

ou
nt

fo
r

po
si

ti
on

,f
or

ei
gn

ex
ch

an
ge

,a
nd

co
m

m
od

it
ie

s
ri

sk
s/

to
ta

lr
is

k
ex

po
su

re
am

ou
nt

;S
EC

U
R

IT
IZ

A
TI

O
N

re
p

re
se

nt
s

th
e

se
cu

ri
ti

za
ti

on
p

os
it

io
ns

/
ri

sk
-w

ei
gh

te
d

ex
p

os
u

re
am

ou
nt

s
fo

r
cr

ed
it

,c
ou

nt
er

p
ar

ty
cr

ed
it

,a
nd

d
ilu

ti
on

ri
sk

s
an

d
fr

ee
d

el
iv

er
ie

s;
T

IE
R

1_
C

A
P

d
en

ot
es

th
e

ad
d

it
io

na
lT

ie
r

1
ca

pi
ta

l;
R

W
A

_V
O

L
U

M
E

st
an

d
s

fo
r

R
W

A
vo

lu
m

e;
TO

TA
L

_A
SS

E
T

S
re

pr
es

en
ts

th
e

to
ta

la
ss

et
s;

R
O

A
d

en
ot

es
th

e
re

tu
rn

on
as

se
ts

:
pr

ofi
to

r
lo

ss
fo

r
th

e
ye

ar
/t

ot
al

as
se

ts
;C

A
P

re
pr

es
en

ts
th

e
ba

nk
ca

pi
ta

la
nd

re
se

rv
es

to
to

ta
la

ss
et

s;
LO

A
N

_D
IS

BR
S

st
an

ds
fo

r
lo

an
di

sb
ur

se
m

en
ts

to
cu

st
om

er
s;

PE
PP

_P
U

R
C

H
A

SE
S

re
pr

es
en

ts
th

e
ne

tp
ur

ch
as

es
at

bo
ok

va
lu

e;
BO

N
D

_P
U

R
C

st
an

ds
fo

r
co

ve
re

d
bo

nd
s

pu
rc

ha
se

s
at

bo
ok

va
lu

e
(C

BP
P3

);
EX

P_
A

SS
ET

_P
U

R
C

re
pr

es
en

ts
th

e
Ex

pa
nd

ed
A

ss
et

Pu
rc

ha
se

Pr
og

ra
m

(A
PP

);
C

O
V

ID
19

_D
EA

TH
S

de
no

te
s

th
e

C
O

V
ID

-1
9

de
at

hs
;fi

na
lly

,C
O

V
ID

19
_D

U
M

M
Y

st
an

ds
fo

r
C

O
V

ID
-1

9
pa

nd
em

ic
ex

is
te

nc
e.

(5
.)

Ev
en

th
ou

gh
sa

m
pl

e
si

ze
s

ar
e

no
ti

nc
lu

de
d,

th
e

m
ai

n
st

at
is

tic
s

of
th

e
re

gr
es

si
on

es
tim

at
es

im
pl

y
th

at
ou

r
em

pi
ri

ca
lm

od
el

s
de

m
on

st
ra

te
d

st
ro

ng
ex

p
la

na
to

ry
p

ow
er

.
T

he
hi

gh
R

-s
qu

ar
ed

va
lu

e
an

d
si

gn
ifi

ca
nt

F-
st

at
is

ti
c

re
in

fo
rc

e
th

e
va

lid
it

y
an

d
re

lia
bi

lit
y

of
th

e
re

su
lt

s.
T

hi
s

no
te

al
so

ap
p

lie
s

to
th

e
su

bs
eq

ue
nt

ta
bl

es
.(

6.
)

W
e

op
te

d
no

tt
o

in
cl

ud
e

t-
st

at
is

ti
cs

si
nc

e
th

e
in

cl
us

io
n

of
co

ef
fi

ci
en

te
st

im
at

es
an

d
p-

va
lu

es
ef

fe
ct

iv
el

y
co

m
m

un
ic

at
e

th
e

st
at

is
ti

ca
l

si
gn

ifi
ca

nc
e

of
ou

r
re

su
lt

s.
Th

is
no

te
al

so
ap

pl
ie

s
to

th
e

su
bs

eq
ue

nt
ta

bl
es

.

155



J. Risk Financial Manag. 2024, 17, 271

T
a

b
le

A
6

.
R

eg
re

ss
io

n
re

su
lt

s
fo

r
Eu

ro
pe

an
su

br
eg

io
ns

.

P
A

N
E

L
A

.
T

h
is

T
a

b
le

P
re

se
n

ts
th

e
E

m
p

ir
ic

a
l

R
e

su
lt

s
fo

r
th

e
E

u
ro

p
e

a
n

S
u

b
re

g
io

n
s.

T
h

e
P

e
ri

o
d

o
f

A
n

a
ly

si
s

Is
th

e
P

re
-C

O
V

ID
-1

9
P

e
ri

o
d

(2
0

1
5

Q
1

–
2

0
1

9
Q

4
).

P
A

N
E

L
B

.
T

h
is

T
a

b
le

P
re

se
n

ts
th

e
E

m
p

ir
ic

a
l

R
e

su
lt

s
fo

r
th

e
E

u
ro

p
e

a
n

S
u

b
re

g
io

n
s.

T
h

e
P

e
ri

o
d

o
f

A
n

a
ly

si
s

Is
th

e
P

o
st

-C
O

V
ID

-1
9

P
e

ri
o

d
(2

0
2

0
Q

1
–

2
0

2
1

Q
4

).

P
A

N
E

L
A

.
R

eg
re

ss
io

n
R

es
ul

ts
—

Eu
ro

pe
an

Su
br

eg
io

ns
—

Pr
e-

C
O

V
ID

-1
9

Pe
ri

od
D

ep
en

de
nt

V
ar

ia
bl

e
P

A
N

E
L

B
.
R

eg
re

ss
io

n
R

es
ul

ts
—

Eu
ro

pe
an

Su
br

eg
io

ns
—

Po
st

-C
O

V
ID

-1
9

Pe
ri

od
D

ep
en

de
nt

V
ar

ia
bl

e

Pr
e-

C
O

V
ID

-1
9:

20
15

Q
1-

20
19

Q
4

Po
st

-C
O

V
ID

-1
9:

20
20

Q
1-

20
21

Q
4

S
u

b
re

g
io

n
a

l
A

n
a

ly
si

s
C

e
n

tr
a

l
E

u
ro

p
e

N
o

rt
h

e
rn

E
u

ro
p

e
S

o
u

th
e

rn
E

u
ro

p
e

C
e

n
tr

a
l

E
u

ro
p

e
N

o
rt

h
e

rn
E

u
ro

p
e

S
o

u
th

e
rn

E
u

ro
p

e
S

u
b

re
g

io
n

a
l

A
n

a
ly

si
s

C
en

tr
al

Eu
ro

pe
N

or
th

er
n

Eu
ro

pe
So

ut
he

rn
Eu

ro
pe

M
O

D
EL

(1
)

M
O

D
EL

(2
)

M
O

D
EL

(3
)

M
O

D
EL

(4
)

M
O

D
EL

(5
)

M
O

D
EL

(6
)

M
O

D
EL

(1
)

M
O

D
EL

(2
)

M
O

D
EL

(3
)

V
a

ri
a

b
le

G
ro

u
p

V
a

ri
a

b
le

S
y

m
b

o
l

D
(N

P
L

S
)

D
(N

P
L

S
)

D
(N

P
L

S
)

D
(N

P
L

S
)

D
(N

P
L

S
)

D
(N

P
L

S
)

V
a

ri
a

b
le

G
ro

u
p

V
a

ri
a

b
le

S
y

m
b

o
l

D
(N

P
L

S
)

D
(N

P
L

S
)

D
(N

P
L

S
)

M
a

cr
o

e
co

n
o

m
ic

V
a

ri
a

b
le

s

D
(U

N
EM

P(
-1

))
−0

.0
13

76
6

0.
00

65
58

0.
02

56
92

*
−0

.0
02

80
3

0.
00

72
29

0.
02

22
56

**
M

a
cr

o
e

co
n

o
m

ic
V

a
ri

a
b

le
s

D
(U

N
EM

P(
-1

))
0.

00
01

94
0.

00
17

18
−0

.0
95

46
7

D
(C

PI
(-

1)
)

−0
.0

05
35

0
0.

05
57

37
*

−0
.0

12
66

3
−0

.0
07

32
0

0.
01

49
39

−0
.0

12
66

3
D

(C
PI

(-
1)

)
0.

00
13

80
0.

00
03

58
0.

00
24

04
R

_G
D

P_
Q

2Q
(-

1)
0.

03
39

17
0.

03
87

99
**

*
0.

14
86

03
−0

.0
12

17
1

0.
02

22
72

0.
03

92
82

R
_G

D
P_

Q
2Q

(-
1)

0.
00

15
91

0.
00

01
65

0.
00

19
66

D
(G

D
P_

M
A

R
K

ET
,1

)
−1

.7
6
×

10
−5

1.
40

×
10
−5

2.
95

×
10
−6

B
a

n
k

-s
p

e
ci

fi
c

V
a

ri
a

b
le

s

D
(N

PL
S(

-1
))

0.
11

41
39

0.
07

85
84

−0
.9

14
58

7
**

*

B
a

n
k

-s
p

e
ci

fi
c

V
a

ri
a

b
le

s

D
(N

PL
S(

-1
))

0.
26

90
35

−0
.2

85
08

2
**

−0
.3

91
14

9
**

0.
26

90
35

−0
.1

58
32

2
−0

.4
27

34
7

D
(R

O
A

(-
1)

)
0.

17
82

31
−0

.1
89

34
0

−0
.7

24
56

0
D

(R
O

A
(-

1)
)

0.
06

52
23

0.
03

42
37

−2
.8

29
56

6
**

0.
06

52
23

0.
03

42
37

0.
77

32
95

D
(C

A
P(

-1
))

−0
.1

28
96

1
0.

28
94

53
**

*
0.

48
42

47
D

(C
A

P(
-1

))
−0

.5
82

08
7

−0
.0

76
38

9
−1

.4
38

32
6

−0
.1

35
50

0
−0

.2
93

47
0

−0
.3

55
39

9
D

(L
O

A
N

_D
IS

BR
S(

-1
))

0.
00

60
07

0.
00

92
99

0.
00

68
53

D
(L

O
A

N
_D

IS
BR

S(
-1

))
−0

.0
06

32
1

0.
00

14
47

−0
.0

09
06

3
−0

.0
38

67
1

**
*

0.
01

68
48

0.
00

70
29

C
O

V
ID

-1
9

V
a

ri
a

b
le

s
C

O
V

ID
19

_V
A

C
C

IN
A

TE
D

−0
.0

07
39

1
**

*
0.

00
20

64
−0

.1
43

97
6

**

D
(P

R
O

V
IS

IO
N

S,
1)

−3
.8

39
25

3
−3

.1
45

41
5

−7
.4

27
37

5

R
e

g
re

ss
io

n
M

a
in

S
ta

ti
st

ic
s

R
-s

qu
ar

ed
0.

44
52

40
0.

39
63

54
0.

87
10

00
R

IS
K

_C
A

PI
TA

L
−2

.2
66

45
9

−7
.8

37
16

2
−4

.2
65

11
8

A
dj

us
te

d
R

-s
qu

ar
ed

−0
.0

35
55

2
0.

01
00

21
0.

73
12

50
D

(O
PE

R
_R

IS
K

,1
)

0.
43

29
63

−4
.8

06
47

9
−4

.2
47

92
3

F-
st

at
is

ti
c

0.
92

60
56

1.
02

59
40

6.
23

25
62

D
(L

IA
BI

LI
T

IE
S,

1)
−0

.0
18

43
8

0.
00

15
12

0.
02

89
89

Pr
ob

(F
-s

ta
ti

st
ic

)
0.

55
08

39
0.

46
44

32
0.

00
16

04
D

(C
A

SH
_B

A
LA

N
C

ES
,1

)
−4

.4
10

54
0

−3
.1

12
31

7
−5

.8
75

81
7

D
ur

bi
n-

W
at

so
n

st
at

2.
64

20
44

2.
19

06
21

1.
40

92
80

D
(F

IN
A

N
C

IA
L_

A
SS

ET
S,

1)
0.

01
46

33
−0

.0
01

52
4

−0
.0

32
83

7
D

(E
Q

U
IT

Y
)

−4
.1

67
76

0
−2

.2
49

40
3

2.
29

23
37

**
D

(R
ET

A
IN

ED
_E

A
R

N
IN

G
S,

1)
−0

.6
45

14
6

−0
.5

29
53

6
−1

.3
52

19
7

**
D

(D
ER

IV
A

TI
V

ES
,2

)
−7

.7
36

27
3

−9
.0

68
87

5
6.

79
53

68
**

*
D

(C
R

ED
_D

EP
O

SI
TS

,1
)

−2
.5

75
67

1
−8

.3
17

73
6

9.
03

75
72

*

R
e

g
u

la
to

ry
V

a
ri

a
b

le
s

D
(T

IE
R

1_
C

A
P,

2)
0.

04
15

01
−0

.3
02

66
0

0.
08

05
18

D
(C

O
V

ER
_R

A
T

IO
,2

)
0.

66
15

57
−2

.6
56

20
2

1.
83

34
29

**
D

(R
W

A
_V

O
LU

M
E,

1)
−0

.0
00

58
6

−4
.8

5
×

10
−5

−0
.0

00
96

6
D

(O
W

N
_F

U
N

D
S_

TI
ER

1(
-1

),1
)

0.
00

85
95

−0
.0

00
19

8
−0

.0
03

13
0

D
(S

EC
U

R
IT

IZ
A

TI
O

N
,1

)
−7

.5
80

47
9

−8
.3

24
79

2
−5

.7
82

13
0

R
e

g
re

ss
io

n
M

a
in

S
ta

ti
st

ic
s

R
-s

qu
ar

ed
0.

90
06

85
0.

66
98

31
0.

94
27

11
0.

35
11

86
0.

58
85

46
0.

83
50

70
A

dj
us

te
d

R
-s

qu
ar

ed
−1

.6
81

50
5

0.
27

36
28

0.
72

17
40

−0
.1

97
81

1
0.

35
81

32
0.

69
55

14
F-

st
at

is
ti

c
0.

34
88

07
1.

69
06

27
4.

26
62

21
0.

63
96

86
2.

55
42

99
5.

98
37

70
Pr

ob
(F

-s
ta

ti
st

ic
)

0.
89

76
32

0.
09

19
25

0.
02

69
95

0.
76

77
29

0.
01

97
94

0.
00

16
71

D
ur

bi
n-

W
at

so
n

st
at

2.
44

96
10

1.
75

03
68

2.
49

99
06

2.
22

07
22

1.
64

92
72

1.
86

12
30

N
ot

e(
s)

:
(1

.)
Ta

bl
e

A
6

p
re

se
nt

s
th

e
re

gr
es

si
on

re
su

lt
s

re
la

te
d

to
th

e
ce

nt
ra

l,
as

w
el

l
as

no
rt

h
E

u
ro

p
ea

n
su

br
eg

io
ns

.
M

or
e

sp
ec

ifi
ca

lly
,P

A
N

E
L

A
p

re
se

nt
s

th
e

em
p

ir
ic

al
re

su
lt

s
re

fe
rr

in
g

to
th

e
p

re
-C

O
V

ID
-1

9
p

er
io

d
,w

hi
le

PA
N

E
L

B
p

re
se

nt
s

th
e

em
p

ir
ic

al
re

su
lt

s
re

fe
rr

in
g

to
th

e
p

os
t-

C
O

V
ID

-1
9

p
er

io
d

.
(2

.)
O

L
S

m
et

ho
d

ol
og

y
w

as
em

p
lo

ye
d

fo
r

th
e

re
gr

es
si

on
m

od
el

es
ti

m
at

io
n.

M
or

e
sp

ec
ifi

ca
lly

,F
ix

ed
C

or
re

ct
ed

P
an

el
E

ff
ec

ts
es

ti
m

at
io

ns
w

it
h

co
u

nt
ry

-fi
xe

d
ef

fe
ct

s
w

er
e

u
ti

liz
ed

fo
r

al
lm

od
el

s
be

ca
u

se
of

th
e

H
au

sm
an

te
st

.T
he

ta
bl

e
p

re
se

nt
s

th
e

va
lu

es
of

th
e

co
ef

fi
ci

en
ts

,w
hi

le
th

e
si

gn
ifi

ca
nc

e
of

th
e

p-
va

lu
e

is
p

re
se

nt
ed

w
it

h
an

as
te

ri
sk

:
**

*
p

<
0.

01
,*

*
p

<
0.

05
,a

nd
*

p
<

0.
1.

(3
.)

T
he

va
ri

ab
le

N
P

L
s

st
an

d
s

fo
r

th
e

ag
gr

eg
at

e
no

n-
p

er
fo

rm
in

g
lo

an
s

to
to

ta
lg

ro
ss

lo
an

s;
U

N
E

M
P

re
pr

es
en

ts
th

e
%

of
un

em
pl

oy
m

en
t;

C
PI

re
pr

es
en

ts
th

e
qu

ar
te

rl
y

co
ns

um
er

pr
ic

e
in

de
x;

R
_G

D
P_

Q
2Q

st
an

ds
fo

r
qu

ar
te

rl
y

pe
rc

en
ta

ge
gr

ow
th

ra
te

of
re

al
G

D
P;

G
D

P_
M

A
R

K
ET

st
an

ds
fo

r
qu

ar
te

rl
y

gr
os

s
do

m
es

ti
c

pr
od

uc
ta

tm
ar

ke
tp

ri
ce

s;
R

O
A

re
pr

es
en

ts
th

e
re

tu
rn

on
as

se
ts

:p
ro

fit
or

lo
ss

fo
r

th
e

ye
ar

/t
ot

al
as

se
ts

;C
A

P
re

p
re

se
nt

s
th

e
ba

nk
ca

p
it

al
an

d
re

se
rv

es
to

to
ta

la
ss

et
s;

L
O

A
N

_D
IS

B
R

S
st

an
d

s
fo

r
lo

an
d

is
bu

rs
em

en
ts

to
cu

st
om

er
s;

P
R

O
V

IS
IO

N
S

st
an

d
s

fo
r

im
p

ai
rm

en
ts

(c
re

di
tr

is
k

lo
ss

es
)/

eq
ui

ty
;R

IS
K

_C
A

PI
TA

L
re

pr
es

en
ts

th
e

to
ta

lr
is

k
ex

po
su

re
am

ou
nt

fo
r

po
si

tio
n,

fo
re

ig
n

ex
ch

an
ge

,a
nd

co
m

m
od

iti
es

ri
sk

s/
to

ta
lr

is
k

ex
po

su
re

am
ou

nt
;O

P
E

R
_R

IS
K

st
an

d
s

fo
r

to
ta

lr
is

k
ex

p
os

u
re

am
ou

nt
fo

r
op

er
at

io
ns

/
to

ta
lr

is
k

ex
p

os
u

re
am

ou
nt

;L
IA

B
IL

IT
IE

S
d

en
ot

es
th

e
to

ta
ld

ep
os

it
s

ot
he

r
th

an
fr

om
ba

nk
s/

to
ta

ll
ia

bi
lit

ie
s;

C
A

SH
_B

A
LA

N
C

ES
re

pr
es

en
ts

th
e

ca
sh

po
si

ti
on

s/
to

ta
la

ss
et

s;
FI

N
A

N
C

IA
L_

A
SS

ET
S

de
no

te
s

th
e

to
ta

lfi
na

nc
ia

li
ns

tr
um

en
ts

on
th

e
as

se
ts

id
e;

EQ
U

IT
Y

st
an

ds
fo

r
eq

ui
ty

in
st

ru
m

en
ts

/t
ot

al
as

se
ts

;R
ET

A
IN

ED
_E

A
R

N
IN

G
S

re
pr

es
en

ts
th

e
re

ta
in

ed
ea

rn
in

gs
/T

ie
r

1
ca

pi
ta

lv
ol

um
e;

D
ER

IV
A

TI
V

ES
de

no
te

s
th

e
de

ri
va

ti
ve

s/
to

ta
la

ss
et

s;
C

R
ED

_D
EP

O
SI

TS
re

pr
es

en
ts

th
e

de
po

si
ts

fr
om

cr
ed

it
in

st
it

ut
io

ns
/t

ot
al

lia
bi

lit
ie

s;
TI

ER
1_

C
A

P
st

an
ds

fo
r

ad
di

ti
on

al
Ti

er
1

ca
pi

ta
l;

C
O

V
E

R
_R

A
T

IO
re

pr
es

en
ts

th
e

ac
cu

m
ul

at
ed

im
pa

ir
m

en
t,

ac
cu

m
ul

at
ed

ne
ga

ti
ve

ch
an

ge
s

in
fa

ir
va

lu
e

d
ue

to
cr

ed
it

ri
sk

fo
r

no
n-

pe
rf

or
m

in
g

lo
an

s
an

d
ad

va
nc

es
/t

ot
al

gr
os

s
no

n-
pe

rf
or

m
in

g
lo

an
s

an
d

ad
va

nc
es

;R
W

A
_V

O
LU

M
E

st
an

ds
fo

r
R

W
A

vo
lu

m
e;

O
W

N
_F

U
N

D
S_

TI
ER

1
re

pr
es

en
ts

th
e

Ti
er

1
ca

pi
ta

lv
ol

um
e;

SE
C

U
R

IT
IZ

A
TI

O
N

de
no

te
s

th
e

se
cu

ri
ti

za
ti

on
po

si
ti

on
s/

ri
sk

-w
ei

gh
te

d
ex

po
su

re
am

ou
nt

s
fo

r
cr

ed
it

,c
ou

nt
er

pa
rt

y
cr

ed
it

,a
nd

di
lu

ti
on

ri
sk

s
an

d
fr

ee
de

liv
er

ie
s;

fin
al

ly
,C

O
V

ID
19

_V
A

C
C

IN
A

TE
D

st
an

ds
fo

r
C

O
V

ID
-1

9
va

cc
in

at
ed

po
pu

la
ti

on
.

156



J. Risk Financial Manag. 2024, 17, 271

T
a

b
le

A
7

.
R

eg
re

ss
io

n
re

su
lt

s
fo

r
Eu

ro
pe

an
pr

os
pe

ri
ty

.

P
A

N
E

L
A

.
T

h
is

ta
b

le
p

re
se

n
ts

th
e

e
m

p
ir

ic
a

l
re

su
lt

s
fo

r
th

e
P

ro
sp

e
ri

ty
d

im
e

n
si

o
n

.
T

h
e

p
e

ri
o

d
o

f
a

n
a

ly
si

s
is

th
e

P
re

-C
O

V
ID

-1
9

P
e

ri
o

d
(2

0
1

5
Q

1
–

2
0

1
9

Q
4

).
P

A
N

E
L

B
.

T
h

is
T

a
b

le
P

re
se

n
ts

th
e

E
m

p
ir

ic
a

l
R

e
su

lt
s

fo
r

th
e

P
ro

sp
e

ri
ty

D
im

e
n

si
o

n
.

T
h

e
P

e
ri

o
d

o
f

A
n

a
ly

si
s

Is
th

e
P

o
st

-C
O

V
ID

-1
9

P
e

ri
o

d
(2

0
2

0
Q

1
–

2
0

2
1

Q
4

).

P
A

N
E

L
A

R
eg

re
ss

io
n

R
es

ul
ts

—
Pr

os
pe

ri
ty

—
Pr

e-
C

O
V

ID
-1

9
Pe

ri
od

D
ep

en
de

nt
V

ar
ia

bl
e

P
A

N
E

L
B

R
eg

re
ss

io
n

R
es

ul
ts

—
Pr

os
pe

ri
ty

—
Po

st
-C

O
V

ID
-1

9
Pe

ri
od

D
ep

en
de

nt
V

ar
ia

bl
e

C
o

re
—

P
e

ri
p

h
e

ry
H

ar
d-

C
or

e
C

ou
nt

ry
G

ro
up

In
te

rm
ed

ia
te

C
ou

nt
ry

G
ro

up
Ex

te
nd

ed
Pe

ri
ph

er
y

C
ou

nt
ry

G
ro

up
Po

st
-C

O
V

ID
-1

9:
20

20
Q

1-
20

21
Q

4

M
O

D
EL

(1
)

M
O

D
EL

(2
)

M
O

D
EL

(3
)

M
O

D
EL

(4
)

M
O

D
EL

(5
)

M
O

D
EL

(6
)

C
o

re
—

P
e

ri
p

h
e

ry
H

ar
d-

C
or

e
C

ou
nt

ry
G

ro
up

In
te

rm
ed

ia
te

C
ou

nt
ry

G
ro

up

Ex
te

nd
ed

Pe
ri

ph
er

y
C

ou
nt

ry
G

ro
up

V
a

ri
a

b
le

G
ro

u
p

V
a

ri
a

b
le

S
y

m
b

o
l

D
(N

P
L

S
)

D
(N

P
L

S
)

D
(N

P
L

S
)

D
(N

P
L

S
)

D
(N

P
L

S
)

D
(N

P
L

S
)

M
O

D
EL

(1
)

M
O

D
EL

(2
)

M
O

D
EL

(3
)

M
a

cr
o

e
co

n
o

m
ic

V
a

ri
a

b
le

s

D
(U

N
EM

P(
-1

))
0.

01
15

57
−0

.0
09

35
7

**
*

0.
02

42
28

−0
.0

15
29

5
−0

.0
05

51
3

−0
.0

23
37

0
V

a
ri

a
b

le
G

ro
u

p
V

a
ri

a
b

le
S

y
m

b
o

l
D

(N
P

L
S

)
D

(N
P

L
S

)
D

(N
P

L
S

)

D
(C

PI
(-

1)
)

0.
00

98
61

0.
00

11
72

0.
02

79
06

0.
01

37
78

0.
00

75
35

0.
00

07
90

M
a

cr
o

e
co

n
o

m
ic

V
a

ri
a

b
le

s

D
(U

N
EM

P(
-1

))
−0

.0
03

28
6

−0
.0

11
90

2
−0

.0
75

90
1

R
_G

D
P_

Q
2Q

(-
1)

−0
.0

00
16

9
3.

81
×

10
−5

0.
05

42
28

0.
00

76
01

0.
01

69
25

0.
03

86
65

D
(C

PI
(-

1)
)

0.
00

08
60

0.
00

13
57

0.
00

48
10

D
(G

D
P_

M
A

R
K

ET
,1

)
−1

.8
5
×

10
−7

1.
74

×
10
−6

2.
32

×
10
−5

R
_G

D
P_

Q
2Q

(-
1)

−0
.0

00
73

0
−0

.0
00

10
3

−0
.0

10
83

5

B
a

n
k

-s
p

e
ci

fi
c

V
a

ri
a

b
le

s

D
(N

PL
S(

-1
))

0.
40

08
23

−0
.5

61
92

9
**

−0
.1

42
99

1
**

−0
.2

88
93

7
**

0.
06

15
85

−0
.5

96
34

4
**

*

B
a

n
k

-s
p

e
ci

fi
c

V
a

ri
a

b
le

s

D
(N

PL
S(

-1
))

−0
.1

40
86

9
−0

.0
04

96
7

−0
.7

49
66

3
D

(R
O

A
(-

1)
)

−0
.1

50
53

5
−0

.1
71

53
7

**
0.

15
58

48
−0

.0
51

78
3

0.
25

75
72

−2
.4

61
56

2
D

(R
O

A
(-

1)
)

0.
14

21
26

**
0.

09
06

78
−0

.4
87

95
7

D
(C

A
P(

-1
))

0.
00

98
61

0.
15

03
53

0.
40

23
39

−0
.1

50
98

1
−1

.1
19

38
6

−1
.6

90
98

6
**

D
(C

A
P(

-1
))

−0
.1

44
22

6
0.

09
08

74
−1

.5
31

23
4

D
(L

O
A

N
_D

IS
BR

S(
-1

))
−0

.0
01

41
0

−0
.0

08
79

8
−0

.0
09

89
4

0.
00

09
47

0.
10

82
87

0.
03

94
55

D
(L

O
A

N
_D

IS
BR

S(
-1

))
−0

.0
11

49
6

0.
01

76
91

−0
.1

09
99

9
D

(P
R

O
V

IS
IO

N
S,

1)
−2

.1
67

33
6

−3
.4

37
68

7
−3

.3
03

19
6

R
e

g
u

la
to

ry
V

a
ri

a
b

le
s

D
(T

IE
R

1_
C

A
P,

2)
−4

.4
18

52
5

0.
70

84
64

−8
.0

00
96

5

R
IS

K
_C

A
PI

TA
L

−0
.5

40
97

8
−1

.9
37

13
5

−2
.2

98
91

8
D

(C
O

V
ER

_R
A

TI
O

,2
)

−2
.6

16
41

9
−3

.8
64

88
1

**
−3

.6
86

81
3

C
O

V
ID

-1
9

V
a

ri
a

b
le

s
C

O
V

ID
19

_V
A

C
C

IN
A

TE
D

−0
.0

09
34

3
0.

00
20

23
−0

.1
43

11
0

**

D
(O

PE
R

_R
IS

K
,1

)
−0

.7
78

55
3

−4
.6

75
38

5
−1

.1
84

72
5

R
e

g
re

ss
io

n
M

a
in

S
ta

ti
st

ic
s

R
-s

qu
ar

ed
0.

52
87

54
0.

38
24

02
0.

90
62

50
D

(L
IA

BI
LI

T
IE

S,
1)

−0
.0

01
18

0
2.

14
×

10
−5

−0
.0

89
22

2
A

dj
us

te
d

R
-s

qu
ar

ed
−0

.0
28

17
4

0.
06

42
45

0.
76

56
24

D
(C

A
SH

_B
A

LA
N

C
ES

,1
)

−6
.3

40
10

8
**

−4
.4

77
76

2
−4

.9
61

55
0

F-
st

at
is

ti
c

0.
94

94
12

1.
20

19
30

6.
44

44
29

D
(F

IN
A

N
C

IA
L_

A
SS

ET
S,

1)
0.

00
12

18
3.

96
×

10
−5

0.
06

48
14

Pr
ob

(F
-s

ta
ti

st
ic

)
0.

54
14

48
0.

31
54

79
0.

00
66

10
D

(E
Q

U
IT

Y
)

−8
.0

68
98

4
−4

.9
59

73
3

−1
.0

91
98

7
D

ur
bi

n-
W

at
so

n
st

at
2.

33
50

49
1.

98
43

39
1.

19
96

86
D

(R
ET

A
IN

ED
_E

A
R

N
IN

G
S,

1)
0.

04
21

42
−0

.1
58

88
6

0.
77

04
46

D
(D

ER
IV

A
TI

V
ES

,2
)

−3
.1

86
73

3
−1

.1
14

75
2

−3
.6

08
66

0
D

(C
R

ED
_D

EP
O

SI
TS

,1
)

−1
.4

81
36

7
−0

.3
08

01
9

−7
.5

57
61

1

R
e

g
u

la
to

ry
V

a
ri

a
b

le
s

D
(T

IE
R

1_
C

A
P,

2)
0.

11
21

70
−0

.2
26

56
7

−0
.4

54
61

7
D

(C
O

V
ER

_R
A

T
IO

,2
)

−2
.8

15
37

0
−2

.0
34

57
1

0.
09

13
73

D
(R

W
A

_V
O

LU
M

E,
1)

0.
00

02
32

0.
00

09
88

0.
00

14
12

D
(O

W
N

_F
U

N
D

S_
TI

ER
1(

-1
),1

)
−0

.0
00

18
2

−0
.0

01
12

8
−0

.0
05

46
4

D
(S

EC
U

R
IT

IZ
A

TI
O

N
,1

)
−6

.9
82

72
0

−2
.6

51
29

1
−4

.7
07

61
3

R
e

g
re

ss
io

n
M

a
in

S
ta

ti
st

ic
s

R
-s

qu
ar

ed
0.

81
66

86
0.

61
81

23
0.

54
90

40
0.

63
80

41
0.

96
38

09
0.

75
90

30
A

dj
us

te
d

R
-s

qu
ar

ed
0.

10
96

17
0.

29
49

96
0.

00
78

88
0.

45
08

21
0.

02
28

46
0.

49
12

85
F-

st
at

is
ti

c
1.

15
50

30
1.

91
29

41
1.

01
45

77
3.

40
79

70
1.

02
42

79
2.

83
48

98
Pr

ob
(F

-s
ta

ti
st

ic
)

0.
45

46
74

0.
13

28
21

0.
48

97
20

0.
00

22
60

0.
66

77
78

0.
06

61
35

D
ur

bi
n-

W
at

so
n

st
at

2.
16

98
79

1.
81

22
84

1.
50

12
92

2.
29

06
40

1.
31

33
88

1.
70

69
52

N
ot

e(
s)

:(
1.

)
Ta

bl
e

A
7

pr
es

en
ts

th
e

re
gr

es
si

on
re

su
lt

s
re

la
te

d
to

th
e

co
re

,a
s

w
el

la
s

th
e

pe
ri

ph
er

al
co

un
tr

ie
s.

M
or

e
sp

ec
ifi

ca
lly

,P
A

N
EL

A
pr

es
en

ts
th

e
em

pi
ri

ca
l

re
su

lt
s

re
fe

rr
in

g
to

th
e

pr
e-

C
O

V
ID

-1
9

pe
ri

od
,w

hi
le

PA
N

EL
B

pr
es

en
ts

th
e

em
pi

ri
ca

lr
es

ul
ts

re
fe

rr
in

g
to

th
e

po
st

-C
O

V
ID

-1
9

pe
ri

od
.(

2.
)

O
LS

m
et

ho
do

lo
gy

w
as

em
pl

oy
ed

fo
r

th
e

re
gr

es
si

on
m

od
el

es
tim

at
io

n.
M

or
e

sp
ec

ifi
ca

lly
,F

ix
ed

C
or

re
ct

ed
Pa

ne
lE

ff
ec

ts
es

tim
at

io
ns

w
ith

co
un

tr
y-

fix
ed

ef
fe

ct
s

w
er

e
ut

ili
ze

d
fo

r
al

lm
od

el
s

be
ca

us
e

of
th

e
H

au
sm

an
te

st
.T

he
ta

bl
e

pr
es

en
ts

th
e

va
lu

es
of

th
e

co
ef

fic
ie

nt
s,

w
hi

le
th

e
si

gn
ifi

ca
nc

e
of

th
e

p-
va

lu
e

is
pr

es
en

te
d

w
ith

an
as

te
ri

sk
:*

**
p

<
0.

01
,*

*
p

<
0.

05
.(

3.
)

T
he

va
ri

ab
le

N
PL

s
re

pr
es

en
ts

th
e

ag
gr

eg
at

e
no

n-
pe

rf
or

m
in

g
lo

an
s

to
to

ta
lg

ro
ss

lo
an

s;
U

N
E

M
P

re
pr

es
en

ts
th

e
%

of
un

em
pl

oy
m

en
t;

C
PI

st
an

d
s

fo
r

qu
ar

te
rl

y
co

ns
um

er
pr

ic
e

in
de

x;
R

_G
D

P_
Q

2Q
st

an
ds

fo
r

qu
ar

te
rl

y
pe

rc
en

ta
ge

gr
ow

th
ra

te
of

re
al

G
D

P;
G

D
P_

M
A

R
K

ET
re

pr
es

en
ts

th
e

qu
ar

te
rl

y
gr

os
s

do
m

es
tic

pr
od

uc
ta

tm
ar

ke
tp

ri
ce

s;
R

O
A

re
pr

es
en

ts
th

e
re

tu
rn

on
as

se
ts

:p
ro

fit
or

lo
ss

fo
r

th
e

ye
ar

/t
ot

al
as

se
ts

;C
A

P
st

an
d

s
fo

r
ba

nk
ca

pi
ta

la
nd

re
se

rv
es

to
to

ta
la

ss
et

s;
L

O
A

N
_D

IS
B

R
S

st
an

d
s

fo
r

lo
an

d
is

bu
rs

em
en

ts
to

cu
st

om
er

s;
PR

O
V

IS
IO

N
S

re
pr

es
en

ts
th

e
im

pa
ir

m
en

ts
(c

re
d

it
ri

sk
lo

ss
es

)/
eq

ui
ty

;R
IS

K
_C

A
PI

TA
L

st
an

d
s

fo
r

to
ta

lr
is

k
ex

p
os

u
re

am
ou

nt
fo

r
p

os
it

io
n,

fo
re

ig
n

ex
ch

an
ge

,a
nd

co
m

m
od

it
ie

s
ri

sk
s/

to
ta

lr
is

k
ex

p
os

u
re

am
ou

nt
;O

P
E

R
_R

IS
K

d
en

ot
es

th
e

to
ta

lr
is

k
ex

p
os

u
re

am
ou

nt
fo

r
op

er
at

io
ns

/t
ot

al
ri

sk
ex

po
su

re
am

ou
nt

;L
IA

BI
LI

TI
ES

re
pr

es
en

ts
th

e
to

ta
ld

ep
os

its
ot

he
r

th
an

fr
om

ba
nk

s/
to

ta
ll

ia
bi

lit
ie

s;
C

A
SH

_B
A

LA
N

C
ES

de
no

te
s

th
e

ca
sh

po
si

ti
on

s/
to

ta
la

ss
et

s;
FI

N
A

N
C

IA
L_

A
SS

ET
S

st
an

ds
fo

r
to

ta
lfi

na
nc

ia
li

ns
tr

um
en

ts
on

th
e

as
se

ts
id

e;
EQ

U
IT

Y
re

pr
es

en
ts

th
e

eq
ui

ty
in

st
ru

m
en

ts
/t

ot
al

as
se

ts
;R

ET
A

IN
ED

_E
A

R
N

IN
G

S
de

no
te

s
th

e
re

ta
in

ed
ea

rn
in

gs
/T

ie
r

1
ca

pi
ta

lv
ol

um
e;

D
ER

IV
A

TI
V

ES
re

pr
es

en
ts

th
e

de
ri

va
ti

ve
s/

to
ta

la
ss

et
s;

C
R

ED
_D

EP
O

SI
TS

st
an

d
s

fo
r

d
ep

os
it

s
fr

om
cr

ed
it

in
st

it
u

ti
on

s/
to

ta
l

lia
bi

lit
ie

s;
T

IE
R

1_
C

A
P

re
p

re
se

nt
s

th
e

ad
d

it
io

na
l

Ti
er

1
ca

p
it

al
;

C
O

V
E

R
_R

A
T

IO
st

an
d

s
fo

r
ac

cu
m

u
la

te
d

im
p

ai
rm

en
t,

ac
cu

m
u

la
te

d
ne

ga
ti

ve
ch

an
ge

s
in

fa
ir

va
lu

e
d

u
e

to
cr

ed
it

ri
sk

fo
r

no
n-

p
er

fo
rm

in
g

lo
an

s
an

d
ad

va
nc

es
/

to
ta

lg
ro

ss
no

n-
p

er
fo

rm
in

g
lo

an
s

an
d

ad
va

nc
es

;R
W

A
_V

O
LU

M
E

re
pr

es
en

ts
th

e
R

W
A

vo
lu

m
e;

O
W

N
_F

U
N

D
S_

T
IE

R
1

de
no

te
s

th
e

Ti
er

1
ca

pi
ta

lv
ol

um
e;

SE
C

U
R

IT
IZ

A
T

IO
N

st
an

ds
fo

r
se

cu
ri

ti
za

ti
on

po
si

ti
on

s/
ri

sk
-w

ei
gh

te
d

ex
po

su
re

am
ou

nt
s

fo
r

cr
ed

it
,c

ou
nt

er
pa

rt
y

cr
ed

it
,a

nd
d

ilu
ti

on
ri

sk
s

an
d

fr
ee

d
el

iv
er

ie
s;

fin
al

ly
,C

O
V

ID
19

_V
A

C
C

IN
A

T
E

D
st

an
d

s
fo

r
C

O
V

ID
-1

9
va

cc
in

at
ed

po
pu

la
ti

on
.

157



J. Risk Financial Manag. 2024, 17, 271

T
a

b
le

A
8

.
R

eg
re

ss
io

n
re

su
lt

s
fo

r
N

PL
ty

pe
.

P
A

N
E

L
A

.
T

h
is

T
a

b
le

P
re

se
n

ts
th

e
E

m
p

ir
ic

a
l

R
e

su
lt

s
p

e
r

N
P

L
T

y
p

e
.

T
h

e
P

e
ri

o
d

o
f

A
n

a
ly

si
s

Is
th

e
P

re
-C

O
V

ID
-1

9
P

e
ri

o
d

(2
0

1
5

Q
1

–
2

0
1

9
Q

4
).

P
A

N
E

L
B

.
T

h
is

T
a

b
le

P
re

se
n

ts
th

e
E

m
p

ir
ic

a
l

R
e

su
lt

s
p

e
r

N
P

L
T

y
p

e
.

T
h

e
P

e
ri

o
d

o
f

A
n

a
ly

si
s

Is
th

e
P

o
st

-C
O

V
ID

-1
9

P
e

ri
o

d
(2

0
2

0
Q

1
–

2
0

2
1

Q
4

).

P
A

N
E

L
A

R
eg

re
ss

io
n

R
es

ul
ts

—
N

PL
Ty

pe
—

Pr
e-

C
O

V
ID

-1
9

Pe
ri

od
D

ep
en

de
nt

V
ar

ia
bl

e
P

A
N

E
L

B
R

eg
re

ss
io

n
R

es
ul

ts
—

N
PL

Ty
pe

—
Po

st
-C

O
V

ID
-1

9
Pe

ri
od

D
ep

en
de

nt
V

ar
ia

bl
e

N
P

L
T

y
p

e
A

n
a

ly
si

s
M

O
D

EL
(1

)
M

O
D

EL
(2

)
M

O
D

EL
(3

)
M

O
D

EL
(4

)
M

O
D

EL
(5

)
M

O
D

EL
(6

)
N

P
L

T
y

p
e

A
n

a
ly

si
s

M
O

D
EL

(1
)

M
O

D
EL

(2
)

M
O

D
EL

(3
)

M
O

D
EL

(4
)

M
O

D
EL

(5
)

M
O

D
EL

(6
)

V
a

ri
a

b
le

G
ro

u
p

V
a

ri
a

b
le

S
y

m
b

o
l

D
(N

P
L

S
)

D
(N

P
L

_
R

A
T

IO
_

C
R

E
)

D
(N

P
L

_
R

A
T

IO
_

H
H

S
)

D
(N

P
L

_
R

A
T

IO
_

M
O

R
T

)
D

(N
P

L
_

R
A

T
IO

_
N

F
C

S
)

D
(N

P
L

_
R

A
T

IO
_

S
M

E
)

V
a

ri
a

b
le

G
ro

u
p

V
a

ri
a

b
le

S
y

m
b

o
l

D
(N

P
L

S
)

D
(N

P
L

_
R

A
T

IO
_

C
R

E
)

D
(N

P
L

_
R

A
T

IO
_

H
H

S
)

D
(N

P
L

_
R

A
T

IO
_

M
O

R
T

)
D

(N
P

L
_

R
A

T
IO

_
N

F
C

S
)

D
(N

P
L

_
R

A
T

IO
_

S
M

E
)

M
a

cr
o

e
co

n
o

m
ic

V
a

ri
a

b
le

s

D
(U

N
EM

P(
-1

))
−0

.0
14

41
2

**
*

0.
00

44
47

*
0.

00
40

28
*

0.
00

39
09

*
0.

00
35

90
*

0.
00

48
16

*
M

a
cr

o
e

co
n

o
m

ic
V

a
ri

a
b

le
s

D
(U

N
EM

P(
-1

))
−0

.0
45

55
5

*
−0

.0
00

30
0

0.
00

01
16

0.
00

01
56

−0
.0

00
16

1
−9

.2
6
×

10
−5

D
(C

PI
(-

1)
)

−0
.0

04
35

9
−0

.0
06

89
4

*
−0

.0
03

65
6

*
−0

.0
03

36
9

*
−0

.0
05

31
4

*
−0

.0
06

59
9

*
D

(C
PI

(-
1)

)
−0

.0
01

39
2

−3
.0

2
×

10
−5

5.
55

×
10
−7

−5
.9

1
×

10
−6

−1
.7

0
×

10
−5

−5
.8

1
×

10
−6

R
_G

D
P_

Q
2Q

(-
1)

0.
02

19
46

0.
00

15
10

0.
00

14
51

0.
00

14
27

0.
00

16
49

0.
00

22
70

R
_G

D
P_

Q
2Q

(-
1)

−0
.0

00
56

2
8.

21
×

10
−7

−2
.3

0
×

10
−5

−1
.5

8
×

10
−5

−1
.1

1
×

10
−5

−9
.8

2
×

10
−6

B
a

n
k

-
sp

e
ci

fi
c

V
a

ri
a

b
le

s

D
(N

PL
_R

A
TI

O
_C

R
E(

-1
))

−0
.1

60
61

9
**

*

B
a

n
k

-
sp

e
ci

fi
c

V
a

ri
a

b
le

s

D
(N

PL
S(

-1
))

−1
01

15
80

*

D
(N

PL
_R

A
T

IO
_H

H
S(

-
1)

)
−0

.2
40

18
2

*
D

(N
PL

_R
A

TI
O

_C
R

E(
-1

))
−0

.6
74

93
1

*

D
(N

PL
_R

A
TI

O
_M

O
R

T(
-

1)
)

−0
.2

43
65

4
*

D
(N

PL
_R

A
TI

O
_H

H
S(

-
1)

)
−1

.7
39

79
5

*

D
(N

PL
_R

A
TI

O
_N

FC
S(

-
1)

)
−0

.1
67

32
6

**
D

(N
PL

_R
A

TI
O

_M
O

R
T(

-
1)

)
−1

.1
81

61
8

*

D
(N

PL
_R

A
T

IO
_S

M
E(

-1
))

−0
.1

85
63

1
D

(N
PL

_R
A

TI
O

_N
FC

S(
-

1)
)

−0
.6

56
27

6
*

D
(R

O
A

(-
1)

)
−0

.0
33

75
0

−0
.0

11
24

3
0.

00
09

01
0.

00
15

61
−0

.0
05

13
5

−0
.0

04
12

5
D

(N
PL

_R
A

TI
O

_S
M

E(
-1

))
−0

.7
67

98
5

*

D
(C

A
P(

-1
))

−0
.3

88
21

6
*

−0
.0

38
14

3
**

−0
.0

16
79

0
−0

.0
14

51
8

−0
.0

26
65

0
**

−0
.0

29
52

8
**

*
D

(R
O

A
(-

1)
)

−0
.2

40
10

6
−0

.0
04

92
9

−0
.0

06
43

2
**

*
−0

.0
08

76
3

**
−0

.0
04

38
9

**
*

−0
.0

05
45

6

D
(S

EC
U

R
IT

IZ
A

TI
O

N
,1

)
5.

69
90

70
*

4.
84

36
43

*
4.

93
32

18
*

4.
30

11
69

*
5.

47
04

55
*

D
(C

A
P(

-1
))

0.
46

50
61

**
*

−3
.0

2
×

10
−5

0.
00

16
76

0.
00

28
76

0.
00

41
36

**
*

0.
00

47
10

D
(L

O
A

N
_D

IS
BR

S(
-1

))
0.

01
80

08
**

0.
00

04
27

−0
.0

00
10

2
−0

.0
00

17
4

0.
00

02
41

−1
.1

3
×

10
−5

D
(L

O
A

N
_D

IS
BR

S(
-1

))
−0

.0
20

08
8

1.
34

×
10
−5

5.
55

×
10
−5

6.
69

×
10
−5

5.
17

×
10
−5

4.
96

×
10
−5

R
e

g
re

ss
io

n
M

a
in

S
ta

ti
st

ic
s

R
-s

qu
ar

ed
0.

70
55

63
0.

64
52

73
0.

68
82

60
0.

68
66

05
0.

67
78

43
0.

72
02

62
D

(F
IN

A
N

C
IA

L_
A

SS
ET

S,
1)

−0
.0

00
82

2

A
dj

us
te

d
R

-s
qu

ar
ed

0.
59

68
47

0.
51

42
97

0.
57

31
55

0.
57

08
90

0.
55

88
93

0.
58

21
64

Q
u

a
n

ti
ta

ti
v

e
E

a
si

n
g

V
a

ri
a

b
le

s

D
(A

SS
ET

_T
O

_G
D

P)
−2

.6
94

89
4

**

F-
st

at
is

ti
c

6.
48

99
98

4.
92

66
44

5.
97

94
49

5.
93

35
80

5.
69

85
37

5.
21

55
74

D
(Q

E_
A

N
N

O
U

N
C

EM
EN

T)
−0

.0
00

82
2

Pr
ob

(F
-s

ta
ti

st
ic

)
0.

00
00

00
0.

00
00

00
0.

00
00

00
0.

00
00

00
0.

00
00

00
0.

00
00

00
C

O
V

ID
-1

9
V

a
ri

a
b

le
s

C
O

V
ID

19
_V

A
C

C
IN

A
TE

D
−0

.0
00

36
3

**
*

−0
.0

00
27

2
−0

.0
00

27
7

−0
.0

00
23

4
**

*
−0

.0
00

30
7

**
*

D
ur

bi
n-

W
at

so
n

st
at

1.
88

57
53

2.
58

23
28

2.
39

36
23

2.
39

10
76

2.
53

50
94

2.
63

92
41

C
O

V
ID

-1
9

G
o

v
e

rn
-

m
e

n
t

R
e

sp
o

n
se

V
a

ri
a

b
le

s

G
O

V
T_

R
ES

P_
ST

R
3.

76
×

10
−7

3.
46

×
10
−6

*
3.

76
×

10
−7

8.
09

×
10
−8

2.
40

×
10
−6

*
1.

69
×

10
−6

**

R
e

g
re

ss
io

n
M

a
in

S
ta

ti
st

ic
s

R
-s

qu
ar

ed
0.

74
83

55
0.

47
00

07
0.

55
76

62
0.

50
66

21
0.

63
10

51
0.

58
62

99
A

dj
us

te
d

R
-s

qu
ar

ed
0.

64
45

02
0.

28
86

93
0.

40
63

36
0.

33
78

34
0.

50
48

32
0.

44
47

70
F-

st
at

is
ti

c
7.

20
58

81
2.

59
22

34
3.

68
51

63
3.

00
15

33
4.

99
96

35
4.

14
25

98
Pr

ob
(F

-s
ta

ti
st

ic
)

0.
00

00
00

0.
00

07
01

0.
00

00
05

0.
00

01
07

0.
00

00
00

0.
00

00
01

D
ur

bi
n-

W
at

so
n

st
at

2.
09

73
08

1.
99

05
26

0.
86

77
67

0.
87

86
59

2.
15

32
91

1.
65

27
58

N
ot

e(
s)

:
(1

.)
PA

N
E

L
A

p
re

se
nt

s
th

e
em

p
ir

ic
al

re
su

lt
s

re
fe

rr
in

g
to

th
e

p
re

-C
O

V
ID

-1
9

p
er

io
d

,w
hi

le
PA

N
E

L
B

p
re

se
nt

s
th

e
em

p
ir

ic
al

re
su

lt
s

re
fe

rr
in

g
to

th
e

po
st

-C
O

V
ID

-1
9

pe
ri

od
.(

2.
)

O
LS

m
et

ho
do

lo
gy

w
as

em
pl

oy
ed

fo
r

th
e

re
gr

es
si

on
m

od
el

es
ti

m
at

io
n.

M
or

e
sp

ec
ifi

ca
lly

,F
ix

ed
C

or
re

ct
ed

Pa
ne

lE
ff

ec
ts

es
ti

m
at

io
ns

w
it

h
co

u
nt

ry
-fi

xe
d

ef
fe

ct
s

w
er

e
u

ti
liz

ed
fo

r
al

lm
od

el
s

be
ca

u
se

of
th

e
H

au
sm

an
te

st
.

T
he

ta
bl

e
p

re
se

nt
s

th
e

va
lu

es
of

th
e

co
ef

fi
ci

en
ts

,w
hi

le
th

e
si

gn
ifi

ca
nc

e
of

th
e

p-
va

lu
e

is
p

re
se

nt
ed

w
it

h
an

as
te

ri
sk

:
**

*
p

<
0.

01
,*

*
p

<
0.

05
,a

nd
*

p
<

0.
1.

(3
.)

T
he

va
ri

ab
le

N
P

L
s

re
p

re
se

nt
s

th
e

ag
gr

eg
at

e
no

n-
p

er
fo

rm
in

g
lo

an
s

to
to

ta
lg

ro
ss

lo
an

s;
U

N
E

M
P

re
pr

es
en

ts
th

e
%

of
u

ne
m

pl
oy

m
en

t;
C

P
Is

ta
nd

s
fo

r
qu

ar
te

rl
y

co
ns

u
m

er
pr

ic
e

in
d

ex
;R

_G
D

P
_Q

2Q
st

an
d

s
fo

r
qu

ar
te

rl
y

pe
rc

en
ta

ge
gr

ow
th

ra
te

of
re

al
G

D
P

;N
P

L
_R

A
T

IO
_C

R
E

re
p

re
se

nt
s

th
e

co
m

m
er

ci
al

re
al

es
ta

te
N

P
L

s
to

to
ta

lg
ro

ss
lo

an
s

(a
gg

re
ga

te
);

N
P

L
_R

A
T

IO
_H

H
S

re
p

re
se

nt
s

th
e

ho
us

eh
ol

d
N

PL
s

to
to

ta
lg

ro
ss

lo
an

s
(a

gg
re

ga
te

);
N

PL
_R

A
T

IO
_M

O
R

T
st

an
d

s
fo

r
m

or
tg

ag
e

N
PL

s
to

to
ta

lg
ro

ss
lo

an
s

(a
gg

re
ga

te
);

N
PL

_R
A

T
IO

_N
FC

S
st

an
d

s
fo

r
no

n-
fi

na
nc

ia
lc

or
p

or
at

io
ns

’N
P

L
s

to
to

ta
lg

ro
ss

lo
an

s
(a

gg
re

ga
te

);
N

P
L

_R
A

T
IO

_S
M

E
re

p
re

se
nt

s
th

e
sm

al
la

nd
m

ed
iu

m
-s

iz
ed

en
te

rp
ri

se
s’

N
P

L
s

to
to

ta
l

gr
os

s
lo

an
s

(a
gg

re
ga

te
);

R
O

A
st

an
d

s
fo

r
re

tu
rn

on
as

se
ts

:
p

ro
fi

t
or

lo
ss

fo
r

th
e

ye
ar

/
to

ta
la

ss
et

s;
C

A
P

d
en

ot
es

th
e

ba
nk

ca
p

it
al

an
d

re
se

rv
es

to
to

ta
la

ss
et

s;
SE

C
U

R
IT

IZ
A

TI
O

N
re

pr
es

en
ts

th
e

se
cu

ri
tiz

at
io

n
po

si
tio

ns
/r

is
k-

w
ei

gh
te

d
ex

po
su

re
am

ou
nt

s
fo

r
cr

ed
it,

co
un

te
rp

ar
ty

cr
ed

it,
an

d
di

lu
tio

n
ri

sk
s

an
d

fr
ee

de
liv

er
ie

s;
LO

A
N

_D
IS

BR
S

de
no

te
s

th
e

lo
an

di
sb

ur
se

m
en

ts
to

cu
st

om
er

s;
FI

N
A

N
C

IA
L_

A
SS

ET
S

st
an

ds
fo

r
to

ta
lfi

na
nc

ia
li

ns
tr

um
en

ts
on

th
e

as
se

ts
id

e;
A

SS
ET

_T
O

_G
D

P
re

pr
es

en
ts

th
e

to
ta

la
ss

et
s/

qu
ar

te
rl

y
gr

os
s

d
om

es
ti

c
pr

od
uc

ta
tm

ar
ke

tp
ri

ce
s;

Q
E

_A
N

N
O

U
N

C
E

M
E

N
T

d
en

ot
es

th
e

Q
ua

nt
it

at
iv

e
E

as
in

g
(Q

E
)A

nn
ou

nc
em

en
t:

1
C

or
re

sp
on

d
in

g
to

d
at

es
:

18
M

ar
ch

20
20

an
d

4
Ju

ne
20

20
;C

O
V

ID
19

_V
A

C
C

IN
A

T
E

D
re

p
re

se
nt

s
th

e
C

O
V

ID
-1

9
va

cc
in

at
ed

p
op

u
la

ti
on

;fi
na

lly
,t

he
va

ri
ab

le
G

O
V

T_
R

ES
P_

ST
R

st
an

ds
fo

r
go

ve
rn

m
en

tr
es

po
ns

e
st

ri
ng

en
cy

in
de

x.

158



J. Risk Financial Manag. 2024, 17, 271

T
a

b
le

A
9

.
R

eg
re

ss
io

n
re

su
lt

s
fo

r
N

PL
se

ct
or

.

P
A

N
E

L
A

.
T

h
is

T
a

b
le

P
re

se
n

ts
th

e
E

m
p

ir
ic

a
l

N
P

L
S

e
ct

o
ra

l
R

e
su

lt
s.

T
h

e
P

e
ri

o
d

o
f

A
n

a
ly

si
s

Is
th

e
P

o
st

-C
O

V
ID

-1
9

P
e

ri
o

d
(2

0
2

0
Q

1
–

2
0

2
1

Q
4

).
E

m
p

ir
ic

a
l

M
O

D
E

L
S

1
to

1
0

A
re

P
re

se
n

te
d

fo
r

E
co

n
o

m
y

o
f

S
p

a
ce

.

P
A

N
E

L
A

R
eg

re
ss

io
n

R
es

ul
ts

—
N

PL
Se

ct
or

—
Po

st
-C

O
V

ID
-1

9
Pe

ri
od

D
ep

en
de

nt
V

ar
ia

bl
e

Po
st

-C
O

V
ID

-1
9:

20
20

Q
1–

20
21

Q
4

N
P

L
T

y
p

e
A

n
a

ly
si

s
M

O
D

EL
(1

)
M

O
D

EL
(2

)
M

O
D

EL
(3

)
M

O
D

EL
(4

)
M

O
D

EL
(5

)
M

O
D

EL
(6

)
M

O
D

EL
(7

)
M

O
D

EL
(8

)
M

O
D

EL
(9

)
M

O
D

EL
(1

0)

V
a

ri
a

b
le

G
ro

u
p

V
a

ri
a

b
le

S
y

m
b

o
l

D
(N

F
C

N
P

L
_

A
G

R
)

D
(N

F
C

N
P

L
_

A
R

T
)

D
(N

F
C

N
P

L
_

C
O

N
)

D
(N

F
C

N
P

L
_

E
D

U
)

D
(N

F
C

N
P

L
_

E
L

E
)

D
(N

F
C

N
P

L
_

F
IN

)
D

(N
F

C
N

P
L

_
H

U
M

)
D

(N
F

C
N

P
L

_
IN

F
)

D
(N

F
C

N
P

L
_

M
A

N
)

D
(N

F
C

N
P

L
_

M
IN

))

M
a

cr
o

e
co

n
o

m
ic

V
a

ri
a

b
le

s

D
(U

N
EM

P(
-1

))
0.

00
05

67
−0

.0
00

17
5

−0
.0

00
17

5
−0

.0
00

14
7

−9
.9

2
×

10
−5

0.
00

01
17

−0
.0

00
15

6
−0

.0
00

45
0

**
*

−0
.0

00
14

5
0.

00
04

61
D

(C
PI

(-
1)

)
−0

.0
00

15
4

**
−2

.0
9
×

10
−5

−2
.0

9
×

10
−5

−2
.9

6
×

10
−5

1.
69

×
10
−5

−0
.0

00
10

7
3.

71
×

10
−5

−1
.7

8
×

10
−5

−2
.0

9
×

10
−5

−3
.1

2
×

10
−6

R
_G

D
P_

Q
2Q

(-
1)

7.
71

×
10
−5

−5
.3

6
×

10
−5

−5
.3

6
×

10
−5

−1
.4

9
×

10
−5

−5
.4

9
×

10
−5

**
*

−0
.0

00
12

7
−8

.6
0
×

10
−5

**
*

3.
21

×
10
−5

1.
80

×
10
−6

−1
.5

8
×

10
−5

B
a

n
k

-s
p

e
ci

fi
c

V
a

ri
a

b
le

s

D
(N

FC
N

PL
_A

G
R

(-
1)

−0
.5

07
22

5
*

D
(N

FC
N

PL
_A

R
T

(-
1)

−0
.3

36
18

4
*

D
(N

FC
N

PL
_C

O
N

(-
1)

−0
.2

50
13

7
D

(N
FC

N
PL

_E
D

U
(-

1)
−0

.3
97

75
2

*
D

(N
FC

N
PL

_E
LE

(-
1)

−0
.3

47
85

1
*

D
(N

FC
N

PL
_F

IN
(-

1)
−0

.3
76

00
4

*
D

(N
FC

N
PL

_H
U

M
(-

1)
−0

.4
22

96
2

*
D

(N
FC

N
PL

_I
N

F(
-1

)
−0

.4
64

77
6

*
D

(N
FC

N
PL

_M
A

N
(-

1)
−0

.7
62

06
6

*
D

(N
FC

N
PL

_M
IN

)(
-1

)
−0

.1
68

16
9

D
(R

O
A

(-
1)

)
−0

.0
07

10
2

−0
.0

05
35

5
−0

.0
05

35
5

−0
.0

08
33

1
**

*
0.

00
23

82
−0

.0
13

31
8

−0
.0

05
93

6
−0

.0
02

02
8

−0
.0

03
22

9
−0

.0
15

68
7

**
*

D
(C

A
P(

-1
))

0.
01

00
36

0.
00

55
10

0.
00

55
10

0.
01

05
48

**
3.

86
×

10
−5

0.
02

58
41

0.
00

57
28

0.
00

03
72

0.
00

51
74

**
*

−0
.0

11
64

4
D

(L
O

A
N

_D
IS

BR
S(

-1
))

0.
00

03
05

3.
13

×
10
−6

3.
13

×
10
−6

3.
56

×
10
−5

−5
.1

8
×

10
−5

−0
.0

00
14

3
0.

00
02

38
−9

.9
7
×

10
−5

0.
00

03
27

0.
00

09
79

**
*

C
O

V
ID

-1
9

V
a

ri
a

b
le

s
C

O
V

ID
19

_V
A

C
C

IN
A

T
ED

−0
.0

00
39

4
−0

.0
00

20
1

−0
.0

00
20

1
−2

.9
9
×

10
−5

4.
71

×
10
−5

0.
00

05
28

0.
00

01
33

−0
.0

00
21

7
−0

.0
00

29
4

**
*

0.
00

03
19

C
O

V
ID

-1
9

G
o

v
e

rn
m

e
n

t
R

e
sp

o
n

se
V

a
ri

a
b

le
s

G
O

V
T_

R
ES

P_
ST

R
7.

92
×

10
−6

*
1.

74
×

10
−6

1.
74

×
10
−6

2.
68

×
10
−6

**
5.

89
×

10
−7

3.
19

×
10
−6

−2
.1

3
×

10
−6

**
*

1.
71

×
10
−6

**
*

2.
10

×
10
−6

**
−1

.1
1
×

10
−6

R
e

g
re

ss
io

n
M

a
in

S
ta

ti
st

ic
s

R
-s

qu
ar

ed
0.

60
59

71
0.

30
54

08
0.

32
71

82
0.

38
25

61
0.

24
05

57
0.

22
95

95
0.

50
10

99
0.

71
17

97
0.

55
15

37
0.

32
56

25
A

dj
us

te
d

R
-s

qu
ar

ed
0.

47
11

72
0.

06
77

85
0.

09
70

07
0.

17
13

32
−0

.0
19

25
2

−0
.0

33
96

5
0.

33
04

22
0.

61
32

01
0.

39
81

16
0.

09
49

17
F-

st
at

is
ti

c
4.

49
53

60
1.

28
52

61
1.

42
14

52
1.

81
11

17
0.

92
58

99
0.

87
11

29
2.

93
59

50
7.

21
93

49
3.

59
49

17
1.

41
14

19
Pr

ob
(F

-s
ta

ti
st

ic
)

0.
00

00
00

0.
19

91
14

0.
12

08
23

0.
02

42
87

0.
57

30
29

0.
64

41
02

0.
00

01
44

0.
00

00
00

0.
00

00
00

0.
12

55
24

D
ur

bi
n–

W
at

so
n

st
at

2.
30

27
37

2.
23

00
66

1.
80

27
28

2.
38

75
71

2.
51

82
05

2.
55

83
15

2.
22

51
16

2.
50

83
57

2.
08

68
67

1.
99

26
36

P
A

N
E

L
B

.
T

h
is

ta
b

le
p

re
se

n
ts

th
e

e
m

p
ir

ic
a

l
N

P
L

se
ct

o
ra

l
re

su
lt

s.
T

h
e

p
e

ri
o

d
o

f
a

n
a

ly
si

s
is

th
e

P
o

st
-C

O
V

ID
-1

9
P

e
ri

o
d

(2
0

2
0

Q
1

–
2

0
2

1
Q

4
).

E
m

p
ir

ic
a

l
M

O
D

E
L

S
1

1
to

1
9

a
re

p
re

se
n

te
d

fo
r

e
co

n
o

m
y

o
f

sp
a

ce
.

P
A

N
E

L
B

R
eg

re
ss

io
n

R
es

ul
ts

—
N

PL
Se

ct
or

—
Po

st
-C

O
V

ID
-1

9
Pe

ri
od

D
ep

en
de

nt
V

ar
ia

bl
e

Po
st

-C
O

V
ID

-1
9:

20
20

Q
1–

20
21

Q
4

N
P

L
T

y
p

e
A

n
a

ly
si

s
M

O
D

EL
(1

1)
M

O
D

EL
(1

2)
M

O
D

EL
(1

3)
M

O
D

EL
(1

4)
M

O
D

EL
(1

5)
M

O
D

EL
(1

6)
M

O
D

EL
(1

7)
M

O
D

EL
(1

8)
M

O
D

EL
(1

9)

V
a

ri
a

b
le

G
ro

u
p

V
a

ri
a

b
le

S
y

m
b

o
l

D
(N

F
C

N
P

L
_

O
T

H
)

D
(N

F
C

N
P

L
_

P
A

D
)

D
(N

F
C

N
P

L
_

R
E

A
)

D
(N

F
C

N
P

L
_

P
R

F
)

D
(N

F
C

N
P

L
_

W
R

T
)

D
(N

F
C

N
P

L
_

T
R

A
)

D
(N

F
C

N
P

L
_

W
A

T
)

D
(N

F
C

N
P

L
_
A

C
C

)
D

(N
F

C
N

P
L

_
A

D
M

)

M
a

cr
o

e
co

n
o

m
ic

V
a

ri
a

b
le

s

D
(U

N
EM

P(
-1

))
−0

.0
00

20
2

−0
.0

00
29

1
−9

.7
5
×

10
−5

−5
.8

2
×

10
−5

−6
.8

8
×

10
−5

0.
00

01
74

1.
26

×
10
−5

−0
.0

01
09

4
**

*
2.

49
×

10
−5

D
(C

PI
(-

1)
)

−1
.3

5
×

10
−5

−0
.0

00
14

4
1.

06
×

10
−6

−4
.3

8
×

10
−5

9.
97

×
10
−6

2.
83

×
10
−5

−1
.4

0
×

10
−5

−0
.0

00
10

3
**

−5
.3

4
×

10
−5

R
_G

D
P_

Q
2Q

(-
1)

8.
21

×
10
−5

0.
00

02
79

3.
26

×
10
−5

9.
65

×
10
−7

−5
.9

1
×

10
−5

−4
.3

5
×

10
−5

−3
.5

1
×

10
−5

8.
33

×
10
−5

4.
08

×
10
−6

B
a

n
k

-s
p

e
ci

fi
c

V
a

ri
a

b
le

s

D
(N

FC
N

PL
_O

T
H

(-
1)

−0
.6

27
12

2
*

D
(N

FC
N

PL
_P

A
D

(-
1)

−0
.3

20
88

5
*

D
(N

FC
N

PL
_R

EA
(-

1)
−0

.0
51

56
4

D
(N

FC
N

PL
_P

R
F(

-1
)

−0
.4

23
34

6
*

D
(N

FC
N

PL
_W

R
T(

-1
)

−0
.7

58
76

5
*

D
(N

FC
N

PL
_T

R
A

(-
1)

−0
.3

83
74

3
*

D
(N

FC
N

PL
_W

A
T

(-
1)

−0
.1

03
84

9
D

(N
FC

N
PL

_A
C

C
(-

1)
−0

.3
39

49
2

*
D

(N
FC

N
PL

_A
D

M
(-

1)
−0

.1
96

23
4

D
(R

O
A

(-
1)

)
−0

.0
04

91
1

−0
.0

19
70

3
−0

.0
03

91
0

−0
.0

03
25

6
−0

.0
02

87
6

0.
00

09
96

−0
.0

04
27

5
0.

00
60

24
−0

.0
06

90
1

D
(C

A
P(

-1
))

−0
.0

00
14

8
0.

02
04

47
0.

00
26

07
0.

00
88

90
0.

00
39

34
0.

00
27

77
0.

00
57

90
**

0.
00

23
47

0.
00

35
52

D
(L

O
A

N
_D

IS
BR

S(
-1

))
−0

.0
00

50
9

4.
50

×
10
−5

−1
.4

4
×

10
−5

−0
.0

00
12

1
1.

91
×

10
−5

0.
00

02
05

−0
.0

00
15

2
−0

.0
00

17
4

−0
.0

00
17

2

159



J. Risk Financial Manag. 2024, 17, 271

T
a

b
le

A
9

.
C

on
t.

P
A

N
E

L
B

.
T

h
is

ta
b

le
p

re
se

n
ts

th
e

e
m

p
ir

ic
a

l
N

P
L

se
ct

o
ra

l
re

su
lt

s.
T

h
e

p
e

ri
o

d
o

f
a

n
a

ly
si

s
is

th
e

P
o

st
-C

O
V

ID
-1

9
P

e
ri

o
d

(2
0

2
0

Q
1

–
2

0
2

1
Q

4
).

E
m

p
ir

ic
a

l
M

O
D

E
L

S
1

1
to

1
9

a
re

p
re

se
n

te
d

fo
r

e
co

n
o

m
y

o
f

sp
a

ce
.

P
A

N
E

L
B

R
eg

re
ss

io
n

R
es

ul
ts

—
N

PL
Se

ct
or

—
Po

st
-C

O
V

ID
-1

9
Pe

ri
od

D
ep

en
de

nt
V

ar
ia

bl
e

Po
st

-C
O

V
ID

-1
9:

20
20

Q
1–

20
21

Q
4

N
P

L
T

y
p

e
A

n
a

ly
si

s
M

O
D

EL
(1

1)
M

O
D

EL
(1

2)
M

O
D

EL
(1

3)
M

O
D

EL
(1

4)
M

O
D

EL
(1

5)
M

O
D

EL
(1

6)
M

O
D

EL
(1

7)
M

O
D

EL
(1

8)
M

O
D

EL
(1

9)

V
a

ri
a

b
le

G
ro

u
p

V
a

ri
a

b
le

S
y

m
b

o
l

D
(N

F
C

N
P

L
_

O
T

H
)

D
(N

F
C

N
P

L
_

P
A

D
)

D
(N

F
C

N
P

L
_

R
E

A
)

D
(N

F
C

N
P

L
_

P
R

F
)

D
(N

F
C

N
P

L
_

W
R

T
)

D
(N

F
C

N
P

L
_

T
R

A
)

D
(N

F
C

N
P

L
_

W
A

T
)

D
(N

F
C

N
P

L
_
A

C
C

)
D

(N
F

C
N

P
L

_
A

D
M

)

C
O

V
ID

-1
9

V
a

ri
a

b
le

s
C

O
V

ID
19

_V
A

C
C

IN
A

TE
D

0.
00

01
58

−3
.9

2
×

10
−5

−0
.0

00
14

7
−0

.0
00

21
2

−0
.0

00
57

5
*

−0
.0

00
24

6
**

*
−0

.0
00

19
6

0.
00

02
30

−0
.0

00
99

8
*

C
O

V
ID

-1
9

G
o

v
e

rn
m

e
n

t
R

e
sp

o
n

se
V

a
ri

a
b

le
s

G
O

V
T_

R
ES

P_
ST

R
−1

.0
7
×

10
−6

4.
84

×
10
−6

1.
18

×
10
−6

3.
76

×
10
−6

**
1.

62
×

10
−6

6.
89

×
10
−7

7.
68

×
10
−7

6.
87

×
10
−6

*
2.

79
×

10
−6

**
*

R
e

g
re

ss
io

n
M

a
in

S
ta

ti
st

ic
s

R
-s

qu
ar

ed
0.

62
34

53
0.

40
53

12
0.

55
19

38
0.

40
97

34
0.

56
78

90
0.

43
77

79
0.

40
02

47
0.

45
16

92
0.

35
27

97
A

dj
us

te
d

R
-s

qu
ar

ed
0.

49
46

35
0.

20
18

66
0.

39
86

54
0.

20
78

01
0.

42
00

63
0.

24
54

40
0.

19
50

69
0.

26
41

13
0.

13
13

85
F-

st
at

is
ti

c
4.

83
97

74
1.

99
22

35
3.

60
07

51
2.

02
90

57
3.

84
15

85
2.

27
60

82
1.

95
07

26
2.

40
80

07
1.

59
33

97
Pr

ob
(F

-s
ta

ti
st

ic
)

0.
00

00
00

0.
01

09
11

0.
00

00
07

0.
00

92
49

0.
00

00
03

0.
00

30
08

0.
01

31
33

0.
00

16
40

0.
06

10
77

D
ur

bi
n–

W
at

so
n

st
at

2.
09

19
72

2.
94

17
06

2.
34

82
41

2.
45

29
17

1.
95

22
55

2.
29

82
12

1.
76

76
24

2.
20

27
10

1.
82

31
73

N
ot

e(
s)

:(
1.

)
PA

N
EL

B
pr

es
en

ts
th

e
N

PL
se

ct
or

al
em

pi
ri

ca
le

st
im

at
io

n
re

su
lts

,r
ef

er
ri

ng
to

th
e

po
st

-C
O

V
ID

-1
9p

Pe
ri

od
.(

2.
)

O
LS

m
et

ho
do

lo
gy

w
as

em
pl

oy
ed

fo
r

th
e

re
gr

es
si

on
m

od
el

es
ti

m
at

io
n.

M
or

e
sp

ec
ifi

ca
lly

,F
ix

ed
C

or
re

ct
ed

P
an

el
E

ff
ec

ts
es

ti
m

at
io

ns
w

it
h

co
u

nt
ry

-fi
xe

d
ef

fe
ct

s
w

er
e

u
ti

liz
ed

fo
r

al
lm

od
el

s
be

ca
u

se
of

th
e

H
au

sm
an

te
st

.
T

he
ta

bl
e

p
re

se
nt

s
th

e
va

lu
es

of
th

e
co

ef
fi

ci
en

ts
,w

hi
le

th
e

si
gn

ifi
ca

nc
e

of
th

e
p-

va
lu

e
is

p
re

se
nt

ed
w

it
h

an
as

te
ri

sk
:

**
*

p
<

0.
01

,*
*

p
<

0.
05

,a
nd

*
p

<
0.

1.
(3

.)
T

he
va

ri
ab

le
N

FC
N

PL
_O

T
H

re
pr

es
en

ts
th

e
ag

gr
eg

at
e

N
PL

s—
no

n-
fin

an
ci

al
co

rp
or

at
io

ns
—

S:
O

th
er

se
rv

ic
es

;N
FC

N
PL

_P
A

D
re

pr
es

en
ts

th
e

ag
gr

eg
at

e
N

P
L

s—
no

n-
fi

na
nc

ia
lc

or
p

or
at

io
ns

—
O

:P
u

bl
ic

ad
m

in
is

tr
at

io
n

an
d

d
ef

en
se

,c
om

p
u

ls
or

y
so

ci
al

se
cu

ri
ty

;N
FC

N
P

L
_R

E
A

st
an

d
s

fo
r

ag
gr

eg
at

e
N

PL
s—

no
n-

fin
an

ci
al

co
rp

or
at

io
ns

—
L:

R
ea

le
st

at
e

ac
tiv

iti
es

;N
FC

N
PL

_P
R

F
st

an
ds

fo
r

ag
gr

eg
at

e
N

PL
s—

no
n-

fin
an

ci
al

co
rp

or
at

io
ns

—
M

:P
ro

fe
ss

io
na

l,
sc

ie
nt

ifi
c,

an
d

te
ch

ni
ca

la
ct

iv
it

ie
s;

N
FC

N
PL

_W
R

T
re

pr
es

en
ts

th
e

ag
gr

eg
at

e
N

PL
s—

no
n-

fin
an

ci
al

co
rp

or
at

io
ns

—
G

:W
ho

le
sa

le
an

d
re

ta
il

tr
ad

e;
N

FC
N

PL
_T

R
A

re
pr

es
en

ts
th

e
ag

gr
eg

at
e

N
PL

s—
no

n-
fin

an
ci

al
co

rp
or

at
io

ns
—

H
:T

ra
ns

po
rt

an
d

st
or

ag
e;

N
FC

N
PL

_W
A

T
st

an
ds

fo
r

ag
gr

eg
at

e
N

PL
s—

no
n-

fin
an

ci
al

co
rp

or
at

io
ns

—
E:

W
at

er
su

pp
ly

;N
FC

N
P

L
_A

C
C

st
an

d
s

fo
r

ag
gr

eg
at

e
N

P
L

s—
no

n-
fi

na
nc

ia
lc

or
po

ra
ti

on
s—

I:
A

cc
om

m
od

at
io

n
an

d
fo

od
se

rv
ic

e
ac

ti
vi

ti
es

;N
FC

N
P

L
_A

D
M

re
pr

es
en

ts
th

e
ag

gr
eg

at
e

N
P

L
s—

no
n-

fi
na

nc
ia

lc
or

p
or

at
io

ns
—

N
:A

d
m

in
is

tr
at

iv
e

an
d

su
p

p
or

t
se

rv
ic

e
ac

ti
vi

ti
es

;U
N

E
M

P
st

an
d

s
fo

r
%

of
u

ne
m

p
lo

ym
en

t;
C

P
I

d
en

ot
es

th
e

qu
ar

te
rl

y
co

ns
u

m
er

p
ri

ce
in

d
ex

;R
_G

D
P

_Q
2Q

re
p

re
se

nt
s

th
e

qu
ar

te
rl

y
p

er
ce

nt
ag

e
gr

ow
th

ra
te

of
re

al
G

D
P

;R
O

A
d

en
ot

es
th

e
re

tu
rn

on
as

se
ts

:
p

ro
fi

t
or

lo
ss

fo
r

th
e

ye
ar

/
to

ta
la

ss
et

s;
C

A
P

st
an

d
s

fo
r

ba
nk

ca
p

it
al

an
d

re
se

rv
es

to
to

ta
la

ss
et

s;
L

O
A

N
_D

IS
B

R
S

re
p

re
se

nt
s

th
e

lo
an

d
is

bu
rs

em
en

ts
to

cu
st

om
er

s;
C

O
V

ID
19

_V
A

C
C

IN
A

TE
D

de
no

te
s

th
e

C
O

V
ID

-1
9

va
cc

in
at

ed
po

pu
la

ti
on

;fi
na

lly
,G

O
V

T_
R

ES
P_

ST
R

re
pr

es
en

ts
th

e
go

ve
rn

m
en

tr
es

po
ns

e
st

ri
ng

en
cy

in
de

x.

160



J. Risk Financial Manag. 2024, 17, 271

T
a

b
le

A
1

0
.

R
eg

re
ss

io
n

es
ti

m
at

es
p

er
E

u
ro

p
ea

n
su

br
eg

io
n,

p
ro

sp
er

it
y,

N
P

L
ty

p
e,

an
d

N
P

L
se

ct
or

d
im

en
si

on
s,

w
it

h
th

e
in

cl
u

si
on

of
th

e
C

U
LT

U
R

E_
PC

A
va

ri
ab

le
.

P
A

N
E

L
A

.
T

h
is

T
a

b
le

P
re

se
n

ts
th

e
E

m
p

ir
ic

a
l

R
e

su
lt

s
p

e
r

E
u

ro
p

e
a

n
S

u
b

re
g

io
n

,
P

ro
sp

e
ri

ty
,

N
P

L
T

y
p

e
,

a
n

d
N

P
L

S
e

ct
o

r
D

im
e

n
si

o
n

s,
w

it
h

th
e

In
cl

u
si

o
n

o
f

th
e

C
U

L
T

U
R

E
_

P
C

A
V

a
ri

a
b

le
.

T
h

e
P

e
ri

o
d

o
f

A
n

a
ly

si
s

Is
th

e
P

o
st

-C
O

V
ID

-1
9

P
e

ri
o

d
(2

0
2

0
Q

1
–

2
0

2
1

Q
4

).

P
A

N
E

L
A

R
eg

re
ss

io
n

re
su

lt
s

fo
r

di
m

en
si

on
s

w
it

h
th

e
in

cl
us

io
n

of
th

e
C

U
LT

U
R

E_
PC

A
va

ri
ab

le
:

Su
br

eg
io

n/
Pr

os
pe

ri
ty

/N
PL

Ty
pe

/N
PL

Se
ct

or
D

im
en

si
on

s—
Po

st
-C

O
V

ID
-1

9
Pe

ri
od

D
ep

en
de

nt
V

ar
ia

bl
e

D
im

e
n

si
o

n

Su
bs

am
pl

e
A

na
ly

si
s:

C
en

tr
al

Eu
ro

pe

Su
bs

am
pl

e
A

na
ly

si
s:

N
or

th
er

n
Eu

ro
pe

Su
bs

am
pl

e
A

na
ly

-
si

s:
So

ut
h-

er
n

Eu
ro

pe

Su
bs

am
pl

e
A

na
ly

si
s:

Pr
os

pe
ri

ty
(H

ar
d-

C
or

e
|I

nt
er

m
ed

ia
te

|
Ex

te
nd

ed
Pe

ri
ph

er
y)

Su
bs

am
pl

e
A

na
ly

si
s:

N
PL

Ty
pe

Su
bs

am
pl

e
A

na
ly

si
s:

N
PL

Se
ct

or

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1–
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1–
20

21
Q

4

Po
st

-
C

O
V

ID
-

19
:

20
20

Q
1–

20
21

Q
4

Po
st

-
C

O
V

ID
-

19
:

20
20

Q
1–

20
21

Q
4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1–
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1–
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1–
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1–
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1–
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1–
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1–
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1–
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1–
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1–
20

21
Q

4

Po
st

-
C

O
V

ID
-

19
:

20
20

Q
1–

20
21

Q
4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1–
20

21
Q

4

M
O

D
EL

(1
)

M
O

D
EL

(2
)

M
O

D
EL

(3
)

M
O

D
EL

(4
)

M
O

D
EL

(5
)

M
O

D
EL

(6
)

M
O

D
EL

(7
)

M
O

D
EL

(8
)

M
O

D
EL

(9
)

M
O

D
EL

(1
0)

M
O

D
EL

(1
1)

M
O

D
EL

(1
2)

M
O

D
EL

(1
3)

M
O

D
EL

(1
4)

M
O

D
EL

(1
5)

M
O

D
EL

(1
6)

V
a

ri
a

b
le

G
ro

u
p

V
a

ri
a

b
le

S
y

m
b

o
l

D
(N

P
L

S
)

D
(N

P
L

S
)

D
(N

P
L

S
)

D
(N

P
L

S
)

D
(N

P
L

S
)

D
(N

P
L

S
)

D
(N

P
L

_
R

A
T

IO
_

C
R

E
)

D
(N

P
L

_
R

A
T

IO
_

H
H

S
)

D
(N

P
L

_
R

A
T

IO
_

M
O

R
T

)
D

(N
P

L
_

R
A

T
IO

_
N

F
C

S
)

D
(N

P
L

_
R

A
T

IO
_

S
M

E
)

D
(N

F
C

N
P

L
_

A
G

R
)

D
(N

F
C

N
P

L
_

A
R

T
)

D
(N

F
C

N
P

L
_

C
O

N
)

D
(N

F
C

N
P

L
_

E
D

U
)

D
(N

F
C

N
P

L
_

E
L

E
)

M
a

cr
o

e
co

n
o

m
ic

V
a

ri
a

b
le

s

D
(U

N
EM

P(
-1

))
−0

.0
07

93
1

0.
01

13
35

−0
.1

11
70

0
*

0.
00

34
81

0.
00

64
06

0.
05

31
75

0.
00

18
79

−6
.8

9
×

10
−5

6.
31

×
10
−5

−0
.0

00
32

9
**

−0
.0

00
32

6
**

0.
00

02
38

−6
.7

6
×

10
−5

*
−6

.3
0
×

10
−5

−1
.6

3
×

10
−5

*
−0

.0
00

20
8

D
(C

PI
(-

1)
)

0.
00

18
98

−0
.0

07
60

8
−0

.0
19

49
9

**
0.

00
13

83
−0

.0
00

46
1

**
*

0.
00

53
69

−1
.6

7
×

10
−5

−2
.1

9
×

10
−6

7.
42

×
10
−6

−6
.5

3
×

10
−5

**
−1

.4
5
×

10
−5

−9
.3

6
×

10
−6

−7
.7

8
×

10
−6

3.
51

×
10
−5

4.
44

×
10
−6

−4
.5

7
×

10
−5

**

R
_G

D
P_

Q
2Q

(-
1)

0.
00

20
09

−0
.0

04
33

4
**

−0
.0

04
33

4
*

0.
00

02
53

−0
.0

00
21

5
**

−0
.0

34
76

6
**

−5
.1

2
×

10
−5

*
−1

.5
6
×

10
−5

−7
.2

1
×

10
−6

1.
88

×
10
−5

−0
.0

00
34

9
**

*
−5

.5
8
×

10
−6

−1
.1

7
×

10
−6

2.
63

×
10
−5

8.
68

×
10
−7

2.
32

×
10
−5

B
a

n
k

-
sp

e
ci

fi
c

V
a

ri
a

b
le

s

D
ep

.V
ar

ia
bl

e
on

e
la

g
*

0.
46

45
75

0.
04

94
32

−3
.7

75
01

4
**

*
−0

.8
63

74
6

*
−0

.2
46

73
0

−1
.8

15
51

0
0.

98
13

49
**

*
20

83
12

9
**

*
15

33
14

7
**

*
0.

80
11

45
**

*
0.

10
57

91
−0

.5
34

68
7

*
−0

.0
28

86
1

0.
13

03
61

−1
11

24
37

**
*

0.
26

48
46

*

D
(R

O
A

(-
1)

)
0.

11
97

11
−0

.4
15

08
9

**
*

0.
30

27
17

−0
.1

00
56

4
*

−0
.0

35
51

8
−0

.1
06

37
3

−0
.0

09
20

2
*

−0
.0

02
40

7
*

−0
.0

00
58

8
*

−0
.0

01
40

5
**

−0
.0

04
14

1
**

−0
.0

01
77

7
−0

.0
00

45
8

0.
00

08
49

−0
.0

00
19

2
*

−7
.8

7
×

10
−5

D
(C

A
P(

-1
))

−0
.1

29
60

4
*

0.
07

27
43

−0
.4

57
85

2
−0

.0
11

46
5

−0
.0

74
46

2
−7

.2
04

26
5

**
*

−0
.0

08
41

9
*

−0
.0

01
20

5
*

−0
.0

01
69

2
*

0.
00

23
82

*
0.

00
07

53
−0

.0
05

99
3

**
8.

83
×

10
−5

−0
.0

03
07

3
*

−0
.0

00
14

6
−0

.0
02

62
9

D
(L

O
A

N
_D

IS
BR

S(
-

1)
)

−0
.0

34
57

4
0.

03
23

01
*

−0
.3

23
04

5
*

0.
05

13
94

*
0.

02
87

44
0.

24
25

44
0.

00
03

81
3.

00
×

10
−5

−3
.6

5
×

10
−5

7.
86

×
10
−5

0.
00

05
46

0.
00

04
67

−1
.9

9
×

10
−5

−1
.8

2
×

10
−5

−1
.0

3
×

10
−5

3.
9
×

10
−5

C
O

V
ID

-1
9

G
o

v
e

rn
-

m
e

n
t

R
e

sp
o

n
se

V
a

ri
a

b
le

s

G
O

V
T

_R
ES

P_
ST

R
6.

68
×

10
−5

0.
00

03
00

*
−0

.0
00

54
1

*
36

28
75

1
31

59
31

8
**

46
71

11
6

**
*

0.
91

91
57

*
26

76
20

9
*

0.
16

82
57

0.
97

30
22

*
1.

67
41

20
**

0.
69

43
95

*
−0

.3
74

35
1

−2
70

16
37

**
−0

.1
33

92
3

*
0.

76
25

08
*

C
O

V
ID

-1
9

V
a

ri
a

b
le

s
C

O
V

ID
19

_V
A

C
C

IN
A

T
ED

−0
.0

09
50

1
*

0.
01

45
44

−0
.0

21
29

9
*

−0
.0

07
64

2
*

−0
.0

00
95

9
−0

.1
14

52
7

*
−0

.0
00

24
9

**
*

−6
.5

5
×

10
−5

−3
.1
×

10
−5

−5
.1

9
×

10
−5

**
−4

.5
3
×

10
−5

**
*

2.
98

×
10
−5

5.
22

×
10
−5

*
0.

00
01

58
*

−2
.2

2
×

10
−5

−0
.0

00
13

8
**

C
u

lt
u

ra
l

D
im

e
n

si
o

n
V

a
ri

a
b

le
s

C
U

LT
U

R
E_

PC
A

0.
03

70
43

**
*

−0
.2

77
83

8
*

−0
.8

35
48

4
*

−2
10

42
99

**
−0

.0
13

38
9

**
−2

.9
46

17
9

**
−6

.4
9
×

10
−6

*
−0

.0
00

11
8

*
−3

.6
9
×

10
−5

*
−7

.5
2
×

10
−5

*
−0

.0
00

76
7

**
*

−0
.0

00
43

7
*

4.
74

×
10
−5

−0
.0

00
30

3
*

2.
97

×
10
−6

−0
.0

00
44

9
**

*

R
e

g
re

ss
io

n
M

a
in

S
ta

ti
st

ic
s

R
-s

qu
ar

ed
0.

54
58

94
0.

81
06

09
0.

99
91

53
0.

96
06

15
0.

44
63

38
0.

96
94

91
0.

49
90

17
0.

89
74

62
0.

92
03

42
0.

56
95

13
0.

77
74

99
0.

67
13

04
0.

47
00

87
0.

51
70

33
0.

94
54

42
0.

19
81

18
A

dj
us

te
d

R
-s

qu
ar

ed
0.

40
55

54
0.

21
08

72
0.

99
27

98
0.

81
29

22
−0

.0
31

82
5

0.
87

03
38

0.
38

11
39

0.
88

13
49

0.
90

78
24

0.
39

46
27

0.
55

49
99

0.
34

26
09

0.
32

51
87

0.
32

08
28

0.
89

08
85

0.
00

94
40

F-
st

at
is

ti
c

1.
64

11
36

1.
35

16
08

1.
57

22
55

6.
50

41
24

0.
93

34
42

9.
77

77
06

4.
23

33
21

5.
56

97
47

7.
35

22
84

3.
25

64
91

3.
49

43
68

2.
04

23
29

1.
87

10
16

2.
63

5.
16

6
17

32
.9

21
1.

05
00

30
Pr

ob
(F

-s
ta

ti
st

ic
)

0.
05

19
28

0.
07

57
63

0.
00

63
37

0.
04

16
59

0.
05

66
96

0.
02

02
77

0.
00

01
30

0.
00

00
00

0.
00

00
00

0.
00

32
29

0.
01

28
23

0.
09

69
70

0.
09

03
58

0.
01

27
70

0.
00

00
02

0.
02

02
50

D
ur

bi
n–

W
at

so
n

st
at

2.
27

19
37

2.
00

52
23

2.
25

54
09

2.
11

21
49

1.
95

00
82

1.
45

78
93

1.
94

81
11

1.
53

51
12

1.
53

56
85

2.
25

93
23

2.
02

14
28

2.
02

57
76

2.
41

52
03

1.
61

48
52

1.
86

33
50

2.
44

93
69

161



J. Risk Financial Manag. 2024, 17, 271

T
a

b
le

A
1

0
.

C
on

t.

P
A

N
E

L
B

.
T

h
is

ta
b

le
p

re
se

n
ts

th
e

e
m

p
ir

ic
a

l
re

su
lt

s
p

e
r

N
P

L
S

E
C

T
O

R
d

im
e

n
si

o
n

,
w

it
h

th
e

in
cl

u
si

o
n

o
f

th
e

C
U

L
T

U
R

E
_

P
C

A
v

a
ri

a
b

le
.

T
h

e
p

e
ri

o
d

o
f

a
n

a
ly

si
s

is
th

e
P

o
st

-C
O

V
ID

-1
9

P
e

ri
o

d
(2

0
2

0
Q

1
–

2
0

2
1

Q
4

).

P
A

N
E

L
B

R
eg

re
ss

io
n

re
su

lt
s

fo
r

N
PL

se
ct

or
di

m
en

si
on

w
it

h
th

e
in

cl
us

io
n

of
th

e
C

U
LT

U
R

E_
PC

A
va

ri
ab

le
–P

os
t-

C
O

V
ID

-1
9

Pe
ri

od

D
ep

en
de

nt
V

ar
ia

bl
e

D
im

e
n

si
o

n
Su

bs
am

pl
e

A
na

ly
si

s:
N

PL
Se

ct
or

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1-
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1-
20

21
Q

4

Po
st

-C
O

V
ID

-1
9:

20
20

Q
1-

20
21

Q
4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1-
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1-
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1-
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1-
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1-
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1-
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1-
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1-
20

21
Q

4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1-
20

21
Q

4

Po
st

-C
O

V
ID

-1
9:

20
20

Q
1-

20
21

Q
4

Po
st

-
C

O
V

ID
-1

9:
20

20
Q

1-
20

21
Q

4

M
O

D
EL

(1
7)

M
O

D
EL

(1
8)

M
O

D
EL

(1
9)

M
O

D
EL

(2
0)

M
O

D
EL

(2
1)

M
O

D
EL

(2
2)

M
O

D
EL

(2
3)

M
O

D
EL

(2
4)

M
O

D
EL

(2
5)

M
O

D
EL

(2
6)

M
O

D
EL

(2
7)

M
O

D
EL

(2
8)

M
O

D
EL

(2
9)

M
O

D
EL

(3
0)

V
a

ri
a

b
le

G
ro

u
p

V
a

ri
a

b
le

S
y

m
b

o
l

D
(N

F
C

N
P

L
_

F
IN

)
D

(N
F

C
N

P
L

_
H

U
M

)
D

(N
F

C
N

P
L

_
IN

F
)

D
(N

F
C

N
P

L
_

M
A

N
)

D
(N

F
C

N
P

L
_

M
IN

))
D

(N
F

C
N

P
L

_
O

T
H

)
D

(N
F

C
N

P
L

_
P

A
D

)
D

(N
F

C
N

P
L

_
R

E
A

)
D

(N
F

C
N

P
L

_
P

R
F

)
D

(N
F

C
N

P
L

_
W

R
T

)
D

(N
F

C
N

P
L

_
T

R
A

)
D

(N
F

C
N

P
L

_
W

A
T

)
D

(N
F

C
N

P
L

_
A

C
C

)
D

(N
F

C
N

P
L

_
A

D
M

)

M
a

cr
o

e
co

n
o

m
ic

V
a

ri
a

b
le

s

D
(U

N
EM

P(
-1

))
−0

.0
00

39
1

*
8.

31
×

10
−5

0.
00

01
89

4.
35

×
10
−5

1.
80

×
10
−5

−0
.0

00
18

2
0.

00
01

07
**

−0
.0

00
71

7
2.

82
×

10
−5

−0
.0

00
16

0
5.

40
×

10
−6

−1
.6

9
×

10
−5

−4
.5

5
×

10
−5

0.
00

01
47

D
(C

PI
(-

1)
)

1.
53

×
10
−6

1.
86

×
10
−6

−1
.1

9
×

10
−5

2.
36

×
10
−5

−3
.1

0
×

10
−5

**
*

−4
.8

1
×

10
−5

−3
.4

7
×

10
−6

5.
41

×
10
−5

1.
65

×
10
−5

−2
.6

7
×

10
−5

3.
56

×
10
−5

−2
.6

3
×

10
−6

−1
.5

5
×

10
−5

−0
.0

00
34

3
**

R
_G

D
P_

Q
2Q

(-
1)

6.
36

×
10
−5

−2
.4

2
×

10
−5

**
5.

05
×

10
−5

−5
.5

2
×

10
−5

*
−3

.1
5
×

10
−7

−7
.6

8
×

10
−5

−2
.4

2
×

10
−5

**
0.

00
03

04
−2

.1
6
×

10
−5

*
−0

.0
00

23
8

**
6.

26
×

10
−5

**
−2

.6
4
×

10
−5

1.
05

×
10
−5

6.
63

×
10
−7

B
a

n
k

-
sp

e
ci

fi
c

V
a

ri
a

b
le

s

D
ep

.V
ar

ia
bl

e
on

e
la

g
*

0.
45

60
51

*
0.

45
79

79
0.

33
42

41
−0

.3
28

06
9

**
*

−0
.4

38
02

3
**

*
0.

15
87

05
0.

85
99

49
**

*
1.

07
91

98
**

*
−0

.8
34

08
1

**
*

0.
68

18
52

*
−1

.0
62

12
7

**
*

−0
.5

49
15

8
**

−0
.3

79
98

8
−0

.4
87

17
1

D
(R

O
A

(-
1)

)
−0

.0
00

36
6

0.
00

11
05

*
0.

00
05

67
0.

00
13

38
−0

.0
00

45
7

*
−0

.0
04

94
7

*
−4

.5
7
×

10
−6

0.
00

02
16

0.
00

15
96

0.
00

07
74

0.
00

02
37

0.
00

02
00

0.
00

09
02

−0
.0

09
51

8
*

D
(C

A
P(

-1
))

−0
.0

03
46

3
*

0.
00

08
11

0.
00

33
19

**
*

0.
00

33
20

*
−0

.0
00

63
9

−0
.0

02
03

4
−0

.0
00

31
6

*
0.

00
29

44
−0

.0
01

67
8

−0
.0

03
39

0
−0

.0
04

55
6

**
3.

51
×

10
−5

*
0.

00
16

17
**

−0
.0

08
47

9
*

D
(L

O
A

N
_D

IS
BR

S(
-

1)
)

−0
.0

00
12

5
4.

56
×

10
−5

*
1.

32
×

10
−5

−0
.0

00
48

5
**

*
−4

.0
9
×

10
−5

0.
00

03
81

−7
.3

9
×

10
−5

−0
.0

02
08

1
*

0.
00

01
04

0.
00

04
94

0.
00

07
19

*
−6

.9
6
×

10
−5

−0
.0

00
38

9
**

0.
00

13
90

C
O

V
ID

-1
9

G
o

v
e

rn
-

m
e

n
t

R
e

sp
o

n
se

V
a

ri
a

b
le

s

G
O

V
T

_R
ES

P_
ST

R
0.

18
79

73
*

0.
29

42
27

*
0.

67
77

79
**

−1
.2

58
01

7
6.

40
93

42
**

*
−0

.7
26

00
5

0.
14

08
50

**
−1

.3
07

52
2

0.
79

18
80

−1
.1

24
35

8
8.

06
63

02
0.

06
01

99
−1

.6
56

75
0

4.
25

26
82

C
O

V
ID

-1
9

V
a

ri
a

b
le

s
C

O
V

ID
19

_V
A

C
C

IN
A

T
ED

1.
64

×
10
−5

−6
.0

1
×

10
−5

*
−2

.8
2
×

10
−5

−3
.3

5
×

10
−5

*
−0

.0
00

12
4

**
*

0.
00

01
81

8.
28

×
10
−6

*
2.

24
×

10
−5

−7
.7

6
×

10
−5

−8
.5

6
×

10
−5

*
−0

.0
00

63
1

*
5.

28
×

10
−5

7.
91

×
10
−5

−0
.0

03
82

5
**

C
u

lt
u

ra
l

D
im

e
n

si
o

n
V

a
ri

a
b

le
s

C
U

LT
U

R
E_

PC
A

−0
.0

00
12

0
*

−0
.0

00
10

9
*

0.
00

01
03

−8
.9

2
×

10
−5

*
−0

.0
00

13
1

−1
.8

8
×

10
−5

−3
.0

1
×

10
−5

*
−0

.0
00

68
7

*
−0

.0
04

23
6

−0
.0

00
26

4
*

−0
.0

02
12

2
*

2.
44

×
10
−6

0.
00

01
07

−0
.0

12
08

3
*

R
e

g
re

ss
io

n
M

a
in

S
ta

ti
st

ic
s

R
-s

qu
ar

ed
0.

49
76

24
0.

46
58

39
0.

33
41

78
0.

41
86

53
0.

62
89

92
0.

40
40

87
0.

55
96

74
0.

53
86

99
0.

36
41

45
0.

65
74

42
0.

80
91

30
0.

54
42

30
0.

72
09

42
0.

70
36

07
A

dj
us

te
d

R
-s

qu
ar

ed
0.

35
29

09
0.

34
88

37
0.

32
36

87
0.

33
08

61
0.

47
82

71
0.

39
32

34
0.

41
93

47
0.

47
73

98
0.

30
58

29
0.

31
48

83
0.

61
82

59
0.

48
84

61
0.

44
18

84
0.

40
72

13
F-

st
at

is
ti

c
1.

62
48

43
2.

14
66

98
1.

23
54

52
2.

49
05

88
4.

17
32

01
0.

67
80

97
1.

27
10

42
1.

16
77

81
1.

40
96

89
1.

91
92

11
4.

23
91

56
1.

19
40

91
2.

58
34

81
2.

37
38

94
Pr

ob
(F

-s
ta

ti
st

ic
)

0.
12

95
38

0.
03

91
14

0.
09

10
43

0.
01

10
63

0.
00

04
87

0.
06

16
79

0.
02

98
81

0.
08

78
59

0.
00

85
06

0.
04

74
40

0.
00

53
44

0.
07

22
96

0.
04

32
95

0.
05

87
36

D
ur

bi
n–

W
at

so
n

st
at

1.
46

72
75

2.
08

22
64

2.
28

27
51

1.
86

78
49

2.
05

18
44

2.
00

68
13

1.
32

10
82

2.
10

63
55

1.
93

38
57

1.
74

19
33

1.
87

07
60

1.
08

14
47

1.
83

55
48

1.
64

86
39

N
ot

e(
s)

:(
1.

)
PA

N
E

L
B

pr
es

en
ts

th
e

re
gr

es
si

on
es

tim
at

es
re

la
te

d
to

th
e

re
m

ai
ni

ng
N

PL
se

ct
or

s,
w

ith
th

e
in

cl
us

io
n

of
th

e
C

U
LT

U
R

E
_P

C
A

va
ri

ab
le

fo
r

th
e

po
st

-
C

O
V

ID
-1

9
pe

ri
od

.(
2.

)
O

LS
m

et
ho

do
lo

gy
w

as
em

pl
oy

ed
fo

r
th

e
re

gr
es

si
on

m
od

el
es

tim
at

io
n.

M
or

e
sp

ec
if

ic
al

ly
,F

ix
ed

C
or

re
ct

ed
Pa

ne
lE

ff
ec

ts
es

tim
at

io
ns

w
ith

co
un

tr
y-

fi
xe

d
ef

fe
ct

s
w

er
e

ut
ili

ze
d

fo
r

al
lm

od
el

s
be

ca
us

e
of

th
e

H
au

sm
an

te
st

.
T

he
ta

bl
e

pr
es

en
ts

th
e

va
lu

es
of

th
e

co
ef

fi
ci

en
ts

,w
hi

le
th

e
si

gn
if

ic
an

ce
of

th
e

p-
va

lu
e

is
pr

es
en

te
d

w
ith

an
as

te
ri

sk
:

**
*

p
<

0.
01

,*
*

p
<

0.
05

,a
nd

*
p

<
0.

1.
(3

.)
T

he
va

ri
ab

le
N

FC
N

PL
_F

IN
re

pr
es

en
ts

th
e

ag
gr

eg
at

e
N

PL
s—

no
n-

fi
na

nc
ia

l
co

rp
or

at
io

ns
—

K
:F

in
an

ci
al

an
d

in
su

ra
nc

e
ac

tiv
iti

es
;N

FC
N

PL
_H

U
M

re
pr

es
en

ts
th

e
ag

gr
eg

at
e

N
PL

s—
no

n-
fin

an
ci

al
co

rp
or

at
io

ns
—

Q
:H

um
an

he
al

th
se

rv
ic

es
an

d
so

ci
al

w
or

k
ac

tiv
iti

es
;N

FC
N

PL
_I

N
F

st
an

d
s

fo
r

ag
gr

eg
at

e
N

PL
s—

no
n-

fi
na

nc
ia

lc
or

po
ra

tio
ns

—
J:

In
fo

rm
at

io
n

an
d

co
m

m
un

ic
at

io
n;

N
FC

N
PL

_M
A

N
st

an
d

s
fo

r
ag

gr
eg

at
e

N
PL

s—
no

n-
fi

na
nc

ia
lc

or
po

ra
tio

ns
—

C
:M

an
uf

ac
tu

ri
ng

;N
FC

N
PL

_M
IN

re
pr

es
en

ts
th

e
ag

gr
eg

at
e

N
PL

s—
no

n-
fi

na
nc

ia
lc

or
po

ra
tio

ns
—

B
:M

in
in

g
an

d
qu

ar
ry

in
g;

N
FC

N
PL

_O
TH

re
pr

es
en

ts
th

e
ag

gr
eg

at
e

N
PL

s—
no

n-
fin

an
ci

al
co

rp
or

at
io

ns
—

S:
O

th
er

se
rv

ic
es

;N
FC

N
PL

_P
A

D
st

an
ds

fo
ra

gg
re

ga
te

N
PL

s—
no

n-
fin

an
ci

al
co

rp
or

at
io

ns
—

O
:P

ub
lic

ad
m

in
is

tr
at

io
n

an
d

de
fe

ns
e,

co
m

pu
ls

or
y

so
ci

al
se

cu
ri

ty
;N

FC
N

PL
_R

EA
st

an
ds

fo
r

ag
gr

eg
at

e
N

PL
s—

no
n-

fin
an

ci
al

co
rp

or
at

io
ns

—
L:

R
ea

l
es

ta
te

ac
tiv

iti
es

;N
FC

N
PL

_P
R

F
re

pr
es

en
ts

th
e

ag
gr

eg
at

e
N

PL
s—

no
n-

fin
an

ci
al

co
rp

or
at

io
ns

—
M

:P
ro

fe
ss

io
na

l,
sc

ie
nt

ifi
c,

an
d

te
ch

ni
ca

la
ct

iv
iti

es
;N

FC
N

PL
_W

R
T

st
an

ds
fo

ra
gg

re
ga

te
N

PL
s—

no
n-

fin
an

ci
al

co
rp

or
at

io
ns

—
G

:W
ho

le
sa

le
an

d
re

ta
il

tr
ad

e;
N

FC
N

PL
_T

R
A

de
no

te
s

th
e

ag
gr

eg
at

e
N

PL
s—

no
n-

fin
an

ci
al

co
rp

or
at

io
ns

—
H

:
Tr

an
sp

or
t

an
d

st
or

ag
e;

N
FC

N
PL

_W
A

T
re

pr
es

en
ts

th
e

ag
gr

eg
at

e
N

PL
s—

no
n-

fi
na

nc
ia

lc
or

po
ra

tio
ns

—
E

:W
at

er
su

pp
ly

;N
FC

N
PL

_A
C

C
d

en
ot

es
th

e
ag

gr
eg

at
e

N
PL

s—
no

n-
fin

an
ci

al
co

rp
or

at
io

ns
—

I:
A

cc
om

m
od

at
io

n
an

d
fo

od
se

rv
ic

e
ac

tiv
iti

es
;N

FC
N

PL
_A

D
M

st
an

ds
fo

r
ag

gr
eg

at
e

N
PL

s—
no

n-
fin

an
ci

al
co

rp
or

at
io

ns
—

N
:

A
dm

in
is

tr
at

iv
e

an
d

su
pp

or
ts

er
vi

ce
ac

tiv
iti

es
;U

N
EM

P
re

pr
es

en
ts

th
e

%
of

un
em

pl
oy

m
en

t;
C

PI
de

no
te

s
th

e
qu

ar
te

rl
y

co
ns

um
er

pr
ic

e
in

de
x;

R
_G

D
P_

Q
2Q

re
pr

es
en

ts
th

e
qu

ar
te

rl
y

pe
rc

en
ta

ge
gr

ow
th

ra
te

of
re

al
G

D
P;

R
O

A
st

an
d

s
fo

r
re

tu
rn

on
as

se
ts

:p
ro

fi
to

r
lo

ss
fo

r
th

e
ye

ar
/t

ot
al

as
se

ts
;C

A
P

re
pr

es
en

ts
th

e
ba

nk
ca

pi
ta

la
nd

re
se

rv
es

to
to

ta
la

ss
et

s;
L

O
A

N
_D

IS
B

R
S

st
an

d
s

fo
r

lo
an

d
is

bu
rs

em
en

ts
to

cu
st

om
er

s;
G

O
V

T
_R

E
SP

_S
T

R
re

pr
es

en
ts

th
e

go
ve

rn
m

en
tr

es
po

ns
e

st
ri

ng
en

cy
in

d
ex

;
C

O
V

ID
19

_V
A

C
C

IN
A

TE
D

de
no

te
s

th
e

C
O

V
ID

-1
9

va
cc

in
at

ed
po

pu
la

tio
n;

fin
al

ly
,C

U
LT

U
R

E_
PC

A
st

an
ds

fo
r

th
e

na
tio

na
lc

ul
tu

ra
li

de
nt

ity
va

ri
ab

le
.

162



J. Risk Financial Manag. 2024, 17, 271

Notes

1 The United Kingdom is included in our selected country dataset, even though it exited the EU in January 2020.
2 The missing data belong to the following countries/periods: Country group 1: Bulgaria, Croatia, Cyprus, Latvia, Slovakia/Period:

2015Q1–2018Q3, Country group 2: Italy/Period: 2015Q–2016Q3, Country group 3: Greece/Period: 2015Q1–2020Q3.
3 Levin–Lin–Chu, Im–Pesaran–Shin, ADF–Fisher Chi-square, and PP–Fisher Chi-square tests were employed to account for data

stationarity. Unit root tables for level, first, and second differences are available upon request.
4 Second differences only applied on the variables: COVER_RATIO, DERIVATIVES, TIER1_CAP, and CAP.
5 All unit root test results are available upon request.
6 Durbin–Watson statistic results are depicted in respective tables of Appendix A.
7 For instance, the statistics of COVID-19 deaths (COVID19_DEATHS) as well as of the vaccinations against COVID-19 (COVID19_

VACCINATED), respectively, are only available in the post-COVID-19 period and not in the pre-COVID-19 period.
8 Binary variable with values 1/0, where 1 denotes the existence of COVID-19 and 0 the non-existence of COVID-19.
9 The descriptive statistics related to the secondary dependent variables and the control variables employed in this study, as well

as the correlation matrix, are not depicted due to space limitations, but are available upon request.
10 Tables depicting the regression results related with the NPL sector for the pre-pandemic period, as well as alternative econometric

results generated for all the subsamples of the current research, are not included due to space limitations. All regression models
are available upon request.

11 Table 4 serves as both a supplement and a robustness check for the primary results pertaining to the entire sample period. All
other robustness models are available upon request.

12 Detailed robustness check results related to the exclusion of the United Kingdom are available upon request.
13 Detailed results of the NPL ratio dependent variable collected from the EBA database are available upon request.
14 Detailed results of robustness checks related to the alternative econometric methods used are available upon request.
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Abstract: This article provides both stylized facts and estimations of the endogenous nexus of the
financial fragility hypothesis (FFH) with public social spending (PSS) for a paradigmatic Eurozone
member country. The sample period 1995–2022 includes three major economic crises, the global
financial crisis 2007–2009, the European debt crisis 2010–2015 and the COVID-19 pandemic one
in 2020–2022. Within the context of the financialization literature, this paper is founded, for the
first time, as far as we know, on the “financial fragility hypothesis”, combining the effects of both
Minsky’s “financial instability”, as it has been extended for open economies, and the “Eurozone
fragility one”. Similar to the relevant literature, the findings show that the PSS is associated, in
a long-term steady state (cointegration), with the financial fragility process, starting, firstly, from
the hedge-financing structure with high profitability of firms, when PSS decreases; secondly, to
hyper-speculative financing with risky options, supported by bank credit and openness, indebtedness
or discretionary fiscal policy, when PSS rises; thirdly, to the hyper-speculative or even Ponzi financing
structures with over-indebtedness (leverage) from the global capital market, inflated asset prices
and internationalized fragility, when PSS also rises, and so on. Our conclusion validates Minsky’s
famous saying, “stability breeds instability”, also in the architecturally incomplete Eurozone. Policy
implications are straightforward and discussed.

Keywords: public social spending; financialization; Minsky’s extended financial instability hypothe-
sis; Eurozone’s fragility hypothesis; animal spirits
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1. Introduction

Our neoclassical model of standard economics proves that it is not sufficient to simul-
taneous interpretation, on the one hand, the continuous transformation of economies and,
on the other hand, the permanence of the market as a mode of production (Boyer 2022).
The more resounding example is the global financial crisis of 2008 (GFC-2008). The funda-
mental three assumptions of this prevailing model, self-regulating and efficient markets,
the rational behavior of actors and equilibrium, are obviously inadequate in explaining
contemporary structural crises (Boyer and Saillard 2002). Today, we recognize the fact that
the long-term dynamic development of the countries of East Asia was built on “proactive
state policy” (Wade 1990). China’s resilience and better performance than North America
after the GFC-2008 have shown that there may be more effective alternative development
models (Boyer et al. 2011; Alary and Lafaye de Micheaux 2015). Especially in the European
Union (EU), we should take into account that given complementarities among institutional
forms, such as transfer payments and social security systems, the productive system and
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specialization imply more interdependence (not only competition), provided that a stable
international regime prevails (Boyer 2022).

A crucial transformation of the contemporary Western economies (North America and
Europe) concerns the institution of the “financial system”, which, in the last forty years or so,
has gradually prevailed in almost all countries. More strictly speaking, this is the “financial-
ization” phenomenon that shaped the transformation of countries’ growth models, e.g., the
export-led, the welfare-led or even the consumption-led, to that of the finance-led growth
regime (Boyer 2000). However, there is no unanimity yet for its definition. Mader et al.
(2020) analytically explain a widely employed definition of the “financialization” offered
by Epstein (2005), which is “the increasing roles of financial motives, financial markets, financial
actors and financial institutions, in the operation of the domestic and international economies”.
Alternatively, scholarship on financialization (van der Zwan 2014; Besedovsky 2018; Mader
et al. 2020) has identified the following four different aspects: (1) the emergence of a new
regime of accumulation, (2) the dominance of shareholder value, (3) the financialization of
everyday life, and (4) structured finance and cultural as well as calculative transformation
of credit rating agencies (CRAs). The literature on financialization can be classified into
two groups depending on whether the focus of the research is microeconomic or macroeco-
nomic (Cibils and Allami 2013). The last one includes economists from the following three
schools of thought; first, “Régulation” (Boyer and Saillard 2002), second, “Post-Keynesian”
(Minsky 1975, 1977, 1978, 1982, 1983, 1986, 1992a, 1992b, 1995, 1996), and third, “Radical”
(Krippner 2005; Epstein 2005; Lapavitsas 2009).

The aim of this paper is to examine if the “financialization” of a European Monetary
Union’s (EMU) member country (namely Greece1) can explain its public social spending
(PSS) during the period 1995–2022. The famous welfare state, an element of the “identity”
of the countries of the European Union (EU), is profoundly transformed2 in more and
more financialized economies. Thus, in seeking relevant evidence, we investigate the
research question “Is the financial fragility hypothesis (FFH) compatible with long run or
steady state public social spending (PSS) of an EMU’s member-country (namely Greece),
over the sample period 1995–2022?” The term FFH includes3 Minsky’s (1986) financial
instability hypothesis (FIH) as it has been extended by Arestis and Glickman (2002) for
open economies (eFIH) and the Eurozone fragility hypothesis (EZFH) (De Grauwe 2011,
2012, 2013; De Grauwe and Ji 2022), since Greece belongs to the core of the EU and that of
the EMU.

To our knowledge, there is no other study to date that applies the FFH theory and our
methodology. Moreover, the case of Greece as a small-open EMU economy is “paradig-
matic“ because (a) it is internationally deficient, specialized mainly in services such as
shipping or tourism, its financialization has been proven (Kyriakopoulos et al. 2022), while
this literature is compatible with the endogenous “FFH-PSS” nexus we study here; (b) it
was the only one of the EMU member countries for which the political system (Greece–EU)
allowed the liquidity crisis of 2010 to slide into a solvency crisis and finally a sovereign
default in 2012; it is the same country that, until the GFC-2008, had approximately the same
credit rating by the CRAs as the other EMU member countries, but none of them (which
experienced the Eurozone-sovereign or banking crisis, namely Italy, Portugal, Spain and
Ireland) except Greece signed three MoUs4 with the Troika (IMF, European Commission
and ECB5).

We focus on the theory of FFH as an appropriate stream of the financialization process
transforming our economies based on the theoretical idea of endogenous financial instability
or even crises, as well as because it seems that it satisfactorily interprets the PSS (Boyer 2013;
De Grauwe 2013; Rossi 2013). The sample period 1995–2022 covers one and a half business
cycles with three global or regional crises, the GFC-2008, the Eurozone debt crisis 2010–2015
and the economic crisis of COVID-19 pandemic (2020–2022). Eurozone fragility, always
present over the sample period, is conceived on either issuing debt denominated in euro
that member countries do not control or where no centralized fiscal budget exists, or even
that the European Central Bank (ECB) cannot, by its statute, act as a lender of last resort for
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any country of the zone. That is why we have introduced a “Hyper-speculative” financing
structure in order to take into account this permanent source of regional instability (EZFH).

The stylized facts we analyzed based on many time series graphs showed that the
sample period could be divided into four sub-periods identified by the FFH as (a) the “super-
speculative financing structure” 1995–2002, (b) a mix of “hedge and hyper-speculative
financing structure” 2002–2008, (c) the “hyper-speculative financing structure” 2008–2018
and (d) the “hyper-speculative” but with some indications towards the “hedge-financing
structure” 2018–2022. Furthermore, within this context, we provide consistent interpre-
tations for the Greek PSS based on empirical models [ARDL (p, q1, . . ., qk)] estimated
at long-term steady-state relationships (cointegrated) with the main factors of the FFH
theory; under the limitation of Eurozone vulnerability, these could be allocated to the
following stages: (a) clear profitability of the private sector; (b) its risky options supported
by bank credits and discretionary fiscal policy; (c) openness to the global capital market
and over-indebtedness, revealing “animal spirits” . . . until the produced instability leads to
a new structure of markets restoring stability, and so on.

We contribute the relevant theory by providing the new term of “hyper-speculative
financing” and the FFH economic interpretations of the public social spending of an EMU
member country. The most important regional lesson resulting from the conclusion of
this paper seems to has already been taken from the European authorities; for instance,
one can see the reversal of the European monetary (PEPP6 by the European Central Bank
(ECB) instead of OMT7) and fiscal (RRF8 by the European Commission instead of austerity)
policies during the economic crisis of the COVID-19 pandemic (2020–2022) versus the
Eurozone debt crisis (2010–2015).

Our research can be generalized to the Eurozone member countries. This is the goal
for our next paper. Furthermore, the generalization question of this paper is equivalent to
asking whether the Eurozone continues to be fragile. As De Grauwe and Ji (2022) explain,
the ECB’s willingness to be the lender of last resort in member state bond markets is
uncertain. President Draghi did so in 2012 with his famous “whatever it takes” and the
OMT program, for which he did not have to put up a single euro. Will Lagarde or whichever
next ECB president do so if need be? Since the problem Greece faced in 2010–2012 has
not been institutionally solved, it could happen to any other member country of the EMU
as long as bond holders, e.g., fund managers, fear (for any reason) that bonds will not be
repaid at maturity, which could trigger a self-fulfilling liquidity crisis and even a default.

The structure of the paper is as follows. In the Section 2, we discuss the theoretical
underpinnings of the financial fragility hypothesis, for which we document its explanation
of public social spending or social security payments. In the Section 3, we describe the
research design, modeling and the data analyzed in the paper. The Section 4 presents the
empirical analysis and results with the relevant interpretations we offer, while the Section 5
concludes the paper.

2. Theoretical Foundation of the Financial Fragility Hypothesis

Public social spending (PSS) includes both demographic and economic categories of
benefits. Demographic ones can be pensions or survivors’ and family support benefits,
while those linked to the economic cycle can be sickness, disability, unemployment and
social exclusion benefits. EMU members like Greece, as aging societies, are expected to
have increasing needs for demographic categories anyway.

Economically, however, it should be stressed that, as Darby and Melitz (2008) have
shown9, PSS for aspects like unemployment, age and health, and incapacity and sickness
functions as an automatic stabilizer, i.e., their payments during recessions increase and
conversely, in recovery, decrease. This evidence is very important because although PSS
as an automatic stabilizer is proven to work in favor of a “smooth landing or take-off” of
the economy, they do not seem to disprove the endogenous nature of cycles or even crises
(as this paper also shows), as Minsky (1986) summarized in his famous phrase “stability
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breeds instability”. Thus, the automatic stabilizer argument enhances the respective of the
introduction section that this paper’s evidence could be generalized in the Eurozone.

Thus, as transfer payments are recorded in government expenditures, PSS follows the
mechanism of income redistribution (social policy) within the effectiveness of fiscal policy.
More specifically, the European System of Accounts (ESA 2010, § 4.83) defines the (PSS)
“Social contributions and benefits (D.6) as: social benefits are transfers to households, in cash or in
kind, intended to relieve them from the financial burden of a number of risks or needs10 [(a) sickness;
(b) invalidity, disability; (c) occupational accident or disease; (d) old age; (e) survivors; (f) maternity;
(g) family; (h) promotion of employment; (i) unemployment; (j) housing; (k) education; (l) general
neediness], made through collectively organized schemes, or outside such schemes by government
units and Nonprofit Institutions Serving Households (NPISHs); they include payments from general
government to producers which individually benefit households and which are made in the context
of social risks or needs”.

In order to develop our research question, we start with the broad theoretical body of
“financialization”, which has been recently excellently overviewed by Mader et al. (2020).
We can distinguish the economists who work at a microeconomic level from those who are
interested in the great picture or the macroeconomy. The latter include the Regulationist
(Boyer and Saillard 2002; Boyer 2000, 2022), the post-Keynesian (Palley 2007) and the Radical
(Krippner 2005; Epstein 2005; Lapavitsas 2009) schools of thought. Among post-Keynesians,
the financial instability hypothesis (FIH) theory proposed by Minsky (1957, 1975, 1982,
1986) holds a dominant position in the literature because of its great interpretative capacity
for business cycles and crises, like the GFC-2008 or the Eurozone’s (2010–2018) one.

Minsky introduced the term “money manager capitalism” to describe not only a version
of capitalism that is dominated by financial motives and activities but rather to define
capitalism as financialized by default (Sotiropoulos and Hillig 2020; Christophers and Fine
2020). In this perspective, his FIH is founded on the idea that any (capitalist) economy
endogenously establishes a financial structure which is susceptible to crises (Minsky 1983).
Its economic performance is mainly determined by the way firms finance their fixed capital
investments. Thus, in the first stage of the upward trend of a business cycle, often called
the “recovery phase”, economic actors (primarily the businesses) are able to finance from
their operations both the interests and principal of their loans; Minsky called this financial
structure “hedge finance”. The reason seems to be that both lenders and borrowers do
remember recent depression times, so they behave conservatively, while investment plans
are mainly financed by internal sources (retained earnings) rather than through banks or
other external sources. So, corporate “profitability” seems to be not only the starting point
for the hedge financing stage but also its foundation, due to the fact that the previous period
of high risk is still “alive”.

Nevertheless, “A break in the boom occurs whenever. . . reversals in present-value
relations take place. Often this occurs after the increase in demand financed by speculative
finance has raised interest rates, wages of labor, and prices of material so that profit
margins and thus the ability to validate the past has eroded” (Minsky 1986, p. 220). Arestis
and Glickman (2002) underline here what is the most important, which is in contrast
with the neo-classical model, though strongly compatible with financial (in origin) crises,
i.e., the endogenous nature of the events that break the boom reached by the economy.
Although Minsky (1977) accepts that the catalyst of a crisis could be an “external” event,
he steadily denies the “exogenous shocks or accidents or even policy errors”, writing that
“our economy endogenously develops fragile or crisis-prone financial structures” (Minsky
1977, pp. 139–40). Thus, the memories fade due to the increased output (fueled by raised
investments), which causes optimism to prevail in markets. This triggers entrepreneurs
(see, Schumpeter’s sense) to promote projects on innovative products, which inevitably
come, this time, with more risky debts. Hence, some of these risky investments could fail
(due to the mentioned reversal of present values caused by raised income, interest rate
and so on), while if the failures last, then the respective borrowers could not be able to
repay (at least) part of their loan. If the bank still believes in the project, it may refinance
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the principal while it steadily receives interest. Minsky calls this second stage of the FIH
“speculative” finance. External financing and growing debts characterize the speculative
financing stage. The duration of this speculative financing stage could be prolonged by
reckless leveraging, which actually could be translated as the exposure to risk of asset
prices’ collapse (Dow 2020). Thus, in Minsky’s thought, financial leverage, increasing the
ratio of debts in the capital structure, is really significant for the liquidity, the solvency and
finally the bankruptcy of any agent.

When a “market” is witnessed of a number of insolvent borrowers, or if it happens
that a policy is reversed by the authorities, then firms, sectors or even the economy as a
whole could enter the final (third) stage of the Minskyan FIH, that of “Ponzi” finance. In
the latter, the borrower can repay neither the capital nor the interests of their debts from
operational cash flows; thus, they are bankrupted.

The direct consequence of the FIH is the famous Minskyan quote “stability breeds
instability” over the long term, because of the endogenous devaluing of liquidity, the easy
lending standards by the deregulated banking system, and the ensuing private debt—
leverage—in order to support inflated asset values and the rising expensive capital stock
(Holloway and Eloranta 2014; De Grauwe 2013).

In addition, innovation could also come from credit institutions, as happens in reality.
This concerns their well-structured processes and their financial products: first, the world-
wide deregulation process, starting in the early mid-70s from the US, which mainly gave
birth to the globalization process (Sen 2020); second, the liberation of international financial
transactions, notably free and easy capital flows (after the collapse of the Bretton Woods
system in 1973); third, crucial financial innovation instruments, i.e., mainly derivatives, like
forward, futures, options, and swaps originating from commodity markets or even collat-
eralized debt obligations (CDO) or mortgage- (or asset-) backed securities (MBS or ABS)
or credit default swaps (CDS) and the like; it is noteworthy that when financial assets are
not backed by physical ones, then they constitute the essential components of an aspect of
the financialization process (Blanchard et al. 2021). We refer in summary to the capabilities
offered by all these processes and instruments as “the drive towards financial innovation”. The
latter is explained in detail by Arestis and Glickman (2002) who extended the Minskyan
FIH (eFIH) in order to show the state of the internationalized financial fragility, whereby an
economy could fall when, in addition, domestic agents borrow in foreign exchange. They
distinguish three (3) potential scenarios: (i) a crisis that is domestic (d) in origin but impacts
its external (e) situation (they give this the term “d to e crisis”); (ii) a crisis that is external (e)
in origin but impacts its domestic (d) situation (they give this the term “e to d crisis”); and
(iii) crisis-intensifying interactions between (i) and (ii).

The first (i) potential scenario, a “d to e crisis”, as already mentioned, starts from a rising
cost of domestic capital goods, while, as Minsky argues, the result will be present-value
reversal and a decline in asset prices. However, the speculative financed units in the closed
economy of the early Minskyan analysis are transformed now into the open one to “super-
speculative” finance because of the huge outflows of international portfolio investments
(both by non-residents and residents) who cannot afford the devaluation of their domestic
assets. The latter causes the home currency to devalue too, or it could even trigger an
exchange rate crisis. Thus, domestic firms in the open economy are now vulnerable due
to the fact that even if they were hedge-financed in the beginning (matching asset and
liability maturities), they have incurred debts in foreign exchange, while their cash flows are
denominated in the home currency. The contagion effects could now be internationalized.
As regards the openness of the country to global financial markets, this could cause the
second (ii) scenario, a “e to d crisis”, through the foreign exchange market or the form of
its international integration, e.g., it could be a member of a monetary union (e.g., EMU).
So, in the stand-alone case, the residents could accumulate debts denominated in foreign
currencies; as long as the central bank can also increase the official reserves so as to be
able to finance the relevant liabilities with no need for intervention in the foreign exchange
market, then hedge-financing could be sustainable; however, when the endogenous process
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drives up the debt-to-reserves ratio (especially short-term debt), creating doubts regarding
the ability of monetary authorities to preserve the purchasing power of the home currency,
then the market expectations for the exchange rate could become a source of uncertainty,
destabilizing the domestic economy vs. the rest of the world; thus, possible fire-sales of
the home currency could, in effect, downgrade the finance of domestic units, including
that of the state, to the so called super-speculative (Arestis and Glickman 2002) or even the
Ponzi financing final stage (equivalent to bankruptcy). The external finance of Minsky’s
speculative stage is now exacerbated by foreign exchange markets’ effects, hence the term
“super”-speculative.

Furthermore, in the case of the member countries of an incomplete monetary union
like the Eurozone (or EMU), the super-speculative stage can become even worse. This is
because they have delegated their monetary policy to the ECB, which, by its mandate,
cannot act as a lender-of-last-resort, and hence, the members of the EMU cannot give a
100% guarantee to their bondholders that they will have the necessary liquidity to pay
them out at maturity (Boyer 2013; De Grauwe 2013; Rossi 2013; De Grauwe and Ji 2022).
Put differently, Greece, like every member country of the EMU, issues government bonds
in the home currency, the euro, over which it has no control. Thus, as has historically
been confirmed, after the GFC-2008 and the ensuing Eurozone sovereign debt crisis that
erupted in 2010 (EZ-2010), the unified till then bonds’ risk was priced differently since
then by the relevant capital market for the South and West Euro-Area Periphery countries
(SWEAP) than for the core ones (CORE). This special risk that a government of an EMU
member state can run out of cash, which creates the potential for self-fulfilling liquidity
crises that may force it to default (as it was the case for Greece in 2010–2012), cannot arise
in standalone countries because the central bank of the latter can issue whatever amount in
home currency to repay its government bondholders at maturity. Thus, in order to take into
account this additional Eurozone-country risk to the super-speculative scheme of Arestis
and Glickman (2002), we introduce the term “hyper-speculative” financing units, so as to
complete the financial fragility hypothesis (FFH). The latter is theoretically expected to
affect the EMU’s government expenditures of the sample era, part of which are the (Greek)
PSS we analyze in this paper.

It is worth noting that this aforementioned risk fragmentation of the EZ-2010 (coming
from the diversity of the government bond yields, distinguished into bad and good clusters)
and the ensuing burst of the Eurozone’s fragility11 did not happen during the economic
crisis of the COVID-19 pandemic, and thus did not trigger a new sovereign crisis. The
reason was probably the monetary (the unconditional PEPP of the ECB) and fiscal (the
first “Eurobonds”—NGEU12 program) policies applied by the European authorities (De
Grauwe and Ji 2022).

In Figure 1, the main factors of the FFH affecting PSS are schematically allocated to
the following three stages:

(a) Starting from “stability economic conditions”, the domestic results mainly increase
the profitability of the private sector. “Hedge financing structure” prevails. In general,
PSS is expected to decrease as output raises [↓ E(PSS)].

(b) The entrance of new foreign direct investments (FDIs) or even short-run portfolios
increase risky options for domestic small-medium enterprises (SMEs), which seek bank
credits and discretionary fiscal policy resulting in financial leverage—indebtedness—
while the inflated asset prices and exposure to foreign funds feed instability conditions
of “hyper-speculative financing structure”. In general, PSS is expected to increase as
output is squeezed [↑ E(PSS)].

(c) The “animal spirits” of the financial downturn should be “paid” by the government
through austerity policies. . . “Ponzi-finance” is exacerbated by the Eurozone’s inherent
fragility. In general, PSS is expected to increase as output is squeezed [↑ E(PSS)]. New
markets’ structures give birth to a new round from stability to instability, and so on.
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Figure 1. Financial fragility hypothesis (FFH): an endogenous process. Notes:
.
y = real gross domestic

product (GDP) growth; I = business (fixed) investments; E(PSS) = theoretically expected value
of public social spending (PSS) or social security payments; Π = profitability; Opt = optimism;
EMU = European Monetary Union or Eurozone (EZN) member countries; FS = financial system;
ECB = European Central Bank; NPL = non-performing loans.

Based on the aforementioned theoretical analysis of FFH (Minsky 1986; Arestis and
Glickman 2002; De Grauwe 2011; Mader et al. 2020), it is considered plausible to empiri-
cally investigate the following research question: “Is the financial fragility hypothesis (FFH)
compatible with long run or steady state public social spending (PSS) of an EMU’s member-country
(namely Greece), over the sample period 1995–2022?”

Kyriakopoulos et al. (2022) provided theoretical support and empirical evidence for
the financialization of the Greek economy based on Boyer’s (2000) seminal paper. They
confirmed the compatibility of a number of mechanisms that originated from the financial
system (see Boyer 2000, Figure 3) and impacted the dependent variable of PSS. However,
in this paper, we have proceeded a step further: we elaborate on the specific theoretical
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underpinnings of the FFH theory in this section; we appropriately apply, in the following
section, the ARDL (p, q) econometric method of Pesaran et al. (2001); and finally, we
propose the variable selections tailored to explore the endogenous impacts of financial
instability on PSS.

3. Research Design, Modeling and Data

The epistemological problem of the difference between research data and research
purpose, is also present in this study, where our effort is to identify if the whole economy or
a sector is in a specific Minsky financial stage. However, we can obtain a wider picture, as
for instance, when during the Eurozone sovereign debt crisis in 2010–2012, the bond market
sentiments transformed the Greek government’s liquidity crisis to a solvency one and
eventually forced it into bankruptcy; this obviously constitutes the Ponzi finance stage. In
addition, we would be making an epistemological error if we tried to “prove” our falsifiable
research question (Popper 2002; Kuhn 1962; Hepburn and Andersen 2021). We only try
to test if the FFH could be considered compatible with the long term or steady state of an
EMU’s member country (Greece) PSS (cointegrated) over the sample period 1995–2022.

As explained earlier, the financial fragility of a small open Eurozone-member economy
arises when endogenous factors predicted by the theory appear and cause either ups and
downs of business cycles or, even worse, crises. Thus, we develop a double test for the
relationship, “FFH, the cause—PSS, the effect-purpose”; first, we use descriptive statistics
with many time series graphs in order to see if the stylized facts of the Greek economy’s
impacts on PSS tell the story of the FFH; second, in the econometric analysis, we identify
autoregressive distributed lag [ARDL (p, q1, . . ., qk)] empirical models so as to test if there
are long-run (cointegrated) relationships between the dependent of the PSS and a number
of “independent” variables expressing the factors predicted by the FFH theory.

More specifically, the social contributions and benefits (D.6) paid (PSS) in Greece
include13 seven out of twelve risks or needs provided by the (ESA 2010), that is, (1) old age
(pensions), (2) sickness, (3) survivors, (4) disability, (5) family, (6) unemployment, and since
2014, (7) social exclusion14 (see Appendix A, Figure A13 evolution of the PSS composition).

We expect that the main factors of the FFH affecting PSS, as they have been explained
in the previous section and presented in Figure 1, can be detected from estimations of our
empirical ARDL (p, q) models. However, a limited effect of PSS functioning as an automatic
stabilizer is expected, especially during the period of the Eurozone debt crisis (2010–2015),
not only because of the Stability and Growth Pact (SGP of the EMU) predictions15 still in
place, but mainly because of the harsh austerity–deflation policies imposed on the country
by the Troika (International Monetary Fund—IMF, European Commission—EC, and ECB)
through the memoranda (MoU) signed by the government. They treated PSS as a luxury
good with low-income elasticity.

So, first, we investigate whether the “profitability” of sectors or the economy as a
whole is such that the constant expansion of the real output can be justified, i.e., whether
we can detect the “stability conditions” expressing “hedge finance”. If the data (primarily
of the non-financial sector) record a sharp increase in credit and then loans with a parallel
increase in asset prices, this could suggest a robust financial structure in that period (hedge
finance). Conversely, if endogenous forces push asset prices down, while private sector
borrowing increases, alongside anemic growth in real output (a widening output gap), then
our open Eurozone-member economy slides into a “hyper-speculative financial” structure.
Hence, this could reflect an advanced stage of the Minsky moment “stability breeds instabil-
ity”. Further, for Greece, which belongs to the EMU, the previously mentioned Eurozone
fragility factor should be added. That cumulative effect of “free capital movements plus
the membership of the incomplete EMU”, we have called the “hyper-speculative” finan-
cial structure. Finally, the “Ponzi” finance stage can be easily ascertained from declared
solvency crisis—defaulting.
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We specify the long-term model in Equation (1).

scbtotgdpt = a + Xjt + εt (1)

where scbtotgdpt = Greek social contributions and benefits paid (the dependent variable);
Xjt = 1, . . ., k explanatory variables; t = time in quarters; εt = the disturbance term.

By implementing the Pesaran et al. (2001) bounds testing approach for the cointegra-
tion, and by rewriting Equation (1) in an error-correction model (ECM) form, the short-run
effects of the FFH factors on PSS are presented in the Equation (2) (Hajilee et al. 2021).

Δscbtotgdpt = a +
nj

∑
k=1

βt−kΔXjt−κ + λjXjt−1 + ξtεt−1 + μt (2)

To demonstrate the long-term relationship, we need to control two criteria, namely
the sign and significance level of the error-correction coefficient (ξt); a significant negative
ξt is an indication of a long-term relationship or cointegration among the variables.

Equation (2) has been estimated in five (5) different models according to the FFH
structure summarized in Figure 1, while estimations of the variables are presented in Table 3.
The definitions and sources of the variables are reported in Table A1 of Appendix A. So, the
vectors of independents include Model 1, focusing on the “profitability factor” Xjt = (invgdp,
realgdp10yy, discrpol, goss11gdp, goss12gdp); Model 2a, focusing on the “risky options and
financial development factors” Xjt = (realgdp10yy, discrpol, credtnfgdp16, credtfgdp); Model 2b,
focusing on the “Openness and indebtness -leverage” Xjt = (realgdp10yy, discrpol, cagdp,
s11debtgdp, pudbtgr, s1ltloanss2tot); Model 2c, stressing the “Inflated asset prices and foreign
funds exposure” Xjt = (realgdp10yy, cagdp, s11debtgdp, s1ltloanss2tot, hpiyoy, asegspiyoy,
gr10ygby); and Model 3, focusing on “Animal spirits “paid” by the gov.” Xjt = (discrpol,
m3outsgdp, nlbs13gdp, rgsnowb).

An example of the analytical form of Model 1 (Table 3) as a special case of Equation (2)
is presented in Equation (2a).

Δscbtotgdpt = a +
n1
∑

k=1
βt−kΔinvgdpt−κ +

n2
∑

k=1
βt−kΔrealgdp10yyt−κ +

n3
∑

k=1
βt−kΔdiscrpolt−κ

+
n4
∑

k=1
βt−kΔgoss11gdpt−κ +

n5
∑

k=1
βt−kΔgoss12gdpt−κ + λ1invgdpt−1 + λ2realgdp10yyt−1

+λ3discrpolt−1 + λ4goss11gdpt−1 + λ5goss12gdpt−1 + ξtεt−1 + μt

(2a)

As Kyriakopoulos et al. (2022) mentioned, the Pesaran et al. (2001) estimation approach
used in this paper has three main advantages over other methods of cointegration: it
obviates the unit root pretests to identify the degree of integration of the time series; it can
be used with either I(0) or I(1) variables, but not I(2); a one-step simultaneous estimation on
both long-term and short-term models is applied. The procedure involves three stages (Goel
et al. 2008): first, searching the long-term (level) relationship among the variables applying
the bound tests through the estimation of a conditional ECM; second, the lagged dependent-
variable term and the one-period lag on regressors are tested for joint significance via an
F-test, under the (null) H0 “variables have not relation in levels” and using the critical
values of Pesaran et al. (2001), and a supplementary t-test is available for the significance of
the lagged dependent variable, with critical values again provided by Pesaran et al. (2001);
third, if from the previous tests a level relationship cannot be rejected, then the long-term
or cointegrated one is estimated through the ARDL procedure, as proposed by Pesaran and
Shin (1999).

In Table 3, only the estimated coefficients (λi and ξt) of the ECM are presented, since
we are interested only in long-term cointegrated relationships.

As regards the “discretionary fiscal policy” variable (discrpol), this was based on the
methodology of Fatás and Mihov (2003), and we have used it as a proxy of the unobserved
government expenditures such as the “interest paid for the public debt” or “countercyclical
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additional payments”. It comes from the residuals of the ordinary least squares (OLS),
estimated using Equation (3)

Δlgovconst = Δlgovconst−1 + Δlgdpt + in f lrt + in f lr2
t + f uelspiyyt + εt (3)

where Δlgovconst is the growth rate (yoy) of the government consumption expenditures;
Δlgdpt is the growth rate of the nominal gross domestic product (GDP); in f lrt is the
inflation rate as measured by the general consumer price index; in f lr2

t is the squared
inflation; f uelspiyyt is the growth rate of fuel price index (yoy).

All data used in the paper have been drawn either from the Refinitiv (LSEG) database,
the Hellenic Statistical Authority17 or the Bank of Greece18.

4. Empirical Analysis and Discussion

We begin with a wider picture of the economy 1995–2023 based on the raw variables
and stylized facts shown in the graphs provided in Appendix A. It should be pointed
out that although PSS payments are transfer payments, they are nevertheless recorded in
government expenditures and hence in the state budget; see fiscal policy.

So, in the first step of (descriptive statistical) empirical analysis, one can find out if the
national accounts data, which we processed and present in Figures A1–A13 in Appendix A,
are compatible with the FFH as summarized schematically in Figure 1. From the latter arise
the turning points one looks for: (a) profitability feeding a climate of confidence–optimism
and rising credits, which could express the Minsky “hedge financing” stage; (b) a sequence
from the undertaking of risky business investment plans with extra leverage in foreign
exchange currency and the reversal of present values with shrinking profit margins, to a
rise in outstanding debts and pessimism and capital outflows with likely liquidity crisis,
which could be translated as the “hyper-speculative financing” stage; (c) according to
the finance-led growth regime adopted as part of the insertion of the country into the
incomplete EMU (Kyriakopoulos et al. 2022), this choice could also lead to bankruptcy, or,
in Minskyan terms, to a “Ponzi financing” structure.

We think that the accumulative information of the facts reported in Figures A1–A13 of
Appendix A need not be explained. A few comments could be useful:

Given that we are interested in (endogenous) financial instability, the starting point
should be the overall performance of the economy recorded by the history of the GDP (see
Figure A2). The global financial crisis of 2008 (GFC-2008) and the Eurozone debt crisis
2010–2014 had a decisive structural impact on the economy, which is reflected in the large
decline in employment in manufacturing (�32%) over the 2008–2014 recession and its
stagnation since then, while the respective approximately constant increase in the financial
sector is reflected in a jump in their ratio of FI/MNF (see Figure A1). The profitabilities,
measured by the gross operating surplus19 to GDP, of the non-financial sector (↓18%)
and financial sector (↑67%) follow opposite tendencies and translate the increase in the
financialization of the economy as well as the transition from a hedge–financial structure to
a hyper-speculative one (Figures A2 and A3).

The snowball effect shown in Figure A11 can express the change in the climate of
confidence from euphoria during 1995–2008 to pessimism or animal spirits over the deep
recession 2008–2014, stagnation 2014–2018 and some recovery since then. The most impor-
tant structural damage in a long-term perspective is demonstrated in the de-investment
of the economy (see Figures A6 and A8). In financial terms, the reversal in profit mar-
gins (2008–2014) can be confirmed by respective asset price falls (dwellings, the stocks in
the Athens exchange and government bonds) (see Figures A4, A5 and A9). The hyper-
speculative financing structure can once again be detected.

The international investment position (BP-IIP20) of the country is steadily negative
and in fact continuously deteriorated over the 2002–2022 period (see Figure A12). The
stylized facts of the international borrowing of the country are compatible with the FFH
and are similar to those in the literature (Vigny 2022; Amoutzias 2019).
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The facts could be interpreted as showing a de facto “Ponzi financing structure”, as
the productive private sector (S.11) was obliged to work with no credit since 2014 while
outstanding debt accumulated (see Figures A6–A8). Regarding the overall performance of
institutional sectors [(non-financial (S.11), financial (S.12), government (S.13) and House-
holds and NPISH (S1.M), and the domestic economy (S.1)] can be approximated by the
measurement of “net lending (+ surplus)/borrowing21 (- deficit)”22 to GDP (Figure A10).

Thus, in Minskyan terms and based on Table 1, it seems23 that respective data are
compatible with a “speculative” financial structure during the period before the introduc-
tion of the euro (1995–2002); then, the structure was “hyper-speculative” (2002–2012); after
that, the “Ponzi-financing” structure dominated since the government defaulted and bank
recapitalized in 2012 till 2015. From 2016, there was a return to a recovery trend with
“hyper-speculative financing”, because, despite the change in European policies (see PEPP
and RRF at least), Eurozone fragility remains (De Grauwe and Ji 2022).

Table 1. Indications from our sample for the Minskyan financial structures (averages of periods).

1995–2001 2002–2011 2012–2015 2016–2022

Gross Operating Surplus Non-Financ. Firms/GDP
(Figure A2) 0.180 0.170 0.160 0.140

Gross Operating Surplus Financ. Firms/GDP
(Figure A2) 0.020 0.020 0.010 0.030

Total Net Operating Income of Credit
Institutions/Net Capital (Figure A3) 0.560 0.490 0.280

Net lending (+) of Non-Financial firms (Figure A10) 0.025 0.115 0.199 0.018
Net lending (+) of Financial firms (Figure A10) 1.215 0.350 1.696 0.283

Net borrowing (−) of General Government
(Figure A10) −0.498 −0.592 −0.486 −0.142

Athens Stock Exchange General Index * (Figure A5) 0.438 0.595 −0.733 −0.832
Price of 10-year government bond * (Figure A5) 0.559 0.242 −1.547 0.253

Urban areas’ residential price index * (Figure A5) −1.293 0.949 −0.223 −0.339

Credit to private non-financial sector/GDP
(Figure A6) 0.050 0.196 0.012 −0.209

Outstanding Debt of Non-Financial Firms/GDP
(Figure A8) 0.418 0.565 0.691 0.633

Credit to Households/GDP (Figure A6) 0.103 0.442 0.651 0.575
Outstanding Debt of Households/GDP (Figure A8) 0.123 0.408 0.652 0.574
Non-Performing Loans/Total Gross Loans of Banks

(Figure A6) 5.403 27.459 32.780

Gross Fixed Capital Formation/GDP (Figure A8) 0.227 0.219 0.111 0.119
Current Account/GDP −0.047 −0.102 −0.018 −0.044

International Investment Position # (Figure A12) −184 −229 −274

Snowball Effect (Figure A11) 0.055 0.034 0.134 0.026

* Standardized values; # billion Euros; snowball effect = r − g; r = the weighted average of the interest rates
of 10-year government bonds; g = nominal GDP growth rate. All calculations are based on the dataset; we
constructed the reported Figures and graphs.

In the second step of the empirical analysis, we provide econometric estimations
(Table 3) and interpretations compatible with the FFH. The social contributions and benefits
paid as a ratio of GDP (scbtotgdp) are explicitly defined as the dependent variable of the
estimated empirical models identified in ECM forms as presented by Equation (2) or (2a).
In Table 2, the summary statistics of the variables used in the ARDL (p, q) estimations are
shown. The availability of data has defined their time span as well, so that we do not have
a balanced time series sample.
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Table 2. Summary statistics of the variables used in ARDL (p, q) estimations.

Variable Obs Mean Std. Dev. Min Max

scbtotgdp (the dependent var.) 97 0.4284 0.05 0.34 0.52
invgdp (model 1) 113 0.1803 0.06 0.08 0.29

realgdp10yy (model 1, 2) 114 0.0126 0.08 −0.43 0.22
discrpol (model 1, 2 & 3) 109 0.0000 0.04 −0.11 0.09

goss11gdp (model 1) 97 0.1601 0.02 0.10 0.20

goss12gdp (model 1) 97 0.0187 0.01 0.00 0.04
credtnfgdp (model 2) 112 0.5278 0.14 0.29 0.72
credthgdp (model 2) 112 0.4201 0.22 0.06 0.67

cagdp (model 2) 102 −0.0604 0.06 −0.19 0.12
s11debtgdp (model 2) 95 0.5879 0.10 0.37 0.73

pudbtgr (model 2) 87 0.0079 0.03 −0.20 0.10
s1ltloanss2tot (model 2) 102 0.4662 0.18 0.15 0.78

nprtfinflowsgdp (model 2) 85 −0.0214 0.13 −0.79 0.23
hpiyoy (model 2) 109 0.0350 0.08 −0.13 0.16

asegspiyoy (model 2) 108 0.0700 0.39 −0.66 1.67

gr10ygby (model 2) 104 0.0653 0.05 0.01 0.25
m3outsgdp (model 3) 108 3.7618 0.55 2.68 5.29
nlbs13gdp (model 3) 97 −0.0648 0.06 −0.31 0.06
rgsnowb (model 3) 103 0.0508 0.06 −0.07 0.26

Note: See Table A1 in Appendix A for the necessary details of all used variables; the variables are measured as
ratios or growth rates (not %) or even, in one case, are defined as residuals (discrpol). The dependent variable
in all models is the “social contributions and benefit paid as ratio to GDP” = scbtotgdp; for convenience we
repeat: (private fixed investment)/gross domestic product (GDP) = invgdp; real GDP growth rate (annual basis)
= realgdpanngr; discretionary policy (see Equation (3)) = discrpol; (gross operating surplus of the non-financial
sector)/GDP = goss11gdp; (gross operating surplus of the financial sector)/GDP = goss12gdp; (credit to non-
financial sector)/GDP = credtnfgdp; (credit to households and NPISH24)/GDP = credthgdp; (current account
balance)/GDP = cagdp; (outstanding debt of the non-financial sector)/GDP = s11debtgdp; growth rate of the public
debt = pudbtgr; (long-term (LT) loans to the non-financial sector coming from the external sector)/( total LT loans)
= s1ltloanss2tot; housing price index growth [year-over-year (yoy)] = hpiyoy; Athens exchange general share price
index (yoy) = asegspiyoy; Greek (GR) government 10 years bond yield = gr10ygby; (M325 outstanding)/GDP =
m3outsgdp; (general government net lending or borrowing)/GDP = nlbs13gdp; snowball effect (r-g)26 = rgsnowb.

In the estimated models27 presented in Table 3, it was not possible to distinguish sub-
periods of the business cycle detected in the previous descriptive analysis, for econometric
reasons, due to the insufficient data in the demanding process of ARDL (p, q) co-integration
relations. We should start the evaluation from the “Diagnostic Statistics, Pesaran et al.
(2001) bounds tests and Adjustment EC-Term”. Both the F-test and t-test confirm the
existence of a cointegration relationship for all the five models; this is equivalent to saying that
our research question cannot be rejected (at 1% significance level) given the second condition
of the negative sign and strong significance of the estimated coefficients of the ECM; the
latter vary between −0.76 and −1.51, indicating fast and very fast adjustment of the system.
That is, between 76% and 151% of the total difference from the short-run dynamics to the
long-term equilibrium trend was occurring within the coming quarter of the sample period.
Based on the remaining diagnostic tests, the estimated models cannot be rejected.

Table 3. ARDL estimations.

Model 1 Model 2a Model 2b Model 2c Model 3

Profitability
Risky options +

financial
developm.

Openness and
indebtedness—

leverage

Inflated asset
prices and

foreign fund
exposure

Animal spirits
“paid” by the

gov.

D.scbtotgdp 1999q4–2022q3 2007q4–2022q3 2001q1–2021q4 1999q4–2021q4 1999q4–2022q1
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Table 3. Cont.

Model 1 Model 2a Model 2b Model 2c Model 3

Panel A. Long-term (cointegrated) estimations

(Priv. Fix.
Investm.)/GDP −0.148 ***

Real GDP growth r. −0.224 *** −0.306 *** −0.248 *** −0.250 ***

Discret. Pol. 0.204 ** 0.279 ** 0.087 * 0.110 **

(Gross Operat. Surpl.
Non-Fin. Sect.)/GDP −0.418 **

(Gross Operat. Surpl.
Financ. Sect.)/GDP −0.961 **

(Credit to Non-Fin.
Sect.)/GDP 0.272 ***

(Credit to Households
and NPISH)/GDP 0.075 ***

(Current Account)/GDP −0.180 ** −0.341 ***

(Outstand. Debt Non-Fin.
Sect.)/GDP 0.152 *** 0.176 ***

Growth rate of thePublic
debt −0.093 **

(LT loans Non-Fin. sect.
from external sect.)/(Tot.

LT loans)28
0.057 ** 0.107 ***

Housing price index
growth (yoy) 0.062 *

Athens Exch. gen. sh. pr.
index (yoy) 0.019 ***

GR gov. 10 y. Bond Yield 0.140 ***

(M3 Outst.)/GDP 0.011 **

(Gen. Gov. net Lend. or
Borr.)/GDP −0.119 ***

Snowball eff. (r-g). 0.223 ***

Trend 0.0005 ** 0.0009 *** 0.001 *** 0.001 ***

Constant 0.3640 *** 0.256 *** 0.172 *** 0.173 *** 0.129 ***

Panel B. Diagnostic Statistics

Bounds test (H0: no level
relationship)

reject at 1%
level

reject at 1%
level

reject at 1%
level

reject at 1%
level

reject at 1%
level

Adjustment EC Term:
L.scbtotgdp −0.856 *** −0.757 *** −1.127 *** −1.512 *** −1.028 ***
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Table 3. Cont.

Model 1 Model 2a Model 2b Model 2c Model 3

Ramsey RESET F-test
(H0: Model has no
omitted variables)

Prob >
F = 0.2182

Prob >
F = 0.5505

Prob >
F = 0.4110

Prob >
F = 0.0826

Prob >
F = 0.1404

Breusch–Godfrey LM test
for AR (H0: no serial

correlation)

Prob >
chi2 = 0.2852

Prob >
chi2 = 0.3143

Prob >
chi2 = 0.7718

Prob >
chi2 = 0.2268

Prob >
chi2 = 0.3592

Breusch–Pagan/Cook–
Weisberg test (H0:
Constant variance)

Prob >
chi2 = 0.2574

Prob >
chi2 = 0.7495

Prob >
chi2 = 0.7341

Prob >
chi2 = 0.9560

Prob >
chi2 = 0.7774

Mean VIF 4.18 5.71 7.57 9.46 4.12

Observations 92 60 84 89 90

Adj R-squared 0.8099 0.8825 0.8177 0.8437 0.7959
Notes: Only long-term cointegration estimations are presented. *** stands for statistically significant at 1% level or
lower; ** stands for statistically significant at 5% level or lower; * stands for statistically significant at 10% level
or lower.

Model 1 (see Table 3) provides statistically significant estimations for the factors
concerning “profitability”, private investments, growth and discretionary fiscal policy (see
also Figure 1, stage 1 seems to prevail here), which are proved to be in a long-term steady
state with the dependent of the “social contributions and benefits to the GDP” (hereafter PSS).
Thus, when the gross operating surplus of the non-financial sector and the financial one (as
a proxy of the “profitability” of these main sectors of the economy) rise, the PSS decreases29

because the increasing output, income and employment reduce the need for social support,
mainly for old age, sickness and survivors30 (↑goss11(12)gdp → ↓scbtotgdp). The same
reasoning for the rising efficiency of the economy can also be used to justify the even
more statistically significant (at less than 0.001 level) negative relationship of both private
investments and the growth rate of the economy with the dependent of the PSS [↑(invgdp,
realgdpyy) → ↓scbtotgdp]; see relevant Figures A1–A4, A10 and A13 in Appendix A. These
findings are in line with Pierros (2020). The opposite statistically significant positive
steady state relationship between “discretionary policy” and PSS can be justified by the
government expenditure that does not concern either permanent behavior, nor the increase
in economic activity, nor inflation or fuel subsidies31, but rather and probably the electoral
cycle or populist extraordinary benefits, etc. (↑discrpol → ↑scbtotgdp).

In Model 2, we focused on the explanatory variables concerning risky options—
financial development, openness and indebtedness—leverage of the economy (see also
Figure 1, stage 2 seems to prevail here). Credits can increase the corporate turnover, which
is associated with employees’ increased sickness or invalidity or occupational accident
and disease, as well as greater requirements for supporting maternity and family, housing
or education from the social security system; hence, there is a positive estimated coeffi-
cient for the relationship between “credits to the non-financial sector” and PSS (Model 2a)
(↑credtnfgdp → ↑scbtotgdp). Also, the higher the credits to households, the more the family
can be expected to grow, and that is why, for the majority of employees or workers (middle
or lower incomes), more PSS is needed for housing, education, health and so on; this can be
a reasonable interpretation of the positive relationship with the PSS estimated in Model 2a
(↑credthgdp → ↑scbtotgdp); see relevant Figure A6 in Appendix A. These findings are also
similar to those of Amoutzias (2019).

Rising current account balances or a shrinking deficit, and an implicit increase in the
international competitiveness of domestic production, translates a respective increase in
net private investments, while both factors cause GDP growth (↑cagdp → ↓scbtotgdp); the
latter, as explained earlier, is negatively related to the automatic stabilizer PSS; see relevant
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Figure A12 in Appendix A for the international investment position of the country (BP-
IIP). Furthermore, the outstanding debt of the non-financial sector (S.11), which has been
estimated to be positively related to PSS, can pass, in good times (see the 1995–2008 period
here), the threshold of heavy financial leverage, which, in turn, refers to the transition from
the Minskyan “hedge to hyper-speculative financing”. To put it differently, the excessive
growth of private debt in times of euphoria, with an increase in the cost of capital (and the
lack of capital goods produced by domestic manufacturing32), due to its equally excessive
demand, since it reverses present values, leads to corporate bankruptcies. Thus, it causes a
decrease in production, income and employment, and therefore, there is a strong need to
increase social support for the affected (i.e., raise of the PSS); hence, there is a positive and
strongly significant estimated relation “outstanding debt of the non-financial sector—PSS”
in Models 2b and 2c (↑s11debtgdp → ↑scbtotgdp); see relevant Figure A8 in Appendix A.

However, the growth rate of public debt is not a surprise that is estimated to negatively
affect PSS because it focuses on the rate of increase and not on the level of this debt. So,
because this factor is perceived as synonymous with the fear or even the panic of the capital
markets, to whose rising they react with fire-sales of bonds or other assets to push up
their yields, real interest rates and so on, provoking once again the reversal of present
values, investment failures and bankruptcies. This process ends in a recession that demands
governments to release (or at least not brake or restrain) automatic stabilizers like PSS in
order to support the affected. Of course, this process in the Greek case was much worse
because the Troika imposed deflation policies—austerity—although they found a liquidity
crisis in the onset at 2010 and not a solvency crisis! The deflation process blocked the
operation of PSS—automatic stabilizers (↑pudbtgr → ↓scbtotgdp)! These began to operate in
a limited and gradual manner after 2012 and Draghi’s “whatever it takes”, the restructuring
programme (PSI), and the change in the composition of public debt from bonds to mortgage
loans from the Eurozone member countries through the ESM; see relevant Figure A9 in
Appendix A. So, in practice, it seems that the monetary policy determines the sustainability
of the public debt, as is predicted by post-Keynesians.

The variable concerning the long-term borrowing of the non-financial sector (S.11)
from abroad as a ratio to the total of its corresponding loans (Models 2b, 2c) is also of
paramount importance. A statistically significant positive (cointegration) relationship
with PSS was estimated. Its interpretation is similar to that of the outstanding debt of
the sector, but here, it is not enough to add the risk of the foreign currency. We should
also add that of the Eurozone’s fragility hypothesis (De Grauwe 2011). That is why we
propose to expand the Arestis and Glickman (2002) term of “super-speculative” with that
of “hyper-speculative” in order to also include the risk that the EMU financing units issue
their debts on the euro that no country controls (↑s1ltloanss2tot → ↑scbtotgdp); see relevant
Figure A12 in Appendix A.

The estimated long-term relationship between asset prices (housing, stock prices—
general price index, as well as 10-year government bond yield) and PSS theoretically only
has an expected positive sign for the last one, the yield of 10-year government bonds
(Model 2c). When this yield rises, it translates the decrease in the price of traded bonds
due to some kind of fear. Domestic interest rates are gradually influenced upwards, which
reduces aggregate demand, output, income and employment. To the extent that public
social spending (PSS) acts as an automatic stabilizer, it will increase as estimated in Model
2c [↑gr10ygby → ↑scbtotgdp]. As regards housing prices and prices of the Athens stock
exchange, the estimated positive cointegrated relation could be explained like this: in
times of crises (GFC-2008, EZ 2010–2015, COVID-19 2020–2022), the restructuring of the
goods–services market due to bankruptcies or M&As33 of firms (usually small and medium-
sized enterprises34) generally increases the profit margins (determined independently of
unemployment) of the survived, while labor wages decrease due to the large increase in
unemployment caused by the recession35. Then, logically, automatic stabilizers such as PSS
work in the opposite way, and therefore, there is a positive correlation between asset prices
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(especially equity prices) and social spending on relief for the affected [↑ (hpiyoy, asegspiyoy)
→ ↑scbtotgdp]; see relevant Figures A4 and A5 in Appendix A.

Finally, in Model 3, we present estimations concerning indicative monetary and fiscal
policy measures reacting to over-leverage and internationalized financial fragility. It should
be noted that regardless of the investment grade given by the CRAs36 for Greek government
bonds (junk until 2023), the ECB bought them (“waiver”) for reasons of financial stability
of the Eurozone; the latter caused a credit boom from the financial sector of the core EMU
countries towards Greece as a result of the increase in its private debt (especially due to a
real estate boom; see Figures A1 and A6–A8 in the Appendix A) up to the GFC-2008 (Boyer
2013). Thus, the expansionary monetary policy (M3/GDP) of the ECB through Keynesian
short-term processes drives lower interest rates and higher outputs, whereby income
and employment are compatible with less need for PSS. However, as prices rise due to
excess aggregate demand, in the long term, real money balances fall, interest rates increase
with output, and incomes and employment decrease; hence, there is a rise in automatic
stabilizers of PSS, such as employment promotion policies (↑m3outsgdp → ↑scbtotgdp). This
evidence is similar to that in Rossi (2013). The snowball effect (r-g) has been estimated as a
positive steady-state relationship with PSS; when it rises, the public debt rises too, while
contractionary effects result in a lower output, income and employment, causing an increase
in PSS (↑rgsnowb → ↑scbtotgdp). In the end, the increase in net government lending (+) (i.e.,
the primary fiscal budget surpluses, not only from the austerity policies implemented in
crises but also due to the SGP of the EMU before them) ameliorates the mood in the markets,
causing a decrease in interest rates and a respective increase in profit margins (especially
if public property is sold as it was here—a condition of the Troika lenders) and so on as
aforementioned; hence, lower amounts of PSS are needed, justifying the estimated negative
relationship (↑nlbs13gdp → ↓scbtotgdp); see relevant Figures A10 and A11 in Appendix A.

The findings reported in Table 3 are in line with the financialization literature, par-
ticularly with the FFH, including the incomplete Eurozone architecture and asymmetric
governance (among others, Vigny 2022; De Grauwe and Ji 2022; Pierros 2020; Amoutzias
2019; Boyer 2013; Rossi 2013).

5. Conclusions

In this paper, we have investigated the research question “Is the financial fragility
hypothesis (FFH) compatible with the long-term or steady-state public social spending
(PSS) of an EMU member country during the period 1995–2022?” Based on stylized facts
and relevant econometric estimations, we have reported (for Greek data) that we could
not disprove it. Methodologically, transfers of PSS are included (ESA 2010) in government
consumption, so they have to be treated as part of the general framework of the fiscal policy.
The latter require that we analyze the whole economic system, within the limitations of the
Eurozone’s fragility, and referring to the FFH, as endogenously breeding instability and
activating the automatic stabilizers like PSS.

Within this context, we provided interpretations for PSS, which was estimated [with
ARDL (p, q)] to be in long-term steady-state relationships with the main factors of the
FFH schematically and comprehensively presented in Figure 1. In the estimated models,
it is considered that it has been interpreted either in the first stage of the FFH concerning
“profitability”, with private investments, growth and discretionary fiscal policy according
to a predominant hedge–financing structure while PSS decreases; or the second stage, con-
cerning risky options—financial development, openness and indebtedness—that leverage
the economy by a prevailing structure of hyper-speculative financing while PSS rises; or
even the third stage of the FFH, concerning indicative monetary and fiscal policies reacting
to over-leverage and internationalized financial fragility of the EMU by a prevailing system
of hyper-speculative or Ponzi financing while PSS also rises.

We contributed the relevant theory by providing the new term of “hyper-speculative
financing” and economic interpretations of the behavior of PSS. This became possible in the
context of endogenous financial fragility (FFH, part of the financialization literature) of the
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Greek economy, a member country of the EMU, which offers useful policy implications for
academic research, investors and policy makers. The main domestic lessons are compatible
with the FFH and are to do with ensuring hedge–financing structures, while the most
important external ones are those we have learned from the reversal of EU policies during
the COVID-19 pandemic crisis, both fiscal with the quasi-Eurobond–RRF and monetary
with the ECB’s PEPP, which were introduced almost unconditionally for member states;
this reversal of the European policy helped to overcome that crisis without the panic of
the Eurozone sovereign or banking crisis, and especially of Greece during the period of
2010–2015. Our findings are similar to the relevant literature.

The main lesson the paper offers, especially to investors and policy makers37, is that
economic policy is needed since we could not reject the hypothesis that the system affecting
the PSS is endogenous, which seems equivalent to Minskyan’s famous quote “stability
breeds instability”.

In other words, economic policy does matter. Our sample economy has been shown
to endogenously produce vulnerability when competition is not ensured in all markets or
when economic policy is only concerned with nominal values (like discretionary policies in
the euphoria period 1995–2008 or austerity applied in the turbulent times of 2010–2015) and
not with the convergence or complementarity of real production patterns in the EMU. This
latter, i.e., the real convergence in the EU, has urgently required since the 2020 pandemic–
economic crisis, as well as the transformations of contemporary capitalisms, especially in
Asia (Boyer 2022) and recent geopolitical uncertainties such as wars in Europe and the
Middle East. We should correct the incomplete Eurozone by creating a central budget
to make fiscal policy effective at a European “united” level, like the monetary one by
the ECB; this is justified by the paper’s findings, which proved the endogenous nexus of
financial fragility—public social spending in (Greece), a paradigmatic member country of
the Eurozone.

This paper is limited by its target, focused on EMU member countries and especially
on a small open economy at the border of the EU. The authors aim in the near future to
replicate this research for countries at the periphery of the EMU, comparing the findings
with those of its core.
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Appendix A

Table A1. Definition, labels and sources of variables.

Definition Label (Location) Sources

Employment in Public Administration,
Social Security, Education, and Health as a
ratio of the total employment.

PASSEH-TOT
(Figure A1)

Quarterly National Accounts, copyright
OECD (The Organization for Economic
Cooperation and Development) via
Refinitiv (LSEG).

Manufacturing employment as a ratio of
the total.

MNF-TOT
(Figure A1)

Quarterly National Accounts, copyright
OECD via Refinitiv. . . . Manufacturing . . .

Financial and Insurance Activities’
employment as a ratio of the total.

FI-TOT
(Figure A1)

Quarterly National Accounts, copyright
OECD via Refinitiv. . . . Financial and
Insurance Activities . . .

Real Estate Activities’ employment as a
ratio of the total.

RE-TOT
(Figure A1)

Quarterly National Accounts, copyright
OECD via Refinitiv. . . . Real Estate
Activities . . .

Financial and Insurance Activities’
employment as a ratio of the
Manufacturing one.

FI-MFN
(Figure A1)

Authors’ calculations based on OECD data
via Refinitiv.

Gross Operating Surplus (GOS) of the
Non-Financial Firms (S.11).

GOS-S11GDP
(Figure A2 & Model 1)

Hellenic Statistical Authority and
Refinitiv/OECD data.

Gross Operating Surplus of the Financial
Firms (S.12).

GOS-S12GDP
(Figure A2 & Model 1)

Hellenic Statistical Authority and
Refinitiv/OECD data via Refinitiv.

Ratio of the GOS of the financial to the
non-financial sector.

S12/S11
(Figure A2)

Authors’ calculations based on Hellenic
Statistical Authority and OECD data via
Refinitiv.

Gross domestic product, current prices,
seasonally adjusted

GDPCUSA
(Figure A2) Hellenic Statistical Authority via Refinitiv.

Total Net Operating Income of Credit
Institutions in Greece (=Net Interest
Income + Net Fee and Commission Income
+ Dividend Income + Net Gains on
Financial Transactions + Other Income) as
Ratios of their Total Assets.

TNOI-TASS
(Figure A3)

Authors’ calculations based on Bank of
Greece data.

Total Net Operating Income of Credit
Institutions in Greece as Ratios of their Net
Capital.

TNOI-NCAP
(Figure A3)

Authors’ calculations based on Bank of
Greece data.

Index prices of dwellings (historical series),
urban areas. 1997 = 100

DWELLPI
(Figure A4) Bank of Greece.

Greece, Capital Markets, Market
Capitalization of Listed Domestic
Companies (% of Gross Domestic Product)

MRKCAPGDP
(Figure A4) World Bank WDI via Refinitiv.
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Table A1. Cont.

Definition Label (Location) Sources

Standardized form of the ASE general price
index based on the share price indices of
the Athens Exchange (ASE)

ASE-GI_sz
(Figure A5)

Authors’ calculations based on Bank of
Greece data.

Standardized form of the price of the 10
years Greek government’s bond based on
the Financial Markets, Greek Government
Securities.

PRICEGR10YB_sz
(Figure A5)

Authors’ calculations based on Bank of
Greece data.

Standardized form of the index prices of
dwellings based on the residential Property
Indices.

DWEPRIND_sz
(Figure A5)

Authors’ calculations based on Bank of
Greece data.

Credit to the Non-Financial Corporations
as a ratio of the GDP.

CDT-NONFGDP
(Figure A6 & Model 2)

Authors’ calculations based on Bank of
International Settlements via Refinitiv data.

Credit to the Households as a ratio of the
GDP.

CDT-HOUSGDP
(Figure A6 & Model 2)

Authors’ calculations based on Bank of
International Settlements via Refinitiv data.

Nonperforming loans to total gross loans.
Financial Soundness Indices.

NPLTGL
(Figure A6)

Authors’ calculations based on
International Monetary Fund (IMF) via
Refinitiv data.

Gross fixed capital formation to GDP ratio. GFCF-GDP
(Figure A6 and A8 and Model 1)

Authors’ calculations based on Hellenic
Statistical Authority data.

Loans to Non-financial corporations as a
ratio of total Banking Loans.

NFI-S.11/DL
(Figure A7)

Authors’ calculations based on Bank of
Greece data.

Loans to Financial institutions as a ratio of
total Banking Loans.

FI-S.12/DL
(Figure A7)

Authors’ calculations based on Bank of
Greece data.

Loans to the General Government as a ratio
of total Banking Loans.

GG-S.13/DL
(Figure A7)

Authors’ calculations based on Bank of
Greece data.

Loans to the Households & NPISH ratio of
total Banking Loans.

Oth-S.1M/DL
(Figure A7)

Authors’ calculations based on Bank of
Greece data.

Households and NPISH Debt Outstanding
to GDP.

HDEBTOUTSGDP
(Figure A8)

Authors’ calculations based on European
Central Bank via Refinitiv data.

Nonfinancial Corporations Debt
Outstanding to GDP.

NFIDEBTOUTSGDP
(Figure A8)

Authors’ calculations based on European
Central Bank via Refinitiv data.

Ratio of the Greek general government
bonds held by domestic banks to total
issued.

BGRbanks-GRGGB
(Figure A9)

Authors’ calculations based on Hellenic
Statistical Authority and Bank of Greece
data.

Ratio of the Greek general government
bonds held by domestic banks to their total
assets.

BGRbanks-TASSB
(Figure A9)

Authors’ calculations based on Hellenic
Statistical Authority and Bank of Greece
data.

Ratio of Net lending (+)/net borrowing (−)
(B.9) of the total economy (S.1) to GDP
(B.1g)

NLNDBRR/GDP-S.1
(Figure A10)

Authors’ calculations based on Hellenic
Statistical Authority data.

Ratio of Net lending (+)/net borrowing (−)
(B.9) of the nonfinancial corporations (S.11)
to GDP (B.1g)

NLNDBRR/GVA-S.11
(Figure A10)

Authors’ calculations based on Hellenic
Statistical Authority data.

Ratio of Net lending (+)/net borrowing (−)
(B.9) of the financial sector (S.12) to GDP
(B.1g)

NLNDBRR/GVA-S.12
(Figure A10)

Authors’ calculations based on Hellenic
Statistical Authority data.
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Table A1. Cont.

Definition Label (Location) Sources

Ratio of Net lending (+)/net borrowing (−)
(B.9) of the general government (S.13) to
GDP (B.1g)

NLNDBRR/GVA-S.13
(Figure A10)

Authors’ calculations based on Hellenic
Statistical Authority data.

Ratio of Net lending (+)/net borrowing (−)
(B.9) of the households and NPISH (S.1M)
to GDP (B.1g)

NLNDBRR/GVA-S.1M
(Figure A10)

Authors’ calculations based on Hellenic
Statistical Authority data.

Spread between the 10 years government
bond yield (r) and the growth rate of
nominal GDP (g).

R-G_SNOWB
(Figure A11 & Model 3)

Authors’ calculations based on Main
Economic Indicators, copyright OECD via
Refinitiv data.

Interest rate margin (average interest rates
on loans—deposits) of domestic banks.

interstRmrg
(Figure A11)

Authors’ calculations based on Bank of
Greece data.

Greece, Portfolio investments in domestic
stocks from non-residents (liabilities)

INFL-STOCKS
(Figure A12)

Authors’ calculations based on Bank of
Greece data.

Greece, Portfolio investments in domestic
bonds and treasury bills from
non-residents (liabilities)

INFL-BONDSTB
(Figure A12)

Authors’ calculations based on Bank of
Greece data.

Greece, Portfolio investments in foreign
stocks from residents (requirements)

OUTFL-STOCKS
(Figure A12)

Authors’ calculations based on Bank of
Greece data.

Greece, Portfolio investments in foreign
bonds and treasury bills from residents
(requirements)

OUTFL-BONDSTB
(Figure A12)

Authors’ calculations based on Bank of
Greece data.

Greece, Balance of Payments, Balance of
financial transactions, portfolio
investments.

BPFT-PRTFINV
(Figure A12)

Authors’ calculations based on Bank of
Greece data.

Greece, Balance of Payments, International
investment position.

BP-IIP
(Figure A12)

Authors’ calculations based on Bank of
Greece data.

Greece, Gross Domestic Product, Market
Prices, Annualized Rate, Constant Prices,
AR, 2010 Prices

realgdp10yy
(model 1, 2)

Quarterly National Accounts, copyright
OECD via Refinitiv.

Discretionary policy of the expenditures of
the general government (Fatás and Mihov
2003).

discrpol
(model 1, 2 & 3)

Authors’ calculations based on OECD via
Refinitiv and Hellenic Statistical Authority
data.

Balance of current account as a ratio of
GDP.

cagdp
(model 2) OECD Economic Outlook.

Greece, Sector Accounts, Other,
Nonfinancial Corporations, Debt
Outstanding to Gross Domestic Product.

s11debtgdp
(model 2)

ECB (the European Central Bank) via
Refinitiv.

The growth rate of the Greek, Public Debt,
General Government, Long-Term, Total,
Current Prices, not seas. adj., Euro.

pudbtgr
(model 2) World Bank QPSD via Refinitiv.

The ratio of Long Term (LT) Loans of
residents (S1) from non-residents (S2) to
Total LT loans of residents (S2/F42).

s1ltloanss2tot
(model 2)

Authors’ calculations based on Bank of
Greece data.

Ratio of the net portfolio investments
inflows to GDP. Balance of financial
transactions, Balance of payments (BPM6).

nprtfinflowsgdp
(model 2)

Authors’ calculations based on Bank of
Greece data.

Greece, Prices of Dwellings, Urban Areas
(nsa., 1997 = 100).

hpiyoy
(model 2) Oxford Economics via Refinitiv.
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Table A1. Cont.

Definition Label (Location) Sources

Athens stock exchange general stock price
index (year-over-year). asegspiyoy (model 2) Athens Exchange.

Greece, Long-Term Government Bond
Yields, 10-Year, Main (Including
Benchmark), Yield 10-Year Government
Bonds.

gr10ygby
(model 2)

OECD Main Economic Indicators via
Refinitiv.

The ratio for Greece, Money Supply M3
Outstanding Amounts, Mill. Euro to GDP.

m3outsgdp
(model 3)

Authors’ calculations based on Bank of
Greece data. OECD via Refinitiv for the
GDP.

The ratio (for Greece) of net lending (+) or
borrowing (−) of the general government
(S13) to GDP. Quarterly non-financial
accounts of institutional sectors.

nlbs13gdp
(model 3)

Authors’ calculations based on Hellenic
Statistical Authority data.

Social Contributions and Benefits Paid
(ratio to GDP).

scbtotgdp (the dependent var. in all
models)

Greece, Total Transactions
(ESA 2010), Social Contributions and
Benefits: Paid, Current Prices, Euro.
Refinitiv/Datastream/Eurostat.

Figure A1. Huge changes in the labor market especially since the GFC-2008. PASSEH-TOT = employ-
ment in public administration, social security, education, and health as a ratio of the total employment;
MFN (FI) [RE]-TOT = manufacturing (financial and insurance activities) [real estate activities] em-
ployment as a ratio of the total; FI-MFN = financial and Insurance Activities’ employment as a ratio
of the manufacturing one.
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Figure A2. Profitability of the financial sector and manufacturing, as well as current GDP (sa). GOS-
S11GDP = gross operating surplus (GOS) of non-financial firms (S.11) to GDP ratio; GOS-S12GDP
= gross operating surplus (GOS) of financial firms (S.12) to GDP ratio; S12/S11 = ratio of the GOS
of the financial to the non-financial sector; GDPCUSA = gross domestic product, current prices,
seasonally adjusted.

Figure A3. Profitability of credit Institutions. TNOI-TASS = total net operating income of credit
institutions in Greece (=net interest income + net fee and commission income + dividend income +
net gains on financial transactions + other income) as ratio of their total assets; TNOI-NCAP = Total
net operating income of credit institutions in Greece as ratios of their net capital.
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Figure A4. Asset prices and relative values. DWELLPI = index prices of dwellings (historical series),
urban areas, 1997 = 100; MRKCAPGDP = Greece, capital markets, market capitalization of listed
domestic companies (% of gross domestic product).

Figure A5. Volatility of asset prices. ASE-GI_sz = standardized form of the ASE general price index
based on the share price indices of the Athens Exchange (ASE); PRICEGR10YB_sz = standardized
form of the price of 10-year Greek government bonds based on the financial markets, Greek govern-
ment securities; DWEPRIND_sz = standardized form of the index prices of dwellings based on the
residential property indices.
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Figure A6. Credits, NPL and private investments to GDP. CDT-NONFGDP = credit to non-financial
corporations as a ratio of the GDP; CDT-HOUSGDP = credit to households as a ratio of the GDP;
NPLTGL = nonperforming loans to total gross loans, financial soundness indices; GFCF-GDP = gross
fixed capital formation (private fixed investments) to GDP ratio.

Figure A7. Distribution of banking loans. NFI-S.11/DL = loans to non-financial corporations as a
ratio of total banking loans; FI-S.12/DL = loans to financial institutions as a ratio of total banking
loans; GG-S.13/DL = loans to the general government as a ratio of total banking loans; Oth-S.1M/DL
= loans to households and NPISH as a ratio of total banking loans.

Figure A8. Debts and investments. HDEBTOUTSGDP = households and NPISH debt outstanding to
GDP; NFIDEBTOUTSGDP = nonfinancial corporations debt outstanding to GDP; GFCFGDP = gross
fixed capital formation (private fixed investments) to GDP ratio.
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Figure A9. Government’s bonds and loans, as well as domestic banks’ holding. BGRbank-GRGGB
(TASSB) = ratio of the Greek general government bonds held by domestic banks to total issued (to
their total assets); GRGG-BONDS = Greek bonds held by domestic banks; GRGG-LOANS = Greek
loans of the general government’s debt (end of periods, current prices, mill. €).

Figure A10. Overall performance of institutional sectors. Where: NLNDBRR/GDP-S.1 = ratio of
net lending (+)/net borrowing (-) (B.9) of the total economy (S.1) to GDP (B.1g); NLNDBRR/GDP-
S.11(S.12) [S.13] {S.1M} = ratio of net lending (+)/net borrowing (-) (B.9) of non-financial corporations
(financial institutions) [general government] {households and NPISH} to GDP (B.1g).
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Figure A11. Snowball effect and interest rate margin of domestic banks. R-G_SNOWB = spread
between the 10 years government bond yield (r) and the growth rate of nominal GDP (g); InterstRmrg
= interest rate margin (average interest rates on loans—deposits) of domestic banks.

Figure A12. Obvious domestic structural deficiencies and double financial fragility. INFL-STOCKS =
Greece, portfolio investments in domestic stocks from non-residents (liabilities); INFL-BONDSTB =
Greece, portfolio investments in domestic bonds and treasury bills from non-residents (liabilities);
OUTFL-STOCKS = Greece, portfolio investments in foreign stocks from residents (requirements);
OUTFL-BONDSTB = Greece, portfolio investments in foreign bonds and treasury bills from residents
(requirements); BPFT-PRTFINV = Greece, balance of payments, balance of financial transactions,
portfolio investments; BP-IIP = Greece, balance of payments, international investment position.
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Figure A13. The anelastic composition of the PSS.

Notes

1 Strictly speaking, Greece, along with Italy, Spain, Portugal and Ireland, is considered to belong to the South-West Euro Area
Periphery (SWEAP) as opposed to the core member countries of the Eurozone (Aizenman et al. 2013).

2 European System of Integrated Social Protection Statistics (ESSPROS): a nominal convergence of Greece towards EMU is reported
in aggregated benefits and grouped schemes—in % of GDP; these total social transfers were, on average (stdev), 19.3% (1.4%) for
Greece during 1995–2008, and for the Euro area (19 countries), 25.1% (0.4%) during 2000–2008; for Greece, 25.9% (1.0%) and for
the Euro area (19 countries), 27.9% (0.3%) during 2009–2019. https://ec.europa.eu/eurostat/databrowser/view/spr_exp_gdp_
_custom_9184255/default/line?lang=en accessed on 17 January 2024.

3 So, FFH ≡ eFIH + EZFH.
4 Memorandum of understanding.
5 International Monetary Fund (IMF), European Commission (EC) and European Central Bank (ECB).
6 Pandemic emergency purchasing program of the European Central Bank (ECB).
7 Outright monetary transactions of the ECB.
8 Recovery and resilience fund.
9 In their sample of 21 OECD countries during the period 1982–2003, Luxembourg and Greece are the missing EU members.

10 Only the underlined categories of benefits are offered in Greece.
11 Resulting from wrong economic policies adopted by the European authorities, such as the OMT (outright monetary transactions)

program announced by the ECB but under the condition of austerity rules imposed by the ESM (European Stability Mechanism).
This was the case of the SWEAP countries.

12 Next-generation European Union plan.
13 Based on the Hellenic Statistical Authority’s (HAS’s) data and communications (https://www.statistics.gr/en/statistics/-/

publication/SHE24/- accessed on 17 January 2024). The hierarchical presentation of these categories of benefits is based on the
realized average payments in 2020, which is referred by the HSA as the last year of available annual data 2000–2020.

14 The latest available annual HSA data (Hellenic Statistical Authority) show that, on average (standard deviation), the share of
pensions (age plus survivors), health and disability–incapacity in public social spending was 91% (2.1%) during the period
2000–2020; the rest was either unemployment or family benefits, with 4% (0.9%) each.

15 The balanced fiscal budget should, in the recession of the crisis period, be in surplus so as to find ways of repaying the sovereign
debt. Harsh austerity–deflation policy. . .

16 Proxy of the “Financial development” (Choi et al. 2017).
17 https://www.statistics.gr/.
18 https://www.bankofgreece.gr/en/homepage.
19 “The first account in the sequence is the production account, which records the output and inputs of the production process, leaving value

added as the balancing item. The value added is taken forward to the next account which is the generation of income account. Here the
compensation of employees in the production process is recorded, as well as taxes due to government because of the production, so that the
operating surplus (or mixed income from the self-employed of the households’ sector) can be derived as the balancing item for each sector.”
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(ESA 2010, p. 53). That is, the gross operating surplus (GOS) used here as a measure of the profitability of sectors does not include
any financial expenses or receipts (interest or principal of a debt).

20 Balance of payments—international investment position.
21 The term ‘net lending/net borrowing’ is a sort of terminological shortcut. When the variable is positive (meaning that it shows a

financing capacity), it should be called net lending (+); when it is negative (meaning that it shows a borrowing need), it should be
called net borrowing (−). (ESA 2010, p. 466).

22 The net lending (+) or borrowing (−) of the total economy is the sum of the net lending or borrowing of the institutional sectors.
It represents the net resources that the total economy makes available to the rest of the world (if it is positive) or receives from the
rest of the world (if it is negative). The net lending (+) or borrowing (−) of the total economy is equal but of opposite sign to the
net borrowing (−) or lending (+) of the rest of the world. (ESA 2010, p. 306).

23 It is not possible from macroeconomic data to “prove” whether a firm’s or household’s loan is being repaid “regularly” (hedge
financing structure), or in a Eurozone country, or if only interest is being paid by firms (hyper-speculative) or not serviced at
all (Ponzi). However, when the outstanding debts of the non-financial sector increase, while at the same time, it is excluded
from bank credit, NPLs proliferate or, finally, the government defaults or the international investment position of the country
continuously deteriorates, the evidence is sufficiently strong to characterize the sub-periods of the sample according to the
Minsky classification.

24 Non-profit institution serving households (see, ESA 2010).
25 Money supply measure.
26 r = weighted average of the interest rate of the government’s outstanding debt; g = real gross domestic product (GDP) growth

rate.
27 STATA/SE version 17 software has been used, provided by the University of West Attica academic license.
28 When we alternatively used the variable “nprtfinflowsgdp” (also drawn from the Bank of Greece dataset and balance of financial

account), the estimated coefficient also statistically significant at 5% level this time had a negative sign, −0.058.
29 We emphasize that this is performed in a long-term equilibrium, or the series are cointegrated.
30 Which (old age + sickness + survivors) aggregate to an average of almost 85% of the total PSS (see, Figure A13 in Appendix A).
31 That have taken into account in the determinants of Equation (3).
32 This characterizes almost permanently the lack of international competitiveness and the respective trade balance deficit of the

country.
33 Mergers and acquisitions.
34 The majority of more than 80% of the Greek production sector.
35 It should be stressed that the austerity–deflationary policies that were implemented (which reduced real Greek GDP by 25% and

increased unemployment to 27% in the period 2008–2015) not only reduced aggregate demand but also aggregate supply due to
the restructuring of sectors and markets brought about by the successive crises.

36 Credit rating agencies.
37 It is a matter of special paper(s) to reconsider democratic decision making (including economic policy) in Europe... Greece

marked human history and civilization, both with “polis («πóλις»)-democracy” and with “critical thinking” who lived in ancient
Greek «πóλεις» or Eastern Romanian Empire or even under Ottoman Empire and occupation, at least until 1832. So, it worked
historically. Few words can be reported: the first one, (πóλις) democracy, means another way of collectiveness institutionally and
functionally homologous to “truth” (i.e., that which does not wear out does not die), while the criterion in the second (critical
thought), i.e., how can one distinguish right–wrong, truth–false, valid knowledge–illusion, is the “common experience” of all
citizens, and not principles of utilitarian efficiency that we economists use, insisting only on the “society of needs” and not, as
people worldwide demand, also the “society of human relations”. (Yannaras 2011).
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Abstract: Our paper deals with an advanced statistical tool for the volatility prediction problem
in financial (crypto) markets. First, we consider the conventional GARCH-based volatility models.
Next, we extend the corresponding GARCH-based forecasting and calculate a specific probability
associated with the predicted volatility levels. As the probability evaluation is based on a stochastic
model, we develop an advanced data-driven estimation of this probability. The novel statistical
estimation we propose uses real market data. The obtained analytical results for the statistical
probability of the levels are also discussed in the framework of the integrated volatility concept. The
possible application of the established probability estimation approach to the volatility clustering
problem is also mentioned. Our paper includes a concrete implementation of the proposed volatility
prediction tool and considers a novel trading and volatility estimation module for crypto markets
recently developed by the 1ex Trading Board group in collaboration with GoldenGate Venture. We
also briefly discuss the possible application of a model combined with the data-driven volatility
prediction methodology to financial risk management.

Keywords: technical analysis; formal volatility models; volatility prediction; statistical probability of
levels; trading algorithms

1. Introduction and Motivation

In financial engineering, volatility is usually defined as the dispersion of a return series
and is computed by taking the (sample) standard deviation (see, e.g., Brooks 2015; Greene
2011; Poon and Granger 2003). Volatility is the most important parameter in the pricing of
crypto derivatives, and the trading volume has drastically increased in recent years. To
price an option, one needs to know (or estimate) the volatility of the underlying asset from
the real-time instant until the option expires. Note that the probability distributions of
financial returns are characterized by high volatility persistence and thick tails (see, e.g.,
Andersen et al. 2001; Cont 2001). In the realm of modern crypto markets, the manifestation
of volatility constitutes a very important indicator of the inherent fluctuations in the main
market characteristics (Danielsson et al. 2018; Poon and Granger 2003; Schwert 1990). It
gives crucial information to crypto traders and constitutes a pivotal element of many
effective cryptocurrency trading strategies. Volatility information is very important for
assessing risk and pricing derivative products, as well as for developing trading strategies.

The volatility prediction problem is an important topic in the technical analysis of
financial markets (see Bollerslev 1986; Bollerslev and Wooldridge 1992; Haas and Peter
2024; Poon and Granger 2003; Shah et al. 2018; Verhoeven et al. 2002; Wang et al. 2020,
and the references therein). It is common knowledge that various time-series models
are widely used for handling the data of highly volatile financial markets. For example,
the relatively simple generalized autoregressive conditional heteroskedasticity (GARCH)
models can effectively be applied to the volatility forecasting problem (see Bollerslev 1986;
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Bollerslev and Wooldridge 1992; Francq and Zakoian 2010; Huang et al. 2008; Sen et al.
2021; Taylor 1986; Wang et al. 2020). On the other hand, the majority of the existing time-
series techniques for volatility prediction involve the celebrated quasi-maximum likelihood
(QML) estimation approach (Birge and Louveaux 2011; Bollerslev and Wooldridge 1992;
Franses and Ghijsels 1999; Gallager 2013; Poznyak 2009). One can use this conventional
estimation methodology for necessary parameter identification in a selected GARCH(p,q)
model. We refer to Azhmyakov et al. (2021), Lewis (1986), and Poznyak (2009) for the
general identification theory.

However, the conventional QML estimation approach mentioned above was initially
designed under the classic normality assumption (Franses and Ghijsels 1999; Poon and
Granger 2003; Poznyak 2009; Taylor 1986). Thus, it is inefficient if the volatility proxies are
non-Gaussian (see Fan et al. 2014). Otherwise, there are several specific features of financial
market volatility that are well-documented. These “stylized facts” include the fat-tailed
distributions of asset returns, volatility clustering, asymmetry, and mean reversion. It is
well known that the QML method is non-robust in the presence of outliers, even with
fat-tailed and skewed distributions. Therefore, the classic (Gaussian) QML method for the
GARCH parameter identification problem needs to be improved and extended with some
additional analytical tools.

Although the development of mathematical models for crypto markets and new
trading algorithms has been a major topic of research, forecasting financial market volatility
is more difficult. Surprisingly, although high volatility can pose a considerable menace
to shareholders, it can also be a source of significant financial returns. Even when stock
markets oscillate, fall, or skyrocket, there is always a possibility to profit if market volatility
is exploited.

In this paper, we extend the existing GARCH volatility prediction technique using an
additional useful tool. We introduce predicted volatility levels and calculate the probability
that financial market volatility will not fall below these (predicted) levels. This formal
mathematical technique involves the well-known stochastic volatility model (see, e.g., Poon
and Granger 2003). Additionally, we use real market data and develop a constructive lower
estimation for the probability evaluation mentioned above. This data-driven estimation of
the probability of volatility levels integrates the model parameters and real market data.
The advanced statistical analysis we propose can be considered for integrated volatility
frameworks. It can also be useful in the context of the volatility clustering problem (Lux
and Marchesi 2000; Nikolova et al. 2020). Our paper includes a short presentation of a
practically oriented volatility analysis module recently developed by the 1ex Trading Board
group in collaboration with GoldenGate Venture. This novel tool includes the volatility
prediction methodology discussed in this paper and some related trading algorithms.

Let us also note that robust volatility forecasting plays an important role in financial
risk management (Kahneman and Tversky 2013; Schwert 1990; Ziemba and Vickson 1975).
Various hedge funds, banks, financial groups, and trading houses use the well-known value-
at-risk (VaR) indicators. Modern VaR estimators essentially use some volatility predictors.
Moreover, a credible volatility prediction scheme can also be applied to optimize the design
of novel profitable trading algorithms for crypto markets (Azhmyakov et al. 2022, 2023;
Barmish and Primbs 2016; Baumann 2017; Formentin et al. 2018). It is well known that the
highly fluctuating crypto exchange prices and the corresponding very frequent changes
in the main market indicators make accurate price forecasting nearly impossible. In this
situation, consistent volatility prediction can essentially improve concrete trading strategies.

The remainder of our paper is organized as follows: Section 2 contains the formal
volatility prediction problem formulation in the framework of the general GARCH model.
We also examine concrete GARCH abstractions, discuss some useful mathematical and
financial facts, and introduce the concept of the predicted volatility levels. Section 3
includes a critical consideration of the conventional QLM technique for model (parameter)
identification in a general GARCH model. We focus our attention on the conceptual
difficulties of this widely used methodology in the case of non-Gaussian stochastic errors.
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The criticism in this section helps in understanding the necessity of some additional and
novel predictive tools. Section 4 is devoted to the development of a novel probabilistic tool
for volatility prediction. We use the well-known stochastic volatility model for this purpose.
The application of an advanced mathematical technique makes it possible to calculate the
characteristic probability associated with the predicted volatility levels. Concretely, we
evaluate the exact probability of financial market volatility not falling below a prescribed
(predicted) level. In Section 5, we perform a statistical analysis of financial market data and
derive a novel, lower estimation of the probability associated with predicted volatility. This
data-driven version of the probability estimation is a formal consequence of the stochastic
volatility model studied in the previous section. Section 6 contains a short description of the
practically oriented volatility estimation module “AI NEWS”, recently developed by the
1ex Trading Board group in collaboration with GoldenGate Venture. Section 7 summarizes
our paper.

2. Volatility Prediction in Financial Markets Using GARCH Models

Consider a series {ps}s=0,1,...,T of prices of an asset at (T + 1) time points and introduce
the corresponding logarithmic return (log return):

rs := ln (ps/ps−1),

s = 1, ..., T.

Using the obtained data set, {rs}s=1,...,t, we now define the (sample) volatility, σ2
t , for

the given time period:

σ2
t =

1
t − 1

t

∑
s=1

(rs − r̄t)
2. (1)

Here,

r̄t :=
1
t

t

∑
s=1

rs

is a sample mean return. Evidently, (1) constitutes a method of moment unbiased estima-
tion of the second moment (i.e., variance of return) for the observable series of returns,
{rs}s=1,...,t. Here, we do not assume the covariance stationarity of {rs}s=1,...,t. The complete
time period s = 0, 1, ..., T can be interpreted as a full time frame associated with a complete
series of historical prices.

Note that there are a number of theoretical and practical advantages to using log
returns in finance (see, e.g., Brooks 2015; Greene 2011). In financial engineering, volatility is
often defined as the square root of (1) (the sample standard deviation); however, the square
root of σ2

t in (1) constitutes a biased estimation of the corresponding standard deviation
(see, e.g., Poznyak 2009; Taylor 1986 for details).

As mentioned in the introduction, there are various methods for estimating the volatil-
ity σ2

t+1 in (1). Next, we focus our attention on a simple but effective volatility forecasting
procedure that uses a relatively simple GARCH model (see Francq and Zakoian 2010;
Greene 2011, and the references therein). Recall that the generic GARCH(p,q) abstraction
has the following formal expression:

rt = μt + εt, t ∈ N

εt = σ̃tzt

σ̃2
t = ωt + Σq

i=1αi
tε

2
t−i + Σp

j=1β
j
tσ̃

2
t−j.

(2)

Here,
μt := E[rt

∣∣Ft−1]
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is a conditional mean and Ft−1 is a sigma-algebra generated by the data that are available
up to the time instant t − 1. Moreover, the possibly non-normal random variables, zt, t ∈ N,
are assumed to be independent and identically distributed with

E[zt
∣∣Ft−1] = 0,

E[z2
t
∣∣Ft−1] = 1.

We also assume that the GARCH(p,q) coefficients

(α1
t , ..., α

q
t ),

(β1
t , ..., β

p
t )

in (2) are known for every t ∈ N. The deterministic value, ωt, in model (2) is sometimes
called an intercept. Note that we consider a general non-stationary GARCH model here. Ev-
idently, the above non-stationary abstractions constitute an adequate modeling framework
for modern, highly volatile crypto markets.

As the statistical properties of the sample mean, r̄t, in (1) make it a very inaccurate
approximation of a true mean, taking the necessary deviations around zero instead of r̄t,
as in Formulae (1), increases the accuracy of the volatility prediction. Therefore, we next
assume that μt ≡ 0 for all t ∈ N in (2).

The conditional variance σ̃2
t in the GARCH(p,q) model (2) constitutes a specific model-

based volatility estimation. The main idea of the proposed GARCH model is that the
conditional variance of returns has an autoregressive structure and is positively correlated
to its own recent past. Note that this model also generates the volatility clustering effect.

In the case of a GARCH(1,1), we obtain

σ̃2
t = ωt + α1

t ε2
t−1 + β1

t σ̃2
t−1. (3)

From (3), next, we derive the model-based unconditional variance estimation, σ̃2
t+1, of

the return rt+1:
σ̃2

t+1 = ωt+1 + (α1
t+1 + β1

t+1)σ̃
2
t , t ∈ N. (4)

The resulting volatility prediction expression (4) has a recursive nature. In the station-
ary case, namely, for

α1
t ≡ α > 0, β1

t ≡ β > 0,

ωt ≡ ω > 0

1 − α − β > 0

we evidently have the explicit time-invariant volatility prediction:

σ̃2
t+1 = σ̃2 =

ω

1 − α − β
. (5)

The so-called volatility persistence is given here by (α + β).
Let us also present the resulting formulae for the estimated volatility, σ̃2

t+1, of return
associated with a stationary GARCH(2,2) predictive model:

σ̃2
t = ω + α1ε2

t−1 + β1σ̃2
t−1 + α2ε2

t−2 + β2σ̃2
t−2. (6)

The corresponding volatility prediction in that case can be expressed as follows:

σ̃2
t+1 = σ̃2 =

ω

1 − (α1 + β1)− (α2 + β2)
. (7)
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We refer to Francq and Zakoian (2010) for the necessary mathematical formalism.
Recall that the covariance-stationarity condition for the general GARCH(p,q) process (2)
has the generic form

Σq
i=1αi

t + Σp
j=1β

j
t < 0.

Next, using a “predicted volatility level”, we denote the value σ̃2
t+1, calculated using

one of the above Formulae (4), (5), or (7). In parallel with the common volatility definition,
we also consider the well-known “integrated volatility” concept over the period t to t + 1:

Φt+1 :=
∫ 1

0
σ2

t+τdτ. (8)

The integrated volatility concept (8) is of central importance in the pricing of crypto
derivatives (see, e.g., Lux and Marchesi 2000 for details). Let us also refer to Poon and
Granger (2003) for some existing integrated volatility estimators. Evidently, the GARCH-
based predicted volatility levels mentioned above naturally imply the corresponding levels
of integrated volatility in (8). For example, the combination of the simple trapezoidal rule
and (4) implies the following estimation of Φt+1:

Φ̃t+1 ≈ 1
2
(ωt+1 + (1 + α1

t+1 + β1
t+1)σ̃

2
t ) (9)

Note that the integrated volatility, Φt+1, can also be estimated using the return sam-
plings for a time interval of sufficiently frequent returns (see, e.g., Andersen et al. 2001):

lim
n→∞

P[|Φt+1 − Σn
s=1r2

n,(t+s)/n| ≤ δ] = 0 ∀δ > 0. (10)

Here, n is the sampling frequency, rn,(t+s)/n denotes a compound return, and P[·] is
the probability associated with the exchange prices (exchange rates) under consideration.
The basic relation (10) also involves a useful concept from modern financial engineering;
namely, the so-called “realized volatility” (see Haas and Peter 2024; Poon and Granger
2003, and the references therein). Similar to the forecasting technique for the predicted
volatility σ̃2

t+1 discussed above, one can also estimate some of the additional important
statistical characteristics of return. For example, the GARCH models presented in this
section provide a consistent analytic basis for an adequate estimation of the corresponding
kurtosis coefficients (see, e.g., Kim and White 2004 for details).

3. On the Critical Analysis of the QML Method for Parameter Identification

The general GARCH-based volatility model (2), as well as the concrete predictive
relations (4), (5), (7), and (9), are derived under the assumption of the known model
parameters (coefficients)

{(ωt, αi
t), i = 1, ..., q}

and
{β

j
t, j = 1, ..., p}.

However, practical application of these approaches involves a necessary identification
procedure for defining the GARCH parameters mentioned above. Moreover, one also needs
to estimate (identify) the standardized errors, zt, in model (2).

The quasi-maximum likelihood (QML) method is widely used for the identification
of the GARCH(p,q) model (2). We refer to Birge and Louveaux (2011); Bollerslev and
Wooldridge (1992); Franses and Ghijsels (1999); Gallager (2013), and Poznyak (2009) for
some mathematical details and concrete applications of the QML techniques. Under the
standard normality assumptions, this method provides consistent and asymptotically
normal estimations in the case of strictly stationary GARCH processes. Recall that the
conventional QML involves maximizing the Gaussian log-likelihood, and the resulting
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solution constitutes an adequate estimation of a parameter vector under the normality
assumptions.

However, it is common knowledge that financial time series (for example, the crypto
exchange rates) have the characteristics of being leptokurtotic and fat-tailed with skewness.
Moreover, these series usually involve the so-called volatility clustering effect. The “stylized
facts” about the financial market volatility mentioned above also include asymmetry
and mean reversion. Note that these properties of the volatility dynamics are now well
documented (see, e.g., Cont 2001; Poon and Granger 2003).

The non-regular behavior of the modern financial markets and the corresponding
stylized facts about volatility make it impossible to consider the classical Gaussian as-
sumption for the stochastic errors in GARCH(p,q) models. Note that the generic normal
probability distributions do not involve outliers and are incompatible with the fat-tailed
and skewness effects mentioned above. On the other side, it is well known that the QML
method is non-robust in the presence of data outliers generated by fat-tailed and skewed
distributions. It is remarkable that in some professional publications, and also in practical
trading manuals, inconsistent normality assumptions are still followed. As a result, this
simplified Gaussian-based modeling approach involves a deficient description and faulty
forecasting of the real (crypto) market dynamics.

The above problem of an adequate modeling framework for the stochastic errors in
the general GARCH(p,q) model (2) is crucially important for the resulting model-based
volatility prediction. The basic QML estimation is inefficient if the volatility proxies are non-
Gaussian (see, e.g., Poon and Granger 2003 and the references therein). As a consequence,
one will obtain a possible inconsequential estimation, θ̂t, for the parameters of the basic
GARCH volatility model under consideration.

In this situation, one can consider some concrete fat-tailed and skewed probability
distribution in order to examine and simulate the more realistic case studies of the modeled
volatility dynamics. For example, one can use the “contaminated” and skewed normal
distribution, skewed Student distribution, skewed generalized error distribution, and
many others. These non-regular probability distributions generate various types of realistic
additive and innovative outliers for the time-series-based modeling of financial time series.
We refer to Azhmyakov et al. (2021), Fan et al. (2014), and Huber and Ronchetti (2005) for
the corresponding research and simulation results.

Let us note that the fat-tailed and skewed distributions constitute an adequate model-
ing framework in the case of cryptocurrency time series (see Cont 2001). On the other hand,
we usually have no information about a concrete real probability distribution associated
with these specific financial series. The same is also true with respect to the series of returns.
That means that the concrete non-Gaussian (fat-tailed and skewed) probability distributions
of the stochastic errors in the GARCH model (2) are generally unknown.

The above fact constitutes the main motivation for the necessary methodological
extension of the existing model-based techniques for volatility prediction and for devel-
oping some additional data-driven statistical tools. Next, we propose a novel statistical
metric that can be used as an auxiliary analytic tool for the GARCH-based prediction of
the volatility levels. This metric involves real market data and constitutes a quantitative
method for seeing how well the model-based volatility prediction would have performed.
The novel methodology we introduce in the next sections can also be implemented as a part
of the common backtesting procedures for the design and verification of new algorithmic
trading strategies.

4. Exact Probability Calculation for the Predicted Volatility Levels

This section presents a useful result that can be applied to the formal probabilistic
analysis of the predicted volatility levels. By taking into consideration the conceptual
difficulties of the OML method discussed in Section 3, we propose an auxiliary statistical-
based predictive metric.
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Consider the well-known stochastic volatility model (see, e.g., Poon and Granger 2003
and the references therein):

dσ2
t = (μv − βσ2

t )dt + σvσ2
t dWv(t), t ∈ R+, (11)

where μv is an average, β is the speed of the volatility process, and σv is called “volatility of
volatility”. Using Wv(t), we denote a Wiener process with

Wv(0) = 0.

The above stochastic volatility model is usually considered in combination with the
price dynamics:

dpt = μp ptdt + σptdWp(t), t ∈ R+, (12)

Similar to (11), we are dealing with an associated Wiener process here:

Wp(t), Wp(0) = 0.

Using μp in (12), we denote the mean. Many useful mathematical models of financial
markets include the generic abstraction (12). Let us mention the classic Samuelson pricing model
and the celebrated Black–Scholes theory (see Samuelson 1965; Black and Scholes 1973).

Note that the price and the volatility models (11) and (12) constitute an interconnected
system of equations. This natural interconnection can be described by a specific correlation
between Wv(t) and Wp(t). The fundamental system (11) and (12) can also be used for
modeling the crypto markets. This model also generates some stylized facts about the
volatility mentioned in the previous sections; namely, the Black–Scholes volatility smile
and volatility clustering. We refer to Black and Scholes (1973) for further technical details.

We now consider the GARCH(1,1) and GARCH(2,2) models from Section 2 and the
corresponding predicted volatility levels (4), (5), and (7). Let v∗t be a required volatility level
that is associated with the corresponding GARCH-based predictions. Roughly speaking,
we have here the non-stationary level v∗t such that

v∗t < σ̃2
t , ∀t ∈ R+

for (4), and the stationary level
v∗ < σ̃2

in the case of (5) and (7). The required probability associated with the predicted volatility
level, v∗t , can now be defined as follows:

P[σ2
t ∈ (v∗t ,+∞)

∣∣ σ2
0 > v∗t ], ∀t ∈ [0, T]. (13)

Where T ∈ N. Recall that P[·] denotes the probability measure associated with the ex-
change prices, pt (see Section 2). Note that the above diffusion Markov processes—namely,
processes (11) and (12)—are assumed to be defined in the same probability space.

The proposed definition (13) expresses a probability that the volatility does not fall
below a specific level (a level of v∗t ) for t ∈ [0, T]. This constitutes a kind of “consistency” for
the model-based volatility prediction concept determined by GARCH(1,1) or GARCH(2,2).
Note that in (13), we are dealing with a conditional probability and assuming that the initial
volatility, σ2

0 , is higher than v∗t . We now calculate the required probability determined
by (13) using only the stochastic volatility abstraction discussed above. Note that this
calculation does not involve the GARCH(p,q) volatility model.

In parallel with the characteristic probability (13), we introduce the formal complement

ρ(t, σ2
t ) := 1 − P[σ2

t ∈ (v∗t ,+∞)
∣∣ σ2

0 > v∗t ], ∀t ∈ [0, T], (14)
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where the stochastic dynamics of σ2
t are given by (11). This complement expresses the

probability of the “complementary” event

σ2
t ≤ v∗t

for t < T. The complementary probability given by (14) can now be evaluated. From the
abstract result of Pontryagin et al. (1933), it follows that function ρ(t, σ2

t ) in (14) satisfies the
boundary value problem

∂ρ

∂t
= (μv − βσ2

t )
∂ρ

∂x
+

1
2

σ2
v σ4

t
∂2ρ

∂x2 , t > 0, σ2
t > v∗t ,

ρ(t, v∗t ) = 1, t ≥ 0,

ρ(0, σ2
t ) = 0, σ2

t > v∗t ,

(15)

where σ2
t is a solution of (11). From Pontryagin et al. (1933), we also deduce that the

auxiliary function

ξ(t, σ2
t ) := (1 − ρ(t, σ2

t )) exp
1

σ2
v σ4

t
(μv − βσ2

t )(σ
2
t − v∗t ) +

1
2σ2

v σ4
t
(μv − βσ2

t )
2t

satisfies the boundary value problem for the conventional heat equation:

∂ξ

∂t
=

1
2

σ2
v σ4

t
∂2ξ

∂σ4
t

, t > 0, σ2
t > v∗t ,

ξ(t, v∗t ) = 0, t ≥ 0,

ξ(t, σ2
t − v∗t ) = exp

1
σ2

v σ4
t
(σ2

t − v∗t ), σ2
t > v∗t .

(16)

The solution of the boundary value problem (16) can be written as follows (see, e.g.,
Kevorkian 2000):

ξ(t, σ2
t ) = exp { 1

2σ2
v σ4

t
(μv − βσ2

t )
2t}×

[
ψ
( (μv − βσ2

t )t + (σ2
t − v∗t )

σvσ2
t
√

t

)× exp { 1
σ2

v σ4
t
(μv − βσ2

t )(σ
2
t − v∗t )}−

ψ
( (μv − βσ2

t )t − (σ2
t − v∗t )

σvσ2
t
√

t

)× exp {− 1
σ2

v σ4
t
(μv − βσ2

t )(σ
2
t − v∗t )}

]
.

(17)

Here, we use the following notation for the auxiliary function:

ψ(ζ) :=
1

2π

∫ ζ

−∞
exp {−u2

2
}du,

where
ζ := μv − βσ2

t .

We now consider the definition (17) of the auxiliary function ξ(·, ·) and obtain an
explicit expression for the original function ρ(·, ·) in problem (15). This expression implies
the corresponding formal result for the desired probability in (13):

P[σ2
t ∈ (v∗t ,+∞)

∣∣ σ2
0 > v∗t ] = 1 − ρ(t, σ2

t ) =

1 + ψ
( (μv − βσ2

t )t − (σ2
t − v∗t )

σvσ2
t
√

t

)× exp{− 2
σ2

v σ4
t
(μv − βσ2

t )(σ
2
t − v∗t )}−

ψ
( (μv − βσ2

t )t + (σ2
t − v∗t )

σvσ2
t
√

t

)
,

(18)
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where t ∈ [0, T].
A direct verification shows that the obtained complementary to (18)—namely, the

probability ρ(·, ·)—satisfies the boundary value problem (15). Moreover, for the function
ρ(·, ·) and for the desired probability in (18), we can verify the natural condition

0 ≤ P[σ2
t ∈ (v∗t ,+∞)

∣∣ σ2
0 > v∗t ] ≤ 1,

for t ∈ [0, T].
We now conclude that the probability of the GARCH-based predicted volatility level,

v∗t , is explicitly given by the resulting relation (18). It expresses the probability of the event

σ2
t ∈ (v∗t ,+∞)

for [0, T], assuming that the initial volatility (for t = 0) satisfies the inequality condition

σ2
0 > v∗t .

Finally, let us note that the exact probability calculus developed in this section is based
on the generic stochastic modeling approach (11) for volatility dynamics.

5. Statistics of the Predicted Volatility Levels

The probabilistic analysis of the predicted volatility levels performed in the previous
section is based on an abstract mathematical model; namely, on the stochastic equation (11).
Next, we consider this obtained theoretical technique and use it for an applied, data-driven
statistical analysis of the GARCH-based estimations of volatility levels.

Consider the resulting Formulae (18) from Section 4 and put t = T. Our aim is to
derive a lower estimation of the probability expressed in (18). We examine it for the constant
predicted volatility levels, σ̃2, in (5) (GARCH(1,1) model) and (7) (GARCH(2,2) model). For
a constant volatility level, v∗ = const, with

v∗ < σ̃,

we obtain

P[σ2
t ∈ (v∗,+∞)

∣∣ σ2
0 > v∗] ≥

1 + ψ
( (μv − βσ̃2)T − (σ̃2 − v∗)

σvσ̃2
√

T

)× exp{− 2
σ2

v σ̃4 (μv − βσ̃2)(σ̃2 − v∗)}−

ψ
( (μv − βσ̃2)T + (σ̃2 − v∗)

σvσ̃2
√

T

)
.

(19)

Here, t ∈ [0, T].
We now examine the limit value of the probability expression in (19) for T → ∞. We

next interpret the resulting P∞ as a probability that in the “foreseeable future” the volatility
does not fall below the prescribed (constant) level, v∗. As

lim
ζ→∞

ψ(ζ) = 1,

we obtain
P∞ ≥ exp{− 2

σ2
v σ̃4 (μv − βσ̃2)(σ̃2 − v∗)}. (20)

Coming back to a real financial (crypto) market data, we introduce the number M ∈ N,
defined as follows:

M := ∑
t∈N

1(σ2
t ≥ v∗), (21)
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where σ2
t is the real market volatility. Function 1(·) in (21) is a generic indicator function,

1(y) = 1 if y is true;

1(y) = 0 if y is false;

for the discrete time t ∈ N. Roughly speaking, the number M ∈ N indicates how many
times the real market volatility σ2

t is higher as a given constant level, v∗. Using (20) and the
basic properties of the exponential function, we deduce our final lower estimation of the
limiting probability, P∞:

P∞ ≥ M−2(μv−βσ̃2)(σ̃2−v∗)/σ2
v σ̃4

. (22)

Recall that the value σ̃2 in (22) is determined by the stationary GARCH(1,1) predictive
model (Formulae (5)) or by the stationary GARCH(2,2) predictive model (Formulae (7)).

The obtained final probability estimation (22) constitutes a data-driven (statistical)
estimation of the probability that the volatility does not fall below a prescribed level v∗.
The number M (determined above) describes the real behavior of the market volatility, σ2

t .
This number can be obtained from a concrete historical market data set. The same data
set can also be used for the identification of the necessary parameters μv, β, and σv of the
stochastic volatility model (11).

Consider now a simple example. In the simplified case,

μv = 0,

β = 1,

σv = 1,

we obtain the following illustrative version of the general estimation (22):

P∞ ≥ M2(σ̃2−v∗)/σ̃2
. (23)

Note that there is no loss of generality in example (23), due to the parametric scalability
of the obtained lower estimation (22).

The historical market data set used above for the evaluation of estimation (22) can
also be applied to the so-called in-sample forecasting technique. This in-sample method
can now be combined with the complementary out-of-sample testing. This approach is
methodologically similar to the main idea of the celebrated Monte Carlo method (see
Azhmyakov et al. 2023; Hammel and Paul 2002; Poznyak 2009; Rubinstein 1981, and the
references therein).

The exact probability evaluation (18) from Section 4, as well as the corresponding
data-driven statistical estimations (22) and (23), can also be performed in the context of the
integrated volatility (8). One can use the exact value Φt+1 of the integrated volatility in (8)
or the simple approximate Formulae (9) for Φ̃t+1 and define the exact probability or the
corresponding statistical estimation similar to (18) or (22), respectively. As many modern
financial risk indicators, for example, the well-known value-at-risk (VaR) indicators, use
volatility predictors, the probabilistic analysis of the predicted volatility levels presented in
Sections 4 and 5 can also be applied to modern risk management.

6. Some Practical Implementations

We now discuss a concrete practical implementation of the statistical analysis for the
volatility forecasting methodology developed in our paper. Concretely, we present the
volatility prediction module for crypto markets recently developed by the 1ex Trading
Board group ( https://1ex.com/ (accessed on 11 February 2024)) in collaboration with
GoldenGate Venture. This novel analytic tool, called “AI NEWS”, has an interconnected
structure that includes a generic GARCH(2,2) model and the associated statistical probabil-
ity estimation (22) developed in the previous section.
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The conceptual block diagram of the 1ex Trading Board volatility forecasting algorithm
for the AI NEWS module mentioned above is given in Figure 1. Note that the three grouped
sub-modules in Figure 1 represent a statistical block which complements the conventional
GARCH-based volatility analysis and constitutes the main contribution of our paper.

Figure 1. The conceptual block diagram of the 1ex Trading Board volatility prediction module.

This block diagram represents the necessary data and information flows, as well as
the system inputs, outputs, and the operational sub-modules. The given sub-modules are
necessary for the calculation of the predicted volatility levels and for the evaluation of the
statistical estimation (22). The output of the presented block diagram constitutes a final
trading decision. The current market data, as well as the involved volatility prediction and
statistical probability of the levels, can be visualized by the designed module.

We now use the AI NEWS methodology mentioned above and depict (Figure 2)
the market dynamics, the volatility prediction profile, and the corresponding statistical
probability level for the concrete crypto trading pair BTC/USDT (date: 10 April 2024).

Figure 2. 1ex Trading Board volatility prediction module: BTC/USDT.

As one can see, the estimated statistical probability associated with the selected volatil-
ity level in that example is equal to 0.98.
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Let us also apply the developed predictive statistical analysis to an alternative example;
namely, to the trading pair SOL/USDT (date: 09/04/2024). The corresponding market
dynamics, volatility prediction profile, and the calculated statistical probability level for
this pair are shown in Figure 3.

Figure 3. 1ex Trading Board volatility prediction module: SOL/USDT.

The statistical analysis of the predicted volatility levels studied in this section has
the potential to be applied to risk management. The 1ex volatility tool mentioned above
helps investors and portfolio managers to fix certain levels of risk which they can bear.
An adequate forecast of the market volatility of asset prices over the investment holding
period constitutes very useful initial information for assessing the investment risk.

Finally, note that many modern profitable cryptocurrency trading algorithms involve
adequate volatility prediction schemes. Let us refer here to the class of feedback-type
trading algorithms and also to the widely used family of pullback and drawdown trading
strategies (see Azhmyakov et al. 2022, 2023; Barmish and Primbs 2016; Baumann 2017). The
novel methodology of the predicted volatility levels developed in this paper can also be
used in the celebrated Avellaneda–Stoikov market-making strategy.

7. Concluding Remarks

In this paper, we developed a complementary probabilistic tool for the conventional
GARCH-based volatility predictor. The classic GARCH abstractions naturally generate
some stationary or non-stationary predicted volatility levels. As mentioned in the Introduc-
tion, the real probability distributions of financial returns involve high volatility persistence,
fat tails, and some additional effects. On the other hand, the widely used QLM parameter
estimation methodology is closely related to the (non-realistic) normality assumption and
the robust versions of this technique involve some restrictive technical assumptions.

The deficiency of the QLM method mentioned above, as well as the general method-
ological difficulties of the classic parameter identification approaches, have motivated the
development of some additional (complementary) volatility forecasting techniques. From
a formal point of view, a GARCH-based volatility predictor constitutes a model-based
approach. The main idea of the approach proposed in this paper consists of using a novel
data-driven volatility prediction metric that has an auxiliary character for the basic GARCH
predictor. In this study, we developed a new additional predictive metric by applying
some advanced probabilistic and statistical tools. Roughly speaking, for a model-based
predicted volatility level we propose calculating a statistical probability that the financial
market volatility does not fall below this level. We call it the “probability of predicted
volatility levels”.
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As the exact result of computation of the above probability is given by a sophisticated
(theoretical) expression, we next extended the proposed approach and calculated a con-
structive lower estimate of the “probability of predicted volatility levels”. The obtained
lower estimate involved the necessary real market data and constituted an implementable
robust version of the prediction metric mentioned above. In fact, we finally proposed a
combined prediction approach that contains the model-based and the data-driven elements.
Moreover, this approach is compatible with some techniques of the celebrated Monte Carlo
methodology, in view of the given (historical) data set.

The developed data-driven volatility prediction approach can be used as an auxiliary
tool in many analytical concepts of modern financial engineering; for example, it can be
studied in the context of general time-series forecasting. Robust and credible volatility
prediction is also a part of many modern cryptocurrency trading algorithms. Moreover,
the proposed estimation technique can be applied to the advanced characterization of
the integrated volatility and to the important problem of volatility clustering in crypto
markets. A robust volatility prediction technique plays a crucial role in modern financial
risk management.

Let us also note that the proposed formal calculation of the statistical probability
associated with the predicted volatility levels can be implemented with models other than
the concrete GARCH-based models studied in this paper, as the developed technique is
fully compatible with some alternative volatility forecasting approaches. Moreover, the
proposed probabilistic and statistical techniques have a general analytic nature and do not
depend on some specific financial data or market conditions.

The probabilistic analysis studied in our paper constitutes an initial theoretical de-
velopment. In our study, we concentrated on some rigorous mathematical details of the
proposed prediction schemes. However, these analytical techniques were implemented in
a concrete module for crypto market volatility forecasting developed by the 1ex Trading
Board group in collaboration with GoldenGate Venture. We discussed this practical tool
briefly in our paper. The paper does not compare the proposed statistical approach to the
existing volatility prediction methods. Due to a very large number of modern theoretical
and applied results related to predicted volatility, we consider a necessary comparative
analysis as a future work. Such a detailed comparative analysis constitutes an important
and self-contained topic of a future paper.

Finally, note that the auxiliary statistical analysis of the predicted volatility levels de-
veloped in this study can also be considered in the context of novel forecasting approaches
based on modern machine learning methodologies Jansen (2020); Shah et al. (2018). It
seems possible to extend the proposed concepts of volatility levels and the corresponding
statistical analysis developed in our paper to volatility forecasting schemes involving deep
learning approaches.
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Abstract: This paper proposes a penalized Bayesian computational algorithm as an improvement
to the LASSO approach for economic forecasting in multivariate time series. Methodologically,
a weighted variable selection procedure is involved in handling high-dimensional and highly corre-
lated data, reduce the dimensionality of the model and parameter space, and then select a promising
subset of predictors affecting the outcomes. It is weighted because of two auxiliary penalty terms
involved in prior specifications and posterior distributions. The empirical example addresses the
issue of pandemic disease prediction and the effects on economic development. It builds on a large
set of European and non-European regions to also investigate cross-unit heterogeneity and interde-
pendency. According to the estimation results, density forecasts are conducted to highlight how the
promising subset of covariates would help to predict potential contagion due to pandemic diseases.
Policy issues are also discussed.

Keywords: time-varying parameters; penalized approaches; machine learning techniques; Bayesian
inference; forecasting; disease prediction

1. Introduction

In economics, machine learning (ML) techniques are a useful strategy for evaluating
data mining because of gaining knowledge from the prior research and discovering hidden
patterns in data. Generally speaking, an ML model splits the dataset in two parts: a training
sample and a test sample. In the former, data information is uploaded within the system
to make an inference on a set of predictors affecting the outcomes of interest. Then, the
estimation results are in turn used in the test sample to check their degree of being unbiased
and robustness by means of diagnostic tests.

This study focuses on supervised ML methods since they classify and group factors
through labeled datasets predicting outcomes accurately. In this way, Bayesian inference
can be addressed by assigning informative conjugate priors to every predictor affecting
the outcomes. However, the data compression involved in these algorithms does not
have any reference to the outcomes, and then they are unable to deal with some open
related questions in variable selection problems, such as model uncertainty when a single
model is selected a priori to be the true one (Madigan and Raftery 1994; Raftery et al. 1995;
Breiman and Spector 1992), overfitting when multiple models are selected, providing a
somewhat better fit to the data than simpler ones (Madigan et al. 1995; Raftery et al. 1997;
Pacifico 2020), and structural model uncertainty when one or more functional forms of
misspecification matter (Gelfand and Dey 1994; Pacifico 2020).

Overall, three main sparse penalized approaches are generally used to entail variable
selection in large samples and highly correlated data: bridge regression (Wenjiang 1998),
the smoothly clipped absolute deviation (SCAD; Fan and Li 2001), and the least absolute
shrinkage and selection operator (LASSO, Tibshirani 1996). The first two approaches imply
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nonconvex penalties, satisfying the oracle property for unbiased nonconvex penalized
estimators. The oracle property refers to the statement that a given local minimum of
the penalized sum of the squared residuals is asymptotically equivalent to the oracle
estimator, which is in turn the ideal estimator obtained only with signal variables without
penalization. However, it is computationally quite difficult to verify if reasonable local
minima are asymptotically the oracle estimator. The LASSO technique is an alternative
approach generally used for simultaneous estimation and variable selection by minimizing
the residual sum of squares. Indeed, it is able to jointly choose the subset of covariates
better for evaluating a model and yielding continuous variable selection, improving the
prediction accuracy due to the bias variance trade-off. This research study builds on th
latter in the context of time-varying parameters and large samples.

Consider the following high-dimensional time series model:

yt = x
′
tβ + ut , (1)

where the stacked i = 1, 2, . . . , n denotes the units, t = 1, 2, . . . , T denotes time, yit is an
n · 1 vector of the outcomes, xt = (x1t, x2t, . . . , xnt)

′
is an n · 1 vector of the endogenous

covariates affecting the outcomes, β is an n · 1 parameter vector, and ut is an n · 1 vector of
the error terms. A high-dimensional time series model would matter when n is sufficiently
larger than T.

According to Equation (1), the LASSO regression model can be obtained by maximiz-
ing the penalized likelihood:

Lm(β) = L(β)− λ
m

∑
j=1

|β j| , (2)

where L(β) = L(β|y) is the likelihood function, j = 1, 2, . . . , m denotes the variables, and
λ controls the impact of the penalization term defined by the L1 norm of the regression
coefficients (Vidaurre et al. 2013; Wu and Wu 2016; Zhang and Zhang 2014). The form of
penalization in Equation (2) is used for the variable selection by forcing some of the entries
of the estimated β to be exactly zero (known as the sparse approach). Even if the LASSO
is widely adopted in many fields of economic and medical data repositories thanks to its
computational accessibility and sparsity,1 it tends to suffer from several drawbacks, leading
to it being inconsistent for model selection when data are high dimensional and highly
correlated. This study addresses three of them: (1) no oracle properties because of a bias
issue; (2) high false-positive selection rates and biases toward zero for large coefficients (Lu
et al. 2012; Uematsu and Yamagata 2023; Adamek et al. 2023; Wong et al. 2020); and (3) bad
and poor performance when the predictors are highly correlated.

This paper aims to overtake each of the aforementioned drawbacks when predicting
pandemic diseases and their effects on productivity growth in a dynamic set-up. The
contribution consists of proposing a simple Bayesian computational algorithm as improve-
ments to the LASSO approach when handling high-dimensional and highly correlated
data in multivariate time series. It takes the name of weighted LASSO Bayes (WLB) and
focuses on machine learning penalized approaches for ruling out the predictors which
are non-statistically significant and relevant to predicting the outcomes. In the WLB ap-
proach, variable selection acts as a strong case of Occam’s razor; when a model receives
less support from the data than any of their simpler submodels, it will be excluded and
no longer considered. Thus, the model solution containing possible biased estimators
will automatically be discarded, being far worse at predicting the data than other model
solutions (drawback (1)). In this way, some variable selection problems such as overfitting
and misspecification (or structural uncertainty) can be also dealt with (drawback (2)). To
handle high-dimensional and highly correlated data, two penalty terms are added to prior
specifications when computing the posterior inclusion probabilities (PIPs) to rule out from
the variable selection potential nonsignificant estimators (drawbacks (2) and (3)).

Once the subset of model solutions (or a combination of predictors) better fitting
the data is obtained, the best final subset will correspond to the one with the highest log
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weighted likelihood ratio (lWLR). Here, the priors are the weighting functions and refer
to the conjugate informative priors (CIPs) defined for every predictor. Finally, density
forecasts can be constructed and performed to highlight how the final promising subset of
covariates would help to predict the outcomes of interest.

The underlying logic is similar to analysis of Pacifico (2020), who developed a robust
open Bayesian (ROB) procedure for improving Bayesian model averaging and Bayesian
variable selection in high-dimensional linear regression and time series models. Similarities
hold for acting as a strong form of Occam’s razor to find the exact solution, involving a
small set of models over which a model average can be computed, and for using CIPs for
each predictor within the system. Nevertheless, the proposed approach differs from the
ROB procedure in its computational strategy. This latter consists of three steps to find the
final best subset of predictors affecting the outcomes, while the WLB algorithm finds the
best model solution to be evaluated in a unique step. That feature is possible since the WLB
procedure is able to rule out the covariates which are not statistically significant.

The WLB approach builds on the LASSO procedure by assigning additional weights in
the form of penalty terms to maximize the likelihood-based analysis of state space models.
The weights correspond to a threshold used in the shrinking procedure and a forgetting
factor for the modeling and disentangling coefficient and volatility changes. The WLB
approach also builds on further related studies proposing improvements to the traditional
LASSO to deal with multicollinearity and high-dimensional problems in sparse modeling
and variable selection (Mohammad et al. 2021; Jang and Anderson-Cook 2016; Ismail et al.
2023; Yang and Wen 2018).

The empirical example focuses on the predictive analysis of pandemic diseases among
a large set of European and non-European regions, including either developed or de-
veloping countries. A high-dimensional set of data describing macroeconomic financial
variables, socioeconomic and healthcare statistics, and demographic and environment
indicators is addressed when making inferences. Some exogenous factors for dealing with
region-specific characteristics are also added before computing the lWLR factor to deal
with cross-unit heterogeneity and interdependency. The time period runs from 1990 to
2022. Density forecasts are then performed for the years 2023 and 2024 to study possible
policy-relevant strategies and predict pandemic diseases or face potential contagion in the
global economy.

The remainder of this paper is organized as follows. Section 2 discusses the Bayesian
inference for modeling high-dimensional multivariate time series. Section 3 displays
prior specification strategies and posterior distributions for conducting density forecasts.
Section 4 describes the data and the empirical example addressed in this study. The final
section contains some concluding remarks.

2. High-Dimensional Time Series and LASSO Bayes Inference

According to Equation (1), the predictive analysis of pandemic diseases is addressed
by evaluating the following vector autoregressive (VAR) model:

yt =
c̄

∑
c=1

(
Δcyt−c + Γcxt−c

)
+ ut , (3)

where c = 1, 2, . . . , c̄ denotes lags, t = 1, 2, . . . , T denotes time, yk,t is a K · 1 vector of the
dependent variables (or the outcomes of interest) with k = 1, 2, . . . , K, yk,t−c is a K · 1 vector
of the control variables referring to the lagged outcomes to capture persistence, xs,t−c is
an S · 1 vector of the endogenous (directly) observed factors with s = 1, 2, . . . , S, Δc and
Γc are the K · K and S · S matrices, respectively, satisfying appropriate stationarity, and
ut ∼ i.i.d.N(0, σ2

u) is a K · 1 vector of the error terms.
The equivalent equation-by-equation representation is
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yk,t =
c̄

∑
c=1

[
Δk,1,c, Δk,2,c, . . . , Δk,K,c

]
yt−c +

c̄

∑
c=1

[
Γs,1,c, Γs,2,c, . . . , Γs,S,c

]
xt−c + uk,t =

=
[
y
′
t−1, y

′
t−2, . . . , y

′
t−c̄

]
δk +

[
x
′
t−1, x

′
t−2, . . . , x

′
t−c̄

]
γs + uk,t . (4)

Here, some considerations are in order. (1) The variables k ∈ (1, 2, . . . , K) and s ∈
(1, 2, . . . , S) can differ. (2) The homoskedasticity and weak exogeneity assumptions hold.
More precisely, it is assumed that E(ut|yt−1, . . . , yt−c̄, xt−1, . . . , xt−c̄) = 0. (3) Let weak
exogeneity hold, let ξt = (y

′
t, x

′
t)

′
, and let there exist some constants q̄ > q > 2 and

d ≥ max
{

1,
(

q̄
q−1

)
/(q̄ − 2)

}
. Then, the process ξ j,t is L2q near-epoch-dependent (NED)

with a size −d and with positive bounded NED constants, where j = 1, 2, . . . , m denotes all
predictors according to variables k and s.

The importance of this last assumption is twofold. First, it ensures that the error terms
are contemporaneously uncorrelated with every predictor, and the process has finite and
constant unconditional moments. Second, the NED framework allows for extending the
methodology to other general forms or mixing processes such as linear processes, GARCH
models, and nonlinear processes (see the following for further discussion: Wong et al. 2020;
Wu and Wu 2016; Masini et al. 2022; Medeiros and Mendes 2016).

The computational approach takes the name of weighted LASSO Bayes (WLB) and
aims to define conditional sets of regression parameters and coefficients to estimate the high-
dimensional equation-by-equation VAR model in Equation (4).2 We defined the process ξt
and let θ = (δk, γs). Equation (4) can be rewritten in simultaneous equation form:

yt = ξtθt + ut , (5)

where yt ∈ Rn and θ = {θj} is an auxiliary variable denoting the set of candidate
predictors. Throughout this paper, an additional auxiliary variable χ = {χj}, where
χ = (χ1, χ2, . . . , χm)

′
, is defined as containing all possible 2m model solutions, where

χj = 0 if θt is small (absence of the jth covariate in the model) and χj = 1 if θt is sufficiently
large (presence of the jth covariate in the model).

Let the full model be MF := {1, 2, . . . , m}, let Ml = {M1, M2, . . . , Mp} be the submodel
class set for any subset of predictors obtained from the variable selection with Ml ⊆ MF,
and let θMl := {θl,Ml

}l∈Ml
∈ R|Ml | be the vector of regression coefficients better at fitting

and predicting the data. The posterior inclusion probabilities are defined as follows:

p

∑
l=1

π
(

Ml |yt, χ
)
=

∑
p
l=1 π

(
yt|Ml , χ

)
· π

(
Ml

)
π
(

yt|χ
) =

∑
p
l=1 π

(
yt|Ml , χ

)
· π

(
Ml

)
∑J

j=1 π
(

yt|Mj, χ
)
· π

(
Mj

) , (6)

where J stands for the natural parameter space, Ml � Mj, and l = 1, 2, . . . , p with l � j.
A threshold τ is added to rule out from the variable selection potential nonsignificant

estimators and then jointly deal with large sample sizes and selective inference. The latter
refers to the problem of addressing issues when statistical hypotheses cannot be specified
before data collection but are defined during the data analysis process. The final subset of
predictors is achieved under the following condition:

M|Ml | =
{

Ml : Ml ⊂ Mj,M|Ml | ⊂ J , π(Ml |yt, χ) > τ
}

, (7)

where M|Ml | is the submodel space based on the natural parameter space J and τ < 0.005
(according to a two-sided alternative hypothesis).

Finally, let the possible (multi)collinearity problems matter in linear models because
of highly correlated data. Once the final subset of model solutions is obtained, the lWRL
factor of each Ml against Mj is computed, with the priors being the weighting functions.
The highest lWLR will denote the final best subset of predictors to be chosen.
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To deal with some variable selection problems such as model misspecification and
overfitting, an additional penalty term is used to compute the posterior distributions. It
corresponds to a forgetting (or decay) factor κ that varies in the range of [0.9–1.0] and
controls the process of reducing past data at a constant rate over a period of time. Let the
parameters be time-varying and the priors be defined before the data analysis process. The
regression coefficients’ dynamics might change over time because of the time components
(trend and seasonal components) or multiple change points (structural breaks). In a linear
context, just as in the proposed WLB approach, the usefulness of using a forgetting factor is
in excluding the second case dealing with volatility changes. Thus, in a time of constant
volatility (κ ∼= 0.9), the model’s prior choice for each Ml will be = 1, requiring a nonzero
estimate for θ or that χj should be included in the model. Conversely, in the case of
extremely large volatility changes (κ ∼= 1.0), the estimated coefficient will be discarded and
not accounted for anymore.

The underlying logic of using a weighted vector in the penalty term finds analogies
with the adaptive LASSO method of Zou (2006), who proposed an improvement to the
traditional LASSO procedure for handling high-dimensional data or highly correlated data
and for satisfying oracle properties. However, in the WLB algorithm, the hyperparameter
κ is built to weigh more according to the model size. Conversely, in the work of Zou
(2006), the weighted vector was chosen to minimize cross-validation or generalized cross-
validation errors, implying that a large enough weighted vector will lead the coefficients to
become exactly equal to zero (ruled out from the shrinking procedure).

The log weighted likelihood ratio is computed as follows:

lWLRl,j = log
{

π(Ml |yt, χ)

π(Mj|yt, χ)

}
. (8)

The model solution with the highest lWLR factor will correspond to the final best
submodel solution Ml . The scale of evidence for interpreting the lWLR factor in Equation (8)
is defined according to Kass and Raftery (1995):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 < lWLRl,j ≤ 2 no evidence for submodel Ml

2 < lWLRl,j ≤ 6 moderate evidence for submodel Ml

6 < lWLRl,j ≤ 10 strong evidence for submodel Ml

lWLRl,j > 10 very strong evidence for submodel Ml .

(9)

3. Prior Assumptions and Posterior Distributions

The variable selection procedure involved in the WLB algorithm entails estimating
χj through θt with weights equal to κ. Thus, the posterior model probability, denoting the
probability that a variable is in the model, corresponds to the mean value of the indicator χj.
Let the indicator χ be unknown. The true value will be obtained by modeling the variable
selection via a set of mixture CIPs:

π(θ, σ2, χ) = π(θ|σ2, χ) · π(σ2|χ) · π(χ) . (10)

However, the auxiliary indicator χ depends on the realization of the θ values that are
time-varying. To avoid this problem, the auxiliary parameter of θ is further modeled and
assumed to follow a random walk process:

θt = θt−1 + εt with εt ∼ N(0, Ω) , (11)

where Ω = diag(ω1, ω2, . . . , ωm) is an m · m diagonal matrix and ω = (ω1, ω2, . . . , ωm)
′

is
an m · 1 vector.

The matrix Ω can be a full covariance matrix, allowing for cross-correlation in the
state vector θt. Even if that assumption would be counterproductive by increasing the
model uncertainty, mainly in high dimensions, it would be necessary when predicting
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pandemic diseases among different units (e.g., regions and countries). The error terms
ut and εt are assumed to be independent of one another to simplify the inference in a
likelihood-based analysis of state space models. The unknown parameters to be estimated
are then (θ1:T , σ2, ω, χ). According to these specifications, the CIPs in Equation (10) become

π(θ1:T , σ2, ω, χ) = π(θ1:T |ω) · π(σ2) · π(ω) · π(χ) =

=
T

∏
t=1

π(θt|θt−1, ω) · π(σ2) ·
T

∏
t=1

π(ωj) · π(χ) , (12)

where
π(θt|yt) = N

(
θ̄t−1|t−1, R̄t−1|t−1

)
, (13)

π(σ2|yt, θt) = IG
(

ϑ̄

2
,

ρ̄

2

)
, (14)

π(ω0|Ft−1) = IG
(

α0

2
,

ν0

2

)
. (15)

Here, N(·) and IG(·) stand for the normal and (conjugate) inverse gamma distributions,
respectively, and Ft−1 refers to the information given up to time t− 1. The latter is useful for
dealing with potential coefficient changes due to persistent shocks (homoskedastic errors).

All hyperparameters are known and collected in a vector � = (ϑ̄, ρ̄, α0, ν0). They
are treated as fixed and obtained either from the data to tune the prior to the specific
applications (such as ρ̄, α0) or selected a priori to produce relatively loose priors (such as
ϑ̄, ν0). Let θt be time-varying and defined as a random walk in Equation (11). Then, θj,t
should be constructed to allow it to adapt to a new state in cases with larger εt values
due to an unexpected shock at time t. Thus, the conjugate distribution of θj,t, given χ, has
the form

π(θj|χ) = (1 − χj) · T
(

ϕ, 0, �χ · μ0,χj

)
+ χj · T

(
ϕ, 0, �χ · μ1,χj

)
, (16)

where T
(

ϕ, 0, �χ · μφ,χj

)
with φ = (0, 1) is the T Student distribution with ϕ degrees of

freedom and a scale parameter �χ · μφ,χj .
The last parameter to be defined is the auxiliary indicator χ through the realization

of θt. Let the framework be hierarchical. Then, the marginal prior π(χ) in Equation (12)
contains the relevant information for the variable selection. More precisely, based on the
data Y, π(χ) updates the probabilities on each of the 2m possible values of χ. By identifying
every χ with a submodel via χj = 1 if and only if χj is included (presence of the jth
covariate in the model), the χ values with higher probability would identify the promising
submodels better fitting the data. Thus, according to Equation (16), the χj values might be
treated as independent and evaluated with a marginal distribution:

π(χj) = w|χ| ·
(

j
|χ|

)−1
, (17)

where w|χ| denotes the model’s prior choice for the PIPs according to the model size |χ|.
This ensures assigning more weight to the parsimonious models by setting w|χ| to be large
for smaller |χ| values. More precisely, when the sample size is high dimensional, and
the regression parameters are allowed to vary over time, the covariates would tend to
be highly correlated. Then, let the model solutions fit the data similarly because of the
conjugate priors. Simpler models with fewer parameters would be favored over more
complex models with more parameters (overfitting).

Finally, let θt evolve over time according to Equation (11), and suppose that the data
run from (t = 0) to (t = T). In order to obtain a training sample (t − 1, 0), the Kalman
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filter algorithm is used to generate the features of the θj values over time. Equation (13) is
then rewritten as

π(θt|θt−1, yt) = N
(

θ̄t|t, R̄t|t
)

, (18)

where θ̄t|t and R̄t|t denote the conditional distribution of θt and its variance-covariance
matrix at time t given the information over the sample (t − 1, 0).

The conditional posterior distribution of (θ1, θ2, . . . , θt|yt) is computed through the
forward recursions for the posterior means (θ̄t|t+1) and covariance matrix R̄t|t+1:

π(θt|θt−1, yt) = N
(

θ̄t|t+1, R̄t|t+1

)
, (19)

where

θ̄t|t+1 = θ̄t|t +
T

∑
t=1

w|χ| ·
√

R̄t|t · σ2 , (20)

R̄t|t+1 =
[

Inm −
(

R̄t|t · R̄−1
t−1|t−1

)]
· (R̄t|t) , (21)

with

θ̄t|t = θ̄t−1|t−1 +
T

∑
t=1

(1 − κ) ·
√

R̄t−1|t−1 · σ2 . (22)

Here, R̄t|t and R̄t−1|t−1 refer to the variance-covariance matrices of the conditional
distributions of θ̄t|t at time t and θ̄t−1|t−1 at time t − 1, respectively, κ denotes the forgetting
factor involved in the shrinking procedure, θ̄t−1|t−1

∼= 0.01, and w|χ| denotes the PIPs
obtained by the sum of the PMPs in Equation (6).

The computation of the penalty term κ aims to discard the estimated coefficients θj from
the variable selection in case of extremely high volatility. More precisely, if volatility changes
matter (temporarily larger εt), then the full covariance matrix Ω increases (larger ω), setting
up the forgetting factor κ to be close to one. By construction, the second term in Equation (22)
will be zero, automatically discarding θj,t from the shrinking procedure. Indeed, the
conditional distributions at times t and t − 1 would match (θ̄t|t = θ̄t−1|t−1

∼= 0.01), and the
PIPs in Equation (20) would decrease (lower w|χ|) because of the larger model size |χ| in
accordance with Equation (17). Consequently, this implies that χ will require an estimate of
zero or that χ should be excluded from the model.

Given Equation (19), the other posterior distributions are defined as follows:

π(σ2|yt) = IG
(

ϑ̂

2
,

ρ̂

2

)
, (23)

π(ω|yt) = IG
(

ᾱ

2
,

ν̄

2

)
. (24)

Here, some considerations are in order. In Equation (23), ϑ̂ = ϑ0 · ϑ̄, ρ̂ = ρ0 · ρ̄,
ϑ0 ∼= 0.10, and ρ0 ∼= 1.0 are hyperparameters collected in �, ϑ̄ = 1 − κ, and ρ̄ = ν̄. This
means that in the case of volatility changes (κ ∼= 1.0), the only relevant estimate will be the
scale parameter ρ̂ controlling the height of the distribution’s peak.3 Much higher volatility
(higher σ2) will be associated with a larger model size (high serial correlations among errors
in the data) and then lower w|χ|, implying exclusion of θt from the variable selection.

In Equation (24), ᾱ = α0 · κ, ν̄ = ν0 · κ̄, α0 ∼= 0.01, and ν0 ∼= 1.0 denote the arbitrary
degree of freedom and the arbitrary scale parameter, respectively, and κ̄ = κ · exp(0.5 · b),
where b is a nominal variable equaling one if volatility changes matter and is zero otherwise.
In this way, at a time of constant volatility (κ ∼= 0.90), ν̄ will be close to the forgetting factor.
Conversely, in cases with extremely high volatility changes (κ ∼= 1.0), ν̄ will assume
higher values.
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4. Empirical Example

The WLB algorithm was constructed and run on 277 regions for 23 countries, includ-
ing European developed and developing economies, and non-European countries. The
estimation sample was expressed in years spanning the period of 1990–2022 (T = 33). All
data came from the Eurostat database.4

The panel set contained 98 directly observed variables, accounting for potential pre-
dictors affecting the outcomes. They were split into three groups: (1) 40 macroeconomic
financial indicators, investigating the role of economic conditions in cases of pandemic
contagion such as economic status, economic development, competitiveness, and imbal-
ances; (2) 35 socioeconomic and healthcare factors, highlighting potential causes for health
factors such as being overweight and tobacco and alcohol consumption, as well as health
expenditures, hospital employment, and healthcare statistics; and (3) 23 demographic and
environment indicators, understanding how the spreading of pandemic diseases is affected
by, for example, urbanity, population, pollution, and internet use. The variable of interest
refers to the real growth rate of the gross domestic product (GDP) at current market prices
for every region (productivity hereafter).

In Table 1, the best subset predictors better fitting the data and then predicting the
outcomes are displayed. They corresponded to 30 factors, where 10 of them referred to
macroeconomic financial variables, 12 predictors denoted socioeconomic and healthcare
indicators, and 8 factors accounted for demographic and environment statistics. In order to
investigate how these predictors affected the depedent variable, the conditional posterior
sign (CPS) indicator was evaluated, taking values of one or zero if a covariate in θl,t had a
positive or negative effect on the outcomes, respectively. Let the CPS be close to one or zero
for every predictor. Variable selection problems such as model uncertainty, overfitting, and
model misspecification are dealt with.

Here, some interesting economic policy issues are in order. First, when studying pan-
demic and health diseases among regions, macroeconomic financial linkages should be
accounted for. Second, a geographical statement, generally ruled out from disease prediction
analyses, needs to also be addressed. Third, macroeconomic financial indicators tend to be rel-
evant as much as socioeconomic and health factors, highlighting that economic conditions and
development issues are important drivers affecting the spread and transmission of diseases.

The usefulness of the WLB procedure involves performing variable selection around
the PIP for every predictor within the system in order to rule out whether not they are
relevant for forecasting the variable of interest (PIPs > τ).

To investigate how cross-unit interdependency and heterogeneity would matter when
predicting pandemic diseases, an n · 1 vector of strictly exogenous factors di = (d1, d2, . . . , dn)
accounting for region-specific and geographical characteristics was also added. They were
included ex post the shrinking procedure but before computing the lWLR in Equation (8).
More precisely, three dummy variables were used to improve pandemic disease prediction:
d1t, accounting for regional disparity (equaling one if the region belonged to a developed
countries and being zero otherwise); d2t, denoting the geographical position (equaling one
if it is a northwestern or northeastern region and zero if it is a central, southwestern, or
southeastern region); and d3t, referring to the initial economic condition of every region
to absorb potential convergence (or catch-up) effects (equaling one if the productivity is
higher than the average value of the country and being zero otherwise). According to d2t,
it was constructed using as a midpoint the country of Italy. To evaluate their usefulness
for predicting pandemic diseases, an F-test statistic was carried out to verify their joint
significance. When letting the p values be rather close to zero, all three time-invariant factors
were included within the system. These results confirm that pandemic diseases and their
possible contagion would be also affected by the surrounding environment.

The results highlight some important findings. (1) When studying pandemic diseases
and their effects on economic development, accurate variable selection needs to account
for different sets of indicators, even if not strictly related to health conditions. (2) In the
context of time-varying parameters and high-dimensional data, variable selection problems
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have to be dealt with. (3) The lWLR containing the best final submodel solution was set
to 15.89, highlighting quite strong evidence for Ml . (4) Another important issue to be
addressed is the (unobserved) cross-unit specific characteristics. More precisely, health care
systems differ among developed countries, even more so when the analysis is extended
to developing economies. Divergence exponentially increases at the regional level. Thus,
any policy strategy, government statement, and investments have to be strictly specific to
the economic status of that region. Without the exact attention to the true need of a region,
any type of support would be useless, leading to opposite results with respect to those
expected because of the increase in disparity, heterogeneity, and divergence in the economy
(Pulawska 2021; Gungoraydinoglu et al. 2021; Abrhám and Vošta 2022).

Table 1. Best subset predictors: WLB procedure.

Idx.Idx.Idx. PredictorPredictorPredictor UnitUnitUnit CPSCPSCPS

MACROECONOMIC FINANCIAL INDICATORS

1 unit labor cost % values 0.984
2 consumer price index % GDP 0.003
3 financial transactions % GDP 0.976
4 employment by age (15–64) % Tot. Pop. 0.981
5 labor force, age 15–64 logarithm 0.876
6 unemployment rate by age (15–74) % Tot. Pop. 0.001
7 risk of poverty by age (15–74) % Tot. Pop. 0.000
8 weighted income per capita % logarithm 0.969
9 wage and salaried workers % Tot. Emp. 0.944

10 gross fixed capital formation % GDP 0.935

SOCIOECONOMIC AND HEALTHCARE FACTORS

11 overweight std. rates per 100 people 0.001
12 consumption of tobacco % adults (15+) 0.001
13 consumption of alcohol std. rates per 100 people 0.003
14 current health expenditure % GDP 0.968
15 R&D expenditure % GDP 0.952
16 fertility rate % Tot. Pop. 0.981
17 capital health expenditure % GDP 0.974
18 death rate per 1000 people 0.001
19 secondary school enrollment % Tot. Pop. 0.937
20 social participation % Tot. Pop. 0.852
21 tertiary educational attainment % Tot. Pop. (25–64) 0.983
22 household price index % GDP 0.975

DEMOGRAPHIC AND ENVIRONMENT FACTORS

23 rural population % Tot. Pop. 0.868
24 urban population % Tot. Pop. 0.837
25 population growth % Tot. Pop. 0.974
26 total population logarithm 0.873
27 energy use % GDP 0.831
28 total CO2 emission % Tot. Pop. 0.004
29 human capital logarithm 0.847
30 internet use % GDP 0.782

REGION-SPECIFIC CHARACTERISTICS

- d1t 1 = northwestern, northeastern Europe; 0 = southwestern, southeastern Europe
- d2t 1 = developed; 0 = developing
- d3t 1 = high economic status; 0 = low economic status

- Real Growth Rate of GDP Percentage Change

The Table is split as follows. The first column denotes the predictor number; the second column displays the
predictors; the third column refers to the measurement unit; and the last column displays the CPSs. The last row
refers to the outcome of interest. The contraction Tot. Pop. stands for ‘total population’, and Tot. Emp. stands for
‘total employed people’. All data refer to Eurostat database.
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To complete the analysis, three density forecasts on the outcome of interest were performed
(Figure 1). The first case (panel A) evaluated only the macroeconomic financial indicators,
the second forecast (panel B) accounted for socioeconomic and healthcare statistics as
well, and the third and final case (panel C) was run on all subsets of predictors, including
demographic and environment indicators and exogenous factors on the regional disparity
and characteristics.

The density forecasts were performed by running 100,000 iterations per each random
start, spanning the period from 1990 to 2022. The h steps ahead forecast period refers to the
years 2023 and 2024 (h = 2) for replicating the productivity dynamics in the current year
and studying them in the next future year (2024). The associated computational costs were
minimized, ensuring consistent posterior estimates and dimension reduction.5 The yellow
and red lines denote the 95% confidence bands, and the blue and purple lines denote the
conditional and unconditional projections of the outcomes of interest for each time period
T + h, respectively.

Figure 1. The plot for conditional and unconditional projections for the outcome of interest, spanning
the period from 1990 to 2022. The forecast horizon refers to the years 2023 and 2024 (h = 2). The
Y and X axes represent the conditional projections and sampling distribution in years, respectively.
Concerning the latter, the reference period is 1990 (0); 1995 (10); 2000 (20); 2005 (30); 2010 (40);
2015 (50); 2022 (60); and 2024 (<70).

According to Figure 1, the forecasts in panel A matter more than the other two cases
(panels B and C). This was an expected result when predicting the productivity growth
while assuming an unexpected shock in the real and financial dimensions. Indeed, the
density forecasts were higher, displaying larger productivity growth over time. In addition,
when focusing on the conditional forecasts for the years 2023 and 2024 (blue line), the
productivity tended to maintain a trend similar to the previous years. However, when
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focusing on the unconditional projections (purple line), they strongly diverged because of
the presence of endogeneity issues and misspecified dynamics.

In the second case (panel B), where socioeconomic and healthcare factors were also
accounted for, the productivity dynamics changed. The density forecasts showed lower
magnitudes over time, and the conditional prediction for the years 2023 and 2024 displayed
a slightly pronounced decrease, reaching levels lower than the previous years (before the
2020 pandemic). Moreover, the confidence interval containing the conditional forecasting
(yellow and red lines) were smaller and tighter than those in panel A. However, in this
case, the unconditional projections also totally diverged, even at lower magnitudes. This
suggests that the endogeneity and misspecification problems matter again.

Then, the third case included geographical and regional characteristics (panel C). In
this specific case, four important results were achieved. First, the productivity dynamics
showed strong seasonal components, mainly in accordance with some triggering events
such as the 2008 Great Recession, post-crisis recovery programs, and the 2020 pandemic.
Second, the upper and lower bound confidence intervals included either conditional or
unconditional projections, minimizing the effects of potential endogeneity issues and
misspecified dynamics. Third, the same confidence interval tended to be much larger
and thicker than the ones observed in panels A and B because of significant cross-region
heterogeneity. Fourth, the density forecasts for the years 2023 and 2024 were lower and
showed a persistent decrease in the coming years (at least when focusing on the short- and
medium-term periods).

To better address the question of if it is possible to predict pandemic diseases, the
generalized Theil’s entropy index was employed, and it displayed in Figure 2. It was
computed by drawing the outcomes of interest for every region, weighted by the proportion
of the population with respect to the total (blue line) and their conditional projections (red
line), obtained through the forward recursions in Equation (19). The time period used ran
from 2004 to 2024. The conditional projections were quite close to the observed weighted
outcomes, highlighting the consistency and accuracy of the WLB algorithm in fitting the
data. Focusing on the year 2019, a sudden fall in productivity was observed until 2020.
Then, a totally opposite trend was achieved up to a recorded higher productivity level in
2021. However, in the year 2021, the productivty dynamics changed again by showing not
only a significant decrease but also a downward trend with respect to the past. According to
these findings, it is unlikely to predict ‘ex ante’ pandemic diseases, but it would be possible
to control the contagion and then significantly face their aftereffects on the economy. For
instance, when unexpected shocks significantly matter and affect productivity dynamics,
more attention should be payed not only to the strictly related macroeconomic financial
indicators but also the socioeconomic demographic factors that are similarly relevant
nowadays.

During the 2020 pandemic, the global outbreak of public health emergencies merely
focused on the health sector and disease-related costs. However, a more partial and
comprehensive approach would be essential to evaluate the overall economic development
impacts of the global pandemic. Indeed, widespread disease has led to economy-wide
shocks to both the supply and consumption sides. In addition, the consistent decrease in
consumption also negatively affected the global economy, which in turn caused spillover
effects for China’s regional economy through globalized international trade. Relevant
government departments should have payed more attention to structural reforms not only
for improving the public health system but also building a high-quality mode of economic
growth and restructuring global value chains. All these features were present during
the 2020 pandemic and still are today but without appropriate diversification purposes
dealing with the compelling need of a country or specific region. Maybe, according to
the productivity dynamics in Figure 2, a contagion lasting more than 2 years would have
been addressed better through more specific and substantial measures and with lower
development times.
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From a global perspective, the 2020 pandemic has highlighted the need to jointly
address health issues with the well-being and lives of citizens, prosperity and stability
of societies and economies, and sustainable development. Health challenges are quickly
evolving and rapidly changing the geopolitical environment due to the impact of three
additional planetary crises: climate change, biodiversity, and pollution. At the same
time, new opportunities linked to areas like research or digitalization have arisen. Thus,
a global health strategy is needed to provide a new coherent, effective, and focused policy
worldwide. The Global Gateway6 represents the close strategy of the European Health
Union, which protects the well-being of Europeans and the resilience of their health systems.
The main aim of this strategy is that the European Union (EU) should deepen its interest
in higher attainable standards of health based on fundamentally specific values such as
solidarity, equity, and respect for human rights. Infectious diseases represent a heavy
burden on many countries, and high infant and maternal mortality rates are matters to be
accounted for. This highlights the need to address global health security programs to better
prevent and be more resilient to future pandemics. The first two essential EU priorities are
investing in the well-being of people and reaching universal health coverage with much
stronger health systems. However, these priorities are rather different from 2010, and other
related important drivers of ill health should be addressed in an integrated manner, such
as climate change, environmental degradation, and humanitarian crises aggravated by the
recent and current Russia-Ukraine war. Thus, it is essential to define a wide number of
policies focusing on a global health agenda. Overall, global governance should require
a new specific focus to keep strong and constant collaboration with the World Health
Organization. Further cooperation should be built through the G7, G20, and other global
and regional partners. The EU’s policies should ensure coherent actions with them to avoid
the existing gaps in global governance. To support these strategies’ objectives, extremely
strong cooperation with the private sector, civil society, and other stakeholders is needed.

Figure 2. Plot of the generalized Theil’s entropy index from 2004 to 2024. This corresponds to the
outcomes of interest weighted by the proportion of the population with respect to the total (blue line)
and their conditional projections (red line) obtained through the forward recursions in Equation (19).
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Sensitivity Analysis and Heterogeneity Issues

In the current subsection, a counterfactual assessment is addressed to check the
sensitivity and robustness analysis, and dynamic panel data with the generalized method
of moments (DPDP-GMM) are assessed to investigate endogeneity issues in depth.

Concerning the former, the WLB procedure was performed by using a reduced time
series on the same sample of 277 regions for 23 countries and 98 endogenous predictors
over the period of 2000–2022. This time period was chosen for two reasons: a sufficiently
large number of observations was still ensured (T = 23), and the last two main global
crises (the 2008 financial crisis and the 2020 pandemic) followed to be dealt with. Moreover,
different priors were defined for the hyperparameters, allowing for different bounds. In
Equation (23), ϑ0 and ρ0 were set to 0.90 and 0.1, respectively. In Equation (24), α0 and ν0
were set to 1.0 and 0.1, respectively. Thus, the posterior ρ̂ = ρ0 · ν̄ ∼= 0.10 · (0.10 · κ̄) would be
equal to 0.009 in the case of constant volatility and 0.016 in the case of volatility changes. In
both cases, the posterior ρ̂ would approximately converge at the same value. The posterior
ϑ̂ will be always close to zero if the volatilities matter and slightly larger otherwise (∼=0.10).
Finally, the posterior ᾱ = α0 · κ will assume larger values, corresponding exactly to the
decay factor in the case of volatility (∼=1.0) and no time shift (∼=0.90). According to these
model specifications, the final subset of predictors is unchanged with the variable selection
focusing on ‘inclusion’ probabilities (PMPs). Moreover, the CPSs tend to decrease for the
most predictors because of not properly disentangling volatilty from coefficient changes
when computing ρ̂, the relevant scale parameter for σ2. However, by construction, the WLB
procedure would always ensure sufficient accuracy. Indeed, when letting volatility changes
be treated as permanent shifts in the case of dynamically changing variables, an unexpected
shock would be absorbed in a certain Ml during the shrinking procedure and then included
in the final submodel solution. The estimation results are displayed in Table 2.

Regarding endogeneity issues and further sensitivity analysis, four DPD-GMM models
were evaluated according to the the estimation outputs in Table 1.7 Model 1 includes all
the predictors with CPSs strictly close to one or zero over the time period of 1990–2022
(full panel set). Model 2 includes the same previous number of predictors but over the
subsample of 2000–2022 (reduced panel set). Model 3 refers to the only the predictors
with CPSs strictly close to one or zero dealing with only two groups (socioeconomic
healthcare and demographic environment factors) over the time period of 1990–2022
(full panel subset). Model 4 refers to the same previous number of predictors over the
subsample of 2000–2022 (reduced panel subset). Here, some considerations are in order.
(1) When addressing endogeneity issues (i.e., the error terms are serially correlated with
potential covariates violating one of the assumptions of regression models (independent
and identically distributed error terms)), dynamic panel data is a useful approach for
modeling unobserved heterogeneity by using correct instruments for the endogenous
variables from lower to higher orders (Arellano and Bond 1991; Blundell and Bond 1998).
(2) In dynamic panel models, when series show strong linear dependencies and dominance
of cross-sectional variability (just as in this case), a GMM system is an efficient method for
modeling these instruments for effective treatment of endogeneity biases concerning the
variables in the estimation. (3) Heteroskedasticity problems are dealt with using robust
standard errors across all estimations. (4) Stationarity is checked using a Fisher-type
test (Choi 2001), performing well for unbalanced panel datasets (just as in this case) and
assuming independently distributed normal error terms for all units (i) and time (t).

In Table 3, two main diagnostic tests to check the validity of the instruments and
efficiency of the estimates in the DPD-GMM models are displayed: Sargan’s test for over-
identification (QS), highlighting the performance and usefulness of the dynamic panel in
dealing with endogenity issues and functional forms of misspecification, and the Arellano–
Bond test (QAB) for the first- and second- order serial correlation of residuals (Arellano
and Bond 1991). Two main findings can be addressed. First, the results in Models 1 and
2 were quite close, highlighting the performance of the WLB procedure in selecting the
promising subset of predictors to be estimated and the usefulness of DPD-GMM models for
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use in potential econometric approaches. Second, when considering a constrained panel
set, endogeneity biases and serial correlations were not efficiently minimized because of
omitting potential non-health-related indicators and region-specific characteristics when
studying pandemic diseases and their effects on economic development. These results are
in line with the density forecasts performed in Figure 1.

Table 2. Counterfactual assessment: sensitivity analysis.

Idx.Idx.Idx. PredictorPredictorPredictor UnitUnitUnit CPSCPSCPS

MACROECONOMIC FINANCIAL INDICATORS

1 unit labor cost % values 0.947
2 consumer price index % GDP 0.011
3 financial transactions % GDP 0.951
4 employment by age (15–64) % Tot. Pop. 0.966
5 labor force, age 15–64 logarithm 0.839
6 unemployment rate by age (15–74) % Tot. Pop. 0.009
7 risk of poverty by age (15–74) % Tot. Pop. 0.033
8 weighted income per capita % logarithm 0.947
9 wage and salaried workers % Tot. Emp. 0.928

10 gross fixed capital formation % GDP 0.911

SOCIOECONOMIC AND HEALTHCARE FACTORS

11 overweight std. rates per 100 people 0.026
12 consumption of tobacco % adults (15+) 0.013
13 consumption of alcohol std. rates per 100 people 0.021
14 current health expenditure % GDP 0.934
15 R&D expenditure % GDP 0.917
16 fertility rate % Tot. Pop. 0.885
17 capital health expenditure % GDP 0.893
18 death rate per 1000 people 0.027
19 secondary school enrollment % Tot. Pop. 0.884
20 social participation % Tot. Pop. 0.817
21 tertiary educational attainment % Tot. Pop. (25–64) 0.934
22 household price index % GDP 0.881

DEMOGRAPHIC AND ENVIRONMENT FACTORS

23 rural population % Tot. Pop. 0.794
24 urban population % Tot. Pop. 0.814
25 population growth % Tot. Pop. 0.962
26 total population logarithm 0.857
27 energy use % GDP 0.791
28 total CO2 emission % Tot. Pop. 0.028
29 human capital logarithm 0.815
30 internet use % GDP 0.776

REGION–SPECIFIC CHARACTERISTICS

- d1t 1 = northwestern, northeastern Europe; 0 = southwestern, southeastern Europe
- d2t 1 = developed; 0 = developing
- d3t 1 = high economic status; 0 = low economic status

- Real Growth Rate of GDP Percentage Change

The Table is split as follows: the first column denotes the predictor number; the second column displays the
predictors; the third column refers to the measurement unit; and the last column displays the CPSs. The last row
refers to the outcome of interest. The contraction Tot. Pop. stands for ‘total population’, and Tot. Emp. stands for
‘total employed people’. All data refer to Eurostat database.
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Table 3. Diagnostic test in dynamic panel regressions with GMM system.

Test StatisticTest StatisticTest Statistic Model 1Model 1Model 1 Model 2Model 2Model 2 Model 3Model 3Model 3 Model 4Model 4Model 4

ROBUSTNESS

QS (p-values) 236.04 (0.00) 217.03 (0.00) 102.01 (0.03) 97.28 (0.04)
QAB (p-values) 2.95 (0.40) 2.73 (0.32) 1.87 (0.07) 1.66 (0.09)

OBSERVATIONS

Year dummies Yes Yes Yes Yes
Region dummies Yes Yes No No

Regions 277 277 277 277
Time series (T) 33 23 33 23

The table addresses two main test statistics with related p values (in parentheses) to check validity of the
instruments and efficiency of the estimates in the dynamic panel regressions. They are Sargan’s test for over-
identification (QS) and the Arellano–Bond serial correlation test (QA). Information on the data is also displayed.

5. Concluding Remarks

This study improves the existing literature on predicting pandemic diseases and their
effects on economic development across a large set of European and non-European regions.
A penalized Bayesian approach-based variable selection procedure is involved to reduce
the dimensionality of the model and parameter space and thus select a promising subset of
predictors affecting the outcomes of interest.

An empirical example on 277 regions for 23 countries described the estimating proce-
dure and forecasting performance, covering the period of 1990–2022. The forecast horizon
referred to the years 2023 and 2024 in order to replicate the productivity dynamics in the
current year and study them in the future.

According to the estimation results, conditional and unconditional density forecasts
on the productivity dynamics were conducted to highlight how the promising subset of
covariates would help predict potential pandemic diseases. Here, three different cases were
addressed, accounting for different subsets of predictors. The aim was to highlight how the
presence of endogeneity issues and model misspecification affected the estimates when
dealing with time-varying parameters and high dimensionality.

From a policy perspective, the global outbreak of public health emergencies has
merely focused on the health sector and disease-related costs. Thus, relevant government
departments should have paid more attention to structural reforms not only for improving
the public health system but also building a high-quality mode of economic growth and
restructuring the global value chains. In this way, through prudent long-term policies and
more specific and substantial measures, the contagion would have been better addressed
with lower development times and higher efficiency in terms of market opportunities,
innovation, and consumption features.

The empirical results reported herein should be considered in light of some limitations.
Firstly, even if the variables were time-varying, potential volatility changes were treated
as permanent shifts and then replaced by coefficient changes. Future improvements
might consider, for example, time-varying log volatilities and model them through MCMC
implementations (e.g., Metropolis–Hastings and expectation–maximization algorithms).
Then, an in-depth analysis might reveal the existence of further regional patterns, evaluated
by involving in the variable selection procedure hierarchical fuzzy Bayesian clustering
algorithms. Finally, this study did not investigate the causal relationship between the
outcome of interest and the subset of predictors, which was beyond the scope of this paper.
Related works might consider and discuss in depth the direct and indirect causal links
between them.
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Notes

1 The penalties are not differentiable at zero.
2 The analysis was conducted using the codes developed in Pacifico (2020) and adjusting them to include the LASSO procedure

(glmnet() function as starting point) and penalized terms (if{ } and else{} functions). The statistical econometric software used
was RStudio version 2023.12.0.

3 The higher the value of ρ̂, the greater the spread will be (lower peak).
4 Source: Eurostat, October 2023.
5 The analysis was conducted using Matlab software, and all density forecasts were performed while waiting for less than a minute.
6 Source: Global Gateway, February 2024.
7 The analysis was conducted by using and modeling the pdynmc R-Studio documentation, which fits a linear dynamic panel data

model based on moment conditions with the generalized method of moments.
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1. Introduction

With a little help of my friends.1

—The Beatles

Shadow prices (or consistent price systems) are a tool for characterizing the absence of
arbitrage opportunities in markets with proportional transaction costs (see, for example,
Czichowsky and Schachermayer (2016); Guasoni et al. (2010); Kabanov et al. (2002)), or for
deriving optimal strategies for various objectives (see, for example, Guasoni and Muhle-
Karbe (2013); Gerhold et al. (2013, 2014); Herdegen et al. (2023); Kallsen and Muhle-Karbe
(2010)). This paper investigates the applicability of shadow prices to the optimization of
long-term returns given average volatility.

Strategies that are optimal in frictionless markets2 such as the delta-hedging of
European-type options, or constant proportion strategies, lead to immediate bankruptcy
under proportional costs.3 To ensure solvency, trading frequency needs to be modulated
to finite variation, trading as little as necessary to stay close to the target exposures. This
paper relates to the objectives of long-run investors (Gerhold et al. (2014); Guasoni and
Mayerhofer (2019, 2023); Taksar et al. (1988))4, who consider it optimal to keep the fraction
of wealth π invested in the risky asset within an interval around a target exposure by engag-
ing only in trading whenever this fraction hits the boundaries of the interval.5 For example,
for constant investment opportunities and a sufficiently small relative bid–ask spread ε, the
trading boundaries π− < π+ of an investor with risk-aversion γ are approximately

π± = π∗ ±
(

3
4γ

π2∗(π∗ − 1)2
)1/3

ε1/3, (1)

where π∗ = μ
γσ2 is the well-known Merton fraction, μ being the annualized average return

of the risky asset, and σ its volatility.
Absurdly, such finite variation strategies are mathematically more challenging than

the infinite variation strategies typically encountered in frictionless markets. Shadow prices
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allow to transfer optimization into a more tractable, frictionless (but fictitious) market. A
shadow price is a frictionless asset that evolves in the bid–ask spread of the risky asset
and for which the optimal strategy buys (respectively sells) whenever its price agrees with
the ask (respectively bid) of this risky asset. For objectives which are monotone functions
of wealth, such as power utility, the strategy in the shadow market is also optimal in the
original market because by trading in the shadow market, the investor is generally better off.
Furthermore, shadow markets provide an elegant, intuitive derivation of optimal trading
policies for different objectives and market models. It therefore may come as surprise that
Guasoni and Mayerhofer (2019, 2023) use the more traditional Hamilton–Jacobi–Bellman
equations both for the heuristic derivation of the candidate optimal control limit policy
(with asymptotics (1)) and the verification of optimality. This is even more surprising, as
the respective objectives lend themselves to very tractable candidate shadow prices and
trading strategies (see Section 3.1 below). However, the local mean variance criterion is, in
general, not monotone in wealth.6 Therefore, the verification of optimality fails, leaving
open the question of whether trading strategies derived in the shadow market are also
optimal in the original market with transaction costs.

Guasoni and Mayerhofer (2019) show that, in the presence of transaction costs, maxi-
mizing returns is well posed, even without controlling for volatility—transaction costs act
as a penalty in the objective. As a consequence, the efficient frontier is not a straight line as
in the classical Merton problem but reaches a maximum for finite volatility, after which
taking on even further risk may result in negative alpha. However, in frictionless markets,
such an objective gives the incentive to seek arbitrary leverage, unless the asset has zero
expected excess return. Thus, shadow prices are destined to fail as an optimization tool.

Nevertheless, a candidate shadow price can be found for a risk-averse investor. A
construction similar to Gerhold et al. (2013) yields trading policies of the form (1), and thus,
they are indistinguishable at the first order from the optimal one. Moreover, at the second
order, they are distinguished by a mere change of sign in the second-order coefficient. Even
more surprisingly, the equivalent safe rate of the shadow price trading strategy agrees at
the third order with the maximum. In view of the second-order impact of transaction costs,
it is essentially optimal. However, we devise trading policies that strictly outperform the
shadow price trading strategy at fourth order.

Program of Paper

The paper is structured as follows: Section 2 presents the market model, encompassing
a risky Black–Scholes asset with transaction costs, the mean–variance objective, and a recap
of the optimal trading policies established in Guasoni and Mayerhofer (2019). Section 2.1
introduces control limit policies, evaluating their long-run performance along with small-
transaction cost asymptotics (Lemma 3). In Section 3.1, a naïve ansatz for a shadow price is
proposed, and asymptotic expansions of the trading boundaries are provided. Theorem 2
demonstrates their third-order asymptotic optimality and Theorem 3 establishes their strict
sub-optimality. Section 3.3 provides a rigorous proof that for maximizing expected returns
without controlling for volatility, no shadow price exists (Theorem 4). The final Section 4
summarizes our findings and points out directions for future research. The appendix
computes a high-order approximation of the candidate shadow price to support the proof
of Theorem 3.

2. Materials and Methods

The market model is comprised of two assets: a safe safe asset that is continuously
compounded at a constant rate of r ≥ 0 and a risky asset S purchased at its ask price St and
satisfying the dynamics

dSt

St
= (μ + r)dt + σdBt, S0, σ, μ > 0, (2)

229



J. Risk Financial Manag. 2024, 17, 70

where B is a standard Brownian motion. The risky asset’s bid (selling) price is (1 − ε)St,
which implies a constant relative bid–ask spread of ε > 0, or, equivalently, constant
proportional transaction costs.

Let w be the wealth associated with a self-financing trading strategy7. The mean–
variance trade-off is captured by maximizing the equivalent safe rate,

ESR := lim sup
T→∞

1
T
E

[∫ T

0

dwt

wt
− γ

2

〈∫ ·

0

dwt

wt

〉
T

]
. (3)

With π, the proportion of wealth invested in the risky asset, and with ϕt, the number
of shares ϕt = ϕ↑

t − ϕ↓
t being the difference of purchases ϕ↑

t minus sales ϕ↓
t , one can rewrite

the objective8 as follows

ESR :=r + lim sup
T→∞

1
T
E

[∫ T

0

(
μπt − γσ2

2
π2

t

)
dt − ε

∫ T

0
πt

dϕ↓
t

ϕt

]
. (4)

In the absence of transaction costs (ε = 0), the objective is maximized by the constant
proportion portfolio π∗ := μ

γσ2 dating back to Markowitz and Merton. The risk-neutral
objective γ = 0 reduces to the average annualized return over a long horizon, which is
well posed for transaction costs (Guasoni and Mayerhofer 2019, Theorem 3.2) but mean-
ingless in the traditional framework with zero bid–ask spread, where a strategy can be
arbitrarily levered. The case γ = 1 reduces to logarithmic utility, which is solved by the
Taksar et al. (1988) for the unlevered case μ

γσ2 < 1.
An optimal strategy maximizing the equivalent safe rate exists. The following is a

shortened version of (Guasoni and Mayerhofer 2019, Theorem 3.1), characterizing optimality.

Theorem 1. Let μ
γσ2 �= 1.

1. For any γ > 0, there exists ε0 > 0 such that for all ε < ε0, there is a unique solution
(W, ζ−, ζ+), with ζ− < ζ+ for the free boundary problem

1
2 σ2ζ2W ′′(ζ) + (σ2 + μ)ζW ′(ζ) + μW(ζ)− 1

(1+ζ)2

(
μ − γσ2 ζ

1+ζ

)
= 0, (5)

W(ζ−) = 0 (6)

W ′(ζ−) = 0, (7)

W(ζ+) =
ε

(1+ζ+)(1+(1−ε)ζ+)
, (8)

W ′(ζ+) = ε(ε−2(1−ε)ζ+−2)
(1+ζ+)2(1+(1−ε)ζ+)2 (9)

2. The trading strategy that buys at π− := ζ−/(1 + ζ−) and sells at π+ := ζ+/(1 + ζ+) as
little as possible to keep the risky weight πt within the interval [π−, π+] is optimal.

3. The maximum performance is

maxϕ∈Φ limT→∞
1
TE

[∫ T
0

(
μπt − γσ2

2 π2
t

)
dt − ε

∫ T
0 πt

dϕ↓
t

ϕt

]
= μπ− − γσ2

2 π2−, (10)

where Φ is the set of admissible strategies in Definition 1 below, ϕt = πtwt/St is the number
of shares held at time t, and ϕ↓

t is the cumulative number of shares sold up to time t.
4. The trading boundaries π− and π+ have the asymptotic expansions

π± = π∗ ±
(

3
4γ π2∗(π∗ − 1)2

)1/3
ε1/3 − (1−γ)π∗

γ

(
γπ∗(π∗−1)

6

)1/3
ε2/3 + O(ε). (11)
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5. The equivalent safe rate (ESR) has the expansion

ESR = r + γσ2

2 π2∗ − γσ2

2

(
3

4γ π2∗(π∗ − 1)2
)2/3

ε2/3 + O(ε). (12)

2.1. Admissible Strategies and Their Long-Run Performance

In view of transaction costs, only finite-variation trading strategies are consistent with
solvency. This is illustrated by the following example.

Example 1. Consider the dynamic hedging part of 1/ε variance swaps9 on the asset S with
maturity T = 2, that requires to hold

ϕt =
1

εSt

units of the underlying at each time t ≥ 0. Trading discretely, along a mesh of size Δ, one needs to
sell at t + Δ if and only if St+Δ > St, which incurs a cost of

ε × 1/ε × St+Δ(1/St − 1/St+Δ) = (St+Δ/St − 1).

Let x+ = max(0, x) and N = T/Δ, then the total transaction cost amounts to

CN =
N−1

∑
i=0

(S(i+1)Δ/SiΔ − 1)+.

Note that this sum counts all positive simple returns of the asset, which can be approximated
by logarithmic returns. Thus, as N → ∞, CN → C, the semivariation of a Brownian motion B
with drift,

C = lim
Δt→0

T/Δt−1

∑
i=0

(B(i+1)Δt − BiΔt)+ = ∞,

almost surely. This shows that, under proportional transaction costs, such a dynamic trading
strategy results in immediate bankruptcy.

Denote by Xt and Yt the wealth in the safe and risky positions, respectively, and by
(ϕ↑

t )t≥0 and (ϕ↓
t )t≥0, the cumulative number of shares bought and sold, respectively. The

self-financing condition prescribes that (X, Y) satisfies the dynamics

dXt = rXtdt − Stdϕ↑
t + (1 − ε)Stdϕ↓

t , dYt = Stdϕ↑
t − Stdϕ↓

t + ϕtdSt. (13)

A strategy is admissible if it is non-anticipative and solvent, up to a small increase in
the spread.

Definition 1. Let x > 0 (the initial capital) and let (ϕ↑
t )t≥0 and (ϕ↓

t )t≥0 be continuous, increasing
processes, adapted to the augmented natural filtration of B. Then, (x, ϕt = ϕ↑

t − ϕ↓
t ) is an

admissible trading strategy if the following apply:

1. Its liquidation value is strictly positive at all times: there exists ε′ > ε such that the discounted
asset S̃t := e−rtSt satisfies

x −
∫ t

0
S̃sdϕs + S̃t ϕt − ε′

∫ t

0
S̃sdϕ↓

s − ε′ϕ+
t S̃t > 0 a.s. for all t ≥ 0. (14)

2. The following integrability conditions hold:

E

[∫ t

0
|πu|2du

]
< ∞, E

[∫ t

0
πu

d‖ϕu‖
ϕu

]
< ∞ for all t ≥ 0, (15)
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where ‖ϕt‖ denotes the total variation of ϕ on [0, t].

The family of admissible trading strategies is denoted by Φ.

The following lemma describes the dynamics of the wealth process wt, the risky weight
πt, and the risky-safe ratio ζt.

Lemma 1. For any admissible trading strategy ϕ:

dζt

ζt
= μdt + σdBt + (1 + ζt)

dϕ↑
t

ϕt
− (1 + (1 − ε)ζt)

dϕ↓
t

ϕt
, (16)

dwt

wt
= rdt + πt(μdt + σdBt − ε

dϕ↓
t

ϕt
), (17)

dπt

πt
= (1 − πt)(μdt + σdBt)− πt(1 − πt)σ

2dt +
dϕ↑

t
ϕt

− (1 − επt)
dϕ↓

t
ϕt

. (18)

For any such strategy, the functional

FT(ϕ) :=
1
T
E

[∫ T

0

dwt

wt
− γ

2

〈∫ T

0

dwt

wt

〉
T

]
(19)

can be rewritten as

FT(ϕ) = r +
1
T
E

[∫ T

0

(
μπt − γσ2

2
π2

t

)
dt − ε

∫ T

0
πt

dϕ↓
t

ϕt

]
. (20)

Proof. See (Guasoni and Mayerhofer 2019, Lemma A.2).

Lemma 2. Let η− < η+ be such that either η+ < −1/(1 − ε) or η− > 0. Then, there exists
an admissible trading strategy ϕ̂ such that the risky-safe ratio ηt satisfies SDE (16). Moreover,
(ηt, ϕ̂↑

t , ϕ̂↓
t ) is a reflected diffusion on the interval [η−, η+]. In particular, ηt has stationary den-

sity equal to

ν(η) :=
2μ

σ2 − 1

η
2μ

σ2 −1
+ − η

2μ

σ2 −1
−

η
2μ

σ2 −2, η ∈ [η−, η+], (21)

when η− > 0, and otherwise equals

ν(η) :=
2μ

σ2 − 1

|η−|
2μ

σ2 −1 − |η+|
2μ

σ2 −1
|η|

2μ

σ2 −2, η ∈ [η−, η+]. (22)

Proof. See (Guasoni and Mayerhofer 2019, Lemma B.5).

Definition 2. For the rest of the paper, the strategy in Lemma 2 is called “control limit policy for
η±”, an adaption of the name of similar policies in Taksar et al. (1988), where “limit” actually relates
to the boundaries of the interval [η−, η+]. Note that the strategy in Theorem 1 (2) is exactly of this
kind: it entails no trading as long as ζt ∈ (ζ−, ζ+) and trades as little as necessary at ζ± to keep
the risky-safe ratio in the interval [ζ−, ζ+]. Alternative strategies, such as trading into the middle
of the no-trade region, incur significantly larger transaction costs.10

The following computes the statistics contributing to the ESR of any trading strategy
as in Lemma 2 (not just the optimal one) in terms of the risky-safe ratio.

232



J. Risk Financial Manag. 2024, 17, 70

Lemma 3. Consider a control limit policy for η±. Long-run mean m̂, long-run standard deviation
σ̂ and average transaction costs ATC are given by the almost sure limits,

m̂ = lim
T→∞

1
T

∫ T

0

dwt

wt
dt = r + μ

∫ η+

η−

(
ζ

1 + ζ

)
ν(dη), (23)

σ̂2 = lim
T→∞

1
T

〈∫ ·

0

dwt

wt

〉
T
= σ2

∫ η+

η−

(
ζ

1 + ζ

)2
ν(dη), (24)

ATC = ε lim
T→∞

1
T

∫ T

0
πt

dϕ↓
t

ϕt
=

σ2(2μ/σ2 − 1)
2

⎛⎜⎝ εζ+
(1+ζ+)(1+(1−ε)ζ+)

1 −
(

ζ−
ζ+

)2μ/σ2−1

⎞⎟⎠, (25)

where ν is the stationary density of Lemma 2.

Proof. All the formulae use the ergodic theorem and thus can be obtained with the methods
of Guasoni and Mayerhofer (2019). In particular, identity (25) holds in the view of (Gerhold
et al. 2014, Lemma C.1).

Using the analytic expressions of (23)–(25) with MATHEMATICA, we obtain explicit
asymptotics, precise at the third order in ε1/3:

Lemma 4. For the optimal strategy of Theorem 1, the statistics of Lemma 3 satisfy the following
asymptotics:

m̂ = r +
μ2

γσ2 − μ(2π∗ − 1)
γ

(
γπ∗(π∗ − 1)

6

)1/3

ε2/3 + O(ε4/3), (26)

σ̂2 =
μ2

γ2σ2 − σ2π∗(7π∗ − 3)
2γ

(
γπ∗(π∗ − 1)

6

)1/3

ε2/3 + O(ε4/3), (27)

ATC =
3σ2

γ

(
γπ∗(π∗ − 1)

6

)4/3

ε2/3 − μ(γ − 1)
2γ

π∗(π∗ − 1)ε + O(ε4/3). (28)

The maximum equivalent safe rate satisfies

ESR = r + γσ2

2 π2∗ − γσ2

2

(
3

4γ π2∗(π∗ − 1)2
)2/3

ε2/3 + μ(γ−1)
2γ π∗(π∗ − 1)ε + O(ε4/3). (29)

Remark 1.

1. All asymptotics of Lemma 4 improve those of (Guasoni and Mayerhofer 2019, Theorem 3.1)
in precision by one order. Note that (26) is a corrected version of (Guasoni and Mayerhofer
2019, Theorem 3.1, eq. (3.8)), where the bracket (5π∗ − 3) is given, instead of the correct term
(2π∗ − 1) in (26).

2. One can run a consistency check that compares the asymptotics (29) of the maximum ESR
(computed, by developing r + m̂ − γ

2 σ̂2 − ATC into a formal power series in ε1/3) with the

asymptotic expansion of the shorter formula r + μπ− γσ2

2 π2− from Theorems 1 and 3.

3. Results

3.1. Asymptotically Optimal Shadow Policies

In this section, a shadow price for the mean–variance objective (3) is constructed,
and asymptotic formulas for the implied strategy that is optimal in the shadow market,
are derived. The exposition is motivated by the shadow price construction for log-utility
investors, cf. (Gerhold et al. 2013, Chapter 3), and see also Guasoni and Muhle-Karbe (2013);
Gerhold et al. (2014). Assume the following functional form of the shadow price S̃t,

S̃t = g(πt)St, (30)
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where g satisfies the boundary conditions

g(π−) = 1, g(π+) = (1 − ε), (31)

reflecting that an optimal strategy (such as of Theorem 1) is a control limit policy for π±,
which buys (respectively sells) the frictionless asset S̃ precisely when its price equals the
ask price S, and sells precisely when it equals the bid price (1 − ε)S.

If S̃ satisfies (30) with twice differentiable g, and if g satisfies (34), then Itô’s formula
yields the dynamics of instantaneous returns11

dS̃t

S̃t
= rdt + dμ̃t + σ̃tdBt,

with

dμ̃t = μdt +
g′(πt)

(
πt(1 − πt)μdt + πt(1 − πt)2σ2)

g(πt)
(32)

+

1
2 g′′(πt)π2

t (1 − πt)2σ2dt + g′(πt)

(
πt

dϕ↑
t

ϕt
− (1 − επt)

dϕ↓
t

ϕt

)
g(πt)

and diffusion coefficient

σ̃t = (σg(πt) + g′(πt)πt(1 − πt)σ)/g(πt). (33)

The smooth pasting condition

g′(π−) = g′(π+) = 0 (34)

is imposed such that the instantaneous drift of the shadow price becomes absolutely contin-

uous (the condition removes the local time terms dϕ↑
t

ϕt
and dϕ↓

t
ϕt

), and thus dμ̃t = μ̃tdt, with

μ̃t = μ +
g′(πt)(πt(1 − πt)μ + πt(1 − πt)2σ2) + 1

2 g′′(πt)π2
t (1 − πt)2σ2

g(πt)
. (35)

The fraction of wealth π̃ invested in the risky asset, evaluated at the shadow price, satisfies

π̃t =
Ytg(πt)

Xt + Yg(πt)
=

πtg(πt)

(1 − πt) + πtg(πt)
. (36)

The mean–variance optimality in the shadow market holds when the proportion of
wealth in the shadow market’s risky asset S̃ equals the Merton fraction, that is,

π̃t =
μ̃t

γσ̃2
t

.

Equating this solution with (36), and using (35), (33) entails that g satisfies the ODE

1
2

g′′(π)π2(1 − π)2σ2 =
γπσ2(g + g′(π)π(1 − π))2

1 − π + πg(π)
− μg(π) (37)

− g′(π)(π(1 − π)μ + π(1 − π)2σ2).

Define Ψ implicitly as

g(π) =
Ψ(Y/X)

Y/X
=:

Ψ(ζ)

ζ
,

and set
ζ± =

π±
1 − π±

. (38)
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Then, (Ψ, ζ−, ζ+) satisfy the problem

Ψ′′(ζ) = 2γΨ′2(ζ)
(1 + Ψ(ζ))

− 2μ

σ2
Ψ′(ζ)

ζ
, (39)

Ψ′(ζ−) = Ψ(ζ−)/ζ− = 1, (40)

Ψ′(ζ+) = Ψ(ζ+)/ζ+ = (1 − ε). (41)

This is a free boundary problem, because both Ψ and the trading boundaries ζ± for
the control limit policy are unknown.

Using the explicit solution Ψ of the corresponding initial value problem (39) and (40),
and respecting terminal conditions (41), one obtains a non-linear system of equations for
(ζ−, ζ+). For small ε, this very system allows a unique solution with asymptotic expansion12

ζ̃± =
π∗

1 − π∗
±
(

3
4γ

)1/3( (π∗)2

1 − π∗

)2/3

ε1/3 − (1 + 2γ)π∗
2γ(1 − π∗)2

(
γπ∗(π∗ − 1)

6

)1/3
ε2/3 + O(ε). (42)

In comparison, the optimal strategy of Theorem 1 is a control limit policy whose limits
ζ±, in terms of the risky-safe ratio, have the expansion13

ζ± = π∗
1−π∗ ±

(
3

4γ

)1/3(
π∗

(π∗−1)2

)2/3
ε1/3 − (5−2γ)π∗

2γ(π∗−1)2

(
γπ∗(π∗−1)

6

)1/3
ε2/3 + O(ε). (43)

Note the factor (1 + 2γ) in the ε2/3 term in (42), which differs from the factor (5 − 2γ)
in (43). Accordingly, the associated trading boundaries have an asymptotic expansion,

π̃± = π∗ ±
(

3
4γ

(π∗)2(1 − π∗)2
)1/3

ε1/3 +
(1 − γ)π∗

γ

(
γπ∗(π∗ − 1)

6

)1/3
ε2/3 + O(ε). (44)

The expansion (42), respectively, (44), agrees with the above expansions (43), respec-
tively, (11), up to the first order (they agree in constant and in ε1/3 terms). But they disagree
in a quite subtle way for any γ �= 1 at the second order: the absolute values, but not the
signs of the second-order term of π± (see (44)) and π̃± (see (11)), are identical.

The following establishes asymptotic optimality of the third order of the strategy
obtained from the shadow market (the proof exclusively uses MATHEMATICA and higher-
order expansions of (44)).

Theorem 2. The asymptotic expansion of the equivalent safe rate and average transaction costs
of the control limit policy for π̃± are of the exact same form as (29), respectively, (25). Thus, the
strategy is asymptotically optimal at the third order. The long-run mean and variance defined by
Lemma 3 satisfy the following asymptotics:

m̃ = r +
μ2

γσ2 − μ(2γπ∗ − 1)
γ

(
γπ∗(π∗ − 1)

6

)1/3

ε2/3 + O(ε4/3), (45)

σ̃2 =
μ2

γ2σ2 − σ2π∗(π∗(8γ + 1)− 3)
2γ

(
γπ∗(π∗ − 1)

6

)1/3

ε2/3 + O(ε4/3). (46)

Remark 2. Note that, almost miraculously,

m̂ − γ

2
σ̂2 = m̃ − γ

2
σ̃2 = O(ε4/3)

because the average transaction costs as well as the equivalent safe rate agree for both strategies up
to the third order, and the mean and variance’s third-order terms vanish (compare (45) and (46)
with the mean and variance of the optimal strategy in Lemma 4).
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3.2. Outperforming the Shadow Market

In Theorem 2, it is shown that S̃ is an asymptotic shadow price, as the strategy that is
optimal in the frictionless market is even optimal at the third order in the original market.
For the proof of this statement, it is crucial to have precise asymptotic expansions of the
trading boundaries π̃±.

The objective of this section is to prove that this strategy is not optimal. To this end,
it would be useful to have higher (fourth and fifth) order terms in the expansion of the
optimal trading boundaries ζ± and thus, the maximum performance (29). However, the
free boundary problem of (A1)–(A5) associated with the optimal solution of Theorem 1 is
notoriously difficult to deal with, even with MATHEMATICA, while the free boundary
problem (A9) and (A10) arising from the shadow price ansatz is much more tractable.
Therefore, instead of developing the maximum performance to even higher precision, a
strategy is found that merely outperforms the shadow market.

Theorem 3. Suppose γ /∈ {0, 1}. For any θ ∈ R, the family of control limit policies for

π̃θ± := π̃± + (θ − 1)× (γ − 1)(π∗)2(1 − π∗)
6

(
6

γπ∗(1 − π∗)

)2/3
ε2/3 (47)

has an equivalent safe rate

ESR = r +
γσ2

2
π2∗ −

γσ2

2

(
3

4γ
π2∗(π∗ − 1)2

)2/3
ε2/3 +

μ(γ − 1)
2γ

π∗(π∗ − 1)ε (48)

− σ2 × k(θ)
20γ

(
γπ∗(1 − π∗)

6

)2/3

ε4/3 + O(ε5/3),

where
k(θ) := −9 + 2π∗

(
9 + π∗

(
3 + 12γ(γ − 2) + (10θ + 5θ2)(γ − 1)2

))
and, thus, is asymptotically optimal at the third order. For sufficiently small ε, the best performance
at the fourth order is achieved for θ = −1, strictly outperforming the shadow performance (θ = 1).

Proof. Using the method in Appendix A, derive asymptotic expansions of c and s (whence
ζ̃± up to the sixth order), satisfying the free boundary problem (A1)–(A5) at the same order.
Modifying the second-order term by including a factor θ as in (47), one arrives at (48).
The fourth-order coefficient k(θ) is a polynomial of the second order in θ, with a global
minimum at θ = −1. The comparison sign and magnitude of this factor are straightforward
and reveal that θ = −1 outperforms any other control limit policy for θ �= −1.

Remark 3. Note that for θ = −1, the control limit policy for (47) is, up to order two, equal to the
optimal strategy (11) of Theorem 1. This does not mean that it is optimal at order four or beyond, as
higher-order coefficients of π̃θ± may not agree with those of the optimal boundaries π±.

3.3. The Limits of Shadow Prices

Recall that a shadow price S̃ is a frictionless process evolving in the bid–ask spread

(1 − ε)St ≤ S̃t ≤ St, t ≥ 0 (49)

such that the optimal strategy ϕ is also optimal in the original market, and buys (respectively
sells) precisely when S̃t = St (respectively S̃t = (1 − ε)St).

To start with, the dynamics of the risky-safe ratio, wealth and proportion of wealth in
the shadow market, for any finite variation strategy, is stated.
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Lemma 5. Suppose the shadow price satisfies the dynamics

dS̃t

S̃t
= (r + μ̃t)dt + σ̃tdBt. (50)

For any finite variation trading strategy ϕ,

dζ̃t

ζ̃t
= μ̃tdt + σ̃tdBt + (1 + ζ̃t)

dϕ↑
t

ϕt
− (1 + ζ̃t)

dϕ↓
t

ϕt
, (51)

dw̃t

w̃t
= rdt + π̃t(μ̃tdt + σ̃tdBt), (52)

dπ̃t

π̃t
= (1 − π̃t)(μ̃tdt + σ̃tdBt)− π̃t(1 − π̃t)σ̃

2
t dt +

dϕ↑
t

ϕt
− dϕ↓

t
ϕt

. (53)

Proof. A similar proof as that of Lemma 1 applies.

Lemma 6. If a shadow price exists, then for the optimal strategy, the cash positions in the original
and shadow markets agree (X̃ = X), and the fraction of wealth invested in the shadow price satisfies

πt ≤ π̃t ≤ (1 − ε)πt

1 − επt
.

In particular, if the optimal strategy satisfies πt ∈ [π−, π+], then

π− ≤ π̃t ≤ (1 − ε)π+

1 − επ+
≤ (1 − ε)π+(1 + επ+). (54)

Proof. The optimal strategy trades the risky asset at the same price in both markets;
therefore, the cash positions agree.

The lower bound is proved by observing that for a, b > 0, the function

aξ

−b + aξ

is strictly decreasing for any ξ > b/a (which corresponds to positive wealth), and since
S̃ ≤ S,

π̃t =
ϕtS̃t

Xt + ϕtS̃t
≥ ϕtSt

Xt + ϕtSt
=

ϕtSt

wt
= πt.

Similarly, the upper bound follows from

π̃t =
ϕtS̃t

Xt + ϕtS̃t
≤ (1 − ε)ϕtSt

Xt + ϕt(1 − ε)St
=

(1 − ε)πt

1 − επt
.

The constant bounds in terms of the trading boundaries π± are an obvious conclusion.
The last inequality in (54) follows from the summation formula of the geometric series,
knowing that solvency implies επ+ < 1.

For proportional transaction costs, maximizing the expected excess returns

lim
T→∞

1
T
E

[∫ T

0

dwt

wt

]
over all admissible strategies ϕ ∈ Φ is well posed. By (Guasoni and Mayerhofer 2023,
Theorem 3.2), for sufficiently small ε, there exists 0 < π− < π+ < ∞ such that the trading
strategy ϕ̂ that buys at π− and sells at π+ to keep the risky weight πt within the interval

237



J. Risk Financial Manag. 2024, 17, 70

[π−, π+] is optimal. The maximum expected return of this optimal strategy is given by the
almost sure limit

lim
T→∞

1
T

∫ T

0

dwt

wt
= r + μπ− (55)

and the trading boundaries have the series expansions

π− =(1 − κ)κ1/2
( μ

σ2

)1/2
ε−1/2 + 1 + O(ε1/2), (56)

π+ =κ1/2
( μ

σ2

)1/2
ε−1/2 + 1 + O(ε1/2), (57)

where κ ≈ 0.5828 is the unique solution of

3
2

ξ + log(1 − ξ) = 0, ξ ∈ (0, 1).

The remainder of this section is dedicated to showing that a shadow market does
not exist.

For technical reasons, it is assumed in this section that any shadow price satisfies
the following.

Assumption 1. A shadow price S̃ is a continuous process satisfying the dynamics (50) with drift
and diffusion coefficients being ergodic in the sense that, almost surely, for some μ̄, σ̄2 ∈ R,

lim
T→∞

1
T

∫ T

0
μ̃tdt = μ̄, lim

T→∞

1
T

∫ T

0
σ̃2

t dt = σ̄2. (58)

Remark 4. The fairly general Assumption 1 is natural in that it applies to all known constructions
of shadow prices in continuous-time models. In fact, typically, the ratio S̃t

St
is equal to g(πt), where

g is a real analytic function and πt is a stationary process: the optimal proportion of wealth in the
risky asset, evolving within an interval [π−, π+], where one buys (respectively sells) precisely at the
trading boundary πi (respectively π+) and satisfying g(π−) = 1 and g(π+) = 1 − ε, reflecting
the very definition of shadow price, agreeing with the ask (respectively bid) whenever shares are
purchased (respectively sold). As these functions in the literature are all analytic, one can use Itô’s
formula to derive the dynamics (50) in a more explicit form.14 There exist continuous functions h
and H such that

μ̃t = h(πt), σ̃2
t = H(πt)

By the ergodic theorem (Borodin and Salminen 2002, II.35 and II.36), one obtains the finite
limits in (58).

Lemma 7. If μ > σ2/2, then μ̄ > σ̄2/2. In particular, μ̄ �= 0.

Proof. Write the fraction S̃t/St as explicit solutions, where the accrual factor ert factors out.
As μ > σ2/2, by the law of iterated logarithms, e−rtSt almost surely tends to ∞ as t → ∞.
If μ̄ ≤ σ̄2/2, then for sufficiently large t, S̃t behaves like a geometric Brownian motion with
drift μ̄ and volatility σ̄, whence by a similar argument, lim inft→∞ S̃t = 0, almost surely.
Thus, lim inft→∞ S̃t/St = 0 < (1 − ε), a contradiction to (49).

Theorem 4. If μ > σ2/2, then a shadow price satisfying the dynamics of (50) and Assumption 1
does not exist.

Proof. Assume, for a contradiction, there exists a shadow price S̃. By Lemma 5, the shadow
wealth w̃t = ϕtS̃t + X̃t satisfies the SDE (52). Furthermore, by Lemma 6∫ t

0
π̃2

t σ̃2
udu ≤ (1 − ε)2(π2

+(1 + επ+)
2
∫ t

0
σ̃2

udu < ∞
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and thus, the integral of the Brownian term is a martingale by Assumption 1. Thus, the
strategy ϕ with associated wealth w̃ achieves its optimum at

λ := lim
T→∞

1
T
E

[∫ T

0

dw̃t

w̃t

]
= r + lim

T→∞

1
T
E

[∫ T

0
μ̃tπ̃tdt

]
.

Note that, by Assumption 1,

μ̄ = lim
T→∞

1
T

∫ T

0
μ̃tdt = lim

T→∞

1
T
E

[∫ T

0
μ̃tdt

]
and by Lemma 7, μ̄ > 0. Furthermore, by Lemma 6, there exist 0 < L < U < ∞ such that

Lμ̄ < lim
T→∞

1
T
E

[∫ T

0
μ̃tπ̃tdt

]
< Uμ̄. (59)

Any alternative strategy ϕ�, whose proportion of wealth in the shadow price satisfies

π̃∗ ≥ U (60)

outperforms ϕ because
λ∗ ≥ r + Uμ̄ > λ.

Trading strategies that keep the exposure in the shadow asset constant to U exist, but
they are of infinite variation. To obtain finite variation strategies satisfying (60), recall that
by Lemma 5, the fraction of wealth in the shadow asset w̃ associated with a finite variation
strategy satisfies (53). One can modify this strategy by allowing bulk trades: let ϕ∗ be the
finite variations strategy that does refrain from trading whenever π̃� ∈ (U, 2U) but buys
(respectively sells) the shadow asset in bulk whenever π̃� hits U (respectively 2U) so as to
reset π̃� to the midpoint 3U/2. Such a strategy can be constructed pathwise and satisfies

dπ̃�
t−

π̃�
t−

= (1 − π̃�
t−)(μ̃tdt + σ̃tdBt)− π̃�

t−(1 − π̃�
t−)σ̃2

t dt +
Δϕ�,↑

t
ϕ�

t
− Δϕ�,↓

t
ϕ�

t
.

The existence of such a strategy contradicts the optimality of ϕ, and thus a shadow
price does not exist.

Remark 5. The finite variation strategy in the end of the proof cannot be replaced by a (standard)
reflected diffusion with two reflecting boundaries because for the existence of strong solutions to
the associated SDE on convex domains (Tanaka 1979, Theorem 4.1), one would need μ̃t and σ̃t to
be regular enough functions of π̃�

t , an assumption that is too strong in this context. Also, it is
unknown whether such a strategy is solvent in the original market with transaction costs.

4. Discussion

Optimizing portfolios in continuous-time markets with proportional costs presents
mathematically challenging problems. Strategies that are optimal in frictionless markets
must be adjusted to prevent immediate bankruptcy as exemplified by the dynamic hedging
component of a variance swap (see Example 1). The strategies considered in this paper are
stationary15 and, thus, ergodic theorems are used to determine their long-run performance.
To gain insights into trading frequency, transaction costs, and long-run performance, we
derive asymptotic expansions of the trading boundaries for small bid–ask spread.

The paper explores the (candidate) shadow prices for local mean–variance investors,
with a threefold contribution.

First, we discover that the optimal strategy in the (candidate) shadow market differs
from the optimal one in the original market but only in the second-order terms of the
asymptotic expansion of the trading boundaries.16 Theorem 2 demonstrates that, for risk
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aversion γ > 0, the equivalent safe rate of the shadow market strategy agrees at the third
order with the maximum. As transaction costs are of the second order, we conclude that the
performance of the shadow market strategy is essentially optimal. It is worth noting that
the same is true17 for a long-run power–utility investor (cf. Gerhold et al. (2014)), as their
trading boundaries also agree at the first order with (1). Second, Theorem 3 establishes
that for γ �= 1, the (potential) shadow market strategy π̃ is not optimal, as it can be
outperformed. The alternative strategy is not necessarily optimal, even though it agrees up
to the second order with the optimal one. In summary, the (candidate) shadow price is an
asymptotic shadow price. Third, Theorem 4 demonstrates that for risk-neutral investors
(γ = 0), no such shadow market exists.

The findings of this paper prompt the following research problems. First, we conjecture
that a minor modification of the objective will render the shadow price candidate of
Section 3.1 optimal in the original market with transaction costs. Motivated by Martin
(2012, 2016), we propose to replace the equivalent safe rate in (3) by an infinite horizon, the
local mean–variance utility function18

ESR := E

[∫ ∞

0
δe−δt dwt

wt
− γ

2

∫ ∞

0
δe−δt

〈
dwt

wt

〉
t

]
(61)

for some discount rate δ > 0. In the absence of transaction costs (ε = 0), the maximum
equivalent safe rate agrees with that of the old objective (3). More importantly, this objective
leads to the exact same shadow market construction as in Section 3.1. The question remains
if our shadow market policy maximizes also (61) in the original market, surpassing its
third-order optimality (Theorem 2).

Second, the mathematical treatment of optimization problems involving transaction
costs is always uniquely tailored to a specific objective. This results in free boundary
problems that vary significantly, encompassing scenarios from Riccati Differential Equations
Gerhold et al. (2012) and linear equations (Guasoni and Mayerhofer 2019, Theorem 3.3) to
the nonlinear problem (37) addressed in this paper, and even singular problems for zero
risk-aversion (Guasoni and Mayerhofer 2019, Theorem 3.2). The question persists: can a
unified approach be devised that accommodates a diverse range of objectives? To explore
this possibility, one might aim for conformity to a common format—a second-order free
boundary problem stated as follows:

F(g, g′, g′′) = 0, (62)

g(π−) = 1, g(π+) = 1 − ε, (63)

g′(π−) = 0, g′(π+) = 0. (64)

This problem involves an unknown scalar function g = g(π) that must satisfy a
second-order nonlinear ODE (62), along with buy and sell boundaries π− and π+, respec-
tively. The latter boundaries must adhere to zeroth-order boundary conditions (63) and
first-order conditions (64).19 In practical trading applications, a second-order approxima-
tion of the trading boundaries would suffice. Such an approximation might be achieved
through a general polynomial ansatz for an approximation of (62).

Third, most of the literature20 regarding the existence of an optimal strategy and its
asymptotic expansion depends on the assumption of a “sufficiently small” bid–ask spread
ε, without providing a minimum ε0, for which these statements hold. Are they applicable to
actual bid–ask spreads observed in markets (for liquid assets ranging in the basis points)?
Addressing this question involves either demonstrating optimality for all ε ∈ (0, 1) or
identifying counterexamples where optimality breaks down for larger transaction costs,
along with determining the explicit lower bound ε0 at which control limit policies remain
optimal. Such a lower bound would be contingent on model parameters γ, μ/σ2, and risk
aversion. Most likely, it will depend on the chosen objective.
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Appendix A. The Free Boundary Problem for the Shadow Price Candidate

Let us introduce two new parameters c = 1/ζ− and s = ζ+/ζ−. By defining the new
function φ implicitly via

Ψ(ζ) := φ(cζ)/c,

the free boundary problem (39)–(41) produces a similar one for φ(z),

φ′′(z) = 2γφ′2(z)
(c + φ(z))

− 2γπ∗ φ′(z)
z

, (A1)

φ(1) = 1, (A2)

φ′(1) = 1, (A3)

φ(s) = (1 − ε)s, (A4)

φ′(s) = (1 − ε). (A5)

Remark A1. Since for small transaction costs, trading strategies will be control limit policies on
sufficiently small intervals, only the following cases need to be distinguished:

• ζ− < ζ+ < −1 (levered case): Then, c < 0, and therefore z > 0, so s < 1. Conversely, s < 1
implies ζ− < −1.

• 0 < ζ− < ζ+ (unlevered case): Then, c > 0, and therefore the argument z < 0, so s > 1.
Conversely, s > 1 implies ζ− > 0.

For the sake of brevity, let us only consider the levered case, that is, ζ− < ζ+ < −1 and
φ(ζ) < −1. Since also c < 0, one obtains φ(z) > −c for all z. Also, c + 1 > 0. Dividing (A1)
by φ′ and integrating once, one thus obtains

log(φ′(z)) = 2γ log(c + φ(z))− 2γπ∗ log z − 2γ log(c + 1),

where the initial condition (A3) is respected. Taking antilogarithms, one thus obtains

φ′(z)
(c + φ(z))2γ

=
z−2γπ∗

(c + 1)2γ
. (A6)

Exclude in the following the singular cases γ �= 1/2 and μ/σ2 �= 1/2 (those cases
can be dealt individually, leading to simpler solutions of the ODE (A6).). Integrating once
again, one obtains

(c + φ(z))1−2γ

1 − 2γ
=

(z1−2γπ∗ − 1)
(1 − 2γπ∗)(c + 1)2γ

+
(c + 1)1−2γ

1 − 2γ
, (A7)

where the initial condition (A2) is respected. Thus,

φ(z) = −c +

⎛⎝ (1−2γ)
(1−2γπ∗) (z

1−2γπ∗ − 1)

(c + 1)2γ
+ (c + 1)1−2γ

⎞⎠
1

1−2γ

. (A8)

Until this stage, the terminal boundary conditions (A4) and (A5) have not been in-
volved. Those allow to reformulate the free boundary problem in terms of a system of
non-linear equations for s and c.
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Lemma A1. Let γ �= 1/2 and μ/σ2 �= 1/2. φ, c, s is a solution to the free boundary problem (A1)–(A5)
if and only if s and c satisfy the following system of non-linear equations:(

c + (1 − ε)s
c + 1

)1−2γ

− 1 =
1 − 2γ

1 − 2γπ∗
s1−2γπ∗ − 1

c + 1
, (A9)

(1 − ε)
1

2γ sπ∗
=

c + (1 − ε)s
c + 1

. (A10)

Proof. The initial value problem (A1)–(A3), parameterized in c, has the explicit solution (A8).
What remains is to involve the boundary conditions (A4) and (A5). Starting from (A7) and
using (A4) yields

(c + (1 − ε)s)1−2γ

1 − 2γ
=

(s1−2γπ∗ − 1)
(1 − 2γπ∗)(c + 1)2γ

+
(c + 1)1−2γ

1 − 2γ
, (A11)

from which (A9) follows. Using (A4)–(A6), one obtains

(1 − ε)

(c + (1 − ε)s)2γ
=

s−2γπ∗

(c + 1)2γ
.

Taking the 2γths root, one obtains (A10). The proof of the converse implication
is similar.

Appendix B. Asymptotics of the Free Boundaries

Recall that π∗ = μ
γσ2 and note that

ζ− =
1
c

, ζ+ =
s
c

(A12)

and the associated trading boundaries π± satisfy

π± :=
ζ±

1 + ζ±
. (A13)

We introduce the abbreviations

c̄ :=
1 − π∗

π∗ , Δ :=
(

6
γπ∗(1 − π∗)

)1/3
ε1/3.

Proposition A1. For sufficiently small ε > 0, the free boundary problem (A1)–(A5) has a unique
solution (h(ζ), c, s). Moreover, the following asymptotics hold as ε → 0:

c = c̄ +
1 − π∗

2π∗ Δ +
(1 − π∗)(3 − π∗(2γ + 1))

12π∗ Δ2 (A14)

− (π∗ − 1)
((

4γ2 + 22γ + 1
)
(π∗)2 − 24(2γ + 1)π∗ + 36

)
360π∗ Δ3 + O(ε4/3),

s = 1 + Δ +
Δ2

2
+

1
180

((
4γ2 − 8γ + 1

)
(π∗)2 + 3(4γ − 3)π∗ + 36

)
Δ3 (A15)

+

(
8γ2 − 26γ + 2

)
(π∗)2 + 2(17γ − 9)π∗ + 27

360
Δ4 + O(ε5/3).

Proof. The proof is inspired by (Gerhold et al. 2013, Proposition 6.1), where a similar
result is developed for log utility from consumption and for unlevered strategies.21 Having
already solved the initial value problem (A1)–(A3), parameterized in c, which has the
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explicit solution (A8), it remains to involve the boundary conditions (A4) and (A5). A naïve
approach would be to define for sufficiently small δ the map F := (F1, F2)

�, where

F1(δ, c, s) =
(

c + (1 − δ3)s
c + 1

)1−2γ

− 1 − 1 − 2γ

1 − 2γπ∗
s1−2γπ∗ − 1

c + 1
, (A16)

F2(δ, c, s) =(1 − δ3)
1

2γ sπ∗ − c + (1 − δ3)s
c + 1

, (A17)

and to show, by means of the implicit function theorem, that F has a unique zero (s(δ), c(δ))
at (c = c̄, s = 1), which is analytic in δ. Note, however, that the implicit function theorem
cannot be applied in this case: even though F(δ0 = 0, c0 = c̄, s0 = s) = 0, the Jacobian
vanishes at the critical point (0, c̄, 1).

Consider the levered case only, as the other case can be proved quite similarly. In this
case, s < 1. Having a look at Equation (A6), one sees that for z < 1, z is sufficiently close to
z = 1, φ′(z) > 0, and since φ(1) = 1, this implies φ(z) < 1. Since φ = φ(z, c) is an analytic
function in (z, c) near c = c̄ and z = 1, it satisfies an expansion of the form

φ(z, c) = 1 + (z − 1) + ∑
i≥2

∑
j≥0

aij(z − 1)i(c − c̄)j

with coefficients aij, which can be calculated recursively. Furthermore, a0j = a1j = δ0j for
j ≥ 0 due to the initial conditions (A2) and (A3). One now solves for c, s, invoking the
terminal conditions (A4) and (A5). The latter imply that

εs = s − φ(s, c), and φ(s, c)− sφ′(z = s, c) = 0.

Dividing by s − 1, reflecting that the solution s = 1 is not interesting, a Taylor expan-
sion yields

φ(s, c)− sφ′(s, c)
s − 1

= ∑
i≥0

∑
j≥0

bij(s − 1)i(c − c̄)j (A18)

for certain coefficients bij. By using (A1)–(A3) and L’Hospital’s rule, one obtains

b0,0 = lim
z→1,c→c̄

φ(z, c)− zφ′(z, c)
z − 1

= −φ′′(1, c̄) = 0,

and, further by a twofold application of L’Hospital’s rule,

b1,0 = lim
z→1,c→c̄

φ(z, c)− zφ′(z, c)
(z − 1)2 = − lim

z→1,c→c̄
φ(3)(z, c) = 2γπ∗(1 − π∗) �= 0.

Hence, the implicit function theorem is applicable and yields s(c) = H(c) as a function
of c such that

H(c̄) = 1, H′(c̄) = 2π∗

1 − π∗ .

Inserting this function into (A10), one obtains the problem

g(c, δ) := (1 − δ3)
1

2γ Hπ∗
(c)− c + (1 − ε)H(c)

c + 1
= 0.

Since g(c = c̄, δ = 0) = 0 and ∂cg(c, δ) = 1
π∗ �= 0, one can apply the implicit function

theorem which asserts that for sufficiently small δ, a unique and analytic solution c = c(δ)
exists to g(c, δ) = 0 and c(0) = c̄. Therefore, c(δ), s(δ) = H(c(δ)) is the unique solution of
our problem for small δ.

Finally, one derives the asymptotic formulas (A14) and (A15): let (φ, c, s) be the
unique solution of (A1)–(A5). Due to Lemma A1, s and c satisfy the system (A9) and (A10).
Substitute c = c(s) from (A10) into (A9), and replace ε by δ3 in all equations. Then, one
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plugs into the modified Equation (A9) a power series ansatz for s, namely, s = 1 + s1δ +
. . . s6δ6. Developing both sides as power series in δ and comparing coefficients leads
to (A15). This result is then plugged into (A10), yielding, quite similarly, (A14).

Remark A2. Using the formulae (A12), the asymptotics (42) for the trading boundaries ζ̃± in
terms of the risky-safe ratio follow from the asymptotics of Proposition A1. The asymptotics (44) for
π̃± then follows from the relationship (A13).

Notes

1 Some tedious computations in this paper where performed by MATHEMATICA. For motivating this research topic and providing
feedback, I am indebted to Professor Paolo Guasoni.

2 More generally, the term market frictions encompasses, for example, price impact, short-selling constraints, and margin require-
ments (see Guasoni and Muhle-Karbe (2013), Guasoni and Weber (2020) and Guasoni et al. (2023) and the references therein).

3 Example 1 below shows this failure for a variance swap hedge.
4 These references deal with particularly tractable, long-run problems of local or global utility maximization; however, the first

papers in this field, starting with Magill and Constantinides (1976), where optimal investment and consumption problems on
an infinite horizon, which exhibit similar strategies and asymptotics. For an overview of this research field, see (Guasoni and
Mayerhofer 2019, Chapter 1) and Guasoni and Muhle-Karbe (2013).

5 For these strategies, the name “control limit policy” from Taksar et al. (1988) is adopted, see Definition 2 below.
6 When γ = 1, the local-mean variance objective agrees with logarithmic utility, for which monotonicity holds and the shadow

market strategy is the optimal one cf. Gerhold et al. (2013).
7 For the dynamics of the wealth process, see Lemma 1 below.
8 This follows from the respective finite-horizon objective (20), expressed in terms of πt and ϕt, see Lemma 1.
9 It is well-known that a variance swap with maturity T on a continuous semimartingale S can be perfectly hedged by holding

2/(TSt) units of the underlying at time t ≤ T (the dynamic hedging term), and a static portfolio of European puts and calls with
expiry T, Bossu et al. (2005).

10 By ergodicity, the strategy that makes bulk trades into the middle of the optimal no-trade region incurs average transaction costs
of higher order, namely proportional to ε1/3. (Compare the ATC (28) which is of second order.)

11 The product rule gives
dS̃t

S̃t
=

dSt
St

+
dg
g

+
d〈St, g〉

Stg
=: (μ̃t + r)dt + σ̃tdBt,

from which the particular form of drift and diffusion coefficients (32), (33) can be computed.
12 For the details leading to this and other asymptotics, see Appendix A, Proposition A1 and Remark A2.
13 This expression is readily obtained from (11) by expanding (38) into formal power series in ε1/3.
14 The general form of drift and diffusion coefficients follows from the typical smooth pasting conditions g′(π±) = 0, along the

same arguments as in Section 3.1 that turn (32) into (35), by removing local-time terms.
15 More precisely, certain portfolio statistics, such as πt or ζt, exhibit stationarity.
16 That this second order discrepancy is not essential, can be seen also by a numerical robustness check, with trades at daily

frequency and with a finite time horizon of, say five years. Numerical examples are already elaborated for a similar objective in
great detail in (Guasoni and Mayerhofer 2023, Section 6 (Figures 4 and 5)).

17 This assertion can be proven using the same method as in Theorem 2.
18 Note that we use portfolio returns, as opposed to changes of wealth in Martin (2012, 2016). Besides, Martin’s work cares about

asymptotic optimality at lowest order, similar to Kallsen and Muhle-Karbe (2017).
19 Such a general representation bears the advantage that the stochastic process S̃t := g(πt)St could be interpreted as a (candidate)

shadow price.
20 (Taksar et al. 1988, Theorem 6.16) appears to be an exception, which does not refer to te smallness of transaction costs.
21 Similar methods to derive asymptotic expansions in small transaction costs are found in the papers Gerhold et al. (2012, 2014);

Guasoni and Mayerhofer (2019, 2023).
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Abstract: We implement the VIX methodology on intraday data of a large set of individual equity
options. We thereby consider approaches based on monthly option contracts, weekly option contracts,
and a cubic spline interpolation approach. Relying on 1 min, 10 min, and 60 min model-free implied
volatility measures, we empirically examine the individual equity return–volatility relationship on
the intraday level using quantile regressions. The results confirm a negative contemporaneous link
between stock returns and volatility, which is more pronounced in the tails of the distributions.
Our findings hint at behavioral biases causing the asymmetric return–volatility link rather than the
leverage and volatility-feedback effects.

Keywords: model-free implied volatility; individual equity options; intraday volatility; leverage;
quantile regressions

1. Introduction

Volatility is a key input variable for assessing risk, pricing derivative products, and
developing trading strategies. As such, it has been and still is a central topic of research
in finance. While, in early times, volatility was most commonly calculated as realized
volatility (RV), derived from observed prices and their returns, the advent of exchange-
traded options enabled the derivation of so-called implied volatility (IV). An early example
is the derivation of IV by Latané and Rendleman (1976), who reversed the process of
option pricing to retrieve the volatility that is implied by traders and used the famous
Black and Scholes (1973) (B&S) formula for option pricing. The development of further
option pricing models, e.g., assuming stochastic volatility and interest rates or jumps in
the underlying process, has led to a corresponding development of these model-based
IV methods. Whereas the merit of this IV was initially challenged—based on forecasting
performance—it is nowadays considered the superior method for this purpose (see, e.g.,
the seminal review of Poon and Granger 2003). Despite IV’s superiority, its quality is
restricted by the assumptions and parameters of the option pricing model—unless you
dispense the idea of parametric models. The methodology developed in Britten-Jones and
Neuberger (2000), Demeterfi et al. (1999), and Carr and Madan (1997) uses the fact that
arbitrary payoffs can be replicated using prices from a portfolio of options—a strategy
called “option spanning”, which was developed much earlier by Breeden and Litzenberger
(1978); Green and Jarrow (1987); Nachman (1988). As it turns out, a portfolio of out-of-the-
money put and call options can be used to replicate the risk-neutral expected variance of
the underlying stock, with the only assumptions that its price process is continuous and
there is a constant risk-free rate. The perhaps most prominent application of this method is
the 2003 VIX, a volatility index for the S&P 500, developed and published by the Chicago
Board Options Exchange (CBOE). The VIX is designed to produce 30-day expected volatility
of the U.S. stock market, calculated from mid-quote prices of the S&P 500 Index (SPX)
call and put options. The VIX is defined as implied volatility for a fixed 30-day maturity,
quoted in annualized terms. It was originally founded in 1993 by Robert Whaley as a

J. Risk Financial Manag. 2024, 17, 39. https://doi.org/10.3390/jrfm17010039 https://www.mdpi.com/journal/jrfm



J. Risk Financial Manag. 2024, 17, 39

model-based IV index on the S&P 100 and was intended to provide a basis for the trading of
volatility derivatives, which can be used for hedging portfolios against the risk of changes
in volatility (see Whaley 1993). Famously called the “Investor Fear Gauge”, it “is set by
investors and expresses their concerns about future stock market volatility” (Whaley 2000,
p. 12), implying that risk-averse investors “fear” increases in volatility. As a matter of fact,
the VIX has a significant negative relationship with the underlying S&P 500 index, which
supports this interpretation, although it is found to be “time-varying, asymmetric and
influenced by VIX-computation errors” (Gonzalez-Perez 2015, p. 3). Since its founding, the
VIX has been intensively studied and has sparked a branch of research on the development
of further model-free IV methods. Empirical research on the VIX covers its distributional
properties, its use as a proxy overall market risk factor, the development and pricing of
volatility derivatives, as well as respective trading strategies and its informational content
with respect to forecasting volatility. However, research on VIX has been mostly conducted
for market indices, like the S&P 100 and 500 and Nasdaq 100, and other national stock
market indices, like the German DAX. The CBOE already publishes VIX-like indices for
various individual equities, with examples including large-cap stocks like Amazon, Google,
Microsoft, Apple, and Goldman Sachs, beyond which research on individual equities is
scarce. On the individual level, Taylor et al. (2010) analyzed the forecasting performance for
the 149 S&P 100 constituents. Dennis et al. (2006) assessed the leverage effect for a portfolio
of 50 individual stocks and the S&P 100. Regarding frequencies, however, research is almost
exclusively conducted on a daily frequency and, if it covers intraday frequencies, employs
data on larger indices and is concerned with the development of model-free IV methods.
In her review, Gonzalez-Perez (2015) found only one paper that used VIX on an intraday
basis in order to assess the financial leverage effect, which was by Ishida et al. (2011), and,
more recently, another paper by Badshah et al. (2016) on intraday leverage using quantile
regressions. On a more general note, Andersen et al. (2021) recently conducted a descriptive
study of high-frequency trade and quote option data and emphasized the usefulness of
high-frequency option data.

We, therefore, calculate model-free implied volatility (MFIV) for individual equities
on an intraday level by using the full universe of options written on individual firm U.S.
equity at a 1-min frequency during the period from 1 February 2017 to 30 June 2017.
We offer descriptive insights into the data requirements, the calculation process, and the
MFIV properties.1 Subsequently, to showcase the usability of such measures, we apply
them to analyze the return–volatility relationship for individual equities on an intraday
basis using quantile regressions. We are able to implement reliable MFIV measures for
a sample of 138 individual equity options, whose available option contracts fulfill the
quality requirements put forward by Jiang and Tian (2005, 2007) at a 1 min frequency.
Concerning the return–volatility relationship, we confirm an asymmetric relationship
between contemporaneous returns and volatility, which is more pronounced within the
tail of the distribution corresponding to previous index-level-based findings for lower
frequencies, which have previously been explained to be potentially caused by behavioral
biases (compare Hibbert et al. (2008), Talukdar et al. (2017), Daigler et al. (2014), and
Badshah et al. (2016)). The remainder of the paper is structured as follows: Section 2
outlines the MFIV (VIX) methodology; Section 3.1 describes the data, while Section 3.2
outlines the implementation of MFIV on individual equity and offers descriptive insights.
Section 4 analyzes the return–volatility relationship, and we conclude in Section 5.

2. The VIX Methodology

Since 2003, the VIX has been calculated from S&P 500 index options, and the model-
free2 approach described by Demeterfi et al. (1999) and Britten-Jones and Neuberger (2000).
Based on an option set of at least 100 strike prices, the VIX replicates a variance swap on the
S&P 500. In its current whitepaper on the VIX, the CBOE (2023) implemented the variance
replication strategy and calculated implied volatility based on the following formula (for a
detailed derivation, see Appendix A):
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σ2 :=
2
T

(
∑

i

ΔKi

K2
i

Q(Ki)erT

)
− 1

T

(
F0

K0
− 1

)2

where r denotes the risk-free rate, K denotes the strike price, and Q(Ki) gives out-of-the
money option prices. Note that the CBOE measures the time T in years and uses calendar
days instead of trading days. The integral underlying this formula (see Appendix A) is
replicated numerically with a weighted sum using the weights ΔKi := (Ki+1 − Ki)/2. At
the end of the strike-price range, the weight is calculated as the midpoint between the two
last (first) strike prices. F0 represents a theoretical forward price, calculated as

F0 := Ki + erT(C(Ki)− P(Ki))

where the difference between call (C) and put (P) prices, (C(Ki) − P(Ki)), is smallest.
Consequently, K0 represents the strike price immediately at or below F0. The CBOE applies
a selection theme to options, which uses call options for strikes higher than K0 and put
options for calls lower than K0. Ordering the options by their strike prices and ascending
(descending) from K0, all calls (puts) after two consecutive zero-bid quotes are left out of
the calculation.

The CBOE VIX is calculated with a maturity of 30 days. For this purpose, a “near-
term” and a “next-term” contract are designated, for which the MFIV is calculated. The
annualized 30-day MFIV, quoted as a percentage, is then derived via linear interpolation of
the MFIV from both contracts:

σVIX = 100
√(

ωT1σ2
1 + (1 − ω)T2σ2

2
)525, 600

43, 200

with the weights ω = T2−30
T2−T1

, where the subscripts 1 and 2 correspond to the near- and
next-term contracts, respectively.

The replication strategy underlying the above formula relies on the availability of a
continuum of strike prices. Real-world applications, however, are commonly faced with a
limited set of discrete strikes. Jiang and Tian (2007) showed that an insufficient range of
strikes leads to a downward bias in the calculated MFIV. The discreteness of strikes also
introduces errors if strikes are too widely dispersed. As Jiang and Tian (2005) showed,
reliable MFIV estimates can be obtained if the truncation point of each tail is 3.5 standard
deviations (SDs)3 from the at-the-money forward price F0. They further show that the
“discretization error”, which is induced by the spacing between adjacent strike prices, is
negligible below strike-price increments of 0.35 SDs.

Furthermore, prior to the introduction of weekly SPX options in 2014 (2003 VIX
method), the near-term contract was defined as having at least 7 days to expiration and the
next-term contract as the one with the consecutive expiration date. This 7-day minimum
was chosen to minimize pricing anomalies that might occur close to expiration. With the
introduction of the weekly SPX options (2014 VIX method), the selected contracts were
those with expiration dates greater than 23 and smaller than 37 days. Most CBOE equity
option contracts expire monthly on the 3rd Friday. For a subset of individual equity, such
as Apple, Amazon, or Goldman Sachs, contracts with weekly expirations are quoted. This
means that, at best, a constant maturity MFIV of seven days (or multiples of seven days) on
a weekly frequency can be calculated. In order to be able to offer higher frequencies and
other maturities, the CBOE uses intrapolation and extrapolation methods, using the MFIV
of two contracts with neighboring expiration dates.

The CBOE selection rule for the monthly option contracts only allows a minimum of
7 days to expiration, upon which the selection rolls over to the next set of contracts. In
certain cases, the interpolation can become an extrapolation. Jiang and Tian (2007) described
this as a potential source of error. However, weekly options, which allow for a more precise
interpolation, are not quoted for all stocks, motivating the use of an alternative interpolation
approach. For our implementation on individual equities, we therefore intrapolate the
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30-day MFIV using the information from a larger set of options. This should not only
reduce the size of jumps but also use the information content of the term structure.

3. Implementing Model-Free Implied Volatility for Individual Equities

3.1. Data and Data Processing

We obtain 1 min option data from the CBOE data store, which contains NBBO market
quotes for all equity option contracts traded on the CBOE.4 The sample covers the time
period from 1 February 2017 to 30 June 2017 on a 1 min frequency, covering 105 trading
days. The classic monthly contracts expire on the third Friday of each month and make
up the dataset for the 2003 VIX methodology. The 2014 VIX method uses these monthly
contracts and the weekly contracts that expire each Friday. For our cubic spline method,
we select all monthly contracts that have an expiration within 365 days.

The dataset contains 268 stocks, for which both monthly and weekly option contracts
are quoted. We structure our sample into common market capitalization categories defined
as “Mega” (>USD 200B), “Large” (>USD 10B), “Medium” (>USD 2B), and “Small” (>USD
300M) in order to judge the influence of size, as in Dennis et al. (2006). If, for a given minute,
there are no available traded strike prices, MFIV cannot be calculated. Furthermore, we
drop all stocks that exhibit more than 10 such missing values a day, which restricts our
sample to 178 stocks.

In order to prepare the MFIV calculation as per the CBOE (2023) whitepaper, option
prices Q(K) for each strike K are derived as the midpoint of the bid-ask spread. The prices
P for the respective underlyings are calculated in the same manner. The risk-free rate data
are based on “constant maturity treasury” or CMT rates, which can be obtained from the
U.S. Department of Treasury official resource center. Using a cubic spline interpolation and
the daily CMT quotes, the risk-free rate r is then calculated for each time to maturity up to
a one-minute-level precision.

3.2. Descriptive Analyses on Model-Free Implied Volatility for Individual Equities

We calculate the model-free IV for all stocks, times, and maturities, including such
observations where the nest of options has at least one quote for a put and a call. Analo-
gously to the standard VIX calculation, we use out-of-the-money quotes for the near- and
next-term contracts. We refer to the different interpolation methods and their respective
sets of option contracts by “WK” for the weekly 2014 method and “MN” for the monthly
2003 method. An example of option contracts and resulting MFIV for the WK and MN
methods are graphed in Figure 1 and exemplify the differences between the 2003 and 2014
VIX methods, i.e., what we refer to as the WN and MN measures.

At times where weekly and monthly contracts coincide (every third Friday in a month),
both methods have one common contract and show strong convergence, e.g., around the
peak at time t = 5000. However, there are times when no contracts are shared and the
MFIV measures differ systematically.

As panel (a) shows, the WK MFIV is always confined by its narrow corridor near- and
next-term contracts, whereas the MN MFIV in panel (b) has a wider corridor, depicted by the
narrower corridor of the gray lines visible in particular until about half of the depicted time
period. In panel (b), it is also visible that, when extrapolated, the MFIV measure (black line)
breaches the corridor, i.e., it results in values outside the (gray) corridor. This can lead to
substantial differences between the two methods. The idea of our cubic spline interpolation,
which we refer to as “SP”, is to employ the information of the complete term structure of
MFIV in order to reduce these differences and yield an alternative to the MN approach if
weekly contracts are not available. Figure A1 in the appendix illustrates the use of contracts
as near-term or next-term contracts for an exemplary underlying (AAPL). We developed an
R package for these calculations, which is available on https://github.com/m-g-h/R.MFIV,
accessed on 20 November 2023.
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(a)

(b)

Figure 1. Option contracts used for the MFIV interpolation (gray) and resulting MFIV (black). Panel
(a) shows the weekly option contracts used for the WK approach, which usually form a narrow
corridor. Panel (b) shows the set of monthly option contracts used for the MN approach, which form
a wider corridor that is sometimes “breached”.

We use the amount, range, and spacing of the option strike prices as indicators of
data quality with respect to the MFIV calculation. Theoretically, MFIV is based on an
option portfolio with a continuum of strike prices ranging from zero to infinity. Empirically,
such a continuum is approximated with a set of quoted discrete strike prices. The CBOE
(2023) example includes 176 strike-price quotes for out-of-the-money calls and puts on the
SPX. Despite the fact that option quotes deep in the tails of the strike-price distribution
receive lower weights (proportional to 1

K2 ) and at some point have a negligible effect on
the resulting MFIV value, a limited strike-price range potentially incurs a “truncation
error”, which implies an underestimation of the true implied volatility, according to Jiang
and Tian (2005, 2007). As mentioned above, Jiang and Tian (2005) advocated a truncation
point of each tail of 3.5 SDs from the at-the-money forward price and spacing between
adjacent strike prices below strike-price increments of 0.35 SDs to derive reliable MFIV
estimates. Panel (a) in Table 1 provides an aggregated overview of our underlying option
data, grouped by the market capitalization of the underlying stocks. On average, the set
of all monthly options within a year, which we employ in our SP approach, shows the
highest strike-price range (Min K and Max K), followed by the MN and WK sets. This
can be explained by noting that the probability of larger price swings increases with the
time to maturity, which, of course, is largest for the SP and smallest for the WK option
set. Regarding the strike-price increment, we observe the opposite relationship, with the
shorter-term WK set exhibiting the smallest spacing.
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As the requirements of the 3.5 SD range and 0.35 SD spacing are not met by all stocks,
we report results on the stocks that fulfill them in panel (b) of Table 1 and refer to these set
of underlyings as “feasible” stocks. While the MN and SP sets are reduced to below 30%
of the original sample size, the WK set retains 138 of the original 178 stocks. Notably, the
set of mega-sized stocks is reduced the most and is empty for the SP set. Considering the
cross-section of stocks by market capitalization, we observe that the average number of
quoted options is decreasing with decreasing market capitalization, which corresponds to
the findings of Dennis et al. (2006).

Table 1. Descriptive statistics. The table groups the stocks by their market capitalization (MC, quoted
in million USD). The average number of call and put options is given by Calls and Puts. The average
range above (Max K) and below (Min K) the current ATM forward price F0, as well as the average
spacing of the strikes (dK), are measured in standard deviations of price. We also report the average
price (P), return (R), standard deviation of return (R(sd)), and MFIV. The number of stocks is given
by n, and “Set” refers to the set of options for the respective interpolation approach.

Size MC Calls Puts Max K Min K dK n P R R (sd) MFIV

WK Set
Any 101,337 11.0 13.8 1.75 2.31 0.274 178 104.37 1.18 × 10−6 0.0008 26.82

Mega 485,985 11.4 18.1 1.93 3.11 0.337 21 205.50 2.24 × 10−6 0.0005 17.84
Large 65,180 11.2 14.0 1.77 2.34 0.275 117 105.33 1.46 × 10−6 0.0008 25.08

Medium 5692 10.0 11.0 1.61 1.82 0.237 33 51.52 3.60 × 10−7 0.0010 36.38
Small 1359 10.8 9.8 1.65 1.67 0.238 7 34.04 −2.84 × 10−6 0.0012 37.73

MN Set
Any 101,337 8.2 10.1 2.06 2.74 0.436 178 104.37 1.18 × 10−6 0.0008 27.02

Mega 485,985 9.1 14.4 2.30 3.84 0.539 21 205.50 2.24 × 10−6 0.0005 18.15
Large 65,180 8.1 9.9 2.06 2.78 0.447 117 105.33 1.46 × 10−6 0.0008 25.34

Medium 5692 8.0 8.4 1.93 2.11 0.344 33 51.52 3.60 × 10−7 0.0010 36.40
Small 1359 8.1 6.7 1.92 1.84 0.374 7 34.04 −2.84 × 10−6 0.0012 37.50

SP Set
Any 101,337 9.0 11.8 3.27 3.80 0.349 178 104.37 1.18 × 10−6 0.0008 26.97

Mega 485,985 9.6 16.4 3.86 5.34 0.407 21 205.50 2.24 × 10−6 0.0005 18.05
Large 65,180 8.8 11.8 3.28 3.90 0.357 117 105.33 1.46 × 10−6 0.0008 25.28

Medium 5692 9.8 2.90 2.74 0.290 33 51.52 3.60 × 10−7 0.0010 36.39
Small 1359 9.2 7.5 3.02 2.43 0.321 7 34.04 −2.84 × 10−6 0.0012 37.51

In Table 2, we report descriptive statistics on the calculated intraday MFIV measure
per size category. We observe a decrease in the average MFIV with increasing market
capitalization, while the average MFIV is highest for the medium-sized category. The
differences between the three different approaches (MN, WK, SP) are remarkably small; we
do not observe any systematic patterns related to the three approaches.

The 1 min frequency of the MFIV measures allows us to analyze some of the commonly
detected stylized facts in high-frequency financial data, as outlined in Cont (2001) or
Andersen et al. (2001). Table 3 shows skewness, kurtosis, and correlations for the MFIV
measures based on weekly options and the 1, 10, and 60 min frequencies for the different
size categories. We observe slightly positive skewed and platokurtic distributions5. These
findings correspond only partly to those of daily realized volatility measures by Andersen
et al. (2001), who also detected slightly positively skewed distributions but observed higher
values for kurtosis.

Considering the correlation of the MFIV measures with stock returns, we detect mostly
negative correlations, which become more pronounced with decreasing sampling frequency,
again corresponding to the stylized facts reported for realized measures by previous studies.
With respect to the time series properties of our intraday MFIV measures, Figure A2 in the
appendix shows the return series over the whole sample period together with the MFIV
autocorrelation functions (ACFs) for a sample stock (Amazon) at 1 min, 10 min, and 60 min
frequencies. The high-frequency return series can be seen to exhibit the typical volatility

251



J. Risk Financial Manag. 2024, 17, 39

clustering, however, to a lower degree as commonly observed for daily financial data. The
MFIV ACFs show high autocorrelations that decay slowly, in particular at the shortest
frequency of 1 min, indicating the presence of long-range dependence, which is commonly
also detected for daily volatility measures (Cont 2001; Andersen et al. 2001).

Table 2. Descriptives on MFIV measures. The table presents descriptive statistics on MFIV measures
based on monthly options (MN), weekly options (WK), and the interpolation approach (SP) for all
samples and the small, medium, large, and mega cap sample firms.

Mean Std. Dev. Min Max Skewness Kurtosis

All
MFIV (MN) 25.33 9.59 9.02 88.94 1.57 3.19
MFIV (WK) 25.03 9.74 9.71 86.82 1.58 3.33
MFIV (SP) 25.26 9.65 8.23 92.18 1.57 3.19

Mega
MFIV (MN) 22.50 7.35 9.02 88.94 2.27 9.18
MFIV (WK) 22.17 7.51 9.71 82.78 2.27 9.06
MFIV (SP) 22.42 7.38 8.23 92.18 2.24 8.95

Large
MFIV (MN) 33.00 7.37 13.88 68.63 0.63 0.58
MFIV (WK) 32.71 7.13 14.33 74.64 0.68 1.02
MFIV (SP) 32.95 7.45 17.60 65.08 0.73 0.88

Medium
MFIV (MN) 43.82 12.13 20.86 86.57 0.08 −0.91
MFIV (WK) 43.93 12.43 21.44 86.82 0.17 −0.75
MFIV (SP) 43.89 12.21 21.63 87.26 0.09 −0.91

Small
MFIV (MN) 36.82 5.27 29.26 60.25 0.96 0.33
MFIV (WK) 37.77 5.76 26.28 57.44 0.53 −0.93
MFIV (SP) 36.67 5.38 27.79 64.36 1.19 1.37

Table 3. Skewness, kurtosis, and correlations of MFIV measures. The table shows the skewness and
kurtosis of MFIV measures based on weekly options as well as their correlation with stock returns
based on 1 min, 10 min, and 60 min frequencies.

Skewness Kurtosis Corr(MFIV, R)

1 min 10 min 60 min 1 min 10 min 60 min 1 min 10 min 60 min

All 0.61 0.61 0.62 −0.26 −0.25 −0.14 0.000 −0.002 −0.006
Mega 0.6 0.6 0.6 −0.27 −0.28 −0.21 0.000 0.001 0.001
Large 0.62 0.63 0.68 −0.3 −0.21 0.15 −0.001 −0.014 −0.037

Medium 0.68 0.68 0.69 0.18 0.16 0.17 −0.001 −0.004 −0.016
Small 0.54 0.55 0.56 −0.72 −0.71 −0.6 −0.003 −0.007 −0.027

The intraday MFIV also allows us to illustrate potential diurnal patterns. Figure 2
shows the averaged MFIV over a trading day, while Figure A3 in the appendix shows
the intraday (1 min) return and MFIV time series for two sample stocks on a randomly
selected day. For the sample stocks and random day in Figure A3, the MFIV measures
seem to capture the higher fluctuations of the intraday returns at the beginning of the
trading day rather well and subsequent decreases with decreasing variability of the returns
throughout the day. Averaged over trading days and sample stocks, Figure 2 shows that
MFIV increases at the beginning of the trading hours and slightly decreases during the day
until markets close. As noted by Chen et al. (2021), this pattern is consistent with the notion
that non-trading during the overnight period increases uncertainty, while trading, to some
extent, resolves uncertainty. We confirm this pattern for individual equity MFIV and also
find the pattern to be similar for the different size categories (detailed results are available
upon request).
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Figure 2. Diurnal pattern of the MFIV. The graph shows the WK, MN, and SP MFIV measures
averaged over the sample stocks as well as over the sample days.

4. Analyzing the Intraday Return–Volatility Relationship

The 1 min frequency of the MFIV measures allows us to examine whether specific
relationships and stylized facts also hold on an intraday and individual equity level. So
far, the return–volatility relationship in financial markets has been analyzed extensively.
While theoretically higher risks have to be compensated by higher returns, indicating
a positive relationship, empirical studies mostly document a negative and potentially
asymmetric relationship between returns and changes in volatility6. Concerning equity
markets, fundamental theories have been put forward to explain this negative link. The
leverage hypothesis suggested by Black (1976) and Christie (1982) explains an increase
in equity volatility with a decline in the value of the firm, while the volatility-feedback
hypothesis associates an increase in volatility with higher expected returns and lower
current prices7. As explained by Bollerslev et al. (2006), both theories differ mainly by their
implied direction of causality.

More recently, Hibbert et al. (2008) (among others) proposed a behavioral perspective
and associated the negative return–volatility relationship with the presence of different
groups of investors. These groups may differ with respect to the extent to which they are
prone to behavioral biases, such as representativeness, affect, and extrapolation biases. In
contrast to the leverage and volatility-feedback hypothesis, which may take time to establish
and, therefore, are more plausible at lower frequencies, behavioral biases may very well be
present even at intraday frequencies. However, existing studies on the return–volatility
relationship at higher frequencies are rare and have focused mostly on equity indices8.
Therefore, we use our intraday MFIV measures to examine the intraday return–volatility
relationship for the individual equities in our sample.

For the subsequent analysis, we show results using the WK MFIV measures and what
we refer to as the feasible subset of stocks, as outlined in Section 3.2 over the range of our
sampling period. The sample covers the time period from 1 May 2017 to 30 June 2017, and
we conduct our analysis on 1 min, 10 min, and 60 min frequencies. Results based on the
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other measures are qualitatively similar and are available upon request. Despite the fact
that the intraday MFIV measures exhibit only weak diurnal patterns, we conduct some
basic stock-wise deseasonalization via standardization based on the time-day averages
over all the sample days.

We follow Talukdar et al. (2017), Hibbert et al. (2008), Bekiros et al. (2017), and Badshah
(2013) and conduct linear and quantile regressions using intraday stock-specific data on the
1, 10, and 60 min frequencies. We start with the following regressions:

ΔMFIVt = β0 +
3

∑
L=1

βLΔMFIVt−L +
3

∑
L=0

γLR+
t−L +

3

∑
L=0

δLR−
t−L + εt

R+
t =

{
Rt if Rt > 0
0 if Rt < 0

R−
t =

{
Rt if Rt < 0
0 if Rt > 0

where ΔMFIVt indicates the first differences of the MFIV measure for a specific underlying
and Rt represents the corresponding (positive and negative) log returns. We run our model
on 1, 10, and 60 min frequencies.

Table 4 gives the regression results averaged over all sample stocks. We observe a
negative average effect of contemporaneous returns (Rt), which increases in strength with
decreasing sampling frequency. The average effect of negative contemporaneous returns
is slightly more pronounced compared to the one of positive returns only for the 1 min
and 60 min samples. Furthermore, the number of significant negative estimates and the
strength of the effect decrease with increasing lag length. These findings constitute some
first evidence that the asymmetric return–volatility relationship is evident on an intraday
and stock-specific level. They correspond to findings on the index level by, e.g., Talukdar
et al. (2017) and Hibbert et al. (2008) in so far as the contemporaneous returns are the most
important factor in determining the current changes in volatility. The results are in line
with the behavioral explanations mentioned by Talukdar et al. (2017) and Hibbert et al.
(2008). However, since the effects of lagged returns are not overall insignificant, leverage or
volatility-feedback phenomena cannot be ruled out as well.

To account for the fact that standard regressions may not constitute an adequate
approach when applied to commonly leptokurtic returns, we conduct quantile regressions
following Koenker and Bassett (1978), Bekiros et al. (2017), Badshah et al. (2016), and
Daigler et al. (2014):

ΔMFIVt = β
q
0 +

3

∑
L=1

β
q
LΔMFIVt−L +

3

∑
L=0

γ
q
LRt−L + εt (1)

where ()q refers to the parameter associated with the quantile regression model equation
for the qth quantile. Average results for selected quantiles are shown in Table 5 for the 1 min
frequency; results for 10 and 60 min MFIV are provided in the appendix. We observe a
significant negative effect of contemporaneous returns on volatility changes for the majority
of our sample stocks across all quantiles. We also find this effect to vary in strength across
quantiles, being more pronounced in the tails of the distribution.

Figure 3 illustrates the average coefficients over a larger range of quantiles including
average confidence bounds for 1 min data (results for other frequencies are available upon
request and lead to similar conclusions). The results reveal substantial variation in the
effects depending on the quantiles. We observe an inverted U-shaped pattern for the
contemporaneous returns, where extreme returns have a substantially stronger negative
impact on current volatility compared to those in the center of the distribution. This pattern
corresponds to the one detected by Agbeyegbe (2016) for the U.S. stock market indices.

254



J. Risk Financial Manag. 2024, 17, 39

Table 4. Average return–volatility regression results. Regression Results for 1, 10, and 60 min
frequencies averaged over the sample stocks. The parameters indicate the effect of positive returns
(γL), negative returns (δL), and first differences in MFIV (βL) on the first differences in MFIV for lags
L of 0 to 3. Numbers in parentheses give the amount of significant negative/significant positive
parameter estimates based on a 5% significance level.

1 min 10 min 60 min

R+
t −7.69 −14.79 −15.17

(66/1) (65/14) (69/15)
R+

t−1 −1.22 −1.98 −2.27
(25/5) (52/9) (31/7)

R+
t−2 −1.22 −1.26 −1.58

(24/1) (28/6) (25/4)
R+

t−3 −0.89 −0.23 −1.35
(21/2) (12/5) (20/5)

R−
t −9.01 −13.17 −15.35

(81/1) (74/14) (74/14)
R−

t−1 −5.03 −4.31 −4.22
(52/1) (47/10) (42/4)

R−
t−2 −2.95 −2.41 −3.02

(35/2) (32/8) (24/7)
R−

t−3 −2.48 −1.53 −2.37
(16/3) (21/6) (19/6)

ΔMFIVt−1 −0.12 −0.15 −0.13
(88/0) (92/0) (64/0)

ΔMFIVt−2 −0.07 −0.06 −0.05
(55/2) (53/1) (37/1)

ΔMFIVt−3 −0.03 −0.02 −0.03
(31/2) (22/0) (26/2)

β0 0.00 0.00 −0.01
(14/25) (39/26) (38/30)

γ0 = δ0 16 60 60
γ1 = δ1 19 38 26

Table 5. Average quantile regression results using 1 min data Average quantile regression results
for individual equity based on Equation (1). Average (over all sample firms) parameter estimates
are reported for different quantiles. Numbers in parentheses give the amount of significant nega-
tive/significant positive parameter estimates based on a 5% significance level.

0.025 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.975

Rt −10.167 −8.763 −7.496 −5.528 −3.860 −5.190 −7.405 −9.082 −10.822
(112/2) (110/3) (108/4) (103/8) (95/5) (100/8) (104/5) (107/2) (106/3)

Rt−1 −2.695 −2.222 −1.880 −1.361 −0.979 −1.260 −1.735 −2.275 −3.166
(67/3) (73/3) (83/5) (82/5) (80/5) (72/5) (73/6) (69/4) ( 64/4)

Rt−2 −1.692 −1.379 −1.181 −0.887 −0.574 −0.804 −1.245 −1.557 −1.759
(50/4) (54/1) (64/0) (73/0) (79/1) (66/1) (60/1) (52/2) ( 43/5)

Rt−3 −1.033 −0.850 −0.711 −0.598 −0.381 −0.594 −0.939 −1.115 −1.756
(32/4) (36/0) (39/0) (52/1) (56/1) (57/2) (45/1) (42/4) ( 39/3)

ΔMFIVt−1 −0.06 −0.05 −0.04 −0.03 −0.01 −0.02 −0.03 −0.03 −0.03
(108/4) (107/1) (111/1) (104/0) (90/0) (88/0) (86/5) (83/10) (72/19)

ΔMFIVt−2 −0.030 −0.019 −0.010 −0.004 −0.001 −0.003 −0.005 −0.005 −0.005
(95/13) (81/13) (70/13) (42/10) (21/5) (36/7) (41/24) (46/29) (46/33)

ΔMFIVt−3 −0.014 −0.008 −0.003 0.001 0.001 0.001 0.002 0.004 0.006
(68/17) (60/21) (23/48) (18/20) (7/11) (10/11) (13/23) (16/35) (25/43)

constant −0.783 −0.527 −0.331 −0.162 −0.037 0.091 0.347 0.608 0.910
(122/0) (121/0) (122/0) (120/0) (61/47) (0/122) (0/122) (0/122) (0/122)
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Figure 3. Quantile regression estimates and confidence intervals. The plots show the average
estimated parameters based on Equation (1) for different quantiles (solid line) together with their
0.95 confidence bounds.

Over all quantiles, contemporaneous returns are the most important factor consistent
with behavioral theories, in particular, those of affect and representativeness.9 Contrary to
Badshah (2013), we find no convincing evidence for loss aversion because extreme changes
in the left tail do not seem to have a systematic higher impact than those in the right tail
(Kahneman and Tversky 2013). Altogether, we find a significant negative contemporaneous
return–volatility relationship on the intraday level for individual equity. The effect increases
with decreasing sampling frequency and is more pronounced in the extreme tails of the
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distributions. Considering the high frequency and the insignificant or small lagged effects,
it is more likely that the asymmetric relationships are caused by behavioral biases rather
than the fundamental theories underlying the leverage or volatility-feedback effects.

5. Conclusions

We implement the CBOE VIX method on intraday option data for individual equi-
ties. In doing so, we analyze the data quality with respect to the MFIV calculation. Our
descriptive data analysis reveals that, for 138 individual equities, weekly options exhibit
a sufficient range of strike prices to avoid significant truncation errors according to Jiang
and Tian (2005). Descriptive analyses of MFIV sample averages based on weekly options,
monthly options, and a cubic spline interpolation approach reveal only marginal differ-
ences. We find the intraday individual equity MFIV measures to exhibit a similar diurnal
pattern as implied volatility indices, such as the VIX, with higher levels after opening hours
and declining levels until closing hours.

We use our estimates to analyze the intraday return volatility–relationship using 1, 10,
and 60 min data. We find a negative relationship between returns and volatility changes,
which is significant for most of our sample stocks when considering contemporaneous
returns. The stronger the link, the lower the frequency. For lagged returns, the effect is less
evident. Quantile regressions reveal a clear inverted U-shaped pattern when considering
contemporaneous returns, which again becomes less evident for lagged returns. These
findings indicate that behavioral biases rather than the fundamental theories of leverage
or volatility-feedback effects cause the asymmetric link between returns and volatility.
Despite offering a starting point for calculating and analyzing individual equity MFIV at
high frequencies, our approach comes with some limitations. The standard VIX calculation
method is prone to have a specific cut-off rule to determine what option quotes are used
in computing the VIX. As outlined by Andersen et al. (2015), this may bias the calculated
MFIV measures. Andersen et al. (2015) offered an improved approach, termed the Corridor
Implied Volatility, which alleviates the potential bias of the standard measure. Moreover,
Andersen et al. (2015) noted that the relationship between returns and volatility is prone
to jumps and co-jumps in both series and may be more complex depending on different
regimes. Subsequently, while our empirical analysis of the return–volatility relationship
may offer a valid starting point, future research should be conducted accounting for a
potential dynamic nature of this relationship. Overall, our individual equity MFIV measure
opens up avenues for further research. The forward-looking nature of implied volatility
may have merits for volatility prediction on an intraday level, as well as on a daily level
for individual equities. Moreover, the derived time series of intraday MFIV measures
will allow us to assess the imminent effect of news on volatility relying on time series
models. They also offer the opportunity to address the impact of attention and sentiment
measures at such high frequencies. It will also be of great interest to extend the sampling
period throughout the pandemic period and analyze the impact of lockdown situations
on the stock volatilities of different industries. In general, MFIV measures also allow
a decomposition into the conditional variance of stock returns and the equity variance
premium, where the latter has been shown to possess predictive power for stock returns.
The proposed MFIV measures can also be used to decompose volatility into a systematic
risk component and idiosyncratic risk, using the VIX index as a measure of market risk.
Such idiosyncratic risk measures, then again, may yield interesting insights into investors’
risk perceptions and resulting investment decisions, potentially depending on and varying
during high and low market volatility regimes.
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Appendix A. Derivation of Model-Free Implied Volatility

Following Demeterfi et al. (1999), assume the asset price S follows a continuous
diffusion process:

dSt = St
(
μ(t, . . . )dt+σ(t, . . . )dZt

)
(A1)

where the drift μ and volatility σ are functions of time t and Zt is a Brownian motion. From
Ito’s lemma, we have

d ln(St) = σ dZt +

(
μ − σ2

2
dt
)

(A2)

as shown in Appendix A. Using Equations (A1) and (A2), we can derive a representation of
the incremental variance as

dSt

St
− d ln(St) = μ dt+σ dZt −

(
μ dt+σ dZt −σ2

2
dt
)

=
σ2

2
dt

⇔ σ2 dt = 2
(

dSt

St
− d ln(St)

)
(A3)

The realized (integrated) variance V(t, T), with T denoting the time of expiration, is then
given by

V(t, T) =
1
T

∫ T

0
σ2 dt

=
2
T

∫ T

0

(
dSt

St
− d ln(St)

)
=

2
T

[∫ T

0

dSt

St
− ln

(
ST
S0

)]
(A4)

where S0 and ST refer to the initial and final prices of the asset, respectively.
In the next step, we take risk-neutral expectations of Equation (A4):

E
[
V
]
=

2
T

{
E

[∫ T

0

dSt

St

]
︸ ︷︷ ︸

(1)

+E

[
− ln

(
ST
S0

)]
︸ ︷︷ ︸

(2)

}
(A5)

A risk-neutral setting, using the risk-free rate r implies

dSt = Str dt+Stσ dZt

⇔ dSt

St
= r dt+σ dZt

The risk neutral expectation of term (1) in Equation (A5) is subsequently given by

E

[∫ T

0
r dt+σ dZt

]
= rT (A6)
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The replication of term (2) of Equation (A5) requires a more intricate methodology. First,
we decompose the logarithmic payoff by introducing the parameter S�, which also defines
the boundary between put and call options that are used for the replication:

− ln
(

St

S0

)
= − ln

(
St

S�

)
︸ ︷︷ ︸

(1)

− ln
(

S�

S0

)
︸ ︷︷ ︸

(2)

(A7)

While term (2) here is constant, replicating term (1) is where the option methodology comes
in. As Carr and Madan (1997) show in their appendix, any twice-differentiable payoff, f (x),
can be replicated as

f (x) = f (κ)− f ′(x)
[
(x − κ)+ − (κ − x)+

]
+

∫ κ

0
f ′′(K)(K − x)+ dK

+
∫ ∞

κ
f ′′(K)(x − K)+ dK

For our setting, we use f (x) = ln(x), x = ST , κ = S�, the functions P(K, S) and C(K, S) to
denote option prices with strike K for underlying price S and the put-call parity to write

ln(ST) = ln(S�) +
d ln(St)

dSt

[
C(S�, ST)− P(S�, ST)

]
+

∫ S�

0

d2 ln(K)
d2K

P(K, ST)dK

+
∫ ∞

S�

d2 ln(K)
d2K

C(K, ST)dK

⇔ ln
(

St

S�

)
=

1
S�

(St − S�)

−
∫ S�

0

1
K2 P(K, ST)dK

−
∫ ∞

S�

1
K2 C(K, ST)dK

This replication strategy relies on the availability of a continuum of strike prices.
Taking the risk-neutral expectation for term (1) in Equation (A7) yields

E

[
− ln

(
St

S�

)]
= E

[
−ST − S�

S�
+

∫ S�

0

1
K2 P(K, ST)dK +

∫ ∞

S�

1
K2 C(K, ST)dK

]
= −

(
S0erT

S�
− 1

)
+ erT

∫ S�

0

1
K2 P0(K)dK +erT

∫ ∞

S�

1
K2 C0(K)dK

where P0, C0, and S0 denote the initial put, call, and underlying prices, respectively. Finally,
we combine above results with Equations (A6) and (A7), and the replication of the expected
variance reads as

E
[
V
]
=

2
T

[
rT −

(
S0erT

S�
− 1

)
− ln

(
S�

S0

)
+ erT

∫ S�

0

1
K2 P0(K)dK (A8)

+ erT
∫ ∞

S�

1
K2 C0(K)dK

]
Following Jiang and Tian (2007), it can be shown that the non-integral terms in

Equation (A8) can be restated as
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2
T

[
rT −

(
S0erT

K0
− 1

)
− ln

(
K0

S0

)]
=

2
T

[
ln
(

F0

K0

)
−
(

F0

K0
− 1

)]
Applying the Taylor series expansion and ignoring terms higher than second-order yields

ln
(

F0

K0

)
=

(
F0

K0
− 1

)
− 1

2

(
F0

K0
− 1

)2

which results in the final approximation formula:

2
T

[
rT −

(
S0erT

S�
+ 1

)
− ln

(
S�

S0

)]
= − 1

T

(
F0

K0
− 1

)2
(A9)

Ito’s Lemma for ln(St)

Applying Ito’s lemma to the natural logarithm function f (St) = ln(St) yields

d ln(St) =
∂ ln(St)

∂t
dt+

∂ ln(St)

∂St
dSt +

1
2

∂2 ln(St)

∂S2
t

(dSt)
2

= 0 +
1
St

St(μ dt+σ dZt)− 1
2

1
(S2

t )
(dSt)

2

= μ dt+σ dZt −1
2

1
S2

t

[
(Stμ dt)2︸ ︷︷ ︸

dt2=0

+ 2Stμ dt σ dZt︸ ︷︷ ︸
dt dZt=0

+ (Stσ dZt)
2

]

= μ dt+σ dZt −S2
t σ2(dZt)2

2S2
t

= μ dt+σ dZt −σ2

2
dt since (dZt)

2 = dt

= σ dZt +

(
μ − σ2

2
dt
)

Appendix B. Additional Figures and Tables

Figure A1. Exemplary option dataset (AAPL) for the MN method. Each bar represents the option
contracts for a specific maturity and is colored based on its use as near-term (black) or next-term
(dark gray) contract. The width represents the range of offered strike prices each minute. As this
range declines sharply when the near-term contract reaches maturity, the set of contracts switches
5 trading days before that date.
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Figure A2. Return series and autocorrelation functions for MFIV measures. The figure shows the
stock return series over the whole sampling period at the 1 min, 10 min, and 60 min frequencies and
the ACF for the MFIV measures based on weekly options for a sample stock (Amazon).

Figure A3. Cont.
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Figure A3. MVIF measure and stock returns. The figure shows the MFIV measure time series based
on weekly options for a random day and two stocks for the 1 min frequencies.

Table A1. Average quantile regression results using 10 min data. Average quantile regression
results for individual equity based on Equation (1). Average (over all sample firms) parameter
estimates are reported for different quantiles. Numbers in parentheses give the numbers of significant
negative/significant positive parameter estimates based on a 5% significance level.

0.025 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.975

Rt −13.764 −11.538 −9.993 −9.201 −9.043 −9.732 −10.825 −12.316 −14.233
(104/18) (105/17) (110/12) (109/13) (109/13) (110/11) (108/14) (107/15) (104/18)

Rt−1 −1.470 −1.253 −1.015 −0.988 −0.958 −1.154 −1.926 −2.195 −3.723
(87/35) (92/31) (93/28) (93/29) (94/28) (97/25) (94/28) (94/28) (92/30)

Rt−2 −0.438 −0.532 −0.365 −0.182 −0.165 −0.364 −0.763 −1.368 −2.889
(79/43) (81/41) (77/45) (67/55) (71/51) (79/43) (88/34) (85/37) (93/29)

Rt−3 −0.202 −0.552 −0.356 −0.188 −0.228 −0.323 −0.695 −1.203 −1.550
(66/56) (78/44) (78/44) (77/44) (74/44) (70/52) (78/44) (80/42) (82/40)

ΔMFIVt−1 −0.12 −0.09 −0.07 −0.05 −0.03 −0.03 −0.05 −0.09 −0.15
(101/21) (103/19) (105/17) (100/22) (91/31) (93/29) (94/28) (90/32) (85/37)

ΔMFIVt−2 −0.063 −0.041 −0.029 −0.016 −0.009 −0.009 −0.020 −0.040 −0.071
(89/33) (91/31) (91/31) (90/32) (81/41) (75/41) (90/32) (84/38) (77/45)

ΔMFIVt−3 −0.025 −0.017 −0.012 −0.005 0.000 0.000 −0.004 −0.013 −0.032
(89/33) (87/35) (83/39) (83/39) (79/43) (74/48) (81/41) (76/46) (74/48)

constant −0.380 −0.227 −0.135 −0.056 −0.006 0.038 0.132 0.268 0.503
(122/0) (122/0) (122/0) (122/0) (108/4) (0/122) (0/122) (0/122) (0/122)

Table A2. Average quantile regression results using 60 min data. Average quantile regression
results for individual equity based on Equation (1). Average (over all sample firms) parameter
estimates are reported for different quantiles. Numbers in parentheses give the number of significant
negative/significant positive parameter estimates based on a 5% significance level.

0.025 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.975

Rt −13.764 −11.538 −9.993 −9.201 −9.043 −9.732 −10.825 −12.316 −14.233
(104/18) (105/17) (110/12) (109/13) (109/13) (110/11) (108/14) (107/15) (104/18)

Rt−1 −1.470 −1.253 −1.015 −0.988 −0.958 −1.154 −1.926 −2.195 −3.723
(87/35) (92/31) (93/28) (93/29) (94/28) (97/25) (94/28) (94/28) (92/30)

Rt−2 −0.438 −0.532 −0.365 −0.182 −0.165 −0.364 −0.763 −1.368 −2.889
(79/43) (81/41) (77/45) (67/55) (71/51) (79/43) (88/34) (85/37) (93/29)

Rt−3 −0.202 −0.552 −0.356 −0.188 −0.228 −0.323 −0.695 −1.203 −1.550
(66/56) (78/44) (78/44) (77/44) (74/44) (70/52) (78/44) (80/42) (82/40)

ΔMFIVt−1 −0.12 −0.09 −0.07 −0.05 −0.03 −0.03 −0.05 −0.09 −0.15
(101/21) (103/19) (105/17) (100/22) (91/31) (93/29) (94/28) (90/32) (85/37)

ΔMFIVt−2 −0.063 −0.041 −0.029 −0.016 −0.009 −0.009 −0.020 −0.040 −0.071
(89/33) (91/31) (91/31) (90/32) (81/41) (75/41) (90/32) (84/38) (77/45)

ΔMFIVt−3 −0.025 −0.017 −0.012 −0.005 0.000 0.000 −0.004 −0.013 −0.032
(89/33) (87/35) (83/39) (83/39) (79/43) (74/48) (81/41) (76/46) (74/48)

constant −0.380 −0.227 −0.135 −0.056 −0.006 0.038 0.132 0.268 0.503
(122/0) (122/0) (122/0) (122/0) (108/4) (0/122) (0/122) (0/122) (0/122)
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Notes

1 We developed an R package for these calculations, which is currently available on https://github.com/m-g-h/R.MFIV, accessed
on 20 November 2023.

2 Critically assessed, the notion of “model-freeness” is not entirely correct since an assumption about the underlying price process
is still made. However, no option pricing model is required, which frees the IV from limitations due to potentially unrealistic
model assumptions.

3 i.e., multiples of σt
√

τ, with σt the ATM Black & Scholes IV and τ the time to maturity.
4 The VIX method is derived for European-style options only. Individual equity options, however, are American-style options

and may be subject to an early exercise premium. As this premium can be assumed to be relatively small for out-of-the-money
options and since we do not want to rely on a specific option pricing model for estimation, we do not account for it.

5 Jarque-Bera tests indicate the rejection of a normal distribution for all individual equity MFIVs. Detailed results are available
upon request.

6 Compare Dennis et al. (2006), Fleming et al. (1995), Giot (2005), Hibbert et al. (2008), Carr and Wu (2017), and Talukdar et al.
(2017).

7 Compare French et al. (1987), Campbell and Hentschel (1992), and Bekaert and Wu (2000).
8 Compare Andersen et al. (2021), Kalnina and Xiu (2017), Badshah (2013), and Andersen et al. (2015).
9 Among others outlined by Hibbert et al. (2008) and Daigler et al. (2014), investors may view a high return and low risk (decreasing

volatility) as representative of a good investment. Combined with an affect heuristic, where investors’ decisions may be governed
or at least affected by intuition and instincts, they may act on the negative returns and high volatility, which are both negatively
labeled and thereby cause a negative return–volatility relationship.
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Abstract: This paper sets out to consider how a simple and easy-to-estimate power-law exponent
can be used by policymakers to assess changes in economic inequalities, where the data can have
a long tail—common in analyses of economic disparities—yet does not necessarily deviate from
log-normality. The paper finds that the time paths of the coefficient of variation and the exponents
from Lavalette’s function convey similar inferences about inequalities when analysing the value of
house purchases over the period 2001–2022 for England and Wales. The house price distribution
‘steepens’ in the central period, mostly covering the post-financial-crisis era. The distribution of
districts’ expenditure on house purchases ‘steepens’ more quickly. This, in part, is related to the
loose monetary policy associated with QE driving a wedge between London and the rest of the
nation. As prices can rise whilst transactions decline, it may be better for policymakers to focus on
the value of house purchases rather than house prices when seeking markers of changes in housing
market activity.

Keywords: housing market transactions; house prices; England and Wales; Lavalette’s law; conver-
gence and divergence

1. Introduction

Population nodes are observed to follow a regularity characterised by Zipf’s law,
which is a log–log relationship between the rank-size of cities and their corresponding
populations. A direct link with central place theory (Hsu 2012) has been made. Cristelli et al.
(2012) observe that Zipf’s power law has become a ‘universal’ expression for measuring
scale and size in many fields, including economic convergence (Tang et al. 2016), yet the
evidence for it is not unequivocal. Perline (2005) is also critical of the widespread use of
power laws that may not be the best characterisation of distributions. He argues that some
distributions that are believed to follow a power law can be confused with a log-normal
distribution if there is substantial truncation.

D’Acci (2023) proposed that the existence of a power law in the distribution of settle-
ment populations should be related to a power law in average house prices, at least in the
upper tail. Blackwell (2018) finds limited evidence that house price distributions follow
a power law. There is a concession that the tail is fatter than a log-normal one, but not as
fat as a ‘true’ power law in data from housing trades in the County of Charleston, South
Carolina from 2001 to 2008. It could be that house price data follow a power law in certain
price cycle phases. Ohnishi et al. (2020) find the Tokyo house price dispersion is very close
to a log-normal distribution in normal times but fits a power function in a boom. They
suggest that the shape of the (size-adjusted) price distribution, especially that of the tail,
can be investigated for signalling the existence of a bubble.

Fontanelli et al. (2016) note that empirical data often exhibit good power-law distribu-
tion within a limited range. Rather than concentrating on where the power law ceases to
hold, they modify a power law by changing the functional form. Lavalette’s function is
potentially a useful means of describing and quantifying power-law-like behaviours. The
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Lavalette distribution yields a very good approximation to the log-normal whilst echoing
a standard power function, capable of representing long tails. As such, it could address
Perline-Blackwell’s critique of applying power functions to log-normal (housing) data.

Van Nieuwerburgh and Weill (2010) find that there is a steeper house price distribution
over time. They argue that the driver of spatial house price variations is the city productivity.
Behrens et al. (2014) emphasise how productivity affects city size, producing the Zipfian
distribution of settlement populations. With productivity also affecting average house
prices, a change in the distribution of productivity across space would impact house price
inequalities. Van Nieuwerburgh and Weill use a coefficient of variation to assess the
steepening spread. The same coefficient is used for sigma-convergence. In the growth
literature, this concerns how the distribution (of income) evolves over time (Sala-i-Martin
1996). Gray (2023b) finds that the time profile of the Lavalettean exponents closely tracks
that of the coefficient of variation. As both are simple to estimate using, say, Microsoft
Excel 2019, the exponent could be quoted alongside the coefficient when presenting cases of
growing inequalities to policymakers. This paper considers whether there is ‘a steepening’
or convergence in district house prices and relates this to other measures of housing trades.
It compares the results using the coefficient with the exponent.

The paper is structured as follows: First, there is a discussion of central place theory
and convergence. Applications of power laws in the fields of price and affordability
spreads follow. The significant change in housing transactions following the financial crash
is introduced next, plus work that features transactions.

How house prices are expected to vary across space is reviewed with an emphasis
on risk. This is followed by drawing a distinction between price changes and expected
housing market participation in hot and cold markets. The data analyses are selected for
ease of use with widely available software. This includes simple regression. The focus is a
Lavalettean expression. Growth is split into the growth of the exponent and the growth of
the median. This is adapted to assess the special case of pro-poor growth. The data sources
are outlined.

The results show that price and housing market expenditure distributions steepen but
these are not linked to a growth period, at odds with Blackwell-Ohnishi et al. A six-year
period of relatively rapid price growth before the crash of 2008 is compared with another
after the recovery.

2. Literature

The city size regularity characterised by Zipf’s law matches central place theory
(Hsu 2012) predictions. Behrens et al. (2014) argue that large cities produce more output
per capita than small cities because of a sorting of talented individuals. More talented
individuals stand a better chance of becoming highly productive entrepreneurs in larger
cities. Correspondingly, there are tougher selection processes in more ‘talented’ cities.
Entrepreneurs and firms have better resources to draw from because of the agglomeration
economies, boosting productivity, explaining why cities with higher proportions of those
with high levels of human capital are larger in equilibrium. Their model generates a Zipfian
relationship for city sizes under plausible parameter values.

Cristelli et al. (2012) argue that many real systems do not show true Zipfian behaviour
because they are incomplete or inconsistent with the conditions under which one might
expect power laws to emerge. A consequence is that, in general, Zipf’s law does not hold
for subsets or a union of Zipfian sets. A Zipfian distribution is L-shaped with sizeable
outliers at the top end. Perline (2005) points out that it is not uncommon for researchers
to truncate the lower tail where the size of the node is small, which could result in some
distributions that are believed to follow a power law being confused with log-normal ones.

The notion that a power law in city size has an implication for an associated variable
is explored by Rozenfeld et al. (2011), who show that, as well as the population of a
node, the footprint of a city also follows a Zipfian distribution. The third leg of the stool,
population density, does not. Behrens et al. (2014) predict that, despite urban costs of
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higher accommodation and commuting time in larger cities, agents do not apportion a
greater share of expenditure on housing.

In the field of house prices, D’Acci (2023) finds that Italian regional house prices have
a heavy-tailed distribution for which the maximum likelihood estimator suggests a power-
law shape is a plausible function for the majority of cases. He suggests that the link is
based on per capita income and spatial equilibrium (Roback 1982). This is at odds with the
work of Blackwell (2018) who finds limited evidence that house price distributions follow a
power law. He concludes that data from housing trades in the County of Charleston, South
Carolina from 2001 to 2008 have a fatter tail than log-normal, but not as fat as a ‘true’ power
law. This ‘in-between’ possibility is supported when the ‘regular’ power law is compared
with the power law with a cut-off. There is some support for a power law with a cut-off. A
proposed candidate for exploring this ‘in-between’ zone is a Lavalette function.

Fontanelli et al. (2016) review the properties of the Lavalette function. In their Figure 1
(p. 4) they show how various exponents generate different PDFs. A low value (around
−0.1) could generate a bell shape whilst over −0.5, what emerges is something akin to
a Zipfian distribution. However, in between, the Lavalette rank function generates a
PDF indistinguishable from a log-normal distribution. It is a special case of a discrete
generalized beta distribution, which entails estimating two exponents rather than one,
which in turn presents estimation complexities, making it less than ideal for simple policy
analysis. Lavalette’s special case entails the two exponents being equal. The formula
describes a semi-logarithmic S-shape in the cumulative distribution (Chlebus and Divgi
2007). This shape implies that the data should cover the full distribution, not a truncated
set. Cerqueti and Ausloos (2015a, 2015b) favour a Lavalettean power law over a Zipfian
one for subnational spatial dispersion of Italian tax income. Gray (2022a, 2023b) prefers
the Lavalette for subnational inequalities in house prices and affordability ratios over a
power law. Using Lavalette’s exponent, he also finds a steepening of spatial house prices
and the affordability ratio of England and Wales district distributions. The steepening is
between 2006 and 2017. Consistent with the sorting argument seen in Behrens et al. (2014),
it is argued that lenders are more willing to advance loans to borrowers in areas attractive
to talented individuals, which would strongly favour an extended London area in the UK
case. This lending bias could be viewed as reflecting risk-adjusted returns to a dwelling
purchase (Gray 2023b; Sinai 2010).

It could be that house price distributions vary with price cycle phases. It is argued
that house prices tend to grow faster in larger agglomerations beyond that justified by
rents, generating excess returns (Amaral et al. 2021). Mian and Sufi (2018) see the credit-
driven household demand channel as distinct from traditional financial accelerator models
in explaining house price dynamics, primarily due to the centrality of households in
explaining the real effects of credit supply expansions. Lenders inflate the wedge between
prices and incomes, which is more likely to leave a permanent effect on high-house-priced
areas. Evidence for this can be found in Gray (2022b) who reveals that the time paths of
British house price–earnings ratios reflect a spatial divide. The ratios generally rose from
a low in 1997 to the bubble period of the 2004–2008 peak. Subsequently, for the South of
England, there has been a continuation of this increase, whereas for other areas, the picture
is one of relative stability. Rising inequality in England and Wales has two dimensions.
Firstly, between the North and South, and secondly among the southern districts.

Bogin et al. (2017) conclude that the price acceleration is a signal of a permanent
shift in a location’s economic fundamentals. As the largest nodes at the top end of price
hierarchies offering property investment opportunities for a wealthy, international elite
(Fernandez et al. 2016), Dublin and London may have decoupled from the rest of the British
Isles (Richmond 2007). This suggests a steepening of the price distribution in both countries.

Ohnishi et al. (2020) find the Tokyo house price dispersion is very close to a log-normal
distribution in normal times but fits a power function in a boom. They suggest that the
shape of the (size-adjusted) price distribution, especially that of the tail, can be investigated
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for signalling the existence of a bubble. So, one might expect the spatial distribution of
house prices to expand in a house price boom.

 

Figure 1. The distribution of housing expenditure, sales and real price.

Hudson and Green (2017) identify that since 2008–2009 there are 400,000 fewer housing
transactions taking place each year in the UK compared with the period before the financial
crisis, of which 80% could be attributed to a fall in mortgaged home movers. One could
argue that this echoes earlier collapses. Andrew and Meen (2003) make a similar point about
missing transactions in the 1990s following the 1989 bubble burst. Ortalo-Magné and Rady
(2004) suggested that housing market participation in the 1980s among young buyers was
unusually high because of credit liberalisation and the rising trend in owner-occupation.

If the housing adjustment following a financial crisis is in transactions, the implica-
tions should be of interest to policymakers. Articles featuring house price dispersion and
transactions are not common. Tsai (2018) finds the ripple effect in four regional housing
markets in the U.S. A ‘ripple’ in transactions was far more evident than that in housing
prices. Information is transferred between regional housing markets either through price
or volume. The two types of ripple effects are negatively correlated.

Analysing house prices and transactions across European economies, Dröes and
Francke (2018) argue that common underlying factors, such as GDP and interest rates,
explain part of the price–turnover correlation. The effect of GDP and interest rates mainly
operates through turnover. Although a high loan-to-GDP ratio does increase the effect of
interest rates and GDP on prices and turnover, it is not considered a key factor in explaining
price and turnover dynamics. Similarly, neither population increases, the share of the
young population, nor inflation play a central role in this context. They conclude that prices
and turnover should be modelled as two interdependent processes. The period 1999–2013
seems unaffected by the drop in participants in 2008, which is not explained.

Clayton et al. (2010) find that price-caused components of prices and volume are
negatively correlated. House prices in tight markets are less affected by financial constraints
on homebuyers. Dividing the 114 U.S. metropolitan statistical areas into those with high
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and low supply elasticities, they find that in markets where supply can easily adjust,
transaction volume does not seem to affect future prices.

3. Land and Pricing

An asset price model relates the price of a dwelling to the rental stream and the cost
of capital, subject to risk adjustments. DiPasquale and Wheaton (1996) analyse factors
that affect rent and land prices. The monocentric urban model characterises a collection
of dwellings as part of the same housing market area if there is a tendency towards a
stable hierarchy of prices. A standard dwelling closer to the central business district will
command a higher price ceteris paribus, as owners benefit from the lesser disutility of
commuting. The co-movement of prices emerges from ‘arbitrage’; buyers switch search
behaviour across the commuting space in the face of mispriced local markets. Relative
prices change little as the overall market undergoes either cyclic fluctuations or long-
term growth (p. 26). Inter-urban differences in house prices are a function of the relative
productivity of areas. Spatial arbitrage operates more generally, as individual agents
migrate within and between population nodes to maximise their utility (Roback 1982). This
model implies the driver of house price differences is productivity, adjusted for house
characteristics and commuting preferences.

The expected future growth in current rent would affect the current local house
price (Amaral et al. 2021; DiPasquale and Wheaton 1996; Sinai 2010). This could be due
to population growth (DiPasquale and Wheaton 1996; Glaeser and Gyourko 2005), or
productivity growth (Coulson et al. 2013; Van Nieuwerburgh and Weill 2010).

Dual regional economy models (Brakman et al. 2020; McCombie 1988) predict slower
or constrained growth in the periphery and its elements should have persistently lower
productivity. The city’s economic fortunes will be a function of the industries it sup-
ports. Martin et al. (2014, 2018) utilise an evolutionary perspective, where agglomeration
economies trace out productivity development paths. An ageing economic structure could
persistently constrain a city to a poor performance, such as in the northern cities of England
that are subject to deindustrialisation (Martin et al. 2018; Pike et al. 2016).

DiPasquale and Wheaton (1996, p. 44) also argue that if the cost of capital falls, this
drives up all asset prices. Aimed at mitigating the impact of the financial crisis of 2008,
central banks engaged in quantitative easing (QE), which inflated asset prices. The Bank of
England’s loose monetary policy, which began with its base rate falling to 0.5% in March
2009, down from 5% in the previous October, was implemented to mitigate the impact
of the financial crisis. A longer-run view, due to Miles and Monro (2019), is that there
was a sustained decline in real interest rates between 1985 and 2018. Himmelberg et al.
(2005) argue that house prices are more sensitive to changes in real interest rates in rapidly
growing cities. Amaral et al. (2021) argue that house prices tend to grow faster in major
‘superstar’ cities than what is justified by rents. The excess returns are explained by the
lower risk associated with the rents. The distributional impact of QE on measured income
and wealth between 2008 and 2014 is assessed as minor in proportional terms. In cash
terms, London and the South East gained the most, particularly in housing wealth (Bunn
et al. 2018). Indeed, it is averred that London pulls away from the rest of England and
Wales (Gray 2018; Montagnoli and Nagayasu 2015; Richmond 2007). This suggests that the
price distribution broadened in the aftermath of the crisis due to QE.

A relaxation in credit controls should lead to a surge in demand for dwellings. How-
ever, vendors could anticipate this and revise their asking (expected) price upwards before
the matching rate increases or the number of transactions surges. Allen and Gale (2000)
argue higher price levels are supported by the anticipation of further increases in credit
and house prices in general.

4. Transaction–Price–Expenditure Nexus

Ortalo-Magné and Rady (2004) place buyers in a hierarchy, with first-time buyers
focussing on more modest dwellings, whereas repeat buyers are looking for larger homes.
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Smaller dwellings would be traded more frequently than large ones. Smaller dwellings are
the first or the only stage in a housing career. Staging could result from a capital constraint
or because buyers match their current dwelling with their current space needs. With a
variety of divisions of district sizes that are administrative areas rather than markets, the
rank order for sales, price levels, and expenditures should not be the same.

Stein’s (1995) model of house prices and transactions focuses on repeat buyers and
equity. He analyses the impact of rising prices on three mover groups. The first group
relates to those already wishing to buy. A price increase enhances their collateral. Not only
does this fortify their purchasing power but, as a lower risk, this would grant them greater
access to credit, which leads to further price growth.

The second group, not in the market originally, is induced to sell. As they add liquidity
in both buyer and seller markets, they enhance housing market activity (Gray 2023a) and
they should speed up the matching process. There are two propositions here. First, as they
could now better fund a house purchase, an increase in price, and hence equity, affects the
second group much like the first. Novy-Marx (2009) proposes that market participation is
related to expected returns and high transaction costs. A more active (hot) market, where
buyer–seller matching is quicker, would lower the participation costs for the seller. The
bargaining position of either party is dependent on the scarcity of the other. A sudden
increase in buyer participation speeds up matching, reducing the pool of sellers that remain,
enhancing seller bargaining power, and inflating prices. The buyer ‘shock’ is amplified.
Stein asserts that this group does not accelerate prices as they add both demand and supply
to the market. In Novy-Marx’s scenario, reduced matching time encourages more vendors
to join the market. The greater liquidity lowers the risk to lenders of a fire sale if the
marginal buyer gets into difficulties.

The third group needs no credit to buy. Wheaton and Lee (2009) and Ortalo-Magné
and Rady (2004) add a buyer with no housing equity to the pool of potential purchasers.
This first-time buyer (FTB) is possibly currently renting. This fourth group will behave more
like normal consumers, responding to higher prices by withdrawing. The participation
of the FTB is necessary for a first-time seller to move on. A fifth group, not featured in
Ortalo-Magné and Rady, would include downsizers who look to match space with their
reduced family size.

Increased participation is either stimulated by or induces higher prices at lower price
levels. However, at some point, the asking prices lead to a diminution of interest from
potential buyers, which discourages further sellers from joining the market. Housing
expenditure would reflect a combination of market participation and price. In a thick
market, an increase in participation is accompanied by price. A thin (cold) market could
see prices rising whilst participation declines.

The relaxation of credit should have a greater effect on the highest leveraged markets,
most likely with higher market prices. However, permitted leverage will be in the hands
of the lender. Where the credit lands during a period of credit loosening is based on
risk-adjusted expected returns from a dwelling purchase (Amaral et al. 2021; Sinai 2010).
If the current structure of prices has the risk assessment baked in, as reflected in house
price–earnings ratios (HPER), the proposition that high-priced districts face a tighter credit
constraint could be flawed. It is unclear how a relaxation in credit restrictions could favour
a local market. Lenders face agency costs when expanding their loan book. Lenders’
assessment of local risk may be imperfect and backward-looking, which would favour
traditionally hotter markets.

Blackwell-Ohnishi et al. suggest that the tail of a house price distribution would
contain information about a price bubble. This implies sigma-divergence in the economic
growth sense in a boom. It may be better to look to evidence in transactions and sales
values when exploring bubbles rather than prices. Loss aversion may obscure dramatic
distributional changes in market sentiment. Power-law exponents have been used to
characterise convergence (Tang et al. 2016). The Lavalette distribution yields a very good
approximation to the log-normal whilst echoing a standard power function, capable of
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representing long tails (Fontanelli et al. 2016), so it could be used to explore housing
distributional changes without making assumptions about power laws that only apply in
a boom.

5. Method

A rank-size function can be expressed as PR = P1[R]
−α where PR is the variable of

study (population) and R is the rank score. P1 is that of the largest value, known as the
calibrating value, which is that of the largest city and has a rank score of R = 1 with the
smallest R = N.

Lavalette’s ranking power law can be expressed as PR = P1

[
N×R

N−R+1

]−q
(Gray 2022a).

The cross-sectional model is estimated using simple OLS as ln(PR)t = −γt − qtln
(

N×R
N−R+1

)
t

for R = 1. . .N for T regressions. The exponentiation of the intercept multiplied by the actual
highest value provides the expected CV. The projected median at time t can be calculated
from Pmt = E(CVt)× Nqt .

Lavalette’s formula allows for the prediction of values other than the median. The
projected value at percentile ω, Pωt = Pt

(
ω

100−ω

)qt has a power relationship with the me-
dian and expected calibrating value E(CV). If q = 0.2 and E(CV) = 100, the median would
be 31.6 and the upper quartile value (ω = 75%) would be 41.4. The projected growth rate
at the median is defined as Pmt+p

Pmt
=

.
Pm. This, at Pω, has two components: the move-

ment of the representative value or median, and the spread. Thus, the growth rate is
.

Pω =
.

Pm
(

ω
1−ω

)qt+p−qt
. The growth rate at certain points in the distribution depends on

whether there is convergence or divergence. It is intuitively obvious that steepening occurs
when the growth rate at the upper exceeds that at the lower quartile. Indeed, this could
predict the acceleration of prices in the tail as implied by Blackwell-Ohnishi et al. The
expression

.
Ypp = Distributional Correction ×

.
Ym, where Y is income, is adapted from

Ravallion (2004, p. 6). When poverty reduction is the objective (for which economic growth
is one of the instruments) then ‘the rate of pro-poor growth (pp) defined above is the right
way to measure growth consistently with that objective’. The distributional correction
corresponds with a narrowing of the spread, indicated by the growth at the lower quartile
exceeding that of the median and the upper quartile, resulting in convergence.

6. Data

The Local Authority District house prices, incomes, number of transactions, and
number of dwellings are supplied by the UK’s Office for National Statistics (ONS) for
England and Wales. This covers annual data across 330 districts for the period from 2001 to
2022. The Isles of Scilly are excluded due to intermittent data. All transactions concerning
house purchases, whether they entail a loan or not, are captured by these data. The number
of transactions reflects the size of the district. To offer some standardisation, this is adjusted
by the number of dwellings in the district, generating a sales (or transactions) per dwelling
value, which is multiplied by 100,000 (SD). Dröes and Francke (2018) used the same housing
stock adjustment to sales. The average house price per district is adjusted by the rate of
inflation to provide a real price (RP) based on 2001 levels. The value of sales revenue is
the product of the number of transactions and real price. Again, this is weighted by the
number of dwellings to provide a measure of housing expenditure (HE).

Figure 1 displays the three variables for four years. The price for 2001 provides the
base structure for the displacement of the profile in 2007. The noise in the profile for 2007
relates to the change in order from 2001 to 2007. Generally, low-priced districts in 2001 did
not become expensive ones by 2007, yet change is not obviously proportional. Both 2001
and 2007 have the long-tailed S that characterises Lavalette’s law. This is duplicated in
2012/2018 as well as in housing expenditure (HE). Transactions per dwelling also have an
S shape, but the long tail is not so pronounced. Also, the number of transactions does not
appear to have risen over the first period, and the noise is large relative to the gradient of
the profile.
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The second period features slower growth. Sales in both 2012 and 2018 appear almost
without a gradient, suggesting that if changes in transactions are related to size order this
is not much of a claim.

7. Results

There is a concern about misclassifying a distribution when it is quite likely to be
log-normal (Perline 2005). The p-values of Kolmogorov–Smirnov goodness of fit test results
for selected years are displayed in Table 1. The first consideration is whether the data follow
a normal and a log-normal distribution and whether a Lavalette function provides a good
fit. Both housing expenditure and price are more likely to follow a log-normal distribution.
Sales do not appear log-normal but the case for a normal distribution is not strong. One
could infer that there is a good Lavalettean fit for housing expenditure and price. Sales do
not consistently follow a distribution considered. In addition, R2 values are reported. A
value above 0.98 is linked to a K–S p-value of over 0.05.

Table 1. Goodness of fit, medians, and exponents. Obs = observed; Est = estimated; BS L = bootstraps
lower band; BS U = bootstraps upper band; p-values * sig. at the 5% level ** sig. at the 1% level.

Housing Expenditure (Price × Sales/D) Real Price Sales/Dwelling × 10,000

K–S Laval
Ette R2 Normal

Log-
Normal

Laval
Ette R2 Normal

Log-
Normal

Laval
Ette R2 Normal

Log-
Normal

Kolmogorov–Smirnov

2001 0.579 0.982 0.00 ** 0.014 * 0.645 0.979 0.00 ** 0.20 0.26 0.982 0.20 0.00 **
2006 0.774 0.986 0.00 ** 0.20 0.645 0.982 0.00 ** 0.20 0.46 0.984 0.20 0.00 **
2007 0.579 0.986 0.00 ** 0.20 0.774 0.975 0.00 ** 0.20 0.30 0.986 0.20 0.007 **
2009 0.710 0.984 0.00 ** 0.20 0.049 * 0.967 0.00 ** 0.004 ** 0.032 * 0.949 0.00 ** 0.00 **
2012 0.516 0.983 0.00 ** 0.20 0.06 0.959 0.00 ** 0.003 ** 0.09 0.962 0.036 * 0.00 **
2014 0.456 0.982 0.00 ** 0.06 0.109 0.949 0.00 ** 0.00 ** 0.004 ** 0.942 0.00 ** 0.00 **
2018 0.516 0.979 0.00 ** 0.022 * 0.456 0.964 0.00 ** 0.015 * 0.13 0.932 0.034 * 0.00 **
2022 0.456 0.980 0.00 ** 0.07 0.516 0.972 0.00 ** 0.07 0.002 ** 0.879 0.00 ** 0.00 **

Median Values

Obs Est BS L BS U Obs Est BS L BS U Obs Est BS L BS U
2001 6294 5951 5758 6207 104,810 106,933 102,535 111,409 5730 5566 5466 5667
2006 9755 9509 9275 9770 167,172 168,706 162,741 176,119 5738 5636 5564 5710
2007 9222 9318 9070 9592 172,507 174,176 165,847 184,024 5453 5350 5291 5409
2009 4198 4133 3995 4293 154,134 157,485 148,909 167,391 2692 2624 2534 2729
2012 4185 4052 3874 4255 144,349 146,928 136,039 159,803 2828 2758 2674 2842
2014 5935 5747 5483 6048 146,518 152,864 140,548 166,925 3922 3760 3656 3878
2018 6188 5858 5606 6214 161,986 169,294 156,905 182,115 3596 3460 3341 3602
2022 4688 4569 4372 4784 168,992 169,914 160,339 180,060 2781 2689 2586 2810

Exponents (-q)

Est BS L BS U Est BS L BS U Est BS L BS U
2001 0.298 0.292 0.305 0.251 0.243 0.259 0.100 0.097 0.103
2006 0.224 0.219 0.228 0.188 0.181 0.195 0.092 0.090 0.094
2007 0.224 0.219 0.229 0.197 0.189 0.207 0.087 0.085 0.089
2009 0.284 0.277 0.291 0.202 0.192 0.212 0.125 0.120 0.131
2012 0.319 0.31 0.328 0.231 0.218 0.245 0.116 0.112 0.121
2014 0.317 0.308 0.326 0.250 0.236 0.266 0.109 0.104 0.114
2018 0.263 0.255 0.273 0.263 0.250 0.276 0.107 0.101 0.114
2022 0.251 0.243 0.260 0.248 0.238 0.259 0.088 0.081 0.096

The mid-section of Table 1 reports the observed medians for the same selected years.
The next three columns report the intercept converted into the estimated median, plus a
lower and an upper value based on bootstraps 95% confidence intervals. The observed and
estimated values are within 6% of each other, and all the observed values are well within
the confidence intervals. Indeed, the estimated median almost duplicates the observed
geometric mean (not reported). This relationship is found with log-normal distributions.

7.1. Exponents’ Time Paths

Tsai (2015) finds a segmentation in housing markets between the northern and south-
ern regions. Following this, northern districts/regions, which are defined as the midlands
and North of England and Wales, comprise 159 districts. Southern districts or regions
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comprise London, the East of England, the South West, and the South East. This group
contains 171 districts.

The time profiles of coefficients of variation are displayed as a reference in Figure 2
on the left for all districts, North and South. The steepening of prices seen in Gray (2023b)
is evident in prices for all districts. This is replicated in housing expenditure, but not in
transactions (CoV SD). That said, clearly there are observable narrowing periods. There
was another increase in the spread around 2019 to 2021, which pre-dated the lockdown.

 
Figure 2. Time paths of spread measures.

Compared with the South, northern districts exhibit a similar range of spread of
housing expenditure and transactions, but less variation in price. The profile of all districts’
sales per dwelling is relatively flat until 2007. The subsequent crisis period features a slight
broadening of the spread.

On the right-hand side of Figure 2, there are three exponent time paths. Although
these are similar to the corresponding CoVs, the patterns are smoother. The price path (q
RP) displays the S shape reported by Gray (2023b) but with slightly different dates. The
key steepening phase in price runs from 2006 to 2017. There is a period of convergence
from 2001 to 2006, and post-2017. The lower section of Table 1 reports the exponents
−q for the selected years, plus a lower and an upper value based on bootstraps 95%
confidence intervals. The price and housing expenditure coefficients for 2006 are below
others, supporting the claims made above concerning convergence and divergence phases.

The S shape is evident in the southern districts’ time profile, but the trough and peak
occur earlier. A distinctive feature of the northern districts is the stable distribution after
2010. Here, the S shape is not evident.

The conclusions drawn about steepening depend on the era and the region one se-
lects. Evidence for a steeper distribution is found in the South, not the North of England
and Wales post-2008. The rapid steepening from 2008 puts the spread in district expen-
diture back to a similar position in 2002. The other two spreads return to the 2002 levels
around 2009.

The dramatic fall in housing expenditure inequality across all districts covers the initial
years to 2005, which is reversed when there is a notable rise in expenditure dispersion from
2008. This again is reversed around 2013, when the RP and HE trajectories lean in opposite
directions. Importantly, when clearly rising, HE has steeper trajectories than RP. This is in
line with speculative sellers adding liquidity in both buyer and seller markets, enhancing
housing market expenditure.

273



J. Risk Financial Manag. 2024, 17, 22

Observed price and quantity values for England and Wales have two distinct patterns
at the 2007/2008 juncture. Mean price, adjusted by the rate of inflation, rose to a peak in
2007. It then fell by 5.5% in 2008. The corresponding measure of Hudson and Green’s
(2017) missing movers is missing transactions, which entails a propitious drop of 48%. The
collapse in expenditure (52%) is greater than sales.

With other consumer durables, one could expect a boost to transactions with a fall in
price and lower costs of borrowing. QE’s two elements, increased reserves for banks and
lower interest rates, may take some time to penetrate the more risk-averse environment.
A downswing in a credit cycle (bust) features a severe restriction of lending, and a rise
in collateral requirements (Geanakoplos 2010). Banks withdraw mortgage products and
impose larger deposit requirements, which would filter out the higher-risk borrowers,
particularly affecting those without property. If loans are not available, offers to buy fall
through. If buying one property is contingent on selling the existing one, and that buyer
fails to secure funding, both contracts fail to be executed.

Those who bought close to the peak of a price cycle could experience loss aversion
(Genesove and Mayer 2001). Unprepared to accept a loss, dwellings could just remain in
the estate agent’s window for longer. The speculative participant could withdraw from
the market, in part, because the matching rate had dramatically slowed. As such, housing
market activity is adversely affected. Hence, the number of house trades and the spatial
distribution would be linked to credit and risk appetite.

Transactions per dwelling rate and average district price are lower in the North
than in the South. With the exception of the years from 2009 to 2014, there is a negative
correlation between district sales/dwelling and price level, in the South. Cheaper districts
are associated with more trades. By contrast, the rank order of the district price level is
positively associated with that of sales per dwelling in the North for all years apart from
2003 to 2008. Combined, only in 2003 and 2019 are the relationships not positive for the
whole of England and Wales, suggesting that more active markets have higher prices.

In general, as measured by the Spearman coefficient, the rank order of district expen-
diture is strongly linked to price. As shown in Figure 2, the spatial variation in transactions
is small compared with that in price. The similarity in the steepening of both the price
and expenditure distributions seen in Figure 2 at the national level could reflect this price
dominance. Variation at the national level is not reflected in either the South or the North.
Moreover, for much of the post-crisis period, price and expenditure distributions of the
northern districts are stable, so the ‘steepening’ is more likely to reflect a North–South
schism, where the South pulls away from the North, plus greater dispersion in the South.

7.2. Expected Median Time Paths

Figure 3 displays the time trajectories of the observed medians of the three measures.
There are distinct patterns for price and quantity. The real median price rose to a peak in
2007. It declined by 10% over the period to 2009. This decline continued until 2013. Late in
the series, another shock is evident before the COVID-19 lockdown began. It was only then
that the price returned to the pre-crisis price level. Up until 2007, there was a general decline
in the transactions. The equivalent discussion in the context of Hudson and Green (2017) is
that there is no recovery in the number of transactions to the pre-2007 levels. The third line
associated with housing expenditure traces the price rising to a peak in 2007. The collapse
in expenditure is greater than sales, which it traces from then on. The real pre-COVID-19
price peak occurred in 2018, two years after that found in housing expenditure. Housing
expenditure peaked in 2006, a year before price in the pre-financial crisis period. Price
peaks occur in cooling markets.

The next three sets of lines are medians as derived from Lavalette’s function for all
districts. The patterns of all three sets for each of the three variables concerned are similar
to the E&W measures. Both the time profiles of levels (Figure 3) and spreads (Figure 2)
correspond well with observations.
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Figure 3. Median values: price transactions and expenditure.

7.3. Stein’s Dynamic Framework

For macroprudential purposes, the Bank of England monitors price and affordability
(Bank of England 2015). Two six-year periods ending in an inflection point in observed
real prices on either side of the financial crisis are analysed. The annualised house price
inflation rate at the median from 2012 to 2018 was less than a quarter of the rate from 2001
to 2007 (1.94% < 8.66%). Those districts that had a relatively rapid rise in price in the second
period had a slow rate of appreciation in the first (rho = −0.659 [0.000]). By contrast, the
growth in expenditure in the first period is positively linked with the second (0.349 [0.000]).
This implies that price growth in the second period adversely affected sales growth. Stein’s
framework suggests that expenditure and sales should rise over a range of price growth.
The rank order of growth rates of expenditure and price are strongly associated in the first
period (0.769 [0.000]), but not in the second (−0.065 [0.241]). There is a negative relationship
between sales and price (−0.249 [0.000]) in the second period and none in the first. Again,
this highlights that activity in the second period is not consistent with the first.

Stein’s framework has been used to explain the divergence in price in the upswing
stage of a cycle, with high house prices pulling away from low (Ortalo-Magné and Rady
2004). Spearman’s rho indicates that the growth rates of price over the six years are nega-
tively associated with the price level in the initial year, in the first period (−0.872 [0.000]),
but positive in the second (0.502 [0.000]).

Using expenditure data, there is a negative relationship in both the first period
(−0.818 [0.000]) and the second (−0.653 [0.000]). This is consistent with the growth litera-
ture’s beta-convergence in expenditure (Sala-i-Martin 1996). As the credit cycle enters a
looser phase, lenders may cast their eyes around to those areas where less creditworthy
debtors might be coaxed onto the market. These areas attract investors’ attention when
other opportunities are limited in traditionally lower-risk markets.

The second period, not consistent with Stein’s projection of the co-movement of price
and activity could be a result of the distribution of QE funds favouring London (Bunn et al.
2018). Prices in the South reached a point in the post-crisis era where affordability could be
beyond what lenders deem as safe, and price is above fundamentals (Duca et al. 2021).

Sigma-convergence entails a narrowing of the distribution over time. Beta-convergence
implies that poorer districts grow more quickly than richer ones. Pro-poor growth (Raval-
lion 2004) implies both. Given a median growth rate, a smaller future Lavalettean exponent
implies that the higher housing market values are increasing less quickly than the lower-
priced ones, or there is catch-up/pro-poor growth. Table 2 reports observed growth rates
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at the median and the upper and lower quartiles. These are compared with projected

rates based on
.

Pω =
.

Pm
(

ω
1−ω

)qt+p−qt
. In the run-up to 2008, the median price grew by

8.66% annually, which is similar to the Lavalettean projected growth rate (8.47%) within
the bootstraps implied confidence interval of 8.34–8.72%. The lower quartile grew faster
than the upper (10.45% > 7.08%). The order but not the division is reflected by the expected
values (9.54% > 7.41%). All districts and the North and South regions exhibit convergence.
This set of results concurs with those using Spearman’s coefficient.

Table 2. Annualised growth rates over two growth periods: price, transactions, and expenditure.

2001–2007 (1)
2012–2018 (2)

All Districts North South

Real
Exp/Dw

Sale/Dw Real Price
Real

Exp/Dw
Sale/Dw

Real
Price

Real
Exp/Dw

Sale/Dw
Real
Price

Observed (1)
Lower Q 9.27 −0.34 10.45 11.72 −0.33 10.56 6.75 −0.97 7.63
Median 6.57 −0.82 8.66 9.54 −0.55 10.46 5.91 −0.50 6.96
Upper Q 5.27 −1.02 7.08 7.80 −0.84 8.91 5.57 −1.14 5.91

Estimated (1)
Lower Q 9.24 −0.43 9.54 11.12 −0.17 10.72 6.77 −0.73 7.64
Median 7.76 −0.66 8.47 9.51 −0.46 10.02 6.15 −0.84 7.05
Upper Q 6.3 −0.89 7.41 7.93 −0.75 9.32 5.53 −0.95 6.47

Observed (2)
Lower Q 8.26 4.82 1.50 7.89 6.92 1.01 5.73 1.66 3.29
Median 6.74 4.09 1.94 8.28 6.40 1.32 5.24 2.17 3.38
Upper Q 5.31 3.30 3.52 8.44 5.87 2.00 3.51 2.30 3.13

Estimated (2)
Lower Q 7.42 4.03 1.79 4.93 6.81 1.14 5.97 0.72 3.12
Median 6.34 3.85 2.39 4.57 6.47 1.34 4.90 1.47 3.39
Upper Q 5.26 3.68 2.99 4.20 6.14 1.54 3.84 2.23 3.65

In the second period, again there is a schism between price and expenditure across
England and Wales. Convergence is evident when analysing expenditure. House price
spreads are consistent with the correlation results and the South pulling away from the
North. However, the observed pattern is not consistent when subdivided by North and
South, where the North’s distribution narrows whilst the South experiences divergence.

7.4. Stylised Facts

The real price growth rate over the 11 years of the steepening period, 2006–2017, is
0.1% at the median annually and 0.8% at the upper quartile. Expenditure is worse. The
annualised contraction rate is 3.2% as opposed to 3.6% at the median. So, the Steinian
proposition that higher price growth explains increasing spreads is not supported. It also
undermines Blackwell-Ohnishi et al.’s suggestion that the tail of a house price distribution
would contain information about a price bubble. Van Nieuwerburgh and Weill (2010)
suggest there is a productivity driver of spatial house price variations. Brandily et al. (2022)
find that spatial disparities in the UK, although broad, increased slightly up to the financial
crisis, but remained generally stable since. Covering 2007–2019, which matches the price
steepening period well, Rodrigues and Bridgett (2023) find that London lags behind the
rest of the UK in productivity growth, in a low-growth era, implying a narrowing of
productivity spreads. London’s productivity grew by 0.2%/ year in real terms, which they
suggest is partly a land price problem. They suggest that rising costs for office space deter
firms from choosing a location in the City and crowd out investment. High house prices
have weakened London’s draw on talented people.

The house price–earnings ratio (HPER) of 4.4 in 2001 rose to 6.96 in 2006. In other
words, prices grew by 2.5 annual salaries in a high participation era, or a ‘hot’ market
period. Subsequently, the HPER rose nationally to 7.8 in 2017. This is a much smaller
increase over a longer period. The continued decline in affordability was accompanied by
an extension of the average mortgage repayment period from 25 to 35 years, plus mortgage
interest payments were affected by a historically low Bank of England Base rate, leading
to the conclusion that monthly mortgage servicing could be steady despite rising house
prices. Debt has become dislocated from incomes (Gregoriou et al. 2014). The distribution
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of QE funds appears to have favoured London (Bunn et al. 2018). Its HPER rose from 7.9
to 12.4 in the period from 2006 to 2017. Affordability metrics in northern regions remain
unchanged over that period. Combined, there could be a ‘pulling away of the South’ based
on the QE credit dispersion, resulting in the problems highlighted by Gregoriou et al. (2014)
and Rodrigues and Bridgett (2023). The QE impact could be spread internationally by a
wealthy elite buying up properties in many global centres.

Figure 2 highlights convergence in expenditure across E&W in the post-2013 period
whilst prices continued to diverge for the next 4 years. The convergence in expenditure
nationally corresponds with markets in the South converging internally plus more rapid
growth in (some parts of) the North that catch up. Convergence in the South would not be
consistent with a spatial division inflated by a wealthy, international elite, which would
focus on London only, reinforcing the QE effect.

7.5. COVID-19

The period from 2019 covering COVID-19 is unusual, as one might expect. The
lockdown period began in March 2020 with rapidly declining transactions. Sales in 2020
were at a recent low. Lockdown altered people’s locational preferences. As lockdown
restrictions were eased, combined with Stamp Duty holidays, which ended in September
2021, there was a flurry of buyer activity favouring greater space, such as gardens or
an extra room for working from home (Hammond 2022; Peachey 2021). The surge in
expenditure is evident in Figure 3. With less of an emphasis on commuting, housing market
metrics should reflect a dash towards districts with amenities, such as parks and water.
Oddly, sales spreads remained stable over this period.

There was a spike in 2021 in both the price and the HPER, yet there is little change
in the spread. The impact of the COVID-19 period on house trading activity in the North
is almost imperceptible. In 2022, prices and transactions declined as the Bank of England
base rate rose from 0.75% to 3.5%. It also announced that it would engage in quantitative
tightening, reducing the amount of credit in the system, both of which should reduce
market participation. The spread indicators feature a strong narrowing of the distributions.

8. Conclusions

This paper set out to consider the ‘steepness’ of the values of housing transactions as
distributed across districts over the period 2001–2022 for England and Wales. The paper
finds that the time paths of Lavalette’s (1996) exponents compare well with those of the
coefficients of variation. Blackwell (2018) finds that real estate data are ‘in-between’ log-
normal and a ‘true’ power law. The distributions of both price and housing expenditure
fit that class of data with a long tail, yet often indistinguishable from the log-normal that
Lavalette’s law captures. Sales per dwelling do not fit so well. As the exponent is simple
to estimate and can provide a meaningful interpretation for data with distributions likely
to be found in the worlds of economic inequalities and growth convergence, it has useful
properties for the economic policymaker. The exponent produces a time profile akin to the
coefficient of variation. This well-used statistic could be inflated as data with a long tail are
likely to be skewed and subject to kurtosis, so the exponent could offer a smoother time
profile of the dynamics of inequalities.

The paper reveals a Van Nieuwerburgh and Weill ‘steepening’ in the national house
price distribution, but this is in the middle of two convergence periods. The first conver-
gence period is associated with the run-up to the financial crisis. Blackwell (2018) and
Ohnishi et al. (2020) propose that the upper tail of a house price distribution could contain
information about a price bubble. The results here indicate that the distribution is not
steepest at the peak price level. Duca et al. (2021) conclude that real-estate-linked financial
crises typically begin with over-valued real estate prices. Using risk as an explanation, it
is argued that the over-valuation is observed by lenders in southern markets who switch
away to less inflated northern ones. The UK’s peak prices nationally occurred as northern
price levels ‘caught up’.
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Even without a spatial effect, the upper tail may not return to normality quickly
due to loss aversion. Prices do adjust downwards but not as dramatically as in activity.
Prices can rise in thin markets, ones already experiencing a significant drop in financial
transactions. As such, it is argued that evidence of volatile housing market activity is better
found in housing transaction expenditure, which peaked earlier than prices in both pre-
and post-crisis periods. Housing expenditure is found to steepen more rapidly than prices,
in a period of low market participation and lower real activity. Again, the upper tail in
price would not offer an insight into an over-heated housing market. There is a period
when there is convergence in expenditure and divergence in price. The schism between
housing expenditure and price, particularly post-2013, would be consistent with a peak
price occurring in a cooling market nationally. A thick market in the North could coexist
with a thin market but with rising prices in the South.

Macroprudential regulation seeks to limit reckless lending with national metric lend-
ing rules (Bank of England 2015) based on price growth and affordability. Rather than
productivity, it is averred that lending and QE funds favouring London (Bunn et al. 2018)
underpinned the steepening across the UK. The post-financial-crisis price patterns under-
state the extent of depressed market activity compared with before. QE may have ossified
prices at damaging levels in the South, affecting productivity growth itself, the driver of
spreads (Van Nieuwerburgh and Weill 2010) elsewhere. Monitoring of housing activity
could be improved by analysing housing expenditure, which should be a lead indicator
and more in line with lending activity.
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Abstract: This paper seeks to determine the best subjective probability to use to carry out expectation
values of uncertain future cash flows with the smallest number of assumptions. This results in the
unique distribution that guarantees no more information is present other than the stated assumptions.
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1. Introduction

Early on in finance, we learn that the fair value of a security is the present value of
expected future cash flows:

V(t) = ∑
i

Z(t, Ti)E[c(Ti)], (1)

where Z(t, T) is the price of a zero-coupon bond at time t, maturing at time T. Many of
the formulae for fixed-income security pricing result from Equation (1) when the cash
flows c(Ti) are known with certainty Fabozzi and Mann (2021). However, when the cash
flows are uncertain, it is natural to ask what probabilities should be used to determine the
average implied by the expectation value in Equation (1).

The overwhelmingly accepted answer is, of course, the famous “risk-neutral proba-
bilities” introduced by Black and Scholes (1973), in which many assumptions were made
in order to justify the approach. The assumptions were those of the capital asset pricing
model (CAPM) Lintner (1965); Sharpe (1964), which depends upon general economic equi-
librium and also upon secondary assumptions such as a constant interest rate (or at least
non-stochastic interest rate) and the variance of the stock over the lifetime of the option.

Robert Merton did not agree with many of these assumptions, especially the condition
of economic equilibrium, saying of the derivation, “the portfolio weights are chosen to
eliminate all ‘market risk’. By the assumptions of the CAPM, any portfolio with zero (‘beta’)
market risk must have an expected return equal to the risk-free rate. Hence an equilibrium
condition is established between the expected return on the option, the expected return
on the stock and the risk-less rate” Merton (1973). Merton then set out to relax some of
these assumptions by adding stochastic interest rates and, more importantly, proving that
the expectations of the investors play no part in the fair value of an option. This insight
came from a precise cancellation of terms when solving the equations for the portfolio
to be arbitrage-free, that is, the initial capital investment is all that is required to hedge
the portfolio without any inflows or outflows; the gains and losses of the portfolio suffice.
Thus, the equilibrium assumptions of the CAPM are not required.

These equations are now known as the “market price of risk” and form the basis of
dynamic asset pricing theory, as developed by Harrison and Pliska (1981), who developed
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the fundamental theorem of asset pricing by specifying the mathematical and economic
requirements for arbitrage freedom in a given financial market.

The mathematical machinery needed to price a simple European option is, therefore,
quite complex, requiring the knowledge of stochastic calculus, dynamic asset pricing theory
and the solution of partial differential equations—very intimidating for a young student
in finance. This paper seeks to determine a financially justified probability distribution
without relying on any of this advanced mathematical machinery. The frameworks used
are those of Information Theory Shannon (1948) and the principle of maximum entropy
developed by Jaynes (1957b, 2002).

2. Information Theory and Maximum Entropy

In 1948, Claude Shannon introduced Information Theory in his landmark paper “A
Mathematical Theory of Communication” Shannon (1948). Here, Shannon introduced the
concept of informational entropy of a discrete probability distribution:1

H = −∑
i

pi ln pi, (2)

as a measure of information. It has intuitive properties that the information about an
event should satisfy, such as being zero when the outcome is certain—i.e., only one of
the probabilities is 1.0—and achieves a maximum when all outcomes are equally likely.
From this fundamental quantity, he determined optimal ways to encode communication
messages into abstract codes, where the environment can adversely affect the message (i.e.,
what is transmitted is not what is received).

Later, in 1957, Ed Jaynes noted that the definition of entropy in statistical physics could
be thought of as informational entropy Jaynes (1957a) and introduced a way to generate a
probability distribution that produces the empirical data without adding any additional
assumptions, i.e., a distribution that “...has the important property that no possibility is
ignored; it assigns a positive weight to every situation that is not absolutely excluded by
the given information”.

We can apply this concept in finance, as it is an open question whether asset price
fluctuations can have an objective probability distribution. The maximum entropy frame-
work does not assume one, whereas an objective probability distribution is required by
the Black–Scholes–Merton framework—all models that attempt to go beyond the Black–
Scholes–Merton assumptions (Cox and Ross 1976; Dupire 1994; Heston 1993; Merton 1976).
Stocks are not physical particles subject to the immutable laws of physics; they are, rather, a
human construct with prices traded in a market driven by human emotion. Thus, we seek
to obtain a subjective probability distribution that not only relies on all of the information
that exists in the market, but is “maximally noncommital to missing information” Jaynes
(1957a), meaning this distribution, once found, does not (cannot) contain any further as-
sumptions than those that are used in its derivation. In this paper, we show that only two
assumptions are required to derive this unique distribution:

1. There is a forward contract on the stock, which is fairly priced in the market;
2. The distribution has a variance; otherwise, statistical measures of risk are difficult to

quantify.

Using only these assumptions, the subjective probability can be determined.
In the first section of this paper, we use the method of Lagrange multipliers to apply

the constraints and derive the subjective probability. In the second section, we use this
unique probability distribution to determine the price of a European call option and show
that the Black–Scholes equation is obtained.

3. Subjective Probability

We assume that there is a liquidly traded market in forward contracts for this stock.
A forward contract is a contract struck at time t, where both parties are obliged to trade
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the stock at a later time T for an agreed-upon price, regardless of whether or not the buyer
could obtain a lower price in the market at that future time. We denote the forward price
by F(t, T).

Suppose that the forward price can be obtained by summing over all possible future
values that the stock could possibly attain, weighted by a probability

F(t, T) = ∑
α

pαSα ≡ E[S(T)]. (3)

We can think of this probability as containing the totality of information that all market
participants collectively possess. It is this probability that we seek to determine.

The second piece of information reflects the fact that the market participants know,
almost certainly, that the stock price will not exactly attain the forward price at time
T; there is some uncertainty in the future outcome. They must decide on a measure of
uncertainty in the forward price F(t, T), and, more importantly, they must decide how
this measure of uncertainty is determined and quoted. Once chosen, the participant can
calculate the subjective distribution, which represents the least-biased estimate based on
these two pieces of information. By following this prescription, we show how to arrive at
the Black–Scholes formula.

To motivate the difference between this approach and the traditional approach, we
examine what we mean by a subjective probability distribution rather than an objective
one. By subjective, we mean “the sense that it describes only a state of knowledge, and not
anything that could be measured in a physical experiment” Jaynes (2002), rather than a
proscriptive probability distribution. For instance, one could posit a stochastic differential
equation for the underlying stock price:

dS(t) = μ(S, t)dt + σ(S, t)dW(t), (4)

which a priori describes the dynamics of the stock price and, in principle, gives complete in-
formation on the statistics of the movements. A posteriori, these statistics can be empirically
tested and (4) can be augmented (or rejected) if need be.

On the other hand, subjective probability distributions do not proscribe any dynamics
or constrain the system at all; they are an inferential tool used when the underlying
dynamics of the system are too complex to determine (or do not even exist at all).

To begin, we specify that volatility is a measure of the distribution of returns on the
underlying asset. Mathematically, we write that the variance is an average of the square of
the logarithm of the future underlying price relative to the current price:

v(T) = E

[(
ln

S(T)
S(t)

)2
]

. (5)

By using the maximum entropy framework to determine the probabilities, we guaran-
tee that the results do not implicitly contain any further assumptions or biases.

The derivation of the subjective distribution proceeds by maximization of the Shannon
entropy Shannon (1948):

H = −∑
α

pα ln pα, (6)

subject to the constraints

g0 = 1 − ∑
α

pα, (7)

g1 = μ(t, T)− ∑
α

ln
Sα

S(t)
pα, (8)

283



J. Risk Financial Manag. 2023, 16, 501

g2 = v(t, T)− ∑
α

(
ln

Sα

S(t)

)2
pα. (9)

These particular constraints enforce normalization of the probability, i.e., that the
forward price will be priced correctly (the functional form of μ will be fixed a posteriori to
enforce the average (3)) and that the volatility is given by Equation (5).

Functional maximization subject to constraints is carried out by the method of La-
grange multipliers:

δH + λδg0 + γ1δg1 + γ2δg2 = 0, (10)

leading to the probability

pα = exp

(
−(1 + λ)− γ1 ln

Sα

S(t)
− γ2

(
ln

Sα

S(t)

)2
)

. (11)

The Lagrange multipliers are determined by the set of constraint functions {gi = 0},
i = 1, 2, 3. Instead of fixing λ, we introduce the “partition function” Z ≡ exp(1 + λ), where

Z = ∑
α

exp

(
−γ1 ln

Sα

S(t)
− γ2

(
ln

Sα

S(t)

)2
)

. (12)

With this definition, the probability in (11) becomes

pα =
1
Z ∑

α

exp

(
−γ1 ln

Sα

S(t)
− γ2

(
ln

Sα

S(t)

)2
)

. (13)

In order to make contact with the Black–Scholes derivation, we make the substitution
∑α → ∫ ∞

0 dx. The partition function now has a closed-form solution:

Z = S(t)
√

π

γ2
exp

(
1
4
(γ1 − 1)2

γ2

)
. (14)

The further two constraints {gi = 0}, i = 1, 2 are enforced by choosing the γis such
that

μ(t, T) = − ∂

∂γ1
ln Z, (15)

v(t, T)− μ(t, T)2 = − ∂

∂γ2
ln Z −

(
∂

∂γ1
ln Z

)2
. (16)

These equations have solution

γ1 = 1 − μ(t, T)
v(t, T)

, (17)

γ2 =
1

2v(t, T)
. (18)

With the constraints enforced, the probability in (11) becomes

p(x, t, T) =
1

x
√

2πv(t, T)
exp

(
− 1

2v(t, T)2

(
ln

x
S(t)

− μ(t, T)
)2

)
. (19)
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The next step is to identify the averages v(t, T) and μ(t, T) with their corresponding
financial parameters. The realized volatility is identified as the integral of the volatility
term structure that the market participants wish to use to model the underlying

v(t, T) =
∫ T

t
σ2(s)ds; (20)

the maximum entropy distribution does not limit this choice. 2

The average quantity μ(t, T) is fixed by the forward price (3):

F(t, T) =
∫ ∞

0
xp(x, T)dx, (21)

which is an implicit equation fixing μ(t, T) in terms of the forward price F(t, T) with
solution

μ(t, T) = ln
F(t, T)

S(t)
− 1

2
v(t, T). (22)

We are now in a position to price any contingent claim armed with the probability
distribution

p(x, t, T) =
1

x
√

2πv(t, T)
exp

(
− 1

2v(t, T)

(
ln

x
F(t, T)

+
1
2

v(t, T)
)2

)
. (23)

In particular, we can now price the European call option by explicitly calculating
the present value of the uncertain future cash flow using the probability distribution that
is guaranteed to not have any more information, or assumptions, than the two that we
imposed: it prices forward prices exactly, and the distribution has a variance.

4. Re-Deriving the Black–Scholes Formula

We look at the simplest security with uncertain cash flows, that of a European call
option on a stock with a current traded market price S(t). The option gives the buyer the
right, but not the obligation, to purchase the stock at the strike price K at some point in
the future time T > t. That is, we seek to determine the unique value of C(t, T) that is the
present value of the uncertain future cash flow:

C(t, T) = Z(t, T)E[max(S − K, 0)]. (24)

Inserting the subjective probability (23) into this payoff formula, i.e.,

C(t, T) = Z(t, T)
(∫ ∞

K
xp(x, t, T)dx − K

∫ ∞

K
p(x, t, T)dx

)
(25)

the price can be calculated exactly:

C(t, T) = Z(t, T)(F(T)N (d+)− KN (d−)), (26)

where N (x) is the cumulative normal distribution and

d± =
ln F(t,T)

K ± 1
2 v(t, T)√

v(t, T)
. (27)

Equation (26) is the celebrated Black–Scholes formula for the price of a European call
option with a volatility term structure.
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5. Conclusions

The standard way of teaching the pricing of contingent claims in finance classes relies
on the Black–Scholes–Merton framework, stochastic calculus and dynamic asset pricing
theory. While mathematically sound, this approach has two major pedagogical drawbacks.
First, the student may not have been exposed to such advanced mathematics, and second,
more fundamentally, a stock price may not have an objective probability distribution
such as, say, a diffusing pollen particle. Stocks are human creations and their trading
depends on human emotion. Further, if a model becomes accepted in the market, this can
fundamentally alter the way an asset trades.

In this paper, we have derived the same equation without the use of stochastic cal-
culus or dynamic asset pricing theory; therefore, this approach could be better suited to
early finance courses. Furthermore, the Black–Scholes equation is derived with only two
assumptions: that a forward contract is traded in the market, and that the probability
distribution used has some measure of dispersion and, importantly, a guarantee that no
other information has been used. A recent paper extends the analysis in this paper by using
the maximum entropy formulation and all available option prices to infer higher moments
of the distribution Ardakani (2022).

Although we do not believe this supplants the standard treatment of pricing-contingent
claims, this method offers a new perspective on the age-old problem, and one that fits easily
into an introductory framework of finance without the need to complicate matters by the
introduction of advanced concepts such as filtrations, stochastic calculus and numeraires.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The author would like to thank Avi Bick for useful discussions and for bridging
the gap between this result and early education in finance.

Conflicts of Interest: The author declares no conflict of interest.

Notes

1 Shannon used the logarithm of base 2 in the paper, as he was concerned with error-correcting codes of binary digits. Since we are
interested in the continuous case, we use the natural logarithm.

2 In the standard treatment of Black–Scholes, the volatility of the underlying asset is assumed to be a constant, resulting in the
realized variance, as given by the formula volatility, becoming v(t, T) = σ2T.
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Abstract: The objective of this paper is to assess the behavior of policyholders and insurance com-
panies in the presence of adverse selection by accounting for costly search and selection efforts,
respectively. Insurers seek to stave off high-risk types, while consumers are hypothesized to maxi-
mize coverage at a given premium. Reaction functions are derived for the two players giving rise
to Nash equilibria in efforts space, which are separating almost certainly regardless of the share of
low risks in the market. Empirical evidence from the Australian market for automobile insurance is
analyzed using Structural Equation Modeling. Convergence has been achieved with both the devel-
opmental and test samples. Both consumer search and insurer selection are found to be positively
correlated with risk type, providing a good measure of empirical support for the theoretical model.

Keywords: adverse selection; separating equilibria; consumer search effort; insurer selection effort;
automobile insurance

1. Introduction

Ever since the seminal article by Rothschild and Stiglitz (1976), hereafter abbrevi-
ated as RS, both economists and policy-makers have been concerned about the effects of
asymmetric information on insurance markets. Since an equilibrium pooling of high- and
low-risk types cannot be sustained according to RS, an insurance company (IC henceforth)
enrolling both types can be challenged by a competitor who launches a policy with limited
coverage but a low premium that attracts only low-risk types. The incumbent IC may
respond by launching separating contracts, one offering full coverage at a high premium
(which appeals to the high-risk types), and the other offering limited coverage at a low
premium (which appeals to the low-risk types only). Yet these separating contracts can still
be challenged by an (unsustainable) pooling contract, provided the share of low-risk types
is high enough, which potentially raises the specter of the nonexistence of equilibrium in
insurance markets (Mimra and Wambach 2014).

However, to the best knowledge of the authors, the literature building on RS has
accepted the implicit assumptions that the challenging IC does not incur any risk selection
expense while low-risk types find the policy suiting them without undertaking costly effort.
Both assumptions are far from reality. On the part of the ICs, risk selection involves the
creation, marketing, and monitoring of policies—all costly activities. As to consumers,
while the Internet abounds with sites designed to make their search easier [Choice (2024)
and Consumer Reports (2019)], a survey suggests that many of them have difficulty finding
a policy suited to their needs (Liferay 2019).

The objective of this contribution is to answer the following research question: could a
separating equilibrium as described by RS be shown to exist, theoretically and empirically,
in a market for insurance where policyholders and ICs engage in costly search and risk
selection, respectively? Against this background, this contribution introduces the first costly
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search effort on the part of consumers and the risk selection effort on the part of ICs. In a
competitive market, ICs set their selection effort, which is found to increase with consumers’
search effort. Second, consumers choose the policy granting them maximum coverage for
the given premium, with high-risk types exerting more search effort than low-risk ones. In
the Nash equilibria, they end up paying a higher premium while obtaining a higher degree
of coverage. In contradistinction to RS, the existence of separating equilibria is almost
certain and does not depend on the share of low risks in the market. Also, taking into
account efforts is shown to generate new testable predictions. In particular, high-risk types
undertake high search effort matched by high selection effort; conversely, in the case of
low-risk types, low search effort combines with low selection effort. Third, this theoretical
finding is tested using a rather comprehensive dataset on Australian auto insurance. Since
both types of effort are not directly observable, Structural Equation Modeling (SEM) is
applied, which permits distinguishing multiple indicators with their measurement errors
from type-specific efforts as the latent variables making up the structural core. The hy-
pothesized relationships between IC selection effort and risk type, on the one hand, and
consumer search effort, on the other, receive a good measure of confirmation.

The remainder of this paper is structured as follows: Section 2 of the Literature Review
provides a review of both the theoretical and empirical literature relating to the RS model.
In Section 3 Materials and Methods, the interaction between an IC optimizing its risk
selection effort and a consumer searching for a suitable policy (i.e., one offering a maximum
amount of coverage for a given premium) is modeled. The resulting Nash equilibria are
first characterized in efforts space and then projected into conventional RS wealth levels
space. In Section 4 Empirical Analysis, a dataset containing indicators of both consumer
search and IC selection efforts in the Australian auto insurance market is used to test these
predictions using SEM. Section 5 offers a summary and concluding remarks.

2. Literature Review

2.1. Theoretical Literature

In 1976, RS presented a static model of a market for insurance, which relaxed the
assumption of homogeneous loss probabilities and perfect information. High- and low-risk
consumers exist and possess private information regarding their risk type. RS hypothe-
sized the possibility of a separating equilibrium where high- and low-risk types accept
different premium-coverage contracts. Their concept of non-linear pricing without cross-
subsidization challenged earlier models of insurance markets with linear pricing, making
policyholders pay the same average price for insurance and resulting in cross-subsidization
[(Arrow 1970; Pauly 1974)].

Much of the analysis that followed has used game theory to more precisely define
the nature of the interaction between insurance companies and customers (Rothschild and
Stiglitz 1997). Immediately after the publication of RS, several theoretical papers sought to
demonstrate the existence of an equilibrium in insurance markets by including IC behavior
in their models.1

Wilson (1977) stated that while no equilibrium may exist if the incumbent IC has
static expectations of challenger ICs, a pooling equilibrium may exist if expectations can be
revised. Spence (1978) extended Wilson’s (1977) analysis to include a menu of contracts
and derived an equilibrium with separating, cross-subsidizing contracts. Jaynes (1978)
relaxed the assumption that contracts are exclusive and ICs do not share information.
Firms that share information offer a pooling contract, while those that abstain underwrite
contracts for high-risk policyholders. Riley (1979) posited that if a challenger can respond
with a new contract, a separating equilibrium is possible. Engers and Fernandez (1987)
generalized Riley’s (1979) reactive equilibrium by considering the possibility of adding
multiple new contracts.

Hellwig (1987) recast the RS model in the mold of a two-stage game where, in the
first stage, uninformed ICs offer contracts and, in the second stage, informed consumers
choice of contracts. Realism is added to the model by including a third stage, where ICs
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can reject consumers’ applications, in contrast to Wilson (1977), who proposed that loss-
making contracts are not necessarily withdrawn to create a sustainable pooling equilibrium.
He noted quite generally that the exact formulation of the game may change predictions
substantially. Asheim and Nilssen (1996) varied the conditions of the game by allowing
ICs to renegotiate contracts with their policyholders, such that the revised contract is
universally offered to all policyholders, while Netzer and Scheuer (2014) allow the IC to
exit from the market altogether. Both models predict a separating equilibrium.

A recent focus of the RS literature [Ales and Maziero (2014), Attar et al. (2011, 2014,
2016, and 2020)] has been to explore the implications for equilibrium under adverse selec-
tion when insurers do not know whether or not to sell their contracts exclusively. In this
situation, the predicted outcomes are (i) no coverage of low-risk types or (ii) an absence of
equilibrium, although Attar et al. (2011) have argued that some pooling and hence coverage
of low-risk types could also exist.

Research that was initially published as a working paper by Stiglitz et al. (2017)
and subsequently revisited by Kosenko et al. (2023) models a market for insurance that
incorporates information revelation strategies by consumers and insurers. Kosenko et al.
(2023) introduce bilateral endogenous information disclosure about insurance purchases.
They assume non-exclusivity in that consumers buy from multiple sellers while insurers
offer contracts to consumers not observed by competitors. Each consumer and insurer can
make strategic decisions about what information to disclose to whom. The authors find
that there always exists an equilibrium outcome, which entails partial pooling. According
to Kosenko et al. (2023), their contribution differs from those of Jaynes (1978), Jaynes (2011),
and Hellwig (1987) because it considers information revelation by consumers as well as
between insurers.

As will be described in greater detail below, this paper also models the interaction
between insurer and policyholder. However, it does not assume that the two players
passively process information that has been strategically revealed to them. Rather, they
actively seek out, at non-zero cost, their preferred policy and undertake a selection effort.
It is only through the two players’ interaction in the Nash equilibrium that the risk types
are revealed.

2.2. Empirical Literature

Kosenko et al. (2023) conclude their paper by identifying a need for empirical research.
We hope that our results provide an impetus for further policy and empirical applications,
with insights into why certain markets take the form they do and how one might improve
the design of markets with asymmetric information (Kosenko et al. 2023, p. 146).

Mimra and Wambach (2014) had already noted the paucity of empirical evidence.
Curiously, although there is by now substantial empirical literature investigating whether
adverse selection is prevalent and important in insurance markets2, the question of whether
the allocation in these markets is of the RS-type or the Miyazaki-Wilson-Spence (MWS)
type has so far been neglected. (Mimra and Wambach 2014, p. 15).

Indeed, the authors of this contribution could find only two research papers that
explicitly tested for evidence of a separating equilibrium in an insurance market. The first,
written by Dionne and Doherty (1994), importantly introduced experience rating into the
RS model. The authors modeled the effect of semi-commitment with renegotiation (defined
as insurance with an option to renew with pre-specified conditions) and contrasted its impli-
cations with single-period and no-commitment models. Under competitive conditions, an
IC offers a pooling policy with partial coverage in the first period and an experience-rated,
separating set of policies in the second period. They tested their theoretical predictions
using aggregated Californian automobile insurance data. They report that some automobile
insurers use commitment to attract low-risk policyholders, while others attract high-risk
policyholders, which is presented as evidence of a separating equilibrium.

The second paper, by Puelz and Snow (1994), used claims data from an automobile
crash insurer in Georgia to test for evidence of a separating equilibrium. They claimed
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their analysis supports the hypothesis of adverse selection with a separating equilibrium.
Despite criticism that the test for adverse selection did not control for ex ante moral hazard
(Chiappori 1999; Chiappori and Salanié 2000; Dionne et al. 2001), their paper still offers a
credible test of the proposition contained in the RS paradigm.

A third identified paper published by Dionne et al. (2013) does not report an explicit
test for separating equilibrium. However, arguably their evidence regarding ex ante moral
hazards in the French market for automobile insurance using longitudinal data suggests
the emergence of a separating equilibrium. The authors distinguish between a liability-only
(responsabilite civile) and a comprehensive optional (assurance tous risques) contract, both
experience-rated. Their analysis based on parameters characteristic of the French market
shows that the probability of a high-risk type having a comprehensive policy exceeds that
of a low-risk type, with the difference in probabilities increasing rather than diminishing
over time. This suggests that separating contracts emerges over time through learning by
both consumers and insurers.

While remaining close to the RS paradigm for facilitating comparison, this contribution
differs from the received literature in three ways. First, it introduces costly searches on the
part of consumers and costly selection efforts on the part of ICs. Second, it derives Nash
equilibria in efforts space along with several new testable predictions. Finally, it benefits
from a large array of indicators of Australian consumers’ search effort and ICs’ selection
effort for testing a core prediction.

3. Materials and Methods

The interaction between an IC optimizing its risk selection effort and a consumer
searching for a suitable policy (i.e., one offering a maximum amount of coverage for a given
premium) is modeled. The resulting Nash equilibria are first characterized in effort space
and then projected into conventional RS wealth level space.

3.1. A Game-Theoretic Model with Consumer Search Effort and IC Selection Effort

Both the extant theoretical and empirical literature neglect an important fact: both high-
risk (cH) and low-risk (cL) consumers engage in costly search efforts (c) to find insurance
policies that best suit them. In turn, ICs engage in a costly selection effort (e) designed to
attract low-risk and avoid high-risk consumers without being able to distinguish between
them initially.

In this section, a simple game-theoretic model is developed to determine Nash equilib-
ria for high- and low-risk types in effort space. Note that both types of effort are implicit
in the RS model (otherwise, there would never be a challenger of the incumbent IC, and
high-risk types would not infiltrate the contract designed for the low-risk ones). In the
present model, search effort and risk selection effort are the decision variables controlled
by the respective players. Figure 1 shows the stages of the game.

Figure 1. Stages of the game.

Stage 1: Insurers
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Insurers are viewed as expected profit maximizers,

EΠ
e

= π(e)
[

PH(e)− EIH
(

cH
)]

+ (1 − π(e))
[

PL(e)− EIL
(

cL
)]

− e, (1)

with EΠ denoting expected profit, π(e), the probability of enrolling a high-risk type
depending on risk selection effort e (at unit cost of one for simplicity) with ∂π/∂e < 0 and
∂π2/∂e2 > 0 indicating decreasing marginal effectiveness. The notation emphasizes the fact
that when launching a contract, the IC cannot identify risk types and has to set the selection
effort at a single value e. Premiums PH(e)

[
PL(e)

]
are market-determined (see stage 3)

but must cover both the expected value of claims EIH = ρIH(cH) and EIL = ρIL(cL),
respectively based on the known population average of loss probability ρ as well as the
cost of selection effort. The first-order condition for an interior optimum reads,

dEΠ

de
= ∂π/∂e ·

{[
PH − EIH

(
cH

)]
−
[

PL − EIL
(

cL
)]}

− 1 = 0. (2)

This shows that selection effort has a positive marginal return if the expected mar-
gin on the high-risk types

[
PH − EIH(cH)] is smaller than that on the low-risk types[

PL − EIL(cL)]. The difference between the two margins is especially marked if PL −
EIL(cL) < 0, as is often the case under community rating [which has been argued to induce
risk selection in health insurance by Pauly et al. (2007)].

Through the marginal effectiveness of consumers’ search efforts, the IC’s reaction
function in principle depends on the risk type it is confronted with [see Equation (A3) of
Appendix A.1]. However, since the IC cannot distinguish between risk types prior to the
determination of the Nash equilibria (which depend on the consumers’ reaction functions),
only one IC reaction function is shown in Figure 2, with

de
dc

> 0. (3)

Figure 2. Reaction functions and Nash equilibria in efforts space.

Stage 2: Consumers
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Consumers are seen as expected utility maximizers who undertake search efforts to
secure a maximum amount of coverage at the going premium:3

EU
cH

H = ρHυH
[
W0 + IH

(
cH , eH

)
− L − PH(e)

]
+
(

1 − ρH
)

υH
[
W0 − PH(e)

]
− cH ; (4a)

EU
c

L = ρLυL
[
W0 + IL

(
cL, eL

)
− L − PL(e)

]
+
(

1 − ρL
)

υL
[
W0 − PL(e)

]
− cL. (4b)

Here, EUH(EUL) denotes the expected utility of a high- (low-) risk type, υH(υL),

VNM (Von Neumann and Morgenstern) risk utility functions with υH′
> 0

(
υL′

> 0
)

and υH′′
< 0

(
υL′′

< 0
)

, W0, exogenous initial wealth, IH(cH , e
)

[IL(cL, e
)
] the degree of

coverage, which depends on search effort with IH [0, ·] = 0, IL[0, ·] = 0, ∂IH/∂cH > 0,
∂IL/∂cL > 0, and ρH(ρL, ρl < ρH) the loss probabilities4. For simplicity, search effort by
consumers is assumed to have a unit cost of one.

However, insurance coverage also depends on the IC’s selection effort e. Arguably,
selection effort lowers the effectiveness of consumer search, implying ∂2 IH/∂cH∂e < 0,
∂IL/∂cL∂e < 0. The reason is that it burdens consumers with transaction costs, e.g., extra
documentation. Recall that selection effort initially has a common value because the IC
cannot distinguish between risk types (however, values of e differ in the Nash equilibria
due to differing consumer responses).

The first-order conditions for an interior optimum5 are given by

dEU
dcH

H
= ρHυH′[

W0 + IH
(

cH , e
)
− L − PH(e)

]
· ∂IH/∂cH − 1 = 0; (5a)

dEU
dcL

L
= ρLυL′[

W0 + IL
(

cL, e
)
− L − PL(e)

]
· ∂IL/∂cL − 1 = 0. (5b)

Note that unless the derivatives of I(·) functions differ substantially (for which there
is no apparent reason), the high-risk types are predicted to undertake more effort than
the low-risk ones. First, ρH > ρL; second, given risk aversion and identical initial wealth,
this implies υH′

[W] > υL′
[W]; third, this difference is not neutralized because the high-risk

type’s amount of coverage is matched by a higher premium (see Stage 3 below). Thus, the
marginal benefit of search is higher for the high-risk types than the low-risk ones, while its
marginal cost is the same by assumption, inducing more search effort.

The derivation of the consumers’ reaction functions is relegated to Appendix A.2 [see
Equations (A4) and (A5)]; their slopes are

dc
de

H
< 0,

dc
de

L
< 0, with

∣∣∣∣∣dc
de

H
∣∣∣∣∣ >

∣∣∣∣∣dc
de

L
∣∣∣∣∣ (6)

In Figure 2, the reaction functions are drawn as straight lines (with dcH/de running
flatter since cH and cL are depicted on the horizontal axis) since nothing can be said about
their curvature, which depends on the third derivatives of the functions IH(cH , e

)
and

IL(cL, e
)
, respectively. However, the reaction function of the high-risk type is farther out

in the relevant domain because the respective probabilities are multiplied with first-order
derivatives in Equations (5a) and (5b), which must dominate the second-order ones lest
they change sign from positive to negative, contradicting assumptions.

Stage 3: Nash equilibria in efforts and wealth levels space

Given the reaction functions, the resulting Nash equilibria can now be characterized;
in effort space and are represented by EH and EL in Figure 2. It shows that, from the
interaction with consumers, the IC can now distinguish between the two risk types. Even if
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it is unable to replace the common value of loss probability ρ by ρH and ρL, respectively,
it will charge premiums PH and PL < PH to recover its costly risk election efforts eH

(with eL < eH), presumably in the guise of a proportional loading. Evidently, a separating
equilibrium in the market is almost certain to exist. Nonexistence would require consumers
to exert almost no search effort regardless of the IC’s selection effort (indicated by the two
dashed lines that do not intersect with the IC’s reaction function), contrary to evidence,
especially in the context of renewals of auto insurance policies (Mathews 2022).

Conversely, the likelihood of a pooling equilibrium occurring (Ep) is also very low.
The two consumer types would have to exert exactly the same amount of effort in response
to the selection effort by the IC. Moreover, pooling equilibria beyond Ep can be excluded
because they contradict first-order conditions (4a) and (4b), calling for high-risk types to
exert more effort than low ones. Finally, the separating equilibrium is sustainable because it
does not depend on the share of low-risk types in the population and cannot be challenged
by a competing contract, in contradistinction with the conventional RS framework.

3.2. Theoretical Findings
3.2.1. Results in Efforts Space

Figure 2 shows a separating equilibrium modeled in effort space. High-risk consumers
are predicted to exert high search effort, which is matched by high selection effort on the part
of the IC, while low-risk ones exert little search effort combined with low selection effort.

A Testable Prediction. The interaction of risk-selecting insurers with consumers search-
ing for maximum coverage given the premium is predicted to result in a separating Nash
equilibrium (which is almost certain to exist) that is characterized by high selection effort
combined with high consumer search effort in the case of high-risk types (EH) and low
selection effort combined with low search effort in the case of low-risk ones (EL).

Other theoretical insights implied by Figure 2, which are not available in the conven-
tional RS approach, include:

• On the IC’s side, information, e.g., concerning miles driven per year, quality of roads
typically traveled, and crime incidence in the area of residence, may make the IC’s risk
selection effort more effective in the case of auto insurance. This increases ∂π/∂e in
absolute value, causing the slope of the IC’s reaction function to increase according
to Equations (A3) of Appendix A.1. The result is a greater difference between eH and
eL(facilitating the separation of equilibria) combined with a smaller difference between
cH and cL(see Figure 2).

• The same effects are predicted ceteris paribus if consumers’ search effort becomes more
effective, e.g., due to the Internet, media such as Consumer Reports, and public regula-
tion designed to enhance transparency. In Equations (A4) and (A5) of Appendix A.2,
the terms ∂EIH/∂cH > 0 and ∂EIL/∂cL > 0 increase, and with them, IC’s reaction
function in Figure 2 becomes more responsive to consumers’ search efforts.

• The ceteris paribus clause above cannot be neglected because the consumers’ reac-
tion functions would be affected as well. In Equations (A4) and (A5), the terms
∂2 IH/∂cH∂e < 0 and ∂2 IL/∂cL∂e < 0 go towards zero, indicating that the IC’s risk
selection effort does not counterbalance consumers’ search effort to the same extent
when they are better informed. In Figure 2, the reaction function labeled ConsumerH in
particular becomes more responsive to IC’s selection effort since the term ∂2 IH/∂cH∂e
is multiplied by ρH > ρL, causing the differences between eH and eL as well as cH and
cL to increase.

• Differences in risk aversion [indicated by RAH = −υH′′
/υH′

> 0 and RAL =

−υL′′
/υL′′

> 0 in Equations (A4) and (A5)] have an impact on consumers’ reac-
tion functions. For instance, let RAH increase relative to RAL; a possible reason is that
high-risk types happen to coincide with higher age, which is associated with increased
risk aversion (Halek and Elisenhauer 2001). This has the effect of making the high
risk’s response to IC selection effort more marked, resulting in a flatter ConsumerH line
of Figure 2 and hence a larger difference between eH and eL as well as cH and cL.
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3.2.2. Results in Wealth Space

In view of the deeply entrenched RS approach, it was important to explore whether
and how the prediction from effort space (see Figure 2) carries over to the two-state wealth
space (W1, W2) described in the conventional RS model (see Figure 3). The projection in
Figure 3 reveals several differences from the RS model:

• Since the IC makes a risk selection effort, the cost, which typically gives rise to a pro-
portional loading, a (marginally) fair premium is excluded from the onset. Therefore,
at C*L, high-risk types necessarily opt for partial coverage.

• Even though the IC is not able to infer the true loss probabilities, forcing it to continue
using the average value ρ, the insurance line labelled PH(eH) has a lower slope than
PL(eL), reflecting the IC’s higher amount of risk selection effort in its interaction with a
high-risk type in stage 3.

• Because high-risk types are predicted to invest relatively more effort in seeking out
the contract that maximizes coverage for a given premium, they bear a higher initial
transaction cost, cH, which shifts the origin of their insurance line from A0 to IH = 0.
Thus, the probability of IH = 0 constituting the optimum is far greater than in the
RS approach. This provides an explanation for the observation that it is the widely
discussed inability of high-risk types to obtain insurance coverage that constitutes a
policy issue rather than the rationing of low-risk types’ coverage at QL because of the
need to maintain a separating equilibrium.

• The location of the optimum C*H in Figure 3 depends on the parameters appearing
in Equation (A4), viz. υH′

, RAH′, ∂EIH/∂cH , and importantly on the IC’s amount of
selection effort e and hence ∂π/∂e in Equation (2).

• In the RS modeling, the pooling contract X (see Figure 3) can undermine a separating
equilibrium provided the share of low-risk types in the population is sufficiently high
(the pooling insurance line must run close to that labeled PL(eL).Yet when consumer
search and insurer selection efforts are considered, a pooling equilibrium can be
excluded almost with certainty, which implies that the separating equilibrium cannot
be undermined. (see Ep in Figure 2 again).

Figure 3. Projecting Nash equilibria into (W1, W2)-levels space.
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Since the findings derived from the efforts space (see Figure 2 again) carry over
to the wealth-levels space of Figure 3, the comparison of the present analysis with the
conventional RS model can be summed up as follows: The interaction of consumers
searching for maximum coverage given the premium and the risk-selecting insurer is
more likely to result in a separating Nash equilibrium but also to involve no insurance
coverage for high-risk types than in the RS framework. Moreover, contrary to RS, it
cannot be undermined by a pooling contract, regardless of the share of low-risk types in
the population.

4. Empirical Analysis

Data from the Australian market for automobile insurance (as described in Section 4.1)
will be used to empirically test (as specified in Sections 4.2 and 4.3) the central prediction
from Figure 2 (effort space). That is, high-risk consumers are predicted to exert high search
effort, which is matched by high selection effort on the part of the IC, while low-risk ones
exert little search effort combined with low selection effort. Unfortunately, the additional
predictions that follow from Figure 3 (wealth space) are not tested empirically because
(i) the consumers’ degrees of risk aversion are not reported or known, and (ii) the data are
cross-sectional and changes in behavior across time are largely unreported.

4.1. Data

Automobile insurance data are suited to testing the theoretical model because the risk
rating of policyholders is less regulated than in other lines of insurance (e.g., health). This
renders the ICs’ selection effort potentially more readily observable [at least through a set
of indicators (see below)]. It has been stated that

“[e]mpirical models of insurance markets would greatly enhance our ability to
understand policy-relevant questions. Yet they are still quite rare. . . .While much
progress has been made in recent years in our understanding of insurance demand
in particular, the most crying need is for market-wide data” (Salanié 2017).

The analysis of a dataset representative of the Australian market may therefore be of
interest. Data are drawn from two sources: (i) a household survey of vehicle owners col-
lected by the market research firm IMRAS Consulting (henceforth referred to as the IMRAS
dataset) and (ii) insurance surveys published by the consumer advocacy group Choice.

4.1.1. Insurance Policies

In Australia, every vehicle must carry compulsory third-party (CTP) insurance to
partially cover the cost of treating third-party injuries. Comprehensive insurance, which
indemnifies the policyholder against the costs of damage to their own or another party’s
vehicle, is optional. Approximately 80% of vehicles in the survey were comprehensively
insured. The IMRAS survey reported the name[s] of the respondent’s CTP and comprehen-
sive automobile insurer. The premium and amount of comprehensive coverage purchased
are reported; however, the excess (i.e., deductible) is not reported. Policyholders were
also asked to report their no-claim bonus (NCB), which typically ranges from 0% to 60%
depending on the NCB scheme and claim history.

4.1.2. Insurers

The IMRAS dataset contains no information about the composition of individual
insurance policies or the underwriting strategies of ICs. However, the journal Choice
regularly compares many goods and services, including comprehensive insurance, to
inform the purchasing decisions of its readership. Measures of insurer behavior were
obtained through three reports. The first, a special report Car Insurance, published in 1997,
compared premiums for three insurance vignettes (a high-risk scenario, a medium-risk
scenario, and a low-risk scenario) within two regions (a high-risk region and a low-risk
region) across six states. Some areas are risk-rated more highly than others because the
risks of theft and accidents vary, as does the cost of repairs. Generally, urban areas are
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rated as high-risk, and regional areas are rated as low-risk. The second report (Australian
Consumer Association (ACA) 1997) compared premiums using a 5-star scale ranging from
cheapest to most expensive (see Table A1 in Appendix B for details).

The third source is the report, Your Car Insurance Toolkit (Australian Consumer As-
sociation (ACA) 1999). It differentiates comprehensive insurance policies on the basis of
three policy characteristics: (i) adjustment to the NCB following a claim; (ii) the option to
protect the NCB following a claim; and (iii) the option of reducing the excess (see Table A2
in Appendix B for details).

These data were matched to respondents in the IMRAS dataset using the name of the
comprehensive insurer. The result is a rich dataset providing information on 4005 vehicle
owners but covering the year 1999 only. In addition to the market leaders (NRMA, AMI,
RACV, and Suncorp), many smaller insurers are also in the dataset. Figure 4 reports the
number of policies underwitted by each IC as well as the proportion of policyholders
who reported a road traffic crash (RTC) from 1997 to 1999. This proportion is seen to
vary substantially, providing a first indication that Australian ICs may differ in their
selection efforts.

Figure 4. Market for automobile insurance in Australia, 1997–1999. Note: Insurers with < 15 policies
in the IMRAS dataset are excluded from the graph.

4.1.3. Consumers

During a six-week period commencing in October 1999, market research was com-
missioned by IMRAS Consulting to analyze community attitudes toward the Australian
smash (collision) repair market. Computer-assisted telephone interviews (CATI) were used
to contact 37,833 rural and metropolitan households in four Australian states (New South
Wales, Victoria, Queensland, and Western Australia). The response rate of 16.9 percent
enabled data to be collected on 4006 households who provided policyholder characteris-
tics (age, gender, and postcode), vehicle type (make, model, and vehicle age), and RTC
history from 1994 to 1999. Although the data are now over twenty years old, they have an
important advantage. The CATIs were conducted prior to the widespread use of mobile
phones, which offer opportunities for recipients to screen calls. Arguably, this improves
data quality.6

4.1.4. Evidence of Adverse Selection

Evidence of adverse selection is a necessary but not sufficient condition for the exis-
tence of a separating equilibrium (Puelz and Snow 1994). In 2017, Rowell et al. published
an empirical analysis of the IMRAS dataset that tested for ex ante moral hazard in the

297



J. Risk Financial Manag. 2024, 17, 154

Australian automobile insurance market. The authors adapted a recursive model proposed
by Dionne et al. (2013), which used a lagged measure of RTCs as opposed to claims to
control for adverse selection. The rationale was that RTCs that did not result in a claim
constitute insured motorists’ private information about their risk type that is not available
to the insurer. The statistically significant coefficient on lagged RTCs reported by Rowell
et al. (2017) provides prima facie evidence of adverse selection in this market.

4.2. Model Specification

Since neither ICs’ risk selection effort nor consumers’ search effort is directly observ-
able, they are treated as latent variables reflected by a set of indicators. The term “indicator”
implies that (1) it need not vary in 1:1 proportion with the latent variable it represents, and
(ii) it may contain measurement error with respect to the latent variable. Work with multiple
indicators was pioneered by Jöreskog and Goldberger (1975); their approach has become
known as “Structural equation modeling” (SEM) (Fan et al. 2016). SEM enables the analysis of
relationships between one or more independent variables (continuous or discrete) and one
or more dependent variables (continuous or discrete). Both the independent and dependent
variables can also be measured directly, as in conventional regression analysis (Ullmann and
Bentler 2004). In the present context, the advantage of SEM is that it allows for testing for the
postulated causal relationship between ICs’ risk selection effort and consumers’ search effort
using correlations between observed indicator variables (Kline 2016).

According to the Testable Prediction of Section 3.2.1, the interaction between con-
sumers and ICs results in a Nash equilibrium, which is characterized by high consumer
search and IC selection effort for high-risk types and low consumer search and IC selection
effort for low-risk types. The dataset described above (see Table 1 for variable definitions)
features several indicators of latent quantities. Equation (7) defines the structural core,
which is composed of three latent variables: consumer search effort (CSE), insurer selection
effort (ISE), and increasing risk type (RT+).

ISE = α1RT+ + ϕ1;
CSE = α2RT+ + ϕ2, with
Var(RT+) = 1, Eϕ1 = 0, Eϕ2 = 0, Var

(
ϕ1) =σ2

1 , Var
(

ϕ2) =σ2
2 , E(ϕ1, ϕ2) = σ12.

(7)

Since the distinction between high- and low-risk types in Section 3 would be diffi-
cult to implement, RT+ is continuous rather than dichotomous7. In the path diagram of
Figure 5 below, α1 and α2 are symbolized by arrows linking RT+ and ISE and CSE, respec-
tively. According to the Testable Prediction (Section 3.2.1), both coefficients are positive,
ceteris paribus.

Figure 5. Structural equation model (developmental dataset, 1999, n = 2000). Note: LR test of model
vs. saturated: χ2(42) = 4936.82, Probability > χ2 < 0.01, (n = 1033).
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The measurement equations linking the indicators to the latent variables are given by
Equations (8)–(10). Equation (8) specifies the indicators pertaining to ICs’ risk selection
effort ISE (for their explanation, see Section 4.3.1). Their so-called loadings (κ4, κ5, 1) are
all positive, with the first normalized to one to ensure identification. Their measurement
errors have zero expected value and constant variance throughout, and they are assumed
to be uncorrelated among themselves as well as with measurement errors pertaining to the
indicators of ISE as well as RT+,

(No_Protect_NCB, No_Reduce_Excess, Premium_Highrisks)′

= (κ4, κ5, 1)′ · ISE +
(

ε4, ε5, ε6)
′,

with
Eε j = 0, Var

(
ε j) =θ2

j , E
(
ε j, εi �=j

)
= 0, E

(
ε j, δk

)
= 0; i= 1, 2, 3; j= 1, . . . , 3; k= 1, . . . , 4.

(8)

Analogous specifications hold for the indicators of CSE in Equation (9) (explained
in Section 4.3.2) as well as higher consumer risk RT+ in Equation (10) (explained in
Section 4.3.3). They are standard in SEM, along with the assumption that the indica-
tors vary in a linear fashion with the latent variable, except for measurement error. This
restriction can be justified by noting that if the three dummy variables (Premium_Search,
Insurer_Search, Knows_NCB) in Equation (9) all take on the value of zero, it would be strange
to argue that CSE nevertheless is positive.

(Premium_Search, Insurer_Search, Knows_NCB)′

= (1, κ2, κ3)
′ · CSE +

(
ε1, ε2, ε3)

′,
with
Eεi = 0, Var

(
εi) =ς2

i , E
(
εi, ε j �=i

)
= 0, E(εi, δk) = 0; i= 1, 2, 3; j= 1, . . . , 3; k= 1, . . . , 4;

(9)

(RTCs, Metro, Parts_Damaged, Young_Driver)′

= (1, λ2, λ3, λ4)
′ · RT+ +

(
δ1, δ2, δ3, δ4)

′,
with
Eδk = 0, Var

(
δk) =χ2

k , E
(

δk �=�, δ�
)
= 0, E(δkεi) = 0; E

(
δkε j

)
= 0;

k= 1, . . . , 4; i= 1, 2, 3; j= 4, 5, 6.

(10)

Most of the available indicators are binary, so they depart from the normality as-
sumption used in Maximum Likelihood (ML) estimation. Nevertheless, the ML function
converged after a few iterations. To prevent overfitting and potentially committing a Type I
error, the data are divided into two parts. The first (n = 2000) is used for model develop-
ment, while the second (n = 2006) is reserved for an out-of-sample test. Statistics for the
full dataset are reported in Table 1 (they do not differ to a noticeable degree between the
two subsets).

4.3. Indicator Variables
4.3.1. Indicators of Insurer Selection Effort (ISE)

Premium-Highrisks has five levels, indicating the premium for the highest risk category
relative to the lowest charged by an IC. A high value arguably reflects the IC’s risk selection
effort. Being quasi-continuous, this indicator qualifies as the benchmark indicator with its
loading set to one.

No_Protect_NCB is a dummy variable that takes the value of one if the IC does not offer
the option of protecting the no-claims bonus in the event of an accident, thus preserving
the effect of the bonus to attract favorable risks.

No_Reduce_Excess is a dummy variable that takes the value of one if the IC does not
offer the option of reducing the deductible, thus preserving its effect of attracting favorable
risks in exchange for a low premium.
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4.3.2. Indicators of Consumer Search Effort (CSE)

Premium_Search is the amount of coverage relative to the premium paid. According to
the model in Section 3.1, a high value of this ratio reflects a high CSE. Being reported in
quintiles, this indicator comes close to a continuous variable, so it qualifies as the benchmark
indicator of CSE with its loading constrained to 1.

Insurer_Search is a dummy variable that takes the value of one if the consumer pur-
chased comprehensive coverage from a different IC than for mandatory coverage. This
entails a certain amount of searching.

Knows_NCB is a dummy variable that takes the value of one if the policyholder
knows the amount of his/her no-claims bonus. This is likely to reflect the search for
optimal coverage.

4.3.3. Indicators of High-Risk Type (RT+)

This variable is important because both Predictions 1 and 2 regarding ISE and CSE
are conditional upon risk type. However, contrary to the theoretical argument, which
distinguishes two types only for simplicity, RT+ is continuous, with variance normalized to
one. Four indicators of high-risk type were identified in the data, three of which (driver
age, location, and RTC history) are frequently found in empirical analyses of asymmetric
information in automobile insurance to reflect the insurer’s information set, as e.g., in
Chiappori and Salanié (2000) or Dionne et al. (2013).

RTCs count the number of accidents reported by the policyholder from 1994 to 1999.
Being quasi-continuous (0, 1, and ≥2), it serves as the benchmark indicator.

Parts_Damaged counts the number of parts damaged; it arguably also reflects higher
risk on the part of the driver.

Metro is a dummy variable that takes the value of one if the policyholder lives in
a metropolitan area. It reflects the IC’s experience that accidents happen with a higher
frequency there.

Young_Driver is a dummy variable that takes the value of one if the policyholder is
25 years old or younger. It also reflects the IC’s loss experience.

A simple rule of thumb proposed by Kenny (2020) states that there should be at least
two indicators per latent variable. This condition is satisfied by the proposed model.

4.4. Empirical Results

The specified SEM is over-identified and therefore can be estimated using Stata’s
maximum likelihood function. Standard errors are assumed to be uniform across ICs and
member states, taking advantage of the fact that markets for comprehensive automobile
insurance are broadly homogenous across Australia (Compare the Market 2020). The corre-
lation matrix reports a substantial number of weak but statistically significant correlations
between the indicators (see Table A3). Nevertheless, convergence was achieved with both
the developmental and the test samples.

The estimates derived from the developmental sample are reported in Figure 5. Start-
ing with the theoretical core, one notes that both CSE and ISE increase significantly with
RT+. This vindicates the crucial the Testable Prediction (Section 3.2.1), which states that
CSE and ISE are high for high-risk types and low for low-risk types. As to the measurement
part, all three indicators of ISE (No_Protect_NCB, No_Reduce_Excess, Premium_Highrisks)
have loadings that are significantly positive; however, the measurement error contained in
the benchmark indicator Premium_Highrisks is the highest, contrary to expectations. The
three indicators of CSE (Premium_Search, Insurer_Search, Knows_NCB) also have a significant
positive relationship with the latent variable, as expected. However, Premium_Search, which
arguably should be the closest reflection of CSE and whose loading is therefore constrained
to one, displays the highest measurement error. As to the indicators of RT+, higher risk
is reflected by the four indicators (Prior_RTC, Parts_Damaged, Metro, Young_Driver), with
the benchmark one (Prior_RTC, number of road traffic crashes) exhibiting a measurement
error that is in line with the others. Interestingly, Young_Driver, which is used routinely by
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ICs, turns out to be a rather weak indicator with a loading well below one; in return, its
measurement error variance is very small, at least in the context of the present model.

In view of the substantial correlation coefficient between the structural error terms
ϕ2 and ϕ1

8, there may be important determinants of ISE and CSE, respectively, that are
left unaccounted for. Still, a robustness check involving different choices of the benchmark
indicator does not affect the estimated relationship between RT+, ISE, and CSE in a material
way. However, goodness of fit is poor. The comparative fit index (CFI) is zero, and the
root mean square error of approximation (RMSEA) is 0.336. Furthermore, the χ2 statistic
clearly suggests rejection of the null hypothesis that the estimated model fits the data. Yet
according to Kenny (2020), the χ2 statistic is almost always significant for n > 400.

Turning to the test dataset (n = 2006), one may notice that the estimates presented in
Figure 6 are very similar to those of Figure 5. In particular, the model core looks robust. In
both estimates, the coefficients pertaining to the relationship between RT+ and ISE and RT+
and CSE are approximately 9 and 7, respectively.

Figure 6. Structural equation model (test dataset, 1999, n = 2006). Note: LR test of model vs.
saturated: χ2(42) = 4681.91, Probability > χ2 < 0.01, (n = 1024).

The estimated relationship between a policyholder’s risk status and consumer search
effort as well as insurer selection effort confirms the Testable Prediction (Section 3.2.1).
Using indicators derived from Australian auto insurance data and applying structural
equation modeling, higher risk status is indeed found to be associated with increased
consumer search as well as increased insurer selection effort.

5. Conclusions

5.1. The Theoretical Contribution

To the best of the authors’ knowledge, the literature building on the RS model has
accepted the implicit assumptions that the challenging IC does not incur any risk selection
expense, while low-risk policyholders can identify preferred insurance policies without
undertaking costly effort. The theoretical model developed in this paper relaxes both of
these unrealistic assumptions. Although intuitively promising, the model is subject to
several limitations. First, consumers are modeled as expected utility maximizers, which
may serve as long as one is willing to concede that their decision-making may be beset
by error (Hey 2002). Second, a one-period model of insurer behavior likely fails to fully
depict the complexity of monitoring and structuring the insured population. In particular,
when discarding a consumer categorized as a high-risk type, the IC has no guarantee to
find a low-risk replacement, contrary to the simplified model. Finally, the existence of a
separating equilibrium is taken as granted, although according to the theoretical model,
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there is a very low probability that it fails to exist. Despite these limitations, pursuing the
extension of the RS model put forward here may be worthwhile, paving the way to a more
in-depth exploration of the RS paradigm than has hitherto been undertaken.

5.2. The Empirical Contribution

The use of structural equation modeling (SEM) for estimation is well suited to the
present context. Both consumer search effort and insurer selection effort arguably constitute
latent variables that are reflected by indicators, which, however, need not vary in 1:1 pro-
portion with them and are subject to measurement errors. Rather than trying one indicator
after another, as is typical in regression analysis, the SEM approach is full-information in
that it permits exploiting all available indicators simultaneously. The Testable Prediction
(Section 3.2.1), states that higher risk status is associated with an increase in both consumer
search and insurer risk selection efforts, is supported by the evidence.

However, a limitation is that the existence of a separating equilibrium, while highly
credible in view of the theoretical analysis, is not tested for. Moreover, the data analyzed
is now almost 25 years old. One obvious change that has occurred since is the growth of
the internet. This could have reduced policyholders’ search costs but also insurers’ risk
selection costs. To the extent that these changes have increased the effectiveness of consumer
search and/or the effectiveness of insurers’ selection efforts, the estimates presented here
are biased downward. Hence, contemporary markets for automobile insurance may well
be characterized by an even more marked separation of risks than found here, and no direct
conclusions for current public policy should be drawn.

For all its potential shortcomings, this work illustrates the value of using market-level
data that captures the behaviors of policyholders and insurance firms rather than relying on
claim data obtained from a single insurer. Yet future empirical research would benefit from
measurements that are more closely related to the latent variables of this study. Consumer
surveys reporting time spent in search of the chosen insurance policy would be valuable, as
would be industry surveys reporting more detail on insurers’ selection strategies. Finally,
more refined indicators of risk status might allow us to directly determine the two risk
types distinguished in the theoretical analysis.
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Appendix A.

This Appendix is devoted to the derivation of the reaction functions displayed in
Figure 2 of the text.

Appendix A.1. The Insurer’s Reaction Function

Let the optimum condition (2) of the text be disturbed by an increase in consumers’
search effort dc > 0. Note that it is sufficient to derive only one reaction function because the
IC cannot distinguish between risk types; this becomes only possible due to the consumers’
type-specific reaction functions resulting in different Nash equilibria. This gives rise to the
comparative static equation (applying the implicit function theorem),

∂2EΠ

∂e2 de +
∂2EΠ

∂e∂c
dc = 0, (A1)

which can be solved to obtain
de
dc

= −∂2EΠ/∂e∂c
∂2EΠ/∂e2 (A2)

From Equation (2), the solutions to the comparative-static equation are given by

de
dc

∝
∂2EΠ

∂e∂c
= ∂π/∂e ·

[
−∂EI

∂c

]
> 0. (A3)

The IC reaction function is exhibited in Figure 2. It is drawn linear for simplicity
because on the one hand |∂π/∂e| decreases with e, implying a decreasing positive slope;
on the other hand, ∂2 I/∂c2 > 0 is a possibility, which per se would imply an increasing
positive slope.

Appendix A.2. Consumers’ Reaction Functions

Here, the exogenous shock is de > 0, an increase in the IC’s risk selection effort. In
analogy to Equation (A1), one obtains from Equations (4a) and (4b) of the text,

dc
de

H
∝

∂2EUH

∂c∂e
= ρH

[
υH′′ ∂IH

∂cH + υH′ ∂2 IH

∂cH∂e

]
= ρHυH′

[
υH′′

υH′
∂IH

∂cH +
∂2 IH

∂cH∂e

]
< 0; (A4)

dc
de

L
∝

∂2EUL

∂c∂e
= ρL

[
υL′′ ∂IL

∂cL + υL′ ∂2 IL

∂cL∂e

]
= ρLυL′

[
υL′′

υL′
∂IL

∂cL +
∂2 IL

∂cL∂e

]
< 0. (A5)

It can be realistically assumed that the marginal effectiveness of consumer search
is lowered by the IC’s selection effort, implying ∂2 IH/∂cH∂e < 0, ∂2 IL/∂cL∂e < 0. In
addition, the low-risk type’s coefficient of absolute risk aversion, RAL = −υL′′

/υL′
> 0 is

unlikely to be smaller than that of the high-risk type RAH = −υH′′
/υH′

; therefore, one has∣∣dcH/de
∣∣ < ∣∣dcL/de

∣∣ since ρH > ρL. Regardless of risk type, consumers are predicted to
decrease search effort because they are burdened with additional transaction cost (e.g., the
IC may require more forms regarding risk status), with the response of the high-risk type
less marked than that of the low-risk type.

Appendix B.

Table A1. Insurer selection effort: Pricing of high, medium and low-risk Scenarios.

Insurers: New
South Wales

High-Risk Scenario Medium-Risk Scenario Low-Risk Scenario
High-Risk Area Low-Risk Area High-Risk Area Low-Risk Area High-Risk Area Low-Risk Area

AAMI 2 3 4 5 2 3
ANSVAR 3 3 2 3 3 3
Australian Alliance . . 2 3 4 5
Commercial Union 3 5 3 5 3 4
Direcdial 4 3 3 2 3 2
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Table A1. Cont.

Insurers: New
South Wales

High-Risk Scenario Medium-Risk Scenario Low-Risk Scenario
High-Risk Area Low-Risk Area High-Risk Area Low-Risk Area High-Risk Area Low-Risk Area

FAI car 2 2 3 2 2 2
Mercantile Mutual 4 2 5 3 5 2
NRMA 2 2 3 3 3 2
NZI
Comprehensive 3 3 3 3 2 3
NZI Top Cover 3 3 3 4 3 4
QBE 5 3 4 3 4 3
Suncorp 2 2 2 2 3 2
SWANN Agreed
value 4 4 2 2 2 3

TII 3 4 . 2 . 3
Zurich Personal
Assistance 2 2 4 3 3 3

Insurers:
Queensland

High-Risk Scenario Medium-Risk Scenario Low-RiskScenario
High-Risk Area Low-Risk Area High-Risk Area Low-Risk Area High-Risk Area Low-Risk Area

AAMI 3 4 5 5 3 3
ANSVAR 2 2 2 2 3 3
Australian Alliance . . 2 2 2 2
Commercial Union 4 5 4 4 5 5
Direcdial 4 3 2 2 3 2
FAI car 2 2 3 2 2 2
Mercantile Mutual 2 3 3 3 2 3
NRMA 2 2 3 3 2 2
NZI
Comprehensive 3 3 3 3 3 3
NZI Top Cover 3 3 4 4 5 5
QBE 5 5 4 4 3 4
RACQ 2 2 2 2 3 3
Suncorp 2 2 3 3 3 3
SWANN Agreed
value 4 4 2 2 4 3

TII 3 3 2 2 2 2
TIO . . . . . .
Zurich Personal
Assistance 2 2 4 3 4 3

Insurers: Victoria
High-Risk Scenario Medium-Risk Scenario Low-Risk Scenario

High-Risk Area Low-Risk Area High-Risk Area Low-Risk Area High-Risk Area Low-Risk Area

AAMI 4 4 2 2 3 2
ANSVAR 2 2 2 2 2 3
Australian Alliance . . . . 2 2
Commercial Union 3 3 4 4 4 3
Direcdial 4 3 3 2 3 2
FAI car 2 2 4 3 3 2
HBF . . . . . .
Mercantile Mutual 2 2 3 3 2 2
NRMA 2 2 4 4 3 3
NZI
Comprehensive 3 3 4 3 3 2
NZI Top Cover 3 3 5 5 4 4
QBE 3 4 3 3 2 3
RACV Fair Deal 2 3 2 3 4 4
RAC (WA)
Motorguard . . . . . .
SIGO . . . . . .
SWANN Agreed
value 5 5 4 4 5 5

TII 3 4 2 3 2 4
Western QBE . . . . . .
Zurich Personal
Assistance 2 2 4 4 2 3

Insurers: Western
Australia

High-Risk Scenario Medium-Risk Scenario Low-Risk Scenario
High-Risk Area Low-Risk Area High-Risk Area Low-Risk Area High-Risk Area Low-Risk Area

AAMI . . . . . .
ANSVAR 3 3 3 3 3 3
Australian Alliance . . 2 3 4 4
Commercial Union 4 5 5 5 5 5
Direcdial 4 3 2 2 2 2
FAI car 2 2 3 3 2 2
HBF 2 2 2 3 3 3
Mercantile Mutual 2 3 3 4 2 3

305



J. Risk Financial Manag. 2024, 17, 154

Table A1. Cont.

Insurers: Western
Australia

High-Risk Scenario Medium-Risk Scenario Low-Risk Scenario
High-Risk Area Low-Risk Area High-Risk Area Low-Risk Area High-Risk Area Low-Risk Area

NRMA . . . . . .
NZI
Comprehensive 3 3 4 4 3 3
NZI Top Cover 4 3 5 5 5 5
QBE . . . . . .
RACV Fair Deal . . . . . .
RAC (WA)
Motorguard 3 3 3 3 4 3
SIGO 2 2 2 2 2 2
SWANN Agreed
value 5 5 2 2 3 3

TII 4 3 2 2 3 2
Western QBE 2 2 2 2 2 2
Zurich Personal
Assistance 2 2 4 3 3 2

Note: Policies were rated for affordability from 1 star (most expensive) thru to 5 stars (cheapest). Source: Australian
Consumer Association (ACA) (1997).

Table A2. Insurer selection effort: Policy exclusions.

Insurance Company States Available Reduction of NCB Protection of NCB Reduce Excess

Australian Alliance All but NT 1 1 1
Australian Pensions All but NT 1 1 1
RACT Tas. 2 1 1
NRMA ACT, NSW, Vic. 2 1 1
CGU All but NT 2 1 1
FAI All but NT 2 1 Not in Qld.
RACQ-GIO Qld. 1 1 2
TII All but NT 2 1 1
AAMI All but WA 1 1 2
EIG-ANSVAR All 2 1 1
RAA-GIO SA 1 1 1
COTA All 1 1 Not in Qld.
HBF WA 2 1 1
Suncorp-Metway Qld. 1 2 1
SWANN All 2 1 2
Mutual Community SA 2 1 1
Western QBE All but NT 2 or 1 if < USD 1000 1 1
Directdial All but NT 2 1 2
HBA Vic. Depends on NCB 1 1
GIO Vic. 2 1 1
SGIC SA 2 1 1
AMP All 2 1 1
TIO NT 2 1 1
RACV (E.) Vic. 2 1 2
RAC Motor guard WA 2 1 1
TGIO Tas. 2 1 1
GIO ACT, NSW 2 1 1
GIO NT 2 2 2
SGIO WA 3 1 1
GIO WA 2 1 1
AMP car insurance
Options All 2 1 1

GIO Rode Cover Basic Vic. 2 1 2

=1 level. 1 = Yes 1 = Yes
=2 levels 2 = No 2 = No
=3 levels

Source: Australian Consumer Association (ACA) (1999).
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Table A4. Structural equation model (full dataset).

Coeff. Std. Err. z P > |z| [95% CI]

Structural Model
CSE

HIGH_RT 7.001 0.286 24.49 <0.01 6.444 7.565
ISE

HIGH_RT 9.159 0.360 25.45 <0.01 8.453 9.864
Measurement Model
Insurer_Search

CSE 0.083 0.003 24.94 <0.01 0.079 0.090
constant 0 constrained

Premium_Search
CSE 1 constrained

constant 0 constrained
Knows_NCB

CSE 0.319 0.004 82.72 <0.01 0.312 0.327
constant 0 constrained

No_Protect_NCB
ISE 0.021 0.002 12.29 <0.01 0.017 0.024

_cons 0 constrained
No_Reduce_Excess

ISE 0.115 0.003 36.52 <0.01 0.109 0.122
constant 0.000 constrained

Premium_Highrisks
ISE 1 constrained 12.2 <0.01 40.612 56.161

constant 0 constrained
RTCs

HIGH_RT 1 constrained
constant 0 constrained

Metro
HIGH_RT 1.866 0.073 25.5 <0.01 1.722 2.009

constant 0 constrained
Parts_Damaged

HIGH_RT 2.494 0.141 17.72 <0.01 2.21 2.77
constant 0 constrained

Young_Driver
HIGH_RT 0.183 0.016 11.13 <0.01 0.151 0.215

constant 0 constrained

var(e.Insurer_Search) 0.178 0.006 0.167 0.189
var(e.Premium_Search) 1.859 0.065 1.735 1.991
var(e.Knows_NCB) 0.063 0.004 0.056 0.070
var(e.No_Protect_NCB) 0.076 0.002 0.071 0.081
var(e.No_Reduce_Ecess) 0.258 0.008 0.242 0.274
var(e.Premium_Highrisks) 1.001 0.107 0.811 1.235
var(e.Prior_RTC) 0.129 0.004 0.121 0.137
var(e.Metro) 0.167 0.012 0.146 0.192
var(e.Parts_Damaged) 3.472 0.111 3.261 3.698
var(e.Young_Driver) 0.059 0.002 0.055 0.063
var(e.CSE) 0.010 0.001 0.007 0.013
var(e.ISE) 0.001 0.000 0.000 0.001
var(HIGH_RT) 0.029 0.003 0.024 0.036

cov(e.CSE,e.ISE) 0.002723 0.0004365 6.24 0 0.001868 0.003579

Notes

1 Mimra and Wambach (2014) provide an excellent summary of the literature that has reviewed by Rothschild and Stiglitz (1976).
2 For example, in markets for health insurance empirical research has reported that ICs are able to control adverse selection (Pauly

et al. 2007; Marton et al. 2015). However, Cutler and Reber (1998) found that comprehensive health insurance coverage sponsored
by Harvard University had to be withdrawn from the market; they interpreted this as evidence of a “death spiral” Frech III and
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Smith (2015) do find evidence suggesting a “death spiral”; however, the spiral moves so slowly as to give ICs plenty of time to
withdraw loss-making contracts.

3 Whereas search theory deals with optimal stopping rules in the presence of imperfect information and its implications especially
in labor markets [see e.g., Shi (2008)], the focus here lies on the outcome of search in terms of a favorable premium-coverage ratio.

4 The notation is in accordance with Stage 2 of the game (see Figure 1), where consumers are still confronted with one level of IC
risk selection effort.

5 Conceivably, the marginal benefit of search effort could fall short of its marginal cost of one right away, resulting in no purchase
of insurance.

6 For a more detailed description of the IMRAS data set, interested readers are directed to the papers “Two tests for ex ante moral
hazard in a market for automobile insurance” (Rowell et al. 2017) and “Empirical tests for ex post moral hazard in a market for
automobile insurance” (Rowell et al. 2022).

7 Making risk type dichotomous would call for latent class modeling, which however would put a heavy extra burden on SEM
both in terms of identification and estimation (see e.g., Clark (2022)).

8 In Stata, the estimate of β = 1.94 relates to a regression of ISE on CSE. Using the formula, ρx,y = σx,y/
(
σx · σy

)
= σx,y/σ2

x
(
σx/σy

)
=

β
(
σx/σy

)
and noting that Êσ(ISE) = 9.11 · Êσ

(
RT+

)
= 9.11 because σ

(
RT+

)
is normalized to one, the estimated value of ρx,y

becomes 1.94/9.11 = 0.28.
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Abstract: Timor-Leste is a new country still in the process of economic development and does not yet
have a capital market for stock and bond investments. These two asset classes have been invested in
international capital markets such as the US, the UK, Japan, and Europe. We examine the performance
of the capital asset pricing model (CAPM) and the Fama–French three-factor and five-factor models
on the excess returns of Timor-Leste’s equity and bond investments in the international market over
the period 2006 to 2019. Our empirical results show that the market factor (MKT) is positively and
significantly associated with the excess returns of the CAPM and the Fama–French three-factor and
five-factor models. Moreover, the two variables Small Minus Big (SMB) as a size factor and High
Minus Low (HML) as a value factor have a negative and significant effect on the excess returns
in the Fama–French three-factor model and five-factor model. Further analysis revealed that the
explanatory power of the Fama–French five-factor model is that the Robust Minus Weak (RMW)
factor as a profitability factor is positively and significantly associated with excess returns, while the
Conservative Minus Aggressive (CMA) factor as an investment factor is insignificant.

Keywords: CAPM; Fama–French three-factor model; Fama–French five-factor model; emerging market

1. Introduction

Modern portfolio theory was initiated by Markowitz (1952) by developing important
ideas about portfolios, risk, and diversification concerning different asset classes. Based on
this principle, Lintner (1965), Mossin (1966), and Sharpe (1964) are considered pioneers and
developers of the concept of the CAPM. The model explains the linear relationship between
the systematic risk coefficient, beta, and expected stock returns (Wang et al. 2017; Anjum
and Rajput 2021; Taussig 2022). Moreover, the basic concept of the CAPM is a metric that
explains expected excess return, beta risk, and the market risk premium by calculating the
difference between an asset’s return and the risk-free rate. Therefore, beta risk is generally
estimated using a linear regression model (Yamaka and Phadkantha 2021).

Over the past two decades, researchers have used the Fama–French model to estimate
cross-sectional stock returns using market premium risk factors, size factors, and value
factors (Fama and French 1993). Also, Fama and French (2015) proposed a five-factor model
that adds two new factors to the three-factor model to capture profitability and investment.
Their study was an important contribution to the development of a multifactor model
for asset valuation. However, their research results remain inconsistent in explaining the
abnormal excess return associated with firm size, book-to-market ratio, liquidity, price–
earnings ratio, cash flow–price ratio, return on equity, volatility, and return reversal (Zhang
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and Lence 2022). However, Fama and French (2017) found that average stock returns for
North America, Europe, and Asia–Pacific improved with the book-to-market (B/M) ratio
and profitability and were negatively related to investment. For Japan, the relationship
between average returns and the B/M ratio is strong, but average returns show little
relationship with profitability and investment. Furthermore, the inclusion of a momentum
factor was proposed by Fama and French (2018) as an extension of a six-factor model used
to assess investment risk. The researchers conducted an analysis of several metrics used
to evaluate asset pricing models and identified three specific challenges associated with
the six-factor model. These challenges include (1) the dilemma of choosing either cash
profitability or operating profitability as variables for constructing profitability factors,
(2) the decision process in choosing between long–short spread factors and excess returns,
and (3) the comparison between factors based on small or large stocks and factors that
include both categories. In addition, after more than two decades, in a recent paper, Fama
and French (2020) used the Fama–MacBeth cross-sectional factor, originally introduced by
Fama and MacBeth (1973) in the context of a time series model developed in the field of
asset price research. Fama and French (2020) argue that the inclusion of cross-sectional
factor returns in a time series factor model leads to better results than a time series factor
return model.

Given the gaps in the CAPM model and the Fama–French model, it is, therefore, an
incentive for researchers to continue to conduct extensive research, such as the study by
López-García et al. (2021), which extended Fama and French (1993) and Fama and French
(2015) and found that the significance level is similar to that of the capitalization factor
(SMB) and that the book-to-market factor (HML) is even larger than the momentum factor
(MOM). Thus, market factors with equally weighted portfolios are very significant in the
model, while market factors calculated as capital-weighted portfolios (in this case, the
S&P500 index) are almost irrelevant in the model. Moreover, Jareño et al. (2020) concluded
that the CMA and RMW factors have a negative sign across all periods and quantiles,
thus negatively affecting financial institution returns. In addition, Mosoeu and Kodongo
(2020) documented the following observations: (1) There is a variable relationship between
average returns and SMB, value (B/M), profitability (P), and investment (INV) by market,
although the factors are not consistent across portfolio types. (2) Overall, factors in the
market and factors in different markets tend to have low correlation. However, there is
a high correlation between the same pairs of factors constructed using different portfolio
types, suggesting that different portfolio sorting strategies provide consistent information.
(3) In addition, large companies tend to have better average stock returns than small
companies, and aggressive companies that buy more assets tend to have better returns than
cautious companies.

In addition, Hung et al. (2019) showed that the relationship between size risk and
stock returns for small companies was also significantly positive, which was in contrast to
the negative relationship for large companies. Moreover, the HML factor was negatively
and positively correlated with returns for large and small companies, respectively. Bank
and Insam (2019) found that the contribution of risk premium is not correlated with the
excess return factor and captures the isolated compensation of a particular risk factor.
Likewise, the contribution of risk premium shows a negative shift after 1993. Additionally,
Shaikh et al. (2019) indicated that size premium positively and significantly explains the
cross-section of stock returns of small companies, while value premium positively and
significantly explains the cross-section of returns of quality companies.

The CAPM, the Fama–French three-factor model, and the Fama–French five-factor
model in portfolio investment studies are empirically less effective in explaining maximum
return investments. Thus, our motivation for this paper is to (i) fill the gaps in the existing
literature on stock and bond investing using Fama and French’s (1993) three-factor model
and Fama and French’s (2015) five-factor model. The present article also aims to add
additional knowledge to other studies that have used capital market data from four regions,
(1) North America, (2) Japan, (3) Asia–Pacific, and (4) Europe, which have documented
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their empirical research findings in different regions with different results, such as the study
by Nichol and Dowling (2014), showing that Fama–French five-factor profitability offers
the greatest potential when implemented in the market of the United Kingdom. In addition,
Chai et al. (2019) found that the SMB and HML factors are insignificant, but the HML factor
is excessively high for the United States. However, these factors are also important for stock
prices in Australia, suggesting that the five-factor model should at least be considered as
a reference model for the Australian market. Similarly, Pandey and Joshi (2021) stated in
their results that the CAPM seems to be a good model for explaining the returns for Italy
and Spain. The Fama–French three-factor model and the Fama–French five-factor model
seem to better describe returns in Germany, while the multifactor model plays a limited role
in explaining returns in France. Meanwhile, multifactor models play a role in explaining
returns for the Western European market, with the sole exception of France, where they
appear to be ineffective in explaining returns. In addition, Roy (2021) found that six factors
produced better estimates, outperforming Fama and French’s three-factor model, Carhart’s
four-factor model, and Fama and French’s five-factor model alike. However, Fama and
French (2012) stated that integrated pricing across regions did not find strong support
in their tests. Nonetheless, only local models using local explanatory returns describe
the average return for a portfolio by size and value versus growth. For example, further
research by Fama and French (2017) found that the average returns of stocks in North
America, Europe, and Asia–Pacific show a positive correlation with the book-to-market
ratio (B/M) and profitability while showing a negative relationship with investment. In
addition, the underperformance of small stocks, characterized by low profitability but
high investment, is not taken into account. (ii) As a developing country, Timor-Leste has
assets such as stocks and bonds that it can invest in the local capital market. However,
when Timor-Leste did not have a local capital market, it had to invest its capital in the
international markets, particularly in the form of shares of 1775 companies that invested
in petroleum funds in the United States, Europe, the United Kingdom, Japan, Australia,
Canada, and Norway. (iii) The total investment in equities amounted to USD 6541 million
(Timor-Leste Ministry of Finance 2019), which is associated with high investment risk.
Therefore, as emerging economies have not reached their true economic potential through
diversification, they rely on foreign investors and the transfer of inflows to these economies
(Lone et al. 2021). (iv) The capital investment of oil funds is found to be the maximum
cumulative return to bring further capital into economic diversification, especially the
contribution of revenues from the non-oil-and-gas sector due to the dependence on oil
and gas.

Timor-Leste is a new country preparing for economic development through portfolio
investment. Timor-Leste’s main income comes from oil and gas. The Petroleum Fund was
established in 2005 to collect Timor-Leste’s petroleum revenues from the Timor Sea. As
a sovereign wealth fund, the Petroleum Fund is therefore subject to legal restrictions. In
addition, the petroleum funds are invested in the bond and equity markets. These portfolio
investments generate profits and increase the Petroleum Fund’s income in addition to
domestic revenues (Doraisami 2018; John et al. 2020; Zaimovic et al. 2021).

In portfolio investment, the objective is to make a profit, but the investor (the gov-
ernment) is exposed to risk. This risk means that the government must understand the
concept of the Fama–French model to make investment decisions efficiently. This is because
investment decisions must be based on the principle of optimizing profit and minimizing
risk. This risk requires the government to exercise prudence in optimizing profits through
portfolio diversification. Thus, the purpose of portfolio diversification is to minimize risk by
spreading assets across different asset classes (Zaimovic et al. 2021; Sahabuddin et al. 2022).

The concepts of the CAPM and the Fama–French model provide an important under-
standing for managers (the government) to determine the performance of small-company
stocks and large-company stocks (SMB). Similarly, it is important to understand the perfor-
mance of stocks with the highest value (value) and stocks with the lowest value (growth)
(HML). In addition, the performance factor is shares of companies with good profits (ro-
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bust) and shares of companies with weak operating profits (RMW). Similarly, the factors
reflect the equity performance of companies with conservative and aggressive investment
policies (CMA) (Fama and French 1993, 2015, 2017; Ali et al. 2021; Ryan et al. 2021; Taib and
Benfeddoul 2023).

Thus, understanding the performance of the CAPM and the Fama–French model helps
the government of Timor-Leste to identify potential investment opportunities to enhance
portfolio returns. In this way, the government can make efficient investment decisions
based on accurate data and information on optimal portfolio diversification. In addition,
portfolio investments ensure the country’s long-term financial stability, provide effective
risk management, and contribute to the country’s long-term development and prosperity
through economic diversification (Lopes 2021; Scheiner 2021).

This paper makes two important contributions to the finance literature, particularly in
portfolio investment. Our first contribution is to provide new empirical evidence to fill the
gap in the finance literature that has existed since the development of the CAPM by Sharpe
(1964) and Lintner (1965) and its subsequent evolution into the three-factor model of Fama
and French (1993) and the five-factor model proposed later by Fama and French (2015).
Second, to the best of our knowledge, this paper is the first attempt to use a new dataset
from a new country still in the process of economic development, namely Timor-Leste, to
examine the performance of the CAPM, Fama and French’s three-factor model, and the
five-factor model on the excess returns in the context of equity and bond investment in the
international market. The results of Fama and French’s three-factor model and five-factor
model suggest that the market factor (MKT) risk has a positive effect on assets excess return
considering the CAPM model, the three-factor model, and Fama and French’s five-factor
model. Meanwhile, the size and investment value have a significant negative effect on
the excess return in the three-factor model and Fama and French’s five-factor model. The
probability factor has a significant positive effect on the excess return, while the investment
factor has a negative but insignificant effect on excess returns. Thus, the key question
of the present study is: Do the CAPM model, the Fama–French three-factor model, and
the Fama–French five-factor model show significant differences in assessing the risks and
potential returns of Timor-Leste equity and bond investments in international markets?

The remainder of this article is organized as follows: Section 2 presents a brief literature
review; Section 3 exposes the data and methodology; Section 4 is dedicated to the empirical
results; and Section 5 is the results discussion. Finally, Section 6 provides the conclusions
and policy implications and suggests future research.

2. Literature Review

2.1. CAPM Model

The goal of investors in asset allocation is to maximize profits while minimizing
risk. According to Saiti et al. (2020), investment consists of allocating financial resources
among different classes of assets, including commodities, real estate, stocks, and bonds
in domestic and international markets, benefiting from diversification strategies. These
investments aim to increase wealth as the most important resource. In addition, investors
have decision-making principles to minimize investment risk. One of the most important
strategies of fund managers is the diversification of investments to reduce this risk. Thus,
modern portfolio theory states that the portfolio option prioritizes expected returns over
risk mitigation.

Several empirical studies by Sharma and Vipul (2018), Silva et al. (2020), Yunus (2020),
and Dichtl et al. (2021) on the allocation of financial assets (e.g., gold, stocks, bonds, and real
estate) show that funds can be fixed income, stocks or net asset values, multiple markets or
currencies, and commodities. Researchers are increasingly trying to figure out what impact
stocks have on other asset classes such as currencies, fixed income, and commodities. This
proves that there is a value and momentum premium in currencies, government bonds,
and commodities as well as equities to predict trading returns in global equities, global
bonds, currencies, and commodities (Bartram et al. 2021).
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In measuring the performance of funds, asset management is very important to
understand the systematic risk factors and actively manage the funds. For example, a
traditional stock/bond portfolio generates the same average return and contains a portfolio
with a much lower risk factor. Therefore, the benefits of diversification, which significantly
reduces the risk of an increase in excessive returns, are high (Bessler et al. 2021). In addition
to the systematic risk factors, there are other factors, namely the Fama–French model
factors, such as beta in conjunction with market factors, size, value, momentum, investment,
and profitability, which are discussed in the study by Nazaire et al. (2020) to examine
which factor exposures (betas) and characteristics provide independent information for
US stock returns in a multifactor context and to identify betas associated with unweighted
market factors, size, value, momentum, investment, and profitability. In contrast, firm
characteristics associated with size, value, investment, and profitability have significant
and independent explanatory power, suggesting that they are important in determining
expected returns. Moreover, asset allocation is a problem for investors. Therefore, investors
need to estimate expected returns when constructing an optimal portfolio. Thus, a profitable
portfolio combination is a combination of stocks, bonds, and commodity classes compared
to a combination of simple estimates, equally weighted portfolios, or portfolios based on
historical averages (Kynigakis and Panopoulou 2022).

The work of Markowitz (1952) was seminal for modern portfolio theory. On this basis,
Lintner (1965), Mossin (1966), and Sharpe (1964) developed an important financial model
that establishes a simple relationship between the returns of an asset and its risk: the CAPM.
The CAPM is one of the main pillars of modern finance. It empirically proves that not every
investor avoids risk in portfolio investments absolutely and globally (Levy 2022).

Beta in the CAPM model is interesting to measure stock returns during stock market
movements. CAPM beta is used to measure the financial performance of an investment,
which can estimate the performance of management funds, cost of capital, and securities
as the determinant of beta value (Liu et al. 2022). In addition, the CAPM is a financial
market risk measurement model that cannot necessarily explain the relationship between
risk characteristics and investment returns. Therefore, CAPM always makes a negative
and inconsistent contribution to financial theory (Maneemaroj et al. 2021). Moreover, the
study by Hundal et al. (2019) analyzed only secondary data for the period 2012–2016
with a sample of 90 stocks listed on the Helsinki Stock Exchange. The results suggest that
the relationship between risk and return is synchronous and that the stock returns of the
sample companies are less volatile than the market index.

The CAPM model is the first model for portfolio investment management, although
its empirical validity shows a weak risk–return relationship. Therefore, the relationship
between risk and return has long been the backbone of portfolio management (Kazmi
et al. 2021). In this context, Fama and French (2015) extend the CAPM model to include
investment and profitability factors to determine the factors associated with average returns
in optimizing investment decisions. In addition, the error rate of the CAPM in pricing has
decreased significantly compared to previous results in the empirical literature. Moreover,
the beta model, which varies over time, has a similar performance to the Fama–French
model in most cases. This result is consistent with increased trading activity reducing
arbitrage opportunities and thus increasing market efficiency (Rojo-Suárez et al. 2022).
CAPM betas positively predict portfolio and individual stock returns when market returns
are expected to be high, which is about 50% of the time. Consequently, the product of
beta and expected market return (CAPM) predicts out-of-sample asset returns, and the
predictive power of CAPM exceeds that of alternative factor models. Strategies that exploit
the joint predictive power of beta and market return prediction have average returns
that increase with beta and Sharpe ratios that are up to twice those of the corresponding
buy-and-hold strategies (Hasler and Martineau 2022).

Boussaidi and AlSaggaf (2022) found that the CAPM was unable to capture the off-
setting gains in most Middle East and North Africa (MENA) equity markets, so the gains
cannot be explained by investment risk. Moreover, the hypothesis that the representa-
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tiveness heuristic causes investors to overreact does not hold for all stock markets. In
contrast to the representativeness heuristic, the authors extended the five-factor model to
include factors based on similar past earnings shocks and found that offsetting gains in
most MENA markets are not captured by short zero-investment portfolios on portfolios
with a series of shocks and positive and long gains on a portfolio with a series of negative
earnings surprises.

The relationship between a security’s market line (SML) and the CAPM persists if
betas are appropriately adjusted before investors analyze the level of market risk among
different investment securities. Therefore, the adjusted CAPM is used to show the behavior
of non-average variance in explaining the CAPM anomaly, e.g., the low beta anomaly
when investors with unequal variance underweight high beta (low beta) assets. Thus, the
empirical analysis shows that two-thirds of investors must deviate from the mean-variance
analysis to explain the low beta anomaly (Hens and Naebi 2021).

Investments always involve risks that differ from one investment market to another in
the form of systematic, cross-sectional, and time-varying risks. Nonetheless, the CAPM
provides an excellent risk–return framework, and market beta can reflect the risks asso-
ciated with risky investments. However, there are opportunities for investors to exploit
dimensional and time anomalies to improve investment returns. Since stock returns exhibit
positive autocorrelation in the short-to-medium term, stocks that have performed well in
the past tend to perform well in the future, while stocks that have performed poorly in the
past tend to perform poorly. For this reason, Mohanty (2019) found significant differences in
explaining the sources of risk, where each market is unique in terms of the characteristics of
risk factors, and market risk as described by the CAPM is not a true measure of risk, which
contradicts the risk–return efficiency framework. For example, lower market risk leads to
higher excess returns in 19 of the 22 developed markets, which is a significant anomaly.
However, the Asness, Frazzini, and Pederson (AFP) model also leads to lower market risk
(15 countries) and higher alpha (11 countries) in most markets. It is also interesting to note
that the CAPM is a model that leads to excess returns in developed markets. However,
beyond that, each market is unique in its composition and trends, even over long periods,
so a general asset allocation approach cannot be applied to all markets.

2.2. Fama–French Model

The asset pricing model is a financial theory concept that contributes to popular
research in the finance literature. The concept of finance theory reveals the most commonly
used asset pricing models in the financial world, such as the CAPM, arbitrage pricing
theory (APT), or the Fama–Francis model. Fama and French (1992) used data on average
stock returns on the New York Stock Exchange (NYSE), the American Express (AMEX),
and the National Association of Securities Dealers Automated Quotations (NASDAQ) for
the period 1963–1990. The empirical results of two easily quantifiable variables, market
equity (ME) and the ratio of book equity to market equity (BE/ME), capture much of the
average stock returns associated with size and earnings–price ratios (E/P), book capital,
and leverage.

After Fama and French (1993) discovered three risk factors for portfolio investments,
namely the SMB factor, the HML factor, and the low B/M, Fama and French (2015) added
two more factors to the three risk factors, namely profitability and investment, to form
five factors that capture the average return pattern of stocks in the investment portfolio.
Moreover, the main problem of the five-factor model is that it is not able to capture the low
average returns of small stocks, whose returns behave especially poorly for companies that
invest in low profitability (Fama and French 2015). Hence, the results of Fama and French
(2015) showed that HML is an over factor in the sense that the high average returns are
fully captured by its exposure to RM-RF, SMB, and particularly RMW and CMA. Therefore,
better stock returns can be expected.

Fama and French (2012) examined international stock returns in North America,
Europe, Japan, and the Asia–Pacific region to detail the size, value, and momentum patterns
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of average returns for developed country markets. They then examine how well they
capture average returns for a portfolio of size and value or size and momentum. The results
suggest that there is a premium in average returns in North America, Europe, Japan, and
Asia–Pacific and that there is strong return momentum in all regions except Japan, with no
sign of momentum returning in any size group. In addition, there is new evidence on how
international value and momentum returns vary with company size. Except in Japan, the
value premium is larger for small stocks.

Based on a sample of 500 non-financial firms from the Bombay Stock Exchange for
the period 2003–2019, the data suggest the superiority of the Fama–French three-factor
model over the CAPM. Sehrawat et al. (2020) demonstrated that there is evidence of
market segmentation in the first half of the sample period (2003–2010). However, the
second subperiod (2011–2019) showed weak signs of market integration, supported by
the Johansen cointegration test, suggesting that the Indian market is gradually integrating
with global markets. In addition, Lalwani and Chakraborty (2020) used multifactor asset
pricing models in emerging and developed markets to compare the performance of different
multifactor asset pricing models in ten emerging and developed markets. The final country
selection consists of Australia, Canada, Japan, the United Kingdom, and the United States
as developed markets, and China, India, Malaysia, South Korea, and Taiwan as emerging
markets. They find that the FF5 model (the Fama–French five-factor model) improves the
pricing of stocks in Australia, Canada, China, and the United States. Price formation in
these countries appears to be more integrated. However, the superior performance in these
four countries is not consistent across a wide range of test values, and the magnitude of
the reduction in pricing errors relative to three- or four-factor models is often economically
insignificant. For other markets, the simple three-factor model or its four-factor variants
appear to be more appropriate.

Ekaputra and Sutrisno (2020) tested the Fama–French three-factor model and the
Fama–French five-factor model in contrast to previous studies. They concluded that the
Fama–French five-factor model does not perform better than the Fama–French three-factor
model in explaining excess portfolio returns in either market. In contrast to the US market,
they found that the HML factor is not redundant in either market. The results are robust
for both equally weighted and value-weighted portfolios and also for different factor
construction methods. For the Johannesburg Securities Exchange (JSE), Cox and Britten
(2019) examined in detail the effectiveness of the FF5 model in explaining returns for the
period 1991 to 2017. Their results confirmed that the three-factor models of size-value and
size-profitability best describe the returns of the time series when comparing the models.
The five-factor model best explains the cross-section of returns. Overall, the results show a
significant inverse size premium and a negative relationship between beta and returns but
also a significant value premium. The additional factors of profitability and investment
help explain returns on the JSE, but profitability is more consistent than investment.

The economic environment becomes a challenge in investing assets. Therefore, in-
vestors need to evaluate the price of assets in anticipation of risk and return. Thus, investors
need to evaluate the efficiency of the firm when making investment decisions. Based on this
assumption, efficiency is considered an additional factor when evaluating security returns.
Therefore, the study by Aygoren and Balkan (2020) investigated the role of efficiency in
capital asset pricing the stocks of NASDAQ. The results show that all factors in the models
are found to be valid in asset pricing. Moreover, the paper provides evidence that the
explanatory power of the proposed four-factor model exceeds the explanatory power of
the CAPM and the Fama–French three-factor model.

The Fama–French model makes the basic assumption that investment returns are
influenced by the unique risk variables associated with an asset. This model is based on
the assumption that investment returns are influenced by factors other than the market
risk described by the CAPM. The market size factor and the value factor are the two
most important determinants in this model. When the Fama–French model was further
developed into five factors, two more factors were added, namely the investment factor
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and the profitability factor. After careful examination of the above risk variables concerning
investments in stocks and bonds, the empirical hypotheses were formulated as follows:

Hypothesis 1. There is a significant influence of the market factor on investment returns.

Hypothesis 2. There is a significant influence of the size factor on investment returns.

Hypothesis 3. There is a significant influence of the value factor on investment returns.

Hypothesis 4. There is a significant influence of the profitability factor on investment returns.

Hypothesis 5. There is a significant influence of the investment factor on investment returns.

3. Data and Methodology

3.1. Data Collection

Our study uses data on returns on investments in petroleum funds in the form of
stocks and bonds collected by the Ministry of Finance of Timor-Leste. Monthly data on
stock and bond returns are provided by the Petroleum Fund Policy and Management Office
in the form of raw Excel data. The objective of our study is to identify the CAPM model, the
three factors of the Fama–French model, and the five factors of the Fama–French model in
determining the return of stocks in the international stock market. The research approach
used is to test the effects of the variables of the three-factor model and the five-factor
model on the excess return of the oil fund investment portfolio using monthly data for
2006–2019. The authors analyze five explanatory variables in regression equations (2) and
(3), including market, SMB, HML, RMW, and CMA factors, using data from French’s data
library, accessible at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_
library.html (accessed on 14 January 2022). Table 1 also provides a brief description and
definition of the explanatory variables. In addition, Figure 1 shows the time evolution of
excess returns on stock and bond investments with variations in the investment risk factors
of the Fama–French model over the sample period.

Table 1. Variable definitions and data specification.

Measure Definition Data Source

Excess returns A return earned by an investment in excess of a risk-free
investment. Ministry of Finance of Timor-Leste

MKT (market factor) Return investment minus risk-free rate is the excess return on
Timor-Leste portfolio investment.

http://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library.html

(accessed on 7 November 2023)

SMB (size)
Small Minus Big is the difference between the average returns

of companies in small equity portfolios and companies in
large equity portfolios.

HML (value) High Minus Low is the difference between the average return
on the value portfolio and the growth portfolio.

RMW (profitability) The difference between the returns of companies with robust
(high) and weak (low) operating profitability.

CMA (investment) The difference between the returns of companies that invest
conservatively and companies that invest aggressively.
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Figure 1. Time trend of excess return on equity and bonds and the Fama–French five-factor model.
Source: own elaboration. This figure is the monthly value of portfolio investments since 2005, i.e.,
the monthly excess returns plus five investment factors such as market premium (MKT), size (SMB),
value (HML), profitability (RMW), and investment (CMA) in the Fama–French model, which may be
accessed via the Kenneth French Web. The vertical axis and the horizontal axis refer to the period
from January 2006 to January 2019.

3.2. Empirical Approach

To determine the optimal return for stock and bond investments in Timor-Leste, this
study uses the CAPM, the Fama–French three-factor model, and the Fama–French five-
factor model. Below is a brief explanation of the testing procedures for using this model in
asset valuation.

3.2.1. Capital Asset Pricing Model

The standard algebraic form of the CAPM is as follows:

E(Ri) = R f + (Rm − R f )bi (1)
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Here, E(Ri) is expected return on capital asset “i”, R f is a risk-free rate of return, Rm
is the return on the market portfolio, and bi is the index of systematic risk.

3.2.2. Fama–French Three-Factor Model

Fama and French (1993) defined three portfolios to capture risk: MKT (return on the
market portfolio minus the risk-free rate), SMB (return on the portfolio of small stocks
minus the return on the portfolio of big stocks), and HML (return on the portfolio of
stocks with high book-to-market ratios minus the return on the portfolio of stocks with low
book-to-market ratios). In portfolio investing, the asset pricing model is empirically tested
to determine the function of the risk factor as the independent variable and the return of
the assets as the dependent variable. Thus, the risk factors and asset returns are used in
multiple regression to determine the portfolio investment formulation. Thus, Fama and
French’s (1993) three-factor model can be estimated using the following regression formula:

Rit − RFt = ai + bi(RMt − RFt) + siSMBt + hi HMLt + eit (2)

where Rit − RFt is the excess return over the risk-free return of the portfolio i at t time, RMt
is the return on the value-weight (VW) market portfolio, SMBt is the return on a diversified
portfolio of small stocks minus the return on a diversified portfolio of big stocks, HMLt is
the difference between the returns on diversified portfolios of high and low B/M stocks,
and eit is a zero-mean residual.

3.2.3. Fama–French Five-Factor Model

After Fama and French (1993) introduced three risk factors, namely firm size, book-to-
market value, and excess market return, Fama and French (2015) introduced a five-factor
asset pricing model with two new factors: profitability and investment. The econometric
model used for estimation is as follows:

Rit − RFt = ai + bi(RMt − RFt) + siSMBt + hi HMLt + riRMWt + ciCMAt + eit (3)

where RMWt is the factor related to firm profitability, i.e., the difference between the
returns of portfolios of firms with robust (high) profitability and those with weak (low)
profitability, and CMAt is the factor related to investment, i.e., the difference between the
returns of conservative (low) and aggressive (high) investment portfolios.

4. Empirical Results

4.1. Descriptive Statistics

Based on the collected data and the previously created indicators, we were able
to perform a descriptive statistical analysis. The corresponding data processing was
performed in STATA 14 and EViews 12.

Table 2 shows the summary statistics of all return factors of Timor-Leste stocks and
bonds in the international stock market, monthly data from 2006 to 2019. The mean MKT
for the return of Timor-Leste stocks and bonds is 0.75% per month, and the mean SMB
premium and the mean HML premium are 0.03% and −0.19%, respectively. The monthly
premiums for RMW and CMA have a value of 0.27% and 0.03% over the period 2006–2019.
In addition, Table 2 shows that the MKT factor has the highest standard deviation (4.21%),
and this factor has the highest risk. In addition, the CMA factor has the lowest standard
deviation (1.45%) and is the factor with the lowest risk.
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Table 2. Summary statistics for Fama–French factors of equity and bonds of Timor-Leste in the
international stock market.

Factors Obs. Mean Std. Dev. Min Max

MKT 168 0.0075 0.0421 −0.1723 0.1135
SMB 168 0.0003 0.024 −0.0492 0.0704
HML 168 −0.0019 0.0262 −0.1111 0.0821
RMW 168 0.0027 0.0154 −0.0388 0.0494
CMA 168 0.0003 0.0145 −0.0323 0.037

Excess Monthly Return 168 0.0028 0.0095 −0.0317 0.0323
Source: own elaboration. Note: The table provides summary statistics for the five Fama–French factors, i.e.,
monthly excess returns plus five investment factors: market risk premium or “portfolio return minus risk-free
rate” (MKT), size or “Small Minus Big” (SMB), value or “High Minus Low” (HML), profitability or “Robust Minus
Weak” (RMW), and investment or “Conservative Minus Aggressive” (CMA). The table includes statistics for the
mean, standard deviation (Std. Dev.), maximum (max), and minimum (min).

4.2. Correlation Matrix

Table 3 presents the correlation coefficients between the variables included in the study.
The portfolio return is positively and significantly related to the market risk premium (0.40)
but negatively related to the CMA factor (−0.16). Moreover, the MKT factor is positively
and significantly related to the SMB factor and the HML factor but negatively related to the
RMW factor. In addition, there is a positive and significant relationship between the SMB
factor and the HML factor but a negative relationship with the RMW factor. Finally, the
HML factor is negatively related to the RMW factor but positively related to the CMA factor.

Table 3. Correlation among parameter and portfolio returns.

Excess
Monthly
Return

MKT SMB HML RMW CMA

Excess
Monthly
Return

1

MKT 0.401 *** 1
SMB −0.0218 0.400 *** 1
HML −0.104 0.258 *** 0.284 *** 1
RMW 0.0155 −0.396 *** −0.374 *** −0.175 * 1
CMA −0.164 * −0.110 0.0638 0.523 *** 0.0475 1

Source: own elaboration. Note: The table shows the correlation matrix for the five Fama–French factors, which
consists of monthly excess returns plus five investment factors such as market risk premium or “portfolio return
minus risk-free rate” (MKT), size or “Small Minus Big” (SMB), value or “High Minus Low” (HML), profitability or
“Robust Minus Weak” (RMW), and investment or “Conservative Minus Aggressive” (CMA). * p < 0.1, *** p < 0.01
indicate significance levels 10% and 1%, respectively.

4.3. Regression Multipliers

The regression results for the CAPM, the Fama–French three-factor model, and the
Fama–French five-factor model are presented in Table 4. The results presented in this study
provide a better understanding of the elements associated with the MKT factor, the SMB
factor, the HML factor, the RMW factor, and the CMA factor. The table shows that the
coefficient values for the CAPM, the Fama–French three-factor model, and the Fama–French
five-factor model show statistical significance or positive correlations at a 1% significance
level. This means that a one-unit increase in the positive direction is associated with a
positive return for both the equity and bond portfolios. The results are consistent with the
research conducted by Ali et al. (2018).
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Table 4. Regression results for the CAPM model, the Fama–French three-factor model, and the
Fama–French five-factor model.

Factors CAPM
Fama–French

Three-Factor Model
Fama–French

Five-Factor Model

MKT 0.0906 *** 0.116 *** 0.127 ***
(0.0161) (0.0170) (0.0183)

SMB −0.0673 ** −0.0543 *
(0.0303) (0.0310)

HML −0.0784 *** −0.0652 **
(0.0257) (0.0317)

RMW 0.0964 **
(0.0474)

CMA −0.00489
(0.0550)

Constant (α) 0.00211 *** 0.00179 *** 0.00147 **
(0.000685) (0.000666) (0.000686)

Observations 168 168 168
R-squared 0.1607 0.2302 0.2511

Adj. R-squared 0.1560 0.2161 0.2280
F-statistic 31.7882 16.3428 10.8647

Prob. (F-statistic) 0.0000 0.0000 0.0000
Source: own elaboration. Note: The table shows the regression multipliers for the CAPM model, the three-factor
model, and the five-factor model of Fama and French, i.e., monthly excess returns plus five investment factors:
market risk premium or “portfolio return minus risk-free rate” (MKT), size or “Small Minus Big” (SMB), value
or “High Minus Low” (HML), profitability or “Robust Minus Weak” (RMW), and investment or “Conservative
Minus Aggressive” (CMA). Significance at the 1%, 5%, and 10% levels is indicated by *** p < 0.01, ** p < 0.05, and
* p < 0.1.

The beta coefficients of the three models for the market factor show a positive and
statistically significant correlation at the 1% level. This result empirically supports the
hypothesis that market factors have a significant impact on investment returns. This
provides empirical evidence for our hypothesis H1. The correlation between the return
on equity and bond investments and the level of risk can be seen as indicating a positive
relationship, with a higher level of risk usually being associated with higher returns.
Conversely, it is a common phenomenon that investors are willing to pay excessive prices
for investment opportunities that are associated with lower risk. The market factor is
therefore an important factor that can shed light on the results of a portfolio. According
to the Fama–French three-factor model, the size factor beta has a statistically significant
negative value at a 5% significance level. The results of this study provide empirical support
for the hypothesis that factor size has a discernible influence on investment returns. The
above results provide empirical support for hypothesis H2. In addition, the Fama–French
five-factor model also shows a statistically significant negative value for the size factor
beta, but at a slightly higher significance level of 10%. This result shows that the size factor
exerts a statistically significant negative influence on the average return of the portfolio.
The inverse correlation between the size effect and the average stock return is also evident.
The results presented in this study are consistent with previous research by Banz (1981)
and Fama and French (1992), which showed that smaller stocks have higher risk-adjusted
returns compared to larger companies. The results of this study suggest that there is a
higher risk associated with the stock returns of smaller portfolios, so investors must earn a
correspondingly higher compensating return compared to larger companies.

The value factor has a statistically significant negative coefficient at the 1% level in the
three-factor Fama–French model and the 5% level in the five-factor Fama–French model.
The results of this research study provide empirical support for the hypothesis that the
value factor exerts a discernible influence on investment returns. The above results provide
empirical support for hypothesis H3. This suggests that stocks with value characteristics,
sometimes referred to as value stocks, are likely to experience a decline in expected returns.
This refers to the distinction between stocks with a low price-to-book ratio, which stands for

323



J. Risk Financial Manag. 2023, 16, 480

value, and stocks with a high price-to-book ratio. Furthermore, the study shows a negative
correlation, suggesting that companies with a high price-to-book ratio tend to have lower
average returns. This result contradicts the conclusions of Fama and French (1992), who
found a positive and statistically significant correlation between average returns and the
book value of equity. The strength of this correlation exceeds that of size, debt, earnings,
and price as determinants of average stock returns.

The profitability factor has a statistically significant positive coefficient at the 5% level
in the Fama–French five-factor model. The results of this study provide empirical evidence
for the hypothesis that the profitability factor has a significant impact on investment
returns. The above results provide empirical support for our hypothesis H4. This result
is supported by Ali et al. (2021), and Horváth and Wang (2021), who found that the
profitability factor significantly increases the description of the average return, which is in
contrast to the results of Alqadhib et al. (2022), which in turn conclude that the profitability
factor has a significant negative relationship with fund returns. The investment factor, on
the other hand, has an insignificant effect on the excess return. This is strong evidence for
the acceptance of the fifth null hypothesis (H5) and the rejection of the fifth alternative
hypothesis (H5). This result is in good agreement with existing studies by Horváth and
Wang (2021). However, our study does not support the recent study by Kaya (2021) that
the CMA coefficient is negative and significant in eight of the twelve portfolios, and the
mean return shows a strong investment pattern in the regression estimation.

The CAPM, the three-factor model, and the five-factor model of Fama and French are
widely accepted models for determining the average return of a portfolio. Table 4 shows
the results of the CAPM, Fama and French’s three-factor model, and Fama and French’s
five-factor model in terms of the R2 value of the investment portfolio, which is 21.40% on
average. This means that the valuation of the change is explained by the market premium
associated with the risk-free interest rate. Furthermore, it should be noted that the adjusted
R2 value of the Fama–French five-factor model, namely 0.2280, exceeds the adjusted R2

values of both the Fama–French three-factor model (0.2161) and the CAPM model (0.1560).
The observed F-statistic is statistically significant at the 1% level.

Figure 2 shows a graphical overview of the evolution of the factors over time. The
market risk premium exhibits higher cumulative fluctuations compared to other portfolio
investment risk factors. However, the trend of the market risk premium factor first de-
veloped positively until the end of 2008 and then negatively until mid-2011. Thereafter,
the positive trend continued until the end of 2011, when it turned negative again. After
mid-2011, it slowly increased in a positive direction until it reached its highest level in 2019.
Thus, the market risk premium factor is always highest when it succeeds in predicting the
return on investment when it is profitable. The valuation factor underperformed from 2007
until mid-2010. It then returned to a positive trend until the end of 2019, when it fell back
into negative territory. This shows that small companies perform better than larger compa-
nies in the long run. The value factor only performed well from 2006 to 2007. After that, it
developed negatively until 2019. This means that there is a difference in the value premium
between the return of a high book-to-market portfolio and a low book-to-market portfolio,
so it continues to generate negative returns (Ryan et al. 2021). The RMW factor had the best
performance from the beginning of 2006 to 2019. This means that a positive value of the
RMW factor indicates that the company has higher profitability and continues to exceed
over the investment period of the portfolio. In addition, the CMA factor shows a decrease
in investment at the end of 2008, then an increase and then a decrease in 2009, and only
during the 2008/2009 financial crisis (Dirkx and Peter 2020). Finally, the over-return factor
declined negatively only from 2006 to 2007, and then the contribution of the over-return
rate increased significantly until 2019.
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Figure 2. Cumulative value of the five factors and excess return. Source: own elaboration. This
figure represents the monthly cumulative value of portfolio investments since 2005, which consists
of monthly excess returns plus five investment factors such as market premium (MKT), size (SMB),
value (HML), profitability (RMW), and investment (CMA) in the Fama–French model. Cumulative
values are on the vertical axis, and the horizontal axis represents the period of January 2006 to
January 2019.

5. Results Discussion

Regarding the correlations between factors, this result is consistent with the findings of
Fama and French (2015) and Ryan et al. (2021) that the RMW factor is negatively correlated
with all factors of portfolio investment. Moreover, these results confirm the findings of
the earlier work by Ryan et al. (2021). There is a high and positive correlation between
HML and CMA, suggesting that companies with high B/M tend to be companies with
low investment. Consistent with the previous study by Carvalho et al. (2022), the current
results also show that the factors HML and market (Rm-Rf) have a significant positive
correlation. Moreover, this result contradicts the findings of Fama and French (2017), who
found that the RMW factor is negatively correlated with investment.

Meanwhile, our results for the Timor-Leste economy are not consistent with the
findings of Zaremba et al. (2019), who found that the MKT factor has a significant negative
relationship with the firm size factor. However, our results are consistent with the HML
factor being negatively related to the RMW factor.

The current results show that the CAPM has successfully captured the effects of MKT
risk. Extending the CAPM, the three-factor model of Fama and French (1993) introduces
two additional factors, the SMB factor, and the HML factor. This result was also reported
by Huang (2019). Moreover, these results for the SMB factor do not agree with the results
of Huang (2019), but the results are negative and significantly the same for the value factor.
For the five Fama–French factors, the results are consistent for the MKT risk factor and
the HML factor, while they are not consistent for the SMB factor and the RMW factor
(Huang 2019).

Likewise, these results are consistent with the application of the Fama–French model
of Fang et al. (2021) with three factors in the Chinese stock market, namely that the MKT
risk factor has a positive and significant effect, as well as the SMB factor and the HML
factor. This result is in contrast to Kubota and Takehara (2018), who found that MKT is
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significant only for the CAPM with a negative coefficient. Similarly, the HML factor was
significant with positive coefficients for Fama and French’s three-factor and five-factor
models. The results are consistent with the findings of Richey (2017), who found that the
CAPM, Fama and French’s three-factor model, and Fama and French’s five-factor model
have a positive and significant effect. Moreover, it is consistently positive and significant
only for the MKT risk factor. The SMB factor is significantly positive, and it is inconsistent
with the HML factor. However, the Fama and French (2015) five-factor model shows that
all factors are consistent except for the CMA factor.

It is interesting to compare these results with those of Kostin et al. (2022) on multifactor
asset pricing and factor models during pandemic situations in developed and emerging
markets. Timor-Leste is one of the new/emerging markets that invest their assets in the
form of stocks and bonds in the markets of developed countries such as the United States
(US), the United Kingdom (UK), Japan, and Germany. For these developed countries, equity
investments amounted to USD 4103 million (62.7%) for the United States, USD 375 million
(5.7%) for the United Kingdom, USD 540 million (8.3%) for Japan, and USD 686 million
(10.5%) for Germany, which in this case is part of the European Union. Similarly, total bond
investments amounted to USD 7914 million (83.1%) in the United States, USD 153 million
(1.6%) in Japan, USD 164 million (1.7%) in the United Kingdom, and USD 37 million (0.4%)
in Germany (Timor-Leste Ministry of Finance 2019). Thus, Timor-Leste’s total equity invest-
ments contribute to corporate returns in the capital markets of these developed countries.
Therefore, these results provide empirical evidence that the multifactor performance of the
Fama and French (2015) five-factor model of Kostin et al. (2022) is positive and significant
for all countries out of the US, UK, and Japan for MKT risk factor, except for Germany. Sim-
ilarly, the SMB factor is significantly negative in line with the UK and in contrast to Japan,
which is significantly negative. In addition, the HML factor is consistently significantly
negative for the United States and inconsistent for Germany. In addition, the RMW factor
is inconsistent for the United States and Germany, while the CMA factor is consistent in all
countries, being, respectively, positive and insignificantly negative.

It is interesting to note that Timor-Leste has a Petroleum Fund, established in 2005,
whose source of revenue is oil and gas. The income from this fund is invested in inter-
national capital markets such as the NASDAQ, the NYSE, the London Stock Exchange
(LSE), and the Tokyo Stock Exchange. Why are these funds invested in the international
capital markets? Timor-Leste is a country that does not yet have a national capital market
and is therefore currently focusing on economic development. With this investment, you
obtain a return every month, which fluctuates. Apart from that, petroleum money is also a
source of funding for the national budget every fiscal year.

Therefore, the investment returns become a source of data for conducting research. In
addition, the Fama–French dataset is used to investigate the extent to which risk factors
(loading factors) affect excess returns.

For example, the results of the Fama–French five-factor model, namely the CMA factor,
show that the CMA factor has a negative and non-significant influence on the excess return.

Every investor faces risk in their investments, but portfolio diversification can balance
risk and return. This is because understanding risk management can help investors manage
risk well, and it is the most important key to ensuring investment sustainability and mutual
fund performance.

However, the results of the five Fama–French factors show that the CMA factor has
a negative and insignificant impact on excess returns. However, other factors such as
SMB, HML, and RMW have a significant impact and have a greater effect on investment
performance. Other factors also have a varying impact on investment performance, such
as the impact of global markets and global economic policies. In addition, investors
analyze historical data more thoroughly by consulting financial experts or investment
advisors. Thus, governments (investors) use information based on factors that ensure
the sustainability of investments when making decisions. This is because investment
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is becoming a source of income for economic diversification, as Timor-Leste is heavily
dependent on oil and gas.

The results of this investigation will serve as a reference source for other researchers
for further investigations (research gaps). This is because only sample data from Timor-
Leste were used in this research. Therefore, future research can be compared with other
SWFs. For example, the sample data from Timor-Leste can be compared with the sample
data from other SWFs. Apart from this, the strategy of portfolio diversification in asset
allocation is very different. This difference is interesting for the question of whether
portfolio construction is appropriate or not. The differences in economic size and the types
of funds used, such as development funds, reserve investment funds, and pension reserve
funds, are also interesting. All these funds depend on the type of fundraising and sources
(non-commodities, oil and gas, or minerals) of each country. All these sources depend
on the individual countries. In addition, Timor-Leste’s investment portfolio is unique in
that it still depends on equity investments in international markets, as Timor-Leste does
not yet have a national capital market. This was done to accumulate profits and diversify
Timor-Leste’s economy.

6. Conclusions and Policy Implications

Based on the results of the analysis and discussion of the data in the previous section,
the following conclusions were drawn. This study empirically examines the CAPM, Fama
and French’s three-factor model, and Fama and French’s five-factor model for the excess
returns of Timor-Leste’s equity and bond investments in the international market. The
sample used includes 156 monthly excess returns over the period from 2006 to 2019. The
results of the CAPM model test show that market returns have a positive and significant
impact on excessive stock returns. The empirical evidence supports hypothesis H1, which
states that the market factor has a positive and statistically significant impact on the excess
return on equity. However, the MKT factor has a positive and significant impact on the
rate of excessive stock returns in both models, i.e., the three-factor model of Fama and
French and the five-factor model of Fama and French. The available empirical data support
hypothesis H1, which states that the market component exerts a positive and statistically
significant influence on the excess return on equity. In addition, the test results of Fama and
French’s three-factor model show that the SMB factor and the HML factor have a negative
and significant influence on the rate of excessive stock returns. The previous findings
offer empirical evidence in favor of hypotheses H2 and H3. Furthermore, the test results
of Fama and French’s five-factor model show that only two of the five model variables,
namely the SMB factor and the HML factor, have a negative and significant impact on
the rate of excess stock returns. The aforementioned findings offer empirical evidence
in support of hypotheses H2 and H3. On the other hand, both the MKT risk and RMW
factor variables are positively and significantly associated with excess returns. This result
provides empirical support for our hypothesis H4. The CMA factor, on the other hand, has
a negative and insignificant effect on excess returns. The available evidence supports the
rejection of the fifth hypothesis (H5).

In summary, this analysis highlights the complexity of risk factors for excessive returns.
The results show that market risks such as size and value play a crucial role in determining
the excess return of Timor-Leste’s portfolio investments. Therefore, the government needs
to consider these aspects in their investment decisions.

The empirical results presented above are interesting and certainly have important
implications for the excess return of Timor-Leste’s portfolio as an emerging stock market.
The significant positive and negative effects of stock and bond investments clearly show
the attention of investors in investing. This also means that it will be a major investment
challenge to achieve the goal of increasing the maximum equity allocation, with an expected
allocation target of 40% equities and 60% bonds to achieve the target of 3% real return with
reasonable probability (Timor-Leste Ministry of Finance 2019).
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Investments in Timor-Leste stocks are contributions from oil revenues pooled in the
Petroleum Fund and then managed for investment in a portfolio of stocks in the interna-
tional market. This is because the SMB and HML factors can predict gross domestic product
(GDP) growth when investing in equities, and these factors forecast future investment
opportunities. Thus, this portfolio investment provides a higher return during fluctuations
in economic performance (Carson 2022). To this end, oil fund managers need to diversify
their portfolios into different asset classes to reduce investment risk.

Fund managers managing petroleum fund portfolios in the form of stocks and bonds
need to pay attention to the SMB factor in terms of investment performance, where small
companies outperform larger companies over the long term. This phenomenon suggests
that the performance of small companies in the stock market may be a predictor of the future
performance of a low-beta-against-beta strategy. Thus, it is the short-term performance of
small companies and funding liquidity that affects the profitability of the low-beta strategy,
which ultimately leads to low or negative returns for the low-beta security class (Zaremba
2020). The same was also found by Ji et al. (2020), who state that the size effect is that the
returns of small listed companies are on average much higher than those of large companies.
Still, for the same researchers, the effect of BM shows that stock returns have a positive
relationship with the book-to-market ratio of the company. A higher book-to-market ratio
can lead to a higher stock return. In addition, Hu et al. (2019) found that a strong size effect
means that smaller companies have higher returns on average than larger companies.

Managers need to understand information about portfolio market activity when
managing investments and macroeconomic risks to deal with increasing unsystematic and
systematic risks in portfolio investments. Therefore, managers need to understand the
relationship between stock market volatility and macroeconomic forces in policy making.
For example, stock price movements in economic activity, especially in portfolio investing,
are influenced by macroeconomic variables such as inflation in predicting excess returns,
especially directional relationships with variables that interact with each other (de Jesus
et al. 2020). In addition, investment managers need to understand the balance of values of
expected cash flows when forecasting interest rate fluctuations that affect changes in stock
prices. This is because high interest rates affect excessive returns on portfolio investments,
i.e., when cash flows are capitalized. It is interesting to make income securities an alternative
investment necessary for holding equity investments. Similarly, high interest rates can affect
investment costs, making investors less willing to borrow and make portfolio investments.
This also affects the value of future cash flows and ultimately leads to a decline in stock
prices (Tiwari et al. 2022). In addition, investment managers need to understand monetary
policy, even though Timor-Leste is still dependent on US monetary policy, especially the
official use of the dollar in the economy, where the contribution of the policy of rising
interest rates affects the rise of the stock market, which in turn has ultimately disrupted
economic activity due to greater inflationary pressures, such as the current war between
Russia and Ukraine.

Based on our findings described in the conclusion and policy implications, we summa-
rize and recommend the following policy actions as a good basis for portfolio investment
decision making:

1. The Petroleum Fund invests in Timor-Leste bonds and equities on the international
markets intending to accumulate capital. This capital is used for economic diversifica-
tion to increase GDP growth. Therefore, to reduce investment risks, the government
needs to diversify its portfolio into different asset classes.

2. Fund managers should consider the SMB factor for petroleum fund portfolios, as
smaller companies often outperform larger companies, possibly indicating the future
performance of a low-beta-against-beta approach.

3. To properly manage assets, managers must have a comprehensive understanding of
market activity and macroeconomic risks in the portfolio.
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4. Fund managers need to have insights into the correlation between stock market volatil-
ity and macroeconomic factors, which are essential for policy decisions, especially for
predicting excess returns.

5. Investment managers need to consider the balance of expected cash flows when
forecasting interest rate fluctuations, as high-interest rates can affect excessive returns
on portfolio investments and reduce investors’ appetite for portfolio investments.

6. Investment managers need to understand the monetary policy in Timor-Leste, which
is heavily influenced by US monetary policy, specifically the dollar. This has resulted
in higher inflationary pressures and disruptions in economic activity.

Timor-Leste, as a recent or new economy (emerging country), participates in equity
investments in international markets. This is the first article that uses the Fama and French
(2015) five-factor model and the three-factor model of Fama and French (1993) in equity
portfolio investment for the country. For this reason, this research is limited to using the
excess returns of equity investments in the form of stocks and bonds as invested in model
markets in various countries such as the US, the UK, Japan, and Australia. It is hoped
that further researchers will add other variables such as momentum and quality and use
the names of listed companies and make Timor-Leste’s investment portfolios comparable
between developing and developed countries since Timor-Leste itself does not yet have a
national capital market.
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BE/ME Book equity to market equity
CAPM Capital asset pricing model
CMA Conservative Minus Aggressive
FF5 Fama–French five-factor model
GDP Gross domestic product
HML High Minus Low
INV Investment by market
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ME Market equity
MENA Middle East and North Africa
MKT Market risk premium
MOM Momentum factor
MPT Modern portfolio theory
NASDAQ National Association of Securities Dealers Automated Quotations
NEP Non-negative equity premium
NYSE New York Stock Exchange
OLS Ordinary least squares
P Profitability
RMW Robust Minus Weak
SMB Small Minus Big
SSA Sub-Saharan African countries
UK United Kingdom
US United State
USD United States dollar

References

Ali, Fahad, Muhammad U. Khurram, and Yuexiang Jiang. 2021. The Five-factor asset pricing model tests and profit-ability and
investment premiums: Evidence from Pakistan. Emerging Markets Finance and Trade 57: 2651–73. [CrossRef]

Ali, Fahad, Rongrong He, and Yuexiang Jiang. 2018. Size, value and business cycle variables. the three-factor model and future
economic growth: Evidence from an emerging market. Economies 6: 14. [CrossRef]

Alqadhib, Haidar, Nada Kulendran, and Lalith Seelanatha. 2022. Impact of COVID-19 on mutual fund performance in Saudi Arabia.
Cogent Economics & Finance 10: 2056361. [CrossRef]

Anjum, Nadia, and Suresh K. O. Rajput. 2021. Forecasting islamic equity indices alpha. International Journal of Islamic and Middle Eastern
Finance and Management 14: 183–203. [CrossRef]

Aygoren, Hakan, and Emrah Balkan. 2020. The role of efficiency in capital asset pricing: A research on nasdaq tech-nology sector.
Managerial Finance 46: 1479–93. [CrossRef]

Bank, Matthias, and Franz Insam. 2019. Risk premium contributions of the Fama and French mimicking factors. Finance Research Letters
29: 347–56. [CrossRef]

Banz, Rolf W. 1981. The relationship between return and market value of common stocks. Journal of Financial Eco-Nomics 9: 3–18.
[CrossRef]

Bartram, Söhnke M., Harald Lohre, Peter F. Pope, and Ananthalakshmi Ranganathan. 2021. Navigating the factor zoo around the
world: An institutional investor perspective. Journal of Business Economics 91: 655–703. [CrossRef]

Bessler, Wolfgang, Georgi Taushanov, and Dominik Wolff. 2021. Factor investing and asset allocation strategies: A comparison of factor
versus sector optimization. Journal of Asset Management 22: 488–506. [CrossRef]

Boussaidi, Ramzi, and Majid I. AlSaggaf. 2022. Contrarian profits and representativeness heuristic in the MENA stock markets. Journal
of Behavioral and Experimental Economics 97: 101820. [CrossRef]

Carson, Scott A. 2022. Long-term daily equity returns across sectors of the oil and gas industry, 2000–2019. Journal of Industry,
Competition and Trade 22: 125–43. [CrossRef]

Carvalho, Gabriel A., Hudson F. Amaral, Juliano L. Pinheiro, and Laíse F. Correia. 2022. Pricing of liquidity risk: New evidence from
the Latin American emerging stock markets. Emerging Markets Finance and Trade 58: 398–416. [CrossRef]

Chai, Daniel, Mardy Chiah, and Angel Zhong. 2019. Choosing factors: Australian evidence. Pacific Basin Finance Journal 58: 101223.
[CrossRef]

Cox, Shaun, and James Britten. 2019. The Fama-French five-factor model: Evidence from the Johannesburg stock exchange. Investment
Analysts Journal 48: 240–61. [CrossRef]

Dichtl, Hubert, Wolfgang Drobetz, and Viktoria S. Wendt. 2021. How to build a factor portfolio: Does the allocation strategy matter?
European Financial Management 27: 20–58. [CrossRef]

Dirkx, Philipp, and Franziska J. Peter. 2020. The Fama-French five-factor model plus momentum: Evidence for the German market.
Schmalenbach Business Review 72: 661–84. [CrossRef]

Doraisami, Anita. 2018. The Timor Leste petroleum fund, veterans and white elephants: Fostering intergenerational equity? Resources
Policy 58: 250–56. [CrossRef]

Ekaputra, Irwan A., and Bambang Sutrisno. 2020. Empirical tests of the Fama-French five-factor model in Indonesia and Singapore.
Afro-Asian Journal of Finance and Accounting 10: 85–111. [CrossRef]

Fama, Eugene F., and James D. MacBeth. 1973. Risk, return, and equilibrium: Empirical tests. Journal of Political Economy 81: 607–36.
[CrossRef]

Fama, Eugene F., and Kenneth R. French. 1992. The cross-section of expected stock returns. The Journal of Finance 47: 427–65. [CrossRef]
Fama, Eugene F., and Kenneth R. French. 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics

33: 3–56. [CrossRef]

330



J. Risk Financial Manag. 2023, 16, 480

Fama, Eugene F., and Kenneth R. French. 2012. Size, value, and momentum in international stock returns. Journal of Financial Economics
105: 457–72. [CrossRef]

Fama, Eugene F., and Kenneth R. French. 2015. A five-factor asset pricing model. Journal of Financial Economics 116: 1–22. [CrossRef]
Fama, Eugene F., and Kenneth R. French. 2017. International tests of a five-factor asset pricing model. Journal of Financial Economics 123:

441–63. [CrossRef]
Fama, Eugene F., and Kenneth R. French. 2018. Choosing factors. Journal of Financial Economics 128: 234–52. [CrossRef]
Fama, Eugene F., and Kenneth R. French. 2020. Comparing cross-section and time-series factor models. Review of Financial Studies 33:

1891–926. [CrossRef]
Fang, Tong, Zhi Su, and Libo Yin. 2021. Does the green inspiration effect matter for stock returns? Evidence from the Chinese stock

market. Empirical Economics 60: 2155–76. [CrossRef]
Hasler, Michael, and Charles Martineau. 2022. Equity return predictability with the ICAPM. SSRN Electronic Journal, 1–37. Available

online: https://papers.ssrn.com/abstract=3368264 (accessed on 3 November 2023).
Hens, Thorsten, and Fatemeh Naebi. 2021. Behavioural heterogeneity in the capital asset pricing model with an application to the

low-beta anomaly. Applied Economics Letters 28: 501–7. [CrossRef]
Horváth, Dominik, and Yung-Lin Wang. 2021. The examination of Fama-French model during the COVID-19. Finance Research Letters

41: 101848. [CrossRef]
Hu, Grace X., Can Chen, Yuan Shao, and Jiang Wang. 2019. Fama–French in China: Size and value factors in Chinese stock returns.

International Review of Finance 19: 3–44. [CrossRef]
Huang, Tzu-Lun. 2019. Is the Fama and French five-factor model robust in the Chinese stock market? Asia Pacific Management Review

24: 278–89. [CrossRef]
Hundal, Shab, Anne Eskola, and Doan Tuan. 2019. Risk–return relationship in the Finnish stock market in the light of capital asset

pricing model (CAPM). Journal of Transnational Management 24: 305–22. [CrossRef]
Hung, Phan T. M., Tran T. T. Dai, Phan N. B. Quynh, Le D. Toan, and Vo H. D. Trinh. 2019. The relationship between risk and return—An

empirical evidence from real estate stocks listed in Vietnam. Asian Economic and Financial Review 9: 1211–26. [CrossRef]
Jareño, Francisco, María de la O. González, and Alba M. Escolástico. 2020. Extension of the Fama and French model: A study of the

largest European financial institutions. International Economics 164: 115–39. [CrossRef]
de Jesus, Carlos, Gizelle D. Willows, and Alison M. Olivier. 2020. The influence of the market on inflation, not the other way around.

Investment Analysts Journal 49: 79–91. [CrossRef]
Ji, Ziyang, Victor Chang, Hao Lan, Ching H. R. Hsu, and Raul Valverde. 2020. Empirical research on the Fama-French three-factor

model and a sentiment-related four-factor model in the Chinese blockchain industry. Sustainability 12: 5170. [CrossRef]
John, Samuel, Elissaios Papyrakis, and Luca Tasciotti. 2020. Is there a resource curse in Timor-Leste? A critical re-view of recent

evidence. Development Studies Research 7: 141–52. [CrossRef]
Kaya, Emine. 2021. Relative performances of asset pricing models for BIST 100 index. Revista Espanola de Financiacion y Contabilidad 50:

280–301. [CrossRef]
Kazmi, Madiha, Umara Noreen, Imran A. Jadoon, and Attayah Shafique. 2021. Downside beta and downside gam-ma: In search for a

better capital asset pricing model. Risks 9: 223. [CrossRef]
Kostin, Konstantin B., Philippe Runge, and Michel Charifzadeh. 2022. An analysis and comparison of multi-factor asset pricing model

performance during pandemic situations in developed and emerging markets. Mathematics 10: 142. [CrossRef]
Kubota, Keiichi, and Hitoshi Takehara. 2018. Does the Fama and French five-factor model work well in Japan? International Review of

Finance 18: 137–46. [CrossRef]
Kynigakis, Iason, and Ekaterini Panopoulou. 2022. Does model complexity add value to asset allocation? Evidence from machine

learning forecasting models. Journal of Applied Econometrics 37: 603–39. [CrossRef]
Lalwani, Vaibhav, and Madhumita Chakraborty. 2020. Multi-factor asset pricing models in emerging and developed markets.

Managerial Finance 46: 360–80. [CrossRef]
Levy, Moshe. 2022. An inter-temporal CAPM based on first order stochastic dominance. European Journal of Operational Research 298:

734–39. [CrossRef]
Lintner, John. 1965. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The

Review of Economics and Statistics 47: 13. [CrossRef]
Liu, Hao, Hao Zhang, Ya C. Gao, and Xu D. Chen. 2022. Firm age and beta: Evidence from China. International Review of Economics and

Finance 77: 244–61. [CrossRef]
Lone, Umer M., Mushtaq A. Darzi, and Khalid U. Islam. 2021. Macroeconomic variables and stock market performance: A PMG/ARDL

approach for BRICS economies. Macroeconomics and Finance in Emerging Market Economies 16: 300–25. [CrossRef]
Lopes, Helder. 2021. Timor-Leste to Graduate from LDC Category and Beyond: Through Structural Transformation and Economic

Diversification. ESCAP Working Paper Series. pp. 1–51. Available online: https://repository.unescap.org/handle/20.500.12870
/3689 (accessed on 1 November 2023).

López-García, María Nieves, J. E. Trinidad-Segovia, M. A. Sánchez-Granero, and Igor Pouchkarev. 2021. Extending the Fama and
French model with a long term memory factor. European Journal of Operational Research 291: 421–26. [CrossRef]

Maneemaroj, Panutat, Ravi Lonkani, and Chanon Chingchayanurak. 2021. Appropriate expected return and the relationship with risk.
Global Business Review 22: 865–78. [CrossRef]

331



J. Risk Financial Manag. 2023, 16, 480

Markowitz, Harry. 1952. Portfolio Selection. Journal of Finance 7: 77–91.
Mohanty, Subhransu S. 2019. Does one model fit all in global equity markets? some insight into market factor based strategies in

enhancing alpha. International Journal of Finance and Economics 24: 1170–92. [CrossRef]
Mosoeu, Selebogo, and Odongo Kodongo. 2020. The Fama-French five-factor model and emerging market equity returns. Quarterly

Review of Economics and Finance 85: 55–76. [CrossRef]
Mossin, Jan. 1966. Equilibrium in a capital asset market. Econometrica 34: 768–83. Available online: http://www.jstor.org/stable/1910

098 (accessed on 2 April 2022).
Nazaire, Gregory, Maria Pacurar, and Oumar Sy. 2020. Betas versus characteristics: A practical perspective. European Financial

Management 26: 1385–413. [CrossRef]
Nichol, Eoghan, and Michael Dowling. 2014. Profitability and investment factors for UK asset pricing models. Economics Letters 125:

364–66. [CrossRef]
Pandey, Asheesh, and Rajni Joshi. 2021. Examining asset pricing anomalies: Evidence from Europe. Business Perspectives and Research

10: 362–78. [CrossRef]
Richey, Greg. 2017. Fewer reasons to sin: A five-factor investigation of vice stock returns. Managerial Finance 43: 1016–33. [CrossRef]
Rojo-Suárez, Javier, Ana B. Alonso-Conde, and Ricardo Ferrero-Pozo. 2022. Liquidity, time-varying betas and anom-alies: Is the high

trading activity enhancing the validity of the CAPM in the UK equity market? International Journal of Finance and Economics 27:
45–60. [CrossRef]

Roy, Rahul. 2021. A six-factor asset pricing model: The Japanese evidence. Financial Planning Review 4: 1–18. [CrossRef]
Ryan, Nina, Xinfeng Ruan, Jin E. Zhang, and Jing A. Zhang. 2021. Choosing factors for the Vietnamese stock market. Journal of Risk and

Financial Management 14: 96. [CrossRef]
Sahabuddin, Mohammad, Md A. Islam, Mosab I. Tabash, Suhaib Anagreh, Rozina Akter, and Md M. Rahman. 2022. Co-movement,

portfolio diversification, investors’ behavior and psychology: Evidence from developed and emerging countries’ stock markets.
Journal of Risk and Financial Management 15: 319. [CrossRef]
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1. Introduction

A standard option gives its owner the right to buy (or sell) some underlying asset
in the future for a fixed price. Call options confer the right to buy the asset, while put
options confer the right to sell the asset. Path-dependent options represent extensions
of this concept. For example, a lookback call option confers the right to buy an asset at
its minimum price over some time period. A barrier option resembles a standard option
except that the payoff also depends on whether or not the asset price crosses a certain
barrier level during the option’s life. Lookback and barrier options are two of the most
popular types of path-dependent options

Following the lead set by Black and Scholes (1973) and assuming that the underlying
asset price follows a geometric Brownian motion with constant volatility, Merton (1973)
derived a closed-form pricing formula for down-and-out call options. Reiner and Rubin-
stein (1991) extended Merton’s results to other types of barrier options. Goldman et al.
(1979) and Conze and Vishwanathan (1991) provided closed-form pricing formulas for
lookback options. For a good summary for research on path-dependent options under the
Black–Scholes framework, refer to Clewlow et al. (1994). As we know, the assumption that
an asset price process follows a geometric Brownian motion with constant volatility does
not capture the empirical observations, due to the volatility smile effect. So, it is desirable
to overcome this drawback. There are different ways of extending the Black–Scholes model
to incorporate the “smile" feature: one way is to consider “local volatility", and the other is
to consider “stochastic volatility".

One popular local volatility model is the constant elasticity of variance (CEV) model
introduced by Cox (1975, 1996), where a closed-form pricing formula for European call
options was presented. Davydov and Linetsky (2001) derived solutions for barrier and
lookback option prices under the CEV process in closed form and demonstrated that
barrier and lookback option prices and hedge ratios under the CEV process can deviate
dramatically from the lognormal values. In Boyle and Tian (1999), the pricing of certain
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path-dependent options was re-examined when the underlying asset follows the CEV
diffusion process, by approximating the CEV process using a trinomial method.

Heston (1993) assumes that volatility reverts to a long-term mean at a specified rate.
Bates (1996) builds upon the Heston model by introducing a jump component for asset
prices, which is represented as a compound Poisson process with normally distributed
jumps. In a further refinement of the Heston model, the jumps are characterized by infinite
activity jumps generated by a tempered stable process, as demonstrated in Zaevski et al.
(2014). Despite these advancements, the pricing challenges associated with path-dependent
options in the context of stochastic volatility persist, as no analytical solutions are available
for these models.

Chiarella et al. (2012) considered the problem of numerically evaluating barrier option
prices when the underlying dynamics are driven by the Heston stochastic volatility model
and developed a method of lines approach to evaluate the price as well as the delta and
gamma of the option. Park and Kim (2013) investigated a semi-analytic pricing method for
lookback options in a general stochastic volatility framework. The resultant formula is well
connected to the Black–Scholes price that is the first term of a series expansion, which makes
computing the option prices relatively efficient. Furthermore, a convergence condition
for the expansion was provided with an error bound. Leung (2013) and Wirtu et al. (2017)
derived an analytic pricing formula for floating strike lookback options under the Heston
model by means of the homotopy analysis method. The price is given by an infinite series
whose value can be determined once an initial term is given well.

In addition, Kato et al. (2013) derived a new semi-closed-form approximation formula
for pricing an up-and-out barrier option under a certain type of stochastic volatility model,
including an SABR model. In a more recent paper by Funahashi and Higuchi (2018),
a unified approximation scheme was proposed for a single-barrier option under local
volatility models, stochastic volatility models, and their combinations. The basic idea of
their approximation is to mimic a target underlying an asset process using a polynomial of
the Wiener process. They then translated the problem of solving the first hit probability of
the asset price into the problem of solving that of a Wiener process whose distribution of the
passage time is known. Finally, utilizing Girsanov’s theorem and the reflection principle,
they showed that single-barrier option prices can be approximated in a closed form.

The main contribution of this paper is to derive new closed-form approximation
formulas for pricing down-and-out put barrier options and floating strike lookback put
options under a certain type of stochastic volatility model, which is similar to the one
in Cao et al. (2023); Kato et al. (2013); Kim et al. (2023). To achieve our goal, we apply
the asymptotic approach discussed in Fouque et al. (2011) and Mellin transform. Mellin
transform techniques were used by Panini and Srivastav (2004) to derive integral equation
representations for the price of European and American basket put options. Similarly,
Yoon (2014) applied Mellin transform to derive a closed-form solution of the option price
with respect to a European call option and a European put option with the Hull–White
stochastic interest rate. Moreover, Kim and Yoon (2018) derived a closed-form formula of
a second-order approximation for a European corrected option price under a stochastic
elasticity of variance (SEV) model.

The rest of the paper is organized as follows. Section 2 discusses the model framework
and the features of down-and-out and floating strike lookback put options. In Section 3,
we provide detailed discussions on an asymptotic approach, which is used to derive
approximations to the risk-netural values of these types of options. In Section 4, we apply
Mellin transform to derive a closed-form formula of the first-order approximation for down-
and-out barrier put options. In Section 5, we apply Mellin transform to derive a closed-form
formula of the first-order approximation for floating strike lookback put options. Section 6
presents a sensitivity and comparison analysis and demonstrates that the results given by
these closed-form formulas match well with those generated by Monte-Carlo simulation.
Section 7 gives a brief summary. Details on Mellin transform and the derivation of the
closed-form formulas in Sections 4 and 5 are provided in Appendices A and B, respectively.
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2. Basic Model Set-Up and Path-Dependent Options

2.1. Stochastic Volatility Model

Let {St : t ≥ 0} denote the price process of a risky asset on some filtered probabil-
ity space (Ω, F , (Ft)t≥0,P), where P is the physical probability measure In this paper,
we assume that {St : t ≥ 0} evolves according to the following system of stochastic
differential equations:

dSt = μStdt + f (Yt)StdWs
t ,

dYt = α(m − Yt)dt + β

(
ρdWs

t +
√

1 − ρ2dWy
t

)
, (1)

where μ, α > 0, β > 0, and m are constants and f is a function having positive values and
specifying the dependence on the hidden process {Yt : t ≥ 0}. The processes {Ws

t : t ≥ 0}
and

{
Wy

t : t ≥ 0
}

are independent standard Brownian motions. The constant correlation
coefficient ρ with −1 < ρ < 1 captures the leverage effect. Here, μ is the drift rate. The
mean-reversion process {Yt : t ≥ 0} given in Equation (1) is characterized by its typical time
to return back to the mean level m of its long-run distribution. The parameter α determines
the speed of mean-reversion, and β controls the volatility of {Yt : t ≥ 0}. In the sequel, we
shall refer to the above system as the stochastic volatility (SV) model. In Sections 2 and 3,
we will not specify the concrete form of f , but assume that f is bounded and smooth
enough, e.g., f ∈ C2

0(R). Furthermore, f has to satisfy a sufficient growth condition in
order to avoid bad behavior such as the non-existence of moments of {St : t ≥ 0}. For
numerical results in Section 6, we choose f to take a special form, as used in Fouque et al.
(2000, 2011) and Cao et al. (2021).

We apply the well-known Girsanov theorem to change the physical measure P to a
risk-neutral martingale measure Q by letting

dWs∗
t =

μ − r
f (Yt)

dt + dWs
t y and dWy∗

t = ξ(Yt)dt + dWy
t ,

where ξ(Yt) represents the premium of volatility risk. Then, the model equations under the
measure Q can be written as

dSt = rStdt + f (Yt)StdWs∗
t ,

dYt =

[
α(m − Yt)− β

(
ρ

μ − r
f (Yt)

+ ξ(Yt)
√

1 − ρ2
)]

dt (2)

+β

(
ρdWs∗

t +
√

1 − ρ2dWy∗
t

)
.

Note that {Ws∗
t : t ≥ 0} and

{
Wy∗

t : t ≥ 0
}

are independent standard Brownian mo-
tions under Q. As an Ornstein–Uhlenbeck (OU) process, {Yt : t ≥ 0} in Equation (1) has an
invariant distribution, which is normal with mean m and variance β2/2α. Thus, we can
expect that if mean reversion is very fast, i.e., α goes to infinity, the process {St : t ≥ 0}
should be close to a geometric Brownian motion. This means that if mean reversion is
extremely fast, then the model of Black and Scholes would become a good approximation.
In reality, however, it may not be the case. For fast but not extremely fast mean-reversion,
the Black–Scholes model needs to be corrected to account for the random characteristics
of the volatility of a risky asset. For this purpose, we introduce another small parameter
ε defined by ε = 1/α, as performed by Fouque et al. (2000). For notational convenience,
we put ν = β/

√
2α. With the help of these notations, the model equations under Q are

re-written as
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dSt = rStdt + f (Yt)StdWs∗
t ,

dYt =

[
1
ε
(m − Yt)−

√
2ν√
ε

Λ(Yt)

]
dt +

√
2ν√
ε

(
ρdWs∗

t +
√

1 − ρ2dWy∗
t

)
,

where Λ(·), defined by

Λ(y) := ρ
μ − r
f (y)

+ ξ(y)
√

1 − ρ2,

is the combined market price of risk.

2.2. Path-Dependent Options

Let V(T) denote the payoff of a put option on the risky asset at its expiration T. Then,
its risk-neutral price at time t ∈ [0, T] under our SV model is given by

P(t, s, y) = EQ
(

e−r(T−t)V(T)| St = s, Yt = y
)

.

Note that V(T) depends on the type of options. In this paper, we consider two types
of path-dependent options: down-and-out put options and floating strike lookback put
options. For notational convenience, we put Ut := min0≤u≤t Su and Zt := max0≤u≤t Su.
The payoff of a down-and-out put option is given by

DOP(T) := max{K − ST , 0} × �UT>B,

where K is the strike price, B is the barrier level satisfying 0 < B < K, and �UT>B is the
indicator function. For a floating strike lookback put option, its payoff has the form of
LPf loat(T) := ZT − ST . Applying Itô’s lemma, we can obtain a partial differential equation
(PDE) for P(t, s, y) as follows:

0 =
∂P
∂t

+
1
2

s2 f 2(y)
∂2P
∂s2 + r

(
s

∂P
∂s

− P
)
+

√
2ρνs√

ε
f (y)

∂2P
∂s∂y

+
ν2

ε

∂2P
∂y2 +

(
1
ε
(m − y)−

√
2ν√
ε

Λ(y)

)
∂P
∂y

. (3)

The boundary conditions for Equation (3) vary depending on the type of options. For
example, the boundary conditions for Equation (3) when V(T) = DOP(T) are{

P(T, s, y) = max{K − s, 0}, s > B,

P(t, B, y) = 0, 0 ≤ t ≤ T.

When V(T) = LPf loat(T), the boundary conditions become the following:⎧⎨⎩
∂P
∂z

(t, z, y, z) = 0, 0 ≤ t ≤ T, z > 0,

P(T, s, y, z) = z − s, 0 ≤ s ≤ z.

Note that in this case, P is a function of t, s, y, and z (here, Zt = z).
Remark: Since the Mellin transform of the payoff function of a call option is not

defined, this paper primarily concentrates on evaluating put options. However, as outlined
in Buchen (2001), the pricing of call options can be directly derived from put options
through the put–call parity relationship.

3. Asymptotic Expansions

In this section, we apply an asymptotic expansion approach to establish partial differ-
ential equations, which will be used to derive an approximate solution to Equation (3) and
thus find an approximated value of a put option.

We begin with re-organizing Equation (3) in terms of the orders of ε as follows:
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1
ε
L0P +

1√
ε
L1P + L2P = 0, (4)

where the operators L0, L1 and L2 are defined by

L0 := (m − y)
∂

∂y
+ ν2 ∂2

∂y2 ,

L1 :=
√

2ρνs f (y)
∂2

∂s∂y
−
√

2νΛ(y)
∂

∂y
, and

L2 :=
∂

∂t
+

1
2

s2 f 2(y)
∂2

∂s2 + r
(

s
∂

∂s
− ·

)
.

In order to obtain an efficient approximate solution to P, as that in Fouque et al. (2011),
we apply the following asymptotic expansion of P:

P = P0 +
√

εP1 + εP2 + ε
√

εP3 + . . . , (5)

where P0, P1, . . . are functions corresponding to varying orders of ε. Substituting P in
Equation (5) into Equation (4) and re-organizing the terms, we obtain

0 =
1
ε
L0P0 +

1√
ε
(L1P0 + L0P1) + (L0P2 + L1P1 + L2P0)

+
√

ε(L0P3 + L1P2 + L2P1) + . . . . (6)

Our aim is to find P0 and P1.
Firstly, from the O(1/ε)-order term in Equation (6), we obtain L0P0 = 0. If we assume

that P0 does not grow as fast as ey2/2, as was assumed in Choi et al. (2013), we can show that
P0 is independent of y. Secondly, from the O(1/

√
ε)-order term in Equation (6), we obtain

L1P0 + L0P1 = 0. Since P0 is independent of y, then L1P0 = 0. It follows that L0P1 = 0.
Again, if we assume that P1 does not grow as fast as ey2/2, then we can deduce that P1 is
also independent of y.

Next, from the O(1)-order term in Equation (6), we obtain

L0P2 + L1P1 + L2P0 = 0.

Since P1 is independent of y, we have L1P1 = 0, which implies that

L0P2 + L2P0 = 0. (7)

Seeing Equation (7) as a Poisson equation for P2 in y, in order for it to have a solution,
it is required to satisfy the centering condition

〈L2P0〉 = 〈L2〉P0 = 0, (8)

which is equivalent to

∂P0

∂t
+ rs

∂P0

∂s
+

1
2

s2〈 f 2〉∂2P0

∂s2 − rP0 = 0. (9)

This is an equation for us to determine the P0 term. Here, 〈·〉 denotes the expectation
with respect to the invariant distribution of the process {Yt : t ≥ 0}, i.e.,

〈h〉 =
∫ +∞

−∞
h(y)Φ(y)dy, where Φ(y) =

1√
2πν2

e−
(y−m)2

2ν2 .

Note that a small ε value corresponds to fast-mean reverting. In this case, Yt ap-
proaches a constant and 〈 f 2〉 can be regarded as constant variance, and then Equation (9)
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is the Black–Scholes PDE. Thus, for small ε, P0 represents the put option price under the
Black–Scholes model.

Following Equation (8), we have

L2P0 = L2P0 − 〈L2〉P0 =
1
2

(
f 2 − 〈 f 2〉

)
s2 ∂2P0

∂s2 ,

which, together with Equation (7), implies

L0P2 = −1
2

(
f 2 − 〈 f 2〉

)
s2 ∂2P0

∂s2 . (10)

The solution to Equation (10) can be expressed as

P2 = −1
2
(φ + c)s2 ∂2P0

∂s2 , (11)

where φ is a function of y which only satisfies the equation L0φ = f 2 − 〈 f 2〉, and c is a
function of other variables except y.

To derive an equation for P1, we consider the O(
√

ε)-term in Equation (6) and obtain

L0P3 + L1P2 + L2P1 = 0.

This equation can be regarded as a Poisson equation for P3 in y, and in order for it to
have a solution, the following centering condition must be satisfied:

〈L1P2 + L2P1〉 = 0. (12)

After we substitute P2 in Equation (11) into Equation (12) and make simplifications,
we obtain

∂P1

∂t
+

1
2
〈 f 2〉s2 ∂2P1

∂s2 + rs
∂P1

∂s
− rP1 = c1s3 ∂3P0

∂s3 + c2s2 ∂2P0

∂s2 , (13)

where

c1 :=

√
2

2
〈 f φ′〉ρν and c2 :=

√
2

2
(
2ρ〈 f φ′〉 − 〈Λφ′〉)ν. (14)

This is an equation for us to determine the first correction term P1.
We summarize the previous formal analysis as the following theorem.

Theorem 1. Under the SV model governed by Equation (1), an approximation of the risk-neutral
value P of a path-dependent put option is given by

P = P0 +
√

εP1 + o(
√

ε), (15)

for small ε, where P0 and P1 are determined by Equations (9) and (13) with corresponding boundary
conditions, respectively, such that P0 is the put option price under the Black–Scholes model with
constant effective volatility

√〈 f 2〉 and P1 is the first-order correction term.

Finally, as mentioned in Section 2, boundary conditions for Equations (8) and (13)
depend on the types of options that we consider. We describe the corresponding boundary
conditions and solve these equations in the next two sections.

4. Determining P0 and P1 for Down-and-Out Put Options

In this section, we use Mellin transform to derive analytical expressions of the P0 and
P1 terms for down-and-out put options
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4.1. P0 Term for Down-and-Out Put Options

In order to use Mellin transform to calculate the P0 term for down-and-out put options,
noting that P0 is independent of y under our assumption, we first follow the method in
Buchen (2001) and use the boundary condition,

P(T, s, y) = max{K − s, 0}, for s > B,

to set up the boundary condition of P0 for s ≥ 0 as follows:

P0(T, s) := (K − s)�B<s<K −
(

B
s

)k1−1(
K − B2

s

)
� B2

K <s<B
, (16)

where k1 = 2r/〈 f 2〉. Now, we apply Mellin transform to Equation (9) to convert this PDE
into the following ODE:

dP̂0

dt
+

(
1
2
〈 f 2〉(w2 + w)− rw − r

)
P̂0 = 0. (17)

The solution to Equation (17) is given by

P̂0(t, w) = θ̂(w)e
1
2 〈 f 2〉(w2+(1−k1)w−k1)(T−t), (18)

where θ̂ is a function of w, determined by the boundary condition (16).
Next, we take inverse Mellin transform of Equation (18) and obtain

P0(t, s) = P0(T, s) ∗M−1eλ(w+η)2+δ,

where
λ =

1
2
〈 f 2〉(T − t), η =

1 − k1

2
, δ = −λη2 − r(T − t)

and the operation ∗ means the convolution. Applying Table A1 in Appendix A and the
boundary condition given in Equation (16), we have

P0(t, s) = P0(T, s) ∗
(

eδsη

2
√

λπ
e−

1
4λ (ln s)2

)
=

∫ K

B
(K − u)eδ

( s
u

)η
(

1
2
√

λπ
e−

1
4λ (ln( s

u ))
2
)

du
u

− (19)

∫ B

B2
K

(
B
u

)k1−1(
K − B2

u

)
eδ
( s

u

)η
(

1
2
√

λπ
e−

1
4λ (ln( s

u ))
2
)

du
u

.

After some careful calculation, for down-and-out put options, we derive a closed-form
expression of the P0 term as follows:

P0(t, s) = Ke−r(T−t)
(

Φ
(
−Δ−

( s
K

))
− Φ

(
−Δ−

( s
B

)))
−

s
(

Φ
(
−Δ+

( s
K

))
− Φ

(
−Δ+

( s
B

)))
−

Ke−r(T−t)
(

B
s

)k1−1[
Φ
(

Δ−
(

B
s

))
− Φ

(
Δ−

(
B2

sK

))]
+

B
(

B
s

)k1
[

Φ
(

Δ+

(
B
s

))
− Φ

(
Δ+

(
B2

sK

))]
, (20)

where Φ(·) is the CDF of the standard normal distribution and

Δ±(x) =
1√〈 f 2〉(T − t)

[
ln(x) +

(
r ± 1

2
〈 f 2〉

)
(T − t)

]
.
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Note that P0 given in Equation (20) is precisely the same as the price of a down-and-out
put option given in the literature, e.g., Hull (2015, chp. 26, p. 606) or Haug (2006, chp. 4),
if we let σ2 = 〈 f 2〉. For details of the derivation of formula (20), we refer the reader to
Appendix B.

4.2. P1 Term for Down-and-Out Put Options

For down-and-out put options, the boundary conditions for P1 are{
P1(T, s) = 0, f or s ≥ B,

P1(t, B) = 0, f or 0 < t < T.

We again follow the method in Buchen (2001) and extend the boundary conditions
P1(T, s) = 0, for s ≥ B as P1(T, s) = 0 for all s ≥ 0.

Next, we apply Mellin transform to Equation (13) to obtain

dP̂1

dt
+

(
1
2
〈 f 2〉

(
w2 + w

)
− rw − r

)
P̂1 = (−c1w(w + 1)(w + 2) + c2w(w + 1))P̂0.

Solving this equation, we obtain

P̂1(t, w) =
[
c1(T − t)w3 − (c2 − 3c1)(T − t)w2 − (c2 − 2c1)(T − t)w

]
P̂0(t, w).

Finally, applying inverse Mellin transform, we obtain an explicit closed-form expres-
sion of P1 as follows:

P1(t, s) = M−1(P̂1(t, w)
)

= c1(T − t)
(
−s

d
ds

P0(t, s)− 3s2 d2

ds2 P0(t, s)− s3 d3

ds3 P0(t, s)
)

−(c2 − 3c1)(T − t)
(

s
d
ds

P0(t, s) + s2 d2

ds2 P0(t, s)
)

(21)

−(c2 − 2c1)(T − t)
(
−s

d
ds

P0(t, s)
)

,

where P0 is given in the previous section and c1 and c2 are given in Equation (14).
We summarize the above analysis and calculation on down-and-out put options in the

following theorem.

Theorem 2. Under the SV model governed by Equation (1), an approximation of the risk-neutral
value P of a down-and-out barrier put option is given by

P = P0 +
√

εP1 + o(
√

ε), (22)

where P0 and P1 are given by Equations (20) and (21), respectively.

5. Determining P0 and P1 for Lookback Put Options

In this section, we use Mellin transform to derive analytical expressions of the P0 and
P1 terms for floating strike lookback put options

5.1. P0 Term for Lookback Put Options

For lookback floating strike put options, the boundary conditions of P0 are⎧⎪⎪⎨⎪⎪⎩
∂P0

∂z
(t, z, z) = 0,

∂P0

∂z
(T, s, z) = 1, f or 0 < s < z.

Similar to the case of down-and-out put options, we extend the second boundary
condition to 0 < s < ∞ as follows:
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∂P0

∂z
(T, s, z) := �s<z −

( z
s

)k1−1 · �z<s, for 0 < s < ∞.

Then, by integrating each side of the last equation, we can obtain

P0(T, s, z) =
∫ z

s
−
(

ξ

s

)k1−1
dξ = − 1

k1

( z
s

)k1
s +

1
k1

s (23)

for s > z. For convenience, we let u = s/z and Q0 = P0/z. With these notations,
Equation (9) becomes

∂Q0

∂t
+

1
2

u2〈 f 2〉∂2Q0

∂u2 + ru
∂Q0

∂u
− rQ0 = 0, (24)

with boundary conditions

Q0(T, u) = − 1
k1

u1−k1 +
1
k1

u, for u > 1, (25)

and Q0(T, u) = 1, for 0 < u < 1.
Note that except the boundary conditions, Equation (24) is identical to Equation (9).

Applying Mellin transform in the same way as that for the case of down-and-out put
options, we can derive the solution to Equation (24) as follows:

Q0(t, u) = θ̂(w) ∗M−1eλ(w+η)2+δ.

Again, applying Table A1 and P0 given in Equation (16), we have

Q0(t, u) = Q0(T, u) ∗ eδzη

(
1

2
√

π
λ− 1

2 e−
1

4λ (ln z)2
)

=
∫ 1

0
(1 − ξ)eδ

(
u
ξ

)η
(

1
2
√

π
λ− 1

2 e−
1

4λ

(
ln
(

u
ξ

))2
)

dξ

ξ
+ (26)

∫ ∞

1

(−1
k1

ξ1−k1 +
ξ

k1

)
eδ

(
u
ξ

)η
(

1
2
√

π
λ− 1

2 e−
1

4λ

(
ln
(

u
ξ

))2
)

dξ

ξ
.

After calculating integrals, for floating strike lookback put options, we derive a closed-
form expression of the P0 term as follows:

P0(t, s, z) = ze−r(T−t)Φ
(
−Δ−

( s
z

))
− sΦ

(
−Δ+

( s
z

))
(27)

− z
k1

( s
z

)1−k1
e−r(T−t)Φ

(
−Δ−

( z
s

))
+

s
k1

Φ
(

Δ+

( s
z

))
,

where Φ(·) is the CDF of the standard normal distribution. Note that P0 given in Equation (27)
is precisely the same as the price of a floating strike put option given in the literature, e.g., Hull
(2015, chp. 26, p. 608) or Haug (2006, chp. 4), if we let σ2 := 〈 f 2〉. Details of the derivation of
this formula can be found in Appendix B.

5.2. P1 Term for Lookback Put Options

For floating strike lookback put options, the boundary conditions for P1 are⎧⎪⎨⎪⎩
P1(T, s, z) = 0, f or 0 < s < z,

∂P1

∂z
(t, z, z) = 0, f or 0 < t < T and z > 0.

Just like that for the P0-term for floating strike lookback put options, we let u = s/z
and Q1 = P1/z. With these notation changes, Equation (13) is converted to the following:
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∂Q1

∂t
+

1
2
〈 f 2〉u2 ∂2Q1

∂u2 + ru
∂Q1

∂u
− rQ1 = c1u3 ∂3Q0

∂u3 + c2u2 ∂2Q0

∂u2 (28)

with Q1(T, u) = 0 for 0 < u < 1.
Note that Equation (28) is essentially the same as Equation (13), except the notational

difference. So, we have

Q1(t, u) = c1(T − t)
(
−u

d
du

Q0(t, u)− 3u2 d2

du2 Q0(t, u)− u3 d3

du3 Q0(t, u)
)

−(c2 − 3c1)(T − t)
(

u
d

du
Q0(t, u) + u2 d2

dz2 Q0(t, u)
)

(29)

−(c2 − 2c1)(T − t)
(
−u

d
du

Q0(t, u)
)

,

where Q0 is given previously. Consequently, we have

P1(t, s, z) = c1(T − t)
(
−s

d
ds

P0(t, s, z)− 3s2 d2

ds2 P0(t, s, z)− s3 d3

ds3 P0(t, s, z)
)

−(c2 − 3c1)(T − t)
(

s
d
ds

P0(t, s, z) + s2 d2

ds2 P0(t, s, z)
)

(30)

−(c2 − 2c1)(T − t)
(
−s

d
ds

P0(t, s, z)
)

,

where c1 and c2 are the same as those defined previously.
We summarize the above analysis and calculation on floating strike lookback put

options in the following theorem.

Theorem 3. Under the SV model governed by Equation (1), an approximation of the risk-neutral
value P of a floating strike lookback put option is given by

P = P0 +
√

εP1 + o(
√

ε), (31)

where P0 and P1 are given by Equations (27) and (30), respectively.

6. Numerical Results and Sensitivity Analysis

In this section, we conduct a numerical study to investigate the sensitivity of the
first-order correction term P1 and our approximation results P0 +

√
εP1 with respect to the

initial value of underlying asset. This means that we set t = 0 throughout this section. We
also compare the results given by our closed form formulas with those generated by the
Monte-Carlo simulation.

First of all, as conducted by Fouque et al. (2000, 2011) and Cao et al. (2021), we choose
f to take the following form:

f (y) = 0.35
(

tan−1(y) +
π

2

)
/π + 0.05.

Secondly, the values of other parameters used in this section are given in Table 1
whenever they are required to be fixed.

Table 1. The role and numerical value of parameters.

Parameter Role Value

r risk-free interest rate 0.035
B barrier level 1500
K put option strike price 2700
T maturity time 1
c1 as defined in Section 3 −0.004
c2 as defined in Section 3 −0.018
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Here, we do not choose precise values of β and ρ, and particular forms of ξ(y) (in
Section 2) and φ(y) (in Section 3) to calculate the above values of c1 and c2. Instead, c1
and c2 are calibrated from the term structure of the implied volatility surface as described
in the book of Fouque et al. (2000). Specifically, the implied volatility Iε of a European
vallina call option with fast mean-reverting stochastic process can be approximated by the
following formula:

Iε = a
ln(K

s )

T − t
+ b + o(

√
ε)

with

a = − c1

〈 f 2〉3/2 and b =
√
〈 f 2〉+ c1

〈 f 2〉3/2

(
r +

3
2
〈 f 2〉

)
− c2√〈 f 2〉 .

The parameters a and b are estimated as the slope and intercept of the regression fit
of the observed implied volatilities as a linear function of logmoneyness-to-maturity-ratio
ln(K/s)/(T − t). From the calibrated values a and b on the observed implied volatility
surface, the parameters c1 and c2 are obtained as

c1 = −aσ〈 f 2〉3/2
and c2 =

√
〈 f 2〉((

√
〈 f 2〉 − b)− a(r +

3
2
〈 f 2〉)).

Thirdly, note that when t = 0, s = z. Hence, in this case, the formula for P0 given by
Equation (27) is simplified.

Figure 1a shows how the
√

εP1-term for a down-and-out barrier put option changes
with respect to a variation in ε values As we can see, for fixed ε, when s increases, P1
decreases first, and then increases after it hits its trough. When ε becomes smaller (equiv-
alently, the mean-reverting speed becomes larger),

√
εP1 approaches to a zero. Figure 1b

shows how the value of P0 +
√

εP1 for a down-and-out put option varies with respect to
the change in ε values. As we can see, when the value of ε changes from 0.01 to 0.0001, the
value of P0 +

√
εP1 does not vary much. In fact, the values of P0 +

√
εP1 match well with

the result of Monte-Carlo simulation in all cases. Furthermore, in all cases, the value of
P0 +

√
εP1 declines as s increases.
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Figure 1. Plots of
√

εP1 and P0 +
√

εP1 with different values of ε against the initial value of the
underlying asset, for the down-and-out put option.

Figure 2a shows how the
√

εP1-term for a floating strike lookback put changes with
respect to a variation in ε values. In a similar pattern, for a fixed ε-value, when s increases,
P1 decreases first and then increases after it hits its trough. Similar to the case of down-and-
out put options, when ε becomes smaller (equivalently, the mean-reverting speed becomes
larger),

√
εP1 approaches to zero. Figure 2b shows how the value of P0 +

√
εP1 for a floating

strike put varies with respect to the change in ε values. When the value of ε changes from
0.01 to 0.001, the value of P0 +

√
εP1 varies. But when the value of ε changes from 0.001 to

0.0001, the value of P0 +
√

εP1 does not vary much. The values of P0 +
√

εP1 match well
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with the result of Monte-Carlo simulation when ε = 0.001 or 0.0001. Furthermore, in all
cases, the value of P0 +

√
εP1 increases as s increases.
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Figure 2. Plots of
√

εP1 and P0 +
√

εP1 with different values of ε, against the initial value of the
underlying asset, for floating strike put options.

Figure 3a illustrates the variation in the value of P0 +
√

εP1 for a down-and-out put
option in response to changes in ρ values. As ρ shifts from −0.6 to −0.4, there is a slight
decrease in the value of P0 +

√
εP1. Additionally, in all scenarios, the value of P0 +

√
εP1

shows an upward trend as s increases.
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Figure 3. Plots P0 +
√

εP1 with different values of ρ, against the initial value of the underlying asset,
for down-and-out put option and floating strike put option.

Figure 3b depicts the change in the value of P0 +
√

εP1 for a floating strike put con-
cerning variations in ρ values. Similar to the previous case, a shift in ρ from −0.6 to −0.4
results in a minor decline in the value of P0 +

√
εP1. Moreover, across all instances, an

increase in s is associated with a rise in the value of P0 +
√

εP1.

7. Concluding Remarks

This article establishes explicit closed-form solutions for first order approximations
of down-and-out barrier and floating strike lookback put option prices under a stochastic
volatility model by means of Mellin transform. The zero-order terms in the solutions for
the prices of both types of put options coincide with those in Hull (2015) or Haug (2006)
under the classical Back–Scholes model. Our numerical analysis shows that the results
given by those explicit closed-form solutions match well with those generated by the
Monte-Carlo simulation. This confirms the accuracy of the approximation. Furthermore,
we also discussed the sensitivity of the first-order error terms and the approximation with
respect to the underlying asset price and the mean-reverting speed of the OU-process which
governs the volatility.
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This model formula can be employed by financial professionals for the swift and
precise pricing of barrier and lookback options. This is demonstrated by the efficiency of
our formula in comparison to the conventional Monte-Carlo method. Our pricing formula
offers an effective means of assessing barrier and lookback options. Looking ahead, we
may extend our methodology to evaluate other path-dependent options in future works,
including, but not limited to, Asian options, Russian options, and more.
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Appendix A. Mellin Transform

The Mellin transform is an integral transform that may be regarded as the multiplica-
tive version of the two-sided Laplace transform. It is often used in the theory of asymptotic
expansions. For a locally Lebesgue integrable function h : R+ → R, the Mellin transform
denoted by Mh or ĥ is given by

ĥ(w) = (Mh)(w) :=
∫ +∞

0
sw−1h(s) ds, w ∈ C,

and if a < Re(w) < b and c such that a < c < b exists, the inverse of the Mellin transform
is expressed by

h(s) =
(
M−1ĥ

)
(s) =

1
2πi

∫ c+i∞

c−i∞
s−wĥ(w) dw.

In this paper, we use the following properties of Mellin transform.

Table A1. List of properties of Mellin transform used in this paper.

Function Mellin Tansform

h ĥ
sh′ −wĥ

s2h′′ w(w + 1)ĥ
s3h(3) −w(w + 1)(w + 2)ĥ

eδsη

2
√

λπ
e− 1

4λ (ln s)2
eλ(w+η)2+δ

sh′ + s2h′′ w2ĥ
−sh′ − 3s2h′′ − s3h(3) w3ĥ

Here, λ, η, and δ are not related to w or s, and h′, h′′, and h(3) are the first-order,
second-order, and third-order derivatives of h, respectively.

Appendix B. Derivation of Formulas (20) and (27)

In this appendix, we give detailed derivation of the Formulas (20) and (27).
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Appendix B.1. Derivation of Formula (20)

From Equation (19), we know that

P0(t, s) =
∫ K

B
(K − u)eδ

( s
u

)η
(

1
2
√

λπ
e−

1
4λ (ln( s

u ))
2
)

du
u

−

∫ B

B2
K

(
B
u

)k1−1(
K − B2

u

)
eδ
( s

u

)η
(

1
2
√

λπ
e−

1
4λ (ln( s

u ))
2
)

du
u

.

By letting v = ln u, we convert the first integral to∫ ln K

ln B
(K − ev)sηeδe−ηv

(
1

2
√

λπ
e−

1
4λ (ln s−v)2

)
dv

=
sηeδ

2
√

λπ

(∫ ln K

ln B
Ke−

1
4λ (v

2−2v ln s+(ln s)2+4ληv)dv

−
∫ ln K

ln B
e−

1
4λ (v

2−2v ln s+(ln s)2+4λ(η−1)v)dv
)

=
sηeδ

2
√

λπ

(∫ ln K

ln B
Ke−

1
4λ (v−ln s+2λη)2+λη2−η ln sdv

−
∫ ln K

ln B
e−

1
4λ [v−ln s+2λ(η−1)]2+λ(η−1)2−(η−1) ln sdv

)
,

we further apply the following changes in variables:

x′ :=
v − ln s + 2λη√

2λ
and x′′ :=

v − ln s + 2λ(η − 1)√
2λ

to obtain ∫ ln K

ln B
(K − ev)sηeδe−ηv

(
1

2
√

λπ
e−

1
4λ (ln s−v)2

)
dv

=
eδ

√
2π

⎛⎝Keλη2
∫ ln( K

s )+2λη√
2λ

ln( B
s )+2λη√

2λ

e−
x′2
2 dx′ − seλ(η−1)2

∫ ln( K
s )+2λ(η−1)√

2λ

ln( B
s )+2λ(η−1)√

2λ

e−
x′′2

2 dx′′
⎞⎠

= Keδ+λη2

[
Φ

(
ln(K

s ) + 2λη√
2λ

)
− Φ

(
ln( B

s ) + 2λη√
2λ

)]

−seδ+λ(η−1)2

[
Φ

(
ln(K

s ) + 2λ(η − 1)√
2λ

)
− Φ

(
ln( B

s ) + 2λ(η − 1)√
2λ

)]
.

Now, if we plug into δ, η, and λ into the above formula, we derive

∫ ln K

ln B
(K − ev)sηeδe−ηv

(
1

2
√

λπ
e−

1
4λ (ln s−v)2

)
dv

= Ke−r(T−t)
[
Φ
(
−Δ−

( s
K

))
− Φ

(
−Δ−

( s
B

))]
−s

[
Φ
(
−Δ+

( s
K

))
− Φ

(
−Δ+

( s
B

))]
.

Similarly, we can evaluate the second integral

∫ B

B2
K

(
B
u

)k1−1(
K − B2

u

)
eδ
( s

u

)η
(

1
2
√

λπ
e−

1
4λ (ln( s

u ))
2
)

du
u
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to obtain

Ke−r(T−t)
(

B
s

)k1−1[
Φ
(

Δ−
(

B
s

))
− Φ

(
Δ−

(
B2

sK

))]
−B

(
B
s

)k1
[

Φ
(

Δ+

(
B
s

))
− Φ

(
Δ+

(
B2

sK

))]
.

Putting these two integrals together yields Formula (20).

Appendix B.2. Derivation of Formulas (27)

From Equation (26), we have

Q0(t, u) =
∫ 1

0
(1 − ξ)eδ

(
u
ξ

)η
(

1
2
√

λπ
e−

1
4λ

(
ln
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For the second integral, we have
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where we use the fact that k1 − 1 + η = −η. Furthermore, we introduce a new variable
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Putting these two integrals together and using the fact that P0 = zQ0, we can obtain
our Formula (27).
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Abstract: This research investigates the function of price discovery between the Bitcoin futures
and the spot markets while also analyzing the impact of investor sentiment and attention on these
markets. This study utilizes various statistical models to examine the short-term and long-term
relations between these variables, including the bivariate Granger causality model, the ARDL and
NARDL models, and the Johansen cointegration procedure with a vector error correction mechanism.
The results suggest that there is no statistical evidence of price discovery between the Bitcoin spot
price and futures, and the term structure of the Bitcoin futures neither enriches nor impairs this lead
lag relation. However, the study finds robust evidence of a long-run cointegrating relation between
the two markets and the presence of asymmetry in them. Moreover, this research indicates that
investor sentiment exhibits a lead lag relation with both the Bitcoin futures and the spot markets,
while investor attention only leads to the Bitcoin spot market, without showing any lead lag relation
with the Bitcoin futures. These findings highlight the crucial role of investor behavior in affecting
both Bitcoin futures and spot prices.

Keywords: bitcoin; bitcoin futures; investor attention; sentiment; causality; cointegration

JEL Classification: G10; G12; G13; G14; G40

1. Introduction

A recent survey conducted on the most widely held financial assets reported that
cryptocurrency is the second most widely held financial asset1, especially among women.
Among the various cryptocurrencies, Bitcoin has been recognized as the best-performing
asset in recent times2. Introduced in 2008, Bitcoin is a fascinating addition to the financial
markets. Among the 9420 cryptocurrencies traded around the world, Bitcoin is generally
considered the leading cryptocurrency in terms of market share3. In addition to being a
dominant asset, Bitcoin has received much attention, not only from regulators and the
media but also from academic researchers and investment participants in the financial
markets. In fact, December 2017 was the first time that the Bitcoin futures were introduced,
owing to the popularity that Bitcoin has enjoyed since its launch. The introduction of
Bitcoin futures has facilitated hedging risks related to the underlying Bitcoin spot or other
traded cryptocurrencies. It is important to note that although the Bitcoin market share has
decreased over time, from more than 90% in 2010 to about 47.13% in 2023, it remains one of
the most important digital currencies in the cryptocurrency market.

Several factors substantiate the uniqueness of Bitcoin among all the listed cryptocurren-
cies4 and the Bitcoin futures5. As the investigation into the regulation of cryptocurrencies
has gained significance, so has the research into cryptocurrencies, specifically the Bitcoin
spot price and Bitcoin futures. Most of the existing research has focused on the determi-
nants of price discovery in the Bitcoin markets (Alexander et al. 2020; Alexander and Heck
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2020; Entrop et al. 2020), the trading activity in Bitcoin (Wustenfeld and Geldner 2022;
Scharnowski 2021; Dyhrberg et al. 2018), the short-term and long-term determinants of the
value of Bitcoin (Dubey 2022; Mai et al. 2018; Li and Wang 2017), the market efficiency of
Bitcoin (Kochling et al. 2019; Urquhart 2016), the impact of the launch of the Bitcoin futures
on the Bitcoin spot (Akanksha et al. 2021; Kim et al. 2020; Liu et al. 2020), the diversification
benefits and the linkage of Bitcoin with other financial assets (Wang et al. 2022; Baur and
Dimpfl 2021; Qarni and Gulzar 2021; Guesmi et al. 2019), the price discovery leadership
between the Bitcoin futures and spot markets (Akyildirim et al. 2020; Baur and Dimpfl 2019;
Corbet et al. 2018; Kapar and Olmo 2019), the hedging properties of the Bitcoin futures
(Sebastiao and Godinho 2020; Chan et al. 2019), the large contract size associated with
the Bitcoin futures and its impact on trading activity (Park 2022; Akyildirim et al. 2021),
the process of price discovery among the various Bitcoin trading exchanges (Pagnottoni
and Dimpfl 2019), the illegal activities related to Bitcoin (Foley et al. 2019), the impact of
investor attention on Bitcoin (Smales 2022; Choi 2021; Lin 2021), and the impact of investor
sentiment on Bitcoin (Koutmos 2023; Mokni et al. 2022; Naeem et al. 2021; Guegan and
Renault 2021).

Despite the considerable research on the Bitcoin futures and spot prices, it is important
to highlight that various challenges and limitations persist, reinforcing the necessity for
further investigation into the specific relations concerning these assets. The limitations of
past research include conflicting results regarding the price discovery function between
the Bitcoin futures and spot price, restrictions concerning the long-run relation between
the Bitcoin futures and the spot, limitations associated with the connection between in-
vestor attention and the pricing of the Bitcoin futures and spot, limitations associated with
the relation between investor sentiment and the pricing of the Bitcoin futures and spot,
limitations in understanding the nature of participants in the Bitcoin market, limitations
in understanding the activities of market participants for the varying levels of investor
attention, and constraints related to the term structure of the Bitcoin futures and its impact
on the underlying spot prices.

This unique study addresses the limitations mentioned above and investigates the
relations between the Bitcoin futures, spot, crypto sentiment, and Bitcoin attention, to
reconcile the conflicting evidence in the existing literature. Our findings contribute to the
existing Bitcoin pricing literature in many ways. Firstly, we find no statistical evidence of
price discovery between the Bitcoin spot and futures market, and the term structure of the
Bitcoin futures does not play a significant role in this relation. The reason for the lack of
price discovery functionality could be the increase in informational efficiency for these two
assets over time. The amount of trading activity and the number of market participants in
both these assets have increased significantly over time, contributing to efficiency. Secondly,
we discover a lead lag relation between Bitcoin sentiment and the futures and spot price,
suggesting that changes in market participants’ opinions and perceptions simultaneously
affect trading activity in both markets. The reason for this significant relation is likely the
activities that market participants conduct upon the fundamental change in sentiment.
While a portion of the participants would engage with the futures to speculate or hedge
their risks, another portion of the participants would engage in the actual underlying spot
asset, driving the significance of this relation. Thirdly, investor attention leads the Bitcoin
spot market but does not exhibit a lead lag relation with the Bitcoin futures. The reason
could be the fact that the participants in the spot asset market are the ones who react to
changes in the level of attention, affecting the changes in the spot price, and the futures
market participants are relatively immune to changes in attention. Fourthly, we find robust
statistical evidence of a long-term cointegrating relation between the Bitcoin spot price
and futures, with the findings consistent across different cointegration procedures. In
essence, this implies that one series could be expressed as another owing to the common
characteristics between them. Finally, the speed of adjustment towards equilibrium in the
long-term cointegrating relation is stronger and more significant when using the nonlinear
autoregressive distributed lag procedure (NARDL) than the ARDL or Johansen procedures.
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This additionally adds validity to the robustness of our significant long-term relations
between the series.

The subsequent sections of this research are organized as follows. Section 2 presents
an extensive examination of the pertinent literature. Section 3 discusses the methods or
research design. Section 4 of this study describes the data. Section 5 presents the empirical
evidence as results, and Section 6 finally concludes the paper.

2. Literature Review

The Bitcoin futures were introduced by both the Chicago Board Options Exchange
(CBOE) and a week later by the Chicago Mercantile Exchange (CME) in December 2017.
These Bitcoin futures were primarily created to present two major functionalities, i.e.,
price discovery and hedging in the underlying spot Bitcoin market, and past research has
highlighted the efficacy of the Bitcoin futures as a hedging tool (Sebastiao and Godinho
2020; Alexander et al. 2020; Nekhili 2020; Kochling et al. 2019). As much as some empirical
studies have shown that the Bitcoin futures are an effective instrument for hedging, there is
also evidence of the limitation of the hedging properties of these futures, warranting further
investigation into their dynamics (Hung et al. 2021; Alexander and Heck 2020; Hattori and
Ishida 2020). Likewise, one of the most important functionalities provided by the futures
contracts towards the underlying spot asset activity is price discovery (Silber 1981).

In general, the prices of these futures contracts mirror the expectations of investors in
the corresponding asset market for the near future. This anticipation should be factored into
the values of the underlying spot assets, contributing to a process of price discovery. The
evidence of price discovery from past research is mixed, confirming the need to investigate
the relations further. Although some shared factors influence both the Bitcoin spot prices
and futures, there is evidence suggesting that the futures have a relatively greater impact
on the price discovery process (Akyildirim et al. 2020; Kapar and Olmo 2019). Furthermore,
there is alternative evidence, using Hasbrouck’s (1995) information share methodology,
indicating that the Bitcoin spot price leads and exerts an influence on the future prices with
regard to price discovery (Baur and Dimpfl 2019; Corbet et al. 2018). These inconsistent
findings could be a result of the relatively small data sample that is used in these studies,
as well as a sharp decline in the market conditions for Bitcoin6, further highlighting the
need to analyze these relations with larger sample periods. There is also evidence that
as the Bitcoin futures contracts become shorter and shorter, the accuracy of the futures
contract in aiding the price discovery of the underlying spot market increases (Matsui
and Gudgeon 2020). This highlights the need not just to reinvestigate the lead lag relation
between the Bitcoin futures and spot but also to use the near-term and next-term futures
contract to identify the magnitude of this linkage. The preceding discussion suggests that,
in the literature, there is no prevailing consensus regarding the price discovery process in
the Bitcoin market.

In addition to the extant literature looking at the short-run dynamics between the
Bitcoin futures and spot, several studies look at the long-run relations between these
assets (Lee and Rhee 2022; Wu et al. 2021; Hung et al. 2021; Hu et al. 2020; Kapar and
Olmo 2019; Cheah et al. 2018). Some past research evidence shows a long-run relation
between the Bitcoin futures and spot and suggests that the futures dominate the spot
assets using a fractionally cointegrated framework (Wu et al. 2021; Cheah et al. 2018).
Although the fractional cointegration framework allows the underlying series to take
fractional integration values and analyzes the long-run equilibrium relations, it has no
allowance for deterministic trends, and the convergence to equilibrium does not necessarily
have an optimal rate. Additionally, the memory parameter is unknown in the fractionally
cointegrated system. These limitations support the estimation of the long-run dynamics
using a standard cointegrated framework. Some studies have looked at these long-run
relations assuming a time-varying cointegrating coefficient (Lee and Rhee 2022; Hu et al.
2020), but the challenge with these findings is the oversight of the common factors that
remain stable and that affect both the Bitcoin futures and spot simultaneously over time.
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Notably, the challenge with these studies substantiates the need to revisit the analysis of
long-run relations using a standard cointegration framework, that allows for asymmetry in
addition to relaxing the assumptions of the order of integration of the underlying series.

Intrinsically, research has been conducted to analyze the aspects that provide Bitcoin
with its value or the factors behind its price fluctuations. It has been distinctly observed
that the Bitcoin price reflects several more factors than the standard interactions of demand,
supply, and fundamental news (Griffin and Shams 2020; Eross et al. 2019; Panagiotidis et al.
2019). To further understand the impact of non-standard factors on the pricing of the Bitcoin
futures and spot, some studies have looked at the role of social interactions in Bitcoin prices
(Lyocsa et al. 2020; Gronwald 2019; Geuder et al. 2019; Garcia et al. 2014). While these
studies use different socio-economic signals, like the volume of information searched about
Bitcoin, the prices in online exchanges, the volume of word-of-mouth communication in
online media, and user base growth, they show evidence that highlights the impact of
online searches, word of mouth, and an expanding user base on Bitcoin pricing and not the
pricing of the Bitcoin futures. The reason for these findings is that as the media publishes
articles about price increases in Bitcoin, it fosters and acts as a stimulus for search activities
among investors, thereby impacting trading activity and the pricing of the underlying
asset. These findings are equally robust for negative news or unfavorable attention as well
and can result in significant price declines (Chevapatrakul and Mascia 2019). In essence,
while a Google search of a traditional currency will not impact its value or volume, it can,
in all likelihood, drive the prices of Bitcoin (Aalborg et al. 2019). Owing to the extensive
spectrum of available socio-economic signals and the limited few that have been studied
in past research, it is necessary to further analyze the impact of these signals on both the
Bitcoin futures and the spot assets using alternate measures.

Further, in looking at the factors that give Bitcoin its value, a small number of studies
have looked at the impact of sentiment or public opinion on the price movements of Bitcoin
(Entrop et al. 2020; Rognone et al. 2020; Dastgir et al. 2019; Aalborg et al. 2019; Karalevicius
et al. 2018). While some results are in support of the fact that sentiment does affect Bitcoin
pricing (Rognone et al. 2020; Karalevicius et al. 2018), there is also evidence that sentiment
does not play any role in impacting the prices of Bitcoin (Dastgir et al. 2019; Entrop et al.
2020), and, most importantly, none of these past studies look at the relation of sentiment
with the Bitcoin futures. This paper addresses this limitation by looking at the impact on
both the future as well as the spot. An indication of bi-directional causality between the
Bitcoin attention variable measured by Google Trends search queries and the Bitcoin asset
returns softens any explanatory linkage (Dastgir et al. 2019; Fry 2018) and limits itself to
looking at only the spot asset. Although these results are conflicting and limited, the impact
that social media plays in the acceptance of Bitcoin as an asset and the ensuing trading
activity are broadly analyzed, with results indicating that bullish posts predict positive
returns and bearish posts predict negative returns (Chen et al. 2020; Mai et al. 2018). The
aforementioned discussion of sentiment and its impact on Bitcoin pricing implies that there
is no conformity in the literature on the linkage between sentiment and Bitcoin pricing,
supporting the need to investigate this relation further.

In summary, after examining numerous relevant literature works pertaining to the
Bitcoin futures, Bitcoin spot, investor attention, and sentiment, along with identifying their
incongruities, this study attempts to answer several questions that include the following:
Do the Bitcoin futures and the Bitcoin spot have any long-run relation? Conditional on
the existence of a long-run relation, is there any asymmetry in this long-run relation? Do
the Bitcoin futures and the Bitcoin spot have any short-run causal relation? Do the Bitcoin
futures and Bitcoin attention have any short-run causal relation? Do the Bitcoin futures
and Bitcoin sentiment have any short-run causal relation? Conditional on the existence of a
short-run causal relation between the Bitcoin futures and spot, do the shorter-term Bitcoin
futures (near-term versus next-term) have greater statistical significance in the short-run
causal relation with the Bitcoin spot?
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3. Methodology

We are interested in evaluating whether the movements in the Bitcoin futures, the
Bitcoin spot prices, crypto sentiment, and investor attention have a short-term causal or
long-term cointegrated relation. The interest in the relations among these variables arises
from the limitations in the extant literature identified in the previous sections. We accom-
plish this analysis by following four distinct steps. First, we investigate the stationarity of
each series used in the study employing multiple tests (Dickey and Fuller 1979, 1981; Cheng
et al. 2021; Kwiatkowski et al. 1992 (KPSS); Ng and Perron 2001). After checking for station-
arity, second, we evaluate the short-term causal relation using bivariate Granger causality
tests (Granger 1969, 1980, 1988). Third, after determining the optimal lag lengths, we
evaluate the long-term cointegrated relation using several methods. We use the Johansen
cointegration method (Johansen 1988, 1991, 1995) as well as the autoregressive distributed
lag (ARDL) method (Pesaran and Shin 1999; Pesaran et al. 1996, 2001) and the nonlinear
autoregressive distributed lag (NARDL) method (Demir et al. 2021; Mhadhbi et al. 2021;
Dutta et al. 2019; Shin et al. 2014). Fourth, and finally, we evaluate the error correction
model. We provide detailed explanations of each method used in this study below.

3.1. Stationarity

Stationarity is considered as invariance under a time shift, and any time series that
is stationary is treated to have properties that are not conditional on the time in which
they are observed. In general, a stationary time series will have no discernible pattern in
the long term. Although the features of a constant mean and variance are not particularly
imperative in estimating the parameters in econometric models, they can significantly
impact model selection, since these features are essential for the calculation of reliable test
statistics. Hence, it becomes essential to first test whether the relevant variables have the
problem of a unit root and determine the orders of integration for each of the series used in
the study (Enders 2014; Chan 2010) before we can determine the statistical specification
of the model and conduct either a causality or cointegration test. We first conduct the
stationarity tests using the standard augmented Dickey–Fuller (ADF) method (Cheng et al.
2021). The augmented Dickey–Fuller (ADF) test is a standard test for stationarity and is
estimated using the following general equation.

Yt = α + βT + δYt−1 + ∑m−1
i=1 θiΔYt−i + εt (1)

where δ = ∑m
i−1 ρi−1 and θi = −∑m

k=i+1 ρk.
The dependent variable Yt is lagged to represent higher-order autoregressive processes

and to eliminate serial correlation. In Equation (1), a time trend is also included. This is done
to test the presence of a deterministic trend. It is important to note that we consider and
include a variable for a subsequent Johansen cointegration analysis if and only if it meets
the criterion of being non-stationary and integrated of at least order I(1). Correspondingly,
we consider and include a variable for the ARDL cointegration test only if it meets the
criterion of not being integrated of higher order, like I(2) or greater. The null hypothesis of
the ADF test (a unit root exists, δ = 0) is rejected when the test statistic that is computed is
greater than the critical value. Failing to reject it will imply that the series is non-stationary,
and we must differentiate it until it becomes stationary. To check the robustness of our
findings and to verify the consistency of the stationary properties, we also conduct the
KPSS test (Kwiatkowski et al. 1992). Contrary to the ADF test, the KPSS test evaluates for a
null hypothesis of no unit root or stationarity and an alternative hypothesis of the existence
of a unit root or non-stationarity. The KPSS test can be depicted by Equation (2) below.

KPSS = η̂ = T−2
(
∑T

t=1 S2
t

)
/σ̂2

N (2)

where η̂ denotes the respective KPSS statistic for the testing of stationarity around the mean
and σ̂2

N is a consistent estimator of the long-term variance of residuals. Past research has
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shown evidence that both the ADF and the KPSS tests experience some size problems as
well as finite sample power problems (Sephton 2008). In order to address this issue, we
also run stationarity tests using the Ng and Perron test, which uses the detrending of the
generalized least squares method (Ng and Perron 2001; Phillips and Perron 1988). The Ng
and Perron test statistics are depicted in Equation (3) below.

MZa =
(

T−1yd
T − σ̂2

N

)(
2T−2∑T

t=1 yd
t−1

)−1

MSB =
(

T−2∑T
t=1 yd

t−1/σ̂2
N

)1/2

MZt = MZa × MSB

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3)

where yd
t represents the GLS detrended data and σ̂2

N represents a consistent estimator for
the persistent variance of residuals over the long term. The null hypothesis of the Ng
and Perron test is that the unit root exists, and the alternate hypothesis is that the series
is stationary. If the computed statistics for MZa and MZt are less than the critical values
in absolute terms, we reject the null hypothesis. The Ng and Perron test is also used to
complement the results of both the ADF and KPSS tests.

3.2. Granger Causality

After analyzing the stationarity properties of the series, we look at the short-term
causal lead lag relations using the bivariate Granger causality tests (Granger 1969, 1980,
2001). In essence, the method analyzes whether a particular time series is a factor of
another series by reducing the forecast error of the overall model. “Causality” here does
not necessarily mean a cause-and-effect relation between the variables but rather the
“precedence” of one variable over the other in time series data. In this way, the use of time
series information facilitates an understanding of the direction of causality. The bivariate
linear Granger causality used in this study can be shown by a generic two-equation model
as below.

Yt = A + ∑p
i=1 BiYt−i + ∑p

j=1 CjXt−j + Ut (4)

Xt = D + ∑p
k=1 EkYt−k + ∑p

l=1 FlXt−l + Vt (5)

where all Xt and Yt are stationary variables, the optimal lag length in the system is shown
by p, and Ut and Vt are the random errors. To test whether Xt Granger causes Yt, we need
to determine whether any lags of Xt are statistically significant in Equation (4). We do this
using an F-test for linear restrictions. Empirically, in testing the null hypotheses shown
below, we are testing for the presence of a linear causal relation between Yt and Xt.

H1: C1 = C2 = · · · · · · · · · · · · = Cp = 0, and
H2: E1 = E2 = · · · · · · · · · · · · = Ep = 0

(6)

By testing the hypotheses stated in Equation (6), we have several possibilities for
causal relations between Yt and Xt, which include either a lack of causal relation between
the variables or a unidirectional or bidirectional relation between the variables.

In addition, it is important to emphasize that the results of the bivariate Granger
causality tests can be affected by the choice of the lag lengths in Equations (4) and (5)
(Thornton and Batten 1985; Guilkey and Salemi 1982). Specifically, if we use more lags than
the true order, the power of the test will be affected. In addition, if we use fewer lags than
the true order, the estimates from the regression will be biased. Moreover, the residuals
from the regression will be serially correlated. Therefore, we adopt Hsiao’s approach (Hsiao
1982, 1981, 1979) to select lag lengths that minimize the Akaike Information Criterion (AIC)
and the prediction error (Akaike 1969a, 1969b, 1974, 1981). We use the unrestricted vector
autoregression (VAR) procedure to examine each series for its optimal lag length, using the
pth order VAR model as expressed by Enders (Enders 2014; Chan 2010).
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3.3. Johansen Cointegration

The cointegration test is generally used to analyze whether there is a long-term relation
between two or more time series. If a cointegrating relation is absent, the two variables can
move arbitrarily through time and away from each other. In this paper, we analyze the
existence of cointegration among variables specified using three methods. The first method
is explained in this sub-section, and the other two methods are explained in the following
sub-section. The Johansen cointegration procedure (Johansen 1995; Engle and Granger
1987) is a general dynamic systems technique that allows for more than one cointegrating
relation. The variables are parametrized in terms of the lagged levels of the system variables
in addition to the lagged first differences under this approach. Consider a VAR model of
order m as shown below in Equation (7).

Yi = μ + A1Yi−1 + · · ·+ AmYi−m + εi (7)

where Yi is an n by 1 vector of variables that are first-order integrated and are denoted as
I(1), μ is the first moment of the series, A1. . . Am are the coefficient matrices for each lag,
and εi is the noise term with a mean of zero. If the vectors are cointegrated, we can form
a vector error correction model (VECM). Then, Equation (7) can be modified, as shown
below in Equation (8).

ΔYi = μ + ΓYi−1 + ∑m−1
j=1 ΓjΔYi−1 + εi (8)

where Γ = ∑m
j=1 Aj − I and Γj = −∑m

k=j+1 Ak.
In Equation (8), ΔYi := Yi −Yi−1 is the differencing operator, Γ is the coefficient matrix

for the first lag, and Γj are the matrices for each differenced lag.
The Johansen test successively assesses whether the rank (r) is equal to zero or one,

continuing up to (r) being equal to n − 1, where n is the number of time series variables
used to conduct the test. The null hypothesis is that there is no cointegrating relation.
When the rank is greater than zero, it indicates the existence of some cointegrating relation
between the series examined. Eventually, r is the number of cointegrating relations. Thus,
A is the parameter in the vector error correction model (VECM) that acts as an adjustment
parameter, which must have a negative sign and statistical significance, and β is the
cointegration vector of each column of the Johansen model.

Specifically, for the Johansen procedure, this cointegration test is conducted in two
main forms: trace tests (λtrace) and maximum eigenvalue tests (λmax). These are the primary
tests used in canonical corrections to help to determine the number of cointegrating vectors
(CIVs) among the series of interest.

It is also important to note that, similar to the way in which the Granger causality
tests were affected by the choice of the optimal lag length, the Johansen cointegration test
is also affected by the lag length choice. Additionally, while the λtrace value tests the null
hypothesis that the number of cointegrating vectors is ≤r against an alternative hypothesis,
the λmax value tests the null hypothesis that the number of cointegrating vectors is = r
against an alternate hypothesis of r + 1. The statistics of this procedure are defined by
Equations (9) and (10) shown below.

λmax(r, r + 1) = −T ln
(
1 − λ̂r+1

)
(9)

λtrace(r) = −T∑n
i=r+1 ln

(
1 − λ̂i

)
(10)

3.4. ARDL and NARDL Cointegration

We have previously examined a cointegration approach (Johansen 1995, 1991; Johansen
and Juselius 1990; Engle and Granger 1987) to assess the long-term connection between the
variables of interest. One of the major limitations of this approach is that the series has to
be integrated into at least order one, I(1). To overcome this problem, this study employs
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the widely recognized ARDL model (Pesaran et al. 2001). The ARDL model offers the
flexibility that the set of variables can be integrated in a different order as it is the most
general dynamic unrestricted model in the economic literature (Sari et al. 2008; Ghatak and
Siddiki 2001). Additionally, a dynamic error correction model can be derived from ARDL
by using a linear transformation, which will essentially enhance the speed of adjustment
towards equilibrium (Banerjee et al. 1993). A standard linear ARDL(p, q) cointegration
model with two time series Yt and Xt has the form shown in Equation (11).

ΔYt = A0 + ρ Yt−1 + θ Xt−1 + γ Zt + ∑p−1
j=1 AjΔ Yt−j + ∑q−1

j=0 πjΔ Xt−j + Et (11)

where Zt is a vector of deterministic regressors and Et is an iid stochastic process. According
to the null hypothesis, the two series are not cointegrated, implying that the coefficients
of the lagged levels of the two variables in Equation (10) are jointly zero (ρ = θ = 0). The
hypothesis of this model can be tested using a modified F-test or a t-test, as shown in the
prior literature (Pesaran et al. 2001). It is important to note that the combination of stochastic
regressors in the ARDL model is linear and signifies symmetric adjustments in both the
long and short run. We can further extend this methodology to include nonlinearities
(Demir et al. 2021; Mhadhbi et al. 2021; Dutta et al. 2019; Shin et al. 2014). The nonlinear
ARDL(p,q) model is depicted below in Equation (12).

Yt = ∑p
j=1 ∅jYt−j + ∑q

j=0

(
θ+

′
j X+

t−j + θ−
′

j X−
t−j

)
+ Et (12)

This NARDL model is capable of explaining the asymmetry in the long-run relation,
and the model’s hypothesis can be evaluated through the use of the bounds testing proce-
dure similar to the ARDL model (Demir et al. 2021; Pesaran et al. 1996, 2001; Mhadhbi et al.
2021; Shin et al. 2014).

3.5. Error Correction Model

Based on the outcomes of the Johansen, ARDL, and NARDL cointegration tests,
the establishment of a cointegrating relation between variables Yt and Xt implies the
existence of a long-term equilibrium relation between them. However, to evaluate the
short-run relations and properties of the cointegrated series, we use the error correction
model (ECM) technique. In brief, the ECM, consistent with the long-run cointegrating
relation, represents how Yt and Xt behave in the short term. This ECM is shown to contain
important information on both the long-term and short-term properties of the model with
disequilibrium. For example, if two variables are integrated in order one, I(1), and there is
a linear combination between them that is integrated with order zero, I(0), then we will
have an error correction term (ECT) that is statistically significant and has a negative sign,
indicating the speed of adjustment towards equilibrium. The general equation for the error
correction model can be represented as shown below in Equations (13) and (14).

ΔYt = M + NiΔYt−i + OjΔXt−i + ϕ ECTy,t−i + Uy,t (13)

ΔXt = P + QiΔYt−i + RjΔXt−i + ϕ ECTx, t−i + Vx,t (14)

where, most importantly, M, N, O, P, Q, and R are the coefficients of the above models; ϕ is
the coefficient of adjustment towards equilibrium in the long term; U and V are random
error terms; and ECT denotes the deviations from the long-term equilibrium between the
two lagged series. The ECM, in a way, captures an element of the speed of adjustment at
which a dependent variable returns to equilibrium. Moreover, in comparing the ECT of
the Johansen procedure versus the ARDL versus the NARDL approach, the ECT of the
NARDL model should have the most enhanced speed of adjustment towards equilibrium
among the three models considered. This should be followed by the ARDL model and the
Johansen model (Demir et al. 2021; Mhadhbi et al. 2021; Nkoro and Uko 2016; Shin et al.
2014; Banerjee et al. 1993).
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4. Data and Summary Statistics

4.1. Data

To evaluate and analyze the relations between the variables used in this study, three
separate types of data with daily frequency were gathered: (1) Bitcoin futures and spot
data, (2) investor attention data, and (3) investor sentiment data. The Bitcoin futures and
spot data were obtained from Bloomberg. The important attention data were gathered
from Google Trends (Google Search Volume Index—GSVI), which allows us to compare
the relative popularity of search terms for specific time periods and regions. The unique
Bitcoin sentiment data, which were based on a multifactorial crypto market sentiment
analysis, were collected from the alternative.me website. The time period for which the
data were gathered for the different variables used in this study spanned from 1 February
2018 to 8 September 2022. Figure 1 shows a graph of the Bitcoin spot, the two rolling Bitcoin
futures, and the sentiment and attention variables through time, and Table 1 describes all
the variables used in this study.

Figure 1. Bitcoin spot, futures, attention, and sentiment over time.
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Table 1. Description of the variables used in this paper.

Variable Name Indicator Variable Symbol

Bitcoin Spot F0
Bitcoin—Near-Term Futures F1
Bitcoin—Next-Term Futures F2
Bitcoin Sentiment—Fear and Greed Index Sent
Bitcoin Attention—Google Search Volume Index Attn

This table provides the descriptions of the different variables used in this research paper.

4.2. Bitcoin Futures and Spot

Bitcoin is a decentralized cryptocurrency and technically the crypto industry’s first
asset, was launched in 2009, following the white paper by Satoshi Nakamoto in 2008. There
is a maximum supply of 21 million bitcoins, and their trading has gained significance
over time, causing them to be the largest and most popular cryptocurrency by market
capitalization (Howell et al. 2020; Hashemi Joo et al. 2020). The active trading of Bitcoin and
the fervent interest of investors has given rise to both regulated and unregulated Bitcoin
derivative markets. Bitcoin futures contracts were first offered and traded on 10 December
2017 by the Chicago Board Options Exchange (CBOE). Similarly, they were offered and first
traded on 17 December 2017 by the Chicago Mercantile Exchange (CME). This study only
includes the listings from the CME, gathered from Bloomberg, since the volumes traded on
the CME are significantly larger than those for the CBOE and the listings are regulated by
the Commodity Futures Trading Commission (CFTC)7. All CME Bitcoin futures contracts
generally expire on the last Friday of the month and are cash-settled rather than taking the
delivery of actual Bitcoin8.

We organize two Bitcoin futures price series. This is accomplished by grouping the
two adjacent futures contracts based on time to maturity. The groups “nearest-term” and
“next-term” represent the futures contracts that have the shortest and the second shortest
time to maturity at a given date for the Bitcoin spot. The two futures price series are
gathered, each with rolling contracts9, and are recorded in terms of another currency10.
It is important to note that this price varies across exchanges, mainly due to different fee
policies and cash-out methods. The implication of this is that the source that we gather our
data from matters. Since exchange-based data providers present their own quotes, whereas
extrinsic data providers like Bloomberg or Coinbase compute their own indexes, usually a
weighted average of all prices across major exchanges, we use the data from Bloomberg,
consistent with past research (Baur and Dimpfl 2021; Janson and Karoubi 2021; Hattori and
Ishida 2020, 2021; Cermak 2017).

4.3. Investor Attention

In examining several investor attention measures, such as turnover, extreme returns,
news, etc., past research has shown evidence that the Google Search Volume Index (GSVI)
acts as a direct and unambiguous measure of retail investor attention; it leads all other
investor attention measures and an increase in GSVI results in an increase in stock liquidity
due to the positive price pressure on the underlying asset from retail investors (Ding and
Hou 2015; Da et al. 2011; Mondria et al. 2010). The GSVI compares the relative popularity of
search words relative to the entire volume of searches on Google (Woloszko 2020; Stephens-
Davidowitz and Varian 2015), and an increasing GSVI measure does not imply that there are
more searches currently than in the past. It only means that a larger share of the searches on
Google are dedicated to the specific search word; hence, its use as a proxy for information
demand should be performed with care. Nevertheless, since the number of users using
a Google search is a random sample of the total internet users, this measure lends itself
to valid interpretation (Aslanidis et al. 2022; Tong et al. 2022). It is also important to note
that while searching for words, the GSVI includes all searches that contain the word of
interest, and it does not differentiate when additional inconsequential words are included
in the word of interest. In order to increase the relevance of the attention measure, we
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augment the main search word, “Bitcoin”, with individual additional search words such
as “Futures”, “Price”, “Spot”, and “Trading”, along with a plus operator, and we take the
average of all the resulting measures for a particular date. These additional words and
the plus operator aid in mitigating the problem of a resultant generic search, as well as
the tacit challenge of smaller search volumes (Heyman et al. 2019; Yung and Nafar 2017;
Han et al. 2017).

4.4. Investor Sentiment

The Fear and Greed Index (FGI) for Bitcoin, which is used as a measure of investor
sentiment in this study, is gathered from a unique and comprehensive data source11 that,
in essence, tries to capture the emotional state of the cryptocurrency market. The FGI is
constructed based on the expectation that investors are likely to become greedy (fearful)
when the market price for assets increases (decreases), inducing an overreaction. Extreme
fear can result when Bitcoin prices are far below their intrinsic value, and too much greed
can result when prices are far above what they should be worth (Gunay et al. 2022; Mokni
et al. 2022). It is important to note that the FGI takes values that range between 0 and
100. The range of values 0 (100) indicates the behavior or emotional state of investors,
i.e., “Extreme Fear (Extreme Greed)”. This multifactor FGI is constructed based on six
important and distinctive factors.

The FGI uses volatility (25%) as the first factor because an unanticipated volatility
increase is typically construed as an indicator of fear in investors. The ratio of market
momentum to volume (25%) is used as the second factor because high buying volumes in a
positive market are typically considered as greedy actions by investors. Social media (15%)
is used as the third factor because an unusually high interaction rate on social media in
terms of the count of posts and various hashtags is typically interpreted as an increase in
public interest or corresponding greedy behavior by investors. Although the fourth factor
of surveys (15%) or people polls is currently paused, they were included as a measure
of direct perception by investors in the Bitcoin market for the time period for which we
gather data.

Dominance (10%) is used as the fifth factor in constructing the FGI because the market
capitalization share of Bitcoin with reference to all the available cryptocurrencies, in essence,
measures the substitution of investment capital and fear among investors. Bitcoin domi-
nance is generally understood to be caused by the reduction of investments in speculative
alt-coin. Over time, Bitcoin has become the safe haven of cryptocurrency. Finally, the search
trends (10%) are used as the sixth and last factor in constructing the FGI. In essence, the FGI
uses both endogenous and exogenous factors in its construction (Gunay et al. 2022; Mokni
et al. 2022; Guler 2021). To the best of our knowledge, this paper is the first to use the FGI
to evaluate the linkages between investor sentiment and the Bitcoin futures and spot.

4.5. Descriptive Statistics, Returns, and Correlations

Table 2 exhibits the descriptive statistics for all variables across the entire study period.
The average Bitcoin spot price (20,385.18) is quite similar to the average of both the near-
term futures (20,413.64) and next-term futures (20,493.34). Both the Bitcoin futures (F1 and
F2) are marginally higher than the spot (F0) in average price levels. Although the median
values have a similar relation in comparing the futures and the spot, essentially, they are
only 50% of the average values. The average Bitcoin sentiment (43.31) and its respective
median (40) indicate that the sentiment on average is classified as “Fear”12. Similarly, the
mean Bitcoin attention (50.90) is very close to the median (48). All the variables used in this
study show positive skewness, indicating longer right tails, and the Jarque–Bera test results
show evidence that all the variables are not normally distributed. The kurtosis numbers for
all the variables were greater than +2, indicating a peaked distribution.
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Table 2. Descriptive statistics in levels.

Entire Period Data Statistics (1 February 2018 to 8 September 2022)

F0 F1 F2 Sent Attn

Mean 20,385.18 20,413.64 20,493.34 43.31 50.90
Median 10,224.14 10,362.27 10,495.62 40.00 48.00
Maximum 67,566.83 66,149.11 66,379.90 95.00 100.00
Minimum 3242.49 3138.02 3110.48 5.00 16.00
Std. Dev. 17,720.81 17,673.61 17,651.18 22.47 18.98
Skewness 0.98 0.98 0.97 0.51 0.62
Kurtosis 2.50 2.49 2.47 2.29 2.81
Jarque–Bera 195.32 193.61 191.08 74.11 74.01
Probability 0.00 0.00 0.00 0.00 0.00
Sum 2.33 × 107 2.33 × 107 2.34 × 107 4.95 × 104 5.81 × 104

Sum Sq. Dev. 3.58 × 1011 3.56 × 1011 3.55 × 1011 5.76 × 105 4.11 × 105

Observations 1142 1142 1142 1142 1142

This table shows the descriptive statistics of the entire period’s data in levels. The summary statistics reported
include mean, median, max, min, standard deviation, skewness, kurtosis, Jarque–Bera, probability, sum, sum
square deviation, and number of observations. The variables are defined in Table 1.

Table 3 illustrates the descriptive statistics for returns or changes in the different series.
Panel A gives the summary statistics, and Panel B gives the counts of each series within
the specified percentage bins. The average daily return of the Bitcoin spot (0.17%) in Panel
A is almost 29% lower than the average daily Bitcoin futures return (0.22%). Moreover,
the longer-term rolling futures have a lower median value than the shorter-term rolling
futures. It should be noted that the Bitcoin futures (F1 and F2) offer higher returns on
average compared to the Bitcoin spot (F0), but their standard deviations are higher as well.
Regarding the count distribution of the returns shown in Panel B, most of the returns for
the Bitcoin spot and futures fall within the range of −5% to +5% (approximately 75% of
the returns data)13. In looking at the direction of the returns and the count distribution of
the returns, it is clear that both the Bitcoin futures and the spot prices move in the same
direction, indicating the least benefit for hedging. The sentiment and attention variables
indicate that investors pay more attention to the Bitcoin asset when overall sentiment can
be classified as “Fear” or “Extreme Fear”.

Table 3. Summary statistics.

Panel A: Entire Period Data Statistics

F0 F1 F2 Sent Attn

Mean 0.17% 0.22% 0.22% 3.18% 2.62%
Median 0.12% 0.15% 0.11% 0.00% −1.89%
Maximum 18.75% 23.06% 23.10% 560.00% 316.67%
Minimum −37.17% −37.02% −36.81% −75.56% −73.53%
Std. Dev. 4.56% 5.53% 5.55% 30.81% 27.55%
Skewness −44.91% −7.39% −7.58% 650.00% 443.45%
Kurtosis 619.55% 341.53% 334.84% 9881.63% 3585.56%
Count 1141 1141 1141 1141 1141

Panel B: Count Distribution of Returns

F0 F1 F2 Sent Attn

<−10% 24 42 43 242 269
−10 to −5% 81 102 100 104 188
−5 to −2% 176 183 186 116 103
−2 to −0.5% 177 165 162 41 39
−0.5 to 0.5% 180 132 131 114 81
0.5 to 2% 203 161 162 33 16
2 to 5% 179 194 193 87 98
5 to 10% 92 105 110 124 92
>10% 29 57 54 280 255

This table presents the summary statistics of the entire period’s data in returns, i.e., from 2 February 2018 to
8 September 2022. Panel A shows the descriptive statistics of each variable used in this study. Panel B shows the
count distribution of the returns for each variable. The variables are defined in Table 1.

362



J. Risk Financial Manag. 2023, 16, 474

Table 4 presents the Spearman rank-order correlation statistics. As is evident, the
correlations between the near-term and next-term Bitcoin futures and spot are almost close
to +1, reinforcing the inference that we made when looking at the count distribution of
returns, namely that these securities offer the least benefit for diversification. Interestingly,
while the sentiment variable is also positively correlated with all the Bitcoin variables (F0,
F1, and F2), the attention variable is negatively correlated with the Bitcoin variables. The
correlations of the attention variable are marginally lower than zero, indicating that if the
attention to Bitcoin among investors increases, a likely reason is fear sentiments, which
would plausibly exert negative price pressure on both the Bitcoin spot and futures.

Table 4. Correlation statistics.

Variables F0 F1 F2 Sent Attention

F0 1
F1 0.9993 ** 1
F2 0.9991 ** 0.9999 ** 1
Sent 0.2543 ** 0.2530 ** 0.2521 ** 1
Attn −0.0531 −0.0547 −0.0552 0.0124 1

This table shows the Spearman rank correlation coefficients among the bitcoin spot, near-term bitcoin future,
next-term bitcoin future, bitcoin sentiment, and bitcoin investor attention. The variables are defined in Table 1.
** indicates significance at the 5% level.

5. Empirical Results

To facilitate the investigation of both the short-term and long-term relations between
the Bitcoin futures, spot, sentiment, and attention variables, we need to empirically evaluate
the stationarity of each series and identify the order of integration. Since both the bivariate
Granger causality tests used to analyze the short-term relations and the Johansen test used
to evaluate the long-term relations are sensitive to the choice of lag length, we need to
examine the lag structure resulting from an unrestricted VAR model for each time series
and determine the optimal lag lengths. The long-term relations can be evaluated using the
ARDL and NARDL tests, which eliminate the limitation on the order of integration imposed
by the Johansen procedure. The NARDL model specifically allows for an asymmetric long-
run relation between the variables. The following sections analyze the results of each of
these tests, and, in the end, we evaluate an error correction model for the Johansen, ARDL,
and NARDL procedures.

5.1. Stationarity and Optimal Lag Length

Examining the stationarity properties of all the variables is critical in performing a
cointegration analysis. The ADF (Dickey and Fuller 1979, 1981), KPSS (Kwiatkowski et al.
1992), and Ng and Perron (Ng and Perron 2001) tests are used to evaluate the unit root.
Panels A and B in Table 5 present the results of the ADF and the KPSS and NG and Perron
test results, respectively. Regardless of whether we include only an intercept or both an
intercept and a trend when ADF tests are performed on the level data of the various series,
we do not reject the null hypothesis of non-stationarity for three out of the five variables
under examination. The Bitcoin futures (F1 and F2) and the Bitcoin spot (F0) variables
show evidence of a unit root and must be first differenced. The null hypothesis is rejected
for the sentiment and attention variables, and both these variables are stationary in level
form. Considering the three series (F0, F1, and F2), which have unit roots in the level form,
the Panel A results of the ADF test on the first differences show evidence to reject the null
hypothesis of non-stationarity. Thus, these three series become stationary after the first
differencing and are integrated into order one, I(1).
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Table 5. Unit root test statistics.

Panel A:

F0 F1 F2 Sent Attn Critical Values

ADF Tests on Levels

With Intercept −1.2503 −1.3115 −1.3068 −4.9547 −11.2451 −2.8639 **
p-values 0.6543 0.6261 0.6283 0.0000 ** 0.0000 **
With Intercept and Trend −1.3029 −1.4342 −1.4402 −4.9368 −11.2390 −3.4138 **
p-values 0.8865 0.8506 0.8488 0.0003 ** 0.0000 **

ADF Tests on First Difference

With Intercept −22.0040 −37.7488 −38.4890 −41.5384 −30.1591 −2.8639 **
p-values 0.0000 ** 0.0000 ** 0.0000 ** 0.0000 ** 0.0000 **
With Intercept and Trend −22.0020 −37.7393 −38.4790 −41.5246 −30.1469 −3.4138 **
p-values 0.0000 ** 0.0000 ** 0.0000 ** 0.0000 ** 0.0000 **

Panel B:

F0 F1 F2 Sent Attn Critical Values

KPSS Tests on Level

With Intercept and Trend 0.3711 0.3689 0.3680 0.0336 0.0392 0.1460 **

KPSS Tests on First Difference

With Intercept and Trend 0.1419 0.1328 0.1286 0.0178 0.0327 0.1460 **

Ng and Perron Tests on Level (With Intercept and Trend)

MZa −4.2466 −4.8360 −4.8306 −44.0376 −194.3780 −17.3000 **
MZt −1.3597 −1.4647 −1.4658 −4.6610 −9.8294 −2.9100 **

Ng and Perron Tests on First Difference (With Intercept and Trend)

MZa −458.9110 −564.7240 −563.1830 −3.3718 −2.5451 −17.3000 **
MZt −15.1475 −16.8036 −16.7806 −1.2553 −1.12117 −2.9100 **

This table shows the unit root statistics for each variable used in the study using levels and first differences. Panel
A presents the unit root test results using the augmented Dickey–Fuller tests. Panel B shows the unit root tests
results using the KPSS and the Ng and Perron tests. The variables are defined in Table 1. ** indicates significance
at the 5% level.

In contrast to the ADF test, which posits the null hypothesis of non-stationarity, the
KPSS test sets the null hypothesis as a stationary series and the alternative hypothesis as
non-stationarity. Panel B in Table 5 presents results obtained for level data, which show
evidence to reject the null hypothesis for three of the variables (F0, F1, and F2) and fail to
reject the null hypothesis for the sentiment and attention variables. We fail to reject the
null hypothesis for the F0, F1, and F2 series when the KPSS tests are applied to the first
differenced data. The results of the KPSS tests are consistent with the ADF tests. Since
these stationarity tests (ADF and KPSS) are known to suffer potentially from severe finite
sample power and size problems (De Jong et al. 2007; Keblowski and Welfe 2004; DeJong
et al. 1992), we further augment the stationarity results by conducting the Ng and Perron
test. This test provides good power and reliable size properties to reconfirm the results of
the ADF and KPSS tests. In Panel B of Table 5, we present the Ng and Perron test results.
Based on the results, we reject the null hypothesis of stationarity on the level for variables
F0, F1, and F2. After the first differencing, all three non-stationary series become stationary,
and these results are consistent with the previous ADF and KPSS tests.

In conjunction with the stationarity tests, it is critical to examine the lag structure of
the unrestricted VAR model for each series in determining the optimal lag length. Table 6
shows the results of the lag length analysis. Following past research, the lag length is
chosen using the Akaike Information Criterion (AIC) (Hatemi-J and Hacker 2008; Akaike
1974, 1981). The results in Table 6 show that the AIC criterion indicates that the model
must have optimally eight lags for the Bitcoin futures (F1 and F2) and spot (F0) variables.
Although the lag lengths for the sentiment and attention variables are depicted, they cannot
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be used in the cointegration analysis since the variables are already stationary and not
integrated of at least order one, I(1). The eight lags that are determined will be used in the
long-run relation analysis for the respective variables.

Table 6. VAR—Lag length analysis.

F0 F1 F2 Sent Attn

LR 7 8 8 2 3
FPE 8 8 8 2 3
AIC 8 ** 8 ** 8 ** 2 ** 3 **
SC 1 2 2 2 1
HQ 2 2 2 2 3

This table shows the VAR—optimal lag length analysis. These results are used to conduct the cointegration
analysis. The optimal lag length for each variable is determined to perform the cointegration analysis. Since
sentiment and attention are not integrated of at least order one, they are not included in the cointegration analysis.
The table shows the optimal number of lags as per different criteria, i.e., LR, FPE, AIC, SC, and HQ. The optimal
lag length is selected based on the AIC. The variables are defined in Table 1. ** indicates significance at the
5% level.

5.2. Granger Causality

We next analyze the short-term relations between the different variables using the
bivariate Granger causality test (Granger 1969, 1980). “Causality”, in this case, simply
implies that the past values of one variable can be used to predict the future values of
another variable and is tested using a standard F-test. The results of the Granger causality
tests are shown in Table 7.

Table 7. Granger causality results.

Null Hypothesis F-Statistic Probability Conclusion

D(F1) does not Granger cause D(F0) 3.0219 0.0023 **
Bidirectional CausalityD(F0) does not Granger cause D(F1) 21.5939 0.0000 **

D(F2) does not Granger cause D(F0) 2.3975 0.0145 **
Bidirectional CausalityD(F0) does not Granger cause D(F2) 21.7286 0.0000 **

D(F2) does not Granger cause D(F1) 3.1640 0.0015 **
Bidirectional CausalityD(F1) does not Granger cause D(F2) 3.7429 0.0002 **

SENT does not Granger cause D(F0) 0.6479 0.7376
Unidirectional CausalityD(F0) does not Granger cause SENT 41.2038 0.0000 **

SENT does not Granger cause D(F1) 1.5790 0.1266
Unidirectional CausalityD(F1) does not Granger cause SENT 26.7861 0.0000 **

SENT does not Granger cause D(F2) 1.5716 0.1288
Unidirectional CausalityD(F2) does not Granger cause SENT 26.8062 0.0000 **

ATTN does not Granger cause D(F0) 2.1761 0.0269 **
Unidirectional CausalityD(F0) does not Granger cause ATTN 1.6223 0.1140

ATTN does not Granger cause D(F1) 2.6111 0.0078 **
Bidirectional CausalityD(F1) does not Granger cause ATTN 1.9518 0.0493 **

ATTN does not Granger cause D(F2) 2.6118 0.0078 **
Bidirectional CausalityD(F2) does not Granger cause ATTN 2.0662 0.0363 **

ATTN does not Granger cause SENT 1.2223 0.2821
No CausalitySENT does not Granger cause ATTN 0.8206 0.5844

This table shows the bivariate Granger causality test results. The variables are defined in Table 1. In the null
hypothesis, when the sentence starts with D() of a particular variable name, it implies that this series had to be
first differenced to make it stationary. ** indicates significance at the 5% level.

The pairwise Granger causality tests between the Bitcoin spot (F0) and near-term (F1)
and next-term (F2) Bitcoin futures show evidence of bidirectional causality. This indicates
that the market between the futures and spot for Bitcoin is efficient, and there is no price

365



J. Risk Financial Manag. 2023, 16, 474

discovery function between these assets. The informational content that affects the prices
of both the futures and spot for Bitcoin is effectively reflected in the prices simultaneously.
In contrast, all three variables (F0, F1, and F2) have unidirectional causality with the Bitcoin
sentiment variable. The lagged values of the Bitcoin spot as well as the Bitcoin futures
show evidence of predicting the future values of Bitcoin sentiment. There is a clear lead
lag relation between the price movements of the Bitcoin spot and futures and the Bitcoin
sentiment variable. The evidence supports the short-term dependence of the sentiment
variable on the price movements of the spot and futures variables.

Evaluating the results of the retail investor Bitcoin attention variable, there is a unidi-
rectional causal relation between the attention and Bitcoin spot variable and a bidirectional
causal relation between the attention and Bitcoin futures variables. This evidence implies
that retail investors who pay attention to the Bitcoin asset engage in transactions of the
asset in the spot market and effectively impact the price of the Bitcoin spot. Interestingly,
however, the information content in the same attention variable does not translate into
activity in the Bitcoin futures asset, and the relation between them is efficient. Finally, the
attention and sentiment variables have no causal relation with each other. Overall, these
findings are significant, and this study is the first to collectively highlight these short-term
relations.

5.3. Johansen, ARDL, and NARDL Cointegration

This study employs three cointegration techniques to analyze the long-term relation
between the Bitcoin spot (F0) and the Bitcoin futures (F1 and F2). First, we employ the
Johansen cointegration test developed by Johansen (Johansen 1988, 1991). Second, we
employ the ARDL bounds cointegration test (Sari et al. 2008; Pesaran et al. 2001). Third,
we employ the NARDL bounds cointegration test (Demir et al. 2021; Mhadhbi et al. 2021;
Shin et al. 2014). As part of the Johansen test, we use both the trace test statistic and the
maximum eigenvalue statistic to test the hypothesis of cointegration. After confirming
previously that all three series (F0, F1, and F2) are integrated of the same order, I(1), and
identifying the optimal lag length of eight lags, the multivariable Johansen test is conducted
on these three variables and the results are shown in Table 8.

Table 8. Johansen cointegration results.

Series Trace Test Statistics

No. of CE(s) Eigenvalue Statistic Critical Value Probability

F0 F1 F2
None 0.0817 116.3167 29.7971 0.0000 **

At most 1 0.0157 19.7959 15.4947 0.0105 **
At most 2 0.0016 1.8515 3.8415 0.1736

Series Max Test Statistics

No. of CE(s) Eigenvalue Statistic Critical Value Probability

F0 F1 F2
None 0.0817 96.5208 21.1316 0.0000 **

At most 1 0.0157 17.9444 14.2646 0.0125 **
At most 2 0.0016 1.8515 3.8415 0.1736

This table reveals the Johansen cointegration results. The variables are defined in Table 1. ** indicates significance
at the 5% level.

The results in Table 8 indicate that between the Bitcoin spot (F0) and the two futures,
near-term (F1) and next-term (F2), there is evidence of at least one cointegrating relation.
The number of cointegrating relations is tested sequentially, starting at zero and increment-
ing to one and two. The null hypotheses of having zero and one cointegrating vectors are
both rejected at the 5% significance level. We fail to reject the last sequential analysis with
two cointegrating vectors after analyzing both the trace and the maximum eigenvalue test
statistics. This implies that, at most, there is one long-run relation between the variables
analyzed.
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Following the results of the Johansen procedure, we relax the requirement of the series
being integrated of at least order one, I(1), and conduct the ARDL test. The results of
the ARDL test are shown in Table 9. Panel A presents the statistics for the bounds test,
and Panel B shows the long-run coefficients. As part of the ARDL bounds cointegration
test, we use the F-test and the t-test statistics to test the hypothesis of cointegration. Since
the absolute values of both the F-test and the t-test are greater than the upper bound I(1)
statistic values, we reject the null hypothesis and determine that these variables do have a
long-run cointegrating relation among them. Following the results of the ARDL procedure,
we relax the requirement of a symmetric relation between the Bitcoin futures and spot and
conduct the NARDL test, which allows for asymmetry. The results of the NARDL test are
shown in Panels C and D in Table 9. Panel C presents the statistics for the bounds test, and
Panel D shows the long-run coefficients. As part of the NARDL bounds cointegration test,
we use the F-test to evaluate the results. Since the absolute values of the F-test are greater
than the upper bound I(1) statistic values, we reject the null hypothesis of no cointegrating
relations and conclude that these variables do have a long-run cointegrating relation among
them. Moreover, the responses to both lagged positive and negative changes are significant,
with the response to lagged positive changes being stronger than the response to lagged
negative changes. This is captured in the long-run coefficients in Panel D of Table 9. In
summary, the findings of the Johansen, ARDL, and NARDL procedures are consistent, and
there is evidence of at least one long-run relation between the Bitcoin futures and spot
variables and the existence of asymmetry in this relation.

Table 9. ARDL and NARDL cointegration tests.

Panel A: ARDL Cointegration Bounds Test

Test Statistic Value Lower Bound—I(0) Upper Bound—I(1)

F-statistic 12.9757 ** 2.7200 3.8300
t-statistic −6.2156 ** −1.9500 −3.0200

Panel B: ARDL Long-Run Coefficients

Variable Coefficient Std. Error t-Statistic Prob.

F1 1.8757 ** 0.1659 11.3065 0.0000
F2 −0.8745 ** 0.1656 −5.2796 0.0000

Panel C: NARDL Cointegration Bounds Test

Test Statistic Value Lower Bound—I(0) Upper Bound—I(1)

F-statistic 20.8186 ** 2.5600 3.4900

Panel D: NARDL Long-Run Coefficients

Variable Coefficient Std. Error t-Statistic Prob.

F1_POS 1.9532 ** 0.1265 15.4352 0.0000
F1_NEG 1.7802 ** 0.1434 12.4101 0.0000
F2_POS −0.9563 ** 0.1274 −7.5037 0.0000
F2_NEG −0.7847 ** 0.1440 −5.4486 0.0000

This table presents both the ARDL and NARDL cointegration results. Panel A shows the bounds test results for
the ARDL model and Panel B shows the long-run coefficients from the ARDL model. Panel C shows the bounds
test results for the NARDL model and Panel D shows the long-run coefficients from the NARDL model. The
variables are defined in Table 1. ** indicates significance at the 5% level.

5.4. Error Correction Model

Consistent with the findings of our cointegration analysis and identifying the existence
of at least one long-run cointegrating relation between the Bitcoin futures and spot variables
and some asymmetry, the short-run dynamics need to be analyzed using the error correction
model (ECM) instead of the VAR model. The general equation of the error correction model
is shown in Equations (12) and (13) of Section 3. To establish a long-run equilibrium
between the series analyzed, the coefficient, or the speed of adjustment term from the
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model, must satisfy two conditions. First, the coefficient should be negative; second, it
should be statistically significant.

The results of the ECM are presented in Table 10. The dependent variable used in
the ECM is the Bitcoin spot (F0), and the independent variables are the Bitcoin futures
(F1 and F2 or F1_POS, F1_NEG, F2_POS, and F2_NEG) for the Johansen, ARDL, and
NARDL procedures. Using the optimal lag length of eight and the ECM from the Johansen
procedure, the coefficient in Table 10 satisfies both the conditions of being negative and
statistically significant. This implies that the variables share a common trend, which
describes the long-run relation between them. To augment these findings and by including
an automatic selection of lag lengths and the ARDL or the NARDL procedure, the respective
coefficients show evidence to satisfy both requirements, and the results are consistent with
the error correction coefficient from the Johansen procedure. These results not only reinforce
the existence of a long-run relation but also show evidence of asymmetry in this relation.
In summary, the relation between the Bitcoin futures and spot undergoes an adjustment
process through time towards long-run equilibrium, and the NARDL model has the fastest
speed of adjustment towards long-run equilibrium.

Table 10. ECM estimation.

Method
Dependent

Variable
Independent

Variables

Error Correction Term (Speed of Adjustment)

Coefficient Standard Error t-Statistic Probability

Johansen Test F0 F1 F2 −0.2498 ** 0.0849 −2.9430 0.0033
ARDL Test F0 F1 F2 −0.4434 ** 0.0710 −6.2448 0.0000

NARDL Test F0 F1_POS F1_NEG
F2_POS F2_NEG −0.6407 ** 0.0572 −11.2018 0.0000

This table shows the results of the error correction model (ECM) results using the Johansen test and the ARDL
tests. The dependent variables are the spot Bitcoin. The independent variables in all specifications are the two
Bitcoin futures series. The variables are defined in Table 1. ** indicates significance at the 5% level.

6. Conclusions

The main objective of this research is to investigate the causal relations in the short term
and the cointegrated relations in the long term among the Bitcoin spot price and futures,
investor sentiment, and investor attention. Previous research on the cryptocurrency market
has produced mixed results concerning the price discovery function between the Bitcoin
assets. It has also been limited in scope in analyzing the long-term relation between the
Bitcoin futures and spot and obscure in examining the impact of investor sentiment and
attention on Bitcoin assets. This study aims to provide conclusive evidence of the price
discovery function between the spot price and futures and investigate the effect of investor
sentiment and attention on both the Bitcoin futures and spot assets. To achieve these
objectives, the study employs the bivariate Granger causality methodology to investigate
the short-term relations among the variables of interest. Furthermore, to investigate the
long-term relations among the variables of interest, the study employs the ARDL, NARDL,
and Johansen cointegration procedures with an error correction mechanism.

While the measure of investor attention (GSVI) and crypto sentiment (FGI) used in this
study enables us to capture the interlinkages with Bitcoin assets, we wish to highlight the
limitations in the scope and the existence of alternate measures (Ali et al. 2022). The purpose
of this study is not to look at all the available measures of sentiment and investor attention;
we leave this to future research. Moreover, from a methodology perspective, there are
alternate methods like the cross-quantilogram, dynamic conditional correlation (DCC),
wavelet multiscale decomposition, quantile-on-quantile methods, etc., which could be
employed to look at the interlinkages, and we leave this also to future research. Importantly,
we also do not answer two important questions as part of this study. This is related to
identifying the nature of the participants in the Bitcoin market and the levels of attention at
which they become active participants in the asset market, thereby influencing the prices.
While there is some recent work on these questions (Ülkü et al. 2023), we highlight the need
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to examine this relation as part of future work. Overall, our focus is only on Bitcoin assets,
and, in the future, we will extend this to include all other crypto assets.

In summary, this research contributes to the existing Bitcoin pricing literature by
providing the first empirical examination of the interlinkages between the Bitcoin futures,
Bitcoin spot, investor sentiment, and attention as a collective. The study has five main
findings. First, there is no statistical evidence of price discovery between the Bitcoin futures
and the spot market, and the term structure of the Bitcoin futures does not play a significant
role in this relation. Second, there is statistical evidence of a lead lag relation between
Bitcoin sentiment and both the Bitcoin futures and spot prices. This suggests that changes
in market participants’ opinions and perceptions lead to trading activity in both markets,
affecting the prices of both assets. Third, investor attention statistically leads the Bitcoin
spot market but does not exhibit any lead lag relation with the Bitcoin futures. Fourth, the
study finds statistical evidence of a long-run cointegrating relation between the Bitcoin
futures and spot prices, and the results are robust to the type of cointegration procedure
used. Finally, the speed of adjustment towards equilibrium in the long-run cointegration
relation is stronger and more significant when using the NARDL and ARDL procedures
than the Johansen test, despite the robustness of all testing procedures.

The findings of this study have practical implications for retail and institutional in-
vestors, portfolio managers, regulators, and institutions such as the SEC, CBOE, and CME
in understanding the interplay of these assets and market forces for optimal trading deci-
sions and market regulation. In conclusion, this study contributes to the finance literature
by establishing connections between the Bitcoin spot, futures, investor sentiment, and
investor attention in the cryptocurrency markets. The consideration of investor sentiment
and attention allows for a better understanding of the drivers of the spot and futures market
and the identification of both long-term and short-term and lead lag relations, ultimately
leading to a deeper comprehension of investor and asset behavior in the financial markets.
Lastly, these findings can aid retail investors, institutional investors, portfolio managers,
and regulators in making informed trading decisions, considering the price discovery
between the Bitcoin futures and the spot market, as well as the impact of investor sentiment
and attention on Bitcoin prices, thereby enhancing the efficiency of cryptocurrency markets.
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Notes

1 https://markets.businessinsider.com/news/currencies/cryptocurrency-women-investing-asset-holdings-cash-markets-bitcoin-
etoro-survey-2023-1 (accessed on 22 June 2023).

2 https://beincrypto.com/bitcoin-the-best-performing-asset-class-in-q1-2023/ and https://www.forbes.com/advisor/investing/
cryptocurrency/top-10-cryptocurrencies/ (accessed on 22 June 2023).

3 https://www.slickcharts.com/currency and https://coinmarketcap.com/ (accessed on 22 June 2023).
4 https://argoblockchain.com/articles/5-features-that-make-bitcoin-a-unique-asset-class (accessed on 22 June 2023).
5 https://www.fxstreet.com/cryptocurrencies/resources/brokers-what-are-bitcoin-futures (accessed on 22 June 2023).
6 The sample period used by Akyildirim et al. (2020) is from 12 December 2017 to 26 February 2018. The sample period used by

Kapar and Olmo (2019) is from from 18 December 2017 to 16 May 2018. The sample period used by Baur and Dimpfl (2019) is
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from 12 December 2017 to 18 October 2018. Finally, the sample period used by Corbet et al. (2018) spans from 26 September 2017
to 22 February 2018.

7 The CBOE announced in March 2019 that it was reviewing its approach to Bitcoin derivatives and would stop listing the Bitcoin
futures contracts. In June 2019, the CBOE stopped adding new futures, so the trading of CBOE Bitcoin futures has ceased.

8 More information about the CME Bitcoin futures can be found on their website at https://www.cmegroup.com/education/
bitcoin/cme-bitcoinfutures-frequently-asked-questions.html (accessed on 22 June 2023).

9 The nearest-term futures contain prices from the futures contract with the nearest maturity. When this current contract expires, it
rolls into the futures contract with the next nearest maturity. This also occurs with the next-term or the second month maturity
contracts.

10 In this study, we use the US Dollar (USD).
11 More details on this index can be found on the website https://alternative.me (accessed on 22 June 2023).
12 Although the counts of the individual classifications of “Extreme Greed”, “Greed”, “Neutral”, “Fear”, and “Extreme Fear” are not

shown year after year, the counts were significantly more towards the “Fear” and “Extreme Fear” classification, year after year.
13 Almost 50% of the returns for the Bitcoin futures and spot were positive and 50% were negative.
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Abstract: This study explores fiscal consolidations’ impact on non-performing loans (NPLs) in highly
indebted countries (HICs) following the global financial crisis (GFC) and subsequent sovereign debt
crisis. A dynamic panel data estimator was applied to obtain the unbiased estimator due to NPLs’
time persistence. The findings reveal that fiscal consolidation measures increase NPLs since they limit
the household and business loan-serving capacity. Extended analysis categorises fiscal consolidation
episodes into (1) the fiscal consolidation weak form (FCWE) and (2) the fiscal consolidation strong
form (FCSE). The extended analysis results reveal that the FCWE and FCSE improve NPLs by 1.55%
and 31.10%, respectively. The weak-to-strong form transition of the fiscal consolidation analysis
resulted in improving NPLs by 28.55 percentage points. NPL definition challenges, the potential
influence of loan restructuring and regulatory restrictions, and implications for policymakers and
financial institutions in managing NPLs in highly indebted economies were explored. Investigating
the potentially different effects of both forms of fiscal consolidation (FCWE and FCSE) on NPLs
in countries with different definitions of NPLs, including a comparison study between different
definitions, was identified as an implication for future research. Finally, future studies should examine
how restrictions on IFRS 9 may affect the FCWE and NPL as well as FCSE and NPL associations.

Keywords: non-performing loans; fiscal consolidation; highly indebted countries; global financial
crisis; sovereign debt crisis

1. Introduction

The economic recessions that followed the global financial crisis (GFC) of 2007–2009
had varying impacts on credit quality worldwide. Initially, banks heavily exposed to
United States residential mortgage-backed securities saw a decline in asset quality. Subse-
quently, the GFC evolved into a sovereign debt crisis in the Eurozone, further straining the
debt-serving capacity of businesses and households, especially in highly indebted coun-
tries (HICs)1 (Louzis et al. 2012; Siakoulis 2017). Notably, Ireland witnessed a significant
24.82 percentage point increase in NPLs from 2003 to 2013, while Ukraine experienced a
surge of 51.54 percentage points in NPLs from 2007 to 2017, mirroring the trend seen in
other highly indebted economies.

During the sovereign debt crisis, highly indebted economies had to adopt stringent
fiscal measures to address their debt burdens. Many of these countries, including Ireland,
Spain, Colombia, and Jordan, implemented such measures, increasing the fiscal burden on
businesses and households. Businesses face weak demand for their products and services
due to the lower disposable income available to households. In these economic conditions,
lower free cash flows available to firms and less disposable income for households elevate
credit risk for the banking sector. Along these lines, Konstantakis et al. (2016) also men-
tioned that this fiscal burden negatively affects the debt-servicing capacity, leading to a
rise in NPLs. There is a wide range of research on the macroeconomic determinants of
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NPLs (Alizadeh Janvisloo and Muhammad (2013), Beck et al. (2013), Dimitrios et al. (2016),
Fallanca et al. (2021), Fofack (2005), Makri et al. (2014), Messai and Jouini (2013), Roland
et al. (2013), Zheng et al. (2019), Kartal et al. (2021), Konstantakis et al. (2016), Thornton
and Di Tommaso (2020), Tanasković and Jandrić (2015), Vithessonthi (2016), Le et al. (2020),
Boumparis et al. (2019), and Jiang et al. (2018)). While there is existing research on the
macroeconomic determinants of NPLs, evidence is scarce regarding the fiscal determinants,
with limited empirical studies, such as that of Siakoulis (2017), focusing solely on the
Eurozone and using the cyclical adjusted primary balance as a measure of the fiscal stance.
This study aims to fill this gap by providing empirical evidence on the impact of fiscal
consolidation on NPLs in highly indebted countries, making significant contributions to
the current literature.

NPLs refer to loans where borrowers cannot meet scheduled repayment obligations
outlined in the loan agreement. The NPL ratio represents the proportion of defaulted loans
to the total gross loans. Defaulted loans are defined as those with overdue interest and
principal payments exceeding three months, while total gross loans encompass the entire
loan portfolio’s value. It is crucial to note that NPLs reflect the gross value of loans recorded
on financial statements and not just the specifically overdue amount. However, caution
must be exercised when comparing NPL data across countries due to variations in national
accounting practices, standards, taxation policies, and supervision frameworks.

Furthermore, NPL data may not fully capture impaired loans resulting from bank-
specific loan restructuring. Therefore, the interpretation of NPL data requires careful
consideration, as reporting bodies employ different methodologies. Barisitz (2013) con-
ducted a comprehensive study to shed light on the definition of NPLs across diverse
economies, identifying two key criteria: loans overdue by more than 90 days or strong
evidence indicating significant weaknesses in the loan or borrower’s financial position2.

The discussion on loan restructuring is essential due to regulatory restrictions regard-
ing the transfer of NPLs into performing loans. For example, restructured loans typically
need to remain non-performing for a probationary period of one year, followed by an
additional two years before their status can be changed. The treatment of restructured
loans in historical non-performing loan data remains unclear3. Furthermore, a situation
may arise where a borrower fulfils payment obligations for one loan but fails to do so for
another. This raises concerns regarding the classification of loans as performing, consider-
ing the well-defined weakness highlighted in the second key element of Barisitz’s (2013)
comprehensive definition of NPLs. Such discussions indicate that the restructuring of NPLs
can impact the health of a balance sheet. Consequently, global data on NPLs may present a
slightly different picture of balance sheet health, while accounting and financial standards,
such as the IFRS and GAAP, primarily focus on impaired loans rather than NPLs4.

NPLs arise from financial sector difficulties (Konstantakis et al. 2016), which are inter-
twined with macroeconomic conditions. During an economic expansionary phase, NPLs
tend to decrease as the debt-servicing capacity of businesses and households improves.
However, the financial sector may extend credit to less-creditworthy customers, increasing
NPLs during an economic downturn. Recessionary conditions diminish the income streams
of consumers and firms, contributing to a rise in NPLs. Furthermore, the financial sector
has been found to influence overall economic growth (Carlstrom and Fuerst (1997), De Bock
and Demyanets (2012), Fisher (1933), and Kiyotaki and Moore (1997)). Increased levels of
NPLs result in higher associated costs, reducing the owner’s equity of banks, increasing the
credit risk of commercial banks (Jiajia et al. (2023)), and potentially leading to insolvencies
and systemic failures. Under such circumstances, the banking system faces challenges
in effectively channelling savings into investments and transmitting monetary policy to
the real economy.5 This study primarily focuses on the transmission mechanism through
which the economy affects the banking sector, specifically examining the impact of the
debt-servicing capacity of individual and corporate borrowers on fiscal stance improvement
(Perotti (1996)).
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However, identifying the effect of a fiscal stance is complicated by potential endo-
geneity issues. The existing literature employs various measures to analyse fiscal policy
effects. For instance, Siakoulis (2017) utilised the cyclical adjusted primary balance, which
represents the budget balance under normal economic activity levels. A positive change
in this indicator indicates an increased tax burden, adversely affecting the debt-servicing
capacity of businesses and households. Another approach employed in the literature
(Alesina and Ardagna (2010), Barrios et al. (2010), Mirdala (2013), Perotti (1996), and
Rahman (2018)) is the use of strict fiscal measures to identify fiscal effects. This approach
focuses on fiscal consolidation episodes aimed at reducing the burden of sovereign debt.
Two measurement approaches are commonly used for fiscal consolidation episodes: the
“cold shower” approach and gradual consolidation. The cold shower approach identifies
a fiscal consolidation episode when the cyclical adjusted primary balance improves by
more than 1.5% of the GDP per year. Gradual consolidation, on the other hand, refers to a
situation where the cyclical adjusted primary balance does not deteriorate by more than
0.5% of the GDP per year. Building upon the work of Rahman (2018), a strong episode of
fiscal consolidation is defined as a period in which the cyclical adjusted primary balance
improves by 1.5% of the GDP per year or two consecutive years with an improvement of
at least 1% of the GDP per year. To the best of our knowledge, this study represents the
first attempt to analyse the impact of both weak and strong forms of fiscal consolidation
on NPLs.

The existing literature (Beck et al. (2013), Dimitrios et al. (2016), Fallanca et al. (2021),
Kjosevski and Petkovski (2021), Louzis et al. (2012), Makri et al. (2014), Messai and Jouini
(2013), Roland et al. (2013), Siakoulis (2017), Vogiazas and Nikolaidou (2011), and Zheng
et al. (2019)) has identified a wide range of determinants of the NPLs. Following this strand
of research, this study uses economic growth and unemployment to capture the effect of
the economic cycle. The existing empirical literature shows that the debt-servicing capacity
of businesses and households has a negative relationship with economic growth and a
positive relationship with unemployment. Inflation also affects the debt-serving capacity of
businesses and households through different channels. The first channel increases the debt-
serving capacity of businesses and households. For instance, the higher level of inflation
reduces the real value of an outstanding loan, making debt serving much easier. Conversely,
the second channel deteriorates the debt-serving capacity of these agents. For instance,
the higher level of inflation reduces the real income of borrowers, which deteriorates the
borrowers’ capacity to repay the loans.

Furthermore, the monetary policy announcements affect the NPLs in a variable loan
rate environment. In particular, the monetary policy actions to reduce the level of inflation
are highly likely to reduce the debt-serving capacity of borrowers, since the lenders adjust
their rates to maintain the real returns. In other words, they increase their interest rates in
response to the increasing policy rates. These rate adjustments deteriorate the loan-paying
capacity of borrowers. Therefore, the impact of inflation on the NPLs can be positive or
negative. This study also uses private debt as a control variable, and it is expected that
private credit is positively associated with NPLs, since the increase in private credit restricts
the capacity of businesses and households to refinance their debt. To summarise, this
study uses economic growth, unemployment, inflation, and domestic credit for the private
sector as the control variables to separate the effect of fiscal measures from the general
macroeconomic factors.

Our empirical investigation reveals that fiscal consolidation measures increase the
NPLs in highly indebted countries since these measures limit the loan-serving capacity of
households and businesses. The existing literature used the positive change in the CAPB to
analyse its impact on NPLs. We called this positive change in the CAPB the weak form of
fiscal consolidation. Our findings reveal that the weak form of fiscal consolidation improves
NPLs by 1.55%. In other words, any positive change in the cyclical adjusted primary balance
improves NPLs by one and a half percent. To the best of our knowledge, the impact of the
strong form of fiscal consolidation on NPLs has yet to be analysed. Therefore, this study
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contributes to the existing empirical literature by adding evidence on the strong form of
fiscal consolidation. The strong form of fiscal consolidation is defined as a period where the
cyclical adjusted primary balance improves by 1.5 percent of the GDP per year or a period
of two consecutive years where the cyclical adjusted primary balance is improved by at
least 1 percent of the GDP per year. Our extended analysis indicates that the strong form of
fiscal consolidation improves the NPLs by 30.10%. The most striking observation to emerge
from the comparison between the weak form and the strong form of fiscal consolidation is
that moving from the weak form to the strong form improves the NPLs by 28.55 percentage
points. The results of this study are consistent with the theoretical expectation.

The rest of this paper is organised as follows. Section 2 presents the relevant literature
on the topic. Section 3 presents the data, empirical model, and estimation strategy, which
is further categorised into (1) The Data Set and HICS Classification, (2) Empirical Model
and Estimation Strategy, and (3) Methodological Notes on Fiscal Consolidation Episodes.
Section 4 presents the results and discussion. This study is concluded in Section 5.

2. Literature Review

The empirical literature on the association between macroeconomic conditions and
credit quality is extensive (Dimitrios et al. (2016), Fallanca et al. (2021), Kjosevski and
Petkovski (2021), Tanasković and Jandrić (2015), and Zheng et al. (2019)) and focuses
primarily on the loan-serving capacity of households and businesses. For instance, several
studies have reported a positive relationship between unemployment and NPLs, since
a higher level of unemployment lowers the loan-serving capacity of households and
businesses. Most of the studies on NPLs are country-specific and conducted after the
financial and debt crises. For instance, Vogiazas and Nikolaidou (2011) investigated the
determinants of the NPLs in Romania’s banking and financial system. Their empirical
investigation revealed that unemployment, inflation, external debt, and M2 are the critical
determinants of credit quality in the Romanian financial system.

Apart from the macroeconomic factors, bank-specific factors also affect the quality
of loans in any banking sector. Furthermore, it might be relevant to note that these bank-
specific and macroeconomic effects vary between different loan categories. Along these
lines, Louzis et al. (2012) reported that the macroeconomic factors, including the GDP,
unemployment, public debt, and interest rates, explain the NPLs of all categories. They
further reported that management quality is also one of the key determinants of NPLs. The
weighted average loan rate was also reported as a determinant (Greenidge and Grosvenor
(2010)). One strand of research used the panel of banks to investigate the determinants of the
NPLs (Alizadeh Janvisloo and Muhammad (2013), Messai and Jouini (2013), Quagliariello
(2007), and Salas and Saurina (2002)).

Another strand of research used cross-country data to identify the specific determi-
nants of credit quality. We follow this approach since cross-country analysis incorporates
country-specific variations in the trends of NPLs. This country-specific variation has a
couple of sources, including accounting standards. Econometrically, cross-country analysis
provides more robust results than time series analysis. Using an unbalanced panel of
75 countries, Roland et al. (2013) reported that share prices, real GDP growth, lending
interest rates, and exchange rates are critical determinants of NPLs. However, they reported
some variation in the exchange rate and share price effects. The countries with pegged
and managed exchange rates had a higher impact of exchange rates on the NPLs. Working
in a similar vein, Makri et al. (2014) used the unbalanced panel data from 2002 to 2008 of
14 Eurozone economies and reported that the state of the economy is significantly linked
with the loan quality. In particular, they reported that the NPLs of the previous year, GDP,
unemployment, and public debt are the key determinants of NPLs. Similarly, Fofack (2005)
used the unbalanced panel data of 16 sub-Saharan African countries from 1993 to 2003 and
reported the strong causality between NPLs and (1) economic growth, (2) interest rates, and
(3) real exchange rates. Comparatively recently, some panel studies were also published
on the determinants of NPLs. For instance, Kjosevski and Petkovski (2021) investigated
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the macroeconomic and bank-specific determinants of NPLs from the Baltic states using
panel data from 21 commercial banks. By applying the fixed-effect Generalised Method
of Moments difference and system, they reported that GDP growth, inflation, public debt,
and unemployment are key determinants of NPLs. However, they also reported the bank-
specific determinants, including return on assets, total assets ratio, return on equity, and
the growth of gross loans.

To the best of our knowledge, we could not find any paper on the linkage between
fiscal policy and NPLs other than that of Siakoulis (2017). Using a global dataset from
31 countries, Siakoulis reported that fiscal pressure, as measured by the changes in the
cyclical adjusted primary balance, determines the NPLs.

3. Research Design

3.1. The Data Set and HICS Classification

The data set used in this study is a balanced panel which consists of NPLs, fiscal con-
solidation episodes, and a set of control variables. The control variables consist of economic
growth, unemployment, inflation, and domestic credit to the private sector. The complete
definitions, acronyms, and indicator codes are given in Table 1. Fiscal consolidation and
NPLs are the key variables of interest in this study. A separate section is included on the
detailed calculation of the weak and strong episodes of the fiscal consolidation episodes.

Table 1. Definitions, acronyms, and indicator codes of the variables.

Names of the Variables Acronyms Indicator Codes

Dependent Variable
Bank NPLs to gross loans (%) BNPL GFDD.SI.02
Independent Variable
Weak episode of fiscal consolidation FCWE Author’s calculation
Strong episode of fiscal consolidation FCSE Author’s calculation
Control Variables
GDP growth (annual %) GDPG NY.GDP.MKTP.KD.ZG
Unemployment, total (% of the total labour force)
(national estimate) UNEM SL.UEM.TOTL.NE.ZS

Inflation, GDP deflator (annual %) INFL NY.GDP.DEFL.KD.ZG
Domestic credit to the private sector (% of GDP) LCPD FS.AST.PRVT.GD.ZS
Variable to calculate HICS counties
Central government debt, total (% of GDP) CGTD GC.DOD.TOTL.GD.ZS

Note: See the section Methodological Notes on Fiscal Consolidation Episodes for the detailed calculation of the
weak and strong episodes of the fiscal consolidation.

The highly indebted countries (HICs) were selected based on the entire stock of the
direct long-term contractual obligations of the government to others. The central govern-
ment debt (percent of the GDP) is the most suitable measure for this entire stock. These
data calculate the average debt of all the countries available in the World Development
Indicators (World Bank 2022). For this purpose, we used the latest data on the central
government debt (percent of the GDP) for the last 10 years. Then, the countries were sorted
in descending order, and the first 35 countries were selected as the HICs countries. These
global data enabled us to investigate the common patterns in the NPLs.

3.2. Empirical Model and Estimation Strategy

Following the recent literature (Louzis et al. (2012) and Rahman et al. (2020)), this
study applied the dynamic panel data estimator to arrive at the unbiased estimator due to
the time persistence in NPLs. Equation (1) presents the dynamic panel data specification to
analyse the impact of fiscal consolidation on NPLs:

NPLi,t = βNPLi,t−1 + γ(L)xi,t + δi + εi,t; |β| < 1, i = 1, . . . , N, t = 1, . . . , T. (1)
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The subscripts i and t represent the cross-sectional and time dimensional of the panel
dataset, respectively. NPLi,t represents the NPLs as the dependent variable, and γ(L)
denotes a lag polynomial vector, while xi,t is the kX1 vector of independent variables
other than yi,t−1. Here, δi and εi,t represent the unobserved individual effect and the error
term, respectively.

The existing literature (see Siakoulis (2017)) provides evidence of time persistency in
NPLs. Therefore, Equation (1) is consistently estimated using the Generalised Method of
Moments in a framework proposed by Arellano and Bond (1991). Later, this approach was
generalised by Arellano and Bover (1995) and Bulundell and Bond (1998). This estimation
approach is based on the first difference transformation and the subsequent elimination of
δi. In this case, Equation (1) can be written as follows:

ΔNPLi,t = βΔNPLi,t−1 + γ(L)Δxi,t + Δεi,t (2)

In Equation (2), Δ represents the first difference operator. As mentioned above, xi,t
represents the explanatory variables. The explanatory variable set includes the primary
and control variables of interest. In particular, this set includes (1) weak episodes of fiscal
consolidation (FCWE), (2) strong episodes of fiscal consolidation (FCSE), (3) the GDP
growth (GDPG), (4) unemployment (UNEM), (5) inflation (INFL), and (6) domestic credit
to the private sector (LCPD). We used the FCWE as the positive change in the cyclical
adjusted primary balance. However, the FCSE is a dummy variable which takes a value of
one for the case of strong episodes of fiscal consolidation and zero otherwise. Following
Rahman (2018), a strong episode of fiscal consolidation is a period where the cyclical
adjusted primary balance improves by 1.5 percent of the GDP per year or a period of
two consecutive years where the cyclical adjusted primary balance is improved by at
least 1 percent of the GDP per year. For further details on these variables, see Table 1.
However, detailed notes on the calculation of the fiscal consolidation episodes are provided
in Section 3.3 (Methodological Notes on Fiscal Consolidation Episodes). Based on this set
of explanatory variables, Equation (2) can be rewritten as

ΔNPLi,t = β1ΔNPLi,t−1 + γ1ΔFCWEi,t + γ2ΔFCSEi,t + γ3ΔGDPGi,t
+γ4ΔUNEMi,t + γ5ΔINFLi,t + γ6ΔLCPDi,t + Δεi,t

(3)

It might be relevant to note that the error term [Δεi,t] in Equation (2) is, by definition,
correlated with the lagged dependent variable ΔNPLi,t−1. This correlation imposes a bias
in the estimation process of the model. One of the possible ways to arrive at the unbiased
coefficient is using the higher-order lags of the dependent variables as instruments. For
instance, it is expected in Equation (2) that the second lag of NPLs ΔNPLi,t−2 is correlated
with its first lag ΔNPLi,t−1 and uncorrelated with the error term [Δεi,t] for the third period
and above. Therefore, ΔNPLi,t−2 can be used as an instrument in Equation (2). This
discussion reveals that lags of orders of two and above satisfy the moment condition of
E = 0 for t = 3, . . . , T and s ≥ 2. Another source of biasedness originates from (1) the
possible endogeneity of the explanatory variables and (2) the correlation with the error
term [Δεi,t]. The explanatory variables should be strictly exogenous. For the case of strictly
exogenous variables, the historical and future values are uncorrelated with the error term
[Δεi,t]. In other words, the strict exogenous variables satisfy the moment condition of
E = 0 for t = 3, . . . , T and all the values of s. However, the restrictive assumption of the
strict exogenous is no longer valid in reverse causality. Following Cameron and Trivedi
(2010), the current lagged values of the explanatory variables are the only valid instruments
for the weak or predetermined explanatory variables implying the moment condition of
E = 0 for t = 3, . . . , T and s ≥ 2 (see Gholami et al. (2023), Gholami et al. (2022) and
Siakoulis (2017)). Based on these orthogonality restrictions, the estimates of the GMM are
consistent. Furthermore, we apply the Sargan specification test for the null hypothesis,
and therefore the instruments must be valid for that moment’s conditions. This test is
asymptotically distributed as a chi-square. The reported J-statistics are simply the Sargan
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statistics. Furthermore, we apply the Arellano–Bond test for zero autocorrelation in the
first-difference error. Consequently, the null hypothesis of no autocorrelation is expected to
be rejected at order one and not at the higher orders.

3.3. Methodological Notes on Fiscal Consolidation Episodes

Identification of the fiscal effect on banks’ NPLs is difficult due to potential endogeneity
(Siakoulis 2017). Therefore, the budgetary impact should be recorded when the economy
is at a normal activity level. Along these lines, Siakoulis (2017) used the cyclical adjusted
primary balance to analyse the effect of fiscal policy on NPLs. Theoretically, the cyclical
adjusted primary balance removes the endogenous components of spending and revenues.
In particular, the cyclical adjusted primary balance reveals the fiscal position after removing
the cyclical and automatic movements. Considering these theoretical aspects, the positive
change in the cyclical adjusted primary balance is considered a weak fiscal consolidation
episode. However, this study extends the empirical literature by incorporating the second
type of fiscal consolidation episode. Following the existing empirical literature (Alesina
and Ardagna (2010), Alesina and Perotti (1995), Mirdala (2013), and Rahman (2018)), we
incorporate the strong episodes of fiscal consolidation in Equation (3).

Fiscal consolidation is the improved fiscal stance to reduce the burden of sovereign
debt. Following Mirdala (2013), this is accomplished through a set of fiscal arrangements
on the side of the government budget’s revenue and expenditures. The existing literature
has provided several approaches to measure the episodes of fiscal consolidation (Alesina
and Ardagna (2010), Barrios et al. (2010), and Mirdala (2013)). The most common ap-
proach to measuring fiscal consolidation episodes was given by Mirdala (2013), which is
a revised version of the approach proposed by Barrios et al. (2010). Mirdala (2013) used
two approaches, including (1) the cold shower approach and (2) gradual consolidation.
According to the cold shower approach, the episode of fiscal consolidation is when the
cyclical adjusted primary balance improves by more than 1.5 percent of the GDP per year.
However, gradual consolidation is when the cyclical adjusted primary balance will not
deteriorate by more than half a percent of the GDP per year. Following Rahman (2018),
a strong episode of fiscal consolidation is a period where the cyclical adjusted primary
balance improves by 1.5 percent of the GDP per year or a period of two consecutive years
where the cyclical adjusted primary balance is improved by at least 1 percent of the GDP
per year.

Cyclical Adjusted Primary Balance

There are different approaches to calculating the cyclical adjusted primary balance.
However, Mirdala (2013) revealed that the main algorithm follows the same procedures”

1. The first step is to estimate the potential GDP.
2. The second step is to determine the responses of the key revenues and expenditures

to a fluctuation in the cyclical GDP.
3. The third step is to adjust these cyclical components calculated in the second step

from the revenue and expenditures.

The existing literature has different approaches to estimating the cyclical components,
as mentioned in the second step above. One approach is to estimate the income elasticities
of the main budgetary variables, including revenue and expenditures (Altar et al. (2010)
and Bouthevillain et al. (2001)). However, most empirical studies apply the Hodrick
and Prescott (HP) filter (Hodrick and Prescott (1997)) to calculate the cyclical components.
Following this strand of research, we apply the HP filter to calculate the cyclical components
for the fiscal variables. Mirdala (2013) revealed that the cyclical adjusted primary balance is
calculated by subtracting the cyclical components from the primary government balance.
This can be written as follows:

CAPBt = PBt − Bc
t = PBt −

n

∑
i=1

Bc
t,i (4)
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where CAPB, PB, and Bc represent the cyclical adjusted primary balance, primary bal-
ance, and cyclical components, respectively. Here, the primary balance is calculated by
subtracting the interest payable from the actual government budget balance. This can be
represented as follows:

PBt = Bt − EI (5)

Bc
t,i in Equation (4) represents a cyclical component of each budget category, including

revenue and expenditure. As mentioned above, we apply the HP filter to calculate the
cyclical components. Being a two-sided linear filter, the HP filter minimises the variance in
y around s and computes the smoothed series s of y (Hodrick and Prescott (1997)). This
computation is subject to a penalty that constrains the second difference of s. And the HP
filter selects s to minimise. This can be represented as follows:

T

∑
t=1

(yt − st)
2 + λ

T−1

∑
t=2

((st+1 − st)− (st − st−1))
2 (6)

In Equation (6), the smoothness of variance is controlled by λ. And as λ = ∞, s
approaches a linear trend. EViews 12 is used to apply this HP filter and estimate the
cyclical components.

4. Results and Discussion

Table 2 presents the descriptive statistics of the variables selected for this study. Critical
analysis of Table 2 reveals that 6.03% of the total bank loans were NPLs. The highest level of
NPLs was observed in Ukraine, Indonesia, and Uruguay. It might be relevant to note that
the highest level of NPLs was observed in Ukraine from 2017 to 2019.6 What is interesting
about the data in this table is that it reveals useful insights about fiscal consolidation. The
descriptive statistics of the weak episodes of fiscal consolidation reveal that the cyclical
adjusted primary balance was reduced by 0.41% of the GDP in the top 35 HICs from 2000
to 2020. The main source of variation in the cyclical adjusted primary balance was within
the economies. The construction of strong episodes of fiscal consolidation is complex.
However, 12.93 percent of the budgetary efforts could be considered strong commitment of
the government to improving the fiscal stance.

Table 2. Descriptive statistics.

Variable Mean Std. Dev. Min Max Observations

BNPL Overall 6.0354 6.9033 0.2000 54.5413 N = 624
Between 4.7869 0.9927 22.8881 n = 34
Within 5.1332 −13.8527 37.6886 T = 18.3529

FCWE Overall −0.4096 2.9920 −16.1102 15.0072 N = 686
Between 1.6505 −4.9682 2.0327 n = 35
Within 2.5048 −17.0294 14.0880 T-bar = 19.6

FCSE Overall 0.1293 0.3357 0.0000 1.0000 N = 735
Between 0.0935 0.0000 0.3333 n = 35
Within 0.3228 −0.2041 1.0816 T = 21

GDPG Overall 3.0991 3.6954 −18.9795 25.1763 N = 735
Between 1.3947 −0.2410 5.8194 n = 35
Within 3.4299 −15.6395 23.2489 T = 21

UNEM Overall 7.8553 6.1962 0.0000 33.2900 N = 734
Between 5.4026 1.1276 27.2562 n = 35
Within 3.1570 −9.7195 21.3905 T = 20.9714

INFL Overall 5.6538 10.0784 −5.9922 185.2908 N = 735
Between 6.1587 −0.4652 33.1890 n = 35
Within 8.0422 −19.1933 157.7556 T = 21

LCPD Overall 4.2207 0.6416 2.8236 5.7189 N = 643
Between 0.6005 3.3519 5.2135 n = 35
Within 0.2348 3.2692 5.1246 T-bar = 18.3714

Note: BNPL, FCWE, FCSE, GDPG, UMEN, INFL, and LCDP indicate the bank NPLs to gross loans, weak episodes
of fiscal consolidation, strong episodes of fiscal consolidation, gross domestic product growth, unemployment,
inflation, and the natural log of domestic credit to the private sector, respectively.
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The correlation analysis results in Table 3 revealed that there was no evidence of mul-
ticollinearity since the independent variables were not correlated. Following the empirical
strategy, the models were estimated using the GMM after testing the appropriateness of
the estimation techniques.7 Along these lines, the existing empirical literature reveals that
stationarity of the panel data should be ensured for appropriate estimation of the dynamic
panel model (Buck et al. (2008) and Chang et al. (2011)).

Table 3. Correlation analysis.

FCSE FCWE GDPG UNEM INFL LCPD

FCSE Correlation 1.0000
t-Statistics -----
Probability -----

FCWE Correlation 0.0901 ** 1.0000
t-Statistics 2.2569 -----
Probability 0.0244 -----

GDPG Correlation −0.1234 ** 0.3286 *** 1.0000
t-Statistics −3.1044 8.6831 -----
Probability 0.0020 0.0000 -----

UNEM Correlation 0.1325 *** 0.0236 −0.1511 *** 1.0000
t-Statistics 3.3364 0.5882 −3.8141 -----
Probability 0.0009 0.5566 0.0002 -----

INFL Correlation 0.1234 *** 0.1193 *** 0.0753 ** 0.0287 1.0000
t-Statistics 3.1030 2.9980 1.8837 0.7157 -----
Probability 0.0020 0.0028 0.0601 0.4745 -----

LCPD Correlation 0.0358 −0.2521 *** −0.2146 *** 0.0323 −0.3703 *** 1.0000
t-Statistics 0.8932 −6.5033 −5.4832 0.8076 −9.9501 -----
Probability 0.3721 0.0000 0.0000 0.4196 0.0000 -----

Note: BNPL, FCWE, FCSE, GDPG, UMEN, INFL, and LCDP indicate the bank NPLs to gross loans, weak episodes
of fiscal consolidation, strong episodes of fiscal consolidation, gross domestic product growth, unemployment,
inflation, and the natural log of domestic credit to the private sector, respectively. ** < 0.05; *** < 0.01.

Stationarity testing is particularly important when T is less than N, as demonstrated
in our dataset.8 There was another reason to test the stationarity before applying the GMM,
as the first-difference GMM only takes care of the first order of integration. Therefore,
stationarity testing should be applied to ensure that none of the series is integrated into
an order of two. For this purpose, this study applied three cross-sectionally independent
panel unit root tests, including (1) Levin, Lin, and Chu, (2) the ADF-Fisher Chi-square, and
(3) the PP-Fisher Chi-square.

Table 4 presents the results of these tests at the level and the first difference. A critical
analysis of this table reveals that all the series were stationary, at least at the first difference.
These results ensure that it is econometrically appropriate to estimate Equation (3). Table 5
presents the results of the impact of fiscal consolidation on the NPLs of the HICs. Columns
1 and 2 present the coefficients of the test statistics of Equation (2), which were estimated
using the panel GMM with the first difference transformations. This model is named Model
1. Columns 3–8 present the coefficients of the test statistics of Equation (2) estimated using
pooled (Model 2), random (Model 3), and fixed effects (Model 4). The estimates of Models
2–4 were part of the robustness analysis. This study aims to analyse the impact of fiscal
consolidation on NPLs in highly indebted economies. The NPLs are the ratio of defaulting
loans to total gross loans9. The dataset from the wide scope of economics enabled us to
investigate the common patterns in the NPLs.
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Table 4. Panel unit root tests.

At Level At First Difference

LLC ADF-F PP-F LLC ADF-F PP-F

BNPL −18.0683 610.5140 463.3610 −5.8995 202.3380 542.7890
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FCWE −7.4605 164.7540 169.5170 −19.7814 450.2270 451.2990
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FCSE −8.7310 117.9560 120.9550 −30.7682 400.6090 296.5490
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

GDPG −8.5565 195.2070 190.8560 −28.4972 621.2740 615.6850
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

UNEM −4.1440 154.6120 149.4780 −17.6138 363.9070 694.3550
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

INFL −10.2159 243.4020 225.0290 −36.5655 726.6920 710.1670
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

LCPD −1.5656 84.8266 85.9664 −2.9989 135.6620 225.6220
0.0587 0.1094 0.0944 0.0014 0.0000 0.0000

Note: BNPL, FCWE, FCSE, GDPG, UMEN, INFL, and LCDP indicate the bank NPLs to gross loans, weak episodes
of fiscal consolidation, strong episodes of fiscal consolidation, gross domestic product growth, unemployment,
inflation, and the natural log of domestic credit to the private sector, respectively.

Table 5. Impact of fiscal consolidation on the NPLs of the HICs.

Model 1 (GMM) Model 2 (Pooled) Model 3 (Random) Model 4 (Fixed)
Coefficient t-Stat Coefficient t-Stat Coefficient t-Stat Coefficient t-Stat

(1) (2) (3) (4) (5) (6) (7) (8)

BNPL (-1) 0.8386 *** 173.0265
FCWE 0.0155 ** 1.8658 0.0220 *** 0.2291 0.1097 ** 1.1784 0.1213 ** 1.2527
FCSE 0.3010 *** 4.5585 3.4370 4.2808 1.7588 2.7890 1.4868 2.3277
GDPG −0.3097 *** −41.4851 −0.2696 *** −2.9762 −0.2155 ** −2.7372 −0.1856 ** −2.2930
UNEM 0.1464 *** 29.9918 0.1673 *** 4.2974 0.3856 *** 5.7880 0.4944 *** 6.1327
INFL 0.0547 *** 23.6857 0.0016 0.0331 0.0163 0.4649 0.0175 0.4964
LCPD −0.1006 ** −2.8072 −2.3737 *** −5.8425 −2.5276 *** −3.5083 −2.4397 ** −2.7017
C 14.3889 *** 7.8559 13.6066 *** 4.1882 12.0663 *** 3.0342
J-statistic 29.4914
Prob. (J-statistic) 0.3375
Instrument rank 34.0000
Arellano–Bond Serial Correlation Test
AR (1)
M-Statistic −0.4684 ***
Prob. 0.0000
AR (2)
M-Statistic −0.1908
Prob. 0.8487
Lagrange Multiplier Tests for Random Effects
Breusch–Pagan 486.5730 ***
Prob. 0.0000
Correlated Random Effects—Hausman Test
Chi-Sq. Statistic 11.8314 **
Prob. 0.0658

Note: BNPL, FCWE, FCSE, GDPG, UMEN, INFL, and LCDP indicate the bank NPLs to gross loans, weak episodes
of fiscal consolidation, strong episodes of fiscal consolidation, gross domestic product growth, unemployment,
inflation, and the natural log of domestic credit to the private sector, respectively. For further details on these
variables, see Table 1. ** < 0.05; *** < 0.01.

The first row of Table 5 reveals that the coefficient of the lagged dependent variable
was positive and statistically significant at a five percent significance level. These results
indicate that the NPLs increase in the current period if these loans increased in the previous
period.10 It is highly likely that the fiscal consolidation measures increased the NPLs since

384



J. Risk Financial Manag. 2023, 16, 417

these measures limit the loan-serving capacity of households and businesses. The results
of this study are consistent with the theoretical expectation. The first two columns of
Table 5 show that fiscal consolidation improved the NPLs in highly indebted countries.
These results are consistent with those of Siakoulis (2017). It might be relevant to note that
Siakoulis (2017) used the cyclical adjusted primary balance to measure the fiscal policy
effects. He specifically used the positive change in the cyclical adjusted primary balance
to measure the effect of austere fiscal policy. Conceptually, the first measure of fiscal
consolidation is similar to the approach used by Siakoulis (2017). This study called it the
weak form of fiscal consolidation, and the results of Table 5 reveal that the weak form of
fiscal consolidation improved the NPLs by 1.55%. In other words, any positive change
in the cyclical adjusted primary balance improved the NPLs by one and a half percent.
To the best of our knowledge, no one has analysed the impact of the strength of fiscal
consolidation on NPLs. Therefore, this study contributes to the existing empirical literature
by adding evidence on the strong form of fiscal consolidation.

The coefficient of FCSE (the strong form of fiscal consolidation) was positive and
statistically significant, revealing that the period of fiscal consolidation improved the NPLs
by 30.10%. The most striking observation to emerge from the comparison between the
weak form and the strong form of fiscal consolidation is that moving from the weak to
the strong form improved the NPLs by 28.55 percentage points.11 However, these results
should be interpreted carefully since there are significant differences in the definitions of
the NPLs across jurisdictions, despite some recent efforts in the form of IFRS 9.

The next row of Table 5 presents the results of the economic growth. The coefficient
of economic growth was negative and statistically significant. These results reveal the
strong dependence of the debt-serving capacity of businesses and households on economic
growth. These results are consistent with those of Louzis et al. (2012) and Siakoulis (2017).
Similar results were observed for the case of domestic credit to the private sector. The next
control variable of this study was unemployment, and its coefficients were positive and
significant. This finding broadly supports the work of other studies in this area (Louzis et al.
(2012) and Siakoulis (2017)). A possible explanation might be that businesses can predict
their debt-serving capacity and take steps to cut their costs. One of the possible methods
of cost-cutting is reducing the labour force. However, reducing the labour force cannot
always avoid debt-serving problems. Another possible explanation is that the higher level
of unemployment deteriorates the debt-serving capacity of business and households.

Table 5 further reveals that the coefficient of inflation was also positive and statistically
significant. These results indicate that the higher level of inflation affected the borrower’s
debt-serving capacity through various channels. Along these lines, Siakoulis (2017) further
revealed that the impact of inflation can be positive or negative on NPLs. For instance, the
higher level of inflation reduces the real value of an outstanding loan, making debt serving
much easier. Conversely, the higher level of inflation reduces the real income of borrowers,
which deteriorates the borrowers’ capacity to repay the loans.

Furthermore, the monetary policy announcements affect NPLs in a variable loan rate
environment. In particular, the monetary policy actions to reduce the level of inflation are
highly likely to reduce the debt-serving capacity of borrowers, since the lenders adjust
their rates to maintain real returns. In other words, they increase their interest rates
in response to the increasing policy rates. These rate adjustments deteriorate the loan-
paying capacity of borrowers. The inflation coefficients (see Table 5) were positive and
statistically significant. The data of NPLs were not strictly comparable across countries due
to a couple of differences in the national accounting, accounting standards, taxation, and
supervision regimes.

5. Robustness Tests

We tested the robustness of our findings using the alternative models as elaborated in
Section 4 above. In particular, we used three alternative models, including (1) the pooled
model (see Model 2 in Table 5), (2) the random model (see Model 3 in Table 5), and (3) the
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fixed effects model (see Model 4 in Table 5). A comparison of the coefficients of the GMM
model with the coefficients of our three alternative models revealed that our estimated
coefficients maintained their orders of magnitude and statistical significance in most of the
cases. In particular, our main findings were robust to different models.

6. Conclusions

This study investigated the impact of fiscal consolidation on NPLs in highly indebted
countries. Identification of the fiscal effect on banks’ NPLs is difficult due to potential
endogeneity. Consequently, the budgetary impact should be recorded when the economy
is at a normal activity level. Along these lines, the existing literature applied the cyclical
adjusted primary balance to measure the impact of fiscal consolidation on NPLs. We
extended this literature by measuring the episodes of fiscal consolidation. For this purpose,
we categorised the fiscal consolidation episodes into two types, including (1) the weak
form of fiscal consolidation and (2) the strong form of fiscal consolidation (see Section 3.3
(Methodological Notes on Fiscal Consolidation Episodes)). Considering the theoretical
aspects, the positive change in the cyclical adjusted primary balance was considered a weak
fiscal consolidation episode. A strong episode of fiscal consolidation was when the cyclical
adjusted primary balance improved by 1.5 percent of the GDP per year or two consecutive
years where the cyclical adjusted primary balance was improved by at least 1 percent of
the GDP per year. We used the World Development Indicators (World Bank 2022) to arrive
at 35 highly indebted countries to analyse the impact of fiscal consolidation on NPLs.

We applied the dynamic panel data estimator to arrive at the unbiased estimator
due to the time persistence in the NPLs. We applied the GMM and some alternative
estimation techniques for empirical investigation, including the pooled, random, and fixed-
effect models. These empirical investigations revealed that fiscal consolidation improved
the NPLs in highly indebted countries. Our results suggest that both forms of fiscal
consolidation (FCWE and FCSE) improved the NPLs by 1.55% and 31.10%, respectively.
Our analysis also revealed that the weak-to-strong form transition of fiscal consolidation
improved the NPLs by 28.55 percentage points. Policymakers should consider that the
weak form of fiscal consolidation has a very low impact on NPLs, and such fiscal steps are
safe for the banking sector.

Conversely, the strong forms of fiscal consolidation had strong detrimental effects on
the banking sector’s balance sheets. However, these results should be interpreted carefully,
since the definitions of NPLs vary across countries. A comparatively recent addition to
the international financial reporting standard (IFRS 9 available at IFRS-IFRS 9 Financial
Instruments) puts some restrictions on financial institutions and banks to assess the credit
losses on loans and recognise these loans based on the forward-looking approach. Despite
these guidelines, there is a need for a universally accepted criterion on the classification of
loans, since loans are the most sizeable assets of the statement of financial position of banks.

Future research should investigate the impact of both forms of fiscal consolidation
(FCWE and FCSE) on NPLs in countries with similar or different definitions of NPLs
or include a comparison study between different definitions. Additionally, the effect of
the restriction of IFRS 9 on the FCWE and FCSE association with NPLs is another future
research implication that recent reporting impositions may influence. Furthermore, some
threshold of the central government debt (percent of the GDP) can be used to extend
the panel of HICs. Later, a comparative study can be conducted by including the less-
indebted countries.
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and H.U.R.; validation, H.U.R. and J.S.; formal analysis, A.A. and H.U.R.; investigation, J.S.; resources,
J.S.; data curation, H.U.R., A.A. and J.S.; writing—original draft preparation, H.U.R.; writing—review
and editing, A.A. and J.S.; visualization, A.A. and J.S.; supervision, J.S.; project administration, H.UR.
and A.A.; funding acquisition, J.S. All authors have read and agreed to the published version of
the manuscript.
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Notes

1 See Section 3.1 (The Data Set and HICS Classification) for detailed notes on the classification of HICS.
2 For detailed discussion on the secondary elements, see Barisitz (2013).
3 For further discussion, see ITS 227/2015, as discussed in Siakoulis (2017). Also, see Chang (2006).
4 For the relevant discussion, see IFRS 9.
5 Interested readers can see Kankpang et al. (2023) for further discussion on the impact of NPLs on profitability of banks. Also,

see Muchiri and Omwenga (2023) for further discussion on the impact of provision of NPLs on the financial performance of
commercial banks in Kenya.

6 The descriptive statistics do not cover the latest crises since the latest available data values are from 2020. However, the descriptive
analysis revealed some insights from 2017’s data.

7 For further discussion, see Nelson and Plosser (1982) and Rahman and Ali (2022).
8 For further discussion, see Buck et al. (2008) and Chang et al. (2011).
9 The loans are considered defaulting loans if the payments of interest and principles are overdue by more than three months, and

the total gross loans are the total value of the loan portfolio. Furthermore, it might be relevant to note that the NPLs are the gross
value of the loans recorded on the statement of financial position instead of the amount that is overdue.

10 For further discussion on the economic interpretation of a lagged dependent variable, see Louzis et al. (2012) and Sorge and
Virolainen (2006).

11 For the relevant discussion, also see Gavin and Hausmann (1996).
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Abstract: We estimate the risk spillover among European banks from equity log-return data via
Conditional Value at Risk (CoVaR). The joint dynamic of returns is modeled with a spatial DCC-
GARCH which allows the conditional variance of log-returns of each bank to depend on past volatility
shocks to other banks and their past squared returns in a parsimonious way. The backtesting of the
resulting risk measures provides evidence that (i) the multivariate GARCH model with Student’s t
distribution is more accurate than both the standard multivariate Gaussian model and the Filtered
Historical Simulation (FHS), and (ii) the introduction of a spatial component improves the assessment
of risk profiles and the market risk spillovers.

Keywords: spatial multivariate GARCH; spatial weights; CoVaR

JEL Classification: C31; C32; G21; G32

1. Introduction

The interconnectedness of risk between banks is an increasingly hot topic. In the
last decades, several countries have simultaneously faced severe economic conditions
with spillover effects of risk across the EU. Due to the direct and indirect links among the
banks, the stand-alone measurement of a Value-at-Risk (VaR) of each bank cannot provide
a comprehensive representation of the risk (Adrian and Brunnermeier 2014; Billio et al.
2012; Rahman 2014).

Recently, multivariate GARCH models have been playing a crucial role in estimat-
ing risk interconnectedness. The constant conditional correlation GARCH model (CCC-
GARCH) proposed by Bollerslev (1990) is computationally less complex than other multi-
variate models (see, among others, Bollerslev et al. 1988; Diebold and Nerlove 1989; Engle
et al. 1990). However, it does not capture the dynamic interactions between the volatilities.
The BEKK model proposed by Engle and Kroner (1995) (the acronym stands for Baba, Engle,
Kraft, and Kroner) allows for the dependence of conditional variances and covariance of
one variable on the lagged values of another variable, so that spillovers in variances can
be modeled. However, it is highly computationally intensive due to the large number of
parameters. A more parsimonious model is the Dynamic Conditional Correlation GARCH
(DCC-GARCH), introduced by Engle (2002), that introduces an autoregressive process
for the conditional correlation matrix, allowing us to model its dynamics with only two
parameters in addition to the ones of the CCC-GARCH model.

An approach for modeling explicitly the volatility interactions is the introduction of a
spatial component that accounts for the effect of direct bilateral exposures, closeness, or
similarities between different financial institutions. Borovkova and Lopuhaa (2012) adopted
a spatial GARCH approach to handle the spillover effects where the spatial weights are
obtained from the GDP data and alternatively from the market capitalization of the US and
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European countries’ stock market and embedded in the Extended CCC-GARCH model
(E-CCC), see Jeantheau (1998). As a result, they better capture the high kurtosis of squared
returns. Keiler and Eder (2013) studied the systematic risk that integrates the interaction
between the micro and macro stress situations as spatial econometrics parameters. Analo-
gously, Chen (2017) showed that when the spatial weights are derived from credit rating
downgrades, the multivariate spatial BEKK model can capture the spillover effects among
the southern European stock index: Portugal, Italy, Ireland, Greece, and Spain (PIIGS).
Zhang et al. (2018) applied the multivariate GARCH with a dynamic panel of spatial weight
matrices based on the GDP. The work studies the countries’ interconnectedness of returns
and uses the estimated parameters to forecast the portfolio risk of six stock indices.

Our contribution is to introduce a dynamic conditional correlation GARCH (DCC-
GARCH) model with a spatial component based on the credit exposure similarity among
banks derived from the EU-wide stress test data. We add the spatial components into a
DCC-GARCH model to investigate whether we can better capture the spillover effects
thanks to this additional information and alternative distributional assumptions of the
DCC-GARCH model. We discuss and implement the estimation of the model using
both Gaussian and Student’s t distributional assumptions. In particular, we estimate the
individual risk via Value at Risk (VaR) and spillover risk via CoVaR. The results of the
different models are compared, both amongst themselves and with the one obtained thanks
to Filtered Historical Simulations (FHS). Finally, the results are backtested (Abad et al. 2014;
Caporin 2008; Christoffersen and Pelletier 2004; Kupiec 1995) to evaluate the accuracy of the
different VaR and CoVaR estimates, showing the superiority of the spatial DCC-GARCH
model compared to the other models.

Finally, we point out that the applications of spatial DCC-GARCH models not only
allow us to estimate CoVaR, but also permit investors to estimate more accurately the
distribution of future returns of a set of assets to develop optimal portfolio strategies.
The proposed framework has relevant applications for financial regulators interested in
accurately measuring risk spillovers and systemic risk in financial systems, but it also
caters to risk managers who want to measure the risk related to the interconnectedness
among institutions.

The remainder of this paper is organized as follows. In Section 2, the spatial DCC-
GARCH model and the estimation procedure are discussed, and the methodology for the
financial application is presented. Section 3 presents the data and the empirical results, and
in Section 4 we present our conclusions and discuss the results in relation to the literature.

2. Matherials and Methods

2.1. Modelling and Inference

A common feature of financial time series is the presence of volatility clustering
(see, e.g., Cont 2001).1 Common tools used to address such features are Generalized
Auto-Regressive Conditional Heteroscedasticity (GARCH) models (Bollerslev 1986), which
generalize the ARCH models introduced by Engle (1982). Let rt be the return discrete-
time process with zero mean. The standardized disturbances εt are independent and
identically distributed (i.i.d.) with zero mean, E(εt | εt−1, . . .) = 0, and unit variance,
Var(εt | εt−1, . . .) = 1. Then, the GARCH(p, q) process for return rt is defined as

rt =
√

htεt, t = 1, . . . , T (1)

and

ht = ω +
q

∑
k=1

αkr2
t−k +

p

∑
k=1

βkht−k, (2)

where ht is the conditional variance, ω > 0, αk ≥ 0 and βk ≥ 0 ∀k.
When studying spillover risk, it is natural to look for multivariate extensions of the

GARCH model to characterize the joint evolution of stock returns. Before presenting the
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multivariate model it is useful to define the following quantities of interest. Assuming a
market with N assets, then at time t = 1, . . . , T we have:

• rt is the vector of assets’ returns at time t,
• Ht is the conditional covariance matrix,
• ht = diag(Ht) is the vector of the univariate conditional variances,
• Dt is a squared matrix with the conditional standard deviations ht on the main

diagonal and zero otherwise.
• Rt is the positive definite conditional correlation matrix,
• Qt is the conditional covariance matrix of the standardized residuals,
• Q̄ is the unconditional covariance matrix of the standardized residuals,

Full generalizations of a univariate model, such as the VEC GARCH model (Bollerslev
et al. 1988; Ling and McAleer 2003) or the BEKK model, (Engle and Kroner 1995) have been
extensively discussed in the literature. Using matrix notation, it is possible to characterize
a multivariate GARCH as follows:

rt = H1/2
t εt, (3)

and

Ht = A0 +
q

∑
k=1

Akrt−kr′t−k +
p

∑
k=1

Bk Ht−k, (4)

where Ht, Ak, Bk are N × N matrices and εt is an RN valued i.i.d. sequence of random
variables with zero-mean and unit-variances (see Engle and Kroner (1995) for the restric-
tions required to ensure stationarity and positive semi-definiteness of the conditional
covariance matrix).

Multivariate GARCH models have the drawback of having a large number of parame-
ters, making the estimation complex and computationally challenging, hence these models
are suitable only if the dimensionality N is very small. A solution to the dimensionality
problem is to pose further restrictions on the multivariate process. A common restricted
specification is the Constant Conditional Correlation model (CCC) proposed by Bollerslev
(1990) that assumes that the conditional covariance matrix is constant over time, requiring
focusing solely on the estimation of conditional variances. According to the CCC-GARCH
model, Equation (1) is given by (3) and Equation (2) can be written as follows:

ht = ω +
q

∑
k=1

αk � r2
t−k +

p

∑
k=1

βk � ht−k, (5)

where ω is the N × 1 dimensional vector of unconditional variances with ω ∈ R+, αk and
βk are the N × 1 dimensional vector of ARCH and GARCH parameters of order q and p
with αk,i ∈ R+

0 , βk,i ∈ R+
0 , and � is the Hadamard product.

The CCC-GARCH model assumes that the conditional covariance matrix, Ht, can be
factorized as

Ht = DtRDt, (6)

where the correlation matrix is assumed to be constant throughout time (Rt = R, ∀t) and
the conditional standard deviation matrix Dt is a diagonal matrix given by

Dt = diag
(√

ht

)
. (7)

The generic element of conditional covariance matrix Ht is constructed as

[Ht]ij =
√

hitρij

√
hjt, i �= j; i, j = 1, . . . , N, (8)

where ρij = [R]ij is the constant conditional correlation coefficient between the ith and
jth variables.
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The multivariate GARCH model with a dynamic conditional correlation structure
(DCC), introduced by Engle (2002), improves the dynamic relationship, assuming a time-
varying correlation matrix as follows

Ht = DtRtDt. (9)

The dynamic correlation model allows Rt to be time-varying, and its dynamics are
modeled assuming a GARCH(1,1) process for the covariance of the standardized residuals.
Hence Rt is decomposed into

Rt = diag(Q−1
t )Qtdiag(Q−1

t ), (10)

where
Qt = Q̄(1 − γ − δ) + γ(εt−1ε′t−1) + δQt−1, (11)

where γ and δ are ARCH parameters and GARCH parameters of the DCC model, respec-
tively. By following the GARCH model from Equation (2), the generic element of the
time-varying conditional covariance matrix of the standardized residuals [Qt]ij = qij,t can
be expressed as

qij,t = q̄ij(1 − γ − δ) + γ
(
εi,t−1εj,t−1

)
+ δqij,t−1, (12)

where q̄ij = [Q̄]ij. The process is mean-reverting as long as 0 < δ < 1 and γ + δ < 1. In the
particular case of γ + δ = 1, the process will follow the exponential smoother matrix of the
standard residuals, as described in Engle (2002). Finally, the generic conditional correlation

ρij,t =
qij,t√qii,tqjj,t

, (13)

can be written into matrix form as in Equation (10). Substituting the conditional correlation
matrix into Equation (9), the DCC is given by

Ht = DtRtDt = Dtdiag(Q−1
t )Qtdiag(Q−1

t )Dt. (14)

Restricted GARCH models beyond CCC and DCC-GARCH have been discussed by
Caporin (2008) and Billio et al. (2021), who introduce spatial matrices within BEKK models
for measuring risk spillover. In these approaches, the interaction components of the model
are based on spatial weight matrices provided exogenously (for instance on the basis of
geographical distances among assets, or some similarity metrics). These models allow
easier and more accurate estimation by effectively imposing restrictions on the parameter
space. An alternative approach to improve the estimation of multivariate GARCH models
is to introduce sparsity in the parameter estimates by using an L1 penalization, as suggested
by Dhaene et al. (2022).

2.1.1. Spatial DCC-GARCH

In this work, we introduce a spatial extension of the DCC-GARCH model. The model
is based on the approach of Borovkova and Lopuhaa (2012). In particular, to enrich the
DCC-GARCH model with a spatial component we introduce a spatial matrix W into the
vector of the conditional variances ht. The resulting conditional variance is expressed as

ht = A0 +
q

∑
k=1

(A1,k + A2,kW)r2
t−k +

p

∑
k=1

(B1,k + B2,kW)ht−k, (15)

where A0 = (a0,1, . . . , a0,N)
′, A1,k, A2,k, B1,k, and B2,k are diagonal matrices. The term

W =
[
W ij

]
is the weight matrix (i, j = 1, . . . , N) with

N

∑
j=1

wij = 1 and wii = 0 ∀i, given by
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W =

⎡⎢⎢⎢⎣
0 w12 · · · w1N

w21 0 · · · w2N
...

...
. . .

...
wN1 wN2 · · · 0

⎤⎥⎥⎥⎦.

The i-th element of ht becomes

ht,i = a0,i + a1,ir2
t−1,i + a2,iXt−1,i + b1,iht−1,i + b2,iYt−1,i, (16)

where Xt−1,i = ∑N
j=1 wijr2

t−1,j and Yt−1,i = ∑N
j=1 wijht−1,j. The introduction of the spatial

component results in two exogenous spatial variables in the conditional variance equation
and two additional parameters a2,i and b2,i, which measure the influence of the aggregated
lagged variances and squared returns of all the other assets. These two new variables
measure the aggregated spillover effects. To complete the Spatial DCC-GARCH model, we
then estimate the conditional correlation matrix following the two-step procedure described
in Engle and Sheppard (2001), see Section 2.1.2.

The condition for the weak stationarity of the spatial GARCH model follows from
the corresponding stationarity condition for E-CCC models, derived by Jeantheau (1998)
and Conrad and Karanasos (2010) for E-CCC models. The positivity conditions on all
GARCH coefficients are not necessary for the positivity of variance and in many empirical
cases, these may be too restrictive, ruling out possible negative volatility feedback. One
author Conrad and Karanasos (2010) studied the E-CCC models and stated necessary and
sufficient conditions (in terms of the process parameters) for the positivity of variance; these
conditions are summarized in Theorem 1 of their paper. It can be seen easily that our spatial
DCC-GARCH(1,1) model is equivalent to the E-DCC model of order one, with the particular
form of the parameter matrices A = A1 + A2W and B = B1 + B2W. So for the conditional
variances to be positive, the conditions (C1)–(C3) of Theorem 1 of Conrad and Karanasos
(2010) must apply. The proposed spatial DCC-GARCH(1,1) model is weakly stationary if
the modulus of the largest eigenvalue of the matrix A1 + B1 + (A2 + B2)W is less than 1.
In that case, the unconditional variances are given by A0(I − (A1 + B1)− (A2 + B2)W)−1.
More specifically the unconditional variance of the ith bank is given by

σ2
i =

a0,i + (a2,i + b2,i)∑n
j=1 wijσ

2
j

1 − (a1,i + b1,i)
(17)

and it is positive for a0,i > 0, a2,i + b2,i > 0, (a1,i + b1,i) < 1.

2.1.2. Estimation of the Multivariate Spatial GARCH(1,1) Model

We follow a two-step procedure for the DCC-GARCH estimation, as described in Engle
and Sheppard (2001) and Engle (2002). The first step is devoted to the estimation of (16)
where the exogenous variable Yt,i is not observable since it is a function of the conditional
variance of the other assets. Hence, following Borovkova and Lopuhaa (2012), we start by
estimating the standard univariate GARCH(1,1) models without the external regressors
to obtain the initial parameters

(
a0

0,i, a0
1,i, b0

1,i

)
and the estimated variances

(
h0

1,i, . . . , h0
T,i

)
.

Then we use an iterative procedure in which we alternate the following two steps:

• Compute the exogenous variables (Yt−1,i) given the weights
(
wij

)
and the initially

estimated variances
(

h0
1,i, . . . , h0

T,i

)
;

• Estimate the complete set of parameters
(

a1
0,i, a1

1,i, b1
1,i, a1

2,i, b1
2,i

)
and the new estimated

variances
(

h1
1,i, . . . , h1

T,i

)
according to Equation (16).

We iterate this procedure until the percentage variation of the estimate is less than a
small threshold. For more details please refer to Borovkova and Lopuhaa (2012).
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In the second step, as in Engle (2002), we maximize the quasi log-likelihood that, when
the standardized error εt follows a multivariate Gaussian distribution is

log
(

L(θ2|θ̂1; r1, . . . , rT)
)

= − 1
2

T

∑
t=1

(
Nlog(2π) + 2log|Dt|+ log(|Rt|) + r′tD−1

t R−1
t D−1

t rt

)

= − 1
2

T

∑
t=1

(
Nlog(2π) + 2log|Dt|+ log(|Rt|) + ε′tR−1

t εt

)
,

(18)

where θ = (θ1, θ2) is the set of parameters of the multivariate distribution, with sub-
sets θ1 = (A0, A1, A2, B1, B2) being the spatial GARCH parameters estimated in the first
step, and θ2 = (γ, δ) the parameters of the time-varying conditional correlation that are
estimated in the second step.

Excluding Dt and other additive and multiplicative constants, we maximize the
following function:

−
T

∑
t=1

(
log(|Rt|) + ε′tR−1

t εt

)
. (19)

The quasi-log-likelihood function under the Student’s t distribution is

log
(

L(θ2|θ̂1; r1, . . . , rT)
)

=
T

∑
t=1

(
log

(
Γ
(

ν+N
2

))
− log

(
Γ
(

ν
2
))− N

2 log(π(ν − 2))
)
+

− 1
2 log(|DtRtDt|)− ν+N

2 log
(

1 + rT
t D−1

t R−1
t D−1

t rt
ν−2

)
,

(20)

where ν is the degrees of freedom, θ2 = (γ, δ, ν) is the set of parameters estimated in the
second step, and Γ(·) is the Gamma function. The estimation of the model is implemented
in R using the packages rugarch and rmgarch for the estimation of univariate GARCH
models in the first step, and the DCC-GARCH model in the second step, respectively.

Concerning the complexity of estimation, we see that the spatial models add two
parameters (ai,2,bi,2) for each asset. Hence the number of additional parameters scales
linearly with the size of the dataset considered. We also see that Student’s t model has
one extra parameter compared to the Gaussian model, and that in the limit for ν → ∞,
the former converges to the latter. Moreover, the spatial model nests the non-spatial
DCC-GARCH models, where the coefficients of the spatial components are restricted to
zero. The Spatial DCC-GARCH model can therefore be considered parsimonious in terms
of the number of parameters, especially compared to VEC GARCH or the BEKK model.
One drawback of the proposed model is that it requires the exogenous identification of a
spatial matrix.

2.1.3. Spatial Weight Matrix

To estimate the spatial DCC-GARCH described in Section 2.1.1, we need to specify
the weight matrix W which incorporates the spatial structure defined a priori. The most
intuitive way to compute the weights is to consider the geographical distance between
the issuers’ market cities. However, according to Borovkova and Lopuhaa (2012), the
obtained weights are not economically meaningful, and as an alternative, they consider
a different set of information and compute distance in terms of GDP and market capi-
talization. In our work, we investigate whether the banks’ similarity of the structure of
credit exposure provides some benefit in catching risk spillover effects. Hence we propose
to consider the cosine similarity between exogenous information relative to the credit
exposure of each bank derived from the EU-wide stress test under the European Banking
Authority (EBA). The higher the cosine similarity the stronger the closeness of banks’s
credit exposure. Suppose two attribute vectors of length L, Ui,L = (ui,1, ui,2, . . . , ui,L) and
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Uj,L =
(
uj,1, uj,2, . . . , uj,L

)
which describe the credit exposure information of bank i and j

with i, j = 1, . . . , N. We define the cosine similarity as follows:

Cij =

L

∑
l=1

ui,l · uj,l√√√√ L

∑
l=1

u2
i,l ·

L

∑
l=1

u2
j,l

, i, j = 1, . . . , N, i �= j. (21)

We set Cii = 0 ∀i and we normalize the rows of C by dividing each element by the
sum of the row. Doing so, we obtain the matrix W that is the spatial weight matrix used in
Equation (15).

2.2. Financial Application: CoVaR

Financial institutions use VaR to measure the standalone risk. However, the mea-
surement of individual risk is not able to explain the linkages between other financial
institutions and the financial system. Systemic risk is the possibility that an event at the
institutional level could trigger severe instability or collapse of an entire industry or econ-
omy. The work Adrian and Brunnermeier (2014) introduces CoVaR to help regulators to
measure risk spillovers.

The Value at Risk (VaR) at level q ∈ (0, 1) of a random variable r with cumulative
distribution function Fr(.) is defined as

VaRq(r) = − inf
{

x ∈ R : Fr(x) ≥ q
}

,

where 100(1 − q)% denotes the confidence level of the VaR.2 Restricting our analysis
to continuous probability distribution functions, VaR can be implicitly defined as the
q-quantile of the probability distribution function

VaRq(r) = −F−1
r (q).

The Conditional Value-at-Risk (CoVaR) (see Adrian and Brunnermeier 2014), denoted
by CoVaRS|C(ri)

q , is implicitly defined by the q-quantile for a continuous probability distri-
bution function of the financial system S conditional on some event related to C(ri), where
ri is the return of institution i such that

Pr
(

rS ≤ −CoVaRS|C(ri)
q |C(ri)

)
= q.

The CoVaR can capture the contribution of systemic risk by conditioning the VaR to a
stressed situation. It captures the spillover of risk between a particular institution and the
financial system, and it is commonly used to assess the systemic risk of a bank in a financial
system. Inspired by this idea, we concentrate our attention on a CoVaR pairwise analysis
between institutions in order to quantify the spillover between couples of banks.3

The conditioning event C(ri) in the original paper by Adrian and Brunnermeier (2014)
is defined as the return of the conditioning asset i being equal to its negative VaR, that is
C(ri) := (ri|ri = −VaR(ri)). In this work, we follow the alternative approach of Girardi
and Ergün (2013) that considers as a conditioning event the return ri being smaller or equal
than the following quantity: C(ri) := (ri|ri ≤ −VaR(ri)). This formulation allows us to
consider more severe distress events and improves the consistency of the measure with
respect to the dependence parameter, allowing for backtesting. Following Girardi and
Ergün (2013), the redefined CoVaRj|i

q is obtained solving

Pr
(

rj ≤ −CoVaRj|i
q , ri ≤ −VaRi

q

)
= q2. (22)
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Let f
(
rj, ri

)
be the bivariate probability distribution function of future returns, esti-

mated using the DCC-GARCH model with either Gaussian or Student’s t innovations,
CoVaRj|i

q is implicitly defined as the quantity that solves

∫ CoVaRx|y
q

−∞

∫ VaRy
q

−∞
f (x, y)dydx = q2. (23)

We compute the integral (23) on a grid of 100 values for CoVaRj|i
q to find the approxi-

mated solution under the different distributional assumptions.4

2.2.1. CoVaR Based on Filtered Historical Simulations (FHS)

In order to compare our result with a model-free approach, we consider the Filtered
Historical Simulations (FHS).

FHS is a well-known tool for multivariate forecasting and simulation of time series
that avoids the need for distributional assumptions for the returns’ joint dynamic, relying
instead on past realizations. The main novelty of this approach compared to historical sim-
ulation is to rescale the innovation by the volatility that prevails on a specific day, allowing
therefore to reflect the current market conditions (Barone-Adesi et al. 2002; Giannopoulos
and Tunaru 2005; Gurrola-Perez and Murphy 2015). To provide a distribution-free bench-
mark model for the analysis, we compute the VaR and CoVaR via FHS. Consider a time
window of length T and let rt be the series of historical returns with t ∈ [1, T]. The volatility
weighted returns series can be computed as follows: zt = rt × σ̂T+1/σ̂t, where σ̂t is the
volatility estimated with an Exponentially Weighted Moving Average procedure (EWMA)
with decay factor λ = 0.9 at time t and σ̂T+1 is the one-day-ahead estimate of volatility at
the end of the estimation period. In practice, implementing FHS for the estimation of VaR
and CoVaR requires the following steps:

• compute the residual (or devol) time series, dividing the returns by EWMA estimated
volatility σ̂t. This allows us to sample from approximately serially independent and
identically distributed data;

• compute the estimated empirical distribution of r̂T+1 (revol), multiplying the devol
time series zt by the latest estimate of volatility σ̂T+1 and assigning to each of the
possible outcome a weight 1/T,

• estimate VaRi
q,T+1 and CoVaRj|i

q,T+1 by computing the empirical quantile of r̂i,T+1 and

r̂j,T+1|
(

r̂i,T+1 < −VaRi
q,T+1

)
, respectively.

The FHS approach has the advantage of being non-parametric, although it has the
drawback of requiring a large number of observations to accurately estimate risk, especially
for the CoVaR. For this reason, it is not suitable for small values of q. For instance, with
q = 0.01 the expected number of exceedances of the CoVaR for an estimation window of
10,000 daily observations (approx 40 years) is 1, while for q = 0.05 it is 25.

2.2.2. Backtesting VaR and CoVaR

In order to test the goodness of our VaR and CoVaR estimates we estimate a time
series of length τ of one-day-ahead estimates, each computed on an estimation window
of T = 1000 daily observations. We consider tests based on the number of violations
and specifically unconditional and conditional coverage tests (Christoffersen and Pelletier
2004; Kupiec 1995), as well as tests based on asymmetric loss functions for the VaR and
CoVaR (Caporin 2008). The model that provides estimates of VaR and CoVaR with the
correct number and distribution of exceedances and/or lower loss function values will be
considered the more accurate.
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2.2.3. Tests Based on the Number of Violations

In order to determine the accuracy of the proposed model, we consider two tests based
on the number of violations.

Denote by

• ri
t the ex-post realized returns of institution i with t = 1, . . . , τ;

• VaRi
q,t the ex-ante Value-at-Risk forecasts at t − 1 for time t, where q is the expected

coverage;
• Ii

t a sequence of violation for a given interval of the Value-at-Risk forecast:

Ii
t =

{
1, if ri

t ≤ −VaRi
q,t

0, if ri
t > −VaRi

q,t
. (24)

The first test is the Kupiec test or unconditional coverage (UC) test (Kupiec 1995). The
null hypothesis that the observed failure rate p is equal to the failure rate, suggested by the
confidence level of VaR, q, is tested. Thus, the null hypothesis assumes that the observed
violation rate is equal to the expected violation rate. If the null hypothesis is rejected, the
model is considered inaccurate at the 95% confidence level.

The conditional coverage (CC) test proposed by Christoffersen and Pelletier (2004)
indicates that the number of violations must be independently distributed along the testing
period where the dependence can be described as a first-order Markov sequence with a
transition probability matrix given by

Π =

[
1 − π01 π01
1 − π11 π11

]
,

where π01 is the probability that, conditional on today being a non-violation, the next
period is a violation, and π11 is the probability that, conditional on today being a violation,
the next period is a violation. The hypothesis to test for the conditional coverage property
is H0 : π01 = π11 which assesses the independence of failures on consecutive time periods.

Girardi and Ergün (2013) proposed the backtesting of CoVaRj|i
q,t via a straightforward

application of the standard Kupiec and Christoffersen tests considering the violations (i.e.,
rj

t ≤ −CoVaRj|i
q,t) for those time periods in which ri

t ≤ −VaRi
q,t. Having that in mind we

compute a second hit sequence, I j|i
t , on the sub-sample in which ri

t ≤ −VaRi
qt as follows:

I j|i
t =

⎧⎨⎩1, if rj
t ≤ −CoVaRj|i

q,t

0, if rj
t > −CoVaRj|i

q,t

, (25)

where the number of observations of the second hit sequence is equal to the number of
violations of the first hit sequence. Hence for the tests on CoVaR, the sequence of violation
I j|i
t can be used instead of Ii

t .

2.2.4. Backtesting Based on Loss Functions

The backtesting based on the confidence level of VaR estimates shows the accuracy of
an individual model; however, the comparison between the different models can be limited.
To overcome the drawback, Lopez (1999) proposed backtesting based on a loss function.
The method focuses on the magnitude of the failure when the violation occurs. Thus, the
VaR estimates under the loss function can provide the model’s performance as a numerical
score. The value of the loss function at time t can be given as

li
t =

⎧⎨⎩g
(

rt, VaRi
q,t

)
if rt ≤ −VaRi

q,t

h
(

rt, VaRi
q,t

)
if rt > −VaRi,t

q
,
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where g(·) and h(·) are the loss functions applied to exceedances and values within the
VaR, respectively. Finally Li = ∑T

t=1 li
t is defined as the total loss. The best model can be

identified by the lowest total loss. Other works by Abad et al. (2014), Caporin (2008), and
Cesarone and Colucci (2016) show several alternative specifications for the loss functions
g(·) and h(·), defined from the regulator and investor’s point of view. In the regulator’s
view, we consider the size of the loss only if the violation occurs:

h
(

rt, VaRi
q

)
= 0 if rt > −VaRi

q.

On the contrary, the investor is interested in both sides, as an overestimation of VaR
may trigger limitations from the risk management, or lead to higher capital requirements
imposed by the regulator. In particular we consider the functions

g(rt,i, VaRi
q,t) = |rt + VaRi

q,t|

and
h(rt,i, VaRi

q,t) =
q

1 − q
g(rt,i, VaRi

q,t).

We underline that the resulting loss function li
t is strictly related to the Koenker loss

function used for the estimation of quantile regression, defined as

l(X, ξ, q) = (1 − q)(X − ξ)+ + q(X − ξ)−

where (·)+ = min(X, 0) and (·)− = min(−X, 0). In case of independent and identically
distributed returns the minimization arg minξ l(X, ξ, α) is the value at risk. For further de-
tails we refer to Koenker and Bassett (1978), Rockafellar and Uryasev (2013), and Giacometti
et al. (2021).

We extend the backtesting procedure to the case of the CoVaR as before, estimating
the measure l j|i

t on a sub-sample in which ri
t ≤ −VaRi,t

q .

3. Results

3.1. Data

We consider ten years of weekly data from seven representative banks in Italy, France,
Germany, the United Kingdom, the Netherlands, Spain, and Belgium. The data span from
20 September 2010 to 18 September 2020, including 2566 daily equity log-returns. The data
are downloaded from Refinitiv Eikon. We perform a rolling analysis with an estimation
window of T = 1000 daily observations (approximately 4 years), forecasting one-day-ahead
VaR and CoVaR, for a total of τ = 1566 out-of-sample daily observations. We use the same
windows for both the DCC-GARCH models and the FHS estimation.

Table 1 reports the descriptive statistics and tests the output of the log returns for
the out-of-sample period. We see that all the banks in the sample with the exception of
KBC Group had negative average returns. The series have typically negative skewness
and excess kurtosis, as expected from equity time series. The results of the Engle ARCH
test (Engle 1982) indicate that the null hypothesis of homoscedastic returns is rejected,
suggesting the need for GARCH models. The autocorrelograms and partial autocorrelo-
grams of the returns, not reported for brevity, do not highlight relevant serial correlation
structure, while the autocorrelogram of squared residuals (also omitted for brevity) show
significant and persistent autocorrelations, confirming the heteroscedasticity of the data.
Next, we consider the correlation between the banks. Figure 1 shows that correlations are
positive and high. Figure 2 studies the evolution of correlations, computed using 6-month
rolling windows. The right panel represents the dynamics of the 21 pair-wise correlations
over time, while the left panel shows the Frobenius norm of the correlation matrices to
provide a synthetic representation. We see that the Frobenius norm changes over time,
suggesting that a CCC-GARCH model is not appropriate for the dataset. On the contrary,
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the time-varying correlation matrix is consistent with the assumptions of a DCC-GARCH,
and the high variability in the individual correlations leaves space for spatial models, which
could better characterize the multivariate stochastic process.

Table 1. Descriptive statistics of daily equity log-returns. The table reports statistics on the univariate
distributions (mean, standard deviation, skewness, and kurtosis), and the p-values of the Engle ARCH
test (null hypothesis: the process is homoscedastic). We use the following abbreviations for each
bank: Intesa Sanpaolo S.p.A.–Turin, Italy (ISP), Crédit Agricole Group–Montrouge, France (ACA),
Deutsche Bank AG–Frankfurt am Main, Germany (DB), Barclays Plc–London, United Kingdom (BCS),
ING Groep NV–Amsterdam, Netherlands (ING), Banco de Sabadell S.A.–Alicante, Spain (SAB), KBC
Group NV–Bruxelles, Belgium (KBC).

Bank Mean StDev Skewness Kurtosis
ARCH Test
(p-Value)

ISP −1 × 10−4 0.0256 −0.8101 11.6198 <2.2 × 10−16

ACA −1 × 10−4 0.0253 −0.3810 11.2140 <2.2 × 10−16

DB −6 × 10−4 0.0244 0.1203 8.1958 <2.2 × 10−16

BCS −4 × 10−4 0.0235 −0.6568 12.9321 <2.2 × 10−16

ING −1 × 10−4 0.0236 −0.4705 11.4810 <2.2 × 10−16

SAB −8 × 10−4 0.0248 −0.3435 10.9513 <2.2 × 10−16

KBC −1 × 10−4 0.0254 −0.3002 10.0297 <2.2 × 10−16

Figure 1. Correlations, marginal distributions, and bivariate scatterplots with LOESS local regression
lines of equity daily log-returns.
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Figure 2. Frobenius norm of rolling correlation matrix (left panel), and 21 pair-wise rolling correla-
tions (right panel). Rolling correlations are computed using a 6-month window of daily observations.

Spatial Weight Data

For the construction of the spatial matrix, we analyze the data from the EU-wide stress
test under the European Banking Authority (EBA). The EBA stress test aims to evaluate
financial institutions’ resilience to adverse market conditions. It also provides the overall
assessment of systematic risk in the European banking system. In the EU-wide stress
test analysis report, we consider the base scenarios for each bank and the relative credit
exposure information: exposure values, risk exposure amounts, stock of provision, and
leverage ratio under the internal ratings-based (IRB) approach or Standardized approach
(STA) referred to credit exposure in specific asset classes,5 as presented on the EBA’s website
(EBA 2021). We compute for each bank the vector of percentage exposure in each class with
respect to the total exposure and the similarity between couples of vectors for the different
banks, as in Equation (21). This indicator provides a broad view of the similarity between
the banks’ credit structures and exposures.

We then rescale the values such that each row sums to 1, as shown in Table 2. The
spatial matrix is based on the EU-wide stress test of 2018 and is kept fixed for the entire
analysis. To ascertain the matrix weight’s consistency over time, we perform the inequality
test for couples of matrices by Jennrich (1970) on matrices computed in different years.
In particular, we compare the normalized cosine similarity matrix weight from the EU-
wide stress test of 2014 vs. 2016, 2016 vs. 2018, and 2018 vs. 2014. We do not reject the
null hypotheses at a 1% significance level, suggesting that the spatial components of the
EU-wide stress test do not change significantly over time.

Table 2. Normalized cosine similarity matrix.

Bank ISP ACA DB BCS ING SAB KBC

ISP 0 0.1482 0.1763 0.1221 0.1875 0.1873 0.1786
ACA 0.1453 0 0.1807 0.1745 0.1480 0.1562 0.1953
DB 0.1689 0.1766 0 0.1347 0.1306 0.2140 0.1753
BCS 0.1388 0.2025 0.1600 0 0.1668 0.1520 0.1799
ING 0.2130 0.1715 0.1549 0.1667 0 0.1596 0.1343
SAB 0.1834 0.1560 0.2188 0.1308 0.1375 0 0.1734
KBC 0.1761 0.1964 0.1804 0.1559 0.1165 0.1746 0

3.2. Empirical Results

We estimate the DCC-GARCH(1,1) models using the equity log returns, considering
four specifications that differ in terms of distribution and inclusion of the spatial component:
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Gaussian DCC (GaussDCC), spatial Gaussian DCC (GaussSpDCC), Student’s t DCC (tDCC),
and spatial Student’s t (tSpDCC).6 The procedure is numerically stable, and only for a small
percentage of the estimation window, do the DCC-GARCH models fail to converge. In
such cases, we carry over the result from the previous estimation window.

Table 3 reports the Akaike, Bayesian, Shibata, and Hannan-Quinn information criteria,
averaged across the 1566 estimation windows. Information criteria allow us to assess the
quality of the model in relation to the data, controlling for both the quality of the fit and
the number of parameters. Therefore, we use them to assess whether the inclusion of a
distribution with more parameters (Student’s t, compared to the Gaussian) and the use of
the spatial component actually improve the quality of the fit or, on the contrary, the added
complexity of the model affects negatively the estimation. We see that the models based on
the Student’s t distribution have lower information measures according to all the measures
considered (denoting a better model for the data), and that the introduction of the spatial
component improves the performance of the model.

Table 3. Akaike, Bayesian, Shibata, and Hannan-Quinn information criteria. The table reports the
average across estimation windows. The smallest value for each measure is highlighted in bold.

Akaike Bayes Shibata Hannan-Quinn

GaussDCC −39.18 −38.96 −39.18 −39.09
GaussSpDCC −39.34 −39.06 −39.35 −39.23

tDCC −39.96 −39.71 −39.98 −39.87
tSpDCC −40.04 −39.71 −40.04 −39.91

To further illustrate the characteristics of the model, Table 4 shows the average value of
the coefficients computed on the 1566 rolling windows (for brevity we report the averages
of the parameters related to each bank). We notice that a relatively large part of the spatial
parameters (a2,i,b2,i) are statistically significant at the 95% significance level, suggesting
that the spatial components have some explanatory power, motivating their introduction
in the model. We also see that the DCC parameters γ and δ are almost always statistically
significant (confirming the presence of time-varying correlations). The ν parameter is also
significant and has values close to 6, suggesting that the innovations have fat-tails and
that the Student’s t model is more suitable than the Gaussian one (that is the limit of the
Student’s t model with ν → ∞) Table A1 in the Appendix A reports the coefficients of the
tSpDCC model for the first estimation window as an example.

Table 4. The table reports the average values of the coefficients of the different specifications across
the estimation windows of the multivariate GARCH. The percentages of estimation windows in
which the coefficients are significantly different from 0 at the 95% confidence level are reported in
italics. For brevity we report the values of a0,i, a1,i, a2,i, b1,i, b2,i averages across the seven banks
considered in the analysis.

a0 a1 b1 a2 b2 γ δ ν

GaussDCC 0 0.065 0.907 - - 0.016 0.885 -
19% 57% 97% - - 74% 97% -

GaussSpDCC 0 0.059 0.722 0.062 0.109 0.024 0.858 -
37% 29% 81% 31% 12% 93% 99% -

tDCC 0 0.066 0.893 - - 0.014 0.915 5.90
27% 69% 96% - - 95% 99% 100%

tSpDCC 0 0.048 0.720 0.051 0.115 0.015 0.924 6.15
27% 32% 74% 25% 11% 92% 100% 100%
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3.2.1. VaR and CoVaR

In this section, we use the spatial DCC-GARCH model to compute pair-wise CoVaRs
and study risk spillover in the European banking system. We report in Table 5 the estimates
of the average VaRi

5% (diagonal elements) and CoVaRj|i
5% (off-diagonal elements) for the

four DCC-GARCH models and for the Filtered Historical Simulations (FHS) estimates.
The one-day-ahead forecast of VaRi

5% is computed using the conditional variance estimate
and the parametric distribution of the model. The corresponding CoVaR5% is computed
numerically, according to (23) using the time-varying covariance matrices.

Table 5. Estimated VaRi
5% (diagonal elements) and CoVaRj|i

5% (off-diagonal elements) for the spatial
and non-spatial DCC GARCH models with Student’s t and Gaussian innovations, and for FHS.
The reported values are the average of the out-of-sample estimates computed across 1566 daily
rolling windows.

VaRi
5% and CoVaRj|i

5%—FHS

Bank ISP ACA DB BCS ING SAB KBC

ISP 0.034 0.065 0.076 0.060 0.064 0.083 0.068
ACA 0.064 0.033 0.081 0.057 0.064 0.078 0.064
DB 0.066 0.065 0.041 0.072 0.062 0.077 0.061
BCS 0.065 0.069 0.090 0.034 0.059 0.072 0.063
ING 0.065 0.071 0.076 0.061 0.032 0.078 0.066
SAB 0.067 0.066 0.077 0.058 0.065 0.042 0.063
KBC 0.065 0.067 0.076 0.061 0.066 0.079 0.028

VaRi
5% and CoVaRj|i

5%—GaussDCC

Bank ISP ACA DB BCS ING SAB KBC

ISP 0.035 0.055 0.063 0.050 0.052 0.063 0.048
ACA 0.056 0.034 0.062 0.050 0.051 0.062 0.048
DB 0.056 0.055 0.039 0.051 0.051 0.062 0.047
BCS 0.055 0.054 0.063 0.032 0.051 0.061 0.047
ING 0.057 0.056 0.064 0.051 0.031 0.063 0.050
SAB 0.055 0.054 0.061 0.049 0.050 0.040 0.047
KBC 0.056 0.055 0.062 0.050 0.052 0.062 0.030

VaRi
5% and CoVaRj|i

5%—GaussSpDCC

Bank ISP ACA DB BCS ING SAB KBC

ISP 0.035 0.057 0.064 0.050 0.052 0.063 0.048
ACA 0.056 0.035 0.064 0.050 0.052 0.062 0.048
DB 0.056 0.056 0.040 0.051 0.052 0.061 0.047
BCS 0.055 0.056 0.064 0.032 0.051 0.060 0.047
ING 0.058 0.058 0.065 0.051 0.032 0.063 0.050
SAB 0.056 0.056 0.062 0.049 0.051 0.039 0.047
KBC 0.057 0.057 0.063 0.050 0.053 0.061 0.030

VaRi
5% and CoVaRj|i

5%—tDCC

Bank ISP ACA DB BCS ING SAB KBC

ISP 0.033 0.088 0.100 0.078 0.083 0.104 0.078
ACA 0.087 0.033 0.099 0.079 0.083 0.102 0.077
DB 0.087 0.087 0.038 0.081 0.083 0.101 0.075
BCS 0.085 0.085 0.101 0.031 0.082 0.100 0.075
ING 0.089 0.089 0.102 0.082 0.031 0.105 0.078
SAB 0.087 0.085 0.097 0.077 0.082 0.040 0.075
KBC 0.088 0.088 0.099 0.079 0.083 0.102 0.029

VaRi
5% and CoVaRj|i

5%—tSpDCC

Bank ISP ACA DB BCS ING SAB KBC

ISP 0.033 0.087 0.098 0.075 0.081 0.100 0.075
ACA 0.085 0.034 0.097 0.076 0.081 0.098 0.075
DB 0.085 0.086 0.038 0.077 0.081 0.097 0.073
BCS 0.083 0.085 0.098 0.030 0.081 0.096 0.073
ING 0.087 0.088 0.100 0.078 0.031 0.100 0.076
SAB 0.085 0.084 0.095 0.074 0.080 0.039 0.073
KBC 0.086 0.087 0.097 0.076 0.081 0.098 0.029

We observe that, as expected, the CoVaR is always greater in absolute values than
the VaR figures on the diagonal. Furthermore, we see that the estimates of the Value at
Risk are similar across the five considered models. On the contrary, the estimates of CoVaR
are significantly larger for the DCC-GARCH models based on the Student’s t distribution,

403



J. Risk Financial Manag. 2023, 16, 397

suggesting that the Gaussian model may potentially underestimate the risk of joint distress
and risk spillover, as expected by the stylized fact of fat tails and high tail correlations in
financial time series (see, e.g., Cont 2001). Finally, we see that the estimates of CoVaR of the
tSpDCC model are slightly smaller than the tDCC model. The FHS estimates yield similar
results to the other models in terms of VaR, and lie in the middle between the Gaussian
and Student’s t models in terms of CoVaR. Figure 3 shows the out-of-sample equity log
returns and the estimate of the Value at Risk. We see that the dynamics are similar for all the
models, and that the two models with a spatial component share some similar dynamics in
specific time periods.

Figure 3. Out-of-sample equity log-returns of the seven banks considered in the study and VaR
estimates.

Figure 4 shows the VaRj
5% of each bank j together with the average CoVaRj|i

5% for i �= j
(for brevity we report only the results estimated using the tSpDCC model). We see that for
all the banks, the CoVaR is always higher than the VaR. Focusing on the dynamics, we see
two main spikes in the series that affected all banks: one in mid-2016 (corresponding to the
Brexit Referendum), and one when the COVID-19 crisis started in March 2020. The former
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shock was short-lived, and risk measures returned to normal levels quickly, while the
Covid crisis had more long-lasting effects, with CoVaR decreasing slowly in the following
months (although with differences across banks, for instance, Intesa San Paolo risk levels
returned to a normal level quicker than ING Group). In other periods, the dynamics
of CoVaR are diversified across banks, with some institutions (in particular Intesa San
Paolo) characterized by several spikes (likely related to idiosyncratic or regional shocks)
while other institutions such as Credit Agricole or Barclays characterized by a more stable
risk profile.

Figure 4. Out-of-sample equity log-returns, VaR estimated using the tSpDCC model (blue lines), and
the average of the CoVaRs for each bank (red lines). The last panel reports the average ratio between
the CoVaR and the VaR (moving average over 10 days), and the (rescaled) average log-return of the
seven banks for reference.

The last panel of Figure 4 shows the average ratio between CoVaRj|i
5% and VaRj

5%
for each couple of institutions, and the rescaled average log-returns of the seven banks
included as reference. We see that the shocks associated with Brexit and Covid had the
effect of increasing the ratio, thus increasing the risk spillover in the system. The effect
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is persistent, as the ratio remained higher for the periods after the shocks, despite the
levels of risks reduced more quickly after the event, suggesting the presence of long-lasting
spillover effects.

3.2.2. Backtesting Results

We now present two backtesting analyses in order to assess the quality of the esti-
mation of VaR and CoVaR based on different models. First, we report the results for the
backtesting of VaRi

0.05 with the Kupiec (unconditional) and Christoffersen (conditional)
coverage tests. Table 6 provides the p-value of the unconditional coverage (UC) and con-
ditional coverage (CC) tests. We see that, regarding the UC test, in most cases, the null
hypothesis of correct exceedances is not rejected at the 95% confidence level, meaning that
the models identify correctly the expected number of exceedances. The spatial component,
according to this statistic does not provide benefits, leading typically to lower p-values
and higher rejection rates. Concerning the CC test, the null hypothesis of correct and
independent exceedances is rejected in a higher number of cases, indicating the presence of
some residual clustering of the exceedances. Summing up, according to the CC tests, the
introduction of the spatial component improves the estimation of Value at Risk, leading to
higher p-values and lower rejection rates. The FHS estimation has good performance in
terms of the UC test, while it is the worst one considered in terms of the CC test (the null
hypothesis is rejected for all banks except for Banco de Sabadell).

Table 6. p-Values of the unconditional (Panel A) and conditional (Panel B) for VaRi
5%. The null

hypotheses are “Correct Exceedances” (unconditional test) and “correct & independent exceedances”
(conditional test). p-values lower than 5% are highlighted in bold.

Panel A: Unconditional Coverage Test for VaRi
5%, p-Value.

Bank FHS GaussDCC GaussSpDCC tDCC tSpDCC

ISP 0.700 0.113 0.067 0.459 0.113
ACA 0.756 0.143 0.004 0.534 0.037
DB 0.534 0.670 0.589 0.270 0.122
BCS 0.670 0.789 0.327 0.756 0.589
ING 0.513 0.534 0.390 0.880 0.789
SAB 0.379 0.935 0.589 0.844 0.756
KBC 0.224 0.180 0.272 0.615 0.700

Panel B: Conditional Coverage Test for VaRi
5%, p-Value.

Bank FHS GaussDCC GaussSpDCC tDCC tSpDCC

ISP 0.001 0.002 0.125 0.017 0.119
ACA 0.033 0.002 0.017 0.007 0.069
DB 0.022 0.013 0.042 0.008 0.009
BCS 0.038 0.255 0.366 0.200 0.413
ING 0.001 0.002 0.012 0.001 0.013
SAB 0.455 0.997 0.655 0.882 0.774
KBC 0.023 0.095 0.156 0.079 0.035

Table 7 reports a summary of the UC and CC tests for the CoVaR. Panels A and B
show the average number of exceedances, the average p-value across all the combinations
of assets, and the percentage of p-values that are smaller than 5% (i.e., the null hypothesis
is rejected at the 95% confidence level) for the UC test and CC test, respectively.7 We see
that for the GaussDCC and GaussSpDCC based on the Gaussian distribution, the null
hypotheses for both the UC and CC tests are rejected for all the bilateral CoVaRs. On the
contrary, for the Student’s t models the null hypotheses are never rejected for both the
UC and CC tests. Finally, we observe that the spatial model tSpDCC performances are
aligned with those of tDCC. The results of the FHS are slightly better than the Gaussian
DCC-GARCH models but are worse than the Student’s t DCC-GARCH models. The results,
although they do not highlight relevant differences between the spatial and non-spatial
models, do confirm that the models based on the Gaussian distribution are not suitable to
properly measure spillover risk, while Student’s t models have much better results when
compared to FHS estimation of CoVaR.
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Table 7. Average exceedances, p-values, and percentage of p-values smaller than 0.05 of the un-

conditional (Panel A) and conditional (Panel B) for CoVaRj|i
5%. The null hypotheses are “Correct

Exceedances” (unconditional test) and “correct & independent exceedances” (conditional test). Aver-
ages and percentages are computed across all the couples of assets. For q = 5% the expected number
of exceedances is 3.9.

Panel A: Unconditional Coverage Test for CoVaRj|i
5%.

FHS GaussDCC GaussSpDCC tDCC tSpDCC

Average exceedances 12.0 18.9 17.1 4.4 5.0
Average p-value 0.047 0.000 0.000 0.639 0.472

(% p-values < 0.05) (88.1%) (100%) (100%) (0%) (0%)

Panel B: Conditional Coverage Test for CoVaRj|i
5%.

FHS GaussDCC GaussSpDCC tDCC tSpDCC

Average p-value 0.061 0.000 0.000 0.446 0.508
(% p-values < 0.05) (81.0%) (100%) (100%) (0%) (0%)

Finally, we assess the quality of the estimation of VaR and CoVaR using the loss
function methodology described in Section 2.2.4. Table 8 reports the value of the loss
function for the investor and the regulator (lower values are better). We see that, consistently
with the results for CC and UC tests, the introduction of the spatial component has a positive
effect for both the models based on Gaussian and Student’s t distribution. Contrary to
expectations, the Student’s t models do not outperform the Gaussian models according
to this metric, showing similar or slightly worse performance. The similarity between
Gaussian and Student’s t distribution may be due to the fact that we are considering a
low confidence level (95% for q = 0.05): for a higher confidence level (e.g., 99%, q = 0.01)
the shape of the tails may matter more, and the Student’s t model may perform better. In
this analysis, we do not consider higher confidence levels as the backtesting of the CoVaR
would become impossible.

Table 8. Backtesting based on loss function for VaRi
5%. Panel A reports the investor’s point of view

and Panel B reports the regulator’s point of view (see Section 2.2.4). For each line the best value is
highlighted in bold.

Panel A: Backtesting Based on Loss Function. VaRi
5% (Investor’s Point of View).

Bank FHS GaussDCC GaussSpDCC tDCC tSpDCC

ISP 4.11 4.06 3.97 4.08 3.96
ACA 4.21 4.24 4.14 4.24 4.18
DB 4.70 4.74 4.76 4.71 4.77
BCS 3.95 3.87 3.75 3.91 3.80
ING 3.74 3.74 3.70 3.77 3.72
SAB 4.92 4.85 4.83 4.89 4.87
KBC 3.54 3.61 3.48 3.55 3.47

mean 4.17 4.16 4.09 4.16 4.11

Panel B: Backtesting Based on Loss Function. VaRi
5% (Regulator’s Point of View).

Bank FHS GaussDCC GaussSpDCC tDCC tSpDCC

ISP 1.24 1.15 1.05 1.29 1.16
ACA 1.44 1.35 1.17 1.44 1.33
DB 1.34 1.47 1.44 1.56 1.59
BCS 1.15 1.21 1.11 1.35 1.28
ING 1.06 1.11 1.05 1.19 1.12
SAB 1.45 1.58 1.60 1.63 1.64
KBC 1.14 1.09 0.97 1.10 1.02

mean 1.26 1.28 1.20 1.37 1.31

Looking at Table 9, we see the average value of the loss functions for the CoVaR
estimations. The results highlight once again a beneficial effect of the spatial component,
that leads to improvements regardless of the distribution and the loss function used. We
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also see that the average loss is clearly smaller for the Student’s t models, highlighting their
ability to better estimate the spillover risk compared to the Gaussian models. The results
for the FHS show that such a model is not as accurate as tSpDCC and tDCC, although it
performs better than Gaussian DCC-GARCH models.

Overall, the results suggest that the introduction of a spatial component improves the
performance of the DCC-GARCH model, both in terms of the information criteria, and
in terms of the out-of-sample estimation of CoVaR, as confirmed by the backtesting. The
results also confirm the better fit of the Student’s t models compared to the Gaussian models.

Table 9. Backtesting based on loss function for CoVaRj|i
5%. The null hypotheses are “Correct Ex-

ceedances” (unconditional test) and “correct & independent exceedances” (conditional test). Panel A
reports the investor’s point of view and Panel B reports the regulator’s point of view (see Section 2.2.4).
For each line, the best value is highlighted in bold.

Panel A: Backtesting Based on Loss Function. CoVaRj|i
5% (Investor’s Point of View).

FHS GaussDCC GaussSpDCC tDCC tSpDCC

average loss 0.392 0.465 0.414 0.393 0.371

Panel B: Backtesting Based on Loss Function. CoVaRj|i
5% (Regulator’s Point of View).

FHS GaussDCC GaussSpDCC tDCC tSpDCC

average loss 0.233 0.359 0.307 0.153 0.142

4. Discussion and Conclusions

As the spillover effects of risk become a problem in interconnected banking systems,
this study introduces a spatial DCC-GARCH(1,1) to provide a more accurate measurement
of joint tail risk in a parsimonious way. The model aims to improve the standard DCC-
GARCH model (Engle 2002), without introducing the estimation complexity typical of
VEC GARCH and BEKK model (Bollerslev et al. 1988; Engle and Kroner 1995; Ling and
McAleer 2003). After discussing the estimation of the model, we perform an empirical
analysis on the equity log returns of seven large European banks, using a matrix that reflects
the similarity in credit structure and exposures. We compare four multivariate GARCH
specifications (with and without spatial components, and with two alternative distributions
for the innovations). The comparison of information criteria suggests that the proposed
spatial model with Student’s t innovation provides a better fit compared to the alternatives.

A common approach to measuring the spillover risk is the usage of pairwise CoVaR
Adrian and Brunnermeier (2014), which measures the tail risk of an institution conditional
to the distress of another institution. We estimate pairwise CoVaRs using our spatial DCC-
GARCH(1,1) model. Compared to other GARCH-based estimation procedures for CoVaR
(see, e.g., Girardi and Ergün 2013), our framework allows us to consider a time-varying
correlation matrix thanks to the DCC component, and a network dimension thanks to the
spatial component. Indeed, as highlighted in the literature, the network component of risk
is more and more relevant (see, e.g., Billio et al. 2012; Diebold and Yılmaz 2014), and spatial
GARCH models allow us to include it while maintaining the estimation feasible.

To test the reliability of the VaR and pairwise CoVaR, we first examine their accuracy
via the UC and CC tests considering different GARCH specifications and a non-parametric
FHS approach. The results show that the Student’s t spatial DCC-GARCH(1,1) model
(tSpDCC) provides the lowest rejection rate for CoVaR5% compared to other models. Second,
we investigate the models via backtesting based on loss functions. The analysis confirms
that the Student’s t spatial DCC GARCH(1,1) model outperforms the other DCC-GARCH
specifications, as well as the filtered historical simulations model in terms of the estimation
of CoVaR5%. Overall, from a methodological perspective, we conclude that the multivariate
GARCH model with the Student’s t and the spatial component obtained thanks to the
proposed similarity matrix can improve the assessment of credit risk profiles and the credit
risk market’s spillover.
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Concerning the economic analysis and interpretation of the empirical results, the
spillover analysis shows that the dynamics of CoVaR were diversified across European
banks, and that in the out-of-sample period (2014–2020) there were two main shocks
common to all the institutions: the Brexit Referendum (mid-2016) and the COVID-19 Crisis
(started in the first half of 2020). Both periods were associated with spikes in VaR and
CoVaR, and persistent increases in the ratio of CoVaR over VaR (denoting therefore a
long-lasting increase in the interconnectedness and risk spillovers). The persistent increase
in CoVaRs after Brexit is consistent with Li (2020), which studies the behavior of European
stock markets in a multivariate time-varying setting, finding that market co-volatility
continues to be substantial and persists after Brexit despite the fact that the market adjusted
quickly to the shock. Similarly, the increase of CoVaR during the Covid Crisis confirms
results from the literature that show how spillover and interconnectedness increased in the
first part of the Covid period. In particular, Aslam et al. (2021) studied twelve European
markets using the methodology from Diebold and Yılmaz (2014) on high-frequency data
and found more stable spillovers in the Covid period compared to the previous, and Foglia
et al. (2022) show an increase of volatility connectedness during the Covid period across 30
major Eurozone banks.

Finally, we point out that the proposed framework not only has relevant applications
for financial regulators, but it is also relevant for the asset management industry. Indeed,
the proposed model allows us to estimate the joint distribution of future returns, providing
asset managers with reliable inputs for optimal portfolio strategies (Meucci 2005), and
risk managers with data useful to measure the risk of investment funds and to conduct
stress-testing analyses based on hypothetical scenarios (see, e.g., Alexander and Sheedy
2008; Koliai 2016).

Future works may further extend the current work by testing alternative spatial
matrices and applying the model to other markets and larger datasets.
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Notes

1 On the contrary the return are not typically serially correlated, consistently with the efficient market hypothesis Fama (1970).
2 We use the convention that a higher value of r is preferable to a lower value, as in the cases when r represents returns or wealth.

Other works consider a random variable x such that lower values of x are preferable, as in the case of losses (e.g., Artzner et al.
1999). The signs in the definitions then need to be changed accordingly.

3 The construction of a network of bilateral CoVaR is inspired by Adrian and Brunnermeier (2014). An alternative approach to
extend CoVaR to a network dimension is proposed by Torri et al. (2021) and uses penalized multivariate quantile regression.

4 Under both Student t and Gaussian distribution it can be shown that for positive correlation CoVaRx|y
q is always greater than

VaRx
q . Hence we consider a grid of values ranging from VaRx

q to infinity, such that the corresponding quantiles are equally spaced.
In case of null or negative correlations, we use 0 as the lower value of the grid.

5 Central governments Institutions, Corporates, Retail, Equity, Securitization, and Other non-credit obligation assets.
6 In preliminary analyses we tested different orders of GARCH and we also considered an ARMA component, finding no relevant

differences. We omit them for brevity.
7 We do not report the complete results for all the bivariate CoVaR estimations for brevity. The results are available upon request.
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Abstract: Bound choices such as portfolio choices are studied in an aggregate fashion using an
extension of the notion of barycenter of masses. This paper answers the question of whether such an
extension is a natural fashion of studying bound choices or not. Given n risky assets, the question of
why it is appropriate to treat only two risky assets at a time inside the budget set of the decision-maker
is handled in this paper. Two risky assets are two goods. They are two marginal goods. The question
of why they always give rise to a joint good inside the budget set of the decision-maker is addressed
by this research work. A single risky asset is viewed as a double one using four nonparametric joint
distributions of probability. The variability of a joint distribution of probability always depends on
the state of information and knowledge associated with a given decision-maker. For this reason, two
variability tensors are defined to identify the riskiness of the same risky asset. A multilinear version
of the Sharpe ratio is shown. It is based on tensors. After computing the expected return on an n-risky
asset portfolio, its riskiness is obtained using mean quadratic differences developed through tensors.

Keywords: utility; quadratic metric; multilinear relationship; α-product; α-norm; rational behavior

MSC: 60A05; 60B05; 91B24; 91B16; 91B06; 91B08

1. Introduction

In this paper, bound choices such as portfolio choices are studied without adding new
axiomatic constructions or using known ones. Previous studies tend to add or use such
formalistically abstract constructions (Echenique 2020; Chambers et al. 2017; Nishimura
et al. 2017). Such constructions are exact (Halevy et al. 2018). Nevertheless, in our opinion,
they are empty, and this characteristic is perhaps inevitable. Conversely, we propose an
approach of an operational nature based on metric measures (choices being made by a
given decision-maker and expressed by means of specific measures put forward by Corrado
Gini are dealt with by Wang et al. (2018)). The advantages of this approach are essentially
two. First, such measures indicating rational choices can be introduced without a problem.
This is because they comply with any reasonable axiomatic construction (Cassese et al.
2020). Second, such measures are in accordance with one of the fundamental needs of
science, which must work with notions of ascertained validity in a pragmatic sense. In our
opinion, science must not take combinations of axioms as indefectible concepts, but it must
be based on actual experiences, which are at least conceptually possible. Such experiences
are subjected to a measure. A remarkable point of this research work is the following. Such
a point is connected with how a measure can be obtained. In our opinion, bound choices
must be studied under conditions of uncertainty and riskiness (Angelini and Maturo 2021b).
They are real and unavoidable conditions (Chudjakow and Riedel 2013; Machina 1987).
It follows that we focus on the notion of probability and its properties. This notion is
intrinsically subjective (Pfanzagl 1967). A theorem enunciating the notion of utility to be a
metric measure is shown by us. Hence, prevision (probability) and utility are two metric
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measures (that which has been made by Viscusi and Evans (2006) and Abdellaoui et al.
(2013) is enlarged by us in this paper). Prevision (probability) and utility are innovatively
discovered to be two sides of the same coin.

In this study, probability judgments always depend on the state of information and
knowledge associated with a given individual. We focus on a specific interpretation referred
to Bayes’ theorem. It is essential to our purposes to explain why we focus on the following
geometric interpretation referred to Bayes’ theorem, where two stages are distinguished.
Every bound choice is intrinsically a barycenter of masses subjectively distributed over
a finite set of alternatives. In the first stage, all the barycenters of masses are considered.
Their number is infinite. All of them give rise to a convex set. It is the budget set of the
decision-maker. In the second stage, one of the barycenters is chosen, so a probabilistic but
convergent element is associated with a rational choice.

This paper fills a conceptual and mathematical gap existing in the current literature.
It is possible to enlarge the notion of rational behavior. It follows that the optimization
principle can be enlarged as well. How is this possible? Given two goods denoted by
1X and 2X, their possible values meant as pure numbers are expressed by the sets I(1X)
and I(2X). A given decision-maker chooses P(1X) and P(2X) inside his or her budget set.
This means that a given decision-maker is indifferent to the exchange of 1X, identified
with I(1X), for P(1X) and of 2X, identified with I(2X), for P(2X). Also, this implies
that he or she is indifferent to the exchange of X12 for P(X12), where P(X12) extends the
notion of barycenter of masses. This is because P(X12) is the determinant based on four
measures denoted by P(1X 1X), P(1X 2X), P(2X 1X), and P(2X 2X). This means that four
nonparametric joint distributions of probability are considered. X12 is a multiple good
of order 2, whose elements are 1X and 2X. The possible values for X12 coincide with the
components of a tensor. P(X12) is a multiple choice associated with a multiple good. What
will be said in this paper is more general than one might think at first. This is because the
mathematical notion of α-product on which P(1X 1X), P(1X 2X), P(2X 1X), and P(2X 2X)
are based is discovered. Such a notion uses subjective probabilities intrinsically connected
with exchangeable or symmetric events. Such a notion does not only explain bound choices
but also can treat multilinear issues of statistical inference. This makes explicit where
the results of this paper can be applied. Every bound choice is studied using subjective
tools, probability, and utility, inside a subset of a linear space over R. Linear spaces over
R with a different dimension are here handled. A specific element is held fixed: possible
and objective alternatives whose number is finite are always summarized. Possible and
objective alternatives are real data. They can be viewed as sampling data. This makes
explicit how the results of this paper can be applied. It is then possible to find out a strict
connection between how bound choices are dealt with within this context and the least-
squares model (as an alternative, a connection between economics and mathematics based
on differential equations could be developed by examining Oderinu et al. (2023) as well).

1.1. Bound Choices Made by the Decision-Maker under Claimed Conditions of Certainty

We do not study more than two goods at a time inside the budget set of the decision-
maker. This is because we use mathematical methods via a quadratic metric. Every bound
choice being made by a given decision-maker inside his or her budget set is a measure
obtained using a quadratic metric. It is not convenient to use a non-quadratic metric. For
instance, in statistics, variance, standard deviation, and the covariance of two variables are
indices obtained using a quadratic metric. It is certainly possible to study n goods, with
n > 2 which is an integer. Nevertheless, whenever we want to obtain a measure, it is not
convenient to study more than two goods at a time. Another remarkable issue developed in
this paper is the following. Conceptually, the conditions of certainty referred to nonrandom
goods1 have to be understood as intrinsically fictitious. Given two nonrandom goods with
downward-sloping demand curves, that which is chosen by a given decision-maker is
denoted by (x1, x2) (primordial and fundamental aspects about revealed preference theory
studying bound choices are dealt with by Samuelson (1948)). In our opinion, the objects
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of decision-maker choice are explicitly bilinear and disaggregate measures (an analysis
based on the two-good assumption is made by Cherchye et al. (2018)). Hence, there exists
a one-to-one correspondence between two-dimensional points of the budget set of the
decision-maker and bilinear and disaggregate measures. Each measure is decomposed into
two linear measures. Each of them is a one-dimensional point. We establish the following:

Definition 1. Given two nonrandom goods with downward-sloping demand curves, that which is
demanded for each of them under claimed conditions of certainty by a given decision-maker is an
average quantity. We write

x1 = x1
1 p1

1 + . . . + xm
1 pm

1 (1)

and
x2 = x1

2 p1
2 + . . . + xm

2 pm
2 , (2)

where {pi
1} and {pj

2} are two sets of m nonnegative masses. Their sum is always equal to 1 with
regard to each of them. Each mass of them is always between 0 and 1, endpoints included. The
possible quantities which can be demanded for good 1 are expressed by {x1

1, . . . , xm
1 }, whereas the

possible quantities which can be demanded for good 2 are given by {x1
2, . . . , xm

2 }.

The possible quantities which can be demanded for good 1 and good 2 are pure
numbers. They are possible events. Their nature is objective. They are not directly
observed, but they are estimated. What is directly observed is given by (x1, x2). The
possible quantities which can be demanded for good 1 and good 2 are the components of
two vectors of Em, where Em is an m-dimensional linear space over R with a Euclidean
structure. Given an orthonormal basis of Em, any vector whatsoever of Em is always
expressed as a linear combination of basis vectors. The real coefficients of this linear
combination are its components. One and only one set of components of a vector of Em

uniquely identifies it. In this paper, good 1 and good 2 are jointly considered, so the
weighted average of m2 possible quantities which can be demanded for good 1 and good 2
is also studied. Such quantities are obtained by taking the Cartesian product given by
{x1

1, . . . , xm
1 } × {x1

2, . . . , xm
2 } into account. Such quantities are the components of an affine

tensor. The notion of event is always subdivisible, so m2 possible alternatives can be
studied. This means that a nonparametric joint distribution of probability is dealt with2.
Every weighted average of m possible quantities which can be demanded for good 1 and
good 2 is always found between the lowest possible quantity and the highest possible one
(the rationality of the behaviors associated with decision-makers viewed to be as consumers
is dealt with by Varian (1983)). The same is true regarding m × m = m2 possible quantities
(that which is demanded by a given decision-maker being faced with his or her budget
constraint is studied by Varian (1982)). All coherent weighted averages of m2 possible
alternatives identify a two-dimensional convex set. It is a continuous subset of R× R.
It is the budget set of the decision-maker. Two one-dimensional convex sets coinciding
with two closed line segments appear as well. They belong to two mutually orthogonal
axes of a two-dimensional Cartesian coordinate system. Strictly speaking, we deal with
two half-lines, where each of them extends indefinitely from zero toward positive real
numbers before being restricted. At the first stage, all coherent weighted averages of m2

possible alternatives are handled. Their number is infinite. All coherent weighted averages
of m possible alternatives for good 1 and good 2 are also dealt with. Their number is
infinite. At a second stage, (x1, x2) is chosen. This choice depends on further hypotheses
of an empirical nature. Boundary points that are found on each axis of a two-dimensional
Cartesian coordinate system identify degenerate averages3. The budget line identifying the
budget set of the decision-maker is a hyperplane embedded in a two-dimensional Cartesian
coordinate system. Its negative slope depends on the prices of good 1 and good 2. We write

b1 x1 + b2 x2 ≤ b, (3)

415



J. Risk Financial Manag. 2023, 16, 369

where b1, b2, and b are positive real numbers, to identify his or her budget constraint. The
slope of (3) is given by − b1

b2
. Its horizontal intercept is given by b

b1
, whereas its vertical

one is given by b
b2

. A specific pair of known and objective prices is denoted by (b1, b2),
whereas the objective amount of money the decision-maker has to spend is expressed by
b. Conditions of certainty are fictitious. This is because actual situations are uncertain. In
particular, variations in the total amount of money the decision-maker has to spend could
happen. Also, risks of external origin determining variations in his or her income could
occur as well. This means that if (b1, b2, b) represents the decision-maker budget, then
b must be assumed of an uncertain nature at the time of choice. The same b can appear
even when the state of information and knowledge associated with a given decision-maker
is assumed to have become complete later. On the other hand, if there is no ignorance
anymore because further information is later acquired, then it is also possible to observe a
parallel shift outward or inward of the budget line. Given (x1, x2), the weighted average
of m2 possible alternatives is a summarized element of the Fréchet class. According to
our approach, the decision-maker also chooses this summarized element in addition to
(x1, x2)

4.
We establish the following:

Definition 2. The set of all weighted averages of m2 possible alternatives, with the same given
marginal weighted averages of m possible quantities which can be demanded for good 1 and m
possible quantities which can be demanded for good 2, constitutes the Fréchet class.

We note the following:

Remark 1. The possible quantities which can be demanded for each nonrandom good taken into
account are possible points (pure numbers) belonging to sets whose elements are finite in number. By
definition, a hyperplane embedded in a two-dimensional Cartesian coordinate system never separates
a coherent summary of possible points from their sets. In other terms, the budget line never separates
(x1, x2) from {x1

1, . . . , xm
1 }, {x1

2, . . . , xm
2 }, and {x1

1, . . . , xm
1 } × {x1

2, . . . , xm
2 }. This characterizes

the points of the convex set. The budget set of the decision-maker is a convex set.

1.2. A Random Good: Logical and Probabilistic Aspects

Assets are goods that provide a flow of services over time. A flow of consumption
services can be provided by assets. A flow of money that can be used to purchase consump-
tion can also be provided by assets. Financial assets provide a monetary flow. For instance,
the flow of services provided by financial assets can be the flow of interest payments. In
this paper, we focus on the future return provided by financial assets under conditions of
uncertainty and riskiness. This future or expected return must be estimated by a given
individual with respect to observed returns in the past. One of the observed returns can
be the actual return. Financial assets such as risky assets are studied under conditions of
uncertainty and riskiness. They are random goods. A random good is a random quantity5

viewed as a specification of what will be chosen in each different outcome of a random
process. The different outcomes of a random process are different random events. A
random good is intrinsically characterized by a nonparametric probability distribution
consisting of a list of different outcomes and the probability associated with each outcome
(Gilio and Sanfilippo (2014)). The decision-maker chooses a nonparametric probability
distribution of obtaining different random events. We establish the following:

Definition 3. Let idR : R → R be the identity function on R, where R is a linear space over itself.
Given m incompatible and exhaustive events, a random good denoted by X is the restriction of idR
to I(X) = {x1, x2, . . . , xm} ⊂ R such that we write idR|I(X) : I(X) → R.

A random good is nothing but a random variable X on a sample space denoted by
Ω. It is a function from Ω into the set R of real numbers such that the pre-image of any
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interval of R is an event in Ω. Our intervals are: [x1, x1], . . . , [xm, xm]. The points in Ω are
real numbers only. Given an orthonormal basis of Em, a random good is represented by a
vector whose contravariant components coincide with the elements of I(X) = Ω before
transferring them on a one-dimensional straight line, on which an origin, a unit of length,
and an orientation are established. We write

I(X) = {x1, x2, . . . , xm}, (4)

with x1 < x2 < . . . < xm without loss of generality. It is clear that we have inf I(X) = x1

and sup I(X) = xm. A located vector at the origin of Em is completely established by its
endpoint. An ordered m-tuple of real numbers can be either a point of an affine space
denoted by Em or a vector of Em. Accordingly, Em and Em are isomorphic. Each event is
generically denoted by Ei, i = 1, . . . , m. We write

X = x1|E1|+ x2|E2|+ . . . + xm|Em|, (5)

where we have

|Ei| =
{

1, if Ei is true
0, if Ei is false

(6)

for every i = 1, . . . , m. Regarding a given set of information and knowledge, we consider
the finest possible partition of X into elementary events. The nature of this partition
is always relative, arbitrary, and temporary. That alternative which will turn out to be
verified a posteriori is nothing but a random point contained in I(X) (von Neumann 1936).
This point contained in I(X) is a real number. It expresses everything there is to be said
whenever uncertainty ceases. Each possible value for X could uniquely be expressed by

{x1 + a, x2 + a, . . . , xm + a}, (7)

where a ∈ R is an arbitrary constant. We consider infinite changes of origin in this way
(Angelini and Maturo 2021a).

We deal with ordered m-tuples of real numbers (that which is objectively possible is
dealt with by Coletti et al. (2016)). All possible values for X are uncertain, so it makes sense
that the decision-maker attributes to each of them a probability. I(X) with the assignment
of probabilities is a probability space denoted by (Ω, F, P). The set of all possible outcomes
is denoted by Ω. This set is embedded in a larger space with a linear structure. We write
F = {∅, Ω} to denote a set of events6, whereas P is a function of probability or prevision
defined as an expression of the subjective opinion of a given decision-maker7. We think
of probability as being a mass. It is always a nonnegative and additive function. Its value
is equal to 1 on the whole space of the possible values for the random good taken into
account. The notion of probability is not undefined within this context (Anscombe and
Aumann 1963). It is the degree of belief in the occurrence of a single event attributed by a
given decision-maker at a given instant and with a given set of information and knowledge
(Schmeidler 1989). Uncertainty about an event depends on the existence of imperfect
information and knowledge by the decision-maker (Capotorti et al. 2014). We speak about
uncertainty in the simple sense of ignorance (Jurado et al. 2015). Uncertainty consists of
two different aspects. Possibility and probability are the two aspects of it. In this paper,
they are studied inside linear spaces over R. Possibility and probability are expressed by
two vectors of Em used to obtain P(X), where P(X) is viewed to be as a scalar or inner
product written in the form

P(X) = x1 p1 + x2 p2 + . . . + xm pm. (8)

We write
x = (x1, x2, . . . , xm) (9)
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to denote what is objectively possible, whereas we write

p = (p1, p2, . . . , pm) (10)

to denote what is subjectively probable. Since we have

p1 + p2 + . . . + pm = 1, (11)

with 0 ≤ pi ≤ 1, i = 1, . . . , m, all those evaluations such that (11) holds are coherent.
Their number is equal to ∞m−1. Given x1, x2, . . . , xm, a random process consists of ∞m−1

possible choices of masses such that a weighted average of m values given by x1, x2, . . . ,
xm takes place. If X is viewed to be as a vector of Em, then it is a linear combination of m
incompatible and exhaustive events expressed by

X = x1 |E1| e1 + x2 |E2| e2 + . . . + xm |Em| em, (12)

where Bm = {ei}, i = 1, . . . , m, is an orthonormal basis of Em. Regarding Bm, we write

x = x1 e1 + x2 e2 + . . . + xm em. (13)

If the Einstein summation convention is used, then it gives

x = xi ei. (14)

1.3. The Objectives of the Paper

All the objectives of this paper are innovative. Bound choices are based on possible
alternatives. Every choice is a barycenter of masses distributed over a finite set of possible
alternatives. The latter is embedded in a larger and more manageable space. Regarding
choices being made under conditions of uncertainty and riskiness, possible alternatives are
not estimated, but they are observed. What is chosen by a given decision-maker inside his
or her budget set coincides with a coherent summary of a nonparametric joint distribution
of mass. This summary is a bilinear measure. It is always decomposed into two linear
measures. The budget set of the decision-maker consists of points such that each point of it
has two Cartesian coordinates. Each of them is a summary of a nonparametric marginal
distribution of mass related to a marginal good. Given the two marginal distributions of
mass, all possible joint distributions of mass constitute the Fréchet class. We admit that it is
useful to compare a concrete (nonparametric) probability distribution with a model which
is not a continuous function such as the density function of a continuous random variable,
but it is itself a distribution of mass. The latter is characterized by probabilities that are
finitely but not countably additive. All possible joint distributions of mass are summarized
by a given decision-maker. He or she chooses one of these summaries according to his or
her variable state of information and knowledge. He or she can choose a coherent summary
such that there is no linear correlation between good 1 and good 2. He or she could
also choose a coherent summary such that there is an inverse or direct linear relationship
between good 1 and good 2. Regarding the Fréchet class, two extreme limit cases together
with an intermediate case are accordingly taken into account. They are paradigmatic cases.
Each of them identifies the above model. If good 1 and good 2 are two risky assets, then it
is methodologically possible to validate that the notion of risk is intrinsically subjective. We
develop the notion of mean quadratic difference put forward by Corrado Gini. We develop
it via a tensorial approach. The variability of a distribution of mass always depends on how
the decision-maker estimates all the masses under consideration. It follows that the origin
of this variability is not random within this context. It is not standardized because the
decision-maker makes explicit, from time to time, the knowledge hypothesis underlying
it. The origin of the variability of a distribution of mass is not connected with the theory
of measurement errors, where such errors are random. Regarding the Sharpe ratio, after
computing the expected return on an n-risky asset portfolio, its riskiness is obtained using
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the notion of mean quadratic difference. The decision-maker always maximizes his or her
subjective utility connected with average quantities. In this paper, the notion of utility
is a metric measure as well. What is said in this paper can be extended. Multilinear
relationships between variables are discovered and handled, so an extension of the least-
squares model can be made. In economics, it is frequent that there is one-way causation in
the sense that given variables influence another variable, but there is no feedback in the
opposite direction. This means that a specific variable does not influence other variables.
Conversely, all the multilinear indices we propose in this paper allow the studying of
relationships between variables in such a way that there is a two-way causation. Hence, it
is possible to study variables influencing each other.

In Section 2 of the paper, antisymmetric tensors identifying multilinear indices are
handled. In Section 3, risky assets viewed to be as random goods are studied. In Section 4,
analytic conditions allowing the studying of a single risky asset as a double one are
developed. Section 5 shows a variability tensor. Section 6 shows another variability tensor.
In Section 7, a multilinear approach to the Sharpe ratio is dealt with. In Section 8, future
perspectives of our research are outlined after discussing the main results contained in
the paper.

2. Two Random Goods That Are Jointly Considered: From Disaggregate Choices to
Aggregate Ones

2.1. Bound Choices Made by a Given Decision-Maker under Conditions of Uncertainty and
Riskiness: Their Decomposition Inside His or Her Budget Set

Two random goods which are jointly considered inside the budget set of the decision-
maker can be handled through the same framework characterizing bound choices being
made by him or her under claimed conditions of certainty (portfolio choices with transient
price impact are studied by Ekren and Muhle-Karbe (2019)). Given two marginal random
goods denoted by 1X and 2X, the number of the possible values for each of them is
first equal to m. 1X and 2X are linearly independent. Hence, we consider two mutually
orthogonal axes of a two-dimensional Cartesian coordinate system, on which an origin,
the same unit of length, and an orientation are established. The possible values for each
random good taken into account are transferred on a one-dimensional straight line. Thus,
we do not consider an m-dimensional point, but we deal with m one-dimensional points
on a one-dimensional straight line. We pass from Em to a linear space over R with its
dimension which is equal to 1. There exists a one-to-one correspondence between a
one-dimensional linear subspace of Em and a one-dimensional straight line, on which
an origin, a unit of length, and an orientation are chosen. A one-dimensional linear
subspace of Em contains all collinear vectors8 regarding one of the two vectors belonging
to Em. Its contravariant components coincide with the possible values for a marginal good.
Two one-dimensional linear subspaces of Em are dealt with. These subspaces identify
two one-dimensional straight lines, on which an origin, the same unit of length, and
an orientation are chosen. They establish the budget set of the decision-maker. They
establish an uncountable subset of the direct product of R and R denoted by R×R. Its
dimension is equal to 2. All the m2 possible values for two random goods which are
jointly considered give rise to 1X 2X. All the m2 possible values for 1X 2X identify, together
with m2 probabilities, P(1X 2X). If P(1X 2X) is bilinear, where P stands for prevision or
mathematical expectation of a joint random good denoted by 1X 2X, then P(1X) and P(2X)
are linear. We write P(1X 2X) ≡ (P(1X), P(2X)) because we deal with a bilinear measure
coinciding with a two-dimensional point. If P is linear, then 1X must always be a random
good with its possible values which are all nonnegative. The same is true by considering the
possible values for 2X on the vertical axis. If P is linear, then it is first additive and convex.

Given two random goods, P(1X) and P(2X) tell us how much the decision-maker
is choosing to demand for one of the two random goods taken into account and how
much he or she is choosing to demand for the other. His or her budget set is established
by the negative slope of the budget line coinciding with a hyperplane embedded in a
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two-dimensional Cartesian coordinate system. His or her budget set is also established by
the two mutually orthogonal axes taken into account. In particular, we consider two half-
lines. His or her budget set is accordingly a right triangle belonging to the first quadrant
of a two-dimensional Cartesian coordinate system. The vertex of the right angle of the
triangle taken into account coincides with the point given by (0, 0). 1X, 2X, and 1X 2X are
first discrete goods. They are studied as continuous goods when and only when all their
coherent previsions are taken into account at the first stage. The budget line is an equation
of a linear function expressed in an implicit form. The prices of the prevision bundle9

denoted by P(1X 2X) ≡ (P(1X), P(2X)) are formally two constants of the straight line
expressed in an implicit form such that their ratio gives its slope. The budget constraint of
the decision-maker requires that the amount of money spent on the two random goods be
no more than the total amount he or she has to spend. The budget constraint derives from

c1 (1X) + c2 (2X) ≤ c. (15)

It is written in the form
c1 P(1X) + c2 P(2X) ≤ c, (16)

where (c1, c2) are the objective prices of the two random goods, whereas the objective
amount of money the decision-maker has to spend is equal to c. Please note that c1, c2, and
c are positive real numbers. The slope of the budget line expressed by

c1 P(1X) + c2 P(2X) = c (17)

is given by

− c1

c2
. (18)

The budget line can always be drawn. It is possible to establish its horizontal and vertical
intercepts every time. This means that we pass from m to m + 1 possible alternatives for
each marginal random good. Structures open to the adjunction of new entities as new
circumstances arise are considered by us. They are linear spaces over R with a different
dimension. Structures open are considered because the notion of event is intrinsically
subdivisible. The prices of the two random goods taken into account are determined
whenever the budget line is drawn. Three convex sets are established. They are two one-
dimensional convex sets and one two-dimensional convex set. The first one-dimensional
convex set is found between zero expressed by (0, 0) and the horizontal intercept of the
budget line given by c

c1
. The second one is found between zero, expressed by (0, 0), and

the vertical intercept of it given by c
c2

. The third two-dimensional convex set is given by all
the points that are found inside the plane region bounded by the right triangle. Please note
that (17) always passes through the point whose coordinates are given by(

sup I(1X), sup I(2X)
)
. (19)

If the budget line changes its negative slope, then the budget set of the decision-maker
changes. He or she chooses a point belonging to his or her changed budget set. His or her
state of information and knowledge changes. It is clear that (16) is analogous to (3). We
pass from Em+1 to a linear space over R with its dimension which is equal to 1. There exists
a one-to-one correspondence between a one-dimensional linear subspace of Em+1 and a
one-dimensional straight line, on which an origin, a unit of length, and an orientation are
chosen. Two one-dimensional linear subspaces of Em+1 are dealt with. These subspaces
identify two one-dimensional straight lines, on which an origin, the same unit of length,
and an orientation are chosen. They establish the budget set of the decision-maker.

The decision-maker’s choice functions for the two marginal random goods under
consideration are expressed by

P(1X) =
{

P(1X)[(c1, c2, c)]
}

, (20)
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and
P(2X) =

{
P(2X)[(c1, c2, c)]

}
, (21)

where P is additive and convex as a consequence of its coherence. We note the following:

Remark 2. The decision-maker estimates both marginal masses associated with 1X and 2X and
the joint ones associated with 1X 2X. Marginal masses associated with 1X and 2X give rise to
P(1X) and P(2X). Given (P(1X), P(2X)), a bilinear and disaggregate measure coinciding with
P(1X 2X) is a summarized element of the Fréchet class. Given (P(1X), P(2X)), the decision-maker
also chooses a summarized element of the Fréchet class such that P(1X) and P(2X) never change.
This element is obtained using the notion of α-product outside the budget set of the decision-maker.

A remarkable point of this paper is the following. The decision-maker can choose a
coherent summary of a joint distribution of mass identifying a summarized element of the
Fréchet class such that there is no linear correlation between random good 1 and random
good 2, so they are stochastically independent. Given the same marginal masses, 1X and
2X are stochastically independent if each joint mass in a joint distribution is the product
of its corresponding marginal masses. In particular, if 1X and 2X are two risky assets,
then the decision-maker is risk neutral. He or she could also choose a coherent summary
of a joint distribution of mass such that there is an inverse or direct linear relationship
between 1X and 2X. This means that the decision-maker is, respectively, risk averse or risk
loving. In fact, given the same marginal masses, an aggregation of joint masses such that
1X tends to increase when 2X increases shows a direct linear relationship between 1X and
2X. Conversely, given the same marginal masses, an aggregation of joint masses such that
1X tends to decrease when 2X increases shows an inverse linear relationship between 1X
and 2X. Regarding the Fréchet class, two extreme limit cases together with an intermediate
case are dealt with. They are paradigmatic cases.

2.2. Two Jointly Considered Random Goods Depending on the Notion of Ordered Pair and Their
α-Product

Two marginal random goods denoted by 1X and 2X always give rise to a joint random
good denoted by 1X 2X. All its possible values are obtained by considering the Cartesian
product of the possible values for 1X and 2X. The horizontal and vertical intercepts must
be added to I(1X) and I(2X), respectively. We write I(1X) ∪ { c

c1
} and I(2X) ∪ { c

c2
}. The

values of I(1X) ∪ { c
c1
} and I(2X) ∪ { c

c2
} coincide with the contravariant components of

two (m + 1)-dimensional vectors uniquely expressed as linear combinations of m + 1 basis
vectors of Em+1. We put I(1X) ∪ { c

c1
} = I∗(1X) and I(2X) ∪ { c

c2
} = I∗(2X).

Another remarkable point of this paper is that the notion of ordinal utility is a metric
measure (Maturo and Angelini 2023). Prevision (probability) and utility are formally the
two sides of the same coin, so it is possible to present the following:

Theorem 1. Let 1X and 2X be two logically independent random goods. They are jointly considered
inside the budget set of the decision-maker. Their possible values are expressed by I(1X) ∪ { c

c1
} and

I(2X) ∪ { c
c2
}. If each coherent prevision of 1X 2X denoted by P(1X 2X) is decomposed into two

linear previsions, then its properties coincide with the ones of well-behaved preferences.

We prove this theorem in another paper of ours. Since indifference curves cannot
cross, given any two prevision bundles belonging to two different indifference curves,
this theorem tells us that the decision-maker can rank them as to their distance from (0, 0)
measured along the 45-degree line. One of the prevision bundles is strictly better than the
other if and only if its distance from (0, 0) measured along the 45-degree line is greater than
the other. A numerical example of this can easily be shown using the Pythagorean theorem.
It is possible to write

421



J. Risk Financial Manag. 2023, 16, 369

2d(O, P) =

√√√√ 2

∑
i=1

P(iX)2 (22)

to denote the distance of P from O = (0, 0), where P stands for (P(1X), P(2X)). We write

P =

(
P(1X)
P(2X)

)
. (23)

The bundles for which the decision-maker is indifferent to (P(1X), P(2X)) form the indif-
ference curve. Its slope is negative. It can be imagined by identifying preferences for perfect
substitutes without loss of generality. It intersects the 45-degree line in a point only. All
other indifference curves intersect the 45-degree line. Each of them intersects the 45-degree
line in a point only. Preferences are not directly observable. In our approach, the notion of
utility has then an independent meaning other than its being what a given decision-maker
maximizes.

We establish the following:

Definition 4. All the events associated with an ordered pair of random goods are obtained by
considering the Cartesian product of the possible values for two logically independent random
goods denoted by 1X and 2X. Such random goods give rise to a joint random good denoted by
1X 2X. The latter is a function written in the form 1X 2X : I∗(1X)× I∗(2X) → R, where we have
1X 2X((1)x

i, (2)x
j) = (1)x

i
(2)x

j, with i, j = 1, . . . , m + 1.

We are faced with

1X 2X = (1)x
1
(2)x

1|(1)E1||(2)E1|+ . . . + (1)x
m+1

(2)x
m+1|(1)Em+1||(2)Em+1|, (24)

where it is possible to write

|(1)Ei||(2)Ej| =
{

1, if (1)Ei and (2)Ej are both true

0, otherwise
(25)

for every i, j = 1, . . . , m + 1.
Since 1X and 2X are two random goods, where each of them has m + 1 possible values,

two random goods giving rise to 1X 2X are logically independent whenever there exist
[(m + 1)·(m + 1)] possible values for 1X 2X (the notion of measure associated with possible
values for a random entity is dealt with by Nunke and Savage (1952)). Given (1X, 2X), we
are faced with two different partitions. Each of them is characterized by m + 1 incompatible
and exhaustive events10. The covariant components of an affine tensor of order 2 represent
the joint masses of the nonparametric joint distribution of 1X and 2X. Their number is
overall equal to (m + 1)2 (coherent probabilities associated with possible values for random
entities are handled by Regazzini (1985)). We say that an ordered pair of random goods
denoted by (1X, 2X) is represented by an ordered triple of geometric entities denoted by(

(1)x, (2)x, pij

)
, (26)

with (i, j) ∈ Im+1 × Im+1, where we write Im+1 = {1, 2, . . . , m + 1}. We consider the notion
of α-product between (1)x and (2)x. It is possible to establish a quadratic metric on Em+1 in
this way. This notion is a scalar or inner product obtained using the joint masses denoted
by pij of the nonparametric joint distribution of 1X and 2X together with the contravariant
components of (1)x and (2)x. We then write

〈(1)x, (2)x〉α = (1)x
i
(2)x

j pij = (1)x
i
(2)xi = P(1X 2X), (27)
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where

(2)x
j pij = (2)xi (28)

is a vector homography by means of which we pass from (2)x
j to (2)xi using pij. All

covariant components of an (m + 1)-dimensional vector are obtained by means of vector
homographies involving pij. For instance, from the following Table.

������������������Random Good 1

Random Good 2
0 4 5 Sum

0 0 0 0 0

2 0 0.1 0.2 0.3

3 0 0.5 0.2 0.7

Sum 0 0.6 0.4 1

It follows that we have P(1X 2X) = 11.8. Given the contravariant components of (2)x

identifying the following column vector ⎛⎝0
4
5

⎞⎠,

its covariant components are expressed by

0 · 0 + 4 · 0 + 5 · 0 = 0,

0 · 0 + 4 · 0.1 + 5 · 0.2 = 1.4,

and
0 · 0 + 4 · 0.5 + 5 · 0.2 = 3,

so it is possible to write the following result

〈⎛⎝0
2
3

⎞⎠,

⎛⎝ 0
1.4
3

⎞⎠〉
= 〈(1)x, (2)x〉α = P(1X 2X) = 11.8.

On the other hand, after calculating the covariant components of (1)x in a similar way, we
write 〈⎛⎝ 0

1.7
1

⎞⎠,

⎛⎝0
4
5

⎞⎠〉
= 〈(1)x, (2)x〉α = P(1X 2X) = 11.8.

After transferring the possible values for 1X and 2X on two one-dimensional straight lines,
P(1X 2X) lives inside a subset of a two-dimensional linear space over R. P(1X 2X) is a
measure of a metric nature living inside a subset of a linear space over R denoted by R×R.
Please note that P(1X 2X) is identified with a two-dimensional point. We write

(P(1X), P(2X)) (29)

to identify P(1X 2X) inside the budget set of the decision-maker. This means that P(1X 2X)
is always decomposed into two linear measures. Each of them is identified with a one-
dimensional point inside the budget set of the decision-maker. The notion of α-norm is a
particular case of the one of α-product. From the following Table.
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������������������Random Good 1

Random Good 1
0 2 3 Sum

0 0 0 0 0

2 0 0.3 0 0.3

3 0 0 0.7 0.7

Sum 0 0.3 0.7 1

It follows that we write ‖(1)x‖2
α = P(1X 1X) = 7.5, whereas from the following Table.

������������������Random Good 2

Random Good 2
0 4 5 Sum

0 0 0 0 0

4 0 0.6 0 0.6

5 0 0 0.4 0.4

Sum 0 0.6 0.4 1

It follows that we have ‖(2)x‖2
α = P(2X 2X) = 19.6.

2.3. Two Jointly Considered Random Goods That Are Independent of the Notion of Ordered Pair

Let 1X and 2X be two random goods, where each of them is characterized by m + 1
possible values. We note the following:

Remark 3. Given an orthonormal basis of Em+1, the possible values for two separately considered
random goods are represented by the contravariant components of two vectors of Em+1. If we are
not interested in fusing 1X and 2X, then the possible values for two logically independent random
goods which are jointly considered could coincide with the contravariant components of an affine
tensor of order 2. If we are conversely interested in fusing 1X and 2X, then the possible values
for a stand-alone and double random good denoted by X12 are represented by the contravariant
components of an antisymmetric tensor of order 2.

Since we want to pass from an ordered pair of marginal random goods to two marginal
random goods which are jointly considered regardless of the notion of ordered pair, we
define a double random good denoted by

X12 = {1X, 2X}. (30)

It is a multiple random good of order 2. The possible values for X12 coincide with the
contravariant components of an antisymmetric tensor of order 2. After choosing (m + 1)2

joint masses connected with 1X 2X, where we write

1X 2X : I∗(1X)× I∗(2X) → R, (31)

it is necessary to consider four nonparametric joint distributions characterizing 1X 1X,
1X 2X, 2X 1X, and 2X 2X, with

1X 1X : I∗(1X)× I∗(1X) → R, (32)

2X 2X : I∗(2X)× I∗(2X) → R, (33)

424



J. Risk Financial Manag. 2023, 16, 369

and
2X 1X : I∗(2X)× I∗(1X) → R, (34)

to release X12 from the notion of ordered pair. Please note that 1X 1X and 2X 2X give rise
to joint distributions such that all off-diagonal joint masses of a two-way table, where the
number of rows is equal to the one of columns, coincide with zero. After choosing (m + 1)2

joint masses connected with 1X 2X, the distributions associated with 1X 1X, 1X 2X, 2X 1X,
and 2X 2X are automatically determined.

The mathematical expectation of iX jX, with i, j = 1, 2, is of a bilinear nature. This
means that it is separately linear in each marginal random good (the notion of prevision of
a random entity is studied by Berti et al. (2001)).

Thus, we present the following:

Theorem 2. The mathematical expectation of X12 = {1X, 2X} denoted by P(X12) coincides with
the determinant of a square matrix of order 2. Each element of such a determinant is a real number
coinciding with the mean value of iX jX denoted by P(iX jX), where we have i, j = 1, 2.

This theorem is proved by us in another paper of ours.
What is actually demanded for X12 by the decision-maker coincides with P(X12). It

is a multiple choice associated with a multiple good. It is an aggregate measure that is
obtained after observing what the decision-maker actually chooses inside his or her budget
set. He or she chooses (P(1X), P(2X)) whenever the prices and income are, respectively,
c1, c2, and c. He or she also chooses P(1X 2X), so he or she chooses those joint masses such
that an element of the Fréchet class is summarized. A remarkable point of this paper is
the following. Since a given decision-maker is indifferent to the exchange of 1X for P(1X)
and of 2X for P(2X), he or she is also indifferent to the exchange of X12 for P(X12), where
we write

P(X12) =

∣∣∣∣P(1X 1X) P(1X 2X)
P(2X 1X) P(2X 2X)

∣∣∣∣. (35)

P(X12) extends the notion of barycenter of masses. In particular, the property of the
barycenter known as stable equilibrium is extended. Given 1X and 2X and their average
quantities, we consider all deviations from P(1X) and P(2X) of the possible values for 1X
and 2X (Rockafellar et al. 2006).

We then present the following:

Theorem 3. The variance of X12 = {1X, 2X} denoted by Var(X12) coincides with the determinant
of a square matrix of order 2. Each element of such a determinant is a real number coinciding with
the variance of 1X and 2X, and with their covariance.

This theorem is proved by us in another paper of ours.
We note the following:

Remark 4. The origin of the variability of X12 depends on the variable state of information and
knowledge associated with a given decision-maker. This is because all deviations from P(1X) and
P(2X) of the possible values for 1X and 2X depend on his or her variable state of information
and knowledge.

A nonlinear (multilinear) metric is the expression given by

‖12d‖2
α =

∣∣∣∣∣ ‖(1)d‖2
α 〈(1)d, (2)d〉α

〈(2)d, (1)d〉α ‖(2)d‖2
α

∣∣∣∣∣ = ‖(1)d‖2
α‖(2)d‖2

α −
(
〈(1)d, (2)d〉α

)2
. (36)
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It is the area of a 2-parallelepiped. Its edges are two marginal random goods with their
possible values that are subjected to two changes of origin. The strict components of 12d
are the coordinates of such edges denoted by (1)d and (2)d. We also write

‖12d‖2
α = Var(X12) =

∣∣∣∣ Var(1X) Cov(1X, 2X)
Cov(2X, 1X) Var(2X)

∣∣∣∣, (37)

so the property of the barycenter known as the minimum of the moment of inertia
is extended.

3. Random Goods Whose Possible Values Are of a Monetary Nature: Risky Assets

3.1. Risky Assets Studied inside the Budget Set of the Decision-Maker

Let 1X and 2X be two risky assets. In this subsection, we study them inside the budget
set of the decision-maker. In the first stage, all coherent expected returns on the portfolio
denoted by X12 = {1X, 2X} consisting of two risky assets are expressed by

c1

c1 + c2
P(1X) +

c2

c1 + c2
P(2X) ≤ c

c1 + c2
. (38)

Given 1X and 2X, where 1X and 2X are the components of X12, whenever we use the
principle characterizing a linear and quadratic metric to establish the expected return on a
two-risky asset portfolio, we focus on the components of X12 only. We focus on 1X and 2X
only. The left-hand side of (38) is a weighted average of the two expected returns on the
two risky assets taken into account (Markowitz 1952). The two expected returns on the two
risky assets taken into account are themselves two weighted averages. A coherent expected
return on a joint risky asset denoted by 1X 2X is given by P(1X 2X). A nonparametric
joint distribution of mass is summarized by means of P(1X 2X). The latter is decomposed
into P(1X) and P(2X) inside the budget set of the decision-maker. In the first stage, all
coherent expected returns on a joint risky asset give rise to a two-dimensional convex set.
The decision-maker divides his or her relative monetary wealth given by

c1

c1 + c2
(39)

and c2

c1 + c2
(40)

between the two risky assets taken into account, where we observe

c1

c1 + c2
+

c2

c1 + c2
= 1. (41)

The budget set of the decision-maker established by the budget constraint given by (16)
does not change whenever we multiply all objective prices and income by a positive number.
The best rational choice being made by him or her from his or her budget set does not
change either. His or her best rational choice depends on his or her subjective preferences
(Angelini and Maturo 2022a). His or her best rational choice depends on further hypotheses
of an empirical nature. Please note that (39) and (40) can be viewed as the prices associated
with average quantities chosen by a given decision-maker, whereas c

c1+c2
is the amount of

money he or she has to spend. Formally, the two prices are constants expressed by real
numbers. Their ratio identifies the slope of a hyperplane embedded in a two-dimensional
linear space over R. We note the following:

Remark 5. It is possible to study real data given by time series connected with annual returns
referred to marginal risky assets. It is possible to make a coherent prevision about the return
associated with each marginal risky asset based on observed data in different stock markets. Each
time series is associated with a stock market. Real data given by time series are possible alternatives
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that are summarized. Their nature is intrinsically objective. From the slope of the budget line which
can be drawn, it is possible to observe the prices of the two risky assets viewed to be as two marginal
random goods. It is also possible to wonder if the decision-maker taken into account maximizes, or
does not maximize, his or her subjective utility connected with weighted averages. This is because
the notion of ordinal utility is itself a metric measure.

3.2. Risky Assets Studied outside the Budget Set of the Decision-Maker

Given 1X and 2X and their expected returns, we consider all deviations from P(1X)
and P(2X) of the possible values for 1X and 2X. We denote them by (1)d and (2)d, respec-
tively. Please note that P(1X) and P(2X) are chosen by the decision-maker inside his or her
budget set. We are now found outside it. Given

y = λ1 (1)d + λ2 (2)d, (42)

with λ1 = c1
c1+c2

, λ2 = c2
c1+c2

∈ R, it is possible to obtain

‖y‖2
α = (λ1)

2 ‖(1)d‖2
α + 2λ1 λ2〈(1)d, (2)d〉α + (λ2)

2 ‖(2)d‖2
α, (43)

with
‖(1)d‖2

α = Var(1X), (44)

‖(2)d‖2
α = Var(2X), (45)

and
〈(1)d, (2)d〉α = Cov(1X, 2X). (46)

Whenever we use a linear and quadratic metric, we focus on the riskiness of 1X and 2X only.
In fact, we consider Var(1X), Var(2X), and Cov(1X, 2X). A linear metric is the α-norm of y

given by (43). In particular, it is possible to write

‖(1)d − (2)d‖2
α = ‖(1)d‖2

α + ‖(2)d‖2
α − 2〈(1)d, (2)d〉α. (47)

Such an expression shows the notion of α-distance between two marginal risky assets. Their
possible values are subjected to two changes of origin.

4. Conditions Allowing the Studying of a Marginal Risky Asset as a Double
Risky Asset

Given a marginal risky asset denoted by 1X, we want to study it as a double risky
asset denoted by X12, where X12 intrinsically consists of four joint risky assets. We must
study four joint distributions of mass. They must be all summarized11. We note that two
conditions must be satisfied to represent 1X as X12. First, we write

P(1X) =
m+1

∑
i1=1

(1)x
i1 pi1 (48)

to denote the expected return on 1X. We say that 1X is the component of a double risky
asset, where

p = pi1i2 (49)

is an affine tensor of order 2 whose covariant components express all joint masses taken
into account (the conditions of coherence are studied by Berti and Rigo (2002)). Such an
affine tensor must satisfy the following relationship given by

m+1

∑
i1=1

(1)x
i1 pi1 =

m+1

∑
i1, i2=1

(1)x
i1 pi1i2 . (50)
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We then say that the two sides of (50) are equal if and only if we have

m+1

∑
i1=1

pi1 =
m+1

∑
i1, i2=1

pi1i2 . (51)

Since we write
m+1

∑
i1=1

pi1 =
m+1

∑
i1, i2=1

pi1i2 = 1, (52)

it follows that the first condition tells us that 1X and 1X 2X are two finite partitions of
events such that the sum of their associated masses is equal to 1.

The second condition tells us that 1X and 1X 2X must have the same summarized
measure which is obtained using P. This means that 1X and 1X 2X must have the same
expected return. We therefore write

m+1

∑
i1, i2=1

(1)x
i1
(2)x

i2 pi1i2 =
m+1

∑
i1, i2=1

(1)x
i1 pi1i2 . (53)

It follows that the two sides of (53) are equal if and only if we have

(2)x
i2 = 1, ∀ i2 ∈ Im+1. (54)

Hence, we note the following:

Remark 6. Let Bm+1 = {ei}, i = 1, . . . , m + 1, be an orthonormal basis of Em+1. The possible
values for the other risky asset such that 1X is studied as X12 are the contravariant components, all
of them coinciding with 1, of a vector of Em+1. They form the set denoted by

{1i}. (55)

Its number of elements is equal to m + 1. Such components are not vectorially intrinsic be-
cause they depend on the basis of Em+1 being chosen. If we pass from Bm+1 to B′

m+1 = {ei′ },
i′ = 1, . . . , m + 1, then the contravariant components of such a vector transform like the ones of
any other vector of Em+1. We therefore write

1i′ = ai′
i 1i =

m+1

∑
i=1

ai′
i , (56)

where A = (ai′
i ) is an (m + 1)× (m + 1) matrix expressing a change of basis.

Remark 7. The vector of Em+1 whose contravariant components form the set expressed by

{φ1 = 1, φ2 = 1, . . . , φm+1 = 1} (57)

is denoted by φ.

It is evident that φ identifies a degenerate risky asset. It has 1 as its unique possi-
ble value.

From a Marginal Distribution of Mass to Four Joint Distributions: A Numerical Example

A nonparametric marginal distribution of mass of 1X can be interpreted as a joint
distribution of 1X and 2X = φ. For instance, from the following Table.
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�����������1X
2X = φ

1 1 1 Sum

0 0 0 0 0

2 0 0.3 0 0.3

3 0 0 0.7 0.7

Sum 0 0.3 0.7 1

It follows that we have P(1X) = P(1X 2X) = P(2X 1X) = 2.7. Since we observe
P(1X 1X) = 7.5 and P(2X 2X) = 1, the riskiness of 1X can be expressed by

σ2
1X =

∣∣∣∣P(1X 1X) = 7.5 P(1X 2X) = 2.7
P(2X 1X) = 2.7 P(2X 2X) = 1

∣∣∣∣ = 0.21.

The riskiness of 1X is expressed through a known index. It is shown in a more general
fashion. In fact, the riskiness of 1X is determined as if 1X coincides with X12 = {1X, φ}
(other specific risk measures are handled by Herdegen and Khan (2022)).

5. A Marginal Risky Asset Identified with a Variability Tensor

The possible values for a double risky asset denoted by X12 coincide with the strict
contravariant components of an antisymmetric tensor of order 2. In general, let 12 f be an
antisymmetric tensor of order 2. We write

12 f (i1i2) =

∣∣∣∣∣∣(1)x
i1

(1)x
i2

(2)x
i1

(2)x
i2

∣∣∣∣∣∣ = (1)x
i1
(2)x

i2 − (1)x
i2
(2)x

i1 (58)

to identify the strict contravariant components of it. If 1X is viewed as a double risky asset,
then the strict contravariant components of an antisymmetric tensor of order 2 identifying
1X are given by

(1) f (i1i2) =

∣∣∣∣∣∣ (1)x
i1

(1)x
i2

φi1 = 1 φi2 = 1

∣∣∣∣∣∣. (59)

We prove the following:

Theorem 4. A nonparametric distribution of mass characterizing a marginal risky asset denoted
by 1X is summarized using the notion of α-norm of an antisymmetric tensor of order 2 denoted by

(1) f . A measure of riskiness of 1X is obtained by calculating the α-norm of (1) f denoted by ‖(1) f ‖2
α.

Proof. Since it is possible to write

φi1 pi1i2 = φi2 = pi2 , (60)

the covariant components of φ represent the masses associated with the possible values for
1X by a given decision-maker (Angelini and Maturo 2020). It follows that we observe

φi1 φi1 = 1, (61)

where (61) can also be written in the form expressed by

‖φ‖2
α = 1. (62)

The expected return on 1X is vectorially expressed by

(1)x
i1 φi1 = (1)xi1 φi1 = (1)x̄, (63)
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where we have

(1)x̄ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
(1) x̄

1 = P(1X)

(1) x̄
2 = P(1X)

...

(1) x̄
m+1 = P(1X)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (64)

The strict covariant components of (1) f are given by

(1) f(i1i2)
=

∣∣∣∣∣∣(1)xi1 (1)xi2

φi1 φi2

∣∣∣∣∣∣. (65)

They are obtained by considering all feasible decompositions of two expected returns
on the two elements of X12 (a geometric approach connected with more general random
entities is shown by Pompilj (1957)). We consider different vector homographies to obtain
all covariant components of the two vectors denoted by (1)x and φ identifying the two
elements of X12. We compute the mean quadratic difference of 1X by taking two different
requirements into account (variability measures put forward by Corrado Gini are handled
by Berkhouch et al. (2018)). First, the α-norm of an antisymmetric tensor of order 2 is always
calculated by considering its strict components. Second, the notion of mean quadratic
difference of 1X requires that all possible differences be considered (Furman et al. 2017).
This means that the non-strict components of (1) f are even taken into account. We then
write

2Δ2(1X) = ‖(1) f ‖2
α = (1) f (i1i2)

(1) f(i1i2)
=

1
2 (1) f i1i2

(1) fi1i2 , (66)

where we have
1
2
=

1
2!

. (67)

Please note that (67) appears whenever we do not consider the strict components of an
antisymmetric tensor of order 2. By taking (59) and (65) into account, we obtain

1
2 (1) f i1i2

(1) fi1i2 =
1
2

∣∣∣∣∣∣(1)x
i1

(1)x
i2

φi1 φi2

∣∣∣∣∣∣
∣∣∣∣∣∣(1)xi1 (1)xi2

φi1 φi2

∣∣∣∣∣∣. (68)

The right-hand side of (68) contains all contravariant and covariant components of (1) f at
the same time. After reminding (61)–(63), we finally write

2Δ2(1X) =
1
2

∣∣∣∣∣∣2 ‖(1)x‖
2
α 2 (1)x̄

2 (1)x̄ 2

∣∣∣∣∣∣. (69)

We always associate (1)x
i1 with (1)xi1 , (1)x

i2 with φi2 , φi1 with (1)xi1 , and φi2 with φi2 .
Nevertheless, there are two variable indices separately appearing twice in each single term
(monomial). After computing the determinant appearing on the right-hand side of (69), it
is then possible to obtain

2Δ2(1X) =
4
2

(
‖(1)x‖2

α − (1)x̄
2
)
= 2 σ2

1X . (70)

We wrote the square of the relationship between the mean quadratic difference of 1X
denoted by 2Δ(1X) and its standard deviation (Gerstenberger and Vogel 2015).
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The relationship between the mean quadratic difference of 1X denoted by 2Δ(1X) and
its standard deviation has been established by Corrado Gini (Ji et al. 2017). We consider
the square of it (Li et al. 2016). In this paper, a tensorial approach to the mean quadratic
difference is dealt with. More generally, in our opinion, a tensorial approach to the theory of
decision-making is well-grounded because of various reasons. First, the object of decision-
maker choice naturally embraces various elements made clear in this research work and
it is closely connected with the notion of ordinal utility from an operational point of
view. Second, the space where a given decision-maker chooses has a precise mathematical
structure. Its technical characteristics must be taken into account to try to find out new
results. Third, the conditions of certainty are an extreme simplification. In our opinion, they
may produce a sterilization of the connection of choice problems with their applications
to reality. Fourth, axiomatic constructions generally lead to accepting for certain the
alternative based on which a given decision-maker decides to act. Such constructions link
choice problems to reality and to applications by replacing a well-founded probability
issue with an impossible translation of it into the logic of certainty. In our opinion, this
replacement must not take place.

6. A Variability Tensor Based on Deviations from a Mean Value

Let (1)d be the deviation vector corresponding to the vector denoted by (1)x identifying

1X. By taking (59) into account, we write

(1)ψ
(i1i2) =

∣∣∣∣∣∣(1)d
i1

(1)d
i2

φi1 φi2

∣∣∣∣∣∣, (71)

where only the first row of (71) is different from the one of (59). The second row of (71) is
the same as the one of (59). Hence, we prove the following:

Theorem 5. Given (1)ψ, its α-norm denoted by ‖(1)ψ‖2
α represents the mean quadratic difference

of 1X.

Proof. The strict covariant components of ‖(1)ψ‖2
α are given by

(1)ψ(i1i2)
=

∣∣∣∣∣∣(1)di1 (1)di2

φi1 φi2

∣∣∣∣∣∣, (72)

so we can compute the α-norm of (1)ψ denoted by ‖(1)ψ‖2
α. We consequently write

‖(1)ψ‖2
α = (1)ψ

(i1i2)
(1)ψ(i1i2)

=
1
2 (1)ψ

i1i2
(1)ψi1i2 , (73)

where we have

1
2 (1)ψ

i1i2
(1)ψi1i2 =

1
2

∣∣∣∣∣∣(1)d
i1

(1)d
i2

φi1 φi2

∣∣∣∣∣∣
∣∣∣∣∣∣(1)di1 (1)di2

φi1 φi2

∣∣∣∣∣∣. (74)

The right-hand side of (74) contains all contravariant and covariant components of (1)ψ at
the same time. We note that (1)d and φ are α-orthogonal. We therefore write

di1 φi1 = 0. (75)
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It follows that we obtain

‖(1)ψ‖2
α =

1
2

∣∣∣∣∣∣2 ‖(1)d‖
2
α 0

0 2

∣∣∣∣∣∣ = 1
2
· 2
(

2 ‖(1)d‖2
α

)
, (76)

where the expression enclosed in parentheses represents twice the α-norm of (1)d. We

always associate (1)d
i1 with (1)di1 , (1)d

i2 with φi2 , φi1 with (1)di1 , and φi2 with φi2 . There are
two variable indices separately appearing twice in each single term. Thus, we write

‖(1)ψ‖2
α = 2 ‖(1)d‖2

α, (77)

so we observe
2Δ2(1X) = ‖(1)ψ‖2

α = 2 ‖(1)d‖2
α = 2 σ2

1X . (78)

The mean quadratic difference of 1X denoted by 2Δ(1X) is evidently the same (Shalit and
Yitzhaki 2005). We can use both (1) f and (1)ψ to obtain it. They are both of them variability
tensors identifying the riskiness of 1X.

The mean quadratic difference of 1X measures the spread of the nonparametric dis-
tribution of mass taken into account (Jasso 1979). It is a measure of how far the possible
values for 1X are from P(1X) (La Haye and Zizler 2019).

7. The Sharpe Ratio Obtained Using Multilinear Measures

It is possible to write

P(X12...n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

P(1X 1X) P(1X 2X) . . . P(1X nX)

P(2X 1X) P(2X 2X) . . . P(2X nX)
...

...
. . .

...

P(nX 1X) P(nX 2X) . . . P(nX nX)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (79)

and

Var(X12...n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2

2Δ2(1X) Cov(1X, 2X) . . . Cov(1X, nX)

Cov(2X, 1X) 1
2

2Δ2(2X) . . . Cov(2X, nX)
...

...
. . .

...

Cov(nX, 1X) Cov(nX, 2X) . . . 1
2

2Δ2(nX)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (80)

where P(X12...n) denotes the expected return on an n-risky asset portfolio, whereas
Var(X12...n) denotes its riskiness. We do not observe 22 = 4 pairs of risky assets anymore,
but we deal with n2 pairs of them. Regarding the budget sets of a given decision-maker,
there exist n2 budget lines. In particular, the slope of the budget line is always equal to
−1 whenever the two risky assets taken into account are the same. In these cases, the
budget sets of a given decision-maker always consist of points whose number is infinite.
Nevertheless, the joint masses of 1X 1X, 2X 2X, . . . , nX nX must be estimated in such a way
that all off-diagonal joint masses of each two-way table with the same number of rows and
columns coincide with zero. An interesting study for bear markets is made by Scholz (2007).
In this section, the Sharpe ratio is obtained using a multilinear approach (other return-risk
ratios are dealt with by Cheridito and Kromer (2013)). Let r f be the risk-free asset paying a
fixed rate of return. The Sharpe ratio is accordingly given by
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SR =
P(X12 ... n)− r f√

Var(X12 ... n)
, (81)

where P(X12 ... n) and
√

Var(X12 ... n) are two determinants of two square matrices of order
n connected with two tensors of the same order (Angelini and Maturo 2022b). It measures
how risk and return can be traded off in making portfolio choices. Such choices are studied
inside the budget set of the decision-maker (Dowd 2000). The marginal rate of substitution
between risk and return is given by (81). The slope of the budget line measuring the cost of
achieving a larger expected return on X12 ... n in terms of the increased standard deviation
of the return is given by (81), where we assume P(X12 ... n) > r f (a specific model about
uncertainty is studied by Pham et al. (2022)). Please note that Var(X12...n) is obtained
through the notion of mean quadratic difference. In this section, an extension of the mean-
variance model is computationally shown. Moreover, since the beta of a given stock i
can statistically be defined by considering the covariance of the return on the stock with
the market return divided by the variance of the market return, and specifically it is then
possible to write

βi =
Cov(ri, rm)

Var(rm)
, (82)

what is said in this section can operationally be associated with the Capital Asset Pricing
Model, which has many uses in the study of financial markets. The expected market return
rm can accordingly be expressed using a measure with the same structure as (79).

8. Conclusions, Discussion, and Future Perspectives

This paper answers different questions. Two of them are essential. First, the number
of points of the budget set of the decision-maker is infinite because all admissible (rational)
choices at the first stage derive from masses that are subjectively established. In the
second stage, the object of decision-maker choice depends on further hypotheses of an
empirical nature, but the distribution of masses identifying this object of decision-maker
choice is always characterized by subjective and objective elements. Each point of the
budget set of the decision-maker is a metric measure. Every measure is obtained after
summarizing a nonparametric joint distribution of mass. Different distributions of mass
are different measures. Nevertheless, when talking in terms of measure one does not make
of it something fixed, with a special status. A given decision-maker accordingly focuses
on masses because there is always the physical perception of being able to move them
in whatever way he or she likes. In our approach, a mechanical transposition of all the
notions, procedures, and results of measure theory into the calculus of probability does not
happen. Every measure is not directly visible inside the budget set of the decision-maker
because it is a real number. It appears as a two-dimensional point. Second, the role played
by objective alternatives is fundamental. Structures open to the adjunction of new entities
as new circumstances arise are studied. They are linear spaces over R. Their dimensions
are different. We can know P(X12) and Var(X12) using a multilinear and quadratic metric,
where X12 is a two-risky asset portfolio. We can also know P(X12...n) and Var(X12...n), where
X12...n is an n-risky asset portfolio. Since we use a quadratic metric, we always consider
two random goods at a time. We never consider more than two goods at a time. The notion
of ordinal utility is a metric measure as well. In this paper, a more general approach to the
riskiness of random goods is proposed. We use the notion of mean quadratic difference put
forward by Corrado Gini. We develop it using a tensorial approach. If the decision-maker
uses mean quadratic differences, then he or she expresses, from time to time, the knowledge
hypothesis underlying the variability of his or her choices. It is possible to understand
that the notion of mean quadratic difference is also connected with the Bravais–Pearson
correlation coefficient. Regarding random goods, this coefficient is intrinsically referred
to a double random good denoted by X12. If (1)d and (2)d are α-orthogonal vectors, then
we obtain
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‖12d̂‖2
α =

∣∣∣∣∣∣‖(1)d‖
2
α 0

0 ‖(2)d‖2
α

∣∣∣∣∣∣ = ‖(1)d‖2
α ‖(2)d‖2

α. (83)

Since it is possible to write

−1 ≤
(

1 − ‖12d‖2
α

‖12d̂‖2
α

)1/2

≤ +1, (84)

the above expression within the parentheses coincides with the Bravais–Pearson correlation
coefficient referred to X12, where ‖12d‖2

α and ‖12d̂‖2
α are two aggregate measures obtained

using a multilinear and quadratic metric. In this paper, the origin of the variability of
a nonparametric distribution of mass depends on the variable state of information and
knowledge associated with a given decision-maker. It is susceptible to being continuously
enriched by the flow of new pieces of information. It can also be enriched by the results
that are gradually learned or observed in relation to more or less analogous situations and
cases. For this reason, the riskiness of a two-risky asset portfolio is studied using the notion
of α-norm of an antisymmetric tensor of order 2.

What is said in this paper can be extended. This is because m + 1 possible values for
a risky asset have an objective nature in the same way as m + 1 sampling units that are
observed regarding a specific population. Multilinear relationships between variables with
parametric probability distributions such as normal distributions can be dealt with using
measures of a multilinear nature. A multilinear regression model based on this multilinear
approach has been made by us. The paper containing this model is currently under review
by an international journal.

Given m + 1 possible values for a risky asset, they identify a vector belonging to
Em+1. Two linearly independent vectors of Em+1 generate a linear subspace of Em+1. Its
dimension is equal to 2. The Grassmann coordinates of this linear subspace over R are
the components of a tensor of order 2. Two linearly independent vectors of Em+1 are
transferred on two mutually orthogonal one-dimensional straight lines, on which an origin,
the same unit of length, and an orientation are established. It is possible to show that at
least mean quadratic differences, the correlation coefficient, Jensen’s inequality, revealed
preference theory viewed to be as a branch of the theory of decision-making, the least-
squares model, and principal component analysis can be based on intrinsic conditions
of uncertainty characterized by objective and subjective elements that are studied inside
subsets of linear spaces over R provided with a specific dimension.

It is possible to overcome the limits of the current research by focusing one’s attention
on a stochastic view of bound choices. Such a view can be based on subjective opinions
or attitudes of a given person. The subjective opinion, meant as something known by
the decision-maker taken into account, is something objective in the sense that can be a
reasonable object of a rigorous study. Even when one point of a specific convex set is chosen,
there is no reason that would lead a given person to consider correct from a philosophical
point of view this one, or that one, among the infinitely many possible opinions about
the evaluations of probability. Thus, whenever a given decision-maker is indifferent to
the exchange of 1X for P(1X), a finite number of deviations or errors which are normally
distributed can be determined. Whenever he or she is indifferent to the exchange of 2X
for P(2X), a finite number of deviations or errors which are normally distributed can be
determined. Finally, since he or she is also indifferent to the exchange of X12 for P(X12), a
finite number of deviations or errors can be dealt with in an aggregate fashion.
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Notes

1 In economics, normal and ordinary goods are nonrandom goods. What is demanded for them does not depend on a usual random
process. Only a degenerate random process implicitly appears. Only a degenerate probability distribution is implicitly handled.
We do not deal with a prevision, but we deal with a prediction. In other words, given a finite number of possible alternatives, a
prediction always reduces to the choice of a point in the set of possible alternatives, and not the barycenter of masses distributed
over this set. To choose the barycenter of masses distributed over this set is that which characterizes a prevision. In our opinion,
it is necessary to make explicit the latter process with respect to choices being made under claimed conditions of certainty.

2 Reductions of dimension are considered in this paper. Hence, we pass from m to 1. Accordingly, we pass from m2 to 2. Regarding
reductions of dimension, a theorem has elsewhere been proved by us. The paper containing this theorem is currently under
review by an international journal.

3 Given (x1, x2), we first handle a closed neighborhood of x1 denoted by [x1 − ε ; x1 + ε′] on the horizontal axis, as well as a closed
neighborhood of x2 denoted by [x2 − ε ; x2 + ε′] on the vertical one, where both ε and ε′ are two small positive quantities. Since
the state of information and knowledge associated with a given decision-maker is assumed to be incomplete at the time of choice,
m possible quantities which can be demanded for good 1 belong to [x1 − ε ; x1 + ε′] and m possible quantities which can be
demanded for good 2 belong to [x2 − ε ; x2 + ε′]. These quantities belong to two one-dimensional convex sets. One of m possible
alternatives does not need to coincide with x1. The same is true regarding x2. It follows that m2 possible quantities which can be
demanded for good 1 and good 2 are handled. After determining {x1

1, . . . , xm
1 }, {x1

2, . . . , xm
2 }, and {x1

1, . . . , xm
1 } × {x1

2, . . . , xm
2 },

two nonparametric marginal distributions of mass together with a nonparametric joint distribution of mass are estimated in
such a way that (x1, x2) is their chosen summary. m possible quantities which can be demanded for good 1 are found between
zero and the horizontal intercept of the budget line, whereas m possible quantities which can be demanded for good 2 are found
between zero and the vertical intercept of it.

4 This element is not directly visible because it is a real number. It appears as a two-dimensional point belonging to the two-
dimensional convex set. The latter is the budget set of the decision-maker. The budget set of the decision-maker is, therefore, a
right triangle belonging to the first quadrant of a two-dimensional Cartesian coordinate system, where the vertex of the right
angle of the triangle taken into account coincides with the point given by (0, 0).

5 We do not use the term “random variable”, but we use the term “random quantity” because to say random variable might
suggest that we are thinking of the statistical interpretation of repeated events, where many trials in which the random quantity
under consideration can vary are involved. The random quantity taken into account could assume different values from trial to
trial according to the statistical interpretation of repeated events, but this interpretation is contrary to our way of understanding
the problem. We do not use the word event in a generic sense. In this paper, an event is always a single event. The sense of it
is not generic, but it is specific. A nonparametric distribution of probability characterizing a random quantity can vary from
individual to individual. It can also vary with the state of information and knowledge associated with a given individual.

6 Since a larger space containing points that are already known to be impossible is always considered by us within this context, if a
set is empty, then it is empty of possible points.

7 A unique symbol P denotes both probability and prevision, thus avoiding duplication. This is because we use the indicator of
an event E expressed by |E|. The indicator of E is a random quantity IE taking values 1 or 0 whenever uncertainty ceases. The
mathematical expectation or prevision of the indicator of an event E is denoted by M(IE). Since the mathematical expectation of
the indicator of an event E is equal to the probability of the same event, we write M(IE) = P(E). If we write M(IE) = P(E), then
we must observe P(E) = P(E). It follows that a unique symbol P can be used.

8 If x is a vector belonging to Em, then all collinear vectors regarding x are expressed by λ x, ∀λ ∈ R.
9 The prevision bundle (P(1X), P(2X)) is nothing but the object of decision-maker choice under conditions of uncertainty

and riskiness.
10 In our approach, to consider larger spaces containing, in addition, impossible points in the light of more recent information and

knowledge is never wrong. With respect to [(m + 1)·(m + 1)] points dealt with by the function denoted by 1X 2X, only m2 + 2
points of them are really uncertain. Thus, there are points in which the evaluation of the probability is predetermined, rather than
permitting the subjective choice of any value in the interval from 0 to 1, endpoints included.

11 Given the masses of all possible values which are finite in number, their barycenter is a function of them. With regard to a double
risky asset, we are not interested in establishing its exact distribution, but we are interested in knowing its barycenter. Whenever
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an aggregate choice is studied, the notion of the barycenter of masses is extended together with its properties which are stable
equilibrium and minimum of the moment of inertia. The same is true regarding a multiple risky asset of order greater than 2.
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Abstract: This paper investigates the dynamic relationship between cryptocurrency uncertainty
indices and the movements in returns and volatility across spectrum of financial assets, comprising
cryptocurrencies, precious metals, green bonds, and soft commodities. It employs a Time-Varying
Parameter Vector Autoregressive (TVP-VAR) connectedness approach; the analysis covers both the
entire sample period spanning August 2015 to 31 December 2021 and the distinct phase of COVID-19
pandemic. The findings of the study reveal the interconnectedness of returns within these asset
classes during the COVID-19 pandemic. In this context, cryptocurrency uncertainty indices emerge
as influential transmitters of shocks to other financial asset categories and it significantly escalates
throughout the crisis period. Additionally, the outcomes of the study imply that during times of
heightened uncertainty, exemplified by events such as the COVID-19 pandemic, the feasibility of
portfolio diversification for investors might be constrained. Consequently, the amplified linkages
between financial assets through both forward and backward connections could potentially compro-
mise financial stability. This research sheds light on the impact of cryptocurrency uncertainty on the
broader financial market, particularly during periods of crisis. The findings have implications for
investors and policymakers, emphasizing the need for a comprehensive understanding of the inter-
connectedness of financial assets and the potential risks associated with increased interdependence.
By recognizing these dynamics, stakeholders can make informed decisions to enhance financial
stability and manage portfolio risk effectively.

Keywords: COVID-19 pandemic; dynamic connectedness; TVP-VAR model; precious metals

JEL Classification: C22; D81; G15

1. Introduction

In recent years, research related to cryptocurrency investment has generated significant
debate within the financial sphere. As these digital assets are continuing to grow and
gain recognition, comprehending their dynamics and influence on the broader financial
landscape is important. Compounding this complexity, the advent of the COVID-19
pandemic and Russia–Ukraine conflict has introduced an additional layer of uncertainty
into global financial markets. This study aims to investigate into the interplay between
cryptocurrency uncertainty indices and the dynamic movement of returns and volatility
in various financial assets during the COVID-19 crisis. Through this paper, we attempt to
examine the interdependence among cryptocurrency uncertainty indices, precious metals,
green bonds, and soft commodities. Our aim is to investigate the transmission channels and
potential spillover effects during times of heightened uncertainty. The findings derived from
this study will contribute to the existing literature by fostering a deeper comprehension
of the interconnectedness inherent in financial assets. Furthermore, these findings will
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provide insights to investors, policymakers, and financial institutions with tools to manage
risks and keep financial stability.

The volatility in financial markets is an important factor that plays a significant role
in economics, serving as a pivotal risk indicator. A nuanced understanding of the drivers
behind volatility across various financial assets holds great importance for stakeholders
including academics, investors, regulators, and speculators. This understanding helps
in assessing the potential risks that could undermine the stability of the financial sys-
tem. Stakeholders closely monitor the propagation of both volatility and returns across
diverse assets and markets. Although the correlation between returns and volatility has
been extensively examined across different financial markets in the existing literature, the
spillover effects of cryptocurrencies and their uncertainty on other financial assets have
received limited scholarly attention within academia and the financiers. Therefore, there is
a need to explore the linkages and interdependencies between cryptocurrency uncertainty
indices and the volatility of other financial assets. By doing so, we can foster a deeper
comprehension of the intricate dynamics at play within these markets.

The cryptocurrency uncertainty indices play a vital role in enabling investors to gauge
uncertainty within the cryptocurrency market, an aspect not fully captured by conven-
tional uncertainty measures such as economic policy uncertainty (Al-Yahyaee et al. 2019;
Antonakakis et al. 2013; Demir et al. 2018), VIX volatility index (Alqahtani and Chevallier
2020; Fakhfekh et al. 2021), Investor Attention Index (Smales 2022), and Twitter Economic
Uncertainty index (El Khoury and Alshater 2022; Gök et al. 2022). These indices often fall
short in accurately reflecting the surge in uncertainty within the cryptocurrency market,
a pivotal determinant of asset returns. Notably, heightened uncertainty within the cryp-
tocurrency market directly influences investor returns (Bashir and Kumar 2023). Thus,
cryptocurrency uncertainty indices act as instruments that highlight the shift in the cryp-
tocurrency market in response to various events, such as COVID-19 pandemic (Khan et al.
2023). This research sheds light on the impact of cryptocurrency uncertainty on the broader
financial market, particularly during periods of crisis. The findings have implications for
investors and policymakers, emphasizing the need for a comprehensive understanding
of the interconnectedness of financial assets and the potential risks associated with in-
creased interdependence. By recognizing these dynamics, stakeholders can make informed
decisions to enhance financial stability and manage portfolio risk effectively.

Nonetheless, the role of cryptocurrencies in the global financial system is increasing
every day as this is an important investment asset for most retail and institutional investors.
The total market capitalization of cryptocurrencies surpassed USD 1.29T in May 2022. Bitcoin
leads the market with a market capitalization of USD 577B and 44% share of the cryptocur-
rency market. In recent times, Bitcoin’s dominance has fallen with the rise in stable coins
(Ghabri et al. 2022; Kristoufek 2021; Wang et al. 2020), asset-backed cryptocurrencies (Aloui
et al. 2021; Jalan et al. 2021; Yousaf and Yarovaya 2022a), decentralized finance assets (DeFi)
(Yousaf et al. 2022; Yousaf and Yarovaya 2022b), and non-fungible tokens (NFTs) (Aharon
and Demir 2021; Yousaf and Yarovaya 2022b). Cryptocurrencies exhibited higher volatility
in the global COVID-19 crisis, which also affected the cryptocurrency market. The World
Health Organization (WHO) declared COVID-19 as global pandemic on 11 March 2020; after
this announcement, the Bitcoin price was $3953 on 11 March, and it sharply rose during the
pandemic as retail and institutional investors shifted their investments from equity markets
to cryptocurrencies and other non-traditional financial assets due to the safe-haven role of
cryptocurrencies (Bouri et al. 2020; Corbet et al. 2020b; Rubbaniy et al. 2021a).

The cryptocurrency market is highly volatile; many investors want to invest in the
market in the hope of getting higher returns during financial turmoil. During turbulent
periods, regulators, policymakers, and investors are interested in observing the return
and volatility spillovers for: firstly, decisions about portfolio diversification; and secondly,
implementing policies for financial stability. These issues are relevant to the COVID-19
pandemic, when the unemployment rate increased, halting economic activities as economic
uncertainty results in financial chaos that disturbed the portfolio asset allocations and
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reduced financial stability. The COVID-19 pandemic hugely disrupted financial markets
and affected all economy sectors, which ultimately triggered the global recession. With
the increase in systematic risk during the COVID-19 outbreak, market participants were
interested in obtaining information about volatility transmission among various financial
assets for portfolio diversification. Investors re-balanced their portfolios during the financial
turmoil by switching from risky to safe-haven assets (Bouri et al. 2021b; Choudhry et al.
2015; Ha and Dai 2022; Khan et al. 2023; Ghouse et al. 2023).

The existing literature largely ignored the interaction of cryptocurrencies and their
interaction with other relatively safe traditional financial assets. The COVID-19 pandemic
also changed the co-movements between cryptocurrencies and traditional assets. Hence,
this study focuses on uncovering the drivers of cryptocurrencies and traditional asset
return and volatility spillovers as information transmission among financial markets is
extensively studied (Bação et al. 2018; Forbes and Rigobon 2002; Kurka 2019). Existing
studies also discussed the connectedness of financial assets during the financial crisis.
The important works of Diebold and Yilmaz (2009, 2012, 2014) developed a quantitative
measure of dynamic connectedness based on forecast error variance decomposition using
VAR models. We try to contribute to the relevant literature by investigating dynamic
connectedness of different assets and cryptocurrency uncertainty indices. Specifically, we
are interested in examining the dynamic connectedness during the COVID-19 shock by
considering its time-varying structure. Thus, we try to answer the following questions:
What role has the COVID-19 pandemic played in exhibiting the return and cryptocurrency
uncertainty connectedness of different financial assets? Are the asset returns time-varying
in nature? Do the cryptocurrency uncertainty indices explain the return and volatility
connectedness among financial assets?

We used indices for cryptocurrencies, precious metals, green bonds, and soft com-
modities and cryptocurrency uncertainty to apply the time-varying parameter vector
auto-regressions (TVP-VAR) dynamic connectedness approach to answer the above re-
search questions. To the best of our knowledge, this is the first study of its kind on the
dynamic connectedness of returns and volatility of different assets during a financial crisis
(Adekoya and Oliyide 2021; Bouri et al. 2021a; Corbet et al. 2020a; Kamal and Hassan
2022; So et al. 2020). This paper also investigates the response of financial assets to the
COVID-19 pandemic by extending published studies conducted in different financial mar-
kets (Adekoya and Oliyide 2021; Baig et al. 2020; Le et al. 2021b; Rubbaniy et al. 2021b). The
usage of the TVP-VAR approach by Antonakakis et al. (2020) overcomes the shortcomings
(e.g., outlier sensitivity, short time, rolling window size) of the original connectedness
approach by Diebold and Yilmaz (2009, 2012, 2014). The TVP-VAR approach also serves to
measure cross-asset connectedness in the network.

Furthermore, existing studies have discussed the role of various uncertainty indices in
shaping the dynamics of cryptocurrency returns and volatility. These different measures of
uncertainty encompass the economic policy uncertainty index (Elsayed et al. 2022a; Foglia
and Dai 2021; Yen and Cheng 2021), Twitter-based uncertainty index (Aharon et al. 2022;
Wu et al. 2021), and the economic and political uncertainty (Colon et al. 2021; Kyriazis 2021)
and cryptocurrency uncertainty indices (Elsayed et al. 2022b; Lucey et al. 2022).

In a recent study, Yousaf and Goodell (2023) investigated the central banks’ digital cur-
rencies (CDBC), cryptocurrency policy uncertainty index as well as digital payments stocks
by using the dynamic connectedness approach. Their findings highlight the transmission
of shocks from UCRY policy and price to digital payment stocks. Moreover, they identified
the limited interconnectedness between cryptocurrency uncertainty indices and digital
payment stocks, indicating their potential hedging tools against cryptocurrency market
volatility. Yan et al. (2022) investigated the impact of cryptocurrency uncertainties on sus-
tainable and traditional mutual fund and found that traditional mutual funds’ investments
are influenced by uncertainty in the cryptocurrencies market.

Wei et al. (2023) delved into safe-haven properties of cryptocurrencies and forecasting
ability of cryptocurrency uncertainty indices for volatility in precious metals. Employ-
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ing the GARCH-MIDAS approach, their results show that the forecasting prowess of
cryptocurrency uncertainty indices in the precious metals market.

In our contribution to the field, we leverage novel cryptocurrency uncertainty indices
in conjunction with various asset classes—namely cryptocurrencies, precious metals, green
bonds, and soft commodities. Furthermore, we extend the work initiated by Elsayed et al.
(2022b) on dynamic connectedness between gold, cryptocurrency index and cryptocurrency
uncertainty indices. Our findings show the higher returns and volatility connectedness
in the overall sample and during the COVID-19 pandemic, and most financial assets are
net receivers of shocks. The patterns of return and volatility spillover changed during
the pandemic for most financial assets. Overall, our findings suggest that cryptocurrency
uncertainty indices and transmitters of shocks extend to other financial assets. The COVID-
19 pandemic resulted in a spike of risk in financial markets and the magnitude of dynamic
connectedness increased during the first wave of COVID-19 which is like the finding of
Bhatti and Ghouse (2023). Hence, risk-averse equity market investors can minimize such
risks by investing in less-connected assets to diversify portfolios. The remainder of the
study is as follows. Section 2 presents the relevant literature review. In Section 3, we
describe the methodology and data. In Section 4, we show the findings of the study. Finally,
Section 5 concludes the study.

2. Literature Review

Studies have discussed the return and volatility transmission across financial assets
using different methods, for instance Granger causality (Adekoya and Oliyide 2021; Al-
bulescu et al. 2019; Zhang and Broadstock 2020) and dynamic conditional correlation
(Abuzayed and Al-Fayoumi 2021; Hassan et al. 2019). However, the existing literature high-
lights the usefulness of connectedness of financial assets using the dynamic connectedness
approach (Shahzad et al. 2021a, 2021b). The higher inter-connectedness among financial
assets indicates greater market risk, and investors minimize their risks by investing in
weakly connected financial assets. The higher market risk in the network explains the
instability of the financial markets. Dynamic return connectedness is used to identify the
isolated assets so that these assets function as hedge or safe haven against the risk of other
financial assets.

The literature on return and volatility connectedness among different financial assets,
such as equity, bonds, and commodities, are scarce. Some authors studied the link between
commodities, currency, and equity markets. For instance, Kang et al. (2017) studied the
price transmission among crude oil, agricultural commodities and precious metals using
the DECO-GARCH model. They detected an increase in spillover impacts during the
financial crisis. Lundgren et al. (2018) also tested the connectedness and causality by using
equities, currencies, oil, and US treasury bonds, as well as different proxies of uncertainty
(EU and US EPU and VIX) using data from 2004–2016, and they found the uncertainty
proxies were net transmitters of shocks during the financial crisis.

Mensi et al. (2017) investigated the spillovers between gold, Dow Jones, conventional,
Islamic, technology, financial, and telecommunications sector and sustainable indices.
These authors found that gold, energy, technology and telecom sectors and receivers of
shocks and Dow Jones indices contribute to risk spillovers. Yoon et al. (2019) investigated
dynamic and static returns connectedness among equity, bond, commodity, and currency
markets. They identified the Shanghai stock exchange, Nikkei 225, and KOSPI are receivers
of spillover shocks. Kumar et al. (2019) investigated volatility and correlation between
stock prices, natural gas, and oil in India via the VARMA-DCC GARCH models. Their
findings highlights highest short-term spillovers between oil and natural gas. Iglesias-Casal
et al. (2020) discussed the volatility spillovers and diversification potential of oil, gold and
clean energy indices in Brazil by using BEKK and A-DCC models. They emphasized gold’s
higher diversification potential and optimal portfolio weights.
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A recent study by Mensi et al. (2020) explored the risk spillovers between energy
futures and precious metals, noting increased volatility spillovers during the financial crisis.
They observed that gold and oil transmit volatility to other financial assets.

Bouri et al. (2021a) explored return connectedness with crude oil, equities, currencies,
and bonds during the COVID-19 pandemic using the TVP-VAR approach. They observed
changes in connectedness network’s structure and identified equity and USD indices
as shock transmitters before COVID-19, while bond indices become the volatility shock
transmitter during the outbreak.

Asl et al. (2021) analyzed volatility transmission between clean energy indices and
energy commodities using an asymmetric BEKK-MGARCH(1,1) model. They found higher
optimal weights and hedging effectiveness for clean energy indices, making them useful for
hedging equity risks in the energy sector. They concluded that investors can invest in green
assets to hedge the equity risk for stocks in energy sector. Further, Szczepanska-Przekota
(2021) explored the impact of cryptocurrencies on economic conditions of different markets,
and found that investors perceive the cryptocurrency market as more risky as compared to
equity markets.

Shahid et al. (2023) explored the interconnectedness and risk transmission across
global financial markets and assessed the portfolio diversification potential of socially
responsible investments using DCC-GARCH and VAR-GARCH models. Their findings
indicated negative correlation between traditional volatility indices and socially responsible
investment indices. They also found that implied volatility indices of silver and golds hedge
the risks against SRIs investments. Furthermore, Elsayed et al. (2022b) extended the above
research by examining the return and volatility spillovers in gold, cryptocurrency index,
and cryptocurrency price and policy uncertainty indices. They found that cryptocurrency
policy uncertainty is the transmitter of shocks to other assets while gold is the receiver of
shocks. We extend the above research by investigating the dynamic returns and volatility
spillovers among various financial assets and cryptocurrency uncertainty indices developed
by Lucey et al. (2022). The news-based uncertainty indices are relevant to cryptocurrencies
and can better predict uncertainty in the cryptocurrency market.

3. Research Methodology

3.1. The Data

To test and study the dynamic connectedness of different financial asset returns and
cryptocurrency price and policy uncertainty index constructed by Lucey et al. (2022), we
collected the weekly data of cryptocurrency uncertainty indices from the authors’ website1.
The cryptocurrency uncertainty indices were constructed using news articles related to
cryptocurrency on the Lexis Nexis database. We also gathered the daily closing price of
Bitcoin and Ethereum from the Coin Market Cap website2. The closing price data for
precious metals (gold, silver, platinum), S&P green bonds, and S&P GSCI soft commodities
index were downloaded from the DataStream database provided by Thomson Reuters3.
The final sample includes data from 7 August 2015 to 31 December 2021.

In the next step, we converted the daily closing prices of financial assets into log
returns that were further converted into weekly returns to estimate dynamic returns and
volatility connectedness at a weekly frequency. The dynamic connectedness requires that all
series follow non-stationary unit root test processes. Hence, for implementing the dynamic
connectedness approach, we transformed the data using the first log-difference of series:
yit = log(xit) − log(xit − 1). The selected financial assets are relatively stable during the
period of extreme volatility (Le et al. 2021b; Mo et al. 2022; Su et al. 2022; Umar et al. 2021)
and essential for the stability of financial markets due to their volatility to other markets.
Hence, it would be interesting to study the connection between these financial assets with
cryptocurrency uncertainty. In addition, well, our dataset includes data for the period of the
COVID-19 pandemic, which is useful to observe the returns and volatility connectedness
during it. We offer a snapshot of the data in the following Table 1, which includes the
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descriptive statistics of cryptocurrency indices, cryptocurrencies, precious metals, green
bonds, and soft commodities indices.

Table 1. Descriptive Statistics of Sample.

Panel A: Descriptive Statistics Full Sample (7 August 2015 to 31 December 2021).

Variables UCRY_Policy
UCRY
Price

Bitcoin Ethereum Gold Silver Platinum
SP Green

Bonds
SP GSCI

Softs

Mean 0.000 0.000 0.024 0.058 0.001 0.003 0.003 0.000 0.001
Variance 0.000 0.000 0.002 0.018 0.000 0.000 0.000 0.000 0.000
Skewness 8.081 *** 6.617 *** 4.795 *** 5.461 *** 4.930 *** 13.001 *** 10.276 *** 9.971 *** 4.146 ***

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ex.Kurtosis 76.285 *** 53.141 *** 29.936 *** 37.572 *** 36.607 *** 193.579 *** 120.734 *** 114.121 *** 28.471 ***

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

JB 84,622.361
***

41,738.229
***

13,751.343
***

21,305.339
***

20,002.199
***

530,908.103
***

208,736.085
***

186,779.394
***

12,237.996
***

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ERS −5.437 *** −4.707 *** −6.351 *** −0.871 −6.624 *** −5.640 *** −6.281 *** −4.318 *** −4.953 ***

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Q(10) 91.739 *** 126.632 *** 45.933 *** 63.807 *** 52.338 *** 52.491 *** 89.844 *** 124.134 *** 22.726 ***

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Q2(10) 15.345 *** 8.362 3.844 35.637 *** 13.855 *** 12.043 ** 65.188 *** 70.642 *** 7.058

−0.005 −0.146 −0.69 0 −0.01 −0.026 0 0 −0.248

Panel B: Descriptive Statistics Full Sample COVID-19 (1 January 2020 to 31 December 2021)

Mean 0.000 0.000 0.022 0.041 0.001 0.005 0.005 0.000 0.002
Variance 0.000 0.000 0.002 0.006 0.000 0.000 0.000 0.000 0.000
Skewness 4.606 *** 3.574 *** 7.074 *** 4.594 *** 4.417 *** 7.727 *** 5.964 *** 6.089 *** 3.909 ***

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ex.Kurtosis 23.186 *** 14.875 *** 59.241 *** 26.666 *** 26.720 *** 64.121 *** 38.122 *** 38.670 *** 20.649 ***

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

JB 2697.329 *** 1180.259 *** 16,075.460
*** 3447.105 *** 3432.009 *** 18,851.366

*** 6914.146 *** 7122.527 *** 2112.400 ***

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ERS −3.596 *** −2.898 *** −3.750 *** −3.743 *** −3.391 *** −4.079 *** −3.402 *** −4.030 *** −3.774 ***

−0.001 −0.005 0.000 0.000 −0.001 0.0000 −0.001 0.000 0.000
Q (10) 17.926 *** 19.297 *** 10.909 ** 11.869 ** 25.382 *** 16.323 *** 26.846 *** 42.238 *** 13.134 **

−0.001 −0.001 −0.045 −0.028 0 −0.003 0.000 0.000 −0.015
Q2 (10) 4.088 1.439 0.644 2.008 5.521 3.597 19.948 *** 21.665 *** 2.264

−0.651 −0.977 −0.998 −0.937 −0.43 −0.73 0.000 0.000 −0.912

Notes: The symbols ***, ** indicate significance at the 1%, 5% levels; the D’Agostino (1970) skewness test,
Anscombe and Glynn (1983) kurtosis test, Jarque and Bera (1980) normality test, Elliott et al. (1996) ERS unit-root
test, Q (10) & Q2(10), and Fisher and Gallagher (2012) weighted portmanteau tests are applied to the dataset.

Table 1 panel A includes the descriptive statistics of the whole sample (7 August 2015,
to 31 December 2021) and panel B includes the data covering the COVID-19 pandemic
(1 January 2020 to 31 December 2021). In panel A of Table 1, the full sample results show
that average returns are positive for most of the series. From the selected financial assets,
Bitcoin provides higher returns with a value of 0.058 and, unit-root test processes during the
COVID-19 pandemic, gold, silver, platinum, and S&P GSCI soft commodities are increased.
Gold returns remain stable in the overall sample during the COVID-19 pandemic. The
returns of cryptocurrencies are reduced during the crisis with the average values of Bitcoin
and Ethereum being 0.024 and 0.058, respectively, in the overall sample compared to
average values of 0.022 and 0.041 during COVID-19. Overall, the weekly returns of these
financial assets are not negative and provide better returns to investors in cryptocurrencies
and commodities markets in the presence of cryptocurrencies uncertainty.

The difference between Bitcoin and Ethereum is higher in the full sample and during
COVID-19, which shows that cryptocurrencies are riskier than precious metals, green
bonds, and soft commodities. Further, the positive and significant rightward skewed
returns series show that the mean is higher than median in different financial assets used
in this study. The kurtosis and Jarque–Bera normality tests confirm that all returns series
have fat tails and follow the leptokurtic distribution. Results support the non-normality of
the data in line with Jarque and Bera (1980), in which they show that all financial assets
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are not normally distributed. The stationarity is tested utilizing the Elliott et al. (1996) ERS
unit root test, which shows that all returns series are significant and stationary at the 1%
level of significance. Finally, we also checked the goodness-of-fit of financial time series
using the Fisher and Gallagher (2012) weighted portmanteau test that is significant at 1%
in most cases. It shows the autocorrelation between returns and squared returns is useful
for examining the interconnectedness of these financial assets using the TVP-VAR dynamic
connectedness approach.

The weekly log returns on financial assets and cryptocurrency uncertainty indices are
displayed in Figure 1 below. We take the natural log by following (Demir et al. 2018; Hasan
et al. 2021; Xu et al. 2023). Shown here is that prices of cryptocurrencies, precious metals,
green bonds, and soft commodities indices show a sharp reduction during the first phase
of the COVID-19 pandemic. Furthermore, the cryptocurrency policy and price uncertainty
indices rapidly increased as the COVID-19 crisis progressed.

Figure 1. Log returns data of cryptocurrencies, precious metals, green bonds, and soft commodities.
Notes: Figure 1 displays the weekly log returns of cryptocurrencies, precious metals, green bonds,
and soft commodities.

3.2. The Model

We investigated the impact of cryptocurrency uncertainty indices on the return and
volatility connectedness with the Time-Varying Parameter Autoregressive (TVP-VAR)
dynamic connectedness approach developed by Antonakakis et al. (2020). Their approach is
essentially an extension of Diebold and Yilmaz (2009, 2012, 2014). Selecting this econometric
method is based on existing studies for testing the dynamic connectedness among financial
markets. This method is useful when correlation among financial markets rises during
times of financial turmoil. The dynamic conditional correlation models provide biased
results during the crisis as they are based on market state and macroeconomic factors,
yet the real connectedness among markets is not affected by the financial turbulence. In
contrast, the spillover approach is based on Forecast Error Variance Decomposition (FEVD),
which originated from the Vector Autoregressive model (VAR) model and not affected by
the conditional correlation (Elsayed et al. 2022b; Elsayed and Helmi 2021; Umar et al. 2022).

The spillover approach devised by Diebold and Yilmaz (2009, 2012, 2014) is used to
obtain the information about shock in one variable to another variable based on FEVD.
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However, the spillover method has several drawbacks: first, the arbitrary selection of
rolling-window size is not useful in small samples; second, original connectedness ap-
proach by Diebold and Yilmaz (2009, 2012, 2014) is highly sensitivity to outliers and based
on normalization techniques, which may provide biased results (Caloia et al. 2019); and
third, the original dynamic connectedness approach may produce biased estimations due to
sign and rank errors. These issues are solved using the TVP-VAR dynamic connectedness
approach devised by Antonakakis et al. (2020). The window size is ideally estimated
by mean squared prediction errors based on the multivariate Kalman Filters (Koop and
Korobilis 2013, 2014). This technique is also useful for dealing with outliers, especially
during the financial crisis. The short time series, and sign and rank errors are also re-
duced in the TVP-VAR approach with scaler-based normalization of Generalized Forecast
Error Variance.

The return and volatility spillovers are discussed in existing literature using the orig-
inal dynamic connectedness approach (Diebold and Yilmaz 2009, 2012, 2014), TVP-VAR
approach (Adekoya and Oliyide 2021; Bouri et al. 2021a; Dai et al. 2022; Elsayed et al.
2022b) and extended joint connectedness based on TVP-VAR (Balcilar et al. 2021; Chen
et al. 2022). Meanwhile the TVP-VAR approach is based on auto-regressive conditional
heteroscedasticity (ARCH) process proposed by Engle (1982), and the generalized autore-
gressive conditional heteroscedasticity (GARCH) approach by Bollerslev (1986) to overcome
problems in ARCH models. Consequently, the TVP-VAR approach of Antonakakis et al.
(2020) examines the return and volatility transmission across cryptocurrencies, precious
metals, green bonds, soft commodities, and cryptocurrency uncertainty indices.

3.3. Research Methods
3.3.1. Time-Varying Parameter Vector Autoregression (TVP-VAR)

The TVP-VAR dynamic connectedness approach of Antonakakis et al. (2020) is applied
to assess the dynamic connectedness between various financial assets. The TVP-VAR model
with the lag-length of order one is selected by the Bayesian information criterion (BIC), and
we choose the rolling window of 52 weeks and weekly returns which are nth-transformed
to control the stationarity issues:

yt = Btyt−1 + εt εt ∼ N(0, Σt)
vec(Bt) = vec(Bt−1) + vt vt ∼ N(0, Rt)

(1)

where Equation (1) shows that yt, yt−1 and εt are K × 1 dimensional vector and Bt and Σt
are K × K dimensional matrices.

The symbols vec(Bt) and vt are K2 × 1 dimensional vectors, whereas Rt is a K2 × K2

dimensional matrix. All parameters (Bt) are allowed to use the TVP-VAR approach,
which is also helpful for examining the time-varying relationship and variance-covariance
matrices; Σt and Rt.

Further, the Wold theorem is applied to transform the model to the TVP-VMA model in

yt = ∑∞
h=0 Ah,tεt−i (2)

where Equation (2) shows that A0 = IK and εt is a vector of white noise symmetric shocks
with K × K time-varying covariance matrix of E(εtε

′
t) = Σt.

Therefore, in the next step, the H-step forecast error is estimated in Equation (3);

ξt(H)= yt+H − E(yt+H | yt, yt−1, . . .)

= ∑H−1
h=0 Ah,tεt+H−h,

(3)

with forecast error covariance matrix equal to in Equation (4):

E
(
ξt(H)ξ ′t(H)

)
= Ah,tΣt A′

h,t. (4)
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3.3.2. The Generalized Dynamic Connectedness Approach

The generalized dynamic connectedness approach is based on the H-step ahead of
generalized forecast error variance decomposition (GFEVD); gSOTij,t, is also applied and
it can be interpreted as the effect the shock in variable j has on variable i. This process is
explained in Equation (5) below:

ζ
gen
ij,t (H) =

E(ξ2
i,t(H))−E[ξi,t(H)−E(ξi,t(H))|εj,t+1,...,εj,t+H]

2

E(ξ2
it(H))

=
∑H−1

h=0 (e′i AhtΣtej)
2(

e′jΣtej

)
∑H−1

h=0 (e′i AhtΣt A′
htei)

gSOTij,t =
ζ

gen
ij,t (H)

∑K
j=1 ζ

gen
ij,t (H)

(5)

where ei is a K × 1 zero selection vector with unity on its ith position and ζ
gen
ij,t (H) de-

notes the proportional reduction of the H-step forecast error variance of variable i due to
conditioning on future shocks of variable j.

The generalized dynamic spillover average table displays the total connectedness to
demonstrate total connectedness among financial assets from shock in one variable to the
whole network. This dynamic connectedness metric is explained in below in Equation (6):

Sgen, f rom
i←·,t = ∑K

j=1,i �=j gSOTij,t

Sgen,to
i→0,t = ∑K

j gSOTji,t

(6)

Another measure is the net total directional connectedness of variable i, and it displays
whether variable i influences the network more than being influenced by it and it is
presented in Equation (7):

Sgen,net
i,t = Sgen,to

i→0,t − Sgen, f rom
i←·,t (7)

If Sgen,net
i,t > 0

(
Sgen,net

i,t < 0
)

, variable i is a net transmitter (receiver) of shocks which
shows that variable i is driving (driven by) the network.

The next metric is TCI is average total directional connectedness from (to) others and
we explain it in Equation (8), which is shown here:

gSOIt =
1
K ∑K

i=1 Sgen, f rom
i←,t =

1
K ∑K

i=1 Sgen,to
i→0,t , (8)

A high value of average total directional connectedness (TCI) reveals an increased
risk in the financial market and its low value highlights the low risk. This means shocks in
one variable are influenced by its future values and shocks are not transmitted from one
variable to another variables.

Finally, the dynamic connectedness approach provides information about net pairwise
spillovers relationship between two variables and it is presented in Equation (9):

Sgen,net
ij,t = gSOTgen,to

ji,t − gSOTgen, f rom
ij,t (9)

If Sgen,net
ij,t > 0

(
Sgen,net

ij,t < 0
)

, variable i has a higher impact on variable j and vice versa,
implying that variable i dominates variable j.

4. Empirical Results

In this section we present the results of the dynamic connectedness approach based
on the TVP-VAR approach.
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4.1. The Average Dynamic Connectedness

Table 2 displays the average dynamic connectedness based on the TVP-VAR approach.
The diagonal elements in Table 2 are associated with their own contribution to volatility
spillover while off-diagonal elements refer to the contribution ‘from’ or ‘to’ others. The
rows are linked with the contribution of each asset and uncertainty index to forecast error
variance of specific asset. Conversely, the columns are associated with the impact of shock
in one financial asset to all other assets separately.

Table 2. Volatility and return connectedness of cryptocurrency uncertainty indices, cryptocurrencies,
precious metals, green bonds, and soft commodities: Evidence using the TVP-VAR approach. Notes:

TVP-VAR dynamic connectedness approach results with the lag-length of order one by criterion (BIC)
with window size of 52 weeks. Panel A includes the dynamic connectedness in full sample, and we
tested the dynamic connectedness during COVID-19 in panel B.

Panel A: Average Dynamic Connectedness Table (Full Sample)

Variables
UCRY
Policy

UCRY
Price

Bitcoin Ethereum Gold Silver Platinum
S&P

Green
Bonds

SP GSCI
Softs

FROM

UCRY Policy 43.02 47.18 1.41 0.25 0.78 2.65 2.07 1.86 0.79 56.98
UCRY Price 35.59 58.18 0.7 0.15 0.47 1.77 1.47 1.05 0.62 41.82

Bitcoin 8.35 14.55 44.24 4.25 2.82 6.47 5.69 10.06 3.55 55.76
Ethereum 5.13 6.93 5.29 58.93 7.18 6.2 2.75 5.37 2.23 41.07

Gold 7.02 10.05 3.89 6.49 40.23 10.14 9.25 11.49 1.45 59.77
Silver 7.76 10.84 4.66 4.7 7.73 37.94 17.02 7.12 2.23 62.06

Platinum 15.51 25.9 3.75 1.44 5.17 12.5 27.82 6.31 1.6 72.18
S&P Green

Bonds 6.9 9.7 7.44 1.52 3.07 5.64 5.72 54.98 5.04 45.02

SP GSCI Softs 7.82 13.37 4.54 2.61 1.41 4.24 9.29 12.99 43.74 56.26
TO 94.07 138.52 31.66 21.4 28.63 49.6 53.26 56.25 17.51 490.91

Inc.Own 137.09 196.7 75.9 80.33 68.87 87.54 81.08 111.23 61.26 cTCI/TCI
NET 37.09 96.7 −24.1 −19.67 −31.13 −12.46 −18.92 11.23 −38.74 61.36/54.55
NPT 7 8 3 1 1 4 5 6 1

Panel B: COVID-19 Pandemic (1 January 2020 to 31 December 2021)

Variables
UCRY
Policy

UCRY
Price

Bitcoin Ethereum Gold Silver Platinum
S&P

Green
Bonds

SP GSCI
Softs

FROM

UCRY Policy 47.47 35.4 0.88 3.03 1.62 0.91 3.61 2.62 4.44 52.53
UCRY Price 39.24 45.01 0.92 2.76 1.11 0.91 3.82 2.4 3.85 54.99

Bitcoin 5.4 6.18 18 11.6 4.5 12.28 14.38 24.81 2.85 82
Ethereum 4.6 5.41 10.45 29.06 4.19 11.65 9.57 22.61 2.46 70.94

Gold 4.05 2.5 5.12 7.32 24.81 15.83 16.42 21.19 2.76 75.19
Silver 2.28 3.19 7.78 9.06 8.91 19.39 21.61 25.52 2.26 80.61

Platinum 2.18 2.37 6.2 9.52 7.49 16.11 31.48 21.27 3.37 68.52
S&P Green

Bonds 3.1 2.35 2.35 2.71 1.79 4.19 9.11 68.63 5.78 31.37

SP GSCI Softs 12.46 12.94 3.53 3.05 1.74 1.63 9.2 8.27 47.19 52.81
TO 73.3 70.34 37.24 49.04 31.36 63.52 87.71 128.69 27.77 568.97

Inc.Own 120.77 115.35 55.24 78.1 56.16 82.91 119.2 197.31 74.95 cTCI/TCI
NET 20.77 15.35 −44.76 −21.9 −43.84 −17.09 19.2 97.31 −25.05 71.12/63.22
NPT 7 5 2 3 0 3 7 7 2

The findings of the dynamic connectedness network of weekly returns of cryptocur-
rencies, precious metals, green bonds, soft commodities, and cryptocurrency uncertainty
indices display higher internal connectedness with an average total connectedness in-
dex (TCI) value of 54.55%. The value of TCI within the dynamic connectedness network
explains the higher interconnectedness of these financial assets and cryptocurrency uncer-
tainty indices. The cryptocurrency price uncertainty index transmits the shocks to other
assets in the network with a forecast error variance value of 138.52%.

Similarly, during the COVID-19 pandemic, the TCI value is 63.22%, which is higher
than full sample results. Moreover, during the pandemic, green bonds with a value of
128.69% transmit the shock to other assets and uncertainty indices. The connectedness is
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increased during the COVID-19 pandemic. The increase in TCI during COVID-19 pandemic
suggest that volatility spillover and transmission of risk increase during financial turmoil.
These findings are consistent with previous research (Akhtaruzzaman et al. 2021; Boubaker
et al. 2016; Bouri et al. 2021b; Costa et al. 2022), as they also find that total connectedness is
increased during crisis times.

Overall, these findings strongly suggest that the selected financial assets are closely
connected, and shocks are transmitted from cryptocurrency uncertainty indices to other
financial assets. Hence, risk-averse investors should take these findings into account for
investing in these financial assets, and they can diversify their portfolios by investing in
assets with low interconnectedness. Investors should consider cryptocurrency uncertainty
before investing in these financial assets, especially during the COVID-19 pandemic.

4.2. The Dynamic Total Connectedness

It is important to note that, in Table 2, results about dynamic connectedness across time
are not included. Moreover, we cannot see the connectedness during the Global Financial
Crisis (GFC), COVID-19 pandemic, and other influential and/or extreme events. Figure 2
illustrates the dynamic total connectedness (TCI) across time to explain the volatility
transmission across financial assets. As shown in Figure 2, the total connectedness is within
the 45% to 95% range. The TCI is higher during 2016 and it remained at 55% from 2018 to
the first days of 2020. However, the TCI values sharply increase during the first wave of
the COVID-19 pandemic, with a TCI value of around 77%.

Figure 2. Dynamic total connectedness. Notes: Figure 2 shows the results of the TVP-VAR approach
with lag-length of order one by BIC criterion and a 20 step-ahead generalized forecast error variance
decomposition (FEVD). The black area in the figure represents the total connectedness (TCI).

The consistent presence of the TCI value above 50% across a majority of time frames pro-
vides substantial evidence for heightened return and volatility spillover within these financial
assets. This trend signifies that elevated cryptocurrency uncertainty indices wield a notable
influence over these financial components. The amplified dynamic connectedness values
recorded during the COVID-19 pandemic can be attributed to the escalated apprehension
among investors triggered by negative news related to the COVID-19 situation. Concurrently,
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the surge in economic policy uncertainty further compounds this situation. It is noteworthy
that cryptocurrencies were particularly susceptible to changes in the COVID-19 pandemic
scenario (Allen 2022; Lahmiri and Bekiros 2020; Salisu and Vo 2020).

4.3. Net Total Directional Connectedness

Net total directional connectedness results are displayed in Figure 3 This figure
presents the time-varying role of net receiving or net transmitting role of financial as-
sets. Figure 4 shows that the UCRY policy and price indices remain stable before the
COVID-19 pandemic and that the UCRY price index acts as a transmitter of shocks during
the first days of COVID-19; these findings are consistent with Lundgren et al. (2018). UCRY
policy index is a net receiver of the shocks. As shown in Figure 3, Ethereum, Bitcoin, gold,
and soft commodities are net receivers of shocks. The silver, platinum, and green bonds are
net receivers of shocks before COVID-19, but they become the net transmitter of shocks
during it. Overall, most of the assets are net receivers of shocks and their spillover behavior
changes during the pandemic.

Figure 3. Dynamic net total directional connectedness. Notes: Figure 3 shows net total directional
connectedness based on the TVP-VAR approach with lag-length of order one by BIC criterion and a
20 step-ahead generalized forecast error variance decomposition (FEVD). The black area represents
the net total directional connectedness. Meanwhile the positive values show a net transmitter role,
and the negative values indicate the net receiving role of financial assets.
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Figure 4. Dynamic net pairwise total directional connectedness. Notes: Figure 4 shows net pairwise
total directional connectedness based on the TVP-VAR approach with lag-length of order one by BIC
criterion and a 20- step-ahead generalized forecast error variance decomposition (FEVD). The black
area represents the net total directional connectedness.

4.4. Net Pairwise Directional Connectedness

The results of time-varying net pairwise connectedness between cryptocurrency un-
certainty indices and financial assets are presented below in Figure 4. The pairwise connect-
edness is higher between UCRY indices, cryptocurrencies, and precious metals, especially
during the COVID-19 pandemic. The connectedness between precious metals, soft com-
modities, and green bonds is also higher, especially during the outbreak’s spread. Overall,
the magnitude of net pairwise connectedness is higher, and the spillover patterns were
changed during the COVID-19 pandemic, which is consistent with findings of other studies
(Bouri et al. 2021a; Elsayed et al. 2022a; Le et al. 2021a). These findings suggest that in-
vestors should consider persistence of asset before investing as patterns of spillovers were
changed during COVID-19 pandemic.

4.5. Dynamic Connectedness Network Plot

Figure 5 illustrates the network plot of the return and volatility connectedness between
cryptocurrency uncertainty indices and different financial assets. The UCRY price and
policy indices are net transmitters of shocks to Bitcoin, Ethereum, gold, silver, platinum,
and soft commodities. Moreover, the green bonds are net transmitter of shocks towards
gold and soft commodities. The net total directional connectedness between UCRY price to
Bitcoin, Platinum, and gold is higher because the node size is large. Our findings suggest
that equity market investors should look for volatility spillovers from cryptocurrency
uncertainty indices towards different financial assets before investing in these assets during
a financial crisis. These findings suggest that investors in traditional markets should be
cautious during financial turmoil and its influence on traditional assets as our findings show
that cryptocurrency uncertainties transmit the shocks towards traditional assets market;
hence, traditional investors experienced lower returns during the COVID-19 pandemic.

450



J. Risk Financial Manag. 2023, 16, 428

Figure 5. Dynamic connectedness network plot. Notes: Figure 5 displays the network plot us-
ing the TVP-VAR approach. The blue nodes represent the net transmitter role while the yellow
nodes illustrate the net receiver of shocks. The node sizes show the weighted average net total
directional connectedness.

5. Concluding Remarks

This study examines the dynamic connectedness of return and volatility spillover
among cryptocurrency uncertainty, cryptocurrencies, green bonds, precious metals, and
soft commodities. The investigation relies on weekly returns data from 7 August 2015 to
31 December 2021, using the TVP-VAR approach as detailed by Antonakakis et al. (2020).
The total connectedness is higher, a trend particularly heightened during the COVID-19
pandemic. During this crisis, the cryptocurrency policy uncertainty index emerged as
the primary transmitter of shocks to other financial assets, while the cryptocurrency price
index assumed the role of shock receiver of shock during COVID-19. The pandemic has
instigated shifts in returns and volatility connectedness across these financial assets. For
instance, certain assets that were previously net shocks receivers transitioned into shock
transmitters during the COVID-19 outbreak. Moreover, the pandemic has fostered height-
ened connection among precious metals, soft commodities, and green bonds. Precious
metals and cryptocurrencies, as recipients of shocks, warrant particular attention from
investors and practitioners who can opt for alternative assets as a strategy to hedge the
cryptocurrency uncertainty and reduce the portfolio risk in times of financial turmoil.

These findings hold considerable implications, urging investors to carefully assess
volatility spillovers from cryptocurrency uncertainty indices into traditional markets for
comprehensive diversification insights across assets. Consequently, policymakers and
investors are encouraged to scrutinize cryptocurrency uncertainty spillover patterns onto
various traditional markets, enabling them to optimize returns through diversified global
asset portfolios—especially crucial amidst financial disturbances.

To acknowledge this study’s limitations, it is worth noting that the availability of
UCRY uncertainty indices in a weekly frequency prompted the utilization of weekly data.
However, this choice may omit some critical information. For future investigations, re-
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searchers should consider constructing a daily cryptocurrency uncertainty index to explore
its dynamic connectedness with other assets, thereby offering a more nuanced perspective.
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1 The cryptocurrency uncertainty index. Finance Research Letters, 102147. The latest UCRY Weekly Index data can be down-
loaded from: https://sites.google.com/view/cryptocurrency-indices/the-indices/crypto-uncertainty?authuser=0 (accessed on
8 January 2022).

2 https://coinmarketcap.com/ (accessed 8 January 2022).
3 https://www.thomsonreuters.com/en.html (accessed on 8 January 2022).
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Abstract: This study investigates the properties of risk measure, value at risk (VaR) and conditional
VaR (CVaR), using high-frequency Bitcoin data. These data allow us to conduct a high statistical
analysis. Our findings reveal a disparity in VaR and CVaR values between the left and right tails of
the return probability distributions. We refer to this disparity as “long–short asymmetry”. In the
high-frequency domain, the tail distribution can be accurately described by a power-law function.
Moreover, the ratio of CVaR to VaR is expected to be determined solely by the power-law exponent.
Through empirical analysis, we confirm that this ratio property holds true for high confidence levels.
Furthermore, we investigate the relationship between risk measures (VaR and CVaR) and realized
volatility. We observe that they trace a trajectory in a two-dimensional plane. This trajectory changes
gradually, indicating periods of both high and low risk.

Keywords: risk measure; value at risk; conditional value at risk; expected shortfall; power-law
function; realized volatility; Bitcoin; Rachev ratio

1. Introduction

Risk management plays a central role in various financial sectors. Its purpose is to
prevent unexpected substantial losses in trading and operations by closely monitoring these
risks. Although there are various sources of financial risk, such as credit and liquidity risks,
we will focus specifically on market risk, which refers to the risk associated with market
price changes. The widely accepted risk measure is known as the value at risk (VaR). VaR
provides a single numerical value that summarizes the overall risk of a portfolio (see, for
example, Abad et al. (2014); Duffie and Pan (1997); Gourieroux and Jasiak (2010); Linsmeier
and Pearson (2000)). For our analysis, we will consider a simple portfolio consisting of
a single asset, such as a stock. In this context, changes in asset prices are described as
returns r, and historical return data form a return probability distribution P(r). VaR is
defined as the maximum loss at a given confidence level, denoted as X%, over a given
time horizon, denoted as T. Figure 1 shows a schematic drawing for the VaR approach.
“VaR(X)L” stands for the VaR for the long position at the confidence level of X% and is
defined so that the probability of the left tail (−∞ < r ≤ VaR(X)L) becomes (100-X)%.
Similarly, “VaR(X)S” for the short position at the confidence level of X% is defined as the
right tail (VaR(X)S ≤ r < ∞) of the return probability distribution.

One drawback of VaR is its inability to provide information on potential losses beyond
the VaR threshold. This limitation becomes particularly significant when dealing with the
tail of the probability distribution. In scenarios where the tail is heavier than that of a
normal distribution, the potential loss can exceed what would be expected under normal
distribution assumptions. Empirical evidence shows that asset return distributions often
exhibit fat tails, which are recognized as stylized facts (Cont 2001). To address this issue
and incorporate tail information, an improved risk measure known as conditional VaR
(CVaR), or expected shortfall with coherent properties, has been introduced (Acerbi and
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Tasche 2002; Artzner et al. 1999). CVaR is defined as the average value of VaR that exceeds
the VaR at a given confidence level, denoted as X%.

-2 0 2
return

0

0.1

0.2

0.3

0.4

P(
r)

VaR(X)
L

VaR(X)
S

(100-X)% (100-X)%

Figure 1. Schematic drawing of the VaR approach.

Usually, VaR and CVaR calculations in risk management focus on the left tail of
the return probability distribution. This region corresponds to potential losses in a long
position. Conversely, the right tail represents losses in a short position. When assuming a
symmetrical return probability distribution, there would be no distinction between VaR
and CVaR values in the left and right tails. However, it cannot be guaranteed that empirical
distributions will exhibit symmetry. We refer to the difference between VaR and CVaR
associated with asymmetric distributions as “long–short asymmetry”. One of our objectives
was to empirically investigate the presence of such long–short asymmetry. Measuring
long–short asymmetry poses various challenges, primarily due to the limited availability of
accurate probability distributions. This limitation becomes more pronounced when using
one-day or longer time returns, as the shorter sampling period results in fewer statistics. For
instance, if we collect daily returns for one year, we would have only 365 (or approximately
250) working days’ worth of data. For risk measures in the cryptocurrency market, based
on daily returns, see, e.g., Almeida et al. (2022).

To address this issue, we analyze the data in the high-frequency domain, which
involves collecting a large amount of statistical data. In this study, we specifically utilize
1 min Bitcoin data. In cryptocurrency markets, Bitcoin is traded continuously for 24 h,
allowing us to gather 52,560 1 min return data points over a 1-year period. This extensive
dataset enables us to conduct a thorough statistical analysis.

Long–short asymmetry is closely associated with the reward–risk ratios that are
defined as ratios between a reward measure and a risk measure (Cheridito and Kromer
2013). We calculate one of the reward–risk ratios, the Rachev ratio (Biglova et al. 2004),
which is given by a ratio of the CVaR for the short position to the CVaR for the long position.
Since the Rachev ratio deviates from one for asymmetrical distribution, it also quantifies
the long–short asymmetry.

Our second objective is to explore the relationship between the tail exponent and risk
measures. In the high-frequency domain, the tails of the return probability distributions
are fat-tailed and exhibit power-law behavior (Gabaix 2009; Gopikrishnan et al. 1998,
1999; Pan and Sinha 2007; Plerou et al. 1999). Let α be the power-law exponent of the
cumulative return distribution. As we will explain later, under the assumption of a power-
law probability distribution, the ratio of CVaR to VaR is α/(α − 1); we empirically verify
the presence of this α/(α − 1) relationship at high confidence levels.

We also investigate the relationship between realized volatility (RV) (Andersen and
Bollerslev 1998; Andersen et al. 2003; McAleer and Medeiros 2008) and the risk measures.

457



J. Risk Financial Manag. 2023, 16, 391

Our findings reveal that these variables form a trajectory that exhibits periods of both high
and low risk.

The remainder of this paper is organized as follows: Section 2 describes the methodol-
ogy and data used in this study. Section 3 presents the empirical results. Finally, we discuss
and conclude our findings in Section 4.

2. Methodology and Data

First, we calculate the VaR and CVaR for the return probability distribution P(r). Here,
for simplicity, we assume that the mean of the returns is zero. The VaR at a confidence level
X% is denoted as VaR(X)L and is defined for the long position (left tail) as

pX =
∫ VaR(X)L

−∞
P(r)dr, (1)

where pX = 1 − X/100. Similarly, the VaR for the short position, VaR(X)S, is defined in
the right tail as

pX =
∫ ∞

VaR(X)S

P(r)dr. (2)

CVaR is defined as the average VaR that exceeds the VaR at confidence level X%. The
CVaR for the long position at confidence level X% is given by

CVaR(X)L =
∫ VaR(X)L

−∞
rP(r)dr/pX . (3)

Similarly, the CVaR for the short position is given by

CVaR(X)S =
∫ ∞

VaR(X)S

rP(r)dr/pX . (4)

Next, we calculate the VaR and CVaR for specific forms of P(r). Note that although
we calculate VaR and CVaR for the long position, we obtain the same expression for both
of the short positions, except with regard to the sign. First, we assume that P(r) is a
normal distribution with a standard deviation σ, that is, P(r) = exp(− r2

2σ2 )/
√

2πσ2. Then,
Equation (1) is as follows (Hull 2018):

VaR(X)L = −σN−1(X), (5)

where N−1(X) denotes the inverse cumulative normal function. Similarly, we obtain
Equation (3).

CVaR(X)L = −σ
exp(−K2/2)√

2πpX
, (6)

where K ≡ N−1(X). Using Equations (5) and (6), the ratio of CVaR to VaR, denoted by
Rnorm, is

Rnorm =
exp(−K2/2)√

2πKpX
. (7)

Second, we assume that the total probability distribution P(r)t, defined as P(r)t =
P(r)tail + Po(r), consists of two parts: the tail P(r)tail and the other Po(r). P(r)tail is de-
scribed by a power-law function as

P(r)tail = c|r|−(α+1), (8)
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where the constant c is the normalization factor determined such that
∫ ∞
−∞ P(r)t = 1. The

actual value of c is not significant. At the tail, we assume that only P(r)tail contributes to
the calculations of VaR and CVaR. Using Equation (8), Equation (1) is calculated to be1

pX =
c
α
|VaR(X)L|−α. (9)

Similarly, Equation (3) leads to the following:

CVaR(X)L =
c

pX(α − 1)
|VaR(X)L|−(α−1). (10)

Using Equations (9) and (10), the ratio of CVaR(X)L to VaR(X)L becomes:

Rpower =
α

α − 1
. (11)

Interestingly, at any confidence level for the tail distributions described by a power-law
function, Rpower is determined by α only.

To quantify the differences in VaR and CVaR between the left and right tails, we compute

DVaR(X) = VaRS(X)− |VaRL(X)|, (12)

and
DCVaR(X) = CVaRS(X)− |CVaRL(X)|, (13)

at a given confidence level X%. DVaR(X) and DCVaR(X) take zero values for symmetrical
distributions. We also calculate the Rachev ratio (R-ratio) (Biglova et al. 2004) defined as

R-ratio =
CVaRS(X)

|CVaRL(X)| . (14)

Similarly, we can also define a ratio by VaR (V-ratio) as

V-ratio =
VaRS(X)

|VaRL(X)| . (15)

Both the R-ratio and V-ratio will take the value of 1 for symmetric distributions. The
R-ratio and V-ratio are related to DVaR and DCVaR as follows:

R-ratio − 1 = DCVaR/|CVaRL|, (16)

and
V-ratio − 1 = DVaR/|VaRL|. (17)

For the tail distributions described by a power-law function, the ratio of R-ratio to
V-ratio, denoted as RRV , is given by

RRV ≡ R-ratio
V-ratio

=
αS

αS − 1
αL − 1

αL
, (18)

where αS (αL) is the power-law exponent at the right (left) tail of the return
probability distribution.

In this study, we used Bitcoin data traded on Bitstamp exchanges2 from 1 January 2015
to 21 May 2022. In the early stages of the Bitcoin market, characterized by low liquidity, we
observed market properties that differed from those of liquid markets, such as developed-
country stock markets (Di Matteo et al. 2005). For example, the Hurst exponent of the return
time series in the early stages of the Bitcoin market was found to be less than 0.5, indicating
the anti-persistence of the series (Urquhart 2016). It is argued that the anti-persistence seen
in the cryptocurrency market can be attributed to the low liquidity of the market (Wei 2018).
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The power-law exponents α of the tail return distributions were significantly lower than
the expected values of 3 based on return distributions in developed countries (Begušić et al.
2018; Drożdż et al. 2018; Easwaran et al. 2015; Takaishi 2021a). Due to the low liquidity on
the Bitstamp exchange before 2013 (Takaishi and Adachi 2020), we selected a period after
2015 when liquidity was sufficiently high.

From the 1 min price data pt, we construct 1 min return data using rt = ln pt −
ln pt−1. Table 1 describes the descriptive statistics of the whole 1 min return data. The
kurtosis was found to be about 98, which is considerably high, implying that the return
distribution is fat-tailed. It is known that as the time scale of returns increases, the return
distributions approach the Gaussian distribution. On the Bitcoin market, the kurtosis
reaches the value of 3 (the kurtosis of the Gaussian distribution) at the time scale of two
weeks (Takaishi 2018 2021b).

Table 1. Descriptive statistics for the whole sample of 1 min returns. The values in parentheses
indicate one-sigma errors estimated by the Jackknife method.

Mean Standard Deviation Kurtosis Skewness Nobs

1.2(8)× 10−6 0.00135(8) 98(44) −0.3(2) 3.87M

We analyze the data within a 1-year window containing 52,560 return data points.
The window is then shifted by one day to capture time-varying properties and enable
further investigation. To calculate VaR and CVaR, we first sort the 52,560 return data
points in ascending (descending) order for long (short) positions. Then, VaR(X) at the
confidence level X is obtained from the 52,560 × (X/100)th value in the sorted data3.
Similarly, CVaR(X) is obtained from the average of the sorted data from the first to the
52,560 × (X/100)th data point.

3. Empirical Results

Figures 2 and 3 show the time evolution of VaR and CVaR, respectively. In the
figures, positive (negative) values correspond to the VaR and CVaR regarding the short
(long) position or the right (left) tail of the return probability distribution. The magnitude
of the VaR and CVaR is found to be relatively small, i.e., an order of about 0.005∼0.01
since the variation in 1 min returns that we use here is also small. As described in Table 1,
the standard deviation of 1 min returns is small, ∼0.00135. Here, note that the standard
deviation of 1-day returns is calculated to be ∼4.63 (Takaishi 2021b), which is bigger than
that of 1 min returns.

2015 2016 2017 2018 2019 2020 2021 2022
Year

-0.005

0

0.005

0.01

V
aR

99.5% (short)
99%    (short)
95%    (short)
90%    (short)
90%    (long)
95%    (long)
99%    (long)
99.5% (long)

Figure 2. Time evolution of VaR at confidence levels X = 99.5%, 99%, 95%, and 90%.
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Figure 3. Time evolution of CVaR at confidence levels X = 99.5%, 99%, 95%, and 90%.

It is evident from the figure that VaR and CVaR are not constant and vary over time on
the Bitcoin market. The VaR and CVaR show similar time variation patterns. Namely, we
observed that the magnitude of VaR and CVaR increases around 2015 and 2018, implying
that the market risk was higher around 2015 and 2018 compared to other periods. This
high and low risk pattern will be more clear when we analyze both risk measures (VaR and
CVaR) and the RV simultaneously (we will return to this point later).

Figures 4 and 5 display the time evolutions of DVaR and DCVaR, respectively. DVaR and
DCVaR quantify long–short asymmetry in VaR and CVaR. It is evident from the figures that
DVaR and DCVaR predominantly take non-zero values, indicating the presence of long–short
asymmetry in VaR and CVaR.

This asymmetry is more pronounced at high confidence levels, highlighting that risks
can differ between the left and right tails at the same confidence level. At high confidence
levels, DVaR and DCVaR take mostly negative values except for in some periods, which
means that in the period we studied here, the long position is riskier than the short position.

The significance of long–short asymmetry should be compared to the magnitude of
VaR or CVaR. For example, at the confidence level X = 99.5%, the absolute value of CVaR
(DCVaR) around 2016 is about 0.01 (0.0005), which results in |DCVaR/CVaR| � 0.05. Thus,
in this case, the significance of long–short asymmetry is about 5%. The significance of
long–short asymmetry is also measured by directly comparing long and short positions.
Such measurements are the V-ratio and R-ratio.
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Figure 4. Time evolution of DVaR at confidence levels of X = 99.5%, 99%, 95%, and 90%.
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Figure 5. Time evolution of DCVaR at confidence levels of X = 99.5%, 99%, 95%, and 90%.

Figures 6 and 7 show the time evolutions of the V-ratio and R-ratio, respectively. These
ratios exhibit similar time variations with DVaR and DCVaR, and predominantly deviate
from 1, indicating the presence of long–short asymmetry. Moreover, since the V-ratio and
R-ratio are defined by Equations (14) and (15), they could represent the significance of
long–short asymmetry. For example, at the confidence level X = 99.5%, the V-ratio from
2016 to 2018 is about 0.95, implying that there is about a 5% difference in the VaR between
long and short positions. Although the magnitude of DVaR is small at the confidence level
X = 90%, the V-ratio from 2016 to 2018 is around 1.03 (3% difference in VaR), which means
that the long–short asymmetry could be significant at lower confidence levels.

“DVaR, DCVaR” and “V-ratio, R-ratio” can also identify the period in which the return
probability distributions are approximately symmetrical. For symmetrical distributions,
DVaR and DCVaR take values of zero at any confidence level. Similarly, the V-ratio and
R-ratio take one at any confidence level. Therefore, the criterion that DVaR and DCVaR are
zero and that the V-ratio and R-ratio are one at any confidence level can help to provide
information on symmetrical distributions. For example, from Figures 4–7 we recognize that
the middle of 2021 matches the criterion approximately, and thus, the return probability
distribution is expected to be symmetrical approximately in the middle of 2021.
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Figure 6. Time evolution of V-ratio at confidence levels of X = 99.5%, 99%, 95%, and 90%.
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Figure 7. Time evolution of R-ratio at confidence levels of X = 99.5%, 99%, 95%, and 90%.

To examine the significance of the power-law distribution with regard to the VaR and
CVaR, we determine the power-law exponent α by fitting the tail data to ∼|r|α+1 using the
Hill estimator (Hill 1975). The Hill estimator estimates the power-law exponent α with
the equation

1
α + 1

=
1
k

k

∑
i=1

(ln r(i) − ln r(k)), (19)

where r(1) ≥ r(2) ≥ · · · ≥ r(k) is the order statistics for the tail data.
Figure 8 shows the time evolution of α obtained from the left and right tails of the

return probability distribution. The power-law exponent α varies considerably over time
around α = 3. The values of α are higher than the value of α = 2 observed in the early
stage of the Bitcoin market (Easwaran et al. 2015). The low value of α could be related to
the liquidity in the early stage of the Bitcoin market. The liquidity is also considered to
be the origin of the low Hurst exponents observed in the cryptocurrency markets (Wei
2018). In the period we studied here, the liquidity of the Bitcoin market is expected to be
high (Takaishi and Adachi 2020) and the power-law exponent α comes close to the value of
α = 3 observed in the stock market (Gopikrishnan et al. 1998, 1999).

2015 2016 2017 2018 2019 2020 2021 2022
1

2

3

4

5

6

α

left tail
rigth tail

Figure 8. Time evolution of the power-law exponent α.

As suggested by Equation (11), the ratio CVaR/VaR can be expressed as α/(α − 1)
for the power-law tail. In Figures 9 and 10, we show the time evolution of the ratio
alongside the corresponding values of α/(α − 1). The dashed straight lines in the figures
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represent the theoretical results under a normal distribution assumption obtained with
Equation (7). The empirical ratios consistently exceed those derived from the normal
assumption, suggesting that the empirical return distributions exhibit fatter tails compared
to the normal distribution. The results at high confidence levels (99.5% and 99%) closely
align with the α/(α − 1) law. This indicates that the probability distributions are well
described by the power-law function in the region corresponding to high confidence
levels. As the confidence level decreases, the results deviate from α/(α − 1), which implies
that in the region with lower confidence levels, the probability distributions are not well
approximated by the power-law function.
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α/(α−1)

90% (normal)

99.5% (normal)

Figure 9. Time evolution of CVaR/VaR for the long position at confidence levels of X = 99.5%,
99%, 95%, and 90%. The dashed lines show the theoretical values under the normal distributional
assumption, obtained with Equation (7).
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Figure 10. Time evolution of CVaR/VaR for the short position at confidence levels of X = 99.5%,
99%, 95%, and 90%. The dashed lines show the theoretical values under the normal distributional
assumption, obtained with Equation (7).

To visualize the α/(α − 1) law more clearly, we plot CVaR/VaR as a function of α in
Figures 11 and 12. At high confidence levels (X = 99.5% and 99%), the ratio aligns well
with the line α/(α − 1), indicating that the return probability distribution at these high
confidence levels is consistent with the power-law distribution. For lower confidence levels,
the ratio deviates from the α/(α − 1) law and moves above the curve of the α/(α − 1)
law. The deviation from the curve of the α/(α − 1) law implies that the return probability
distribution departs from the power-law distribution. Thus, it is concluded that the tail
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distributions corresponding to lower confidence levels are not well described by the power-
law function.

In the absence of a specific distributional assumption, such as the normal distribution,
the variance alone does not provide accurate values for VaR and CVaR. However, the
magnitudes of VaR and CVaR are correlated with the variance. To investigate the correlation
between risk measures and variance, we use RV as a proxy for variance. The daily RV is
constructed as a sum of squared intraday returns,

RV =
n

∑
i=1

r2
i,Δ, (20)

where ri,Δ is the number of returns sampled at a Δ-minute sampling frequency and n is
the number of returns sampled in a day. We calculate the daily RV from the 5 min returns
(Liu et al. 2015). Since we consider the VaR and CVaR calculated over a 1-year window, we
use an RV averaged over the same 1-year window.
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Figure 11. Time evolution of CVaR/VaR for long position at confidence levels of X = 99.5%, 99%, 95%,
and 90% as a function of α.
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Figure 12. Time evolution of CVaR/VaR for short position at confidence levels of X = 99.5%,
99%, 95%, and 90% as a function of α.

Figure 13 shows the RV averaged over a 1-year window of data. The RV also varies
over time and its time variation pattern is very similar to those of the VaR and CVaR,
which indicates that the RV is correlated with the VaR and CVaR. Using the RV, we make
two-dimensional plots of the risk measures and RV at confidence levels of X = 99.5% and
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90%, as shown in Figures 14 and 15. These plots reveal a strong correlation between the VaR
(CVaR) and RV. In our analysis of the 1-year window, we observed that the magnitude of the
risk appears to change, resulting in trajectories representing changes in the VaR(CVaR)–RV
plane. The trajectories found in the VaR–RV and CVaR–RV planes are very similar, and
we also observed the similar trajectories for the short position (not shown here). These
trajectories enable us to identify periods of high or low risk. The periods around 2015 and
2018 are classified as high risk, while the periods around 2017 and 2019 correspond to
low-risk periods.
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Figure 13. Time evolution of the daily RV averaged over a one-year window.
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Figure 14. VaR for the long position versus RV at confidence levels of X = 99.5% and 95%.
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Figure 15. CVaR for the long position versus RV at confidence levels of X = 99.5% and 95%.
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4. Discussion and Conclusions

Using high-frequency Bitcoin data, we conducted an investigation into the properties
of the risk measures VaR and CVaR. By analyzing the risk measures in the left and right
tails of the return probability distribution, we discovered “long–short asymmetry” for
VaR and CVaR. This finding implies that the risk differs between long and short positions,
particularly at high confidence levels. Such divergence in risks between long and short
trades can offer valuable insights for trading strategies, particularly in the realm of high-
frequency trading.

Furthermore, we observed that the ratios, CVaR/VaR, at high confidence levels align
well with the α/(α − 1) law derived from the power-law distributional assumption. The
presence of the α/(α − 1) law suggests that VaR and CVaR are no longer independent when
the power-law distribution assumption holds.

Moreover, we observed a strong correlation between the risk measures and the RV,
which resulted in the formation of trajectories in a two-dimensional plane. These trajectories
unveiled periods of high and low risk. It would be intriguing to explore whether the
high- and low-risk periods are associated with other measures, such as market efficiency
(the Hurst exponent) (Bariviera 2017; Urquhart 2016), multifractality (Takaishi 2018), and
inverted volatility asymmetry (Bouri et al. 2017; Katsiampa 2017; Stavroyiannis and Babalos
2017; Takaishi 2021b).

It is worth noting that our findings are based solely on Bitcoin data. Further in-
vestigations should be conducted using other assets to ascertain the universality of the
“long–short asymmetry” and the α/(α − 1) law. Since previous studies (Gopikrishnan et al.
1998 1999) have already revealed that stock price returns exhibit the power-law probability
distributions, we should expect the α/(α − 1) law for CVaR/VaR on the stock markets.

In this study, we employed a 1-year window to investigate the time-varying properties.
Consequently, the observed properties were averaged over the course of a year. To capture
more dynamic changes within a year, smaller windows would be necessary. Although
analyzing smaller windows poses some challenges due to reduced statistical data, it could
yield interesting insights into more dynamic fluctuations.

Funding: This study was supported by JSPS KAKENHI, grant number JP21K01435.

Data Availability Statement: Bitcoin data used in this study are available from: http://www.
bitstamp.net, accessed on 22 May 2022.

Acknowledgments: The numerical calculations for this study were performed using the Yukawa
Institute Computer Facility and facilities at the Institute of Statistical Mathematics.

Conflicts of Interest: The author declares no conflict of interest.

Notes

1 In the context of the Pareto distribution, the similar expression can be found in Abad et al. (2014); Gourieroux and Jasiak (2010).
2 http://www.bitstamp.net, accessed on 22 May 2022.
3 When “52,560 × (X/100)” is not a multiple of an integer, we interpolate two neighbor returns.
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Abstract: This paper re-examines the presence of the Sharpe–Treynor–Lintner–Mossin capital asset
pricing model (CAPM) in the finance literature and is accompanied by a bibliometric summary
analysis. The popular model is in its sixth decade; we summarized the relevance of the CAPM using
publication and citation trends, as well as identifying its most prolific and impactful contributors.
This paper is based on a systematic review of the literature and was completed with the help of
various bibliometric techniques. During the study process, we presented a map of various themes and
areas of the CAPM and its evolution. Our findings indicate that the extant literature on this topic (the
cost of capital, asset pricing, portfolio, risk management, beta, systematic risk, and value premium) is
based on the principles and assumptions of the CAPM. We are considering suggestions on the future
use, trend, and direction of the CAPM, based on our summary of thematically developed clusters.

Keywords: capital asset pricing model (CAPM); bibliometric; systematic literature review research agenda

1. Introduction

The capital asset pricing model (CAPM) of Sharpe (1964), Treynor (1999), Lintner
(1965a, 1965b), and Mossin (1966) rightfully occupies a central place in the asset pricing
literature. Not surprisingly, an enormous research effort has been devoted to the testing of
the CAPM over the past six decades due to its relatively simple and effective framework.
The model is not only used to study the returns on shares but is also used for various
conventional and non-conventional asset classes: USA painting (Agnello 2016); the oil
market (Adekunle et al. 2020); credit market assets (Hwang et al. 2010); the real estate
market (Coşkun et al. 2017); etc. No model is without its criticisms and the CAPM is
subject to various limitations and challenges. To overcome such limitations, the CAPM
has taken various forms in the last six decades of its journey: international CAPM (Black
1974; Stulz 1981), the inter-temporal capital asset pricing model (Merton 1973), expectile
CAPM (Hu and Zheng 2020), and downside CAPM (Rutkowska-Ziarko et al. 2022), etc.
The CAPM is changing in terms of its face and utilization across sets of literature in the field
of finance; thus, providing a future direction for research has become of prime importance.
The current study is an opportunity for the development of respective research fields.
This study revolves around the following key ideas related to articles published with the
keywords ‘CAPM’ in the last six decades:

• KI 1. The growth and pattern of publications and citations since its inception;
• KI 2. The detail provided by contributors and their affiliated institutions and countries

to the related articles;
• KI 3. The frequency of article citations;
• KI 4. A detailed study of the most prominent themes and ideas published;
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• KI 5. Details of a research agenda for future studies.

As suggested by Kraus et al. (2022), literature reviews can serve as a starting point
for larger research projects. Literature reviews also present an understanding of a domain,
providing a theoretical underpinning for empirical research. This review correspondingly
provides an investigation into research conducted with the keyword ‘CAPM’, using this to
present its current status and to suggest future directions. The explained key concerns of
the research are answered systematically using bibliometric analysis tools. The rest of the
paper has been structured in the following sections. Section 2 discusses the methodology
used, while Section 3 presents the description of the data analysis. Sections 4 and 5 present
the co-authorship, bibliographic coupling, and keyword analysis. Section 6 concludes by
summarizing the findings, along with future directions, and Section 7 offers considerations
for the implications, limitations, and future directions of this study.

2. Materials and Methods

Bibliometric analysis is a well-known research methodology in library and information
sciences that uses published data and constructs meaningful summaries by quantifying
the material. Otlet (1934) first explained the term bibliometric (bibliométrie) as “the mea-
surement of all aspects related to the publication and reading of books and documents”;
the credit of being the pioneer in the statistical analysis of bibliographic data is claimed
by Pritchard (1969). A bibliometric study helps to identify intellectual contributions in the
scientific field (Hota et al. 2019). A broad range of evidence for such a bibliometric study is
available in a peer-reviewed journal’s published data as a primary source of standardized
information (Baker et al. 2020; Gil-Doménech et al. 2020). A bibliometric study is divided
into two major nodes, initially explained in the literature of Kessler (1963). A bibliographic
couple, as a common source of intelligence, is generated if two publications refer to one
or more shared literature items. The literature in question cites two or more publications
and each cited publication receives a co-citation. Co-citations represent the intellectual
congruence and similarities in sources. Some frequently used bibliometric tools include the
analysis of authorship and keywords as co-authorship and co-occurrence analyses (Peters
and Van Raan 1991; Callon et al. 1983; Ravikumar et al. (2015). A bibliometric study also
includes measures for productivity, with two dimensions: the number of publications and
the influence through citations (Svensson 2010). Some other tools investigate each docu-
ment according to citation count per publication and the h-index Alonso et al. (2009). The
methodology is widely accepted for quantitative research in various domains (Ellegaard
and Wallin 2015), including financial management Zupic and Cater (2015).

A structured bibliometric methodology was used in the current study to achieve the
following objectives in line with the identified key ideas:

Objective 1: to examine the systematic growth pattern of publications and citations
within the subject area since its inception;

Objective 2: to explore the contributions and characteristics of authors, affiliated
institutions, and related countries;

Objective 3: to perform a detailed thematic analysis of the published articles and
predict the future based on this.

The bibliometric study method has been improved with the empirical establishment
of a hypothesis related to future trends related to the presence of the CAPM in research.

Ho. There is no significant linear trend for the number of publications in the CAPM-related area.

Ha. There is a significant linear trend for the number of publications in the CAPM-related area.

The research used bibliographic data to provide the significance of elements like the
number of publications, the number of citations, authors’ frequency, and contributing
institutions and countries. The most prominent themes emerging from the publications
were highlighted using keyword co-occurrence analysis and co-authorship analysis. The
intellectual level of documents was revealed by analyzing keywords and network design-
ing, primarily using “VOSviewer” software and the “Tableau” visual analytics tool. The
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software was the primary logical instrument in the study of document citation, co-author
networking, country networking, co-citation, and keyword search (Van Eck and Waltman
2009).

The data for the current bibliographic study were collected from the Scopus database
using the keyword set (“Capital* Asset* Pricing* Model*” OR “CAPM*”) (keywords corre-
spond to the research title, abstract, and/or keywords of the article), and were published
up to May-2023.

The Scopus database is considered to be the most suitable and most extensive available
dataset for academic study (Bartol et al. 2014). The Scopus database is utilized for a variety
of purposes: it is one of the most comprehensive databases of peer-reviewed academic
literature; it is one of the most easily available databases containing the most recognized
finance publications; it has extensive search capabilities, as well as bibliometric analysis
tools such as exporting bibliographical data based on user requirements; and compared to
other options such as Web of Science, it includes a substantial quantity of publications to
fulfil the purposes of this study. Figure 1 explains the research design used in the study
through a detailed flow chart. This visual representation explains the research’s sequential
and systematic approach, displaying each stage of the process from data collection to
sorting, analysis, and interpretation. By following this well-structured research design, the
study aimed to ensure rigor, reliability, and validity in the findings, ultimately contributing
to the credibility and significance of the research outcomes.

Figure 1. Design flow of the current study (author’s own processing).
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3. Description of the Data Collected

We found 3173 articles available in the Scopus database, with the selected keywords
TITLE-ABS-KEY (capital AND asset AND pricing AND model OR capm) AND (LIMIT-TO
(DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “cp”) OR LIMIT-TO (DOCTYPE, “re”)), up
until June-2023. These articles were sorted based on their citations from the year 1972 until
June-2023. We created a final sample of 2000 articles, with the elimination of articles with
one or less than one citation.

The trend to use the CAPM from its inception showed exponential growth until 2021
for “number of publications” and until 2020 for “count of citations”. The maximum number
of articles was 171, published in 2020, with the maximum annual citations being 133 in the
same year. The average annual publication number was nearly 61, with nearly 0.76 annual
citations per article during our study period and sample, as explained in Figure 2. The wide
acceptance of the CAPM as a fundamental model in finance can be easily explained via the
participation of authors across the globe. Authors from 128 different countries have been
contributing to the domain, and nearly 75% of the total contributions come from authors
from 52 countries, with a minimum document number of five. Nearly 52% of contributions
come from the top 10 countries, as shown in Figure 3 below. The maximum number of
contributions comes from those of US affiliation, with a total of 738 articles and a total
citation number of 42,694. The authors with Chinese affiliation come in second position,
with a total contribution of 271 and 9739 citations. These numbers indicate a dominance of
US-based authors in the field.

 

Figure 2. Annual trends in publications (distinct author count, number of titles, and count of citations
using Tableau) (author’s own processing).

 

Figure 3. Top 10 countries/authors and their contributions (author’s own processing).
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Guesmi Khaled, from the Paris School of Business, France, and Lee Cheng Few from
Rutgers University–New Brunswick, New Brunswick, US, are the highest contributing
authors, with 15 articles each.

In terms of journal and subject-wise analysis of the keywords, as shown in Figure 4 be-
low, we found that the “Journal of Financial Economics” has a maximum publication number
of 83 documents, followed by the “Journal of Finance” with 78 documents. Below, Figure 4
explains a list of the top 10 journals in the field. Although the CAPM is considered to be the
fundamental model in the field of economics, finance, and business management, we found
that the model is used in 25 different subject areas. Even subject areas like agriculture and
energy have good contributions, as shown in Figure 4 below. We have found the presence
of the CAPM even in the subject areas of healthcare, immunology, and microbiology. This
clearly indicates the wide acceptance of the CAPM in the academic universe.

 

Figure 4. List of top 10 journals and subjects based on contributions with the help of Tableau (author’s
own processing).

The strong influence of the journal can also be supported by an increasing trend in the
data of citations per cited publication.

4. Performance Analysis

The determination of the performance of a fundamental model in finance research
can be easily justified by the acceptance trend, citation trend, and impactful publications.
In this section, we present an analysis of the publications, citations, and network analysis,
showing the relative performance.

Guesmi, Khaled, from the IPAG Business School, France, has the highest number of
contributions of 15 documents, followed by Lee, Cheng-Few, from Rutgers University, the
United States, with 15 documents. The total citations to date are 64,696, with an average
citation score of 32 per article and 1269 citations per year in the selected sample and year.
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Table 1 provides a list of the 15 most cited publications in the field, along with their annual
citation indexes. Rolf W. Banz (1981) has had the maximum number of citations of 2520
since its publication, while Graham and Harvey (2001) have had the most effective citation
score with 113 citations per year (C/Y score) since its publication date.

Table 1. Top 15 most cited articles (author’s own processing).

Year Citation Count Authors’ Full Names Title Source Title C/Y

1981 2520 Banz, Rolf W. The relationship between return and
market value of common stocks

Journal of Financial
Economics 60

2001 2482 Graham, John R.;
Harvey, Campbell R.

The theory and practice of corporate
finance: Evidence from the field

Journal of Financial
Economics 113

1976 1402 Black, Fischer The pricing of commodity contracts Journal of Financial
Economics 30

2005 1190 Acharya, Viral V.;
Pedersen, Lasse Heje Asset pricing with liquidity risk Journal of Financial

Economics 66

1979 1172 Breeden, Douglas T.
An intertemporal asset pricing model

with stochastic consumption and
investment opportunities

Journal of Financial
Economics 27

2007 1121
Lambert, Richard;
Leuz, Christian;

Verrecchia, Robert E.

Accounting information, disclosure,
and the cost of capital

Journal of Accounting
Research 70

2001 1035 Hirshleifer, David Investor psychology and asset pricing Journal of Finance 47

1998 1002 Fama, Eugene F.;
French, Kenneth R.

Value versus growth: The international
evidence Journal of Finance 40

2006 752 Barro, Robert J. Rare disasters and asset markets in the
twentieth century

Quarterly Journal of
Economics 44

1997 735 Brav, Alon; Gompers,
Paul A.

Myth or reality? The long-run
underperformance of initial public

offerings: Evidence from venture and
non-venture capital-backed companies

Journal of Finance 28

2004 711 Fama, Eugene F.;
French, Kenneth R.

The Capital Asset Pricing Model:
Theory and Evidence

Journal of Economic
Perspectives 37

1981 706 Reinganum, Marc R.
Misspecification of capital asset pricing.
Empirical anomalies based on earnings’

yields and market values

Journal of Financial
Economics 17

2011 669 Cochrane, John H. Presidential Address: Discount Rates Journal of Finance 56

1976 653 Galai, Dan; Masulis,
Ronald W.

The option pricing model and the risk
factor of stock

Journal of Financial
Economics 14

2000 617 Henry, Peter Blair
Stock market liberalization, economic
reform, and emerging market equity

prices
Journal of Finance 27

4.1. Author and Collaboration Study

The collaborative study between authors in the field explains the level of concentration
and distribution of research ideas. The universe of the CAPM is highly diversified and well
spread in terms of authorship, whereby only 38 authors from different affiliations show a
co-authorship link strength of two and more, and the number of authors reduces to 23 with
a limited co-authorship link strength of five, as shown in Table 2 below.

A low value for the co-authorship link strength indicates a very high level of accept-
ability of the CAPM, as the research idea is neither promoted by a limited number of
authors nor a set of authors from the same organization.
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Table 2. Top 15 high co-authorship link strengths (author’s own processing).

Sr. No. Author TD TC TLS

1 Su, Chi-Wei 12 357 21

2 Sriboonchitta, S. 15 69 17

3 Umar, M. 11 263 17

4 Lee, A.C. 10 55 16

5 Qin, M. 8 313 16

6 Tao, R. 5 187 14

7 Lee, C.F. 15 72 13

8 Guesmi, K. 15 122 11

9 Tsai, C.-M. 5 16 10

10 Chanaim, S. 7 39 9

11 Autchariyapanitkul, K. 5 36 9

12 Chen, H.-Y. 6 34 8

13 Teulon, F. 8 54 7

14 Hearn, B. 11 155 6

15 Yamaka, W. 9 20 6
Note: TP = total publications; TC = total citations; TLS = total link strength.

The co-author network explains an author’s association with others and the authorship
pattern, as shown in Figure 5. There are 26 clusters dividing 566 contributing authors by
network linkage using VoSviewer network software. The size of the node in the network
reflects the number of collaborations with other nodes in the network. These clusters are
created based on a linking network with the highest link of 38 items. The density of the links
shows the strength of association between two nodes, i.e., a denser link between two nodes
signifies a higher number of collaborations. The web reveals the growing collaboration and
quality of collaboration among authors in the field.

 
Figure 5. Co-authorship network visualization using VOSviewer (26 clusters) (author’s own processing).

Figure 6 reveals the co-authorship coupling among the authors’ affiliated countries.
The CAPM model has wide acceptability, with authorship from more than 120 countries
in the last six decades. To study the clustering effect of co-authorship with a limitation of
a minimum of three documents from the country, a total of 61 qualified items with three
clusters are shown in the network coupling diagram made using VoSviewer. The US shows
a maximum link strength of 299, followed by the UK with a link strength of 177, and China
with a link strength of 113. The three clusters have groups of 26, 22, and 13 countries,
respectively.
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Figure 6. Co-authorship countries’ network visualization using VOSviewer (3 clusters) (author’s
own processing).

The diagram showing the co-authorship coupling among the authors’ affiliated in-
stitutions explains the relationships among contributing institutions, shown in Figure 7.
Co-authorships in scientific documents are the formal way of having intellectual or sci-
entific collaborations among scholars (Acedo et al. 2006). The coupling relation explains
the existence of two clusters with a total of 131 institutions with different geographical
locations. Cluster 1 has a group of 121 institutions, dominated by the NBER (National
Bureau of Economic Research), US, with a link strength of 27. Cluster 2 has a group of
10 institutions, dominated by the CEPR (Centre for Economic Policy Research), UK, with
a link strength of 22. The study reveals a stronghold of the CAPM as the keyword in the
research of these institutions and shows high reach in every part of the globe.

 
Figure 7. Co-authorship organization network visualization using VOSviewer (2 clusters) (author’s
own processing).

4.2. Keyword Coupling Study

Comerio and Strozzi (2019) explained the importance of the keyword co-occurrence
study as an adequate explanation of the publication themes and trends in the research
domain. The keyword coupling for “CAPM” and “Capital Asset Pricing Model” explains
the strength and linkage of the words in other finance-related domains. The keyword
coupling study based on the author’s keyword with the minimum frequency of five divides
all qualified documents into 10 clusters with two hundred eighty-seven keywords. In
Figure 8, clusters are presented in different colors, along with the dimensions of the bubble
representing the level of a keyword’s connectedness. The “CAPM” and “Capital Asset
Pricing Model” keywords have a combined link strength of 1033.
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Figure 8. Co-occurrence keyword network with a frequency of 5 using VOSviewer (10 clusters)
(author’s own processing).

Clusters 1 and 2, with forty-nine keywords each, dominated the publication data
in the areas of asset pricing and investment. The importance of the CAPM as the center
of the portfolio and asset pricing research has been proven by this keyword coupling
study. Research areas like cost of capital, asset pricing, portfolio, risk management, beta,
systematic risk, value premium, and many more have direct links with the CAPM.

5. Discussion and Future Trends

The current bibliometric study confirms the acceptance and growth of the CAPM in
the finance research area. The CAPM keyword has entered its sixth decade and is used
in various research fields and to promote different ideas. Figure 9, a keyword network
with different frequency levels, shows the strength of keywords in the domain research.
The CAPM has been used with nearly 5349 keywords at least once in the available sets
of the literature. There were 110 research ideas that used the CAPM at least 10 times in
the sample used for the study. Similarly, we can analyze the strength of the CAPM with
other keywords and research items according to the frequency of usage from the data given
below in Figure 9.

  
With frequency of 50 (8 items; 1 cluster) With frequency of 40 (11 items; 1 cluster) 

Figure 9. Cont.
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With frequency of 30 (18 items; 1 cluster) With frequency of 20 (31 items; 2 clusters) 

 
With frequency of 15 (54 items; 2 clusters) With frequency of 10 (110 items; 7 clusters) 

  
With frequency of 5 (287 items; 10 clusters) With frequency of 1 (5349 items; 35 clusters) 

Figure 9. Keyword network with different frequency levels using VOSviewer (author’s own processing).

The publication and research trend of the CAPM shows the dominance of five journals
in the last six decades, as shown in Figure 10. One can obviously see the increase in the
number of documents in the “Applied Finance and economic journal” between 2008 and
2014; similarly, the “Journal of Banking and Finance” shows spikes during the early years
between 1974 and 1984 and later in the years from 2014 onwards. These journals neither
show consistent growth nor downfall in the field. Silver (2012) supports trend analysis to
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examine upward, downward, or cyclical movements in indicators in such cases based on
historical data.

Figure 10. Year-wise publications in top 5 contributing journals in the field (author’s own processing).

A linear trend model was computed for a distinct count of titles (actual and forecasted)
in a given year. The model may be significant at p ≤ 0.05. The factor of the forecast
indicator may be significant at p ≤ 0.05. The p-value statistics helped us to reject the null
hypothesis (Ho) and accept the alternative hypothesis (Ha), “There is significant linear
trend for number of publications with the CAPM related area”, which helped us to achieve
Objective 3 of the study. The outcome of the model, as outlined in the Appendix A, indicates
a positive future trend in this research area. In outcome of forecasted trend line presented
in Figure 11, we found a downfall in the number of annual publications in the last few
years, good growth for the future is being seen in terms of numbers.

 
Figure 11. Future trends of research in the field (using Tableau) (author’s own processing).

6. Conclusions

The result of the current bibliometric study confirms the acceptability and growth of
the CAPM in the finance research area in the last six decades. The study helps to provide
some meaningful insights for academicians, researchers, reviewers, and editorial board
members about the research trend and contribution of the CAPM. The CAPM has been
used in various research in different subject areas with increasing recognition by scholars of
different institutions and countries. The study findings suggest that the primary research
area for the CAPM is to be used in publishing original empirical research of a high quality
from the financial sector. This is attracting high-quality research work from researchers
from various domains, like cost of capital, asset pricing, portfolio, risk management, beta,
systematic risk, value premium, and many more.

479



J. Risk Financial Manag. 2023, 16, 356

The data available from Scopus reveal the growth in citations and geographical pen-
etration, but the research area is still dominated by authors from the US, UK, China,
and Australia.

The study used various techniques to examine the impact of the CAPM since its incep-
tion between 1972 and 2023. The study highlighted development in both publications and
citations to measure productivity and reputation. Over time, the CAPM has transitioned
from focusing on promoting and developing systematic risk and portfolio management
research to a broader array of mainly the economics and econometrics categories. The
findings suggest that quantitative research with essential words related to the cost of capital,
capital structure, emerging market, asset pricing, and value premium dominates publica-
tions. The bibliographic coupling of articles established by the NBER (National Bureau
of Economic Research) from the US and the CEPR (Centre for Economic Policy Research)
from the UK are the top two contributing institutions.

An analysis of the evolution of new research in the area of finance and its relation
with the CAPM explains its bright future. The result of the trend analysis is in favor of
the CAPM and its acceptability in the research domain, even in the upcoming future. The
p-value-statistics-based rejection of the null hypothesis (Ho) supports the relevance of the
CAPM as an important research topic in the domain in the future.

7. Implications, Limitations, and Future Directions

This study has put forward and achieved three objectives to streamline the implica-
tions: Objective 1 helped to identify the trends in article publications over time and their
key influence, along with the citation dynamics; Objective 2 provided a detailed analysis of
the collaborative networks and research productivity to shed light on the global acceptance
of the CAPM within the subject area; and Objective 3 aimed to provide the significant break-
throughs within the subject area, offering valuable insights into the intellectual landscape
and the major future research directions.

By achieving these objectives, the study contributes valuable knowledge about the
subject area’s evolution, the contributions of various stakeholders, and the prevailing
themes and ideas that have influenced its development. The current study based on the
utilization and importance of the CAPM in the finance literature demonstrates the relevance
of the concept in research, mainly in the fields of investment management, portfolio
management, return, and risk aspects. Using the bibliometric method of highlighting the
changes in the CAPM, the outcome can be used by researchers and academicians in the
field to set their research agendas and plan their course delivery. The research outcome
can also be suitable for professionals in the field of asset management to decide upon their
dependency on the CAPM or any fundamental asset pricing model. Although the frequency
of the CAPM usage in the literature has shown a downward trend in the last few years,
the concept is still valid and helpful for the development of new portfolio management
strategies. Additionally, the findings can serve as a foundation for future research agendas,
inform decisions in academia, policy, and industry related to the fundamental investment
model, contribute to the body of knowledge, and foster evidence-based decision making
for stakeholders.

While our research has yielded valuable insights, it is essential to acknowledge some
limitations that may have influenced the findings. The primary limitation lies in the
selection of research articles for our study. We only considered 2000 articles out of a total of
317,300 available in the subject area. This sampling constraint could potentially introduce a
bias in the results and limit the generalizability of our findings to the entire population of
published articles.

To address the limitations mentioned above and enhance the robustness of the study,
future research in this area can explore the following directions: the inclusion of all pub-
lished articles, and extending the use of the model to other related studies or subject areas
can be beneficial to the field and can advance one’s understanding of the subject area. Ad-
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ditionally, such efforts will strengthen the credibility and applicability of research findings
in diverse contexts.
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Appendix A

Appendix A.1. Trend Lines Model

A linear trend model was computed for a distinct count of titles (actual and forecasted)
in a given year. The model may be significant at p ≤ 0.05. The factor of the forecast indicator
may be significant at p ≤ 0.05.

Model Formula: Forecast Indicator × (Year + Intercept)
Number of modeled observations: 61
Number of filtered observations: 0
Model degrees of freedom: 4
Residual degrees of freedom (DFs): 57
SSE (sum squared error): 17,334
MSE (mean squared error): 304.105
R-Squared: 0.940849
Standard error: 17.4386
p-value (significance): <0.0001

Appendix A.2. Analysis of Variance

Field DF SSE MSE F p-Value

Forecast indicator 2 10,184.821 5092.41 16.7456 <0.0001

Appendix A.3. Individual Trend Lines

Panes Color Line Coefficients

Row Column
Forecast

Indicator
p-Value DF Term Value StdErr t-Value p-Value

Distinct count of titles Year Estimate <0.0001 8 Year 5.87273 0.0340151 172.651 <0.0001
Intercept −11,710.3 68.9656 −169.798 <0.0001

Distinct count of titles Year Actual <0.0001 49 Year 3.13231 0.178921 17.5067 <0.0001
Intercept −6198.77 357.314 −17.3482 <0.0001
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Abstract: In this paper, we mainly study the impact of the implied certainty equivalent rate on
investment in financial markets. First, we derived the mathematical expression of the implied
certainty equivalent rate by using put-call parity, and then we selected some company stocks and
options; we considered the best-performing and worst-performing company stocks and options from
the beginning of 2023 to the present for empirical research. By visualizing the relationship between
the time to maturity, moneyness, and implied certainty equivalent rate of these options, we have
obtained a universal conclusion—a positive implied certainty equivalent rate is more suitable for
investment than a negative implied certainty equivalent rate, but for a positive implied certainty
equivalent rate, a larger value also means a higher investment risk. Next, we applied these results to
the electric vehicle industry, and by comparing several well-known US electric vehicle production
companies, we further strengthened our conclusions. Finally, we give a warning concerning risk, that
is, investment in the financial market should not focus solely on the implied certainty equivalent
rate, because investment is not an easy task, and many factors need to be considered, including some
factors that are difficult to predict with models.

Keywords: put-call parity; implied put-call parity certainty equivalent rate; electric vehicle industry

1. Introduction

The certainty equivalent rate is a measure derived from the certainty equivalent1,
which plays a pivotal role in financial investment. Investors usually need to refer to the
changing trend of this value to decide whether a certain company is worth investing in or
if certain companies are worth investing in, that is, it is used to determine the priority of
investment. The main purpose of this paper is to solve these two problems.

First, we give the mathematical expression of the certainty equivalent rate using the
put-call parity formula. From the mathematical expression, we can find the factors that
cause changes in the certainty equivalent rate.

Second, we select the stocks and options of three companies with the best performance
from the beginning of 2023 to the current time and the stocks and options of three companies
with the worst performance for empirical research. Through data visualization, we obtain
a general conclusion.

Third, we apply the general conclusions drawn to the US electric vehicle industry.
Specifically, we select three well-known US electric vehicle companies and explore whether
they are worth investing in from the perspective of the certainty equivalent rate and the
priority of investment.

Finally, we summarize this paper and emphasize that investment is an extremely
complicated matter that requires the consideration of many factors, not just the certainty
equivalent rate. When many factors are considered, investors are more likely to make the
optimal decision.
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2. Theoretical Support

The key theorem that we will use is put-call parity. A detailed explanation of put-call
parity can be found in Hull (2022). Overall, Hull (2022) considers the interest and dividends
to be paid in accordance with continuous compounding, but in a real financial market,
interest and dividends are more likely to be paid at specific points in time rather than
every second. Thus, we prefer to use the discrete-compounding version of put-call parity
when we consider problems in a real financial market. Hence, the following is the detailed
mathematical expression of put-call parity that we will use in this paper:

C +
K

(1 + r)T = P +
S

(1 + q)T , (1)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T def
= The time to maturity,

C def
= A given company’s call option price with respect to the maturity date,

P def
= A given company’s put option price with respect to the maturity date,

K def
= A given company’s option strike price with respect to the maturity date,

S def
= A given company’s stock price with respect to the start date,

q def
= A given company’s dividend yield,

r def
= A given company’s put-call parity certainty equivalent rate.

Based on (1), we can obtain the mathematical expression for r:

r =
[

K(1 + q)T

S + (P − C)(1 + q)T

] 1
T

. (2)

In the following sections, we will mainly use (2) to explore the relationship between
the time to maturity T, the moneyness S/K, and the implied company-specific put-call
parity certainty equivalent rate r.

3. Empirical Research

3.1. Preparation

Before conducting our empirical research, we had to figure out how to obtain the
values of the arguments in (2):

• Argument S: Since our purpose is to explore the stocks’ behavior in 2023, we choose
the start date as 3 January 2023, which is the first business day in 2023. Therefore, S in
(2) will be the company’s stock price on 3 January 2023. We can find these values in
every stock’s “historical data” section on Yahoo Finance.

• Argument q: We will consider the value of the “forward annual dividend yield”; the
relevant data can be found in the “statistics” section on Yahoo Finance.

• Arguments T and K: On CBOE, we can find a given company’s stock option’s strike
T and its maturity date. Then, we subtract the start date (3 January 2023) from the
maturity date and convert the result into years2. Finally, we obtain the value of the
time to maturity T.

• Arguments C and P: Although we cannot obtain the values of these two arguments
directly from CBOE, we can obtain the “bid” and “ask” of every option. Here, we
calculate the mid-price of the bid and ask, and we consider it to be the corresponding
call option price and put option price.
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3.2. Data Visualization and Explanation

Based on financial news from Saul (2023), Son (2023), Shinn and Velasquez (2023),
and Khederian (2023), we can select three of the best-performing stocks, which come from
Apple, Nvidia, and Meta, respectively. On the other hand, the three worst-performing
stocks that we select are from First Republic Bank, Signature Bank, and Charles Schwab,
respectively. Next, we use MATLAB to create figures that describe the relationship between
the time to maturity T3, the moneyness S/K4, and the implied put-call parity certainty
equivalent rate r for the companies we selected, and we explain some key values from
these figures. (Figures 1–3 correspond to the best-performing companies, while Figures 4–6
correspond to the worst-performing companies).

Figure 1. Relationship between the time to maturity, moneyness, and the implied put-call parity
certainty equivalent rate for Apple stock.

Figure 2. Relationship between the time to maturity, moneyness, and the implied put-call parity
certainty equivalent rate for Nvidia stock.

From Table 15, it is clear that the best-performing companies have strictly positive
implied put-call parity certainty equivalent rates, regardless of the maximum value, min-
imum value, or mean value. On the other hand, the worst-performing companies have
strictly negative implied put-call parity certainty equivalent rates.
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Figure 3. Relationship between the time to maturity, moneyness, and the implied put-call parity
certainty equivalent rate for Meta stock.

Figure 4. Relationship between the time to maturity, moneyness, and the implied put-call parity
certainty equivalent rate for First Republic Bank stock.

Figure 5. Relationship between the time to maturity, moneyness, and the implied put-call parity
certainty equivalent rate for Signature Bank stock.
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Figure 6. Relationship between the time to maturity, moneyness, and the implied put-call parity
certainty equivalent rate for Charles Schwab stock.

Table 1. Implied put-call parity certainty equivalent rate (best- and worst-performing companies).

Company Maximum Value Minimum Value Mean Value

Apple 0.8644 0.1181 0.4437
Nvidia 4.0908 0.3308 1.8897
Meta 2.6418 0.2238 1.2135

First Republic Bank −0.8600 −0.9998 −0.9731
Signature Bank −0.0166 −0.4008 −0.1601
Charles Schwab −0.0481 −0.4523 −0.2625

A positive rate means that investors have a high probability of obtaining a return if
they invest in the company’s stock, while a negative rate means that investors may lose
their money if they try to invest in the company’s stock. By combining the data and the
financial news, we find that the implied put-call parity certainty equivalent rate is quite
useful; it can help investors determine which company’s stock option is worth investing in.

Now, let us consider the shape of the graph. For the best-performing companies, we
can observe that when the time to maturity T is small, the corresponding rate is high, which
means that in the near future the return of the stock option is quite high, so investors may
make money by investing in the option. Of course, they may have to take on some amount
of risk. In this case, we would suggest that the investor consider Apple first, then Meta,
and finally Nvidia. A high rate represents a high risk, and normal investors definitely do
not want to take on a high risk when they decide to invest in something.

As time goes by, i.e., as the value of the time to maturity T becomes larger, the implied
put-call parity certainty equivalent rate will become smaller because it is reasonable to
consider the long-term rate as the riskless rate of the financial market. Additionally, it is
clear that the riskless rate of the financial market should be lower than the near-future
implied put-call parity certainty equivalent rates of the best-performing companies.

Let us consider the worst-performing companies. We can see that the values of the
certainty equivalent rates of these companies are negative, which means that investors
have a high risk of losing money if they decide to invest in these companies’ stock options.

Finally, from Figures 1–6, we can see that if we fix the value of the time to maturity T
and change the value of the moneyness S/K, the value of the implied certainty equivalent
rate r hardly changes, which tells us that the implied certainty equivalent rate is almost
independent of moneyness.
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4. Application: Electric Vehicle Industry

Today, more and more people are paying attention to environmental issues. To reduce
the pollution released by vehicles, people are considering driving electric vehicles6 instead
of traditional oil-powered vehicles. In the US, there are several well-known companies that
produce electric vehicles, such as Tesla, General Motors, and Ford Motor Company7. We
can apply the results we obtained in the previous section to these electric vehicle companies.
Figures 7–9 visualize the data of these companies, and the key values derived from these
figures are given in Table 2.

Figure 7. Relationship between the time to maturity, moneyness, and the implied put-call parity
certainty equivalent rate for Tesla stock.

Figure 8. Relationship between the time to maturity, moneyness, and the implied put-call parity
certainty equivalent rate for General Motors stock.

Table 2. Implied put-call parity certainty equivalent rate (electric vehicle companies).

Company Maximum Value Minimum Value Mean Value

Tesla 2.1970 0.1994 1.0320
General Motors 0.0927 0.0395 0.0708

Ford Motor Company 0.4549 0.0615 0.2626

Based on the shapes of the graphs shown in Figures 7–9, we can see that these three
companies are all doing well. In the near future, we recommend that investors invest in
these companies’ stock options. According to the data from Table 2, we can see that if we
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plot the three surfaces on the same coordinate axis, the order of these three surfaces from
top to bottom is Tesla, then Ford Motor Company, and finally General Motors. Based on
the positional relationships, we can see that investors should prefer to invest in General
Motors, then Ford Motor Company, and finally Tesla.

Figure 9. Relationship between the time to maturity, moneyness, and the implied put-call parity
certainty equivalent rate for Ford Motor Company stock.

5. Summary

In this paper, we have used put-call parity to derive the implied put-call parity
certainty equivalent rate. We have also considered the meaning of positive rates and
negative rates. Then, we utilize the idea8 of the implied volatility surface to construct the
implied put-call parity certainty equivalent rate surface. From the relative positions of
these surfaces, we can determine which stock options we should consider investing in first.

However, the certainty equivalent rate is only one factor that should be considered in
investing. It is obvious that investors cannot consider this factor alone. When deciding to
invest in a product, investors should also consider other factors, such as political factors.
To be more specific, at the end of May 2023, Tesla CEO Elon Musk’s visit to China (See the
details in Kharpal (2023)) caused Tesla’s stock to soar and made him the world’s richest
man. Thus, investors who invested in Tesla before this event made a large amount of money.
It is clear that we cannot predict such an outcome via a mathematical model. Hence, when
deciding to invest in a product, investors should also consider other factors, so that they
have a better chance of making optimal decisions.
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Notes

1 A detailed explanation of the certainty equivalent can be found in Kenton (2021).
2 This is because the time to maturity T in the put-call parity expression has units of years, and we assume that one calendar year

has 252 business days in this paper.
3 The options’ maturity dates for Apple, Nvidia, Meta, and Charles Schwab range from 9 June 2023 to 19 December 2025; the

options’ maturity dates for First Republic Bank range from 9 June 2023 to 19 July 2024; and the options’ maturity dates for
Signature Bank range from 16 June 2023 to 15 December 2023.
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4 The strike prices for these six companies’ options correspond to the maturity dates.
5 Via put-call parity, we can obtain different rates with respect to different time to maturity values, and thus we can determine the

maximum value, minimum value, and mean value of these rates. The values in Table 2 are similar.
6 The current electric vehicle market situation is described in Sanguesa et al. (2021), and the reasons that electric vehicles can reduce

pollution can be found in Thomas (2012).
7 The options’ maturity dates for Tesla and Ford Motor Company range from 9 June 2023 to 19 December 2025; the options’ maturity

dates for General Motors range from 9 June 2023 to 20 June 2025. The options’ strike prices correspond to the maturity dates.
8 The implied volatility surface is a three-dimensional surface that explores the relationship between the time to maturity T,

moneyness S/K, and volatility σ.
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Abstract: A new econometric methodology based on deep learning is proposed for determining the
causality of the financial time series. This method is applied to the imbalances in daily transactions
in individual stocks and also in exchange-traded funds (ETFs) with a nanosecond time stamp.
Based on our method, we conclude that transaction imbalances of ETFs alone are more informative
than transaction imbalances in the entire market despite the domination of single-issue stocks in
imbalance messages.
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1. Introduction

A conventional method for determining the causality of the financial time series was
developed by Clive Granger in the 1980s, who was awarded the Nobel Memorial Prize in
2003. The essence of the method is that a subset of an information set is excluded from anal-
ysis, and probability distributions are evaluated on a smaller information set (Diebold 2006;
Diks and Panchenko 2006). The generation of probability distributions usually requires
fitting the vector autoregressive model (VAR) to the time series and excluding some of the
explanatory variables.

Nonparametric versions of the Granger causality tests were developed later, espe-
cially in the papers by Baek and Brock (1992), and extended by many authors (Diks and
Panchenko 2006, and op. cit.). The Baek and Brock test and its variants are computationally
very intensive for the large datasets prevailing in modern securities studies. They require
state space coverage with cells of the size ε > 0 and computing correlations between the
cells for the decreasing epsilon.

Since the 2010s, transactions in the stock market began to carry nanosecond time
stamps. This change requires new methods of analysis adapted to the new realities.1 The
emergence of the big data framework and attempts to use deep learning methods created
the following challenge: Regressions became nonlinear, and may contain hundreds of
thousands of parameters in the case of this paper—and trillions in the case of Google
datasets. Furthermore, deep learning algorithms usually present a “black box”, and it is
hard to attribute the input changes to the output differences.

The capacity of the human mind to analyze multidimensional time series consisting
of billions of market events has remained largely unchanged. Because of our evolution
in three-dimensional space, humans have the best grasp of two-dimensional information.
Consequently, the methods of image analysis are among the best developed in the whole
discipline of signal processing.

My paper adapts deep learning methods developed for image processing to the
causality of the financial time series. Comparing two datasets, the one which requires more
information to produce a deepfake using a neural network is considered more informative.
A precise formulation of these criteria is provided in Section 4.

C-GANs (convolutional generational adversarial neural networks) appeared in 2015.
The original purpose of the method was the image analysis and/or generation of deepfakes
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(Goodfellow 2017). The essence of the C-GAN is that the network is divided into two
parts: generator and discriminator, or critic (Rivas 2020). The generator net produces fake
images from random noise and learns to improve them with respect to the training file.
The discriminator tries to distinguish fake from real images based on training statistics.

To demonstrate this method’s utility, I use it to analyze trading imbalances in New
York Stock Exchange (NYSE) trading, which the Securities and Exchange Commission
(SEC) requires to be stored with a nanosecond time stamp. These images, for different
days, are standardized to ensure their comparability. The imbalance events constitute a
situation when the counterparty does not instantly deliver the stock to close its position.
The number of these events per day is several million. The time series are preprocessed
into two-dimensional images of realistic size to be analyzed using a PC.

Why is this problem important? Given the instances of “flash crashes” in the market,
the first and largest of those reported being the Flash Crash of 2010 on the NYSE, the
question of whether exchange-traded funds stabilize or destabilize the market became
increasingly important. In particular, the Flash Crash was attributed to the toxicity of
liquidity of S&P minis orders (Easley et al. 2013). Because of the explosive growth in ETF
markets (more information in Section 2), the traded volume in the compound portfolios
representing ETF shares can easily exceed trading volume in the underlying securities.
Intuitively, this can cause a problem in the delivery of the underlying, which can propagate
through the system and, in rare cases, cause a crash. Alternatively, the Mini-Flash crash of
24 August 2015 demonstrated a significant deviation in market index price—subject to the
circuit breaking several times—and weighted ETF prices (for a detailed description, see
Moise 2023, especially Figure 1).

Figure 1. The rate of daily imbalance messages in the TAQ ARCA database. During 45,000 s of the
day-to-day operation of the system, there were around 4 million messages, the maximum coming at
or around 4:00 p.m. The maximum rate during a 100 s interval typically reached 200,000. Most events
are concentrated at the beginning, noontime, and the end of the day.

In the current paper, I explore whether the market imbalance events drive ETF im-
balances or vice versa. This problem is a good testbed for the proposed deep learning
methodology.

The paper is structured as follows. In Section 2, I briefly outline commonly referred
information on the ETF market. In Section 3, I describe the structure of the database.
Section 4 describes preprocessing of SEC data into two-dimensional images. In Section 5, we
establish the causality (information link) between ETF and market transaction imbalances.
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Section 6 has an additional robustness check of the proposed results. Section 7 is the
summary of the results. The Appendix A describes different kinds of imbalance messages
according to NYSE. I review a possible theoretical justification for ETF informational
dominance in Appendix B.

2. Formulation of the Problem and the Literature Review

The ETF market has exhibited explosive growth in recent years (NYSE 2021). Invented
to securitize stock inventories of large asset managers, it developed into a major asset class
in its own right (Gastineau 2010). Different anomalies in the markets, particularly the Flash
Crash in May 2010, were partly attributed to the instability of exchange-traded products
(ETPs), especially the S&P minis (Easley et al. 2013).

The question of whether the introduction of ETFs increase or decrease market quality
has been discussed in many authoritative publications (Bhattacharya and O’Hara 2018, and
op. cit.), Israeli et al. (2017) mentioned that there are two main opposing reasons for expec-
tations of market quality change. On the positive side, exposure to ETFs provides more
information on the underlying stocks, particularly stocks with lesser liquidity exposed to
little coverage by analysts. The question of whether the use of ETFs increase or decrease the
information efficiency of markets was also posed by Glosten et al. (2020). They suggested
that the inclusion of ETFs increases information efficiency for low-liquidity stocks.

On the negative side, uninformed traders tend to exit the market in the underlying
securities in favor of ETFs, thus depressing liquidity. Furthermore, much ETF activity happens
at market close (Shum et al. 2016). Shum et al. noticed that ETFs typically have larger mispricing
and wider spreads during end-of-trading, especially on the days of most volatile trading.

If the influence of ETFs is so prominent, can they be a catalyst for extreme events in
the market? Some authors, e.g., A. Madhavan, have answered positively (Madhavan and
Sobczyk 2019). At least, there is a recognition that new kinds of risks are inherent in the
proliferation of ETFs (Pagano et al. 2019). If that is true, can big data analyses and deep
learning instruments provide some warning about whether extreme events may be coming?
And, what is the direction of the information flow—from ETF to the broader market or vice
versa? (Glosten et al. 2020).

To answer this question, we develop a structured methodology, which allows us to
determine with some certainty whether ETF illiquidity results from market fluctuations or if
it is the other way around. The hypothetical mechanism is as follows: ETF trading initiates
the delivery of ETF constituents (“in-kind” transaction) or a cash equivalent (“in-cash”
transaction) if the underlying assets are easily tradable (Bhattacharya and O’Hara 2018).
If the aggregate volume of ETF executions were small and/or evenly spread in time, this
would introduce friction in orderly market execution.

And indeed, there are a few inherent problems. First, there needs to be more clarity
as to whether trade imbalance results from the actual economic events in one or more
underlying stocks or from the effects of stock aggregation by the ETFs, for instance, changes
in the credit risk of the ETF swap counterparty.

Second, because ETF transactions are prominent in hedges, they are highly nonuniform
throughout the day (Shum et al. 2016). A company that misses a delivery can wait until
the end of the day to close the deal when the market is more stable. This paper does not
judge whether ETFs are a “good” or “bad” influence on market liquidity. It strives to
clarify the enormous influence ETFs have on the stock market, particularly the direction of
information transmission.

According to the foundational models of market microstructure, the principal driver
of price changes is the imbalances in supply and demand for a given security (Kyle 1985;
Glosten and Milgrom 1985). Currently, imbalance messages can be followed with nanosec-
ond precision. There is probably little value added to further increasing accuracy because
signals only propagate a few meters—i.e., the size of the trading room—with already
achievable latency (Bartlett and MacCrory 2019). One of the first studies going up to
nanosecond granularity was “Price discovery in high resolution” (Hasbrouck 2021). This
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wealth of available data creates many problems of its own. The human mind is poorly
adapted to rationalize such amounts of data. Furthermore, our senses evolved in 3D space
and have difficulty comprehending multidimensional datasets.

One of the principal channels of influence of the ETF market on overall market stability
is using ETF shares for shorting and hedging. ETF shares “fail-to-deliver” on settlements for
different reasons. Fail-to-deliver could be a signal of actual economic troubles in a company,
shorting in expectation of a real price movement by the AP (authorized provider), the
analog of the market makers (MM) for stock, or “operational shorting” (Evans et al. 2018).
The description of operational shorting in the above-cited paper by Evans, Moussawi,
Pagano, and Sedunov is so exhaustive that I provide a somewhat long quote.2 Before
a security is classified as “fail-to-deliver”, an imbalance record is created. Usually, the
imbalance is cleared by end-of-day trading or the next day before trading hours. The
reputation penalty for being cited in imbalances is typically small (Evans et al. 2018).

The reason markets and the SEC do not regulate intraday deliveries with harsher
penalties is obscure. We hypothesize that the inherent optionality involved in paying for
order flow (PFOF) is partially responsible for this market feature (for PFOF analysis, see,
e.g., (Lynch 2022)). If there were substantial fines or a negative reputation associated with
the “failure-to-deliver”, the PFOF mechanism would suffer disruptions. Consider that an
expected negative return for a penalty would overcome the price improvement offered by
the wholesaler. Because the non-delivery probability is nonzero, only relatively large price
improvements would justify the counterparty risk, and a large volume of trade would miss
the wholesaler. A detailed discussion of the issue is outside the scope of this paper.

This work is dedicated to researching methods to rationalize imbalance datasets with
nanosecond time stamps. We compress them into two-dimensional “fingerprints”, for
which a rich array of algorithms developed for analyzing the visual images is already
available. The dataset we use is the list of imbalance messages provided by NYSE Arca.
“NYSE Arca is the world-leading ETF exchange in terms of volumes and listings. In
November 2021, the exchange had a commanding 17.3% of the ETF market share in the US”
(Hayes 2022). The special significance of the data for our problem setting is illustrated by
the fact that a glitch in the NYSE Arca trading system influenced hundreds of ETF funds in
March 2017 (Loder 2017).

Messages in our database have the following types: type “3”, type “34”, and type
“105”. Message type 3 is a symbol index mapping (reset) message. Message 34 is a security
status message, which can indicate “opening delay”, “trading halt”, and “no open/no
resume status”. Finally, message type 105 is an imbalance message. More information
about the format and content of the messages and the datasets can be found in Appendix A
and (NYSE Technologies 2014).

To make use of the large statistics of the nanosecond time stamps of the 105 messages,
we selected them for our analysis. Our choice is justified because the daily stream of 105
messages is in the millions, while 3 and 34 messages are in the tens of thousands.

The number of imbalance messages (type 105) for each trading day is around four
million, each comprising 15–20 standardized fields. TAQ NYSE Arca equities—TAQ NYSE
imbalance files provide “buy and sell imbalances sent at specified intervals during auctions
throughout the trading day for all listed securities” (NYSE Technologies 2014).

3. Preprocessing—Formation of the State Variables Database

We selected the following variables: (1) the number of messages per unit time, and
price, (2) the dollar imbalance at the exception message, and (3) the remaining imbalance
at settlement. The latter is rarely different from zero because a failure to rectify stock
imbalances at the close of a trading session indicates a significant failure in market discipline
and may entail legal consequences.

Our data can be divided into two unequal datasets: market messages in their totality
and ETF-related messages, and the first group encompasses the second. Because of the
large volume of the data, we used an algorithmic selection of data for the ETF group. The
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messages in the datasets contain the identifier “E” for exchange-traded funds, but in other
places, “E” can indicate corporate bonds, but it is too common a letter to filter for it in a
text file. Instead, we chose separate data on market participants provided by the NYSE, of
which we filtered the names explicitly containing the words “exchange-traded” or “fund”.
This identification is not 100% accurate because some closed-end mutual funds, which are
not ETFs, could have entered our list, but they are expected to be dominated by ETFs.

We were left with 1061 names automatically selected from the messages file. The
number of daily events related to our list can be half a million or more, so sorting by hand
would be difficult, if possible at all.

We further grouped our data as follows: First, the number of type 105 messages per
100 s. Second, the cumulative imbalance every 100 s in a 121/2 h trading day3,4. The number
of price bins chosen was approximately equal to the number of time intervals. Dollar
imbalances are calculated by the following formula:

$Imbt = p·(Imbt − Settle4:00) (1)

where p is the last market price, Imbt is the undelivered number of shares, and Settle4:00 is
the number of shares unsettled by the end of the trading session, usually at 4:00 p.m.

The 100 s intervals were chosen arbitrarily but intended to have a two-dimensional data
tensor processed on a laptop and have sufficiently acceptable statistics. The imbalances are
distributed quite irregularly at around 45,000 s and can be visually grouped into the “beginning
of the day settlement”, “midday settlement”, and “end-of-day settlement” (see Figure 1).

As expected, most of the dollar imbalances are small. To avoid data being swamped
into a trivial distribution—a gigantic zeroth bin—and a uniformly small right tail, we used
a logarithmic transformation for all variables, including time:

∼
xt = ln(1 + xt). Unity was

added to deal with the zeroes in the database. Nonlinear transformation distorts probability
distributions, but given their sharply concentrated and peaked shape, we did not expect it
to influence the results too much.

The plot of the summary statistics for a typical day is shown in Figure 2. We observed
that the maximum number of imbalance messages created by ETFs for each 100 s during a
trading day is about one-eighth of the total number of exceptions (~25,000:200,000) in the
market, but the cumulative value of imbalances created by the ETFs is about 60% of the
total. This disparity suggests that average imbalances are much higher when ETF shares
are involved.

Figure 2. Cumulative dollar imbalances as a function of the number of imbalance messages per 100 s
period. Orange dots are the transaction imbalances involving only ETF shares, and blue dots are the
total market imbalance. We observe that the message rate of ETFs is approximately one-eighth of the
total market, but their dollar value exceeds 60% of the cumulative market imbalances.
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The final step was making our data amenable to deep learning algorithms, mostly
designed to deal with visual data (“fake images”). We further compressed our nonuniform
rectangular matrices—in some cases, messaging did not begin at exactly 3:30 a.m., etc. One
data file included only NYSE into 96 × 96 squares, which we call “fingerprints” of daily
trading.5 (Figure 3). The fingerprints do not have an obvious interpretation; rather, they
take the form of a machine-readable image, like a histogram. The transaction rate was
plotted on the vertical scale. We plotted an accompanying dollar value for an imbalance
on the horizontal scale. This compression method allows for treating daily imbalances as
uniform images, which can be subjected to processing using deep learning algorithms.

Five randomly selected trading days (7–8 October 2019, 9 September 2020, and
4–5 October 2020) produced ten daily samples: one with total market imbalance mes-
sages, the other with ETF data only. We constructed five testing and five training samples
from them according to the protocol exhibited in Figure 4.

Figure 3. Example of the “fingerprint” of a trading day on a natural logarithmic scale. The 105-type
message rate and the cumulative dollar amount of imbalances are placed into 96 bins.

 

Figure 4. Composition of the training and testing samples. Each number indicates a fingerprint of a
given day in chronological order (7 October 2019, 8 October 2019, 9 September 2020, 4 October 2021,
and 5 October 2021). Note that only the first samples in corresponding columns are mirror images of
each other. Blue diagonal pattern indicates ETF-only samples.
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A relative proportion of all-market and ETF-only samples, according to Figure 3, is
provided in Table 1.

Table 1. The proportion of the all-market and ETF-only samples in each simulation.

Training File Market:ETF Test File Market:ETF

tr1 100%:0% tes1 0%:100%

tr2 80%:20% tes2 20%:80%

tr3 60%:40% tes3 40%:60%

tr4 40%:60% tes4 60%:40%

tr5 20%:80% tes5 80%:20%

4. Distances on a State Space

Because of their “black box” nature, the output of neural networks is hard to rationalize.
First, the human mind has evolved to analyze two- or three-dimensional images in three-
dimensional space. Most humans cannot directly comprehend tensor inputs, intermediate
results, and outputs typical for neural networks. Second, the results of neural network
analyses are necessarily stochastic and depend on the large number of estimated intrinsic
parameters, which are frequently inaccessible, but in any case, too numerous to rationalize.
Third, deep learning results can depend on how the training and testing samples are
organized, even if they represent identical datasets. All of this can indicate the failure of a
deep learning procedure (Brownlee 2021), but it can also show additional information we
fail to recognize.6 Because neural networks are “black boxes”, instead of the interpretation
of a hundred thousand—in my case trillions of—parameters in the case of Google and
Microsoft deep learning networks, one has to design numerical experiments and analyze
the output from a deep learning algorithm in its entirety.

To systematize the results, we propose two measures of divergence of images as fol-
lows: After the C-GAN generated fake images (“fingerprints”) of the session, we considered
these images as (1) matrices and (2) nonnormalized probability distributions.

The first approach is to treat arrays as matrices (tensors). We computed the pseudo-
metric cosine between the image arrays X and Y according to the following formula:

CXY =
‖X + Y‖2 − ‖X − Y‖2

4‖X‖·‖Y‖ (2)

In the above formula, the norm ||·|| is a Frobenius matrix norm representing each
image array. In the first stage, we computed the distance as the average of each twentieth
of the last 400 images in the sequence. Because, sometimes, the fake image is an empty list
having a zero norm, we modified this formula according to the following prescription:

Ctrain, f ake =
‖train + f ake‖2 − ‖train − f ake‖2

4‖train‖·‖test‖ (3)

Ctest, f ake =
‖test + f ake‖2 − ‖test − f ake‖2

4‖train‖·‖test‖
Equation (3) provides answers close to the correct geometric Formula (2), but it

does not fail in the case of an empty fake image. The pseudo-metric measure, calculated
according to Equation (3), provides a fair picture of the affinity of the fake visual images
to the originals (see Figure 5), but it is still unstable with respect to different stochastic
realizations of the simulated images.
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(A) 

(B) 

Figure 5. The output of C-GAN. (A) Set of 400 fake images generated by the generator part of the
deep learning network during 1600 epochs. (B) An individual fake image (compare Figure 3).

So, we applied a second stage averaging according to the formula for the mutual
information:

MIn f o =
1
N

N

∑
i=1

log2

(
Ctrain, f ake,i

Ctest, f ake,i

)
(4)

In Equation (4), N is the number of independent network runs. Note that this formula
does not depend on whether we use a “geometrically correct” Equation (2) or a computa-
tionally convenient Equation (3). Unlike separate Ctrain,fake, and Ctest,fake norms, which may
vary widely between consecutive runs of the C-GAN, their ratio is reasonably stable for a
given training and testing sample. Furthermore, if one exchanges training and test samples,
the argument of the summation of Equation (4) only changes its sign.

The second option is to treat output arrays as quasiprobability distributions. We used
Kullback–Leibler (KL) divergences DKL(P||Q) between the two distributions (Burnham
and Anderson 2002). As is well known, Kullback–Leibler divergence is not a real metric
and is asymmetrical with respect to its arguments. The intuitive meaning of DKL(P||Q) is
an information gain achieved when one replaces distribution Q (usually meaning sample)
with distribution P (usually meaning model). In our context, distribution P is a training
or test dataset, and distribution(s) Q are fakes generated using the neural net. A final
information criterion is:

r =
DKL

(
Xtest

∣∣∣∣∣∣X f ake

)
DKL

(
Xtrain

∣∣∣∣∣∣X f ake

) (5)

499



J. Risk Financial Manag. 2023, 16, 338

The values r > 1 suggest that the test file is difficult to reproduce by training the net.
The values r < 1 indicate that reproducing the dataset—the neural network does not know
anything about trading, which generates observable data—is relatively easy.

There are also several variations for the design of the samples we analyzed. In the
first preliminary design, we compared data of the entire market, which includes ETFs,
against the data files, which contain only our sample(s) of ETFs. In that case, we expected a
positive sign of mutual information when we trained the network using the entire market
file—because the information from the ETFs is already contained in a training file. We
display these results in the next section.

In the second design, we separated data files into single-issue and ETF stocks. The
positive sign of the mutual information must appear if the training occurs on the more
informative information subset of the two. We identified a more informative data file as
causally determining a less informative data file.

Despite the complexity of the described procedure, the intuition behind it is quite
simple. A convolutional generative adversarial network generates many fake images
inspired by a training sample. These images are compared with a test sample. If the fake
images perfectly fit both the training and test samples, the mutual information between
them is exactly zero. Vice versa, very divergent training and test distributions suggest
much additional information, which must be known to reproduce a dataset.

Positive mutual information or a higher correlation between a fake distribution and
training one than between a fake and test distribution means that a training file is easier to
fake than the test. On the contrary, small or negative mutual information suggests that the
C-GAN’s operation produces fakes, which are relatively easily distinguishable from the
training file.

5. Preliminary Results of C-GAN Analysis

The results of the fingerprint analysis using the C-GAN are displayed in Tables 2 and 3.
In that analysis, we used our vocabulary of 1060 funds automatically selected by words in
their name. For the robustness of this choice, we also tested the list of 1753 US ETF funds
in the database: https://www.etf.com/channels/us-etfs (accessed on 20 May 2021).7 We
display five runs of the C-GAN network with the construction of samples according to
the first line from Table 1. The comparison with the first cell of Table 3 suggests that with
this second sample of ETFs, mutual information is only strengthened in the direction of
“training by the overall market” and “testing by the ETF-only file”.

Each cell in Table 2 is the binary logarithm of the ratio of the distances of the generator-
devised fingerprint between training and testing samples, respectively. Table 3 shows
that the mutual information generally decreases with a diminishing fraction of market
samples and increasing ETF samples. The fraction of the market vs. ETF samples in the
testing samples demonstrates no visible tendency, with one exception. When the testing
file is almost entirely composed of the market samples, mutual information becomes zero
irrespective of the training samples (Tables 2 and 3).8

The column and row averages are provided in Table 3. Testing sample 2 is an outlier.
We tentatively attribute it to one of the day’s data being exceptional. And indeed, the file
for 9 September 2020 contained, probably, only stocks listed on NYSE, not all traded stocks.
All averages are positive. This suggests that all-market files are easier approximated by the
generator-produced fakes than the ETF-only files. We consider this evidence that ETF-only
files have more distinguishing features than the all-market files and, consequently, are
more distant from fakes than the training files, i.e., if one used ETF data as a training set, it
was relatively easy to train the network to have a relatively high correlation of fakes with
all-market samples. On the contrary, the all-market training set was insufficient to train the
network to distinguish fakes from the original ETF data.

In a further robustness check, we tested another sample of 1753 ETFs selected using
an online database in the same setup. The results are similar to our ad-hoc tests of the
1060 computer-selected funds (Table 4).
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Table 2. The results of measuring MInfo (Equations (2) and (3)) between the 20 fake images created
using the generator and the training and test images. C-GAN was run for 1600 epochs, and the fake
images were taken uniformly from the last 400 images.

tr1 tr2 tr3 tr4 tr5

tes1 0.7855 0.6538 0.1511 0.7556 −0.4958 −0.0203 0.2263 −0.1734 −0.6959 0.8837
tes2 0.5147 - 1.0126 - −0.2086 - 0.5735 - −1.4379 -
tes3 2.5042 2.6258 2.2150 2.5771 2.2438 2.0920 2.5458 2.3841 2.0923 2.2976
tes4 0.3850 0.3785 0.4250 0.7784 0.7484 0.0000 0.1193 0.9425 −0.0687 −0.4286
tes5 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 -

Table 3. Mutual information (Equation (3)) for the training and test samples.

Training File Test File Average Test File Training File Average

tr1 0.9809 tes1 0.2071

tr2 0.9894 tes2 0.0909

tr3 0.5449 tes3 2.3578

tr4 0.8273 tes4 0.3280

tr5 0.3303 tes5 0

Table 4. Mutual information for the selection of 1753 ETFs from etf.com. The arrow shows the
direction from the training to the test file in the C-GAN network. SU denotes “NYSE Stock Universe”
data, and “ETF” denotes ETF-only data. The arrow indicates the direction from training to test files.

Runs MI SU→ETF MI ETF→SU

1 0.8605 0.2059

2 1.0595 −1.0925

3 0.8900 0.2510

4 0.6670 −1.0926

5 1.0403 0.1261

Average 0.9035 −0.3204

Std. dev. 0.1589 0.7063

6. The Test of Single-Issue Stocks against ETF Data

We conducted a test wherein we excluded the data for 1753 ETFs from the market data.
The results of the test are displayed in Table 5.

We observed that one can teach the network by feeding it with ETF-only data. Our
network successfully interpolated single-issue stock data by the “learned fakes” but not vice
versa. We tentatively make the case that ETF trading provides more information for traders in
single-issue stocks, and henceforth, the direction of causality is from ETFs to single issues. A
possible economic explanation for this phenomenon is provided in Appendix B.

The treatment of the neural network outputs as probability distributions allows for
using another measure on the state space, namely Kullback–Leibler distance (see Section 4).
The results of computing the parameter r from Equation (5) are shown in Table 6.9 The
layout of this table reflects the difficulty of expressing relations between tensors in a
human-readable format.

In each of the cells, except one—the upper second from the left—a lower asymmetry
between the proportions of ETF and single-issue samples in test and training files corre-
sponds to a higher value of r. Average values of r in the cells are the largest for a low (25%
and 50%) fraction of the ETF samples in the test file. Henceforth, a GAN network can falsify
the single-issue data more successfully.
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Table 5. Mutual information for the selection of 1753 ETFs from etf.com. The arrow shows the direction
from the training to the test file in the C-GAN network. SI denotes “Single-issue stock” data, and “ETF”
denotes ETF-only data. The arrow indicates the direction from training to test files. We observed that the
ETF-trained network successfully teaches SI-enabled data, while the obverse is impossible.

Runs MI ETF→SI MI SI→ETF

1 0.6857 −0.0495

2 0.9169 0.2002

3 0.9599 −0.0520

4 0.9822 −0.0670

5 1.0789 0.0675

Average 0.9247 0.0199

Std. dev. 0.1462 0.1143

Table 6. The ratio of Kullback–Leibler distances r (Equation (5)) as a function of the share of ETF
samples in test data (1) and the difference between the proportion of ETF and single-issue samples in
the test and training files, respectively (2). Averages in each group are indicated by (3). In each cell
except one, lower asymmetry entails a higher r index. Color coding is added for visibility.

ETF
Fraction

ETF Fraction Difference between Training and Test Sets
ETF

FractionAverages
(Rows)

100% 50% 0% −50% 100% 50% 0% −50%
Averages
(Rows)

2.252 75% 4.251 0.802 9.865 3.15 25% 4.455
75% 2.665 2.023 1.983 2.823 25%

1.892 100% 2.330 1.440 7.787 41.549 50% 13.142
100% 2.031 1.331 1.927 1.305 50%

Averages
(columns) 2.819 1.399 5.391 12.207 Averages

(columns)

7. Conclusions

In this paper, I presented a new econometric methodology to investigate the causality
of the financial time series. In variance to original Granger causality, this methodology
does not rely on any explicit model of the stochastic process by which the input data were
generated. It is preferable to nonparametric Granger causality techniques in the case of
extra-large or multidimensional datasets because it does not rely on the computation of
correlations between multiple subsets of the original data.

The proposed method was applied to solve an important question: whether individual
stocks or ETFs drive the liquidity of markets. I chose the information content of the number
of imbalances to measure liquidity. The latter indicates the inability to instantly fill the
quote at a given price and the dollar value of incomplete transactions. The information
content was measured as a pseudodistance between the time series in a two-dimensional
state space (the number of a price bucket and its dollar imbalance).

The preliminary answer is that both the rate of imbalance arrivals and the dollar value
of resulting imbalances of the ETFs are more informative—in the sense of finer features
nonreproducible by fakes—than the individual stocks with ETFs counted as separate stocks.
Higher information content of ETF imbalances is not surprising. Indeed, the imbalance
messages produced by 1000+ ETFs constitute about one-eighth of the totality of exceptions
in the entire database on average, but the dollar value of their imbalances is about two-
thirds of the entire dollar value of the market imbalance. Theoretically, this is not surprising
because, as pointed out by (Shum et al. 2016) and (Evans et al. 2018), ETF securities are
used for hedging much more frequently than individual stocks. An explanation of this
phenomenon based on extant economic theory is provided in Appendix B.
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Appendix B

The problem of ETFs as potential market drivers was explored by Semyon Melamed
(Melamed 2015), who provided a dynamic equilibrium theory of the interaction of ETFs
and the general market. In particular, he proved that if approved participants (AP, analog
of market makers) act as arbitrageurs, correlations in a broad market increase. Moreover,
stocks included in physical ETFs influence correlations more than stocks in synthetic-only
ETFs. This effect can be amplified by less liquid securities in some of the physical ETF
portfolios (Marta and Riva 2022). These securities are inevitably present in the ETF tied to
MSCI World, Russell 2000, and other popular indexes. Then, ETF participants can emulate
not the entire portfolio but a representative subset (see also (Koont et al. 2022)). However,
Melamed’s theory is difficult to use for practical estimation because of many unobservable
parameters. A more parsimonious model was proposed by Pan and Zeng (2017). Techni-
cally, their treatment calls a risky illiquid asset a “bond”, but for intraday trading, it makes
no difference with stock. In particular, we can use Theorem 6.1 to elucidate the information
content of the action of APs (Koont et al. 2022; Melamed 2015; Pan and Zeng 2017) in ETFs.
One of the principal results of Pan and Zeng was Equation (A2) for the optimal number of
shares issued z*. If we assume a high correlation between ETF and illiquid securities lying
in the foundation of its portfolio, it is convenient to make a substitution for the correlation
factor ρ → 1 − ε ≤ 1. This assumption is certainly true when applied to the entire ETF
universe. Then, we can rewrite Equation (A2) uisng a slightly different notation:

z∗ =
(
λ + θσ2)(π + cL) + λε(π − cE)

λ(λ + 2μ) + 2εσ2(λ + μ)
(A1)

Here, in Equation (1), λ is the Kyle–Amihud illiquidity factor, μ is the flotation cost
of the ETF share, θ is the risk avoidance factor, σ is the volatility, cL = cB + λxB− − cE ≥ 0
is the difference between price movement of the illiquid (cB) and liquid asset (cE) for the
customer order xB−.

The current study quantitatively measures the enhanced informational content of
the ETF imbalances by Equation (A1). For instance, for the pair tes1–tr1 (Table 2), this
suggests that per dollar imbalance basis, the ETF transaction is 20.7855 = 1.724 times more
informative than an action of the entire market, ETFs included.

The measure of the informativeness of AP trades is hardto design. Yet, if we assume
that it is some version of entropy, i.e., a convex functional on the optimal number of newly
issued shares, then the first-order condition will be

δS(z)
δz

|z=z∗δz∗ = 0

An approximate formula for the FOC becomes

π − cE
π + cL

=
2θσ2(λ + μ + θσ2)

λ(λ + 2μ)
(A2)

The price mismatch near the equilibrium has an order of 2θσ2

λ , i.e., the volatility is
greatly amplified if the risk avoidance factor is nonzero and the Kyle–Amihud constant is
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small.10 Given the same level of risk aversion, higher liquidity indicates higher information
content. All of the above supports the conclusion of higher information brought upon by
the AP orders.

Notes

1 Hasbrouck, https://www.youtube.com/watch?v=EZCgW1mFRP8 2010 (accessed on 20 May 2021).
2 “One important objective of APs in the primary ETF market is to harvest the difference between ETF market price and its NAV

. . . As demand for the ETF grows from investors in the secondary market, the ETF’s market price should increase [Increasing the
possibility of market arbitrage—P. L.] However . . . selling ETF shares and buying the underlying basket/creating the ETF shares
are not necessarily instantaneous. The AP sells the new ETF shares to satisfy bullish order imbalances but can opt to delay the
physical share creation until a future date. By selling ETF shares that have not yet been created, the AP incurs a short position for
operational reasons . . . that we hereafter call an “operational short” position.” The paper (Evans et al. 2018) also lists “directional
shorting”, i.e., speculation on the changing market price as a reason for “fail-to-deliver.”.

3 Our messages begin at 3:30 a.m. and end at 4 p.m., 45,000 s in total, usually, but not always, 449,100 s intervals starting with zero.
Each time interval contains ~9000 messages on average. Yet, the highest message rate in each price bin can be more than twenty
times as high.

4 The price bin methodology is reminiscent of the VPIN measure of Easley et al. (2013). We experimented with linear as well as the
logarithmic scale of our data. In this paper, we use a logarithmic scale.

5 Each fingerprint contains 9216 pixels. We compress our ~400 MB daily database into ~200 K text file, a compression of 2000 times.
6 The output from C-GAN indicates a deep learning failure called “mode collapse” (Brownlee 2021). Yet, the look-alike of the fake

images remains excellent.
7 We used the data from only four days in our sampling because, for unknown reasons, one of the TAQ ARCA files has no overlap

with the second ETF list.
8 We must issue a caution that most applications of the GAN networks suffer from overfitting and mode drop (Yazici et al. 2020).

Visual inspection of the losses by the critic and the generator suggests that it can take place but, currently, we can do nothing about
it. Variation in the number of epochs, discrimination tolerance and other standard remedies do not change the qualitative picture.

9 Data in Table 6 results from a single run of the C-GAN network.
10 The small Kyle-Amihud constant is a reasonable assumption given the relatively high liquidity of the NYSE-traded shares.
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Abstract: In this study, we investigated some extensions of the classical portfolio theory and try to
evaluate them in a situation of crisis. We studied some additional criteria for portfolio selection, based
on market multiples representing the overall situation of companies. Additionally, we investigated
semi-variance as an alternative measure of risk. We developed a range of portfolios that were built
using different criteria for risk and the fundamental values of companies from the Polish stock
market. Then, we compared their returns during the crisis that occurred after the outbreak of
the COVID-19 pandemic. The results of empirical research on the major companies traded on the
Warsaw Stock Exchange reveal that investors can achieve better investment results by augmenting
the standard Markowitz model with an additional criterion connected with the fundamental standing
of companies, such as book-to-market or earnings-to-market ratios. The second result is that using
nonclassical risk measures such as semi-variance instead of variance provides better results, and this
method of measuring risk is especially essential in periods characterized by the collapse of the capital
market.

Keywords: portfolio analysis; fundamental value; multicriterial choice; market multiple; down-
side risk

1. Introduction

The classical methods for selecting an investment portfolio, developed by Markowitz
(1952, 1959) and Sharpe (1963), only take into account the market performance of companies,
measured by assessing changes in their prices. In the classical model, the potential portfolios
of investment are evaluated according to two criteria: expected return (which describes the
potential level of profitability from an investment) and risk. The first criterion is measured
using the expected rate of return, and the second one using the variance or standard
deviation of returns. No other criteria are considered that might give some additional
information about the financial standing and prospects of a company that could influence
the prices of its shares.

In recent years, however, there has been growing interest in portfolio analysis methods
with alternative ways of constructing portfolios. An article by Kolm et al. (2014) contains a
review of major developments in portfolio theory since its origin, and a book by Doumpos
and Zopounidis (2014) draws attention to the multicriteria methods used in this field. Most
innovations depend on using criteria of risk other than variance or the standard deviation of
returns, for example, semi-variance or conditional value at risk. An article by Fabozzi et al.
(2007) presents a variety of risk measures that are currently used in the practice of portfolio
investments. In other approaches, some characteristics of the distribution of returns on
assets are used as additional criteria for evaluating portfolio performance. Examples of
such characteristics include skewness or kurtosis. Expanded portfolio analysis is presented
by Briec et al. (2007) and Rodríguez et al. (2011).

There are several studies that include criteria that are not based on returns on assets.
A branch of the literature takes into account ethical, social, or environmental criteria in
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portfolio construction, for example, the so-called socially responsible investments approach
described in Steuer et al. (2007). Articles by Ballestero et al. (2012), Bilbao-Terol et al. (2013),
and Burchi and Włodarczyk (2020) are a few more examples illustrating this approach.

Lo et al. (2003) considered the liquidity of stocks as an additional criterion in the
portfolio construction process. There are only a few papers that also take into consideration
the fundamental values of companies. Xidonas et al. (2010) considered the sum of dividends
paid by companies. Jacobs and Levy (2013) took into account the risk associated with
leverage. The utility function of an investor includes the costs of margin calls, which can
force borrowers to liquidate securities at adverse prices due to their illiquidity; losses
exceeding the capital invested; and the possibility of bankruptcy.

In accordance with the theoretical concept and empirical research (Fama and French
1992, 2015, 2017; Lam 2002; Zaremba and Czapkiewicz 2017), fundamental factors are im-
portant in shaping returns on capital markets. Therefore, it seems rational to include them
in a stock portfolio model. The current extensive research on the main financial markets
of Eastern Europe has corroborated the significant impact of fundamental information
concerning companies on their rates of return. This was also found to hold true for the
book-to-market ratio as an indicator of the financial standing of companies. The research
sample included five countries: the Czech Republic, Hungary, Poland, Russia, and Turkey
(Zaremba and Czapkiewicz 2017).

There have been several attempts to combine portfolio analysis with the fundamen-
tal analysis of companies from the Polish stock markets. Tarczyński (2002) developed a
synthetic measure to evaluate the economic and financial standing of a company, which
he called the taxonomic measure of attractiveness of investment (TMAI), and applied this
measure as an additional criterion in the evaluation of possible portfolios. The portfolio
constructed using TMAI was called a fundamental portfolio. This model has been modified
in recent years, for example, by substituting variance with semi-variance as a risk measure
(Rutkowska-Ziarko and Garsztka 2014). In Rutkowska-Ziarko (2013), the Mahalanobis dis-
tance was used to determine the TMAI due to the possible correlations between diagnostic
financial variables. Another method was proposed by Pośpiech (2019) in their research
on financial ratios, and market indicators were applied to guide the initial selection of
companies.

In this work, in addition to the classic measure of risk (variance), we also used semi-
variance. The use of the downside risk measure in choosing an investment portfolio seems
to be particularly useful in times of strong declines in the financial markets, such as those
in February and March 2020. These were caused by a decline in investor optimism caused
by the development of the COVID-19 pandemic. In the calculation of semi-variance, one
takes into account only negative deviations below a certain level. Upward deviations,
which are connected with higher returns than expected, are not taken into account in
determining this measure. Another advantage of semi-variance is that there is no need
to make any assumptions about the distribution of rates of return and investors’ utility
functions (Harlow and Rao 1989). The quadratic utility function has some undesirable
properties and therefore misrepresents the actual behavior of investors. First, it reaches
a maximum for a certain rate of return, and then, its value decreases with an increase in
returns, which is in direct contradiction to the preferences of investors, who always prefer to
have more than less. Building an effective portfolio for semi-variance is more complicated
than the approach in which variance is used as a risk measure. It is impossible to use
standard solver software to find a minimum semi-variance portfolio. In the calculation of
semi-covariances, one has to know in which periods the rate of return of the entire portfolio
was lower than the target value, and this depends on the composition of the portfolio.

This article is organized as follows: After this introduction, in Section 2, we present
a brief description of commonly used market multiples and give some reasons why they
could be used as an additional criterion for portfolio choice. In Section 3, downside
risk measures are described. Section 4 contains a mathematical formulation of portfolio
optimization problems and presents the algorithms that were used to solve them. Section 5
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presents the results of empirical research concerning the Polish stock market during the
crisis of the COVID-19 pandemic.

2. Market Multiples

Market multiples provide an indication of how the market values a publicly traded
company. To calculate the values of these multiples, market data and financial results of a
company are used. Breen (1968) and Basu (1977) analyzed the effect of market multiples on
the future profitability of companies. They found that portfolios of companies with lower
P/E multiples had higher annual returns in the following year than portfolios formed from
companies with higher P/E multiples. The article of Basu (1977) is frequently cited as the
first publication in which the impact of market multiples on the future profitability of the
companies is analyzed. However, similar research was carried out even earlier, for example,
by William Breen (1968). He examined companies from index S&P500 indexed over the
period from 1953 to 1966, using the COMPUSTAT database. This is a source of fundamental
and market information on active and inactive companies and covers around 99% of the
world’s total market capitalization. For certain years, equally weighted portfolios (of 10
and 50 companies) were constructed using the stocks of companies with the lowest and
highest P/E multiples. The results indicate that portfolios built with stocks of companies
with lower P/E multiples had higher annual returns in the following year than portfolios
built with stocks of companies with higher P/E multiples.

Barbee et al. (2008) investigated the impact of market multiples values on future prices
of stocks. They analyzed the profitability of equally weighted portfolios built using the
shares of companies with various values of different market multiples.

The most popular indicator of the market’s valuation of a company is the P/E multiple,
which relates the earnings per one ordinary share to its market price:

P/E =
market price per share

pro f it per share
,

In this study, four different measures of the ability of a company to generate profit were
considered: net profit (EAT); gross profit (GP); earnings before interest, taxes, depreciation,
and amortization (EBITDA); and operating profit (EBIT).

Net profit is the last position in the Profit and Loss Account, it is calculated as follows:

EAT = net sales − cost o f goods sold − operating expense − taxes − interest.

Gross profit is earnings before taxation. EBITDA is earnings before interest, taxes,
depreciation, and amortization. EBITDA can be used to describe a company’s financial
performance without taking into account its capital structure. The operating profit is an
accounting measure that measures the profits that a company generates from its operating
activities. Interest and taxes are not considered here.

One can relate a share price not only to different profit categories but also to other
characteristics that describe the economic situation of a company. It may be important for
an investor to relate the market valuation of the company’s share capital to the net value of
its assets. The P/BV multiple relates the price of an ordinary share to the book value of
the company, estimated per ordinary share. This multiple shows the market value of the
company in relation to its book value.

P/BV =
market value per share

book value per share

where
book value per share =

assets − liabilities
number o f shares

.

The book value refers to the total amount the company would be worth if it liquidated
its assets and paid back all its liabilities, and it is also the net asset value of the company.
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A positive relationship between the book-to-market ratio and average returns was
described by Rosenberg et al. (1985). This phenomenon was also observed in Japanese
stocks (Chan et al. 1991). Based on this research, Fama and French (1992) suggested that
the book-to-market ratio would be an important risk factor explaining the variability of
stock rate of returns.

In this paper, instead of using classical market multiples, we used their reciprocals,
i.e., the values of financial indicators (expressed per one share) divided by the current
market price of a share. The reason is the additivity of such indicators. The value of these
indicators for the portfolio as a whole is a weighted average of the values of the indicators
of individual companies. Thus, P/BV is replaced by the book-to-market ratio ( BV/M):

BV/M =
book value o f the company

market value o f the company
=

book value per share
price o f the share

.

The same was used for the P/E multiple, in fact, for the whole group of market
multiples based on various methods for calculating the company’s profits. Instead of
the price-to-equity ratio, the earnings-to-price ratio (E/M) was used, calculated using the
equation below:

E/M =
pro f it per share

market price o f a share
.

3. Downside Risk in Portfolio Choice

In portfolio theory, variance has been a commonly used measure of risk in capital
market analysis from its inception to the present day (Markowitz 1952). At the same time,
there have been doubts about the validity of using this risk measure for almost as long
(Markowitz 1959). The main disadvantage of variance as a measure of risk is that it treats
negative and positive deviations from a mean return in the same way. In fact, negative
deviations are undesirable, and positive deviations create an opportunity for greater profit.
To measure only negative deviations, Markowitz (1959) proposed semi-variance, which is
an average of deviations below a certain level. Semi-variance and lower moments consider
only the variability on the left side of a distribution. The reference point can be the mean,
as in the case of variance, but another value can also be used as the reference point. Using
semi-variance as a measure of risk is consistent with investors’ intuitive perception of risk
(Boasson et al. 2011).

Variance is assumed to be an appropriate risk measure when the distribution of returns
is normal, or at least symmetric, or when an investor has a quadratic utility function. The
classical Markowitz model (Markowitz 1952) is ineffective in selecting portfolios that
comprise assets with skewed returns. The traditional mean–variance model, which treats
deviations above and below the target return equally, tends to overestimate risk and
imposes unnecessary conditions that exclude portfolios that are downside efficient.

Pla-Santamaria and Bravo (2013) constructed portfolios of blue-chip stocks from the
Dow Jones Industrial Average. Their results show significant differences between the
portfolios obtained by mean–semi-variance efficient frontier model and those with the
same expected returns obtained using the classical Markowitz mean–variance efficient
frontier model.

An investor who does not wish the return of their portfolio to fail below the target
rate of return would tend to compose portfolios that minimize downside risk measures
(Klebaner et al. 2017).

It is believed that, in symmetrical distributions, variance as a risk measure is no worse
than semi-variance (Estrada and Serra 2005; Galagedera and Brooks 2007). However, re-
search on capital markets shows that the distributions of rates of return of many companies
are not normal or at least symmetrical (Adcock and Shutes 2005; Estrada and Serra 2005;
Markowski 2001; Post and van Vliet 2006; Sun and Yan 2003). Then, the use of lower-risk
measures becomes important. In the case of right-skewed distributions of returns, the
main part of the variance includes upper deviations, which mean the achievement of high
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returns. The impact of lower deviations is relatively small. For this reason, investors are
looking for companies with right-skewed distributions of returns (Galagedera and Brooks
2007; Peiro 1999), which suggests that the issue of skewness cannot be ignored in the risk
analysis, even if the distribution of the returns of some companies are symmetrical. Also,
according to the perspective theory (Kahneman and Tversky 1979), it is more appropriate
to use semi-variance instead of variance as a risk measure.

The above arguments speak in favor of lower-risk measures when compared with their
classic counterparts. Lower-risk measures, such as a semi-variance, allow for a universal
approach to risk analysis and equity portfolio construction, regardless of the empirical
distribution of returns. One also does not have to assume a specific analytical form of the
utility function. It is sufficient to make the obvious assumption that an investor prefers
to earn more than less, and therefore higher rates of return are better than lower rates of
return.

A semi-variance, defined by Markowitz (1959), is a lower counterpart of a variance.
This lower-risk measure is the sum of the squared of lower deviations from the target rate
of return γ. It is calculated using the following formula:

dS2(γ) =
∑m

t=1 dt
2(γ)

m − 1
, t = (1, 2, . . . , m),

where

dt(γ) =

{
0 f or zt ≥ γ

zt − γ f or zt < γ

zt—Rate of return of company i in period t;
dS2(γ)—Semi-variance for company i;
m—The number of time periods;
γ—The mean rate of return or any target rate of return chosen by an investor.
Extensions of semi-variance as a risk measure are lower partial moments, introduced

by Bawa (1975) and Fishburn (1977). According to these authors, the lower partial moment
of order n is given by

LPMn
i =

1
m − 1∑m

t=1 lpmn
it,

where

lpmit =

{
0 f or zt ≥ γ

zt − γ f or zt < γ
.

Notice that for n = 2, the lower partial moment is equal to semi-variance.
The semi-variance of an investment portfolio dS2

P(γ) is given by

dS2
P(γ) = ∑k

i=1 ∑k
j=1 xixjdij(γ)

where xi is the share of stock i in the portfolio, and dij(γ) is the semi-covariance of the rate
of return for the i-th and the j-th shares, which is defined by

dij(γ) =
1

m − 1∑m
t=1 dijt(γ), (1)

where

dijt(γ) =

{
0 f or zpt ≥ γ

(zit − γ)
(
zjt − γ

)
f or zpt < γ

zpt = ∑k
i=1 xizit, t = 1, 2, . . . , m.
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4. Problems Related to Portfolio Choice

We consider a portfolio of k different assets. Let μi be a mean return of an asset i,
estimated from the last m observations of

μi =
∑m

t=1 zit
m

.

where σij denotes a covariance between the returns of asset i and asset j:

σij =
1

m − 1∑m
t=1 (zit − μi)

(
zjt − μj

)
.

where xi denotes the proportion of the wealth invested in asset i. The mean return of the
portfolio is then given using the following formula:

μP = ∑k
i=1 xiμi

and the variance of the portfolio’s rate of return is given by

S2
P = ∑k

i=1 ∑k
j=1 xixjσij.

The semi-variance of the portfolio form given by

dS2
P(γ) = ∑k

i=1 ∑k
j=1 xixjdij(γ),

where semi-covariances of assets’ returns are given in (1).
We assume that some market multiples are also considered. It can be connected with

the book-to-market value per share or with the earnings-to-price ratio of a share. Let βi
denote the value of this criterion for the asset i. The value of this multiple for the whole
portfolio is given by

βP = ∑k
i=1 xiβi.

In the empirical part of the work, we consider portfolios that are the solutions to the
following optimization problems:

A portfolio minimizing the variance, i.e., a portfolio that is the solution of

min
x1,..., xk

S2
P =

k

∑
i=1

k

∑
j=1

xixjσij (2)

with the constraint that
∑k

i=1 xi = 1, (3)

x1, x2, . . . xk ≥ 0. (4)

A portfolio that minimizes variance with a constraint on the mean return: In this case,
we assume that the mean return of the portfolio should be no smaller than the required rate
of return μ0. The optimization problem is given in (2)–(4) with an additional constraint.

μP =
k

∑
i=1

xiμi ≥ μ0 (5)

A portfolio that minimizes variance with constraints on the mean return and its
fundamental value: We assume that the fundamental value of the portfolio (measured
with one of the market multiples) should not be lower than its required value β0. In the
empirical part of this study, we assume that the minimal value of the portfolio multiple
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should be equal to the average of the multiples for all the companies considered. This
yields problems (2)–(5) with an additional constraint.

βP = ∑k
i=1 xiβi ≥ β0. (6)

Mathematically, variance minimization problems are problems of quadratic opti-
mization problems with linear constraints, which are determined using equations and
inequalities. They can be solved using standard algorithms. We solved them using the
method of Goldfarb and Idnani (1983) implemented in the R package quadprog.

The second set of portfolios are those that were optimized with the use of semi-variance
as a measure of risk. The optimization problems were defined as follows:

A portfolio minimizing the unconditional semi-variance, i.e., a portfolio that is the
solution of

min
x1,..., xk

dS2
P(γ) = ∑k

i=1 ∑k
j=1 xixjdij(γ), (7)

with the constraints determined using (3) and (4).
A portfolio minimizing semi-variance with a constraint on mean return, which should

be no lower then μ0: the optimization problem is given with the set of conditions in (7) and
(3)–(5).

A portfolio that minimizes semi-variance with a constraint on mean return and its
fundamental value: the optimization problem is given with the set of conditions (7) and
(3)–(6).

To solve these problems, the following numerical algorithm was used: We started with
an initial portfolio (in this case, it was a portfolio minimizing variance). Then, we solved
each of the problems as a problem of quadratic programming, using the Goldfarb and
Idnani (1983) method. After each iteration, we re-estimated semi-covariances dij(γ) and
solved the problems with the new input data. We repeated this process until convergence,
i.e., until changes in the portfolio structure between each iteration were sufficiently small.
In the calculations, we used procedures written in R and the R package quadprog.

5. Data and Empirical Results

The studies covered 20 of the largest and most liquid companies listed on the Warsaw
Stock Exchange, excluding financial companies. Close share prices from the period 1
April 2016–4 September 2020 were taken for analysis. In the estimation, we assessed the
portfolios using their monthly rate of returns. The parameters (mean returns, variances,
and semi-variances) used in constructing the portfolios investigated in this research were
estimated using a period of three years before the start of an investment. Figures from
financial statements were used, namely the net profit (EAT); the gross profit (GP); earnings
before interest, taxes, depreciation, and amortization (EBITDA); the operating profit (EBIT);
and the book value (BV). They changed with the publication of the quarterly financial
statements of the companies. We calculated the appropriate indicators for each company
according to its financial statement. For the calculation of financial indicators, we always
used the latest available data, according to the date of publication. We considered the
financial statements for the period from Q3 2019 to Q2 2020. Information on financial
results is usually published with a delay of 60 to 120 calendar days. It was assumed that
portfolios purchased on a given day were sold after a month (four weeks). The data were
taken from the Thomson Reuters database—Refinitiv Eikon.

In economics, it is not possible to carry out repetitive experiments, as in, for example,
physics or chemistry. Thus, in this article, the COVID-19 pandemic was used as a natural
experiment. During the pandemic, there was a sharp collapse in stock exchanges, which
allows us to test the usefulness of various risk diversification methods in times of sharp
drops in prices in financial markets.

In this paper, we considered 15 types of portfolios. Table 1 lists the descriptions of
these types and the symbols used to refer to them.
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Table 1. The list of the types of constructed portfolios.

Portfolio Description

Equally weighted A portfolio with an equal share of each asset
MinV A portfolio minimizing variance (unconditionally)

MinV-E A portfolio minimizing variance with a constraint on mean return
MinV-E-EBIT A portfolio minimizing variance with a constraint on mean return and EBIT/M
MinV-E-GP A portfolio minimizing variance with a constraint on mean return and GP/M

MinV-E-EBITA A portfolio minimizing variance with a constraint on mean return and EBITDA/M
MinV-E-EAT A portfolio minimizing variance with a constraint on mean return and EAT/M

MinV-E-B A portfolio minimizing variance with a constraint on mean return and B/M
MinSV A portfolio minimizing semi-variance (unconditionally)

MinSV-E A portfolio minimizing semi-variance with a constraint on mean return
MinSV-E-EBIT A portfolio minimizing semi-variance with a constraint on mean return and EBIT/M
MinSV-E-GP A portfolio minimizing semi-variance with a constraint on mean return and GP/M

MinSV-E-EBITA A portfolio minimizing semi-variance with a constraint on mean return and EBITDA/M
MinSV-E-EAT A portfolio minimizing semi-variance with a constraint on mean return and EAT/M
MinSV-E-BV A portfolio minimizing semi-variance with a constraint on mean return and BV/M

Altogether, we developed 2655 portfolios during 177 trading days. We assumed that
the investment period is one month. However, to assess the performance of the strategies,
we calculated portfolios for each trading day. Thus, the first analyzed set of portfolios was
created on 21 November 2019, and its performance was calculated based on one-month
returns (i.e., price changes until 19 December 2019). The next set of portfolios was created
on the next trading day (22 November 2019), and the performance was evaluated based on
price changes until 20 December 2019, etc.

During the research period, four research subperiods of different lengths were speci-
fied. The division criterion was the changes in the situation of the capital market, which
was reflected in the changes in the values of the WIG Index, the main index on the Warsaw
Stock Exchange. The key aspect for identifying subperiods was the situation of the market
during buying and selling a portfolio. Table 2 outlines the descriptions of the subperiods.

Table 2. Research periods.

The Time of Buying a Portfolio The Situation of the Capital Market

21 November 2019–29 January 2020 Buying and selling before the collapse of the market

30 January 2020–10 March 2020 Selling during the collapse of the market

11 March 2020–13 May 2020 Buying and selling during the growth of the market

14 May 2020–07 August 2020 Buying and selling during the stabilization of the market

Due to the very large number of the considered portfolios (2655), in this study, we
omitted the factors related to the structure of these portfolios and other elements of ex
ante analysis, such as the expected portfolio risk, the average rate of return, or the average
market ratio. All the characteristics of the distribution of return presented in Tables 3–7
refer to realized returns. That is, they describe the actual returns of investors, as well as the
risk they bear. For the individual subperiods and the entire research period, the following
characteristics were calculated: the mean rate of return, the minimal rate of return, the
value-at-risk (VaR) measure, semi-deviation, standard deviation, and skewness.
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Table 3. Summary statistics of the realized rates of return for the portfolios bought during the 21
November 2019–29 January 2020—I period (44 trade days)—before the collapse of the market.

Portfolios Mean Min VaR 0.1 VaR 0.05 Semi-Dev. Std. Dev. Skewness

Equally weighted 0.034 −0.018 0.006 −0.011 0.003 0.021 −0.335
MinV 0.044 −0.018 0.011 −0.005 0.072 0.027 −0.117

MinV-E 0.034 −0.013 −0.003 −0.011 0.064 0.029 0.307
MinV-E-EBIT 0.035 −0.015 −0.003 −0.011 0.062 0.030 0.341
MinV-E-GP 0.040 −0.009 0.002 −0.007 0.062 0.029 0.292

MinV-E-EBITA 0.041 −0.013 0.004 −0.002 0.061 0.029 0.237
MinV-E-EAT 0.046 −0.009 0.010 0.007 0.060 0.029 0.221
MinV-E-BV 0.044 −0.015 0.004 0.001 0.061 0.029 −0.019

MinSV 0.033 −0.037 −0.004 −0.025 0.067 0.034 0.037
MinSV-E 0.040 −0.006 0.004 −0.004 0.060 0.028 0.383

MinSV-E-EBIT 0.041 −0.006 0.003 −0.003 0.058 0.029 0.393
MinSV-E-GP 0.043 −0.003 0.006 −0.001 0.058 0.028 0.372

MinSV-E-EBITA 0.045 −0.006 0.010 0.006 0.056 0.029 0.348
MinSV-E-EAT 0.051 −0.005 0.016 0.013 0.056 0.030 0.295
MinSV-E-BV 0.050 −0.009 0.011 0.009 0.056 0.029 0.144

In the first research subperiod, the negative effects of the COVID-19 pandemic had
not yet affected the Polish stock market. We observed that all the portfolios minimizing
the semi-variance had right-skewed distributions of rates. Returns of equally weighted
portfolios and portfolios minimizing the variance were left-skewed. The highest average
rate of return occurred for portfolios minimizing semi-variance and with a fundamental
criterion. However, it is difficult to unequivocally determine which type of diversification
was the most effective in reducing the risk during this period.

Table 4. Summary statistics of the realized rates of return for the portfolios bought during the 30
January 2020–10 March 2020—II period (29 trade days)—during the collapse of the market.

Portfolios Mean Min VaR 0.1 VaR 0.05 Semi-Dev. Std. Dev. Skewness

Equally weighted −0.169 −0.321 −0.287 −0.313 0.194 0.090 0.145
MinV −0.158 −0.296 −0.265 −0.292 0.180 0.082 −0.008

MinV-E −0.132 −0.298 −0.247 −0.277 0.160 0.089 0.142
MinV-E-EBIT −0.127 −0.293 −0.241 −0.270 0.155 0.088 0.180
MinV-E-GP −0.127 −0.292 −0.240 −0.269 0.155 0.087 0.141

MinV-E-EBITA −0.121 −0.294 −0.239 −0.269 0.152 0.092 0.192
MinV-E-EAT −0.121 −0.292 −0.236 −0.267 0.150 0.087 0.090
MinV-E-BV −0.119 −0.296 −0.240 −0.269 0.151 0.094 0.197

MinSV −0.146 −0.284 −0.250 −0.275 0.167 0.078 0.039
MinSV-E −0.120 −0.289 −0.235 −0.267 0.150 0.089 0.133

MinSV-E-EBIT −0.115 −0.282 −0.228 −0.259 0.145 0.087 0.156
MinSV-E-GP −0.115 −0.281 −0.227 −0.259 0.145 0.086 0.137

MinSV-E-EBITA −0.109 −0.283 −0.227 −0.257 0.141 0.089 0.134
MinSV-E-EAT −0.108 −0.282 −0.225 −0.256 0.139 0.087 0.053
MinSV-E-BV −0.106 −0.280 −0.223 −0.253 0.138 0.089 0.113
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Table 5. Summary statistics of the realized rates of return for the portfolios bought during the 11
March 2020–13 May 2020—III period (43 trade days)—during the growth after the collapse of the
market.

Portfolios Mean Min VaR 0.1 VaR 0.05 Semi-Dev. Std. Dev. Skewness

Equally weighted 0.123 0.017 0.021 0.018 0.005 0.090 0.370
MinV 0.077 −0.020 −0.007 −0.013 0.007 0.073 0.202

MinV-E 0.104 0.000 0.013 0.003 0.006 0.082 0.301
MinV-E-EBIT 0.104 0.000 0.013 0.003 0.006 0.082 0.301
MinV-E-GP 0.104 0.000 0.013 0.003 0.006 0.082 0.301

MinV-E-EBITA 0.110 0.000 0.012 0.003 0.006 0.086 0.358
MinV-E-EAT 0.104 0.000 0.013 0.003 0.006 0.082 0.301
MinV-E-BV 0.122 0.006 0.024 0.013 0.008 0.085 0.340

MinSV 0.117 0.014 0.032 0.022 0.007 0.068 0.227
MinSV-E 0.124 0.014 0.032 0.022 0.007 0.071 0.170

MinSV-E-EBIT 0.124 0.014 0.032 0.022 0.007 0.071 0.170
MinSV-E-GP 0.124 0.014 0.032 0.022 0.007 0.071 0.170

MinSV-E-EBITA 0.116 0.014 0.028 0.021 0.008 0.072 0.395
MinSV-E-EAT 0.124 0.014 0.032 0.022 0.007 0.071 0.170
MinSV-E-BV 0.120 0.018 0.036 0.030 0.012 0.069 0.472

At the end of January 2020, the financial markets collapsed, and this situation lasted
until mid-March. It affected not only Poland but practically all the most important world
exchanges. During this period, all average rates of return were negative. The least ef-
fective strategy at this time was to select an equally weighted portfolio. It was the least
profitable and the riskiest one, taking into account, among others, VaR 0.1, VaR 0.05, and
semi-deviation. The most secure and at the same time most profitable portfolios were
fundamental portfolios that minimized semi-variance. The distributions of the realized
returns were right-skewed (with only one exception for the portfolio minimizing variance),
but the strength of this asymmetry was small.

In the third subperiod, the quotations of the WIG Index slowly began to rise. During
this period, purchasing an equally weighted portfolio proved to be a fairly effective method
of risk diversification. The highest average rates of return, as in the second subperiod, were
achieved using fundamental portfolios that minimized semi-variance. It is worth noting
that the portfolios minimizing the semi-variance had higher values of this risk measure
than the portfolios minimizing the variance. At the same time, portfolios minimizing the
variance had higher realized variances. However, taking into account extreme values such
as minimal return, VaR 0.05, and VaR 0.01, there is a clear advantage of portfolios with
minimized semi-variance. In the third subperiod, all portfolios were characterized by
right-hand asymmetry, which was stronger than in the second subperiod.

In the fourth subperiod, the Warsaw Stock Exchange stabilized, and price increases
were small, as it is shown in Figure 1. The realized rates of return for equally weighted
portfolios and those with minimum semi-variance were generally characterized by left-
hand asymmetry, and those with minimum variance were characterized by right-hand
asymmetry. During this period, for many fundamental portfolios, the condition imposed
on a given market ratio for the portfolio was not active, especially for market ratios based
on various measures of a company’s profitability.

Over this period, the most profitable portfolios were those selected according to
the minimum variance criterion. The average rate of return for the equally weighted
portfolios was quite high, and the risk was lower than in Markowitz portfolios. In the
fourth subperiod, advanced models of building stock portfolios had similar usefulness for
stock exchange investors as the simple method of selecting an equally weighted portfolio.

In the entire research period (Table 7), portfolios with three criteria (average return,
risk, and a fundamental criterion) allow for achieving higher realized returns than equally
weighted portfolios, portfolios minimizing risks (measured either with the variance or
semi-variance), or average return–risk portfolios. Additionally, it can be seen that the
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introduction of a fundamental criterion reduced the risk borne by an investor, measured
with both standard deviation and semi-deviation. An analysis of extreme values (minimum
return, VaR 0.1, and VaR 0.05) also shows the advantage of fundamental portfolios. As
can be seen, the whole group of portfolios minimizing semi-variance was characterized
by a lower ex post risk than those minimizing variance. Fundamental portfolios had less
left asymmetry, especially for portfolios that were designed to minimalize semi-variance.
It should be emphasized that having less left asymmetry is beneficial for investors, as it
means they are less exposed to very low rates of returns.

Table 6. Summary statistics of the realized rates of return for the portfolios bought during the 14 May
2020–7 August 2020—IV period (61 trade days)—during the stabilization of the market.

Portfolios Mean Min VaR 0.1 VaR 0.05 Semi-Dev. Std. Dev. Skewness

Equally weighted 0.044 −0.028 0.011 −0.002 0.004 0.025 −0.457
MinV 0.059 −0.039 0.008 −0.013 0.006 0.042 0.044

MinV-E 0.040 −0.036 0.013 −0.007 0.005 0.024 −0.419
MinV-E-EBIT 0.040 −0.036 0.013 −0.007 0.005 0.024 −0.419
MinV-E-GP 0.040 −0.036 0.013 −0.007 0.005 0.024 −0.419

MinV-E-EBITA 0.040 −0.036 0.013 −0.007 0.005 0.024 −0.434
MinV-E-EAT 0.040 −0.036 0.013 −0.007 0.005 0.024 −0.419
MinV-E-BV 0.028 −0.041 0.000 −0.022 0.007 0.026 0.326

MinSV 0.018 −0.023 −0.011 −0.020 0.006 0.022 0.178
MinSV-E 0.018 −0.023 −0.011 −0.020 0.006 0.022 0.178

MinSV-E-EBIT 0.018 −0.023 −0.011 −0.020 0.006 0.022 0.178
MinSV-E-GP 0.018 −0.023 −0.011 −0.020 0.006 0.022 0.178

MinSV-E-EBITA 0.017 −0.025 −0.012 −0.020 0.006 0.022 0.161
MinSV-E-EAT 0.018 −0.023 −0.011 −0.020 0.006 0.022 0.178
MinSV-E-BV 0.016 −0.035 −0.020 −0.026 0.010 0.026 −0.025

Table 7. Summary statistics of the realized rates of return for the portfolios bought during 21
November 2019–7 August 2020—the whole research period (177 trade days).

Portfolios Mean Min VaR 0.1 VaR 0.05 Semi-Dev. Std. Dev. Skewness

Equally weighted 0.026 −0.321 −0.142 −0.227 0.077 0.111 −0.814
MinV 0.024 −0.296 −0.139 −0.224 0.072 0.099 −1.289

MinV-E 0.026 −0.298 −0.100 −0.210 0.064 0.095 −0.814
MinV-E-EBIT 0.027 −0.293 −0.094 −0.200 0.062 0.093 −0.777
MinV-E-GP 0.028 −0.292 −0.098 −0.200 0.062 0.093 −0.802

MinV-E-EBITA 0.031 −0.294 −0.085 −0.195 0.061 0.094 −0.681
MinV-E-EAT 0.031 −0.292 −0.089 −0.195 0.060 0.092 −0.808
MinV-E-BV 0.031 −0.296 −0.083 −0.196 0.061 0.097 −0.501

MinSV 0.019 −0.284 −0.110 −0.202 0.067 0.097 −0.702
MinSV-E 0.026 −0.289 −0.082 −0.193 0.060 0.093 −0.562

MinSV-E-EBIT 0.028 −0.282 −0.080 −0.185 0.058 0.092 −0.509
MinSV-E-GP 0.028 −0.281 −0.080 −0.184 0.058 0.092 −0.516

MinSV-E-EBITA 0.028 −0.283 −0.071 −0.179 0.056 0.089 −0.544
MinSV-E-EAT 0.031 −0.282 −0.073 −0.176 0.056 0.091 −0.523
MinSV-E-BV 0.029 −0.280 −0.069 −0.177 0.056 0.090 −0.539
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Figure 1. WIG closing prices.

In order to test whether there were differences in returns between the different portfolio
selection methods, we performed appropriate statistical tests. Since the realized returns
were not normally distributed (which we evaluated using the Shapiro–Wilk test and the
Jarque–Bera test) we used the nonparametric Kruskal–Wallis test with post hoc Dunn’s test
to determine the differences between each pair of the portfolios. To assess the differences,
we used the realized returns for the different types of portfolios from the entire research
period. The test statistics for the Kruskal–Wallis test was 21.64, which indicates that the
hypothesis of equal mean returns should be rejected, with a p-value lower than 0.1 (p-value
= 0.086). This result shows that there were differences in the distributions between different
groups of the realized returns. To analyze these differences, we carried out a post hoc
analysis based on Dunn’s tests, in which we assessed each pair of groups. Table 8 shows the
results of these tests. A statistical difference was observed between the returns of equally
weighted portfolios (i.e., portfolios constructed without using any theoretical methods)
and portfolios that minimized the semi-variance. The semi-variance-minimizing portfolios
were also statistically superior to the variance-minimizing portfolios.
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6. Conclusions

This paper involves the development of fundamental portfolios using both variance
and semi-variance approaches. An iterative algorithm written in R software (R.4.3.1) was
used to construct the portfolios in the semi-variance framework.

For fundamental portfolios, three criteria were considered: profitability (measured
with the expected return), risk (measured using the variance or semi-variance of returns),
and the market ratio of the companies in the portfolio. Five different market ratios were
used in this study. The usefulness of portfolio selection models during the COVID-19
pandemic was analyzed. This period was divided into four subperiods due to the changing
situation of the Warsaw Stock Exchange.

During this period characterized by the collapse of the financial market, the worse
strategy was to select an equally weighted portfolio. It was the least profitable and the
most risky one, taking into account, the value-at-risk measure and semi-deviation. It can
be seen that the safest and at the same time most profitable portfolios were fundamental
portfolios that minimized semi-variance.

Throughout the entire period under review, the portfolios with three criteria (average
return, risk, and a fundamental criterion) allowed higher realized returns to be achieved
than equally weighted portfolios, portfolios minimizing the risk (measured using either
the variance or semi-variance), or the average return–risk portfolios. In addition, it was
found that the introduction of the fundamental criterion reduced the risk borne by an
investor, measured with both standard deviation and semi-deviation. The analysis of the
value-at-risk measure also shows the advantage of fundamental portfolios. It was revealed
that the whole group of portfolios that minimized semi-variance were characterized by a
lower ex post risk than those that minimized the variance.

• The empirical research for the largest companies traded on the Warsaw Stock Exchange
reveals the following findings:

• Investors can obtain better investment results by adding a criterion associated with
market ratios, such as book-to-market or earnings-to-market ratios, to the Markowitz
model;

• The use of semi-variance instead of variance yields better results for investors, as can
be clearly seen in the period of the collapse of the capital market;

• Fundamental portfolios with minimum semi-variance seem to be a useful tool to
choose an investment strategy during the COVID-19 pandemic.
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Abstract: This paper investigates the relationship between option trading behavior and option pricing
patterns. We argue that greater active trading in the options market due to investor overconfidence
leads to higher volatility and larger discrepancies in option pricing, which may be captured by
implied volatility spread and implied volatility skewness. Using two different measures of excess
option trading, we find that trading activities are correlated in different ways with volatility, volatility
spread, and volatility skewness. We also find that these relationships exist both over time and
cross-sectionally. We suggest that options investors tend to chase “hot” stocks, as we find evidence of
a positive relationship between option trading activities and past underlying equity returns. Heavier
trading in the options market also tends to make out-of-the-money call options more (less) expensive
than the at-the-money counterparts over time (cross-sectionally). Because trading activities do not
predict future equity returns, investor overconfidence, and not informed trading, seems to be a more
plausible explanation for our findings.

Keywords: overconfidence; options market; option turnover; volatility spread; volatility smirk;
behavioral finance

1. Introduction

Trading behavior in the options market has drawn increasing attention from financial
economists as the importance of the options market has increased, especially in recent
years. While, theoretically, options can be replicated in a complete market, and some deem
them redundant securities (Black and Scholes 1973), markets for these financial instruments
have only grown larger. For example, CBOE reported a total trading volume of 3.4 billion
as the number of contracts across all options products in North America in 2022, compared
to 1.05 billion in 2015 and 254 million in 1999. Many financial scholars have focused on the
study of the options market. Researchers have been striving to interpret the information
content embedded in trading behavior. However, interpreting the information correctly is
difficult if we fail to identify the actual motives for trading.

Scholars have proposed two main reasons why investors trade. One is differences of
opinion, while the other is superior information. Both arguments suggest that investors
trade because they hold beliefs that differ from those of general market participants, the
latter of which are reflected in the current market prices. The two hypotheses are distinct in
that the information-driven hypothesis assumes that investors who trade possess private
information, whereas the differences-in-opinion hypothesis suggests that investors interpret
the same information differently. While we observe the same increase in trading activities,
the two hypotheses generate distinct inferences regarding how asset prices react to this
information. Therefore, an understanding of the reasons for trading is crucial.

Studies identifying the reasons for trading options have shown mixed results. Starting
from Black (1975), who argues that the leverage effects in options can attract informed
traders, Amin and Lee (1997), Easley et al. (1998), Cao et al. (2005), and Pan and Poteshman
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(2006) have found evidence supporting the information-driven hypothesis. On the other
hand, Stephen and Whaley (1990), Vijh (1990), Chan et al. (1993, 2002), Muravyev et al.
(2013), and Choy and Wei (2012) present evidence against informed trading.

In attempts to find reasons for excess trading activities in the stock market, researchers
have found behavioral factors to be a logical fit. Grinblatt and Keloharju (2009) report that
overconfidence and sensation-seeking lead to more frequent stock trading activities. More
recently, Ülkü et al. (2023) have presented evidence supporting the idea that retail investors
generally exhibit contrarian traits. Using trading data obtained from several countries
during the COVID-19 pandemic, they also show that the net-trading direction between
retail traders and institutional trades may diverge for an extended time period. While it
has been shown in the literature that the options market plays an important informational
role (e.g., Chakravarty et al. 2004), one may wonder what effects behavioral factors may
have in this market. According to Scheinkman and Xiong (2003), investor overconfidence
may intensify differences of opinion in the form of over-optimism for overconfident agents,
and consequently create a price bubble. Also, bubbles are associated with large trading
volumes and high price volatility. Empirically, Choy (2015) shows that retail investors
speculate and are willing to pay a premium for future expected volatility, which provides
evidence supporting a behavioral theory in the options market. A similar phenomenon can
also be established during a negative bubble. Baig et al. (2022) studied the increased role
played by retail investors during stressful times, including the 2008–2009 financial crisis
and the COVID-19 pandemic. They document a negative impact of retail trading on the
stability of stock prices that was particularly strong during the 2008–2009 financial crisis
and the pandemic. The findings of Baig et al. (2022) and Ülkü et al. (2023) suggest that
empirically examining whether there is a linkage between trading activities and measures
of price bubbles and between trading and volatility is meaningful for understanding option
trading and its information content.

This paper addresses two main research questions. First, we investigate the relation-
ship between option trading activities and option prices and volatility over time. That is,
we examine whether higher or lower volatility or discrepancy levels in option prices are
associated with a higher option turnover rate. According to Scheinkman and Xiong (2003),
volatility and price bubbles would intensify when there was an increase in trading activities.
It is therefore natural to examine how volatility and option pricing patterns develop over
time due to excessive trading.

Second, we investigate whether investor sentiment affects option pricing cross-
sectionally. Options with higher turnover rates may behave differently than would those
with lower turnover rates, should behavioral factors play a significant role in option prices.
As Grinblatt and Keloharju (2009) point out, behavioral factors such as overconfidence and
sensation-seeking tend to drive up trading activities. Regardless of the market they choose
to trade in, overconfident agents may try to take advantage of their information (or beliefs)
and consequently trade more frequently. Therefore, we use option turnover rate as a proxy
for investor overconfidence and test the hypotheses of there being relationships between
overconfidence and option volatility and option pricing. Cremers and Weinbaum (2010)
use the difference in implied volatility between pairs of call and put options (volatility
spread) to measure the relative expensiveness of call options over put options. Volatility
spread may serve as a good indicator in examining whether call options become more
expensive relative to the corresponding put options when the market presents evidence of
overconfidence. As stated above, we expect to observe a positive relationship between the
overconfidence measure and volatility spread.

The rest of the paper is organized as follows. The next section includes a review of the
related literature. Section 3 discusses the research questions and empirical methodology.
Section 4 provides the empirical results. The last section includes a discussion of the paper’s
findings and their implications.
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2. Literature Review

2.1. Overconfidence and Momentum

Both momentum (Jegadeesh and Titman 1993) and reversals (DeBondt and Thaler
1985) are well documented in the stock market literature. While a momentum strategy that
buys winning stocks and short-sells losing stocks generates superior average returns in the
short run, it results in negative average returns in the long run (reversals). A simple but
popular explanation that fits both phenomena is behavioral. The behavioral theories that
try to address the issue include Barberis et al. (1998), Daniel et al. (1998), Hong and Stein
(1999), and George and Hwang (2004). Among those theories, Daniel et al. (1998) attribute
the phenomena to the behavior of overconfident agents. In their framework, investors bear
self-attribution bias; that is, they tend to attribute their success in investment to their trading
skills and knowledge and blame their failure on bad luck or unpredictable noises. This
theory is empirically supported by Lee and Swaminathan (2000), Statman et al. (2006), and
Cremers and Pareek (2014), to name a few. While evidence from stock markets generally
supports the self-attribution bias, even for institutional investors (Cremers and Pareek
2014), the existence and the potential influence of such a bias are largely not discussed in
the literature.

2.2. Price Patterns in the Options Market

Options market pricing has intrigued financial economists in various ways for decades.
One of the heavily discussed topics is the existence of arbitrage opportunities. Initially,
options were deemed to be redundant securities (Black and Scholes 1973; Cox et al. 1979),
and investors should have no reason to trade such financial instruments. However, scholars
have empirically identified deviations from basic option pricing rules such as put–call
parity (e.g., Ofek et al. 2004) which provide incentives for investors to trade in the options
market.

The argument about the existence of arbitrage opportunities goes on, as other re-
searchers have shown evidence against those findings (e.g., Battalio and Schultz 2006).
Even if deviations exist from no-arbitrage relations, most will agree that the arbitrage
opportunities dissipate fairly quickly. They can hardly account for the extensive trading
activities in the options market. Cremers and Weinbaum (2010), on the other hand, argue
that the relative expensiveness of put and call options, as paired with strike price and that
of the underlying security, may predict future stock performance. Their findings provide
further reasons for trading, suggesting that predictability comes from the mispricing of
options. Coinciding with Cremers and Weinbaum (2010), Xing et al. (2010) found that
the shape of a volatility smirk predicts future stock returns. Some papers suggest that
informed traders may lead the trading in the options market due to leverage (Black 1975)
and reveal their information within option prices. While others argue that differences of
opinion are the main reason for trading (Choy and Wei 2012), the causes of differences of
opinion remain largely uninvestigated.

3. Research Questions and Empirical Methodology

This study aims to test the relationship between trading activities and option prices
empirically. Grinblatt and Keloharju (2009) show the connections between more frequent
trading activities, overconfidence, and sensation seeking. As suggested in Scheinkman
and Xiong (2003), investor overconfidence intensifies differences of opinion and therefore
causes heavier trading. Higher volatilities, as well as price bubbles, accompany heavier
trading. When investors trade, not based on information, but on behavioral factors, we
expect trading activities to be higher than usual. Also, it is more likely to observe a price
bubble in the corresponding market. Building upon the abovementioned expectations, this
paper empirically tests the relationship between excessive trading activities and option
price patterns.
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3.1. Empirical Methodology

Our first objective is to capture excessive trading activities. We propose two measures
for this purpose. Following Statman et al. (2006), two control variables are used to account
for normal trading motives. The first control variable is market volatility, misg, based on
the research by Karpoff (1987) on the contemporaneous volume–volatility relationship.
The second control variable is dispersion, disp, which is associated with the idiosyncratic
risk of the underlying stock and therefore accounts for trading activities related to port-
folio rebalancing. In addition, we include proportional effective spread, sprd, to control
for liquidity. Specifically, the proportional effective spread (a measure of illiquidity) for
underlying equity j on day D is calculated as follows:

sprdD,j =
1

VolD,j
∑n

k=1 VolD,j,k × 100 ×
2 ×

(
O f f erD,j,k − BidD,j,k

)
(

O f f erD,j,k + BidD,j,k

) (1)

where VolD,j = ∑n
k=1 VolD,j,k, and k stands for different strike prices. The primary measure

of trading volume used in this study is option trading turnover, TO_O, which is defined as
option trading volume multiplied by 100, scaled by open interest. The model is as follows:

TO_Ot = a + b1 × misgt + b2 × dispt + b3 × sprdt + εt (2)

We extract the residuals from the above regression and use them as our first measure of
overconfidence over time.

In addition to the above measure, we apply the stochastic frontier analysis (SFA)
technique to isolate the potential trading behavior due to overconfidence from the behavior
based on random information flows. The rationale behind using SFA in this study is that
we treat overconfidence as a systematic bias for investors, which constantly drives up
trading volume. Since the standard ordinary least square method does not distinguish
between systematic bias in trading and purely stochastic component in trading activities,
SFA’s capability to capture the systematic bias via skewness in residuals would help extract
trading activities due to overconfidence. We use the following regression model:

TO_Ot = a + b1 × misgt + b2 × dispt + b3 × sprdt + vt + ut (3)

where ut is a one-sided error half normally distributed N(0+, σ2
u).

We adopt two inefficiency measures in this study. Both are based on technical efficiency
measures. That is, OCi = 1 − TEi, where i = 1, 2. TE1 is the technical efficiency measure used
by Battese and Coelli (1988), and TE2 is the technical efficiency measure used by Jondrow
et al. (1982).

Once the overconfidence measure is obtained, we test the relationships between
overconfidence and price volatility and price bubble measures. We use the following two
measures for volatility: VIX and realized volatility over the past 30 days. The change in
volatility is also included as a dependent variable. We use volatility spread and volatility
smirk (skewness) for price bubble measures. Volatility spread, proposed by Cremers and
Weinbaum (2010), measures the relative expensiveness of calls and puts with the same
strike price. Cremers and Weinbaum find that the stocks with relatively expensive calls
outperform stocks with relatively expensive puts. They also document that this finding is
likely due to the information risk that the underlying stocks face. If investors in the options
market are overly optimistic about the performance of the underlying stock, we should
observe more expensive call options relative to put options with the same strike. In such a
case, the subsequent superior performance they have documented may be explained as
the confidence building up in the options market and then spilling over to the underlying
stock market.

A similar argument can be applied to volatility smirk, which measures the relative
expensiveness of in-the-money and out-of-the-money calls (puts). As in the case of calls,
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the general explanation is that in-the-money call options offer leverage and, therefore,
a more promising strategy for investors who wish to take long positions. As investors
become overly optimistic, we should observe more expensive in-the-money call options
and less expensive out-of-the-money put options (fewer hedging activities using puts).
Consequently, the volatility smirk for calls (puts) will become steeper (flatter).

3.2. Hypotheses

Based on our discussion above, we test the following hypotheses in this paper:

H1. Higher investor overconfidence leads to both higher expected volatility and higher subsequently
realized volatility.

H2. Higher investor overconfidence makes call options more expensive than the corresponding put
options with the same strike price.

H3. Higher investor overconfidence results in more expensive in-the-money/at-the-money call
options relative to the out-of-the-money options and less expensive out-of-the-money put options
relative to the in-the-money/at-the-money options.

Time series regressions were conducted to test the above hypotheses. In addition to
examining the relationships between investor overconfidence and asset prices over time,
we also examined the impacts across firms. Both Cremers and Weinbaum (2010) and Xing
et al. (2010) find that the differences in implied volatilities predict future equity returns.
While Cremers and Weinbaum indicate that mispricing is the main reason for this finding,
Xing et al. argue that informed traders may be the driving force.

In both studies, the authors first sorted the sample firms into portfolios according to
volatility spread/skew/smirk, and then showed differences in future performance across
portfolios. If investor overconfidence played a specific role in their findings, one should ex-
pect that overconfidence measures would be associated with volatility spread/skew/smirk
cross-sectionally. For instance, Cremers and Weinbaum found that stocks with more ex-
pensive calls or with calls becoming more expensive than in the previous periods earned
abnormal positive returns, while the ones with more expensive puts or with puts becoming
more expensive than in the previous period earned abnormal negative returns. If firms with
more frequent trading activities generally have more expensive calls, the subsequent abnor-
mal returns documented by Cremers and Weinbaum may be the price bubble suggested by
Scheinkman and Xiong (2003). A similar argument applies to the predictability of future
stock returns according to volatility skew/smirk, as argued by Xing et al. Therefore, we
conducted a second series of tests to examine the relationships between trading activities
and volatility spread/skew/smirk across firms.

3.3. Data

The option data was retrieved from OptionMetrics (New York, NY, USA) via WRDS.
End-of-day bid and ask quotes, open interests, trading volume, and implied volatility were
obtained from the database for the period ranging from January 1996 to December 2011.
The sample included 2779 unique firms listed on NYSE/AMEX, and with options traded.
In addition to the option turnover rate, the O/S ratio was also used as a measure of trading
activities. Since different practices in reporting trading volume in dealers’ markets may
cause inconsistency in the O/S ratio, the sample in this study consisted only of firms listed
on NYSE/AMEX with options. VIX, a forward volatility index proposed by CBOE, was
used as a measure of volatility for the entire market. End-of-day stock prices and trading
volume were extracted from the Center for Research in Security Prices (CRSP).

Table 1 contains descriptive statistics for all the variables used in the empirical analyses.
Panel A shows the characteristics of the primary dependent variables used in the empirical
studies. Note that the percentage change in 30-day volatility has a mean and median close
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to zero. Volatility spread has a negative mean and median, as reported in Cremers and
Weinbaum (2010), while volatility skew has a positive mean and median, consistent with
Xing et al. (2010).

Table 1. Sample characteristics.

Panel A: Volatility Measures and Price Discrepancy Measures

Measure Mean Median Std. Dev.

% Change in VIX 0.0164 −0.0145 0.1800
% Change in 30-day

Volatility 0.0002 0.0001 0.0130

30-day Realized
Volatility 0.4617 0.4193 0.1914

Volatility Spread −0.0091 −0.0079 0.0076
Volatility Skew 0.0458 0.0387 0.0237

Panel B: Overconfidence Measures

Measure Mean Median Std. Dev.

Option Turnover 3.8552 3.7904 0.9073
OLS Residual 0.0000 −0.1522 0.8498

OC1 7.3858 5.7913 5.3460
OC2 7.6567 5.9459 5.6454

This table shows summary statistics for variables used in this study. Panel A summarizes the mean, median, and
standard deviation of the primary dependent variables used in the empirical analysis. The numbers shown for all
variables, except for the percentage changes of volatility measures, are the daily averages over the sample period.
Volatility change is the percentage changes in the daily average volatility of the corresponding month from that of
the previous month. Volatility spread is the weighted average difference in implied volatility of paired call and
put options with the same strike price and the same underlying equity, as specified in Cremers and Weinbaum
(2010). Volatility skew is the difference between the implied volatility of out-of-the-money (OTM) put options and
the implied volatility of at-the-money (ATM) call options. Panel B summarizes the mean, median, and standard
deviation for the explanatory variables, which are used as a proxy of investor overconfidence. OC1 and OC2 are
(1) residuals from ordinary least square regressions; and (2) overconfidence measures from stochastic frontier
analysis (SFA), respectively.

Panel B summarizes the mean, median, and standard deviation for the explanatory
variables, which are used as a proxy of investor overconfidence. OC1 and OC2 are the
inefficiency measures derived from stochastic frontier analysis (SFA) and are very similar
qualitatively and quantitatively. We expect they would yield similar results in the main
empirical analyses.

4. Results

As discussed in the previous section, the main question addressed in this study is
whether investor overconfidence plays a role in option pricing. To investigate this issue,
we conducted two series of tests. The first set of tests ran regressions of trading activities,
which is used as a proxy for investor overconfidence, on volatility measures and relative
expensiveness across options. Before running this set of tests, we checked that the variables
were stationary, in order to avoid spurious regressions. Specifically, we used augmented
Dickey–Fuller and Phillip–Perron tests to check for the stationarity of all dependent and
independent variables used in our regression analysis. The results of the tests on all
independent variables (i.e., OLS residuals, OC1, and OC2) reject the null hypothesis of a
unit root at the 1% level. The results of the tests on all dependent variables reject the null
hypothesis of unit root at the 1% level, except for volatility skew (IV_SKEW) and volatility
smirk (IV_SMIRK), for which the results reject the null hypothesis at the 5% level.

The second set of tests involved sorting sample firms into portfolios based on trading
activities and examining the differences in volatility spread/skew/smirk across portfolios.
This section provides the results of these two sets of tests.
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4.1. Time-Series Regressions

To construct the measure of option trading activities, we aggregated daily trading
volumes and open interests across all options for the entire sample of firms, and then
divided the aggregated trading volume by the end-of-the-day aggregated open interest.
We defined this ratio as the option turnover rate.

For changes in VIX, we obtained the daily VIX from WRDS and then took the average
of the daily VIX over a calendar month. The changes in VIX are the percentage changes in
daily average VIX in the current month from that of the previous month. Daily realized
volatilities for sample firms were obtained from OptionMetrics. For each day of a given
month, volatilities realized during the past 30 calendar days were extracted and averaged
over the month. The changes in realized volatility are the percentage changes of average
realized 30-day volatility in a given month as compared to those of the previous month.

The volatility spread was calculated daily for each sample firm and averaged over
a month. Following Cremers and Weinbaum (2010), we paired call and put options with
the same underlying equity, strike, and maturity, and then calculated volatility spread as
the difference between the implied volatilities of the call and put options. Daily volatility
spread was defined for each trading day as the weighted average spread for each pair of
call and put options with the same strike price and maturity. Following Xing et al. (2010),
implied volatility skew was calculated as the difference between the implied volatilities of
OTM puts and ATM calls.

There are several ways to determine the moneyness of options. In this study, following
Xing et al. (2010), an option is defined as OTM when the absolute delta of the option is at
least 0.125 but less than 0.375. It is defined as ATM when the absolute delta is at least 0.375
but less than 0.625, and finally, it is defined as ITM when the absolute delta is at least 0.625
but less than 0.875. A simpler way to define moneyness is to use the ratio of the strike price
to the stock price (K/S). Ni (2007) uses the total volatility-adjusted strike-to-stock-price ratio
as another moneyness measure. However, these alternative methods yield quantitatively
similar results.

Daily volatility skew was averaged across sample firms in a day, weighted by the
end-of-the-day open interests. We computed monthly volatility skew by averaging the
daily volatility skew over a month.

Table 2 presents the results of the first empirical test for all options (calls and puts). As
mentioned in the previous section, the explanatory variables are derived from the first stage
regression. The residuals are extracted from the first stage regression using the ordinary
least square method, controlling for market volatility, idiosyncratic risk, and proportional
effective spread. OC1 and OC2 are inefficiency measures derived from stochastic frontier
analysis, assuming half normal distribution in inefficiency. Specifically, they are one minus
the technical efficiency measures, as suggested by Battese and Coelli (1988) and Jondrow
et al. (1982), respectively.

It is apparent that OLS residual and OC1/OC2 paint different pictures in this table.
Focusing first on the results of the second-stage regression using OLS residuals as the
explanatory variable, we find that OLS residuals are positively related to the percentage
changes in expected and realized volatility measures from the previous month, with the
F-statistics of the regressions being 2.95 and 5.18, respectively. These results serve as a
piece of evidence supporting the theory in Scheinkman and Xiong (2003) that investor
overconfidence intensifies differences of opinions and consequently causes higher volatility.
On the other hand, OLS residuals and volatility spread are negatively correlated, with a
regression F-statistic of 9.89. This suggests that an increase in the frequency of trading
activities tends to make put options more expensive than call options.

OLS residuals and volatility skew are negatively correlated (the F-statistic is 3.23). This
result is intriguing, as it indicates the presence of fewer hedging activities using OTM put
options. Therefore, we further investigated the difference in implied volatilities across the
moneyness of options. In the options market, implied volatility skew is negatively sloped
across strike prices (higher implied volatility for ITM call options and OTM put options,
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relative to OTM call options and ITM put options). As shown in Figure 1, the pattern is
clear throughout the sample period, while it tends to be more severe during a financial
crisis. In both crises during the sample period, i.e., the post-dot-com bubble era and the
2007–2009 financial crisis, there were large spikes. Also, there is a tendency towards steeper
slopes over time.

Table 2. Regression analysis—volatility measures and price discrepancy measures against unexpected
turnovers on all options.

Explanatory Variables

Dependent Variables
OLS

Residual
OC1 OC2 Adj. R2

Percentage Change in VIX 0.0280 ** −0.0050 ** −0.0047 ** 0.0144
(0.0115) (0.0020) (0.0019)

Past 30 Days’ Realized Volatility 0.0000 −0.0018 −0.0017 −0.0015
(0.0205) (0.0030) (0.0028)

Volatility % Change—Past 30 Days 0.0044 *** −0.0072 *** −0.0007 *** 0.0778
(0.0010) (0.0014) (0.0001)

Volatility Spread −0.0018 * 0.0003 *** 0.0003 *** 0.0384
(0.0011) (0.0001) (0.0001)

Changes in Volatility Spread −0.0007 0.0001 0.0001 0.0045
(0.0006) (0.0001) (0.0001)

Volatility Skew −0.0049 ** 0.0009 ** 0.0008 ** 0.0264
(0.0024) (0.0004) (0.0004)

Changes in Volatility Skew 0.0006 −0.0002 −0.0002 0.0034
(0.0010) (0.0001) (0.0001)

Call Volatility Smirk (ATM–OTM) −0.0042 ** 0.0007 *** 0.0007 *** 0.0396
(0.0018) (0.0002) (0.0002)

Call Volatility Smirk (ITM–OTM) −0.0077 * 0.0013 ** 0.0012 ** 0.0223
(0.0040) (0.0006) (0.0005)

Put Volatility Smirk (ATM–OTM) 0.0048 * −0.0009 ** −0.0008 ** 0.0256
(0.0025) (0.0004) (0.0004)

Put Volatility Smirk (ITM–OTM) 0.0095 ** −0.0017 *** −0.0016 *** 0.0475
(0.0038) (0.0006) (0.0005)

The regressions use monthly aggregated market observations. Explanatory variables are overconfidence measures,
using option turnovers from all options, and controlling for market volatility, idiosyncratic risk of the underlying
stock, and proportional effective spread. Specifically, the overconfidence measures, OC1 and OC2, are (1) residuals
from ordinary least square regressions; and (2) overconfidence measures from stochastic frontier analysis (SFA),
respectively. Dependent variables are volatility measures and price discrepancy measures. The volatility spread is
from Cremers and Weinbaum (2010), while the volatility skew is from Xing et al. (2010). Numbers in parentheses
are standard errors. The adjusted R2 values are the averages of the corresponding values of the three regressions.
*, **, and *** indicate statistical significance at 10%, 5%, and 1% levels, respectively.

In tests of the volatility skew/smirk slope, we found that OLS residuals were associ-
ated with flatter slopes, which means less expensive ITM calls and OTM puts. The findings
are indicated by negative (positive) coefficients on volatility smirk for call (put) options,
and the coefficients are statistically significant at the 10% level. The F-statistics for these
regressions range from 2.90 to 6.67, which implies the validity of the models at the 10% and
5% levels.

A natural explanation for this finding may be that overconfident agents try to take
their chances in the options market, generating a higher demand for OTM call options.
In comparison, they are less worried about market crashes, creating less demand for put
options. While the finding from the slopes of the volatility smirk is consistent with the
one from the volatility skew, it still does not explain the lower volatility spread. One
possibility is that the volatility spread is weighted by open interests, reflecting the relative
expensiveness of ATM call and put options. That is, ATM call options become less expensive
than ATM put options. This might be due to the standard trading strategy of a covered call,
which sells short ATM call options instead of dumping underlying equity into the market
to increase portfolio returns.
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Figure 1. Volatility smirk over time. This figure exhibits an implied volatility smirk over time.
Smirk_C_OA is the difference in implied volatility between ATM call options and OTM call options.
Smirk_C_OI is the difference in implied volatility between ITM and OTM call options. Smirk_P_OA
is the difference in implied volatility between ATM and OTM put options. Smirk_C_OA is the
difference in implied volatility between ITM and OTM put options.

When we use inefficiency measures from SFA as a measure of investor overconfidence,
we find a different picture. Both OC1 and OC2 are negatively correlated with changes in
volatility measures from the previous month, while they are positively correlated with
volatility spread (with F-statistics ranging from 7.96 to 18.12). In addition, there is a positive
correlation between investor overconfidence measures and the steepness of volatility smirk
across strike prices (with F-statistics ranging from 6.45 to 12.51). As the methodology
section explains, OC1 and OC2 are technical inefficiency measures derived from SFA.
Therefore, we see them as overly aggressive trading activities and as proxies for investor
overconfidence. The results, in sum, do not agree with the argument.

First, we find negative and statistically significant coefficients for volatility measures.
This suggests that OC1 and OC2 capture trading activities when option prices are relatively
stable and expected to stay stable. The findings from volatilities are consistent with the ones
from volatility skew/smirk. A general argument for the existence of volatility skew/smirk
is that investors are worried about a market crash and, therefore, would like to protect their
holdings by buying more OTM put options. Another popular explanation is that investors
use ATM/ITM call options instead of their stock investments to enhance rates of return.
Both explanations are supported in this line of tests, given that OC1 and OC2 are positively
correlated with volatility skew (more expansive OTM puts than ATM calls) and with the
slope of the volatility smirk. Again, volatility spread positively correlates with OC1 and
OC2, which may seem to contradict the previous argument. As explained above, ATM call
and put options may be driving this finding.

We conducted similar tests using call and put option turnover ratios, as described in
Tables 3 and 4, respectively. The results are qualitatively similar across the three tables,
as most coefficients appear in the same signs with their corresponding peers in all three
tables, and no surprisingly larger or smaller coefficient is identified. The only noticeable
difference is that put option turnover seems to have better explanatory power for volatility
skew/smirk (and also with significantly higher F-statistics of 8.80 to 14.11 and higher
adjusted R2 of 0.0251 to 0.0453). This is consistent with the argument that investors in the
options market favor using put options to avoid massive losses in a significant market
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crash. The findings are more pronounced when OC1 and OC2 are used as measures of
excess trading, which may suggest that the inefficiency trading measures derived from SFA
capture investors’ fears of market crashes.

Table 3. Regression analysis—volatility measures and price discrepancy measures against unexpected
turnovers on call options.

Explanatory Variables

Dependent Variables
OLS

Residual
OC1 OC2 Adj. R2

Percentage Change in VIX 0.0266 ** −0.0063 *** −0.0060 *** 0.0168
(0.0135) (0.0023) (0.0022)

Past 30 Days’ Realized Volatility 0.0161 −0.0014 −0.0013 −0.0027
(0.0200) (0.0037) (0.0036)

Volatility % Change—Past 30 Days 0.0036 *** −0.0008 *** −0.0008 *** 0.0690
(0.0010) (0.0002) (0.0002)

Volatility Spread −0.0025 ** 0.0004 *** 0.0003 *** 0.0520
(0.0012) (0.0001) (0.0001)

Volatility Skew −0.0022 0.0006 0.0006 0.0066
(0.0023) (0.0005) (0.0004)

Call Volatility Smirk (ATM–OTM) −0.0019 0.0005 * 0.0005 ** 0.0124
(0.0017) (0.0003) (0.0003)

Call Volatility Smirk (ITM–OTM) −0.0027 0.0009 0.0008 0.0033
(0.0039) (0.0007) (0.0007)

Put Volatility Smirk (ATM–OTM) 0.0021 −0.0006 −0.0006 0.0066
(0.0024) (0.0005) (0.0005)

Put Volatility Smirk (ITM–OTM) 0.0053 −0.0013 ** −0.0013 ** 0.0195
(0.0036) (0.0007) (0.0006)

The regressions use monthly aggregated market observations. Explanatory variables are overconfidence measures,
using option turnovers from call options, and controlling for market volatility, idiosyncratic risk of the underlying
stock, and proportional effective spread. Specifically, the overconfidence measures, OC1 and OC2, are (1) residuals
from ordinary least square regressions; and (2) overconfidence measures from stochastic frontier analysis (SFA),
respectively. Dependent variables are volatility measures and price discrepancy measures. The volatility spread is
from Cremers and Weinbaum (2010), while the volatility skew is from Xing et al. (2010). Numbers in parentheses
are standard errors. The adjusted R2 values are the averages of the corresponding values for the three regressions.
*, **, and *** indicate statistical significance at 10%, 5%, and 1% levels, respectively.

To further explore the above findings, we divided all sample firms into two groups
according to the percentage of institutional holdings of the firm. Since institutional investors
are less likely to be subject to behavioral biases, if a pattern is more pronounced in the
group with lower institutional ownership, the pattern is more likely due to behavioral
biases, such as investor overconfidence.

To form the two portfolios, we set the cutoff point at the median percentage of institu-
tional holdings of the entire sample. This sorting resulted in each group having an equal
number of firms. By comparing Panel A and Panel B in Table 5, we find very similar results
in most of the tests, except the one for volatility spread. All trading measures exhibit a
lack of explanatory power as to volatility spread for the group with higher institutional
ownership. In comparison, they appear to be highly correlated with volatility spread
for the group with lower institutional ownership. Again, OLS residuals are negatively
correlated with volatility spread in this table, while OC1 and OC2 are positively correlated
with volatility spread. Given that volatility spread is dominated by the demand for ATM
call options relative to put options, one may conclude that OLS residuals capture demands
on put options while OC1 and OC2 capture demands on call options.
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Table 4. Regression analysis—volatility measures and price discrepancy measures against unexpected
turnovers on put options.

Explanatory Variables

Dependent Variables
OLS

Residual
OC1 OC2 Adj. R2

Percentage Change in VIX 0.0406 *** −0.0056 *** −0.0053 *** 0.0224
(0.0157) (0.0021) (0.0020)

Past 30 Days’ Realized Volatility 0.0289 −0.0018 −0.0017 0.0013
(0.0212) (0.0033) (0.0031)

Volatility % Change—Past 30 Days 0.0053 *** −0.0008 *** −0.0008 *** 0.0962
(0.0011) (0.0001) (0.0001)

Volatility Spread −0.0012 0.0002 * 0.0002 * 0.0099
(0.0009) (0.0001) (0.0001)

Volatility Skew −0.0017 0.0009 ** 0.0009 ** 0.0236
(0.0027) (0.0004) (0.0004)

Call Volatility Smirk (ATM–OTM) −0.0026 0.0008 *** 0.0008 *** 0.0439
(0.0021) (0.0002) (0.0002)

Call Volatility Smirk (ITM–OTM) −0.0040 0.0016 *** 0.0015 *** 0.0283
(0.0048) (0.0006) (0.0006)

Put Volatility Smirk (ATM–OTM) 0.0013 −0.0010 ** −0.0009 ** 0.0251
(0.0030) (0.0004) (0.0004)

Put Volatility Smirk (ITM–OTM) 0.0050 −0.0018 *** −0.0017 *** 0.0453
(0.0045) (0.0006) (0.0006)

The regressions use monthly aggregated market observations. Explanatory variables are overconfidence measures,
using option turnovers from put options, and controlling for market volatility, idiosyncratic risk of the underlying
stock, and proportional effective spread. Specifically, the overconfidence measures, OC1 and OC2, are (1) residuals
from ordinary least square regressions; and (2) overconfidence measures from stochastic frontier analysis (SFA),
respectively. Dependent variables are volatility measures and price discrepancy measures. The volatility spread is
from Cremers and Weinbaum (2010), while the volatility skew is from Xing et al. (2010). Numbers in parentheses
are standard errors. The adjusted R2 values are the averages of the corresponding values for the three regressions.
*, **, and *** indicate statistical significance at 10%, 5%, and 1% levels, respectively.

Table 5. Unexpected turnovers on all options against volatility measures and price discrepancy
measures—sorted by institutional ownership.

Panel A: High Institutional Ownership

Explanatory Variables

Dependent Variables
OLS

Residual
OC1 OC2 Adj. R2

Percentage Change in VIX 1.4638 −0.3828 ** −0.3653 ** 0.0033
(1.4622) (0.1949) (0.1848)

Past 30 Days’ Realized Volatility −0.0008 0.0006 0.0006 −0.0051
(0.0200) (0.0030) (0.0028)

Volatility % Change—Past 30 Days 0.4590 *** −0.0740 *** −0.0704 *** 0.0983
(0.1090) (0.0197) (0.0186)

Volatility Spread 0.0674 −0.0022 −0.0021 −0.0020
(0.0456) (0.0060) (0.0057)

Volatility Skew −0.3179 0.0719 * 0.0686 * 0.0108
(0.2778) (0.0398) (0.0378)

Call Volatility Smirk (ATM–OTM) −0.3389 * 0.0636 *** 0.0606 *** 0.0307
(0.1805) (0.0229) (0.0217)

Call Volatility Smirk (ITM–OTM) −0.0062 0.0012 ** 0.0012 ** 0.0196
(0.0041) (0.0006) (0.0005)

Put Volatility Smirk (ATM–OTM) 0.3506 −0.0782 ** −0.0746 ** 0.0179
(0.2586) (0.0362) (0.0344)

Put Volatility Smirk (ITM–OTM) 0.0076 * −0.0016 *** −0.0016 *** 0.0386
(0.0040) (0.0006) (0.0005)
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Table 5. Cont.

Panel B: Low Institutional Ownership

Explanatory Variables

Dependent Variables
OLS

Residual
OC1 OC2 Adj. R2

Percentage Change in VIX 1.5253 −0.4060 ** −0.3833 ** 0.0086
(1.4289) (0.1781) (0.1670)

Past 30 Days’ Realized Volatility 0.0317 * −0.0036 −0.0034 0.0101
(0.0190) (0.0029) (0.0027)

Volatility % Change—Past 30 Days 0.4071 *** −0.0647 *** −0.0607 *** 0.0561
(0.1063) (0.0144) (0.0136)

Volatility Spread −0.3161 ** 0.0356 *** 0.0332 *** 0.0539
(0.1479) (0.0133) (0.0124)

Volatility Skew −0.3141 0.0746 * 0.0703 * 0.0197
(0.2449) (0.0414) (0.0388)

Call Volatility Smirk (ATM–OTM) −0.2928 * 0.0603 *** 0.0568 *** 0.0329
(0.1736) (0.0212) (0.0199)

Call Volatility Smirk (ITM–OTM) −0.0045 0.0011 * 0.0011 * 0.0171
(0.0040) (0.0006) (0.0005)

Put Volatility Smirk (ATM–OTM) 0.2967 −0.0809 ** −0.0762 ** 0.0244
(0.2488) (0.0403) (0.0378)

Put Volatility Smirk (ITM–OTM) 0.0063 * −0.0014 ** −0.0013 ** 0.0388
(0.0036) (0.0006) (0.0005)

We sorted the sample into two subsamples according to institutional ownership. Firms with a percentage of
institutional ownership above (below) the sample median are considered high (low) institutional ownership. This
table reports the regression results for these two subsamples using monthly aggregated market observations.
Explanatory variables are overconfidence measures, using option turnovers from all options, and controlling
for market volatility, idiosyncratic risk of the underlying stock, and proportional effective spread. Specifically,
the overconfidence measures, OC1 and OC2, are (1) residuals from ordinary least square regressions; and (2)
overconfidence measures from stochastic frontier analysis (SFA), respectively. Dependent variables are volatility
measures and price discrepancy measures. The volatility spread is from Cremers and Weinbaum (2010), while the
volatility skew is from Xing et al. (2010). Numbers in parentheses are standard errors. The adjusted R2 values are
the averages of the corresponding values for the three regressions. *, **, and *** indicate statistical significance at
10%, 5%, and 1% levels, respectively.

4.2. Cross-Sectional Analysis

As suggested in Cremers and Weinbaum (2010) and Xing et al. (2010), differences in
implied volatility may predict future equity returns. While informed traders, as shown in
both studies, may well be the driving force in the findings, we wanted to explore whether
there might be an alternative explanation. Unlike some demand-based trading activity
measures used in studies such as Pan and Poteshman (2006), option turnover ratios are
publicly available information. It would be challenging to argue that informed traders are
fully accountable for the predictability of volatility spread/skew/smirk if the volatility
patterns are directly tied to observable trading activities. Therefore, we conducted a set of
simple tests to examine if there was a cross-sectional connection between volatility patterns
and trading activities.

First, we sorted the sample firms into deciles based on monthly average trading
turnover and calculated the volatility patterns for each decile. All of the volatility patterns
for each decile were weighted based on open interest. Table 6 depicts various trading
measures, including all (calls and puts) option turnover, call option turnover, put option
turnover, O/S ratio, and O/S ratio in USD value (DOS). Regardless of which trading
measure is used, we observe a monotonic pattern on volatility spread across trading
deciles, where more heavily traded portfolios have a more negative volatility spread. Also,
the differences in volatility spread between the most and the least active portfolios are
statistically significant across all measures.
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Table 6. Cross-Sectional analyses—trading activities against price discrepancy measures.

Panel A: All Option Turnover

Variables 0 1 2 3 4 5 6 7 8 9 Diff t-Stat

VS −0.0060 −0.0069 −0.0068 −0.0074 −0.0072 −0.0078 −0.0078 −0.0080 −0.0086 −0.0091 −0.0031 −6.08
IV_Skew 0.0460 0.0466 0.0448 0.0441 0.0433 0.0433 0.0430 0.0449 0.0454 0.0489 0.0029 0.93

Smirk_C_OA 0.0020 0.0044 0.0061 0.0071 0.0073 0.0083 0.0089 0.0085 0.0091 0.0092 0.0071 3.44
Smirk_C_OI 0.0311 0.0328 0.0324 0.0337 0.0332 0.0344 0.0352 0.0360 0.0371 0.0392 0.0082 2.47
Smirk_P_OA −0.0327 −0.0355 −0.0345 −0.0343 −0.0340 −0.0341 −0.0341 −0.0349 −0.0358 −0.0365 −0.0038 −1.28
Smirk_P_OI −0.0254 −0.0292 −0.0289 −0.0301 −0.0312 −0.0327 −0.0333 −0.0344 −0.0350 −0.0362 −0.0108 −2.96

Return −0.0079 −0.0014 0.0018 0.0053 0.0081 0.0112 0.0137 0.0175 0.0210 0.0319 0.0398 5.60
Future_Return 0.0133 0.0114 0.0105 0.0093 0.0102 0.0097 0.0088 0.0093 0.0089 0.0078 −0.0056 −0.83

Panel B: Call Option Turnover

Variables 0 1 2 3 4 5 6 7 8 9 Diff t-Stat

VS −0.0060 −0.0068 −0.0070 −0.0071 −0.0075 −0.0077 −0.0079 −0.0081 −0.0083 −0.0092 −0.0032 −6.18
IV_Skew 0.0500 0.0458 0.0452 0.0443 0.0444 0.0443 0.0440 0.0435 0.0454 0.0472 −0.0028 −0.83

Smirk_C_OA 0.0038 0.0056 0.0060 0.0073 0.0076 0.0082 0.0086 0.0088 0.0085 0.0086 0.0048 2.22
Smirk_C_OI 0.0313 0.0327 0.0337 0.0335 0.0340 0.0344 0.0354 0.0358 0.0371 0.0379 0.0065 1.88
Smirk_P_OA −0.0323 −0.0352 −0.0355 −0.0343 −0.0343 −0.0346 −0.0351 −0.0344 −0.0356 −0.0352 −0.0029 −0.96
Smirk_P_OI −0.0249 −0.0286 −0.0279 −0.0312 −0.0321 −0.0331 −0.0336 −0.0345 −0.0355 −0.0344 −0.0095 −2.88

Return −0.0140 −0.0065 −0.0024 0.0014 0.0059 0.0097 0.0147 0.0203 0.0273 0.0450 0.0590 8.49
Future_Return 0.0128 0.0105 0.0099 0.0095 0.0110 0.0102 0.0094 0.0087 0.0089 0.0081 −0.0047 −0.69

Panel C: Put Option Turnover

Variables 0 1 2 3 4 5 6 7 8 9 Diff t-Stat

VS −0.0055 −0.0070 −0.0073 −0.0077 −0.0076 −0.0077 −0.0079 −0.0081 −0.0084 −0.0082 −0.0027 −5.27
IV_Skew 0.0428 0.0456 0.0437 0.0437 0.0425 0.0425 0.0435 0.0448 0.0472 0.0502 0.0074 2.44

Smirk_C_OA 0.0005 0.0041 0.0054 0.0069 0.0074 0.0081 0.0082 0.0095 0.0103 0.0102 0.0097 5.34
Smirk_C_OI 0.0293 0.0321 0.0325 0.0326 0.0337 0.0345 0.0354 0.0363 0.0382 0.0404 0.0111 3.77
Smirk_P_OA −0.0360 −0.0343 −0.0330 −0.0332 −0.0330 −0.0341 −0.0342 −0.0356 −0.0363 −0.0380 −0.0020 −0.71
Smirk_P_OI −0.0268 −0.0285 −0.0288 −0.0298 −0.0307 −0.0322 −0.0329 −0.0343 −0.0351 −0.0386 −0.0118 −3.01

Return 0.0081 0.0110 0.0130 0.0119 0.0110 0.0128 0.0128 0.0087 0.0067 0.0051 −0.0029 −0.43
Future_Return 0.0128 0.0117 0.0105 0.0112 0.0095 0.0091 0.0086 0.0090 0.0085 0.0081 −0.0048 −0.72

Panel D: O/S Ratio (in the Number of Shares)

Variables 0 1 2 3 4 5 6 7 8 9 Diff t-Stat

VS −0.0036 −0.0042 −0.0051 −0.0056 −0.0063 −0.0070 −0.0082 −0.0089 −0.0102 −0.0153 −0.0117 −18.27
IV_Skew 0.0396 0.0429 0.0433 0.0425 0.0428 0.0432 0.0428 0.0432 0.0446 0.0519 0.0123 2.60

Smirk_C_OA −0.0023 0.0044 0.0043 0.0051 0.0067 0.0069 0.0080 0.0087 0.0093 0.0105 0.0128 4.01
Smirk_C_OI 0.0226 0.0333 0.0304 0.0316 0.0316 0.0324 0.0338 0.0359 0.0380 0.0421 0.0194 4.33
Smirk_P_OA −0.0251 −0.0334 −0.0361 −0.0312 −0.0335 −0.0337 −0.0338 −0.0343 −0.0352 −0.0383 −0.0132 −2.23
Smirk_P_OI −0.0266 −0.0215 −0.0237 −0.0282 −0.0285 −0.0302 −0.0315 −0.0338 −0.0356 −0.0384 −0.0118 −2.36

Return −0.0004 0.0056 0.0076 0.0098 0.0100 0.0106 0.0136 0.0139 0.0147 0.0157 0.0161 2.51
Future_Return 0.0138 0.0119 0.0128 0.0105 0.0104 0.0091 0.0097 0.0085 0.0080 0.0045 −0.0093 −1.43

Panel E: O/S Ratio (in Dollar Value)

Variables 0 1 2 3 4 5 6 7 8 9 Diff t-Stat

VS −0.0043 −0.0045 −0.0049 −0.0056 −0.0060 −0.0064 −0.0073 −0.0083 −0.0091 −0.0186 −0.0144 −17.31
IV_Skew 0.0397 0.0404 0.0400 0.0408 0.0402 0.0412 0.0417 0.0428 0.0455 0.0604 0.0206 4.96

Smirk_C_OA 0.0025 0.0045 0.0060 0.0069 0.0074 0.0083 0.0082 0.0094 0.0090 0.0083 0.0059 3.02
Smirk_C_OI 0.0262 0.0295 0.0291 0.0306 0.0306 0.0328 0.0349 0.0373 0.0391 0.0434 0.0172 4.59
Smirk_P_OA −0.0282 −0.0306 −0.0321 −0.0299 −0.0315 −0.0329 −0.0333 −0.0344 −0.0369 −0.0423 −0.0141 −3.29
Smirk_P_OI −0.0196 −0.0249 −0.0239 −0.0274 −0.0289 −0.0303 −0.0331 −0.0355 −0.0367 −0.0376 −0.0179 −4.03

Return 0.0024 0.0052 0.0072 0.0096 0.0110 0.0109 0.0129 0.0135 0.0154 0.0128 0.0105 1.42
Future_Return 0.0123 0.0099 0.0112 0.0118 0.0109 0.0094 0.0095 0.0108 0.0085 0.0049 −0.0074 −1.07

This table summarizes the price discrepancy measures across ten portfolios sorted by trading activities, where
the portfolios with larger numbers represent more frequently traded firms. For example, portfolio 9 includes the
sample firms whose average option turnovers fall within the top decile. All of the numbers are the averages of
the corresponding variable over time. Each panel includes the analysis using a specific trading activity measure.
Option turnovers are trading volumes over open interests. O/S ratios are option trading volumes relative to
trading volumes of the underlying equity. Diff is the difference between portfolio 0 and portfolio 9. VS is the
weighted average difference in implied volatility between paired call and put options with the same strike price,
as in Cremers and Weinbaum (2010). IV_Skew is the weighted average difference in implied volatility between
OTM and ATM put options, as in Xing et al. (2010). Smirk_C_OA is the difference in implied volatility between
ATM call options and OTM call options. Smirk_C_OI is the difference in implied volatility between ITM and OTM
call options. Smirk_P_OA is the difference in implied volatility between ATM and OTM put options. Smirk_C_OA
is the difference in implied volatility between ITM and OTM put options. Paired differences are used to derive
t-statistics.

537



J. Risk Financial Manag. 2023, 16, 337

In addition to volatility spread, we also find a pattern suggesting that option traders
tend to be more active in trading stocks with better performance during the same time
span. We find this by examining the Return variable, which is the monthly return during
the month in which firms are sorted based on trading turnover. The above phenomenon is
especially prominent for the trading of call options. In both Panels A and B, the difference
in concurrent returns between the highest trading turnover decile and the lowest one is
statistically significant, with the portfolio with the highest trading turnover earning better
return than the one with the lowest trading turnover. This phenomenon suggests that
option traders tend to chase “hot” firms in the options market.

According to the above findings, one can conclude that option traders are more active
when the volatility spread is low and the underlying stock performs well. However, the
subsequent returns on the portfolios with more active trading activities are not any better.
Future_Return is the raw monthly return for the same portfolio over the subsequent calen-
dar month; it shows a decreasing trend from the lowest trading decile to the highest one.
However, the difference between the top and bottom deciles is not statistically significant.

As discussed above, the pattern of more active trading associated with better concur-
rent equity returns is mainly driven by call-option traders. The pattern appears in Panels A
(all options) and B (call options), but not in Panel C (put options). Two implications may
be derived from this finding. First, it is consistent with the general expectation that put
options are used for hedging, and therefore, the trading activities of put options are not
correlated with recent equity performance. Second, it supports the investor overconfidence
hypothesis, in that call option traders are more active when the underlying equities are
performing well on average. Note that our analysis here differs from Chen and Sabherwal
(2019), as we are examining the characteristics of heavily traded options.

A positive relationship between trading turnover and underlying stock returns is
less likely because of informed trading. Given that the short sale constraint is more of
an issue in the equity market, investors who hold private information and expect future
performance of certain stocks to be bad should tend to take advantage of their private
information in the put-options market.

The above does not appear to be the case, however. It is rather difficult to argue that
this finding captures investors’ accurate forecasts if this pattern only applies to call option
trading. If call options are being used for momentum or contrarian strategies, the pattern is
inconsistent with the negative (but insignificant) relationship between trading turnover and
future returns. Consequently, this finding makes investor overconfidence a more plausible
explanation.

Another candidate explanation is the disposition effect. If investors tend to hold on
to their losing stakes while liquidating winning ones, the supply of in-the-money options
may increase, while that of out-of-the-money options decreases. The phenomenon should
lead to less-expensive ITM call options and more-expensive OTM call options. Again, this
does not appear to be the case, as Smirk_C_OA and Smirk_C_OI are positively correlated
with trading turnover. These two variables measure the relative expensiveness between
ATM/ITM options and OTM options, and larger figures mean more expensive ATM/ITM
options relative to OTM ones. Therefore, the figures show that heavily traded call options
generally have more expensive ATM/ITM options than OTM options. This is not consistent
with the disposition-effect hypothesis.

It is worth noting that put option turnover and O/S ratio are positively correlated with
implied volatility skew (IV_Skew), which is consistent with the argument that investors
tend to utilize out-of-the-money put options to protect their investments in the underlying
equity market and therefore make OTM put options more expensive.

Although this study does not rebalance portfolios in a way similar to Cremers and
Weinbaum (2010) and Xing et al. (2010), we do consider trading activity and future stock
performance. Panels A, B, and C do not show any significant patterns in future stock returns,
despite the significant pattern found in volatility spread (VS). Nevertheless, Panels D and
E, which use the O/S ratio to capture option trading activities, show some predictability
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of future equity performance. In Panel D, the O/S ratio is based on the number of shares.
It is negatively and significantly correlated with VS, and also negatively correlated with
future stock returns. These findings suggest that when the options market is more active
than its underlying equity market, the underlying equity tends to have worse performance
in the future. This result is consistent with Cremers and Weinbaum (2010) and Xing et al.
(2010). However, the direct connection between the O/S ratio and future equity returns
may suggest that the options market reveals better information than does the underlying
equity market. In addition, although we still find that option investors tend to pursue
stocks with higher concurrent returns, this tendency is not as strong as in Panel B. In Panel
E, the O/S ratio is based on the USD value of shares. Panel E shows the same pattern as
Panel D.

The O/S ratio can be considered a measure of the focus of investors on the options
market relative to the equity market, where a higher O/S ratio means more focus on the
options market. Since a more active options market predicts worse future equity returns,
we may conclude from our findings above that the options market reacts faster to negative
signals. This is not inconsistent with the observations from Panels A through C that option
traders might have difficulty processing positive signals as indicated by stronger recent
performance.

Two potential factors could be driving the findings above, namely, underlying risks
and liquidity. To examine whether these factors explain the findings above, Table 7 has
analysis similar to that of Table 6, but controls for the above factors. We first ran time-
series regressions of option turnovers and O/S ratios against the return volatility of the
underlying equity, the proportional effective spread of options, and the illiquidity measure
proposed by Amihud (2002) for each sample firm, and then extracted residuals from the
regressions. According to Gopalan et al. (2012), this measure is highly skewed, and they
use its square root version (p. 342). We also used the same adjusted measure. Then we
sorted the sample into deciles according to the excess trading activities captured by OLS
residuals.

Table 7. Cross-sectional analyses—excess trading activities against price discrepancy measures.

Panel A: All Option Turnover

Variables 0 1 2 3 4 5 6 7 8 9 Diff t-Stat

VS −0.0065 −0.0065 −0.0065 −0.0066 −0.0065 −0.0066 −0.0067 −0.0068 −0.0070 −0.0073 −0.0008 −1.75
IV_SKEW 0.0432 0.0418 0.0427 0.0416 0.0414 0.0423 0.0418 0.0416 0.0427 0.0450 0.0017 0.67

SMIRK_C_OA 0.0104 0.0092 0.0089 0.0097 0.0092 0.0089 0.0089 0.0092 0.0090 0.0086 −0.0018 −1.11
SMIRK_C_OI 0.0366 0.0357 0.0367 0.0357 0.0353 0.0359 0.0359 0.0351 0.0366 0.0371 0.0005 0.17
SMIRK_P_OA −0.0340 −0.0330 −0.0352 −0.0338 −0.0341 −0.0346 −0.0343 −0.0337 −0.0343 −0.0354 −0.0014 −0.63
SMIRK_P_OI −0.0327 −0.0348 −0.0346 −0.0345 −0.0354 −0.0339 −0.0342 −0.0338 −0.0340 −0.0330 −0.0003 −0.09

Return 0.0083 0.0067 0.0057 0.0082 0.0085 0.0085 0.0125 0.0149 0.0169 0.0237 0.0154 2.30
Future_Return 0.0130 0.0116 0.0101 0.0117 0.0109 0.0122 0.0105 0.0101 0.0118 0.0102 −0.0028 −0.45

Panel B: Call Option Turnover

Variables 0 1 2 3 4 5 6 7 8 9 Diff t-Stat

VS −0.0066 −0.0067 −0.0067 −0.0064 −0.0067 −0.0065 −0.0066 −0.0066 −0.0070 −0.0072 −0.0006 −1.30
IV_SKEW 0.0419 0.0432 0.0413 0.0428 0.0431 0.0424 0.0417 0.0423 0.0426 0.0434 0.0015 0.61

SMIRK_C_OA 0.0107 0.0098 0.0099 0.0092 0.0096 0.0092 0.0087 0.0088 0.0084 0.0082 −0.0026 −1.63
SMIRK_C_OI 0.0369 0.0355 0.0361 0.0356 0.0366 0.0364 0.0362 0.0358 0.0359 0.0359 −0.0010 −0.31
SMIRK_P_OA −0.0327 −0.0338 −0.0341 −0.0344 −0.0354 −0.0354 −0.0346 −0.0342 −0.0342 −0.0339 −0.0012 −0.54
SMIRK_P_OI −0.0328 −0.0324 −0.0345 −0.0353 −0.0353 −0.0353 −0.0347 −0.0339 −0.0343 −0.0316 0.0012 0.34

Return 0.0057 0.0041 0.0050 0.0051 0.0057 0.0085 0.0126 0.0135 0.0224 0.0316 0.0259 3.99
Future_Return 0.0129 0.0108 0.0110 0.0099 0.0111 0.0117 0.0117 0.0102 0.0132 0.0096 −0.0033 −0.55
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Table 7. Cont.

Panel C: Put Option Turnover

Variables 0 1 2 3 4 5 6 7 8 9 Diff t-Stat

VS −0.0054 −0.0067 −0.0066 −0.0068 −0.0068 −0.0068 −0.0067 −0.0073 −0.0071 −0.0072 −0.0018 −5.13
IV_SKEW 0.0460 0.0433 0.0417 0.0416 0.0410 0.0406 0.0411 0.0413 0.0430 0.0468 0.0008 1.18

SMIRK_C_OA 0.0078 0.0088 0.0085 0.0084 0.0087 0.0091 0.0095 0.0102 0.0098 0.0106 0.0028 2.20
SMIRK_C_OI 0.0345 0.0358 0.0355 0.0346 0.0359 0.0355 0.0360 0.0362 0.0368 0.0390 0.0045 1.93
SMIRK_P_OA −0.0354 −0.0349 −0.0336 −0.0336 −0.0337 −0.0331 −0.0339 −0.0337 −0.0350 −0.0369 −0.0015 −0.67
SMIRK_P_OI −0.0330 −0.0334 −0.0348 −0.0338 −0.0347 −0.0341 −0.0343 −0.0339 −0.0332 −0.0358 −0.0028 −0.62

Return 0.0159 0.0174 0.0149 0.0132 0.0122 0.0132 0.0077 0.0098 0.0047 0.0035 −0.0124 −1.84
Future_Return 0.0143 0.0131 0.0107 0.0120 0.0112 0.0094 0.0098 0.0102 0.0102 0.0107 −0.0037 −0.59

Panel D: O/S Ratio (in the Number of Shares)

Variables 0 1 2 3 4 5 6 7 8 9 Diff t-Stat

VS −0.0075 −0.0063 −0.0056 −0.0057 −0.0050 −0.0055 −0.0061 −0.0068 −0.0073 −0.0111 −0.0035 −6.84
IV_SKEW 0.0387 0.0391 0.0381 0.0406 0.0410 0.0434 0.0429 0.0448 0.0450 0.0495 0.0108 4.35

SMIRK_C_OA 0.0108 0.0098 0.0090 0.0091 0.0076 0.0083 0.0077 0.0085 0.0095 0.0100 −0.0008 −0.52
SMIRK_C_OI 0.0364 0.0348 0.0350 0.0348 0.0344 0.0336 0.0334 0.0355 0.0379 0.0411 0.0047 1.41
SMIRK_P_OA −0.0317 −0.0316 −0.0312 −0.0332 −0.0337 −0.0347 −0.0344 −0.0362 −0.0367 −0.0392 −0.0075 −3.38
SMIRK_P_OI −0.0341 −0.0336 −0.0319 −0.0317 −0.0340 −0.0322 −0.0333 −0.0331 −0.0363 −0.0387 −0.0046 −1.47

Return 0.0125 0.0135 0.0098 0.0087 0.0078 0.0097 0.0109 0.0121 0.0130 0.0157 0.0031 0.49
Future_Return 0.0136 0.0134 0.0133 0.0120 0.0116 0.0096 0.0088 0.0095 0.0087 0.0117 −0.0019 −0.29

Panel E: O/S Ratio (in USD Value)

Variables 0 1 2 3 4 5 6 7 8 9 Diff t-Stat

VS −0.0082 −0.0064 −0.0058 −0.0055 −0.0049 −0.0051 −0.0058 −0.0063 −0.0072 −0.0117 −0.0035 −5.44
IV_SKEW 0.0414 0.0391 0.0388 0.0395 0.0397 0.0405 0.0421 0.0429 0.0442 0.0530 0.0116 4.23

SMIRK_C_OA 0.0105 0.0092 0.0096 0.0093 0.0091 0.0081 0.0075 0.0081 0.0093 0.0098 −0.0007 −0.44
SMIRK_C_OI 0.0376 0.0355 0.0345 0.0337 0.0339 0.0317 0.0333 0.0353 0.0382 0.0427 0.0050 1.40
SMIRK_P_OA −0.0341 −0.0314 −0.0323 −0.0326 −0.0324 −0.0324 −0.0324 −0.0346 −0.0369 −0.0414 −0.0072 −2.98
SMIRK_P_OI −0.0359 −0.0347 −0.0341 −0.0328 −0.0318 −0.0298 −0.0315 −0.0329 −0.0355 −0.0386 −0.0027 −0.78

Return 0.0161 0.0123 0.0102 0.0098 0.0094 0.0086 0.0107 0.0122 0.0123 0.0121 −0.0039 −0.52
Future_Return 0.0140 0.0126 0.0126 0.0113 0.0108 0.0096 0.0092 0.0102 0.0101 0.0116 −0.0024 −0.35

This table summarizes the price discrepancy measures across ten portfolios sorted by excess trading activities
while controlling for stock return volatility, proportional effective spread of options, and effective spread of
underlying equity. The portfolios with large numbers represent firms with more excess-trading activities. For
example, portfolio 9 includes the sample firms whose excess option trading measures fall in the top decile in
the sample. All of the numbers are the averages of the corresponding variable over time. Each panel includes
the analysis using a specific trading activity measure. Option turnovers are trading volumes over open interests.
O/S ratios are option trading volumes relative to trading volumes of the underlying equity. Diff is the difference
between portfolio 0 and portfolio 9. Paired differences are used to derive t-statistics.

At first sight, all five measures have less explanatory power cross-sectionally, except for
volatility spread. Again, O/S ratios are positively correlated with volatility skew. However,
the statistical significance is consumed by the control variables. It is intuitive to argue that
the shift from the equity market to the options market is due to liquidity in corresponding
markets, especially when it comes to the processing of negative information. Again, pricing
negative information more efficiently in the equity market than in the options market might
be relatively tricky. The illiquidity measures in both markets may well account for the
difference and therefore consume the predictability. However, the finding that call option
traders pursue “hot” stocks but do not predict future performance in the underlying equity
market remains intact despite less-significant results.

In sum, Tables 6 and 7 generally support the investor overconfidence hypothesis.
Although we also find some evidence supporting informed trading, it is more likely to be
due to greater liquidity in the options market relative to the underlying equity market.

To further investigate the role of liquidity in options trading, we performed a double
sorting by trading activities and liquidity in Table 8. The model in Easley et al. (1998)
suggests that informed traders are more likely to trade in the options market when the
liquidity of the options market is high.
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Table 8. Cross-sectional analyses—double sorting by trading activities and liquidity measure.

Panel A: Option Turnover as Trading Measure

1: Volatility Spread Option Turnover
1 2 3 4 5 Diff t-Stat

Illiquidity

1 −0.0046 −0.0050 −0.0058 −0.0055 −0.0074 −0.0028 −3.15
2 −0.0072 −0.0072 −0.0074 −0.0076 −0.0078 −0.0005 −0.86
3 −0.0074 −0.0082 −0.0085 −0.0086 −0.0095 −0.0022 −3.42
4 −0.0073 −0.0080 −0.0080 −0.0089 −0.0095 −0.0022 −4.16
5 −0.0088 −0.0077 −0.0074 −0.0080 −0.0090 −0.0002 −0.18

Diff −0.0042 −0.0027 −0.0017 −0.0025 −0.0016
t-Stat −4.40 −4.46 −3.14 −4.39 −1.98

2: Volatility Skew Option Turnover
1 2 3 4 5 Diff t-Stat

Illiquidity

1 0.0585 0.0622 0.0567 0.0581 0.0676 0.0090 1.36
2 0.0512 0.0489 0.0485 0.0498 0.0544 0.0031 0.92
3 0.0428 0.0454 0.0457 0.0465 0.0499 0.0072 2.57
4 0.0436 0.0413 0.0414 0.0432 0.0466 0.0030 1.10
5 0.0401 0.0382 0.0380 0.0395 0.0427 0.0026 1.04

Diff −0.0185 −0.0240 −0.0187 −0.0186 −0.0249
t-Stat −3.73 −6.83 −4.35 −4.05 −4.88

3: Call Volatility Smirk (ATM–OTM) Option Turnover
1 2 3 4 5 Diff t-Stat

Illiquidity

1 −0.0096 −0.0053 −0.0046 −0.0055 −0.0040 0.0056 1.40
2 0.0035 0.0021 0.0020 0.0018 −0.0001 −0.0036 −1.87
3 0.0055 0.0077 0.0077 0.0071 0.0057 0.0002 0.11
4 0.0079 0.0102 0.0106 0.0107 0.0102 0.0023 1.38
5 0.0126 0.0129 0.0128 0.0132 0.0144 0.0018 1.07

Diff 0.0222 0.0182 0.0174 0.0187 0.0184
t-Stat 6.43 7.79 7.03 8.11 6.92

4: Call Volatility Smirk (ITM–OTM) Option Turnover
1 2 3 4 5 Diff t-Stat

Illiquidity

1 0.0311 0.0274 0.0245 0.0284 0.0338 0.0027 0.60
2 0.0310 0.0312 0.0280 0.0298 0.0302 −0.0009 −0.28
3 0.0318 0.0324 0.0332 0.0333 0.0328 0.0010 0.34
4 0.0369 0.0342 0.0358 0.0360 0.0380 0.0011 0.33
5 0.0363 0.0370 0.0381 0.0404 0.0437 0.0075 2.08

Diff 0.0052 0.0096 0.0136 0.0120 0.0100
t-Stat 1.37 2.99 3.91 3.16 2.31

5: Put Volatility Smirk (ATM–OTM) Option Turnover
1 2 3 4 5 Diff t-Stat

Illiquidity

1 −0.0402 −0.0431 −0.0398 −0.0514 −0.0468 −0.0066 −1.02
2 −0.0361 −0.0353 −0.0364 −0.0379 −0.0397 −0.0035 −1.18
3 −0.0343 −0.0351 −0.0346 −0.0345 −0.0363 −0.0020 −0.85
4 −0.0357 −0.0330 −0.0332 −0.0327 −0.0357 0.0000 0.01
5 −0.0306 −0.0311 −0.0319 −0.0325 −0.0349 −0.0044 −1.70

Diff 0.0096 0.0121 0.0080 0.0189 0.0118
t-Stat 1.81 3.67 2.03 4.48 2.66
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6: Put Volatility Smirk (ITM–OTM) Option Turnover
1 2 3 4 5 Diff t-Stat

Illiquidity

1 −0.0207 −0.0184 −0.0232 −0.0278 −0.0275 −0.0069 −0.82
2 −0.0226 −0.0247 −0.0229 −0.0242 −0.0195 0.0031 0.61
3 −0.0281 −0.0279 −0.0302 −0.0301 −0.0290 −0.0009 −0.32
4 −0.0364 −0.0328 −0.0337 −0.0332 −0.0353 0.0011 3.42
5 −0.0370 −0.0344 −0.0363 −0.0396 −0.0427 −0.0057 −1.47

Diff −0.0163 −0.0160 −0.0132 −0.0118 −0.0151
t-Stat −2.45 −3.98 −2.63 −1.97 −2.39

Panel B: O/S Ratio as Trading Measure

1: Volatility Spread O/S Ratio
1 2 3 4 5 Diff t-Stat

Illiquidity

1 −0.0032 −0.0048 −0.0067 −0.0121 −0.0211 −0.0179 −7.99
2 −0.0046 −0.0053 −0.0071 −0.0105 −0.0200 −0.0155 −12.96
3 −0.0044 −0.0055 −0.0068 −0.0097 −0.0186 −0.0142 −13.62
4 −0.0044 −0.0056 −0.0067 −0.0081 −0.0141 −0.0097 −12.85
5 −0.0042 −0.0059 −0.0066 −0.0075 −0.0100 −0.0058 −4.74

Diff −0.0010 −0.0011 0.0001 0.0045 0.0111
t-Stat −0.86 −1.94 0.18 4.48 4.96

2: Volatility Skew O/S Ratio
1 2 3 4 5 Diff t-Stat

Illiquidity

1 0.0541 0.0510 0.0606 0.0660 0.0878 0.0337 4.44
2 0.0446 0.0446 0.0476 0.0530 0.0652 0.0206 5.11
3 0.0410 0.0438 0.0428 0.0454 0.0586 0.0176 4.17
4 0.0370 0.0378 0.0398 0.0416 0.0498 0.0128 2.88
5 0.0300 0.0365 0.0360 0.0378 0.0425 0.0125 2.31

Diff −0.0241 −0.0145 −0.0246 −0.0282 −0.0453
t-Stat −3.58 −3.69 −7.55 −5.53 −7.01

3: Call Volatility Smirk (ATM–OTM) O/S Ratio
1 2 3 4 5 Diff t-Stat

Illiquidity

1 −0.0048 −0.0025 −0.0024 −0.0060 −0.0195 −0.0147 −2.89
2 0.0033 0.0029 0.0022 0.0026 −0.0014 −0.0046 −2.02
3 0.0071 0.0068 0.0074 0.0073 0.0051 −0.0020 −0.94
4 0.0084 0.0088 0.0099 0.0107 0.0104 0.0019 0.98
5 0.0066 0.0095 0.0120 0.0124 0.0145 0.0079 1.14

Diff 0.0114 0.0120 0.0145 0.0184 0.0340
t-Stat 1.50 4.09 6.42 6.45 8.66

4: Call Volatility Smirk (ITM–OTM) O/S Ratio
1 2 3 4 5 Diff t-Stat

Illiquidity

1 0.0340 0.0291 0.0308 0.0283 0.0285 −0.0055 −0.89
2 0.0271 0.0305 0.0298 0.0305 0.0283 0.0013 0.38
3 0.0291 0.0302 0.0321 0.0341 0.0337 0.0045 1.26
4 0.0337 0.0321 0.0340 0.0362 0.0392 0.0055 1.48
5 0.0332 0.0315 0.0321 0.0370 0.0444 0.0113 1.25

Diff −0.0008 0.0023 0.0014 0.0087 0.0160
t-Stat −0.09 0.77 0.42 2.24 2.81
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5: Put Volatility Smirk (ATM–OTM) O/S Ratio
1 2 3 4 5 Diff t-Stat

Illiquidity

1 −0.0370 −0.0490 −0.0459 −0.0433 −0.0419 −0.0049 −0.63
2 −0.0369 −0.0356 −0.0372 −0.0365 −0.0406 −0.0037 −0.94
3 −0.0319 −0.0327 −0.0339 −0.0360 −0.0371 −0.0052 −1.48
4 −0.0282 −0.0285 −0.0310 −0.0337 −0.0366 −0.0083 −2.19
5 −0.0255 −0.0290 −0.0276 −0.0306 −0.0355 −0.0100 −2.39

Diff 0.0115 0.0200 0.0184 0.0127 0.0064
t-Stat 1.87 4.45 5.11 2.75 0.99

6: Put Volatility Smirk (ITM–OTM) O/S Ratio
1 2 3 4 5 Diff t-Stat

Illiquidity

1 −0.0272 −0.0269 −0.0259 −0.0179 −0.0047 0.0225 2.36
2 −0.0257 −0.0265 −0.0251 −0.0228 −0.0176 0.0082 1.58
3 −0.0245 −0.0276 −0.0283 −0.0313 −0.0268 −0.0023 −0.52
4 −0.0378 −0.0278 −0.0315 −0.0345 −0.0357 0.0021 0.43
5 −0.0131 −0.0298 −0.0311 −0.0360 −0.0429 −0.0298 −3.10

Diff 0.0141 −0.0029 −0.0052 −0.0181 −0.0382
t-Stat 1.29 −0.69 −1.10 −3.35 −4.77

This table summarizes the price discrepancy measures across 25 portfolios sorted independently by trading
activities and liquidity, where the portfolios with larger numbers represent more-frequently-traded and more
illiquid firms. For example, Portfolio 5, 5 includes the sample firms whose average option turnovers fall in the
top quintile and whose options are the least liquid in the sample. All of the numbers are the averages of the
corresponding variable over time. Each panel concludes the analysis using a specific trading activity measure.
Option turnovers are trading volumes over open interests. O/S ratios are relative option trading volumes over
trading volumes of the underlying equity. Proportional effective spread is used as the liquidity measure. Diff is
the difference between Portfolio 1 and Portfolio 5. Paired differences are used to derive t-statistics.

Interestingly, after controlling for liquidity, option turnover only explains differences
in volatility spread, and only to a much lower degree in volatility smirk. On the other
hand, we find that options with higher liquidity tend to have a higher volatility spread
and higher volatility skew. It is widely accepted that informed traders may actively trade
on put options due to short-sale constraints in the equity market. The finding that higher
volatility skew is associated with higher liquidity in both Panels A and B supports the
argument. It is somewhat confusing to see a positive correlation between liquidity and
volatility spread, controlling for option turnover, as volatility spread and volatility skew
predict the opposite direction of future stock returns. In Panel B, when the O/S ratio is
used as a trading measure, the results from volatility spread and volatility skew reconcile,
especially for firms with more heavily traded options. This finding is consistent with Roll
et al. (2010), who argue that O/S indicates informed trading. It is even more interesting to
see the relative expensiveness of ATM and OTM call options in Panel B. OTM call options
are more expensive for firms with higher O/S ratios and more liquid options. Consistent
with the investor overconfidence theory, OTM call options become more expensive when
overconfident agents create higher demand for them.

4.3. Momentum and Contrarain Strategies

Some may argue that an explanation for our above findings is that investors are
conducting momentum or contrarian strategies in the options market. To further investigate
this possibility, we sorted the sample into deciles based on the past one month’s return on
the underlying equity. If momentum or contrarian strategies are the main driving forces,
we should observe a tendency in which the top and bottom deciles exhibit more activity,
while the middle deciles are less active. In other words, the trading activities should present
a U-shaped pattern across deciles.

We found that the above pattern exists, as described in Table 9. All five turnover
measures (TO_O, TO_C, TO_P, OS, and DOS) exhibit similar patterns, especially OS. In
addition, the current month’s return and the one-month forward return reverse from the
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previous month. That is, the top performers have lower average rates of returns in the
following two months, while the bottom performers have higher average rates of returns.

Table 9. Momentum Portfolios.

Variable 0 1 2 3 4 5 6 7 8 9 Diff t-Stat

VS −0.0073 −0.0065 −0.0067 −0.0068 −0.0070 −0.0070 −0.0071 −0.0076 −0.0083 −0.0116 −0.0043 −6.07
IV_SKEW 0.0551 0.0463 0.0438 0.0418 0.0422 0.0417 0.0424 0.0415 0.0430 0.0505 −0.0045 −1.54

IV_SMIRK_C_OA 0.0045 0.0071 0.0078 0.0084 0.0083 0.0085 0.0088 0.0086 0.0090 0.0075 0.0030 1.69
IV_SMIRK_C_OI 0.0400 0.0362 0.0349 0.0343 0.0343 0.0343 0.0340 0.0342 0.0344 0.0355 −0.0044 −1.26
IV_SMIRK_P_OA −0.0435 −0.0368 −0.0348 −0.0326 −0.0331 −0.0324 −0.0322 −0.0324 −0.0335 −0.0372 0.0062 2.55
IV_SMIRK_P_OI −0.0357 −0.0328 −0.0307 −0.0308 −0.0321 −0.0309 −0.0323 −0.0330 −0.0336 −0.0353 0.0004 0.11

Return 0.0121 0.0128 0.0107 0.0104 0.0106 0.0103 0.0105 0.0072 0.0077 0.0085 −0.0036 −0.42
Future_Return 0.0138 0.0127 0.0120 0.0118 0.0100 0.0088 0.0091 0.0068 0.0067 0.0076 −0.0062 −0.73

TO_O 3.6789 3.7161 3.6557 3.6003 3.6092 3.6525 3.7487 3.9153 4.0726 4.5460 0.8671 9.63
TO_C 3.8779 3.8660 3.7970 3.8022 3.8743 3.9382 4.0091 4.2475 4.4557 4.9205 1.0426 6.76
TO_P 3.7581 3.7082 3.7853 3.6492 3.5696 3.5657 3.5870 3.7105 3.8437 4.2072 0.4492 4.59

OS 0.0754 0.0709 0.0671 0.0674 0.0657 0.0693 0.0691 0.0732 0.0776 0.0901 0.0147 5.38
DOS 0.0090 0.0058 0.0051 0.0052 0.0046 0.0052 0.0052 0.0054 0.0061 0.0085 −0.0006 −1.43
CP 4.3839 5.2058 5.0695 5.1324 5.6455 5.6580 6.3074 5.9968 5.8670 6.9154 2.5315 3.74

L1RET −0.1760 −0.0843 −0.0498 −0.0252 −0.0037 0.0167 0.0388 0.0654 0.1037 0.2215 0.3976 37.75

The table shows summary statistics for various variables in each of the momentum portfolios. The sample firms
are sorted into ten portfolios based on the past month’s rate of return in the underlying stocks. The average past
one month return for each portfolio is shown in row L1RET. TO_O, TO_C, and TO_P are option turnovers for all
options, call options, and put options, respectively, and are defined as trading volume over open interest. O/S
ratios are option trading volumes relative to trading volumes of the underlying equity. OS is based on the number
of shares and DOS is based on the USD value of shares. Diff is the difference between portfolio 0 and portfolio 9.
VS is the weighted average difference in implied volatility between paired call and put options with the same
strike price, as in Cremers and Weinbaum (2010). IV_Skew is the weighted average difference in implied volatility
between OTM and ATM put options, as in Xing et al. (2010). Smirk_C_OA is the difference in implied volatility
between ATM call options and OTM call options. Smirk_C_OI is the difference in implied volatility between ITM
and OTM call options. Smirk_P_OA is the difference in implied volatility between ATM and OTM put options.
Smirk_C_OA is the difference in implied volatility between ITM and OTM put options.

While above findings in Table 9 suggest that contrarian strategies may be one of the
reasons for the previous findings, the differences between the middle and bottom deciles
are trivial. For example, the difference in option turnover (TO_O) between the worst
performers (portfolio 0) and the decile with the lowest turnover rate (portfolio 3) is only
approximately 0.07. On the other hand, the difference in the same measure between the top
performers (portfolio 9) and the worst performers (portfolio 0) is 0.8671, and the difference
is statistically significant. This suggests that while momentum or contrarian strategies
might be an explanation for the phenomena, their contributions are not substantial. Also,
significantly higher trading activities among the past top performers further strengthen
the investor overconfidence argument, in that traders are pursuing “hot” stocks but do not
seem to succeed much. The subsequent returns show a negative relationship with trading
activities, but the relationship does not have statistical support (the differences are not
statistically significant).

4.4. Interactions between Options and Stock Markets

Although this paper focuses on the trading activities in the options market and their
potential impact on option prices, it is worthwhile to look at the underlying stock market.
In the last analysis, OS is the most influential indicator among all trading activity measures.
Since many stock market investors also trade in the options market, it is not surprising
to see stock-market trading activities correlated with option pricing in certain ways. To
examine the extent to which stock trading behaviors affect both option trading and option
pricing, we conducted a cross-sectional analysis similar to that in Section 4.2, using both
one-way and two-way sorting.

Table 10 summarizes the empirical results. In Panel A, sample firms are sorted into
deciles based solely on stock trading turnover, defined as the stock trading volume divided
by the number of shares outstanding. By comparing Panel A in Tables 6 and 10, we find
similar patterns across all rows. However, there are a few distinctions.
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Table 10. Cross-sectional analyses—interactions between stock and options markets.

Panel A: Stock Trading Turnover

Variables 0 1 2 3 4 5 6 7 8 9 Diff t-Stat

VS −0.0068 −0.0061 −0.0064 −0.0068 −0.0064 −0.0066 −0.0071 −0.0075 −0.0085 −0.0139 −0.0071 −3.31
IV_SKEW 0.0401 0.0384 0.0384 0.0401 0.0411 0.0425 0.0433 0.0451 0.0481 0.0567 0.0166 6.41

SMIRK_C_OA 0.0072 0.0074 0.0080 0.0072 0.0078 0.0075 0.0085 0.0077 0.0079 0.0090 0.0018 1.09
SMIRK_C_OI 0.0288 0.0306 0.0304 0.0288 0.0320 0.0340 0.0344 0.0359 0.0383 0.0448 0.0160 4.77
SMIRK_P_OA −0.0269 −0.0280 −0.0287 −0.0269 −0.0320 −0.0333 −0.0352 −0.0358 −0.0379 −0.0434 −0.0165 −7.52
SMIRK_P_OI −0.0233 −0.0266 −0.0281 −0.0233 −0.0314 −0.0316 −0.0324 −0.0331 −0.0357 −0.0411 −0.0178 −5.81

Return 0.0041 0.0068 0.0087 0.0041 0.0103 0.0121 0.0119 0.0119 0.0143 0.0112 0.0072 0.89
Future_Return 0.0085 0.0085 0.0100 0.0085 0.0099 0.0118 0.0099 0.0092 0.0109 0.0107 0.0022 0.30

Panel B: Double Sorting By Stock Turnover and Option Turnover

1: Volatility Spread Option Turnover
1 2 3 4 5 Diff t-Stat

Stock
Turnover

1 −0.0057 −0.0066 −0.0068 −0.0065 −0.0069 −0.0012 −1.95
2 −0.0058 −0.0063 −0.0067 −0.0066 −0.0070 −0.0012 −2.18
3 −0.0065 −0.0064 −0.0067 −0.0066 −0.0064 0.0000 0.03
4 −0.0073 −0.0071 −0.0071 −0.0076 −0.0074 0.0000 −0.07
5 −0.0110 −0.0110 −0.0106 −0.0109 −0.0118 −0.0008 −0.64

Diff −0.0053 −0.0044 −0.0038 −0.0044 −0.0049 −0.0061
t-Stat −4.59 −5.55 −6.26 −8.37 −7.44 −10.47

This table summarizes the price discrepancy measures across portfolios sorted by stock market trading activities,
where the portfolios with larger numbers represent more frequently traded firms. All of the numbers are the
averages of the corresponding variable over time. In Panel A, all the monthly observations are sorted into ten
portfolios based on stock trading turnover. In Panel B, they are sorted independently, based on option turnover
and stock turnover. Diff is the difference between the most- and least-frequently traded portfolios (portfolio
9–portfolio 0 in single sorting, and portfolio 5–portfolio 1 in double sorting). VS is the weighted average difference
in implied volatility between paired call and put options with the same strike price, as in Cremers and Weinbaum
(2010). IV_Skew is the weighted average difference in implied volatility between OTM and ATM put options, as
in Xing et al. (2010). Smirk_C_OA is the difference in implied volatility between ATM call options and OTM call
options. Smirk_C_OI is the difference in implied volatility between ITM and OTM call options. Smirk_P_OA is
the difference in implied volatility between ATM and OTM put options. Smirk_C_OA is the difference in implied
volatility between ITM and OTM put options. Paired differences are used to derive t-statistics.

First, the differences between the most- and least-frequently traded portfolios in all
option pricing measures are statistically significant in Table 10, except for the volatility smirk
between OTM and ATM call options. In Table 6, the differences in volatility skewness and in
volatility smirk between OTM and ATM put options are not statistically significant. Second,
the concurrent returns across portfolios increase monotonically with trading frequency in
Table 6, but this phenomenon does not appear in Table 10. In addition, the t-test suggests no
significant difference in contemporaneous return between the most and the least frequently
traded portfolios in Table 10. These findings may be due to the use of momentum or
contrarian strategy in the options market. From Table 6, we may attribute this finding more
to the momentum traders, as ATM calls tend to be more expensive in the portfolio with
more frequent option trading. However, it is less so in Table 10. Instead, a much steeper
volatility skew for the most frequently traded portfolio in Table 10 suggests that OTM put
options are much more expensive. Looking at Panel B in Table 10, we also find that stocks
with less frequent option trading drive the steeper volatility skew. This conflicts with the
notion in Xing et al. (2010) that informed traders use OTM put options to take advantage
of negative information, but it is more in line with the investor overconfidence hypothesis
of the stock market.

5. Discussion

This paper examines the relationship between trading activities and option pricing
patterns. If investor overconfidence causes heavier trading activities, the option pricing
patterns should strongly correlate with trading activities. Furthermore, market volatility
should also be positively correlated with the trading activity. We present evidence showing
that both relationships do exist. The relationships hold both over time and cross-sectionally.

The negative relationship between volatility spread and trading activity suggests
that options traders are contrarians overall. The supporting evidence is also provided, by
sorting the sample into deciles based on past equity returns. However, the findings also
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suggest that the differences in trading activities and volatility spread and volatility skew
do not predict future equity returns.

Our findings in this study differ from those of Cremers and Weinbaum (2010) and
Xing et al. (2010) regarding the predictability of volatility spread and volatility skew, and
therefore serve as evidence against theories of informed trading or superior information
in the options market. Instead, our findings support the investor overconfidence theory
in that options traders also tend to pursue top performers, strengthening the argument in
Chen and Sabherwal (2019) that the positive relationship between past market return and
option trading activities may be due to investor overconfidence.

This study adds to the discussion in the literature regarding the role played by behav-
ioral biases. While the debate between efficient market advocates and behavioral finance
supporters is still active in the equity market, this paper extends the debate to the options
market. This focus on the options market not only provides insights to market specula-
tors trying to exploit opportunities in the options market, but also serves as a caution to
investors who heavily hedge their portfolios in the equity options market. If behavioral
biases play an important role in the options market, the effectiveness of using options to
hedge equity portfolios might be degraded. This study shows that options traders should
pay attention to the behavioral patterns in the options market regardless of their purposes
in trading. However, in this study, we focus on the generalized patterns using market-wide
data, which may limit our interpretation of the empirical results. While retail investors may
exhibit a higher degree of behavioral biases (Choy 2015; Baig et al. 2022; Ülkü et al. 2023),
we do not attempt to differentiate between the sources of trading (retail versus institutional)
in this study. We leave to future research the enhancement of our understanding of retail
investors’ role in option trading. Also, this study does not focus on the COVID-19 period,
during which retail investor participation played a particularly important role. It would
be interesting to examine the role of behavioral biases in the options market exclusively
during this period.
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