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Preface

The development of new technology in the twenty-fifth century has led to an alarming rate

of data generation. Before judgments can be made, it is sometimes necessary to analyze and extract

relevant information from the vast volume of created data. Analyzing data sensibly and learning from

it is a difficult endeavor. Models based on machine learning can learn from data to simulate systems.

However, because of unclear, inaccurate, and confusing data, these systems might not always produce

improved outcomes. The development of computationally appropriate intelligent systems that can

extract high-level knowledge from data is necessary to overcome these problems. This presents the

fuzzy logic technique, which enhances system performance by gleaning high-level information from

data. In order to create computationally high intelligent systems, machine learning models are used

to learn this high-level extracted knowledge to analyze information in order to accomplish a specific

objective or reach a decision.

The present reprint contains 11 articles accepted for publication among the 35 total manuscripts

submitted to the Special Issue “Fuzzy Logic and Computational Intelligence” of the MDPI

Mathematics journal. The 11 articles in this reprint, which were previously published in Volumes 10

(2022), 11 (2023), and 12 (2024) of the journal, cover a wide range of subjects related to the theory

and applications of fuzzy sets, as well as their application in computational intelligence. These

topics include, among others, elements from MCDM methods, inference models, multi-fuzzy soft

settings, non-linear fuzzy approaches, adaptive neuro-fuzzy systems in field of federated learning,

time series data analysis, feature engineering, mist–cloud–fog systems, facial emoticon recognition,

and fuzzy-based convolutional noise classification. Experts who work in the fields of fuzzy sets, fuzzy

systems, and fuzzy logic, as well as those who possess the necessary mathematical training and are

eager to learn about the latest developments in fuzzy mathematics and fuzzy logic, are expected to

find the reprint engaging and helpful.

As the Special Issue’s Guest Editor, we would like to express our gratitude to the authors of the

papers for their excellent contributions, the reviewers for their insightful criticism on how to make

the submitted works better, and the MDPI publications’ administrative team for helping us finish

this project. The Special Issue’s Managing Editor, Dr. Syna Mu, deserves special recognition for

outstanding cooperation and helpful support.

Himansu Das and Mahendra Kumar Gourisaria

Guest Editors
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Fuzzy Based Convolutional Noise Clustering Classifier to
Handle the Noise and Heterogeneity in Image Classification

Shilpa Suman 1,*, Dheeraj Kumar 1 and Anil Kumar 2

1 Remote Sensing and GIS Laboratory, IIT (ISM), Dhanbad 826004, India
2 PRSD Department, IIRS, Dehradun 248001, India
* Correspondence: suman.shilpa077@gmail.com

Abstract: Conventional Noise Clustering (NC) algorithms do not consider any spatial information
in the image. In this study, three algorithms have been presented, Noise Local Information c-means
(NLICM) and Adaptive Noise Local Information c-Means (ADNLICM), which use NC as the base
classifier, and Noise Clustering with constraints (NC_S), which incorporates spatial information into
the objective function of the NC classifier. These algorithms enhance the performance of classification
by minimizing the effect of noise and outliers. The algorithms were tested on two study areas,
Haridwar (Uttarakhand) and Banasthali (Rajasthan) in India. All three algorithms were examined
using different parameters (distance measures, fuzziness factor, and δ). An analysis determined
that the ADNLICM algorithm with Bray–Curtis distance measures, fuzziness factor m = 1.1, and
δ = 106, outperformed the other algorithm and achieved 91.53% overall accuracy. The optimized
algorithm returned the lowest variance and RMSE for both study areas, demonstrating that the
optimized algorithm works for different satellite images. The optimized technique can be used to
categorize images with noisy pixels and heterogeneity for various applications, such as mapping,
change detection, area estimation, feature recognition, and classification.

Keywords: remote sensing; NLICM; ADNLICM; NC_S; fuzziness factor; distance measures

MSC: 62H30; 94D05

1. Introduction

Image classification plays a vital role in remote sensing research because classifica-
tion results are primary for many applications. To improve classification accuracy, many
researchers and practitioners have introduced novel classification approaches and tech-
niques [1]. Image classification is mainly done either as hard or soft classification. In hard
classification techniques, one pixel belongs to a single class, which is impossible for a real
scenario. An image may contain mixed pixels in a real scenario, which means one pixel may
have multiple and partial class membership values. Fuzzy clustering algorithms are mainly
designed to handle mixed pixels. Fuzzy c-means (FCM) [2], Possibilistic c-means (PCM) [3],
and Noise Clustering (NC) [4] are the primary classifiers used for mixed pixel classification.
FCM is a clustering method that allows one sample of data to assign a membership degree
function to two or more clusters [5]. FCM is the first and most powerful method used in
image classification. FCM was first developed in 1973 by Dunn [6] and further modified
by Bezdek (1981). It is based on the minimization of an objective function and has been
used for clustering, feature analysis, and target recognition. Pixel-based classification algo-
rithms allot a pixel to a region based on similarities of spectral signature [7]. FCM does not
consider information about the immediate neighborhood pixel, so it does not fully utilize
the spatial information characteristics [8,9]. Ahmed et al. proposed Fuzzy c-means with
constraints (FCM_S) [9]; in this algorithm, FCM combined with spatial information permits
the labels in a pixel’s immediate neighborhood to affect its labeling. However, FCM_S is

Mathematics 2022, 10, 4056. https://doi.org/10.3390/math10214056 https://www.mdpi.com/journal/mathematics1



Mathematics 2022, 10, 4056

limited to single feature inputs [10]. To overcome the problem of FCM_S, [11] introduced
the Fuzzy Local Information c-Means (FLICM) algorithm. A new factor was added to
FLICM, incorporating both local- and gray-level information to control the neighborhood
pixel effect and preserve the image details. Further, Zhang et al. proposed the Adaptive
Fuzzy Local Information c-Means (ADFLICM) [12] algorithm to overcome the limitation of
the FLICM algorithm. Zheng et al. proposed the generalized hierarchical fuzzy c-means
algorithm [13] to solve the issue which comes from the outliers and Euclidean distance
measures. Ding et al. proposed Kernel-based fuzzy c-means [14] to improve the clustering
performance. Guo et al. designed an FCM-based framework to enhance the performance
of noisy image segmentation by applying the filter [15]. Xu et al. suggested an intuition-
istic fuzzy c-means (IFCM) algorithm that handles the uncertainty but does not correctly
handle the noise [16]. To make IFCM handle the noise Verma et al. proposed improved
intuitionistic fuzzy c-means (IIFCM) [17].

Some previous studies used contextual information using local convolutional tech-
niques with FCM and PCM as base classifiers. In the current study, we have similarly
used NC as a base classifier to incorporate contextual information in local convolutional
methods to produce our three proposed algorithms, Noise Local Information c-Means
(NLICM), Adaptive Noise Local Information c-Means (ADNLICM), and Noise Clustering
with constraints (NC_S). The proposed algorithms may be utilized to prepare land-use
land cover maps, which will be useful in agricultural mapping, hazard mapping, and other
fields where a highly accurate LULC map is required [18–21]. FLICM, ADFLICM, FCM_S,
Possibilistic c-means with constraints (PCM_S), Possibilistic Local Information c-Means
(PLICM), Adaptive Possibilistic Local Information c-Means (ADPLICM) [22], Modified
Possibilistic c-Means with constraints (MPCM-S) [23] are able to handle the noisy pixel
problem; however, these were not tested for handling heterogeneity and different distance
measures. Heterogeneity handling has now become an essential step in the classification
process. To overcome this problem, this paper introduces three novel algorithms NLICM,
ADNLICM, and NC_S, which are inspired by the FLICM, ADFLICM, and FCM_S algo-
rithms, respectively. The FCM_S, FLICM, and ADFLICM algorithms are, in turn, based
on the FCM algorithm, and the FCM algorithm is sensitive to noisy data and outliers [24].
To resolve the problem of this limitation of FCM, Dave and Sen (1993) introduced the
Noise Clustering (NC) algorithm, which uses a new parameter delta (δ), known as “noise
distance”.

The aim of this paper was to design and analyze NC-based local convolutional algo-
rithms concerning different parameters to classify the satellite images, which handle the
noisy and heterogeneous pixels. This paper proposed three NC-based algorithms, NLICM,
ADNLICM, and NC_S, for handling noisy pixels and heterogeneity. These algorithms were
first analyzed concerning different distance measures and important parameters (δ, m) of
NC-based classifiers to obtain the best values by comparing the overall accuracy obtained
by (FERM). Secondly, to check the performance of the algorithms, first, the variance was
calculated to show that the optimized algorithm handles the heterogeneity correctly, and
second, different degrees of random noise (1, 3, 5, 7, and 9%) were inserted in images of
two sites (Haridwar and Banasthali) and the images classified by the optimized algorithm
to confirm that the algorithm is suitable for handling noisy pixels. The paper is organized
into four sections. Section 1 provides the background of the problem, a discussion of the
different algorithms, and the aim of this study. Section 2 describes the Materials (study
area and algorithms) and Methodology used in this paper. Section 3 explain the obtained
results and their discussion. Finally, Section 4 summarizes the conclusions of the study.

2. Materials and Methods

2.1. Mathematical Concept of Classifiers

This section explains the mathematical principles behind the NC classifier’s use of
spectral pixel-based information as well as the additional spatial local information added
via the convolution approach. The algorithms Noise Local Information c-Means (NLICM),

2
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Adaptive Noise Local Information c-Means (ADNLICM), and Noise Clustering with Con-
straints (NC_S) have added local spatial information.

2.1.1. NC Classifier

The idea of Noise Clustering was suggested to handle the noise in a given dataset [25].
In this approach, noise is defined as a separate class and denoted by a parameter that
consists of a constant distance, known as noise distance (δ), from all the data points. This
algorithm is derived from the standard K-means algorithm. NC is generally used for
building FCM and related robust algorithms. The NC algorithm is obtained using the
following steps.

1. Assign the means for each class and the value of the fuzziness factor (m).
2. Compute the noise distance (δ) using Equation (1).

δ2= λ

⎡⎢⎢⎢⎣
C−1
∑

k=1

N
∑

i=1
‖xi−vk‖2

n(c − 1)

⎤⎥⎥⎥⎦ (1)

3. Calculate the membership value (uki) and mean cluster center (vk) from Equation (2)
and Equation (3), respectively;

uki =
1

C
∑

j=1

[
‖xi−vk‖2

‖xi−vj‖2

] 1
m−1

+

[
‖xi−vk‖2

δ2

] 1
m−1

(2)

vk =

N
∑

k=1
(uki)

mxi

N
∑

k=1
(uki)

m
(3)

4. Assign the final class to each pixel.

Jm =
N

∑
i=1

C

∑
k=1

um
ki‖xi−vk‖2 +

N

∑
i=1

δ2

(
1−

C

∑
k=1

uki

)m

(4)

Here, m = fuzziness factor (consisting of real values > 1), uki = degree of membership
of ith pixel for cluster k, xi = ith d-dimensional measured data, vk = mean value (cluster
center) of the kth class, vj = mean value (cluster center) of the jth class, N = total no of a
pixel in the image, C = number of classes, δ = noise distance, ‖xi − vk‖ = distance between
xi and vk, ‖xj − vk‖ = distance between xj and vk and ‖xi − vj‖ = distance between xi and
vj, Jm define the objective function of the algorithms (NC, NLICM, ADNLICM, and NC_S),
and λ represents the multiplier used to calculate δ from the average distances.

2.1.2. Noise Local Information c-Means (NLICM)

In this section, the NLICM algorithm is described. NLICM uses the neighborhood
pixel to reduce the noisy pixel. It incorporates gray level and local spatial information into
the objective function of the NC algorithm and the Gki parameter, which was introduced
by Krinidis and Chatzis (2010) in the FCM classifier. In this paper Gki parameter is applied
in the NC classifier, as the NC classifier handles noisy pixels better than the FCM classifier.
The NLICM algorithm was obtained using the following steps.

3
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1. Assign the no of cluster (c) and fuzziness factor (m).
2. Compute the δ parameter from Equation (1) and fuzzy factor (Gki) from Equation (5).

Gki = ∑
i �=j

j∈Ni

1
‖xi−vj‖+1

(1 − u kj

)m‖xj−vk‖2 (5)

3. Compute a new cluster applying Equation (6).

vk =

N
∑

k=1
(uki)

mxi

N
∑

k=1
(uki)

m
(6)

4. Calculate the value of membership (Equation (7)).

uki =
1

C
∑

j=1

[
‖xi−vk‖2

‖xi−vj‖2 +Gki

] 1
m−1

+

[
‖xi−vk‖2

δ2 +Gki

] 1
m−1

(7)

5. Assign the final class to each pixel.

The objective functions of NLICM, as mentioned in Equation (8), after applying Gki
function in the objective function of NC can be calculated from:

Jm =
N

∑
i=1

C

∑
k=1

[
um

ki‖xi−vk‖2 +
N

∑
i=1

δ2

(
1−

C

∑
k=1

uki

)m

+Gki

]
(8)

2.1.3. Adaptive Noise Local Information c-Means (ADNLICM)

This algorithm incorporates a local similarity measure in the image as well as a pixel
spatial attraction model between pixels. According to Zhang et al. (2017), the local similarity
measure in ADFLICM is based on the pixel spatial attraction model, which adaptively
determines the weighting components for nearby pixels, similar to the way we used it for
the NC- based fuzzy classifier on image feature enhancement. The objective function of
ADNLICM is given in Equation (13). It uses local similarity measures (Sir). The ADNLICM
algorithm was obtained using the following steps.

1. For each class, assign mean values.
2. Assign the local window size, the fuzziness factor (m), and the no of class (c).
3. Determine the noise distance (δ) using Equation (1) and the local similarity measure

Sir using Equations (9) and (10).

Sir =

{
SAir, i1r
0, i = r

}
(9)

SAir(k) =
uki×ukr

Dir
(10)

Here, rth = pixel is the neighborhood pixel that falls into Ni, SAir = pixel spatial
attraction, and Dir = spatial distance between i and r pixel.

4. Generate the final membership (uki) and cluster mean (vk) matrix using Equation (11)
and Equation (12), respectively.

4
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uki =
1

C
∑

j=1

⎛⎜⎜⎜⎜⎝
‖xi−vk‖2+

N
∑

i=1
δ2
(

1− C
∑

k=1
uki

)m

+ 1
Nr ∑

r∈Ni
r �=i

(1−Sir)‖xr−vk‖2

‖xi−vj‖2+
N
∑

i=1
δ2
(

1− C
∑

k=1
uki

)m

+ 1
Nr ∑

r∈Ni
r �=i

(1−Sir)‖xr−vk‖2

⎞⎟⎟⎟⎟⎠
1

m−1
(11)

vk =

N
∑

i=1
um

ki

⎛⎜⎝xi +
1

NR
∑

r∈Ni
r �=i

(1 − Sir)×xr

⎞⎟⎠
1+ 1

NR
∑

r∈Ni
r �=i

(1 − Sir)×
N
∑

i=1
um

ki

(12)

5. Assign each pixel to a final class.

ADNLICM integrates local spatial- and gray-level information into NC’s objective
function. The objective function of ADNLICM is shown in Equation (13).

Jm =
N

∑
i=1

C

∑
k=1

um
ki ×

⎡⎢⎢⎣‖xi−vk‖2 +
N

∑
i=1

δ2

(
1−

C

∑
k=1

uki

)m

+
1

Nr
∑

r∈Ni
r �=i

(1 − Sir)‖xr−vk‖2

⎤⎥⎥⎦ (13)

The objective function in Equation (13) was minimized to provide the membership
function (Equation (11)).

2.1.4. Noise Clustering with Constraints (NC_S)

The NC_S algorithm is motivated by Fuzzy Clustering with Constraints (FCM_S)
which was proposed by Ahmed et al. [26]. FCM_S introduces a new term into the standard
FCM algorithm. This new term permits pixel labeling to be impacted by neighborhood
labels. This paper used a new term in the NC classifier in place of the FCM classifier to
handle the noise and heterogeneity. The computation steps for this algorithm are as follows.

1. Assign the means for each class and the fuzziness factor (m).
2. Compute the noise distance (δ) using Equation (1).
3. The computation of the membership partition matrix (uki) and the cluster centers are

performed as follows (vk) from Equation (14) and Equation (15), respectively;

uki =

(
‖xi−vk‖2

δ2 + a
Nr

∑
r∈Ni

‖xr−vk‖2

δ2

) 1
m−1

C
∑

j=1

(
‖xi−vj‖2

δ2 + a
Nr

∑
r∈Ni

‖xr−vj‖2

δ2

) (14)

vk =

N
∑

i=1
um

ki

(
xi +

a
NR

∑
r∈Ni

xr

)

(1 + a)
N
∑

i=1
um

ki

(15)

Here,
1

NR ∑r∈Ni
xr

= edge of the average value of the gray level over the xi within a window,

NR = cardinality, a = parameter (control the effect of the neighbor term), and xr = represent
the neighbor of xi.

5
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4. Assign the final class to each pixel.

The NC_S algorithm objective function is derived as Equation (16).

Jm =
N

∑
i=1

C

∑
k=1

um
ki‖xi−vk‖2 +

N

∑
i=1

δ2

(
1−

C

∑
k=1

uki

)m

+
a

NR

N

∑
i=1

C

∑
k=1

um
ki ∑

r∈Ni

‖xi−vk‖2 (16)

2.2. Mathematical Formula of Similarity and Dissimilarity Measures

Two similarity metrics, Cosine, and Correlation, and eight dissimilarity measures,
including Bray–Curtis, Canberra, Chessboard, Euclidean, Manhattan, Mean Absolute
Difference, Median Absolute Difference, and Normalized Square Euclidean, have been
utilized. Different measures of similarity and dissimilarity were investigated in fuzzy
classifiers as distance criteria to be constructed to identify to which class unknown vectors
belong. In this study, the most widely used distance metrics across several applications
were chosen for investigation. The various distance measures were utilized to test and
evaluate the models and to see how they affected the fuzzy classifier algorithm that was
the subject of this study. All the dissimilarity and similarity measures’ mathematical
expressions are given below. Here, c is the mean value, b is the number of bands, and x
and v are the vector pixels. The different distance measures described in [27] are used in
this study.

2.2.1. Bray–Curtis

The Bray–Curtis [28] dissimilarity is used to determine the connection between envi-
ronmental sciences, ecology, and related fields. Bray–Curtis distance has the convenient
property of having a value between 0 and 1. The same coordinate is represented by zero
Bray–Curtis. The equation for Bray–Curtis is given in Equation (17). Figure 1 illustrates
how Bray–Curtis distance works.

D(x, y) =

N
∑

i=1
|xi−yi|

N
∑

i=1
|xi+yi|

(17)

Figure 1. Schematic Diagram of Bray–Curtis Distance Measures, a–d represents the sampling point.

Here N represents the no of data points, and y is the sample.

2.2.2. Canberra

The Canberra [29] measure is mainly applied to positive values. It analyses the total
amount of fractional discrepancies between two objects’ coordinates. It has been employed
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to compare ranked lists and for intrusion detection in computer security. The equation for
Canberra distance measures is given in Equation (18).

D(x j, vi) =

∣∣xj1−vi1
∣∣∣∣xj1

∣∣+∣∣vi1
∣∣ +

∣∣xj2−vi2
∣∣∣∣xj2

∣∣+∣∣vi2
∣∣ + . . . . . . . . .

∣∣∣xjb−vib

∣∣∣∣∣∣xjb

∣∣∣+∣∣∣vib

∣∣∣ (18)

2.2.3. Chessboard

Chessboard [30] distance measures operate as a vector space to determine the greatest
distance along two vectors between any two coordinate dimensions. It is also referred
to as the Chebyshev distance. Equation (19) provides the formula for the distance on a
chessboard. The concept of chessboard distance is shown in Figure 2.

D(x j, vi) = Max
[∣∣xj1−vi1

∣∣, ∣∣xj2−vi2
∣∣, . . . . . .,

∣∣∣xjb−vib

∣∣∣] (19)

Figure 2. Schematic Diagram of Chessboard Distance Measures.

2.2.4. Correlation

Correlation [31] similarity is a calculation that determines the correlation between
two vectors. The Pearson-r correlation is used to determine how similar the two vectors
are. With a perfect positive correlation at +1 and a perfect negative correlation at −1, its
value ranges from −1 to +1, with 0 representing no correlation. Equation (20) contains the
correlation’s mathematical formula. Figure 3 depicts the correlation distance idea.

D(x j, vi) = 1−
[{

xj1+
1
b (−x j1−xj2−.....−xjb

)}
{ vi1+

1
b (−v i1−vi2−.....−vib)}+...+

{
xjb+

1
b (−x j1−xj2−.....−xjb

)}
{ vib+

1
b (−v i1−vi2−.....−vib)}

]
√∣∣∣∣[ xj1+

1
b (−x j1 ....−xjb

)]2∣∣∣∣+...+
∣∣∣∣[ xj1+

1
b (−x j1 ....−xjb

)]2∣∣∣∣√∣∣∣[ vi1+
1
b (−v i1 ....−vib)]

2
∣∣∣+...+

∣∣∣[ vib+
1
b (−v i1 ....−vib)]

2
∣∣∣ (20)

Figure 3. Schematic Diagram of Correlation Distance Measures.
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2.2.5. Cosine

Cosine [32] similarity measurements compute the cosine of an angle along two vectors
in an inner product space. They provide the distance between two vectors as measured.
Equation (21) contains the mathematical equation for Cosine similarity. Figure 4 depicts
the cosine distance approach.

D(x j, vi) = 1− xj1vi1+xj2vi2 + ...+xjbvib√∣∣xj1
∣∣2 + ... +

∣∣∣xjb

∣∣∣2√|vi1|2 + ... + |vib|2
(21)

Figure 4. Schematic Diagram of Cosine Distance Measures.

2.2.6. Euclidean

Two points in Euclidean space are separated by the Euclidean distance [30]. It com-
putes the square root of the value difference between parallel data points as the sum of
squares. Equation (22) contains the equation for Euclidean distance measures.

D(x, y) =

√√√√ N

∑
i=1

|xi−yi|2 (22)

2.2.7. Manhattan

Images are compared using the Manhattan distance measures [33]. Manhattan distance
is the product of the parallel element differences between any two data points. A small
deviation from Euclidean distance is the Manhattan distance, which has a different formula
for determining the separation between two data points. The Manhattan distance measures
equation is given in Equation (23). The concepts of Euclidean and Manhattan distance are
shown in Figure 5.

D(x j, vi) =
∣∣xj1−vi1

∣∣+ ∣∣xj2−vi2
∣∣+ . . . . . .+

∣∣∣xjb−vib

∣∣∣ (23)

Figure 5. Schematic Diagram of Euclidean and Manhattan Distance Measures.

2.2.8. Mean Absolute Difference

A statistical technique for depression is the Mean Absolute Difference [34]. It is
determined by multiplying the total number of bands by the absolute difference between

8
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two things with similar locations in the same location and the variable between those two
items. Equation (24) contains the formula for the Mean Absolute Difference in distance
measurements. Figure 6 illustrates the idea of mean absolute difference distance.

D(x j, vi) =
1
b

[∣∣xj1−vi1
∣∣+ ∣∣xj2−vi2

∣∣+ . . . . . .+
∣∣∣xjb−vib

∣∣∣] (24)

Figure 6. Schematic Diagram of Mean Absolute Difference Distance Measures.

2.2.9. Median Absolute Difference

To lessen the impact of impulsive noise on the derived measures, the median absolute
difference (MAD) [35] may be used instead of the mean absolute difference. Mathematically
generally, MAD is defined as finding the difference in the absolute brightness of the
comparable pixels in two images before taking the data’s median. Equation (25) contains
the equation for MAD distance measurements. Figure 7 illustrates the idea of median
absolute difference distance.

D(x j, vi) = Median
[∣∣xj1−vi1

∣∣, ∣∣xj2−vi2
∣∣, . . . . . .,

∣∣∣xjb−vib

∣∣∣] (25)

Figure 7. Schematic diagram of Median Absolute Difference Distance Measures.

2.2.10. Normalized Square Euclidean

The NSE distance between two vectors can be calculated using Normalized Square
Euclidean (NSE) [33]. Before computing, the sum of the squared difference between the
pixels of two images, the intensities of the pixels must first be normalized. Equation (26)
contains the equation for NSE distance measurements.

D(x j, vi) =

∣∣∣∣{ xj1+
1
b (−x j1−xj2−..−xjb)−vi1+

1
b (v i1+vi2+...+vib

)}2
∣∣∣∣+...+

∣∣∣∣{ xjb+
1
b (−x j1−xj2−..−xjb)−vib+

1
b (v i1+vi2+...+vib

)}2
∣∣∣∣.

2
[∣∣∣∣{ xj1+

1
b (−x j1−xj2−...xjb

)}2
∣∣∣∣+...+

∣∣∣∣{ xjb+
1
b (−x j1−xj2−...xjb

)}2
∣∣∣∣+∣∣∣{ vi1+

1
b (−v i1−vi2−...vib)}2

+.....+{ vib+
1
b (−v i1−vi2−...vib)}2

∣∣∣] (26)
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2.3. Study Area and Dataset Used

This research work tested the NC algorithm and its versions in two study areas (site 1
and site 2). As shown in Figure 8, the first site considered was Haridwar (Uttarakhand). Site
1 was used to determine the optimized algorithm. The latitudes and longitudes covered
by the first site are from 29◦49′14′′ to 29◦52′21′′ and 78◦9′17′′ to 78◦13′4′′, respectively. The
coverage area is 5.92 km, east to west, and 5.95 km, north to south. Land-use diversity
was the prime reason to choose this area; it helped examine and experiment with the
convolutional method. The area includes water, wheat, dense forest, eucalyptus, grassland,
and riverine sand. Landsat-8 and Formosat-2 satellite data were used in this study area;
Table 1 shows the sensors’ specifications of Landsat-8, Formosat-2, and Sentinel-2 satellites.

Figure 8. Study Areas (A) Haridwar (Uttarakhand) (B) Banasthali (Rajasthan).
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Table 1. Specification of Landsat-8, Formosat-2, and Sentinel-2 [36,37].

Characteristics Landsat-8 Formosat-2 Sentinel 2

Spatial Resolution (m) 30 m 8 m 10 m
Spectral Resolution 8 bands 4 bands 13 bands

Revisit Period Repeat every 16 days Daily Repeat every 5 days

The area surrounding Banasthali Vidyapith (Rajasthan) was selected as the second
site area (Figure 8). This study area was used to classify the homogeneous classes by
applying the optimized algorithm. The coverage area is situated in the northeastern
region of Rajasthan, between latitudes 26◦23′ and 26◦24′ North and longitudes 75◦51′ and
75◦54′ East.

2.4. Methodology Adopted

Figure 9 shows the methodology and process flow adopted for this research work.
This study’s primary focus has been on studying the conventional NC and proposed
convolutional (NLICM, ADNLICM, and NC_S) classifiers. In addition, the influence of the
delta (δ) and fuzziness factors, and various distance measures, on the proposed algorithm
were studied using the two study areas (Haridwar and Banasthali). All algorithms were
implemented in the JAVA environment through an in-house tool called SMIC (Sub-pixel
Multi-spectral Image Classifier) [38]. The methodology was derived by the following steps.

Figure 9. Flow diagram of Adopted Methodology.
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Step 1: Classify the image by NC classifier and local conventional NLICM, ADNLICM,
and NC_S using NC as the base classifier employing various delta (δ), distance measures,
and fuzziness factor parameters.

Step 2: Calculate the overall accuracy of the obtained classified image to determine
the optimized parameters for the algorithm.

Step 3: Calculate the overall accuracy and compare all algorithms to find the best
algorithm.

Step 4: Use the optimal proposed algorithm and NC classifier to classify the image
with 1% (density = 0.01), 3% (density = 0.03), 5% (density = 0.05), 7% (density = 0.07), and
9% (density = 0.09), pepper and salt-and-pepper random noise to show that the proposed
algorithms handle the noise correctly.

Step 5: Calculate the variance of the obtained optimal proposed algorithm and NC
classifier to show that the proposed algorithm is better able to handle the heterogeneity
than the NC classifier.

Step 6: Use the optimal proposed algorithm and NC classifier to classify the second
study area (site 2) with (1, 3, 5, 7, and 9%) pepper and salt-and-pepper noise or without
random noise to show that the proposed algorithm can also handle noise and heterogeneity
with different images.

3. Results and Discussion

The result and discussion section are divided into five experiments. In the First
Experiment, the optimized algorithm with respect to OA for the NC and NC base local
convolutional classifier (NLICM, ADNLICM, and NC_S) is obtained while applying differ-
ent parameters such as various distance measures, delta (δ), and fuzziness factor (m). The
distance measures tested consist of Bray–Curtis, Canberra, Chessboard, Correlation, Co-
sine, Manhattan, Mean Absolute Difference, Median Absolute Difference, and Normalized
Square Euclidean. Values of δ in the range 104 to 1013, with an interval of multiple of 10,
and m values (1.1-3) with a period of 0.2, were considered. In the second experiment, the
optimized algorithms were used to classify the Landsat-8 image containing 1%, 3%, 5%,
7%, or 9% pepper, and salt-and-pepper random noise.

In the third experiment, the NC and proposed algorithms were used to classify the
Landsat-8 classes (Dense Forest, Eucalyptus, Grassland, Riverine Sand, Water, and Wheat)
and calculate the OA and variance to confirm that the ADNLICM algorithm handles
random heterogeneity better than the other algorithms. The fourth and fifth experiments
are the same as the second and third, respectively, with a Sentinel-2 image used in place of
the Landsat-8 image to show that the proposed algorithm also works on other satellite data
and maps the homogeneous class (Mustard, Wheat, and Grassland) correctly.

3.1. Experiment 1: Compute the Optimized Algorithms

In this section, OA is computed using the FERM technique to obtain the optimized
NC, NLICM, ADNLICM, and NC_S algorithms with respect to different distance measures
and parameters. The best algorithm will be selected by comparison.

Figure 10 shows the different weighting components and overall accuracy for the NC
classifier with various delta (δ), m, and distance measures. For δ = 104, Canberra distance
measures delivered the highest OA (80.48%) at m = 1.1 (Figure 10a). At δ = 105, Mean
Absolute Difference distance measures gave the best OA (77.22%) at m = 1.1 (Figure 10b). At
δ = 106, Bray–Curtis distance measures, gave the highest OA (77.72%) at m = 1.1 (Figure 10c).
At δ = 107, Bray–Curtis distance measures produced the highest OA (77.81%) at m = 1.1
(Figure 10d). At δ = 108, Canberra distance measures produced the highest OA (82.55%)
at m = 1.1 (Figure 10e). At = 109, Mean Absolute Difference distance measures result in
the highest OA (78.46%) at m = 1.1 (Figure 10f). At δ = 1010, Mean Absolute Difference
distance measures delivered the highest OA (77.75%) at m = 1.1 (Figure 10d). At δ = 1011,
Bray–Curtis distance measures, gave the highest OA (77.35%) at m = 1.1 (Figure 10g). At
δ = 1012, Canberra distance measures gave the highest OA (81.33%) at m = 1.1 (Figure 10h).
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At δ = 1013, Mean Absolute Difference distance measures produced the most increased OA
(78.30%) at m = 1.1 (Figure 10i).

Figure 10. Comparison of overall accuracy in NC classifier for applying different distance measures,
m (1.1–3.0), and (a–j) for site 1 (Haridwar).
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Figure 11 plots different weighting components and overall accuracy for various
delta (δ) and distance measures for the NLICM classifier. At δ = 104, Canberra distance
measures gave the highest OA (86.91%) at m = 1.1 (Figure 11a). For δ = 105, Bray–Curtis
distance measures gave the highest OA (86.40%) at m = 1.1 (Figure 11b). For δ = 106,
Canberra distance measures gave the highest OA (87.38%) at m = 1.1 (Figure 11c). At 107,
Mean Absolute Difference distance measures produced the highest OA (87.80%) at m = 1.1
(Figure 11d). For δ = 108, Canberra distance measures gave the highest OA (88.75%) at
m = 1.1 (Figure 11e). At δ = 109, the highest OA (89.50%) at m = 1.1 was achieved by Bray–
Curtis distance measures (Figure 11f). At δ = 1010, Manhattan distance measures delivered
the highest OA (88.45%) at m = 1.1 (Figure 11g). At δ = 1011, Manhattan distance measures
gave the highest OA (88.35%) at m = 1.1 (Figure 11h). For δ = 1012, Euclidean distance
measures gave the highest OA (88.47%) at m = 1.3 (Figure 11i). At δ = 1013, Canberra
distance measures delivered the highest OA (87.40%) at m = 1.1 (Figure 11j).

Figure 12 shows plots of the different weighting components and overall accuracy
for various delta (δ) and distance measures for the ADNLICM classifier. For δ = 104,
Mean Absolute Difference distance measures produced the highest OA (88.93%) at m = 1.1
Figure 12a). At δ = 105, Bray–Curtis distance measures gave the highest OA (89.45%) at
m = 1.3 (Figure 12b). At δ = 106 Bray–Curtis distance measures delivered the highest OA
(91.53%) at m = 1.1 (Figure 12c). At δ = 107, Mean Absolute Difference distance measures
gave the highest OA (90.22%) at m = 1.3 (Figure 12d). At δ = 108 Mean Absolute Difference
distance measures, produced the most increased OA (89.47%) at m = 1.3 (Figure 12e). For
δ = 109, Manhattan distance measures made the most increased OA (90.22%) at m = 1.3
(Figure 12f). At δ = 1010, Mean Absolute Difference distance measures gave the highest OA
(89.50%) at m = 1.3 (Figure 12g). At δ = 1011, Mean Absolute Difference distance measures
gave the highest OA (89.33%) at m = 1.1 (Figure 12h). At δ = 1012, Bray–Curtis distance
measures delivered the highest OA (88.90%) at m = 1.3 (Figure 12i). For δ = 1013, Manhattan
distance measures gave the highest OA (89.94 %) at m = 1.3 (Figure 12j).

Figure 13 shows plots between different weighting components and overall accuracy
for various delta (δ) and distance measures for the NC_S classifier. For δ = 104, Canberra
distance measures gave the highest OA (87.70%) at m = 1.1 (Figure 13a). At δ = 105

Manhattan distance measures gave the highest OA (89.02%) at m = 1.1 (Figure 13b). At
δ = 106, Bray–Curtis distance measures delivered the highest OA (89.36%) at m = 1.1
(Figure 13c). At δ = 107, Canberra distance measures gave the highest OA (89.43%) at
m = 1.1 (Figure 13d). For δ = 108, Manhattan distance measures produced the highest OA
(89.99%) at m = 1.1 (Figure 13e). At δ = 109, Bray–Curtis distance measures gave the highest
OA (90.01%) at m = 1.1 (Figure 13f). At δ = 1010, Bray–Curtis distance measures delivered
the highest OA (89.14%) at m = 1.1 (Figure 13g). At δ = 1011, Mean Absolute Difference
distance measures produced the best OA (87.95%) at m = 1.1 (Figure 13g). For δ = 1012,
Euclidean distance measures gave the best OA (88.00%) at m = 1.3 (Figure 13h). At δ = 1013,
Manhattan distance measures gave the highest OA (89.28%) at m = 1.1 (Figure 13i).
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Figure 11. Comparison of overall accuracy in NLICM classifier for applying different distance
measures, m (1.1–3.0), and (a–j) for site 1 (Haridwar).
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Figure 12. Comparison of overall accuracy in ADNLICM classifier for applying different distance
measures, m (1.1–3.0), and (a–j) for site 1 (Haridwar).
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Figure 13. Comparison of overall accuracy in NC_S classifier for applying different distance measures,
m (1.1–3.0), and (a–j) for site 1 (Haridwar).
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For the NC, NLICM, ADNLICM, and NC_S classifiers, Tables 2–5 show the Kappa and
RMSE calculated for the maximum overall accuracy (Shown in Figures 10–13) observed
with regard to various parameters.

Table 2. Kappa and RMSE determined for the highest overall accuracy of the NC classifier by
applying different parameters for site 1 (Haridwar).

Delta(δ) m Distance Measures FERM(OA) in % Kappa RMSE

104 1.1 Canberra 80.48 0.758 0.218
105 1.1 Mean Absolute Difference 77.22 0.727 0.243
106 1.1 Bray–Curtis 77.72 0.732 0.242
107 1.1 Bray–Curtis 77.81 0.733 0.242
108 1.1 Canberra 82.55 0.777 0.204
109 1.1 Mean Absolute Difference 78.46 0.739 0.238
1010 1.1 Mean Absolute Difference 77.75 0.732 0.242
1011 1.1 Bray–Curtis 77.35 0.728 0.244
1012 1.1 Canberra 81.33 0.766 0.209
1013 1.1 Mean Absolute Difference 78.30 0.737 0.232

Table 3. Kappa and RMSE determined for the highest overall accuracy of the NLICM classifier by
applying different parameters for site 1 (Haridwar).

Delta(δ) m Distance Measures FERM(OA) in % Kappa RMSE

104 1.1 Canberra 86.91 0.818 0.175
105 1.1 Bray–Curtis 86.40 0.814 0.174
106 1.1 Canberra 87.38 0.823 0.172
107 1.1 Mean Absolute Difference 87.80 0.827 0.171
108 1.1 Canberra 88.75 0.836 0.169
109 1.1 Bray–Curtis 89.50 0.843 0.161
1010 1.1 Manhattan 88.45 0.833 0.170
1011 1.1 Manhattan 88.35 0.832 0.169
1012 1.3 Euclidean 88.87 0.837 0.165
1013 1.1 Canberra 87.40 0.823 0.171

Table 4. Kappa and RMSE determined for the highest overall accuracy of the ADNLICM classifier by
applying different parameters for site 1 (Haridwar).

Delta(δ) m Distance Measures FERM(OA) in % Kappa RMSE

104 1.1 Mean Absolute Difference 88.93 0.837 0.161
105 1.3 Bray–Curtis 89.45 0.843 0.163
106 1.1 Bray–Curtis 91.53 0.862 0.136
107 1.3 Mean Absolute Difference 90.22 0.850 0.148
108 1.3 Mean Absolute Difference 89.47 0.843 0.164
109 1.3 Manhattan 90.20 0.850 0.146
1010 1.3 Mean Absolute Difference 89.50 0.843 0.164
1011 1.1 Mean Absolute Difference 89.33 0.841 0.162
1012 1.3 Bray–Curtis 88.90 0.837 0.171
1013 1.3 Manhattan 89.94 0.847 0.165

18



Mathematics 2022, 10, 4056

Table 5. Kappa and RMSE determined for the highest overall accuracy of the NC_S classifier by
applying different parameters for site 1 (Haridwar).

Delta(δ) m Distance Measures FERM(OA) in % Kappa RMSE

104 1.1 Canberra 87.70 0.826 0.171
105 1.1 Manhattan 89.02 0.838 0.162
106 1.1 Bray–Curtis 89.36 0.842 0.162
107 1.1 Canberra 89.43 0.842 0.162
108 1.1 Manhattan 89.99 0.847 0.158
109 1.1 Bray–Curtis 90.01 0.848 0.157
1010 1.1 Bray–Curtis 89.14 0.839 0.161
1011 1.1 Mean Absolute Difference 87.95 0.828 0.173
1012 1.3 Euclidean 88.00 0.829 0.169
1013 1.1 Manhattan 89.28 0.841 0.164

3.2. Experiment 2: Classification in the Presence of Noise in the Haridwar Study Area Site

This experiment evaluated the effects of adding 1%, 3%, 5%, 7%, and 9% random
noise in the form of pepper and salt-and-pepper to Landsat-8 images. The original image
with 1%, 3%, 5%, 7%, and 9% additional pepper and salt-and-pepper noise is shown in
Tables 6 and 7, respectively. The difference between the original classified image and the
noisy classified image is used to calculate the RMSE and FERM. Kappa is also calculated.
To calculate FERM and RMSE, Formosat-2 images were utilized as the reference image.
RMSE, FERM, and kappa results show (Table 8) that the ADNLICM classifier performs
better than the other classifiers.

Table 6. Landsat-8 original and dense forest classified class image with respect to different random
pepper noise (for site 1 (Haridwar)).

Original Image NC Classifier
ADNLICM
Classifier

NC_S Classifier NLICM Classifier

Inserted 1%
random noise

  
   

Inserted 3%
random noise

   
  

Inserted 5%
random noise

 
   

19



Mathematics 2022, 10, 4056

Table 6. Cont.

Original Image NC Classifier
ADNLICM
Classifier

NC_S Classifier NLICM Classifier

Inserted 7%
random noise

  
 

  

Inserted 9%
random noise

   

  

Table 7. Landsat-8 original and dense forest classified class image with respect to different random
salt-and-pepper noise (for site 1 (Haridwar)).

Original Image NC Classifier
ADNLICM
Classifier

NC_S Classifier NLICM Classifier

Inserted 1%
random noise

 
  

  

Inserted 3%
random noise

 
  

  

Inserted 5%
random noise

   
  

Inserted 7%
random noise
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Table 7. Cont.

Original Image NC Classifier
ADNLICM
Classifier

NC_S Classifier NLICM Classifier

Inserted 9%
random noise

   
  

Table 8. RMSE, FERM, and Kappa of the algorithms concerning different random noise (pepper and
salt-and-pepper noise) for site 1 (Haridwar).

Random
Noise

NC NLICM NC_S ADNLICM

RMSE FERM Kappa RMSE FERM Kappa RMSE FERM Kappa RMSE FERM Kappa

Without
noise

0.204 82.55 0.777 0.161 89.50 0.843 0.157 90.01 0.848 0.136 91.53 0.862

1% 0.210 79.05 0.763 0.171 88.02 0.829 0.161 89.03 0.839 0.160 89.14 0.840
3% 0.212 78.13 0.745 0.180 87.56 0.825 0.162 89.02 0.838 0.162 88.88 0.837
5% 0.214 77.89 0.743 0.184 86.22 0.812 0.164 87.12 0.821 0.163 88.05 0.829
7% 0.217 76.81 0.733 0.188 85.49 0.805 0.168 86.01 0.810 0.165 88.00 0.828
9% 0.219 75.04 0.716 0.193 83.42 0.786 0.172 85.48 0.805 0.167 87.89 0.828

Tables 6 and 7 show the Landsat-8 image consisting of 1%, 3%, 5%, 7%, and 9% random
pepper and salt-and-pepper noise in the original image and classified image of dense forest
with NC, NLICM, NC_S, and ADNLICM algorithm, respectively.

Table 8 shows the calculated Root Mean Square Error (RMSE), FERM (Fuzzy Error
Matrix), and Kappa value of the NC, NLICM, NC_S, and ADNLICM algorithms for the
Dense Forest classified class with 1%, 3%, 5%, 7%, and 9% random pepper and salt-and-
pepper noise. Pepper and salt-and-pepper noise give almost the same result. This result
shows that the ADNLICM algorithm obtained a lower value for RMSE, FERM, and Kappa
than the other algorithms. Thus, we conclude that the ADNLICM algorithm performs
better in the presence of noise than the other algorithms.

3.3. Experiment 3: Classification Outputs of Haridwar Study Area Site to Calculate Variance
and SSE

Table 9 shows the classified outputs of the NC, NLICM, NC_S, and ADNLICM algo-
rithms. The green patches show the classified classes of dense forest, eucalyptus, grassland,
sand, water, and wheat.

Table 10 shows the variance within the class for the NC, NLICM, NC_S, and ADNLICM
algorithms. It was observed that the ADNLICM classifier provides the least variance value
for all six classes. This result shows that the ADNLICM classification algorithm handles
heterogeneity correctly.

Next, we calculated the variance (Table 10) and Sum of Square Errors (SSE) (Table 11)
of the classified outcomes of the Haridwar study area site using the proposed technique.
Lower variance values demonstrate an algorithm’s ability to handle heterogeneity well. In
contrast, lower SSE values reveal which algorithm performs the best clustering validation.
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Table 9. Classified classes for each algorithm for site 1 (Haridwar).

NC Classifier ADNLICM Classifier NLICM Classifier NC_S Classifier

Dense Forest

 

   

Eucalyptus

    

Grassland

 

   

Riverine Sand

    

Water

 
   

Wheat
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Table 10. Variance within the class for each algorithm for site 1 (Haridwar).

Dense
Forest

Eucalyptus Grassland
Riverine

Sand
Water Wheat

NLICM 0.040 0.250 0.058 0.029 0.003 0.029
ADNLICM 0.010 0.090 0.038 0.010 0.004 0.004

NC_S 0.029 0.188 0.040 0.010 0.004 0.029
NC 0.052 0.255 0.062 0.031 0.005 0.031

Table 11. SSE values for the proposed algorithms for site 1 (Haridwar).

Dense
Forest

Eucalyptus Grassland
Riverine

Sand
Water Wheat

NLICM 3.960 24.75 5.742 2.871 0.342 2.871
ADNLICM 0.990 8.910 3.762 0.990 0.039 0.039

NC_S 2.871 18.59 3.960 0.990 0.039 0.990

Table 11 shows SSE, used to show the cluster validity of the proposed algorithm,
values. This cluster validity method comes under the relative approach. Table 12 again
shows that the ADNLICM algorithm performed better than the other algorithms.

Table 12. Sentinel-2 original and hard classified image for site 2 (Banasthali).

Random
Noise

Original Image NLICM Classifier ADNLICM Classifier NC_S Classifier

Inserted 1% random
noise

    

Inserted 3% random
noise

    

Inserted 5% random
noise

   

Inserted 7% random
noise

   

Inserted 9% random
noise
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3.4. Experiment 4: Classification in the Presence of Noise in the Banasthali Study Area Site

This experiment assessed the impacts of 1%, 3%, 5%, 7%, and 9% pepper and salt-
and-pepper-style random noise added to Sentinel-2 Landsat-8 images. Table 12 shows the
Sentinel-2 image containing 1%, 3%, 5%, 7%, and 9% random pepper noise in the original
image and hard classified image of the Sentinel-2 image shown after applying NLICM,
NC_S, and ADNLICM algorithm.

The RMSE was calculated using the difference between the original classified image
and the noisy classified image. FERM and Kappa were also calculated. To calculate FERM
and RMSE, Sentinel-2 images were classified as hard and ERDAS Imagine Software was
used. RMSE, FERM, and kappa result shows (Table 8) which classifier performs better
compared to other classifiers.

Table 13 shows the evaluated overall accuracy (FERM), RMSE, and Kappa of the NC,
NLICM, NC_S, and ADNLICM algorithms for hard classified images with 1%, 3%, 5%, 7%,
and 9% random pepper noise. This result shows that the ADNLICM algorithm performed
better than the other algorithms. Thus, it has been concluded that the ADNLICM algorithm
performs better in the presence of noise than the other algorithms.

Table 13. RMSE, FERM, and Kappa for each algorithm with different random noise (pepper) for site
2 (Banasthali).

Random
Noise

NC NLICM NC_S ADNLICM

RMSE FERM Kappa RMSE FERM Kappa RMSE FERM Kappa RMSE FERM Kappa

Without
noise

0.151 89.12 0.853 0.144 93.25 0.871 0.150 91.23 0.872 0.149 92.48 0.910

1% 0.152 88.33 0.831 0.151 92.33 0.865 0.151 90.44 0.851 0.151 91.33 0.849

3% 0.157 86.72 0.811 0.153 90.67 0.854 0.152 88.56 0.834 0.153 89.45 0.838

5% 0.159 82.45 0.772 0.157 87.21 0.821 0.156 87.58 0.824 0.154 88.47 0.834

7% 0.161 80.12 0.742 0.154 86.45 0.814 0.157 86.47 0.808 0.155 87.26 0.813

9% 0.163 77.97 0.712 0.153 85.00 0.789 0.143 85.22 0.798 0.156 86.81 0.815

3.5. Experiment 5: Classification Outputs of Banasthali Study Area Site to Calculate Variance

Table 14 shows the classified outputs of the NLICM, NC_S, and ADNLICM algorithms,
to compare classified results and calculate the variance value. The green patches show the
classified classes of Grass, Mustard, and Wheat.

Table 14. Classified classes for site 1 (Haridwar).

Classified Classes NLICM Classifier ADNLICM Classifier NC_S Classifier

Grassland

   

Mustard
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Table 14. Cont.

Classified Classes NLICM Classifier ADNLICM Classifier NC_S Classifier

Wheat

   

This experiment calculates the variance (Table 15) for the Banasthali study Area site.
Lower variance values show the robustness of an algorithm to heterogeneity.

Table 15. Variance within the classes for the given algorithms for site 2 (Banasthali).

Variance within Class Grassland Mustard Wheat

NLICM 7.78 15.32 14.36
ADNLICM 3.36 4.2 8.5

NC_S 5.44 12.3 12.19

Table 15 shows the variance within the classes for the NC, NLICM, NC_S, and
ADNLICM algorithms; it was seen that the ADNLICM classifier provides the least variance
value for all three classes. This result shows that the ADNLICM classification algorithm
handles heterogeneity well.

3.6. Discussion in Comparison with Other Studies

The present study focused on local convolutional information methods. Previous
studies on this method used FCM and PCM-based classifiers, while the present study is
based on NC classifiers. A comparison of maximum OA obtained in previous studies and
the present work is shown in Table 16. The optimized algorithm achieved from this study
was comparable with the other studies in terms of overall accuracy.

Table 16. Comparison of OA with different studies.

Algorithms Overall Accuracy

FLICM [27] 80.31%
PLICM [39] 86.37%

ADPLICM [22] 86.48%
MPCM_S [40] 78.94%
MRF (DA) [41] 82.06%

ADNLICM 91.53%

The Markov Random Field (MRF (DA)) [41] approach requires optimization of the
global energy function, which is very sensitive to handle, which ADNLICM does not
require. The FLICM [27], ADPLICM [22], MPCM_S [40], and PLICM [39] algorithms
studied the handling of noisy pixels utilizing FC and PCM as the base classifier. Whereas,
in this research work, local convolution methods have been added to the NC classifier,
resulting in increased OA. The ADNLICM algorithm provides good classification results
in terms of noisy pixels and heterogeneity and provides the highest Overall Accuracy of
91.53%. All the compared studies were performed on the same Landsat-8 dataset and
resolution; hence a logical comparison was performed in this study, and it is inferred from
the analysis that the proposed algorithm improved the overall accuracy.
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4. Conclusions

The conventional Noise Clustering (NC) algorithm does not incorporate spatial infor-
mation. This research examined three novel NC-based algorithms, NLICM, ADNLICM,
and NC_S, that consider spatial information to better handle noise and heterogeneity. This
paper concentrated on obtaining an optimized algorithm concerning different parameters
(distance measures, m, and δ). The optimum overall accuracy for the ADNLICM algorithm
was found to be 91.53% for Bray–Curtis distance measures, fuzziness factor at (m) = 1.1, and
δ = 106. The proposed algorithms with NC-based classifier tested using 1%, 3%, 6%, and
9% random noise (pepper, and salt-and-pepper) achieve the lowest value of RMSE, FERM,
and kappa for the Dense Forest class using the ADNLICM algorithm, which shows that
the proposed method handles noise effectively. For the optimized ADNLICM algorithm,
the variance is also lower compared to the other classifiers. Further, in this research, the
optimized ADNLICM algorithm was validated using the sentinel-2 data in terms of RMSE,
kappa, and variance for handling noise and heterogeneity, respectively.

The previous work performed for the study area used FCM- and PCM-based clas-
sifiers; in this study, the NC classifier was used, which performs better than FCM and
PCM in handling noise and heterogeneity. Previous works mainly studied two or three
distance measures to calculate the accuracy; in this work, 10 different distance measures
and parameters were utilized to calculate the accuracy; and it was found that overall
accuracy improved substantially. The proposed algorithm preserves the boundaries of the
different feature classes. The techniques may be used for various applications, including
mapping, change detection, area estimation, feature recognition, and classification while
handling noisy/isolated pixels.
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Abstract: Researchers are interested in Facial Emotion Recognition (FER) because it could be useful
in many ways and has promising applications. The main task of FER is to identify and recognize the
original facial expressions of users from digital inputs. Feature extraction and emotion recognition
make up the majority of the traditional FER. Deep Neural Networks, specifically Convolutional
Neural Network (CNN), are popular and highly used in FER due to their inherent image feature
extraction process. This work presents a novel method dubbed as EfficientNet-XGBoost that is based
on Transfer Learning (TL) technique. EfficientNet-XGBoost is basically a cascading of the EfficientNet
and the XGBoost techniques along with certain enhancements by experimentation that reflects the
novelty of the work. To ensure faster learning of the network and to overcome the vanishing gradient
problem, our model incorporates fully connected layers of global average pooling, dropout and dense.
EfficientNet is fine-tuned by replacing the upper dense layer(s) and cascading the XGBoost classifier
making it suitable for FER. Feature map visualization is carried out that reveals the reduction in the
size of feature vectors. The proposed method is well-validated on benchmark datasets such as CK+,
KDEF, JAFFE, and FER2013. To overcome the issue of data imbalance, in some of the datasets namely
CK+ and FER2013, we augmented data artificially through geometric transformation techniques.
The proposed method is implemented individually on these datasets and corresponding results are
recorded for performance analysis. The performance is computed with the help of several metrics
like precision, recall and F1 measure. Comparative analysis with competent schemes are carried
out on the same sample data sets separately. Irrespective of the nature of the datasets, the proposed
scheme outperforms the rest with overall rates of accuracy being 100%, 98% and 98% for the first
three datasets respectively. However, for the FER2013 datasets, efficiency is less promisingly observed
in support of the proposed work.

Keywords: facial emotion recognition; transfer learning; deep learning; EfficientNet; XGBoost

MSC: 68T07

1. Introduction

Facial Emotion Recognition (FER) techniques are used to identify facial expressions
that convey emotions on human faces. Different types of emotions exist, some of which
might not be apparent to the human eye. Hence, with proper tools, any indications
preceding or following can be related to identifying the recognition [1]. In the field of
FER, there are seven universal facial expressions namely: anger, fear, disgust, happiness,
sadness, surprise, and neutral. Emotion extraction from facial expressions is a topic of
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active research in psychology, psychiatry, and mental health at present. The automatic
detection of emotions from facial expressions has many uses, including smart living, health
care, HCI (human-computer interaction), HBI (human-robot interaction), and modern
augmented reality [2]. Researchers keep looking into FER because it has so many uses.

The main goal of FER is to match different facial expressions with different emotional
states. In the classical FER, the two most important steps are “feature extraction” and
“emotion recognition”. Prior to feature extraction, all images need to be preprocessed,
which includes finding faces, cropping, resizing, and normalising. Standard techniques
which includes notable methods such as discrete wavelet transform and histogram of
oriented gradients (HOG) [3] are suitably used for feature extraction. Finally, neural
networks (NN) and other machine learning techniques are used to classify emotions based
on the features that were extracted.

Deep neural networks (DNNs), especially convolutional neural networks (CNNs),
are popular among researchers working on FER. This is because of the inherent feature
extraction and recognition integration architectures [4–6]. However, the current FER
approaches reported by CNN still have some challenges. The very low difference in
facial expressions due to different emotional states makes the task challenging. Further,
substantial intra-class variance and low inter-class variation [7] along with changes in
facial position have also posed several challenges. Challenges also persist in emotion
recognition under naturalistic situations like occlusion and pose variation [8], which can
dramatically alter facial appearance. This is where we try to identify an opportunity for
research. Advances in computer vision [9] has lead to high-quality emotion recognition
under controlled conditions and consistent environments.

Nowadays, the applications of deep learning, particularly CNN, make it possible
to extract numerous features and learn from them. A CNN with several hidden layers
requires difficult training and performs poorly in practice. In order to improve accuracy,
deep CNN architecture can be pre-trained using a variety of models and methodologies.
EfficientNet [10], DenseNet-161 [1], Inception-v3, Resnet-50, and VGG-16 [1] are the most
popular pre-trained DCNN models; however, training a large model takes a huge dataset
and intensive computing power.

Advanced computer vision research, is also able to solve the problem of unlabeled data,
in medical image analysis. Moreover, there is no guarantee of large datasets for training.
Ref. [11]’s work has solved the problem of unlabeled data and developed an estimation
method for hard cases. As the volume of the dataset grows, we require high computing
power. This situation is resource hunger. GPUs are a must for computing large datasets. For
efficiently Using GPUs, we need to accelerate. Mengyang Zhao et al. [12] contribute a novel
method for GPU acceleration by a method fast mean shift algorithm, which increases speed
by up to 7–10 times. Face recognition has a wide range of applications. Capturing devices
may produce 2D images, but there is a need for 3D images for more spatial information.
Jin, B [13] have introduced the D+GAN method for the translation of image-to-image with
facial conditions.

Training a deep learning model from scratch requires a lot of processing power and
takes a long time. As a result, rather than reinventing the wheel, a Deep Convolutional
Neural Network (DCNN) trained on another task and fine-tuned can be used. This ap-
proach is called “Transfer Learning” (TL) [14]. The conditions required for applying transfer
learning are data type consistency and similarity in the problem domain. In our study
EfficientNet [10], already pre-trained on a large dataset of imagenet is used for the task of
FER. CNN’s are scaled up to achieve better accuracy in the task of classification on most
benchmark datasets. But convolutional techniques of model scaling are done randomly.
Some models are scaled depth-wise and others width-wise. Random scaling requires
manual tuning and requires many person-hours. EfficientNet on the other hand, uses a
method called “compound co-efficient” to scale models in a simple but effective way. After
extraction of features using pre-trained DCNN models, efficient classification models can
be employed for the task of emotion recognition. XGBoost [15] is an algorithm under the
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category of supervised learning. This algorithm runs on both single and distributed systems
for classifying the input samples. In case of large data sets, XGBoost does efficient memory
management keeping the limitations of the RAM size and supports cross validation. It
also has a wide range of regularizations, which helps with the reduction of overfitting.
Through auto tree pruning it avoids decision tree growth after a certain limit internally.
This motivates us to take-up XGBoost as a classifier in our research pipeline. This study’s
key contribution can be summed up as follows:

(i) To implement a robust FER technique utilising the power of Transfer Learning
through EfficientNet-XGBoost model.

(ii) Adding fully connected layers to the model for fine tuning for attaining high accuracy.
(iii) Analyze the proposed method’s proficiency by comparing its accuracy in recognis-

ing emotions to that of other methods currently in use.

2. Related Work

In recent times, several techniques have been proposed in the context of FER. Ac-
cording to conventional methods, facial features are extracted first, and emotions are
then classified using those features. On the other hand, the FER job is done by current
deep-learning models that combine both steps into a single computational process.

In the domain of artificial intelligence (AI) domain, automatic FER has become a
challenging task, mostly in its subdomain of Machine Learning (ML). FER was implemented
using different traditional algorithms like K-Nearest Neighbor (KNN), neural networks,
etc. during the origin of FER. The methods like wavelet energy feature (WEF) and Fisher’s
linear discriminants (FLD) were the first methods used for feature extraction, and the
KNN method is used for classifying the classes of emotions. Feng et al. [16] extracted the
Local Binary Patterns (LBP) histograms from images at different locations, summed all
these patterns, and then classified the emotion using a linear programming (LP) technique.
Lee et al. [1] improved the wavelet transform for 2D, named contourlet transform (CT), in
order to extract features from images and used boosting algorithms for classifying emotions.
Support vector machine (SVM) is used by various models for classification of emotions
for the extracted features using different techniques. Liew adn Yairi [17] have done a
comparative study considering SVM and several other methods, which include Gabor,
Haar, and LBP. Two years ago, researchers found various classification algorithms for their
suggested geometry-based feature extraction, including logistic regression, LDA (linear
discriminate analysis), examples include KNN, naive Bayes, SVM, and classification and
regression trees. Goodfellow et al. [3] FER2013 dataset is used to construct a model on FER,
although it could only reach 57.7% accuracy using the Histogram of Oriented Gradients
(HOG) feature extractor and SVM. This is much worse accuracy than the baseline. The
primary drawback of these conventional methods is that they only consider the frontal
views of FER as features.

A new approach for FER is deep learning in machine learning, and so far there are
several CNN-based models introduced in the literature. The integration of deep belief
network (DBN) and neural network (NN) was proposed by Zhao and Shi [18], where DBN
is used for feature extraction and the neural network is used for classifying emotions. At
first, some models used a standard CNN architecture with two convolutional-pooling
layers to look at the images of facial expressions of emotion that they had collected for FER.
Mollahosseini et al. [19] introduced a bigger model with 4-inception and 2-convolutional-
pooling layers. Pons and Masipcite [4] developed an ensemble of 72 CNNs, where each
CNN is trained on different filter sizes in convolutional layers and a different number of
neurons in fully connected layers. The [5] model also employs an ensemble of 100 CNNs,
whereas the previous model utilised a predetermined number of CNNs. When all of
the FER datasets were benchmarked, CNN-based deep learning models had the highest
accuracy. However, unlike HOG or LBP, existing models implement the recognition process
as a whole. Image classification applications were used by combining CNN model using
KNN or the SVM classifier, which attained slightly higher accuracy than CNN models.
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Jabid et al. [6] and Shima and Omori [20] fine-tuned the algorithm and improved better
accuracy on the dataset JAFFE by 90.1% and 95.3% respectively. With 35,887 images, the
FER-2013 dataset is the most challenging one. Saeed et al. [21] achieved a baseline accuracy
of 68 percent.

Xiao Sun and Man Lv [22] created a model with hybrid features that combine SIFT
and deep learning features using a CNN model with different levels of extraction. Ref. [23]
proposed a multilevel Haar wavelet-based approach. By using the Viola-Jones cascade,
object detector components like eyes, mouths, and eyebrows are extracted. Kuan Li and Yi
Jin [24] proposed a cropping and rotation method which makes the model easy to train only
on the useful features. C. Shi, CTan et al. [25] proposed a model that effectively extracts
features by modifying the structure of a single CNN model based on a Multi-Branch
Cross-Connection (MBCC-CNN). M. Aouayeb et al. [26] developed a model with Squeeze
and Excitation with Vision Transformer which overcomes the disadvantages of regular
CNN models. Shervin et al. [2] implemented an approach using attentional convolutional
networks by focusing only on the significant parts of the face images. SL Happy et al. [27]
developed a model, by identifying facial patches that are active in particular emotions, thus
these features are classified. [28] The authors created an automatic FER by identifying the
best feature descriptor using the Facial Landmarks descriptor and classifying with Support
Vector Machine (SVM). Due to ambiguity facial gestures, less-informative facial images, and
subjectivity of annotators, it is enormously hard to annotate a qualitative large-scale facial
expression dataset. These uncertainties pose a significant obstacle of FER in large-scale in
the era of deep learning. The work of the researcher [29] proposes a simple yet effective
SelfCure Network (SCN) that efficiently suppresses uncertainties and prevents deep neural
networks from overfitting uncertain facial images.

Training a large neural model such as deep convolutional neural network is difficult
due to the network’s numerous parameters. It is common knowledge that a large network
is required to train large amounts of data. If trained with too little or insufficient data,
overfitting is inevitable. In some research works, it has become a combustion task arrange
sufficient sample set to train on deep convolutional neural network. However, in cases
where a huge amount of data is not available, transfer learning [14,30] solves the issue. No
doubt, transfer learning is a concept used to represent the knowledge learned from different
tasks which has the same applications. In the literature review, it was identified that the
TL method worked better when both the tasks were similar. It has been investigated that
TL achieved good accuracy on the task different from training, which is the motivation of
this work.

3. Materials and Methods

3.1. Deep Learning Using Transfer Learning

Reusing a model that has already been trained to solve a new issue is called transfer
learning. Transfer learning has a number of advantages, but its major ones are reducing
training time, improving neural network performance, and not requiring a lot of data. To
the pre-trained model (EfficientNet), fully connected layers, namely global average pooling,
dropout, and dense layer, are added. Lastly, to the pre-trained model, we added XGBoost
for the classification.

FER is also done through pre-trained deep neural frameworks using appropriate
Transfer Learning. Mahendran [30] has the learning process in frameworks such as CNN.
The visualization reveals preliminary features from input images from the first layer. The
next layer identifies the complex features like texture or shape. So the same mechanism goes
on towards identifying the complex features. Transfer learning is primarily advantageous
because it is difficult to train a DCNN from scratch. Instead of reinventing the wheel, we
will use the pre-trained weights and fine-tune the model for FER. Employing TL for FER
provides promising results as well.

A DCNN model (EFficientNet) pre-trained with a large dataset with 1000 classes
(e.g., ImageNet) is well suited for FER. Figure 1 shows the general architecture of transfer
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learning. Here, the foundation of the convolutional is similar to that of pre-trained DCNN
by excluding the classification stage. The existing classifier part in the model is replaced
by newly added fully connected layers and a classifier. Overall, the module consists of a
Convolutional Base to extract feature extraction, fully connected layers for fine-tuning the
model, and an XGBoost Classifier.

Figure 1. Idea of Transfer Learning (TL).

EfficientNets is a collection of models (named as EfficientNet-B0 to B7). They are
derived by compound scaling up the baseline network EfficientNet-B0. The benefit of Effi-
cientNets manifests itself in two ways. First, it offers high accuracy. Second, it enhances the
performance of the model by reducing the dimensionality and floating-point computational
cost. Compounding scaling is used to produce various versions of EfficientNet. Compound
Scaling refers to the utilization of a weighted scale containing three interconnected hyper-
parameters of the model (stated in Equation (1)), namely depth d, width w and resolution r
defined as:

depth : d = Aφ, width : w = Bφ, resolution : r = Γφ (1)

where A, B and Γ are the constants that defines the resolution of the network.
Initially, the compound coefficient ∅ is set to 1, which defines the base compound

configuration, EfficientNetB0. The same configuration is used in the grid search, for
optimizing the co-efficients A, B and Γ such that:

A ∗ B2 ∗ Γ2 ≈ 2 (2)

where A ≥ 1, B ≥ 1, Γ ≥ 1
We achieved the optimal values for A, B and Γ as 1.2, 1.1 and 1.15 respectively, under

the constraints stated in of (2). If we change the value of ∅ in Equation (1), the scaled
versions of EfficientNet-B1 to B7 will be achieved. EfficientNet-B0 baseline architecture is
used for feature extraction. The EfficientNet-B0 architecture consists of mainly 3 modules,
the Stem, the Blocks and the Head.

Stem: Stem has a convolutional Layer, (3 × 3) with kernel size, Batch normalization
Layer, and a Swish activation. These 3 are integrated.

Blocks: Blocks consist of several Mobile inverted bottleneck convolutions (MBConv)
Figure 2. MBConv has different versions. In MBConvX, X denotes the expansion ratio.
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Basically, MBConv1 and MBConv6 is used in EfficientNet. MBConv1 and MBConv6
description is given below.

MBConv1 ← DwC + BN + Swish + SE + Conv + BN (3)

MBConv6 ← Conv + BN + Swish + DwC + BN + Swish + SE + Conv + BN (4)

where
DwC—DepthWise Convolution
BN—Batch Normalisation
SE—Squeeze Excitation.
Swish—an activation.

The no. of layers in blocks are MBConv1, k3 × 3, MBConv6, k3 × 3 repeated twice,
MBConv6, k5 × 5 is repeated twice, MBConv6, k3 × 3 is repeated thrice, MBConv6, k3 ×
3 is repeated thrice, MBConv6, k5 × 5 is repeated thrice, MBConv6, k5 × 5 is repeated 4
times, MBConv6, k3 × 3, total 16 blocks exists.

Head: Head is a layer consisting of Convolution, Batch Normalization, Swish, Pooling,
Dropout and Fully Connected layers. Head is represented as follows:

Head ← Conv + BN + Swish (5)

Figure 2. EfficientNet Blocks: (a–c) are the 3 basic building blocks. h, w, and c are input with respect
to height, width, and channel for all the MBConv blocks. The Output channel for the two blocks is
denoted by C.
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The detailed EfficietNet Architecture is represented in Table 1. A Note to remember
is that MBConv6, k5 × 5 and MBConv6, k3 × 3 but only the difference is that MBConv6,
k5 × 5 is applied to a kernel size of 5 × 5.

Table 1. Outline of the EfficientNet-B0 baseline network layers.

Stage Operator Resolution Output Features Layers

1 Conv 3 × 3 224 × 224 32 1
2 MBConv1, k3 × 3 112 × 112 16 1
3 MBConv6, k3 × 3 112 × 112 24 2
4 MBConv6, k5 × 5 56 × 56 40 2
5 MBConv6, k3 × 3 28 × 28 80 3
6 MBConv6, k5 × 5 14 × 14 112 3
7 MBConv6, k5 × 5 14 × 15 192 4
8 MBConv6, k3 × 3 7 × 7 320 1
9 Conv 1 × 1 & Pooling & FC 7 × 7 1280 1

3.2. Fully Connected Layer

This module consists of 3 layers Global Average Pooling, Dropout layer and Dense Layer.
Global Average Pooling: Global Average Pooling layers replace fully connected layers

in traditional CNNs. In the final layer, the goal is for generating the feature sets correspond-
ing to respective classification levels. We take the average of each feature map instead of
designing a complete connected layers above the feature maps. The basic advantage of
global average pooling is that it is very similar to the structure of convolutional structure by
enforcing the relation between corresponding feature maps with respect to classes. Another
advantage is to avoid over-fitting, as there are zero parameters to optimize in global average
pooling. Global Average Pooling does something different. Average pooling is applied
on. It uses average pooling on the spatial dimensions until each is one and leaves the
other dimensions alone. Global Average Pooling layer does transformation of (N1, N2, N3),
feature set of size (1, N3) and feature map where (N1, N2) corresponds to image dimension,
and N3 being the count of filters used.

Dropout: While using DCNN, co-adaptation is the drawback when training a model.
This indicated that the neuron are very dependent on other neurons. They influence each
other considerably and are not independent enough regarding their inputs. It is very
common to find in some situation that some neurons have a predictive capacity that is
more significant than others. These kind of state can be avoided and the weights must be
distributed to prevent over-fitting. There are various regularization methods which can be
applied for regulating co-adaptation and high predictive capacity of of some neurons. To
resolve this problem Dropout can be used. Depending on whether the model is DCNN,
or a CNN or a Recurrent Neural Network (RNN) different dropout methods can be used.
Here in our work we have used standard dropout method. The modeling of dropout layer
on a neuron mathematically represented as follows:

f (κ, ρ) =

{
κ if κ = 1

1 − ρ if κ = 0
(6)

where:
κ denotes the desired results.
ρ is the probability of the real-valued representations.
If ρ = 1 the neuron holding a real value is de-activated else activated.

The next layer we have is dense layer. In the neural network, a dense layer deeply
connects to its next layer. Each of the neuron links to every neuron of its next layer. The
neuron in this dense layer represents the neuron’s matrix-vector multiplications. Every
neuron in the dense layer unit receives output from each neuron in the preceding layers in
the model. The dense layer units perform matrix-vector cross product. In product, the row
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vector of the output from the previous layers is identical to the column vector of the dense
layer. The major hyper parameters to tune in this layer are units and activation function.
The very basic and necessary parameter in dense layer is units. In dense layer, size is
defined by units which is always greater than 1. Activation function aids in transforming
the input values to neurons. Basically it produces non-linearity into the network where
relationship of input and output values are learnt.

3.3. XGBoost

eXtreme Gradient Boosting (XGBoost) [15] algorithm is one of the best algorithm in
Machine Learning (ML) developed by Chen and Guestrin. XGBoost can be considered as
both a classifier and regressor in the framework of scikit-learn. The XGBoost model for
classification is called XGBClassifier which is used in this study. We can create and fit to our
training dataset. The beauty of XGBoost is its scalability, which drives fast learning through
parallel and distributed computing and provides memory usage efficiently. XGBoost is a
distributed gradient boosting library that has been developed to be highly versatile and
portable. The objective function (loss function and regularization) is represented as follows:

Ft ≈
T

∑
j=1

[(∑
iεIj

gi)wj +
1
2
(∑

iεIj

hi + λ)w2
j ]+ = ρT (7)

F—Objective Function
gi—Mean Square Error first derivative.
w—Score Vectors on leaves.
hi—Mean Square Error second derivative.
λ—Penality
T—Number of leaves.
ρ—Leaf’s Complexity
Ij—Leaf node j data samples.

The beauty of XGBoost motivated and produced the best results in our work.

4. Proposed Work

The proposed work consists of 3 modules. First the EfficientNet Module, Fully Con-
nected Layer and Finally the XGBoost Classifier. Figure 3 illustrates the models block
diagram. Images are given as input to the EfficientNet and processed for feature extraction.

4.1. Proposed Algorithm

The Algorithm for the EfficientNet-XGBoost is designed in this section.
Algorithms 1 and 2 are the step wise refinements of MBConv1 and MBConv6 respec-
tively. Algorithm 3 is the model step wise refinement, MBConv1 and MBConv functions
are executed repeatedly as discussed in the model setup Section 3.1.

Algorithm 1 : MBConv1(K × K, B, S)

Require: KKernelSize, B : OutputFeatureMaps, S : Stride, R : Reductionratioo f SE, T :
Total Images{X1, X2, . . . XT}

1: dwc ⇐ DepthwiseConv(K × K, M, S)
2: bn ⇐ BatchNomalization(dwc)
3: sw ⇐ Swish(bn)
4: e ⇐ SE(R = 4, sw)
5: conv ⇐ Conv(1 × 1, B, 1, se)
6: bn ⇐ BatchNormalization(conv)
7: return (h/s × w/s, B = bn)
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Algorithm 2 : MBConv6(K × K, B, S)

Require: Inputs: K : KernelSize, B : OutputFeatureMaps, S : Stride, R: Reduction ratio of
SE, T : Total Images{X1, X2, . . . XT}

1: conv ⇐ Conv(1 × 1, 6M, 1)
2: bn ⇐ BatchNomalization(dwc)
3: bn ⇐ BatchNormalization(bn)
4: sw ⇐ Swish(bn)
5: se ⇐ SE(R = 4, sw)
6: conv ⇐ Conv(1 × 1, B, 1, se)
7: bn ⇐ BatchNormalization(conv)
8: return (h/s × w/s, B = bn)

Algorithm 3 : EFFICIENTNET-XGBOOST()

Ensure: weights ⇐ Imagenetweights
Ensure: biases ⇐ ImagenetBias
Ensure: input ⇐ (48, 48, 3), T is total images.

1: begin:

f o r i in range ( 0 , T ) do
begin :
{ conv<−− Conv(3 x 3 , image )

bn <−− BatchNormalization ( conv )
sw <−− bn * sigmoid ( bn ) }

end ;

2: mbc1 ⇐ MBConv1(3 × 3, B, S, sw) 16 rounds

f o r i in range ( 0 , 2 ) :
mbc6 <−− MBConv6(3 x 3 , B , S , mbc1 )

f o r i in range ( 0 , 2 ) :
mbc6 <−− MBConv6(5 x 5 , B , S , mbc6 )

f o r i in range ( 0 , 3 ) :
mbc6 <−− MBConv6(3 x 3 , B , S , mbc6 )

f o r i in range ( 0 , 6 ) :
mbc6 <−− MBConv6(5 x 5 , B , S , mbc6 )

3: mbc6 ⇐ MBConv6(3 × 3, B, S)(mbc6)
4: conv1 ⇐ Conv(1 × 1, M, S)(mbc6) Fully Connected Layer
5: pool ⇐ MaxPool2D(pool_size = [1,1],padding = ’valid’,S = 2)
6: d ⇐ Dropout(0.5, pool)
7: de ⇐ Dense(N = 1024, d)

f o r i in [ f e a t u r e \_maps ] :
read i :

begin
{ t r a i n \_y = t r a i n [ $neurons =1024$ ]

t r a i n \_x = t r a i n . drop [ $neurons =1024$ ]
d a t a s e t = xgboost . Dmatrix ( t r a i n \_y , t r a i n \_x ) }

end :

8: PARAMS:max_depth = 7, eta = 0.2, numclasses = 7, objective = so f tmax
9: Xg ⇐ XGBOOST.train(params, dataset,num_boost_round = 200)

10: Yhat ⇐ Xg.predict(x_test)
11: score ⇐ accuracy_score(test_y, Yhat)
12: End;
13: Output :: score
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Figure 3. Proposed FER model based on Transfer Learning.

4.2. Experimental Setup

In our work, we are trying to use the EfficientNet by TL method to extract the features
for the given input image, fine tune the model, and finally, classify it using the XGBoost
classifier. The model is divided into 3 modules: EfficientNet, Fully Connected Layer, and
XGBoost Classifier. First we try to preprocess the images, which is explained in Section 4.4,
and then apply TL for feature extraction. EfficientNet is known for obtaining great precision
with few parameters and FLOPS (Floating Point Operation Per Second). Traditional CNNs
are involved in fine tuning manually. Fine tuning is done in 3 dimensions. There are three
of them: the number of layers, the number of channels, and the image size. The compound
scaling process is used by EfficientNet for scaling. The Swish function is used, and the
following is the mathematical representation:

swish(x) = x ∗ sigmoid(x) (8)

The image is of size (48 × 48) is given as input. Various phases of feature extraction
are performed on the input image by the model. The model architecture consists of seven
inverted residual blocks denoted by MBConv and two residual blocks denoted by Conv. In
Table 1, detailed information about each layer of the EfficientNet-B0 baseline network is
shown. Both MBConv1, k3 × 3, and MBConv6, k3 × 3, employ depthwise convolution,
which combines the 3 × 3 kernel size with s as the stride size. Both of these blocks comprise
batch normalization, activation, and convolution. They have a kernel size of 1 × 1. The
classifier and expression predictor is XGBoost. XGBoost is replaced with softmax, for best
performance and accuracy.

Model Training and Evaluation: The model execution for training and testing was
performed on Google Colab Cloud Platform. Tensorflow 2.6 was used on Python 3.7, and
the GPU was a Tesla P100-PCIE-16GB. The CPU is an Intel(R) Xeon(R) CPU running at
2.20 GHz. The researchers can reuse the weights learned and unfreeze some layers as per
requirement to perform training, thanks to TL, helped for developing FER system. We
have used Adam optimizer an adaptive learning rate method for training. The batch size
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considered is 32 with epochs ranging from 100–150. The parameters used are shown in
Table 2.

Table 2. Parameters used during model training.

Parameter Value

Epochs 100–150
Batch Size 32 or 64
Dropout Rate 0.001
Optimizer Adam
Loss Function Categorical Cross Entropy
Early Stop Enabled

4.3. Datasets

To measure the performance of the proposed model, we have chosen 4 datasets for
facial emotion. Table 3 shows the no of sample images in each category of different datasets.

Table 3. Image distribution of Datasets.

S.No Name of the Data Set
Emotions

No. of Images
Anger Fear Happy Surprise Disgust Sadness Neutral

1 CK+48 75 207 249 77 84 135 NA 927
2 JAFFEE 30 30 30 30 30 30 30 180
3 KDEF 70 70 70 70 70 70 70 490
4 FER2013 5121 8989 4002 547 6077 4953 6198 35,887

4.3.1. CK+

The (CK+) [28] was published in the year 2010. CK+ is an extension of the Cohn-
Kanada dataset is used in our research which contains 7 types of basic expressions. The
images of this dataset are in size of 48 × 48. They are Anger, Disgust, Fear, Happiness,
Sadness, Surprise with sample size of 135, 177, 75, 207, 84, 249 respectively. This makes it
a total count to be 927 images. The dataset split for Training is 648, Validation is 139 and
Testing is 140 images.

4.3.2. KDEF

In total, the Karolinska Directed Emotional Faces (KDEF) dataset [31] contains 490 im-
ages of human facial expressions. The images in this dataset are 256 × 256 in size. This
dataset contains 7 emotion classes as mentioned similar to Section 4.3.1. Here the samples
are distributed evenly, with 70 images of each type.

4.3.3. JAFFE

The JAFFE [26] dataset consists of 180 images of 6 basic classes. The images in this
dataset are of size 120 × 120. The emotion classes are Sad, Disgust, Fear, Surprise, Anger
and Happy with 30 images each.

4.3.4. FER2013

The FER2013 [28], very challenging dataset consists of 35,887 face image samples.
28,709 images for training and 3589 images for training and testing each. The images in this
dataset are set to grayscale. The images are of size 48 × 48. The samples are categorized
into 7 classes of emotions. 0—Anger, 1—Disgust, 2—Fear, 3—Happy, 4—Sad, 5—Surprised
and 6—Neutral. We discovered some label errors in the test dataset during the experiment.
This dataset’s benchmark accuracy is only (65 + 5) percent, which is extremely difficult.
Even so, most researchers continue to use this dataset to test their models. A snapshot of
the samples is presented in Figure 4.
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Figure 4. Sample Images of different datasets.

4.4. Data Pre-Processing

It is very natural that we need to process the image before training. Data sets namely
KDEF and FER2013 are in Comma Separated Values .CSV format. CK+ dataset and JAFFE
are in .jpg images. During the preprocessing phase, we reshaped the images into an
acceptable format for the model. If we look at Table 3 for the FER2013 and CK+ datasets, we
can see that all of the images in classes are not equal. Few classes have a larger sample size,
while others have fewer samples. This is referred to as class-imbalance. To overcome this
type of issue, we must include additional images into the classes with fewer samples. This
is possible with the help of data-augmentation. Augmentation aids in increasing the size of
the data set as Table 4. The more variation in the train data, the better the model learns. In
this work, data is augmented is carried out artificially through geometric transformation
techniques like translation, reflection, shearing, and other means [20]. The augmented
image samples generated during the pre-processing phase are shown in Figure 5.

Table 4. Data Augmentation and Pre-Processing Parameter used in ImageDataGenerator of Keras.

Parameter Value

Zoom 0.15
Width Shift 0.2
Range of Brightness (0.6–1.2)
Shear 0.15
Height Shift 0.2
Fill Mode Nearest

The dataset has three sections: train data, validate data, and test data. In our model,
we used an 80/20 split to train the model and the remaining 20% to test the model’s
performance. To avoid performance errors, 10% of train data is split into validation data
using parameter adjustment. After the model has been trained, test data is used to assess
the model’s performance. Figure 6 clearly represents splitting of data into Train, Test
and Validation.
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Figure 5. Samples of Augmented Images Generated.

Figure 6. Dataset Split for Training, Validation and Testing.

A confusion matrix is used to evaluate a classification’s performance. The confusion
matrix (as shown in Figure 7) is calculated for finding the class’s accuracy. It’s represented
as a matrix. The confusion matrix allows for a comparison of actual and predicted values.
The confusion matrix for N-class classification is N × N. True Positive (TP), False Positive
(FP), True Negative (TN), and False Negative (FN) are the four terms that make up the
confusion matrix (FN). Representation of confusion matrix is shown in Figure 7.

Figure 7. Confusion Matrix Overview.
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Accuracy: Accuracy is calculated by dividing the total number of predicted values by
the total number of predictions made by the model. The formula below represents accuracy.

Accuracy =
TP+ TN

TP+ FN+ FP+ TN
(9)

Accuracy gives a false sense of prediction if the dataset is imbalanced.
Precision: Precision is the percentage of true positive predictions out of all positive

predictions. Precision is denoted by the following equation:

Precision =
TP

TP+ FP
(10)

Recall: What proportion of the total positive is predicted to be positive? It’s the same
as TPR (True Positive Rate). The formula is represented as:

Recall =
TP

TP+ FN
(11)

F1-score: The harmonic mean of precision and recall is defined. It’s a statistical metric
for evaluating performance.

F1 − Score = 2 ∗ Recall ∗ Precision
Recall + Precision

(12)

ROC AUC: Receiver Operating Characteristics (ROC) is a graph that compares the
true positive rate (on the y-axis) and false positive rate (on the x-axis) for every classifica-
tion threshold that is conceivable. ROC-AUC stands for the area determined under the
ROC curve.

ROC − AUC =
1 + TP − FP

2
(13)

It represents the probability that a model ranks randomly positive observation higher
than the randomly chosen negative observation, and thus it is a useful metric. We can see
parameters used for XGBoost as Table 5.
Table 5. Parameters Used for XGBoost.

Parameter Value

Max Depth 7
eta 0.2

Number of Classes {6, 7} based on dataset
Objective softmax, softprob

Eval_Metric merror
alpha default

gamma default

5. Results and Discussion

In this section, confusion matrix analysis, classification performance analysis, accuracy,
and feature maps of the proposed model EfficientNet-XGBoost are discussed clearly.

5.1. Training and Validation

The model is trained and validated with the training dataset. Loss must be reduced in
order to fine-tune the model. The accuracy and loss corresponding to validation process
are represented through a plot respectively in Figure 8. In Figure 8a, the plot related to
training and validation accuracy is shown. The X-axis represents the count of epochs and
the Y-axis represents the rate of accuracy, scaled from 0.3 to 1.0, where 0.3 is 30% and 1.0 is
100% accuracy, and Figure 8b is the plot for training and validation loss. The linear axis
represents the count of epochs, and the vertical axis represents the measure of loss. These
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plots represent the model training and validation on the CK+ dataset. From Figure 8a, it is
clearly observed that 100% accuracy is obtained on training and validation of the dataset.
The accuracy measure corresponding to test samples is presented in the results section in
the form of a confusion matrix.

Figure 8. (a) Training & Validation accuracy on CK+ dataset (b) Training & Validation loss on
CK+ dataset.

5.2. Analysis Using Confusion Matrix

The confusion matrix is primarily utilized for comparing the classifier outcomes with
the actual class level. This helps in genuine evaluation of the classifier model. The confusion
matrices in Figure 9 are derived from the datasets CK+, KDEF, FER2013, and JAFFE. As
shown in Figure 9, each class’s prediction accuracy is concentrated along the diagonal. Each
of the confusion matrices has the predicted class and the true class. In contrast to Fer2013’s
data set, which has low classification accuracy, the CK+ data set’s seven categories have
high prediction accuracy. Fer2013 is a very large and challenging dataset which has class
imbalance. Despite this, the most popular data set for facial expression recognition is
Fer2013. The experiment also uses the Fer2013 dataset to compare outcomes with other
approaches using the same parameters. If we look at the CK+ dataset, all the emotions
are correctly identified, except that the emotion “fear” is classified as “surprise”. Figure 9
also depicts the confusion matrix of the KDEF and JAFFE data sets. We can see from the
confusion matrix results that the proposed method has good classification performance.

For the KDEF dataset also, if we observe the figure, 8 images are misclassified.
4 images of neutral emotions are classified as 1 happy and 3 surprise emotions. One
image of a happy emotion and one image of anger are misclassified as surprise. There are
clearly a lot of misclassified emotions in FER2013 dataset. This is due to the large size and
very challenging dataset. For the JAFFE dataset, we have 4 misclassified emotions. One
disgust image is identified as an angry image, one surprise image is identified as a disgust
image, and finally, one surprise image is identified as sadness. This is due to the similarity
expression in the dataset. Also, to train the model, we have a very small number of images
per class.

5.3. Analysis of Classification Performance

Figures 10–13 shows the Precision, Recall, F1-Score, and Support of the proposed
model EfficientNet-XGBoost on the CK+, KDEF, JAFFE, and FER2013 datasets. It is clearly
observed that from Figures 10–12 all the evaluation shown for each emotion classes of CK+
dataset is very high. The FER2013 dataset is low. The reason for this is due to FER2013
dataset is very challenging dataset. These figures represent the classification performance
of the model. The representation is in the form of bar plots. In the figures, X-Axis represents
classes of emotions of 4 datasets. The CK+ and JAFFE datasets have six categories of
emotions. The FER2013 and KDEF datasets each contain seven categories of emotions.
Y-Axis represents the percentage of accuracy, scaling from 0.00 to 1.00 range. The order of
the datasets represented in the plot is CK+, JAFFE, KDEF, and FER2013.
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Figure 9. The Confusion matrix obtained by EfficientNet-XGBoost on CK+, JAFFE, KDEF
and FER2013.

Figure 10. Precision for CK+, JAFFE, KDEF and FER2013 datasets.
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Figure 11. Recall for CK+, JAFFE, KDEF and FER2013 datasets.

Figure 12. F1-Score for CK+, JAFFE, KDEF and FER2013.

Figure 13. Support for CK+, JAFFE, KDEF and FER2013.
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Precision is shown in Figure 10. The bar plot show emotions on the X-Axis. It is very
clear that for Anger, Disgust, Fear, Happy, Sad and Surprise shows 1, which indicates that
these emotions achieved 100% precision measure for CK+, JAFFE and KDEF dataset. For
the datasets CK+ and JAFFE the expression NEUTRAL is not available. Hence marked
as zero.

Recall is shown in Figure 11, anger, fear, happy, sad and surprise emotions for CK+,
JAFFE and KDEF achieved 100%. Fear emotion is 90%. for CK+ dataset, this is due to
class imbalance. It has only 75 sample in the dataset. A very less sample for the model to
train. Recall in Anger class of JAFFE dataset is 33%. The reason behind this is the images
are very similar to fear emotion. This is the challenge in this dataset. The F1-Score for
the model is calculated. It is shown in Figure 12. From figure, we can see that the best
results for CK+ and KDEF datasets are very close to 100% for anger, disgust, fear, happiness,
sadness, and surprise. Support for the datasets CK+, JAFFE, KDEF, and FER2013 is shown
in Figure 13. The number of samples of the true prediction that fall into each class of target
values can be used to determine support. The structural weakness in the scores represents
the imbalanace state of the training data. Low value of support, leads either for stratified
sampling or rebalancing.

5.4. Feature Maps

Verification of the feature extraction can be done by visualising the feature sets for the
images in different layers. The major objective to visualize a feature set corresponding to
particular input image is to gain some understanding about the inherent characteristics.
The proposed model thus, gains further insights of the inputs. Perhaps it detects some parts
that we desire to extract. It is very interesting to directly examine the features like colors
and edges, which are known as low-level features, and high level features like shapes and
objects. In our model, it’s easy to see that the eyes, nose, and lips are all there.

Feature maps for the images at random layers are shown in Figure 14. In Figure 14 we
see that the features extracted by each layer from the face’s most significant features.

Figure 14. Feature Maps of few layers.

5.5. Receiver Operating Characteristic

The area under the curve (AUC) values and receiver operating characteristic (ROC)
curves were computed in order to further assess the results of each expression’s recognition.
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It is a curve of probability that plots the True Positive Rate (TPR) over False Positive Rate
(FPR) at different threshold values and essentially separates the signal from the noise. The
ROC for the CK+ dataset is shown in Figure 15. X_axis represents the false positive rate
and Y_axis represents the true positive rate. The colored curves indicate different classes.
As shown in Figure 15 black curve which is far away from other curves and at the bottom
represents fear emotion. Fear emotion is falsely predicted as a surprise (Figure 9) emotion of
the cK+ dataset. The accuracy of the Fear class is less when compared with other emotions.

Figure 15. ROC of CK+ Dataset.

5.6. Comparison of Results with Other Works

This section presents an investigation on the efficacy of the stated model on benchmark
datasets. EfficientNet-XGBoost, the developed model, is entirely based on the transfer
learning technique. Because EfficientNet is the foundation of the proposed model, it
is thoroughly tested to determine how well it works. Table 6 represents the results for
the accuracy in training, validation, and test images experimented with the base model
EfficientNet. The dataset was split into 80% and 20% for training and testing data. We have
experienced that feature extraction was done efficiently by this model. Here, the softmax
layer helps in classifying emotions. We replace this softmax layer with the machine learning
algorithm XGBoost to improve accuracy. The proposed EfficientNet-XGBoost method can
efficiently extract image features and enhance the accuracy of facial expression recognition.

Table 6. Base model EfficientNet experimental results on CK+, FER2013, JAFFE and KDEF dataset
(LR: learning Rate, Val-Loss: Validation Loss).

S.No Dataset LR Val-Loss
Accuracy (%)

Train Validation Test

1. CK+ 2.499 × 10−4 0.1368 94.35 95.714 94.41
2. FER2013 0.145 - 90.35 61.44 61.54
3. JAFFE - 0.7315 98.44 98.44 97.67
4. KDEF - 0.4512 96.54 94.15 93.74

Suitable simulations are carried out on the same train/test split using notable methods
from the literature. To fully validate the proposed method’s effectiveness, for compari-
son under the same conditions, 20 related expression recognition techniques are chosen.
Tables 7–10 shows the accuracy of other models compared with our model EfficientNet-
XGBoost on CK+, JAFFE, KDEF and FER2013 datasets respectively.
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A weighted mixture deep neural network (WMDNN) [32] was proposed and tested
on the CK+ dataset with 97.02% accuracy. SIFT-CNN, a hybrid model proposed by X. Sun
and M. Lv [33], has a 94.82 percent accuracy. In [23] AdaBoost was used to segment the
face’s largest geometric component, and multistage Haar wavelet was used to extract the
features of the components. AdaBoost, on the other hand, is sensitive to abnormal samples,
which will result in higher weights in the iterative process and thus affect segmentation
performance. In the meantime, using the Haar wavelet base will result in inefficient feature
extraction. The recognition accuracy of this model for the CK+ data sets is 90.48 percent.
This model has a very low recognition accuracy when compared to other methods. A
region-aware sub-net (RASnet) [34] learns binary masks for locating expression-related
critical regions with coarse-to-fine granularity levels, whereas an expression recognition
sub-net (ERSnet) with a multiple attention (MA) block learns comprehensive discriminate
features. This model achieved 96.28% accuracy.

Among the models [33,34] in the above comparison, two have used traditional meth-
ods for mining expression recognition. Shi, Cuiping, et al. [25] created a CNN model based
on a residual network. Before extracting the features from the expression images, this
model first preprocesses the input images. The accuracy of feature extraction is increased
to 98.48 percent after being extracted by various network branches and then fused together,
which is higher than other methods but lower than our accuracy.

From Table 7 our model EfficientNet-XGBoost has achieved 100% accuracy when
compared with other models. This was achieved with epoch of 150 on dataset CK+.

Table 8 shows the accuracies of the KDEF dataset with other models. [28] identifies the
features through the Facial Landmarks descriptor and the Center of Gravity descriptor. On
KDEF, these features are classified by Support Vector Machine (SVM) with an accuracy of
90.80% which is the lowest accuracy among the comparisons. The stacked Convolutional
Auto-Encoder (SCAE) [28] model is proposed and used random weights for training
the images. Random weights will take many person-hours. Convolution layers and a
recurrent neural network (RNN) are the two components of the network architecture that
Jain et al. [31] proposed. The combined model extracts relationships within facial images,
and by using the recurrent network, the temporal dependencies that exist in the images
can be taken into account during classification.

Table 7. Accuracy of CK+ Dataset.

Model Name Accuracy (%)

E. et al., B. Yang, J. Cao, and B. Yang [32] 97.02%
X. Sun and M. Lv [33] 94.82%
M. Goyani and N. Patel [23] 98.73%
Gan, Y., Chen, J., Yang, Z., and Xu, L. [34] 94.51%
K. Li et al. [24] 97.54%
WMCNN-LSTM [35] 97.50%
N. Sun, Q. Li, et al. [22] 98.38%
MBCC-CNN [25] 98.48%
EfficientNet-XGBoost (Proposed Model) 100%

Table 8. Accuracy of KDEF Dataset.

Model Name Accuracy (%)

Alshami el al [28] 90.80%
Ruiz-Garcia et al [18] 92.52%
Jain et al. [31] 94.91
EfficientNet-XGBoost (Proposed) 98.44%
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Table 9. Accuracy of JAFFE Dataset.

Model Name Accuracy (%)

Aouayeb M, Hamidouche W et al. [26] 94.83%
E. al, B. Yang, J. Cao, and B. Yang [32] 92.2%
Minaee S, Minaei M, Abdolrashidi A [2] 92.8%
Happy SL [27] 91.8%
Alshame al at. [28] 91.90%
Zhao and Zhang [35] 90.95%
EfficientNet-XGBoost (Proposed) 98.3%

The accuracy of our model using the JAFFE dataset is compared with other works
in Table 9. For the FER task, [26] proposes a model called the Vision Transformer in
conjunction with a Squeeze and Excitation (SE) block. with an accuracy of 94.83% which is
a bit low compared to our work. Vision transformers require large datasets, whereas JAFFE
only has a small number of samples. image distribution of JAFFE is shown in Table 3.
The JAFFE dataset has only 180 images, but they are equally distributed with all 7 classes
of emotions. The paper [2] proposes a deep learning strategy based on an attentional
convolutional network, which is capable of focusing on key facial features such as the nose,
eyes, lips, and cheeks. The accuracy of [14] is 92.8%. The proposed models’ accuracy using
the JAFFE dataset would be high if the number of samples were greater. This attention was
drawn during experimentation.

Table 10. Accuracy of FER2013 Dataset.

Model Name Accuracy (%)

VGG-19 70.80%
EfficientNet-B0 70.80%
GoogleNet 71.97%
ResNet34 72.42%
Inception V3 72.72 %
Bam - ResNet 50 73.12%
DenseNet121 73.16%
ResNet152 73.16%
EfficientNet-XGBoost (Proposed) 72.54%

The model’s test results for each class are compared to other works. The overall
accuracy of the model is directly proportional to the accuracy of the individual classes.
Figure 16 shows the accuracy achieved by our model and others on individual classes
of emotions. X_axis denotes the works and Y_axis denotes accuracy. It is observed from
Figure 16 that our proposed work achieves 100% accuracy for each emotion class except Fear.
Six basic facial emotion classes are depicted in the figure. Though, some researchers have
also included Neutral as one of the emotions. The proposed model, EfficientNet-XGBoost,
has shown the best performance on the CK+ dataset. The JAFFE dataset and KDEF dataset
contain frontal images. The FER2013 dataset is a challenging dataset with 35,887 sample
images, which did not produce high accuracy but was equal to the benchmark accuracy. The
major issue with this dataset is the class imbalance. Proper augmentation needs to be done
by producing synthetic images rather than augmenting them using geographic features.
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Figure 16. Class accuracy of the model compared with other works.

6. Conclusions and Future Scope

An efficient scheme with a state-of-the-art transfer learning mechanism has been
presented suitably for facial emotion recognition. The scheme is dubbed as EfficientNet-
XGBoost. Novelty of the scheme is exhibited with certain combination of pre-trained
EfficientNet architecture, fully connected layers, XGBoost classifier, and custom fine-tuning
of parameters. Input facial images are suitably pre-processed and the task of feature
extraction is carried out through using the custom model. The feature points are extracted
through various networks. To average the feature maps, the global average pooling is
applied and the final feature set is fed to XGBoost Classifier which recognizes the class
labels for distinct emotions. Four distinct datasets are used to validate the scheme. The
experimental results for the dataset CK+ shows outstanding performance at an overall rate
of accuracy of 100%. Further, the proposed model can recognize expressions accurately
with low latency. An overall rate of accuracy of 98% is observed on datasets like JAFFE
and KDEF. In FER2013, although the sample distribution is imbalanced, augmentation
through geometric transformation techniques has led to reach a benchmark accuracy of
72.54%. In support of our claim, a comparative analysis of our results with other works on
existing datasets is presented. The future scope of the work would be to mitigate the issue
of increasing its efficiency for imbalanced sample sets. Exploring the use of custom GAN
(generative adversarial networks) could be a wise consideration towards the recognition of
facial expressions from the imbalanced datasets.
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Abstract: In this paper, an adaptive depth and heading control of an autonomous underwater vehicle
using the concept of an adaptive neuro-fuzzy inference system (ANFIS) is designed. The autonomous
underwater vehicle dynamics have six degrees of freedom, which are highly nonlinear and time-
varying. It is affected by environmental effects such as ocean currents and tidal waves. Due to
nonlinear dynamics designing, a stable controller in an autonomous underwater vehicle is a difficult
end to achieve. Fuzzy logic and neural network control blocks make up the proposed control design
to control the depth and heading angle of autonomous underwater vehicle. The neural network is
trained using the back-propagation algorithm. In the presence of noise and parameter variation, the
proposed adaptive controller’s performance is compared with that of the self-tuning fuzzy-PID and
fuzzy logic controller. Simulations are conducted to obtain the performance of both controller models
in terms of overshoot, and the rise time and the result of the proposed adaptive controller exhibit
superior control performance and can eliminate the effect of uncertainty.

Keywords: adaptive neuro-fuzzy inference system; autonomous underwater vehicle; fuzzy logic
controller; neural network; self-tuning fuzzy-PID

MSC: 68T05; 68U01; 68W50

1. Introduction

Over the past decade, the ocean space has gained importance in the global scenario
for its competitive potential in military and economic applications. In this context, the
autonomous underwater vehicle [1–3] has proven to be the most effective object for under-
water activities such as inspection of oil industry pipelines, target search, seabed surface
reconstruction, military operation, and so on. The researchers consider it a great challenge
to design the controller of the autonomous underwater vehicle because of its eminent
nature of dynamism and nonlinearity due to ocean currents, an uncertainty parameter,
external disturbances, hydrodynamic forces, etc. The estimated autonomous underwater
vehicle parameters have more uncertainty and variation; therefore, the designed controller
must be robust and adaptive. Due to nonlinearity, time-varying dynamic characteristics,
and disturbances of sea waves and currents, linear and nonlinear control techniques have
been developed. Linear controllers such as PID control techniques cannot offer better
performance because the dynamic characteristics of an autonomous underwater vehicle
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are quite complex. The design of an autonomous underwater vehicle’s control system
takes into account many factors: stability, robustness, and the ability to change parameters,
which itself requires adaptive capability due to sensor noise, disturbances caused by sea
currents and waves, and changes in autonomous underwater vehicle dynamics. There
are many controller models of autonomous underwater vehicles that have been proposed,
including linear controllers such as PID [4], linear quadratic regulators, and linear quadratic
Gaussian [5,6]. These controllers have produced better performance when the autonomous
underwater vehicle is operating as a linear model. Similarly, some other linear techniques
such as linear matrix inequality are used as solutions for fifth-order systems [7]. It deter-
mines the global optimal solution numerically effectively and consistently. It can be used
to examine the dynamics system for heading and depth plane high-precision control of
an autonomous underwater vehicle’s stability [8]. However, linear matrix is feasible for
lower-order systems, but for higher-order systems, results become complicated. Due to
some uncertainty parameters, the autonomous underwater vehicle faces unexpected errors
during underwater motion. The nonlinearity of the system prevents the linear controller
from achieving a better outcome. Some of the adaptive techniques such as fuzzy logic con-
troller [9–12], sliding mode controller [13–15], model predictive controller [16,17], adaptive
controllers [18–26], neural network [27–29], and intelligent robust control method [30,31]
are widely used for the overshoot reduction for an autonomous underwater vehicle. Fur-
ther, some authors have addressed techniques that are based on machine learning, such
as semi-supervised and supervised learning [32], deep learning [33], and reinforcement
learning [34,35], which are employed in autonomous underwater vehicles for better depth
control, heading control, and tracking of the desired path. Though the model has time-
varying and uncertain parameters, the adaptive controller, which is a nonlinear type used in
the autonomous underwater vehicle model, achieves better performance. The controller can
adapt itself to the turbulence of wave, current, and changes in weight of the autonomous
underwater vehicle. The neural network has some loopholes that hinder the scope of
its improvement and has a slow convergence rate with more training time, which is not
applicable to fit into many systems. The system should produce a fast response with less
overshoot and undershoot than the classical neural network, which cannot accomplish
the above requirements. Sliding mode controllers produce chattering on actuators, but
it is an appropriate controller design solution for a nonlinear system. By converting the
sign function to a saturation function and combining fuzzy logic, the chattering effect can
be minimized.

Further, the PID controller is taken for comparison with the proposed techniques.
Although PID is a conventional controller still in industrial control, PID control is the most
commonly used. PID controller has the advantages of simple structure, good stability,
reliable operation, and convenient adjustment and does not need the prerequisite of an
accurate system model. When we cannot obtain accurate and precise system modeling,
PID control technology is the most appropriate. However, when the controlled object is
in complex underwater environment, and the system is nonlinear, the control effect of the
PID control method is limited, and it is difficult to meet the precision requirements of the
system. To overcome the problems with PID, it is required to tune the parameters of the PID
controller. Initially, fuzzy–PID controller or self-tuning fuzzy PID controller (STFPID) is
chosen for tuning the PID parameters. However, it is found that the factors of more settling
time, more overshoot, and slow response are the demerits of the self-tuning fuzzy-PID
controller. To reduce these issues, the authors have taken ANFIS because of its zero percent
of steady-state error, superior set point tracking against parameter and external disruption,
and reliability.

The main contributions of this paper are highlighted as follows:

(a) In this work, the autonomous underwater vehicle is considered to be the most effective
object for underwater activities such as inspection of oil industry pipelines, target
search, seabed surface reconstruction, military operation, etc.;
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(b) It is a challenging issue to design the controller of the autonomous underwater vehicle
because of its eminent nature of dynamism and nonlinearity characteristics;

(c) Therefore, it is required to adapt a technique that must be robust and adaptive, and
also, it is necessary to rationally optimize the space motion model of autonomous
underwater vehicle so that it can adapt to the complex and have high reliability;

(d) Various linear and nonlinear control techniques have been developed to handle
non-linearity, time-varying dynamic characteristics, and disturbances of sea waves
and currents;

(e) The PID control techniques cannot offer better performance because the dynamic
characteristics of an autonomous underwater vehicle are quite complex;

(f) Self-tuning fuzzy-PID is then considered for the operation of autonomous underwater
vehicles. However, the performance is weak in terms of settling time, more over-
shoot, and slow response. Moreover, acceptable overshoot and oscillations appear
because of the consideration of reducing the complexity and difficulty of the controller
design process;

(g) In the presence of various uncertain factors, the system with the ANFIS method can
adapt to the complex environment and unknown ocean current interference so that
the control effect of the controller can remain consistent and has good robustness. The
ANFIS controller performed better than other control techniques when hydrodynamic
constraints varied.

The performance of the proposed models was compared with other soft computing
techniques and was assessed by MATLAB/Simulink.

The rest of the paper is organized as follows: In Section 2, the autonomous underwater
vehicle’s mathematical model design is described. In Section 3, the controlling strategies are
discussed. Section 4 presents the results of the analysis and simulation study, and Section 5
presents the conclusion.

2. Mathematical Model Design of Autonomous Underwater Vehicle

The autonomous underwater vehicle equation can be designed by considering the
following elements: kinematic motion in geometric aspects and rigid body dynamics,
which represent the inertia matrix of autonomous underwater vehicle and moments of
force caused by the motion of autonomous underwater vehicle. The autonomous under-
water vehicle kinematics and dynamics are represented in vector form and explained in
Equations (1)–(5). The general movement of the autonomous underwater vehicle in six degrees
of freedom is shown in Figure 1, and Table 1 represents six degrees of freedom motions.

Figure 1. Motion parameters of the autonomous underwater vehicle.
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Table 1. Six degrees of freedom motions.

Degrees of Freedom Motion Position and Angle Linear and Angular Velocities Force and Moment

1 Surge (x-axis motion) x u X

2 Sway (y-axis motion) y v Y

3 Heave (z-axis motion) z w Z

4 Roll (x-axis rotation) Φ p K

5 Pitch (y-axis rotation) θ q M

6 Yaw (z-axis rotation) Ψ r N

Assume the autonomous underwater vehicle’s body is fixed frame, earth is reference
frame, and it can be depicted by the following vectors:

η1 = [xyz]T (1)

η2 = [φθψ]T (2)

where η1, η2 are position and orientation vectors.

v1 = [uυω]T (3)

v2 = [pqr]T (4)

τ1 = [XYZ]T and τ2 = [MNP]T (5)

The translational and rotational velocities are v1 and v2, and τ2, τ2 are the total force
and moment of the autonomous underwater vehicle in the forward direction, respectively.

The linear velocities during movement of the autonomous underwater vehicle are
explained in Equation (6). ⎢⎢⎢⎢⎣

dx
dt
dy
dt
dy
dt

⎥⎥⎥⎥⎦ = J1(η2) ∗
⎡⎣u

v
w

⎤⎦ (6)

where J1(η2) is represented in Equation (7).

J1(η2) =

⎡⎢⎢⎢
CΨCθ −SΨCφ+ CΨSθSφ SΨSφ+ CΨSθSφ
SΨCθ CΨCθ+ SΨSθSφ −CΨSφ+ SΨSθCφ

−Sθ CθSφ CθSφ

⎤⎥⎥⎥ (7)

where C stands for Cos, and S stands for Sin.
The angular velocity of the autonomous underwater vehicle is shown in Equation (8).⎡⎢⎣

.
φ
.
θ
.
ψ

⎤⎥⎦ = J2(η2)

⎡⎣p
q
r

⎤⎦ (8)

where J2(η2) is represented in Equation (9).

J2(η2) =

⎡⎣1 sin φtan θ cos φtan θ
0 cos φ −sin φ

0 sin φ
cos θ

cos φ
cosθ

⎤⎦ (9)

The parameters J1, J2 are obtained from [1,2].
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The autonomous underwater vehicle in six degrees of freedom with a fixed body
coordinate [1–3] system is presented in Equations (10)–(15).

M
[

du
dt

− υr + wp − xg

(
q2 + r2

)
+ yg

(
pq − dr

dt

)
+ zg

(
pr +

dq
dt

)]
= ∑ Xext (10)

M

[ .
dv
dt

− wp + ur − yg

(
r2 + p2

)
+ zg

(
pr − dp

dt

)
+ xg

(
qp +

dr
dt

)]
= ∑ Yext (11)

M

[ .
dw
dt

− uq + υp − zg

(
p2 + q2

)
+ x

g

(
rp − dq

dt

)
+ yg

(
rq + c

dp
dt

)]
= ∑ Zext (12)

Ixx
dp
dt

+
(

Izz − Iyy
)
qr + M

[
yg

(
dw
dt

− uq + υp
)
− zg

(
dv
dt

− wp + ur
)]

= ∑ Kext (13)

Iyy
dq
dt

+ (Ixx − Izz)rp + M
[

zg

(
du
dt

− υr + wq
)
− xg

(
dw
dt

− uq + υp
)]

= ∑ Mext (14)

Izz
dr
dt

+
(

Iyy − Ixx
)

pq + M
[

xg

(
dv
dt

− wp + ur
)
− yg

(
du
dt

− υr + wp
)]

= ∑ Next (15)

where the mass of the autonomous underwater vehicle is M.
The nonlinear equations for hydrostatic force and movement are presented in

Equations (16)–(20).
YHS = −(W − D)Sin φ Cos θ (16)

ZHS = −(W − D)Cos φ Cos θ (17)

KHS = −(ygW − ybD
)
Cos φ Cos θ − (zgW − zbD

)
Sin φ Cos θ (18)

MHS = −(zgW − zbD
)
Sin θ − (xgW − xbD

)
Cos φ Cos θ (19)

NHS = −(xgW − xbD
)
Cos θ Sin φ − (ygW − ybD

)
Sin θ (20)

After separating the acceleration terms, the kinematics and dynamics equation of
the autonomous underwater vehicle can be represented in the form of a matrix, which is
derived in (21) and (22).

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M − X .
u

0
0
0

Mzg
−Myg

0
M − Y .

υ
0

−MZg
0

Mxg − N .
υ

0
0

M − Z .
w

Myg
−Mxg − M .

w
0

0
−Mzg
Myg

Ixx − K .
p

0
0

Mzg
0

−Mxg − Z .
q

0
Iyy − M .

q
0

−Myg
Mxg − Y.

r
0
0
0

Izz − N.
r

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

.
u
.
υ
.

w
.
p
.
q
.
r

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑X

∑Y

∑Z

∑K

∑M

∑N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)
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This implies the following:

⎡⎢⎢⎢⎢⎢⎢⎣

.
u
.
υ
.

w
.
p
.
q
.
r

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M − X .
u

0
0
0

Mzg
−Myg

0
M − Y .

υ
0

−Mzg
0

Mxg − N .
υ

0
0

M − Z .
w

Myg
−Mxg − M .

w
0

0
−Mzg
Myg

Ixx − K .
p

0
0

Mzg
0

−Mxg − Z .
q

0
Iyy − M .

q
0

−Myg
Mxg − Y.

r
0
0
0

Izz − N.
r

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑X

∑Y

∑Z

∑K

∑M

∑N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

Equation (22) is derived from the autonomous underwater vehicle kinematics and
dynamics equation. It is required to derive the inverse for finding the state space equation
of heading and depth plane of the autonomous underwater vehicle.

2.1. Heading Plane Model

The angle ψ measured from the inertial-x axis and the vehicle’s yaw (angular) velocity,
r, together describe the orientation of the object. When the autonomous underwater vehicle
is moving, consider the body’s relative surge velocity, u; sway velocity, v; and yaw rate as
well as earth-frame-referenced positions x, y, and yaw angle to determine the autonomous
underwater vehicle’s heading plane model. In other words, W = p = q = z = φ = θ = 0.
All other body-relative velocity and earth-frame-position parameters are taken to be zero.
To obtain the force and moments necessary for the desired vehicle motion and to correct the
yaw angle (ψ) caused by disturbances, the heading controller should provide the proper
rudder angle (δr) described in Figure 2.

 
Figure 2. Heading plane motion of the autonomous underwater vehicle.

The nonlinear equation stated in the preceding equations is used to derive the au-
tonomous underwater vehicle’s static and dynamic coefficients. To simplify all of the
equations, modify the aforementioned formulae, and assume that there are no hydro-
static forces in any of the three axes (x, y, or z). Since u = U, the axial drag is given by
X u = X u/u × 2U. Heave velocity and pitch rate must both be zero for the autonomous
underwater vehicle’s cross-flow drag to be linearized. All added masses and cross-flow-
added mass terms should be kept when solving the following equations, but other cross
terms need to be changed. Similar to this, all terms in the X, Y, and N axes are added
together to calculate body lift coefficients, moments, and forces. The value of the linearized
coefficients and inertia along all axes are calculated as shown in Tables 2 and 3.
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Table 2. Value of linearized coefficient.

Parameter Value Units Description

X .
u −0.58 kg Mass (added)

Zw −46.003 kg·m/s Combined term
Zq −6.534 kg·m/s Combined term
Z .

w −23.899 kg Mass (added)
Z .

q 1.9986 kg·m Mass (added)
Zδs −39.04 kg·m/s2 Fin lift
Mw 20.026 kg·m/s Combined term
Mθ −3.49236 kg·m2/s2 Hydrostatic force
Mq −6.002 kg·m2/s Combined term
M .

w 3.12 kg·m Mass (added)
M .

q −3.022 kg·m2 Mass (added)
Mδs −16.07 kg·m2/s2 Fin lift

Table 3. Autonomous underwater vehicle’s inertia value along various axes.

Inertia Value Units

Ixx 0.05398 kg·m2

Iyy 1.2697 kg·m2

Izz 1.2799 kg·m2

Thus, the autonomous underwater vehicle’s kinematics can be described as [1,2] and
represented by Equations (23)–(25). On the other hand, Equations (26)–(28) show the
autonomous underwater vehicle’s dynamics.

.
x = USinψ + uCosψ (23)

.
y = VCosψ − uSinψ (24)

.
ψ = r (25)

The total force in the x-axis is as follows:

X = M
[ .
u − Ur − xgr2

]
(26)

The total force in the y-axis is as follows:

Y = M
[ .
v + xg

.
r + Ur

]
(27)

The total moments in the z-axis are as follows:

N = Izz
.
r + M

[
xg

.
v + xgUr

]
(28)

The reduced linearized form equation of motion in a heading plane model of au-
tonomous underwater vehicles is presented in Equations (30)–(32).

.
U − [Mxg + Y.

r
] .
r −Yvv − [MU + Yr]r

= Yδr δr −
[
Mxg + N .

v
] .
v + [Izz − N.

r]
.
r − Nvv +

[
MxgU − Nr

]
r

= Nδr δr

(29)

.
y = u + Uψ (30)

.
ψ = r (31)
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Considering that Y is very small, the state space is given by Equation (32).⎡⎣(M − Y .
v) Y.

r 0
N .

v (Izz − N.
r) 0

0 0 1

⎤⎦⎡⎣ .
v
.
r
.
ψ

⎤⎦−
⎡⎣−Yv −(Yr − MU) 0
−Nv −Nr 0

0 1 0

⎤⎦⎡⎣v
r
ψ

⎤⎦ =

⎡⎣Yδr

Nδr

0

⎤⎦δr (32)

Applying all the parameter values from Tables 2 and 3 in Equation (32), Equation (33)
includes the state space equation for the heading plane of the autonomous underwater vehicle.⎡⎣ .

v
.
r
.
ψ

⎤⎦ =

⎡⎣−3.236 −1.015 0
5.838 1.636 0

0 1 0

⎤⎦⎡⎣v
r
ψ

⎤⎦+
⎡⎣ 1.21
−5.156

0

⎤⎦δr (33)

The heading plane control loop depicted in Figure 3 states that the inner control loop
governs the autonomous underwater vehicle’s rudder angle, while the outer control loop
governs the heading angle.

Figure 3. Control loop of heading plane.

The control law is created in a way that forces the autonomous underwater vehicle
to travel in the fixed direction that is desired and to stay there. The orientation of the
rudder in the inner control loop is the control input that helps the autonomous underwater
vehicle stay pointed in the right direction. However, the rudder’s ability to move is
physically constrained. The autonomous underwater vehicle’s unbalance may result from
high yaw rates, which can also cause roll and sway motion. As a result, the rudder angle
of the autonomous underwater vehicle completely determines how the outer control loop
measures the heading angle. Therefore, while navigating an autonomous underwater
vehicle, restrictions must be placed on rudder orientation and yaw rate.

2.2. Depth Plane Control

The depth plane model of the autonomous underwater vehicle is shown in Figure 4.
Here, body is fixed, and earth is taken as reference.

The depth plane control of the autonomous underwater vehicle uses two control loops.
The pitch angle and depth of the autonomous underwater vehicle system are controlled
by the inner and outer control loops, respectively, which are described in Figure 5. The
current autonomous underwater vehicle assumes the pitch angle (θ) is zero, forward speed
is nearly constant, and wind wave is ignored.
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Figure 4. Autonomous underwater vehicle’s depth plane motion.

Figure 5. Block diagram of autonomous underwater vehicle’s depth plane control.

The individual components of depth plane motion of the autonomous underwater
vehicle are simplified [3] in Equation (34).(

MxG + Z ..
q

)
.
q − (Mui + Zq

)
q + ZWW +

.
W = Zδs δs(

Iyy − M
.
q
) .
q − (MxGui − Mq

)
q–MwW − (MxG + M .

w)
.

W − Mθ= Mδs δs

(34)

.
θ = q

and .
Z = W − uiθ

The standard diving equation of the depth plane motion of the autonomous underwa-
ter vehicle is simplified in Equation (35).

⎡⎣MxG − M .
w I .

y−Mq 0
0 0 1
0 0 0

⎤⎦ ∗
⎡⎢⎣

.
q
.
θ
.
z

⎤⎥⎦+
⎡⎣−M .

w MxGui − Mq BGzW
0 −1 0
−1 0 ui

⎤⎦ ∗
⎡⎣q

θ
z

⎤⎦ =

⎡⎣Mδ

0
0

⎤⎦δs (35)

Similarly, by putting all the parameter data from Tables 1 and 2 in Equation (35), the
depth plane system is described by state space Equation (36).⎡⎢⎢⎢⎢

.
q
.
θ
.
z

⎤⎥⎥⎥⎥ =

⎡⎣−0.9 −0.2021 0
1 0 0
0 −1.25 0

⎤⎦⎡⎣q
θ
z

⎤⎦+
⎡⎣−4.399

0
0

⎤⎦δs (36)
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3. Controlling Techniques

In this section, different controlling techniques such as fuzzy logic controller, self-
tuning fuzzy-PID, and ANFIS are implemented. The working principles and simulation
design of these controllers are same for both heading plane and depth plane control.

3.1. Fuzzy Logic Controller

The dynamics of an autonomous underwater vehicle are uncertain, and the heading
plane and depth plane trajectory control involves several uncertainties. FLC is one of
the soft computing techniques used for simulating the complex systems. The interesting
characteristic of the controller is the usage of linguistic variables that are closer to human
thoughts. The four primary components of the controller are explained briefly, and the
overall structure is shown in Figure 6.

Figure 6. Schematic for a fuzzy logic controller.

In order to successfully track the desired depth and heading for the autonomous un-
derwater vehicle, FLC accepts the error and derivative error and generates the appropriate
input. The crisp value is transformed into a fuzzy set during fuzzification. The FLC receives
two control variables as input: ΔE (error) and ΔDE (derivative error). Figures 7 and 8 depict
the two input variables ER and DE represented as seven triangular membership functions,
and Figure 9 depicts the output variable (out) as nine triangular membership function.

Figure 7. Input variable MFs of error (ΔE).
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Figure 8. Input variable MFs of change in error (ΔDE).

 
Figure 9. Output variable MFs.

Each input variable, such as ΔE and ΔDE, has seven triangular MFs; therefore, 49 fuzzy
rules are prepared for FLC, as shown in Table 4. The MFs for input variables are defined as
negative large (NLA), negative medium (NME), negative small (NSM), zero (ZER), positive
small (PSM), positive medium (PME), and positive large (PLA). The MFs for out variable
are defined as negative extra-large (NEL), positive extra-large (PEL), negative large (NLA),
negative medium (NME), negative small (NSM), zero (ZER), positive small (PSM), positive
medium (PME), and positive large (PLA).

Table 4. Fuzzy rule of error (ΔE) and change in error (ΔDE).

ΔDE

ΔE
NLA NME NSM ZER PSM PME PLA

NLA NEL NME NME NLA NME NME ZER

NME NLA NLA NME NME NSM ZER PME

NSM NME NME NME NSM ZER PSM PME

ZER NLA NME NSM ZER PSM PME PLA

PSM NME NSM ZER PSM PME PLA PLA

PME NME ZER PSM PME PLA PLA PLA

PLA ZER PSM PME PLA PLA PLA PEL
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The fuzzy inference is based on max-min principle, where there are two fuzzy variables
with triangular MFs, and follows with given rule. Mathematically, it can be represented
using Equation (37).

μr(x, y) = min[μA(x1, y1), μB(x1, y1)] (37)

μA(x1, y1) and μB(x1, y1) are MFs of two input fuzzy variables, and μr(x, y) is the
fuzzy resultant composite MF of output fuzzy variables.

Defuzzification method is used to obtain crisp output from the fuzzy set. There are
different kinds of defuzzification methods used to find the crisp output, such as centroid,
mean of maxima, and center of sums. Output is found from the composite fuzzy set, and it
is achieved by centroid method, which is followed in this paper.

The autonomous underwater vehicle follows a third-order system for the measurement
of depth, which results in very slow system response. In order to make the time of response
very fast, the FLC is combined with phase lag compensator, where the time-response
characteristics produce satisfactory results during effective depth trajectory tracking.

3.2. Self-Tuning Fuzzy-PID

Many researchers are doing research work on hybrid intelligent algorithms, especially
using the fuzzy logic concept. The self-tuning fuzzy-PID controller is designed as the fuzzy
inference system tunes the PID parameters (KP, KI , KD), which depend on fuzzy rules. The
self-tuning fuzzy-PID structure is given in Figure 10.

Figure 10. Block diagram of self-tuning fuzzy-PID.

Error (ER) and change in error (DE) are the input of FLC, and outputs are PID tuning
parameters such as K′

P, K′
I , K′

D. The tuned PID parameters are given in Equations (38)–(40).

KPnew = KPold + K′
P (38)

KDnew = KDold + K′
D (39)

KInew = KIold + K′
I (40)

Based on the knowledge of error and change in error, a number of rules are assigned
to tune the PID parameters (K′

P, K′
I , K′

D). Figure 11 depicts the self-tuning fuzzy-PID’s
two-input and three-output fuzzy inference system.
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Figure 11. Two-input and three-output fuzzy inference system.

After tuning PID parameters [10], the controller output is represented using Equation (41).

U(t) = (KP + K′
PKI + K′

I

∫
E(t)dt + (KD + K′

D)
∂E(t)

∂t
(41)

The triangle MFs with seven linguistic variables are considered for each input variables
ER (error) and change in error (DE).

ΔE = {NEL, NME, NSM, ZER, PSM, PME, PEL}

ΔDE = {NLA, NME, NSM, ZER, PSM, PME, PLA}

Similarly, the MFs of output K′
P, K′

I , and K′
D are also described with seven linguistic

variables and are assigned as follows:

K′
P = {PLA, PME, PSM, ZER, NSM, NME, NLA}

K′
I = {PLA, PME, PSM, ZER, NSM, NME, NLA}

K′
D = {PLA, PME, PSM, ZER, NSM, NME, NLA}

Fuzy rules are dsigned to get greater accuraccy of the autonomous underwater vehicle
system and also depends on practical knowledge experience of the designer.

The designing of fuzzy rules of the self-tuning fuzzy-PID controller is as follows:

1. If the deviation error is greater, the KP value should be viewed as being larger, the KD
value should be smaller, and the KI value should be as small as possible;

2. Where deviation error is medium (intermediate), KP should be small to reduce the
percentage of overshoot;

3. Where deviation error is small, KP&KI should be larger value to improve the stability,
and KD is mentioned.

3.3. ANFIS Controller

ANFIS is a five-layered feed-forward neural network model. The ANFIS is a unique
blend of a fuzzy inference system and learning algorithm of an artificial neural network.
ANFIS initiates with a prior well-constructed framework. The neural system needs a pair
of information, such as input and output data, for training purpose. As it is linguistically
structured, the intermediate results can be implemented through a first-order Sugeno fuzzy
system, which has more computational efficiency and flexibility. ANFIS trains the paired
data set of the target, and taking into consideration the best response of the system, the
objective can be obtained. By its very nature, FLC has proven a bit complex in developing
membership functions and yielding fuzzy rules, so in most of the cases, the rules are
designed in a randomized way. To avoid the above demerits, the globally applicable control
model, i.e., ANFIS, was developed. The schematics of the ANFIS structure are briefly
explained in Figure 12.

64



Mathematics 2023, 11, 1868

Figure 12. Block diagram of ANFIS controller techniques.

The two inputs of ANFIS controller are er(t) and de(t).

er(t)Zr − Zd and det =
er(t)k − er(t)k−1

T
× 100

where Zr is the reference depth, Zd is the desired depth, and T is the sampling time. There
are seven Gaussian-type fuzzy rules of the proposed Sugeno fuzzy model. The output of
singleton membership function is defined using Equation (42).

yi = m1ier(t) + m2i de(t) + ri (42)

where m1i, m2i, and ri are the training parameters.
Layer1: All nodes in this layer of fuzzification are adaptable nodes. A gradient descent

algorithm is used to optimize the input MFs such as error (ΔE) and derivative error (ΔDE).
The output of this layer is represented using Equations (43) and (44).

Oi
1 = μ1i(er(t)), i = 1, 2, . . . .7 (43)

Oi
1 = μ1i(de(t)), i = 1, 2, . . . .7 (44)

μ1i and μ2i are the Gaussian-type MFs, as shown in Figure 13.
Layer2: This layer evaluates the rule’s firing power for the two inputs, and it is a fixed

node represented by π, operated with fuzzy AND operator.

WiOi
2 = μ1i(er(t))·μ2i(de(t)), i = 1, 2, . . . .7 (45)

Layer3: As a fixed node, this layer is denoted by the letter N. The weight is calculated
in every node. There are ith number of weights with the firing strength of the rule. The
normalized firing strength is calculated as Wl.

Wl =
wi

∑7
i=1 Wi

(46)

65



Mathematics 2023, 11, 1868

Figure 13. Initial MFs before ANFIS training.

Layer4: Each and every node in this layer is an adaptive node, and the output of this
node comprises normalized firing strength (Wl) and consequent parameter (yi).

Oi
4 = Wl·yi (47)

where
yi = m1ier(t) + m2ide(t) + ri, i = 1, 2, . . . 7 (48)

Layer 5: Each and every node in this layer is a fixed node and represented by a symbol
(Σ). The overall ANFIS output is calculated as the overall addition of incoming signals to
this node.

Oi
5 =

∑7
i=1 Wiyi

∑7
i=1 Wi

= ∑7
i=1 Wiyi (49)

ANFIS Controller Training

The proposed ANFIS controller [36,37] is designed with the back-propagation algo-
rithm and reduces error by least square method. This algorithm has salient features such as
fast convergence rate and less complexity in computation. For the weight updating, the
steepest descent gradient algorithm is used. The cost function of the adaptive system is
defined as follows:

E =
1
2∑n

l=1

(
ydl

− yl
)2 (50)

where, the desired output is yd, and y is what the ANFIS model actually produces. Therefore,
for the proposed ANFIS model, the cost function is redefined as follows:

E =
1
2∑n

l=1

(
Zdl

− Zl
)2
=

1
2

e2 (51)

where, Zd is the desired depth response, and Z is the estimated depth output of the
autonomous underwater vehicle. As per the back-propagation adaptive algorithm, the
updated parameters can be evaluated as follows:

pi(k + 1) = p(k) − η ∇pE(k) (52)

qi(k + 1) = q(k) − η ∇qE(k) (53)

w(k + 1) = w(k) − η∇E(k) (54)
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where p, q are input parameters; w is the weight; and η is the fixed learning rate.
∇piE(k), ∇qiE(k), and ∇wiE(k) are the gradient of cost function E corresponding to

parameters (pi, qi, wi) that are described in the equation below.

∇piE(k) =
∂E
∂e

· ∂e
∂Z

·∂Z
∂y

· ∂y
∂O1

i
·∂O1

i
∂pi

(55)

∇qiE(k) =
∂E
∂e

· ∂e
∂Z

·∂Z
∂y

· ∂y
∂O1

i
·∂O1

i
∂qi

(56)

∇wiE(k) =
∂E
∂e

· ∂e
∂Z

·∂Z
∂y

· ∂y
∂wi

(57)

The differential terms of the above equations are briefly described and mentioned below.

∂E
∂e

= Zd − Z,
∂e
∂Z

= −1 and
∂Z
∂y

= k, Constant (58)

The value of k is considered greater than zero.

∂y
∂O1

i
=

y(k)
∑n

i=1 Wi(k)
(59)

∂O1
i

∂pi
=

2
p(k)

(60)

∂O1
i

∂qi
=

1 − O1
i (k)

qi(k)
(61)

∂y
∂wi

=
yi(k)

∑n
i=1 O1

i (k)
(62)

As the error propagates in a backward manner for the back-propagation algorithm, so
the shape of Gaussian MFs is modified after training. The MFs before and after training are
given in Figures 13 and 14, respectively.

Figure 14. Final MFs after ANFIS training.
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The error curves start to decrease and follow the gradient algorithm where minimized
Rmse is 0.140414 for depth control, which is shown in Figure 15. Similarly, the Rmse value
of heading plane control is 0.09912, as shown in Figure 16.

Figure 15. Training error curve of proposed ANFIS control for depth plane.

Figure 16. Training error curve of proposed ANFIS control for heading plane.

After training the input data, the five-layer Simulink structure of the ANFIS model is
obtained, and it is shown in Figure 17. To better understand the implementation process of
the ANFIS model, it is briefly explained in the flow chart illustrated in Figure 18. Initially,
the depth plane parameters are considered as input training data, and each input is defined
with MFs. In next step, the number of epochs and percentage of training data are described
for training the model. After, the successful training yields the best FIS and training results
of ANFIS model, which is mentioned in third step. In the final step, compliance of the
input parameter for the prediction and prediction result is attained, which is compared
with evaluated result of the depth controller parameter.
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Figure 17. ANFIS Simulink structure.

Figure 18. Flow chart of ANFIS control technique.
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4. Simulation Results

This section explains an example of how the suggested ANFIS controller techniques
performed for the autonomous underwater vehicle in depth and heading planes. Using the
MATLAB/Simulink tool, the behavior of the autonomous underwater vehicle’s mathemati-
cal model is simulated, and the effectiveness of the ANFIS is evaluated in comparison to
traditional PID, FLC, and self-tuning fuzzy-PID controller techniques. Figures 19 and 20
show, respectively, a brief explanation of the step response result analysis of the heading
and depth plane controls. To start, the heading and depth planes of the autonomous under-
water vehicle are controlled using the conventional PID controller gains that are obtained
from online PID tuning separately. This controller provides satisfactory performance but
produces large overshoot and more settling time, as shown in Tables 5 and 6.

Figure 19. Step response curve of heading plane control by FLC, PID, self-tuning fuzzy-PID, and
ANFIS control techniques.

 
Figure 20. Time-response curve of depth plane control by FLC, PID, fuzzy-PID, and ANFIS con-
trol techniques.
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Table 5. Time-response characteristics comparison of heading plane control.

Time Response FLC STFPID ANFIS PID

Tr (ms) 246.7 211.05 318.89 217.93
Ts (ms) 749.8 705.0058 703.76 1446.4

%Overshoot 2.0971 2.57 0 8.87

Table 6. Time-response characteristics comparison of depth control.

Time Response FLC STFPID ANFIS PID

Tr (ms) 92.56 254.29 248.69 117.75
Ts (ms) 677.063 553.22 429.35 955.6

%Overshoot 7.65 0.0228 0 9.46

The autonomous underwater vehicle system, which is a third-order system, was
compensated with a lag compensator, which significantly improved the system’s time-
response performance. The Mamadani FLC was introduced to produce better timing. The
disturbances were added at the input side of the system, but the controller gives it good load
rejection capability, allowing it to achieve the desired response and readily stabilizing the
system. The self-tuning fuzzy-PID controller is a hybrid technique, and the old (KP, KI, and
KD) parameters need to be designed before simulation of the FPID model. The nonlinear
equation of the controller output is able to control both autonomous underwater vehicle
systems with the desired time response. The proposed ANFIS model does a better job of
controlling the parameters of the nonlinear mathematical autonomous underwater vehicle
model, resulting in a more accurate and faster response. Since ANFIS combines fuzzy
logic and neural networks, it provides accuracy to non-linear systems such as autonomous
underwater vehicles. Without exclusively relying on expert knowledge sufficient for a fuzzy
logic model, the ANFIS model can be trained. The proposed model benefits from having
both linguistic and numerical knowledge. The ANFIS controller outperforms the PID, FLC,
and self-tuning fuzzy-PID controllers according to their responses. As a result, the proposed
system offers significantly improved functionality in terms of flexibility, consistency, ability
to adapt, and capacity for quick learning. The time-response characteristics in terms of
rise time, settling time, and overshoot comparison of the heading and depth planes of the
autonomous underwater vehicle are shown in Tables 5 and 6, respectively. The overshoot of
the proposed ANFIS controller for both control operations is almost zero in comparison to
that of other controller techniques. Similarly, this controller produces better speed response
with a minimum settling time.

In this paper, the tracking performance of a heading controller with multi-step, square,
and ramp inputs is examined. The autonomous underwater vehicle successfully tracks the
desired heading with various inputs applied to the model, as shown in Figures 21–23. The
performance of PID and FLC in terms of overshoot and settling time is very poor, but the
performance is much better with the ANFIS. Figures 24 and 25 show the time-response
performance, as represented on the bar chart of the heading and depth planes, respectively.

Owing to its minimal oscillation, better speed, and accurate steady state response, the
proposed ANFIS controller’s data are referred to as referential target input, and the other
controllers such as ANFIS, FLC, and self-tuning fuzzy-PID are considered as input data
for NN optimization. The MATLAB neural network tool is used for the optimization
of controller response. Up until the network reaches the reference target, the NN is
trained. The output is correctly predicted by the training network based on the target
data. As a result, it can be said that the NN effectively models and predicts the autonomous
underwater vehicle’s heading angle. The derivative of the loss function is taken into
account when using the gradient descent algorithm in this case, and the expected value
of the target can be expressed as a weighted sum of the functions. The results related
to the training, validation, testing, and regression of self-tuning fuzzy-PID, ANFIS, and
FLC controllers are described in Figures 26–28, respectively. The regression value of the
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ANFIS controller is comparatively high compared to that of other controllers. The overall
regression values of all controllers are represented as a clustered cone bar graph and shown
in Figure 29. In comparison to FLC and self-tuning fuzzy-PID controllers, it was found that
the autonomous underwater vehicle system based on the ANFIS controller significantly
reduces overshoot with essentially no loss of accuracy.

Figure 21. Multi-step response of heading plane control.

Figure 22. Square wave response of heading plane control.

Figure 23. Ramp response of heading plane control.
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Figure 24. Bar chart of the heading plane control.

 
Figure 25. Bar chart of the depth plane control.

Figure 26. Results of fuzzy after NN optimization.
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Figure 27. Results of self-tuning fuzzy-PID after NN optimization.

Figure 28. Results of PID after NN optimization.
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Figure 29. Clustered cone bar graph of various controllers.

5. Conclusions

The self-tuning fuzzy logic controller has the advantages of quick response, excellent
anti-interference ability, and more, according to experiments and simulations. The PID
controller has the largest steady-state error, while the fuzzy-based controller has a slightly
longer average rising time than the others. While the autonomous underwater vehicle
is controlled for both heading and depth, the steady-state error of the STFLC gradually
decreases, and the response gets closer to the desired value. The time-response performance
in controlling both heading and depth significantly improved with the use of the designed
ANFIS controller model, which was the subject of this study. The ANFIS’s gradient error-
based self-learning mechanism is capable of handling the nonlinearities and uncertainties
present in underwater motion both in terms of depth and heading plane. Accurate heading
angle determination for underwater vehicles towards targets is possible by using the
ANFIS approach in a variety of ways. The effectiveness of an underwater vehicle during
different path movements can be demonstrated by simulation results. The proposed
ANFIS controller has a quick response, less overshoot, minimal error, and better heading
and depth-tracking capability than the traditional PID, FLC, and self-tuning fuzzy-PID
controller models.
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Abstract: A program’s bug, fault, or mistake that results in unintended results is known as a
software defect or fault. Software flaws are programming errors due to mistakes in the requirements,
architecture, or source code. Finding and fixing bugs as soon as they arise is a crucial goal of
software development that can be achieved in various ways. So, selecting a handful of optimal
subsets of features from any dataset is a prime approach. Indirectly, the classification performance
can be improved through the selection of features. A novel approach to feature selection (FS)
has been developed, which incorporates the Golden Jackal Optimization (GJO) algorithm, a meta-
heuristic optimization technique that draws on the hunting tactics of golden jackals. Combining this
algorithm with four classifiers, namely K-Nearest Neighbor, Decision Tree, Quadrative Discriminant
Analysis, and Naive Bayes, will aid in selecting a subset of relevant features from software fault
prediction datasets. To evaluate the accuracy of this algorithm, we will compare its performance
with other feature selection methods such as FSDE (Differential Evolution), FSPSO (Particle Swarm
Optimization), FSGA (Genetic Algorithm), and FSACO (Ant Colony Optimization). The result that
we got from FSGJO is great for almost all the cases. For many of the results, FSGJO has given higher
classification accuracy. By utilizing the Friedman and Holm tests, to determine statistical significance,
the suggested strategy has been verified and found to be superior to prior methods in selecting an
optimal set of attributes.

Keywords: software fault prediction; software defect prediction; feature selection; classification
algorithms; golden jackal optimization

MSC: 65D18; 65D19; 68M07

1. Introduction

Software’s flaws can harm its reliability and quality, necessitating more maintenance
and an effort to rectify it. While testing results can aid software development teams in
detecting bugs, testing complete software modules is costly and time-consuming. The
performance of various software development tasks by individuals can lead to the emer-
gence of multiple software bugs over time, ultimately resulting in user dissatisfaction.
Therefore, early identification of software flaws is one of the primary research areas of
interest. Software fault prediction [1,2] is the process of spotting potential flaws or defects
in software before they happen using data analysis and machine learning methods. This
can aid developers in effectively identifying and resolving potential problems, producing
software that is of higher quality and contains fewer flaws. There are several approaches to
predicting software faults, such as statistical and machine learning methods [3,4]. These
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techniques involve analyzing data from past software projects to identify patterns and
trends that may indicate potential faults. The data used for this analysis may include testing
and debugging logs, source code, and other relevant information. Commonly utilized
methods for predicting software faults include DT [5,6], SVM [7], Neural Networks [8],
LR [9], and many more. These techniques involve analyzing data to identify patterns and
trends indicating potential flaws or bugs. In addition to machine learning techniques,
code analysis and testing are employed to predict software faults. These methods involve
scrutinizing the software code for potential issues and performing various tests to detect
and rectify bugs. Predicting software failures is a vital aspect of software development that
can enhance the quality and reliability of software. By effectively identifying and resolving
potential issues, developers can reduce the probability of bugs and improve the overall
user experience.

In the field of machine learning, one of the critical tasks is Feature Selection (FS) [10,11].
The process entails determining the most significant features that can improve the precision
of predictive models. Several methods are available for FS, each with advantages and
limitations. We can say FS is a crucial stage in software fault prediction that aids in locating
the most important predictors of software faults. Feature selection is required when the
available dataset is extensive and includes many features or variables, making it challeng-
ing to analyze and interpret the findings accurately. The most crucial characteristics should
be chosen to simplify the analysis and increase the precision of the software fault prediction
model. For FS in software fault detection, various methods are employed. One of the
methods used for FS is the filter method [12]. These methods employ statistical properties
such as correlation with the target variable or variance to select features. Some examples
of filter methods include chi-square [12] and ANOVA [12,13]. Wrapper methods [14], on
the other hand, evaluate subsets of features by training and testing a predictive model on
each subgroup. Recursive feature elimination [15] and forward/backward selection [16]
are examples of wrapper methods. Embedded methods [17,18] combine feature selection
with model training. Lasso [19] and ridge regression [20] are two examples of embed-
ded methods used to identify the essential elements for prediction. The ridge penalty
reduces the regression coefficient estimate, but not precisely to zero. For this reason, the
incapability of ridge regression to perform variable selection has long been a source of
criticism. As a result, penalized regression techniques like elastic-net, adaptive elastic-net,
and adaptive-lasso are more beneficial for variable selection. Meanwhile, dimensionality
reduction methods aim to reduce the number of features while retaining the most relevant
information for prediction. Some examples of dimensionality reduction methods include
Principal Component Analysis (PCA) [21] and t-SNE (neighbor encoding) [22]. It should
be emphasized that the selection of the method depends on the specific problem at hand.
Therefore, trying multiple ways and comparing their performance is often beneficial to
select the best one for a specific situation. Feature selection plays a crucial role in software
fault prediction by identifying the most significant variables or features that influence the
likelihood of software faults.

Researchers have used many different types of FS algorithms. Evolutionary-based
algorithms [23] and swarm-based algorithms [24] have been used for the feature selection
approaches. This study’s primary objective is to enhance classification accuracy while
minimizing errors. The Genetic Algorithm (GA) [25] utilizes a computational technique
that is guided by natural selection and genetic evolution in living organisms. This method
involves utilizing a group of potential solutions, using genetic techniques such as selection,
crossover, and mutation to create new possible solutions, and assessing their efficacy based
on a specified function. Particle Swarm Optimization (PSO) [26,27] emulates the move-
ment of a set of particles exploring a search space with multiple dimensions, where each
particle embodies a prospective solution to the problem. Through continuous evaluation
of each particle’s fitness, the algorithm adjusts their position and velocity by considering
individual and group experiences. Its ultimate goal is to find the most optimal solution. DE
(Differential Evolution) [28] is an optimization algorithm that operates on a population of
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candidate solutions using a set of operators, including mutation, crossover, and selection,
to converge toward the optimal solution. It uses a difference vector to create new solutions
and iteratively improves them by comparing their fitness with the current population. Ant
Colony Optimization (ACO) [29] is a metaheuristic optimization algorithm that simulates
the foraging behavior of ants to find the optimal solution in a search space. The algorithm
uses pheromone trails deposited by ants to guide the search toward the optimal solution.
Any algorithm’s performance depends on how the user sets its parameter values and
utilizes them to find the answer, resulting in its output.

Generally, feature selection is a common task in machine learning. The goal is to
identify the most relevant subset of features (i.e., input variables) that are most informative
for a given prediction task. The process of feature selection involves an optimization
problem that seeks to identify the ideal set of features that maximizes the performance of
the model while minimizing its complexity. The objective of the paper is to apply effective
FS methods to uncover a subset of features that produces a precise and easy-to-interpret
model. The objective of feature selection is to improve the quality and usability of the
machine learning model for real-world applications.

The main contribution here is it presents a new feature selection method called feature
selection using Golden Jackal Optimization (FSGJO) [30]. Golden Jackal Optimization (GJO)
in FS aids in identifying the appropriate set of features. GJO mimics the hunting behavior
of golden jackals, known for their cooperative hunting strategy and ability to adapt to
changing environments. The algorithm consists of a population of candidate solutions,
called jackals, that move around the search space for the ideal solution. The advantage of
GJO is its ability to handle complex, high-dimensional optimization problems with multiple
objectives. GJO is less likely to get stuck in local optima, which can be a problem for other
optimization algorithms because GJO uses a combination of exploratory and exploitative
search strategies, which allows it to escape local optima and continue searching for better
solutions. The efficacy of the newly developed algorithm has been evaluated against several
other feature selection (FS) algorithms, including FSGA, FSDE, FSPSO, and FSACO. Thus,
it will be an effective method for feature selection. The new algorithm FSGJO and other FS
methods have been used on classification models such as KNN, DT, NB, and QDA to check
which model is giving the best accuracy output. The results of the new algorithm were
compared with other FS methods for their significance. Software developers can enhance
the precision and efficiency of their software fault prediction models by carefully selecting
the most appropriate features.

The arrangement of this paper is as follows: in Section 2, the literature on feature se-
lection algorithms is explored, while Section 3 introduces the GJO algorithm, and Section 4
explains the FSGJO approach. Section 5 details the experimental results and analysis, fol-
lowed by a statistical analysis in Section 6. Finally, the conclusion is presented in Section 7.

2. Literature Review

Software fault prediction methods involve analyzing software code, metrics, or his-
torical data to detect possible faults that may occur during the development process or
after the software has been released. These techniques can help developers proactively
identify and fix potential defects before they become significant issues. After software
development, software testing [31] is conducted to ensure that the software meets the
defined requirements and to detect and resolve any defects or problems that may have
been overlooked during the development phase. In summary, software fault prediction
is typically performed during development, while software testing is performed after the
software has been developed. Both techniques are essential for ensuring high-quality
software meets user requirements. In software fault prediction (SFP), classification [32–37]
is a commonly used technique to predict whether a particular module or component of
software contains a fault or defect.

Sonali and Divya [38] introduced a model, known as the Linear Twin Support Vector
Machine (LSTSVM), to predict defective software modules. The model incorporates feature
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selection techniques and was evaluated on four datasets—CM1, PC1, KC1, and KC2. The
study reported encouraging outcomes on the latter three datasets. Turabieh et al., in
2019 [39], took a dataset from the Promise repository which was iteratively subjected to
three wrapper feature selection (FS) algorithms—(BPSO), (BGA), and (BACO)—which were
applied iteratively, and received results with an average of 0.8358 over all datasets. Ezgi
and Selma [40] proposed a hybrid approach using an artificial bee colony and differential
evolution, which helps to select a relevant set of features without reducing accuracy.
Ibrahim et al. conducted a study in 2017 [41] where they utilized the BSA for feature
selection and Random Forest as a classifier on PC1, PC2, PC3, and PC4, which resulted
in practical outcomes. In the study [42], the authors employed PSO as a feature selection
method and the bagging technique as a classifier. They used eleven classifiers and nine
samples from the NASA repository. Except for SVM, their future work, all classifier
performances improved after comparing the findings with their methodology. On some
of the well-known NASA datasets, authors in [43] combined the Centroid Bat Approach
(CBA-SVM) and Support Vector Machine (SVM) methods, contrasted the outcomes with
those of other ways, and discovered that their strategy was producing promising results.
The authors in [44] employed the bagging technique with the GA and PSO metaheuristic
methods to enhance performance. They discovered that the results of the two algorithms
were comparable, but the combination with bagging exhibited superior outcomes. Authors
in [45] used four datasets, namely PC1, PC2, PC3, and PC4, and tested with a correlation-
based feature selection technique with five classifiers. Finally, they found out that CFS with
RF has the best performance. There are many different FS algorithms, such as the electric
field algorithm [46], Jaya Algorithm [47], RHSFOS [48], FSBWO [49], and many more, that
can be tested on the software fault prediction datasets. The author in [50] has done feature
selection using the firefly algorithm with SVM, KNN, and NB classifiers achieving better
classification accuracy with FS.

The FS approaches have various parameters that control the coming accuracy. So,
tuning all those parameters is necessary, and for every problem, it will be different.

3. Summary of Golden Jackal Optimization Algorithm

The Golden Jackal Optimization (GJO) algorithm is a meta-heuristic optimization tech-
nique that draws ideas from the hunting pattern of golden jackals. This algorithm aims to
emulate the hunting strategy of these opportunistic predators, known for their adaptability
to diverse environments. By doing so, GJO seeks to solve optimization problems efficiently
and effectively.

The primary stages of hunting for a golden jackal pair are outlined below:

1. Locating the prey and advancing towards it.
2. Trapping the prey and agitating it.
3. Attacking and capturing the prey.

Like other meta-heuristics, the GJO is a population-based technique that initiates with a
randomized distribution of the first solution across the search space, as shown in Equation (1).

X0 = Xmin + rand ∗ Xmax − Xmin (1)

where Xmin is lower bound, and Xmax is upper bound, and rand is a function whose value
range between 0 to 1.

The initial matrix Prey (Xprey) is represented in Equation (2) which is generated during
initialization, where the top two fittest members are a pair of jackals.

Xprey =

⎡⎢⎢⎢⎣
X1,1 X1,2 · · · X1,q
X2,1 X2,2 · · · X2,q

...
...

...
...

Xp,1 Xp,2 · · · Xp,q

⎤⎥⎥⎥⎦ (2)
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As shown in Equation (2), it involves p preys and q variables. The position (location)
of each prey represents the parameters of a particular solution. As part of the optimization
procedure, a fitness function is utilized to assess the appropriateness of each prey. As
described in Equation (3), the fitness values of all prey are gathered in a matrix, where
the F matrix holds the fitness values of every prey. Xp,q represents the value of the pth
dimension of the qth prey. The optimization involves p preys, and the objective function is
denoted by F. In the hunting patterns of golden jackals, the male jackal is considered the
most suitable prey, followed by the female jackal as the second fittest. The positions of the
prey are acquired by the jackal pair accordingly.⎡⎢⎢⎢⎣

f
(
X1,1; X1,2; · · · X1,q

)
f
(
X2,1; X2,2; · · · X2,q

)
...

f
(
XP,1; XP,2; · · · Xp,q

)
⎤⎥⎥⎥⎦ (3)

Due to their inherent nature, jackals are adept at identifying and pursuing prey, but
at times the prey may prove elusive and manage to evade them. As a result, the jackals
must resort to exploring alternative prey, and this is referred to as the exploration stage.
The male jackal is responsible for leading the hunt, with the female jackal following in
pursuit. The updated position of the male jackal is shown in Equations (4) and (5), where i
corresponds to the current iteration. The prey’s position vector is denoted by Xprey. XFM
represents the location of the female jackal, and XM represents the location of the male
jackal. The revised position of male jackal is symbolized as X1, and the revised position
of female jackal is symbolized as X2 with respect to the prey. The energy the prey uses to
evade is represented by e and is determined using Equation (6).

X1 = XM(i)− e
∣∣XM(i)− s1 ∗ Xprey(i)

∣∣ (4)

X2 = XFM(i)− e
∣∣XFM(i)− s1 ∗ Xprey(i)

∣∣ (5)

e = e0 ∗ e1 (6)

where e0 denotes the initial energy and e1 indicates the decreasing energy of the prey.

e0 = 2 ∗ r − 1 (7)

e1 = c1 ∗
(

1 − i
I

)
(8)

The variable of Equations (7) and (8) includes r as a random integer whose value
ranges between (0,1) and c1 represents a constant value set at 1.5. The I signifies the max
number of iterations and current iteration is denoted by i. Additionally, the value of e1 is
gradually reduced in a linear manner from 1.5 to 0 over the course of the iterations.

Equations (4) and (5) involve the calculation of the distance between the jackal and
prey, represented as X(i)− s1 ∗ Xprey(i). Depending on the evading energy of the prey,
this distance is either added or subtracted from the current position of the jackal. The two
equations utilize a vector s1, which consists of a set of random numbers that adhere to
the Levy distribution and signify the Levy movement. To simulate the movement of the
prey in a Levy fashion, the equation multiplies the vector s1 with the Prey vector, as shown
in Equation (9).

s1 = 0.05 ∗ LF(x) (9)
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The levy flight function, denoted by LF(x), is computed in Equations (10) and (11),
where v ranges between 0 to 1 and δ is generally set to 1.5.

LF(x) =
0.05 ∗ σu

v
1
δ

(10)

σu =

⎡⎣Γ(1 + δ) ∗ sin
(

πδ
2

)
Γ
(

1+δ
2

)
∗ δ ∗ 2

δ−1
2

⎤⎦
1
δ

(11)

Finally, the Equation (12) shows the updated positions of the jackals are obtained by
averaging the results of Equations (4) and (5).

X(i + 1) =
X1(i) + X2(i)

2
(12)

In a mathematical model, the cooperative hunting behavior of a male jackal and female
jackal is represented in Equations (13) and (14), respectively, where i denotes the current
iteration, Xprey refers to the position vector of the prey, and XM(i) refers to the location
of the male jackal, and XFM(i) refers to the location of female jackal. X1(i) represents the
revised positions of the male jackal, and X2(i) represent the revised positions of female
jackal with respect to the prey. The position updates of the jackals are determined by
Equations (6) and (12), which are utilized to compute the evading energy of the prey. To
avoid getting stuck in local optima and encourage exploration, Equations (13) and (14)
incorporate the function s1. The use of Equation (9) to compute s1 is aimed at overcoming
any sluggishness towards local optima, especially in the later iterations. This factor is akin
to the obstacles that jackals face while pursuing prey in their natural habitat. During the
exploitation stage, s1 serves the purpose of addressing these obstacles.

X1(i) = XM(i)− e
∣∣s1 ∗ XM(i)− Xprey(i)

∣∣ (13)

X2(i) = XFM(i)− e
∣∣s1 ∗ XFM(i)− Xprey(i)

∣∣ (14)

To sum up, the GJO algorithm starts by creating a random prey population as a
potential solution. During each iteration of the algorithm, the jackals work together to
anticipate the potential location of their prey. Every individual in the population adjusts
the distance between the jackal pairs according to the specified criterion. The parameter e1
is decreased from 1.5 to 0 over time to balance exploration and exploitation. If e exceeds 1,
the golden jackal pairs move farther from the prey. In contrast, if e is less than 1, the teams
move closer to the prey to increase the chances of capturing it.

4. Feature Selection Using Golden Jackal Optimization

Feature selection refers to picking a smaller relevant subset of predictor variables from
a larger dataset, aiming to enhance the accuracy of machine learning models, decrease com-
putational expenses, and reduce the chances of overfitting. Put differently, it is a method of
determining the essential features with the highest impact on the target variable. Naturally,
selecting parts for classification is difficult; therefore, FSGJO uses GJO optimization to select
a relevant subset of features. Using FSGJO, there is an increase in classification accuracy.
Below is an explanation of the various phases of FSGJO.

4.1. Initialization

GJO is a population-based approach, similar to various other metaheuristics; the
search space is uniformly explored starting from an initial or first solution. The initial
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solution is shown in Equation (15), where Xmin is lower bound, Xmax is upper bound, and
rand() is a function whose value range between 0 to 1.

Xinitial = Xmin + rand()·(Xmax − Xmin) (15)

Suppose there are p preys and q variable; then, an individual can be represented as
shown in Equation (16), where 1 ≤ i ≤ p is the index of each prey. However, the population
of the prey is directly represented by a p × q matrix such that, Xprey = (x ij)p×q

as shown in

Equation (17), where i = 1, 2, 3, . . . , p, j = 1, 2, 3, . . . , q, and a row represents an individual
prey, and a column represents a dimension (variable). Xprey is the initial matrix of prey
generated during initialization, where the top two fittest members are a pair of jackals
(male jackal and female jackal, respectively).

Xi = xi1 + xi2 + xi3 + · · ·+ xiq (16)

Xprey = Xij =

⎡⎢⎢⎢⎣
X1,1 X1,2 · · · X1,q
X2,1 X2,2 · · · X2,q

...
...

...
...

Xp,1 Xp,2 · · · Xp,q

⎤⎥⎥⎥⎦ (17)

The optimization process involves p preys and q variables. The position of each prey
represents the parameters of a particular solution. In order to assess the performance of
each candidate solution during the optimization process, a fitness function (also known as
objective function) is utilized, and the output values of this function for all solutions are
stored in a matrix as shown in Equation (18), where, i = 1, 2, 3, . . . , p, j = 1, 2, 3, . . . , q, and
fitness values of each prey are stored in a matrix called Fij, where the notation Xp,q refers
the value of the pth prey on the qth dimension. The optimization involves p preys, and the
objective function is denoted by Fij. The male and female jackals acquire the positions of
the fittest and second fittest prey, respectively, and these are known as the male jackal and
female jackal prey positions.

Fij =

⎡⎢⎢⎢⎣
f
(
X1,1; X1,2; · · · X1,q

)
f
(
X2,1; X2,2; · · · X2,q

)
...

f
(
XP,1; XP,2; · · · Xp,q

)
⎤⎥⎥⎥⎦ (18)

4.2. Exploration Phase

In GJO, exploration is achieved by simulating the movement of a golden jackal pack
searching for food in an unknown territory. Each jackal (solution) moves randomly within
a specific range to explore the search space. This behavior helps prevent the algorithm
from being trapped in local optima and facilitates discovering new solutions. Although,
occasionally, the prey cannot be easily grabbed and manages to escape, it is in the nature
of the jackal to be able to perceive and track it. Thus, if the prey is not easily caught, the
jackals enter the exploration stage, searching for other potential targets. During hunting,
the female jackal follows behind while the male jackal takes the lead. The updated position
of male jackal is shown in Equations (19) and (20), where variable Xprey refers to the location
vector of the prey, XM is the location of the male jackal, and XFM is the location of the
female jackal. Variable i represents the current iteration. Xa is the revised positions of
the male jackal (XM), and Xb indicates the revised positions of the female jackal (XFM) in
relation to prey. The calculation of the prey’s evading energy, Ep, involves Equation (21),
wherein the initial energy of the prey can be represented by Ep0, while Ep1 signifies the
reduction of its energy.

Xa = XM(i)− Ep
∣∣XM(i)− s1 ∗ Xprey(i)

∣∣ (19)
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Xb = XFM(i)− Ep
∣∣XFM(i)− s1 ∗ Xprey(i)

∣∣ (20)

Ep = Ep0 ∗ Ep1 (21)

Ep0 is calculated using Equation (22), and Ep1 is calculated using Equation (23), where
r, that is a random number between 0 and 1, as well as a constant value denoted as c1 that
is equal to 1.5. Additionally, the maximum number of iterations is represented by I, while i
indicates the current iteration number. The decreasing energy of the prey is denoted by
the variable Ep1. During the iterative process, this value decreases linearly from 1.5 to 0,
indicating the gradual depletion of the prey’s energy.

Ep0 = 2 ∗ r − 1 (22)

Ep1 = c1 ∗
(

1 − i
I

)
(23)

Equations (19) and (20) are used to calculate the distance between the jackal and its
prey as X(i)− s1 ∗ Xprey(i). The energy level of the prey controls the jackal’s movement,
which shifts its location either higher or lower depending on how far it is from the prey.
The vector s1 employed in Equations (19) and (20) is a series of random numbers that
complies with the Levy distribution, which is a specific type of probability distribution.
This distribution is utilized to emulate the Levy movement, and it is multiplied by the
Prey vector to determine the movement of the prey in a Levy fashion. The calculation of s1
shown in Equation (24).

s1 = 0.05 ∗ LF(x) (24)

The Levy Flight function (LF) is a mathematical function that simulates random
movements in a search space. It is commonly used in optimization algorithms as it is used
here. The process involves generating random numbers from the Levy distribution and
using them to update the position of the search agent. The Levy distribution is a probability
distribution with heavy tails, allowing for occasional large movements. This property is
helpful in optimization because it enables search agents to explore distant areas of the
search space that would be difficult to reach with small, incremental movements. LF can be
calculated using Equation (25), where u, v u, v are a normal distribution function with a
standard deviation of σu and σv such that u = normal

(
0, σ2

u
)

and v = normal
(
0, σ2

v
)
. σu is

calculated using the Equation (26).

LF(x) =
0.05 ∗ u

v
1
δ

(25)

σu =

⎡⎣ (1 + δ) ∗ sin
(

πδ
2

)
1+δ

2 ∗ δ ∗ 2
δ−1

2

⎤⎦
1
δ

(26)

Equation (27) illustrates the position update of the male jackal and female jackal, which
involves the averages Equations (19) and (20).

X(i + 1) =
Xa(i) + Xb(i)

2
(27)

4.3. Exploitation Phase

The simulation imitates the hunting behaviors of a dominant male golden jackal
that takes the lead and guides the pack towards the food source to exploit the prey. The
harassment of the prey by the jackals gradually reduces its ability to evade, enabling the
male and female jackal pair to surround the prey discovered earlier. After being contained,
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the jackals pounce on their target and devour it. In a mathematical model, the cooperative
hunting behavior of jackals is represented in Equations (28) and (29), where i indicates the
current iteration of the simulation. Xprey is the location vector of the prey, while XM(i)
represents the location of the male jackal and XFM(i) represents the location of female jackal.
Xa(i) represents the revised location of the male jackal, and Xb(i) represents the revised
positions of the female jackal with respect to the prey. Equation (21) is employed to compute
the evading energy of the prey, denoted as Ep. Equation (27) is then utilized to revise the
positions of the jackals. In the exploitation phase, the function s1 is utilized in Equations
(28) and (29) to promote exploration and prevent the algorithm from becoming trapped in
local optima. Equation (24) is used to calculate s1, which helps to overcome sluggishness
towards local optima, particularly in the final iterations. This element represents obstacles
that hinder the jackals from moving towards the prey, such as those encountered in natural
chasing paths. The function of s1 during the exploitation stage is to address these obstacles
and facilitate the jackals’ movement towards the prey.

Xa(i) = XM(i)− Ep
∣∣s1 ∗ XM(i)− Xprey(i)

∣∣ (28)

Xb(i) = XFM(i)− Ep
∣∣s1 ∗ XFM(i)− Xprey(i)

∣∣ (29)

4.4. Fitness and Transfer Function

Before computing fitness and updating it, the continuous values of the position matrix
(Xprey) are converted into binary values using a transfer function. A sigmoid transfer
function is used in this study, as shown in Equation (30). The reason for using this S-shaped
transfer function is that it allows for a smooth and continuous transition from real-valued
positions to binary values, which can help to avoid premature convergence and improve
the search performance of the optimization algorithm.

TF =
1

1 + e−X (30)

In this equation, X represents the position value in the position matrix (Xprey) before
being converted to binary. The sigmoid function maps the continuous value of X to a value
having 0 and 1, which can then be used to determine the corresponding binary value. The
purpose of this conversion is to ensure that the position values are binary and can be used
to calculate the fitness value of the prey.

The fitness in this context refers to the prediction error of a machine learning (ML)
classifier. It is determined by comparing the actual output of the classifier with its estimated
output. To train the classifier, a 0.2 data split size is used, meaning that 20% of the data is
held out for testing while the remaining 80% is used for training. The fitness is calculated
using the Equation (31), where k is a value that ranges from 1 to m (the number of testing
observations) and Err(k) is the prediction error for the kth observation. The summation is
divided by m to obtain an average prediction error.

f itness = ∑m
i=1

Err(k)
m

(31)

The algorithm maintains two variables for the updating of fitness; the variables
MaleJackalscore and FemaleJackalscore represent the fitness scores of the best male and
female jackals found so far during the optimization process. f itness can be assumed as
old fitness; MaleJackalscore and FemaleJackalscore can be assumed as new fitness. If the
f itness of a jackal is lower than the current MaleJackalscore, it means that the jackal has
a better f itness than the current male jackal, and thus, its position and score will replace
the current male jackal’s position and score. On the other hand, if the f itness of a jackal
is higher than the MaleJackalscore but lower than the FemaleJackalscore, it means that the
jackal has a better fitness than the current female jackal, but not better than the male jackal.
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In this case, its position and score will replace the current female jackal’s position and score.
After the fitness calculation, the fitness stored as shown in Equation (32), where the fitness
array is denoted as fi, which consists of p elements f1, f2, f3, . . . , fp.

fi =
(

f1, f2, f3, . . . , fp
)

(32)

In each iteration of the algorithm, a random value between −1 and 1 is assigned to the
initial energy Ep0. The value of Ep0 is an indicator of the prey’s physical strength, where
a decrease from 0 to −1 indicates a decline in the prey’s strength. An elevation from 0 to
1 denotes a boost in the prey’s strength, whereas a decrease in Ep is observed during the
iterative process, as shown in Figure 1. If the magnitude of Ep is greater than 1, it means that
the jackal pairs are searching for prey in different areas, which suggests that the algorithm
is in an exploration phase. On the other hand, if the magnitude of Ep is less than 1, the
algorithm switches to an exploitation phase and starts attacking the prey (Algorithms 1).

 
Figure 1. Searching and Attacking.

Algorithms 1 FSGJO

1. Initialize prey population randomly, Xi = (i = 1, 2, . . . , P)
2. while (i < I)
3. Let, Male Jackal Position be Xa
4. Let, Female Jackal Position be Xb
5. Determine the preys’ fitness value
6. if ( f itness < MaleJackalscore)
7. MaleJackalscore = f itness
8. if ( f itness > MaleJackalscore and f itness < FemaleJackalscore)
9. FemaleJackalscore = f itness
10. for (each prey)
11. Using Equations (21)–(23) update the evading energy Ep)
12. Using Equations (24) and (25) Update s1
13. if (E ≥ 1) (Exploration phase)
14. Using Equations (19), (20) and (27) Update the prey position
15. if (E < 1) (Exploration phase)
16. Using Equations (27)–(29) Update the prey position
17. Update Jackal Position, X(i) = Xa+Xb

2
18. Using transfer function to convert continuous values of Xi i.e., position, in binary values
using Equation (30)
19. end for
20. i++
21. end while
22. Return Male Jackal Position Xa

The FSGJO algorithm is an optimization algorithm in metaheuristic form that works
on the hunting pattern of golden jackals. After randomly initializing a population of prey,
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the algorithm proceeds to search for the ideal solution through a series of iterations. The
algorithm employs the idea of jackals, wherein the male jackal denotes the best solution
found thus far, while the female jackal represents the second-best solution. The algorithm
updates the position and evading energy of each prey based on certain equations and
then performs an exploration or exploitation phase depending on the value of the evading
energy. The algorithm updates the jackal position by taking the average of the male and
female positions. Then it converts the continuous values of the prey positions into binary
values using a transfer function. The algorithm continues for a specified repetitions and
returns the male jackal position, representing the best solution found by the algorithm.
The detailed explanation of FSGJO algorithm is presented in Algorithms 1. A flowchart
depicting it is shown in Figure 2.

 

Figure 2. Flowchart for FSGJO.
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5. Results

This section provides information on the datasets utilized in the experiment, the
experimental setup, and the analysis of the obtained results.

5.1. Datasets

Most of these datasets are publicly available and have been used in various software
engineering and machine learning research studies. Some of these are commonly used
benchmark datasets, and their sources can be found in multiple academic publications
or online repositories. The PROMISE repository provides a collection of datasets for
various software engineering tasks, including software fault prediction. These datasets are
primarily meant for research purposes and are frequently employed to assess the efficacy
of different software fault prediction models. The datasets in the PROMISE repository are
sourced from various software projects and programming languages. Each dataset usually
contains additional metrics and features that characterize the analyzed software, along
with details on the occurrence or non-occurrence of faults in the software. Some examples
of the metrics and features that are in these datasets are:

• LOC (Lines of Code): This metric measures the number of lines of code in the software
being analyzed.

• Cyclomatic Complexity: This metric measures the complexity of the software’s control
flow and can help identify potential trouble spots.

• Code Churn: This metric measures the software’s change over time and can help
identify modules or components that may be more prone to faults.

• Code Coverage: This metric measures the extent to which the software’s code has
been tested and can help identify code areas that may be more likely to contain faults.

• Halstead’s Complexity Measures: These metrics measure various aspects of the com-
plexity of the software’s code, such as the number of distinct operators and operands,
and can help identify potential trouble spots.

Each dataset in the PROMISE repository typically includes a description of the soft-
ware project, as well as information on the available metrics and features. The datasets
may also include information about the presence or absence of faults in the software, such
as the number of bugs that were discovered during testing or the number of incidents
that were reported by users. Researchers can use these datasets to train and test different
software fault prediction models. To assess the efficacy of diverse software fault prediction
approaches and discover scopes for further enhancement, researchers can analyze the
performance of various models on a common dataset. Here, 12 datasets from the PROMISE
repository by NASA have been used. The datasets are KC1, PC5, MC1, JM1, PC1, MW1,
PC2, KC3, PC4, CM1, and MC2. Table 1 provides the specifics of the datasets.

Table 1. Detail of the datasets.

S. No. Datasets Number of Instances Number of Features

1 MC1 1988 39
2 MC2 125 40
3 MW1 253 38
4 PC1 705 38
5 PC2 745 37
6 PC3 1077 38
7 PC4 1287 38
8 PC5 1711 39
9 CM1 327 38
10 KC1 1183 22
11 KC3 194 40
12 CM1 327 38
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In dimensionality reduction, there are some issues with the dataset such as correlation
and collinearity. Correlation is a statistical measure that describes the strength and direction
of a relationship between two variables. Correlation can be used to explore the relationship
between any two quantitative variables. Feature selection can be used to deal with the
correlation problem in data analysis and modeling. Feature selection is a technique that
aims to select a subset of the most important features from a set of features in a dataset. By
selecting only the most important features, we can reduce the impact of correlated variables
and improve the performance of our models. The algorithms such as FSGE, FSPSO, FSDE,
and FSACO and the proposed FSGJO algorithm used in the manuscript can effectively
deal with correlation and other complex dependencies between features. Table 2 shows the
correlation data for different datasets. It ranges from −1 to +1, where −1 indicates a perfect
negative correlation (as one variable increases, the other decreases), +1 indicates a perfect
positive correlation (as one variable increases, the other also increases), and 0 indicates no
correlation between the variables.

Table 2. Correlation Data for different Datasets.

Sr. No. Datasets Avg Mean Avg Min Avg Std Avg (25%) Avg (50%) Avg (75%) Max

1 PC1 0.378607 −0.33978 0.333734 0.13995 0.472284 0.584182 1

2 PC2 0.406 −0.334 0.361 0.147 0.539 0.627 1

3 PC3 0.28585 −0.32153 0.299 0.122 0.287 0.449 1

4 PC4 0.28585 −0.3215 0.299 0.122 0.287 0.449 1

5 PC5 0.309287 −0.25837 0.318001 0.107005 0.337127 0.505981 1

6 JM1 0.523668 −0.26472 0.297546 0.434064 0.58751 0.695541 1

7 KC1 0.602172 −0.31984 0.311581 0.583292 0.694918 0.7534 1

8 KC3 0.401659 −0.49557 0.381206 0.125805 0.540514 0.642491 1

9 MW1 0.3446 −0.438 0.3462 0.0564 0.4107 0.5741 1

10 MC1 0.329962 −0.2981 0.34041 0.08559 0.42838 0.55244 1

11 MC2 0.422839 −0.36885 0.364055 0.262204 0.565452 0.643115 1

12 CM1 0.447366 −0.39526 0.34699 0.22507 0.57133 0.64822 1

For example, the first row of Table 2 shows the correlation data for the dataset named
“PC1”. The average correlation value for this dataset is 0.378607, indicating a moderate
positive correlation between the variables. The minimum correlation value is −0.33978,
indicating some negative correlation between the variables, and the maximum correlation
value is 1, indicating a perfect positive correlation between the variables. The standard
deviation of correlation values for this dataset is 0.333734, indicating that the correlation
values vary widely in the dataset. The value in the max column is 1, which suggests that
at least one pair of variables has a perfect correlation. Similarly, each row in the table
shows the correlation data for a different dataset. The correlation values can help identify
patterns in the data, such as strong positive or negative correlations, weak correlations, or
no correlations. This information can be useful for statistical analysis, such as identifying
which variables are most strongly related to each other, or for modeling, such as using
the correlation data to make predictions or develop models. Overall, the correlation data
in this table provides valuable information about the relationships between variables in
different datasets, which can help researchers and analysts gain insights into the data and
make informed decisions based on the results.

Collinearity is a problem that occurs when two or more features in a dataset are highly
correlated. In the context of feature selection, collinearity can make it difficult to identify
the most important features. This is because the coefficient estimates for all of the correlated
features may be large, even if only one of the features is truly independent. There are
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a number of ways to deal with collinearity. One way is to use a correlation matrix to
identify correlated features. The correlation matrix for dataset MC1 and JM1 is shown
in Figures 3 and 4, respectively. Once you have identified correlated features, you can
use feature selection to remove them from the dataset. There are a number of different
feature selection methods available. Feature selection can be a useful tool for dealing
with collinearity. By removing correlated features from the dataset, you can improve the
stability of the coefficient estimates and the accuracy of the model, as we have used the
different feature selection methods such as FSGA, FSPSO, FSDE, and FSACO and the newly
proposed FSGJO which does the work efficiently.

 
Figure 3. Correlation Matrix graph for MC1 Dataset.

 
Figure 4. Correlation Matrix graph for JM1 Dataset.
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5.2. Experimental Condition

In the context of the study, the trial was conducted using VS Code and the 3.9.12
version of Python. The laptop utilized for the experiment was equipped with an AMD
Ryzen 75,000 series processor, a clock speed of 1.80 GHz, 16 GB of RAM, and AMD Radeon
graphics. The parameters of the experiment such as β were set to 1.5; population size was
set to 30, and the maximum iteration was set to 200.

5.3. Experimental Analysis

To predict software faults, 12 different datasets that were used are listed in Table 2.
The classifiers employed for the experiments are DT, KNN, NB, and QDA. Then, randomly
split the datasets into training and testing sets, maintaining a ratio of 80:20, respectively. To
maintain the consistency of each algorithm’s performance, we conducted 10 runs of the
experiments. The average accuracy results obtained from FSGJO and the other FS models
are presented in Table 3.

Table 3. Comparison between different FS Algorithms.

S. No. Datasets Classifier Without FS (%) FSGA (%) FSPSO (%) FSDE (%) FSACO (%) FSGJO (%)

1 PC1

KNN 89.36 93.67 90.08 93.4 93.71 94.42
DT 88.66 95.01 92.05 95.02 93.79 95.03
NB 87.32 91.12 89.56 90.46 92.26 92.67

QDA 86.25 93.62 89.27 93.84 92.19 94.32

No. of features selected 38 19.1 16.2 18.9 10.8 13

2 PC2

KNN 96.46 97.66 97.54 97.34 97.09 98.65
DT 95.23 98.41 96.15 98.11 97.52 98.65
NB 93.26 96.89 95.48 96.13 97.23 96.98

QDA 97.23 98.85 97.83 97.83 98.21 97.98

No. of features selected 37 14.7 15.2 17.1 10.7 11

3 PC3

KNN 82.14 86.43 84.67 85.39 86.17 87.03
DT 78.07 86.93 82.19 86.73 84.34 87.03
NB 68.89 86.58 80.38 86.18 87.8 87.3

QDA 62.4 86.54 83.83 86.67 86.09 87.5

No. of features selected 38 16.6 13.5 17.2 11.6 11.4

4 PC4

KNN 84.05 90.18 86.36 87.06 91.61 90.69
DT 91.9 93.52 92.64 93.52 92.4 93.02
NB 86.28 91.95 89.1 91.47 91.04 91.86

QDA 47.76 91.28 86.89 92.84 91.28 93.41

No. of features selected 38 17.6 14.4 18.6 14.2 14.6

5 PC5

KNN 67.6 75.36 71.8 75.36 76.58 78.42
DT 72.95 77.37 73.35 77.18 75.61 77.84
NB 70.45 71.75 70.28 71.64 72.91 72.99

QDA 69.93 72.75 70.85 72.29 71.1 73.46

No. of features selected 39 18.4 15.7 19.3 14.8 17

6 JM1

DT 73.53 77.81 75.6 76.63 79.62 78.16
KNN 69.49 78.63 72.49 73.39 79.59 79.6
NB 78.01 79.84 79.15 79.62 79.89 79.89

QDA 75.85 79.71 79.04 79.82 79.78 79.82

No. of features selected 22 4.9 8.9 10.3 3 6

7 KC1

KNN 69.26 76.46 76.46 76.33 77.59 78.05
DT 72.51 77.6 73.21 76.3 76.48 77.79
NB 74.62 77.32 76.21 77.32 77.47 77.63

QDA 74.62 78.01 76.92 77.39 77.58 78.48
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Table 3. Cont.

S. No. Datasets Classifier Without FS (%) FSGA (%) FSPSO (%) FSDE (%) FSACO (%) FSGJO (%)

No. of features selected 22 8.2 8.3 9.4 4.5 8

8 KC3

KNN 74.63 79.89 76.51 79.32 86.29 82.05
DT 76.29 89.54 81.3 87.96 85.31 89.74
NB 66.76 76.29 71.45 76.51 79.39 76.92

QDA 76.29 86.29 79.47 87.96 86.15 89.74

No. of features selected 40 17.7 16.9 18.8 8.9 16.6

9 CM1

KNN 75.67 86.28 83.43 85.03 87.24 89.39
DT 80.03 89.07 83.28 88.49 87.37 89.39
NB 77.37 83.34 81.97 83.28 84.45 84.46

QDA 83.21 88.84 83.79 88.84 88.81 90.9

No. of features selected 38 18.2 14.5 17.8 12.1 15.8

10 MC1

KNN 96.37 97.63 97.46 97.48 98.10 97.73
DT 97.64 98.47 98.39 98.57 98.24 98.74
NB 95.64 97.61 96.21 97.62 97.64 97.73

QDA 97.39 97.64 97.39 97.64 97.64 97.73

No. of features selected 39 19.2 12.4 19.2 13.4 13.2

11 MC2

KNN 75 87.46 79 85.12 89.12 92
DT 68 90.78 75.21 89.26 85 89.26
NB 93 95.56 92.71 93.12 95 96

QDA 83 95.12 88.34 95.12 95.12 96

No. of features selected 40 18.4 17.2 18.4 7.2 8

12 MW1

KNN 78.34 87.35 84.61 85.56 86.57 88.27
DT 74.41 87.74 82.64 87.15 85.19 85.29
NB 76.37 83.42 78.78 82.25 87.16 88.27

QDA 80.49 88.52 84.21 86.56 90.29 92.14

No. of features selected 38 13.5 12.9 17.2 8.7 7.8

The performance of the novel FSGJO algorithm is evaluated against various FS tech-
niques, including FSPSO, FSGA, FSACO, and FSDE, using a set of 12 datasets obtained from
NASA’s open repository. Table 3 provides the performance comparison of various feature
selection techniques on different datasets using different classifiers. The table represents the
average classification accuracy of various classifiers applied to different datasets with and
without feature selection. In addition, the table also presents the mean number of features
chosen by each FS technique. The classifiers were tested on various datasets using diverse
feature selection methods mentioned previously. From the results, FSGJO has performed
well in most of the datasets except for a few of the datasets. For the PC4 dataset, the highest
accuracy has been achieved by the FSGA model, but the difference between the accuracy
of both the FSGJO and FSGA models is very minor. For the MC1 and MC2 datasets, the
average accuracy of FSGA, FSDE, and FSPSO for the QDA classifier is the same. Similarly,
for other datasets the accuracy of models is somewhat the same and somewhat different,
less or more with each other. However, for the majority of the cases FSGJO has greater
average accuracy.

The fitness error plot of the four classifiers—DT, KNN, NB, and QDA—is shown in
Figures 5–8, respectively. It includes the error plots of each FS model—FSGA, FSPSO,
FSDE, FSACO, and FSGJO. Each figure contains the plots for all the 12 datasets. From the
error plot, it can be seen that for many times the plot for FSGJO is lower, but for some
it coincides with other FS models, and for some it is above the other. In Figure 5 (DT
classifier), the fitness plots of FSGA and FSGJO coincide with each other at 165 iterations in
the PC3 dataset. It is similar for FSACO and FSGJO in the MW1 dataset after 145 iterations.
In the KNN classifier, the coincidences of the error plot occur in CM1 and PC2 between
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FSACO, FSDE, and FSGJO after 50 and 150 iterations, respectively. In the NB classifier, the
coincidences of the error plot occur in the KC3 dataset between FSACO and FSDE, in the
MC2 and MC1 dataset between FSACO and FSGJO, and in the PC3 dataset between FSACO
and FSGJO for some number of iterations. Lastly, in the QDA classifier, the coincidences
of the error plot occurred in MC1 datasets for all classifiers in the MC2 dataset between
FSACO, FSDE, and FSGJO. For the rest of the other datasets and classifiers, the error
plot of FSGJO is less than the others which shows that FSGJO performs better than the
other models.

Figure 5. Fitness Error Plot for DT.
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Figure 6. Fitness Error Plot for KNN.
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Figure 7. Fitness Error Plot for NB.
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Figure 8. Fitness Error Plot for QDA.
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The parameters utilized in various FS models are listed in Table 4. The algorithms
utilized in the study employ different parameters. The number of populations is set to 30
for all models, and the max number of iterations is 200. The value of δ is 1.5 in GJO. To
specify the parameters for ACO, the values of alpha, beta, and rho are set to 1, 0.1, and 0.2,
respectively. In GA, the mutation rate (MR) utilized is 0.01, and the crossover rate (CR)
is 0.8. The utilization of 0.9 as the crossover rate (CR) and 0.8 as the scaling factor (SF) is
common in Differential Evolution (DE). The initial weights Wmin and Wmax in PSO are set
to 0.4 and 0.9, respectively.

Table 4. Parameters used in different FS models.

Parameters GA PSO DE ACO GJO

No. of
iterations 200 200 200 200 200

Population
Size 30 30 30 30 30

Wmax - 0.9 - - -
Wmin - 0.4 - - -

SF - - 0.8 - -
c1 - 2 - - -
CR 0.8 - 0.9 - -
MR 0.01 - - - -
c2 - 2 - - -

α (alpha) - - - 1 -
β (beta) - - - 0.1 -
ρ (rho) - - - 0.2 -

δ - - - - 1.5

6. Statistical Analysis

Statistical analysis [51] is an important component of machine learning (ML), as it
helps to make sense of data by identifying patterns and relationships. By using the same
parameters, the proposed model can be compared with other models in terms of their
performance. Some common statistical techniques used in ML include regression analysis,
cluster analysis, principal component analysis (PCA), hypothesis testing, and Bayesian
analysis. Overall, statistical analysis is an essential tool for understanding and making
sense of data in machine learning. In statistical hypothesis testing, there are two main
types of tests: parametric (using parameters) and nonparametric (using a hypothesis).
Parametric statistical testing is a type of statistical analysis that assumes that the data
being analyzed follows a particular probability distribution, most commonly the normal
distribution. This assumption allows for the use of a range of statistical tests that are more
powerful than their non-parametric counterparts. The use of parametric tests requires
that several assumptions are met, including the assumptions of normality, homogeneity
of variance, and independence of observations. When conducting a parametric test, it is
crucial to ensure that the assumptions are met, as any violations of these assumptions can
lead to inaccurate outcomes and conclusions that are not valid. Therefore, it is imperative
to verify these assumptions beforehand and to consider utilizing non-parametric tests if
they are not met. Non-parametric statistical testing is a form of statistical analysis that does
not rely on a particular probability distribution assumption for the data being analyzed.
Instead, non-parametric tests are based on the ranks or orderings of the data, making them
more robust to violations of assumptions and more widely applicable than parametric tests.
Non-parametric tests do not require assumptions of normality, homogeneity of variance, or
independence of observations, making them more versatile than parametric tests. However,
they may be less powerful than parametric tests when the assumptions of the parametric
tests are met. Selecting an appropriate statistical test that is tailored to the research question
and the characteristics of the data being analyzed is crucial. Here, the Friedman test has
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been used, which is a non-parametric statistical test that is used to compare three or more
related groups.

The Friedman test is utilized to determine if there are any noteworthy disparities
between groups by comparing their average ranks. The test’s null hypothesis suggests that
there are no differences between the groups, while the alternative hypothesis proposes
that at least one group displays a significant difference from the others. The test statistic
used in the Friedman test is based on the chi-squared distribution, and the significance
level is determined using the appropriate critical values from the chi-squared distribution
table. In cases where the computed test statistic is higher than the critical value, the
null hypothesis is refuted, signifying a significant distinction between the groups. One
important consideration when using the Friedman test is that it is an omnibus test, meaning
that it only determines whether there is a significant difference between the groups as
a whole. Additional tests, such as post hoc analyses, may be necessary to identify the
particular groups that exhibit significant differences from one another.

In hypothesis testing, the null hypothesis (H0) postulates that there is no significant dis-
parity between the models, whereas the alternative hypothesis (H1) proposes the contrary.
When the p-value is less than the significance level, it means there is a difference between
two or more models, and we can reject the null hypothesis. The Friedman test assigns a
rank to each model based on its classification performance in the experiment. The models
are ranked from the one with the lowest number to the one with the highest number, with
the highest rank assigned to the one with the lowest number and the lowest rank assigned
to the one with the highest number. Table 5 presents the results of evaluating various
models (FSACO, FSDE, FSGA, FSGJO, FSPSO, and Without FS) with different classifiers
(KNN, DT, NB, and QDA), showing the AvgRankModels calculated with Equation (33).
Table 5 presents the AvgRankDatasets obtained by evaluating the mean of all ranks for
each associated model (Without FS, FSGA, FSPSO, FSDE, FSACO, and FSGJO) across all
datasets using Equation (34). The computation of AvgRankDatasets involves adding up the
ranks of all classification models used and dividing the sum by the total number of models.
In Table 6, we report the average ranks of the feature selection (FS) models employed in our
experiment. To calculate the average rank performance of a group of models and datasets,
add up the mean rank of each one and divide by the total number of models.

AvgRankModels =
total sum o f rank o f di f f erent classi f iers

total no. o f classi f iers
(33)

AvgRankDatasets =
AvgRankModels

total no. o f datasets
(34)

Table 5. FS Algorithm ranks for 12 datasets using the Friedman Test.

S. No. Datasets Classifier Without FS (%) FSGA (%) FSPSO (%) FSDE (%) FSACO (%) FSGJO (%)

1 PC1

KNN 89.36 (6) 93.67 (3) 90.08 (5) 93.4 (4) 93.71 (2) 94.42 (1)
DT 88.66 (6) 95.01 (3) 92.05 (5) 95.02 (2) 93.79 (4) 95.03 (1)
NB 87.32 (6) 91.12 (3) 89.56 (5) 90.46 (4) 92.26 (2) 92.67 (1)

QDA 86.25 (6) 93.62 (3) 89.27 (5) 93.84 (2) 92.19 (4) 94.32 (1)

Avg. Rank of Models 6 3 5 3 3 1

2 PC2

KNN 96.46 (6) 97.66 (2) 97.54 (3) 97.34 (4) 97.09 (5) 98.65 (1)
DT 95.23 (6) 98.41 (2) 96.15 (5) 98.11 (3) 97.52 (4) 98.65 (1)
NB 93.26 (6) 96.89 (3) 95.48 (5) 96.13 (4) 97.23 (1) 96.98 (2)

QDA 97.23 (5) 98.85 (2) 97.83 (4) 97.83 (4) 98.21 (3) 97.98 (1)

Avg. Rank of Models 5.75 2.25 4.25 3.75 3.25 1.25
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Table 5. Cont.

S. No. Datasets Classifier Without FS (%) FSGA (%) FSPSO (%) FSDE (%) FSACO (%) FSGJO (%)

3 PC3

KNN 82.14 (6) 86.43 (2) 84.67 (5) 85.39 (4) 86.17 (3) 87.03 (1)
DT 78.07 (6) 86.93 (2) 82.19 (5) 86.73 (3) 84.34 (4) 87.03 (1)
NB 68.89 (6) 86.58 (3) 80.38 (5) 86.18 (4) 87.8 (2) 87.3 (1)

QDA 62.4 (6) 86.54 (3) 83.83 (5) 86.67 (2) 86.09 (4) 87.5 (1)

Avg. Rank of Models 6 2.50 5 3.25 3.25 1

4 PC4

KNN 84.05 (6) 90.18 (3) 86.36 (5) 87.06 (4) 91.61 (1) 90.69 (2)
DT 91.90 (5) 93.52 (1) 92.63 (3) 93.52 (1) 92.40 (4) 93.02 (2)
NB 86.28 (6) 91.95 (1) 89.10 (5) 91.47 (3) 91.04 (4) 91.86 (2)

QDA 47.76 (5) 91.28 (3) 86.89 (4) 92.84 (2) 91.28 (3) 93.41 (1)

Avg. Rank of Models 5.50 2 4.25 2.50 3 1.75

5 PC5

KNN 67.6 (5) 75.36 (3) 71.80 (4) 75.36 (3) 76.58 (2) 78.42 (1)
DT 72.95 (6) 77.37 (2) 73.35 (5) 77.18 (3) 75.61 (4) 77.84 (1)
NB 70.45 (6) 71.75 (3) 70.28 (5) 71.64 (4) 72.91 (2) 72.99 (1)

QDA 69.93 (6) 72.75 (2) 70.85 (5) 72.29 (3) 71.10 (4) 73.46 (1)

Avg. Rank of Models 5.75 2.50 4.75 3.25 3 1

6 JM1

DT 73.53 (6) 77.81 (3) 75.60 (5) 76.63 (4) 79.62 (1) 78.16 (2)
KNN 69.49 (6) 78.63 (3) 72.49 (5) 73.39 (4) 79.59 (2) 79.60 (1)
NB 78.01 (5) 79.84 (2) 79.15 (4) 79.62 (3) 79.89 (1) 79.89 (1)

QDA 75.85 (5) 79.71 (3) 79.04 (4) 79.82 (1) 79.78 (2) 79.82 (1)

Avg. Rank of Models 5.50 2.75 4.50 3 1.50 1.25

7 KC1

KNN 69.26 (5) 76.46 (3) 76.46 (3) 76.33 (4) 77.59 (2) 78.05 (1)
DT 72.51 (6) 77.60 (2) 73.21 (5) 76.30 (4) 76.48 (3) 77.79 (1)
NB 74.62 (5) 77.32 (3) 76.21 (4) 77.32 (3) 77.47 (2) 77.63 (1)

QDA 74.62 (6) 78.01 (2) 76.92 (5) 77.39 (4) 77.58 (3) 78.48 (1)

Avg. Rank of Models 5.50 2.50 4.25 3.75 2.50 1

8 KC3

KNN 74.63 (6) 79.89 (3) 76.51 (5) 79.32 (4) 86.29 (1) 82.05 (2)
DT 76.29 (6) 89.54 (2) 81.30 (5) 87.96 (3) 85.31 (4) 89.74 (1)
NB 66.76 (6) 76.29 (5) 71.45 (4) 76.51 (2) 79.39 (3) 76.92 (1)

QDA 76.29 (6) 86.29 (3) 79.47 (5) 87.96 (2) 86.15 (4) 89.74 (1)

Avg. Rank of Models 6 3.25 4.75 2.75 3 1.25

9 CM1

KNN 75.67 (6) 86.28 (3) 83.43 (5) 85.03 (4) 87.24 (2) 89.39 (1)
DT 80.03 (6) 89.07 (2) 83.28 (5) 88.49 (3) 87.37 (4) 89.39 (1)
NB 77.37 (6) 83.34 (3) 81.97 (5) 83.28 (4) 84.45 (2) 84.46 (1)

QDA 83.21 (5) 88.84 (2) 83.79 (4) 88.84 (2) 88.81 (3) 90.90 (1)

Avg. Rank of Models 5.75 2.50 4.75 3.25 2.75 1

10 MC1

KNN 96.37 (6) 97.63 (3) 97.46 (5) 97.48 (4) 98.10 (1) 97.73 (2)
DT 97.64 (2) 98.47 (4) 98.39 (5) 98.57 (3) 98.24 (6) 98.74 (1)
NB 95.64 (6) 97.61 (4) 96.21 (5) 97.62 (3) 97.64 (2) 97.73 (1)

QDA 97.39 (3) 97.64 (2) 97.39 (3) 97.64 (2) 97.64 (2) 97.73 (1)

Avg. Rank of Models 4.25 3.25 4.50 3.00 2.75 1.25

11 MC2

KNN 75 (6) 87.46 (3) 79 (5) 85.12 (4) 89.12 (2) 92 (1)
DT 68 (5) 90.78 (1) 75.21 (4) 89.26 (2) 85 (3) 89.26 (2)
NB 93 (6) 95.56 (2) 92.71 (5) 93.12 (4) 95 (3) 96 (1)

QDA 83 (4) 95.12 (2) 88.34 (3) 95.12 (2) 95.12 (2) 96 (1)

Avg. Rank of Models 5.25 2.00 4.25 3.00 2.50 1.25

12 MW1

KNN 78.34 (6) 87.35 (2) 84.61 (5) 85.56 (4) 86.57 (3) 88.27 (1)
DT 74.41 (6) 87.74 (1) 82.64 (5) 87.15 (2) 85.19 (4) 85.29 (3)
NB 76.37 (6) 83.42 (3) 78.78 (5) 82.25 (4) 87.16 (2) 88.27 (1)

QDA 80.49 (6) 88.52 (3) 84.21 (4) 86.56 (4) 90.29 (2) 92.14 (1)

Avg. Rank of Models 6.00 2.25 4.75 3.50 2.75 1.50
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Table 6. FS models Avg. Rank.

S. No. Datasets Without FS FSGA FSPSO FSDE FSACO FSGJO

1 PC1 6 3 5 3 3 1
2 PC2 5.75 2.25 4.25 3.75 3.25 1.25
3 PC3 6 2.50 5 3.25 3.25 1
4 PC4 5.50 2 4.25 2.50 3 1.75
5 PC5 5.75 2.50 4.75 3.25 3 1
6 JM1 5.50 2.75 4.50 3 1.50 1.25
7 KC1 5.50 2.50 4.25 3.75 2.50 1
8 KC3 6 3.25 4.75 2.75 3 1.25
9 CM1 5.75 2.50 4.75 3.25 2.75 1
10 MC1 4.25 3.25 4.50 3.00 2.75 1.25
11 MC2 5.25 2.00 4.25 3.00 2.50 1.25
12 MW1 6.00 2.25 4.75 3.50 2.75 1.50

Avg. Rank Datasets
5.60 2.56 4.58 3.17 2.77 1.21

AR6 AR2 AR5 AR4 AR3 AR1

The computation of X2
F in Equation (35) involves utilizing the AvgRankModels, which

is determined to be 15.93. The variables M and N are used to represent the number of
datasets and models in the experiment, respectively. The resulting value for the Friedman
statistic, FF, is calculated as 3.98 based on Equation (36). The analysis in this instance is
conducted using 12 datasets and 6 models. The critical value is calculated as 2.449 with
(6 − 1) and (6 − 1) × (12 − 1) degrees of freedom, and the significance level of α is 0.05.

X2
F =

12 × M
N × (N + 1)

×
[
∑j AR2 − N × (N + 1)2

4

]
(35)

FF =
(M − 1)× X2

F
M × (N − 1)− X2

F
(36)

The density plot in Figure 9, with a degree of freedom of (5,55), shows the critical
value of 2.269. The fact that the Friedman Statistics (FF = 3.98) is higher than the critical
value allows us to reject the null hypothesis (H0). This implies that there is a noteworthy
difference between at least two models.

Figure 9. Density plot.
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Upon rejecting the null hypothesis in the Friedman test, which implies the presence
of variations among multiple models, it is standard practice to conduct a post hoc test to
identify the specific models that exhibit significant differences. There are several post hoc
tests that can be used, such as the Wilcoxon signed-rank test, the Holm–Bonferroni method,
and the Nemenyi test. The choice of the post hoc test depends on the specific research
question and the characteristics of the data. The main goal of the post hoc test is to provide
more detailed information about the differences between the models and to identify which
models are significantly better than others. Additionally, it has been shown to have more
statistical power than other methods while maintaining an acceptable type I error rate.
Controlling the Type I error rate is important in statistical inference because it helps ensure
that the results drawn from the data are accurate and reliable. The Holm procedure [52–56]
is a multiple comparison procedure that can be used as a post hoc test after conducting
a statistical test like the Friedman test. It uses the p-value and z-value to evaluate the
performance of each individual. The calculation of z is performed using Equation (37), and
then the corresponding p-value is obtained from the normal distribution table.

z =
ARx − ARy√

N×(N+1)
6×M

(37)

The value of z in this context refers to the z-score value, which is calculated using a
formula represented by Equation (37). In the formula, N and M represent the quantity of
models and datasets used in the experiment, respectively. The average rank of the xth and
yth models is symbolized as ARx and ARy respectively. Table 7 shows the comparison of
all the models using the z-value, p-value, and (α/N-i). The significance level used in the
assessment is 0.05, denoted by α.

Table 7. Test results of Holm method.

Holm Test

Sr. No. FS Models z Value p Value Alpha/v-i

1 FSGJO:WFS 5.755497 0.00001 0.01
2 FSGJO:FSGA 1.77302 0.038114 0.0125
3 FSGJO:FSPSO 4.418912 0.00001 0.016667
4 FSGJO:DE 2.56406 0.005174 0.025
5 FSGJO:ACO 2.045793 0.020393 0.05

Table 7 displays the outcomes of a Holm test carried out on five FS (Feature Selection)
models: FSGJO:WFS, FSGJO:FSGA, FSGJO:FSPSO, FSGJO:DE, and FSGJO:ACO. The table
presents the alpha/v-I, the p-value, and the z-value for each model. The adjusted alpha
level (α/N-i) was calculated based on their ranks and the number of models. The adjusted
alpha level is the significance level adjusted for the multiple comparisons in the test. It is
used to determine if a result is statistically significant after adjusting for the number of
tests conducted. The table indicates that, for the most part, the p-values are lower than or
equal to the adjusted alpha level (α/N-i), except for the FSGJO and FSGA models. These
findings indicate that, with the exception of the FSGA model, the FSGJO model exhibits
superior and statistically significant results compared to the other models. According to
the table, the FSGJO model has noteworthy outcomes and performs better than the other
models, except for the FSGA model. There is no statistical significance in the differences of
performance among these models.

7. Conclusions

In this study, a novel method for feature selection called FSGJO is introduced, which
employs metaheuristic optimization using the GJO algorithm to efficiently identify the
optimal set of features. The FSGJO feature selection technique strives to choose the most
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significant features within the solution space, aiming to exclude redundant and irrelevant
ones. This research assesses the efficiency of the FSGJO method on 12 different datasets
using four classifiers (DT, KNN, NB, and QDA). The primary objective is to compare
FSGJO’s performance with that of existing feature selection models such as FSPSO, FSGA,
FSDE, and FSACO, which have different benchmark dimensions. Statistical analysis using
the Friedman test indicated that at least two models differed significantly from one another,
and the null hypothesis was rejected, which led to the Holm test. Based on the results, it was
found that FSGJO displayed a better performance compared to other methods for selecting
features, both in relation to accurately classifying data and efficiently eliminating features
that were not useful. The advantage of GJO is its ability to handle high-dimensional
optimization problems with multiple objectives and avoid local optima by combining
exploratory and exploitative search strategies. The only limitation of the proposed model is
that its parameters must be adjusted according to the given problem. The proposed method
can be applied to other fields such as medical data and gene data.
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Abstract: The IoT and cloud environment renders enormous quantities of geospatial information.
Fog and mist computing is the scaling technology that handles geospatial data and sends it to the
cloud storage system through fog/mist nodes. Installing a mist–cloud–fog system reduces latency
and throughput. This mist–cloud–fog system has processed different types of geospatial web services,
i.e., web coverage service (WCS), web processing services (WPS), web feature services (WFS), and
web map services (WMS). There is an urgent requirement to increase the number of computer devices
tailored to deliver high-priority jobs for processing these geospatial web services. This paper proposes
a priority-queueing assisted mist–cloud–fog system for efficient resource allocation for high- and
low-priority tasks. In this study, WFS is treated as high-priority service, whereas WMS is treated
as low-priority service. This system dynamically allocates mist nodes and is determined by the
load on the system. In addition to that, the assignment of tasks is determined by priority. Not only
does this classify high-priority tasks and low-priority tasks, which helps reduce the amount of delay
experienced by high-priority jobs, but it also dynamically allocates mist devices within the network
depending on the computation load, which helps reduce the amount of power that is consumed
by the network. The findings indicate that the proposed system can achieve a significantly lower
delay for higher-priority jobs for more significant rates of task arrival when compared with other
related schemes. In addition to this, it offers a technique that is both mathematical and analytical
for investigating and assessing the performance of the proposed system. The QoS requirements
for each device demand are factored into calculating the number of mist nodes deployed to satisfy
those requirements.

Keywords: edge computing; cloud computing; geospatial data; fog computing; mist computing;
priority queue; geospatial web services; WMS; WFS

MSC: 60K25; 60K30; 68M20

1. Introduction

The demand for cloud services has significantly expanded in recent years as more
people have access to the technology required to run cloud computing. These days, off-
device computation and storage are accomplished through the usage of cloud services [1,2].
The internet of things (IoT) and cloud environments generate an enormous number of geo-
graphical data. The harnessing technology that analyzes geospatial data and provides it to
the cloud storage system via fog/mist nodes is referred to as fog and mist computing [3–5].

According to the report that was presented by [6,7], the size of the geospatial analytics
market is projected to increase from USD 74.78 billion in 2023 to USD 148.91 billion at a
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CAGR of 14.77% during the forecast period of 2023–2028. So, these statements motivate us
to deliver geospatial services quickly and effectively.

As a result, cloud computing, fog computing, and mist computing are currently the
most common forms of computing platforms. These forms of computing make virtualized
and scalable resources available through web services. Consequently, both the difficulty of
deploying and maintaining web applications and the quality of the environment in which
computing takes place are improved [8,9]. Cloud applications and the service providers
that support them are gaining popularity as a result of the unique features that they possess.
These properties include ease of maintenance, resilience, and sustainability, all of which
make it possible to schedule resources and maintain performance control. To improve
service delivery for various geospatial data, cloud, fog, mist, and edge computing systems,
they have been adopted by many authors [10,11]. However, adding an extra layer to the
conventional mist computing system is inefficient for many geospatial IoT devices. We need
to evaluate each layer experimentally and analytically to make it cost-efficient and improve
system performance. Geospatial IoT devices still communicate directly with cloud services,
allowing for more complex computations to be performed. Cloud computing has enabled
robust geospatial computing systems to share geospatial data among various parties. This
cloud architecture allows many users to access geospatial data through geospatial web
services (GWS) [12,13].

In a mist–cloud–fog system, particularly for GWS, the computation jobs need to be
correctly divided between the mist and fog nodes. This ensures that the mist, the fog
devices, and the cloud can coordinate effectively and adequately. As a result, we use
queuing theory for the performance study to examine this kind of resource allocation
approach [10,11,14].

To enable online geospatial services, the open geospatial consortium (OGC) has re-
cently published a set of specifications that are either an adaptation or an extension of
the usual online service standards. Standardizing service interfaces and data models is
possible with several well-known products such as WMS (web map service), WFS (web
feature service), WCS (web coverage service), and CSW (catalogue service for the web).
In the meantime, a web processing service (WPS) interface can be utilized to gain access
to any environmental model or geospatial algorithm that is classified as a geoprocessing
service [15–17].

The queuing model has seen extensive use for this kind of study since it may shed
light on various QoS parameters, including the response time for the system, CPU utiliza-
tion, mean throughput, and many more. Mist computing is used to provide improved
QoS for high-priority tasks. However, due to the limited computing available on most
devices, finishing some allotted work within a delay threshold is possible. This is one of
the drawbacks of using mist computing. In [18], the authors suggested that the limited
processing capabilities of mist devices place a ceiling on the number of task requests. As a
result, we utilize a priority queueing strategy to maximize the high-priority task request
rather than consider another low-priority task.

Thus, this study presents a priority-queuing assisted mist–cloud–fog system for
geospatial applications to allocate resources to efficiently provide high- and low-priority
tasks. WFS is given a high-priority status in this study, whereas WMS is given a low-priority
status. This system determines how to dynamically allocate mist nodes in a way that is
dependent on the load being placed on the system. The load defines how the system should
allocate mist nodes.

1.1. Contributions

The present research paper is structured with the following contributions:

• It presents a description of geospatial computing paradigms, geospatial web ser-
vices, and different performance evaluations strategies, with varieties of queueing
approaches associated with edge, mist, fog, and cloud computing perspectives.
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• It introduces the priority queueing-assisted mist–cloud–fog system for geospatal
web services.

• It provides the analytical queueing approach along with performance analysis for the
proposed system.

• It also carries the performance measurement and experimental results of the proposed
system with the variability of arithmetic outcomes in graphs.

1.2. Organizations

The rest of the paper is organized as follows. Section 2 explains the related work. It
details the geospatial computing paradigm, the geospatial web services, and the perfor-
mance evaluations of various models used in different application domains. Section 3
presents a detailed description of the proposed priority queueing analytical approach for
the mist–cloud–fog system for geospatial web services. Section 4 presents the experimental
results and performance evaluation of the proposed model and the proposed model’s
performance measurement and experimental results, which are based on the variability
of arithmetic outcomes in graphs. Section 5 draws the concluding remarks of the present
research paper.

2. Related Work

2.1. Geospatial Computing Paradigms
2.1.1. Geospatial Edge Computing

The term “edge computing” refers to an advanced technology that transfers a module,
data, or service from one internet hub to the subsequent hub. A customer who is either
physically present or easily duped is close. The perimeter of this computing system is
where the data are generated and handled. Through the utilization of this computing
technology, edge devices are given the ability to interact with cloud platforms [16,19].
Before cloud platforms can be upgraded to leverage cloud services, the model must alter
to sort information by velocity, volume, and variety. Edge computing equalizes data
providers and consumers. Near-edge cloud computing jobs are carried out. This computing
stores, distributes, caches, processes, and delivers data to clients. Because so many jobs
are running on the edge computing network, the edge hubs need to be constructed to
meet the requirements for data reliability, privacy, and data security [20]. In this edge
computing design, the processing assets should be located close to the information sources.
These advantages of cutting-edge standards outweigh those of the cloud framework.
For example, mobile phones symbolize the transition between the cloud and the human
body, whereas smart houses symbolize the transition between the cloud and the domestic
sphere. The cloud-to-mobile edges comprise cloudlets and tiny data centers [1].

2.1.2. Geospatial Mist Computing

Mist computing offloads some computation to the cloud data center’s network’s
edge, actuator devices, and sensors. Mist computing in embedded nodes’ microcontrollers
computed the network’s edge [11,21,22]. Mist computing minimises latency and boosts
autonomy. Cloud, fog, and mist computing are complementary because the fog layer’s
gateway can run computationally complex application tasks, while edge devices can run
less intensive ones [23].

The user can access cloud data centre data. Mist computing provides varied ser-
vices across computing nodes. Cisco invented fog and mist computing, which expands
client–server architecture like edge. Geosptial mist computing has four layers: cloud, fog,
mist, and edge [10,18].

2.1.3. Geospatial Fog Computing

Cisco invented fog computing in early 2012. This computing paradigm gives untrained
users data center resources. It does not use cloud data centers for computing. Cloud servers
make computation and data storage for convenient for customers, reducing latencies
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relative to transmission overheads. They provide a user interface similar to smart devices.
Local processing offers data compression, faster throughput, and decreased latency. Smart
cities, residences, and healthcare use fog computing [24–26].

Fog computing uses fog devices. Raspberry Pi and Intel Edison fog devices are
cloud-to-user gateways. Geographic big data analysis and distribution require scalable
and efficient geospatial fog computing systems. Fog computing minimizes latency and
increases throughput for ignorant clients. Fog architecture stores geographical data near
local devices instead of a cloud infrastructure data server [2,27,28].

A fog computing system processes customer requests and returns responses. Cloud
computing supplies storage and analysis. All resource utilization components, including
fog servers, respond to unequal demands. Inefficient resource management reduces QoS
and increases energy usage [29–32]. Smart cities use fog computing to manage urban data.
Fog computing can promote smart cities, urban business, industry, tourism, and transit
management [30,33,34].

2.1.4. Geospatial Cloud Computing

The method of cloud computing deals with an enormous number of large data by
dividing up the available computer resources among multiple locations in the cloud.
The paradigm of cloud computing allows for the pooling of resources and the provision of
services on demand. You are able to do data analysis and visualization with the help of
this computing method [17,23,35].

A multi-tenant design is supported by geospatial cloud computing systems, and a
single instance can serve several customers for processing, storage, and data transfer.
Putting in place enhancements and additional software benefits the user. In cloud GIS
architecture, geospatial web services are the essential component of the core functional
feature. The discovery of app data and features is performed by a number of geospatial
cloud computing solutions using geospatial web services. Because of this, they are utilized
in the SOA infrastructure operations of enterprise organizations [35–37].

There are three client tiers available in a geospatial cloud computing system: thin,
thick, and mobile. Mobile clients use mobile devices. Thin clients are those that function
on web browsers, whereas thick clients are those that function on desktop or standalone
systems. In order to connect to cloud servers, thick clients require an additional module or
piece of software. On the application layer, servers are responsible for running geospatial
web services. This facilitates communication between the many service providers and the
end users. Within the application-tier, there is a separate dedicated server for every one of
the application services (WPS, WCS, WMS, and WFS, respectively).

The Table 1 highlights the various aspects of geospatial computing paradigms by
addressing the cloud, fog, mist, and edge computing paradigms for geospatial applications.

Table 1. Features of geospatial computing paradigms through cloud, fog, mist, and edge computing.

Features Cloud Fog Mist Edge

Mobility management No Yes Yes Yes
Computing resources Yes Yes Yes Yes

Virtualization mechanism Yes Yes Yes No
Scalability support Yes Yes Yes Yes

IoT uses Yes Yes Yes Yes
Large-scale storage Yes No No No

Real time applications No Yes Yes Yes
Inter-operability support No Yes Yes Yes

High energy consumption Yes No No No
Low latency No Yes Yes Yes

Location awareness No Yes Yes Yes
Standardized Yes Yes No No

Geographically distributed No Yes Yes Yes
Large-scale processing power Yes No No No
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The geospatial mist–cloud–fog model is presented in Figure 1 with the integration of
the geospatial edge, mist, fog, and cloud computing system.

Figure 1. General mist–cloud–fog model for geospatial web services and geospatial data processing.

2.2. Geospatial Web Services

The development of a wide variety of web-based models by scientists is facilitated by
geospatial web services (GWS). The development of technology based on cloud computing
has opened the door to environmental modeling that is both quicker and more effective.
There are public cloud, private cloud, and hybrid cloud products [2,36,38]. GWS caters to
the requirements of environmental scientists developing and distributing their models in
several ways to meet their needs. The phrase geoprocessing service describes any function
or model for processing geospatial and associated data, whereas the term geospatial data
service refers to geospatial services for collecting geospatial data. Both geospatial data and
geoprocessing services can be derived from GWS in their own right [23,35,39].

Users can access, edit, and utilize hosted geospatial feature datasets through WFS.
Distributed tools are used in WMS to produce and host both static and dynamic maps.
Access to coverage data in practical formats for client-side rendering, as input into scientific
models, and for usage by other clients is made available by a WCS. Users can use web
processing services to run GIS calculations on geospatial data. WPS has standardized
geospatial statistics methods and standardizes inputs and outputs for geospatial data
within the geospatial cloud platform [40,41].

GWS alleviates the burden of tasks by utilizing the combined capacity of distributed
services throughout the network. It is accomplished by using massive volumes of geo-
graphical data and functions flexibly [24,38].

Compared to the conventional method, in which each activity is carried out on an
individual computer, this method facilitates greater remote participation, promotes collabo-
ration, and enhances the repeatability of research.

Many web-based geospatial applications, also known as spatial data infrastructures
(SDIs), have been built to utilize geospatial data, geoprocessing services, or both. When
many GWSs are available online, researchers integrate various services to fulfill the re-
quirements of more complicated applications. As a result, geospatial analysis and the
deployment of GWS are both commonly carried out on the cloud (for example, on Amazon
Web Services (AWS), Microsoft Azure, and Google Cloud) [2,41,42].

Specific cloud infrastructures and web services standards are typically created by
integrating cloud, fog, and mist computing with diverse geographic applications.

2.3. Performance Evaluations Strategies

Many research works have been carried out where priority and non-priority queueing
analytical methodologies have been employed to conduct performance assessments on
computing-based systems based on edge, cloud, fog, and mist systems. This is to achieve
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the objective of conducting performance assessments. Table 2 compares different queuing
mathematical and analytical approaches used by other researchers in the context of the
various application services. It can be observed that most of the research works preferred
different strategies to the norm.

Table 2. Review of various queuing approaches used in edge, cloud, fog, and mist systems.

Various Queuing Approach

Year Author Reference Edge Mist Fog Cloud Approach

2011 Khazaei et al. [43] � � � � M/M/1
2011 Khazaei et al. [43] � � � � M/G/s
2012 Ellens et al. [44] � � � � M/M/c/N
2012 Do et al. [45] � � � � M/M/m/m
2013 Salah [46] � � � � M/M/1
2013 Pal and Hui [47] � � � � M/M/1
2014 Mohanty et al. [48] � � � � M/M/1
2014 Chiang et al. [49] � � � � M/M/c/N
2015 Evangelin and Vidhya [50] � � � � M/M/1
2015 Cheng et al. [51] � � � � M/M/1
2015 Bai et al. [52] � � � � M/M/c
2015 Kirsal et al. [53] � � � � M/M/c
2015 Guo et al. [54] � � � � M/M/1
2016 Akbari et al. [55] � � � � M/M/1
2017 Chang et al. [56] � � � � M/M/1
2017 Liu et al. [57] � � � � M/M/1
2017 El Kafhali and Salah [30] � � � � M/M/c
2017 Safvati and Sharzehei [58] � � � � M/M/1
2018 Tadakamalla et al. [59] � � � � M/M/1
2018 Sthapit et al. [60] � � � � M/M/c
2018 Chunxia and Shunfu [61] � � � � M/M/1
2018 Sophin et al. [62] � � � � M/M/c
2018 Vasconcelos [63] � � � � M/M/1
2019 Barik et al. [2] � � � � M/M/c
2019 Jafarnejad et al. [64] � � � � M/M/1
2019 Barik et al. [23] � � � � M/M/c
2019 Li et al. [65] � � � � M/M/1
2020 Kumar and Raja [66] � � � � M/M/1
2020 Xu et al. [67] � � � � M/M/1
2020 Patra et al. [68] � � � � M/M/1
2020 Bouanaka et al. [21] � � � � M/M/1
2021 Sedaghat et al. [69] � � � � M/M/1
2021 Sufyan and Banerjee [70] � � � � M/M/1
2021 Tadakamalla and Menasce [71] � � � � M/M/1
2021 Feitosa et al. [72] � � � � M/M/1
2021 Panigrahi et al. [73] � � � � M/M/1
2021 Behera et al. [74] � � � � M/M/c/N
2021 Hmissi and Ouni [11] � � � � M/M/1
2021 Dutta et al. [22] � � � � M/M/1
2021 Shahid et al. [18] � � � � M/M/1
2022 Mas et al. [75] � � � � M/M/1
2022 Rodrigues et al. [76] � � � � M/M/c/K
2022 Hamdi et al. [77] � � � � M/M/1
2022 Nikoui et al. [5] � � � � G/G/1
2022 Golkaret al. [9] � � � � Multi Queue Priority
2022 Maiti et al. [76] � � � � M/M/c
2023 Arefian et al. [14] � � � � M/M/1
2023 Hazra et al. [78] � � � � M/M/k
2023 Goswami et al. [3] � � � � M/M/c
2023 Yazdani et al. [79] � � � � M/M/1
2023 Saif et al. [80] � � � � M/M/1 and M/M/c
2023 Saif et al. [81] � � � � M/M/1 and M/M/c
2023 Mallick et al. [13] � � � � M/M/c

Many different networking fragments are available in an edge, mist, fog, and cloud
computing platform, and each networking device operates according to the concept of
“first come, first serve”. The queueing model has become an important consideration in the
system model to evaluate the effectiveness of cloud computing.
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Muniir et al. [82] also demonstrated and detailed an integrated fog-assisted cloud ar-
chitecture for IoT applications that improve performance, latency, scalability, and localized
accuracy. To explore and analyze the performance of geospatial fog computing systems
within the healthcare business, Barik et al. [2] developed a queuing mathematical and
analytical technique. Barik et al. [23] developed a mathematical and analytical approach to
queuing in order to explore and examine the performance of geospatial mist computing
systems in the education and tourism industries.

Mukherjee et al. [4] took into account a high-priority queue and a low-priority queue
in each fog node. These queues are filled with tasks that have directly arrived from the end-
users and have been offloaded from the fog nodes. Each task’s delay deadline determines
which queue it is placed in. In addition, the Lyapunov drift algorithm was utilized for
queue scheduling when the tasks in these two queues had stringent latency requirements.

Adhikari et al. [83] devised a plan for prioritizing the assignment of work by dividing it
into three distinct groups according to the lengths of their respective due dates. In addition,
they also established a rule-based task scheduling technique to discover an ideal sequence
for the tasks and reduce the time spent waiting in the queue.

Bhushan and Ma [8] presented an analytical queuing model to implement priority-
based job scheduling within a fog-cloud architecture. The model categorized the jobs into
two groups to facilitate the implementation of the priority-based service offering. Class 1
refers to computing jobs with a higher priority and more sensitivity to delays. In contrast,
Class 2 relates to computing tasks with lower priority and less sensitivity to delays.

He et al. [19] considered a scenario of cloud-assisted multi-access edge computing
involving multiple mobile devices. It considered the mobile devices in question to be
operating under an M/G/1 non-preemptive priority queueing model, with each edge
server operating under an M/G/m non-preemptive priority queueing model, and the
cloud data center operating under an M/G/∞ queueing model.

3. Proposed Model

This section presents the analytical queuing model for the mist–cloud–fog system
by describing its four-tier network topology, as represented in Figure 2. The first tier
is the bottom layer, the edge layer. It includes all IoT devices responsible for sensing a
wide range of events and relaying the raw detected data to the upper layer immediately
above them. It is predicated on the assumption that the total number of IoT devices
remains constant and equal to X end customers. The access point connects IoT devices
to the mist nodes, connecting them in wireless or cable connections. The access points
receive that inbound traffic from end clients. These IoT device messages are gathered at
the access points (positioned near the IoT devices) and then forwarded to the mist nodes
for further processing. The mist computing layer is the next layer near the client layer.
The mist computing layer comprises mist nodes that are clever enough to process, compute,
and temporarily store the information that has been received and transmit any leftover
requests or burdens to the fog tier for additional processing or storage. Each of these mist
nodes connects to the fog gateway. They are in charge of transmitting data to and from the
cloud via the fog gateway. The cloud layer is the uppermost tier. This layer comprises a
large data center where virtual machines can process and store massive data.
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Figure 2. Proposed preemptive-resume priority queueing analytical approach.

Figure 3 describes the overall sequence diagram of the proposed architecture.

Figure 3. Sequence diagram of the proposed mist–cloud–fog system with preemptive-resume priority
queueing approach.

Let us assume that tasks arrive as a Poisson process at a single exponential processor
and that each job is assigned to one of the two priority classes upon arrival in the system. It
is customary to number priority tasks so that small numbers correspond to higher priorities.
Assume that the (Poisson) arrivals of the first or higher priority task have a mean arrival
rate λh and those of the second or lower priority task have a mean arrival rate λ�. The total
arrival rate is λ = λh + λ�.

Queue disciplines that prioritize specific tasks are frequent in service systems. Priority
can be based on elements such as the classification of tasks and the type of service. With the
advent of cloud computing, a broad range of priority tasks were put in to improve system
measures. Analyzing more variants entails much more complex underlying processes.

Here, we discuss the priority model of two-type as part of the M/M//1 set-up.
To start, when considering the priority queues in the fog system, the following components
need special attention:

• There is more than one class of tasks on the basis of their demands or significance to
the system.
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• The tasks of one class are more important than the other. When there are more than
two classes, it is possible to organize them into a hierarchy of service priorities.

• The priority that agrees with a class of tasks may or may not be preemptive. If one
task is prioritized in relation to another, the priority task will prevent the non-priority
task from obtaining service.

• When service preemption is permitted, it can resume the service to the preempted
task after the priority tasks are processed, from when the service was preempted or
initiated from the start. They are disciplines of preventive recovery and preventive
repetition, respectively.

Consider the preemptive-resume priority class for the M/M/1 queue. Tasks of type
1 are a higher priority for the service than tasks of type 2. By preemptive resume, we
mean that a Class 1 task will be served immediately upon arrival if there are not already
Class 1 tasks in the system. As a result, a Class 1 task may preempt a Class 2 task already
on the service system. If a class 2 task is preemptive, it goes to the “top of the line” for
Class 2 jobs, and when processed, the service is restarted, not repeated. Let the arrival
and departure of the task take place according to Poisson and exponential distribution,
respectively. The arrival and processing rates of the tasks of the two types are as follows:
Type 1—arrival rate λh, processing rate μh; Type 2—arrival rate λ�, service rate μ�. Since
the processing time of the task is exponentially distributed, the memory-less property of
the processing-time distribution makes it easier to simplify the preemptive-resume analysis.
Figure 4 depicts the flow chart of the proposed preemptive-resume priority queueing model
for WFS and WMS.

Start

PriorityHigh priority task:WFS Low priority task: WMS
yes no

Available Available

Vector geospatial
data visualization

Low priority

Raster geospatial
data visualization Wait in queue

Preempt the low
priority task

Wait in queue

Yes No Yes No

Yes No

Figure 4. Flow chart of proposed preemptive-resume priority queueing model for WFS and WMS.

In the case of a preemptive priority scheme, system tasks are ranked in order of priority.
The moment the high-priority task arrives, a low-priority task in the process is turned
out from service immediately. The disrupted task is permitted back into service once the
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system has no higher-priority task. As we assume a preemptive resume policy, when the
service resumes, it proceeds from where it was disrupted.

Let us assume π(m, n) is the steady state of two types of tasks, where the number of
high-priority and low-priority tasks are m and n, respectively. The common notations and
their representations used across the paper are given in Table 3. We have the following
equations in steady-state by applying flow out = flow in:

(λh + λ�)π(0, 0) = μhπ(1, 0) + μ�π(0, 1), (1)

(λh + λ� + μh)π(m, 0) = λhπ(m − 1, 0) + μhπ(m + 1, 0), m ≥ 1, (2)

(λh + λ� + μ�)π(0, n) = λ�π(0, n − 1) + μhπ(1, n) + μ�π(0, n + 1), n ≥ 1, (3)

(λh + λ� + μh)π(m, n) = λhπ(m − 1, n) + λ�π(m, n − 1)

+ μhπ(m + 1, n), m, n ≥ 1. (4)

Under equilibrium conditions (λh < μh), the probability distribution for the number
of tasks of type 1 in the system is

π(1, n) = ρn
h(1 − ρh), n ≥ 1

where ρh = λh/μh. For the class 1 tasks, the class 2 tasks do not exist. Thus, we have

E(Lh) =
ρh

1 − ρh
. (5)

As the processing times of all tasks are exponentially distributed with the same mean,
the complete tasks in the system do not depend on their processing. This number is, there-
fore, the same as in the system in which all tasks are completed in order of arrival. Hence,

E(L�) =
ρ�

1 − ρh − ρ�

[
1 +

μ�ρh
μh(1 − ρh)

]
(6)

where ρ� = λ�/μ�.

E(Lh) + E(L�) =
ρh

1 − ρh
+

ρ�
1 − ρh − ρ�

[
1 +

μ�ρh
μh(1 − ρh)

]
. (7)

The mean number of low-priority tasks in the mist–fog system is

∞

∑
n=0

n π(m, n) =
ρ�

1 − ρh − ρ�

[
1 +

μ�ρh
μh(1 − ρh)

]
.

The mean sojourn time of high-priority tasks in the mist–fog structure is

Wh =
1

μh − λh
(8)

and for low-priority tasks by

W� =
1

μ�(1 − ρh − ρ�)

[
1 +

μ�ρh
μh(1 − ρh)

]
. (9)

The average sojourn time in the queue of high-priority task class is given by

Wq,h =
ρh

μh(1 − ρh)
(10)
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The average sojourn time in the queue of low-priority task class is

Wq,� =
1

μ�(1 − ρh − ρ�)

[
ρh + ρ� +

μ�ρh
μh(1 − ρh)

]
. (11)

In steady-state, let E(Lj) be the mean number of type-j jobs in the system. The E(Lk)
of the kth task class is generalized (Jaiswal 1968 [84]) and is given by

E(Lk) =
ρk

1 − ∑k−1
j=1 ρj

+
λk ∑k

j=1(λj/μ2
j )

(1 − ∑k−1
j=1 ρj)(1 − ∑k−2

j=1 ρj)
. (12)

Table 3. Notations used.

Notation Representation

λh High-priority task arrival rate
λ� Low-priority task arrival rate
μh Service rate of high-priority task
μ� Service rate of low-priority task
λ Total task arrival rate
μ Service rate of total task
ρ System utilization factor

E(Lh) Average number of high-priority tasks in the system
E(L�) Average number of low-priority tasks in the system

Wh Average sojourn time of high-priority tasks in the system
W� Average sojourn time of low-priority tasks in the system

Wq,h Average sojourn time in the queue of high-priority task class
Wq,� Average sojourn time in the queue of low-priority task class
Ch Cost of having a task of high-priority class
C� Cost of having a task of low-priority class

Δ(F(λ)) Expected total cost

Optimal Cost for Task of Priorities

Let us assume that the priorities are pre-assigned. To compare several potential
priority tasks, we require the associated cost factors. The optimum allocation of tasks
is that for which the total cost is a minimum. Consider that Ch is the cost of having a
task of high-priority class, and C� is the cost of having a task of low-priority class. Here,
Ch, C� ≥ O. Especially, if Ch = C� is equal, then we are looking for a priority allocation
that minimizes the expected number of tasks in all classes. In the model discussed here,
there are two classes of tasks, specified by arrival and processing rates (λi, μi) for i = h, �,
and the priority allocation is high for i = h and low for i = �. Then the expected total cost is

F(λ�, μ�, C�; λh, μh, Ch) = C�E(L�) + ChE(Lh), (13)

Using (5) and (6) in (13), we find the cost function to be

Δ(F(λ�)) = F(λ�, μ�, C�; λh, μh, Ch) =
C�ρ�

1 − ρh − ρ�

[
1 +

μ�ρh
μh(1 − ρh)

]
+

Chρh
1 − ρh

.

We alter this priority allocation to low for i = h and high for i = � and study the impact of
this variation on the cost function (13). Therefore,

Δ(F(λh)) = F(λh, μh, Ch; λ�, μ�, C�) =
Chρh

1 − ρ� − ρh

[
1 +

μhρ�
μ�(1 − ρ�)

]
+

C�ρ�
1 − ρ�

.

After simplification, we have

Δ(F(λ�)) < Δ(F(λh)),
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this implies that the class h tasks should be allocated higher priority when

Ch μh > C� μ�.

The algorithm for finding optimal cost for task of priorities is described in Algorithm 1.

Algorithm 1 Algorithm for finding optimal cost for task of priorities
Input: λh, λ�, μh, μ�, Ch, C�.
Output: ΔF(λh), ΔF(λ�),

1: Initialize:
2: ρh = λh

μh
< 1, ρ� =

λ�
μ�

< 1.
3: Ch ← Cost of having a task of high-priority class.
4: C� ← Cost of having a task of low-priority class.
5: Compute:
6: E(Lh) =

ρh
1−ρh

;

7: E(L�) =
ρ�

1−ρh−ρ�

[
1 + μ�ρh

μh(1−ρh)

]
;

8: Z = Δ(F(λi)) = Ch E(Lh) + C� E(L�);
9: Compute:

10: Δ(F(λ�)) =
C�ρ�

1−ρh−ρ�

[
1 + μ�ρh

μh(1−ρh)

]
+ Chρh

1−ρh
;

11: Δ(F(λh)) =
Chρh

1−ρ�−ρh

[
1 + μhρ�

μ�(1−ρ�)

]
+ C�ρ�

1−ρ�
;

12: return Z
13: exit

4. Numerical Results

To illustrate the analytical results presented herein, some numerical results are il-
lustrated in tables and figures. The calculations were made with double accuracy and
performed in a 64-bit windows ten professional OS possessing Intel® Core i5 6200U proces-
sor @2:30 GHz and 8 GB DDR3 RAM manufacturer Dell utilizing MAPLE 22 software. We
reported the numeric results to only the nearest four digits, but the results were very accurate.

Figure 5 depicts the impact of ρ on the average number of tasks in the system for two
priority classes. We observe that in the mist–fog system, the average number of tasks rises
with the increase in ρ, and even more so in priority class-2, which is the low-priority class.
When there are two priority classes, as far as the higher-priority task is referred, the system
performs just like a regular M/M/1 system. Figure 6 describes the impact of ρ on the mean
number of tasks in the system for five priority classes. One can see that with an increase
in ρ, the mean number of tasks in the system increases. The average number of tasks in
the system is less in the case of priority class 1 than in other priority classes. In this case,
the system outperforms when the value of ρ is lower.

Figure 7 plots the dependence of ρ on the average waiting time in the queue (Wq).
Observe that the system Wq increases with an increase in ρ. For higher values of ρ, the vari-
ation in mean waiting time in the queue for both classes increases. The mean waiting time
in the queue is less for the higher-priority task than for the low-priority task. However, the
impact of the low-priority task is twofold: the queue time and the processing time. Figure 8
illustrates the influence of the mean waiting time in the queue (Wq) on the ρ. With an
increase in ρ, we note an increasing trend in all priority classes. For priority class 1, Wq is
almost static when ρ is more significant than 0.5. We note that the performance of various
classes impacts the system’s performance. For instance, the processing time and wait time
are more in class 5 than in class 4. Thus, a hierarchy of priorities would arise if there were
more classes of tasks.
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Figure 5. Impact of ρ on L with two priority classes.
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Figure 6. Impact of ρ on L with five priority classes.

Figures 9 and 10 show the impact of λ on server utilization % and the average waiting
time in the mist–fog system (W), respectively. From Figure 9, we observe an increasing
trend, with an increase in λ. But, with the rise of μ, we see a decreasing trend. Also,
the server utilization % increases with the increase in arrival rate with a fixed service rate.
Thus, we may carefully assume the arrival and service rate to ensure the balance of the
server utilization of the system. From Figure 10, we note an increasing trend, with an
increase in λ. For the small value of μ, the average waiting time rises monotonically.
Moreover, with a fixed service rate, the average wait time increases with the increase in
the arrival rate. To reduce the average wait time of the system, we can meticulously put in
place the service and the arrival rate to achieve it.
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Figure 7. Impact of ρ on Wq with two priority classes.
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Figure 8. Impact of ρ on Wq with five priority classes.

Tables 4 and 5 present performance measures of the task allocation system of two
priority class when μh = μ� and μh �= μ�, respectively. In Table 4, we vary λ1 and assume
other parameters as λ� = 5 and μh = μ� = 10.9091. Note that with the gain of λh,
the performance indices increases. Comparing priority type 1 and type 2, observe that the
mean number of tasks in the queue (system) and the average waiting time in the queue
(system) is less in the case of priority class 1. In Table 6, we vary λh and assume other
parameters as λ� = 5, μh = 10.9091, and μ� = 10.9091. We also compared the system when
there was no priority task. The relevant results are presented in the second column of the
tables as the overall result.
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Figure 9. Effect of λ on percentage of server utilization.
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Figure 10. Effect of λ on W.

Table 4. Performance measures of two priority classes.

λ� = 5, μh = μ� = 10.9091

λh = 1 λh = 2

Overall Type-1 Type-2 Overall Type-1 Type-2

Ls 1.222222 0.100917 1.121305 1.790698 0.22449 1.566208
Lq 0.672222 0.009251 0.662971 1.149031 0.041156 1.107875
Ws 0.203704 0.100917 0.224261 0.255814 0.112245 0.313242
Wq 0.112037 0.009251 0.132594 0.164147 0.020578 0.221575

λh = 3 λh = 4

Overall Type-1 Type-2 Overall Type-1 Type-2

Ls 2.75 0.37931 2.37069 4.714286 0.578947 4.135338
Lq 2.016667 0.10431 1.912356 3.889286 0.212281 3.677005
Ws 0.34375 0.126437 0.474138 0.52381 0.144737 0.827068
Wq 0.252083 0.03477 0.382471 0.432143 0.05307 0.735401
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Table 5. Performance measures of two priority classes when μh �= μ�.

λ� = 5, μh = 10.9091, μ� = 12

λh = 1 λh = 2

Overall Type-1 Type-2 Overall Type-1 Type-2

Ls 0.165636 0.100917 0.064719 0.305812 0.224489 0.081322
Lq 0.023970 0.009251 0.014719 0.072478 0.041156 0.031322
Ws 0.103523 0.100917 0.107865 0.117619 0.112245 0.135537
Wq 0.014981 0.009251 0.024532 0.027876 0.020578 0.052203

λh = 3 λh = 4

Overall Type-1 Type-2 Overall Type-1 Type-2

Ls 0.484291 0.37931 0.104981 0.719247 0.578947 0.140301
Lq 0.159291 0.10431 0.054981 0.302581 0.21228 0.090301
Ws 0.134525 0.126436 0.174968 0.156358 0.144737 0.233834
Wq 0.044247 0.03477 0.091635 0.065778 0.05307 0.150501

Table 6. Performance measures of five priority classes.

λ1 = 1, λ2 = λ3 = λ4 = λ5 = 2, λ = 5, μ = 10, ρ = 0.9

Overall Type-1 Type-2 Type-3 Type-4 Type-5

Ls 9 0.111111 0.31746 0.571429 1.333333 6.666667
Lq 8.1 0.011111 0.11746 0.371429 1.133333 6.466667
Ws 1 0.111111 0.15873 0.285714 0.666667 3.333333
Wq 0.9 0.011111 0.05873 0.185714 0.566667 3.233333

λ1 = 0.5, λ2 = λ3 = λ4 = λ5 = 1, λ = 5, μ = 10, ρ = 0.45

Overall Type-1 Type-2 Type-3 Type-4 Type-5

Ls 0.818182 0.052632 0.123839 0.156863 0.205128 0.27972
Lq 0.368182 0.002632 0.023839 0.056863 0.105128 0.17972
Ws 0.181818 0.105263 0.123839 0.156863 0.205128 0.27972
Wq 0.081818 0.005263 0.023839 0.056863 0.105128 0.17972

Figures 11 and 12 demonstrate the impact of processing rate μh on total cost of low-
and high-priority tasks when λh = λ� and λh �= λ�, respectively. One may note that the
total cost decreases as μh increases in both cases. When λh = λ�, the total cost of the
low-priority task decreases more rapidly for higher values of μh in comparison to the
high-priority task. But the result is just reversed in the case of λh �= λ�.
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Figure 11. Cost function when λh = λ�.
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Figure 12. Cost function when λh �= λ�.

5. Concluding Remarks

In this article, the concepts of cloud computing, fog computing, and mist computing
for geospatial web services, in particular WMS and WFS, are analyzed and explored. This
paper proposed the preemptive-resume priority queueing strategy for the mist–cloud–fog
system and associated components for improved data processing and analysis in geospatial
web applications. Because of the mist and fog nodes, the number of geospatial data that
need to be stored as well as processed is cut down, which results in transmission that
is both efficient and has a lower latency and throughput. Additionally, a priority-based
queuing strategy was presented in order to limit the dynamism of the suggested model and
conduct analysis on it. Using the proper diagrams, the performance analysis, performance
assessment, and performance measurement of the provided framework, in addition to the
experimental results, have been discussed.

The proposed model is going to be put to the test in future application-oriented
case studies, which will will include a wide range of parameters. The model that was
suggested incorporates, among other things, specific data regarding the utilization of the
CPU, the response time, the loss rate, the throughput, and the average number of jobs that
were requested.
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Abstract: An intelligent fuzzy-based control system that consists of several subsystems—a fuzzy
collision evaluator, a fuzzy collision avoidance acting timing indicator, a collision-free trajectory
generator, and a nonlinear adaptive fuzzy robust control law—is proposed for the collision-free
condition and trajectory tracking of unmanned surface vessels (USVs). For the purpose of ensuring
that controlled USVs are capable of executing tasks in an actual ocean environment that is full of
randomly encountered ships under collision-free conditions, the real-time decision making and the
desired trajectory arrangements of this proposed control system were developed by following the
“Convention on the International Regulations for Preventing Collisions at Sea” (COLREGs). From the
simulation results, several promising properties were demonstrated: (1) robustness with respect to
modeling uncertainties and ocean environmental disturbances, (2) a precise trajectory tracking ability,
and (3) sailing collision avoidance was shown by this proposed system for controlled USVs.

Keywords: intelligent unmanned surface vessel; fuzzy-based ship collision avoidance system;
nonlinear fuzzy robust control law

MSC: 93B51

1. Introduction

Shortages of crew and experienced seafarers have affected the shipping industry
for years and are expected to worsen over the next couple of years due to the pandemic
impacting training. Many experienced crews have also decided to leave the industry
as they were stuck onboard vessels for months due to pandemic restrictions. Shipping
companies have started to take the approach that intelligent unmanned surface vessels
(USVs) are the future of marine industries [1]. They believe that intelligent unmanned
surface vessels will not only solve the problem of seafarer shortages but also revolutionize
the prospects of ship design and operations to reduce human error, expenses, and so on [1].
For the reasons above, the development of intelligent USVs has become a new trend for
advanced ship designs because they possess the ability to execute given tasks, such as ocean
military and research activities, without humans and to satisfy requirements due to the
rapid growth in global trades. A race between major shipbuilding companies and research
institutes for autonomous ship designs is already underway, and the related autonomous
ships market is predicted to reach a value of USD 235.73 billion by 2028 according to
Acute Market Reports [2]. The Korean shipbuilding company Hyundai Heavy Industries’
Avikus seized the opportunity to complete the world’s first transoceanic voyage on 2 June
2022 [3] with their new LNG carrier design, “the Prism Courage which equipped with level
two autonomous navigation technology”. It is worth mentioning that the Prism Courage
sailed roughly 10,000 km using an autonomous navigation system, and this was almost
half of the distance of the voyage. This application reveals that key technologies for well-
developed intelligent unmanned surface vessels include collision risk evaluation, real-time
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planning of collision avoidance trajectories according to the COLREGs (Convention on the
International Regulations for Preventing Collisions at Sea 1972), effective evasion decision
making, and precise control methodology. Currently, most collision avoidance methods
still focus on the developments of collision avoidance strategies without taking ship models
and control laws into account via arranging several scenarios in waterways [4–6], and
indeed, these methodologies cannot cover all sailing situations or control the trajectory
tracking performances of ships. As mentioned above, these published results have excluded
guidance systems and ship models even though they have developed collision-free methods
following the COLREGs. In recent years, there has been an increase in the amount of studies
discussing the integration of the COLREGs, decision-making functions, and guidance
systems. These researchers demonstrated the concepts of combining static optimized
collision avoidance paths with PI or PID linear controllers [7,8]. However, ship–ship
dynamics were not considered in the design procedures; hence, they are only workable
at certain operating conditions and are not applicable in real applications. Currently,
these kinds of collision avoidance control designs are still the main trend. As for the
literature that took ship–ship dynamics into consideration, simplified ship models were
mostly adopted for designing the guidance systems of USVs and never included the effects
of ocean disturbances (wave, current, and wind) and USVs’ modeling uncertainties [9].
In 2021, one published study proposed a rare example of a collision avoidance control
system that advanced the collision avoidance guidance system designs of USVs [10]. This
paper proposed a smart collision avoidance control design that fulfilled the COLREGs
and considered challenging ocean environmental disturbances simultaneously. The smart
collision avoidance control system was designed by integrating a collision risk indicator, a
collision avoidance acting timing indicator, and a velocity reduction generator based on
fuzzy rules that accumulated experience from expert captains, an optimal collision-free
trajectory generator based on an oscillatory particle swarm optimizer (OSC-PSO), which
naturally requires a high computational cost due to iterative calculations, and a nonlinear
optimal guidance system. One drawback: “This integrated control design reveals a weak
immunity to ocean environmental disturbances and modeling uncertainties of USVs”, was
found after performing more simulations. To increase immunity to ocean environmental
disturbances, model uncertainties of USVs, and reduce the computational cost, an intelligent
fuzzy-based control system that integrates an intelligent collision avoidance system and
a nonlinear adaptive fuzzy robust control law is proposed in this paper. The collision-
free trajectory generator of the intelligent collision avoidance system, constructed using
the cubic spline method, highly reduces the computational cost, and the cancellation
and elimination abilities of the adaptive fuzzy approximator and the robust compensator
overcome the effects of modeling uncertainties and ocean environmental disturbances.
Based on this arrangement, the proposed intelligent fuzzy-based control system delivers
more precise and robust abilities for USVs to sail in a challenging ocean environment. This
paper is organized as follows: in Section 2, the intelligent collision avoidance system and
nonlinear adaptive fuzzy robust control law are derived; in Section 3, the simulation results
of the proposed method with respect to COLREGs’ Rule 15—Crossing Situation is shown
and discussed; and in the last section, the conclusions of this proposed design are stated.

2. Problem Description and Design Objective

In this investigation, the design target was to develop a control system that can
intelligently make decisions to robustly guide the controlled USV to execute the given
missions by following the COLREGs in an ocean environment that is full of random
dynamical obstacles. The control design process for achieving this target is summarized
as follows:

2.1. Intelligent Collision Avoidance Control System for USVs

As shown in Figure 1, the intelligent fuzzy control system, which integrates a fuzzy
collision evaluator, a fuzzy collision avoidance acting timing indicator, a collision-free
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trajectory generator, and a nonlinear adaptive fuzzy robust control law, is illustrated. The
procedure of this proposed control system, which can make decisions by obeying the
COLREGs and precisely guide USVs to track arbitrary collision-free desired trajectories,
can be summarized with the following four phases:

Phase 1: Related position and attitude acquisitions of the controlled USV and correspond-
ing ships in the monitored area of the ocean.

Phase 2: Intelligent collision risk evaluation and collision avoidance decision making.
Phase 3: Real-time generation of a collision avoidance trajectory.
Phase 4: Robust and precise trajectory tracking executed by the controlled USV.

 

Figure 1. Details of the proposed collision avoidance control system for USVs.

The proposed control system has the function of collecting the positions, velocities,
and heading angles of two encountered ships by using the automatic identification system
(AIS) and automatic radar plotting aids (ARPA), respectively, for Phase 1. Using the
measured data in Phase 1, real-time intelligent collision risk evaluations and collision
avoidance decisions can be then calculated via the fuzzy collision evaluator and the fuzzy
collision avoidance acting timing indicator in Phase 2. Collision-free trajectories are further
generated based on the evaluation results from Phase 3. In Phase 4, the proposed nonlinear
adaptive fuzzy robust control law plays a role in precisely guiding the USV to follow the
collision-free trajectory generated in Phase 3. In Figure 1, μCRI ∈ [0, 1] is the evaluated index
of the fuzzy collision evaluator, and μCA ∈ [0, 1] is the evaluated index of the fuzzy collision
avoidance acting timing indicator. These two indices will be introduced in Section 2.3.
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2.2. Governing Equations of USVs

As shown in Figure 2, a 3DOFs model (surge, sway, and yaw) was adopted for a
controlled USV in this investigation.

Figure 2. Motions of USV in body-fixed and earth frames.

Dynamics of the controlled USV in the body-fixed frame is formulated as [10]:

MB

.
B + CB(B)B + DB(B)B = τB + τdB (1)

where B =
[
u v r

]T is the vector of velocities, u is the linear velocity in surge, v is the
linear velocity in sway, and r is the angular velocity in yaw. Additionally, MB is the mass
and inertia matrix, CB(B) is the Coriolis–centripetal matrix, DB(B) is the hydrodynamic
damping matrix, τB is the control input, and τdB is the ocean environmental disturbances.

The transformation between the body-fixed frame to the earth frame of the controlled
USV is:

.
η = J(η)B (2)

where η =
[
x y ψ

]T is the position of the controlled USV in the earth frame, and J(η) is
the transformation matrix:

J(η) =

⎡⎣cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎤⎦ (3)

The equations of motion of the controlled USV in the earth frame can be presented as:

ME(η)
..
η+ CE(B,η)

.
η+ DE(η)

.
η = τE + τdE (4)

where ME is the inertia mass in the earth frame, CE is the Coriolis–centripetal matrix in the
earth frame, DE(η) is the damping matrix in the earth frame, τdE is ocean environmental
disturbance, and τE is the control input.

The ocean environmental disturbance τdE contains three sub-disturbances, which are
the wave-induced disturbance τwave, wind-induced disturbance τwind, and ocean-current-
induced disturbance τcurrent:

τdE = τwave + τwind + τcurrent (5)

The equations of motion of the controlled USV in the earth frame in Equation (4)
will be used for the nonlinear fuzzy robust controller design, and the inertia mass ME(η),
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Coriolis and centripetal matrix CE(B,η), and damping matrix DE(η) can be expressed

as nominal value terms
¯
ME(η),

¯
CE(B,η),

¯
DE(η) and modeling uncertainties ΔME(η),

ΔCE(B,η), ΔDE(η):

ME(η) =
¯
ME(η) + ΔME(η)

CE(B,η) =
¯
CE(B,η) + ΔCE(B,η)

DE(η) =
¯
DE(η) + ΔDE(η)

(6)

Substituting (6) into (4), the dynamics equation of the USV can be reformulated as:

¯
ME(η)

..
η+

¯
CE(B,η)

.
η+

¯
DE(η)

.
η = τE + Ξ (7)

where
Ξ = τdE − ΔME(η)

..
η− ΔCE(B,η)

.
η− ΔDE(η)

.
η (8)

with
∥∥ΔME(η)

..
η
∥∥ ≤ ε1,

∥∥ΔCE(B,η)
.
η
∥∥ ≤ ε2, and

∥∥ΔDE(η)
.
η
∥∥ ≤ ε3 are bounded, and ε1, ε2,

and ε3 are finite and bounded values.

2.3. Generator of Collision-Free Trajectories

In the trajectory-tracking problem of USVs, a desired trajectory will be generated by
interpolating a set of assigned waypoints if a collision-free condition is not demanded.
However, the requirement of a collision-free condition must be met in practical sailing
applications of USVs; hence, a real-time modified desired trajectory with no expected
collisions should be arranged based on new sets of collision avoidance waypoints when a
warning of a ship-to-ship collision occurs. In this investigation, a modification in generating
sailing trajectories was adopted to create a collision avoidance trajectory for the controlled
USV. A brief description of this modified trajectory generator is given below.

The conventional trajectory is made of multiple third-order polynomials, and two
third-order polynomials can generate a continuous trajectory as follows:

xd(�) = a4�3 + a3�2+a2� + a1 (9)

yd(�) = d4�3 + d3�2+d2� + d1 (10)

where (xd (�), yd (�)) is the instantaneous position in the path, and a4, a3, a2, a1, d4, d3, d2,
and d1 are identifiable coefficients. The related calculations of these coefficients are omitted
in this investigation and can be found within [10]. In [10], the suggestion for arranging the
new modified collision-free trajectory was to reassign a set of waypoints that can create
a collision-free trajectory and satisfy the COLREGs. To ensure the modified trajectory
connects to the original trajectory smoothly, as displayed in Figure 3, the position, velocity,
and acceleration in the connected point (first red circle of the red trajectory) between these
two trajectories must be the same. Based on this modified trajectory generator, a real-time,
collision-free trajectory (the blue trajectory) that is made of a new set of coefficients (a4,
a3, a2, a1, d4, d3, d2, and d1) can be obtained when the arbitrary collisions appear in the
voyage of a controlled USV, and the state vector of this collision-free trajectory is defined as
ηd =

[
xd yd ψd

]T .
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Figure 3. Schematic diagram of generating a collision-free trajectory.

2.3.1. Integrated Fuzzy-Based Control System

The proposed control system used for the purpose of decision making and guidance
for the controlled USV was developed by integrating “a fuzzy decision maker” and “a
robust fuzzy control law”. In this proposed control system, the fuzzy decision maker, which
is responsible for ship–ship collision evaluations and risk pre-warnings, consists of a fuzzy
collision risk evaluator and a fuzzy collision avoidance acting timing indicator. As for
the robust fuzzy control law, this part provides the precise trajectory tracking function to
guide the USV to sail along the desired collision-free trajectory even under the effects of
random ocean environmental disturbances and modeling uncertainties. Descriptions of
this proposed control system will be given below.

2.3.2. Fuzzy Decision Maker

In this investigation, a fuzzy decision maker that mainly comprises a fuzzy collision
risk evaluator with an evaluated index μCRI ∈ [0, 1] and a fuzzy collision avoidance acting
timing indicator with an evaluated index μCA ∈ [0, 1] were built to assess the collision risk
and the degree of residual time for the controlled USV capable of taking evasive action with
respect to the surrounding sailing USVs. To more safely guide the controlled USV with a
definite collision-free condition under the effects of ocean environmental disturbances and
modeling uncertainties in practice, conservative arrangements for three risk-evaluating
parameters of these indicators: DCPA, TCPA, and total length D, which takes lengths of
the controlled USV (LO) and target ship (LT) into account, were made as shown in Figure 4.
The detailed design procedure of this fuzzy decision maker can be found in the published
study [10]. In this investigation, sets of (μCRI ≥ 0.8, μCA ≥ 0.7) and (μCRI ≥ 0.3, μCA ≥ 0.7)
will be utilized as thresholds for triggering the functions of reducing the speed of the
controlled USV and generating a new collision-free trajectory by referring to [10].

 

Figure 4. DCPA, TCPA, and total length D between two encountered USVs.
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2.4. Robust Fuzzy Control Law Design

Another significant part of this proposed control system is the “robust fuzzy control
law”, which was designed with the aim of precisely guiding a controlled USV along a
collision-free trajectory when random ships appear in the waterway. The design procedure
of this robust fuzzy control law is derived below.

We defined the trajectory tracking error vector of the controlled USV with respect to
arbitrary collision-free trajectories in the earth frame as follows:

e =

[ .
~
η
~
η

]
=

[ .
η− .

ηd

η− ηd

]
(11)

where ηd =
[
xd yd ψd

]T is the desired trajectory obtained by using the generator of
collision-free trajectories.

Since
..
η = −¯

ME(η)
−1(

¯
CE(B,η)

.
η+

¯
DE(η)

.
η) +

¯
ME(η)

−1
τE +

¯
ME(η)

−1
Ξ and the gen-

erated collision-free trajectory is at least double-differentiable, namely, ηd ∈ C2, the trajec-
tory tracking error dynamics can be formulated as:

..
e =

..
ηd − ..

η

=
..
ηd − ¯

ME(η)
−1(

¯
CE(B,η)

.
η+

¯
DE(η)

.
η) +

¯
ME(η)

−1
τE +

¯
ME(η)

−1
Ξ

(12)

Selecting a candidate control law τE as follows:

τE =
¯
ME(η){−Γ2e + (

¯
CE(B,η)

.
η+

¯
DE(η)

.
η)− ..

ηd +
^
Ξ + Ru} (13)

where Ru is the robust compensator that will be designed later developed for eliminating

the residual overall disturbance, and
^
Ξ is a fuzzy approximator of the overall disturbance.

The disclosure results reveal that a well-developed fuzzy system can be utilized to be a
universal approximator for approaching any nonlinear systems as precisely as possible

in [11–13]. Based on the concept of [11–13], the proposed fuzzy approximator
^
Ξ can be

expressed as a regression form as below:

^
Ξ = ΘT∗

w λw (14)

where Θw =
[
θw1 θw2 . . . θwM

]T is the adjustable parameter vector, and λw =[
λw1 λw2 . . . λwM

]T is the fuzzy basis function, respectively. λwi is defined as:

λwi(x) =
Πn

i=1μ
λ
�
wi
(xi)

∑M
l=1

(
Πn

i=1μ
λ
�
wi
(xi)

) (15)

where M is the rule number.
The optimal fuzzy approximation error can be further presented as:

ΔΞ = Ξ − ^
Ξ

∗
= Ξ − ΘT∗

w λw (16)

where Θ∗
w = argmin

Θw

∥∥Ξ − ΘT
wλw

∥∥.

Remark 1. Theoretically speaking, by increasing the rule number M, the approximation error can
be mitigated as far as possible. However, a trade-off between the accuracy of the fuzzy approximator
and the computational effort should be made in practice. �
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Based on Equations (1), (13), (14), and (16), a matrix–vector form of the trajectory
tracking error dynamics can be obtained:

..
e+Γ1

.
e+Γ2e =

~
Θ

T

wλw + Ru +
¯
ME(η)

−1ΔΞ (17)

where
~
Θw = Θ∗

w − Θw.
The trajectory tracking error dynamics in Equation (17) can be further expressed in an

augmented form as

.
E = AE + BRu + B

~
Θ

T

wλw + Bd

=

[
0 1

−Γ1 −Γ2

]
E +

[
0
1

]
Ru +

[
0
1

]
~
Θ

T

wλw +

[
0
1

]
d

(18)

where
E =

[
e

.
e
]T ,

d =
¯
ME(η)

−1ΔΞ,

Γ1 =

⎡⎣α1 0 0
0 α2 0
0 0 α3

⎤⎦,

and

Γ2 =

⎡⎣α4 0 0
0 α5 0
0 0 α6

⎤⎦
From Equation (18), the design target for the controlled USV’s collision-free trajectory

tracking problem can be described as a robust performance as follows [14–16]:

min
Ru(t)∈L2[0,t f ]

min
d(t)∈L2[0,t f ]

∥∥∥[Q 1
2 E(t)+O

1
2 Ru(t)

]∥∥∥
L2[0,t f ]

‖d(t)‖L2[0,t f ]

≤ ρ (19)

where ρ is a designable attenuation level, and Q and O > 0 are the weighting matrices
as well.

The results disclosed in Theorem 1 below indicate the fact that the design objective in
Equation (19) can be achieved with the derived robust compensator Ru and the adaptive

law for optimally searching the parameter vector Θw of the fuzzy approximator
^
Ξ.

Theorem 1. The precise trajectory tracking problem of unmanned surface vessels can be tackled
well with the robust fuzzy control lawτE which integrates a robust compensator Ru and an adaptive
law

.
Θw expressed below.

τE =
¯
ME(η)

{
−Γ2e +

(¯
CE(B,η)

.
η+

¯
DE(η)

.
η

)
− ..

ηd +
^
Ξ + Ru

}
(20)

Ru(t)= − R−1BTPE(t) (21)

and P=PT>0 is one of the solutions to the following equation:

AP+PAT+PB

(
1

ρ2
I−O−1

)
BTP+Q=0 (22)
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The adaptive law for optimally searching the parameter vector Θw is derived as:

.
Θw= − γ fλ

T
WBTPE(t) (23)

where γ f is the designable learning rate.

Proof of Theorem 1 can be obtained in Appendix A.

2.5. Summary of the Proposed Fuzzy-Based Control System

STEP 1. Set up key parameters DCPA, TCPA, and total length D of the fuzzy decision
maker to generate the fuzzy collision risk index μCRI and the fuzzy collision
avoidance acting timing index μCA.

STEP 2. Specify A in Equation (18) with design eigenvalues αI > 0, for I = 1, . . . , 6.
STEP 3. Select the weight matrices Q > 0, the desired attenuation level ρ, and the weighting

factor O such that ρ2I-O must be a positive definite matrix.
STEP 4. Solve Equation (22) to obtain P.

STEP 5. Construct the fuzzy approximator
^
Ξ(t) = ΘT

w(t)λw and
.

Θw(t)= − γ fλ
T
WBTPE(t)

for mimicking the overall disturbance Ξ(t).
STEP 6. Construct the robust compensator Ru(t)= − R−1BTPE(t) and the nonlinear fuzzy

robust control law τE =
¯
ME(η)

{
−Γ2e+

(¯
CE(B,η)

.
η+

¯
DE(η)

.
η

)
− ..

ηd +
^
Ξ +Ru

}
in Equation (13) for the collision-free and precise trajectory tracking problem of
the controlled USV.

3. Simulation Results

3.1. System and Control Parameters of the Controlled USV

The controlled USV utilized for simulation in this investigation had a length of 1.72 m,
as shown in Figure 5. The related hydrodynamic parameters (X .

u, Y .
v, Y.

r, N.
r, Xu, Yv, Yr, Nv,

and Nr) of this USV were measured by using a towing tank experiment, and the detailed
parameters of this USV are stated in Table 1.

Figure 5. The controlled USV of this investigation.
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Table 1. Detail system parameters of the controlled USV.

Length L 1.72 m
Width B 0.4 m
Draft T 0.3 m
Mass m 41 kg

Iz 6.522 kg·m
xg 0 m
X .

u −1.291 kg
Y .

v −40.326 kg
Y.

r −39.04525 N·s2/m2

N .
r 200.79808 N·m·s

Xu −0.98 N·s2/m2

Yv −38.808 N·s2/m2

Yr −16.43778 N·s
Nv −14.340 N·s2/m2

Nr −236.5 N·m·s

3.2. Collision Avoidance Simulation Results of the Proposed Control System

One collision avoidance scenario was simulated in Yongxin Fish Harbor of Kaohsiung
City, Taiwan, for the validation of the collision avoidance performance of this proposed
control system under the influences of ocean disturbances and modeling uncertainties.
The modeling uncertainties of the controlled USV were considered 10% of the nominal
values of the system parameters in Table 1, and the ocean environmental disturbance τdE

was created by referring to the published paper [17]. To verify the collision avoidance
performance of the proposed control system, a crossing situation was arranged in this
scenario. As displayed in Figure 6 and according to rule 15 of the COLREGs, the controlled
USV was a give-way ship, and the target ship was a stand-on ship for this crossing situation.
Following rule 15, it was suggested that the stand-on ship sail straight forward, and the
give-way ship perform a give-way action along a collision-free trajectory.

Figure 6. Collision avoidance strategy for a two-ship crossing situation based on rule 15 of the
COLREGs.

In this scenario, the corresponding settings of the controlled USV (own ship) and the
target ship are listed in Tables 2 and 3.
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Table 2. Setting of the controlled USV for the simulation.

Starting Point (2400 m, 800 m)
Goal Point (6300 m, 1280 m)

Desired Velocity 1 m/s
Initial Condition of the Controlled USV η =

[
2399.95 m 799.95 m 0

]
Table 3. Setting of target ship for the simulation.

Starting Point (3586 m, 559 m)
Goal Point (0, 2700 m)

Desired Velocity 0.663 m/s

Figure 7 shows the collision avoidance simulation result for two sailing ships. In this
scenario, a target ship sails straight from the coast (southeast) to the ocean (northwest), and
the controlled USV sails from the ocean (west) to the internal river. From Figure 8, it is
obvious that these two ships have a very high probability of colliding at point 4; hence, the
controlled USV should take evasive action according to rule 15 of the COLREGs because it
is its own ship.

 

Figure 7. Collision avoidance simulation in Yongxin Fishing Harbor: the yellow line is the trajectory
of the target ship, the blue line is the trajectory of the controlled USV, and the green line is the desired
collision-free trajectory.

 

Figure 8. Magnifying the collision part of Figure 7.
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The enlarged figure around point 4 of Figure 8 details the relative actions taken by the
target ship and the controlled USV.

This figure shows that a collision will occur at point 4 if the controlled USV sails along
the original predefined trajectory (red line). To avoid this unexpected collision situation,
a decision was made by the proposed control system: “the proposed control system
rearranges a collision-free trajectory (blue line) once a ship-ship collision is estimated
by the proposed fuzzy collision risk evaluator, and the fuzzy robust control law then
robustly guide the USV to precisely follow the collision-free trajectory under influences of
modelling uncertainties and ocean environmental disturbances”. Figures 9a–c and 10a–c
show that the proposed fuzzy robust control law has very promising robustness in terms of
modeling uncertainties and ocean disturbances and can guide the USV to precisely follow
the collision-free trajectory not only in position but also in attitude. Figure 9d indicates the
sailing velocity, and it was well-maintained at 1 m/s by the trajectory generator.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Collision-free trajectory tracking histories in X-axis (a) and Y-axis (b), tracking history of the
heading angle ψ (c), and (d) the sailing velocity V with respect to Scenario 1.

The control forces and torque of this scenario are illustrated in Figure 11. From these
control command histories, bigger control forces and torque can be seen in the time interval
[600 s, 800 s]. This is because collision risks were detected by the fuzzy decision maker at
about 600 s, and a right-hand side turn was made by the proposed fuzzy robust control law
for the controlled USV to avoid a collision with the target ship. The collision avoidance
response of this proposed control system certainly follows rule 15 of the COLREGs: “In
crossing situation, the own ship must take a give-way action”. From the simulation results
of this scenario, we can conclude that this proposed control system delivers very promising
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collision avoidance performance for USVs carrying out tasks in an ocean environment
full of various sailing surface vessels and random disturbances, such as waves, winds,
and currents.

 
(a) 

 
(b) 

 
(c) 

Figure 10. Collision-free trajectory tracking error histories in X-axis (a) and Y-axis (b), and tracking
error history of heading angle ψ (c) with respect to Scenario 1.

From the trajectory tracking error histories in the X-axis (a) and Y-axis (b) and the
tracking error history of the heading angle ψ, we can determine that the mean square
errors in positions (MSEeP) and in the heading angle (MSEeψ) under the influences of 10%
modeling uncertainties and random environmental disturbances are MSEeP ≤ 0.04m and
MSEeψ ≤ 0.1

◦
, respectively.
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(a) Control force in x-axis 

 
(b) Control force in y-axis 

 
(c) Control torque with respect to z-axis 

Figure 11. Histories of the control commands, including the forces τx, τy, and the torque τψ with
respect to Scenario 1.

4. Conclusions

An integrated fuzzy-based control system with collision-free trajectory and precise
trajectory tracking properties was tested in the real-time collision avoidance sailing opera-
tion of a controlled USV in this investigation. The trajectory tracking problem of intelligent
USVs with a collision-free property comprises developments in data sensing, decision
making, collision-free trajectory generation, and robust control; hence, the complexity of
this problem is higher than that of the conventional control design of USVs. This proposed
fuzzy-based control system consists of four major subsystems: a fuzzy collision risk evalua-
tor, a fuzzy collision avoidance acting timing indicator, a collision-free trajectory generator,
and a nonlinear adaptive fuzzy robust control law. The first two functions provide the
controlled USVs with a decision-making function to determine when to take evasive ac-
tion. Based on the pre-alarm of the first two functions, one new collision-free trajectory
can be generated by using the cubic spline method in real-time. Finally, the nonlinear
adaptive fuzzy control law plays the role of precisely guiding the USV to sail along the
new collision-free trajectory. To realistically examine the performance of this proposed
method, a crossing situation scenario that frequently occurs in the encounter situation of
ships was simulated in the area of the Yongxin Fish Harbor of Kaohsiung City, Taiwan.
From the simulation results, transparently, this proposed control system could make the
correct evasion decisions to guide the USV to sail along the rearranged collision-free trajec-
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tory precisely and robustly by following the COLREG rules under the effects of modeling
uncertainties and ocean environmental disturbances. The mean-square errors could be
controlled to levels of MSEeP ≤ 0.04m for the position and MSEeψ ≤ 0.1

◦
for the heading

angle, respectively. Although this proposed control system of intelligent USVs integrates
four subsystems and can deliver satisfactory collision-free and precise trajectory tracking
performance, merging actuator models, such as rudders and thrusters, etc., are inevitably
required for real applications. How to analytically convert actuator models’ inputs into
the desired control law (τx, τy, and τψ) will be the next research challenge due to the high
nonlinearity of the input and output relationship of actuator models.
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Appendix A

We defined the robust performance index J for the controlled USV’s collision-free
trajectory tracking problem as:

J(E(t), Ru(t), d(t)) =
∫ t f

0

(
E(t)TQE(t) + Ru(t)

T(t)ORu(t)− ρ2d(t)Td(t)
)

dt (A1)

Equation (A1) can be further reformulated as below:

J(E(t), Ru(t), d(t)) = E(0)TPE(0)−E(t f )
TPE(t f )+

1
γ f

~
Θw(0)

T
~
Θw(0)

− 1
γ f

~
Θw(t f )

T
~
Θw(t f )+

∫ t f
0

[
E(t)T(AP+PAT

+PB
(

1
ρ2 I−O−1

)
BTP+Q)E(t)+Ru(t)

TORu(t)

+Ru(t)
TBTPE(t)+E(t)TPBRu(t)

+

(
E(t)TPBλw+ 1

γ f

.
~
Θw(t)

T

)
~
Θw(t)

+
~
Θw(t)

T

(
λw

TBTPE(t)+ 1
γ f

.
~
Θw(t)

)
+d(t)TBTPE(t)+E(t)TPBd(t)+d(t)Td(t)

]
dt

(A2)

Equation (A2) can be expressed as the following result based on the selections of
.
~
Θw(t) = −γ fλw

TBTPE(t) and ATP+PA+Q+PB
(

1
ρ2 I − O−1

)
BTP = 0:

J(E(t), Ru(t), d(t)) = E(0)TPE(0)− E(t f )
TPE(t f ) +

1
γ f

~
Θw(0)

T ~
Θw(0)

− 1
γ f

~
Θw(t f )

T ~
Θw(t f ) +

∫ t f
0

[
Ru(t)

TORu(t)+Ru(t)
TBTPE(t)

+E(t)TPBRu(t)+d(t)TBTPE(t)+E(t)TPBd(t)+d(t)Td(t)
]
dt

(A3)
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By completing the square, Equation (A3) can be described as a more concise form:

J(E(t), Ru(t), d(t)) = E(0)TPE(0)− E(t f )
TPE(t f )

+ 1
γ f

~
Θw(0)

T ~
Θw(0)− 1

γ f

~
Θw(t f )

T ~
Θw(t f )

+
∫ t f

0

[[(
ORu(t) + BTPE(t)

)T
O−1(ORu(t) + BTPE(t)

)
+
(

d(t)− 1
ρ BTPE(t)

)T(
d(t)− 1

ρ BTPE(t)
)
+ d(t)Td(t)

]
dt

(A4)

For the purpose of minimizing Equation (A4), we selected the robust compensator
Ru(t) and the worst-case modeling uncertainty d(t) as the following:

Ru(t) = −R−1BTPE(t) (A5)

d(t) =
1
ρ

BTPE(t) (A6)

After choosing Ru(t) and d(t) as Equations (A5) and (A6), the minimum value of the
robust performance index J can be obtained as follows:

J(E(t), Ru(t), d(t)) = E(0)TPE(0) +
1

γ f

~
Θw(0)

T ~
Θw(0) (A7)

If E(0) =
~
Θw(0) = 0, Equations (A7) and (19) are equivalent. Then, Theorem 1

is proven.
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Abstract: The Molodtsov-initiated soft set theory plays an important role as a powerful mathematical
tool for handling uncertainty. As an extension of the soft set, the fuzzy soft set can be seen to be more
generic and flexible than utilizing the soft set only that fails to represent problem parameters fuzziness.
Through this progress, the fuzzy soft set theory cannot deal with decision-making problems involving
multi-attribute sets, bipolarity, or some effective considered parameters. Therefore, the goal of this
article is to adapt effectiveness and bipolarity concepts with the multi-fuzzy soft set of order n. One
can see that this approach generates a novel, extended, effective decision-making environment that is
more applicable than any previously introduced one. In addition, types, concepts, and operations of
effective bipolar-valued multi-fuzzy soft sets of dimension n are provided, each with an example.
Furthermore, properties like absorption, associative, distributive, commutative, and De Morgan’s
laws of those new sets are investigated. Moreover, a decision-making methodology under effective
bipolar-valued multi-fuzzy soft settings is established. This technique facilitates reaching the final
decision that this student is qualified to take a certain education level, or this patient is suffering
from a certain disease, etc. In addition, a case study represented in a medical diagnosis example
is discussed in detail to make the proposed algorithm clearer. Applying matrix techniques in this
example as well as using MATLAB®, not only makes it easier and faster in doing calculations, but
also gives more accurate, optimal, and effective decisions. Finally, the sensitivity analysis, as well as
a comparison with the existing methods, are conducted in detail and are summarized in a chart to
show the difference between them and the current one.

Keywords: bipolarity; effective fuzzy soft set; medical diagnosis; multi-set

MSC: 92C50; 03E05; 03E72

1. Introduction

In real life, ambiguity and uncertainty are the most typical contributing factors to com-
plexity when generating judgments. Uncertain data are basic and common in many vital
fields, including environmental research, corporate management, engineering, economics,
medical science, sociology, and numerous others. This uncertainty is produced by missing
data updates, inadequate information, data randomness, measurement device barriers, and
so on.

Because of the huge quantity of uncertain data that is being gathered and accumulated,
as well as the significance of these applications, research on effective methods for illustrating
uncertain data and handling uncertainties has sparked plenty of interest in recent years,
but it continues to be difficult. As a result, we always have numerous complex challenges
in these and other fields. We cannot solve the challenges that arise from uncertainties in
those cases using normal mathematical methods.
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Decision-making is a process employed at the managerial level of any company to
identify and pick alternatives based on individual preferences. Every decision context can
be defined as a collection of data, replacement possibilities, choices, and values that are
readily accessible at the time of the decision. Because the work and time necessary to obtain
statistics or locate alternatives limit both knowledge and its replacements, any conclusions
reached must be made within such a constrained framework.

Decision-making has become one of the most important aspects of life and work
in recent years, owing to its tight relationship to success and effectiveness. Successful
people achieve their life and work goals through effective and efficient decision-making.
Individual perspectives, values, attitudes, and concepts, as well as ideas, are commonly
utilized to guide decision-making. While a person can arrive at decisions based on a range
of principles, they should exercise extreme caution in selecting one that is productive and
contributes to significant performance. However, these theories exist in order to help people
become better decision-makers in the world. The decision-making issue in an uncertain
environment has attracted attention in recent years.

There are a lot of research studies, as well as applications in the literature, about many
special mathematical tools, like probability theory, fuzzy sets [1], intuitionistic fuzzy set
theory [2], soft set theory [3], and other mathematical methods, which are helpful ways for
modeling uncertain data and making successful and useful decisions. Nevertheless, each
of them faces particular difficulties while handling uncertainty. The probability theory is
an old and useful strategy for tackling uncertainty, but it is only capable of being applied to
circumstances involving random processes, or processes in which the occurrence of events
is purely determined by chances.

In 1965, Zadeh [1] introduced a very important extension of the well-known crisp set
to represent and overcome appearing uncertainty, which is the fuzzy concept approach. In
fuzzy set theory, one can measure the degree of membership of an element by the element’s
membership (indicator, or characteristic) function from the domain X to the interval [0, 1].

A well-known crisp set on the initial universe X can be measured by the element’s
membership (indicator, or characteristic) function from X to {0, 1}. Despite the fact that the
fuzzy set has been recognized as a viable mathematical method of handling uncertainty,
it has the following drawback: this particular number tells us almost nothing concerning
how precise it is. The specific number (membership percent) involves reasoning both in
favor of as well as against an object belonging, with no detail about exactly how much
more of each there actually is. To overcome this limitation, an extended or generalized
new concept of the term “fuzzy set” was provided by Atanassov [2] and was cleared by an
example, which is the “intuitionistic fuzzy set”. The new concept represented in the soft
set idea was first formulated, in 1999, by Molodtsov [3]. There has been a claim that made
them introduce the soft set theory. The claim was that the inadequate parametrization tools
of the previously introduced theories might be one of the important reasons for the issues
and difficulties.

The novel-introduced softness concept or the soft set concept is a new practical mathe-
matical tool, which is free from the above difficulties. Then, it was used to facilitate dealing
with uncertainties for a long time. After that, in 2002, Maji et al. ([4,5]) examined and
analyzed the Molodtsov-proposed soft set theory. They looked into many soft set-related
ideas, developed an in-depth theoretical outline of the discipline, and then implemented it
in a decision-making situation.

The bipolarity in information when dealing with decision-making issues, on the other
hand, seemed to be an essential factor to take into account. That is because it is a very
helpful component when building the mathematical structure for the majority of cases in
problems with decision-making. According to bipolarity theory, bipolar sensibility beliefs
cover a range of different decision-making processes. Love versus hate, advantages versus
drawbacks, sweet versus salty, and finally, starvation versus satisfaction, are a few examples
of different analyses of decision approaches.
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By way of example, if we have an effective drug, this cannot prevent it from resulting
in probable serious side effects. On the other hand, if it is an ineffective drug, it can have
no dangerous side effects. As an innovative generalization or extension of the fuzzy set
concept, Lee [6] developed the bipolar-valued fuzzy idea in 2000. In this scenario, the
membership range that defines the element’s belonging was expanded from the interval
[0, 1] to the interval [−1, 1].

Later, Maji et al. [7] created, in 2001, the novel concept of the fuzzy soft set theory by
integrating the principles of fuzzy sets into the softness concept. Additionally, Roy and
Maji [8] generated a decision-making method based on a fuzzy soft set to choose the ideal
(best) item to purchase out of a variety of options. Furthermore, Yang et al. [9] provided
the fuzzy soft set matrix formulation depending on the fuzzy soft set notion.

Moreover, ağman et al. [10] examined fuzzy soft matrixes and various algebraic
operations, and performed a theoretical investigation in fuzzy soft contexts. In their
studies of fuzzy soft matrixes, Basu et al. [11] and Kumar and Kaur [12] developed novel
concepts and operations. For more novel information about the fuzzy soft extension and its
properties, one can refer to [13–20] to obtain many more theorems, results, and examples.

After that, Maji et al. [21] constructed, in 2004, the new notion of the intuitionistic
fuzzy soft sets being an original extension of the soft sets. A few more operations were
also offered on intuitionistic fuzzy soft sets and several their properties were recognized. A
straightforward example was also provided to illustrate how to use this mathematical tool.
The intuitionistic fuzzy soft matrixes idea was then developed by Chetia et al. [22] in order
to readily express intuitionistic fuzzy soft sets and facilitate operations on them. They also
detailed their higher functional operations in order to conduct theoretical research in the
intuitionistic fuzzy soft set environment and produce some conclusions.

Moreover, Abdullah et al. [23] presented, in 2014, the idea of the bipolar fuzzy soft
set and provided its fundamental properties. Further, the fundamental principles of the
bipolar fuzzy soft sets were discovered. In addition, they overcame problems that occurred
in decision-making by using the bipolar fuzzy soft set. In fact, the bipolar fuzzy soft sets
and intuitionistic fuzzy soft sets are different from each other, contrary to their appearances.
Following that, Sebastian and Ramakrishnan [24] suggested the idea of the multi-fuzzy set
concept by employing the multi-characteristic function, which is an ordered sequence of
the aforementioned characteristic functions.

Actually, the multi-fuzzy sets can solve some particular issues which are exceedingly
challenging for other fuzzy set extensions to describe. For example, the three-dimensional
characteristic function, whose components are the characteristic functions representing
the three primary known colors; red, green, and blue, can describe the color of pixels in a
two-dimensional image in a way that the characteristic function of the regular fuzzy set
cannot. As a result, any image may be generally represented as a set of arranged pixels
with a multi-characteristic function. Moreover, Yang et al. [25] introduced the multi-fuzzy
soft sets and proposed many applications using decision-making techniques based on those
new sets.

Santhi and Shyamala [26] also described the bipolar-valued multi-fuzzy set and pro-
vided some observations on the bipolar-valued multi-fuzzy subgroups of a group. Fur-
thermore, Yang et al. [27] offered various decision-making applications based on their
concept of the bipolar-valued multi-fuzzy soft set. In addition, Sakr et al. ([28,29]) have
introduced the bipolar-valued vague soft sets, the bipolar-valued multi-vague soft sets
and their applications. The vague set is a generalization for a fuzzy set, in which any
membership value is an interval subset from [0, 1], not only a specific single membership
value lying within the range of 0 to 1 as known in fuzzy sets. Furthermore, for additional
knowledge on those topics and many more interesting related topics, refer to [30–33].

In addition, using well-known techniques, Chakraborty et al. [34] have constructed
the sense of de-bipolarization for a triangular bipolar neutrosophic number, such that any
bipolar neutrosophic fuzzy number of any type can be smoothly turned into a real number
quickly. Using bipolar neutrosophic perception to create an issue is a more accurate, reliable
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and trusted way than others. They have also considered a multi-criteria decision-making
problem (MCDM) for several users in the bipolar neutrosophic area.

Moreover, Haque et al. [35] have investigated a novel scheme to detect the best cloud
service provider using logarithmic operational law in the generalized spherical fuzzy
environment. Furthermore, for more information about other decision-making techniques,
one can refer to [36,37].

Moreover, Xiao [38] introduced the complex evidential distance (CED), which is a
strict distance metric with the properties of nonnegativity, nondegeneracy, symmetry and
triangle inequality that satisfies the axioms of a distance. For a long time, evidence theory
has been an effective methodology for modeling and processing uncertainty that has been
widely applied in various fields. In evidence theory, several distance measures have been
presented, which play an important role in representing the degree of difference between
pieces of evidence. The complex evidential distance (CED) has been considered to be a
generalization of the traditional evidential distance.

Furthermore, Alkhazaleh [39] recently noticed that in the fuzzy soft set theory, the final
decision in the given decision-making problems depends only on the usual parameters
without considering the effect of any other external parameters. To overcome this limitation,
he proposed a new concept to represent those external parameters which is the effective
parameter set. In addition, he defined the effective fuzzy soft set concept built on the
effective set definition. He also established the operations of the effective fuzzy soft sets
and studied some of their properties. Moreover, he gave an application of the effective fuzzy
soft set in decision-making problems. Finally, he introduced an application of this novel
theory to medical diagnosis and exhibited the technique with a hypothetical case study.

Work Motivation

As stated above, we have the fuzzy set, the soft set, the bipolarity, the effective set, and
the multi-attribute concepts. If we have all those concepts in one decision-making problem
as its circumstances are described, then any one, two, or even more combined sets of those
stated above will fail to handle this issue. Then, there is a need to have a new extension
that collects all those concepts in one combined set to deal easily with this type of problem.

In other words, the idea of this research comes from a need to generalize the multi-
fuzzy soft set, the bipolar-valued fuzzy soft set, and the multipolar fuzzy soft set. This is
necessary when we have multi attributes and bipolar attributes together with fuzzy soft
information and effective needed parameters. The effective bipolar-valued multi-fuzzy soft
set of dimension n is the best one to satisfy this need by combining all needed circumstances
in one novel generalized definition. Therefore, in this paper, we define the effective bipolar-
valued multi-fuzzy soft sets of dimension n along with their types, properties, operations,
and real-life medical applications. The rest of this paper is organized as follows:

Section 2 is nominated to state the needed preliminary definitions and concepts.
In Section 3, the effective bipolar-valued multi-fuzzy soft set, its types and some novel
associated concepts are inferred. Moreover, their operations, like union and intersection, are
presented in Section 4. After that, Section 5 concludes some related properties, for example,
commutative properties, absorption properties, associative properties, De Morgan’s laws,
and distributive laws.

Moreover, the purpose of Section 6 is to derive a decision-making algorithm based
on the effective bipolar-valued multi-fuzzy soft sets. This helps us to conduct the decision
that this patient is suffering from this disease or this student is qualified or accepted to take
or study at this education level, . . . The technique steps are introduced using matrixes to
make it easier to do computations.

Furthermore, the MATLAB® program is used to do the addition and multiplication op-
erations of matrixes, to obtain effective sets, or to make any calculations quickly, accurately,
and easily. In addition, we give the sensitivity analysis as well as the comparative analysis
at the end of Section 6. This detailed comparison between the existing methodologies and
the current one is presented to highlight the distinctions between them. The results of

147



Mathematics 2023, 11, 3747

this comparison are also summarized in a chart. Finally, Section 7 is set up for concluding
remarks and some predicted future works. The structure of the paper content is given by a
graphical tree diagram shown below in Figure 1.

Figure 1. Paper content diagram.

2. Preliminaries

The fundamental preliminary definitions, required in the subsequent results, are
discussed in this section. These definitions are about the fuzzy set, bipolar-valued fuzzy set,
multi-fuzzy set, bipolar-valued multi-fuzzy set, soft set, effective set, and effective fuzzy
soft set. One can refer to [1,3,6,24,26,39] to find more detailed results and examples about
those above concepts.

Definition 1 ((Fuzzy set) [1]). Assume that Ξ is an initial universe. Then, we can define the fuzzy
class (set) � over Ξ as a set characterized by a characteristic function η� : Ξ → [0, 1]. We can call
η� the indicator function, or the membership function of the fuzzy set �. In addition, η�(u) is
called the degree of membership, or the membership grade value of ξ ∈ Ξ in �. We can represent the
fuzzy set � over an initial universe Ξ by one of the following two formulas:

� = {(η�(ξ)/ξ) : ξ ∈ Ξ, η�(ξ) ∈ [0, 1]}, or

� = {(ξ, η�(ξ)) : ξ ∈ Ξ, η�(ξ) ∈ [0, 1]}.

Definition 2 ((Bipolar-valued fuzzy set) [6]). For the positive characteristic function η+
A : Ξ →

[0, 1] and the negative characteristic function η−
A : Ξ → [−1, 0], the formula

A = {(ξ, η+
A(ξ), η−

A(ξ)) : ξ ∈ Ξ}

represents the bipolar-valued fuzzy set A on Ξ. η+
A : Ξ → [0, 1] can describe the satisfaction degree

of ξ to the property corresponding to A and η−
A : Ξ → [−1, 0] can describe the satisfaction degree

of ξ to the counter-property of A.
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Definition 3 ((Multi-fuzzy set) [24]). A multi-fuzzy set N of dimension n over Ξ is characterized
by a set of ordered sequences in the following structure:

N = {(ξ, η1N (ξ), η2N (ξ), . . . , ηnN (ξ)) : ξ ∈ Ξ},

taking into account that, for i = 1, 2, · · · , n, ηiN : Ξ → [0, 1] represent the characteristic or the
membership functions. We can call the function ηN = (η1N , η2N , . . . , ηnN ), the fuzzy multi-
membership function of a multi-fuzzy set N of dimension n.

Definition 4 ((Bipolar-valued multi-fuzzy set) [26]). The following formula represents the
bipolar-valued multi-fuzzy set B of dimension n over an initial universe Ξ:

B = {(ξ, η+
1B(ξ), η+

2B(ξ), . . . , η+
nB(ξ), η−

1B(ξ), η−
2B(ξ), . . . , η−

nB(ξ)) : ξ ∈ Ξ},

taking into account that, for i = 1, 2, · · · , n, η+
iB : Ξ → [0, 1] represent the positive characteristic

(or membership) functions indicating the satisfaction degrees of ξ to some properties corresponding to
B and η−

iB : Ξ → [−1, 0] represent the negative characteristic (or membership) functions indicating
the satisfaction degrees of ξ to some implicit counter-properties of B.

Definition 5 ((Soft set) [3]). Let Ξ be an initial universe, Υ be a set of parameters (or attributes),
and Λ ⊆ Υ. The power set of Ξ is obtained from P(Ξ) = 2Ξ. A pair (Γ, Λ) or ΓΛ is called a soft set
over Ξ, taking into account that Γ is a mapping represented by Γ : Λ → P(Ξ). In addition, we can
formulate ΓΛ as a set of ordered pairs ΓΛ = {(λ, ΓΛ(λ)) : λ ∈ Λ, ΓΛ(λ) ∈ P(Ξ)}. Λ is said to
be the support of ΓΛ, as well as ΓΛ(λ) �= φ, for any λ ∈ Λ and ΓΛ(λ) = φ for any λ /∈ Λ. That is
to say that a soft set (Γ, Λ) over Ξ can be considered to be a parameterized family of subsets of Ξ.

Definition 6 ((Effective set) [39]). An effective set is defined as a fuzzy set � over the universal
set Δ, in which � is given by the mapping � : Δ → [0, 1]. We can say that Δ is the set of all effective
attributes or parameters that can affect the value of membership of every element. It has a positive
effect on the membership values of the elements after applying it to them. Note that, in some cases,
some membership values remain as is, even after implementation. One can define � by the following
formula: � = {(δ, ��(δ)), δ ∈ Δ}.

Definition 7 ((Effective fuzzy soft set) [39]). For a given initial universal set Ξ, we can indicate
the set of all fuzzy subsets of Ξ by F(Ξ). Suppose that υi ∈ Υ are the usual parameters, Δ is the
effective parameter set and � is the effective set over Δ. Then, we call the pair (Ψ�, Υ) an effective
fuzzy soft set over Ξ, taking into account that the mapping Ψ : Ξ → F(Ξ) is given by the following
formula: Ψ(δi)� = {(ξ j, ηΨ(ξ j)�), ξ j ∈ Ξ, δi ∈ Δ}, where, for all δk ∈ Δ, we have:

ηΨ(ξ j, υi)� =

⎧⎪⎪⎨⎪⎪⎩
ηΨ(ξ j, υi) +

(1−ηΨ(ξ j ,υi))∑k ��ξ j
(δk)

|Δ| , i f ηΨ(ξ j, υi) ∈ (0, 1),

ηΨ(ξ j), otherwise.

(1)

where |Δ| is the number of elements in the given effective parameter set Δ, ηΨ(ξ j, υi) is the
membership degree value of the item ξ j for the parameter υi and ∑k ��ξ j

(δk) is the summation of all

effective parameters values of ξ j.

Example 1. If we have an initial universal set Ξ = {ξ1, ξ2, ξ3} and the set of parameters Υ =
{υ1, υ2, υ3}. Let the fuzzy soft set for the parameter υ1 be

(Ψ, Υ)(υ1) = {(ξ1, 0.3), (ξ2, 0.7), (ξ3, 0.5)}.
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Then, to compute the effective membership value for the first item ξ1 with a membership value 0.3
for the first parameter υ1 and the following given effective set � for ξ1:

�(ξ1) = {(δ1, 0.8), (δ2, 1), (δ3, 0), (δ4, 0.2)},

where δ1, δ2, δ3 and δ4 are the given effective parameters, we do the following computation according
to Formula (1) from Definition 7:

ηΨ(ξ1, υ1)� = 0.3 +
(1 − 0.3)[0.8 + 1 + 0 + 0.2]

4
= 0.3 +

0.7 × 2
4

= 0.3 + 0.35 = 0.65.

Similarly, we can calculate the effective membership values for the remaining membership values of
ξ1 for the last two parameters υ2 and υ3 and also for the other two items ξ2 and ξ3. The reader can
refer to [39] page 3 to find the full illustrative example to understand this definition well.

Remark 1. For simplicity, instead of writing the full complex Formula (1) from Definition 7,
one can write the effective membership value ηΨ(ξ j, υi)� corresponding to the membership value
ηΨ(ξ j, υi) of a specific item ξ j for a certain parameter υi as η�, when we know that Ψ is the only
fuzzy soft set we talking about. In case we have two fuzzy soft sets Ψ1 and Ψ2 or more, we must
write the full formulas ηΨ1(ξ j, υi) and ηΨ2(ξ j, υi), respectively, to distinguish between them.

3. Effective Bipolar-Valued Multi-Fuzzy Soft Sets

The major goal of the current section is to formulate the definition of the effective
bipolar-valued fuzzy soft set and the effective multi-fuzzy soft set. Furthermore, the
definition of the effective bipolar-valued multi-fuzzy soft set of dimension n is derived and
reflected by an illustrative example. In addition, their kinds and some associated concepts
are conducted.

Definition 8 (Effective bipolar-valued fuzzy soft set). For a given initial universal set Ξ, we
can indicate the set of all bipolar-valued fuzzy subsets of Ξ by BF(Ξ). Suppose that Υ is the
parameter set, Δ is the effective parameter set, and � is the effective set over Δ. Then, we call the
pair (Ψ�, Υ) an effective bipolar-valued fuzzy soft set over Ξ, taking into account that the mapping
Ψ : Ξ → BF(Ξ) is given by the following formula:

Ψ(δi)� = {(ξ j, η+
Ψ (ξ j)�, η−

Ψ (ξ j)�), ξ j ∈ Ψ, δi ∈ Δ},

where, for all δk ∈ Δ, we have the positive and negative effective membership values η+
�

and η−
�

corresponding to the positive and negative membership values η+ ∈ (0, 1) and η− ∈ (−1, 0) of the
item ξ j for the parameter υl given, respectively, by the following two formulas:

η+
�
= η+ +

(1 − η+)∑k ��(δk)

|Δ| , (2)

and

η−
�
= η− +

(−1 − η+)∑k ��(δk)

|Δ| , (3)

where |Δ| is the number of elements in the given effective parameter set Δ.
In case that η+ = 0 or 1, then η+

�
= η+. Similarly, if η− = 0 or − 1, then η−

�
= η−.

150



Mathematics 2023, 11, 3747

Remark 2. Formulas (2) and (3), stated in Definition 8, can be combined into one formula
as follows:

η� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

η +
(1−η)∑k ��ξ j

(δk)

|Δ| , i f η ∈ (0, 1),

η +
(−1−η)∑k ��ξ j

(δk)

|Δ| , i f η ∈ (−1, 0),

η, otherwise.

(4)

regarding that

η� =

⎧⎨⎩
η+
�

, i f η ∈ [0, 1],

η−
�

, i f η ∈ [−1, 0],

where |Δ| is the number of elements in the given effective parameter set Δ.

Definition 9 (Effective multi-fuzzy soft set of order n). For a given initial universal set Ξ, we
can indicate the set of all multi-fuzzy subsets of order n on Ξ by MF(Ξ). Suppose that Υ is the
parameter set, Δ is the effective parameter set, and � is the effective set over Δ. Then, we call the pair
(Ψ�, Υ) an effective multi-fuzzy soft set of order n over Ξ, taking into account that the mapping
Ψ : Ξ → MF(Ξ) is given by the following formula:

Ψ(δi)� = {(ξ j, η1Ψ(ξ j)�, η2Ψ(ξ j)�, · · · , ηnΨ(ξ j)�), ξ j ∈ Ξ, δi ∈ Δ},

where, for all δk ∈ Δ, we have:

ηr� =

⎧⎪⎪⎨⎪⎪⎩
ηr +

(1−ηr)∑k ��ξ j
(δk)

|Δ| , i f ηr ∈ (0, 1),

ηr, otherwise.

(5)

regarding that r : 1, 2, · · · , n and |Δ| is the number of elements in the given effective parameter
set Δ.

Definition 10 (Effective bipolar-valued multi-fuzzy soft set of order n). For a given initial
universal set Ξ, we can indicate the set of all bipolar-valued multi-fuzzy subsets of order n on Ξ by
BMF(Ξ). Suppose that Υ is the parameter set, Δ is the effective parameter set, and � is the effective
set over Δ. Then, we call the pair (Ψ�, Υ) an effective bipolar-valued multi-fuzzy soft set of order n
over Ξ, taking into account that the mapping Ψ : Ξ → BMF(Ξ) is given by the following formula:

Ψ(δi)� = {(ξ j, η+
1Ψ(ξ j)�, η+

2Ψ(ξ j)�, · · · , η+
nΨ(ξ j)�, η−

1Ψ(ξ j)�, η−
2Ψ(ξ j)�, · · · , η−

nΨ(ξ j)�),

ξ j ∈ Ξ, δi ∈ Δ},

where, for all δk ∈ Δ, we have:

ηr� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηr +
(1−ηr)∑k ��ξ j

(δk)

|Δ| , i f ηr ∈ (0, 1),

ηr +
(−1−ηr)∑k ��ξ j

(δk)

|Δ| , i f ηr ∈ (−1, 0),

ηr, otherwise,

(6)
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where

ηr� =

⎧⎨⎩
η+

r�, i f ηr ∈ [0, 1],

η−
r�, i f ηr ∈ [−1, 0],

taking into account that r : 1, 2, · · · , n and |Δ| are the number of elements in the given effective
parameter set Δ.

Example 2. Consider a universal set of houses Ξ = {ξ1, ξ2, ξ3} which are considered to be bought.
Let the two major sets of parameters (attributes) that describe their features be Υ = {υ1, υ2, υ3},
υi(i = 1, 2, 3) and its opposite set −Υ = {−υ1,−υ2,−υ3}, −υi(i = 1, 2, 3) stand for the features
and the opposite-features, respectively. These features can be classified into the following three main
types of parameters: Location affairs, financial affairs, and design affairs, respectively. Location
affairs and their opposite features are as follows: (“near the main road” and “far from the main
road”), (“close to the city center” and “far from the city center”), (“in a green surrounding” and “in
an industrial surrounding”). Financial affairs and their opposite features are as follows: (“expensive”
and “cheap”), (“cash payment” and “payment facilities”), (“long-term installment” and “short-term
installment”). Design affairs and their opposite features are as follows: (“large house” and “small
house”), (“within stacked apartments” and “within unstacked apartments”), (“luxurious design”
and “poor design”). In addition, suppose that Δ = {δ1, δ2, δ3, δ4} is a set of effective attributes,
where δ1 = the house has not been licensed yet, δ2 = there have been people living in this house
before, δ3 = there is no an elevator and δ4 = there is a broker fee. Let the effective set over Δ, for
ξi, i = 1, 2, 3, be as follows according to experts’ evaluation:

�(ξ1) = {(δ1, 0.7), (δ2, 0.2), (δ3, 0.5), (δ4, 0.4)},

�(ξ2) = {(δ1, 0.5), (δ2, 0.1), (δ3, 0), (δ4, 0.8)},

�(ξ3) = {(δ1, 1), (δ2, 0.6), (δ3, 0.3), (δ4, 0.9)}.

Furthermore, the attractiveness of the given houses according to the purchaser’s preferences can be
described by a bipolar-valued multi-fuzzy soft set (Ψ, Υ) of order 3 over a universal set Ξ as follows:

(Ψ, Υ) = {(υ1, {(ξ1, 0.4, 0.8, 0.6,−0.3,−0.9,−0.2), (ξ2, 0.1, 0.5, 0.3,−0.7,−0.6,−0.4),

(ξ3, 0.9, 0.4, 0.5,−0.7,−0.2,−0.3)}), (υ2, {(ξ1, 0.6, 0.3, 1,−0.7,−0.5,−0.3),

(ξ2, 0.5, 1, 0.9,−0.2,−1,−0.4), (ξ3, 0.2, 0.4, 0.6,−0.3,−0.8,−0.1)}),
(υ3, {(ξ1, 1, 0.6, 0.3,−0.2,−0.5,−0.4), (ξ2, 0.7, 0.9, 0.1,−0.9,−1,−0.3),

(ξ3, 0.1, 0.7, 0.2,−0.2,−0.5,−0.8)})}.

Then, using Formula (6) from Definition 10, we have the effective bipolar-valued multi-fuzzy soft
set (Ψ�, Υ) of order 3 over a universal set Ξ that describes the attractiveness of the of above houses,
effectively, as the following:

(Ψ�, Υ) = {(υ1, {(ξ1, 0.67, 0.89, 0.78,−0.61,−0.94,−0.56),

(ξ2, 0.41, 0.67, 0.54,−0.8,−0.74,−0.61),

(ξ3, 0.97, 0.82, 0.85,−0.91,−0.76,−0.79)}),
(υ2, {(ξ1, 0.78, 0.61, 1,−0.83,−0.72,−0.61),

(ξ2, 0.67, 1, 0.93,−0.48,−1,−0.61),

(ξ3, 0.76, 0.82, 0.88,−0.79,−0.94,−0.73)}),
(υ3, {(ξ1, 1, 0.78, 0.61,−0.56,−0.72,−0.67),

(ξ2, 0.8, 0.93, 0.41,−0.93,−1,−0.54),

(ξ3, 0.73, 0.91, 0.76,−0.76,−0.85,−0.94)})}.

(7)
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(Ψ�, Υ) description can help the purchaser decide which house is the best choice for him/her. This
decision-making technique comes from extracting the matrix corresponding to every positive pole and
every negative pole of the effective bipolar-valued multi-fuzzy soft set that contains the membership
values of the given items. After that, by doing some matrix operations like multiplication and
addition, one can easily obtain the final decision from the final resulting matrix.

Remark 3. The above effective bipolar-valued multi-fuzzy soft set (Ψ�, Υ) of order 3 (7) from
Example 2 can be represented in a matrix form to be easy to deal with. It can be divided into two
matrixes; one represents the positive poles, say A+ and the other represents the negative poles, say
A−, as follows:

A+ =

υ′1 υ′2 υ′3 υ
′′
1 υ

′′
2 υ

′′
3 υ

′′′
1 υ

′′′
2 υ

′′′
3⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

ξ1 0.67 0.78 1 0.89 0.61 0.78 0.78 1 0.61

ξ2 0.41 0.67 0.8 0.67 1 0.93 0.54 0.93 0.41

ξ3 0.97 0.76 0.73 0.82 0.82 0.91 0.85 0.88 0.76

,

A− =

−υ′1 −υ′2 −υ′3 −υ
′′
1 −υ

′′
2 −υ

′′
3 −υ

′′′
1 −υ

′′′
2 −υ

′′′
3⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

ξ1 −0.61 −0.83 −0.56 −0.94 −0.72 −0.72 −0.56 −0.61 −0.67

ξ2 −0.8 −0.48 −0.93 −0.74 −1 −1 −0.61 −0.61 −0.54

ξ3 −0.91 −0.79 −0.76 −0.76 −0.94 −0.85 −0.79 −0.73 −0.94

.

We can call (A+, A−) the effective bipolar-valued multi-fuzzy soft matrix corresponding to the
effective bipolar-valued multi-fuzzy soft set (Ψ�, Υ).

Definition 11 (Complete effective bipolar-valued multi-fuzzy soft set). Assume that Ξ is an
initial universe. Suppose that Υ is a parameter set. Then, any effective bipolar-valued multi-fuzzy
soft set (Ψ�, Υ) of dimension n on an initial universe Ξ, constructed by an effective set �, is called
absolute (or complete), stand for (C�, Υ), if for all υ ∈ Υ, we have ΨΥ(υ)� = BMF(Ξ). That is to
say that, for i = 1, 2, . . . , n, we have η+

iΨΥ(υ)
(ξ)� = 1 and η−

iΨΥ(υ)
(ξ)� = −1, for all υ ∈ Υ and

for all ξ ∈ Ξ. i.e.,

(C�, Υ) = {(υ, {(ξ, 1, n−times. . . , 1,−1, n−times. . . ,−1)}) : υ ∈ Υ, ξ ∈ Ξ}.

Definition 12 (Null effective bipolar-valued multi-fuzzy soft set). Given that, Ξ is an initial
universe. Assume that Υ is a parameter set. Then, any effective bipolar-valued multi-fuzzy soft
set (Ψ�, Υ) of dimension n on an initial universe Ξ, constructed by an effective set �, is called
empty (or null), stand for (φ�, Υ), if for all υ ∈ Υ, we have ΨΥ(υ)� = φ. That is to say that, for
i = 1, 2, . . . , n, we have η+

iΨΥ(υ)
(ξ)� = 0 and η−

iΨΥ(υ)
(ξ)� = 0, for all υ ∈ Υ and for all ξ ∈ Ξ. i.e.,

(φ�, Υ) = {(υ, {(ξ, 0, 2n−times. . . , 0)}) : υ ∈ Υ, ξ ∈ Ξ}.

4. Operations on Effective Bipolar-Valued Multi-Fuzzy Soft Sets

The basic objective of this section is to propose the operations on effective bipolar-
valued multi-fuzzy soft sets. Operations like the union, the intersection, the complement,
the subset, and many more are established. Furthermore, an example for each operation is
given to illustrate how this operation can be.

Definition 13 (Union of two effective bipolar-valued multi-fuzzy soft sets). Assume that Ξ
is an initial universe. Suppose that Υ1 and Υ2 are two parameter sets. Let �1 and �2 be two effective
parameter sets over Δ. Then, the operation of the union of two effective bipolar-valued multi-fuzzy
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soft sets (Ψ1�1 , Υ1) and (Ψ2�2 , Υ2) of dimension n on an initial universe Ξ is defined as a new
effective bipolar-valued multi-fuzzy soft set (ΨU

�U , ΥU) of dimension n, where �U : Δ → [0, 1] is a
mapping characterized by �U = �1∪̃�2, as well as, (Ψ, Υ)U = (ΨU , ΥU) = (Ψ1, Υ1)∪̃(Ψ2, Υ2),
taking into account that ΥU = Υ1 ∪ Υ2.

The two formulas that compute �U = �1∪̃�2 and (ΨU , ΥU) = (Ψ1, Υ1)∪̃(Ψ2, Υ2), respec-
tively, can be determined, for each ξ ∈ Ξ, as follows:

�
�U

ξ
(δ) =

⎧⎪⎨⎪⎩
��1ξ

(δ), i f e ∈ �1 −�2,
��2ξ

(δ), i f e ∈ �2 −�1,
max{��1ξ

(δ), ��2ξ
(δ)}, i f e ∈ �1 ∩�2,

(8)

for each δ ∈ Δ and

(ΨU , ΥU) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= {(υ, {(ξ, η+
1Ψ1(υ)

(ξ)�, η+
2Ψ1(υ)

(ξ)�, . . . , η+
nΨ1(υ)

(ξ)�,
η−

1Ψ1(υ)
(ξ)�, η−

2Ψ1(υ)
(ξ)�, . . . , η−

nΨ1(υ)
(ξ)�)}), ξ ∈ Ξ}, i f υ ∈ Υ1 − Υ2,

= {(υ, {(ξ, η+
1Ψ2(υ)

(ξ)�, η+
2Ψ2(υ)

(ξ)�, . . . , η+
nΨ2(υ)

(ξ)�,
η−

1Ψ2(υ)
(ξ)�, η−

2Ψ2(υ)
(ξ)�, . . . , η−

nΨ2(υ)
(ξ)�)}), ξ ∈ Ξ}, i f υ ∈ Υ2 − Υ1,

= {(υ, {(ξ, max{η+
1Ψ1(υ)

(ξ), η+
1Ψ2(υ)

(ξ)}�, max{η+
2Ψ1(υ)

(ξ), η+
2Ψ2(υ)

(ξ)}�, . . . ,
max{η+

nΨ1(υ)
(ξ), η+

nΨ2(υ)
(ξ)}�, min{η−

1Ψ1(υ)
(ξ), η−

1Ψ2(υ)
(ξ)}�,

min{η−
2Ψ1(υ)

(ξ), η−
2Ψ2(υ)

(ξ)}�, . . . , min{η−
nΨ1(υ)

(ξ), η−
nΨ2(υ)

(ξ)}�)}), ξ ∈ Ξ},
i f υ ∈ Υ1 ∩ Υ2,

(9)

for each υ ∈ ΥU.

Example 3. Under assumptions of Example 2, one can define two effective sets �1 and �2 over
Δ = {δ1, δ2, δ3, δ4}, for h1 and h2, as follows:

�1(ξ1) = {(δ1, 0.35), (δ2, 0), (δ3, 0.91), (δ4, 0.46)},

�1(ξ2) = {(δ1, 0.75), (δ2, 0.52), (δ3, 1), (δ4, 0.29)},

�2(ξ1) = {(δ1, 0.62), (δ2, 0.13), (δ3, 0.22), (δ4, 0.38)},

�2(ξ2) = {(δ1, 0.57), (δ2, 0.88), (δ3, 0), (δ4, 1)},

respectively, associated with the following two bipolar-valued multi-fuzzy soft sets (Ψ1, Υ1) and
(Ψ2, Υ2), each of order 3, over a universal set Ξ:

(Ψ1, Υ1) = {(υ1, {(ξ1, 0.27, 0, 0.11,−0.8,−0.55,−0.4), (ξ2, 0.62, 0.2, 0.47,−0.19,−1,−0.72),

(υ2, {(ξ1, 0.76, 1, 0.5,−0.67,−0.45,−0.33), (ξ2, 0.15, 1, 0.29, 0,−0.7,−0.44),

(υ3, {(ξ1, 0, 0.36, 0.3,−0.24,−0.85,−1), (ξ2, 0.97, 0.19, 0.1,−0.69, 0,−0.1)})},

(Ψ2, Υ2) = {(υ1, {(ξ1, 0.34, 0, 0.1,−0.51,−0.15,−0.94), (ξ2, 0.23, 0.76, 0.73,−0.09,−0.35, 0),

(υ2, {(ξ1, 0.9, 0.74, 0.6,−0.34,−0.54,−0.3), (ξ2, 0.5, 0.65, 0.32,−0.2,−0.9,−0.4),

(υ3, {(ξ1, 0.3, 0.6, 0.53,−0.28,−0.75, 0), (ξ2, 0.77, 0.11, 0.51,−0.43,−1,−0.66)})}.

Then, compute the union of the two effective sets, namely �U = �1∪̃�2, applying Formula (8) from
Definition 13, as follows:

�U(ξ1) = {(δ1, 0.62), (δ2, 0.13), (δ3, 0.91), (δ4, 0.46)},

�U(ξ2) = {(δ1, 0.75), (δ2, 0.88), (δ3, 1), (δ4, 1)}.
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In addition, compute the union of the two bipolar-valued multi-fuzzy soft sets (Ψ1, Υ1) and (Ψ2, Υ2)
of order 3, namely (Ψ, Υ)U = (ΨU , ΥU) = (Ψ1, Υ1)∪̃(Ψ2, Υ2), where ΥU = Υ1 ∪ Υ2, applying
Formula (9) from Definition 13, as follows:

(ΨU , ΥU) = {(υ1, {(ξ1, 0.34, 0, 0.11,−0.8,−0.55,−0.94), (ξ2, 0.62, 0.76, 0.73,−0.19,−1, 0),

(υ2, {(ξ1, 0.9, 1, 0.6,−0.67,−0.54,−0.33), (ξ2, 0.5, 1, 0.32,−0.2,−0.9,−0.44),

(υ3, {(ξ1, 0.3, 0.6, 0.53,−0.28,−0.85,−1), (ξ2, 0.97, 0.19, 0.51,−0.69,−1,−0.66)})}.

Finally, computing effective union of bipolar-valued multi-fuzzy soft sets (ΨU
�U , ΥU) of order 3,

using Formula (6) from Definition 10, results the following:

(ΨU
�U , ΥU) = {(υ1, {(ξ1, 0.6898, 0, 0.5817,−0.906,−0.7885,−0.9718),

(ξ2, 0.96485, 0.9778, 0.975025,−0.925075,−1, 0),

(υ2, {(ξ1, 0.953, 1, 0.812,−0.8449,−0.7838,−0.6851),

(ξ2, 0.95375, 1, 0.9371,−0.926,−0.99075,−0.9482),

(υ3, {(ξ1, 0.671, 0.812, 0.7791,−0.6616,−0.9295,−1),

(ξ2, 0.997225, 0.925075, 0.954675,−0.971325,−1,−0.96855)})}.

Definition 14 (Restricted union of two effective bipolar-valued multi-fuzzy soft sets). As-
sume that Ξ is an initial universe. Suppose that Υ1 and Υ2 are two parameter sets. Let �1 and �2
be two effective parameter sets over Δ. Then, the restricted union of two effective bipolar-valued
multi-fuzzy soft sets (Ψ1�1 , Υ1) and (Ψ2�2 , Υ2) of dimension n on an initial universe Ξ is defined
as a new effective bipolar-valued multi-fuzzy soft set (ΨUR

�UR
, ΥUR) of dimension n, where �UR :

Δ → [0, 1] is a mapping characterized by �UR = �1∪̃R�2, as well as, (Ψ, Υ)UR = (ΨUR , ΥUR) =
(Ψ1, Υ1)∪̃R(Ψ2, Υ2), taking into account that ΥUR = Υ1 ∩ Υ2 �= φ and �1 ∩ �2 �= φ. The two
formulas that compute �UR = �1∪̃R�2 and (ΨUR , ΥUR) = (Ψ1, Υ1)∪̃R(Ψ2, Υ2), respectively,
can be determined, for each ξ ∈ Ξ, as �

�
UR
ξ

(δ) = max{��1ξ
(δ), ��2ξ

(δ)}, for each δ ∈ Δ and

(ΨUR , ΥUR) = {(υ, {(ξ, max{η+
1Ψ1(υ)

(ξ), η+
1Ψ2(υ)

(ξ)}�, max{η+
2Ψ1(υ)

(ξ), η+
2Ψ2(υ)

(ξ)}�, . . . ,

max{η+
nΨ1(υ)

(ξ), η+
nΨ2(υ)

(ξ)}�, min{η−
1Ψ1(υ)

(ξ), η−
1Ψ2(υ)

(ξ)}�,

min{η−
2Ψ1(υ)

(ξ), η−
2Ψ2(υ)

(ξ)}�, . . . , min{η−
nΨ1(υ)

(ξ), η−
nΨ2(υ)

(ξ)}�)}), ξ ∈ Ξ},

for each υ ∈ ΥUR .

Definition 15 (Intersection of two effective bipolar-valued multi-fuzzy soft sets). Assume
that Ξ is an initial universe. Suppose that Υ1 and Υ2 are two parameter sets. Let �1 and �2 be two
effective parameter sets over Δ. Then, the operation of the intersection of two effective bipolar-valued
multi-fuzzy soft sets (Ψ1�1 , Υ1) and (Ψ2�2 , Υ2) of dimension n on an initial universe Ξ is defined as
a new effective bipolar-valued multi-fuzzy soft set (ΨI

�I , ΥI) of dimension n, where �I : Δ → [0, 1]
is a mapping characterized by �I = �1∩̃�2, as well as, (Ψ, Υ)I = (ΨI , ΥI) = (Ψ1, Υ1)∩̃(Ψ2, Υ2),
taking into account that ΥI = Υ1 ∪ Υ2.

The two formulas that compute �I = �1∩̃�2 and (ΨI , ΥI) = (Ψ1, Υ1)∩̃(Ψ2, Υ2), respec-
tively, can be determined, for each ξ ∈ Ξ, as follows:

�
�I

ξ
(δ) =

⎧⎪⎨⎪⎩
��1ξ

(δ), i f e ∈ �1 −�2,
��2ξ

(δ), i f e ∈ �2 −�1,
min{��1ξ

(δ), ��2ξ
(δ)}, i f e ∈ �1 ∩�2,

(10)

for each δ ∈ Δ and
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(ΨI , ΥI) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= {(υ, {(ξ, η+
1Ψ1(υ)

(ξ)�, η+
2Ψ1(υ)

(ξ)�, . . . , η+
nΨ1(υ)

(ξ)�,
η−

1Ψ1(υ)
(ξ)�, η−

2Ψ1(υ)
(ξ)�, . . . , η−

nΨ1(υ)
(ξ)�)}), ξ ∈ Ξ}, i f υ ∈ Υ1 − Υ2,

= {(υ, {(ξ, η+
1Ψ2(υ)

(ξ)�, η+
2Ψ2(υ)

(ξ)�, . . . , η+
nΨ2(υ)

(ξ)�,
η−

1Ψ2(υ)
(ξ)�, η−

2Ψ2(υ)
(ξ)�, . . . , η−

nΨ2(υ)
(ξ)�)}), ξ ∈ Ξ}, i f υ ∈ Υ2 − Υ1,

= {(υ, {(ξ, min{η+
1Ψ1(υ)

(ξ), η+
1Ψ2(υ)

(ξ)}�, min{η+
2Ψ1(υ)

(ξ), η+
2Ψ2(υ)

(ξ)}�, . . . ,
min{η+

nΨ1(υ)
(ξ), η+

nΨ2(υ)
(ξ)}�, max{η−

1Ψ1(υ)
(ξ), η−

1Ψ2(υ)
(ξ)}�,

max{η−
2Ψ1(υ)

(ξ), η−
2Ψ2(υ)

(ξ)}�, . . . , max{η−
nΨ1(υ)

(ξ), η−
nΨ2(υ)

(ξ)}�)}), ξ ∈ Ξ},
i f υ ∈ Υ1 ∩ Υ2,

(11)

for each υ ∈ ΥI .

Example 4. Compute the intersection of the two effective sets stated in Example 3, say �I = �1∩̃�2,
applying Formula (10) from Definition 15, as the following:

�I(ξ1) = {(δ1, 0.35), (δ2, 0), (δ3, 0.22), (δ4, 0.38)},

�I(ξ2) = {(δ1, 0.57), (δ2, 0.52), (δ3, 0), (δ4, 0.29)}.

Also, compute the intersection of the two bipolar-valued multi-fuzzy soft sets (Ψ1, Υ1) and (Ψ2, Υ2)
of order 3 stated in Example 3, say (Ψ, Υ)I = (ΨI , ΥI) = (Ψ1, Υ1)∩̃(Ψ2, Υ2), where ΥI = Υ1 ∪ Υ2,
applying Formula (11) from Definition 15, as follows:

(ΨI , ΥI) = {(υ1, {(ξ1, 0.27, 0, 0.1,−0.51,−0.15,−0.4), (ξ2, 0.23, 0.2, 0.47,−0.09,−0.35, 0),

(υ2, {(ξ1, 0.76, 0.74, 0.5,−0.34,−0.45,−0.3), (ξ2, 0.15, 0.65, 0.29, 0,−0.7,−0.4),

(υ3, {(ξ1, 0, 0.36, 0.3,−0.24,−0.75, 0), (ξ2, 0.77, 0.11, 0.1,−0.43, 0,−0.1)})},

Then, computing effective intersection of bipolar-valued multi-fuzzy soft sets (ΨI
�I , ΥI) of order 3,

using Formula (6) from Definition 10; the results are as follows:

(ΨI
�I , ΥI) = {(υ1, {(ξ1, 0.443375, 0, 0.31375,−0.626375,−0.351875,−0.5425),

(ξ2, 0.49565, 0.476, 0.65285,−0.40395,−0.57425, 0),

(υ2, {(ξ1, 0.817, 0.80175, 0.61875,−0.49675,−0.580625,−0.46625),

(ξ2, 0.44325, 0.77075, 0.53495, 0,−0.8035,−0.607),

(υ3, {(ξ1, 0, 0.512, 0.46625,−0.4205,−0.809375, 0),

(ξ2, 0.84935, 0.41705, 0.4105,−0.62665, 0,−0.4105)})}.

Definition 16 (Restricted intersection of two effective bipolar-valued multi-fuzzy soft sets).
Assume that Ξ is an initial universe. Suppose that Υ1 and Υ2 are two parameter sets. Let �1 and �2
be two effective parameter sets over Δ. Then, the restricted intersection of two effective bipolar-valued
multi-fuzzy soft sets (Ψ1�1 , Υ1) and (Ψ2�2 , Υ2) of dimension n on an initial universe Ξ is defined
as a new effective bipolar-valued multi-fuzzy soft set (ΨIR

�IR
, ΥIR) of dimension n, where �IR :

Δ → [0, 1] is a mapping characterized by �IR = �1∩̃R�2, as well as, (Ψ, Υ)IR = (ΨIR , ΥIR) =
(Ψ1, Υ1)∩̃R(Ψ2, Υ2), taking into account that ΥIR = Υ1 ∩ Υ2 �= φ and �1 ∩ �2 �= φ. The two
formulas that compute �IR = �1∩̃R�2 and (ΨIR , ΥIR) = (Ψ1, Υ1)∩̃R(Ψ2, Υ2), respectively, can
be determined, for each ξ ∈ Ξ, as �

�
IR
ξ

(δ) = min{��1ξ
(δ), ��2ξ

(δ)}, for each δ ∈ Δ and

(ΨIR , ΥIR) = {(υ, {(ξ, min{η+
1Ψ1(υ)

(ξ), η+
1Ψ2(υ)

(ξ)}�, min{η+
2Ψ1(υ)

(ξ), η+
2Ψ2(υ)

(ξ)}�, . . . ,

min{η+
nΨ1(υ)

(ξ), η+
nΨ2(υ)

(ξ)}�, max{η−
1Ψ1(υ)

(ξ), η−
1Ψ2(υ)

(ξ)}�,

max{η−
2Ψ1(υ)

(ξ), η−
2Ψ2(υ)

(ξ)}�, . . . , max{η−
nΨ1(υ)

(ξ), η−
nΨ2(υ)

(ξ)}�)}), ξ ∈ Ξ},
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for each υ ∈ ΥIR .

Definition 17 (Subset of effective bipolar-valued multi-fuzzy soft set). Suppose that Ξ is
an initial universe. Assume that Υ1 and Υ2 are two parameter sets. Given that �1 and �2 are
two effective parameter sets over Δ. Let (Ψ1, Υ1) and (Ψ2, Υ2) are two effective bipolar-valued
multi-fuzzy soft sets of dimension n on a universal set Ξ. Then, (Ψ1, Υ1) is called an effective
bipolar-valued multi-fuzzy soft subset of (Ψ2, Υ2) if the following are satisfied:

1. �1 ⊆ �2,
2. Υ1 ⊆ Υ2 and
3. Ψ1(υ) ⊆ Ψ2(υ), for all υ ∈ Υ1.

(1) means that, for ξ ∈ Ξ and each δ ∈ Δ, we have ��1ξ
(δ) ≤ ��2ξ

(δ).
(2) means ordinary inclusion (usual subset).
(3) means that, for i = 1, 2, . . . , n, η+

iΨ1(υ)
(ξ) ≤ η+

iΨ2(υ)
(ξ) and η−

iΨ1(υ)
(ξ) ≥ η−

iΨ2(υ)
(ξ),

i.e., η+
iΨ1(υ)

(ξ) ≤ η+
iΨ2(υ)

(ξ) and η−
iΨ1(υ)

(ξ) ≥ η−
iΨ2(υ)

(ξ), for each υ ∈ Υ1 and for each ξ ∈ Ξ

One can write (Ψ1, Υ1)⊆̃(Ψ2, Υ2). In this case, (Ψ2, Υ2) is called an effective bipolar-valued
multi-fuzzy soft superset of (Ψ1, Υ1), denoted by (Ψ2, Υ2)⊇̃(Ψ1, Υ1).

Definition 18 (Equality of two effective bipolar-valued multi-fuzzy soft sets). Given that
Ξ is an initial universe, suppose that Υ1 and Υ2 are two parameter sets. Assume that �1 and �2
are two effective parameter sets over Δ. Then, two effective bipolar-valued multi-fuzzy soft sets
(Ψ1, Υ1) and (Ψ2, Υ2) of dimension n on an initial universe Ξ are called effective bipolar-valued
multi-fuzzy soft equal if they are effective bipolar-valued multi-fuzzy soft subsets of each other as
stated in Definition 17, i.e., (Ψ1, Υ1)⊆̃(Ψ2, Υ2) and (Ψ2, Υ2)⊆̃(Ψ1, Υ1).

Definition 19 (Complement of effective bipolar-valued multi-fuzzy soft set). For a parameter
set Υ and an effective parameter set Δ, the operation of the complement of an effective bipolar-valued
multi-fuzzy soft set (Ψ�, Υ) of dimension n on an initial universe Ξ is defined by (Ψ�, Υ)c =
(Ψc

�c , Υ). We have �c : Δ → [0, 1] is characterized by ��c
ξ
(δ) = 1 − ��ξ

(δ), for each ξ ∈ Ξ and
for each δ ∈ Δ. In addition, we have Ψc : Υ → BMF(Ξ) is described, for i = 1, 2, · · · , n, as
follows: η+

iΨc(υ)
(ξ) = 1 − η+

iΨ(υ)
(ξ) and η−

iΨc(υ)
(ξ) = 1 − η−

iΨ(υ)
(ξ), for each ξ ∈ Ξ and for each

υ ∈ Υ. That is to say that we have the following:

(Ψ�, Υ)c = {(υ, {(ξ, 1 − η+
1ΨΥ(υ)

(ξ)�c , 1 − η+
2ΨΥ(υ)

(ξ)�c , . . . , 1 − η+
nΨΥ(υ)

(ξ)�c ,

1 − η−
1ΨΥ(υ)

(ξ)�c , 1 − η−
2ΨΥ(υ)

(ξ)�c , . . . , 1 − η−
nΨΥ(υ)

(ξ)�c)}) : υ ∈ Υ, ξ ∈ Ξ}.
(12)

Example 5. The complement of (Ψ�, Υ) in Example 2 can be calculated as follows:

(Ψ�, Υ)c = (Ψc
�c , Υ) = {(υ1, {(ξ1, 0.82, 0.64, 0.73,−0.865,−0.595,−0.91),

(ξ2, 0.965, 0.825, 0.895,−0.755,−0.79,−0.86),

(ξ3, 0.37, 0.72, 0.65,−0.51,−0.86,−0.79)}),
(υ2, {(ξ1, 0.73, 0.865, 0,−0.685,−0.775,−0.82),

(ξ2, 0.825, 0, 0.685,−0.93, 0,−0.86),

(ξ3, 0.86, 0.72, 0.58,−0.79,−0.44,−0.93)}),
(υ3, {(ξ1, 0, 0.73, 0.865,−0.91,−0.775,−0.82),

(ξ2, 0.755, 0.685, 0.965,−0.685, 0,−0.895),

(ξ3, 0.93, 0.51, 0.86,−0.86,−0.65,−0.44)})}.

Remark 4. The above definitions can be extended from the case of just two sets to the case of a
family of sets. One can easily infer the formulas that describe those definitions and can give an
example for each one.

157



Mathematics 2023, 11, 3747

5. Properties of Effective Bipolar-Valued Multi-Fuzzy Soft Sets

In this section, we give many significant properties for effective bipolar-valued multi-
fuzzy soft sets of dimension n like associative, commutative, distributive, absorption, and
De Morgan’s properties. Using Definitions 11–13, 15–17 and 19 of Section 4 makes the
following theorems hold. By applying formulas and operations stated in those definitions,
one can easily prove these theorems directly.

Theorem 1. Given that Ξ is an initial universe, assume that Υ is a parameter set. Suppose that
(Ψ�, Υ) is an effective bipolar-valued multi-fuzzy soft set of dimension n on an initial universe Ξ,
constructed by an effective set �. Let (φ�, Υ) and (C�, Υ) be, respectively, the null and the absolute
effective bipolar-valued multi-fuzzy soft set of dimension n on a common initial universe Ξ. Then,
we have the following satisfied for them:

1. (Ψ�, Υ)∪̃(Ψ�, Υ) = (Ψ�, Υ)∩̃(Ψ�, Υ) = (Ψ�, Υ).
2. (Ψ�, Υ)∩̃(C�, Υ) = (Ψ�, Υ)∪̃(φ�, Υ) = (Ψ�, Υ).
3. (Ψ�, Υ)∪̃(C�, Υ) = (C�, Υ)∪̃(φ�, Υ) = (C�, Υ).
4. (Ψ�, Υ)∩̃(φ�, Υ) = (C�, Υ)∩̃(φ�, Υ) = (φ�, Υ).

Proof. We prove (4). Similarly, (1), (2) and (3) can be proved by using the same tech-
nique. For (4), we prove that (C�, Υ)∩̃(φ�, Υ) = (φ�, Υ) and by following the same method
(Ψ�, Υ)∩̃(φ�, Υ) = (φ�, Υ) can be proved. From Definitions 11 and 12, (C�, Υ) = {(υ, {(ξ, 1,
n−times. . . , 1,−1, n−times. . . ,−1)}) : υ ∈ Υ, ξ ∈ Ξ} and (φ�, Υ) = {(υ, {(ξ, 0, 2n−times. . . , 0)}) : υ ∈
Υ, ξ ∈ Ξ}, respectively. Assume, for Υ = Υ ∪ Υ = Υ, that

(C�, Υ)∩̃(φ�, Υ)

= (Ψ�, Υ)

= {(υ, {(ξ, η+
1Ψ(υ)

(ξ)�, η+
2Ψ(υ)

(ξ)�, . . . , η+
nΨ(υ)

(ξ)�, η−
1Ψ(υ)

(ξ)�, η−
2Ψ(υ)

(ξ)�, . . . , η−
nΨ(υ)

(ξ)�)}) :

υ ∈ Υ, ξ ∈ Ξ}
= {(υ, {(ξ, min{1, 0}�, n−times. . . , min{1, 0}�, max{−1, 0}�, n−times. . . , max{−1, 0}�)}) :

υ ∈ Υ, ξ ∈ Ξ}
= {(υ, {(ξ, (0, n−times. . . , 0), (0, n−times. . . , 0))}) : υ ∈ Υ, ξ ∈ Ξ}
= {(υ, {(ξ, 0, 2n−times. . . , 0)}) : υ ∈ Υ, ξ ∈ Ξ} = (φ�, Υ).

Then, this is true for υ ∈ Υ ∩ Υ = Υ, which is the third case in Definition 15. But, we have
no parameters for the first and second cases since υ ∈ Υ − Υ = φ.

Theorem 2. Let Ξ be an initial universe. Suppose that Υ1 and Υ2 are two parameter sets. For a
common effective set �, let (Ψ1�, Υ1) and (Ψ2�, Υ2) be two effective bipolar-valued multi-fuzzy
soft sets of dimension n on a universal set Ξ. Then, we have the following absorption properties
are true:

1. (Ψ1�, Υ1)∪̃((Ψ1�, Υ1)∩̃R(Ψ2�, Υ2)) = (Ψ1�, Υ1).
2. (Ψ1�, Υ1)∩̃R((Ψ1�, Υ1)∪̃(Ψ2�, Υ2)) = (Ψ1�, Υ1).

Proof. To prove (1), assume that

(Ψ2�, Υ2) = {(υ, {(ξ, η+
1Ψ2(υ)

(ξ)�, η+
2Ψ2(υ)

(ξ)�, . . . , η+
nΨ2(υ)

(ξ)�,

η−
1Ψ2(υ)

(ξ)�, η−
2Ψ2(υ)

(ξ)�, . . . , η−
nΨ2(υ)

(ξ)�)}) : υ ∈ Υ2, ξ ∈ Ξ},

(Ψ1�, Υ1) = {(υ, {(ξ, η+
1Ψ1(υ)

(ξ)�, η+
2Ψ1(υ)

(ξ)�, . . . , η+
nΨ1(υ)

(ξ)�,

η−
1Ψ1(υ)

(ξ)�, η−
2Ψ1(υ)

(ξ)�, . . . , η−
nΨ1(υ)

(ξ)�)}) : υ ∈ Υ1, ξ ∈ Ξ},
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(Ψ3�, Υ3) = (Ψ1�, Υ1)∩̃R(Ψ2�, Υ2), Υ3 = Υ1 ∩ Υ2,

= {(υ, {(ξ, η+
1Ψ3(υ)

(ξ)�, η+
2Ψ3(υ)

(ξ)�, . . . , η+
nΨ3(υ)

(ξ)�,

η−
1Ψ3(υ)

(ξ)�, η−
2Ψ3(υ)

(ξ)�, . . . , η−
nΨ3(υ)

(ξ)�)}) : υ ∈ Υ3, ξ ∈ Ξ},

and

(Ψ4�, Υ4) = (Ψ1�, Υ1)∪̃(Ψ3�, Υ3), Υ4 = Υ1 ∪ Υ3,

= {(υ, {(ξ, η+
1Ψ4(υ)

(ξ)�, η+
2Ψ4(υ)

(ξ)�, . . . , η+
nΨ4(υ)

(ξ)�,

η−
1Ψ4(υ)

(ξ)�, η−
2Ψ4(υ)

(ξ)�, . . . , η−
nΨ4(υ)

(ξ)�)}) : υ ∈ Υ4, ξ ∈ Ξ}.

We must prove that (1) is true for all following three cases, according to Definition 13:

(i) If υ ∈ Υ1 − Υ2, therefore, from Definition 16, we have:

(Ψ3�, Υ3) = (Ψ1�, Υ1)∩̃R(Ψ2�, Υ2)

= {(υ, {(ξ, η+
1Ψ3(υ)

(ξ)�, η+
2Ψ3(υ)

(ξ)�, . . . , η+
nΨ3(υ)

(ξ)�,

η−
1Ψ3(υ)

(ξ)�, η−
2Ψ3(υ)

(ξ)�, . . . , η−
nΨ3(υ)

(ξ)�)}) : υ ∈ Υ1 − Υ2, ξ ∈ Ξ} = φ.

Then, by using (3) from Theorem 1, we have:

(Ψ4�, Υ4) = (Ψ1�, Υ1)∪̃(Ψ3�, Υ3) = (Ψ1�, Υ1)∪̃φ = (Ψ1�, Υ1).

(ii) If υ ∈ Υ2 − Υ1, then we obtain from Definition 16 that:

(Ψ3�, Υ3) = (Ψ1�, Υ1)∩̃R(Ψ2�, Υ2)

= {(υ, {(ξ, η+
1Ψ3(υ)

(ξ)�, η+
2Ψ3(υ)

(ξ)�, . . . , η+
nΨ3(υ)

(ξ)�,

η−
1Ψ3(υ)

(ξ)�, η−
2Ψ3(υ)

(ξ)�, . . . , η−
nΨ3(υ)

(ξ)�)}) : υ ∈ Υ2 − Υ1, ξ ∈ Ξ} = φ.

Then, by using (3) from Theorem 1, we have:

(Ψ4�, Υ4) = (Ψ1�, Υ1)∪̃(Ψ3�, Υ3) = (Ψ1�, Υ1)∪̃φ = (Ψ1�, Υ1).

(iii) If υ ∈ Υ1 ∩ Υ2, then we obtain from Definition 16 that:

(Ψ3�, Υ3) = (Ψ1�, Υ1)∩̃R(Ψ2�, Υ2)

= {(υ, {(ξ, η+
1Ψ3(υ)

(ξ)�, η+
2Ψ3(υ)

(ξ)�, . . . , η+
nΨ3(υ)

(ξ)�,

η−
1Ψ3(υ)

(ξ)�, η−
2Ψ3(υ)

(ξ)�, . . . , η−
nΨ3(υ)

(ξ)�)}) : υ ∈ Υ1 ∩ Υ2, ξ ∈ Ξ}
= {(υ, {(ξ, min{η+

1Ψ1(υ)
(ξ)�, η+

1Ψ2(υ)
(ξ)�}, min{η+

2Ψ1(υ)
(ξ)�, η+

2Ψ2(υ)
(ξ)�}, . . . ,

min{η+
nΨ1(υ)

(ξ)�, η+
nΨ2(υ)

(ξ)�}, max{η−
1Ψ1(υ)

(ξ)�, η−
1Ψ2(υ)

(ξ)�},

max{η−
2Ψ1(υ)

(ξ)�, η−
2Ψ2(υ)

(ξ)�}, . . . , max{η−
nΨ1(υ)

(ξ)�, η−
nΨ2(υ)

(ξ)�})}) :

υ ∈ Υ1 ∩ Υ2, ξ ∈ Ξ}.

Since,

(Ψ4�, Υ4) = (Ψ1�, Υ1)∪̃(Ψ3�, Υ3)

= {(υ, {(ξ, η+
1Ψ4(υ)

(ξ)�, η+
2Ψ4(υ)

(ξ)�, . . . , η+
nΨ4(υ)

(ξ)�,

η−
1Ψ4(υ)

(ξ)�, η−
2Ψ4(υ)

(ξ)�, . . . , η−
nΨ4(υ)

(ξ)�)}) : υ ∈ Υ1 ∩ Υ2, ξ ∈ Ξ}.
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Therefore, we have from Definition 13 that:

(Ψ4�, Υ4) = {(υ, {(ξ, max{η+
1Ψ1(υ)

(ξ)�, min{η+
1Ψ1(υ)

(ξ)�, η+
1Ψ2(υ)

(ξ)�}},

max{η+
2Ψ1(υ)

(ξ)�, min{η+
2Ψ1(υ)

(ξ)�, η+
2Ψ2(υ)

(ξ)�}}, . . . ,

max{η+
nΨ1(υ)

(ξ)�, min{η+
nΨ1(υ)

(ξ)�, η+
nΨ2(υ)

(ξ)�}},

min{η−
1Ψ1(υ)

(ξ)�, max{η−
1Ψ1(υ)

(ξ)�, η−
1Ψ2(υ)

(ξ)�}},

min{η−
2Ψ1(υ)

(ξ)�, max{η−
2Ψ1(υ)

(ξ)�, η−
2Ψ2(υ)

(ξ)�}}, . . . ,

min{η−
nΨ1(υ)

(ξ)�, max{η−
nΨ1(υ)

(ξ)�, η−
nΨ2(υ)

(ξ)�}})}) : υ ∈ Υ1 ∩ Υ2, ξ ∈ Ξ}
= {(υ, {(ξ, η+

1Ψ1(υ)
(ξ)�, η+

2Ψ1(υ)
(ξ)�, . . . , η+

nΨ1(υ)
(ξ)�,

η−
1Ψ1(υ)

(ξ)�, η−
2Ψ1(υ)

(ξ)�, . . . , η−
nΨ1(υ)

(ξ)�)}) : υ ∈ Υ1 ∩ Υ2, ξ ∈ Ξ}
= (Ψ1�, Υ1).

To prove (2), one can follow the same steps as (1).

Corollary 1. Given that, Ξ is an initial universe. Let Υ1 and Υ2 be two parameter sets. For two
effective bipolar-valued multi-fuzzy soft sets of dimension n on a common initial universe (Ψ1�, Υ1)
and (Ψ2�, Υ2), generated by a common effective set �, we obtain that:

(Ψ1�, Υ1)∪̃((Ψ1�, Υ1)∩̃R(Ψ2�, Υ2)) = (Ψ1�, Υ1)∩̃R((Ψ1�, Υ1)∪̃(Ψ2�, Υ2)) = (Ψ1�, Υ1).

Proof. This corollary can be proved directly as the above Theorem 2.

Theorem 3. Let Ξ be an initial universe. Assume that Υ1 and Υ2 are two parameter sets. Suppose
that we have a common effective set �, associated with two effective bipolar-valued multi-fuzzy
soft sets of dimension n, namely (Ψ1�, Υ1) and (Ψ2�, Υ2). Then, we obtain that the abelian
(commutative) property hold as below:

1. (Ψ1�, Υ1)∩̃(Ψ2�, Υ2) = (Ψ2�, Υ2)∩̃(Ψ1�, Υ1).
2. (Ψ1�, Υ1)∪̃(Ψ2�, Υ2) = (Ψ2�, Υ2)∪̃(Ψ1�, Υ1).

Proof. Applying the same technique stated in Theorem 2, one can easily prove this result
using Definitions 13 and 15.

Proposition 1. Suppose that Ξ is an initial universe. Given that Υ1 and Υ2 are two parameter sets,
assume that we have a common effective set �, associated with two effective bipolar-valued multi-
fuzzy soft sets of dimension n, namely (Ψ1�, Υ1) and (Ψ2�, Υ2). If (Ψ1�, Υ1)⊆̃(Ψ2�, Υ2), then

1. (Ψ1�, Υ1)∩̃R(Ψ2�, Υ2) = (Ψ1�, Υ1).
2. (Ψ1�, Υ1)∪̃(Ψ2�, Υ2) = (Ψ2�, Υ2).

Proof. This proposition can be proved directly like Theorem 2, applying Definitions 14 and 16.

Theorem 4. Let Ξ be an initial universe and Υ1, Υ2 and Υ3 be three parameter sets. For a common
effective set �, suppose that (Ψ1�, Υ1), (Ψ2�, Υ2) and (Ψ3�, Υ3) are effective bipolar-valued multi-
fuzzy soft sets of dimension n on a common initial universe Ξ. Then, we have the associative and
distributive laws, respectively, satisfied as the following:

1. (Ψ1�, Υ1)∩̃((Ψ2�, Υ2)∩̃(Ψ3�, Υ3)) = ((Ψ1�, Υ1)∩̃(Ψ2�, Υ2))∩̃(Ψ3�, Υ3).
2. (Ψ1�, Υ1)∪̃((Ψ2�, Υ2)∪̃(Ψ3�, Υ3)) = ((Ψ1�, Υ1)∪̃(Ψ2�, Υ2))∪̃(Ψ3�, Υ3).
3. (Ψ1�, Υ1)∩̃((Ψ2�, Υ2)∪̃(Ψ3�, Υ3)) = ((Ψ1�, Υ1)∩̃(Ψ2�, Υ2))∪̃((Ψ1�, Υ1)∩̃(Ψ3�, Υ3)).
4. (Ψ1�, Υ1)∪̃((Ψ2�, Υ2)∩̃(Ψ3�, Υ3)) = ((Ψ1�, Υ1)∪̃(Ψ2�, Υ2))∩̃((Ψ1�, Υ1)∪̃(Ψ3�, Υ3)).
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Proof. Using Definitions 13 and 15 and applying the same technique stated in Theorem 2,
we can prove this theorem.

Theorem 5. Assume that Ξ is an initial universe. Suppose that Υ1 and Υ2 are two parameter sets.
For a common effective set �, we have the following De Morgan’s laws hold for any two effective
bipolar-valued multi-fuzzy soft sets (Ψ1�, Υ1) and (Ψ2�, Υ2) of dimension n on a common initial
universe Ξ:

1. ((Ψ1�, Υ1)∪̃(Ψ2�, Υ2))
c = (Ψ1�, Υ1)

c∩̃(Ψ2�, Υ2)
c.

2. ((Ψ1�, Υ1)∩̃(Ψ2�, Υ2))
c = (Ψ1�, Υ1)

c∪̃(Ψ2�, Υ2)
c.

Proof. One can easily prove this theorem with the help of Theorem 2’s technique by using
Definitions 13, 15 and 19.

6. Medical Diagnosis

The aim of this section is to focus on a real-life issue of diagnosis. An algorithm for
medical diagnosis, or educational evaluation, . . ., using the effective bipolar-valued multi-
fuzzy soft set of dimension n is introduced. One can apply this technique using matrixes
operations and properties to diagnose the case. This diagnosis includes determining what
student, or what patient, . . ., respectively, is succeeding in taking which education level, or
is suffering from which disease, . . .

Furthermore, a case study example of medical diagnosis is discussed in detail. The
steps of the initiated method are framed under matrix operations to facilitate doing compu-
tations. Moreover, the addition and the multiplication of matrixes, as well as calculations
of effective memberships, are made with the help of the MATLAB® program to make them
faster, more accurate, and easy to do.

6.1. Methodology and Algorithm

Suppose that there is a set of n students or patients, . . . Π = {π1, π2, . . . , πn}, say. In
addition, assume that we have two sets of m exams or symptoms, . . . and their opposites
Υ={υ1, υ2, . . . , υm} and −Υ={−υ1,−υ2, . . . ,−υm}, respectively. Furthermore, let those sets
be related to a set of k levels or diseases, . . . Ξ = {ξ1, ξ2, . . . , ξk}. Moreover, consider
Δ = {δ1, δ2, . . . , δr} is a set of r effective parameters or attributes proposed according to
the problem.

The effective set � can be constructed according to the students’ says or the patients’
says. In addition, the bipolar-valued multi-fuzzy soft set (Ψ, Υ) can be obtained by asking
every student or patient many questions and subjecting him/her to some tests or analyses
by experts. Moreover, the multi-fuzzy soft set (Γ, Υ) that indicates an approximate descrip-
tion of the given levels or diseases and their exams or symptoms, respectively, can be built
from expert documentation.

Then, under these given assumptions, we can start the algorithm’s steps to determine
what student, or what patient, . . ., respectively, is succeeding in taking which education
level, or is suffering from which disease, . . . The first step is to compute the effective bipolar-
valued multi-fuzzy soft set (Ψ�, Υ) from the given bipolar-valued multi-fuzzy soft set
(Ψ, Υ) and the given effective set � for the given students or patients by using Formula (6)
from Definition 10. After that, the second step is to extract the matrix corresponding to
every positive pole of the effective bipolar-valued multi-fuzzy soft set that contains the
membership values of the given items, say Ai. Again, similarly, the third step is to extract
the matrix corresponding to every negative pole of the effective bipolar-valued multi-fuzzy
soft set that contains the membership values of the given items, say Bi.

Also, similarly, the fourth step is to extract the matrix corresponding to every pole
of the given multi-fuzzy soft set, say Cj, where j = 2i. Then, the fifth step is to multiply
every Ai and Bi matrix by its Cj corresponding matrix (or multiply it by the transpose of its
Cj corresponding matrix, if necessary according to the problem conditions). Finally, the
sixth step is to add all resulting matrixes, say Dj, to obtain the final diagnosis matrix, say
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D, in which the diagnosis for each student or patient is regarded as the maximum value in
their row. For simplicity, Figure 2 briefly represents the proposed algorithm’s steps as a
simple flowchart.

Figure 2. Steps of the proposed algorithm.

6.2. Case Study

This section is devoted to discussing a medical example, in which we follow the above
algorithm steps to determine the best diagnosis for every patient who has some known
symptoms by a specific degree. In every step that needs calculations, we use the MATLAB®

program to perform any computations like calculating effective values, the matrix addition
operation, and the matrix multiplication operation.

Example 6. Consider a universal set of patients Π = {π1, π2, π3} who are predicted to be possibly
suffering from one of four proposed diseases according to their symptoms and circumstances.

Let the two major sets of parameters (attributes) that describe the symptoms be Υ = {υ1, υ2, υ3},
υi(i = 1, 2, 3) and its opposite set −Υ = {−υ1,−υ2,−υ3}, −υi(i = 1, 2, 3) stand for the symp-
toms and the opposite-symptoms, respectively. These symptoms can be classified, according to their
association with different human systems, into the following three main types of parameters:

1. Respiratory symptoms, digestive symptoms, and neurological symptoms, respectively. Respi-
ratory symptoms and their opposite symptoms are as follows:
(“difficult and slow breath” and “easy and fast breath”), (“runny nose” and “stuffy nose”),
(“difficult swallow” and “easy swallow”).

2. Digestive symptoms and their opposite symptoms are as follows:
(“diarrhea” and “constipation”), (“nausea” and “appetite”), (“abdominal pain” and “abdomi-
nal relax”).

3. Neurological symptoms and their opposite symptoms are as follows:
(“headache” and “head relax”), (“increased sweating” and “decreased sweating”), (“fatigue
and pain” and “ability and well-being”).

In addition, let the universal set Ξ = {ξ1, ξ2, ξ3, ξ4} be a set of possible proposed diseases,
where ξ1 = Malaria, ξ2 = Dengue fever, ξ3 = Corona virus (COVID − 19). and ξ4 = respiratory
syncytial virus (RSV).

Furthermore, suppose that Δ = {δ1, δ2, δ3, δ4} is a set of effective attributes, where δ1 = the
patient has closely contacted with anyone who was suffering from COVID-19, δ2 = the patient has
used to sleep without a mosquito net, or any other cover δ3 = the patient works in a hospital, or
a medical center and δ4 = the patient has closely contacted with anyone who was suffering from
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RSV. After talking to the patients, we can construct the effective set � over Δ, for πi, i = 1, 2, 3, as
follows according to the patient’s words and an expert medical evaluation:

�(π1) = {(δ1, 0.7), (δ2, 0.2), (δ3, 0.5), (δ4, 0.4)},

�(π2) = {(δ1, 0.5), (δ2, 0.1), (δ3, 0), (δ4, 0.8)},

�(π3) = {(δ1, 1), (δ2, 0.6), (δ3, 0.3), (δ4, 0.9)}.

Moreover, after asking every patient many questions as well as subjecting him/her to some medical
tests by a medical committee, we have the following bipolar-valued multi-fuzzy soft set (Ψ, Υ) of
order 3:

(Ψ, Υ) = {(υ1, {(π1, 0.4, 0.8, 0.6,−0.3,−0.9,−0.2), (π2, 0.1, 0.5, 0.3,−0.7,−0.6,−0.4),

(π3, 0.9, 0.4, 0.5,−0.7,−0.2,−0.3)}), (υ2, {(π1, 0.6, 0.3, 1,−0.7,−0.5,−0.3),

(π2, 0.5, 1, 0.9,−0.2,−1,−0.4), (π3, 0.2, 0.4, 0.6,−0.3,−0.8,−0.1)}),
(υ3, {(π1, 1, 0.6, 0.3,−0.2,−0.5,−0.4), (π2, 0.7, 0.9, 0.1,−0.9,−1,−0.3),

(π3, 0.1, 0.7, 0.2,−0.2,−0.5,−0.8)})}.

Furthermore, from expert medical documentation, we have a multi-fuzzy soft set (Γ, Υ) of order 6
indicating an approximate description of the four diseases and their symptoms.

(Γ, Υ) = {(υ1, {(ξ1, 0.1, 0.2, 0.3, 0.8, 0.3, 0.2), (ξ2, 0.2, 0.3, 0.1, 0.1, 0.2, 0.1),

(ξ3, 0.4, 0.5, 0.7, 0.4, 0.5, 0.1), (ξ4, 1, 0.8, 0.6, 0, 0.2, 0.1)}),
(υ2, {(ξ1, 0.7, 0.8, 0.9, 0.1, 0.2, 0.1), (ξ2, 0.1, 0.9, 0.9, 0.1, 0.1, 0.1),

(ξ3, 0.9, 0.6, 0.7, 0.8, 0.1, 0.1)}), (ξ4, 0.6, 0.5, 0.2, 0.1, 0.1, 0.2)}),
(υ3, {(ξ1, 0.9, 0.1, 1, 0.2, 0.1, 0.1), (ξ2, 0.8, 0.3, 0.7, 0.1, 0.3, 0.2),

(ξ3, 0.7, 0.9, 0.8, 0.2, 0.1, 0.2), (ξ4, 0.7, 0.1, 0.6, 0.1, 0, 0.2)})}.

What is the best medical diagnosis for all patients?

Solution.

• Step (1): Compute the effective bipolar-valued multi-fuzzy soft set (Ψ�, Υ) of order
3, that describes the above patients’ cases, by using Formula (6) from Definition 10,
as follows:

(Ψ�, Υ) = {(υ1, {(π1, 0.67, 0.89, 0.78,−0.61,−0.94,−0.56),

(π2, 0.41, 0.67, 0.54,−0.8,−0.74,−0.61),

(π3, 0.97, 0.82, 0.85,−0.91,−0.76,−0.79)}),
(υ2, {(π1, 0.78, 0.61, 1,−0.83,−0.72,−0.61),

(π2, 0.67, 1, 0.93,−0.48,−1,−0.61),

(π3, 0.76, 0.82, 0.88,−0.79,−0.94,−0.73)}),
(υ3, {(π1, 1, 0.78, 0.61,−0.56,−0.72,−0.67),

(π2, 0.8, 0.93, 0.41,−0.93,−1,−0.54),

(π3, 0.73, 0.91, 0.76,−0.76,−0.85,−0.94)})}.

• Step (2): Extract the matrixes A1, A2 and A3 representing the patient-symptom (+ve)
relations from the membership values of the first, second and third positive poles of
the effective bipolar-valued multi-fuzzy soft set (Ψ�, Υ) of order 3, respectively, as
the following:
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A1 =

υ′1 υ′2 υ′3⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

π1 0.67 0.78 1

π2 0.41 0.67 0.8

π3 0.97 0.76 0.73

,

A2 =

υ
′′
1 υ

′′
2 υ

′′
3⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

π1 0.89 0.61 0.78

π2 0.67 1 0.93

π3 0.82 0.82 0.91

,

A3 =

υ
′′′
1 υ

′′′
2 υ

′′′
3⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

π1 0.78 1 0.61

π2 0.54 0.93 0.41

π3 0.85 0.88 0.76

.

• Step (3): Similarly, extract the matrixes B1, B2 and B3 representing the patient-
symptom (−ve) relations from the membership values of the first, second and third
negative poles of the effective bipolar-valued multi-fuzzy soft set (Ψ�, Υ) of order 3,
respectively, as the following:

B1 =

−υ′1 −υ′2 −υ′3⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

π1 −0.61 −0.83 −0.56

π2 −0.8 −0.48 −0.93

π3 −0.91 −0.79 −0.76

,

B2 =

−υ
′′
1 −υ

′′
2 −υ

′′
3⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

π1 −0.94 −0.72 −0.72

π2 −0.74 −1 −1

π3 −0.76 −0.94 −0.85

,

B3 =

−υ
′′′
1 −υ

′′′
2 −υ

′′′
3⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

π1 −0.56 −0.61 −0.67

π2 −0.61 −0.61 −0.54

π3 −0.79 −0.73 −0.94

.

• Step (4): In addition, extract the matrixes C1, C2, C3, C4, C5, and C6, representing
the symptom-disease relations from the membership values of the six poles of the
multi-fuzzy soft set (Γ, Υ) of order 6, respectively, as the following:

164



Mathematics 2023, 11, 3747

C1 =

υ′1 υ′2 υ′3⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ1 0.1 0.7 0.9

ξ2 0.2 0.1 0.8

ξ3 0.4 0.9 0.7

ξ4 1 0.6 0.7

,

C2 =

υ
′′
1 υ

′′
2 υ

′′
3⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ1 0.2 0.8 0.1

ξ2 0.3 0.9 0.3

ξ3 0.5 0.6 0.9

ξ4 0.8 0.5 0.1

,

C3 =

υ
′′′
1 υ

′′′
2 υ

′′′
3⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ1 0.3 0.9 1

ξ2 0.1 0.9 0.7

ξ3 0.7 0.7 0.8

ξ4 0.6 0.2 0.6

,

C4 =

−υ′1 −υ′2 −υ′3⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ1 0.8 0.1 0.2

ξ2 0.1 0.1 0.1

ξ3 0.4 0.8 0.2

ξ4 0 0.1 0.1

,

C5 =

−υ
′′
1 −υ

′′
2 −υ

′′
3⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ1 0.3 0.2 0.1

ξ2 0.2 0.1 0.3

ξ3 0.5 0.1 0.1

ξ4 0.2 0.1 0

,
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C6 =

−υ
′′′
1 −υ

′′′
2 −υ

′′′
3⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ1 0.2 0.1 0.1

ξ2 0.1 0.1 0.2

ξ3 0.1 0.1 0.2

ξ4 0.1 0.2 0.2

.

• Step (5): To obtain the patient-disease matrixes (patient-diagnosis matrixes) D1, D2,
D3, D4, D5 and D6, we take the transpose for C1, C2, C3, C4, C5 and C6, then find the
products D1 = A1 × CT

1 , D2 = A2 × CT
2 , D3 = A3 × CT

3 , D4 = B1 × CT
4 , D5 = B2 × CT

5
and D6 = B3 × CT

6 , respectively, as follows:

D1 = A1 × CT
1 =

ξ1 ξ2 ξ3 ξ4⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

π1 1.513 1.012 1.67 1.838

π2 1.23 0.789 1.327 1.372

π3 1.286 0.854 1.583 1.937

,

D2 = A2 × CT
2 =

ξ1 ξ2 ξ3 ξ4⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

π1 0.744 1.05 1.513 1.095

π2 0.997 1.29 1.502 1.099

π3 0.911 1.257 1.721 1.157

,

D3 = A3 × CT
3 =

ξ1 ξ2 ξ3 ξ4⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

π1 1.744 1.405 1.734 1.034

π2 1.409 1.178 1.357 0.756

π3 1.807 1.409 1.819 1.142

,

D4 = B1 × CT
4 =

ξ1 ξ2 ξ3 ξ4⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

π1 −0.683 −0.2 −1.02 −0.139

π2 −0.874 −0.221 −0.89 −0.141

π3 −0.959 −0.246 −1.148 −0.155

,

D5 = B2 × CT
5 =

ξ1 ξ2 ξ3 ξ4⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

π1 −0.498 −0.476 −0.614 −0.26

π2 −0.522 −0.548 −0.57 −0.248

π3 −0.501 −0.501 −0.559 −0.246

,
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D6 = B3 × CT
6 =

ξ1 ξ2 ξ3 ξ4⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

π1 −0.24 −0.251 −0.251 −0.312

π2 −0.237 −0.23 −0.23 −0.291

π3 −0.325 −0.34 −0.34 −0.413

.

• Step (6): Finally, to obtain the final diagnosis matrix D, we calculate the summation
of Di, i = 1, 2, · · · , 6 as the following:

D = D1 + D2 + D3 + D4 + D5 + D6 =
ξ1 ξ2 ξ3 ξ4⎛⎜⎜⎜⎝

⎞⎟⎟⎟⎠
π1 2.58 2.54 3.032 3.256

π2 2.003 2.258 2.496 2.547

π3 2.219 2.433 3.076 3.422

.

It is clear from the above final diagnosis matrix D that the maximum value in each
row is the fourth one. That is, the values 3.256, 2.547 and 3.422, respectively, are the
maximum values for the patients π1, π2 and π3 corresponding to the disease ξ4.
Consequently, we conclude that the patients π1, π2 and π3 are suffering from the
disease ξ4, which is RSV. Then, the best medical diagnosis for all those patients
is RSV.
If more than one patient is suffering from the same disease, as occurred in the current
example, one can determine which patient is in the most need of treatment. According
to the above final diagnosis matrix D, the order of alternatives (patients) is as follows:
π3 > π1 > π2.
This shows that the third patient must be the first one to be treated, followed by the
first patient and finally, the second patient. Normally, we give the necessary treatment
to every needing patient, but in case of a lack of treatments or medical devices (like
ventilators needed to treat RSV), we follow that priority.

6.3. Sensitivity Analysis

In the above Example 6, the computation of the effective bipolar-valued multi-fuzzy
soft set (Ψ�, Υ) depends on the given effective set �, which arises from the patients’ words
and the expert medical evaluation. This means that if the experts evaluate parameters
satisfying by different values, then the effective set � values will be different.

Consequently, this leads to different values for parameters considered in the effective
bipolar-valued multi-fuzzy soft set (Ψ�, Υ). Then, the final decisions and the ranking will
also be different. On the one hand, to avoid this problem, we can consider the evaluations
of more than one expert who take the patient’s words and then calculate the arithmetic
mean to be more accurate.

On the other hand, if we notice that one of the nominated experts usually gives us
inordinate evaluations like 0 or 1, we can cancel their opinion and not refer to them again
in any future evaluations. For example, if all values of the effective set are zeros, then
all values of the effective bipolar-valued multi-fuzzy soft set (Ψ�, Υ) remain the same.
Therefore, the final diagnosis matrix D becomes as the following:

D =

ξ1 ξ2 ξ3 ξ4⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

π1 2.32 2.17 2.48 2.57

π2 1.59 2.02 2.3 1.79

π3 0.63 1.11 1.62 1.84

.
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Consequently, the patients π1 and π3 are suffering from the disease ξ4 (RSV) and the
patient π2 is suffering from the disease ξ3 (COVID-19). In addition, the alternatives’ order
according to treatment need is π1 > π2 > π3. Furthermore, if all values of the effective
set are ones, then the values of the effective bipolar-valued multi-fuzzy soft set (Ψ�, Υ)
are 1 for positive poles and −1 for negative poles. Therefore, the final diagnosis matrix D
becomes the following:

D =

ξ1 ξ2 ξ3 ξ4⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

π1 2.9 3 3.7 4.1

π2 2.9 3 3.7 4.1

π3 2.9 3 3.7 4.1

.

Hence, the diagnosis remains the same, but the ranking order of the three patients (alterna-
tives) becomes π1 = π2 = π3.

Similarly, the evaluation of how much each patient suffers from each symptom is
represented in the two major sets of parameters that describe the symptoms. This means
that if the medical devices that measure some symptoms have any problem, then the values
of the membership will vary. This also can affect the final decision because we will have a
different initial bipolar-valued multi-fuzzy soft set (Ψ, Υ). To overcome this issue, we must
be sure that all medical devices work properly before starting the decision-making process.

Finally, proposing the parameters that can serve as effective parameters or as the
parameters representing the symptoms can also affect the decision. This arises from the fact
that these proposed parameters may not represent a true measure for the proposed diseases.
In addition, the connection between every symptom and every disease is represented in a
multi-fuzzy soft set (Γ, Υ). Then, if the values of membership in (Γ, Υ) vary according to
different expert medical documentation, it will affect the final decision again. Therefore,
the process of choosing suitable experts for the medical problem is very important first
of all.

6.4. Comparison

A comparative analysis is conducted to compare decision-making under the effective
bipolar-valued multi-fuzzy soft set of dimension n environment with previous existing
different settings or models. We solve the same Example 6 under those previous existing
different settings. The results of this comparative analysis are outlined as the following:

1. If we make the final decision under the multi-fuzzy soft set, offered by Yang et al. [25]
using algorithm steps, then the results are given as follows. The final diagnosis matrix
D is provided as the following:

D =

ξ1 ξ2 ξ3 ξ4⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

π1 3.2 2.8 3.88 3.05

π2 2.98 2.86 3.56 2.3

π3 1.68 1.7 2.61 2.22

.

Therefore, from the final obtained diagnosis matrix D, the maximum value for all
patients is the third one in each row, which is 3.88, 3.56, and 2.61, for patients π1, π2,
and π3, respectively. That is to say that all patients are diagnosed with ξ3, which is
COVID-19. In addition, the patients’ order as alternatives according to the need of
treatment is as follows: π1 > π2 > π3. Finally, we notice that those three patients
are diagnosed with RSV under our proposed model. On the other hand, they are
diagnosed with COVID-19 under this model of Yang et al. [25]. This may occur
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because these two diseases have many similar symptoms. Therefore, the effectiveness
of our model is to distinguish between those similar diseases.

2. when one makes the final decision under the bipolar-valued fuzzy soft set, presented
by Abdullah et al. [23] using method steps, then we have the results as the following.
The final diagnosis matrix D is given by

D =

ξ1 ξ2 ξ3 ξ4⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

π1 1.01 0.82 0.68 1.37

π2 0.23 0.45 0.36 0.78

π3 −0.31 0.16 0.05 1.04

.

Then, from the above final diagnosis matrix D, one can find that the maximum value
for all patients π1, π2, and π3 is the fourth one in each row, which is, respectively,
as follows: 1.37, 0.78, and 1.04. That is to say that all patients are diagnosed with ξ4,
which is RSV. In addition, the alternatives’ order according to treatment need is as
the following: π1 > π3 > π2.

3. If the final decision is made under the bipolar-valued multi-fuzzy soft set, introduced
by Yang et al. [27] using process steps, then the results are obtained as below. We
obtain the final diagnosis matrix D as follows:

D =

ξ1 ξ2 ξ3 ξ4⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

π1 2.32 2.17 2.48 2.57

π2 1.59 2.02 2.3 1.79

π3 0.63 1.11 1.62 1.84

.

Hence, from this final diagnosis matrix D, we have the maximum value for the first
patient π1 is 2.57, occurred by the fourth disease ξ4. Then, the patient π1 is suffering
from the disease ξ4, which is RSV. In addition, the maximum value in the second
patient’s row π2 is 2.3, obtained by the fourth disease ξ4. Therefore, the patient π2
is suffering from the disease ξ3, which is COVID-19. Moreover, the maximum value
for the third patient π3 is 1.84, scored by the fourth disease ξ4. Then, the patient π3 is
also suffering from RSV. Furthermore, the order of alternatives (patients) according
to their need of treatment is as follows: π1 > π2 > π3.

Finally, we can summarize the final medical decisions and the ranking order of the
three patients in the following comparative table, namely Table 1, as well as one can find a
chart that shows different models’ comparative results below in Figure 3:

Table 1. Decisions and ranking of alternatives using different models on Example 6.

Models π1 π2 π3 Ranking Order

Yang et al. [25] 3.88 → ξ3 3.56 → ξ3 2.61 → ξ3 π1 > π2 > π3
Abdullah et al. [23] 1.37 → ξ4 0.78 → ξ4 1.04 → ξ4 π1 > π3 > π2

Yang et al. [27] 2.57 → ξ4 2.3 → ξ3 1.84 → ξ4 π1 > π2 > π3
Proposed model 3.256 → ξ4 2.547 → ξ4 3.422 → ξ4 π3 > π1 > π2
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Figure 3. Different models’ comparative results [23–25].

7. Concluding Notes and Future Researches

The aim of this article is to derive a new hybrid extension of the ordinary or the crisp
set, which is the effective bipolar-valued multi-fuzzy soft set of dimension n. The types and
the related novel important concepts and operations, have been discussed. Furthermore,
De Morgan’s laws and distributive laws, as well as associative properties, absorption
properties, and commutative properties, have been conducted. Moreover, a decision-
making approach has been provided based on the effective bipolar-valued multi-fuzzy soft
sets of dimension n.

In addition, a real example of medical diagnosis has been illustrated to show how
to use the proposed technique. To reach the best diagnosis easily, we have formulated
the technique steps using matrixes instead of set extensions to be easier to deal with.
Furthermore, to reach more accurate and faster results, we have used MATLAB® to add
and multiply matrixes through the paper, as well as to compute the effective values or any
other calculations. This method facilitates obtaining the optimal decision that this patient
is suffering from this disease or this student is accepted to take this education level, . . . In
addition, the sensitivity analysis on parameters has been conducted. Finally, a comparison
with other existing algorithms in terms of application to better demonstrate the advantages
of the proposed algorithm has been established.

One of the advantages of the suggested model is that it is a generalization of many
previous models like multi-fuzzy soft, bipolar-valued fuzzy soft, and multipolar fuzzy soft
set. That is to say that either the multi-fuzzy soft set, the bipolar-valued fuzzy soft set, or
the multipolar fuzzy soft set is a special case of the effective bipolar-valued multi-fuzzy
soft set. This implies that using any one of them in decision-making applications may
face limitations when the problem contains more complicated circumstances like bipolar
attributes and/or multi attributes. Therefore, combining bipolarity and multi-set with
fuzzy soft and effectiveness concepts increases the decision’s accuracy and uniqueness.

In certain cases, the suggested approach, like any other technique or framework, may
have inherent restrictions, limitations, or drawbacks. In particular, one of those limitations
happens if there are a significant number of attributes (parameters) or/and items (patients
or students), resulting in a huge number of computations when using the method being
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proposed. In order to overcome this restriction, several mathematical programs, such as
MATLAB® or Wolfram Mathematica®, which are capable of processing massive amounts
of data quickly and efficiently, can be used.

Furthermore, another limitation is that the effective bipolar-valued multi-fuzzy soft
model works effectively when combining bipolarity with multi-fuzzy soft data, but it
cannot be effective when combining bipolarity with multi-vague soft data noticed in a
variety of situations in the real world. That is to say that the effective bipolar-valued
multi-fuzzy soft set definition alone is unable to communicate the vagueness, which is a
generalization of the fuzziness.

Therefore, as a future idea, authors can define the effective bipolar-valued multi-vague
soft set and use it in applications to overcome this limitation. In addition, applying either
the effective bipolar-valued multi-fuzzy soft set or the effective bipolar-valued multi-vague
soft set to real data and comparing the two results also may be an interesting future work
because it will clarify the effectiveness of the two methods in reality. Moreover, in future
research, authors can extend the ideas to picture effective bipolar-valued multi-fuzzy soft
sets of dimension n, spherical effective bipolar-valued multi-fuzzy soft sets of dimension n,
and Pythagorean effective bipolar-valued multi-fuzzy soft sets of dimension n.
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Abstract: Disability management in information systems refers to the process of ensuring that digital
technologies and applications are designed to be accessible and usable by individuals with disabilities.
Traditional methods face several challenges such as privacy concerns, high cost, and accessibility
issues. To overcome these issues, this paper proposed a novel method named bidirectional federated
learning-based Gradient Optimization (BFL-GO) for disability management in information systems.
In this study, bidirectional long short-term memory (Bi-LSTM) was utilized to capture sequential
disability data, and federated learning was employed to enable training in the BFL-GO method.
Also, gradient-based optimization was used to adjust the proposed BFL-GO method’s parameters
during the process of hyperparameter tuning. In this work, the experiments were conducted on the
Disability Statistics United States 2018 dataset. The performance evaluation of the BFL-GO method
involves analyzing its effectiveness based on evaluation metrics, namely, specificity, F1-score, recall,
precision, AUC-ROC, computational time, and accuracy and comparing its performance against
existing methods to assess its effectiveness. The experimental results illustrate the effectiveness of the
BFL-GO method for disability management in information systems.

Keywords: disability management; information systems; federated learning; bidirectional long
short-term memory; gradient-based optimization

MSC: 68T04

1. Introduction

According to the Global Burden of Disease survey, disability is the fastest-growing global
burden as the population ages worldwide. Similarly, disability-related healthcare costs
are increasing, which requires the development of sustainable policies and approaches to
avert and minimize functional impairment [1]. Environmental factors exert an important
influence on human health conditions with evidence recommending that many physical,
biological, chemical, and social factors can serve as potential goals to execute effective
approaches to improve human health [2]. Disability management is referred to as a con-
structive and systematic technique of ensuring job retention in competitive employment for
individuals with disabilities. In the 1980s, DM was initially developed in northern Europe
and America but is still poorly applied in Italy. Disability management is broadly utilized
in the public sector, namely to manage and prevent unavailability to work because of injury,
with tools like planning of benefits and sick leave and adjustments of duties when people
return to work [3]. Additionally, the attention of physicians, researchers, and program
developers in several fields in terms of possible transformation for treating human diseases
has grown. Artificial intelligence supports diagnosis, treatment, and operation, and some
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people consider that in the future medical practitioners will become outdated [4]. Despite
that, to investigate challenges and opportunities related to AI applications in the healthcare
sector, it is important to assess the contribution of AI. AI has broad potential related to
real-world applications in the most sophisticated treatment of emergency patients ranging
from simple operational process interventions [5]. In addition, there has been discussion of
the contribution of advancements in machine learning and artificial intelligence to those
concerned with disability, therapeutic and non-therapeutic users, knowledge consumers,
producers, and victims [6]. To participate in governance discussions, disabled people face
specific obstacles like knowledge production and consumption.

Federated learning (FL) is one of the methods that can preserve the privacy of the
patient, and it also resolves the issue in the deep learning model’s training process of
federated medical data [7]. With a coordinated central aggregate server, the FL method
offers decentralized machine learning model training, and for this, it does not send medical
data. Medical institutions sometimes transmit deep learning models to the aggregate
server; before this, they train the model and work as client nodes [8]. To generate a global
model, the central server combines the local models between the nodes, and afterward,
this global model is distributed, and other nodes receive this model. FL proves that it
can improve efficiency in development processes and medicine discovery [9]. Currently,
many large companies, ten pharmaceutical companies, and academic research labs have
developed industry-scale FL models in drug discovery. To generate this model, there
is no need to share confidential datasets. The reliability of the patient data is secured
and to acquire the identification of prediction of drug efficacy, targets, and optimization
of treatment protocols, assorted patient data can be trained on the federated learning
models [10]. Multiple methods of applying machine and deep learning are introduced
for the enhancement of disability management, and these methods have advantages and
disadvantages. These methods struggle to produce better efficiency and have some issues
like low accuracy, high cost, and lack of datasets. By permitting organizations to keep
control and ownership of data, FL can assist in controlling data, and thus the risks of data
can be decreased. So, motivated by this reason, this paper uses the federated learning
method and is combined with bidirectional long short-term memory for efficient results in
disability management. This study contributes to disability management in information
systems by using various techniques. The major contribution of the proposed BFL-GO
method is explained below.

Novel method: This paper concerns a novel approach that combines a Bi-LSTM with
federated learning, along with the integration of the gradient-based optimizer algorithm
with local search strategy. This unique combination of techniques offers a new perspective
on disability management in information systems.

Real-time application: By incorporating multiple layers of LSTM, the system can
capture complex dependencies in the data and also manage real-time disabilities based on
sensor inputs, ensuring timely control of the people’s disabilities conditions.

Efficient hyperparameter optimization: The incorporation of an improved GBO algo-
rithm efficiently optimizes the parameters and enhances the BFL-GO method performance
for disability management in information systems.

Enhanced disability management: The composition of the gradient-based optimizer
algorithm executes augmented performance for disability management in information
systems. The symbiotic assimilation of these methods improves the parameters.

The organization of this work is arranged as follows: A survey of the literature on
AI with federated learning is discussed in Section 2, which includes various existing
techniques associated with disability management, the drawbacks and challenges of the
existing techniques, and the research gaps. Section 3 depicts the proposed methodology
that includes different methods to achieve better performance. The results section is
shown in Section 4, and the experimental evaluations were conducted by using graphical
representations, performance evaluations, and comparison studies. Section 5 concludes the
work with future directions.
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2. Literature Review

Cheng et al. [11] introduced AI in work disability management using a smart work
injury management system (SWIM). SWIM was an established, safe cloud platform with
some operational devices for data storage and machine learning. Starting from the Jjob
damage folder to every other folders, considering static as well as dynamic information,
the text mining method was analyzed by using AI, and RTW (return to work) prediction
was also utilized. This method contains three levels, as the first is to find the basis of
enablers and impediments in regard to detecting the human factor, RTW face meetings,
and conversation with various RTW shareholders to gather the information to enablers.
Second is to improve the ML. Finally, ML connects long- and short-term memory (LSTM).
In summary, these methods predict the price of work injuries. Garcia et al. [12] presented a
sustainability-based conception for an urban pavement management system (PMS) using
deep learning techniques. This method of PMS was improved in the urban area networks
and the geographic information system (GIS) was utilized to examine and handle the
information in these area networks. Further, the analyzed information that was found by
creating the automated materials, a webcam was placed in the automobile, and pictures
were evaluated using DL-CNN. As a result, it helped urban areas provide exact information,
but this method does not detect different global states and also poorly handles optimization.

Bolanos et al. [13] discussed fleet management and control systems (FMCS) for im-
proving countries’ implementation using intelligent transportation systems (ITS) services.
FMCS observes the automobile in the present time and also aids in checking the agenda.
Furthermore, FMCS faces some issues like communication, expenses, interactivity, etc. To
overcome these issues, this method developed a ITS framework that was only made for the
FMCS. Further high-speed conversation, ITS, using this service developing states for FMCS
was created. In addition, the test of FMCS utilized transport vehicles in the urban areas
along with finding the one path employed in the test. As a result, the merit of this method
was improved communication, reduced cost, and more security. Also, this method’s data
set was extremely small. Sprunt et al. [14] discussed a combination of child functioning
data-based learning and support needs data to produce a disability identification method in
Fiji’s education management information system (FEMIS). Most of the separated FEMIS by
disease occurred in low states and needed more accuracy. This method demonstrated that
domain-based certain illness findings for disablement disaggregate FEMIS were possible
when action data from the CFM were merged with information on environmental factors
following procedures. Further, a LSN was utilized for handicapped infants and Fiji’s policy
provides charitable funds for schools. As a result, this method does not handle or collect
information from all the countries.

Kim et al. [15] established the protection offered by the recent accessibility act and
guidelines to people with disabilities utilizing information technology devices. Currently,
the population has increased, so IT is utilized in worldwide environments. However,
handicapped people face some challenges in using IT. To avoid this problem, a method
was developed called the 179 Information Technology Devices. On the other hand, IT
interaction disability (ITID) is a method that makes it easy to converse in the virtual world
and also plays a role in perceiving disordered patients. The instructions from the UX give
new methods to information technology creators. As a result, this method is not relevant to
aging people. Alshammari et al. [16] presented online training to help caretakers of children
with intellectual and developmental disabilities manage issues at home. Caretakers face
many challenges in taking care of disabled children and the parents of the children also face
strain. This method was developed online for the caretakers to easily handle the disordered
children. Furthermore, caretakers mainly focus on providing care, maintenance, daily tasks,
and support to those in need. However, they receive information in the house using online
techniques. As a result, this reduces stress and makes it easy to interact with children, as a
drawback of online learning is limited access to informational resources.

Chiscano et al. [17] developed a model of the urban transport experience for people
with disabilities. This method aims to provide a service for disabled people within city
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transport. Further, this method contains two stages; thirty-seven members were involved
in Stages 1 and 2, which focused on designing an experience based on humans with
disorders. In addition, target groups, contributors during the transit experience, and
post-experience questionnaires with semi-structured questions comprising establishing
sufficient participant communication encounters before the experience ensured a good
design of the urban transportation experience. As a result, this method does not use
smart technology for the people’s experience. Elfakki et al. [18] implemented effective
methods based on experimental laboratories in three 3-dimensional virtual infrastructures
for students with learning disabilities. Virtual reality can improve the quality of life and
education of students with learning difficulties. In this method, three-dimensional items
of various colors easily draw the attention of children. Further, the simulator was 3D
VLE, with the incorporation of the altered Moodle training tool, and also aids children
with different disorders. In addition, these methods help disabled students improve their
reading skills; however, the limitation of three-dimensional methods is that they are more
expensive, as well as cause health issues.

The current progress in federated learning, as emphasized in the cited publications,
tackles significant obstacles in the area, improving efficiency and efficacy. The emergence
of Federated Adaptive Gradient Methods (Federated AGMs) represents a notable advance-
ment in enhancing the generalization of models, specifically in situations involving non-IID
(independent and identically distributed) and imbalanced data [19]. These strategies effi-
ciently utilize first-order and second-order momenta to adapt to the intricacies of real-world
data distributions. The authors of [20] suggest a hierarchical federated learning system
that optimizes edge assignment to tackle the non-IID dilemma. This approach aims to
reduce discrepancies in class distribution among nodes, leading to improved model perfor-
mance and data representation. The distributed quantized gradient strategy developed
by the researchers in [21] effectively enhances communication efficiency by prioritizing
the transmission of more relevant gradient updates, which is critical in large-scale dis-
tributed learning environments. The authors in [22] propose an auction-based method
for cloud-edge systems in federated learning that effectively manages energy usage while
maintaining the high accuracy of AI models. This approach not only enhances the allo-
cation of resources, but also corresponds to the increasing demand for sustainable and
efficient AI solutions. Together, these progressions demonstrate a deliberate endeavor
to enhance the resilience, effectiveness, and flexibility of federated learning in various
complex data settings.

Research Gap

Because of disabilities, organizations and individuals encounter considerable difficul-
ties. Via the use of the AI-based recommendation system [23] and federated learning, this
paper focuses on providing reasonable output in disability management. Therefore, many
methods introduced in this domain offer the best effectiveness in disability management;
here, the existing methods are not able to generate a model for the improvement of dis-
ability management and have challenges such as computational cost, required amount of
data, weight optimizations, etc. These issues require increased model complexity in order
to provide a better output [24]. So, to solve these issues, this work proposes a Bidirectional
Federated-Learning-based Gradient Optimization (BFL-GO) model. The research gap this
work addresses is as follows:

Enhanced accessibility and inclusivity: The Bi-LSTM with Federated Learning was
employed because this method can improve the accessibility and inclusivity of information
systems for people who have disabilities.

Hyperparameter tuning: The existing methods have difficulty tuning the parameters
to enhance efficiency. The gradient-based optimization algorithm can tune the parameters
of the model effectively, so this algorithm was combined with the proposed method for
hyperparameter tuning.
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3. Proposed Methodology

This paper proposes a novel method named the Bidirectional Federated-Learning-
based Gradient Optimization (BFL-GO) algorithm to accurately predict diseases in the
healthcare system. In this study, a gradient optimization algorithm was employed with Bi-
LSTM with a federated learning method to enhance disability management. The Disability
Statistics-United States-2018 dataset was given as the input to the developed model. Figure 1
shows the overall structure of the BFL-GO model. It contains 4 phases, namely data
collection, data pre-processing, the disability management phase, and the predicted output.

Figure 1. Overall structure of the BFL-GO model.

3.1. Pre-Processing

Data preprocessing performs a main role in federated learning algorithms; suitable
preprocessing is mandatory for obtaining good performance [25]. In terms of the signal,
it clears unnecessary effects, prevents issues, and improves accuracy. In this stage, the
dataset Disability Statistics-United States-2018 and three types of operations, namely,
data normalization, noise elimination, and data cleaning, were performed for disability
management in the information systems.

3.1.1. Data Normalization

To eliminate the influence of dissimilar scale features, a process was executed to reduce
the training model’s implementation time [26]. By applying the min-max normalization
procedure, the numerical features captured from the outlier elimination process were
normalized, and the mathematical expression is provided below:

Mscale = MT ∗ (MAXI − MINI) + MINI
MT = M−MMINI

MMAXI−MMINI

(1)

where the MINI and MAXI values were assumed to be 0 and 1.

3.1.2. Noise Elimination

Noise is a vital piece used in most edge detection calculations. In the detection cycle,
noise is a significant impediment. The method we used removed or reduced data without
affecting the original data [26].
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3.1.3. Data Cleaning

Data cleaning is the process of cleaning and removing missing data, duplicate data,
and resolving data inconsistencies from the dataset. This results in an improved quality of
data and usefulness of data [27].

3.2. Disability Management Phase

Disability management is a dedicated domain for managing the victims of accidents,
reducing disabilities, and also returning to the work persons who are affected by incidents.
So, for this, the Bidirectional Federated-based Gradient Optimization (BFL-GO) model was
applied in this work.

3.2.1. Bidirectional Long Short-Term Memory

The classifier LSTM has 4 major elements, namely, input gate, memory cell, output
gate, and forget gate [28].The memory cell in the LSTM saves data for long or short
durations. To manage the retention of information and hold the amount of information,
the input gate and the LSTM cell are utilized with a forget gate. To format and evaluate
the output activation for the output gate, the information on the LSTM layer cell can be
managed. These networks are an unusual class of RNN and are presented to overcome
the difficulties of long-term vanishing and bursting gradients in RNN [29,30]. Due to the
preparation of back-proliferation through time, obtaining long successions from standard
RNN is hard, which causes the problem of vanishing or exploding gradients. To overcome
these problems, the RNN is transformed into a Bi-LSTM cell with an input cell. The initial
gate to select which data to discard from a cell state is an ignore gate, as mentioned in the
following equation; this decision is made by a sigmoid layer

es = σ(Xe · [gs−1, ws] + ae) (2)

To select the updated values, the input gate is next door with a sigmoid layer, and as
shown in the below equations, the tan g layer generates new updated vector values

js = σ(Xj · [gs−1, ws] + aj) (3)

Ds = tan g(Xd · [gs−1, ws] + ad) (4)

From the above Equations (2)–(4), the updated cell state is

Ds = es · Ds−1 + js · Ds (5)

Depending on the updated cell state, the present state’s output is determined, and the
sigmoid layer selects the regions of the cell state that are the final specified output.

ps = σ(Xp · [gs−1, ws] + ap) (6)

gs = ps ∗ tan g(Ds) (7)

where σ, X , tan g, gs−1, ws denotes the sigmoid activation function, weight metrics,
tangent activation function, last hidden state, and input vector. ae, ad, aj, and ap are biased.
The Bi-LSTM-based learning algorithm feeds the input sequence in a normal time sequence
to a network and the reverse order to an alternate network. The stacked Bik-LSTM layer
allows for obtaining both background and forward information about the sequence at every
time step, which yields exact maximum categorization. The Bi-LSTM classifier manages
the back-to-forward transmission of data.

g→
s
= e(x1 ws + x2g→

s −1
) (8)

g←
s
= e(x3 ws + x5g←

s +1
) (9)
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P→
s
= h(x4 w→

s
+ x6g←→

s
) (10)

Bi-LSTM is a slower model and requires additional time for training. To address this
issue, federated learning mechanisms are utilized. FL is a model of distributed learning
that trains and aggregates the local models on the user side and central manager. The
information that each user uploads to the server is not original data, but a sub-model trained
on FL [31]. Despite that, the FL grants asynchronous transmission and approximately
reduces the communication cost. Depending on this, the formulation of federated ML can
be updated given below:

argminiK(w, z, x)
x

= ∑
l

olKl(w, z, x) (11)

where l represents the number of clients, ol is the lth client’s weight value, and the structure
of federated learning is the decentralized several users {E1,E2, . . . El}. Each client user has
the data set of the present user {C1,C2, . . . . . . , Cl}. These data are scheduled into a dataset
C = V1 ∪ V2 ∪ . . . ∪ Vl in deep learning methods. We consider the global model next to the
accomplishment of federal modeling Nf dr and Nsum the training model after aggregation. In
particular, Nf dr is the functioning of the global model because of the parameter interchange
and collection operation. At the time of completing the training process, the models lose
accuracy, and the performance of the global model Nf dr is as poor as the performance of
the aggregate model Nsum. To calculate this deviation, the efficiency of the aggregate model
Nsum and the global model Nf dr on the test set Usum is determined. The χ loss in accuracy
is expressed as ∣∣∣Uf dr − Usum

∣∣∣< χ (12)

where χ denotes a non-negative number. However, as the fundamental need of federated
learning is privacy protection, at the end of the actual scenario, the aggregation model Nsum
cannot be attained. Bidirectional federated learning is presented in Algorithm 1.

Algorithm 1: Bidirectional Federated Learning

Input: number of clients l, weight value of client ol , global model Nf dr, federal modeling Nsum
Output: Obtain global value (Ymaxi − Ymini)

1. Initialize local data
2. Obtain as sub-model of FL from the original data

argminiK(w, z, x)
x

= ∑
l

olKl(w, z, x)

3. Generate federated ML as
4. If {E1,E2, . . . El} is determined with current user {C1,C2, . . . . . . , Cl}
5. Validate learning method as C = V1 ∪ V2 ∪ . . . ∪ Vl
6. Perform training of aggregate as well as federated learning by Nf dr and Nsum

7. Else
8. Vary the parameter with test data Usum
9. End if
10. Loss accuracy χ evaluation
11. Predict the total fundamental loss

12. If
∣∣∣Uf dr − Usum

∣∣∣< χ

13. Diminished information loss
14. End if
15. End
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3.2.2. Gradient-Based Optimizer (GBO)

Through Newton’s method, the search direction is indicated, the GBO utilizes the
local escaping operator, gradient search rule, and set of vectors for exploring the search do-
main, and this algorithm integrates population-based methods and gradient methods [32].
Concerning optimization issues, the minimization of the objective function is determined.

Initialization: In GBO, the parameters that have probability rates and changes between
exploration and exploitation β exist, and an optimization issue possesses an objective
function, decision variables, and constraints. For balancing the switching in the exploration
and exploitation, these probability β and control parameters are employed. According to
the problem complexity, the population size and the number of iterations are considered.
Here, the number of the population of the GBO algorithm is represented as a vector, hence,
among d-dimensional search space, the GBO algorithm has M vectors. In the d-dimensional
search space, the initial parameters of the algorithm are produced at random.

Ym = Ymini + rd(0, 1)× (Ymaxi − Ymini) (13)

The decision variables are represented as Y; its bounds are denoted as Ymini and Ymaxi.
rd is specified as a random number having the range of [0, 1].

Gradient search rule (GSR): The important factor ω attains global points and near-
optimum points and is employed for attaining balanced exploration in the important search
space regions. The following equations specify the usage of the ω:

ω1 = 2 × rd × β − β (14)

β =

∣∣∣∣α × sin
(

3π

2
+ sin

(
α × 2π

2

))∣∣∣∣ (15)

α = αmini + (αmaxi − αmini)×
(

1 −
( n

N

)3
)2

(16)

Here, αmaxi and αmini are specified as constants with values of 1.2 and 0.2, the total
number of iterations is indicated as N, and the current iteration number is denoted as n.
For balancing exploration and exploitation, ω1 is viable in terms of the sine function. In
the optimization iterations, the ω1 parameter value varies, and for expediting convergence,
it reduces in the iterations. In a range, the iterations that define the ω1 parameter are
increased, and as a result, the diversity is raised. The following equation represents the
GSR computation:

GSR = rdm × ω1 × 2Δy × ym

(yws − ybs + ρ)
(17)

For generating the randomized exploration mechanism, which has local optima,
a random behavior is deployed, and iterations alter the Δy of the variables because
of Equation (20).

Δy = rd(1 : M)× |step| (18)

step =

(
ybs − yn

o1
)
+ γ

2
(19)

γ = 2 × rd ×
(∣∣∣∣yn

o1 + yn
o2 + yn

o3 + yn
o4

4

∣∣∣∣− yn
m

)
(20)

In this, the M element’s random vector is represented rd(1 : M) with a range of ∈ [0, 1].
step indicates the phase scale, and o1, o2, o3, and o4 are the four integers that are chosen
randomly. From the candidate vectors, directional movement employs the best vector
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for presenting a significant local search. At the direction of the best vector (ybs − ym), it
changes the current vector (ym).

DM = rd × ω × (ybs − ym) (21)

In this, the random number has a range of [0, 1]. For the adjustment of every vector
agent’s phase size, the random parameter ω2 is utilized. The computation of the ω2
parameter is presented in the below equation:

ω2 = 2 × rd × β − β (22)

In terms of the current vector (yn
m), Equations (23) and (24) can be altered.

Y1n
m = yn

m − GSR_DM (23)

Y1n
m = yn

m − rdm × ω × 2Δy × yn
m

(xqn
m − xpn

m + ρ)
+ rdm × ω2 × (ybs − yn

m) (24)

This shows that xqn
m, xpnm = xm + Δy, and xm is equivalent to the average of wm+1

and ym.

wm+1 = ym − rdm × 2Δy × ym

(yws − ybs + ρ)
(25)

where the current solution is denoted as ym, the best and worst solutions are indicated as
yws and ybs, and the random solution vector with dimension is indicated as rdm.

Y2n
m = ybs − rdm × ω1 × 2Δy × yn

m
(xqn

m − xpn
m + ρ)

+ rdm × (yn
o1 − yn

o2) (26)

Enhancing exploitation and detection is the major objective of the GBO algorithm;
for increasing the process of exploitation of the local search, Equation (26) is employed.
Below Equation (28) is the calculation for Y3n

m, where oi and oj are the denoted as random
numbers that have a range of [0, 1].

yn+1
m = oi ×

(
o2 × Y1n

m +
(
1 − oj × Y2n

m
))

+ (1 − oi)× Y3n
m (27)

Y3n
m = Yn+1

m − ω2 × (Y2n
m − Y1n

m) (28)

Local search escaping operator (LEO): For changing local optima points to boost the
convergence of the GBO algorithm, this LEO operator is employed. Here, the LEO operator
uses several solutions for generating new solutions that have efficiency and this is specified
as the following equation:

Yn
LEO =

⎧⎨⎩Yn+1
m + g1

(
v1ybs − v2yn

k
)
+ g2ω1(v3(Y2n

m − Y1n
m)) + v2

(
yn

o1 − yn
o2

)
/2 i f rand < 0.5

Yn+1
m + g1

(
v1ybs − v2ym

k
)
+ g2ω1(v3(Y2n

m − Y1n
m)) + v2

(
yn

o2
− yn

o2

)
/2 otherwise

(29)

where, g1 and g2 are specified as the uniform distribution with ∈ [−1, 1], qr is represented
as the probability value, and here the random values are denoted as v1, v2, v3.

v1 =

{
2 × rd i f μ1 < 0.5

1 otherwise
(30)

v2 =

{
rd i f μ1 < 0.5
1 otherwise

(31)

v3 =

{
rd i f μ1 < 0.5
1 otherwise

(32)
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The below equation B1 is represented as the binary parameter with a range of [0, 1].
The value of the binary parameter is equal to one when μ1 < 0.5; otherwise, the binary
parameter is zero.

v1 = B1 × 2 × rd + (1 − B1) (33)

v2 = B1 × rd + (1 − B1) (34)

v3 = B1 × rd + (1 − B2) (35)

yn
k =

{
yrd i f μ2 < 0.5
yn

q otherwise (36)

yrd = Ymini + rd(0, 1)× (Ymaxi − Ymini) (37)

From Equation (36), the variable yrd is indicated as the solution that is generated
randomly based on the following equation. μ2 is referred to as a random number ∈ [0, 1].
The algorithm to perform the secure data transmission is presented in Algorithm 2.

Algorithm 2: The algorithm to perform the secure data transmission

Input: Set the optimal threshold value
Output: Perform secure data transmission

1. Initialize the parameters to address the optimization problems
2. Load exploration and exploitation phase
3. Balance the control parameters to extract the secured data with probability β

4. Determine the privacy enhanced data individually
5. Randomly select the parameters Ym = Ymini + rd(0, 1)× (Ymaxi − Ymini)
6. Validate maximum and minimum value
7. Attain global data point ω

8. If ω1 = 2 × rd × β − β then gradient optimization is achieved by

GSR = rdm × ω1 × 2Δy×ym
(yws−ybs+ρ)

9. End if
10. Validate the random behavior of the obtained iteration by Δy = rd(1 : M)× |step|
11. If rd(1 : M) with ∈ [0, 1]
12. Obtain best vector (ybs − ym)
13. Else
14. Vary current vector by (ym)
15. Estimate the accurate threshold value to distinguish best and worst data
16. Validate the data features based on provided information
17. Generate a warning signal to secure the data
18. End if
19. End

3.2.3. Hyperparameter Tuning Using Gradient-Based Optimization Algorithm

In the development of an efficient and reliable model for disability management,
hyperparameter tuning is a significant process. Therefore, for this process of hyperpa-
rameter tuning, a Gradient-Based Optimizer algorithm was deployed. This algorithm
efficiently tunes the parameters of the proposed Bi-directional with Federated Learning
model; thereby, the efficiency of the proposed BFL-GO model is enhanced. Therefore, the
proposed BFL-GO method expertly enhances and resolves the requirements of disability
management. Applying a gradient-based optimization algorithm to tune hyperparameters
substantially improves the field of advancing disability management in data networks;
within this context, the process entails utilizing a gradient-based optimization algorithm.
The algorithm refines model hyperparameters by iteratively following gradients related to
a specific performance metric. It updates hyperparameters to minimize the metric, aiming
for the optimal configuration. This method helps in customizing algorithms for specific dis-
ability management needs, enhancing information systems. Gradient-based optimization,
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like gradient descent, iteratively adjusts hyperparameters based on computed gradients
to optimize functions like accuracy. This process refines a model’s hyperparameters to
improve its work. Gradients, indicating the function’s slope, are used to guide the adjust-
ments to the model’s hyperparameters. These algorithms search hyperparameter options
for optimal model performance. Fine-tuning with gradient-based optimization upgrades
precision, combination speed, and speculation to new information. This is essential for
tailoring machine learning algorithms to specific tasks and datasets, resulting in more
effective and reliable models.

The flowchart of the BFL-GO model is presented in Figure 2. In the Figure, we can see
the working of the hyperparameter tuning of the developed model.

Figure 2. Flowchart of the BFL-GO Model.

The significant research contributions of the proposed model can be described as follows:
The initial section introduces the Bidirectional Federated Learning-based Gradient

Optimization (BFL-GO) model. This novel approach combines the strengths of Bidirec-
tional Long Short-Term Memory (Bi-LSTM) and federated learning to address the specific
challenges of disability management in information systems. This model aims to enhance
privacy, reduce computational costs, and improve accessibility in processing disability data.

The choice of utilizing Bi-LSTM is strategic for capturing the intricacies of sequential
and time-series disability data. This section emphasizes how Bi-LSTM layers are configured
and integrated to effectively process and interpret disability-related information over
time, capturing both forward and backward dependencies in the data. The methodology
further elaborates on the integration of federated learning. This section explains how
federated learning is employed to distribute the data processing across multiple nodes,
thereby ensuring data privacy and security. It describes the federated learning process,
including data distribution, local model training, and aggregation of learning, highlighting
how this approach mitigates privacy concerns common in centralized data processing
methods. Gradient-based optimization for hyperparameter tuning in the methodology
focuses on the application of gradient-based optimization techniques for hyperparameter
tuning. Moreover, the inclusion of federated learning distributes the data processing across
multiple nodes, thereby ensuring data privacy and security.

4. Experimental Results and Discussions

The effectiveness of the BFL-GO method for disability management in information
systems and the results achieved from the study are demonstrated in this section. The
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BFL-GO method was evaluated with various evaluation measures, namely specificity, recall,
F1-score, accuracy, and precision, and the results were compared with existing methods
such as SWIM [11], UM-PMS [12], FMCS [13], and FEMIS [14].

4.1. Experimental Setup

In this work, the BFL-GO method was implemented in Python; the system used was
an Intel Core I7-9700 with 64 GB RAM operating at a clock speed of 3.60 GHz. Furthermore,
the computing platform met minimum software and hardware requirements including
sufficient storage capacity, computational power, and compatibility with Bi-LSTM with
federated learning frameworks. Considering these system requirements and platform
specifications, this study ensures the reliable and efficient implementation of the SMGR-BS
method for the development of an AAL for aging and disabled people.

4.2. Parameter Settings

The performance of the BFL-GO method was enhanced by implementing parameter
settings, and Table 1 depicts the parameter settings of the study. In this process, optimal
parameter values were created to improve the performance of the BFL-GO method.

Table 1. Parameter settings.

Hyperparameter Specifications

Number of LSTM Layers 3 layers

LSTM Units per Layer 64 units per layer

Activation Function ReLU (for hidden layers), Softmax (for output layers)

Dropout Rate 0.5

Federated Learning Rounds 20 rounds

Clients in Federated Learning 10 clients

Learning Rate 0.01

Optimizer Adam

Batch Size 64

Training Epochs 50 epochs

Training Time 2 h

Loss Function Mean squared error (MSE)

Gradient Optimization Method Stochastic gradient descent (SGD)

Regularization Technique L2 regularization

Data Augmentation Techniques None used

Early Stopping Criteria Yes, with a patience of 5 epochs

In this study, MSE and ReLu were utilized as the loss function and the activation func-
tion, respectively. Also, the learning rate was 0.01, the batch size was 64, and the dropout
rate was 0.5. In this work, a gradient-based optimizer was utilized for hyperparameter
optimization to improve the performance of the BFL-GO method. This study ensures
reliable and efficient implementation of the BFL-GO method for disability management in
information systems.

4.3. Dataset Description

In this work, the Disability Statistics-United States-2018 dataset [33] was utilized to
implement the BFL-GO method for disability management in information systems. In this
study, 8000 observations were collected from the dataset, and these observations included
various types of disabilities. The observations were categorized in terms of sex, age, and the
severity of disability and divided into training and testing in the ratio of 80:20 to enhance the
performance of the BFL-GO method for disability management in the information system.
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4.4. Evaluation Measures

The performance of the BFL-GO method for disability management in information
systems was evaluated through evaluation measures, namely specificity, recall, F1-score,
accuracy, and precision [34,35]. The performance evaluation of these metrics was based on
the mathematical expressions mentioned below.

Accuracy: Accuracy (AC) is the measurement of correctly classified instances to the
total number of instances. The accuracy can be expressed as

AC =
truepos + trueneg

truepos + trueneg + f alsepos + f alseneg (38)

Precision: Precision (PR) is the proportion of correctly predicted positive events to all
events predicted as positive. The precision can be represented as

PR =
truepos

truepos + f alsepos (39)

Recall: Recall (RE) is the proportion of correctly predicted positive instances out of all
actual positive instances. It can be formulated as

RE =
truepos

truepos + f alseneg (40)

F1-score: F1-score (F1 − sco) is the harmonic mean of recall and precision and during
the precision–recall tradeoff, if the precision increases, recall decreases. The F1-score can be
expressed as

F1−sco = 2 × (PR × RE)

(PR + RE)
(41)

Specificity: Specificity (SP) is the ratio of correctly predicted negative events out of all
actual negative events. The specificity can be represented as

SP =
trueneg

trueneg + f alsepos (42)

In Equations (38)–(42), truepos, trueneg, f alsepos and f alseneg represent the true positive,
true negative, false positive, and false negative, respectively.

4.5. Performance Analysis

The performance analysis of the BFL-GO method for disability management in infor-
mation systems using the specified performance metrics, namely specificity, F1-score, recall,
precision, and accuracy, provides a comprehensive evaluation of its effectiveness [36]. The
performance was evaluated by comparing the BFL-GO method with the existing methods
such as SWIM, UM-PMS, FMCS, and FEMIS. Figures 3–7 depicts the comparative graphical
representation of the BFL-GO method and the existing methods for different evaluation
metrics based on disability management in the information system.

The accuracy of the BFL-GO method and the existing methods is demonstrated by the
graphical analysis shown in Figure 3. The BFL-GO method achieved a high accuracy of
98.65%, while the existing methods such as SWIM, UM-PMS, FMCS, and FEMIS obtained
low accuracies of 97.52%, 96.43%, 95.38%, and 94.26%, respectively. Figure 4 illustrates the
graphical analysis depicting the precision of the BFL-GO method and the existing methods.
The BFL-GO method achieved a high precision of 97.91% while the existing methods such
as SWIM, UM-PMS, FMCS, and FEMIS obtained low precisions of 96.89%, 96.17%, 95.34%,
and 94.73%, respectively.
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Figure 3. Performance validation based on accuracy.

Figure 4. Graphical representation of precision analysis.

Figure 5. Recall analysis for performance evaluation.
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Figure 6. Performance validation based on F1-score.

Figure 7. Graphical representation of specificity analysis.

In Figure 5, the recall of the BFL-GO method and the existing methods is illustrated
by the graphical analysis. The BFL-GO method achieved a high recall of 97.82% while the
existing methods such as SWIM, UM-PMS, FMCS, and FEMIS obtained the low recalls
of 96.58%, 96.13%, 95.41%, and 94.79%, respectively. Figure 6 represents a graphical
analysis illustrating the F1-score of the BFL-GO method and the existing methods. The
BFL-GO method attained a high F1-score of 97.86% while the existing methods such as
SWIM, UM-PMS, FMCS, and FEMIS obtained low F1-scores of 96.42%, 96.07%, 95.34%, and
94.73%, respectively.

The specificity of the BFL-GO method and the existing methods is represented by the
graphical analysis shown in Figure 7. The BFL-GO method achieved a high specificity of
97.85% while the existing methods such as SWIM, UM-PMS, FMCS, and FEMIS obtained
low specificities of 96.37%, 95.61%, 94.53%, and 94.16%, respectively. The performance
analyses evaluate the effectiveness of the BFL-GO method for disability management in
information systems. The results show that the BFL-GO method achieved high precision,
recall, accuracy, specificity, and F1-score compared to existing methods.

In Figure 8, the AUC-ROC of the BFL-GO method and the existing methods are
illustrated by the graphical analysis. The BFL-GO method achieved a high AUC-ROC of
0.9812 while the existing methods such as SWIM, UM-PMS, FMCS, and FEMIS obtained
low AUC-ROCs of 0.9721, 0.9632, 0.9574 and 0.9526, respectively. Figure 9 represents
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the graphical analysis illustrating the computational time of the BFL-GO method and the
existing methods. The BFL-GO method achieved a low computation time of 16 s, while the
existing methods such as SWIM, UM-PMS, FMCS, and FEMIS obtained high computation
times of 19 s, 22 s, 27 s, and 33 s, respectively.

Figure 8. Performance evaluation based on AUC-ROC.

Figure 9. Graphical analysis based on computational time.

Figure 10 depicts the validation of detection rate. The evaluation determines the
ratio of true positive values from the obtained samples. The accurate information was
determined by validating with test cases. The evaluation was performed with the proposed
BFL-GO and existing SWIM, UM-PMS, FMCS as well as FEMIS techniques. Compared
to existing methods, the method proposed attained a better performance by attaining the
value of 85.6%.

The false rate analysis for the proposed and existing methods is delineated in Figure 11.
It is highly utilized to detect the faults of information systems in real-world applications.
The proposed model’s superior performance is evidenced by its lower results. In this
validation, the achieved range of existing methods were 72.6%, 78.5%, 75.4%, and 74.9%,
respectively. Meanwhile, the proposed method minimized the false rate at 68.2% and had
enhanced performance.

Figure 12 depicts the MSE evaluation to predict the obtained errors in the model. The
error validation is performed with the actual as well as the estimated values. We measured
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the average squares of the error and found that the MSE was equal to zero. However, in
the evaluation process, the proposed method diminished the total error by 0.34.

Figure 10. Validation of detection rate.

Figure 11. False alarm rate analysis.

Figure 12. Evaluation of MSE.
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Table 2 depicts the comparison of the BFL-GO method and the existing methods such
as SWIM, UM-PMS, FMCS, and FEMIS. The BFL-GO method attained high accuracy, recall,
precision, specificity, F1-score, and an AUC-ROC of 98.65%, 97.82%, 97.91%, 97.85%, 97.86%,
and 0.9812, respectively. Also, the BFL-GO method achieved a low computation time of
16 s for disability management in information systems.

Table 2. Comparison of the proposed method with state-of-the-art methods.

Methods Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%) AUC-ROC Computational Time (s)

BFL-GO 98.65 97.91 97.82 97.86 97.85 0.9812 16

SWIM 97.52 96.89 96.58 96.42 96.37 0.9721 19

UM-PMS 96.43 96.17 96.13 96.07 95.61 0.9632 22

FMCS 95.38 95.34 95.41 95.34 94.53 0.9574 27

FEMIS 94.26 94.73 94.79 94.73 94.16 0.9526 33

The SWIM method obtained accuracy, recall, precision, specificity, F1-score, and AUC-
ROC values of 97.52%, 96.58%, 96.89%, 96.37%, 96.42%, and 0.9721, respectively. Also,
the SWIM method obtained a high computation time of 19 s compared to the BFL-GO
method for disability management in information systems. The UM-PMS method obtained
accuracy, recall, precision, specificity, F1-score, and AUC-ROC values of 96.43%, 96.13%,
96.17%, 95.61%, 96.07%, and 0.9632, respectively. Also, the UM-PMS method obtained a
high computation time of 22 s compared to the BFL-GO method for disability management
in information systems. The FMCS method attained accuracy, recall, precision, specificity,
F1-score, and AUC-ROC values of 95.38%, 95.41%, 95.34%, 94.53%, 95.34%, and 0.9574,
respectively. Also, the FMCS method obtained a high computation time of 27 s compared
to the BFL-GO method for disability management in information systems. The FEMIS
method obtained accuracy, recall, precision, specificity, F1-score, and AUC-ROC values of
94.26%, 94.79%, 94.73%, 94.16%, 94.73%, and 0.9526, respectively. Also, the FEMIS method
attained a high computation time of 33 s compared to the BFL-GO method for disability
management in information systems.

5. Conclusions

This paper proposes a novel method named Bidirectional Federated Learning-based
Gradient Optimization (BFL-GO) for disability management in information systems, and
it holds significant advantages. In this study, Bi-LSTM was utilized to capture sequential
disability data, and federated learning was employed to enable training the BFL-GO method
across decentralized and distributed data sources while keeping the data localized and
without the need to centralize it. A gradient-based optimizer is used to adjust the proposed
BFL-GO method’s parameters during the training process to minimize its loss function.
The utilization of the Disability Statistics-United States-2018 dataset, with its diverse and
extensive disability data, enhances the BFL-GO method to make informed decisions. The
performance of the proposed BFL-GO method was evaluated using different evaluation
measures, namely specificity, accuracy, precision, recall, and F1-score, and these results
were compared with existing methods such as SWIM, UM-PMS, FMCS, and FEMIS. The
BFL-GO method achieved a high accuracy of 98.65%, precision of 97.91%, recall of 97.82%,
F1-score of 97.86%, specificity of 97.85%, AUC-ROC of 0.9812, and computational time of
16 s. The results illustrate that the BFL-GO method achieves better results in improving
disability management in information systems.

Limitation and Future Scope

A drawback of the suggested method is the complexity of Bidirectional Federated
Learning-based Gradient Optimization. This complexity may demand significant computa-
tional resources and strong network connections. The method’s effectiveness depends on
dataset diversity and size, affecting its applicability in specific contexts. Future advance-
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ments in computational power and communication technology may enhance accessibility
and efficiency. Exploring the integration of emerging technologies like blockchain or edge
computing could improve the methodology’s versatility and dependability. This could
open avenues for more extensive applications in disability boards inside data frameworks.
Additionally, real-world case studies and user feedback analysis can give significant experi-
ences into the strategy’s ease of use and viability, leading to continuous improvements.
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Abstract: The authors develop the theory of discrete differentiation and, on its basis, solve the problem
of detecting trends in records, using the idea of the connection between trends and derivatives
in classical analysis but implementing it using fuzzy logic methods. The solution to this problem
is carried out by constructing fuzzy measures of the trend and extremum for a recording. The
theoretical justification of the regression approach to classical differentiation in the continuous case
given in this work provides an answer to the question of what discrete differentiation is, which is used
in constructing fuzzy measures of the trend and extremum. The detection of trends using trend
and extremum measures is more stable and of higher quality than using traditional data analysis
methods, which consist in studying the intervals of constant sign of the derivative for a piecewise
smooth approximation of the original record. The approach proposed by the authors, due to its
implementation within the framework of fuzzy logic, is largely focused on the researcher analyzing
the record and at the same time uses the idea of multiscale. The latter circumstance provides a more
complete and in-depth understanding of the process behind the recording.

Keywords: trend problem; discrete regression derivatives; trend measures; extremum measures;
multiscale; extremum migration

MSC: 26E50

1. Introduction

Research on data and methods of their analysis using fuzzy mathematics has now
taken shape as an independent direction, which includes methods of fuzzy regression and
the analysis of fuzzy time series [1–7]. We can highlight the main stages of development of
this direction.

In the initial stage, studies of the fuzzy regression model were carried out. The second
stage was the development of soft-computing methods, within which a huge number
of studies have been carried out on the effectiveness of soft computing for time series
analysis. The third stage consisted in the transition from the analysis of time series using
fuzzy mathematics methods to the analysis of fuzzy time series. The development of fuzzy
database methods has made it possible to move to the stage of extracting rules from fuzzy
(granular) time series.

Within each of the listed stages, a significant part consists of methods for identifying
trends and, more broadly, a morphological analysis of time series. The proposed work
should be attributed to the use of fuzzy mathematics methods for the analysis of discrete
time series.

1.1. Trends and Fuzzy Principles for Their Modeling

Trends in a time series are its fundamental characteristic and therefore can tell a lot about
the nature of the process behind it. The identification of trends is a significant part of what is
traditionally considered to be the morphological analysis of time series [8–11], including:
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• The decomposition of the time series into trend and seasonal components, as well as
the remainder: the trend shows the general direction of changes over time, seasonality
reflects repeating patterns associated with certain periods of time, and the remainder
reflects random fluctuations within the time series;

• An autocorrelation analysis, which helps identify periodic fluctuations associated
with seasonality;

• A spectral analysis, which allows one to analyze the cyclicity in a time series and the
most important time periods for it.

Currently, a broader understanding of morphological analysis as the study of the
manifestation of one or another geometric property in a graphical representation of the
dynamics of a time series is gaining momentum [12]. A morphological analysis of time
series is useful for a better understanding of their dynamics and more accurate forecasting.

There are several methods for constructing and identifying time series trends. Here
are the main ones [8,11,13–18]: smoothing with a kernel (in particular, the moving average
method, exponential smoothing), regression and autoregressive (AR) methods, wavelet
analysis, nonlinear methods (in particular, machine learning and neural networks).

Real trends are stochastic and are not at all similar to ideal mathematical ones, since
they have glitches. This does not confuse the researcher, who perceives the trend adaptively
and understands when a violation is insignificant and the trend continues, and when a
violation interrupts the trend.

Thus, if mathematical trends are strict and unambiguous segments in each subsequent
node for which the value of the record is greater than, or equal to (less than, or equal to)
the value of the record in the present node, then stochastic ones depend on the point of
view of the researcher and therefore can differ.

Let us call the formalization and search for trends and extrema in a function the trend
problem. Its solution, according to the authors, consists of a sequence of answers to the
following questions:

• What is the trend of a function at a point?
• Which parts of the function should be considered definitely trendy?
• How do these fragments form a general trend?
• What is an extremum of a function?

The solution to the trend problem, according to the authors, should be fuzzy, multipa-
rameter and multiscale in the spirit of wavelets and fractals. By changing the parameters
and scale, the researcher gets a complete picture of the trends and selects the ones they
need. In addition, a multiscale trend analysis is very useful, objective and can tell a lot
about the function as a whole.

The above is fully consistent with the principles of fuzzy modeling, on the basis
of which it is supposed to approach stochastic trends. In this regard, we quote Zadeh [19]:
“All we need to solve most practical problems is a parameterized family of definitions that,
if necessary, would allow a non-standard choice of operators that reflect the characteristic
features of a particular application. The advantage of this approach is that by avoiding fixed,
concrete-independent definitions, fuzzy set theory and fuzzy logic achieve a pluralism that
increases their flexibility and expressive capabilities”.

In this work, such operators will be regression differentiation, regression smoothing,
fuzzy trend measure and fuzzy extremum measure.

It should be noted that regression derivatives were used earlier, in a simpler form
than in this work, for the classification of time series, which made it possible to determine
groups of series similar in morphology using various similarity measures [20–24]. In such
problems, the choice of similarity measure affects the classification accuracy to a greater
extent than the choice of classification method.

The advantage of similarity measures constructed using regression derivatives is the
ability to take into account both positive dependencies, when time series simultaneously
increase or decrease values, and negative dependencies, when the values of one time series
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decrease and another increase, and vice versa [23]. Similar results based on the fuzzy
correlation measure constructed by the authors are given in the conclusion.

1.2. Solution of the Problem of Trends and on the Basis of Discrete Mathematical Analysis

The problem of trends (see Section 1.1) in this work is solved within the framework
of discrete mathematical analysis (DMA)—a new approach to data analysis, researcher-
oriented and occupying an intermediate position between hard mathematical methods
and soft intellectual ones [25–29].

The solution to the problem within the framework of DMA consists of two parts.
The first is informal: it explains the researcher’s logic, introduces the necessary concepts,
and explains the scheme and principles of the solution. The second is of a formal na-
ture: with the help of the DMA apparatus, all concepts receive strict definitions within
the framework of fuzzy mathematics and fuzzy logic, and the scheme and principles
become algorithms.

We call the first, informal part of solving the trend problem within the framework
of DMA the logic of the researcher’s trends (RTL) and formulate it in the form of the
following provisions:

• There is a record f on a finite uniform set of nodes T. At each node, the researcher
vaguely but unambiguously sees a positive, negative or neutral trend f.

• The researcher considers positive (negative) trends for f to be segments in T consisting
of positive and neutral (negative and neutral) nodes from T.

• Opposite trends intersect at neutral nodes, among which the researcher can choose an
extremum for f.

The further, main part of the work is devoted to the transformation of RTL into
algorithms (the second part of solving the problem of trends within the framework of DMA):
fuzzy measures of the trend and extremum are constructed, expressing the researcher’s
opinion about the presence of a trend and extremum in a record in a particular node.
The combined use of these measures makes it possible in a discrete situation to repeat
the classical results of mathematical analysis regarding trends and extrema for piecewise
smooth functions.

The measures are based on discrete regression derivatives. Their definition, study
and rationale for use are given below. Having a discrete derivative, there is a natural
desire to repeat on its basis, in a discrete situation, the scheme of the approach of classical
mathematical analysis to trends and extremes. This determines both the motivation and
goals of this work.

1.3. Regression Approach to Derivatives (Continuous Case)

Let the function f be integrable on an interval I containing zero internally. Then, for
a sufficiently small Δ > 0, the segment [−Δ, Δ] is contained in I. Let us denote by fΔ the
restriction of f to the segment [−Δ, Δ]: fΔ = f[−Δ,Δ] and calculate the projection pr fΔ of
the function fΔ in space L2[−Δ, Δ] into the two-dimensional subspace of linear functions
Lin2[−Δ, Δ].

Statement 1. If a function f has a tangent at zero, then, as Δ → 0, the linear projection pr fΔ
tends to it.

Proof. Let e1 = e1(Δ), e2 = e2(Δ) be an orthonormal basis in Lin2[−Δ, Δ], obtained from
the natural basis (1, x) by a Gram–Schmidt orthogonalization [30], then:

pr fΔ = ( fΔ, e1)Δe1 + ( fΔ, e2)Δe2.
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Let us put e1 = c, e2 = ax + b. Three conditions arise on a, b and c:

‖e1‖Δ = 1 ←→ ∫ Δ
−Δ c2dt = 1 ←→ c2 = 1

2Δ ,
(e1, e2)Δ = 0 ←→ ∫ Δ

−Δ c(at + b)dt = 0 ←→ b = 0,
‖e2‖Δ = 1 ←→ ∫ Δ

−Δ a2t2dt = 1 ←→ a2 = 3
2Δ3 .

Thus,

pr fΔ(x) =
1

2Δ

∫ Δ

−Δ
f (t)dt +

(
3

2Δ3

∫ Δ

−Δ
t f (t)dt

)
x.

Additionally, the function f is differentiable at zero:

f (x) = f (0) + f ′(0)x + α(x)x,

where α(x) → 0 when x → 0.
The limit

1
2Δ

∫ Δ

−Δ
f (x)dx → f (0)

in the free term of the projection pr fΔ is explained by the mean value theorem [31].
Let us analyze the expansion coefficient pr fΔ at x:

3
2Δ3

∫ Δ

−Δ
t f (t)dt =

3
2Δ3

∫ Δ

−Δ
t( f (0) + f ′(0)x + α(t)t)dt =

3
2Δ3

∫ Δ

−Δ
t f (0)dt +

3
2Δ3

∫ Δ

−Δ
t2 f ′(0)dt +

3
2Δ3

∫ Δ

−Δ
t2α(t)dt =

0 + f ′(0) + 3
2Δ3

∫ Δ

−Δ
t2α(t)dt.

The last integral tends to zero as Δ → 0:

∀ε > 0 ∃Δ(ε) : ∀Δ < Δ(ε)|α|∣∣
[−Δ,Δ] < ε ⇒

⇒
∣∣∣∣ 3
2Δ3

∫ Δ

−Δ
t2α(t)dt

∣∣∣∣ ≤ 3
2Δ3

∣∣∣∣∫ Δ

−Δ
εt2dt

∣∣∣∣ = ε.

1.4. Regression Approach to Derivatives (Discrete Case)

We postpone the consequences of the proven statement and its further development
in the continuous case until the Appendix A, and now we discuss its significance mainly
for the analysis of data in a discrete situation.

Replacing the tangent to f with the projection pr fΔ for small Δ makes it possible to
determine the tangent for discrete functions, since the projection pr fΔ is nothing more than
a linear regression for f on [−Δ, Δ] and can be generalized to the discrete case.

The limit transition t̄ → t in the discrete case is replaced by a fuzzy weight structure
δt(t̄) ∈ [0, 1] of proximity to node t in a finite set of nodes T, the domain of definition
of the function f .

The proven statement gives grounds to consider the linear regression of the function
f with respect to the weight structure δt on T as a tangent for f at t, and its slope as the
derivative of f at t.

Having a derivative for f , there is a natural desire to repeat on its basis in a discrete
situation the classical approach to trends and extrema from mathematical analysis.
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2. Discrete Regression Derivatives

Statement 1 proved above allows us to conclude that for a function f that is differen-
tiable at zero, its linear continuous regressions on the segments [−Δ, Δ] tend to the tangent
as Δ → 0.

This approach to differentiation in the continuous case allows a continuation to the
discrete case, since discrete regressions are just as efficient and fundamental as continu-
ous ones.

Let T = [a, b] be a finite discrete segment with equal nodes t = ti : T = {t} = {ti|Ni=1},
ti = a + (i − 1)h, h = b−a

N−1 .
Let us call a segment τ in T a piece in T without gaps: τ = [ti, tj] = {ti < · · · < tj} for

some 1 ≤ i ≤ j ≤ N. In addition, we call the beginning (end) τ and denote by bτ (eτ) the
first and last nodes ti and tj, respectively.

We consider any real function on T to be a time series (record) f ; F(T) is the space of
such functions.

The analysis by a researcher of the behavior of a time series involves considering its
values not only in a separate node but also simultaneously taking into account the values
in some of its vicinity. This is precisely why the segment T needs to be localized at each of
its nodes. It can be implemented using the fuzzy structure δt on T, which plays the role of a
neighborhood of node t and expresses the proximity to it of individual nodes t̄ normalized
in t: δt is a measure of theproximity of t̄ to t.

(δt(t) = 1) ∧ (|t̄ − t| ≤ ∣∣ ¯̄t − t
∣∣→ δt( ¯̄t) ≤ δt(t̄)

)
. (1)

We consider the proximity measure δ on T to be a set of fuzzy structures δt: δ = {δt :
t ∈ T}, δt ∈ Fuzzy T.

The measure δ is the only parameter in the theory of trends and extrema constructed
below and is therefore very important. Its choice is entirely determined by the researcher.
The authors’ choice is the family δ = δ(p, r).

Definition 1. δ = δ(p, r), p—scale parameter, r—viewing radius (Figure 1).

δt(t̄) = δt(t̄|p, r) =

⎧⎨⎩
(

1 − |t̄−t|
r

)p
, if |t̄ − t| ≤ r

0, if |t̄ − t| > r
. (2)

Figure 1. Proximity of δt(p, r) to node t for different p’s.

The family δ(p, r) expresses the authors’ point of view on localization: a researcher
analyzing a record f at node t first selects the boundary of the view (parameter r) and then
its thoroughness (scale, parameter p). The required localization can be achieved using the
family δ(p, r) in two ways: either by the parameter r tending to zero, or by the parameter p
tending to infinity. In this paper, the authors chose the second path: in the measure δ(p, r),
there is an interesting dependence on the scale parameter p, which allows you to “look at
the record from a different height”.

The parameters p and r are chosen by the researcher. In this work, the measure δ(p, r)
is used for trend analysis, which can be simple (p and r are fixed) and multiscale (p changes,
r is fixed). The work focuses on multiscale analysis. For its objectivity and completeness,
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the radius r is assumed to be equal to a quarter of the length of the segment T. Figure 1
shows the dependence of the proximity δt(t̄|p, r) to node t on p for r equal to a quarter
of the length of the segment T.

The limit transition t̄ → t to T performs a proximity measure δt by distributing weights
on T: t̄ → t ↔ T = {t̄} → Tδ(t) = {(t̄, δt(t̄))}. With that said, we should consider a linear
regression based on the fuzzy image Imδ f (t) = {( f (t̄), δt(t̄)), t̄ ∈ T} at the beginning of
the tangent lδ f (t) = lδ f (t)(t̄) = att̄ + bt to the function f at node t. Associated with the
image Imδ, f (t) is the functional

J(a, b) = ∑̄
t∈T

δt(t̄)( f (t̄)− at̄ − b)2.

The values (at, bt) of the parameters of the tangent lδ f (t) are the minimum point of
J(a, b). Therefore, at and bt satisfy the system of equations

at ∑
t̄∈T

δt(t̄)t̄2 + bt ∑
t̄∈T

δt(t̄)t̄ = ∑
t̄∈T

δt(t̄) f (t̄)t̄,

at ∑
t̄∈T

δt(t̄)t̄ + bt ∑
t̄∈T

δt(t̄) = ∑
t̄∈T

δt(t̄) f (t̄).

Hence,

at =

∣∣∣∣∣∣ ∑t̄∈T t̄δt(t̄) f (t̄) ∑t̄∈T t̄δt(t̄)

∑t̄∈T δt(t̄) f (t̄) ∑t̄∈T δt(t̄)

∣∣∣∣∣∣∣∣∣∣∣∣ ∑t̄∈T t̄2δt(t̄) ∑t̄∈T t̄δt(t̄)

∑t̄∈T t̄δt(t̄) ∑t̄∈T δt(t̄)

∣∣∣∣∣∣
,

bt =

∣∣∣∣∣∣ ∑t̄∈T t̄2δt(t̄) ∑t̄∈T t̄δt(t̄) f (t̄)

∑t̄∈T t̄δt(t̄) ∑t̄∈T δt(t̄) f (t̄)

∣∣∣∣∣∣∣∣∣∣∣∣ ∑t̄∈T t̄2δt(t̄) ∑t̄∈T t̄δt(t̄)

∑t̄∈T t̄δt(t̄) ∑t̄∈T δt(t̄)

∣∣∣∣∣∣
.

(3)

To build trends, the formulas in (3) are used. A simpler expression for at and bt is used
in Appendix A.1.

Definition 2. The slope coefficient at is called the regression derivative of f at t and is denoted by
Dδ f (t). The function t → at is called the regression derivative of f and is denoted by Dδ f ∈ F(T).
The functional correspondence f → Dδ f is a linear operator on F(T), called regression differentia-
tion and denoted by Dδ.

Definition 3. The value lδ f (t)(t) = att + bt of the regression tangent lδ f (t) of the function f at
t is called the regression value of f at t and is denoted Rδ f (t). The function t → Rδ f (t) is called
regression smoothing of f and is denoted by Rδ f ∈ F(T). The functional correspondence f → Rδ f
is a linear operator on F(T), called regression smoothing and denoted by Rδ.

A special notation for differentiation and smoothing in the case of a measure δ = δ(p, r) is:

Dδ(p,r) = D(p, r); Rδ(p,r) = R(p, r). (4)

The theoretical justification for the regression approach to differentiation presented in
this work finds additional empirical confirmation in the form of the good performance of
regression smoothing: with the same review (parameter p) on smooth functions, regression
smoothing works better than conventional averaging. In Figure 2, regression smoothing
is shown with a solid line, and conventional averaging is shown with a dotted line. The
visual comparison is supported by the quadratic discrepancy with the ideal. The advantage
of regression smoothing over conventional smoothing is especially visible at the ends of
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both the synthetic smooth recording (Figure 2) and the real one (Figure 3). Until the end
of this paper, these records participate in the game and serve as a testing ground for the
trends and extremes proposed in this work.

Figure 2. Results of smoothing R(p, r) (solid line) and averaging M(p, r) (dotted line) for smooth
records (black line) at different scales p with quadratic residuals deviations: p = 1 (red lines),
p = 12 (green) and p = 35 (blue).

Figure 3 shows the performance of the regression smoothing R(p, r) on the real mag-
netic storm record in the same p-scale parameters as in Figure 2 for the synthetic one.
The above figures confirm the convergence proved in Appendix A.1 to the record f of its
regression smoothing R(p, r) at p → ∞.

Figure 3. Results of smoothing R(p, r) on a real recording (black line) at different scales p: p = 1 (red line),
p = 12 (green line) and p = 35 (blue line).

3. Trend Measure: Preliminary Solution to the Trend Problem

The assumption that a researcher looking at a record f can determine its trend at
any node t ∈ T is central to the researcher’s trend logic. Based on it, we construct its
implementation using a fuzzy trend measure.

The researcher’s view of the record f is formalized by its regression smoothing
fδ = Rδ f based on the proximity (localization) measure δ on T chosen by the researcher.
Next, the researcher is not interested in the smoothing fδ itself, but in the result f ′δ of its
differentiation by the operator D(0, h): f ′δ = D(0, h) fδ (4). The value of f ′δ(t) is called the
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elementary dynamics of the entry f at node t based on the localization of δ. Their totality,
that is, the image Im f ′δ, serves as the basis for constructing a fuzzy trend measure τrδ f . The
value τrδ f (t) in the fuzzy scale [0, 1] expresses the degree of confidence of the researcher
(the measure of their reason) to consider the trend of the record f at node t to be positive.

It is constructed as follows: the researcher gives the weight
∣∣ f ′δ(t)∣∣δt(t̄) to the elemen-

tary dynamics f ′δ(t̄) at node t̄. The argument for a positive trend f at node t is all positive
dynamics f ′δ(t̄) > 0, and against, all negative dynamics f ′δ(t̄) < 0 with their weights.

The measure of trend τrδ f (t) is considered the ratio of the sum of the weights of
positive dynamics (the argument “for” the positive trend f at node t) to the total sum
of weights:

τrδ f (t) =
∑ δt(t̄) f ′δ(t̄) : f ′δ(t̄) > 0

∑ δt(t̄)
∣∣ f ′δ(t̄)∣∣ : t̄ ∈ T

. (5)

If τrδ f (t) > 1/2, then the total argument of the weights of increasing dynamics is
greater than the total argument of the weights of decreasing dynamics; therefore, the
researcher considers node t to be positive according to the trend for f , and the degree of
conditionality of its solution is τrδ f (t).

Similarly, if τrδ f (t) < 1/2, then node t is considered negative according to the trend
for f with a base of 1 − τrδ f (t) and neutral in the case of equality τrδ f (t) = 1/2.

Let us summarize the intermediate result: based on the measure τrδ f , the answer
to the first question formulated in the introduction was obtained: “What is a trend at
a point?”.

Next, partitioning T = T+
δ f ∨ T−

δ f ∨ T0
δ f into positive, negative, and trend-neutral nodes

T+
δ f = {t ∈ T : τrδ f (t) > 1/2}

T−
δ f = {t ∈ T : τrδ f (t) < 1/2}

T0
δ f = {t ∈ T : τrδ f (t) = 1/2}

allows one to simultaneously answer the following two questions of the trend problem:
“Which fragments of the record should be considered unconditionally trendy?” and “How
do these add up to overall final trends?”

The fact is that in real conditions, there are very few neutral trends from T0
δ f , or none

at all. Therefore, it seems natural to consider segments of the record f entirely consisting of
positive and neutral (negative and neutral) nodes, respectively, as positive and negative
trends τr+ (τr−) for f : τr+ (τr−), a set of nodes without gaps in T+

δ f ∨ T0
δ f (T−

δ f ∨ T0
δ f ).

Definition 4. We denote an arbitrary trend by τr: τr = τr+ ∨ τr−. Trends τr replace each other
and can intersect only at neutral nodes, forming an almost disjunct covering T, which we denote as
Trδ f = {τ}.

We call the partition Trδ f a preliminary solution to the trend problem for recording
f based on the proximity measure δ. An explanation of its preliminary nature is given
below, but now, we note that strongly depending on δ, in the case δ = δ(p, r), turns out
to be very effective and gives good results at different scales p on difficult real recordings
with, in our opinion, a large radius review r. It was this circumstance that served as the
reason for writing this work.

The proof is presented in the form of a complete display of the solution to trends Trδ f :
record f → smoothing fδ → trend measure τrδ f with a partition Trδ f applied to it → par-
tition Trδ f on smoothing fδ → partitioning Trδ f into records f . The obvious presence of
scale p requires additional effort. Continuing (4) for δ = δ(p, r) and omitting the viewing
radius r, we introduce the following notation:

• smoothing fδ(p,r) ↔ fp,
• elementary dynamics f ′

δ(p,r) ↔ f ′p,

• trend measure τrδ(p,r) ↔ τrp,
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• partition Trδ(p,r) ↔ Trp.

In order not to confuse the trend measure τrp with the trend segments τr obtained
on its basis, in the latter, we agree to indicate the dependence on the scale p in the form of
an argument:

• τr ↔ τr(p),
• Trp f = {τr(p)}.

In Figures 4–6, the complete scenario for solving Trp f is given for a smooth function
on three scales, and for a real record on two scales in Figures 7 and 8.

The effectiveness of working in difficult real-world conditions is the main criterion
in data analysis, a largely empirical discipline. According to the authors, success in the
problem of trends based on the trp measure lies in two reasons: stability and adequacy.

Stability is a general property of the construction of the measure trp f . Figure 9
illustrates this; Figure 9b,c shows the trend solution on a scale p = 35 for a smooth record
and its disturbance, indicated in Figure 9a in black and green, respectively.

Adequacy: Trends τr(p) obtained on the basis of the measure τrp f are consistent with
the “p” scale: there are no small dynamics in modulus p on smoothing fp among them.
As noted above, it was precisely this circumstance that served as the reason for this work.
The explanation of adequacy at the moment is semiempirical: according to the apologetics
of regression differential calculus given at the beginning of the work and Appendix A.1,
regression derivatives and values inherit the fundamental properties of linear regression,
and the measure of trend very naturally depends on them. Therefore, if the effect for trends
through regression derivatives exists, then it must necessarily manifest itself through the
trend measure. This is illustrated in Figure 10, whose detailed story is given below.

Figure 4. Preliminary solution of the problem of trends on a smooth record on a scale p = 1. Red
lines are positive trends, blue lines are negative ones. (a) Original record f . (b) Regression smoothing
f1. (c) Measure of trend τr1 f with red–blue partition Tr1 f . (d) Partition Tr1 f on smoothing f1.
(e) Partitioning Tr1 f into records f .
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Figure 5. Preliminary solution of the problem of trends on a smooth record on a scale p = 12. Red
lines are positive trends, blue lines are negative ones. (a) Original record f . (b) Regression smoothing
f12. (c) Measure of trend τr12 f with red–blue partition Tr12 f . (d) Partition Tr12 f on smoothing f12.
(e) Partitioning Tr12 f into records f .

Figure 6. Preliminary solution of the problem of trends on a smooth record on a scale p = 35. Red
lines are positive trends, blue lines are negative ones. (a) Original record f . (b) Regression smoothing
f35. (c) Measure of trend τr35 f with red–blue partition Tr35 f . (d) Partition Tr35 f on smoothing f35.
(e) Partitioning Tr35 f into records f .
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Figure 7. Preliminary solution of the problem of trends on a real record on a scale p = 1. Red lines
are positive trends, blue lines are negative ones. (a) Original record f . (b) Regression smoothing
f1. (c) Measure of trend τr1 f with red–blue partition Tr1 f . (d) Partition Tr1 f on smoothing f1.
(e) Partitioning Tr1 f into records f .

Figure 8. Preliminary solution of the problem of trends on a real record on a scale p = 12. Red lines
are positive trends, blue lines are negative ones. (a) Original record f . (b) Regression smoothing
f12. (c) Measure of trend τr12 f with red–blue partition Tr12 f . (d) Partition Tr12 f on smoothing f12.
(e) Partitioning Tr12 f into records f .
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Figure 9. Stability of the preliminary solution to the trend problem. Red lines are positive trends,
blue lines are negative ones. (a) Smooth notation (black) and its disturbance (green). (b) Solution for
the smooth recording. (c) Solution to its disturbance.

Figure 10. Adequacy of the preliminary solution to the trend problem. Red lines are positive trends,
blue lines are negative ones. (a) Initial recording. (b) Mathematical solution to the trend problem.
(c) Preliminary solution to the trend problem. (d) Mathematical solution to the trend problem
(fragment). (e) Preliminary solution to the trend problem (fragment).

204



Mathematics 2024, 12, 284

The stability and adequacy of the solution to the trend problem made it possible to
answer the second and third questions relatively simply, i.e., construct final (currently)
versions of trend sections τr(p) of record f at scale p.

This does not always happen. The traditional solution to the trend problem based
on smoothing, for example, polynomial, uses a standard mathematical understanding of
trends: trends in a record are considered to be mathematical trends in its smoothing. In
this solution, the problem of small dynamics remains: on the one hand, smoothing must
sufficiently scan the record, on the other hand, the stochastic nature of the record leads to
the appearance of small dynamics in the smoothing (short segments of increase/decrease),
which a mathematical understanding of the trend in smoothing will highlight as separate
trends on the recording.

Let us turn to Figure 10: the classic solution to trends for recording f based on
smoothing fδ is shown in Figure 10b, and the solution currently proposed by the authors is
in Figure 10c. Selected fragment in Figure 10d,e illustrates the above and shows a greater
stability of the Trδ f solution compared to the classical one. The solution Trδ f is also better
in comparison with the previous solution of the authors, where the trend was obtained in
several stages and for this, it was necessary to solve the difficult problem of combining
fragments of the f record into a single trend.

However, the solution Trp f , despite all the advantages mentioned above, has some
inaccuracy that does not allow it to be considered the final solution to the trend problem
(Figure 11). To do this, we need a measure of extremity that eliminates the inaccuracy in
the solution Trp f and adds stability and adequacy to it.

Figure 11. Partition inaccuracy Trp f . (a) Original record. (b) Preliminarily solving the trend problem on
a scale p = 12. (c) Extrema partition Tr12 f (highs are red, lows are blue, black is the original record).

4. Extremum Measure: The Final Solution to the Trend Problem

In the trend problem, there is one last question about extrema. Of course, the first
answer to this question is similar to the classical one: extrema are the boundaries between
opposite trends in Trδ f . On this path, the problem of their existence arises: as noted above,
there are few or no neutral nodes from Tr0

δ f (namely, the extrema should lie within them)
due to the stochasticity of f and discreteness of T. The second option, the most natural
of the nonempty ones, is as follows: if the positive trend τr+ is replaced by a negative
τr−, then the maximum should be considered the choice from the end e(τr+) and the
beginning b(τr−), where the entry f is maximum, and, conversely, if the negative trend
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τr− is replaced by a positive τr+, then the minimum should be considered the choice from
the end e(τr−) and the beginning b(τr+), where the entry f is minimal.

But even after this, some problems remain: the global nature of the trend measure
τrδ f makes the partition Trδ f stable and quite satisfactory (at least in the case δ = δ(r, p))
on the one hand, and on the other hand, it entails some inaccuracy.

We construct a fuzzy extremum measure exδ f , similar to the trend measure τrδ f : the
value exδ f in the fuzzy scale of the segment [0, 1] expresses the degree of confidence of the
researcher (the measure of their basis) to consider node t the maximum for the function f .
Together, the measures τrδ f and exδ f solve the problem of trends: they finally determine
the trends and extrema of the record f .

The construction of the measure exδ f begins in the same way as the measure τrδ f :
the researcher gives the elementary dynamics f ′δ(t̄) at node t̄ the weight δt(t̄)

∣∣ f ′δ(t̄)∣∣.
If node t̄ lies to the left of t (t̄ < t), then the weight δt(t̄)

∣∣ f ′δ(t̄)∣∣ speaks in favor of a maximum
at t for f with f ′δ(t̄) > 0 (climbing an imaginary mountain with a peak at t), and against, all
δt(t̄)
∣∣ f ′δ(t̄)∣∣ with f ′δ(t̄) < 0. To the right of t (t̄ > t), everything is the other way around: the

weights δt(t̄)
∣∣ f ′δ(t̄)∣∣ with f ′δ(t̄) < 0 (descent from an imaginary mountain with a top at t),

and against, all δt(t̄)
∣∣ f ′δ(t̄)∣∣with f ′δ(t̄) > 0. The measure of the extremum exδ f is considered

the sum of the pros to the total sum of weights:

exδ f =

(
∑t̄<t δt(t̄) f ′δ(t̄) : f ′δ(t̄) > 0

)− (∑t̄>t δt(t̄) f ′δ(t̄) : f ′δ(t̄) < 0
)

∑ δt(t̄)
∣∣ f ′δ(t̄)∣∣ : t̄ �= t

. (6)

By analogy with the partition Trδ f , we introduce and denote by Exδ f the partition by
alternating segments ex+ (ex−) obtained by switching exδ f ≶ 1/2: ex+ ↔ exδ f ≥ 1/2,
ex− ↔ exδ f ≤ 1/2 (Figures 12–16). Ex(t) denotes the segment of this partition containing
node t.

Figure 12. Partition of Exp f on a smooth record on a scale p = 1. Red lines are positive trends, blue
lines are negative ones. (a) Original record f . (b) Regression smoothing f1. (c) Measure of extremum
ex1 f with red–blue partition Ex1 f . (d) Partition of ex1 f on smoothing f1. (e) Partition of Ex1 f into
records f .
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Figure 13. Partition of Exp f on a smooth record on a scale p = 12. Red lines are positive trends, blue
lines are negative ones. (a) Original record f . (b) Regression smoothing f12. (c) Measure of extremum
ex12 f with red–blue partition Ex12 f . (d) Partition of ex12 f on smoothing f12. (e) Partition of Ex12 f
into records f .

Figure 14. Partition of Exp f on a smooth record on a scale p = 35. Red lines are positive trends, blue
lines are negative ones. (a) Original record f . (b) Regression smoothing f35. (c) Measure of extremum
ex35 f with red–blue partition Ex35 f . (d) Partition of ex35 f on smoothing f35. (e) Partition of Ex35 f
into records f .
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Figure 15. Partition of Exp f on a real record on a scale p = 1. Red lines are positive trends, blue lines
are negative ones. (a) Original record f . (b) Regression smoothing f1. (c) Measure of extremum ex1 f
with red–blue partition Ex1 f . (d) Partition of ex1 f on smoothing f1. (e) Partition of Ex1 f into records f .

Figure 16. Partition of Exp f on a real record on a scale p = 12. Red lines are positive trends, blue
lines are negative ones. (a) Original record f . (b) Regression smoothing f12. (c) Measure of extremum
ex12 f with red–blue partition Ex12 f . (d) Partition of ex12 f on smoothing f12. (e) Partition of Ex12 f
into records f .
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The scheme for displaying the partition Exδ f is exactly the same as for the partition
Trδ f : record f → smoothing fδ → extremum measure exδ f with the partition Exδ f applied
to it → partition Exδ f on smoothing fδ → partition Exδ f on records f . Taking into account
the notations exδ(p,r) ↔ exp and Exδ(p,r) ↔ Exp, in Figures 12–14, the full scenario Exp f
is shown for a smooth function on three scales p = 1, 12, 35, and in Figures 15 and 16, for a
real recording on a scale p = 1, 12.

Let e+ be the version of the maximum obtained above based on τrδ f . Let us say that
it allows a correction if exδ f (e+) > 1/2, and the correction itself consists in the transition
of e+ to the nearest maximum of the measure exδ f on the segment Ex(e+). Similarly, if e−
is a version of the minimum obtained above on the basis of τrδ f , then it allows a correction
if exδ f (e−) < 1/2, and the correction itself consists in the transition of e− to the nearest
minimum of the measure exδ f on the segment Ex(e−). Extrema based on the measure τrδ f
that do not allow corrections are preserved. This can happen in two situations.

• First, the extremum e is already in the correct position ↔ no correction is needed (it is
zero); this happens often, for example, for δ = δ(r, p), and confirms the high efficiency
of the measure τrδ f , as well as solving the problem of trends Trp f on its basis.

• Second, the extremum e is not consistent with the measure exδ f : exδ f (e+) < 1/2 or
exδ f (e−) > 1/2. This means that the measure exδ f at the extremum e shows the
opposite of its essence: the maximum seems to the researcher to lie in the lowlands,
and the minimum on the hills.
Let us look at this in more detail, assuming that the maximum e+ is the extremum.
Let L+

δ f (e+), L−
δ f (e+) be the arguments for (against) the maximum of f in e+ to the

left of it; in notation (5) and (6),

L+
δ f (e+) = ∑t≤e+ δe+(t) f ′δ(t) : f ′δ(t) > 0,

L−
δ f (e+) = ∑t≤e+ δe+(t)

∣∣ f ′δ(t)∣∣ : f ′δ(t) < 0.

Similarly, we define arguments R+
δ f (e+), R−

δ f (e+) for (against) the maximum of f
in e+ to the right of it:

R+
δ f (e+) = ∑t≥e+ δe+(t) f ′δ(t) : f ′δ(t) > 0,

R−
δ f (e+) = ∑t≥e+ δe+(t)

∣∣ f ′δ(t)∣∣ : f ′δ(t) < 0.

In e+, there is an equilibrium

τrδ f (e+) = 1/2 ↔ L+
δ f (e+) + R−

δ f (e+) = L−
δ f (e+) + R+

δ f (e+).

It allows us to conclude that one-sided extremalities are equivalent for e+: e+ is the
left maximum for f ↔ L+

δ f (e+) > L−
δ f (e+) ↔ R+

δ f (e+) > R−
δ f (e+) ↔ e+—the

maximum on the right for f .
Further, it follows that L+

δ f (e+) + R+
δ f (e+) > L−

δ f (e+) + R−
δ f (e+) ↔ exδ f (e+) > 1/2.

Hence, if the maximum e+ does not allow any correction due to an inconsistency with
the measure of extremity (exδ f (e+) < 1/2), then e+ is not a maximum on any side.
It is probably possible to construct an artificial example of this situation; however,
the authors have never encountered this on real recordings. They are calm about the
possible appearance of this kind of extrema, since they consider them unstable and,
with increasing scale p, either disappearing or turning into normal extrema.

• Third, the extremum e can be consistent with the extremum measure exδ f but not
unique on the segment Ex(e). In this case, its trace will necessarily be an extremum
that does not allow any correction for the second reason.

Let us summarize: the extremes obtained after correction are considered final, and
the segments between them are considered the final trends of the f record. Let us retain
their previous designations e, τr, Trδ f , noting that after correction, they are the result
of the joint activity of the measures τrδ f and exδ f (Figure 17).
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The correction of extrema for a smooth recording is shown in Figure 17, and for a real
recording, in Figure 18, according to the scheme: recording f → smoothing fδ → trend mea-
sure τrδ f with preliminary extrema in strokes → extrema measure exδ f with preliminary
extrema in strokes and their continuous correction → final solution to the trend problem on
smoothing fδ → preliminary solution to the trend problem for comparison on smoothing
fδ → final solution to the trend problem on record f .

Figure 17. The final solution of trends for a smooth record on a scale p = 12. Red lines are positive
trends, blue lines are negative ones. (a) Original record f . (b) Smoothing f12. (c) Dashed extrema
of a preliminary nature on the trend measure τr12 f . (d) Dashed extrema of a preliminary nature on
the trend measure ex12 f and their solid corrections. (e) Final solution of trends using smoothing f12.
(f) Preliminary solution of trends using smoothing f12. (g) Final solution of trends on record f .
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Figure 18. The final solution of trends for a real record on a scale p = 12. Red lines are positive
trends, blue lines are negative ones. (a) Original record f . (b) Smoothing f12. (c) Dashed extrema
of a preliminary nature on the trend measure τr12 f . (d) Dashed extrema of a preliminary nature on
the trend measure ex12 f and their solid corrections. (e) Final solution of trends using smoothing f12.
(f) Preliminary solution of trends using smoothing f12. (g) Final solution of trends on record f .

5. Various Scales

As mentioned above, there are two dynamic scenarios for tending to node t from the
position of the family δ(p, r): the first is r → 0 for a fixed p∗, the second is p → ∞ for a
fixed r∗. In this article, the authors chose the second path, considering that the behavior of
δ(p, r∗), p → ∞ for a large radius r∗ gives a more objective dynamic picture of localization
at t, since a large number of nodes t̄ take a nontrivial part in it t̄ : |t̄− t| < r∗ (see Definition 1
and the text after Figure 1).

The stability and adequacy of the solution to the problem of trends Trp f , the conver-
gence of smoothings fp to f as p → ∞, established in Appendix A.1, give reason to believe
that a simultaneous analysis of partitions Trp f , measures τrp f and exp f for different p’s
can be useful and allow us to gain knowledge about f at a new level.
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The scale parameter p is assumed to be from some discrete uniform segment P = [p1, pM];
p = pi, i = 1, . . . , M. The initial scale p1 = pb is usually equal to zero, and the final scale
pM plays the role of infinity pM = p∞. The choice of P is up to the researcher.

The parametric families (t, p) → τrp f (t) and (t, p) → exp f (t), like the wavelet spec-
trum, characterize the trendiness and extremity of f on a two-dimensional grid P × T at
different nodes and scales. Let us use them to determine the hierarchy of extrema on f . The
very ability to see the hierarchy of extremes suggests a different scale of the researcher’s
view of the record. First, one looks at the recording from the greatest height ↔ at the largest
scale. Then, it gradually descends lower, making the viewing scale smaller. Along this
path, extrema appear, forming chains. The latter express the migration dependence of the
extremum on the scale and generate a hierarchy of extrema: the earlier the chains appear,
the more significant the corresponding extremum for the record f .

What was said above according to the scheme “record f → different-scale partitioning
Trp f → migration of extrema to Trp f → hierarchy of extrema on record f ′′ is illustrated for
a noisy smooth record in Figure 19, and for a real recording in Figure 20.

Figure 19. Multiscale solution of the trend problem on a synthetic record. (a) Original entry f .
(b) Partition Trp f . Red areas are positive trends, blue areas are negative ones. (c) Migration of
extrema to Trp f . Different colors correspond to different extrema. (d) Hierarchy of extrema on record
f . Asterisks in different colors correspond to extrema on a scale p = 50.
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Figure 20. Multiscale solution of the trend problem on a real record. (a) Original entry f . (b) Partition
Trp f . Red areas are positive trends, blue areas are negative ones. (c) Migration of extrema to Trp f .
Different colors correspond to different extrema. (d) Hierarchy of extrema on record f . Asterisks in
different colors correspond to extrema on a scale p = 50.

Definition 5. Let Trp+1(e(p)) be a segment in the final solution of trends at level p + 1, which
contains the extremum e(p). Let us call the migration e(p+ 1): e(p) → e(p+ 1) the same oriented
end of the segment Trp+1(e(p)).

The maximal chains CEx = {e(p) → e(p + 2) → · · · → e(p + k)} are migration
scenarios of the extremum e(p1) on the P × T grid for record f . For any extremum e = e(p),
let CEx(e) denote the chain passing through it. Note that the extremum e = e(p) can be
internal in it: p1 < p < pk.

Definition 6. The weight ω(e) of extremum e is the exponent p1 of the chain CEx(e) containing it.

Next, we take the last level of the scale p∞ and all its extrema for f : Ex f (p∞). Let us
order Ex f (p∞) by weights: ei < ej ↔ ω(ej) < ω(ei); thus, the most fundamental for f is
the extremum with the minimum weight.

The identification of trends using trend and extremum measures is stable, and there-
fore, a multiscale analysis based on these measures is stable and informative. The algorithm
for migrating extrema (constructing their chains) proposed in this work is effective only
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if the quality of their determination is high. The classical approach to trends based on
smoothing, for example, polynomial, and using a standard mathematical understanding
of trends, is unstable and is not suitable for such an algorithm: a continuation of a really
important extremum at one scale level can become a weak (unreasonable) extremum at the
next level, which will lead to a migration (chain) of extrema in the wrong direction. As
confirmation of what was said earlier, Figures 21 and 22 present a different-scale solution
of trends based on a strict mathematical relationship to them for the same records f and on
the same scales p as the solutions Trp f in Figures 19 and 20. Omitting the details of their
comparison, let us pay attention only to the narrow red wedge in Figure 21 slightly to the
right of t = 1000. It is associated with the appearance of unreasonable highs of high rank,
while in fact, there should be only one significant minimum, and it is this one that is shown
in Figure 19d, and the corresponding chain of migrations is shown in yellow in Figure 19c.

Note that replacing p → ∞ by r → 0 and r∗ by p∗ leads to another dynamic imple-
mentation of the above scenario with partitioning Trr f by measures τrr f and exr f .

Figure 21. Multiscale rigorous mathematical solution to the problem of trends on a synthetic record.
(a) Original record f . (b) Partition Trp f . Red areas are positive trends, blue areas are negative ones.
(c) Migration of extrema to Trp f . Different colors correspond to different extrema. (d) Hierarchy of
extrema on record f . Asterisks in different colors correspond to extrema on a scale p = 50.
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Figure 22. Multiscale rigorous mathematical solution to the problem of trends on a real record.
(a) Original record f . (b) Partition Trp f . Red areas are positive trends, blue areas are negative ones.
(c) Migration of extrema to Trp f . Different colors correspond to different extrema. (d) Hierarchy of
extrema on record f . Asterisks in different colors correspond to extrema on a scale p = 50.

6. Trends and Fuzzy Logic

The measures τrδ f and exδ f make it possible to use fuzzy logic in a further study
of the record f . The authors plan this in the future, and in this work, we provide two
announcements of our research.

• In addition to the measures τrδ f and exδ f , we take into consideration their fuzzy
negations ¬τrδ f and ¬exδ f . According to (5) and (6), the measures τrδ f and exδ f
are responsible for the increase and maximum of f ; therefore, their negations ¬τrδ f
and ¬exδ f are responsible for the decrease and minimum of f , respectively. Let us
denote their fuzzy disjunction by μδ f :

μδ f (t) = max{τrδ f (t),¬τrδ f (t), exδ f (t),¬exδ f (t)}

We display the manifestation of the measure μδ f on the record f in a color scale
(Figure 23):
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Cyan ↔ manifestation through an increase: μδ f (t) = τrδ f ;
Violet ↔ manifestation through a decrease: μδ f (t) = ¬τrδ f ;
Red ↔ manifestation through a maximum: μδ f (t) = exδ f ;
Blue ↔ manifestation through minimality: μδ f (t) = ¬exδ f .

Such an encoding of the record by the measure μδ f , together with the final solution
to the problem of trends for f in the form of a partition Trδ f = {τr}, allows us to move
further in understanding the behavior of the record through trends.

Figure 23. Coding a record by measure μδ f . (a) original record f. (b) Its smoothing at p = 1 with
the manifestation of the measure μδ f .

A few first observations: to be specific, the trend is τr = τr+. In the regular case,
the increasing trend τr+ is a sequential alternation of blue, green and red sections
(minimality, growth and maximum). Similarly, a decreasing trend τr− will be an
alternation of red, lilac and blue sections (maximum, decrease and minimum). The
relationships between the parts indicate both the nature of the extrema (trend bound-
aries) and the trend itself: the relatively larger the central part, the more singular
the extrema, and the more pronounced the trend (Figure 24, p = 5, increasing trend
containing node 3000 and decreasing trend containing node 3500).
In addition, red or blue inclusions may appear in the central phase: they are outliers
in the τr+ trend and indicate its stochastic nature (Figure 25, p = 10, increasing trend
containing node 3000).

• Considering Boolean logic to be part of fuzzy logic, we present a second direction
of further research related to it. It concerns the dynamic correlation of records f and g
on T in the form of a fuzzy measure corδ( f , g). It is constructed similarly to the mea-
sures τrδ f and exδ f : the researcher selects a node t and a point of view δt on T,
then each joint elementary dynamics ( f ′δ(t̄), g′δ(t̄)) is assigned weight δt(t̄)| f ′δ(t̄)g′δ(t̄)|.
The argument for the correlation of f and g at t are all equally oriented elementary dy-
namics, sgn f ′δ(t̄)· sgn g′δ(t̄) = 1, and against, oppositely oriented elementary dynam-
ics, sgn f ′δ(t̄)· sgn g′δ(t̄) = −1, with its weights. The correlation measure corδ( f , g)(t)
is considered the ratio of the sums of weights “for” to the total sum of weights

corδ( f , g)(t) =
∑
[
δt(t̄)| f ′δ(t̄)g′δ(t̄)| : sgn f ′δ(t̄)· sgn g′δ(t̄) = 1

]
∑
[
δt(t̄)| f ′δ(t̄)g′δ(t̄)| : t ∈ T

] .
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Fuzzy negation ¬ corδ( f , g) is a measure of anticorrelation (multidirectionality) of
records f and g. The correlation of functions f (Figure 26a) and g (Figure 26b) for
proximity δ(p, r) on three scales p = 1, 5, 10 is shown in Figures 27–29: the areas where
corδ(p,r)( f , g) > 0.5 (<0.5) are shown on the regression smoothings fp and gp in red
and blue, respectively.

Figure 24. Coding a record by measure μδ f : (a) original record f; (b) its smoothing at p = 5 with
the manifestation of the measure μδ f .

Figure 25. Coding a record by measure μδ f : (a) original record f; (b) its smoothing at p = 10 with
the manifestation of the measure μδ f .
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Figure 26. (a) Record f . (b) Record g.

Figure 27. Smoothing functions f and g at p = 1 with selected areas’ correlations (red is where
functions correlate). (a) f1. (b) g1.
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Figure 28. Smoothing functions f and g at p = 5 with selected areas’ correlations (red is where
functions correlate). (a) f5. (b) g5.

Figure 29. Smoothing functions f and g at p = 10 with selected areas’ correlations (red is where
functions correlate). (a) f10. (b) g10.

7. Conclusions

In classical mathematical analysis, the concept of locality is based on a passage to the
limit and thus has an infinitesimal character. For this reason, solving the problem of finding
trends for piecewise smooth functions is reduced to determining segments of constant sign
of the derivative.
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In a discrete case, within the framework of DMA, a comparative, fuzzy, multiscale
perception of locality is natural and important. It is this perception of locality that is
important for analyzing discrete data and understanding the dynamics of the processes
that these data express.

Solving the problem of determining trends in discrete time series provides only a pre-
liminary fragmentation of the process. Without identifying the relationship between trends,
a deep understanding of the dynamics of the process, which is obtained by constructing a
hierarchy of trends and extremes, is impossible.

The theoretical justification of the regression approach to differentiation presented in
the work allows, firstly, to give an answer to the question: “What is discrete differentiation”,
and secondly, outlines a path for solving the problem of trends at different scales within
the framework of the classical approach. It consists in transferring to the continuous case
the discrete solution of the trend problem proposed in this work based on measures of
trend and extremum by replacing the sum in constructions (5) and (6) with an integral. The
efficiency of the discrete solution allows us to hope for success in the continuous case.

About future plans for our research announced in Section 6, we add the following

• A comparative analysis of the solution to the trend problem Trp f based on the scale
parameter p at a fixed viewing radius r∗ with the solution to the trend problem Trr f
based on the viewing radius r at a fixed scale parameter p∗.

• The trend measures τrp f and τrp f̄ are very convenient for comparing records f and f̄
on scales p and p̄: such a comparison cor(p,p̄)( f , f̄ ) can be any functional distance
between fuzzy measures τrp f and τrp f̄ on the general domain of their definition T.
The fuzzy weight σ(p, p̄) of the comparison depends on the researcher. The general
conclusion for the set

{
f , f̄ , σ(p, p̄), p ∈ P, p̄ ∈ P̄

}
will give a final comparison of a new

type cor( f , f̄ ) between records f and f̄ , which is a measure of similarity that can serve
as the basis for clustering on records.

• The last direction of further research by the authors, similar to the study of wavelet
spectra, is related to the migration of extrema [18,32,33]. It involves two stages:
the construction of chains of migration of extrema and their subsequent multifractal
analysis (Gibbs sums, scaling exponent, Hölder index). The stage of constructing
chains of migration of extremes is described in the proposed article.

In conclusion, we note the following. Regression motives in the analysis of dis-
crete series are present, in particular, in the form of F-transformations (more precisely,
f 1-transformations for differentiating a series). Following Zadeh’s principle of incom-
patibility, they are focused on data analysis for the purpose of decision making. Thus,
F-transformations during localization do not deal with the entire family of proximity mea-
sures {δt, t ∈ T} but only with a certain sample

{
δtk , tk ∈ T, k = 1, . . . , K

}
, where k � |T|

to effectively simplify calculations [34].

Author Contributions: Conceptualization and original draft preparation, S.A. and D.K.; concep-
tualization, methodology, review and editing and validation, S.B. and B.D.; material preparation,
formal analysis, data curation and algorithm development, S.B. and M.D. All authors contributed
to the study conception and design. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was conducted in the framework of budgetary funding of the Geophysical
Center of RAS, adopted by the Ministry of Science and Higher Education of the Russian Federation
(grant number 075-01349-23-00).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

220



Mathematics 2024, 12, 284

Appendix A

Appendix A.1

For the proximity measure δ on T and its nodes ti, tj; i, j = 1, . . . , N, by aij = aij(δ),

we denote the fraction δti (tj)
(

∑N
j=1 δti (tj)

)−1
. For each i, the set

{
aij|Nj=1

}
is a probability

distribution on T: ∑N
j=1 aij = 1.

Let us denote by Mi(x) the functional of the mathematical expectation relative to this
distribution on F(T): Mi(x) = ∑N

j=1 aijxj, x ∈ F(T) and use it to express the regression
value fδ(ti):

fδ(ti) = Mi( f )− Mi(t)− ti
Mi(t2)− Mi(t)2 (Mi(t f )− Mi(t)Mi( f )), (A1)

where t f is the series (t1 f1, . . . , tN fN), and t2 is the series
(
t2
1, . . . , t2

N
)
.

We are interested in the convergence of fδp(ti) → f (ti) as p → ∞. To achieve this,
we require the measure δ to satisfy two conditions: symmetry δti (tj) = δtj(ti) and nontrivial
strict monotonicity(∣∣tj − ti

∣∣ < ∣∣∣tj̄ − ti

∣∣∣) ∧ (δti (tj)δti (tj̄) �= 0
)
→ δti (tj̄) < δti (tj).

Let us put aij(δ
p) = aij(p). Then, lim

p→∞
aii(p) = 1, and for i �= j, lim

p→∞
aij(p) = 0. Let us

consider node ti internal in T: i > 1; then, due to the conditions on δ, in the distribution{
aij(p)|Nj=1

}
, for any p ≥ 0, there are three main actors: aii and ai i+1 = ai+1 i, which we

denote by ai(p).
Let us reveal the uncertainty of the relation (Mi(t)− ti)(Mi(t2)− Mi(t)2)−1 in (A1)

by expanding the numerator and denominator modulo ai(p):

1 − aii = 2ai + o(ai),

Mi(t) = aiiti + ai(ti−1 + ti+1) + o(ai) = ti(aii + 2ai) + o(ai),

Mi(t)2 = t2
i (aii + 2ai)

2 + o(ai) = t2
i (a2

ii + 4aiiai + 4a2
i ) + o(ai),

Mi(t2) = aiit2
i + ai(t2

i−1 + t2
i+1) + o(ai) = t2

i + ai(2t2
i + 2h2) + o(ai).

Numerator:

Mi(t)− ti = ti(aii + 2ai)− ti + o(ai) =

= ti(aii − 1) + 2aiti + o(ai) = −2aiti + 2aiti + o(ai) = o(ai).

Denominator:

Mi(t2)− Mi(t)2 = t2
i + ai(2t2

i + 2h2)− t2
i (a2

ii + 4aiiai + 4a2
i ) + o(ai) =

= aii(1 − aii)t2
i − 4aiiait2

i + 2ait2
i − 4a2

i t2
i + 2h2ai + o(ai) =

= 2ai(1 − aii)t2
i − 4aiiait2

i + 2h2ai + o(ai) =

= 4aiiait2
i − 4aiiait2

i + 2h2ai + o(ai) = 2h2ai + o(ai).

Thus, as p → ∞, the fraction (Mi(t)− ti)(Mi(t2)− Mi(t)2)−1 tends to zero, and the
regression values fδp(ti) tends to f (ti).

Appendix A.2

The regression approach to derivatives continues into higher dimensions.
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Let f (x) be a function on the segment [−1, 1] having on it continuous derivatives f i(x),
i = 1, . . . , n + 1 up to and including order n + 1. Under these assumptions, the McLaren
decomposition of nth order takes place for f (x):

f (x) = f (0) +
f ′(0)

1!
x + · · ·+ f (n)(0)

n!
xn + rn(x), (A2)

where rn(x) is the remainder term in Lagrange form

rn(x) =
f (n+1)(θ(x))
(n + 1)!

xn+1, θ(x) ∈ [0, x].

Let us denote by Tn f (x) the Taylor polynomial for f (x) [31,35–38], so that

f (x) = Tn f (x) + rn(x), rn(x) = c(x)x(n+1)

and |c(x)| < M evenly on [−1, 1]
. (A3)

We fix Δ ∈ (0, 1). Let us denote by prn fΔ the projection of the restriction f |[−Δ,Δ] onto
the (n + 1)th subspace Pn[−Δ, Δ] of polynomials of degree ≤ n in the space L2[−Δ, Δ]:
prn fΔ = ∑n

j=0 bj( f , Δ)xj is nth order quadratic regression of f on [−Δ, Δ].

Statement A1. lim
Δ→0

bj( f , Δ) = f (j)(0)
j! , j = 0, . . . , n.

The proof follows from the tendency to zero as Δ → 0 of the regression prn(rn)Δ ↔
a∗0(Δ) + a∗1(Δ)x + · · ·+ a∗n(Δ)xn.

For simplicity of presentation, let us temporarily omit the dependence on Δ in the
coefficients of the polynomials, setting ai = ai(Δ). The regression functional P(a0, . . . , an)
is the distance from rn(x) to the polynomial P(x) = a0 + a1x + · · · + anxn in the space
L2[−Δ, Δ]:

P(a0, . . . , an) =
∫ Δ

−Δ
(a0 + a1x + · · ·+ anxn − rn(x))2dx

and the set a∗0, . . . , a∗n gives its minimum.
The following equations arise

∂P
∂ai

= 0 ↔ ∫ Δ
−Δ xi(a0 + a1x + · · ·+ anxn − rn(x)) = 0 ↔

∑n
j=0

(∫ Δ
−Δ xi+jdx

)
a∗j =

∫ Δ
−Δ xirn(x)dx; i = 0, . . . , n

(A4)

and the integral

∫ Δ

−Δ
xi+jdx =

{ 2
i+j+1 Δi+j+1

0
, if i + j

even

odd
.

Therefore, the matrix M = M(Δ) of system (A4) has the form

M =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2Δ 0 2
3 Δ3 0 2

5 Δ5 . . . . . . . . .

0 2
3 Δ3 0 2

5 Δ5 . . . . . . . . . . . .
2
3 Δ3 0 2

5 Δ5 . . . . . . . . . . . . . . .

0 2
5 Δ5 . . . . . . . . . . . . . . . . . .

2
5 Δ5 . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
. (A5)
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A nontrivial contribution to the determinant of det M is made only by even strategies
σ = (j, σ(j)), going along M from left to right: strategy σ is even ↔ the sum j + σ(j) is
even in j.

If σ is an even strategy, then the product Π(σ) of its corresponding matrix elements
satisfies the equality

Π(σ) = Πn
j=0

2Δj+σ(j)+1

j + σ(j) + 1
= 2n+1K(σ)Δ(n+1)2

,

where K(σ) = Πn
j=0(j + σ(j) + 1)−1.

Because of
n

∑
j=0

j =
n

∑
j=0

σ(j) =
n(n + 1)

2
,

then

n

∑
j=0

(j + σ(j) + 1) =
n

∑
j=0

j +
n

∑
j=0

σ(j) +
n

∑
j=0

1 =
2n(n + 1)

2
+ n + 1 = (n + 1)2.

Thus,
det M = det M(Δ) =

(
∑(−1)sgn σK(σ)

)
2n+1Δ(n+1)2

, (A6)

where σ are even strategies and sgn σ is the signature of the permutation σ.
The alternative sum K in (A6) is necessarily nontrivial. This is a consequence of

Euclidean geometry and linear algebra: the projection rn(x) in the space L2[−Δ, Δ] onto
any of its subspaces always exists and is unique, which, in turn, is equivalent to the
nontriviality of det M(Δ). Thus, the order of smallness of the determinant det M(Δ) as
Δ → 0 is equal to (n + 1)2.

The next step is to analyze the determinants det Mj∗ of the auxiliary matrices Mj∗ of
system (A4), obtained from the main M by replacing the j∗th column with a column of
free terms:

Mj∗ = Mj∗(Δ) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2Δ 0 2
3 Δ3 0 2

5 Δ5 . . .
∫ Δ
−Δ rn(x)dx . . .

0 2
3 Δ3 0 2

5 Δ5 . . . . . .
∫ Δ
−Δ xrn(x)dx . . .

2
3 Δ3 0 2

5 Δ5 . . . . . . . . .
∫ Δ
−Δ x2rn(x)dx . . .

0 2
5 Δ5 . . . . . . . . . . . .

∫ Δ
−Δ x3rn(x)dx . . .

2
5 Δ5 . . . . . . . . . . . . . . .

∫ Δ
−Δ x4rn(x)dx . . .

. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

.

A nontrivial contribution to det Mj∗ is also made only by even strategies: such σ must
necessarily be even for j �= j∗, but always ∑n

j=0(j + σ(j)) = n(n + 1), and therefore, the
sum j∗ + σ(j∗) is also even.

Let σ be any even strategy; then, the product Π(σ, j∗) associated with it in det Mj∗ is
equal to

Π(σ, j∗) = 2n
(

Πj �=j∗
1

j + σ(j) + 1

)
Δ(n+1)2−(j∗+σ(j∗)+1)

∫ Δ

−Δ
xσ(j∗)rn(x)dx.

According to assumption (A3) on f ,∣∣∣∣∫ Δ

−Δ
xσ(j∗)rn(x)dx

∣∣∣∣ ≤ ∫ Δ

−Δ
|x|σ(j∗)|rn(x)|dx ≤ M

∫ Δ

−Δ
|x|σ(j∗)+n+1dx ≤ M̃Δσ(j∗)+n+2;
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therefore, the product Π(σ, j∗) is o
(

Δ(n+1)2
)

, since n + 1 − j∗ > 0:

|Π(σ, j∗)| ≤
≈
MΔ(n+1)2−(j∗+σ(j∗)+1)Δσ(j∗)+n+2 =

≈
MΔ(n+1)2n+1−j∗ .

The determinant det Mj = det Mj(Δ) is an alternative sum of the products Π(σ, j∗) and

therefore is o
(

Δ(n+1)2
)

and also relative to det M(Δ). The equality a∗j = a∗j (Δ) = det Mj(Δ)

(det M)−1 completes the proof.
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Abstract: COVID-19 is a contagious disease that poses a serious risk to public health worldwide. To
reduce its spread, people need to adopt preventive behaviours such as wearing masks, maintaining
physical distance, and isolating themselves if they are infected. However, the effectiveness of these
measures may depend on various factors that differ across countries. This paper investigates how
some factors, namely outsiders’ effect, life expectancy, population density, smoker percentage, and
temperature, influence the transmission and death rate of COVID-19 in ninety-five top-affected
countries. We collect and analyse the data of COVID-19 cases and deaths using statistical tests. We
also use fuzzy logic to model the chances of COVID-19 based on the results of the statistical tests.
Unlike the conventional uniform weighting of the rule base in fuzzy logic, we propose a novel method
to calculate the weights of the rule base according to the significance of the factors. This study aims
to provide a comprehensive and comparative analysis of the factors of COVID-19 transmission and
death rates among different countries.

Keywords: COVID-19; statistical tests; rule-based weighting; fuzzy logic

MSC: 03B52

1. Introduction

Infectious agents such as COVID-19 are a major threat to global health and secu-
rity, especially in the context of increasing population mobility, urbanisation, and climate
change [1]. However, the transmission and mortality of infectious agents are not uniform
across different countries or regions, as they depend on various factors that affect the
susceptibility, exposure, and response of human populations and pathogens [2]. Under-
standing these factors and their interactions can help design effective prevention and
control strategies and estimate the infection risk based on a fuzzy logic model [3].

Some of the factors that may influence the transmission and mortality of infectious
agents are temperature, population density, life expectancy, smoking index, and outsiders’
effect. Temperature can affect the survival and replication of pathogens, as well as the
behaviour and immunity of hosts [2]. Population density can reflect the frequency and
intensity of contact among individuals, which can facilitate or hinder the spread of infec-
tious agents [1]. Life expectancy can indicate the overall health status and quality of life
of a population, which can affect their vulnerability and resilience to infectious agents [4].
The smoking index can measure the prevalence and intensity of tobacco use among a
population, which can impair the respiratory and immune systems and increase the risk of
chronic diseases that may complicate the infection [5]. Outsiders’ effect can measure the
exposure to foreign visitors or products that may introduce or disseminate pathogens [1].
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Previous studies have explored some of these factors individually or in relation to
specific regions or illnesses. For example, Liu et al. [6] talked about how COVID-19
spreads differently depending on the season. They found that the virus spreads more
in colder weather. Lian et al. [7] talked about a surprising increase in COVID-19 cases
in the summer of 2022, saying it happened because of really hot weather. They found
that almost 70% of those cases might not have happened if there were not heat waves.
Several studies [8–11] analysed the correlation between temperature and infection rate
for COVID-19. Kjerulff et al. [12] examined the association of smoking with the risk of
infections in a large cohort of healthy blood donors. Few other studies [13,14] found a
positive association between the smoking index and the infection rate or death rate for
COVID-19. Hamidi et al. [15] found no significant effect of population density on disease
transmission or death rates in 913 cities in the USA. Trias-Llimós & Bilal [4] showed that
the COVID-19 pandemic severely impacted life expectancy in Madrid, the most affected
region in Spain. In another article, Trias-Llimós et al. [16] estimated the impact of the first
wave of the COVID-19 pandemic by estimating both weekly and annual life expectancies
in Spain and its 17 regions. Cevik et al. [17] analysed the role of age and comorbidities in
COVID-19 death rate. Few other studies on COVID-19 can be found in [18–20]. However,
none of these studies considered all the factors we suggest in this paper or applied a fuzzy
logic model with weights derived from statistical tests.

Fuzzy logic models can provide a flexible and intuitive way to model and analyse
the factors of infectious agent transmission by incorporating linguistic variables, fuzzy
sets, fuzzy rules, and fuzzy inference systems [3]. Fuzzy logic models can handle the
vagueness and imprecision of these factors and the non-linearity and uncertainty of their
relationships by using fuzzy membership functions, fuzzy operators, and fuzzy reason-
ing [3]. Fuzzy logic models can also incorporate expert knowledge or empirical data to
assign different weights or values to the input parameters or output variables and adjust
or optimise the model performance [3]. Several studies applied fuzzy logic models to
diagnose or predict infectious agents based on various factors or parameters. For example,
Dhiman & Sharma [21] introduced a fuzzy logic technique to assess the risk of COVID-19
based on six parameters such as breathing difficulty, atmospheric temperature, body tem-
perature, etc. Şimşek & Yangın [22] created a fuzzy logic system to swiftly detect COVID-19
risks, using three subsystems for common and rare symptoms and personal information.
Shatnawi et al. [23] proposed a smart fuzzy inference system to diagnose COVID-19 based
on the symptoms that appear in the patient. A few more related topics are referred to
in [24–31].

In this paper, we aim to fill this gap by conducting a comprehensive analysis of the
factors that influence the transmission and death rates of COVID-19 across 95 top-affected
countries. We collect data from multiple sources and perform statistical tests to validate
our assumptions. We then calculate the weights of the input parameters for the fuzzy
logic model based on the results of the statistical tests. Based on these weights and input
parameters, we design a fuzzy inference system (FIS) that can estimate the chance of
transmitting COVID-19 in a region/state.

Motivation: This study is motivated by the need to understand the factors that affect
the spread and severity of infectious agents, especially COVID-19, which pose a serious
threat to global health and security. By applying a fuzzy logic model with weights based
on statistical tests, we aim to provide a flexible and intuitive way to analyse the factors of
infectious disease transmission and to estimate the infection risk in different settings. This
can help design effective prevention and control strategies and contribute to the existing
knowledge in the field.

Objective: The objective of this study is to develop and apply a fuzzy logic model
that can estimate the transmission and death rates of COVID-19 based on five factors:
temperature, population density, life expectancy, smoking index, and outsiders’ effect.
The model is intended to be generalisable to any country or region, using data from
95 top-affected countries as a sample.
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The expected results of this study are

• A fuzzy logic model that can estimate the transmission and death rates of COVID-19
based on five factors: temperature, population density, life expectancy, smoking index,
and outsiders’ effect.

• A fuzzy inference system (FIS) that can apply the fuzzy logic model to any country or
region, using data from 95 top-affected countries as a sample.

• An analysis of the significance and limitations of the fuzzy logic model and the FIS.

This study will help the health authorities to vanish or control the disease by

• Providing a flexible and intuitive way to model and analyse the factors of infectious
disease transmission and to estimate the infection risk in different settings.

• Identifying the most influential factors and their interactions that affect the spread and
severity of COVID-19.

• Suggesting effective prevention and control strategies based on the estimated trans-
mission and death rates and the implications of the fuzzy logic model.

The rest of the paper is organised as follows. Section 2 describes Data Collection,
Processing, and Analysis. Section 3 explains the calculation of input weights for the
fuzzy logic model. Section 4 presents the design and implementation of the FIS. Section 5
discourses the results and findings. Section 6 analyses the results. Section 7 concludes the
paper and suggests future work.

2. Data Collection, Processing, and Analysis

2.1. Data Collection

We assume that visitor/export–import data, temperature, population density, smoking,
and life expectancy are a few factors that may affect the transmission of the disease and also
the death rate due to COVID-19. We collected the mentioned data of the top 95 countries
as per the numbers of affected cases from https://www.worldometers.info, https://en.
wikipedia.org/wiki/Prevalence_of_tobacco_use, and https://www.timeanddate.com/
weather/?sort=1&low=c, accessed on 2 July 2020. The collected data are shown in Appendix A.

2.2. Data Processing and Analysis

In this section, we aim to examine the factors that affect the transmission and death
rates of COVID-19 across 95 top-affected countries. We used life expectancy, smoking
level, population density, and outsiders’ effect (tourism and global export indicators) as the
independent variables and total cases, total cases per million, death rate, and death rate per
million as the dependent variables. We used t-tests to compare the means of the dependent
variables between two groups of countries based on the median values of the independent
variables. We also used fuzzy logic to model the chance of transmitting COVID-19 based
on the weights of the independent variables derived from the statistical results.

2.2.1. Data Processing

We collected the data from various sources, such as the World Health Organisation, the
World Bank, and the United Nations. The data were collected as of 30 June 2020. We cleaned
the data by removing any missing, duplicate, or erroneous values. We also checked the
data for outliers and normality. We sorted the data according to the independent variables
in ascending order. We then divided the data into two groups based on the median values
of the independent variables. For example, for life expectancy, we divided the data into
a low life expectancy group (less than or equal to 76.65 years) and a high life expectancy
group (greater than 76.65 years). We performed the same for smoking level, population
density, and outsiders’ effect.

2.2.2. Data Analysis

We performed t-tests to test the null hypothesis that there are no significant differences
in the means of the dependent variables between the two groups of countries for each
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independent variable. We used a significance level of 0.05. We reported the mean, variance,
observations, pooled variance, degrees of freedom, t-statistic, p-value (one-tail and two-tail),
and t-critical value (one-tail and two-tail) for each t-test. We also presented the results
in tables for each independent variable. We rejected the null hypotheses if the p-value
(two-tail) was less than 0.05 and accepted them otherwise.

We found that life expectancy and outsiders’ effect had significant effects on the death
rate and the total cases of COVID-19, respectively. We also found that smoking level,
population density, and temperature had no significant effects on any of the dependent
variables. We concluded that life expectancy and outsiders’ effect were the most important
factors for the transmission and mortality of COVID-19, while smoking level, population
density, and temperature were less relevant.

We also used fuzzy logic to create a model that can estimate the chance of transmitting
COVID-19 in a region/state based on the four independent variables. We used the following
steps to create the model:

Step 1: We selected the independent variables that had significant effects on the
dependent variables based on the t-tests. We chose life expectancy and outsiders’ effect as
the input variables for the fuzzy logic model.

Step 2: We calculated the weights of the input variables based on the p-values of the
t-tests. We used the following formula: Weight percentage = (1 − p-value) * 100/2.15788,
where 2.15788 is the sum of the 1 − p-values of all the independent variables. We rounded
the weight percentages to the nearest integer. We obtained the following weights: outsiders’
effect: 46%, life expectancy: 21%, temperature: 10%, and others: 23%.

Step 3: We defined the fuzzy sets and the membership functions for the input and
output variables. We used three fuzzy sets for each variable: low, medium, and high. We
used triangular membership functions for the input variables and trapezoidal membership
functions for the output variable. We used the median values of the input variables to
define the breakpoints of the membership functions. We used the following ranges for the
output variable: low: [10, 12.5], medium: (12.5, 16.5), and high: [16.5, 20].

Step 4: We defined the fuzzy rules for the inference process by a specific fuzzy
rule base.

Step 5: We applied the fuzzy inference system to the input data and obtained the output
values. We used the Mamdani method for the inference process and the centroid method
for the defuzzification process. We presented the output values in graphs and tables.

Case 1 (Life expectancy): Life expectancy is a statistical indicator of how long an
individual is predicted to live on average based on their birth year, current age, and other
demographic variables such as biological sex. It is different in different regions and periods.
The death rate due to COVID-19 is higher in countries where life expectancy is higher. In
this section, the analysis is performed.

H0-Null Hypothesis. There are no significant differences in death rate when comparing low
(less than or equal to 76.65 years) to high values (greater than 76.65 years) of life expectancy of
COVID-19-affected countries.

H1-Alternative Hypothesis. There are significant differences in death rate when comparing low
(less than or equal to 76.65 years) to high values (greater than 76.65 years) of life expectancy in
COVID-19-affected countries.

First, data from the countries were sorted as per life expectancy in increasing order.
Then, we divided the list into two groups: a country list whose life expectancy is low, less
than or equal to 76.65 years, and a list whose life expectancy is high, greater than 76.65 years.
Then, we compared the death rates between the two groups. As per the results of the
t-test for equal variances, the mean was 0.023584419 for low values and 0.050352366 for
high values of life expectancy, and variances are shown in Table 1. The p-value (two tails)
was 0.000284975, which was less than 0.05. Thus, the null hypothesis can not be accepted.
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Hence, there are significant differences in death rate when comparing low to high values of
life expectancy of COVID-19-affected countries. This concludes that life expectancy has a
high impact on death chances. Older persons having COVID-19 have death chances almost
double those compared to younger people.

Table 1. Significant differences in death rate.

Death Rate of Low Life Expectancy
Countries

Death Rate of High Life Expectancy
Countries

Mean 0.023584419 0.050352366

Variance 0.000448951 0.001959616

Observations 48 47

Pooled Variance 0.001196161

Hypothesised Mean Difference 0

Degrees of Freedom 93

t Stat −3.771620183

p(T ≤ t) one-tail 0.000142487

t Critical one-tail 1.661403674

p(T ≤ t) two-tail 0.000284975

t Critical two-tail 1.985801814

[While comparing low (less than or equal to 76.65 years) to high values (greater than 76.65 years) of
life expectancy].

Case 2 (Smoking):

H0-Null Hypothesis. There are no significant differences in death rate while comparing low (less
than or equal to 0.226 indexes) to high values (greater than 0.226 indexes) of smoking levels of
COVID-19-affected countries.

H1-Alternative Hypothesis. There are significant differences in death rate while comparing low
(less than or equal to 0.226 indexes) to high values (greater than 0.226 indexes) of smoking levels of
COVID-19-affected countries.

Data were sorted as per smoking levels in increasing order. Then, we divided the
list into two groups: a country list whose smoking level was low (less than or equal
to 0.226 indexes) and a list whose smoking level was high (greater than 0.226 indexes).
Then, we compared the two groups. As per the results of the t-test for equal variances,
the mean was 0.031749961 for low values and 0.042013 for high values of smoking level,
and variances are shown in Table 2. The p-value (two tails) was 0.177094358, which was
higher than 0.05. Thus, the null hypothesis is accepted. Hence, there are no significant
differences in death rates when comparing low (less than or equal to 0.226 indexes) to high
values (greater than 0.226 indexes) of smoking levels in COVID-19-affected countries. This
concludes that the smoking level of a person has a minor impact on death. Highly smoking
persons having COVID-19 have death chances larger (but not significantly) compared to
non-smoking people.
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Table 2. Differences in death rate.

Death Rates of Low-Smoking-Index
Countries

Death Rate of High-Smoking-Index
Countries

Mean 0.031749961 0.042013

Variance 0.000926522 0.001787

Observations 48 47

Pooled Variance 0.001352228

Hypothesised Mean Difference 0

Degrees of Freedom 93

t Stat −1.360074066

p(T ≤ t) one-tail 0.088547179

t Critical one-tail 1.661403674

p(T ≤ t) two-tail 0.177094358

t Critical two-tail 1.985801814

[While comparing low (less than or equal to 0.226 indexes) to high values (greater than 0.226 indexes) of smoking
levels in countries].

Case 3 (Population density):

H0-Null Hypothesis. There are no significant differences in affected cases (affected cases/million)
while comparing low (less than or equal to 92/sqkm) to high values (higher than 92/sqkm) of
population density of COVID-19-affected countries.

H1-Alternative Hypothesis. There are significant differences in affected cases (affected cases/million)
while comparing low (less than or equal to 92/sqkm) to high values (higher than 92/sqkm) of
population density of COVID-19-affected countries.

Data were sorted as per population density in increasing order. Then, we divided
the list into two groups: a country list whose population density was low (less than or
equal to 92/sqkm) and a list whose population density was high (higher than 92/sqkm).
Then, we separately compared the two groups for affected cases and affected cases/million.
In Table 3, the results of affected cases are shown, and in Table 4, affected cases/million
are shown. p-value (two tails) was 0.186759117 for Table 3 and 0.933317888 for Table 4;
these were large values (greater than 0.05). Thus, the null hypothesis is accepted for both
cases. Hence, there are no significant differences in affected cases while comparing low to
high values of population density of COVID-19-affected countries. This concludes that the
population density of a country has no impact on COVID-19 transmissions.

Table 3. Differences in affected cases of COVID-19 due to population density.

Affected Cases in Low Density Affected Cases in High Density

Mean 157,615.1458 67,599.87234

Variance 2.03787 × 1011 11,693,419,305

Observations 48 47

Pooled Variance 1.08773 × 1011

Hypothesised Mean Difference 0

Degrees of Freedom 93

t Stat 1.330035917

p(T ≤ t) one-tail 0.093379558

t Critical one-tail 1.661403674

p(T ≤ t) two-tail 0.186759117

t Critical two-tail 1.985801814
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Table 4. Population density (low and high).

Total Cases/1 M in Low Density Total Cases/1 M in High Density

Mean 3595.5 3507.297872

Variance 16,493,772.38 36,211,163.34

Observations 48 47

Pooled Variance 26,246,460.39

Hypothesised Mean Difference 0

Degrees of Freedom 93

t Stat 0.083897967

p(T ≤ t) one-tail 0.466658944

t Critical one-tail 1.661403674

p(T ≤ t) two-tail 0.933317888

t Critical two-tail 1.985801814

Case 4 (Outsiders’ effect):

H0-Null Hypothesis. There are no significant differences in affected cases (or affected cases/million)
while comparing low (less than or equal to 0.2 global sharing) to high values (greater than
0.2 global sharing) of percentages of outsiders (tourism and global export indicators) of COVID-19-
affected countries.

H1-Alternative Hypothesis. There are significant differences in affected cases (or affected
cases/million) while comparing low (less than or equal to 0.2 global sharing) to high values (greater
than 0.2 global sharing) of percentages of outsiders (tourism and global export indicators) of COVID-
19-affected countries.

Data were sorted as per sharing percentages of outsiders (tourism/global export indi-
cators) in increasing order. Then, we divided the list into two groups: a country list whose
sharing percentages of outsiders (tourism/global export indicators) was low (less than or
equal to 0.2 sharing) and a list whose sharing percentages of outsiders (tourism/global
export indicators) was high (greater than 0.2 sharing). Then, we compared the two groups
for affected cases and affected cases/million separately. In Table 5, the results of affected
cases are shown, and in Table 6, affected cases/million are shown. p-value (two tails) was
0.012169463 for Table 5, which was less than 0.05, and was 0.249465449 (greater than 0.05)
for Table 6. Thus, the null hypothesis is not accepted for Table 5 and accepted for Table 6.
Hence, there are significant differences in affected cases while comparing low to high
values of sharing percentages of outsiders (tourism/global export indicators) of COVID-19-
affected countries. This concludes that sharing percentages of outsiders (tourism/global
export indicators) of a country has a significant impact on the transmission of COVID-19.

Table 5. Tourists/export–import indicators.

Affected Cases in Low Outsiders’
Effect

Affected Cases in High Outsiders’
Effect

Mean 31,275.59 200,222.11

Variance 2,965,654,152 2.10861 × 1011

Observations 49 46

Pooled Variance 1.0356 × 1011

Hypothesised Mean Difference 0
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Table 5. Cont.

Affected Cases in Low Outsiders’
Effect

Affected Cases in High Outsiders’
Effect

Degrees of Freedom 93

t Stat −2.557220227

p(T ≤ t) one-tail 0.006084732

t Critical one-tail 1.661403674

p(T ≤ t) two-tail 0.012169463

t Critical two-tail 1.985801814

Table 6. Tourists/export–import indicators have no significant differences in affected cases/million.

Total Cases/1 M for Low Indicators Value Total Cases/1 M for High Indicators Value

Mean 2965.86 4176.09

Variance 17,914,825.92 34,365,400.48

Observations 49 46

Pooled Variance 25,874,781.35

Hypothesised Mean Difference 0

Degrees of Freedom 93

t Stat −1.158896514

p(T ≤ t) one-tail 0.124732725

t Critical one-tail 1.661403674

p(T ≤ t) two-tail 0.249465449

t Critical two-tail 1.985801814

Other cases:
A few other cases were also analysed in this section. In Table 7, it is observed that life

expectancy has no significant effect on transmission of COVID-19 as the p-value is higher
than the 0.05 significance level. In Table 8, we find that temperature is also a non-significant
factor for the transfer of COVID-19. Table 9 shows that the smoking level of countries has
some impact on the transmission of COVID-19. However, these factors are not significant
to spread such a deadly disease.

Table 7. Differences in affected cases of COVID-19 due to life expectancy.

Affected Cases of Low Life Expectancy Affected Cases of High Life Expectancy

Mean 92,724.85 133,870.81

Variance 57,743,028,575 1.64221 × 1011

Observations 48 47

Pooled Variance 1.1041 × 1011

Hypothesised Mean Difference 0

Degrees of Freedom 93

t Stat −0.603435983

p(T ≤ t) one-tail 0.273843824

t Critical one-tail 1.661403674

p(T ≤ t) two-tail 0.547687647

t Critical two-tail 1.985801814
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Table 8. Differences in affected cases of COVID-19 due to temperature.

Effected Cases for Low Temperature Effected Cases for High Temperature

Mean 103,716.69 122,645.11

Variance 54,089,839,644 1.68643 × 1011

Observations 48 47

Pooled Variance 1.10751 × 1011

Hypothesised Mean Difference 0

Degrees of Freedom 93

t Stat −0.277171863

p(T ≤ t) one-tail 0.391131648

t Critical one-tail 1.661403674

p(T ≤ t) two-tail 0.782263295

t Critical two-tail 1.985801814

Table 9. Differences in affected cases of COVID-19 due to smoking.

Affected Cases in Low-Smoking
Countries

Affected Cases in High-Smoking
Countries

Mean 157,971.35 67,236.09

Variance 2.02246 × 1011 13,200,648,298

Observations 48 47

Pooled Variance 1.0874 × 1011

Hypothesised Mean Difference 0

Degrees of Freedom 93

t Stat 1.340879173

p(T ≤ t) one-tail 0.091612808

t Critical one-tail 1.661403674

p(T ≤ t) two-tail 0.183225616

t Critical two-tail 1.985801814

3. Creating Input Weights for Fuzzy Logic Based on Statistical Results and Fuzzy
Inference System (FIS)

To define fuzzy logic [32], input variables are to be selected first. In this study, the vari-
ables, whose impact of spreading COVID-19 were recorded as per our statistical analysis,
are to be considered. To find the weight percentages, we followed the steps below.

Step 1: Check the mean ratio of the two considered groups (low and high) for each
factor. If the mean of the first group (lower values) is greater than or equal to the mean
of the second group (higher values), that variable will not be considered. Otherwise, go
to step 2. For example, the mean of the first group is higher than the mean of the second
group in Table 3. Hence, the variable population density is not considered here.

Step 2: The p-values (two tails) of t-test for each selected variable are taken, and
the ‘1 − p values’ are recorded. These values are put in Table 10. For example, the
p-values (two tails) of outsiders’ effect (tourism/global export indicators) are considered
from Table 5. It is tabulated as outsiders’ effect in Table 10. Similarly, the values of other
variables are tabulated in Table 10.

Step 3: It is almost well known that a few factors of the spreading of COVID-19 are
still unknown. In our proposed model, we take a variable named ‘others’, and its taken
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p-value as 0.5 for the default case. Then, all the values of the second column of Table 10 are
added, and the sum is 2.15788.

Step 4: The final weight percentage is obtained as follows. Weight percentage =
(1 − p value) ∗ 100/2.15788. Based on this formula, the nearest integer values are taken.
To simplify the process, we take weight ratio as the outsiders’ effect/life expectancy in-
dex/temperature/others = 5:2:1:2.

Table 10. Weight percentages.

Influencing Factors 1 − p-Value Weight Percentages

Outsiders’ effect 0.987831 46

Life expectancy index 0.452312 21

Temperature 0.217737 10

Others 0.5 23

4. Fuzzy Inference System (FIS) to Find the Chance of Transmission of Some
Infectious Agents in a Region/State

Fuzzy inference system [33] grips the imprecise and vagueness data. Fuzzy logic has
been used in many areas like automatic control, banks, hospitals, and academic institutions.

The factors associated with affectedness of COVID-19 are taken as outsiders’ effect/life
expectancy index/temperature/others = 5:2:1:2. It is implemented in Table 11. To combine
these factors, the fuzzy logic inference system is perfect to represent as the factors are
imprecise. Hence, to find the chance of affectedness of COVID-19, an FIS is modelled here
(see Appendix A for details).

Table 11. The rule base weights.

Outsiders’ Index Life Expectancy Temperature Others Chances of Transmission

low 5 2 1 2 [10,12.5]

medium 7.5 3 1.5 3 (12.5, 16.5)

high 10 4 2 4 [16.5,20]

5. Results Analysis

This study concludes that the death rate significantly increases in countries with a life
expectancy higher than 77 years of age.

This study also highlights that population density has no major impact either on
transmission or death rate increase in countries globally.

Another important result of this study is to capture the outsiders’ impact on the
transmission of COVID-19. The data were captured based on the export-sharing in-
dex globally and the amount of tourism. We have a significant result that the country
whose global export-sharing index is more than or equal to 0.3 has significant chances of
disease transmission.

The proposed FIS concludes with a satisfactory result. Two instances are given here. In
Figure 1, the input values are 0.1, 0.1, 0.8, and 0.5. The output value is 0.153, which indicates
the low chances of transmission. Again, in Figure 2, it is found that if the input values are
0.9, 0.8, 0.8, and 0.5, the output value is 0.847. Thus, based on four input parameters, the
chances of transmission can be found.

Figure 1 shows that low outsiders’ effect, low life expectancy, and high temperature are
kept, and other parameters are kept neutral. It indicates low chances of transmission. Also,
in Figure 2, outsiders’ effect is set high along with life expectancy. But, the result is different.
It indicates a high chance of transmission. Thus, life expectancy and outsiders’ effect play
a significant role in transmission of infectious disease. In Figures 3 and 4, 3D images are
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shown corresponding to Figures 1 and 2, respectively. In the 3D images, the X and Y axes
are represented as ‘lifeExpectancy’ and ‘outsiders’ effect. The other combinations can be
similarly found.

Figure 1. Low outsiders’ effect indicating low chances of transmission.

Figure 2. High outsiders’ effect indicating high chances of transmission.

Figure 3. Three-dimensional image of outsiders’ index life expectancy to chances of transmission of
COVID-19.
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Figure 4. Three-dimensional image of outsiders’ index ‘Life Expectancy’ to chances of transmission
of COVID-19.

6. Discussion

In this paper, we investigated the factors that influence the transmission and death
rates of COVID-19 across 95 top-affected countries. We used a fuzzy logic model to estimate
the chance of transmitting COVID-19 in a region/state based on four input parameters:
outsiders’ effect, life expectancy, temperature, and others. We also performed statistical
tests to validate our assumptions and to calculate the weights of the input parameters for
the fuzzy logic model.

Our results show that the death rate significantly increases for countries with a life
expectancy higher than 77 years of age. This is consistent with previous studies that have
found that older age groups and males are more vulnerable to COVID-19 and have higher
mortality rates [4,17,34,35]. This may be due to the higher prevalence of comorbidities,
lower immune response, and lower access to healthcare resources among older popula-
tions [17,36]. Therefore, our study suggests that life expectancy is an important factor to
consider when designing and implementing public health measures and policies to prevent
and control COVID-19.

Our results also highlight that population density has no major impact either on
transmission or death rate increase in countries globally. This is contrary to the common
assumption that higher population density facilitates the spread of infectious agents by
increasing the contact and exposure of individuals [1]. However, this finding is in line
with some recent studies that have found no significant effect of population density on
disease transmission or death rates for COVID-19 [15,37,38]. This may be explained by the
confounding effects of other factors, such as mobility patterns, social distancing measures,
testing capacities, and healthcare resources [37]. Moreover, population density may not
capture the heterogeneity and complexity of human interactions within and between
different groups and settings [1]. Therefore, our study suggests that population density
is not a reliable indicator of COVID-19 transmission or mortality and that more nuanced
models are needed to account for the diversity and uncertainty of this factor.

Another important result of this study is to capture the outsiders’ impact on the
transmission of COVID-19. The data were captured based on the export-sharing index
globally and the amount of tourism. We have a significant result that the country whose
global export-sharing index is more than or equal to 0.3 has significant chances of disease
transmission. This is consistent with previous studies that have found a positive correlation
between international travel or trade and infection rate for COVID-19 [39,40]. This may be
due to the increased contact and mixing of different populations or sources of infection [1].
However, this finding is not conclusive, as some studies have found no significant effect or
a negative effect of outsiders’ effect on disease transmission [41–43]. Moreover, outsiders’
effects may not capture the variation and uncertainty of different modes or routes of
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transmission, such as air, land, sea, or animal [1,41,42]. Therefore, our study suggests that
outsiders’ effect is a relevant but not sufficient predictor of COVID-19 transmission and that
more detailed models are needed to account for the diversity and uncertainty of this factor.

Our FIS model is based on the fuzzy logic theory, which can handle the vagueness
and imprecision of the factors and the non-linearity and uncertainty of their relationships
by using fuzzy membership functions, fuzzy operators, and fuzzy reasoning [3]. Fuzzy
logic has been used in many areas like automatic control, banks, hospitals, and academic
institutions [3]. Our study is one of the first to apply a fuzzy logic model with weights
derived from statistical tests to estimate the chance of transmitting COVID-19 in a re-
gion/state based on four input parameters: outsiders’ effect, life expectancy, temperature,
and others. Our study contributes to the existing literature on the factors of infectious
agent transmission and the applications of fuzzy logic models to diagnose or predict
infectious agents.

7. Conclusions

This study explored the factors that influence the transmission of COVID-19 across
95 top-affected countries. We found that the global export index, which reflects the expo-
sure to foreign visitors or products, was positively associated with the infection rate. On
the other hand, the population density, which reflects the contact frequency and intensity
among individuals, was not a significant factor. Based on these findings, we developed a
fuzzy inference system that can estimate the transmission rate of COVID-19 based on five
input parameters: temperature, population density, life expectancy, smoking index, and
outsiders’ effect. Our fuzzy inference system can provide a flexible and intuitive way to
model and analyse the factors of infectious agent transmission and to estimate the infection
risk in different settings.

Future Work

This study has some limitations that can be addressed in future research. First, we
used the global export index and tourism index as proxies for the outsiders’ effect, but
there may be other indicators that can better capture the exposure to foreign sources of
infection. Second, we included an unknown variable ‘others’ in our fuzzy inference system,
which represents the uncertainty and complexity of the infection process. The nature and
impact of this variable need to be further investigated and clarified. Future research can
also extend our fuzzy inference system to other infectious agents or regions and compare
its performance with other models or methods.
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M Mean
V Variance
O Observation
PV Pooled Variance
HMD Hypothesised Mean Difference
df Degrees of Freedom
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tS t Stat
P1 p(T ≤ t) one-tail
tC1 t Critical one-tail
P2 p(T ≤ t) two-tail
tC2 t Critical two-tail

Appendix A

Table A1. Collection of data for 95 countries. (Data were collected on 2 July 2020).

Sl. No. Country Affected
Cases

Total
Cases/1 M

Death
Density

(per sqkm)
Life

Expectancy
Temperature

(◦C) Smoking
Global
Export

Sharing

1 USA 2,781,085 9545 130,813 35 79.11 27 0.137 8.6

2 Brazil 1,456,969 8073 60,813 25 76.57 24 0.153 1.9

12 Russia 661,165 4847 9683 9 72.99 22 0.409 2.3

8 India 606,907 559 17,860 420 70.42 39 0.1115 1.7

3 UK 313,483 4227 43,906 279 78.46 10 0.147 2.5

7 Spain 296,739 6408 28,363 92 83.99 32 0.292 1.7

10 Peru 288,477 9488 9860 26 77.44 16 0.054 0.2

16 Chile 282,043 15,852 5753 25 80.74 3 0.38 0.4

4 Italy 240,760 4005 34,788 201 84.01 33 0.24 2.8

9 Iran 232,863 2981 11,106 51 77.33 33 0.111 0.5

6 Mexico 231,770 2132 28,510 66 75.41 16 0.137 2.3

21 Pakistan 217,809 1090 4473 250 67.79 31 0.2245 0.1

18 Turkey 201,098 2477 5150 108 78.45 31 0.2595 0.9

29 Saudi Arabia 197,608 6322 1752 16 68.87 26 0.154 1.5

13 Germany 196,372 2373 9061 235 81.88 24 0.3035 8.1

5 France 165,719 2596 29,861 118 83.13 21 0.277 3

25 South Africa 159,333 3787 2749 49 83.5 21 0.1895 0.5

28 Bangladesh 153,277 1065 1926 1116 73.57 33 0.2025 0.2

14 Canada 104,271 2820 8615 4 82.96 26 0.1495 2.3

22 Colombia 102,009 2528 3470 45 77.87 14 0.111 0.2

73 Qatar 97,897 36,168 118 249 80.73 36 0.206 0.4

19 China 83,537 58 4634 148 77.47 27 0.247 12.9

23 Egypt 69,814 765 3034 102 72.54 36 0.251 0

17 Sweden 69,692 7312 5370 22 83.33 17 0.206 0.9

34 Argentina 67,197 1925 1351 16 77.17 8 0.2395 0.3

52 Belarus 62,698 6797 405 46 75.2 26 0.284 0.2

11 Belgium 61,598 5367 9761 380 82.17 20 0.2325 2.4

24 Indonesia 59,394 259 2987 144 72.32 27 0.399 0.9

20 Ecuador 58,257 3584 4576 64 77.71 9 0.0865 0.1

26 Iraq 51,524 1676 2050 92 71.08 44 0.31 0.5

15 Netherlands 50,335 2961 6113 409 82.78 19 0.2505 3

57 UAE 49,069 5416 316 118 72.5 28 0.24 1.6

53 Kuwait 47,859 12,370 359 240 75.85 43 0.225 0.4

37 Ukraine 45,887 1171 1185 72 81.77 31 0.317 0.2

92 Singapore 44,310 7763 26 8240 58.34 29 0.165 2.1

68 Kazakhstan 42,574 2823 188 7 73.9 21 0.266 0.3

69 Oman 42,555 10,126 188 16 78.58 33 0.11 0.2

32 Portugal 42,454 4400 1579 111 82.65 24 0.226 0.4
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Table A1. Cont.

Sl. No. Country Affected
Cases

Total
Cases/1 M

Death
Density

(per sqkm)
Life

Expectancy
Temperature

(◦C) Smoking
Global
Export

Sharing

35 Philippines 38,805 472 1274 320 71.66 30 0.2575 0.3

33 Poland 35,146 976 1492 121 79.27 26 0.2805 1.4

44 Panama 34,463 9558 645 57 73.74 26 0.066 0

36 Bolivia 34,227 3681 1201 11 72.35 22 0.238 0

42 Dominican
Republic 33,387 3649 754 223 74.65 26 0.141 0

41 Afghanistan 32,022 871 807 60 65.98 20 0.352 0

27 Switzerland 31,967 3765 1965 210 84.25 23 0.233 1.6

31 Romania 27,746 1601 1687 81 76.5 33 0.298 0.4

80 Bahrain 27,414 18,174 93 2224 77.73 36 0.282 0

51 Armenia 26,658 10,240 459 100 75.55 26 0.269 0

46 Nigeria 26,484 147 603 223 55.75 21 0.0925 0.3

56 Israel 26,452 3691 324 417 83.49 30 0.3025 0.3

30 Ireland 25,477 5172 1738 70 82.81 17 0.2215 0.9

50 Honduras 20,262 2622 542 88 75.87 24 0.177 0

40 Guatemala 19,011 1418 817 165 75.05 18 0.239 0

38 Japan 18,723 160 974 335 85.03 25 0.2215 3.8

74 Ghana 18,134 734 117 130 64.94 28 0.0675 0.1

64 Azerbaijan 18,112 2161 220 117 73.33 26 0.2345 0

43 Austria 17,941 2055 705 107 82.05 28 0.3515 0.9

49 Moldova 16,898 4579 549 119 72.3 33 0.2555 0

59 Serbia 15,195 1955 287 99 84.07 32 0.4165 0.1

90 Nepal 14,519 567 31 198 71.74 25 0.241 0

39 Algeria 14,272 396 920 18 77.5 28 0.156 0

60 S. Korea 12,904 259 282 512 75.69 12 0.45 3.1

63 Morocco 12,854 405 228 83 77.43 24 0.234 0.2

45 Denmark 12,815 2230 606 134 81.4 20 0.17 0.6

58 Cameroon 12,592 562 313 56 60.32 28 0.2235 0

54 Czechia 12,046 1197 349 136 79.85 21 0.383 0

82 Ivory Coast 9702 436 68 82 57.02 26 0.237 0.1

47 Sudan 9573 230 602 23 66.09 41 0.203 0

91 Uzbekistan 8996 336 27 75 72.04 30 0.131 0.1

61 Norway 8902 1651 251 17 82.94 13 0.2225 0.6

72 Malaysia 8643 268 121 98 76.65 30 0.222 1.3

78 Australia 8001 355 104 3 83.94 5 0.149 1.3

55 Finland 7241 1313 328 16 82.48 19 0.2085 0.4

71 Senegal 7054 465 121 85 76.47 29 0.1205 0

66 El Salvador 7000 1363 191 308 74.06 22 0.17 0

70 Kenya 6941 159 149 93 67.47 22 0.1335 0

83 Kyrgyzstan 6261 1356 66 33 71.95 28 0.27 0

86 Venezuela 6062 282 54 31 72.34 23 0.167 0.2

77 Haiti 6040 569 107 411 64.99 28 0.123 0

87 Tajikistan 6005 667 52 67 71.76 33 0.17 0

79 Ethiopia 5846 59 103 104 67.81 20 0.047 0

88 Gabon 5513 2637 42 8 67.03 28 0.147 0

89 Guinea 5404 434 33 53 62.64 26 0.069 0

62 Bulgaria 5154 913 232 63 75.49 31 0.353 0.2

67 Bosnia and
Herzegovina 4788 1855 189 64 77.93 18 0.386 0
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Table A1. Cont.

Sl. No. Country Affected
Cases

Total
Cases/1 M

Death
Density

(per sqkm)
Life

Expectancy
Temperature

(◦C) Smoking
Global
Export

Sharing

85 Djibouti 4704 4947 55 43 67.87 37 0.245 0

76 Luxembourg 4345 7426 110 242 82.79 20 0.236 0.1

94 French
Guiana 4268 18,272 16 4 80.53 23 0.356 0

48 Hungary 4166 437 587 104 77.31 29 0.284 0.6

93 Costa Rica 3753 1145 17 100 80.94 25 0.134 0.1

65 Greece 3432 348 192 79 82.8 34 0.4265 0.2

84 Thailand 3179 46 58 136 77.74 28 0.2185 1.3

95 Palestine 2978 1023 8 820 79.1 20 0.22 0

81 Somalia 2924 190 90 25 64.88 29 0.24 0

75 Croatia 2912 832 110 73 79.02 29 0.3645 0.1

Pseudo-Codes of proposed FIS

Output='Chances of transmission.'
Matlab type='Mamdani'
Number of inputs=4
Number of outputs=1
And Method=' min.'
Or Method='max'
Imp Method=' min.'
Agg Method='max'
Defuzzyfy Method='centroid.'
[First input]
Name='Outsiders_Index'
Range= [0 1]
Number of Membership Functions (MF) =3
First MF='low':'trimf',[-0.4 0 0.4]
Second MF ='med':'trimf',[0.1 0.5 0.9]
Third MF ='high':'trimf',[0.6 1 1.4]
[Second input]
Name='Life_Expectancy'
Range=[0 1]
Number of Membership Functions (MF) =3
First MF='low':'trimf',[-0.4 0 0.4]
Second MF ='med':'trimf',[0.1 0.5 0.9]
Third MF ='high':'trimf',[0.6 1 1.4]
[Third input]
Name='Temperature'
Range=[0 1]
Number of Membership Functions (MF) =3
First MF='low':'trimf',[-0.4 0 0.4]
Second MF ='med':'trimf',[0.1 0.5 0.9]
Third MF ='high':'trimf',[0.6 1 1.4]
[Fourth input]
Name='Others'
Range=[0 1]
Number of Membership Functions (MF) =3
First MF='low':'trimf',[-0.4 0 0.4]
Second MF ='med':'trimf',[0.1 0.5 0.9]
Third MF ='high':'trimf',[0.6 1 1.4]
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[Output function]
Name='Chances_of_Transmission_of_COVID19'
Range=[0 1]
Number of Membership Functions (MF) =3
First MF='low':'trimf',[-0.4 0 0.4]
Second MF ='med':'trimf',[0.1 0.5 0.9]
Third MF ='high':'trimf',[0.6 1 1.4]
[Rules]
The rule base is modelled with the following weights
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Abstract: This study investigates the factors influencing CO2 emissions in Romania from 1990 to 2023
using the Autoregressive Distributed Lag (ARDL) model. Before the ARDL model, we identified a set
of six policies that were ranked using Fuzzy Electre, Topsis, DEMATEL, and Vikor. The multi-criteria
decision-making (MCDM) methods have highlighted the importance of a circular policy on CO2

emission reduction, which should be a central focus for policymakers. The results of the ARDL
model indicate that, in the long term, renewable energy production reduces CO2 emissions, showing
a negative relationship. Conversely, an increase in patent applications and urbanization contributes
to higher CO2 emissions, reflecting a positive impact. In total, five key factors were analyzed: CO2

emissions per capita, patent applications, gross domestic product, share of energy production from
renewables, and urbanization. Notably, GDP does not significantly explain CO2 emissions in the
long run, suggesting that economic growth alone is not a direct driver of CO2 emission levels in
Romania. This decoupling might result from improvements in energy efficiency, shifts towards less
carbon-intensive industries, and the increased adoption of renewable energy sources. Romania has
implemented effective environmental regulations and policies that mitigate the impact of economic
growth on CO2 emissions.

Keywords: circular economy; Fuzzy Electre; Fuzzy Topsis; Fuzzy Vikor; fuzzy DEMATEL; ARDL

MSC: 03B52; 03E72; 28E10; 47S40

1. Introduction

Considered as an innovative economic model, the Circular Economy (CE) promotes
the main policy of using resources in an efficient way coupled with a waste minimization
objective. The CE model, as opposed to a traditional, linear economic model, as it is
currently in Romania, offers sustainable solutions taking into account the current global
challenges of climate change and environmental protection.

In the Romanian context, the implementation of CE strategies becomes essential to
support sustainable development and improve the economic and environmental perfor-
mance. The present study uses a fuzzy multi-criteria approach and an ARDL econometric
model to analyze and prioritize CE strategies relevant for Romania. By integrating these
methods, the research provides a detailed understanding of the critical factors influencing
the transition to a CE, helping to inform strategic and operational decisions for the coun-
try’s sustainable development. This comprehensive approach enables the assessment of
the dynamic interdependencies between CO2 emissions and economic and social factors,
providing a holistic perspective on the impact of circular policies.

According to the National Strategy for the CE (NSCE) [1], Romania needs a long-term
framework and strategic direction to overcome the challenges in the transition from a linear
to a CE. The overall objective of the NSCE is to provide this framework, and decoupling
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economic development from the use of natural resources and environmental degradation
is considered as a metric of success for this transition.

CE means responsible consumption and production, and the National Strategy pro-
poses [1], among other things, to increase resource productivity, reduce waste generation,
and increase recycling.

According to the European Parliament [2], CE is a production and consumption model
that focuses on maximizing the use of resources through sharing, renting, reuse, repair,
refurbishment, and recycling. This model extends the life of products, thereby reducing
waste and the consumption of new resources. This approach contributes to sustainable
development by providing solutions to protect the environment and make efficient use of
the available resources.

Currently, the most impactful factor in addressing global climate change is technologi-
cal advancement [3]. By Chen and Lee [4], the enhancement of environmental legislation
has led to a consistent increase in environmental technologies having the goal to reduce
CO2 emissions. These advancements foster the rapid expansion of new technological appli-
cations, boosting energy efficiency and reducing energy consumption [5]. Technological
innovation is important in economic restructuring and optimization, shifting traditional
economic development from a production-driven approach to an innovation-driven model,
lowering CO2 emissions associated with industrialization [6].

The main goal of our study is to assess how to set clear priorities in the implementation
of CE strategies using multi-criteria fuzzy decision-making methods. Prioritizing these
strategies is important given the limited resources and the urgent need for effective solu-
tions to reduce CO2 emissions. Additionally, based on the established priorities, we assess
how CE contributes to CO2 emissions reduction and long-term economic sustainability.

Our research makes an innovative contribution by integrating fuzzy MCDM methods
(Fuzzy Electre, Topsis, DEMATEL, and Vikor) with the ARDL model for the evaluation
and prioritization of the factors that influence CO2 emissions within the circular economy
strategies in Romania. Although the methods used are well known in the literature, the
originality of this study lies in their application in a specific context, related to the circular
economy and emission reduction strategies in Romania, a field little explored until now. The
integration of these methods enables a complex analysis of influencing factors, providing
a unique insight into the interdependencies between these factors and their impact on
CO2 emissions.

Our study can contribute to the development of a framework for prioritizing specific
CE policies that contribute to the transition towards a CE. By integrating multi-criteria fuzzy
methodologies and a quantitative model, our approach allows an in-depth and detailed
analysis of the impact of different CE policies on CO2 emissions, economic productivity,
and sustainability. The benefits include identifying the most effective policies to reduce
emissions and stimulate economic growth, as well as providing a framework for informed
decision making by policymakers. This model offers a valuable new perspective on how
to effectively implement CE strategies. Also, prioritization is important because it allows
policymakers to focus on the most significant contributors to CO2 emissions, enabling more
targeted and efficient mitigation strategies. Without understanding which factors have the
greatest impact, whether positive or negative, it is challenging to allocate resources and
develop policies that maximize environmental and economic benefits.

The structure of this research is as follows: In Section 2 we explore the relevant
literature on the relationships between technological innovations and CO2 emissions,
between GDP and CO2 emissions, between renewable energy and CO2 emissions, as
well as some current research applying fuzzy MCDM in specific CE studies. Section 3 is
dedicated to describing the methodological flow as well as the data collection phase. The
Fuzzy Electre, Topsis, Vikor, and DEMATEL methods will be described, together with the
ARDL model. Section 4 presents the empirical results obtained from the application of
fuzzy MCDM methods, as well as the relationships established by the ARDL model both
in the long and short term between CO2 emissions and patent application, GDP, share of
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energy production from renewables, and urbanization. Section 5 is dedicated to presenting
the main conclusions, policy recommendations, and to describing the limitations of our
study, as well as future research directions.

2. Literature Review

2.1. The Relationship between Technological Innovation and CO2 Emissions

The study by Liu et al. [7] tests China’s fast-tracking green patent applications (FGPA)
system by studying the effect of green innovation incentive-based policies (GIIPs) on
CO2 emissions in Chinese cities. The findings indicate that cities in the treatment group
experienced a significant reduction in CO2 emissions by approximately 1.6% following
the implementation of the FGPA. Wang et al. [8] examine the long-term and short-term
effects of green invention patents and green utility model patents on CO2 emissions using
an ARDL model for China for the period 1993–2020. Green invention patents help reduce
the carbon emission intensity in the short term but become a hindrance in the long term. In
contrast, green utility model patents consistently suppress the carbon emission intensity in
both the short and long terms.

Extreme weather events have increased in frequency and intensity, causing significant
damage in Europe, particularly in 2023, which recorded the highest temperatures in history.
Dunyo et al. [9] examine, in their study, economic and policy uncertainty on CO2 emissions
using the environmental Kuznets curve. The results of the study point to a direct negative
impact of uncertainty on averages. Technologies also reduce CO2 emissions. Another study
by Zhao et al. [10] evaluates the level of technological innovation and carbon efficiency in
China using panel data from 30 provinces. They also apply the Panel Vector Error Correction
Model to explore differences across regions in the impact of technological innovation on
CO2 emissions. The results highlighted that although the trend of technological innovation
is still growing, the overall level is relatively low.

Raihan et al. [5] found for Malaysia that a 1% increase in the number of patent ap-
plications is linked to a 0.05% reduction in CO2 emissions. These findings reveal that
increased renewable energy use and technological innovation can reduce Malaysia’s carbon
emissions while economic growth deteriorates the environmental quality. The study by
Hu et al. [11] examines the status, spatial network, and determining factors of low-carbon
patent applications in China since 2001 using social network analysis.

2.2. The Relationship between GDP and CO2 Emissions

Georgescu and Kinnunen [12] studied the determinants of CO2 emissions for Finland
during 1990–2021. The authors obtained a negative long-term influence of productivity on
CO2 emissions. Higher productivity often results from technological advancements that
improve the energy efficiency. In Finland, industries may adopt more efficient machinery
and processes, reducing the energy required for production and, consequently, lowering
CO2 emissions. Increased productivity can also stem from better management practices and
optimized production processes, which minimize waste and reduce energy consumption.
Georgescu and Kinnunen [13] explored the impact of GDP per capita, FDI, and energy
use on the ecological footprint in Finland during 1990–2021 using the ARDL model. A
result of the paper is that GDP negatively influences the ecological footprint. A higher
GDP often correlates with a greater investment in technology and innovation. Finland,
known for its technological advancements, has developed and adopted energy-efficient
technologies across various sectors, reducing the ecological footprint despite economic
growth. Finland’s advancements in clean energy technologies, such as bioenergy and wind
power, contribute to a lower ecological footprint. The paper by Onofrei et al. [14] examines
the dynamics of the relationship between GDP and CO2 emissions in the 27 EU member
states from 2000 to 2017 using a panel data approach. The DOLS method indicates that,
on average, a 1% increase in GDP results in a 0.072% increase in CO2 emissions. If energy
efficiency improvements are not achieved, rising GDP per capita will lead to increased CO2
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emissions, meaning that as an economy becomes wealthier, its per capita CO2 emissions
will also rise [15].

2.3. The Relationship between Urbanization and CO2 Emissions

Luqman et al. [16] measure urban CO2 emissions across 91 cities. A cluster analysis
indicates that in developing countries, rapid increases in both urban areas and per capita
CO2 emissions are prevalent. Cities in the developed countries exhibit slower growth in
both urban areas and per capita CO2 emissions. The study by Muñoz et al. [17] examines
the carbon footprints of over 8000 Austrian households across three urbanization levels:
urban, semi-urban, and rural. The findings indicate that urban residents in Austria have
the lowest carbon footprint among the three groups, followed by rural residents, with
semi-urban residents having the highest. Overall, the study suggests that urbanization in
Austria could lead to a relative reduction in emissions in the future due to more compact
city structures. Chen et al. [18] use panel data from OECD countries spanning from 1996
to 2018. The study employs the Feasible Generalized Least Squares (FGLS) method and
reveals an inverted U-shaped curve between urbanization and carbon emissions. The
average urbanization level in OECD countries falls on the left side of this curve, suggesting
that increased urbanization leads to higher carbon emissions in most OECD countries.
Zhang et al. [19] argued that urbanization creates an economy of scale effect, becoming the
primary driver for the development of non-fossil energy sources, which significantly aids
in reducing carbon emissions.

2.4. The Relationship between Renewable Energy and CO2 Emissions

Szetela et al. [20] apply two-step GMM and Generalized Least Squares (GLS) methods
for 43 countries heavily reliant on natural resources from 2000 to 2015. They obtain that
renewable energy significantly reduces per capita CO2 emissions, with a 1 percentage
point increase in renewable energy consumption resulting in a 1.25% decrease in CO2
emissions per capita. Bilan et al. [21] investigates the impact of renewable energy and
GDP growth on CO2 emissions in EU member states from 1995 to 2015. Through the
use of cointegration and other empirical methods, including the Vector Error Correction
Model (VECM), the study demonstrates that the adoption of renewable energy leads to
enhanced environmental quality by reducing CO2 emissions. Feng [22] uses FMOLS and
the Markov switching regression model to investigate the long-term impact of green finance,
green energy, openness, and R&D expenditures on carbon emissions for China. It follows
that these variables enhance the environmental quality. Petruška et al. [23] analyze the
relationship between CO2 emissions and other factors including energy from renewable
sources across 22 European countries from 1992 to 2019. By means of FMOLS and DOLS, it
was proved that the energy produced from renewable sources leads to a reduction in CO2
emissions per capita.

2.5. Application of Fuzzy MCDM in Circular Economy Assessment

CE is a concept of converting waste materials and energy into capital for other pur-
poses, according to the study by Petković et al. [24]. The authors used an adaptive neuro
fuzzy inference system (ANFIS) in their study to analyze the effect of waste generation,
recycling, renewable energy, biomass, and soil pollution on GDP.

Gou et al. [25], in their study, consider that CE is even more important as it has attracted
the attention of specialists, especially due to the evolution of industry to Industry 4.0. The
authors conducted a bibliometric analysis in their study to identify the fuzzy techniques
used in CE. Among the MCDM methods identified by the authors are Fuzzy Topsis, Fuzzy
DEMATEL, Fuzzy Analytic Hierarchy Process (ANP), Fuzzy Vikor, Fuzzy Electre, and
other fuzzy MCDM.

Given the difficulties in managerial and policy choices, CE remains a still-contested
concept in essence, given that circularity has not been systematically adopted, according to
the study by Bai et al. [26]. The authors propose a set of measures specific to circularity and
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utilize the double hesitation fuzzy sets (DHFS) method for the evaluation and selection of
CE providers.

Another study focuses on the fashion industry, as the authors Abdelmeguid et al. [27]
consider that this industry generates a large amount of pollution. In their study, the authors
use Fuzzy Total Interpretive Structural Modeling (Fuzzy-TISM) to determine how decisions
should be made regarding the main challenges in the successful implementation of CE in
the fashion industry.

Table 1 presents a synthesis of relevant studies addressing topics related to the circu-
lar economy and renewable energy, using various fuzzy multi-criteria decision-making
methods (Fuzzy MCDM) and other similar techniques. The selected studies cover a wide
range of topics, from the classification of business models for the successful adoption of the
circular economy to the identification and evaluation of optimal renewable energy sources.

Table 1. Overview of Key Studies on Circular Economy and Renewable Energy Using Fuzzy
MCDM Methods.

Authors, Year,
References

Scope Technique Criteria

Husain et al., 2021, [28]
Classification of business
models for the successful

adoption of the CE
Fuzzy Topsis

Partnership; Activities;
Resources; Value proposition;

Customer Relationships;
Distribution Channels; Client

Segments; Cost structure;
Revenue flows;

Damgaci et al., 2017, [29] Evaluation of Turkey’s
Renewable Energy Intuitionistic Fuzzy Topsis Technical; Economical;

Environmental; Social;

Öztayşi and Kahraman, 2015, [30]
Evaluation of Renewable

Energies Alternatives

Interval Type-2 Fuzzy
AHP; Hesitant Fuzzy

Topsis

Renewable energy factors;
uncertainty; linguistic

preference;

Khan and Haleem, 2020, [31]
Identifying and evaluating
key strategies for adopting
circular economy practices

Fuzzy DEMATEL

11 strategies for adopting the
CE, including involving

management, creating a vision
and goals;

Boran et al., 2012, [32]

Assessment of renewable
energy technologies for
electricity generation in

Turkey

Intuitionistic Fuzzy Topsis
Renewable Energy

Technologies: Photovoltaic,
Hydro, Wind, Geothermal

Kaya and Kahraman, 2010, [33]

Determining the best
renewable energy alternative

and optimal location for
production in Istanbul

Integrated Fuzzy
VIKOR-AHP

Criteria for the selection of
renewable energy and

location: technical, economic,
geographical, social

Li et al., 2024, [34]

Identifying the most suitable
renewable energy source for

Malaysia’s sustainable
development

Fuzzy Multi-Criteria
Decision Making (MCDM)

based on cumulative
prospect theory

Technology, economy, society,
environment; Efficiency,

payback period, job creation,
CO2 emissions

Riaz et al., 2023, [35]

Application of cubic bipolar
fuzzy sets for the selection of

the best renewable energy
source

Cubic Bipolar Fuzzy Set
(CBFS), CBF-VIKOR,
Einstein averaging

aggregation operators

Selection of renewable energy
sources

Simmhan et al., 2009, [36]

Evaluation of the
development of the circular
economy in the coal mining

industry

Membership
transformation algorithm,

fuzzy evaluation

Developing the circular
economy in coal mining,

dynamic assessment

Govindan et al., 2022, [37]
Prioritizing barriers to circular

economy adoption in the
cable and wire industry

Fuzzy Best-Worst Method
(BWM), Fuzzy DEMATEL,

Super matrix

Barriers to circular economy
adoption: installation costs,
financial limitations, lack of

public awareness, etc.
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Table 1. Cont.

Authors, Year,
References

Scope Technique Criteria

Ayçin and Kayapinar Kaya,
2021, [38]

Identification of barriers to the
implementation of the

zero-waste strategy in Turkey
in the context of the circular

economy

Fuzzy DEMATEL

12 key barriers to zero waste
implementation: uncertainty

of goals, lack of financial
aid, etc.

Turgut and Tolga, 2018, [39]
Evaluation and selection of
the best sustainable and/or

renewable energy alternative

Fuzzy VIKOR, Fuzzy
TODIM, Sensitivity

Analysis

Renewable Energy: Solar,
Wind, Hydroelectric, Storage

Gas (LFG)

Rejeb et al., 2022, [40]

Identifying and prioritizing
barriers in the adoption of

blockchain technology in the
circular economy

Fuzzy Delphi, Best-Worst
Method (BWM)

16 barriers to blockchain
adoption in the CE: lack of
knowledge, reluctance to

change, technological
immaturity

Khan and Ali, 2022, [41]

Creating a framework for the
adoption of smart waste

management in the context of
the circular economy for

Pakistan

Fuzzy SWARA, Fuzzy
VIKOR

16 critical enablers for the
adoption of smart waste
management, including

regulations, industry
responsibility, digitalization

(ICT and IoT)

Poonia et al., 2024, [42]

Development of a
multi-objective mathematical

model for the circular
economy, integrating leasing

and other strategies

Multi-objective Fuzzy
Mixed Integer Linear

Programming

Economic, environmental and
social objectives; the concept

of leasing, reuse,
refurbishment, primary and

secondary recycling

The main methodologies used include Fuzzy Topsis, Fuzzy DEMATEL, Fuzzy Vikor,
Fuzzy Delphi, as well as integrated approaches such as combinations of AHP, BWM, and
other methods. Each study focused on criteria ranging from technical, economic, social, and
environmental to assessing barriers to the adoption of the circular economy and innovative
technologies such as blockchain.

3. Methodology and Data Collection

3.1. Fuzzy Multi-Criteria Decision-Making Methods

Since the introduction of fuzzy set theory by Zadeh [43] and the subsequent develop-
ment of decision-making methods in fuzzy environments by Bellman and Zadeh [44], there
has been a growing body of research addressing uncertain and fuzzy problems using this
theoretical framework. Building on these foundational works, this study employs fuzzy
decision-making theory to account for the potential subjective and imprecise judgments of
evaluators in assessing some economic policies according to various criteria.

Fuzzy decision making is particularly effective when the information available is
uncertain or incomplete. It allows for the incorporation of subjective judgments and expert
opinions, which are often expressed in qualitative terms. This approach frequently uses lin-
guistic variables, which are variables whose values are not numbers but words or sentences
in natural language. Fuzzy decision making is widely used in MCDM, where multiple
conflicting criteria need to be evaluated to make a decision. It provides a framework for ag-
gregating different criteria, each potentially expressed in fuzzy terms, into a final decision.
In this section we will discuss three fuzzy decision-making techniques: fuzzy ELECTRE,
fuzzy TOPSIS, and fuzzy VIKOR. These methods were chosen due to their robustness
in handling complex decision-making scenarios with multiple conflicting criteria [45–49],
which makes them suitable for evaluating priorities in the implementation of CE strategies
to reduce CO2 emissions.
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3.1.1. Fuzzy Electre

Fuzzy ELECTRE (Elimination and Choice Translating Reality) is an extension of the
traditional ELECTRE method by Roy and Bertier [50]. Fuzzy Electre is a MCDM that uses
fuzzy set theory to address uncertainty and ambiguity in the assessment process. It is
used to evaluate and prioritize alternatives by assessing several criteria, facilitating a more
sophisticated analysis of complex decision-making scenarios. There have been several
fuzzy versions of the ELECTRE method proposed: Akram et al. [51], Rouyendegh and
Erol [52], Komsiyah et al. (2019), etc. We briefly present a well-known fuzzy ELECTRE
version in line with Dubois and Prade [53], Komsiyah et al. [54], and Kahraman [55]:

� Step 1: Defining the problem and identifying the set of criteria.

We identify m criteria C1, C2, . . . , Cm.

� Step 2: Defining the set of alternatives.

We define n alternatives A1, A2, . . . , An.

� Step 3: Building the fuzzy decision matrix X =
(
xij
)
, i = 1, . . . , n, j = 1, . . . , m.

The element xij represents the evaluation of the alternative i according to the criterion
j. These values can be fuzzy numbers, sometimes represented by the triangular fuzzy
numbers A = (a, b, c). The membership function of the triangular fuzzy number A is given
in relation (1), according to [53]:

A(x) =

⎧⎨⎩
0, i f x < a and x > c

x−a
b−a , i f a ≤ x ≤ b
c−x
c−b , i f b ≤ x ≤ c

(1)

� Step 4: Normalization of the fuzzy decision matrix: R =
(
rij
)
, i = 1, . . . , n, j = 1, . . . , m.

For a maximization criterion, the normalization of triangular fuzzy numbers A = (a, b, c)
is generally carried out with respect to the maximum possible value across all alternatives
for that criterion. Let us denote the maximum possible value as cmax. The normalized
triangular fuzzy number A′ for maximization can be given by relation (2):

A′ =
(

a
cmax

,
b

cmax
,

c
cmax

)
(2)

For a minimization criterion, we invert the original numbers so that lower values
correspond to higher normalized values, indicating a better preference. Let amin denote the
minimum possible value across all alternatives for that criterion. The normalized triangular
fuzzy number A′ for minimization can be given by relation (3):

A′ =
(

1
c

,
1
b

,
1
a

)
or equivalently A′ =

(
1
c
× 1

amin
,

1
b
× 1

amin
,

1
a
× 1

amin

)
(3)

This approach inverts the values, making larger original values less preferable af-
ter normalization.

� Step 5: Determination of the weights of the criteria.

The fuzzy weights w = (w1, w2, . . . , wm) are established for the m criteria, sometimes
as triangular fuzzy numbers.

� Step 6: The calculation of the weighted matrix V =
(
wij
)
, i = 1, . . . , n, j = 1, . . . , m,

where wij is calculated according to relation (4):

wij = rij × wj (4)
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� Step 7: Calculation of the Concordance Matrix C.

The concordance matrix C is determined by computing the concordance indexes Ckl
between the alternatives Ak and Al as follows (relation (5)):

Ckl = ∑j∈Jkl
wj (5)

where Jkl is the set of criteria for which Ak is at least as good as Al . The concordance matrix
is constructed by repeating this calculation for all pairs of alternatives.

� Step 8: Calculation of the Discordance Matrix D.

For each pair of alternatives Ak and Al , we identify the set of criteria Dkl where
Ak is not at least as good as Al . This involves comparing the fuzzy evaluations of both
alternatives for each criterion. We compute the discordance index Dkl . For two triangular
fuzzy numbers and the criterion j, Ak =

(
aj

k, bj
k, cj

k

)
and Al =

(
aj

l , bj
l , cj

l

)
, the discordance

index Dj
kl is computed according to relation (6):

Dj
kl =

max
[
0,
(

aj
l − cj

k

)
,
(

bj
l − bj

k

)
,
(

cj
l − aj

k

)]
max
[((

cj
l − aj

l

)
,
(

cj
k − aj

k

)] (6)

The overall discordance index Dkl between the alternatives Ak and Al is the maximum
discordance index across all criteria, which is given in relation (7):

Dkl = maxj∈{1,...,m}Dj
kl (7)

The discordance matrix is constructed by repeating this calculation for all pairs
of alternatives.

� Step 9: Construction of the Concordance Dominance Matrix.

This step involves determining whether the concordance index Ckl for the pair of
alternatives (A k, Al) exceeds a predetermined concordance threshold c. The concordance
dominance matrix S is obtained as follows (relation (8)):

Skl =

{
1, i f Ckl ≥ c
0, i f Ckl < c

(8)

The concordance threshold c is often set based on the decision maker’s preference or
statistical considerations.

� Step 10: Construction of the Discordance Dominance Matrix.

Similarly, the discordance dominance matrix T is constructed by comparing the discor-
dance index Dkl with a discordance threshold d, such that c + d = 1. Its elements are given
in relation (9):

Tkl =

{
1, i f Dkl ≥ d
0, i f Dkl < d

(9)

The lower the discordance index, the more preferable the alternative.

� Step 11: Construction of the Aggregate Dominance Matrix.

The aggregate dominance matrix F indicates the overall dominance of one alternative
over another. Its elements are given in relation (10):

Fkl = SklTkl (10)

The values in the matrix are binary, where 1 indicates that alternative Ak dominates
alternative Al , considering both concordance and discordance, and 0 indicates otherwise.
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� Step 12: Determination of Outranking Relations.

An alternative Ak is the said outrank alternative Al if Fkl = 1 and Flk = 0. This means
Ak is preferred over Al under the given criteria and thresholds.

This methodological flow was implemented in Python using the basic functions:
fuzzy_min, fuzzy_max, fuzzy_multiple, and fuzzy_compare. The first two functions are used to
calculate the minimum and maximum elements of the fuzzy intervals, and the function
fuzzy_multiple was used to calculate the product of the elements of the fuzzy intervals and
the function fuzzy_compare to determine if all the elements in one interval are greater than
or equal to the elements in another interval (concordance), but also to check if at least one
element in an interval is smaller than the elements in another interval (discordance). The
final scores for each policy will be determined by aggregating measures of concordance
and discordance, thereby providing an assessment of the relative performance of each
alternative. Based on these scores, policies will be ranked to identify the most effective
solutions. We will also use graphical representations to clearly visualize these scores and
the final ranking, making it easier to interpret the results.

3.1.2. Fuzzy Topsis

Fuzzy Topsis is a method used to identify the best alternative by calculating the
geometric distance from an ideal and an anti-ideal solution [56,57]. This technique assumes
that the chosen alternatives should have the smallest distance from the ideal solution
and the largest distance from the anti-ideal solution, facilitating a direct comparative
analysis [58,59].

According to Chen [60], Awasthi et al. [61], and Nădăban et al. [62], the methodological
flow for fuzzy Topsis is:

� Step 1: Determination of Decision Matrix.

The decision matrix is X =
(
xij
)
, i = 1, . . . , n, j = 1, . . . , m, where n is the number

of alternatives and m is the number of criteria. The elements of X are fuzzy numbers
representing the evaluation of alternative i with respect to criterion j.

� Step 2: Determine the Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal
Solutions (FNIS).

FPIS is denoted A+ and is computed as A+ =
(
v+1 , . . . , v+n

)
, where v+j = maxixij for

the benefit criteria and v+j = minixij for the cost criteria.

FNIS is denoted A− and is computed as A− =
(
v−1 , . . . , v−n

)
, where v−j = minixij for

the benefit criteria and v−j = maxixij for the cost criteria.

� Step 3: Calculate the Distance from FPIS and FNIS.

The distance from FPIS is calculated as follows (relation (11)):

d+i =

√
∑n

j=1 d
(

xij, v+j
)2

(11)

The distance from FNIS is calculated according to Equation (12):

d−i =

√
∑n

j=1 d
(

xij, v−j
)2

(12)

� Step 4: Compute the Closeness Coefficient (CC).

The closeness coefficient for each alternative i is calculated according to relation (13):

CCi =
d−i

d−i + d+i
(13)
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The alternatives are ranked based on closeness coefficients CCi. The alternative with
the highest CCi value is considered the best option.

The Fuzzy Topsis algorithm was implemented in Python starting from the mathemat-
ical flow described above. Considering the decision matrix and fuzzy weights already
defined, the first step performed in Python to apply the algorithm is to normalize the
decision matrix to bring the values to a common scale. For normalization, I used the
normalize_fuzzy function. After normalization, we will apply the previously defined fuzzy
weights to each criterion to obtain the normalized weighted matrix. For each element
in the normalized matrix, we will use the function fuzzy_multiply to multiply the fuzzy
values with the corresponding weights. The next step is to determine the positive and
negative ideal solutions that we will use to calculate the proximity coefficient. Later, we will
graphically represent the results to visualize the appropriation coefficients of each policy.

3.1.3. Fuzzy Vikor

The VIKOR method was developed by Opricovic and Tzeng [48] and discussed by
Opricovic and Tzeng [63]. It was introduced as a multi-criteria decision-making technique
designed to identify a compromise solution when dealing with conflicting criteria. The
method’s name, VIKOR, stands for “VIseKriterijumska Optimizacija i Kompromisno Re-
senje” [64], which translates to a multi-criteria optimization and compromise solution.
Vikor is a multi-criteria optimization technique aimed at ranking and choosing an alter-
native from a collection of possibilities. It highlights compromise solutions by evaluating
the closeness of alternatives to the optimal solution and addressing conflicting criteria to
obtain a conclusion that maximizes the social benefit and minimizes individual regret.

A fuzzy version of the VIKOR method was developed by Opricovic and Tzeng [63]
and Kizielewicz and Bączkiewicz [65]. We present briefly its steps:

� Step 1: Determination of Decision Matrix.

The decision matrix is X =
(
xij
)
, i = 1, . . . , n, j = 1, . . . , m, where n is the number

of alternatives and m is the number of criteria. The elements of X are fuzzy numbers
representing the evaluation of alternative i with respect to criterion j. Let x = (l, m, u) be a
triangular fuzzy number, where l is the lower limit, m is the most probable value, and u is
the upper limit.

� Step 2: Determine Fuzzy Positive Ideal Solution (FPIS) and Fuzzy Negative Ideal
Solution (FNIS).

FPIS is denoted A+ and is computed as A+ =
(
v+1 , . . . , v+n

)
, where v+j = maxixij for

the benefit criteria and v+j = minixij for the cost criteria.

FNIS is denoted A− and is computed as A− =
(
v−1 , . . . , v−n

)
, where v−j = minixij for

the benefit criteria and v−j = maxixij for the cost criteria.

� Step 3: Compute the Distance from FPIS and FNIS.

Calculate the distance between each alternative and the FPIS and FNIS using the fuzzy
distance metric. For triangular fuzzy numbers, the distance d

(
xi, xj

)
can be computed

according to relation (14):

d
(
xi, xj

)
=

√[(
li − lj

)2
+
(
mi − mj

)2
+
(
ui − uj

)]2 × 1
3

(14)

� Step 4: Calculate Si, Ri, Qi.

Si is the sum of distances to FPIS and is calculated according to relation (15).

Si = ∑n
j=1 [wj

d
(
xij, A+

)
d(A−, A+)

] (15)

where wj is the weight of the j criterion.
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Ri is the maximum regret (distance) for the worst-performing criterion and is calcu-
lated according to relation (16).

Ri = maxj[wj
d
(
xij, A+

)
d(A−, A+)

] (16)

Qi is the compromise ranking index (relation (17)).

Qi = v
(

Si − S+

S− − S+

)
+ (1 − v)

(
Ri − R+

R− − R+

)
(17)

where S+ and R+ are the minimum Si and Ri, S− and R− are the maximum Si and Ri, and
v is the weight of the strategy of most criteria.

� Step 5: Rank the Alternatives.

The alternatives are ranked based on their Qi values, with the lowest Qi indicating the
best compromise solution.

3.1.4. Fuzzy DEMATEL

The Fuzzy DEMATEL (Decision-Making Trial and Evaluation Laboratory) method has
been popularized quite recently in Japan as a practical way to visually express complex
causal relationships. Basically, this method separates the established indicators into cause
classes and effect classes; it succeeds in converting the relationship between cause-effect
factors into an unintelligible structural model [66]. DEMATEL facilitates the identification of
critical elements and their inter-relations, offering insight into the impacts and interactions
among the criteria. Steps for making fuzzy DEMATEL are presented in the following:

� Step 1: Define the problem and identify criteria.

We convert variables into triangular fuzzy numbers xij = (l, m, n), where l is the
lower limit, m is the most likely value, and u is the upper limit.

� Step 2: Construct the Direct-Relation Matrix.

The decision matrix is X =
(
xij
)
, where each element xij is the fuzzy number repre-

senting the direct influence of criterion i on criterion j.

� Step 3: Normalize the Direct-Relation Matrix.

We compute the normalization factor λ using Formula (18):

λ = max
(

max
i

∑n
j=1 uij, max

j
∑n

i=1 uij

)
(18)

We normalize the matrix by dividing each element by λ, according to relation (19):

N =
X
λ

(19)

� Step 4: Calculate the Total-Relation Matrix.

We compute the total-relation matrix (T) using the following Formula (20):

T = N(I − N)−1 (20)

where I is the identity matrix and Nk → 0 as k →∝ , so we compute (I − N)−1 as the
fuzzy inverse.
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� Step 5: Defuzzification.

We convert the fuzzy total-relation matrix into a crisp matrix T′ using a defuzzification
method, such as the centroid method, according to relation (21):

tij =
lij + mij + uij

3
(21)

� Step 6: Calculate Prominence and Relation.

We calculate the prominence Di + Ri and Di − Ri for each criterion i:

Di = ∑n
j=1 tij, Ri = ∑n

j=1 tij (22)

where Di + Ri represents centrality and Di − Ri is causality. Centrality indicates the overall
importance of each criterion in the network, being the sum of influences exerted and
received. Causality shows the cause or effect role of the criteria.

� Step 7: Plot the Network Relationship Map (NRM)

We use the values of Di + Ri and Di − Ri to plot the causal relationship and visualize
the prominence and net influence of each criterion.

3.2. Autoregressive Distributed Lag Model

The five variables are in a linear relationship, according to Equation (23):

ΔCO2t = a0 + ∑n
k=1 a1ΔCO2t−k + ∑

p
k=1 a2ΔGDPt−k + ∑

q
k=1 a3ΔPAt−k+

+∑r
k=1 a4ΔURBt−k + ∑s

k=1 a5EPRENt−k
(23)

The time series data were converted to natural logarithms to reduce abrupt fluctuations
in the series [67]. Equation (23) becomes an ARDL (n, p, q, r, s) regression (Equation (24)):

ΔCO2t = a0 + ∑n
k=1 a1ΔCO2t−k + ∑

p
k=1 a2ΔGDPt−k + ∑

q
k=1 a3ΔPAt−k+

+∑r
k=1 a4ΔURBt−k + ∑s

k=1 a5EPRENt−k + λ1CO2t−1 + λ2GDPt−1 + λ3PAt−1+
λ4URBt−1 + λ5EPRENt−1 + εt

(24)

Δ is the first difference and n, p, q, r, and s are the lag orders. The Bayer and Hanck [68]
cointegration test provides robust results by integrating four distinct cointegration tech-
niques: Engle and Granger [69]—EG, Johansen [70]—J, Boswijk [71]—BO, and Banerjee
et al. [72]—BA. It utilizes Fisher F-statistics to prove cointegration. The formulations of the
test, following the Fisher method, are given by (25) and (26):

EG − J = −[ln(PEG) + ln(PJ)] (25)

EG − J − BO − BA = −2[ln(PEG) + ln(PJ) + ln(PBO) + ln(PA)] (26)

PEG, PJ, PBO, and PA represent the test probabilities for the EG, J, BO, and BA tests,
respectively. If the computed Fisher statistic exceeds the critical value established by Bayer
and Hanck [68], the null hypothesis of no cointegration is rejected. The study’s findings
are further validated using the ARDL bounds testing approach from Pesaran et al. [73].
When cointegration is present, the Error Correction Model (ECM) is specified as follows,
according to relation (27):

ΔCO2t = a0 + ∑n
k=1 a1ΔCO2t−k + ∑

p
k=1 a2ΔGDPt−k + ∑

q
k=1 a3ΔPAt−k+

+∑r
k=1 a4ΔURBt−k + ∑s

k=1 a5ΔEPRENt−k + ΓECMt−1 + εt
(27)

The Error Correction Term (ECT) represents the adjustment term that corrects devia-
tions from the long-term equilibrium. ECT should be statistically significant and between
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−2 and 0. In an ARDL framework, once the cointegration relationship is established, ECT
quantifies the speed at which the dependent variable adjusts to restore the equilibrium
after a disturbance. Finally, the normality test, the GLEJSER heteroskedasticity test, the
Breusch–Godfrey serial correlation test, the LM test, and the Ramsey-Reset test were per-
formed. The cumulative sum (CUSUM) and cumulative sum of squares (CUSUMSQ) tests
proved the model’s stability.

3.3. Data Collection

Table 2 describes the variables and their sources for the period 1990–2023. This study
investigates the impact of PA, GDP, URB, and EPREN on CO2 emissions in Romania during
1990–2023. The number of patent applications was computed as the sum of resident and
non-resident patent applications. We will use it as a proxy for the level of innovation and
technological advancement in an economy. It reflects the creation and dissemination of
new technologies, processes, and products. In the context of CO2 emissions, PA related
to green technologies, such as renewable energy, energy efficiency, and pollution control,
are representative. These innovations can directly contribute to reducing CO2 emissions.
Innovations can lead to the development of more energy-efficient technologies, which re-
duce the amount of energy required for industrial processes, transportation, and residential
use. Patents in renewable energy technologies (e.g., solar, wind, hydro, and bioenergy) can
facilitate the transition from fossil fuel-based energy sources to cleaner, renewable sources.
Innovations in Carbon Capture and Storage (CCS) technologies allow for the capture of CO2
emissions from industrial processes and their storage underground, preventing them from
entering the atmosphere. Patents in CCS technologies can significantly mitigate emissions
from heavy industries and power plants. For a clearer understanding of all the acronyms
used in our study, see Abbreviations, which describes these acronyms.

Table 2. Variables specification.

Variable Acronym Measurement Unit Source

CO2 emissions per capita CO2 Tons Our World in Data [74]
Patent applications PA Number World Bank [75,76]

Gross domestic product GDP Constant 2015 $USD World Bank [77]
Share of energy production from renewables EPREN % Our World in Data [78]

Urbanization URB % World Bank [79]

4. Empirical Results

4.1. Fuzzy Electre

Table 3 summarizes how different policies influence various criteria related to the CE
and sustainability. It highlights the role of specific policies such as waste management
and energy efficiency in increasing the recycling rates and renewable energy capacity. The
table also highlights the importance of innovation for advancing CE technologies and
how sustainable consumption can reduce material use. In addition, the table shows how
CE practices can boost GDP growth and how policies to reduce CO2 emissions improve
carbon efficiency.

In Table 4, the fuzzy linguistic scale used for pairwise comparisons was created. This
scale defines the relative importance of the criteria by means of linguistic terms, which are
expressed in the form of intervals of triangular fuzzy numbers. The linguistic scale was
created based on the way it was defined in the study by Arantes et al. [58].

256



Mathematics 2024, 12, 2997

Table 3. Policy impacts on CE.

Criteria Policy

Waste recycling rate
Waste management policy (P1): Studies show that effective waste management policies
can significantly increase recycling rates. Implementation of these policies leads to more

efficient waste management and reduced environmental impacts [80–83].

Installed capacity of renewable energy

Energy efficiency policy (P2): There is a direct link between energy efficiency policies
and the increase in installed renewable energy capacity. This is due to investments in

more efficient technologies and the transition to more sustainable energy
sources [84–87].

Investments in CE technologies
Innovation and development (P3): Investments in innovation and development are

essential to advance circular technologies. They enable the development of more
efficient processes and products, thereby reducing the impact on resources [88–92].

Materials consumption per capita

Sustainable production and consumption (P4): By implementing policies that promote
responsible consumption, per capita material consumption can be significantly

reduced [93–97]. This includes consumer education and regulations that encourage
resource efficiency [98,99].

GDP from circular activities
GDP growth through the CE (P5): studies show that economies that adopt circular

models can see an increase in GDP due to innovation and the creation of new markets
and jobs [100–106].

CO2 emissions per capita of GDP
Reducing CO2 emissions (P6): Policies to reduce CO2 emissions are fundamental to

improving the carbon efficiency of the economy [107–109]. This is achieved by
promoting green energy and optimizing industrial processes.

Table 4. Linguistic fuzzy scales for pairwise comparisons.

Fuzzy Linguistic Terms Triangular Fuzzy Number Interval

Very High Importance (VHI) [0.8, 0.9, 1.0]
High Importance (HI) [0.7, 0.8, 0.9]

Moderately High Importance (MHI) [0.6, 0.7, 0.8]
Medium Importance (MI) [0.5, 0.6, 0.7]

Moderately Low Importance (MLI) [0.4, 0.5, 0.6]
Low Importance (LI) [0.3, 0.4, 0.5]

Very Low Importance (VLI) [0.2, 0.3, 0.4]

In Table 5, the decision matrix has been constructed for the fuzzy MCDM to be applied
in the following. The matrix shows the weights for each policy and the key indicator set in
the context of the CE. These were established based on expert judgment, a literature review,
and on empirical data, using variables such as CO2 emissions, patent applications, GDP,
renewable energy production, and urbanization. The fuzzy values associated with each
policy were determined by analyzing these variables, providing an objective and evidence-
based perspective on how the policies influence the circular economy. This approach
eliminates the subjectivity that can occur in the evaluation by expert opinions or surveys
and allows for a more precise analysis based on the relationships between the historical
data and the selected evaluation criteria. Thus, for the waste management policy (P1)
and the waste recycling rate, we have set revised weights, considering the importance of
recycling in waste management. Regarding the installed capacity of renewable energy, we
set average values considering that renewable energy contributes to P1, although it is not
the main focus in waste management. For investments in CE technologies, the moderate
values of the weights reflect the significant but not the most important impact on P1.
Material consumption per capita is not a priority for P1; therefore, the weights set are low.
A high relevance was considered for GDP from circular activities, emphasizing the close
link between efficient waste management and circular economic activities. Concerning
CO2 emissions per capita of GDP, the weights set are moderate, indicating the concern to
reduce CO2 emissions. In terms of the energy efficiency policy (P2), the highest weight in
the decision matrix was set for the installed capacity of renewable energy, illustrating a high
importance in the policy set. CO2 emissions per capita of GDP also received higher weights,
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like GDP from circular activities emphasizing both the economic link and the objective to
reduce CO2 emissions. For the policy on increasing innovation and development (P3), major
importance was given to investments in technologies for the CE, emphasizing the major role
of technological innovation. High weights were also set for GDP from circular activities. Of
major importance for policy P4 was sustainable production and consumption, for which a
high weight was set for the criterion material consumption per capita, emphasizing the need
for sustainability. In order to emphasize the economic dependence on circular activities for
the GDP growth policy (P5), a high weight has been assigned to the criterion GDP from
circular activities, but also to the increase in investments in CE technologies. As for P6,
we considered that the CO2 emission reduction policy is directly linked to the installed
capacity of renewable energy, and this criterion is important for emission reduction.

Table 5. Fuzzy decision matrix.

Policy
Waste

Recycling
Rate

Installed
Capacity of
Renewable

Energy

Investments in
Circular
Economy

Technologies

Materials
Consumption

per Capita

GDP from
Circular

Activities

CO2 Emissions
per Capita of

GDP

Waste management
(P1)

[0.7, 0.8, 0.9]
(HI)

[0.3, 0.4, 0.5]
(LI)

[0.4, 0.5, 0.6]
(MLI)

[0.2, 0.3, 0.4]
(VLI)

[0.6, 0.7, 0.8]
(MHI)

[0.4, 0.5, 0.6]
(MLI)

Energy efficiency
(P2)

[0.5, 0.6, 0.7]
(MI)

[0.7, 0.8, 0.9]
(HI)

[0.3, 0.4, 0.5]
(LI)

[0.3, 0.4, 0.5]
(LI)

[0.5, 0.6, 0.7]
(MI)

[0.5, 0.6, 0.7]
(MI)

Innovation and
development (P3)

[0.6, 0.7, 0.8]
(MHI)

[0.5, 0.6, 0.7]
(MI)

[0.8, 0.9, 1.00]
(VHI)

[0.4, 0.5, 0.6]
(MLI)

[0.6, 0.7, 0.8]
(MHI)

[0.3, 0.4, 0.5]
(LI)

Sustainable
production and

consumption (P4)

[0.3, 0.4, 0.5]
(LI)

[0.4, 0.5, 0.6]
(MLI)

[0.5, 0.6, 0.7]
(MI)

[0.7, 0.8, 0.9]
(HI)

[0.4, 0.5, 0.6]
(MLI)

[0.6, 0.7, 0.8]
(MHI)

GDP growth
through CE (P5)

[0.4, 0.5, 0.6]
(MLI)

[0.6, 0.7, 0.8]
(MHI)

[0.7, 0.8, 0.9]
(HI)

[0.5, 0.6, 0.7]
(MI)

[0.8, 0.9, 1.00]
(VHI)

[0.2, 0.3, 0.4]
(VLI)

Reducing CO2
emissions (P6)

[0.5, 0.6, 0.7]
(MI)

[0.8, 0.9, 1.00]
(VHI)

[0.6, 0.7, 0.8]
(MHI)

[0.6, 0.7, 0.8]
(MHI)

[0.7, 0.8, 0.9]
(HI)

[0.4, 0.5, 0.6]
(MLI)

Triangular fuzzy numbers have been set in Table 6. For the waste recycling rate, the
weights [0.1, 0.2, and 0.3] were set, indicating a moderate importance of waste recycling
in the CE. Recycling contributes to the reduction of resources needed for production and
less waste with a semi-significant impact on sustainability. In terms of the installed re-
newable energy capacity, higher weights have been set in view of the importance of the
transition to renewable energy sources, which is important in reducing CO2 emissions and
increasing long-term economic sustainability. The third criterion considered is material
consumption per capita. The established weights underline the importance of controlling
resource consumption to minimize the impact on the environment and to promote sus-
tainable consumption practices. GDP from circular activities received higher triangular
fuzzy values which emphasizes the significant contribution of the CE to economic growth,
indicating that circular activities not only protect the environment, but also stimulate
economic development. CO2 emissions per capita of GDP have also been given higher
weights, reflecting the need to reduce CO2 emissions to meet environmental objectives
and to support the transition to a low-carbon economy. These values were based on both
professional judgment and a literature review.

The next step before applying Fuzzy MCDM was to calculate the concordance and
discordance matrix. The concordance matrix was calculated in Table 7. This evaluates the
extent to which one policy is better or equal to another based on the previously established
criteria. We observe that the policy on CO2 emission reduction (P6) has the highest level
of concordance, being considered superior to the other policies in several comparisons,
indicating strong support for this policy in reducing CO2 emissions. Also, policies P1 and
P3 have a high level of agreement with the other policies, suggesting that they can also be
considered effective in the CE analysis.
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Table 6. Fuzzy weight for each criterion.

Criteria Fuzzy Weights Linguistic Term

Waste recycling rate [0.1, 0.2, 0.3] Moderate importance
Installed capacity of renewable energy [0.2, 0.3, 0.4] Higher importance
Investments in CE technologies [0.15, 0.25, 0.35] Medium importance
Materials consumption per capita [0.1, 0.2, 0.3] Moderate importance
GDP from circular activities [0.25, 0.35, 0.45] Higher importance
CO2 emissions per capita of GDP [0.2, 0.3, 0.4] Higher importance

Table 7. Concordance Matrix.

P1 P2 P3 P4 P5 P6

P1 0.00 0.50 0.50 0.33 0.33 0.33
P2 0.50 0.00 0.33 0.50 0.50 0.33
P3 0.67 0.67 0.00 0.67 0.50 0.33
P4 0.67 0.50 0.33 0.00 0.33 0.33
P5 0.67 0.50 0.50 0.67 0.00 0.33
P6 0.83 0.83 0.67 0.67 0.67 0.00

The discordance matrix measures the difference between the performance of two
policies on a given criterion when one is worse. We note in Table 8 that policy P6 has
the lowest discordance, indicating that in comparison, the differences between it and the
other policies are minimal, strengthening the support for its effectiveness. Policies P4 and
P5 have higher discordances, suggesting significant variations in the efficiency relative to
other policies.

Table 8. Discordance matrix.

P1 P2 P3 P4 P5 P6

P1 0.00 0.50 0.50 0.67 0.67 0.67
P2 0.50 0.00 0.67 0.50 0.50 0.67
P3 0.33 0.33 0.00 0.33 0.50 0.67
P4 0.33 0.50 0.67 0.00 0.67 0.67
P5 0.33 0.50 0.50 0.33 0.00 0.67
P6 0.17 0.17 0.33 0.33 0.33 0.00

Having computed the concordance and discordance matrices, we determine the final
scores for each alternative using the Fuzzy Electre method and plot the scores and ranking
of the alternatives. In Figure 1, the final score for each policy was plotted in python
using the libraries “matplotlib” and “seaborn”, and in Figure 2, the ranking of the policies
resulting from the Fuzzy Electre method was plotted.

We observe in Figure 1 that the CO2 emission reduction policy has the highest score
of 2.33, indicating that policy P6 is considered the most efficient and successful policy
in the context of the evaluated criteria. This may mean that the CO2 emission reduction
strategy has a strong positive impact and should be prioritized in policy decisions. Policy
P5 on GDP growth through circular activities scores 0.33 and rank 2, being the second
most prioritized policy, suggesting that the CE can contribute significantly to GDP growth.
Investing in circular technologies and creating new markets and jobs could have a positive
impact. Energy efficiency (P2) in the case of Romania scores −0.66 and rank 3. Although
this policy is also important, it may need further improvements or better integration
with other strategies to have a greater impact. Policy P4 has the same score as policy
P2, as seen in Figure 2, indicating that promoting responsible consumption and reducing
material consumption per capita has a moderate impact. The innovation and development
policy (P3) is a lower priority, suggesting that while it has a positive impact, it may not
be implemented effectively or receive sufficient resources. Policy P1 has the lowest score,
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suggesting that waste management could be substantially improved. New strategies or
additional resources may be needed to improve the waste recycling rates.

Figure 1. Final Score Plot for Fuzzy Electre.

Figure 2. Policy ranking using Fuzzy Electre.

4.2. Fuzzy Topsis

Based on the fuzzy decision matrix and the fuzzy weights previously established, we
used the ‘normalize_fuzzy’ function in Python to prepare the flow of using the Fuzzy Topsis
method. We computed the function to compute the positive and negative ideal solution.
Next, we used the closeness coefficient computation function ‘closeness_coefficient’ to
compute this coefficient, which is a measure of how close each policy is to the positive ideal
solution and how far it is from the negative ideal solution.

Table 9 shows the results and rank stability for each policy based on the CC.
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Table 9. Results of the Fuzzy Topsis multi-criteria method.

Criteria Closeness Coefficient (CC) Rank

P1 0.35 6
P2 0.42 5
P3 0.53 3
P4 0.41 2
P5 0.56 4
P6 0.70 1

The results of the Fuzzy Topsis method can be visualized in Figure 3. With a CC of
0.70, P6 approaches the ideal solution. It suggests that the policy related to CO2 emission
reduction is the most effective in the analyzed context. With a coefficient of 0.56, P5
ranks second, indicating that the policy of increasing the GDP through the CE is also
effective. P3 has a coefficient of 0.53, showing that the innovation and development policy
is important to achieve the desired objectives. P4, with a CC of 0.41, and P2, with a CC
of 0.42, respectively, suggest that the two policies have a moderate impact, being related
to sustainable production and consumption and energy efficiency. The furthest from the
ideal solution is P1, which indicates that the waste management policy in Romania needs
improvement in order to be more effective.

Figure 3. Policy ranking using Fuzzy Topsis.

4.3. Fuzzy DEMATEL

As for the Fuzzy DEMATEL method, centrality and causality are the two most impor-
tant metrics that we calculated to prioritize the policies. In Table 10, we observe that P1, P2,
P3, and P5 have positive values from a causality perspective, indicating that they are causes
rather than effects, having a greater impact on the other criteria. P4 and P6, having negative
values, suggest that they can be considered effects, being influenced by other criteria.

In Figure 4, we observe that although policy P1 has a negative centrality value, the
causality is positive which indicates that, although it is not very central, it has a causal
impact on the other policies. Policy P2 shows negative centrality and positive causality,
showing that it influences other policies, but is not significantly influenced. With the lowest
centrality, policy P3 indicates a moderate impact on other policies, having positive causality.
With negative centrality and negative causality, policy P4 can be considered an effect rather
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than a cause, being influenced by other policies. Although it has negative centrality, the
positive causality value for policy P5 suggests that it is influential in the policy network.
Policy P6 can also be considered an effect, with less influence on other policies.

Table 10. Results of the Fuzzy DEMATEL multi-criteria method.

Criteria Centrality (D + R) Causality (D − R)

P1 −2.61 0.24
P2 −2.73 0.18
P3 −2.97 0.14
P4 −2.56 −0.27
P5 −3.11 0.24
P6 −2.61 −0.54

Figure 4. Policy ranking using Fuzzy DEMATEL.

4.4. Fuzzy Vikor

The last method applied is Fuzzy Vikor, being a multi-criteria decision-making tech-
nique. We computed in python the positive and negative ideal solutions based on normal-
ized values and computed the performance metrics S, R, and Q. S is the total distance from
the ideal solution, R is the maximum distance from an ideal criterion and Q is the trade-off
coefficient combining S and R. Finally, the rank was stability, as shown in Table 11, based
on the alternatives as a function of Q.

Table 11. Results of the Fuzzy Vikor multi-criteria method.

Policy S R Q Rank

P1 1.02 0.30 0.87 5
P2 0.90 0.35 0.67 4
P3 0.75 0.26 0.43 2
P4 0.94 0.15 0.92 6
P5 0.70 0.22 0.57 3
P6 0.47 0.30 0.00 1
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Figure 5 plots the performance metrics for the Fuzzy Vikor method. We observe that
policy P6 has the lowest Q score, indicating that it is the best option according to the defined
criteria and weights. Also, policies P3 and P5 have a lower Q score than the rest of the
policies, being important alternatives in policy setting.

Figure 5. Policy ranking using Fuzzy Vikor.

In Figure 6, the policy prioritizations for each applied fuzzy method have been cen-
tralized. Its results will be useful in establishing the quantitative ARDL model that we will
apply in the next section. We observe that in all fuzzy MCDM methods, CO2 emissions per
capita (P6) was identified as the prioritized policy (rank 1 in Fuzzy Electre, Topsis, and Vikor
and an important effect factor in Fuzzy DEMATEL). Thus, it will be selected as a dependent
variable in the ARDL model, associated with P1. For policy P3, we have selected in the
ARDL model the variable Patent Applications (PA). Technological innovation, measured
by the number of patent applications, can indicate the efficiency in developing solutions to
reduce CO2 emissions. This policy ranked 2nd with the Fuzzy Vikor method and 3rd with
the Fuzzy Topsis method. Since economic growth can influence CO2 emissions, including
GDP, as a dependent variable in the ARDL model, it allows one to assess the impact of
economic development on the environment. In Fuzzy DEMATEL, P5 (GDP growth through
CE) was a causal factor even though its rank is 6. However, Fuzzy Electre ranks P5 at rank
2, Fuzzy Vikor at rank 3, and Fuzzy Topsis at rank 4, suggesting that economic growth
through CE can influence emissions. Policies P2 and P3 ranked 3rd according to Fuzzy
Electre, respectively, Fuzzy Topsis, and P3 according to Fuzzy Vikor ranked 2nd. Thus, in
the ARDL model, we have selected the independent variable Share of Energy Production
from Renewables (EPREN), indicating the importance of renewable energy in the context
of CO2 emission reduction. Urbanization affects both the energy demand and consumption
patterns, which can have a direct impact on CO2 emissions. Thus, the last independent
variable in the model was urbanization (URB), being related to the P4 policy on sustainable
production and consumption which, according to Fuzzy DEMATEL, ranks 1st.

4.5. Sensitivity Analysis of Fuzzy Results

The application of four different fuzzy methods to prioritize the same circular policies
provides an image of the consistency of the results between the methods in different
methodological contexts. As a complementary method, the sensitivity analysis examines
the stability of the obtained results in the face of the addition of a disturbance factor, that is,
it shows the robustness of the obtained results.

This section presents a sensitivity analysis of the results obtained by Fuzzy MCDM
to assess their robustness and sensitivity to variations in the approximation coefficients.
Sensitivity analysis is essential to understand the stability of the results and to assess
whether they are reliable in the presence of possible uncertainties in the data. Regarding
Fuzzy MCDM, to simulate the uncertainty and variability inherent in the data, we applied a
disturbance factor between [−10%, +10%] on each coefficient. This variance was generated
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using a uniform distribution to reflect possible variations in the data. Basically, each CC
was multiplied by an aleatory factor generated from the disturbance interval.

Figure 6. Policy prioritization using Fuzzy MCDM.

Thus, in Figure 7, a comparison was made between the results initially obtained with
the Fuzzy Electre method and the results obtained by applying the disturbance factor.
We notice that the changes in the scores of the policies are relatively small. The biggest
change is observed in policy P1, from −1.00 to −0.92, and in policy P6, from 2.33 to 2.27.
However, we can say that the overall ranking of the policies remains robust, with the P6
policy remaining the best alternative.

Figure 7. Sensitivity analysis for Fuzzy Electre.

Regarding the sensitivity analysis for Fuzzy Topsis, we can see in Figure 8 that after
the application of the disturbance factor, the scores of the policies underwent slight changes.
For example, for policy P2, the score increased from 0.42 to 0.46, and for policy P6, it
decreased from 0.70 to 0.65. However, the P6 policy remains the best alternative, even after
applying the disturbance factor, an aspect that underlines the robustness of the results.
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Figure 8. Sensitivity analysis for Fuzzy Topsis.

In Figure 9, the sensitivity analysis was performed for the Fuzzy DEMATEL method.
We observe that the centrality and causality for the policies, when we add the disturbance
factor, undergo small changes. For example, policy P2 decreases from −2.73 to −2.97 and
policy P6 increases from −2.62 to −2.43. Therefore, the application of the disturbance factor
did not significantly change the relations between policies, the results obtained through
Fuzzy DEMATEL remained quite robust in the face of disturbances.

Figure 9. Sensitivity analysis for Fuzzy DEMATEL.

From the perspective of the sensitivity analysis for the Fuzzy Vikor method, in
Figure 10, we can see the comparison of the score after applying the disturbance fac-
tor. It produced small variations in the scores, the largest being for policy P1 from 0.87 to
0.93 and for policy P4 from 0.92 to 0.86. However, policy P6 remains the alternative with
the lowest score, further suggesting that it is the best choice according to Vikor’s criteria.

Figure 11 shows the comparison of the global results of the four fuzzy MCDM methods
and the results obtained after the application of the disturbance factor. We note that from
the perspective of robustness and sensitivity, the Fuzzy Electre and Fuzzy Vikor methods
prove to be the most robust to disturbances, maintaining the initial rankings. Fuzzy Topsis
shows a moderate sensitivity, with minor changes in the ranking, while Fuzzy DEMATEL
shows the highest sensitivity to disturbances.
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Figure 10. Sensitivity analysis for Fuzzy Vikor.

Figure 11. Comparison of Initial and Perturbed Rankings Across Fuzzy MCDM Methods.

4.6. Autoregressive Distributed Lag Model

The plots in Figure 12 show the time series for the five economic and environmental
indicators in Romania. There is a clear downward trend in CO2 emissions over the period,
especially noticeable in the early years and stabilizing somewhat in the later years. Some
fluctuations can be observed, but the general trend is a reduction in CO2 emissions, indicat-
ing potential improvements in environmental policies or shifts in industrial activities. A
consistent upward trend of GDP is observed, indicating economic growth over the period.
This trend is relatively smooth with only minor fluctuations. The sharp increase in the GDP
after around year 10 indicates periods of accelerated economic growth, possibly due to
policy changes, increased investments, or integration into global markets. A downward
trend for the PA is noticeable and especially pronounced in the first half of the period.
This suggests a decline in innovation activities or changes in the patent system. The PA
series shows significant fluctuations, indicating volatility in patent applications, which
could be due to economic cycles, policy changes, or shifts in the research and development
focus. The URB series shows a general upward trend, indicating increasing urbanization.
There is a dip around the middle of the period followed by a recovery. The initial rapid
urbanization could be due to rural-to-urban migration, economic development, and mod-
ernization, while the mid-period dip might reflect economic slowdowns or population
stabilization. There is a clear upward trend if EPREN is evident, indicating an increasing
share of renewable energy in electricity production. The EPREN series exhibits fluctuations,
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but the overall direction is positive, reflecting a shift towards sustainable energy sources,
likely driven by environmental policies and technological advancements.

Figure 12. The evolution of CO2, GDP, PA, URB, and EPREN for Romania (1990–2023).

Table 12 reports descriptive statistics for the variables following logarithmic transformation.

Table 12. Summary Statistics.

CO2 GDP PA URB EPREN

Mean 1.53 8.82 7.18 3.98 3.44
Median 1.51 8.87 7.05 3.98 3.38

Maximum 2.04 9.42 8.02 4.00 3.92
Minimum 1.31 8.30 6.57 3.96 2.87
Std. Dev. 0.16 0.36 0.39 0.01 0.24
Skewness 0.88 0.10 0.48 −0.21 −0.01
Kurtosis 3.60 1.58 2.10 2.24 2.26

Jarque–Bera 4.96 2.90 2.48 1.06 0.77
Probability 0.08 0.23 0.28 0.58 0.68

In Table 12, CO2 and PA show some positive skewness and moderate deviation from
normality, suggesting that while most values are centered around the mean, there are
occasionally higher values. GDP, URB, and EPREN are relatively symmetric, with mean
and median values close to each other. The standard deviations indicate moderate variation
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except for URB, which shows minimal variation. Most variables are reasonably close to
a normal distribution, as indicated by the Jarque–Bera test probabilities, which generally
do not reject the null hypothesis of normality. These statistics provide insights into the
behavior and trends of key economic and environmental indicators in Romania over the
given period, highlighting the overall stability and variation in these measures.

The application of the Augmented Dickey Fuller [110] unit root test leads to the
conclusion that CO2 is stationary at the level and variables are integrated in order 1 (see
Table 13).

Table 13. ADF Unit Root Test Results.

Variables
Level First Difference

Order of Integration
T-Statistics T-Statistics

CO2 −3.31 ** (0.02) −4.88 *** (0.00) I (0)
GDP 0.88 (0.99) −4.50 *** (0.00) I (1)
PA −1.76 (0.39) −5.16 *** (0.00) I (1)

URB 0.00 (0.95) −3.92 ** (0.02) I (1)
EPREN −2.13 (0.23) −5.52 *** (0.00) I (1)

**, *** indicate the significance of variables at 5% and 1% levels, respectively.

According to Table 14, four of the five criteria indicate that a lag order of 3 is the
optimal choice for the Vector Autoregression (VAR) model.

Table 14. VAR Lag order selection criteria.

Lag LogL LR FPE AIC SC HQ

0 163.43 N/A 2.50 × 10−11 −10.22 −9.99 −10.14
1 333.27 273.92 2.24 × 10−15 −19.56 −18.17 * −19.11
2 365.60 41.71 1.60 × 10−15 −20.03 −17.49 −19.20
3 411.86 44.77 * 5.99 × 10−16 * −21.41 * −17.71 −20.20 *

* indicates the lag order selected by the criterion; LR: sequential modified LR test statistic (each test at 5% level); FPE:
Final prediction error; AIC: Akaike information criterion; SC: Schwarz information criterion; HQ: Hannan–Quinn
information criterion.

The obtained model is ARDL (3, 3, 3, 3, 3). Table 15 shows that the F-statistic values
from the EG-J and EG-J-BA-BO methods surpass the critical values at the 5% significance
level. This result supports rejecting the null hypothesis of no cointegration at the 5% level.

Table 15. Bayer–Hank cointegration test.

Tests Engle–Granger (EG) Johansen (J) Banerjee (BA) Boswijk (BO)

Test statistic −3.47 66.72 −7.69 98.99
p-value 0.32 0.00 0.00 0.00

EG-J 57.50 5% critical value, 10.57
EG-J-BA-BO 168.02 5% critical value, 20.14

Table 16 presents the results of the ARDL cointegration bounds test. This result
indicates that the calculated F-statistic is 8.66, which exceeds the upper critical bound for
I (1). Also, this result confirms the existence of cointegration among the variables.

The corresponding long-term coefficients are presented in Table 17.
From Table 17, it follows that GDP does not have a long-term influence on CO2. Typi-

cally, economic growth can lead to increased industrial activity, higher energy consumption,
and more emissions. Conversely, it can also lead to more resources for cleaner technologies
and environmental regulations. The non-significant relationship here suggests that these
effects might be balancing each other out in Romania, leading to no clear long-term trend.
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Table 16. Results of ARDL cointegration bounds test.

Test Statistic Value K (Number of Regressors)

F-statistic 8.66 4
Critical value bounds

Significance I (0) I (1)
10% 2.20 3.09
5% 2.56 3.49
1% 3.29 4.37

Table 17. Long-run estimated results.

Variables Coefficient T-Statistics Prob.

GDP −0.14 −0.91 0.38
PA 0.35 2.48 0.03 **

URB 9.23 3.70 0.00 ***
EPREN −0.42 −3.24 0.00 ***

C −35.21 −3.89 0.00 ***
**, *** indicate the significance of variables at 5% and 1% levels, respectively.

During 1990–2023, Romania may have experienced shifts from heavy industry to
service-based sectors, which typically emit less CO2. This structural change could mitigate
the impact of GDP growth on emissions, contributing to the lack of a significant relationship.
Advances in energy efficiency and technology might reduce emissions even as the GDP
grows. If Romania has adopted such measures, the expected increase in emissions from
economic growth could be offset, resulting in an insignificant relationship. The implementa-
tion of environmental policies and regulations can play a crucial role in reducing emissions.
If Romania has strengthened its environmental policies over time, these measures could
counteract the potential emission increases associated with GDP growth.

A 1% increase in PA exerts a long-term 0.35% increase in CO2. A 1% increase in
PA exerts a long-term 0.35% increase in CO2. The positive relationship suggests that the
types of innovations being patented may be energy-intensive or not necessarily focused on
reducing emissions. For example, advancements in heavy industries, transportation, or
other high-emission sectors could lead to increased CO2 emissions despite technological
progress. Patent applications are often correlated with economic growth and increased
industrial activity. As industries expand and new technologies are implemented, energy
consumption and emissions can rise, reflecting the positive correlation between patents and
CO2. During Romania’s transition period from a centrally planned to a market economy,
there could have been a surge in industrial activity and associated emissions, even as the
country pursued technological advancements. This finding underscores the importance
of directing innovation towards sustainable and environmentally friendly technologies.
Policymakers might need to incentivize green technologies and sustainable practices to
decouple technological progress from CO2 emissions.

A 1% increase in URB exerts a long-term 9.23% increase in CO2. The substantial
coefficient indicates that urbanization has a very large impact on CO2 emissions in Romania.
As more people move to urban areas, there is a significant increase in activities that
contribute to emissions. Urban areas often require substantial energy to support residential,
commercial, and industrial activities. A 1% increase in urbanization could mean more
buildings, factories, vehicles, and overall energy demand, particularly from fossil fuels. In
Romania, this leads to a disproportionate increase in CO2 emissions, indicated by the 9.23%
rise, reflecting inefficient energy use or heavy reliance on carbon-intensive energy sources.
The expansion of urban infrastructure such as roads, bridges, and public transportation
systems involves significant construction activities, which are typically carbon intensive.
Additionally, the increase in the urban population heightens the demand for housing and
commercial spaces, further boosting CO2 emissions.
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A 1% increase in EPREN leads to a 0.42% long-term decrease in CO2. Shifting to renew-
able energy sources reduces the reliance on fossil fuels, which are major contributors to CO2
emissions. This transition involves significant economic activities, including investments
in renewable energy technologies, infrastructure development, and grid modernization.
Renewable energy sources, particularly when scaled up, often have lower operating costs
compared to fossil fuels. Over time, these cost savings can contribute to economic efficiency
and reduce the overall carbon footprint of electricity production. The reduction in CO2
emissions directly correlates with improvements in air quality, public health, and environ-
mental sustainability. These benefits, while not always directly quantified in economic
terms, contribute to a more sustainable economy and reduce the social costs associated
with pollution and climate change. Increasing the share of renewables enhances energy
security by diversifying the energy supply and reducing dependence on imported fossil
fuels. This can lead to greater economic stability and resilience against global energy market
fluctuations. The renewable energy sector fosters innovation and can create new jobs in
manufacturing, installation, maintenance, and research and development. This economic
activity can stimulate growth and provide new employment opportunities.

As seen in Table 18, D(CO2(-2)) is significant at the 5% level, indicating that emissions
from two periods ago have a positive and significant effect on current emissions. The GDP
has a complex impact on CO2 emissions.

Table 18. ARDL-ECM model for short-run estimated results.

Variables Coefficient T-Statistics Prob.

D(CO2(-1)) 0.005 0.04 0.962
D(CO2(-2)) 0.28 2.33 0.039 **

D(GDP) 0.91 −6.91 0.000 ***
D(GDP(-1)) 0.05 0.35 0.728
D(GDP(-2)) 0.56 3.14 0.009 ***

D(PA) 0.15 4.83 0.005 ***
D(PA(-1)) −0.09 −2.36 0.037 **
D(PA(-2)) −0.26 −6.91 0.000 ***
D(URB) 28.79 4.65 0.000 ***

D(URB(-1)) 3.07 0.38 0.704
D(URB(-2)) −8.12 −2.20 0.049 **
D(EPREN) −0.30 −6.75 0.000 ***

D(EPREN(-1)) 0.01 0.274 0.788
D(EPREN(-2)) 0.18 3.85 0.002 ***

CointEq(-1) −0.72 −8.62 0.000 ***
R-squared 0.93

Adjusted R-squared 0.87
**, *** indicate the significance of variables at 5% and 1% levels, respectively.

Current GDP growth significantly increases emissions (coefficient 0.91, significant at
1%). The second lag of GDP (D(GDP(-2))) also shows a positive and significant effect, imply-
ing that economic activities two periods ago continue to influence emissions. PA positively
influences CO2 emissions in the short term, suggesting that innovative activities or new
technologies may initially increase emissions. The negative coefficients for D(PA(-1)) and
D(PA(-2)) indicate that over time, these innovations likely lead to efficiency improvements
or cleaner technologies, which then reduce emissions. The immediate increase could be due
to the energy-intensive nature of research and development or initial deployment phases.
URB has a significant immediate positive effect on emissions, suggesting that rapid urban
growth drives up emissions. The second lag of URB shows a negative effect, indicating that
earlier urbanization efforts might have led to infrastructural or policy changes, reducing
emissions later. Increasing EPREN significantly reduces CO2 emissions in the short term.
The immediate impact is strongly negative, showing the effectiveness of renewable energy
in lowering emissions. However, the second lag of EPREN has a positive effect, suggesting
some delayed impact or transitional effects might temporarily offset reductions.
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ECT is highly significant and negative, indicating a strong tendency to revert to the
long-run equilibrium. The speed of adjustment is 72%, suggesting that deviations from
the long-run equilibrium level of CO2 emissions are corrected relatively quickly. Table 19
presents the null hypotheses for the diagnostic and stability tests.

Table 19. Results of diagnostic and stability tests.

Diagnostic Test H0
Decision

Statistic [p-Value]

Serial Correlation There is no serial correlation in the
residuals

Accept H0
0.39 [0.54]

Heteroscedasticity (GLEJSER) There is no autoregressive conditional
heteroscedasticity

Accept H0
0.96 [0.54]

Jarque–Bera Normal distribution Accept H0
1.15 [0.56]

Ramsey Reset Absence of model misspecification Accept H0
0.56 [0.58]

The CUSUM and CUSUM of the Squares paths stay within the 5% significance level,
as depicted by the red dashed line in Figures 13 and 14. This indicates that the model’s
parameters are stable.

Figure 13. Plot of CUSUM for coefficients’ stability of ARDL model at 5% level of significance.

Figure 14. Plot of CUSUMSQ for coefficients’ stability of ARDL model at 5% level of significance.
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5. Conclusions and Policy Recommendations

Romania is in a process of transition towards a CE model, in the context of the growing
need for sustainability and environmental protection. This transition entails adopting prac-
tices that reduce the dependence on finite resources and minimize negative environmental
impacts. To this end, the country has implemented various policies and strategies to pro-
mote recycling, energy efficiency, and the use of renewable resources. However, challenges
remain, including the need for adequate infrastructure and a sustainability mindset to
ensure a sustainable future.

This study demonstrates that the implementation of CE strategies in Romania has
the potential to significantly reduce CO2 emissions, thus contributing to combating cli-
mate change.

The use of fuzzy MCDM has allowed the identification and prioritization of specific
CE policies, ensuring a more efficient and targeted approach in their implementation. The
six established policies focus on waste management, energy efficiency, innovation and
development, sustainable production and consumption, GDP growth, and reducing CO2
emissions. From the four fuzzy MCDM, Electre, Topsis, and Vikor prioritize for Romania the
policy of CO2 emission reduction, which was addressed in the ARDL quantitative model.

In the context of a CE, patent applications play a critical role in driving innovations
that reduce CO2 emissions. By focusing on resource efficiency, product lifecycle extension,
industrial symbiosis, renewable resources, and circular supply chains, innovations can
significantly contribute to sustainability and emission reduction. In Romania, fostering
CE innovations and supporting green patents can enhance environmental outcomes and
support the transition to a more sustainable economic model.

The strong correlation between urbanization and CO2 emissions suggests that current
economic policies and regulations in Romania may not effectively mitigate the environ-
mental impact of urban growth. This could indicate a need for stronger policies aimed at
promoting energy efficiency, renewable energy adoption, and sustainable urban planning.
The findings highlight a potential trade-off between urbanization and environmental sus-
tainability. Policymakers need to balance economic growth driven by urbanization with
the environmental goal of reducing CO2 emissions. This might involve investing in green
technologies, enhancing public transportation, implementing stricter building codes for
energy efficiency, and incentivizing low-carbon innovations.

While GDP growth leads to increased CO2 emissions in the short run, indicating the
carbon-intensive nature of economic activities, policy interventions and sustainable prac-
tices are needed to mitigate this impact. Rapid urbanization significantly raises emissions,
highlighting the need for sustainable urban planning and development practices to balance
growth with environmental concerns. EPREN has a significant short-term effect in reducing
emissions. This supports policies aimed at boosting renewable energy investment as a
key strategy for emission reduction. The initial increase in CO2 emissions following an
increase in PA suggests that innovation and the development of new technologies may have
short-term environmental costs. However, the longer-term reduction in emissions indicates
that these innovations are likely to lead to more efficient or cleaner technologies over time.
Overall, these results emphasize the need for a balanced approach to economic growth,
urban development, innovation, and energy policy to achieve sustainable environmental
outcomes in Romania.

The result of this study offers valuable insights into the long-term factors that influence
CO2 emissions in Romania, with a particular emphasis on economic growth, urbanization,
patent applications, and renewable energy. Although these findings provide significant
theoretical contributions, their practical applicability necessitates meticulous considera-
tion, particularly in the context of the practical obstacles that Romania encounters when
implementing effective CO2 reduction policies. Also, this study underlines a substantial
contribution of renewable energy to the reduction of CO2 emissions, showing a negative
correlation between the production of renewable energy and emissions. This is in line
with Romania’s continued initiatives to boost its proportion of renewable energy in the
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national energy mix. It is essential to implement additional policy incentives in order to
expedite the adoption of renewable energy sources. The study’s identification of a positive
correlation between patent applications and CO2 emissions suggests that innovation, while
advantageous, may result in higher emissions in specific sectors. This creates a challenge
for policymakers. To ensure that the increase in patent applications contributes to environ-
mental sustainability rather than increased emissions, Romania should consider devising
industrial policies that stimulate research and development in low-carbon technologies.
The environmental pressures that are associated with accelerated urban development are
underscored by the positive relationship between urbanization and CO2 emissions. The
demand for energy increases, transportation becomes more intensive, and waste manage-
ment becomes more difficult as cities expand. The real-world applicability of this discovery
indicates that there are numerous areas that policymakers should concentrate on. Romania
must advocate for sustainable urban development practices, including the adoption of
energy-efficient transportation systems, the implementation of green construction codes,
and the improvement of refuse management infrastructure.

Our results are in line with the fundamental principles of the National Strategy for
the CE in Romania [1]. The first principle of stability in the NSCE is to reduce pollution by
phasing out non-recyclable waste, the second to use products and materials at their highest
utilization value for as long as possible, and the last one focuses on the regeneration of
natural and eco-systems.

As in any scientific study, it is important to recognize its limitations. The first limitation
refers to the fuzzy MCDMs used, which, as is well known, are also based on professional
judgment and on certain estimates that may vary depending on the context analyzed. Also,
the results are specific to the Romanian context and may not be applicable in other countries
without additional adaptations. Another limitation could be represented by the fact that
there are many external factors that could influence CO2 emissions and the effectiveness
of CE strategies that cannot be captured in a single study, such as global economic trends,
international policies, or the impact of climate change. Future research directions can focus
on monitoring these factors in order to ensure a holistic understanding of the dynamics of
these changes.

In future research, we plan to integrate more variables or indicators that may influ-
ence the CE and CO2 emissions, such as governmental policies and consumer behaviors.
Also, another research direction can be in the direction of conducting comparative studies
between Romania and other countries to assess the effectiveness of different CE strategies.
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Acronym Definition

CE Circular Economy
NSCE National Strategy for the Circular Economy
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MCDM Multi-criteria decision making
ELECTRE Elimination and Choice Translating Reality
TOPSIS Technique for Order Preference by Similarity to Ideal Solution
Vikor Multi-criteria optimization and compromise solution
DEMATEL Decision-Making Trial and Evaluation Laboratory
FPIS Fuzzy Positive Ideal Solution
FNIS Fuzzy Negative Ideal Solution
CC Closeness Coefficient
ARDL Autoregressive Distributed Lag
ECM Error correction model
ECT Error correction term
ADF Augmented Dickey–Fuller
VAR Vector Autoregression
FPE Final prediction error
AIC Akaike information criterion
SC Schwarz information criterion
HQ Hannan–Quinn information criterion
GDP Gross domestic product
PA Patent Applications
EPREN Share of energy production from renewables
URB Urbanization
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